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Abstract

Using large-scale MRI services data, a multi-type multi-priority scheduling system, we

measure service duration and show that a number of covariates, including the shift during

which the procedure is performed, patients’ priority, case mix workload of the proceeding

patients and batching of similar procedures affect service duration. We find that the effects

of various mechanisms on service duration may depend on the hospital type (teaching or

community hospitals) and customer type (high priority versus low priority patient). For

instance, adjusting for other factors, we find that MRI scan duration for emergent patients

during the night shifts is significantly longer than the day shifts (around 4%) and the

decrease is even higher in teaching hospital settings (around 8%), but low priority patients

undergo shorter procedure duration during night shifts. We also show that the inverted-U-

shaped relationship observed between the service duration and workload in the literature

is also evident in the MRI services. We also find that sequencing consecutive procedures of

similar body types is a significant mechanism that reduces patients’ MRI scan time. As a

result, adding an extra job of a similar scan type reduces the service time by 4%. We find

that the effects of workload and sequencing are both endogenous, thus the OLS estimator

might fail to determine the true effects. Thereby, we constructed a simultaneous equations

model and used a three-stage least square (3SLS) estimator to correct the endogeneity and

simultaneity biases of workload and sequencing factors, respectively.
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Chapter 1

Introduction

COVID-19 has made resource management in health systems very critical since many

hospitals have reduced the resources allocated to elective medical procedures to ensure

that they have enough capacity for patients who are infected with COVID-19. Due to this

adjustment in resource allocation, many elective medical procedures have been delayed.

For instance, in Ontario, Canada, pandemic has left backlog of more than 16 million of

medical procedures with MRI services having the highest number of cancelled or delayed

procedures (around 500,000 cases) (Ireland, 2021).

Queueing theory is one of the main tools utilized in the operations management liter-

ature to analyze service systems and get insights on different aspects of the system such

as staffing, scheduling, and pricing. Early analytical models mainly ignore the behavioral

factors affecting the performance of the system (see e.g., Shortle et al. 2018) due to the

lack of empirical evidence revealing the factors that should be considered in analyzing ser-
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vice systems. Recent empirical papers on the impact of behavioral factors affecting the

performance of service systems shed light on how queueing models utilized to study ser-

vice providers should be modified (Delasay et al., 2019). As a result, there have recently

been papers in the literature that consider insights released by empirical papers in their

modeling of service systems (see e.g., Delasay et al. 2016a, Abouee-Mehrizi and Barjesteh

2019). Furthermore, empirical studies in the literature find an inverted U-shaped rela-

tionship between workload and staff performances in different settings (see e.g., Tan and

Netessine 2014) However, there are still important hidden aspects of service systems that

should be revealed by empirical studies to provide insights for analyzing and improving

the performance of service systems. For example, does an inverted U-shaped relationship

between workload and procedure duration hold in a Magnetic Resonance Imaging (MRI)

setting? Does the procedure starting time during a day affect the service time? If so, does

the patients’ priority level matter? Furthermore, how does sequencing the MRI scan ap-

pointments affect the service performance? Moreover, do behavioral mechanisms observed

in the whole network of hospitals hold for individual sites as well? Having access to a

large dataset with granular patient-level data, the focus of this thesis is to answer these

questions and provide detailed insights on behavioral factors affecting the performance of

service systems.

The extant literature on behavioral queueing science has been on the increase with
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the recent availability of data that allows exploring behavioral relationships. Most re-

cently, Delasay et al. (2019) develop a general framework that conceptualizes mechanisms

through which load characteristics (changeover, load, and extended load) affect service

time determinants (work content, service speed, and in-process delay) at the level of each

system component (server, network, and customer). They identify a total of 25 mecha-

nisms, out of which 15 impact service time components through the server (namely physical

setup, forgetting, loss of rhythm, task reduction, engagement, server early task initiation,

multitasking-cognitive sharing, social speedup pressure, social loafing, multitasking- time

sharing, multitasking-interruptions, service cancellation, learning by doing), and four im-

pact service time components through the customer (namely customer early task initiation,

return, abandonment, and deterioration).

We were able to get access to a large-scale data over a long period of time that allows

a multi-mechanisms exploration at the aggregate level (e.g. all servers pooled together)

as well as more granular levels (e.g. by different server types or at the level of individual

servers). In fact, one of the contributions of this thesis is demonstrating how various

mechanisms that impact system performance may differ in magnitude at different levels of

the system, as well as for different types of customers (e.g. high priority versus low priority

patients).

We examine these mechanisms in the setting of MRI scheduling and delivery in the
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province of Ontario, Canada. MRI is a medical imaging technique that generates images

of the organs in the body. In addition to exploring what behavioral mechanisms affect

service times, estimating a predictive model to obtain an accurate forecast for the service

duration of patients is crucial for bringing down unnecessary delays. Excessive wait times

are emotionally draining for patients and families and can worsen health outcomes for

patients and incur costs to patients, caregivers, and health systems (Sutherland et al.,

2019). It is estimated that excessive MRI wait times in Canada directly impacted the

Canadian economy by imposing 0.7 billion dollars in costs (271.1 million dollars in the

province of Ontario), and their aggregate (sum of direct, indirect, and induced) impact on

the Canadian economy was at 1.4 billion dollars (535.3 million dollars in Ontario) in 2017

(Sutherland et al., 2019). The direct impact includes the effect of reduced employment

due to excessive wait times, while the indirect and induced effects include the costs of

other supply chain impacts and consumer spending resulting from the reduced output

(Sutherland et al., 2019). Moreover, the COVID-19 pandemic exhausted the healthcare

system all over the world and caused huge backlogs of elective surgeries. Wang et al.

(2020) estimated that between March 15 and June 13, 2020, the incremental backlog in

the province of Ontario is roughly more than 145,000 surgeries.

MRI scheduling and delivery is an interesting context from both the queueing and

scheduling modeling perspective. In this context, customers (patients) and servers (providers)
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co-produce services. The system involves multi-type multi-priority customers with priority-

specific service level constraints (i.e. wait time targets), and the behavioral factors on the

side of servers and customers affect service duration.

In this thesis, we conduct econometric analyses that look into determinants of service

(procedure) duration. We explore roughly 2 million records of service (procedure) time

duration 66 hospitals respectively, including both teaching and community hospitals in the

province of Ontario, Canada. We measure service (procedure) duration and show that

a number of covariates, including the shift during which the procedure was performed,

case-mix workload of the proceeding patients and batching of similar procedures affect

service duration, likely through the following mechanisms: social speedup pressure, task

reduction, early task initiation, forgetting, learning by doing, engagement, and physical

setup. Due to the large-scale data that we have access to, we are able to investigate the

model for teaching and community hospitals separately, as well as at the level of individual

hospitals. In fact, one contribution of this thesis is showing how the magnitude of the effect

of various mechanisms on service duration may depend on the server type (i.e. teaching or

community hospital), as well as on the type of the customers (e.g. high priority versus low

priority patient). For example, we show that the inverted-U-shaped relationship observed

between the service duration and workload depends on the hospital type. Interestingly,

while the inverted U-shaped relationship is observed at both hospital types, the semi-

5



elasticity of workload on procedure duration for scans with average workload level is steeper

at teaching hospitals, i.e., the inverted U-shaped behavior is more narrow. Moreover, we

find that MRI scan duration for emergent patients during the night shifts is significantly

longer than that in the day shifts (around 4%) and the decrease is even higher in teaching

hospital settings (around 8%) than community hospitals, but low priority patients undergo

shorter procedures duration during night shifts than high priority patients.

The remainder of this thesis is organized as follows. In Chapter 2, we present relevant

literature to this thesis. Chapter 3 includes the empirical setting in this thesis along with

the proposed hypotheses. In Section 3.1 we present our research setting and in Section

3.2 we encompass the hypotheses developments for our research. In Chapter 4 we discuss

the dataset and the variable definition for the empirical model along with some descriptive

analysis to support our model. Chapter 5 delivers the econometric specification along with

the endogeneity challenges of our model. Chapter 6 includes the results and the robustness

checks for our empirical models that incorporate varying data settings and modification

to our econometric model and the estimating procedure that we adopted for our main

results. Lastly, Chapter 7 presents our discussion, limitations, and proposed areas for

future research which concludes this thesis.
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Chapter 2

Related Literature

This thesis is mainly related to two streams of papers in the literature, namely papers that

empirically analyze service systems and papers that model scheduling of service delivery.

While there are many papers in the literature that study patient scheduling (see, e.g.,

Ahmadi-Javid et al. 2017, Dantas et al. 2018 and Zhu et al. 2019 for a comprehensive re-

view of this literature), there are only a few papers that empirically investigate scheduling

practices. For instance, Hockenberry et al. (2008) examine the effects of temporal dis-

tance and task repetition on the productivity of cardiac surgeons. They find that surgeon

productivity decreases as the length of break between procedures increases; however, task

repetition reduces that effect. Norris et al. (2014) empirically investigate how attributes

such as the appointment time/date affect the patients’ no shows or cancellations. They

show that longer “lead time” is likely to result in higher cancellation rates. They further

observe that as the appointment times distant from the midnight to the early morning, the
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cancellations and no shows rates decrease. Liu et al. (2018) study the connection between

patient choice behavior and operational attributes in appointment scheduling and show

that delays and in-clinic waiting times have a negative impact on patients’ utility. Ibanez

et al. (2018) empirically show that physicians deviate from FCFS discipline manner by

selecting similar tasks (i.e. batching) and also prioritizing shortest expected processing

time patients. Further, they show that ”deviating” from the assigned order decreases the

productivity. Nonetheless, in our framework, radiologists are not able to deviate from

the scheduled appointments order and the main question lies within whether batching

contributes to radiologists’ performance or not.

Putting similar tasks together to improve the productivity in short term has been stud-

ied in other areas as well. For example, Staats and Gino (2012) empirically show that

“same-day, same-task experience” has a positive effect on staff performance in a bank loan

application processing. It has also been observed that the productivity of servers may in-

crease as the number of services that they perform increases due to their learning by doing.

In particular, they find for short term practice (i.e., during a single day), task specialization

(based on the same-day volume) results in improvements in workers’ productivity. How-

ever, are interested to show that how the task repetition (based on the past experience of a

worker) improves the productivity. Contrarily, it has also been observed that when servers

do not focus on one particular type of service and switch between different service types,

8



the service duration increases due to physical setup required for different service types (see,

e.g., Schultz et al. 2003), and forgetting the information required for the procedure (see,

e.g., Delasay et al. 2016b).

There are also empirical papers in the literature that study the impact of workload on

the performance of a system. For example, empirical papers show that as the workload in

a system increases, due to social speedup pressure, servers may speed up to avoid delaying

the service of people waiting. In a serial production system, Schultz et al. (1998) observe

that adjacent workers may adjust their work speed as the workload (measured by inven-

tory level between them) changes. Staats and Gino (2012) analyze the loan application-

processing line in a bank and observe that loan application processors speed up as the

load of applications increases. Speeding up to avoid delaying the service of people waiting

has been observed in other settings as well, including supermarket cashiers and in-hospital

patient transporters (see, e.g., Delasay et al. 2019 for a comprehensive review of the related

literature).

Some empirical papers also demonstrate that servers may terminate service before com-

pletion or eliminate discretionary service steps as the workload in the system increases,

which is defined as task reduction in Batt and Terwiesch (2017). For instance, Delasay

et al. (2016b) analyze a dataset of emergency medical service (EMS) responses and realize

that when the EMS load is very high, the emergency department staff admit patients com-
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ing through ambulances faster. They also argue that when EMS load is not critically high,

the paramedics increase their engagement on the scene (i.e., spend more time with patients

on the scene) to avoid transportation to a hospital. Moreover, as the workload increases,

servers may be unable to keep a high level of effort for a long time and their speed decreases

after sometime. This has been observed, for example, Kc and Terwiesch (2009) empirically

demonstrate that higher workload decreases the service duration of cardiothoracic surg-

eries as the surgeons are initially motivated; however, this mechanism would not hold for

longer periods of time and increase the service time eventually. Tan and Netessine (2014)

estimate an inverted U-shaped relationship between the workload, which is defined as the

average number of tables that waiters handle at the same time, and the meal duration in

a restaurant chain setting. There are other empirical papers in the healthcare literature

that focus on the effects of clinical or operational features on service quality (see, e.g., Lu

and Lu 2017 and Lu et al. 2021).

To the best of our knowledge, this is the first empirical work that examines the effects

of patient sequencing, procedure shifts, and workload on procedure duration in an advance

scheduling framework. Using a large patient level data set, we construct an empirical

framework to answer how batching the sequence of procedures, shifts that procedures are

performed in, and short term workload level prior to performing an MRI scan, affect the

system productivity. Furthermore, we acknowledge the feedback effects of the radiologists’
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performance on operational covariates that drive the service duration of other procedures.

While there are a few papers in the literature that empirically study patient scheduling,

there are many papers that analyze the problem analytically. A stream of papers in this

literature focus on determining the sequencing and timing of appointments within a period

(a day for instance) so that the direct wait time of patients are minimized. For example,

Denton et al. 2007, Mancilla and Storer 2012, and Begen and Queyranne (2011) study

job sequencing in operations rooms. The same day allocation, which seeks to correctly

use resources to schedule appointments for patients on the same day while facing different

uncertainties including patient arrivals and no-shows, has been also studies in the literature

see e.g. Green et al. (2006), Muthuraman and Lawley (2008), Kolisch and Sickinger (2008),

Liu and Ziya (2014).

Another stream of papers that analytically investigate patient scheduling focus on ad-

vance scheduling of patients to the future periods. For example, Patrick et al. (2008)

study advance scheduling of multi-priority patients considering patients’ wait time targets.

Gocgun and Puterman (2014) consider multi-priority advance scheduling in chemotherapy

with due date and time windows. Truong (2015) studies advance scheduling of urgent and

regular patients and characterizes the optimal scheduling policy. Diamant et al. (2018) also

investigated the advance scheduling process of multi-type outpatients in a multi-stations.

Sauré et al. (2020) extended the former work into accounting multi-priority, multi-class
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patient scheduling, while incorporating random appointment duration, nonetheless, pa-

tients’ required service time depends merely on their class. In this thesis we empirically

analyze advance patient scheduling to determine characteristics that should be considered

in analyzing advance patient scheduling.
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Chapter 3

Empirical Setting and Hypotheses

3.1 Empirical Setting

This research is based on patient-level data on MRI scheduling and delivery in Ontario,

Canada. Canada has a universal, publicly funded health care system. Each provincial or

territorial insurance plan covers a basket of services, free at the point of care, to provide

access to health care that is based on need rather than the ability to pay. However, long

waits for elective care and inequities still exist (Martin et al., 2018).

In Ontario, to receive MRI, patients have to be formally put on a waitlist once a decision

to treat by their physician is made. Physicians specify the service type, which refers to

the body part that needs to go through an MRI scan. Percent of cases by service type,

as well as the mean, median, and standard deviation of the MRI scan procedure duration

of each service type, based on our data from 2014 to 2017, are presented in Table 3.1.
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Table 3.1: Descriptive summary for procedure duration

Service Types % of Cases Mean Standard Deviation Median

Abdomen 7.50% 36.25 13.96 34

Breast 2.49% 35.02 11.22 33

Cardiac 0.97% 59.37 21.12 59

Extremities 26.80% 27.65 11.26 25

Head (Brain) 28.7% 29.76 13.39 27

Head and Neck 4.10% 38.71 16.42 35

Pelvis 3.86% 38.90 14.04 37

Peripheral Vascular 0.08% 37.57 22.35 27

Spine 25.20% 27.27 13.33 23

Thorax 0.38% 45.01 19.09 42

Notes. The unit of reported numbers for procedure duration is by minutes. Total
numbers of observations for descriptive summary of procedure duration is 1,954,088.

From now on, we may use the terms service duration/time and procedure duration/time,

interchangeably.

Furthermore, physicians attribute a priority level to patients, based on clinical evi-

dence. There are four priority levels: emergent (priority 1), inpatient or urgent (priority

2), semi-urgent (priority 3), and non-urgent (priority 4). By definition, failure to diag-

nose/treat would result in serious morbidity/mortality for priority 1 patients, significant

deterioration/deficit for priority 2 patients, moderate deterioration/deficit for priority 3

patients, and minimal deterioration/deficit for priority 4 patients. Depending on these

priority ratings, the Ontario Ministry of Health and Long-Term Care developed wait time
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Figure 3.1: Patients distribution (%) by priority

1% Priority 1
7%

Priority 2
13%

Priority 3

79%

Priority 4

targets under which the patients should be served; emergent levels: less than 24 hours,

inpatient/urgent: within 48 hours, semi-urgent: within 2-10 days and non-urgent: within

4 weeks. Figure 3.1 shows patient distribution (percent) by priority in our dataset from

the year 2014 to 2017.

Shortly after patients are put on the waitlist, the schedulers review their records and,

depending on patient priority and available capacity, create an appointment (for a future

procedure date) for the patient. On the procedure day, the scheduler assigns an MRI scan-

ner for each procedure based on the type of patient receiving the procedure; outpatients :

which is referred to individuals who arrive and depart on the same day of the scheduled

procedure day, inpatients : who were admitted to the hospital before the procedure day

and may remain afterward, emergency : which is referred to those who registered through

the emergency department (ED) and research: which is referred to the rare number of
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participants in a research study. The scheduled MRI procedure might be cancelled and

rescheduled into the future for several reasons (e.g., lack of facility resources, change in

medical status, patients choosing to defer, no shows, etc.), hence, in case of procedure

cancellations the scheduler may re-assign the scanner to accommodate another patient to

avoid system’s under-utilization.

3.2 Hypotheses Development

Service duration is the duration of time the actual procedure (MRI scan) takes from the

start to finish, including the setup time. It is expected that patient clinical characteristics

such as priority and service type affect service duration: Patients of higher priority may

demand more diligence in treatment and as such take longer, and different service types, as

described earlier in Table 3.1, vary in average service duration, since preforming MRI scans

on different body parts requires distinct sequence types and orientations (Lauenstein and

Semelka, 2006). However, we hypothesize that certain behavioral and mechanistic factors

might also affect the relationship between patients’ procedure duration and a number

of characteristics not related to patient’s clinical status, namely the shift during which

the service was provided, case-mix workload of proceeding patients, clinic congestion and

batching of services, even after controlling for patient’s clinical characteristics (such as

patient service type, and general anesthesia requirements), time trends, and hospital fixed
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effects.

We first explore the effect of workload on MRI procedure duration. Providers may

respond differently to (extended) workload. On the one hand, service duration may increase

due to a mechanism known as engagement, through which increased workload increases

attention to all tasks (Delasay et al., 2019). In line with studies ergonomically showing

that as engagement increases, labor performance decreases (Barker and Nussbaum, 2011),

we hypothesize that performing back-to-back procedures on MRI machines would initially

increase workload in the system, thus increasing service duration through the engagement

mechanism, as providers are mentally fatigued (see e.g., Cakir et al. 1982, Fan and Smith

2017, Setyawati 1995). Furthermore, heavy workload may lead to exhaustion (Bentzen

et al., 2016) and stress (Glaser et al. 1999, Rabe et al. 2012), which can decrease system’s

outcome. On the other hand, social speedup pressure exerts pressure on providers to

speed up in order to avoid delaying the service of others (Delasay et al., 2019). Moreover,

performing consecutive MRI scans may stimulate physicians’ motivations (Locke, 1968),

induce creativity (Shao et al., 2019) or improve cognitive performance (Lupien et al., 2007)

which could reduce procedures’ duration. These conflicting mechanisms would lead to the

following hypothesis:

Hypothesis 1 As the prior workload for procedures increases, the service duration of the
next patient first increases and then decreases: i.e., there is an inverted U-shaped relation-
ship between workload and service time.
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Hypothesis 1 is aligned with empirical findings in the literature that workload initially

increases service time and then has a decreasing effect (e.g., Tan and Netessine 2014).

Another mechanism that may affect the MRI procedure duration is that performing

repetitive tasks which require similar skills and methods (similar type) increases the pro-

ductivity (e.g., Staats and Gino 2012), thus we hypothesize that performing a batch of

similar service types decreases service duration through one or more of the following mech-

anisms: i) reducing physical setup since “additional tasks required when changing to service

a different customer class” (Staats and Gino, 2012), ii) lack of forgetting which is “loss of

required information from immediate memory” (see e.g., Bendoly et al. 2014, Froehle and

White 2014), iii) learning by doing (“productivity gains through learning over short hori-

zons”) (e.g., see e.g., Delasay et al. 2019). Furthermore, healthcare providers may batch

similar procedure to improve efficiency and save time (Ibanez et al., 2018). Thus we form

our next hypothesis as:

Hypothesis 2 Service duration decreases as the batches of procedures of similar type in-
crease in size.

We next consider the impact of time of night shifts on the MRI procedure duration.

We hypothesize that after adjusting for procedures’ type and severity and the level of

congestion, the procedures performed overnight shifts are faster than the procedures that

took place during day shifts. We believe that inconvenience hours at night shifts might
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drive physicians to perform non-discretionary tasks quickly (especially for less difficult

procedures) (Oliva and Sterman, 2001) (i.e. task reduction or terminating service before

completion or eliminating one or more discretionary service steps) due to the inconvenience

of the night shift. Thus, we present our hypothesis regarding the impact of night shifts as

follows:

Hypothesis 3A Service duration of MRI procedures decreases in the night shifts.

However, another stream of conflicting mechanisms can drive the physicians to per-

form MRI scans slower in the night shifts. Physicians’ sleep quality may be affected by

night shifts and thus the mechanism of ”deteriorated cognitive efficiency” which may de-

teriorate the physicians’ performance (Di Muzio et al. 2020, Amirian 2014) might kick in.

Moreover, reduction in visual memory capacity at night shifts (Rollinson et al., 2003) may

also decrease the physicians’ performance, which would result in an increase in the service

time (especially for more difficult procedures). Hence, we form the following competing

hypothesis regarding the impact of night shifts:

Hypothesis 3B Service duration of MRI procedures increases in the night shifts.

In the next chapter, we introduce the dataset that we use to test our hypotheses and

provide some descriptive statistics.
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Chapter 4

Data and Variables

4.1 Data Collection

This research is based on empirical data gathered in the Wait Time Information System

(WTIS) and MRI Efficiency Data. WTIS is a web-based tool that is used to collect and to

report wait time information in the province of Ontario, Canada, for over 190 procedures

in 13 key surgical areas and diagnostic imaging cases (Garay et al., 2015). In particular,

we use the data related to the scheduling and delivery of MRI services in Ontario. The

data includes the most major time stamps of the patient journey, including the decision to

treat date and time (order received date and time), appointment created date and time,

scheduled procedure date and time, rescheduled procedure date and time (if applicable),

actual service date with start and finish time or alternatively (if applicable) date procedure

no longer required, as well as facility and site name. For each patient, service type, priority
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level (1 to 4), whether the exam requires a general anesthetic and the assigned MRI scanner

ID are recorded which account for heterogeneity across patients’ medical conditions and

enable us to capture these effects. The MRI efficiency dataset provides procedures’ starting

time (feet-in-time) and finishing time (feet-out-time). The MRI Efficiency dataset also

includes the hospital type (teaching vs community) at which the patients’ procedures were

performed.

We received data for over 66 hospitals, incorporating more than 2.3 million patient time

stamp entries from the year 2013 to 2017 captured in WITS. Due to the high volume of

missing data before 2014, we further limited the data to the period starting from January

2014 to the end of March 2017. We also excluded records of patients who had been removed

from the waitlist due to not requiring the procedure anymore or who had been scheduled

for an appointment but missed their procedure (≈ 7%). As a result, our records were

reduced to a total of 1,954,088 service durations.

4.2 Measures and Controls

To test our hypotheses, we consider ServDuri as the dependent variable which includes

the service time (setup time inclusive) of MRI scan procedure for patient i. We define

this variable by calculating the difference between the actual starting and finishing time of

procedures, measured in minutes.
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We define the independent variables Shifti as a categorical variable denoting the shift

in which the procedure of patient i starts. The physicians’ shifts changes at 7 a.m., 3 p.m.

and 11 p.m., hence we use this variable to measure the effect of night shifts, in addition,

to control for the effect of the shift itself for other hypotheses. We refer to the shift starts

at 11 p.m., 7 a.m., and 3 p.m. as the first, second, and third shift, respectively. While

most of the procedures were performed in the day shifts; (≈ 46.8%) in the shifts starting

from 7 a.m. and (≈ 42.7%) in the shifts starting from 3 p.m., (≈ 10.5%) of procedures

were performed in the night shifts which starts from 11 p.m. until 7 a.m. in the next day.

Retrospectively, we observe that the service time reduces in the night shifts. Specifically,

the average service time during the first shift is 27.0 minutes and will increase to 32.8

and 28.4 minutes in the second and third shifts, respectively. Nonetheless, the increase

in the procedure duration in the day shifts may be due to the following reasons: 1) less

congestion in the hospital in the night shifts may reduce the stress level of physicians (Kc

and Terwiesch, 2009) which increase their performance, 2) since less than 3% of procedures

in the night shifts are emergent/urgent cases (versus 88.6% non-urgent cases), reduction in

the service time may stem from the fact that procedures performed during these shifts are

predominantly non-urgent cases which require less diligence to perform than the urgent

cases, and 3) the scheduler may only offer night shifts appointments to patients with

specific body type scans which are easier to perform than other parts (e.g., head versus
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extremities). All in all, heterogeneity in patients’ medical conditions may also affect their

procedure time in the night shifts, yet we employ certain control levels in the proposed

specifications to properly test the hypothesis regarding the physicians’ performance in night

shifts.

The next set of variables that we define relates to the impact of past procedures on the

upcoming MRI scan. Because our dataset does not track the physicians’ identifier for each

procedure, we consider procedures on each MRI machine within batches with at most τ

minutes of idle time between two consecutive procedures. Figure 4.1 illustrates an arbitrary

batch of procedures performed on a given scanner. The two cut-off points imply that there

is at least τ minutes of idle time between finishing time of procedure ak1 and starting time

of procedure b1 on the same MRI machine. This is also true for procedures bk2 and c1.

Based on this batching criterion, we define Seqi as a count variable indicating the total

number of consecutive procedures of similar type (body part) right before the procedure

of patient i on the same MRI machine and within the same batch. For instance, Seqi = 3

implies that prior to the procedure of patient i, two other procedures with similar service

types were performed consecutively on the same machine with at most τ minutes of idle

time between them. This measure helps us to test whether as the number of consecutive

procedures with a similar type increases, the learning by doing mechanism kicks in and

reduces the service time (Hypothesis 2).
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Table 4.1: Variables definition
Variable Description

ServDuri Actual procedure (MRI scan) duration (minutes) for patient i (including setup time)

Seqi Count variable indicating the total number of consecutive procedures of similar type as of

patient i’s procedure (inclusive) on the same shift and scanner

Shifti Categorical variables indicating the shift of day in which the patient i’s procedure took place

Workloadi Total service duration of consecutive procedures prior to patient i in the same shift and scanner

LWorkloadi Total service duration of procedures from previous week but within a 2-hours difference of

starting hour from that of procedure i at the same hospital

NProcShifth(i) Total number of scheduled procedures on the same date and shift as patient i at the same

hospital site h

FirstJobi Binary variable, equal to 1 if patient i’s procedure was the first scan in the batch

LastJobi Binary variable, equal to 1 if patient i’s procedure was the last scan in the batch

UrgentRecenti Count variable indicating the total number of urgent (first or second priority) procedures prior

to patient i’s procedure in the same batch and scanner

Priorityi Clinical priority of patient i (1=emergent; 2=inpatient/urgent; 3=semi-urgent; 4=non-urgent)

ServTypei Service type of patient i (body part being scanned)

RepTypei Binary variable, equal to 1 if patient i’s procedure body part is the same as patient (i− 1)

PatTypei Categorical variable indicating the entry type of patient i (Inpatient, Outpatient, Emergency,

Research participant)

GenAnesthi Binary variable, equal to 1 if patient i’s procedure requires general anesthesiology

Teachingh(i) Binary variable, equal to 1 if hospital h where the patient i was served is a teaching (vs.

community) hospital

OptHourh(i) The hospital’s total operating hour at which the patient i was served (8 hrs/16hrs/24 hrs)

ScannerIDi The Scanner ID which is assigned to perform procedure of patient i

Y eari Categorical variables indicating the year in which the patient i’s procedure took place

Monthi Categorical variables indicating the month in which the patient i’s procedure took place

Weeki Categorical variables indicating the week number (1 to 52) in which the patient i’s procedure

took place

Weekdayi Categorical variables indicating the weekday (Mon. to Sun.) in which the patient i’s procedure

took place
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Figure 4.1: Batches of MRI procedures performed on a MRI machine

Workloadi denotes the total service duration of procedures right before procedure i

performed on the same MRI machine and within the same batch of procedures. Specifically,

Workloadi =
∑
j∈Bτi

ServDurj · 1{sj<si},

where Bτi denotes the set of procedures performed within the same batch and on the same

machine as procedure i with at most τ minutes of idle time between two consecutive

procedures. The starting time of procedures j and i are denoted by sj and si, respectively,

and 1{·} is an indicator function. The more physicians perform back-to-back procedures

or procedures that require more diligence (and naturally takes more time to perform), the

more workload increases prior to the procedure of patient i. This variable helps us to

capture the effect of extended workload on the upcoming MRI scan.

FirstJobi is an indicator variable for procedures performed at the beginning of each

batch (after at least τ minutes of idle time from the previous procedure that was performed

on the same machine). We use this variable to control the effect of sequence-dependent

setup time (Mousakhani, 2013) since performing the first job in a batch may require more
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Figure 4.2: Distribution of idle time between procedures on the same machine

time to setup. Moreover, the procedure duration of the first job may include a warm-up

time which affects the performance of the physician on the upcoming jobs (see e.g., Abdalla

et al. 2015).

In order to conduct the hypothesis testing in the next sections, we consider τ = 15

minutes as the cut-off threshold for determining a batch of back-to-back procedures. Figure

4.2 illustrates the empirical and fitted distribution for the idle time between procedures on

an MRI scanner. We will use different cut-off thresholds (e.g., τ=5, 10, and 20 minutes) in

the robustness checks provided in Section 6.2 to examine whether the results are consistent

in different settings. Table 3.1 summaries the definition of variables.

We also control for several variables that could affect procedures’ service duration.

NProcShifth(i) accounts for the number of scheduled procedures in the same shift and
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Table 4.2: Descriptive statistics of variables (n = 1,954,088)

Variable Median Mean Std. dev.

(1) ServDur 27 29.98 13.72

(2) Seq 1 1.57 1.15

(3) Workload 31 63.04 86.68

(4) LWorkload 219 193.71 90.06

(5) NProcShift 12 12.11 3.93

(6) FirstJob 0 0.35 0.48

(7) LastJob 0 0.38 0.48

(8) UrgentRecent 0 0.16 0.52

(9) RepType 0 0.47 0.50

(10) GenAnesth 0 0.01 0.09

(11) Teaching 0 0.48 0.50

(12) OptHour 24 21.67 2.13

hospital as patient i’s procedure, which controls the congestion level in each shift. We

also control for patients’ medical characteristics, namely, Priorityi and ServTypei which

indicate the patient’s severity level and the body part being scanned, respectively.

In addition to patients’ characteristics, we control for the effect of hospital operational

capacity using OptHourh(i) as a proxy that captures the daily operating hours of hospitals,

which are either 8 hrs, 16 hrs or 24 hrs. Lastly, we include time trends as a set of categorical

vectors that identify the year, week of the year, and weekday on which the procedure takes

place. Weeks are numbered consecutively from 1 to 52, starting from the first week of

January to the last week in December. Weekdays are numbered consecutively from 1 to 7
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from Sundays to Saturdays. Including Weeki and Weekdayi in the specification reduces

the unobserved effect of staff’s skill, since the schedule of physicians and nurses remains

almost the same throughout the weekdays. Figure 4.5 shows how the service duration

pattern changes across all hospitals by date, month, day of the week, and hours of the day.

4.3 Descriptive Statistics

Table 4.2 shows the descriptive summary statistics of the patient-level variables considering

τ = 15 minutes as the cut-off point for the idle time between procedures for determining

the batches (see Figure 4.1). Based on the historical data, the average service duration of

MRI scans is 29.98 minutes. We observe that the average service duration in community

hospitals is approximately 16.5% shorter than in teaching hospitals, as illustrated in Figure

4.3. This discrepancy motivated us to test the hypotheses in teaching and community

hospitals separately, to examine whether the intrinsic behavior of physicians in teaching

and community hospitals leads to dissimilar mechanisms driving procedure duration.

As Figure 4.3 illustrates, ServDur seems to be right-skewed; hence, using the log trans-

formation on the dependent variable increases the normality of the error term (Velleman

and Hoaglin, 1981). Furthermore, using the log transformation on the dependent vari-

able makes the interpretation of covariates easier, as changing the independent variable

(while other variables are adjusted) translates into the percentage change in the dependent
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Figure 4.3: Histogram of service duration across teaching and community hospitals

variable (see e.g., Wooldridge 2016, Kennedy 2008).

Table 4.3 presents the correlation matrix of continuous variables. We find that the

correlation between ServDur and Seq is approximately −0.13, implying that (before con-

trolling for other factors) the batch size of consecutive procedures of similar type (i.e., body

part) is associated with shorter procedure duration for the upcoming scan; nonetheless,

an appropriate identification strategy is required to test whether or not this correlation

implies causation.

The correlations between variables are relatively small, which confirms that there is no

considerable multicollinearity problem in our model. We also obtain the variance inflation

factor (VIF) of covariates to ensure all covariates have a VIF less than the commonly

accepted threshold of 5 (Hair et al., 1998).
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Table 4.3: Correlation matrix of continuous variables
Measures (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) ServDuri 1.00

(2) Seqi −0.13 1.00

(3) Workloadi −0.03 0.34 1.00

(4) LWorkloadi 0.23 −0.07 0.00a 1.00

(5) NProcShifth(i) −0.30 0.14 0.19 −0.09 1.00

(6) FirstJobi 0.08 −0.37 −0.54 0.00a −0.21 1.00

(7) LastJobi 0.08 −0.08 −0.16 0.01 0.15 −0.07 1.00

(8) UrgentRecenti 0.03 0.04 0.46 0.06 0.07 −0.23 −0.07 1.00

(9) RepTypei −0.12 0.52 0.02 −0.07 0.04 −0.06 −0.00a −0.05 1.00

(10) GenAnesthi 0.18 −0.04 −0.05 0.08 −0.13 0.08 0.07 −0.02 0.01 1.00

(11) Teachingh(i) 0.20 −0.05 −0.05 0.28 −0.22 0.05 0.06 0.03 −0.03 0.09 1.00

(12) OptHourh(i) 0.05 −0.01 0.05 0.18 0.04 −0.02 −0.01 0.06 −0.03 0.00a 0.11 1.00

Notes. a The absolute values are less than 0.005. All other correlation coefficients are significant at the 0.01 level.
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Figure 4.4: Descriptive of Workload and LWorkload
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We also observe that the correlation between Workload and ServDur is not econom-

ically significant (−0.03). However, the Pearson correlation coefficient merely measures

the strength of linear relationship between variables rather than non-linear relationships.

Figure 4.4a depicts the relationship between workloads of prior procedures and the service

duration of the current procedure. We observe that as the workload increases, the aver-

age of service duration first increases and then (roughly after 150 minutes) it begins to

decrease.

Figure 4.5a illustrates how the average procedure duration varies through time dif-

ferent time trends. As it can be observed, the average service duration generally has a

decreasing trend from starting from the year 2014 until the starting year of 2017. This

downtrend might be indicative of improvement in performing MRI scans throughout all

hospitals. Hence, we should control for these trends in our model. Furthermore, Figure

4.5b demonstrates that the procedure duration of MRI scans is, in general, slower over

the workdays, possibly due to more pressure from congestion levels on radiologists that

affect their performance. Thereby, we control for the effects of the day of the week in our

specification. Moreover, dependency of procedure duration across different months and

different hours of the day is also illustrated in Figures 4.5c and 4.5d, respectively. We will

control for these effects in our model to increase the strength of our results.
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Figure 4.5: The average service duration by date, month, day of the week, and hours of
the day
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Chapter 5

Econometric Specifications

In this chapter, we present a rigorous econometric specification that measures the impact

of night shifts, workload, and sequencing on the MRI scan duration.

5.1 Econometric Model

To test the hypotheses regarding the drivers of MRI procedure duration, we estimate the

following regression model:

log(ServDuri) =β0 + β11Workloadi + β12Workload2i + Shiftiβs

+ β2Seqi +X iβp + δh(i) + εi,

(5.1)

Workloadi and Workload2i denote the linear and quadratic effects of prior workload,

which are included to account for their non-linear effects. Similar to Freeman et al. (2017),

we standardized both linear and quadratic variables of workload for interpretation purposes
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that can capture the quadratic effects between workload and service time as well. In

addition, Shifti stands for the set of binary vectors for the shift in which the procedure i

is performed. We consider the first shift denoted by Shift
(1)
i (i.e., from 11 p.m. to 7 a.m.),

which captures the night shifts, as the reference group. Therefore, Shifti comprises two

binary variables for the other shifts, i.e., the second shift, Shift
(2)
i (from 7 a.m. to 3 p.m.)

and the third shift, Shift
(3)
i (from 3 p.m. to 11 p.m.) when MRI scan of patient i took

place.

We also control for several factors that may affect the dependent variable. Specif-

ically, X i is a vector of control variables to control for time-invariant heterogeneity in

attributes of patients and hospitals. The control vector includes the body part being

scanned (ServTypei), the priority level of patients (Priorityi), the indicator capturing

whether patient i required general anesthesiology prior to the MRI scan (GenAnesthi),

and patient entry type (PatTypei). Seqi accounts for the effect of sequencing, which is a

count variable for the total number of consecutive procedures of similar types as of patient

i’s procedure (inclusive). Note that, unlike the Ibanez et al. (2018) framework, since the

procedures are scheduled in advance, radiologists may not be able to ”deviate” from the

procedure calendar. Hence, after controlling for the procedures’ difficulty level (through

the proxies Priority and ServType) and the radiologists’ engagement level (through the

proxies Workload and Workload2), batches are assumed to be exogenous.
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We also control for the congestion level in the shift (NProcShifti), the scanner used

to perform the procedure of patient i (ScannerIDi), and whether the patient i procedure

started at the beginning of a chain (FirstJobi), or at the end of a chain (LastJobi). More-

over, as Figure 4.5 illustrates, time factors significantly affect the service duration, thus we

include several temporal factors such as (Y eari), (Monthi), (Weeki) and (Weekdayi) to

control for the seasonal trends which may affect procedure duration. We also incorporate

the hospitals’ operating hours per day (OptHourh(i)) as a proxy to control for hospital

operational capacity. The fixed effect of a hospital-scanner is included in δh(i), where h(i)

is the hospital-scanner at which the patient i is treated. This indicates that we consider

the joint interaction between the effects of hospitals and MRI scanners as the fixed effect in

our model. The reason is that scanners do not move between hospitals; therefore, includ-

ing the effect of ScannerID as an additional fixed effect in our model makes the effect of

hospitals unidentified. Lastly, εi is the mean zero error term (see Table 4.1 for the detailed

description of control variables).

Although specification (5.1) controls for the hospitals’ heterogeneity, unobservable staffs’

training level and skill may be correlated with both Workload and ServDur. As the skill

of the staff who performed procedure i increases, not only the service duration of patient

i is likely to decrease (see e.g., Hancock 1986), but also the service duration of patients

within the same batch and prior to patient i is likely to decrease, which is reflected in the
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workload. Disregarding this endogeneity may lead to omitted variable bias in the estima-

tion of Workload. Furthermore, the impact of sequencing may also be endogenous. The

reason is that as Ibanez et al. (2018) suggest, the scheduler may consider giving appoint-

ments to procedures with ”shortest-expected processing time”, hence procedures with short

(expected) processing time may mechanistically be served at a longer sequence of proce-

dures of similar types. In other words, procedures with short (expected) service duration

might have higher sequencing orders than other MRI jobs. Neglecting this reverse causality

may lead us to draw erroneous conclusions regarding the true impact of sequencing on the

procedures’ duration. Moreover, the emphasis on the ”expected” procedure duration was

because, at the time that appointments are assigned to patients, schedulers have merely an

”approximation” of the service time. However, since their expectation is highly correlated

with the actual service time that the patient will experience, we expect that the sequencing

depends on the procedure duration.

We expect that the effect of night shifts (Shifti) is uncorrelated with radiologists’

skill level and therefore, exogenous. In addition, specification (5.1) controls for the impact

of congestion level and adjusts for the effect of procedures’ difficulty (through the pro-

cedures’ emergency level and service types) and radiologists’ engagement level (through

the workload). Therefore, changes in the service time during night shifts would be due to

staff’s behavioral factors than the attribute of patients or hospitals. Furthermore, although
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patients are not exogenously assigned to the night shifts but choose a night appointment,

we expect that the impact of (Shifti) is exogenous. The reason is that patients may

choose night shifts to reduce their waiting time than their procedure duration. Hence,

their decision would not endogenously affect their service duration. We next propose an

identification strategy to alleviate the endogeneity bias of OLS for estimating the impacts

of workload and sequencing.

To overcome those potential endogeneity and simultaneity biases, we use the simulta-

neous equations models (SEM) to simultaneously specify the endogeneity of workload and

sequencing through a system of equations. We then use a three-stage least square (3SLS)

estimation method (Zellner, 1962) to consistently estimate the impacts of the endogenous

covariates.

5.2 Endogeneity Challenge

We address the endogeneity challenge by introducing a set of instrumental variables to

assess the endogenous treatments and estimate their true impact on service duration.

A valid instrument variable must satisfy two conditions (1) relevance, that is, it should

be correlated with the endogenous variable, and (2) exclusion restriction, that is, it must be

uncorrelated with the unobserved error term (Wooldridge, 2016). In other words, the im-

pact of the instrument variable on service duration should be merely through the workload.
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We utilize two types of instruments in our identification. First, we exploit UrgentRecenti

as the count variable for the total number of urgent/emergent (i.e., priority 1 or 2) pa-

tients who have been served before patient i within the same batch and on the same MRI

machine, i.e.:

UrgentRecenti =
∑
j∈Bτi

1{sj<si|Priorityj≤2},

where Priorityj and sj are the priority level and starting time of patient j service, re-

spectively. We include patients of priority 1 and 2 in the definition of UrgentRecent as

those patients should be served within 24 and 48 hours of their arrival time, respectively,

compared to 10 and 28 days of priority 3 and 4, respectively. Thus, the scheduler treat

them similarly.

The more urgent/emergency patients are served, the more workload increases for pro-

cedures in the same batch. Furthermore, performing urgent/emergency procedures leads

to a significant increase in workload. Based on our descriptive analysis, the average pro-

cedure duration for patients with a high level of severity, takes 23.5% longer than that

for semi-urgent or non-urgent procedures. In addition, UrgentRecent is highly correlated

with Workload (≈ 0.46), thus satisfying the relevance condition.

We also expect that the total number of urgent/emergency procedures prior to each

procedure affects the service duration of the upcoming procedure only through the workload

and thus is uncorrelated with the staff’s skills. The reason is that urgent/emergency
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procedures should usually get served under 48 hours. Thus, it is more likely that they

accept the first available (earliest) appointment. The median of the waiting time from

receiving an MRI order until its corresponding procedure starts is 3 hours for emergent

patients and 23 hours for urgent patients, respectively. In comparison, the median waiting

time to get the service for semi-urgent and non-urgent patients is 11.6 and 41.25 days,

respectively. This difference shows that there are considerably fewer opportunities for

emergent/urgent patients to book their appointment with preferred hospitals rather than

semi and non-urgent procedures, resulting in an uncorrelated relationship between the

staff’s skill and schedule of emergent/urgent patients. Therefore, satisfying the exclusion

restriction condition.

Similar to Tan and Netessine (2014), we also include the week lagged values of workload

both in the linear and quadratic forms, namely, LWorkload and LWorkload2, as additional

instrumental variables for both linear and quadratic endogenous variables of workload.

Furthermore, since the number of procedures (along with their starting time) is not fixed

for each batch, instead of calculating the lag of workload from the previous week at the

same hour, we compute the lag of workload by taking the summation of service times

for procedures which were performed at the same hospital from previous week within a 2-

hours interval of the current procedure starting hour. For example, the lagged workload of a

procedure taking place at 9 a.m. would be the summation of service time of procedures with
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starting times from 7 a.m. until 11 a.m., from the previous week at the same hospital. In

Section 6.2, we will also use other interval thresholds (e.g., 30-minutes, 1-hour and 3-hours)

to compute those instrumental variables to demonstrate the robustness of our results. We

used a weekly delay to calculate the instrumental variables because hospital operational

managers are likely to adjust their service capacity and radiologists’ schedule based on the

congestion level and workload of the previous week. Hence, we expect that the weekly lag of

workload and workload are correlated, and satisfy the relevance condition. Furthermore, as

Table 4.3 shows, the Pearson correlation between Workload and LWorkload is statistically

zero; however, when we examine the graphical relationship between those two variables

(see Figure 4.4b), a U-shaped pattern is evident. We also include the quadratic value of

this lagged variable to account for the non-linear relationship. Therefore, LWorkloadi =∑
j∈Wi

ServDurj · 1{|H(sj)−H(si)|<2}, where Wi is the set of procedures performed at the

same hospital as procedure i in the previous week, and H(sk) denotes to the hour at which

the procedure k is performed. We again standardize both linear and quadratic variables

of lagged workload for interpretation purposes. It is also sensible to expect that after

controlling the time trends, workload level from the previous week is exogenous and would

not be correlated with the unobserved factors for procedure duration of MRI scans for

the current week (e.g., staffs’ serving skill), as the managers’ adjustment to staff schedule

is likely to diminish the relationship between workload level of the past week and staff
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skill. Hence, we expect that those instruments satisfy the exclusion restriction condition.

Hence, similar to Tan and Netessine (2014) for two endogenous variables (i.e., Workload

and Workload2) we use three instrumental variables (i.e., LWorkload, LWorkload2 and

UrgRecent), which makes the effects of workload identifiable.

Based on the above discussion, we include the following specifications to describe the

instrumental variables estimation:

Workloadi =π0 + π1UrgentRecenti + π21LWorkloadi + π22LWorkload2i+

X
′

iπp + ω
′

h(i) + e
′

i,

(5.2)

and,

Workload2i =γ0 + γ1UrgentRecenti + γ21LWorkloadi + γ22LWorkload2i+

X
′

iγp + ω
′′

h(i) + e
′′

i ,

(5.3)

where π1 and γ1 are the coefficients that capture the impact of UrgentRecent on linear

and quadratic terms of workload, respectively. Similarly, π21, π22, γ21, and γ22 capture the

non-linear impact of lagged workload on the linear and quadratic terms of the endogenous

treatment. Similar to specification (5.1), we control for the fixed effects of shift, hospital,

and batch of procedure i by including the vector of covariates X
′

i. Heterogeneity in the

intrinsic workload level of hospital-scanner have been incorporated using the fixed effects

ω
′

h(i) and ω
′′

h(i), and the error in the estimation of the linear and quadratic terms are captured
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in e
′
i and e

′′
i , respectively.

We next introduce an instrumental variable to address the simultaneity bias of the im-

pact of sequencing in equation (5.1). As we discussed earlier in this section, the schedulers

may be prone to fit ”shortest expected procedures” between MRI scans to fill the gaps

between MRI slots in the procedures calendar. Further, Ibanez et al. (2018) empirically

demonstrated that radiologists are likely to ”deviate” from the pre-determined sequence of

jobs. Therefore, the batching sequence of procedures may be affected by the ”expected”

procedure duration, which is assessed by the scheduler prior to giving the appointment,

and thus, makes Seqi endogenous. We utilize the instrumental variable RepTypei as an

indicator variable, which equals 1 if the body part of procedure i is the same as that of pro-

cedure (i− 1), and equals zero otherwise. The idea for using RepTypei as an instrumental

variable for sequencing is that the scheduler may try to schedule procedures with similar

(repeated) body types close to each other in a batch in order to diminish the setup time

between procedures. Also, we expect that scheduling procedures avoid reducing the radi-

ologists’ cognitive sense by changing their routine, repetitively. Furthermore, following the

results of Ibanez et al. (2018), radiologists’ are likely to deviate from their calendar to serve

jobs with repeated service types. In addition, the correlation between Seq and RepType is

approximately (0.52), and thus, it satisfies the relevance condition. Also, after controlling

for effects of task difficulty and radiologists’ engagement level in the service time equation,
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we expect that RepTypei would be uncorrelated with the unobserved factors that deter-

mine the service time of procedure i, and thus, the impact of repetitive procedure type on

the service duration is merely through the endogenous treatment, Seq. Hence, satisfying

the exclusion restriction assumption. Now that we have an exogenous variable that can

help us to consistently identify the impact of sequencing, we use the following equation to

model the sequencing:

Seqi =θ0 + θ1log(ServDuri) + θ21Workloadi + θ22Workload2i

+ θ3RepTypei +X
′

iθp + ω
′′′

h(i) + e
′′′

i ,

(5.4)

where θ1 captures the effect of ”expected” service duration of procedure i. Since the

expected service duration (at the time of advance scheduling) is not captured in the dataset,

we use the actual service time as a proxy. We also include Workload and Workload2

to control for the effect of radiologists’ engagement level. Also, RepType would be the

instrumental variable for Seq. Similar to other equations, we control for the fixed effects of

shift, hospital, and batch of procedure i by including the vector of covariatesX
′

i. And lastly,

we include the hospital-scanner fixed effects through ω
′′′

h(i) and other unobserved factors is

capture through the error term e
′′′
i . We simultaneously estimate the system of equations

given in (5.1) - (5.4) while assuming that the error terms of all four equations are correlated

and follow a multivariate standard normal distribution, i.e., (ei, e
′
i, e

′′
i , e

′′′
i ) ∼ N (0,Σ),

where Σ is called the contemporaneous covariance matrix.
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Our structural model satisfies the rank condition since for each equation, the number of

instruments is as large as the number of RHS endogenous variables, i.e., we use LWorkload,

LWorkload2 and UrgRecent as instruments for Workload and Workload2 and also use

RepType as an instrument for Seq, and thus making our model identified (Wooldridge,

2016). We exploit an instrumental variable three-stage least square (3SLS) estimation

method to jointly estimate all four equations to account for potential correlation between

their error terms.

First, we use OLS to estimate specifications (5.2)-(5.4) and obtain the predicted endoge-

nous independent variables, i.e., ̂Workloadi, ̂Workload2i and Ŝeqi. Second, we estimate the

coefficients of each equation and predict the residuals and estimate the contemporaneous

covariance matrix Σ. Then, we use the generalized least square (GLS) to estimate and

obtain the unbiased and consistent estimation for coefficients (Davidson et al., 2004). 3SLS

estimation method is asymptotically more efficient than 2SLS in estimating simultaneous

equation models. We also perform the Wu-Hausman endogeneity test with the F statistic

of 1617.49, which strongly rejects the null hypothesis (p < 0.001) that impacts of workload

and sequencing are exogenous on service duration, and thus, supports the ideas of the

simultaneous equation model.

A significant non-zero estimation for instrumental variables in the first-stage, i.e., π1,

π21, π22, γ1, γ21, γ22 and θ3 implies that the instrumental variables are not ”weak”, and
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thus satisfy the relevance condition. In Section 6.1, we verify the relevance condition of

the instrumental variables by comparing the F -statistics of the first-stage estimations with

the suggested rule of thumb for weak instruments (Staiger and Stock, 1997).
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Chapter 6

Results and Robustness Checks

6.1 Results

Table 6.1 summarizes the results with log(ServDur) as the dependent variable. We esti-

mate the parameters of specification (5.1) at three sample levels, namely, the pool of all

hospitals, teaching hospitals, and community hospitals. The R-squared for 3SLS estima-

tions are computed to be negative, hence are not reported. The IV estimations help us

provide consistent estimations of ceteris paribus; hence, goodness-of-fit is not a factor and

thus R-squared has no meaningful interpretations (Wooldridge, 2016).

We find that the estimations of the quadratic specification showcase an inverted U-

shaped behavior of prior Workload on the upcoming procedure duration. The estimation

for linear and quadratic terms are significantly positive and negative, respectively. This

finding is consistent in the proposed models across different sample levels and different
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Table 6.1: Estimation results of models on log(ServDur) as the dependent variable
All Hospitals Teaching Hospitals Community Hospitals

Coefficient OLS 3SLS OLS 3SLS OLS 3SLS
Workload 0.0613∗∗∗ 1.2696∗∗∗ 0.0468∗∗∗ 1.4027∗∗∗ 0.0731∗∗∗ 1.2572∗∗∗

(0.0010) (0.0311) (0.0015) (0.0638) (0.0014) (0.0344)
Workload2 −0.0380∗∗∗ −1.1031∗∗∗ −0.0288∗∗∗ −1.2257∗∗∗ −0.0462∗∗∗ −1.0714∗∗∗

(0.0008) (0.0277) (0.0012) (0.0566) (0.0012) (0.0303)
Shift(2) 0.2025∗∗∗ 0.1493∗∗∗ 0.1910∗∗∗ 0.1253∗∗∗ 0.2154∗∗∗ 0.1708∗∗∗

(0.0011) (0.0019) (0.0016) (0.0037) (0.0016) (0.0024)
Shift(3) 0.1029∗∗∗ 0.0729∗∗∗ 0.1155∗∗∗ 0.0817∗∗∗ 0.0952∗∗∗ 0.0670∗∗∗

(0.0011) (0.0016) (0.0015) (0.0027) (0.0016) (0.0022)
Seq −0.0261∗∗∗ −0.0431∗∗∗ −0.0234∗∗∗ −0.0400∗∗∗ −0.0261∗∗∗ −0.0425∗∗∗

(0.0002) (0.0006) (0.0004) (0.0009) (0.0003) (0.0008)
Controls Included Included Included Included Included Included
Observations 1, 954, 088 1, 954, 088 944, 080 944, 080 1, 010, 008 1, 010, 008
Prob > χ2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Notes. Standard errors are in parentheses. Control vectors include fix effects for patients’ characteristics,
hospital-scanner fixed effect, and time effects such as year, week, and weekday.
∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001.

estimation methods, which supports Hypothesis 1. The quadratic function specification

allows us to capture the critical point at which the service time marginally alters, which

is equals to −b/(2a) in a quadratic function in the form of f(x) = ax2 + bx + c (Tan and

Netessine, 2014). Although the OLS estimation for the impact of workload is statistically

significant, yet it lacks economic significance. Nonetheless, after addressing the endogene-

ity bias using the 3SLS estimation, the inverted U-shaped behavior of workload becomes

more evident. Furthermore, after addressing the endogeneity bias, the estimation for the

magnitude of linear and quadratic terms of workload has been increased in the 3SLS esti-

mation, demonstrating the considerable presence of endogeneity. The 3SLS estimation at
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“all-hospital level analysis” for Workload and Workload2 shows that the critical workload

is about (1.2696/(2× 1.1031) ≈ 0.575) of the standard deviation of workload. The critical

point of 0.575 implies that serving patients consecutively for up to nearly half the standard

deviation is associated with an increased service time for the next patient, likely due to

the physician’s mental engagement level. However, approximately after the critical work-

load level, the service time decreases, likely due to the physician realizing how behind the

schedule s/he is and speeding up under the social speedup pressure (supporting Hypothesis

H1).

In addition, the critical workload is roughly half the standard deviation above the

sample mean of all hospitals (see Table 4.2). In other words, (assuming the normality of

workload) approximately 71.7% of procedures are performed below the critical workload

level, and thus, the marginal effect for these procedures is positive. In particular, for

the procedures with an average value of Workload (which is 0 due to normalizing), the

marginal effect would be approximately 1.2696. This estimation implies that on average,

one unit of Z-score increase in the accumulative service duration of past procedures in a

batch would increase service times by approximately (e1.2696 − 1 ≈ 2.559) 255.9%. The

critical workload can be calculated similarly at teaching and community hospitals, sepa-

rately. Specifically, using the 3SLS estimation on teaching hospitals sample, we observe

that the critical workload is around (1.4027/(2 × 1.2257) ≈ 0.572) of workload Z-score
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while for community hospitals it is approximately equal to (1.2572/(2 × 1.0714) ≈ 0.586)

of workload Z-score. This result shows that (even after adjusting the different workload

levels) radiologists at teaching hospitals reach the critical workload level earlier than their

peers at community hospitals.

The coefficient of Seq is estimated at −0.0261 as per OLS estimation and its magni-

tude increased to −0.0431 after overcoming the simultaneity bias using the 3SLS method,

which supports Hypothesis 2. This estimation implies that performing procedures of a

similar type consecutively (in the same batch) is associated with a decrease in service

duration. Specifically, adding an extra procedure of a similar type to a batch of pro-

cedures approximately reduces the procedure duration of the upcoming procedure by

(e−0.0431 − 1 ≈ −0.0421) 4.21%. The underlying mechanism could be due to the elimi-

nation of physical setup, lack of forgetting or learning by doing.

As Table 6.1 suggests, the estimation for the corresponding coefficient of (Seq) at both

teaching and community hospitals is negative, that is, −0.0400 and −0.0425, respectively.

These estimations are consistent with Hypothesis 2 which means that adding an extra

procedure of a similar type results in a 3.92% and 4.16% decrease in service duration of

the next patient at teaching and community hospitals, respectively. The difference in the

marginal effect between the teaching and community hospitals is likely because of fewer

interruptions at community hospitals (compared to the interruptions caused by trainees
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at teaching hospitals), reinforcing the lack of forgetting and learning by doing mechanisms

at community hospitals. An interesting observation based on our descriptive analysis of

the historical data is that the average length of a sequence of procedures with similar

body types at community hospitals is approximately 9.3% longer than those at teaching

hospitals. This difference indicates that not only the marginal effect of sequencing the

procedures of a similar type is higher (more negative) at community hospitals than that at

teaching hospitals but also community hospitals adopt the sequencing of procedures more

often than their counterpart.

We next explore the impact of night shifts on the service duration. Table 6.1 shows that

the OLS estimations of Shift(2) (7a.m.-3 p.m.) and Shift(3) (3p.m.-11 p.m.) are both

statistically significant. Also, after correcting the endogeneity and simultaneity biases of

workload and sequencing effects using 3SLS estimation, the corresponding impacts of shifts

remain positive and significant, which again supports Hypothesis 3A. However, we expect

that patients’ priorities affect the radiologist’s behavior at night shifts. Figure 6.1 illustrates

that the average service duration increases at first and third shifts for semi-urgent and non-

urgent patients rather than for all patients, which indicates that H3A is supported for low

priority patients. On the other hand, Figure 6.1 shows that for urgent/emergency patients,

the service duration increases at first and third shifts, which is aligned with Hypothesis 3B

for high priority patients.
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Figure 6.1: Average service duration based on procedure starting hour and patient priority

To investigate whether the impact of night shifts are different with respect to pa-

tients’ priorities, we again use the 3SLS estimation method to simultaneously estimate

equations (5.1)-(5.4) at a more granular level by incorporating interaction terms between

shifts and patients’ priorities. These interacting coefficients allow us to test for marginal

changes in service duration of procedures at different shifts across different priority groups

(Wooldridge, 2016). Note that, we incorporate the interaction terms to determine the

causal relationship between nightshift and procedure duration as per each priority sepa-

rately, and not necessarily for increasing the models’ goodness-of-fit.

We re-estimate our SEM using the 3SLS method while adding the interaction terms

between Shifti and Priorityi to capture the impact of shifts on service duration across
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patients with different priorities. We revise equation (5.1) as follows:

log(ServDuri) =β0 + β11Workloadi + β12Workload2i + Shiftiβs

+ Shifti × PriorityiβI + β2Seqi +X iβp + δh(i) + εi,

(6.1)

Table 6.2: 3SLS estimation for interaction terms of the effect of Shifts on log(ServDur)
across different priorities

Coefficient All Hospitals Teaching Hospitals Community Hospitals

Shift(2) −0.0390∗∗∗ −0.0841∗∗∗ 0.0309
(0.0094) (0.0111) (0.0340)

Shift(3) −0.0305∗∗∗ −0.0361∗∗∗ 0.0022
(0.0095) (0.0011) (0.0344)

Shift(2) × Priority(2) 0.1069∗∗∗ 0.1285∗∗∗ 0.0622
(0.0108) (0.0131) (0.0353)

Shift(2) × Priority(3) 0.2083∗∗∗ 0.2336∗∗∗ 0.1954∗∗∗

(0.0098) (0.0111) (0.0347)
Shift(2) × Priority(4) 0.1940∗∗∗ 0.2165∗∗∗ 0.1418∗∗∗

(0.0093) (0.0111) (0.0340)
Shift(3) × Priority(2) 0.0866∗∗∗ 0.1008∗∗∗ 0.0481

(0.0111) (0.0130) (0.0359)
Shift(3) × Priority(3) 0.1304∗∗∗ 0.1460∗∗∗ 0.1258∗∗∗

(0.0100) (0.0118) (0.0352)
Shift(3) × Priority(4) 0.1015∗∗∗ 0.1139∗∗∗ 0.0634∗

(0.0096) (0.0112) (0.0343)
Controls Included Included Included
Observations 1, 954, 088 944, 080 1, 010, 008
Prob > χ2 < 0.0001 < 0.0001 < 0.0001

Notes. Standard errors are in parentheses. Control vectors include fix effects for patients’
characteristics, hospital-scanner fixed effect, and time effects such as year, week, and weekday.
∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001.

where βI includes the interacting terms between patients’ Priority and the Shift at

which the procedure took place. Table 6.2 summarizes the estimation of interaction terms
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using three samples of the data, namely, aggregation of all hospitals, teaching hospitals, and

community hospitals. Note that, since both shifts and priorities are categorical vectors,

we consider Shift(1) (i.e., night shifts) and Priority(1) (i.e., emergent patients) as the

reference groups for procedure shifts and patients’ priorities, respectively.

We find that in comparison with the first shifts (i.e., night shifts), performing procedures

in the second shifts results in approximately (e−0.0390−1 ≈ −0.0382) 3.82% reduction in the

procedure duration of patients listed as priority 1. This result shows that emergent patients

undergo longer procedure duration in the night shifts which support Hypothesis 3B. On

the other hand, Table 6.2 shows that in comparison with the first shifts (i.e., night shifts),

performing procedures of urgent patients (i.e., priority 2) in the second shifts leads to

(e−0.0390+0.1069−1 ≈ 0.0692) 6.92% increase in the service duration. Similarly, the procedure

duration of semi-urgent patients (i.e., priority 3) and non-urgent patients (i.e., priority 4)

would also increase by (e−0.0390+0.2083−1 ≈ 0.1841) 18.41% and (e−0.0390+0.1940−1 ≈ 0.1676)

16.76%, respectively. Therefore, unlike emergent patients, for urgent, semi-urgent and non-

urgent procedures, the service duration is in fact shorter at night shifts, which support

Hypothesis 3A.

These results are consistent with our initial insights based on Figure 6.1, and demon-

strate that for emergent procedures, which require more diligence than their counterpart

cohort, night shifts may “deteriorate cognitive efficiency” which increase the service dura-
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tion of urgent patients. Conversely, performing low priority procedures at night shifts may

stimulate physicians to perform non-discretionary tasks quickly and finish their working

shift, which is also illustrated in Figure 6.1. We observe the same pattern for procedures

that took place at the third shift. That is, in comparison with first shifts, the service du-

ration of emergent procedures is 3.00% shorter at third shifts, which supports Hypothesis

3B, but other priorities (2, 3 and 4) experience longer procedure duration at third shifts.

In particular, urgent procedures took 5.77% longer during the third shifts, semi-urgent

10.50% longer, and non-urgent took 7.30% longer during the third shifts.

We now restrict our analyses to estimate the interaction effect between shifts and pa-

tients’ priorities at the teaching and community hospitals. Columns 2 and 3 of Table

6.2 show the 3SLS estimation of interaction terms at teaching and community hospitals,

respectively. Considering night shifts as the reference group, we find that performing emer-

gent (i.e., priority 1) procedures in the second shift at teaching hospitals is associated with

(e−0.0841 − 1 ≈ −0.0806) 8.06% decrease in the duration of the procedure. This result

is consistent with that for all hospitals from column 1 and shows that service duration

of emergent procedures in night shifts is longer than that during day shifts, and thus,

supports Hypothesis 3B. Nonetheless, for other priority levels (i.e., 2, 3 and 4), service

duration in the second shifts is slower than that at first shifts. In particular, the service

duration of patients with priority 2 increases by (e−0.0841+0.1285− 1 ≈ 0.0454) 4.54%, prior-

54



ity 3 by (e−0.0841+0.2336−1 ≈ 0.1612) 16.12% and priority 4 by (e−0.0841+0.2165−1 ≈ 0.1445)

14.15%. These results provide evidence to support Hypothesis 3A which indicates that

procedures in night shifts undergo a faster service duration. Additionally, we find the very

same pattern for procedure duration at the third shift in comparison with the base shift

(night shifts) at the teaching hospitals. The procedure duration performed at the third

shifts is associated with (e−0.0361 − 1 ≈ −0.0354) 3.54% decrease for patients of priority 1,

(e−0.0361+0.1008 − 1 ≈ 0.0668) 6.68% increase for patients of priority 2, (e−0.0361+0.1460 − 1 ≈

0.1161) 11.61% increase for patients of priority 3, and (e−0.0361+0.1139 − 1 ≈ 0.0809) 8.09%

increase for patients of priority 4.

The third column of Table 6.2 shows the 3SLS estimation for interaction between shifts

and patients’ priorities at the community hospitals. We now find that there is no sta-

tistically significant difference between procedure duration of emergent or urgent patients

during any of the three shifts. However, for low priority patients (i.e., semi-urgent and non-

urgent), radiologists at community hospitals perform the MRI scans at first and third shifts

much slower than those at the night shifts, which supports Hypothesis 3A. Specifically, we

find that for semi-urgent procedures, in comparison with night shifts, the procedure du-

ration took roughly (e0+0.1954 − 1 ≈ 0.2157) 21.57% longer during the second shifts and

(e0+0.1258 − 1 ≈ 0.1340) 13.40% during the third shifts. Similarly, for non-urgent patients,

we find that the procedures took (e0+0.1418 − 1 ≈ 0.1523) 15.23% longer during the second
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Table 6.3: Estimations of instrumental variables on endogenous treatments using different

hospital sample level
All Hospitals Teaching Hospitals Community Hospitals

Coefficient Workload Workload2 Seq Workload Workload2 Seq Workload Workload2 Seq

UrgentRecent 0.655∗∗∗ 0.738∗∗∗ 0.642∗∗∗ 0.725∗∗∗ 0.681∗∗∗ 0.776∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

LWorkload 0.053∗∗∗ 0.035∗∗∗ 0.008∗∗ −0.008∗∗ 0.074∗∗∗ 0.057∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

LWorkload2 −0.025∗∗∗ −0.024∗∗∗ 0.019∗∗∗ 0.023∗∗∗ −0.042∗∗∗ −0.047∗∗∗

(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

RepType 1.048∗∗∗ 0.979∗∗∗ 1.100∗∗∗

(0.001) (0.001) (0.003)

Controls Included Included Included Included Included Included Included Included Included

Observations 1, 954, 088 1, 954, 088 1, 954, 088 944, 080 944, 080 944, 080 1, 010, 008 1, 010, 008 1, 010, 008

R2 0.480 0.308 0.337 0.484 0.287 0.419 0.479 0.325 0.254

Prob > χ2 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Notes. Standard errors are in parentheses. Control vectors include fix effects for patients’ characteristics, hospital-scanner fixed effect, and time effects such

as year, week, and weekday.
∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001.

shifts and (e0+0.0634 − 1 ≈ 0.0654) 6.54% during the third shifts.

The discrepancy between the interacting effect of shifts and patients’ priorities at teach-

ing and community hospitals is interesting. While the urgent, semi-urgent and non-urgent

patients at teaching hospitals experience shorter service duration in night shifts (support-

ing H3A), only semi- and non-urgent patients at community hospitals experience shorter

service duration in night shifts. Furthermore, while emergent procedures at teaching hos-

pitals require more time to perform at night shifts, there is no significant evidence that

radiologists at community hospitals perform high priority procedures (e.g., emergent or

urgent) slower at night shifts.
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Since the 3SLS estimation results depend on the validity of instrumental variables, we

examine the relevance condition of the instrumental variables. Table 6.3 shows the first-

stage regression of instrumental variables (i.e., UrgentRecent, LWorkload, LWorkload2

and RepType) on linear and quadratic terms of Workload and also on Seq, respectively.

The corresponding coefficient of UrgentRecent, LWorkload and LWorkload2 are all sta-

tistically significant in the first-stage regressions for Workload and Workload2 at different

hospital-level data samples, including all-hospitals, teaching hospitals, and community hos-

pitals. The coefficient of Reptype is also significant across all sample levels. Also, the F

statistics for all of the endogenous treatments equations across all three sample levels are

greater than 10, which is suggested as a rule of thumb criteria for testing the weak in-

struments (Staiger and Stock, 1997). However, since we have more than one endogenous

regressor, we also apply the Cragg-Donald F statistic (see e.g., Cragg and Donald 1993)

which again rejects the null hypothesis indicating that the instruments are weak (p-value

< 0.001) at all sample levels. Thus, the relevance condition is met.

6.2 Robustness Checks

6.2.1 Alternative Variable Setting

In this section, we examine the robustness of the service duration model. First, we test the

robustness of the model against alternative definitions for the shifts, by considering two
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distinct shifts, namely, day shift (from 7 a.m. to 3 p.m.) and night shift (from 3 p.m. to

7 a.m. the following day). We repeat the 3SLS estimation of the simultaneous equation

model given in (5.2)-(6.1) which includes the interaction terms between shift and priorities.

Similar to the previous section, we consider night shifts as the reference group. The results

show significant negative coefficients in day shifts for patients with priority 1 (−0.0379, p <

0.001) and significant positive coefficients in day shifts for patients with and priority 2

(0.0046, p < 0.001), priority 3 (0.0842, p < 0.001) and priority 4 (0.0899, p < 0.001), which

is consistent with the findings provided in the previous section. Using this setting for

shifts, we again find a significant negative coefficient for Seq which is (−0.0401, p < 0.001)

and also significant inverted U-shaped behavior of workload with statistically significant

coefficients of (1.815, −1.589) for linear and quadratic terms, respectively.

Recall that we considered τ = 15 minutes as the cut-off threshold for the idle time

between batches of procedures in the results provided in the previous section. When we

set τ = 5, 10 and 20 minutes as the cut-off threshold, we obtain consistent results for the

impacts of sequencing, workload and night shifts for high and low priority patients as before.

We also change the definition of Seq from the number of consecutive procedures of similar

body types to the number of non-consecutive of the same type but in the same batch.

We find that the estimate for Seq is quite robust to this modification with an estimation

of (−0.0603, p-value < 0.001). This estimation implies that adding one procedure of a
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similar type in the same batch (but not necessarily back-to-back) will decrease the service

duration of the next procedure by (e−0.0603 − 1 ≈ −0.0585) 5.85%.

We also narrow down the data into shorter time frames, that is from January 2015 to

December 2016, and observe that the results are quite consistent with the ones provided in

the previous section. We also exclude records from week 1 and week 52 throughout the data

(i.e., first and last week of the year) since both scheduler and the physicians’ behavior could

be affected by the Christmas holidays. We find similar results to the previous settings.

Moreover, we conduct our analyses by separating the patients served on weekdays (i.e.,

Mon. to Fri.) versus weekends (i.e., Sat. and Sun.). The descriptive analysis shows that

the average service duration on weekdays is 31.09 (s.d. = 14.45) minutes whereas over the

weekends it reduces to 27.58 (s.d. = 11.81) minutes, (see Figure 4.5). Performing the 3SLS

estimation on the weekdays’ sample, we again obtain an inverted U-shaped behavior for

prior workload with a significant coefficient of (1.591, −1.394) and the critical Z-score of

workload at 0.570, implying that approximately 71.56% of procedures of patients, served

on weekdays, are performed below the critical workload level with a positive marginal

effect. In addition, the impact of prior workload on the procedure of patients served over

the weekends (while adjusting for patients priority) follows an inverted U-shaped behavior

with a significant coefficient of (0.573, −0.500) and the critical Z-score of workload at 0.573.

Therefore, by assuming the normality of workload over weekends (mean = 53.33, s.d. =
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88.42), roughly 71.67% of those procedures are performed below the critical workload level;

therefore, supporting the Hypothesis 1. We also find that our main results are robust in

sign and statistical significance for procedures performed on weekdays and weekends. The

impact of Seq is strongly significant and negative on both weekdays (−0.046, p < 0.001)

and weekends (−0.027, p < 0.001). This estimation suggests that performing consecutive

similar body type procedures reduces the service duration of the next procedure during

weekdays by 4.49% and during weekends by 2.66%.

We also check the robustness of the main results by modifying the definition of in-

strumental variables. We vary the definition of UrgentRecent to the total number of

consecutive emergent or urgent procedures and also the total number of non-consecutive

emergent procedures and we again observe robust results in sign, magnitude, and statistical

significance. We also performed the Cragg-Donald F statistic for all instrumental variables

and found no ”weak instruments”.

6.2.2 Heteroskedasticity and Serial Correlation

The main results that we obtained from Section 6.1 substantially depend on the fairly

strong assumption that the error terms of the structural equations (5.2)-(6.1) are ho-

moskedastic and serially uncorrelated. We used the 3SLS estimation method, which allows

structural disturbances to be correlated across each equation. Nonetheless, the variance-
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covariance matrix within each equation is still assumed to be homoskedastic and serially

uncorrelated, an assumption that may not be satisfied in our setting. Note that due to the

statistically significant dependency between the conditional variance and the explanatory

variables captured by the Breusch-Pagan test for heteroskedasticity (Breusch and Pagan,

1979), the assumption of homoskedasticity is violated. Furthermore, specification (5.1) is

similar to a lagged-dependent variable (LDV) model, since we defined Workloadi as the

summation of service duration of procedures within the same batch but prior to procedure

i. Therefore, the workload (independent variable) for the second procedure in a batch is

equal to the service duration (dependent variable) of the previous procedure. The same

story applies to the rest of the procedures in the batch. Therefore, it is sensible to antic-

ipate that the error terms of procedures within the same batch are serially correlated. In

order to address those two concerns, we propose to use heteroskedastic robust standard

errors which are clustered by each batch. Clustering standard errors allow all procedures

within a batch to be correlated with each other. In order to simultaneously estimate equa-

tions (5.2)-(6.1) while accounting for heteroskedasticity and autocorrelation between error

terms of each equation, we employ the Generalized Method of Moments (GMM) estimator.

The GMM estimator is strongly consistent and asymptotically normal for large samples

(Davidson et al., 2004). We first use the generalized IV to obtain the “consistent but

inefficient estimates”, then we use the efficient feasible GMM estimator which will be used

61



to calculate the residuals and estimate Σ̂ to address both heteroskedasticity and serial

correlation (see Davidson et al. 2004, pp. 355-358). We use Hansen et al. (1996) approach

to estimate the structural model in two steps. First, we use the identity weight matrix

to simplify the criterion function. Then, in the second step, we use the optimal clustered

robust (clustered by batch) weight matrix to obtain the consistent disturbance matrix.

The main challenge in applying the above procedure to our main results (using the

sample from all hospitals) is the computational complexity. Nonetheless, using the GMM

estimator on each hospital separately is computationally feasible and thus, we can demon-

strate that the results from Section 6.1 are robust to heteroskedasticity and serial correla-

tion. Also, since the impact of hospitals is captured as a fixed effect in the proposed model,

the results presented above may be predominated by larger hospitals. In addition, the im-

pacts of workload, sequencing and shifts can be different at each hospital. We explore the

hypotheses at the individual hospital level by estimating the simultaneous equation model,

given in equations (5.2)-(6.1) using the GMM estimator. We find that at 10% significance

level, out of 66 hospitals, the quadratic coefficient for the impact of workload is significantly

negative at 51 hospitals, positive at only 1 hospital, and the other 14 hospitals have an in-

significant coefficient for Workload2. This estimation demonstrates the inverted U-shaped

relationship between workload and procedure duration at most hospitals. Furthermore,

using the GMM estimator at the individual hospital level, we find negative coefficients for
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the impact of Seq at 48 hospitals (out of 66) at 10% significance level, 17 hospitals have an

insignificant estimation for Seq, and only 1 hospital has significant positive estimation for

Seq. This result supports Hypothesis 2 for most of the hospitals and indicates that after

correcting the simultaneity bias, a longer sequence of procedures with a similar service type

is associated with a shorter service duration of the next MRI scan. We also find consistent

results for the impact of night shifts at individual hospital levels. We find that out of 55

hospitals, which operate at night shifts, in 49 hospitals the high priority patients undergo

longer service duration while low priority patients experience shorter service duration at

night shifts. This observation supports Hypothesis 3B and Hypothesis 3A. The impact of

night shifts is insignificant for both high priority and low priority patients in the other 6

hospitals.

6.2.3 Inverted U-Shaped Robustness

In this section, we provide the statistical hypothesis testing regarding the inverted U-

shaped behavior for (Workload), which may erroneously provide a positive extreme point

while considering quadratic specification (Lind and Mehlum, 2010). Specifically, we provide

robustness checks to examine whether the slopes of the service time model are significantly

positive and then negative at lower and higher points of (Workload), respectively. To test

the following hypothesis, we consider the interval [Workloadl,Workloadh] as an interval
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for the observations of standardized (Workload), which is [−0.727, 5.040] and construct

the following two standard one-sided t-test:

H l
0 : β11 + 2β12Workloadl ≤ 0 versus

H l
1 : β11 + 2β12Workloadl > 0,

Hh
0 : β11 + 2β12Workloadh ≥ 0 versus

Hh
1 : β11 + 2β12Workloadh < 0.

Note that the rejection area for the above test is a convex cone:

Rα = {(β11, β12) : (β11 + 2β12Workloadl)

.

(√
s11 + 4Workloadls12 + 4Workload2l s22

)−1
> tα and

(β11 + 2β12Workloadh)

.

(√
s11 + 4Workloadhs12 + 4Workload2hs22

)−1
< −tα},

where s11, s22, and s12 are the estimated variances of β11, β12 and the covariance between

them from the variance-covariance matrix, respectively. Lastly, tα is the t-value at the α

significance level.

Table 6.4 provides hypothesis testing for alternative behavior of (Workload) for the

service duration model. This table shows that the slope for (Workload) is statistically

positive (2.873) at the lower bound and negative (−9.845) at the upper bound. Further-
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Table 6.4: Alternative inverted U-shaped hypothesis testing for standardized Workload
Lower Bound Upper Bound

Interval −0.727 5.040
Slope 2.873 −9.845
t-value 40.218 −39.547
p-value 0.000 0.000

more, the p-values for both standard tests are approximately zero. Thereby, we reject

the null hypothesis that the effect of (Workload) on the service duration is U-shaped or

monotone.
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Chapter 7

Insights and Conclusions

Using more than three years of data (2014-2017), encompassing approximately 2 million

records of service (MRI scan procedure) time duration from 66 hospitals in the province

of Ontario (Canada), we conducted econometric analyses that look into drivers of service

duration.

We showed that a number of behavioral covariates, including the shift during which

the procedure was performed, case-mix workload of the proceeding patients and batch-

ing of similar procedures affect service duration. We showed that compared to the day

shifts, while the service duration is longer during the night shifts for emergent procedures

(around 4%), low priority procedures experience shorter MRI scan time. Possibly because

providers may be tempted to perform non-discretionary tasks quickly (i.e. the task reduc-

tion mechanism) during the night shift for low priority procedures. On the other hand, it is

sensible that since performing emergent procedures requires more dedication and thorough-

66



ness (compared to their counterparts), these procedures during night shifts take longer to

perform. We also showed that the proceeding case-mix workload affects subsequent service

duration. In particular, the case-mix workload of the proceeding procedure lengthens the

service duration up to around 0.57 standard deviation from the workload mean (likely due

to the engagement level mechanism) and shortens the duration beyond that point (likely

due to the social speedup mechanism). Finally, we observed that sequencing similar service

types together (i.e. batching) is associated with a shorter service time, likely due to any

of the following mechanisms: reducing physical setup, lack of forgetting, and learning by

doing. In particular, performing an additional procedure of a similar body type within a

batch of the procedure is likely to reduce the next procedure duration by around 4.2%.

The main challenge in estimating those mechanisms was endogeneity and simultane-

ity biases of workload and sequencing in our model, respectively. As we were unable to

capture the staff skill in our dataset, the omitted variable bias in our specification would

have lead OLS estimates to be inconsistent. For instance, the decrease in handling skills of

radiologists in a batch contributes to both increasing workload before a procedure and also

increasing the MRI scan. Furthermore, as (Ibanez et al., 2018) show, the schedulers are

likely to schedule jobs with the “shortest expected procedure time” between appointment

slots and thus increasing their sequence order. Hence, simultaneity bias also could have

hurt our conclusions. To tackle these issues, we proposed a simultaneous equations model
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(SEM) to estimate the true impacts of workload and sequencing effects. We used lagged

value of workload from the previous week and the number of urgent/emergent cases prior

to a procedure as instrumental variables for workload and also used an indicator variable

for a procedure with repeated scan body type as an instrumental variable for the impact

of sequencing. We employed the 3SLS estimator to simultaneously estimate the equations.

Another challenge in estimating our econometric model was heteroskedasticity and serial

correlation in the model. As we anticipated, the error terms of service time specification

of procedures that were performed closed to each other are correlated. To overcome this

challenge we turned our attention to the Generalized Method of Moments (GMM) estima-

tor that allowed us to simultaneously estimate equations while considering heteroskedastic

robust standard errors which were clustered by each batch. However, due to the compu-

tational limitations of the GMM estimator on a large dataset, we were not able to use the

GMM on the sample of all hospitals as a single model. Instead, we performed the esti-

mation using the sub-sample analysis of each hospital separately. We obtained the same

results at most of the hospitals.

Given the large-scale data that we have access to, we were able to investigate the

model for teaching and community hospitals separately, as well as at the level of individual

hospitals. In fact, one contribution of this thesis is showing how the magnitude of the effect

of various mechanisms on service duration may depend on the server type (i.e. teaching
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or community hospital), as well as on the type of the customer (e.g. high priority versus

low priority patient). We observed that the reduction of the service duration during the

night shift is more intense at community hospitals, likely because providers at community

hospitals are fully trained physicians and as such more dexterous at providing services. The

magnitude of the effect of a sequence of similar body type procedures on the subsequent

service duration is also different in teaching and community hospitals. The inverted U-

shaped relationship between workload and procedure duration for scans is evident at both

teaching and community hospitals. However, with average workload level, the curve is less

steep at community hospitals, likely because the providers are fully trained physicians.

We also observed a higher magnitude of reduction in service duration as a result of

batching services together in community hospitals, likely due to fewer interruptions occur-

ring at community hospitals (compared to the interruptions caused by trainees at teaching

hospitals), which reinforces the lack of forgetting and learning by doing mechanisms at

community hospitals. We also investigated the effect of behavioral factors on service du-

ration at the level of individual hospitals and found that all hypotheses are supported by

the majority of hospitals and that the few exceptions are largely due to the existence of

outlier cases.

Our findings have both theoretical and practical implications. On the theory side, the

context of MRI scheduling and delivery in Ontario is interesting as it involves multi-type
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multi-priority customers with priority-specific service level constraints (i.e. wait time tar-

gets). The few recently developed theoretical multi-class queueing models in the literature

with service level constraints typically assume a multi-class setting with a specific service

level for each class (e.g. Sun and Whitt 2018).

However, our empirical analysis shows that both priority levels and service types affect

service duration. Furthermore, a mix of various service types comprise each priority level

and should collectively meet the priority-specific service levels. As such, results of multi-

class queues cannot be easily extended to the multi-type multi-priority queueing systems

with wait targets and new theoretical queueing models are needed to model such systems,

and also take into account the various behavioral mechanisms revealed in this study.

On the practical side, an interesting observation is the opposing effects of batching

(sequencing of procedures with similar service types) and the workload on the service

duration. Batching similar procedures decreases service duration but also increases the

workload which would increase the service time through the engagement level mechanism.

This finding has implications for system administrators and policymakers, as they have to

balance the trade-off between maximizing efficiency and controlling the workload by finding

the appropriate level of batching. A high level of batching of similar services would indeed

increase the system efficiency, as the average service duration becomes shorter. However,

this increase in efficiency comes at the price of diminishing radiologists’ performance as
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the engagement level effect kicks in. Finding the appropriate level of batching to balance

this trade-off between efficiency and workload level is a policy question that would likely

be best answered by future research in the field of social sciences. Furthermore, one of

the most important implications of this research is to use the predictive model for MRI

scan procedure duration to reduce the uncertainties and delays in the scheduling system

for hospital administrators and aid them in clearing the long backlogs of elective surgeries

as the COVID-19 pandemic significantly reduced the hospitals’ service capacities and thus

increased the waiting times. In particular, around 95% of batches observed in our data set

have a size of at most 7 procedures with an average sequence length of similar procedures of

1.57. Therefore, considering the ample backlogs of procedures created during the COVID-

19 pandemic, we can schedule procedures with similar types in the same batches so that

the average service duration is reduced. To highlight the impact of proper sequencing in

patient scheduling, we built a trace-driven simulation using the MRI data. We observed

that, for a given hospital, the average capacity (i.e., the number of scheduled procedures

per day) could increase from 31.35 (sd = 14.73), under the current setting to 45.23 (sd

= 2.58) while fixing the workload, the average service duration, and all other covariates.

These estimations demonstrate that by fixing the workload level and only considering the

sequencing policy, the average daily capacity can be increased by roughly 44.27%.

Another interesting implication of this work on the practical side is using the service du-
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ration prediction model discussed in Section 6.1 to determine the appointment times. One

of the main challenges in scheduling the procedures throughout the day is the uncertainty

in the starting and finishing time of procedures. The accumulation of delays produced by

the difference between scheduled and actual starting times of procedures may under-utilize

the hospital resources. However, with the OLS estimated model that we introduced in Sec-

tion 6.1, we can use the clinical and operational covariates to predict the service duration

of procedures and schedule the starting time procedures, accordingly. We built another

trace-driven simulation model which incorporates the prediction model that we estimated

in Section 6.1. We randomly select 18 hospitals and simulate the MRI scheduling system

using the same order of scheduled procedures (using current practice) and use predicted

procedure duration to determine the starting time of procedures. The rolling simulation at

all hospitals starts from 2014 until the end of 2016 and find that the average daily capacity

can be improved by up to 11.16%.

Another area for future research might be looking at the quality of service vis-à-vis

service duration. To the extent that reductions in service duration result from efficiency

maximizing mechanisms (such as reducing setups, learning by doing, and lack of forgetting),

likely, the quality of service is not negatively affected with a shorter duration. However,

other mechanisms such as task reduction or social speedup pressure may harm the quality

of service. Likewise, the mechanisms responsible for lengthening service duration may also
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affect service quality. Future research would likely need to explore the effects of various

mechanisms not only on service duration but also on service quality.

Theoretical scheduling models, with a few exceptions such as Kopach et al. (2007),

typically either consider same-day scheduling or advance scheduling. In many settings,

such as ours, same-day scheduling is impractical as patients need advance notice to make

it to the appointment. Developing theoretical scheduling models that find the optimum

time window for scheduling patients in advance of the appointment is another area of

proposed future research. Such theoretical scheduling models should also closely consider

endogenous service time distributions as driven by factors uncovered in our study, such as

shift, case-mix workload of the proceeding patients and batching.

It is important to consider the potential limitations of this study and interpret the

results accordingly. Like most empirical research, we acknowledge the threat of omitted

variable bias. It might have been helpful to add more variables such as the patient’s place

of residence, but this data was not available to us. For instance, it is likely that patients

who are willing to travel a distance to undergo the procedure experience shorter wait times.

Another limitation is the transferability of our findings to healthcare systems unlike that

of Ontario with its universal insurance that allows patients to receive care in almost any

location. Our findings may not be transferrable to other health systems, such as the USA,

where patients may have limitations or preferences to be served in some locations over
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others due to insurance coverage or other considerations.

Improving queueing system performance requires an understanding of the behavior of

customers and servers, who co-produce the services. Our study sheds light on a number of

behavioral factors that affect service duration, wait times, and customer’s tendency to defer

services in the context of a multi-priority multi-type queueing system. Although results

may differ from one setting to another, the mechanisms identified in this study may be

likely candidates to investigate in similar settings, and could reveal behaviors that should

be considered in future modeling endeavors, as well as addressed by system administrators

and policymakers who work at improving the systems in practice.
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