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Abstract 

Purpose: The main aim of the experiments in this thesis is to evaluate the feasibility of using 

signal detection theory (SDT) to determine the detectability and bias of various ocular surface 

pneumatic stimuli.  

Chapter specific purpose:  

Chapter 2: To determine the feasibility of using a portable carbon dioxide sensor to calibrate a 

pneumatic esthesiometer and then to calibrate the chemical stimuli.  

Chapter 3: i) To evaluate the feasibility of using signal detection theory (SDT) to measure the 

detectability and bias for nociceptive and non-nociceptive corneal pneumatic stimuli. ii) To 

compare the detection theory estimates between stimulus types. iii) To test the human corneal 

psychophysical data from this study against the linking hypotheses based on the non-primate 

physiology using the Bayesian analysis.  

Chapter 4: To evaluate the detectability of pneumatic corneal stimuli and response bias using 

multi-stimuli multi-criterion signal detection theory (MSDT) and analyze the effect of different 

factors on each detection theory parameter. Also, to evaluate the non-sensory/psychological 

participant attributes of anxiety and general decision making and determine the relationship 

between psychological and psychophysical parameters.  

Methods:  

Chapter 2: The chemical stimuli in ocular surface experiments, are combinations of medical 

air and added carbon dioxide (%CO2). These stimuli were calibrated using a portable CO2 

sensor (COZIR CM-0041) and data logger, delivered for 90 seconds using the Waterloo 

Belmonte esthesiometer. The distances between sensor and esthesiometer tip were 0mm (to 

measure feasibility), 3, 5, and 10mm. In Experiment I, 100% CO2 was tested using 4 different 

flow rates (50,100,150 and 200 mL/min) at 3 working distances. In Experiment II, flow rates 
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of 20-100 mL/min and concentrations of 20-100%CO2 were tested in 20 steps at 3 working 

distances.  

Chapter 3: 30 asymptomatic participants (10 in each experiment) were recruited after screening 

for ocular surface abnormalities using slit-lamp biomicroscopy. The pneumatic stimuli were 

delivered from a 5mm working distance to the center of the corneal surface using the Waterloo 

Belmonte esthesiometer. Initially, corneal thresholds were estimated as a baseline for the SDT 

experiments using the ascending method of limits, followed by the SDT experiment to estimate 

detectability (d’) and bias. The signal for the SDT experiment, a supra-threshold stimulus of 

intensity 1.5x the estimated threshold, was presented with a probability of 0.4 (i.e., 40% signal 

and 60% catch trials). d’ and bias were estimated for mechanical, chemical, and cold supra-

threshold pneumatic stimuli in separate experiments. 100 trials were presented for participants 

in the mechanical and cold stimuli groups; 50 trials were presented for the chemical stimuli 

group. The trials were demarcated using automated auditory prompts and participants 

responded whether they detected the stimulus or not using a button box after each trial. An 

additional experiment was conducted using the cold stimulus with 60% stimulus probability 

on a separate study visit. The d’, criterion (c) and likelihood ratio (lnβ) were calculated for 

each participant from the yes/no responses. 

Chapter 4: Thirty-six participants were recruited using convenience sampling and grouped 

based on the symptoms score from the DEQ-5 questionnaire and contact lens usage. 

Psychological and psychophysical assessments were done sequentially. At the start of the first 

visit, general decision-making (DM) and trait anxiety were evaluated. DM was assessed using 

the Melbourne decision-making questionnaire II (MDMQ II) and trait anxiety was assessed 

using the trait version of the State-Trait Inventory for Cognitive and Somatic Anxiety 

(STICSA) questionnaire. A Waterloo Belmonte esthesiometer was used to deliver cold, 

mechanical, and chemical stimuli to the center of the cornea at three separate study visits. The 

stimulus type was assigned randomly to each visit at the start of the study. The threshold 

(baseline for detection theory experiment) for the assigned stimulus type was obtained using 
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the ascending method of limits. State anxiety was assessed using the state STICSA 

questionnaires, which were administered before (pre-) and after (post-) corneal threshold 

measurements. In the cold and mechanical MSDT experiments, 100 trials (80 signal (20 each 

for 4 intensities) and 20 catch trials) were presented in randomized order, and participants 

responded with a 5-point confidence rating to each stimulus. In the chemical MSDT 

experiments, 50 trials (20 signal trials each for two intensities and 10 catch trials) were 

presented, and responses were provided using 4-point confidence ratings. Detection theory 

indices were obtained individually and as groups, which were then analyzed using mixed 

models and paired t-tests. The relationships between psychological (DM, anxiety) and 

psychophysical (threshold, detectability, and bias) indices were analyzed using Spearman 

correlations.  

Results:  

Chapter 2: The CO2 sensor correctly reported the esthesiometer extremes of 0% and 100% CO2 

when placed at the esthesiometer tip. There were progressive, systematic increases in 

concentrations reaching/reported by the sensor with increasing flow rates and nominal 

concentrations, and progressive decreases in measurements with increases in working distance.  

Chapter 3: The average (±SE) d’ of the supra-threshold cold stimuli was 0.59 ± 0.1 units, while 

the average d’ of the mechanical and chemical stimuli were 1.65 ± 0.37 and 1.14 ± 0.3 units. 

The average (±SE) criterion for the mechanical, chemical and cold stimuli were 0.58 ± 0.097, 

0.37 ± 0.13 and 0.23 ± 0.1 respectively. The Bayes factor (BF) obtained using the Bayesian 

ANOVA mildly favored (BF10 = 1.55) a difference between the d’ of the stimulus types, with 

no support for a difference in the criterion between stimulus types. Further analysis of d’ using 

multiple comparisons supported the linking hypotheses based on the nociception and nerve 

conductance.  

Chapter 4: SDT: da and the area under the curve (Az) were significantly different between 

stimulus intensities within each stimulus type (all p < 0.001) but were not different between 



 

 vii 

the stimulus types. Receiver operating characteristics (ROC) curves were separable between 

the scaled intensities for all stimulus types, and no overlaps were observed in the z-ROC space. 

Bias calculated using the location of criterion (c), as expected, was significantly different 

between each psychophysical criterion level and between the intensities within a stimulus type 

(all p < 0.001). For the chemical stimulus, c varied with stimulus intensity and was affected 

by factors (asymptomatic/symptomatic, non-contact/contact lens wearers, and both, all 

interaction p < 0.01). In addition, another bias metric, lnβ, depended on stimulus intensity and 

psychophysical criterion for all stimulus types. Decision-making: The scores for DM 

components were significantly different from each other (F (3,105) = 121, p < 0.001), and the 

contrast analysis showed that the DM-vigilance scores were significantly different from other 

DM-types. Significant positive correlations were observed between procrastination, 

hypervigilance, and buck-passing scores (p < 0.01). The chemical detection thresholds were 

negatively correlated with the vigilance scores (p = 0.04), and the buck-passing scores were 

positively correlated with the da of mechanical threshold stimuli (p = 0.049). There were 

significant correlations observed between the bias and DM scores, but most of the correlations 

were observed only for either c1 or c4. The c4 obtained for cold threshold, 1.5x, and 2x 

threshold stimuli were positively correlated with the buck-passing and procrastination scores 

(all p < 0.05). Trait anxiety: Cognitive and somatic trait anxiety were significantly different 

from each other (p < 0.001) and were positively correlated (p < 0.001). A significant 

interaction of gender was observed in the relationship between cognitive trait anxiety and 

mechanical detection thresholds (p < 0.05). The d-primes were not correlated with either trait 

anxiety scores. The bias (c and lnβ), mostly criterion 1 or 4, were significantly correlated with 

the trait anxiety scores (p < 0.05). The cognitive trait anxiety scores were significantly 

correlated with their buck-passing, procrastination, and hypervigilance DM scores (all p < 

0.05). State anxiety: The somatic component of the state anxiety significantly reduced as the 

study progressed (p < 0.05), but no significant change was observed in the cognitive 

component. The state anxiety scores from pre- and post- threshold measurements were not 
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significantly different from each other, There were significant correlations observed between 

the bias (mostly criterion 1 or 4) and state anxiety scores (all p < 0.05).  

Conclusion:  

Chapter 2: CO2 concentrations in pneumatic esthesiometers can be calibrated and as expected, 

vary with flow rate and distance, highlighting the importance of calibration and standardization 

of CO2 stimuli in these instruments. 

Chapter 3: Our experiments were the first to show that it is feasible to use a detection 

theory approach to examine ocular surface sensory processing. The detectability of the cold 

stimuli was low compared to the noxious mechanical or chemical stimuli. The participants in 

this experiment chose a conservative strategy (reporting ‘no’ to trials more commonly), but 

this strategy might be anticipated considering that the experiment was designed with a 

relatively large proportion of catch trials. Based on the outcomes, there is a need for a multi-

criterion multi-stimulus repeated measures experiment to analyze the d’ and bias characteristic. 

Chapter 4: It is feasible to use MSDT for analyzing ocular surface sensory processing and the 

theory provides insight into the possible bias associated with the use of pneumatic stimuli. 

With noxious and non-noxious pneumatic stimulation, detectability and criteria vary 

systematically with stimulus intensity, a result that cannot be derived using classical 

psychophysics. 
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Chapter 1 

Introduction 

1.1 Cornea: 

The cornea is a multifaceted part of the eye that is responsible for maintaining both the 

structural and functional integrity of the anterior surface and also the entire eye.1–6 It is the 

anterior-most part of the human eye which is transparent, highly sensitive, and predominantly 

avascular1–6, and although quite well described, some anatomical, physiological and neural 

mechanisms remain unclear.7–10  

The cornea is a five-layered structure consisting of epithelium, Bowman’s, stroma, 

Descemet’s, and endothelial layers (anterior to posterior).11 Recent studies have also reported 

a sixth layer in the form of pre-Descemet’s or Dua’s layer but the existence of this layer is still 

debated.12,13 The epithelial layer is the anterior-most or the outermost layer of the human 

cornea which has multiple layers of tightly packed squamous cells. This layer acts as a barrier 

against the disease-causing micro-organisms from entering the eye and regulates the fluid and 

nutrient exchange between the corneal layers and tear film.14 This is also the layer where the 

majority of nerve endings/receptors are located.1,6 The second layer is Bowman’s layer 

consisting of randomly arranged collagen fibrils which act as an anchor for the epithelial cells 

to adhere to the corneal stroma. This membrane also helps in maintaining corneal integrity and 

shape. The thickest layer of the cornea is the stromal layer which is 80-90% of the total corneal 

volume consists of collagen fibrils and keratocytes providing structural integrity and 

transparency to the cornea.14 The optimal functioning of this layer is dependent on the fluid 

regulation by the epithelial and endothelial layers of the cornea. In addition to the structural 

integrity, the stroma also acts as the entry point for the sensory nerve bundles into the cornea 

and since these are nerve bundles the diameter of nerve fibers is usually thicker than the nerves 

in the sub-epithelial layer. The nerve bundles travel in a straight path parallel to the stromal 

collagen fibrils. Descemet’s layer is a basement membrane that helps in the adherence of 

endothelial cells to the stroma. The posterior-most layer is the endothelial layer made of tightly 

packed hexagonal cells, which helps in regulating the fluid and nutrient transfer between the 
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posterior stroma and aqueous humor.14 Damage to these layers would affect both the structural 

and functional integrity of the cornea.  

1.2 Corneal innervation: 

The corneal innervation is mainly sensory with a few sympathetic nerve fibers to monitor and 

manage surface dryness.8 The dense sensory innervation of the cornea comes mainly from the 

ophthalmic branch of the trigeminal nerve and a smaller proportion of nerves from the 

maxillary branch of the trigeminal nerve which is predominantly found to innervate the inferior 

region of the cornea. The nasociliary nerves, which is also the ophthalmic branch of the 

trigeminal nerve, enter the eye’s orbit alongside the optic nerve and then branches to form the 

long ciliary nerves to innervate the cornea and other ocular structures. These ciliary nerve 

bundles, through the limbal region, enter the cornea at the level of mid-stroma and ascend 

anteriorly towards the epithelium, leaving the posterior half of the cornea devoid of nerve 

fibers. After entering the cornea, at around 1mm from the limbal area, these stromal nerve 

bundles lose their myelin sheath to become transparent and are protected by the transparent 

Schwann cell sheaths instead. The stromal fibers then ascend anteriorly to penetrate Bowman’s 

membrane and then bifurcate into smaller fibers in the basal cell layer of the epithelium.1,6,15–

17 

The branched sub-basal fibers are either thick and straight (forming bundles) or tortuous and 

beaded (single nerve fibers). These nerve bundles at the sub-basal level run parallel to the 

surface and bifurcate several times to form the sub-epithelial nerve plexus which are visible as 

a vortex pattern.1,5,17–19 Some of these nerves have been observed to end as free nerve endings 

parallel to the surface of the epithelium at the sub-basal layer. 1,5,17–19 Similar to the thick and 

straight nerve bundles, the tortuous and beaded branch of sub-basal nerve fibers run parallel to 

the surface but diagonal to the straight nerve bundles and then turn perpendicular to form 

multiple bulbar nerve endings closer to the anterior surface. Some of these neurons bifurcate 

further before forming nerve endings.9 The functional differentiation between these fibers is 

unknown but the nerve endings were found to have different types of receptors to detect 
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stimuli.4 The bead-like enlargements in the tortuous sub-basal nerve fibers were found to 

contain mitochondria and glycogen particles. A few nerve endings do not appear to have any 

receptors and the functionality of those nerve endings is still unknown. 1,6,15–17 Though there 

are various advancements in corneal imaging, the structural details of the receptors and smaller 

nerve fibers remain unclear.1,6,15–17 

1.3 Sensory pathway of ocular surface stimuli: 

As mentioned earlier, the corneal sensory trigeminal neurons detect the stimuli from the ocular 

surface and transmit the sensory impulses to the spinal cord, brainstem, and somatosensory 

cortex, where different types of pain are processed and to elicit an appropriate response like 

evasive action, blinking or tearing to counter the stimuli (Figure 1.1). The first and second-

order pathways for the processing of information from the ocular surface have been identified, 

but the higher-order processing of individual components of ocular surface nociception, such 

as irritation, itching, burning, discomfort, etc., are still unclear. The ascending pathway of the 

trigeminal system carries the signal to the spinal cord (C1 & C2) and brain stem. The ocular 

surface is represented mainly in the trigeminal nucleus interpolaris-caudalis (Vi/Vc) transition 

and subnucleus caudalis-upper cervical spinal cord (Vc/C1) junction regions. The second-

order neurons responsive to noxious mechanical, chemical, or thermal stimuli have been found 

in both Vi/Vc and Vc/C1 regions. Vi/Vc corneal neurons may play a role in specialized ocular 

functions such as blink and tear reflexes and represent an endogenous antinociceptive control 

pathway, while Vc/C1 neurons may mediate sensory-discriminative aspects of pain 

sensation.8,9,20 
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1.4 Ocular surface sensory system:  

The corneal nerves assist in protecting the corneal surface by detecting the factors that can 

harm the corneal integrity and the nerves are bombarded continuously with multiple types of 

stimuli.8 The corneal neural network, similar to the somatic pain network, consists of a 

complex system of neurons with nerve endings at the corneal surface to detect potentially 

noxious stimuli.8,9,21,22 Since there are no electrophysiological studies conducted to evaluate 

human/primate corneal neuro-physiology, the concepts are adapted from the cat, rabbit, and 

Figure 1.1: Physiologic corneal pain pathway (Reprinted with permission from 

Rosenthal P, et al.181). 
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guinea-pig corneal neurophysiological studies.6,8,22–30 The corneal neurons are classified into 

two types based on their conduction velocities and presence of myelin sheath surrounding the 

neurons: thinly myelinated, fast conducting Aδ-fibers and unmyelinated slow conducting C-

fibers.22,25–27,31,32 The electrophysiological studies on cat and rabbit corneas identified three 

functional types of corneal sensory nerve fibers which conduct nerve impulses either through 

Aδ or C-fibers.6,8,28,33,34The proportion of nerve fibers in the cornea vary significantly between 

the different species and it was found to be approximately 70% polymodal nociceptors, 20% 

mechano-nociceptors, and 10% cold receptors in cat and rabbit corneas.7–9,35 The sympathetic 

and parasympathetic fibers are also present in the rabbit and cat corneas, but only few fibers 

are identified in nonprimate corneas.6 The signal detected by the cold thermo-receptors and 

polymodal nociceptors is conducted through the C-fibers, and the low threshold mechano- 

nociceptors transmit impulses through the fast-conducting Aδ-fibers for a rapid response to the 

painful mechanical stimuli.2,32,34 Since there is no systematic neurophysiological examination 

on the effects of human corneal stimulations, the presence of receptors/channels in the human 

cornea has been evaluated psychophysically.36 Multiple corneal psychophysical channels in 

the human cornea have been identified by Feng and Simpson36 and the detection of the human 

ocular surface stimuli are complex due to the interdependence of the components of the ocular 

surface sensory processing system (both within and between the cornea and conjunctiva).  

Cold receptors are the non-noxious thermoreceptors that detect a drop in the temperature of 

the anterior ocular surface. The cold receptors’ impulse frequencies increase when the surface 

temperature drops.8,22,37The evaporation of the tear film has been found to be a probable 

physiological basis for the reduction in the surface temperature and as little as 0.1°C downward 

change has been reported to alter the impulses from the cold receptors.7,22,37 The polymodal 

nociceptors detect a wide range of noxious mechanical, chemical and thermal stimuli, whereas 

the low threshold mechano-nociceptors detect only the noxious mechanical forces.8,38 The 

polymodal nociceptors have a higher mechanical threshold compared to the mechano-

nociceptors.2 In humans, polymodal nociceptors are hypothesized to produce the 
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stinging/burning sensation, whereas mechano-nociceptors produce a sharp 

discomfort/irritation.2 In addition to the physiological differences, four modality-specific nerve 

fiber population have been identified based on the nerve conduction velocities and stimulus 

energy (from slowest to fastest): 1) cold receptors (C-fibers) with velocities between 0.25- 1.6 

m/sec, 2) Chemosensitive receptors (C fibers) with velocities between 1.1- 1.8 m/sec, 3) 

mechanosensitive Aδ fibers with velocities between 1.5- 2.8 m/sec, and 4) high-threshold 

mechano and thermo- sensitive Aδ fibers with velocities between 3.5– 4.4 m/sec.28,32,34  

1.5 Esthesiometers: 

Contact and non-contact corneal esthesiometers have been used in measuring ocular surface 

sensation. The contact esthesiometer can only deliver a focal mechanical stimulus and the first 

contact esthesiometer was built by von Frey39 with calibrated horse hairs of different lengths 

attached to the glass rods. Based on von Frey’s concept that the force produced by a long hair 

axially on the corneal surface is proportional to the diameter and the length of the hair, Boberg-

Ans40 invented a device using a single nylon thread of constant diameter but of varying length 

to measure sensitivity; this was further improved by Cochet and Bonnet41. 

Cochet-Bonnet esthesiometers (C-B) consist of hair or nylon filaments of variable diameter 

and length to deliver tactile stimuli to the ocular surface and it is widely used in both clinical 

and research settings due to the convenience and relative ease of use.42–47 The nylon 

monofilament that is commonly used42–47 is 60 mm in length and 0.12 mm in diameter, and 

this produces pressures ranging from 11 to 200 mg per 0.0113 mm2
.
 Though it is widely 

utilized, the C-B esthesiometer has major drawbacks such as focal measurements, filament 

bending resulting in stimulus intensity variation, narrower stimulus intensity range compared 

to a pneumatic esthesiometer, and the ability to measure only mechanical sensitivity.48,49 Also, 

the filament is also a visual stimulus that can produce bias in the responses provided due to 

anxiety about the filament coming close or touching the eye.48,49 
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To overcome the weaknesses of the Cochet-Bonnet esthesiometers, more sophisticated devices 

have been developed, which presumably provided greater precision. These devices either have 

different types of probes directly placed on the corneal surface50,51 or use different types of 

pneumatic stimuli33 to determine the threshold for a localized mechanical force. However, 

these devices are limited to measuring mechanical sensitivity. Although a temperature-

controlled saline jet esthesiometer50,† and a CO2 laser esthesiometer52 have been developed to 

measure thermal sensitivity, they have not been widely applied.  

The Belmonte esthesiometer delivers air pulses of controlled flow rate, temperature, and air-

CO2 mixture to the ocular surface, allowing measurement of sensitivity over a range of 

mechanical, thermal, and chemical stimuli.33 These esthesiometers consist of two gas 

cylinders, one containing medical-grade compressed air (78% nitrogen, 21% oxygen,0.9% 

argon, 0.03% CO2 and other trace elements) and one of 98.5% CO2, connected through two 

pressure regulators and two unidirectional regulators to an electronic proportional directional 

control valve (PCV). The PCV adjusts the flow of air and CO2 separately, producing gas 

mixtures with a controlled proportion of CO2 and air. The final flow of the gas mixture is 

adjusted with a flowmeter and supplied to a probe with an internal diameter of 0.8 mm on a 

mount with fine position control. The probe contains a temperature controlling device 

comprising a thermode, a servo-regulator, a Peltier cell that warms the gas, and a solenoid 

valve to control the output of gas. During stimulation, the gas is transiently directed to the tip 

of the probe by changing the direction of flow from the PCV. A pulse with a defined CO2 

concentration, temperature, and flow rate from the tip of the probe flows towards the ocular 

surface for specific intervals (ranging typically from 1 to 10 seconds).33 

 

 

†There is a newer but abandoned US patent application for a liquid jet esthesiometer by Ehrmann et al, 2018, US 

patent application 21090099071) 
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A modified Belmonte esthesiometer was manufactured at CRCERT at the University of New 

South Wales.53 The design is similar to the original device but with different electronic 

flowmeters and temperature controllers, a heating coil at the tip of the probe to keep the 

stimulus delivered approximately at corneal temperature, and a smaller inner diameter (0.5 

mm) of the probe. The temperature sensor provides feedback to maintain a steady temperature 

independent of airflow and ambient temperature. The modified Belmonte esthesiometer is 

mounted in an American Optical non-contact tonometer housing with an optical range finder 

to allow a “precise” stimulus distance control from the corneal apex.53 

Using the CRCERT- Belmonte esthesiometer as a platform, an automated Belmonte 

esthesiometer has been developed at the University of Waterloo, with computer-controlled 

mixing of air and CO2 flow rate and temperature.54 Additionally, a calibrated video camera 

continuously monitors the distance between the cornea and the tip, and the orthogonal 

alignment of the tip of the esthesiometer and the ocular surface. Custom software monitors/ 

controls stimuli and collects the responses provided by the participants. The type of response 

depends on the psychophysical method and a few of the psychophysical methods are described 

below. 

1.6 Psychophysics: 

Fechner coined the term “psychophysics” and described psychophysics as “exact science of 

the relations between body and soul” which identifies the relationship between the internal 

sensory events and perceptual responses to the external stimuli.55–57 More recently, 

psychophysics has been defined as “the analysis of perceptual processes by studying the effect 

on a subject’s experience or behavior of systematically varying the properties of a stimulus 

along one or more physical dimensions”.58  

 Classical methods of psychophysical measurements: 

The classical psychophysical methods utilize the concept of thresholds which plays a crucial 

role in the assessment of the sensory system. The threshold is used as a quantifier of the 
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performance of the sensory system and it is defined as a quantity at which the stimuli or the 

change in the intensity of the stimuli is detected 50% of the time.59,60 Two types of thresholds 

are used in classical methods: absolute and difference thresholds. The absolute threshold which 

is also a detection threshold is defined as the value (intensity of the stimulus) in the sensory 

continuum at which the stimulus is just detected. The difference threshold is defined as the 

amount of change in the intensity of the stimulus that is needed for the stimulus to be detected 

as different from the reference stimulus. The classical psychophysical methods which can be 

used to estimate thresholds are the method of adjustment, constant stimuli, and limits.56,57 Since 

only detection tasks were used in this thesis, the descriptions below for each psychophysical 

method are only based on the detection task.  

In the method of adjustment, participant is asked to adjust the intensity of the stimulus until it 

is barely detectable while increasing the intensity from an undetectable stimulus (ascending) 

or decreasing the intensity from an easily detectable stimulus (descending). In this method, the 

stimulus is always present and the intensity of the stimulus is continuously adjusted using keys, 

knobs, or joysticks until the stimulus is barely detected. There is a higher chance of error in 

this method due to the possible habituation and adaptation to the stimuli. This method is used 

rarely in corneal sensitivity studies. In addition to the drawbacks mentioned above, the 

continuous presence of pneumatic corneal stimuli can artificially induce evaporative dryness 

on the corneal surface resulting in an artificially induced irritation or discomfort.56,57 

The method of constant stimuli is one of the classical psychophysical methods that have been 

used to measure thresholds. In this method, a series of pre-determined stimuli are presented in 

random order multiple times and a threshold is then calculated by estimating the 50% 

probability (most common) of detection. It is a time-consuming experiment as each intensity 

in the pre-determined stimulus range is tested multiple times. There are possibilities of fatigue 

and adaptation effects when this method is used.56,57 

The method of limits is similar to the method of adjustment but the stimulus is presented based 

on the response provided by the subject for each trial.56,57 The initial intensity of the stimulus 
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is either lowest (ascending) or strongest (descending) depending on the method. The intensity 

is either increased or decreased depending on the response in pre-determined steps. Different 

step sizes are employed to obtain the absolute threshold. This was proposed to reduce the time 

taken to obtain threshold compared to the method of constant stimuli. Often this method has 

two different step sizes, one (larger step size) to get gross thresholds and the other (smaller 

step size) to get absolute threshold. Initial step sizes are larger until the first change in response 

is obtained and then the trials are repeated with smaller step sizes to obtain absolute thresholds. 

The trials in smaller step sizes will be similar to the larger step sizes, but it will start from one 

or two steps before the changeover point in the larger step size trials. This procedure is usually 

repeated several times to improve the accuracy of the threshold and the experiments start from 

the first step (lowest intensity (in ascending methods) or strongest intensity (in descending 

methods)) every repetition. 

The aforementioned methods are generally referred to as classical psychophysical methods. A 

relatively recent modification of the classical methods of limits is the staircase method, an 

extension of the method of limits, in which rules are used to adjust the steps and number of 

reversals (transitions from yes to no or no to yes) to calculate the threshold.56,57,61 This method 

(in simpler form) is likely to use fewer steps to calculate the threshold compared to the method 

of limits. Similar to the method of limits, the staircase has ascending and descending methods. 

One of the main advantages of the staircase methods is that multiple staircase experiments 

could be performed in the same session. The staircase method will have different step sizes 

depending on the number of reversals and responses provided by the participant. The staircase 

may have bigger steps initially until the response change is observed, followed by a smaller 

step size and there is an option to indicate how many reversals for each step size. For example, 

an experiment could be conducted with 8,4,2,1 step sizes, where the first set of trials follow 8 

steps, followed by 4 steps in the reversal, and then 2 and 1 until the required number of 

reversals is completed. Each response change is a reversal, and the end of the experiment is 

decided by the number of reversals set by the examiner. The threshold for the staircase 

experiment is usually calculated by taking an average of ‘x’ number of reversal intensities. 
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Each reversal is the same as repeating the method of limits but in much shorter intervals and 

steps. There are many modified staircase methods available and the main modification is in 

the form of conditions that are set to each step based on which the experiment either moves 

forward or backward (reversal). For example, a condition can be that out of 2 trials of the same 

step, participants should correctly identify both trials to move forward, or else a reversal will 

happen. This particular method is indicated as the 2UP 1DOWN staircase method. Though 

manual stimulus presentations are possible, often staircase method is conducted using 

computer programs.56,57  

In addition to classical methods, the sensory characteristics of the ocular surface have been 

evaluated using psychophysical scaling where the relationship between a quantitative mental 

event (output) and physical stimuli (input) is evaluated.56,57 There are other psychophysical 

methods that don’t apply the concept of threshold to analyze the sensory processing of different 

stimuli and one of those is the signal detection theory. 

 Signal detection theory (SDT): 

A detection model known as signal detection theory or detection theory was created by 

combining the high threshold theory of detection and signal decision theory that separates the 

detection of the stimuli based on sensory and decision processes.62–64 The sensory process 

explains the sensory representation of the physical stimuli (amount of separation of the 

stimulus from noise) given by the detectability (d’) and the decision process is given by the 

criteria which explain the bias associated with the detection of the stimuli. Detectability is 

proposed to reflect the physiological condition of the nervous system, while decision criteria 

reflect the cognitive aspect of sensation (how much a subject is willing to report a sensation).62–

64 People holding conservative criteria will reveal higher thresholds because they are reluctant 

to respond “Yes” to a stimulus unless it produced a notable change in the perception, while 

those who hold liberal decision criteria will reveal lower thresholds supposing the stimuli have 

the same detectability. Many factors affect the choice of criteria, such as emotional conditions 

(e.g. anxiety), personality, as well as cognitive factors.62–64 In SDT experiments, instruction, 
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stimulus probability and pay-off conditions all can change subjects’ criteria choice. There has 

been a fair amount of research into pain using SDT and the authors of those studies have 

proposed that sensation of pain has both physiological and psychological components. 65–69 For 

example, work on the effects of instruction and placebo using SDT has demonstrated that 

subjects changed their criteria instead of detectability when their anticipation of the stimuli 

differed.65,68,70,71 If only classical psychophysical methods were used, the results of this work 

would have lead researchers to conclude that subjects’ thresholds increased after placebo use 

and positive instruction, suggesting that each had analgesic effects.65,68,70,71 

According to SDT, to elicit a response for a given trial, the sensory process first detects the 

stimulus and this is then followed by the decision process (influenced by multiple factors) that 

shifts the response either in favor of the signal or noise.62,72 There are a few types of SDT 

available but in this thesis, only the basic yes-no and rating SDT methods are used. 

1.6.2.1 Yes-No SDT: 

Participants, for each trial in this method, identify with a yes/no response whether the neuro-

sensory effect is from the distribution of signal (S+N) (stimulus was present) or from the 

distribution of noise (stimulus was absent). For brevity, the “signal + noise” distribution will 

be referred to as “signal” in this thesis. The hit rates (HR) (proportion of signal trials correctly 

identified as a signal), and false alarm rates (FAR) (proportion of catch trials incorrectly 

identified as a signal) are calculated based on these responses. The detection theory estimates 

(d’ and criteria) are calculated using the HR and FAR.82 The d’, in standard deviation units, is 

the distance between the means of signal (z(HR)) and noise distribution (z(FAR)) (Equation I) 

and it is a parametric estimate based (in the original detection theory) on the assumption that 

both signal and noise distributions are Gaussian normal distributions (Figure 1.2 A). Az is the 

non-parametric estimate of detectability that doesn’t use gaussian normal distribution 

assumption in the calculation. The criterion (c) and likelihood ratio (β) are the estimates of 

bias.33,57,82 The location of the criterion on the decision axis indicates the general tendency of 

the participants to respond yes or no during the experiment. The criterion, in standard deviation 
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units, is the distance between the neutral point (where there is no bias) and the location of the 

criterion (Equation II). β is the other form of bias determination which estimates how likely 

the participant would have responded “yes” to each trial (Equation III).  

 

𝑑′ = 𝑧 (𝐻𝑅) − 𝑧 (𝐹𝐴𝑅) (I) 

𝑐 = −0.5 (𝑧 (𝐻𝑅) + 𝑧 (𝐹𝐴𝑅)) (II) 

β = exp(0.5(𝑧 (𝐹𝐴𝑅)2 − 𝑧 (𝐻𝑅)2)) (III) 

SDT assumes that participants have fixed detectability when asked to detect a stimulus of 

certain intensity.62,63,73 However, response bias may vary the participant’s response depending 

on their willingness to report “yes” or “no” to each trial. If d’ is invariable, then there is more 

than one pair of hit and false alarm rates that could produce the same detectability for the 

Figure 1.2:(A) Distribution of signal and signal + noise showing the d', location of criterion and c. The area 

highlighted with the star represents the correct identification of the signal and the triangle represents the 

incorrect identification of the noise as signal. In a rating experiment, multiple criterion lines will be present 

relative to the number of ratings used. (B) ROC curve with false alarm on x-axis and hit rate on y-axis. The 

blue dot represents one possible data point if yes-no response was used to determine SDT parameters and 

red points indicate one possible combination of data points if the response was based on 5 (4 criteria) ratings.  

1 

0 1 



 

 14 

stimulus intensity tested. Though the same detectability is obtained, the difference between the 

pairs produces different response biases.62,63,73 Based on this concept, all possible hit, and false 

alarm rates can be estimated using a function called receiver operating characteristics (ROC) 

curve where hit rate and false alarm rates are plotted against each other (Figure 1.2 B).62,63,73 

Both metrics have a range between 0 and 1 indicating the proportion of each metric. The hit 

rate of “0” indicates a poor hit rate where the participant did not identify any signal trial as 

signal and ”1” indicates that all signal trials were correctly identified as signal. On the other 

hand, a false alarm rate of “0” indicates a good performance where participants correctly 

identified all catch trials as noise and “1” indicates that all catch trials were incorrectly 

identified as a signal. The graph is bounded by the range of proportions of hit and false alarm 

rates and the ROC curve connecting (0,0) and (1,1) through the data point indicates the 

detectability. All the points on the ROC curve are possible pairs of hit and false alarm rates 

(different response biases), for each level of d’(they are also called isosensitivity lines). The 

diagonal connecting (0,0) and (1,1) is the chance line where d’ is equal to 0 and the hit and 

false alarm rates are always equal. In the simplest model of SDT, it is assumed that each 

stimulus has its own detectability along a sensory continuum. The ROC curve could be used 

to compare different variables, stimuli, signals, or outcomes from different experiments.62,63,73 

As mentioned earlier, each point on the ROC curve represents a different bias due to the change 

in the hit and false alarm rate pair. In a simple yes-no SDT experiment, only one point on the 

ROC can be measured in an experiment as the criterion changes cannot be evaluated. To 

measure changes in criterion or different points on the ROC curve in a single experiment, a 

rating SDT method is needed.  

1.6.2.2 Rating SDT:  

In rating SDT, participants respond to each trial with a confidence rating instead of yes/no. For 

example, in a detection task, participants respond to each trial using a scale of 1(most certainly 

signal was not presented) to 5 (Most certainly signal was presented) for how confident they 

are that they detected a signal. These rated responses allow criterion changes during the 
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experiment to be evaluated and these ratings are also used to identify different points of the 

ROC curves. A rating task with 5 ratings will provide 4 (n-1) points for the curve and the 

number of ratings is decided by the examiner beforehand depending on the number of trials 

and criteria evaluated (Figure 1.3).62,63,73  

 

Figure 1.3: Schematic representation of multi-stimulus multi- criterion SDT. (Top figure) Gaussian 

distribution for 3 signals and a noise with 4 criteria for each stimulus. Signals are indicated with different 

colors and the distance between the noise and each signal distribution gives detectability of that signal; 

(bottom figure) ROC curves for each of the signal with criteria indicated only for S2. Please note the 

criterion levels were chosen separately for each stimulus pair. 
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The hit and false alarm rates in the rating task are obtained by considering a cut-off at each 

level and estimating the hit and false alarm rates at each level. For example, in a 5-point rating 

scale, the first point on the ROC curve is obtained by having the cut-off at rating 1 where the 

rating of 1 for signal trial as incorrect detection (No) by the subject and all other ratings 

cumulatively as correct detection of a signal (Yes). The total number of ratings from 2-5 

divided by the total number of signal trials will be the hit rate. Similarly, a rating of 1 in the 

catch trial will be considered as the correct detection of noise trial (No) and the cumulative 

frequency of all other ratings will be considered as false alarms. Hit rate and false alarm rates 

are calculated for each stimulus and the remainder of the ROC will be extrapolated similar to 

the yes/no task. For a stimulus with 5 rating responses, there will be one d’ and 4 (which is n-

1) criterions calculated.62,63,73 

1.7 Ocular surface sensation and SDT:  

The ocular surface sensory processing of different types of stimuli has been evaluated by both 

physiological and psychophysical methods on animal and human corneas.2,7,9 As summarized 

inTable 1-1, corneal sensory processing has been evaluated only using classical 

psychophysical techniques such as the method of limits, method of constant stimuli, or (more 

recently) staircase techniques.8,31,49,53,54,74–76 The detection threshold is used as the measure of 

ocular surface sensation even though the thresholds have been found to vary.53,74,75,77–79 The 

comparison of thresholds between groups9,79,80 with or without dry eye disease (among 

others)22,80–82 often produced conflicting results. Factors such as age, usage of contact lenses, 

iris color, environmental factors, corneal eccentricity, and diurnal variations have been 

associated with corneal sensitivity alterations.10,83–86 Interestingly viewing the esthesiometer 

during the experiment has been shown to alter corneal sensitivity.87 Similarly, studies on 

thermal pain have shown that seeing the physical stimuli could affect the criterion.88 In addition 

to these factors, failure to control the observer’s criterion could be a crucial drawback in the 

classical psychophysical methods that could possibly affect all the threshold 

measurements.57,89 The observer’s criterion (constant for that participant but, of course, 



 

 17 

different between observers) during a psychophysical experiment, may lead to biased 

observations as it can be set based on multiple factors that are available to observers at the time 

of the experiment including previous experience, instruction characteristics, signal probability, 

stimulus intensity or presumed tolerability to pain.57,63,67,68,89,90  

Theoretically, when a stimulus is presented, if the result of the sensory process exceeds the 

decision criteria, a “yes” response would be provided by the participant or else a “no” would 

be provided. In classical psychophysics, to overcome these drawbacks, the decision criterion 

is assumed to be fixed (and therefore cannot be assessed, only the threshold is estimated) and 

the participants might either choose a liberal or a conservative criterion (being more likely to 

say “yes” or less likely to say “yes” respectively) or also might change within an experiment. 

Therefore, because the criterion in a classical method cannot be controlled (or evaluated), the 

threshold obtained is not independent of bias.  

As mentioned earlier, the separation of sensory and decision-making components could be 

obtained using SDT and has been used in the examination of responses to painful 

stimuli.66,67,91–93 Though SDT has not been used in ocular surface sensory processing studies 

before, the utility of SDT in somatic, dental, and other areas of pain perception has been 

demonstrated in several studies.65,68,88,92,94–104 Therefore, I designed the experiments reported 

in this thesis, to measure the detectability and criterion of different stimuli using signal 

detection theory and to compare these parameters between different clinical groups of 

participants.  
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Table 1-1: List of studies with different types of esthesiometer. 

Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

1960 Kenshalo D105 

Method of limits 

(ascending and 

descending); 

thermometer 

The cool, warm, and hot 

thresholds of lip, forehead, 

and conjunctiva were similar 

1963 Schirmer K106 

Did not mention, 

Schirmer 

esthesiometer 

Threshold decreases with an 

increase in the amount of 

contact surface. Pressure, 

friction and area of contact 

are the main variables 

affecting thresholds 

1968 Millodot M107 

Magnitude estimation 

method; Cochet- 

Bonnet esthesiometer 

(C-B) 

The judgment of corneal 

sensitivity to the pressure 

applied is controlled by the 

power function with an 

exponent of 1.01 

1970 Larson W51 

Did not mention, 

Electromechanical 

esthesiometer 

Comparison between electro-

mechanical and C-B 

esthesiometer. 

1972 Millodot M83 
Ascending method of 

limits (adjusted); C-B 

Normal eyes become more 

sensitive by evening 

1974 Millodot M108 
Ascending method of 

limits (adjusted); C-B 

Menstruation causes lower 

corneal sensitivity 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

1975 Millodot M109 
Ascending method of 

limits (adjusted); C-B 

Blue irises have the most 

sensitive corneas 

1975 Millodot M110 
Ascending method of 

limits (adjusted); C-B 

Hard contact lens wearing 

causes corneal edema and 

decreased sensitivity 

1977 Millodot M111 
Ascending method of 

limits (adjusted); C-B 

Pregnant women have lower 

corneal sensitivity 

1977 Millodot M112 
Ascending method of 

limits (adjusted); C-B 

Corneal sensitivity decreases 

gradually throughout life 

1978 Polse A113 
Descending method of 

limits; C-B 

Sensitivity decrease is related 

to mechanical adaptation 

1979 
Millodot M, 

O’Leary D114 

Ascending method of 

limits (adjusted); C-B 

Loss of corneal sensitivity 

and increase in corneal 

thickness with lid closure 

1980 
Millodot M, 

O’Leary D115 

Ascending method of 

limits (adjusted); C-B 

Corneal sensitivity reduced 

with 2.1% to 3.15% partial 

oxygen pressure 

1980 
Tanelian D, 

Beuerman R116 

Electrically controlled 

thermal apparatus 

(saline bath and saline 

jet) 

Ascending method of 

limits; C-B 

No irreversible sensory 

change of corneal sensitivity. 

There was a decrease in 

sensitivity induced by 

contact lens wear which 

cannot be attributed to simple 

adaptation 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

1984 Draeger J117 

Electronic optical 

esthesiometer 

(psychophysical 

methods were not 

clear); C-B 

There are age and sex-

specific differences of 

corneal sensitivity, and 

genetic difference to local 

anesthetic benoxinate 

1994 
McGowan D et 

al.118 

Ascending method of 

limits; C-B 

The lower lid margin is more 

sensitive than the upper lid, 

no difference on tarsal 

conjunctiva, large inter-

subject variation 

1999 
Vega J, Simpson 

T54 

Method of constant 

stimuli; Belmonte 

esthesiometer 

A high correlation between 

day 1 and 2; contact lens 

caused 55% sensitivity 

decrease; and 155% decrease 

by topical anesthetic; central 

cornea was significantly 

more sensitive than the 

temporal conjunctiva 

2000 Battat L, et al.119 Constant stimuli; C-B 
Cornea sensitivity decreased 

after LASIK 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2001 Yen M, et al.120 
Ascending method of 

limits; C-B 

Ocular surface sensitivity 

and tear production 

decreased after temporary 

punctual occlusion in normal 

subjects and will return to 

normal after 14 to 17 days. 

2003 
Feng Y, Simpson 

T74 

Ascending method of 

limits; Modified 

Belmonte 

 

The central cornea is more 

sensitive than the temporal 

conjunctiva 

2003 Du Toit R et al.121 

Ascending method of 

limits; Belmonte 

esthesiometer 

Diurnal variation in corneal 

sensitivity and thickness may 

be physiologically regulated 

by the hypoxic conditions 

caused by eye closure. 

2004 
De Paiva C, 

Pflugfelder S122 

Method of levels; 

Modified Belmonte 

Dry eye patients have higher 

corneal sensitivity 

2004 Roszkowska A84 
Ascending method of 

limits; C-B 

Age-related decrease of 

corneal sensitivity 

2004 Murphy P et al.123 

Double-staircase 

method of limits; 

NCCA 

A gradual reduction in 

corneal sensitivity with 

increasing age in both non-

diabetic and diabetic 

subjects. 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2004 Adatia F et al.124 Did not mention; C-B 

Reduced corneal sensation 

correlated with increasing 

severity of Sjogren’s. 

Patients with advanced 

corneal staining likely to 

have fewer dry eye 

symptoms  

2004 
Feng Y, Simpson 

T36 

Ascending method of 

limits; Modified 

Belmonte 

 

There are 5 psychophysical 

channels on the human 

cornea, and they are 

independent 

2005 
Stapleton F, Tan 

M125 

Method of constant 

stimuli; Belmonte 

esthesiometer 

The cornea is more sensitive 

than the conjunctiva; the 

conjunctiva is more sensitive 

to thermal stimuli 

2005 
Golebiowski B, 

Stapleton F53 

Unequal staircase 

technique (Garcia-

Perez Staircase 

(GPS)); Belmonte 

esthesiometer 

Unequal staircase technique 

(Garcia-Perez Staircase 

(GPS)) is as accurate as 

Method of Constant Stimuli 

(MOCS), and GPS is more 

repeatable and less time 

consuming 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2005 
Henderson L, et 

al.126 

Ascending method of 

limits 

Method of constant 

stimuli; Modified 

Belmonte 

Age, gender and iris color are 

not predicting factors for 

corneal mechanical, chemical 

and thermal sensitivity 

2005 
Feng Y, Simpson 

T127 

Ascending method of 

limits; Modified 

Belmonte 

Corneal and conjunctival 

sensory channels are not 

independent 

2005 Bourcier T et al.128 

Method of levels; 

Belmonte 

esthesiometer 

Patients with dry eye 

exhibited corneal 

hypoesthesia after 

mechanical, thermal, and 

chemical stimulation which 

might be related to damage 

to the corneal sensory 

innervation 

2006 Chang Y129 
Descending method of 

limits; C-B 

No sensitivity change on the 

cornea after strabismus 

surgery but conjunctiva 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2006 
Stapleton F et 

al.130 

Unequal staircase 

technique (Garcia-

Perez Staircase 

(GPS)); Belmonte 

esthesiometer 

Nerve morphology was 

associated with a mechanical 

threshold after LASIK 

surgery; chemical sensitivity 

appeared to be unaffected 

after LASIK 

2006 Acosta M et al.131 
Method of levels; 

modified Belmonte 

Corneal and conjunctival 

thresholds to mechanical and 

chemical stimuli increased 

with age. Premenopausal 

women were more sensitive 

to corneal stimulation than 

men of similar ages  

2007 Situ P et al.132 

Ascending method of 

limits and constant 

stimuli; Modified 

Belmonte 

Sensitivity across cornea 

only varied slightly and 

different from what was 

reported with Cochet-Bonnet 

2008 
Golebiowski B, 

Stapleton F86 

Unequal staircase 

technique (Garcia-

Perez Staircase 

(GPS)); Belmonte 

esthesiometer 

Females are more sensitive 

than males on both cornea 

and conjunctiva; increase of 

corneal sensitivity with age 

in female subjects 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2008 Tuisku I et al.133 

non-standard 

psychophysical 

method; modified 

Belmonte 

The mechanical detection 

threshold was low in the 

primary Sjogren’s group 

compared to normal 

2010 
Situ P, Simpson 

T134 

Ascending method of 

limits and scaled 

stimulus presentation; 

Modified Belmonte 

Noxious mechanical and 

chemical stimuli evoked 

significant tear secretion. 

Central mechanical corneal 

stimulation is the most 

effective stimulus-position 

pairing and appears to be the 

major sensory driving force 

for reflex tear secretion  

2010 Situ P et al.135 

Ascending method of 

limits; modified 

Belmonte 

Corneal sensitivity changed 

in adapted lens wearer when 

lenses were refit after a no-

lens interval and during lens 

wear with different care 

regimens 

2010 Chen J et al.136 

Ascending method of 

limits; modified 

Belmonte 

Both mechanical and cold 

receptors on the human 

cornea show adaptation to 

repeated suprathreshold 

stimuli 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2010 Gallar J et al.137 

Method of minimum 

stimulus; Belmonte 

esthesiometer 

Corneal sensitivity in eyes 

with HSV keratitis had 

mechanical forces and heat 

significantly impaired 

2011 
Chen J, Simpson 

T138 

Ascending method of 

limits and rating; 

modified Belmonte 

Adaptation was found to 

suprathreshold mechanical 

stimuli in the asymptomatic 

group but not in the 

symptomatic group. 

2011 
Golebiowski B et 

al.77 

Ascending method of 

limits and rating; 

modified Belmonte 

and C-B 

No association between the 

sensitivities obtained with 

two esthesiometers 

2012 Tesón M et al.139 

Method of levels; 

standard and new 

prototype Belmonte 

No difference between the 

eye and between the 

instruments. Men had 

significantly higher chemical 

thresholds than women. 

2014 
Basuthkar S, 

Simpson T.140 

Detection (ascending 

method of limits) and 

difference thresholds; 

Modified Belmonte 

Differential sensitivity of the 

ocular surface can be 

measured and Weber’s law 

holds for corneal nociceptive 

sensory processing 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2014 

Navascues-

Cornago M et 

al.141 

Ascending method of 

limits; C-B 

The marginal conjunctiva 

was the most sensitive of all 

the conjunctival regions 

2015 Situ P et al.142 

Ascending method of 

limits; Modified 

Belmonte (Indiana) 

Calibration and repeatability 

were performed. Repeatable 

cool stimuli thresholds 

2015 Chao C et al.143 
Ascending method of 

limits; C-B 

Repeatability was good at the 

central cornea on the same 

day and 3-months apart. Not 

repeatable for conjunctival 

thresholds 

2015 
Martín-Montañez 

V et al.144 

Method of levels, 

Belmonte 

esthesiometer 

CL wearers with higher 

corneal sensitivity to 

mechanical stimulation 

reported more end-of-day 

dryness with habitual CL 

wear. 

2015 Wu Z et al.145 
Not indicated; 

Modified Belmonte 

A dose-response relationship 

between increased surface 

stimulation and blinking in 

healthy subjects 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2016 Spierer O et al.80 

Ascending method of 

limits; modified 

Belmonte 

Mechanical detection and 

pain thresholds measured on 

the cornea are correlated with 

dry eye symptoms and ocular 

pain. 

2016 Kaido M et al.146 

Not mentioned clearly. 

A type of descending 

methods probably; C-B 

Corneal sensitivity for 

blinking and pain evoked by 

increased stimuli was higher 

in the symptomatic group 

compared to normal 

2016 Nosch D et al.147 
Forced-choice double-

staircase; NCCA 

Significant interactions 

between corneal sensitivity, 

NIBUT, OST and blink 

frequency 

2019 
Alabi E, Simpson 

T148 

Ascending method of 

limits and scaled 

stimulus presentation; 

Modified Belmonte 

The conjunctiva of the 

stimulated eye becomes 

significantly redder than the 

unstimulated eye for stimulus 

types. The intensity is greater 

for chemical stimuli 
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Year Author(s) 

Psychophysical 

method and 

instrument 

Author(s)’s major 

finding(s) 

2019 Situ P et al.149 

Ascending method of 

limits; Modified 

Belmonte 

The intensity and coolness 

rating to cool stimuli 

decreased following STARE 

trials, while it increased for 

mechanical and chemical 

stimuli 

2020 
Alabi E; Simpson 

T150 

Ascending method of 

limits and scaled 

stimulus presentation; 

Modified Belmonte 

No difference in the pupil 

size between stimulated and 

unstimulated contralateral 

eye in mechanical and 

chemical experiments 

2020 Situ P et al.151 

Ascending method of 

limits; Modified 

Belmonte 

Corneal sensitivity and 

symptoms, but not tear 

meniscus height, increased 

diurnally in symptomatic CL 

wearers. 

1.8 Psychological variables: 

Non-sensory factors such as fear, anxiety, motivation, personality, depression, self-confidence 

have been shown to affect or influence the decisions made during the perception of painful 

stimuli.68,94,152–158 Though not reported before, based on my experience of conducting 

experiments using the pneumatic esthesiometer, its setup induces anxiety (and in some 

participants even fear) perhaps due to the proximity of the esthesiometer nozzle (or the nylon 

filament, if using a C-B device), its sharpness (the delivery nozzle is a tiny syringe-like tube) 

and also the expectation of irritation and discomfort after stimulation. Therefore, I included 
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measurements of anxiety. In addition to the anxiety measures, I also decided to evaluate the 

general decision-making of the participants since the criterion in SDT provides experimental 

decision-making. General decision-making was included, and the working hypothesis was that 

there would be an association between these decision-making metrics and experimental 

decision-making as reflected in SDT criteria outcomes. These associations have never been 

explored before. 

 Anxiety:  

Anxiety is defined as the psychological state in which an individual’s sense of uneasy suspense 

and distress is triggered by ambiguous circumstances.159 It is a complex multidimensional 

psychological state representing a series of interrelated cognitive, emotional, somatic, and 

behavioral reactions.159 Though it is projected as a negative emotion, it is actually an adapted 

defensive mechanism that motivates the individual to adapt to the environment and detect 

potential threats to safeguard from potential bodily harm or psychological distress. 

Unfortunately, the same safeguard mechanism could misdirect the individual to work against 

themself failing to perform the tasks that they intended.159  

Anxiety has been shown to influence the decisions made during pain measurements which may 

be due to the amygdala, which plays a key role in emotional responses such as anxiety and 

depression and also an important role in modulating the emotional component of pain. 

68,94,154,156,157,160,161 Perhaps partly because of the anxiety-inducing components of 

esthesiometry and also because the painful stimuli are being delivered, no experiments have 

been conducted to evaluate the effect of anxiety on ocular surface sensory processing.  

Many instruments have been developed to psychometrically assess anxiety and I chose to use 

the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA) questionnaire, an 

extension of the State-Trait Anxiety Inventory (STAI). Even though STAI has been widely 

used in psychological research to measure anxiety compared to STICSA, I chose the STICSA 

questionnaire because it addressed the limitations of STAI and was developed to measure both 
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cognitive and somatic components of the state and trait anxiety.162–164 In addition, related to 

the experiments in this thesis, participants can experience both cognitive and somatic 

components of anxiety due to the stimulus and instrument characteristics. I hypothesised that 

state and trait aspects would vary differently as the experiment progressed.  

The STICSA questionnaire has 21 items for state and 21 items for trait components and the 

participants respond using a 4-point Likert scale for each item on the questionnaire (Appendix 

B). The items in the questionnaire are the same for both state and trait components, however, 

the participants are asked to respond based on the general situation during the administration 

of the trait questionnaire and based on that instance during the administration of the state 

questionnaire. The questions are then categorized based on cognitive and somatic components 

while scoring and the total score for each component is calculated for both state and trait.  

 Decision-making: 

Janis and Mann165–168 suggested that decision-making is not a simple process of following 

certain pre-determined stages but suggested seven criteria to evaluate or make high-quality 

decisions. The seven criteria are: “1. Thoroughly canvas a wide range of alternative courses 

of action, 2. Survey the full range of objectives to be fulfilled and the values implicated by the 

choice, 3. Carefully weigh whatever is known about the costs and risks of negative 

consequence, as well as the positive consequence, that could flow from each alternative, 4. 

Intensively search for new information relevant to further evaluation of the alternatives, 5. 

Correctly assimilate and take account of any new information or expert judgment to which one 

is exposed, even when the information or judgment does not support the course of action 

initially preferred, 6. Re-examine the positive and negative consequences of all known 

alternatives, including those originally regarded as unacceptable, before making a final 

choice, and 7. Make detailed provisions for implementing or executing the chosen course of 

action, with special attention to contingency plans that might be required if various risks were 

to materialize”. They also emphasized that confidence has a huge role in the decision-making 
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process and time pressure and pessimistic feeling causes individuals to not follow all the 

decision-making criteria. 

Decision-making is a common term that has folksy interpretation as well as somewhat variable 

interpretation in the disciplines in which the task is measured. For example, within 

psychophysics it would typically refer to a choice about a sensory event57 (e.g. its detection) 

whereas in marketing it might refer to how many clicks occur when browsing a webpage169. 

The most common portrayal of decision-making is one that interprets the action as a rational 

choice.170–172 In experiments examining decision making as an outcome, typically, the main 

goal is to study the choices made in different scenarios (how a scenario influences a 

decision).155,173–180 The SDT decision characteristics are in the form of biases that are specific 

to the human experimental condition, particularly when participants are under some pressure 

to provide correct responses. This of course is true for the psychophysical experiments 

described in this thesis. A decision-making questionnaire designed to evaluate how individuals 

approach different scenarios, was compared to bias metrics derived from the decisions made 

in psychophysical experiments of signal detection. I hypothesized that the general decision-

making described by Janis and Mann167,168, and those occurring in my psychophysical 

experiments in this thesis would be associated. My concern, within the pertinent chapter in this 

thesis, is what are the influences of the dimensions of general decision-making (derived using 

a standardized instrument166) on the sensory decisions (that is how to do the associations vary). 

The Melbourne decision-making questionnaire was chosen and it provides scores for four 

decision-making categories: vigilance, buck-passing, hypervigilance, and procrastination.166 

In summary, the main aim of the thesis is to measure the detectability and criteria of different 

pneumatic stimuli and to compare the SDT metrics between different groups. In addition to 

the psychophysical measurements, anxiety and general decision-making are to be evaluated 

and to analyze the relationship between psychological and psychophysical measures. 
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Chapter 2 

Calibration of Chemical Pneumatic Stimuli 

 

Chapter 2 was published as follows: 

A New Method to Calibrate the Carbon Dioxide (Chemical) Stimuli of Pneumatic 

Esthesiometer Externally  
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nd/4.0/) and the formatting is changed to follow the format of this thesis.   
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2.1 Introduction: 

Esthesiometers have been used in estimating the sensitivity of various sensory systems 

such as skin, particularly for measuring the touch sensitivity/ pain sensitivity, each of which 

depends on the amount of pressure applied on the surface of interest.1 Like other sensory 

systems, the sensitivity of the ocular surface has also been measured using esthesiometers.2–11 

Von Frey12 developed the horsehair based esthesiometer to measure the mechanical sensitivity 

of the ocular surface.13 The esthesiometer’s filaments are of certain length and diameter to 

exert a pre-calibrated amount of pressure on the ocular surface.12 The fundamental principle of 

stimulating mechanical sensitivity with a filament proposed by Von Frey was widely accepted 

and many versions of the esthesiometers were developed to quantify corneal sensitivity; in 

ophthalmic research, perhaps the most significant of them is the Cochet-Bonnet (CB) 

esthesiometer that is used clinically as well as in research settings.2,4,6,14,15 However, the 

filament stimuli are unidimensional, as they measure the mechanical sensitivity of a localized 

area with a narrow dynamic range of stimulus intensity. Other limitations that have been 

documented include perceptible filament producing an anxious response when brought closer 

to the eyes16 and a variable/inconsistent pressure was being applied to the ocular surface due 

to the bending of the filament.3,17,18 Even though a number of devices were developed with the 

limitations of the CB esthesiometer addressed3,7,14,15,19, clinically, CB esthesiometer is still the 

most frequently used esthesiometer. Other esthesiometers have been developed to measure 

corneal sensitivity, including Lele and Weddell’s3 infrared heated air stimulus, Schirmer’s14 

esthesiometer with a broader contact surface, Larson’s15 electro-mechanical esthesiometer, and 

Tanelian and Beuerman’s7 heated saline jet, and there has been a report of CO2 laser ocular 

surface esthesiometer.19  

Based on the reports of cutaneous polymodal nociceptor’s responsiveness to chemical 

stimuli, such as acetic acid and capsaicin, Belmonte’s group8,20–24 recorded the single unit 

electrical activity of cat and rabbit corneas by using the same chemical stimuli and developed 

a pneumatic esthesiometer for human participants. CO2 has been identified as an ideal stimulus 
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for the human ocular surface chemical sensitivity experiments because of the sustained 

reduction in the pH of the ocular surface, unlike a buffered response obtained by an acetic acid 

stimulus.9 In a number of studies, corneal chemoreception using the CO2 was measured and 

illustrated, perhaps, the importance of measuring chemical sensitivity.9,24–29 What emerged 

over a series of corneal physiological and psychophysical experiments was the demonstration 

of the utility of a pneumatic esthesiometer capable of measuring responses to mechanical, 

chemical and thermal stimulation, and linking hypotheses were developed and empirically 

supported that in humans there are channels with similar attributes to the neural behavior 

reported in rabbit and cat corneas.9,24,25,30,31 Also, the experiments demonstrated that in animals 

(mainly cat and rabbit, initially), polymodal nociceptors were found to form a majority (about 

70%) of corneal receptors, with mechanonociceptors (20%) and cold receptors (10%) forming 

the remaining corneal receptor population.32 It was hypothesized that these polymodal 

subgroups form the main peripheral sensory input from the cornea for the detection of 

nociceptive chemical, thermal, and mechanical stimuli.1,32,33  

There are different versions of pneumatic esthesiometers described in the 

literature10,24,25,27,34–37 all of which were custom built or modified versions of Belmonte’s 

design that delivers air/CO2 to the ocular surface. There are few reports on the calibration of 

the flow rate and temperature of the pneumatic stimulus.25,38–40 However, and perhaps because 

of technical issues, there are no reports on the calibration of CO2 stimulus of the pneumatic 

esthesiometer.41,42 The CO2 is controlled and calibrated internally either in the control box 

where the gas mixing occurs or at the nozzle with a closed-loop tube sampling CO2 sensors.24,25 

Even though the CO2 is internally calibrated, the %CO2 in the stimulus is unknown/not 

calibrated when it reaches the ocular surface (the place at which the pneumatic stimulus 

actually operates). The gases are not restricted to a closed column and so the stimulus has to 

interacts with the air in the environment between the nozzle and the ocular surface. The 

physical chemistry at the level of ocular surface will be different from the tip of the 
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esthesiometer, but it is unclear how much of CO2 is retained by the possible laminar flow (or 

otherwise) within the stimulus column.10  

Previously, the only way to measure %CO2 in the stimulus externally was to use solid 

electrolyte sensors which were typically difficult to use and have long and short term drift 

effects, making the measurements less reliable over time.43 Recent advancements in the CO2 

sensors have made them more reliable to measure at ambient conditions and offers wider 

concentration detection range. These are solid-state nondispersive infrared (NDIR) sensors that 

are portable sensors that use a low-power infrared light-emitting diode and detector to estimate 

the CO2 levels.43 Because these sensors have not been used previously for the calibration of 

esthesiometer stimulus, in this work, we initially determined the feasibility of using the sensor 

for calibration of the esthesiometer stimulus and then calibrated the CO2 stimuli at different 

concentrations, flow rate, and working distances. 

2.2 Materials and methods:  

 Waterloo modified Belmonte esthesiometer: 

The construction of the Belmonte esthesiometer has been discussed in detail by 

Belmonte et al. 24. The essential components of an esthesiometer are the gas inputs, control 

box, and nozzle. The gas inputs to the control box are regulated at 5psi from both the medical 

air and CO2 cylinders. The control box houses the electronic controls for manual input and 

flow meters/ gas mixers to prepare the stimulus. Our esthesiometer (Waterloo version) has 

been extensively modified to include automation of flow control, mixing, and stimulus delivery 

(as well as the audio prompts and subject data collection) (Figure 2.1 and Figure 2.2 ). 44 The 

stimulus is delivered through the nozzle mounted on an adjustable mount, controlling x, y, z 

position, and yaw. The tip/nozzle of the esthesiometer was wrapped with a coil thermostat to 

control the temperature of the stimulus delivered (Figure 2.1 and Figure 2.2). A calibrated 

camera viewing system mounted on the side of the esthesiometer allows the examiner to 

position the tip at the desired working distance and partly control/monitor the stimulus 



 

 37 

orthogonality relative to the ocular surface. To create a chemical stimulus, the flowmeters in 

the control box regulate the mix of medical air and CO2 to a specified concentration and flow 

rate. The manual/automated inputs provided to create a stimulus include the flow rate 

(mL/min), nominal CO2 concentration (%; 0% in case of mechanical and cold stimulus) and 

duration of the stimulus (seconds). The temperature of the stimulus is maintained throughout 

the experiment at either 50℃ (translating to approximately 33℃ at the ocular surface for 

mechanical and chemical stimulation) or room temperature for the cold stimulus. The nominal 

concentration is the %CO2 set by the observer/software for a given flow rate that would occur 

at the tip of the esthesiometer when the stimulus is presented. 

 

 Carbon dioxide sensor:  

A portable CO2 sensor (COZIR CM-0041) from CO2Meter.com was used (Figure 

2.3).45 (According to the manufacturer, the CO2 sensor (CM-0041) has been discontinued. The 

GC-001645 is the recommended replacement for the CM-0041, as both the models use the same 

COZIR 100% CO2 sensor.) This compact, low power, diffusion sampling sensor uses NDIR 

technology with gold-plated optics to measure ambient CO2 concentration. The measurement 

Figure 2.1: (A) Setup of modified Belmonte esthesiometer and COZIR CM-0041 CO2 sensor; and (B) the 

esthesiometer setup with the control box and calibrated viewing system. 
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chamber is covered by a 100% CO2-permeable membrane for the CO2 molecules to enter the 

chamber. The information reviewed before choosing this particular type of sensor was its 

accuracy, sampling rate, optimal operating condition, and the ability to detect concentration 

from 0 to 100%. The COZIR CM-0041 sensor detects %CO2 from 0 to 100% with an accuracy 

of ± 70 ppm or ± 5% of the reading at a sampling rate of 2 Hz. Also, the optimal operating 

condition for this sensor was between 0 to 50°C/ room temperature and atmospheric pressures 

between 950 mBar and 10 Bar. It could be used for an instantaneous measure of %CO2 or for 

fixed interval measure with the inter measurement timing ranging from every second to every 

30 minutes. The session data containing the time and concentration (ppm) could be exported 

to a spreadsheet using the supplied data logger software. The sensor was pre-calibrated when 

purchased, and before each experimental session, the initial measurement of ambient room 

%CO2 was 1300 ± 100 ppm (average of 3 trials). In addition, as is reported later, when the 

stimulus was set to deliver 100% CO2 and the sensor was at the tip of the esthesiometer, it 

consistently reported 100% CO2. 

 CO2 sensor design: 

The sensor design as explained in the manufacturer’s manual.45 The COZIR sensor uses 

an infrared LED light source and a detector (Figure 2.3C)43 that is mounted on the bridgeboard 

facing the gold plated parabolic reflector at the bottom (Figure 2.3D). The active measurement 

area is the area between the bridgeboard and reflector. The LED is operated at 4.3μm, as this 

wavelength is similar to the absorption spectra of CO2. The infrared light from the LED passes 

through the gas in the active area and reflects back to the detector by the reflector. The amount 

of light reaching the detector depends on the concentration of the CO2 inside the active area, 

and the rate of absorption or the proportion of light reaching the detector is used in the 

calculation of the %CO2 at a given moment.  
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 Experimental setup: 

The sensor was removed from its original plastic enclosure (Figure 2.3B) and mounted 

on the chin rest by using metal clamps for easier positioning of the sensor orthogonal to the tip 

of the esthesiometer (Figure 2.1A). A calibrated measuring scale was used to adjust the 

working distance between the tip of the esthesiometer and front face of the sensor (Figure 

2.1B). The air vents in the room were partially blocked, and the room doors were closed to 

avoid air draft affecting the flow of the jet between the tip and sensor. The room setup was 

similar to the experiments with human participants performed in the lab. Due to the stimulus 

Figure 2.2: The Waterloo modified Belmonte esthesiometer (adapted from the thesis of Situ44) 
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dimension and low flow rates used in the experiment, the stimulus duration for the trials was 

99.9 seconds each (maximum time of the device) allowing the active area to get saturated with 

the stimulus being presented. The working distance, flow rate, and nominal concentrations 

were changed systematically according to the experiment. The %CO2 inside the active area of 

the sensor was logged every second. Between each trial, a breathing time of 2 minutes was 

used to allow the concentrations inside the chamber to return to ambient conditions. Each trial 

was repeated three times to measure repeatability. The concentration was measured at room 

temperature.  

 

  

Figure 2.3 (A): COZIR CM-0041 portable carbon dioxide sensor 45
 (adapted with permission from 

CO2Meter.com (Appendix B)); (B) CO2 sensor without the protective case; (C) the bridgeboard containing 

LED source and detector to measure CO2 concentration (reference 43 ,included using creative commons 

attribution license 4.0); and (D) Schematic representation of the measurement chamber of the CO2 sensor 

and CO2 detection mechanism (source: adapted from reference 43 using creative commons attribution 

license 4.0). 
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Experiment 1: Identifying an optimal location on the surface of the sensor to deliver 

corneal pneumatic stimuli 

The diameter of the front face of the sensor is larger than the esthesiometer tip (stimulus 

column) as well as the active measurement area inside the sensor. Because the sensor is 

designed to detect ambient conditions, it was unclear what effect it would have on the detection 

of the %CO2 in the stimulus column. As seen in Figure 2.3B, the front face of the sensor with 

a bridgeboard (black shadow in the middle) obscures the entry of the stimulus into the sensor. 

Therefore, the tip of the esthesiometer was placed at five different locations on the surface of 

the collector (no loss in the CO2), and a stimulus of 100% CO2 at 100 mL/min flow rate was 

delivered directly to the active area. The locations were center, left, right, top and bottom half 

of the sensor surface (Figure 2.4).  

Experiment 2: Effect of flow rate and working distance for a maximum nominal CO2 

concentration 

This experiment was conducted to determine the concentration at the ocular surface 

plane with a constant stimulus concentration of 100%, and the flow rate varied at 3-, 5-, and 

Figure 2.4: Location of area tested on the surface of the sensor indicated with the labels; C, center; L, left; 

R, right; T, top; B, bottom. 
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10- mm working distances. The flow rates used were 50, 100, 150 and 200 mL/min, and the 

flow rates were increased methodically from lowest to highest at each working distance. 

Experiment 3: Estimation of %CO2 reaching the ocular surface at smaller intervals of 

flow rate and concentrations 

In this experiment, all three components were changed to obtain their respective 

observed %CO2. The flow rate and concentration were varied in smaller steps at 3 

predetermined working distances similar to experiment 2. The flow rates used were between 

20 mL/min and 100 mL/min in 20 mL/min steps, whereas the concentrations were from 0 to 

100% in 20% steps.  

 Data analysis: 

The maximum concentration achieved within each trial was extracted and used in the 

analysis. The data were analyzed using R statistics (version 3.4.3)46 in R studio (version 

1.1.383)47. Linear models were obtained using “lme4,” 43 and the test-retest repeatability was 

obtained using “irr” package48,49. The plots were produced using “ggplot2”50and “cowplot”51 

packages of R statistics.  

2.3 Results: 

 Determining the feasibility and the location of stimulus delivery: 

The feasibility was evaluated by delivering a 100% CO2 stimulus at a flow rate of 100 

mL/min directly to the surface of the sensor. When delivered, the stimuli could still fill the 

active area with 100% CO2 when the tip was orthogonally positioned right against the surface 

in the top and bottom quadrants of the sensor. Even though the diameter of the esthesiometer 

tip/stimulus was smaller than the diameter of the collector, the stimulus could still saturate the 

chamber with 100% CO2, validating the use of the sensor in calibration. At locations other than 

the top and bottom quadrants, the observed %CO2 reached only 30% for a 100 %CO2 stimulus, 
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indicating a larger loss in the CO2 reaching the active area. As discussed in the construction of 

the sensor, the presence of bridgeboard may have (where the photodiode detector and LED are 

located) restricted/limited the CO2 molecules from entering the chamber, resulting in lower 

observed concentration. Because the CO2 molecules tend to rise when released, the stimuli for 

the experiments were delivered to the bottom half of the sensor for natural circulation of CO2 

inside the active area of the sensor.  

 

  

Figure 2.5: The observed concentration was plotted against the flow rate of the stimuli delivered with a 

concentration of 100% CO2. The colored lines indicate the working distance (distance between the sensor 

and esthesiometer tip) used in the trial.  
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 Determining the observed CO2: 

The experiment with a fixed concentration (100% CO2) and a variable flow rate showed 

a progressive increase in the observed %CO2 with increasing flow rates, but the observed 

%CO2 were relatively low at larger working distances compared to 3-mm working distance 

(Figure 2.5). The %CO2 were strongest when the sensor was positioned 3 mm away from the 

tip, whereas the lowest was observed at 10mm. A maximum concentration of 87.2% was 

obtained for a stimulus with the flow rate of 200 mL/min at 3mm. Compared to low flow rates 

that had a linear increase in the %CO2, the amount of CO2 reaching the active measurement 

area lessened or plateaued at the strongest flow rates (150 and 200 mL/min) of the 

esthesiometer. In the subsequent experiment with the concentrations measured for flow rates 

within the usual test range and nominal %CO2 set at smaller steps, the rate of increase in the 

observed %CO2 corresponding to the nominal %CO2 was lower when the flow rates were 

lower and the sensor was positioned farther from the esthesiometer tip. There was a progressive 

increase in the variability of the observed %CO2 between flow rates with increasing nominal 

concentration resulting in a fan-like distribution of values at each working distance (Figure 

2.6). Both flow rate of the stimulus and working distance were found to be significantly 

important factors (P < 0.001) to determine the observed %CO2 reaching the ocular surface/ 

sensor. Because the test-retest repeatability of each stimulus intensity was high with zero or 

small standard deviations for each mean (intraclass correlation coefficient [ICC] = 1), a 

nomogram was created using the average values so that the %CO2 at the ocular surface plane 

could be obtained based on the nominal concentration, working distance, and flow rate (Table 

2-1). 
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Figure 2.6: The observed concentration was plotted against nominal concentration. The linear fits were 

plotted for each working distance and flow rate. 
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  Nominal %CO2 

Flow rate 

(mL/min) 

Distance 

(mm) 
20 40 60 80 100 

20 

3 7.32 7.64 8.44 9.77 12.66 

5 6.62 7.23 7.61 8.39 10.93 

10 5.18 5.96 6.78 7.52 8.67 

40 

3 8.8 11.06 13 15.88 22.75 

5 8.1 10.44 11.6 13.58 18.88 

10 6.51 8.7 9.92 12.07 14.15 

60 

3 10.45 13.64 16.85 24.02 33.37 

5 9.46 12.71 15.1 19.4 28.58 

10 7.75 10.45 13.03 15.73 20.3 

80 

3 11.91 16.1 21.93 31.73 46.02 

5 11.21 14.86 19.29 26.22 38.11 

10 8.94 12.65 15.6 20.58 26.88 

100 

3 13.09 18.94 26.87 40.41 57.02 

5 12.38 17.23 23.4 33.22 48.43 

10 9.2 14.14 18.67 25.27 35.05 

Table 2-1: Nomogram to obtain observed concentration at the ocular surface plane for a given nominal 

concentration, flow rate, and working distance. 

  



 

 47 

2.4 Discussion: 

Pneumatic esthesiometry is currently the only way to examine chemo nociception on 

the human ocular surface. These experiments are more time-consuming than other pneumatic 

esthesiometry experiments because of the necessity to remove the gas from the previous trials. 

There is currently only one esthesiometer specifically designed with a vacuum component to 

do this without slowing down the experiments, 52 and its CO2 characteristics have also not been 

experimentally determined. In this study, we examined the feasibility of using a relatively 

inexpensive portable CO2 sensor to calibrate the chemical (CO2) stimuli of our pneumatic 

esthesiometer at the ocular surface plane. The research question arose because, perhaps, the 

CO2 stimuli were internally calibrated, and the composition of the stimulus is unknown when 

it reaches the ocular surface. Because the stimulus released from the esthesiometer interacts 

with the environment before reaching the area of interest, calibrating the stimulus at the ocular 

surface would help in improving the experimental design to measure chemical sensitivity.  

 Feasibility: 

The feasibility was primarily tested because the column of gas produced by the 

esthesiometer was limited (diameter at the nozzle tip is 0.5mm) and in our esthesiometer, the 

stimulus column (from the nozzle tip to the ocular surface) was 5 mm long, whereas the front 

face of the collector was 20mm in diameter. It was unclear that the CO2 measuring device 

would be able to reliably detect/measure the gas within the limits of the gas column, and in 

addition, if it were able to, what would be the characteristics of the column (or at least the 

characteristics of CO2 within the column) determined by the sensor. Calibration of the 

esthesiometer using the sensor seemed generally viable based on the results obtained for both 

medical air (0% CO2) and 100% CO2 stimuli. The CO2 measurements were accurate (based on 

readings with zero added and 100% CO2 columns) and repeatable, even though there was a 

mismatch between the sensor output and nominal stimulus specifications.  
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Table 2-2: Linear regression equations to calculate observed concentration based on flow rate, working 

distance and empirical concentration (x)  

 Relationship between concentration, flow rate, and working distance:  

A linear relationship was observed between nominal and observed concentrations for 

flow rates up to 100 mL/min depending on the working distance (Figure 2.5 & Figure 2.6). 

There was a reduction in the observed %CO2 at high flow rates (Figure 2.5), which might be 

due to the turbulence in the stimulus or disruption in the laminar flow of the stimulus allowing 

the CO2 to diffuse out of the stimulus column. The decrease in the %CO2 was more pronounced 

when the sensor was placed away from the esthesiometer. Of course, the interaction between 

the stimulus air-column and surrounding air is to be expected and has been shown using 

Schlieren imaging of the mechanical stimulus, which showed turbulence fringes at higher flow 

rates.10 From our perspective when using pneumatic esthesiometry to measure psychophysical 

sensory performance, fortunately, the flow rate for chemoreception trials would never be more 

than 100mL/min in our experiments. To minimize the mechanical sensory effect while 

 3 mm 5 mm 10 mm 

Flow rate 

(mL/min) 
Equation r2 Equation r2 Equation r2 

20 6.07 + 0.073*x 0.997 5.3 + 0.0713*x 0.998 4.2 + 0.0547 *x 0.977 

40 5.12 + 0.139*x 0.998 4.93 + 0.125*x 0.996 3.91+ 0.107*x 0.992 

60 4.07 + 0.224*x 0.998 3.75 + 0.195*x 0.999 3.51 + 0.153*x 0.997 

80 2.84 + 0.364*x 0.993 2.69 + 0.295*x 0.993 2.99 + 0.221*x 0.999 

100 2.87 + 0.532*x 0.995 2.4 + 0.448*x 0.995 2.16 + 0.317*x 0.995 
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measuring chemical thresholds, the flow rate of the stimulus would always be set at half of the 

mechanical (flow) thresholds and the maximum flow rate for the Waterloo modified 

esthesiometer is 200mL/min. Although there were suggestions that the relationships can be 

more complicated with some non-linearities at higher flow rates, both of these attributes (the 

general “simple relationships” as well as the departure from what is expected) highlight the 

importance of understanding how the air column behaves to understand the sensory attributes 

of the tissue being examined when doing pneumatic esthesiometry, in our instance, of the 

ocular surface. 

 Repeatability:  

The study by Tesón et. al31 found that the chemical thresholds were the least repeatable 

thresholds among the corneal sensory measurements, with a variability of 18.06% and ICC of 

0.49. This is the only study that measured repeatability of the chemical threshold. Many 

internal and external factors have been found to vary the ocular surface sensitivity.53 

Calibration could be a factor that is closely related to the stimulus characteristics for the 

variability in the sensation perceived by the participants. In our study, we found that the 

chemical stimuli itself is repeatable (ICC=1) considering the flow rate and working distance 

remain constant between the trials. When the flow rates were increased, there was an increase 

in the observed concentration at the ocular surface plane even though the concentration 

delivered remained same (Figure 2.5). This phenomenon was easily noticeable at higher 

nominal concentrations, and a similar phenomenon was observed with the working distance 

which was discussed earlier. In a human ocular sensitivity experiment, the working distance 

will remain constant among all participants, but the flow rate is different between participants 

based on the mechanical thresholds. There might be a confounding factor in the form of flow 

rates that may reduce the repeatability of the chemical thresholds in human participants. The 

information on the difference in the flow rate of chemical stimuli were not available in the 

study by Tesón et al31.   
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 Complexity of regression models:  

One of the aims of this study was to create a regression model that predicts the observed 

concentration based on the nominal concentration, flow rate, and working distance. Mixed 

modeling and nonlinear multiple regression models were attempted to create the expected 

models. Partly due to very poorly behaved error distributions and fan-like distribution of 

observed values, the predictability of the models was poor especially at higher concentrations 

(Figure 2.7). Because of the residual errors, simple linear regression lines were fitted to data 

for each flow rate at each working distance. The r-square for all the linear regression lines were 

more than 0.95, indicating good fit (Table 2-2). 

Figure 2.7 (A) The observed concentrations were plotted against the nominal concentrations and a linear 

fit was added with flow rate and working distance as factors; (B) The predicted values were plotted against 

the observed concentrations in the scatter plot. The %CO2 was predicted using the linear equation 

annotated in the figure and compared with the observed concentration from the sensor. Ideally, all points 

would be on the y=x function (dotted line). 
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2.5 Limitations:  

Even though we were able to calibrate the chemical stimuli, there is still an inability to 

measure the %CO2 in the stimulus column instantly, and the temperature of the stimulus was 

also not same as the one used in a regular experiment. The inability for an instantaneous 

measure of concentration in the stimulus column might be due to the size of the measurement 

chamber and diffusion model of the sensor. In this study, we overcame the limitation by 

delivering the stimulus for an extended period to saturate the measurement chamber with the 

stimulus presented, and the maximum concentration attained within the trial was used as the 

observed concentration. The saturation of the gas inside the chamber can be monitored in the 

real-time graph of the data logger software provided. As soon as the chemical stimulus was on, 

the observed %CO2 increased sharply from the baseline (ambient level) until it plateaued or 

slowed the increase in the concentration with time. The plateauing was apparent at high flow 

rates and closer working distance. The plateau indicated the saturation of the %CO2 inside the 

chamber and there was no evidence of CO2 pooling inside the chamber, as the %CO2 started 

dropping instantaneously after the stimulus was off. The %CO2 inside the chamber returned to 

ambient levels within half a minute from the stimulus was off.  

In this study, the temperature of the stimulus was not the same as the one for human 

ocular surface chemoreception experiments because the NDIR sensor used in this experiment 

uses infrared LED to detect the concentration. A change in the temperature of the stimulus 

might affect the performance of the sensor as well as the temperature of the stimuli would, 

themselves, require additional calibrations. The 50°C temperature at the nozzle is designed 

explicitly for a stimulus delivered from a 5-mm working distance (as it translates to 33°C or 

normal ocular surface temperature when it reaches the ocular surface) and it may not translate 

to the ocular surface temperature at other working distances. As this calibration study explored 

the effects (among others) of other working distances to characterize the CO2 in the stimulus, 

altering the thermal gradient would alter the sensor performance.  
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The sensor setup in this manuscript does not exactly reflect a human ocular surface 

experiment. The facial features like nose and deep eye socket might provide a more closed 

environment affecting the air circulation and altering the dispersion of the CO2 from and 

surrounding air into the stimulus air column. In addition, body temperature and the thermal 

gradient surrounding the body might be expected to influence these flows, in addition to the 

physical structure of facial features. We have previously shown that blocking the flow from 

and into the column by using a tube (obviously) does affect the distribution of measured CO2
54; 

there was an increase in the CO2 reaching the sensor. This might better control the 

concentration of the CO2, but it cannot be implemented clinically because of the effect of the 

tube on the cornea and eye lids. Future calibrations more accurately simulating the ocular 

surface environment (including different brow and nose characteristics and eye socket depths 

and ocular temperature) would provide information about the influences that these theoretical 

variables would have over the stimulus air column. 

2.6 Recommendations: 

We would like to suggest a 5-mm working distance for ocular surface sensory 

processing experiments with the pneumatic esthesiometer. This particular working distance is 

recommended because the 3-mm working distance is too close to the eye and the esthesiometer 

tip will touch the eye lid/lashes, producing discomfort and false responses from the 

participants. On the other hand, longer working distances have the primary disadvantage of not 

being able to provide sufficient CO2 concentrations at the eye to enable consistent 

measurements of thresholds, and other experimentation also requires higher amounts of CO2 

delivery e.g., adaptation experiments55,56. 

2.7 Summary: 

Calibration of the CO2 in the air column of a pneumatic esthesiometer is critical: There 

is a systematic reduction in the %CO2 reaching the ocular surface plane that depend on working 

distance and flow rate. The measures of CO2 were repeatable for all stimulus combinations. It 

is evident that in pneumatic esthesiometers, it is necessary to standardize the chemical 



 

 53 

stimulus, as both working distance and flow rate could change the amount of CO2 reaching the 

ocular surface. 
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3.1 Introduction: 

The corneal neural network has been assumed to be similar to the somatic pain network, 

consisting of a complex network of neurons with the nerve terminals on the corneal surface 

detecting potentially noxious stimuli.1–4 When a stimulus is detected, the impulses from the 

corneal nerve terminals are transmitted to the brain (somatosensory cortex) through an afferent 

trigeminal pathway and a reaction is elicited (among others) in the form of ocular surface 

discomfort, pain, and tearing, hyperemia and pupillary dilation.1–5 The corneal nerves have 

been theorized to protect the corneal surface from the factors that can harm the corneal integrity 

and the nerves are bombarded continuously with multiple types of stimuli.3 Since there are no 

electrophysiological studies conducted to evaluate human/primate corneal neuro-physiology, 

the concepts have been adapted from the cat, rabbit and guinea-pig corneal neurophysiological 

studies.3,6–11 Based on conduction velocities and presence of myelin sheath surrounding the 

neuron, the corneal neurons have been classified into two types: a thinly myelinated fast 

conducting Aδ-fibers and an unmyelinated slow conducting C-fibers.4,7–9,12,13 The 

electrophysiological studies on cat and rabbit corneas have identified three functional types of 

sensory nerve fibers present in the cornea that conduct nerve impulses either through Aδ or C-

fibers.3,10,11,14,15 The proportion of nerve fibers in the cornea have been found to vary 

significantly between the different species and was approximately found to be approximately 

70% of polymodal nociceptors, 20% mechano-nociceptors, and 10% cold receptors in cat and 

rabbit corneas.2,3,16,17 The cold thermo-receptors and polymodal nociceptors have shown to 

conduct impulses through the C-fibers, whereas rapidly adapting low threshold mechano-

sensitive nociceptors use Aδ-fibers for an instantaneous response to the nociceptive 

stimuli.13,15,18 The sympathetic and parasympathetic innervations of approximately 10-15% 

have been identified using histochemical methods in the rabbit and cat corneas, but the 

existence of these fibers in nonprimate corneas have been suggested to be scarce.10 The neuro-

physiology of the corneal sensory fibers have been mainly obtained on the cat corneas, with 

some information from rabbit, guinea pig, and other rodents.3,4,11,19–21 Since there is no 

systematic neurophysiological examination on the effects of human corneal stimulations, the 
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presence of receptors/channels in the human cornea has been evaluated psychophysically.22 

Feng and Simpson22 have identified multiple corneal psychophysical channels in the human 

cornea and the detection of the human corneal and conjunctival stimuli have been shown to be 

complex due to the interdependence of the components of the ocular surface sensory 

processing system (both within and between the cornea and conjunctiva).  

Generally, cold receptors are the non-noxious thermoreceptors that detect a drop in the 

temperature of the anterior ocular surface. The cold receptors’ impulse frequencies increase 

when the surface temperature drops.3,4,23 The evaporation of the tear film has been found to be 

a probable physiological basis for the reduction in the surface temperature and as little as 0.1°C 

downward change has been reported to alter the impulses from the cold receptors.4,17,23 The 

polymodal nociceptors detect a wide range of noxious mechanical, chemical and thermal 

stimuli, whereas the low threshold mechano-nociceptors detect only the noxious mechanical 

forces.3,24 The polymodal nociceptors have a higher mechanical threshold compared to the 

mechano-nociceptors and, in humans, polymodal nociceptors are hypothesized to produce the 

stinging/burning sensation, whereas mechano-nociceptors produce a sharp 

discomfort/irritation.18  

The sensitivity of the ocular surface is usually measured with an esthesiometer, and 

most commonly used clinical instrument is the Cochet-Bonnet esthesiometer25, while the 

pneumatic esthesiometer such as the Belmonte esthesiometer is frequently used in research 

settings.3,18,26–28 Traditionally, corneal sensitivity has been estimated using a classical 

psychophysical technique such as the method of limits, a method of constant stimuli or (more 

recently) staircases stimuli.3,12,26,27,29–32 The detection threshold (generally, the statistically 

lowest stimulus intensity reliably detected by the participants33) has frequently been used to 

measure ocular surface sensation.27,29,31,34–36 However, these thresholds have been found to 

vary and often produced conflicting results when compared between groups2,28,36 with or 

without dry eye disease (among others).4,28,37,38 The density of the corneal nerves has been 

reported to be lower in participants with dry eye37,39–43, but conflicting results have been 
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reported for corneal sensitivity in dry eye.28,34–37 Feng and Simpson22 have shown as many as 

five possible psychophysical channels in the human cornea that are dependent on each other 

for stimulus detection at the threshold level. Factors such as age, usage of contact lenses, eye 

color, environmental factors, corneal eccentricity, and diurnal variations have been associated 

with corneal sensitivity alterations.44–48 Other aspects of ocular surface sensory processing that 

has also been examined using pneumatic esthesiometry include adaptation to the stimuli49–51, 

difference thresholds52 and hypersensitivity38,53,54.  

Corneal detection thresholds have been widely used as an estimator of corneal sensory 

characteristics, but there is a possible drawback in the classical psychophysical methods used 

in the measurement of thresholds.33,55 The observer’s criterion, both if it is constant or if it 

varies during the psychophysical test, may lead to bias in response to a stimulus.33,55 Each 

observer chooses their own decision criteria based on multiple factors that are available to them 

at the time of the experiment including the previous experience, characteristics of the 

instruction, frequency of the signal perceived and the intensity of the stimulus.56,57 When the 

stimulus is presented, if the result of the sensory process exceeds the decision criteria, a “yes” 

response would be provided by the participant or else a “no” would be provided. In classical 

psychophysics, the decision criterion is assumed to be fixed (and therefore cannot be assessed, 

only the threshold is estimated). However, in an experiment, the participants might either 

choose a liberal or a conservative criterion (being more likely to say “yes” or less likely to say 

“yes” respectively) or also might change within an experiment. Therefore, because the criterion 

in a classical method cannot be controlled (or evaluated), the threshold obtained is not 

independent of bias. The criterion may change depending on the participant’s level of 

habituation, anticipation, or both.33,55 Non-sensory factors such as anxiety, personality, or 

previous experiences have been reported to influence the criterion while detecting the painful 

stimuli.58–61 

The separation of sensory and decision-making components of pain perception could 

be obtained using a modern psychophysical method such as signal detection theory(SDT).62–65 
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SDT has been used in the examination of responses to the painful stimuli since pain is 

subjective and the perception of pain could vary.62–64,66,67 There are also reports that have 

questioned the use of SDT in pain literature.68,69 However, the utility of the SDT in somatic, 

dental and other areas of pain perception has been demonstrated in several studies.59,66,77–

81,68,70–76 The sensory component of the pain perception is given by the detectability (d’) and 

the decisional aspects are given by the criterion (c) and likelihood ratios (lnβ). The d’ provides 

the participant’s ability to detect a stimulus from the background noise and the location of the 

c on the decision axis defines the general tendency of the participants to respond yes/no to the 

trials.82 

Linking propositions, as explained by Teller83, are used in this study to understand the 

relationship between the psychophysical data of human ocular surface sensitivity and the 

electrophysiological studies on cat and rabbit corneas. In making these links in this paper, we 

acknowledge the scientific tenuousness of relating primate human & conscious data being 

related to primarily extracellular neural behavior measured in unconscious non-primates. 

Since, currently, these are the only corneal electrophysiological data, all we are able to do is 

test specific linking hypotheses attempting to account for our data based on these extant results. 

In this paper, Bayesian analysis is used in analyzing the psychophysical data against 

the linking propositions. Several studies have shown the effectiveness of using Bayesian data 

analysis in place of the traditional frequentist model of null hypothesis significance testing 

(NHST) because it allows the researchers to consider both null and alternate hypothesis while 

interpreting the results in terms of the probability (in this instance) using the Bayes factor 

(BF).84–86  

The main aim of this study is to test the utility of an SDT approach to obtain d’, c and 

lnβ of the supra-threshold corneal pneumatic stimuli in “normals”. Also, we tested the 

applicability of different linking propositions based on non-primate neuro-physiology 

experiments to the psychophysical data from the human cornea.  
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3.2 Hypothesis: 

1) The detection theory estimates of supra-threshold stimuli are different between the 

stimulus types  

3.2.1 Restrictive hypothesis for Bayesian testing: 

2) If the human corneal sensory mechanism has a difference in the level of nociception, 

then detection theory estimates of the nociceptive stimuli are different from the non-

nociceptive stimuli  

((Chemical= Mechanical) ≠ Cold) 

 

3) If the human corneal sensory mechanism has a difference in the nerve conductance, the 

detection theory estimates of the mechanical stimuli (myelinated Aδ fibers) are 

different from the rest (unmyelinated C fibers)  

 ((Chemical= Cold) ≠ Mechanical) 

 

4) If the detection of the stimulus is based only on the chemical composition of the 

stimulus, then the detection theory estimates are different for chemical stimuli 

compared to other stimuli 

 ((Cold (ml/min) = Mechanical (ml/min)) ≠ Chemical (% CO2)) 

3.2.2 The rationale for using restrictive hypotheses:  

We have used the concept of linking propositions in this study to test the concepts from 

the electrophysiological findings in non-primate corneas against the human corneal 

psychophysical data because the electrophysiological studies cannot be performed in the 

human corneas and the applicability of the theories from the non-primate corneas to the human 

corneas are unknown. The linking hypotheses 2, 3, and 4 are tested against the general 

alternative hypothesis of all the stimulus types being significantly different from each other. 

Hypothesis 2 tests the nociception theory, as the non-primate studies have shown that 
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nociceptive receptors detect the mechanical and chemical stimuli compared to cold stimuli by 

the non-nociceptive cold receptor. Hypothesis 3 tests the nerve conductance theory, as studies 

have shown the mechanical detection is primarily done by faster conducting Aδ fibers 

producing a sharp pain, whereas other stimuli are detected using slower conducting C fibers. 

Hypothesis 4 evaluates the stimulus chemical composition, as some authors have questioned 

the mechanical properties of pneumatic stimuli and have preferred using the cold stimuli in the 

‘mechanical’ experiments. 

3.3 Methods: 

3.3.1 Ethics statement: 

This project was reviewed and approved by the University of Waterloo Office of 

Research Ethics (ORE #19252) and was conducted in accordance with the Declaration of 

Helsinki. Informed consent was obtained from all the participants.  

3.3.2 Subjects and study protocol: 

Experiments were conducted to measure the d’, c and β of supra-threshold pneumatic 

corneal stimuli and the experiments were divided based on the type of the stimulus used. 

Participants were recruited separately for each stimulus type using convenience sampling from 

the graduate student community of the School of Optometry and Vision Science, University of 

Waterloo. Participants had no history of any ocular surface abnormalities and were 

asymptomatic at the time of study visit. Contact lens wearers were advised not to wear their 

lenses on the day of the study visit. The ocular surface was screened using slit-lamp 

biomicroscopy. The Waterloo Belmonte esthesiometer27 was used to deliver pneumatic stimuli 

to the center of the corneal surface (Figure 3.1). After the end of each visit, the ocular surface 

was evaluated using slit-lamp biomicroscopy and fluorescein staining.  
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3.3.3 Esthesiometry: 

The stimuli were presented using the Waterloo Belmonte esthesiometer and the 

stimulus types used were mechanical, chemical and cold.26,51,52 The mechanical stimulus was 

medical air heated to 50°C (which translates to approximately 33°C at the ocular surface52,87). 

The ‘cold’ (non-noxious) stimulus was room temperature medical air that was estimated to 

reduces the corneal surface temperature by 1.4°C.87 The flow rate of the stimulus through the 

nozzle was either increased or decreased to change the mechanical and cold stimulus intensity. 

The mechanical threshold was always obtained before the chemical threshold estimate, as flow 

rate for the chemical stimulus was set to half of the mechanical threshold to avoid any 

mechanical effect contaminating the participants’ estimates with the chemical stimulus. The 

carbon dioxide proportion in the medical air (%CO2) was systematically varied at a constant 

flow rate (half mechanical threshold) to change the intensity of the chemical stimulation. 

Figure 3.1: The control box and alignment video camera setup of a Waterloo modified Belmonte 

pneumatic esthesiometer 
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Mechanical and cold stimuli were delivered for 3-seconds and chemical stimuli were delivered 

for 2-seconds. Participants received instructions read from a script before each experiment. 

Additional computer-controlled tones demarcated the stimulus intervals indicating times 

before and after, during which participants could blink, and during which it was requested that 

they not blink. An additional audio prompt was used during the chemical trials because the 

previous stimulus air column had to be removed after each trial before the next chemical 

stimulus was presented. During this interval, participants were explicitly instructed to keep 

their eyes closed or to look down so that their eyelids completely prevented the purged air from 

stimulating their ocular surface. Each trial consisted of either a signal (stimulus) or a catch trial 

(no stimulus). After each trial, participants responded either “Yes, the signal was present” or 

“No, there was no stimulus” using a button box. Participants were also instructed at the start 

of each experiment to respond based on the irritation (in the case of the mechanical stimulus), 

stinging/burning (chemical) or cooling “breezy” sensation (for the cold stimulus). Participants 

could blink freely between trials. The inter-trial interval for mechanical & cold stimuli was 

approximately 10 seconds; for chemical stimuli, it was at least 30 seconds. The experiment 

(audio prompts, stimuli intensities and presentation sequences) and the participant’s response 

recordings were automated using the custom software. Breaks were provided at the halfway 

mark of the experiment and when requested by the participants in an attempt to minimize the 

fatigue.  

Experiment 1: Detectability and bias of non-nociceptive supra-threshold pneumatic 

corneal cold stimuli. 

This experiment included two study visits and 9 out of 10 participants recruited were 

able to complete both study visits. In each visit, thresholds were measured twice using the 

ascending method of limits (AMOL) and averaged. The SDT trials were conducted following 

the threshold experiment. There were 100 trials in each visit, but the stimulus probability was 

0.4 or 40% (40% signal trials and 60% catch trials) in the first visit and 0.6 or 60% in the 

second visit. A supra-threshold stimulus of the 1.5x threshold was used in the signal trials. 
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Catch trials were randomly presented during the experiment and the audio prompts/ 

instructions for the catch trials were the same as the signal trials, but no stimulus was presented 

during the trial. The pre-SDT instructions to the participants were the same for both the visits.  

Experiment 2: Detectability of the nociceptive supra-threshold pneumatic corneal 

stimuli.  

Twenty participants (ten for each type of stimulus) were recruited. The nociceptive 

stimuli used were mechanical and chemical 1.5x threshold stimuli, and were tested on two 

separate study visits. For the mechanical stimuli, the threshold was derived initially by 

averaging two AMOL estimates. For the chemical experiments, the mechanical thresholds 

were measured first followed by the chemical thresholds (by increasing the %CO2 in the 

stimulus column with the flow rate at 50% of the mechanical threshold). Similar to cold SDT 

experiment, the mechanical SDT experiment was conducted using a 1.5x threshold as the 

stimulus. The chemical SDT experiment was conducted using a 1.5x CO2 threshold stimulus. 

A stimulus probability of 40% was used in both the mechanical and chemical SDT 

experiments. There were 100 trials in the mechanical experiment, whereas only 50 trials were 

presented in the chemical experiment. The reduction in the number of trials was primarily due 

to longer inter-stimulus intervals needed to prepare, deliver, and purge chemical stimuli. 

3.4 Analysis: 

3.4.1 Signal detection theory analysis: 

Theoretically, participants were required to separately identify the distribution of the 

neuro-sensory effect when the stimulus was present (the “signal”) from the distribution of the 

neuro-sensory effect when the stimulus was absent (the “noise”). The yes/no responses were 

compiled for each participant separately for each stimulus type, the hit rates (HR) (the 

proportion of signal trials correctly identified as a signal) and false alarm rates (FAR) 
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(proportion of catch trial incorrectly identified as a signal) were calculated. Using the HR and 

FAR, the detection theory estimates were calculated using the formula in excel spreadsheet.82 

The d’ is the separation between the means of signal (z (HR)) and noise distribution (z 

(FAR)) in standard deviation units (Equation 1). The d’ is a parametric estimate based on the 

assumption of both signal and noise being Gaussian normal distributions and Az provides the 

non-parametric estimation of detectability. Bias is determined (among others) using the 

criterion (c) and likelihood ratio (β).33,57,82 The location of the criterion on the decision axis 

defines the general tendency of the participants to respond yes/no to the trials. The criterion is 

effectively the distance between the neutral point (where there is no bias) and the location of 

the criterion in standard deviation units (Equation 2). The other form of bias determination, β 

is the estimation of how likely the participant would respond “yes” to each trial (Equation 3).  

𝑑′ = 𝑧 (𝐻𝑅) − 𝑧 (𝐹𝐴𝑅) (1) 

𝑐 = −0.5 (𝑧 (𝐻𝑅) + 𝑧 (𝐹𝐴𝑅)) (2) 

β = exp(0.5(𝑧 (𝐹𝐴𝑅)2 − 𝑧 (𝐻𝑅)2)) (3) 

Bayes Factor (BF10) 
Support for alternate hypothesis 

(Jeffreys) 92 

1-3 Anecdotal 

3-10 Substantial 

10-20 Strong 

20-30 Strong 

30-100 Very strong 

100-150 Decisive 

>150 Decisive 

Table 3-1: Jeffreys interpretation of Bayes factor (BF10). 
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3.4.2 Statistical data analysis: 

The detection theory estimates for the cold stimuli from two different stimulus 

probabilities were compared using the Bayesian paired t-test and the detection theory estimates 

between three stimulus types were compared using the Bayesian analysis of variance. Also, 

Bayesian correlations were used to find the relationship between the thresholds using AMOL 

and the estimates of detection theory. Alongside Bayesian analysis, appropriate NHST 

analyses were also conducted for comparison. R software88,89 was used in the analysis: The 

BayesianFirstAid90 R package was used to obtain Bayesian probabilities and highest-density 

interval (HDI) estimates for paired t-test and correlations. The prior used by 

“BayesianFirstAid” package for Bayesian posterior estimation was an exponential 

distribution.84,90 Bayes factors were also estimated using the BayesFactor91 R package for both 

paired t-tests and analyses of variance (ANOVAs). The prior distribution to calculate Bayes 

factor was a non-informative Jeffrey’s prior on means of the distribution and a Cauchy prior 

with r scale = √2/2 (or) 0.707 on standardized effect size.91 The 95% HDI obtained using the 

Bayesian estimation of posterior probabilities provides an estimate of the range of values 

between which the highest probability density of the data located 84 and the BF provides a ratio 

of the probability of the data favoring one hypothesis relative to another.85 The BF obtained 

from the analysis were interpreted with Jeffrey’s scaling for Bayes factors (Table 3-1).92 The 

BF is typically denoted by BF10 (data in favor of the alternate hypothesis) or BF01 (data in favor 

of the null hypothesis). The variance of the paired samples was tested using the Bonett-Seier 

test of scales for paired samples using the PairedData R package.93 The violin plots (vioplot R 

package) were used in place of regular boxplots as it provides distribution of the data along 

with the boxplot.94 Multiple comparisons (restrictive hypotheses 2, 3 & 4) between the stimulus 

types were tested by taking advantage of the BF analysis as explained by Morey95–97.  
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3.5 Results:  

3.5.1 Thresholds: 

Even though the main aim of the study was to evaluate the detection theory estimates, 

to scale the stimulus relatively across the participants, the threshold from the AMOL was used 

as a baseline for the detection theory experiment. The average cold threshold (± SE) for visit 

1 and 2 were 27.43 ± 3.79 and 31.14 ± 9.18 ml/min respectively. The Bayesian analysis of the 

paired differences of the thresholds obtained between visits suggested a paired difference of 

zero as a credible outcome (95% HDI: -21.1 to 15.4) and a BF01 of 2.5 suggested the data were 

also in favor of the null hypothesis (Figure 3.2A). The variance of the paired differences 

between the visits was in the range of 9.04 to 1540 (ml/min)2 (Figure 3.2B). The NHST 

equivalent student paired t-test of the thresholds was not significantly different between the 

visits (p = 0.62). The average thresholds (± SE) for the mechanical and chemical stimuli were 

34.8 ± 4.6 ml/ min @ 50°C and 20.8 ± 3.7 %CO2 respectively. The threshold between the 

stimulus types could not be compared due to the difference in the unit of measurement.  

 

Figure 3.2: The Bayesian posterior distribution of paired differences of the thresholds between visits (A) 

and variance of the paired threshold differences (B). 
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3.5.2 Detectability:  

The average (± SE) d’ for the supra-threshold cold stimulus for the experiment with 

40% and 60% stimulus probabilities were 0.60 ± 0.13 and 1.05 ± 0.30 respectively. The 

Bayesian paired comparison of the d’ suggested the data were in favor of the null hypothesis 

by a factor (BF01) of 1.70 indicating a higher probability of obtaining zero difference in the d’ 

between stimulus probabilities. The 95% HDI obtained from the posterior distribution of the 

paired d’ differences ranged from -1.53 to 0.675 and included zero paired difference as a 

credible outcome (Figure 3.3). The NHST paired student t-test also did not show any 

significant difference (p = 0.29) between the d’ obtained in each study visit. The variance of 

the d’ was also compared between study visits. The Bonett-Seier test of the paired sample 

showed a significant difference (p = 0.032) in the variance of the d’ between stimulus 

probabilities. The variability of the data was higher during the visit with 60% stimulus 

probability, which was apparent from the violin plot (Figure 3.3B). Similar to the NHST 

variance analysis, the variance of the paired differences obtained using Bayesian analysis also 

showed a larger variability in the posterior distribution with 95% HDI ranged from 0.198 to 

5.52 square units (Figure 3.3B). 

The average d’ of the noxious supra-threshold mechanical and chemical stimuli with 

0.4 stimulus probability were 1.65 ± 0.37 and 1.14 ± 0.4, respectively (Figure 3.3). The d’ of 

all three-stimulus types were compared using a Bayesian one-way ANOVA. A factor (BF10) 

of 1.55 indicated an anecdotal/mild favoring of the data towards the alternate hypothesis. The 

restrictive hypotheses listed above were tested against both the null hypothesis and alternative 

hypothesis (even though, we observed slight favoring of alternate hypothesis). While testing 

the restrictive hypothesis (#2) against the null hypothesis, the data favored the restrictive 

hypothesis based on nociception with a BF10 of 1.98. When compared to the default alternate 

hypothesis, the restrictive nociception hypothesis was mildly favored by a BF10 = 1.27. The 

restrictive hypothesis (#3) tested the difference in the d’ based on the type of nerve fibers (Aδ 

vs. C) used by the receptors. Similar to the results of the hypothesis (#2), the data favored the 
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difference in nerve fiber hypothesis compared to the null hypothesis (BF10 = 1.87) or the default 

alternate hypothesis (BF10 = 1.21). Whereas, the data substantially favored the null hypothesis 

and alternate hypothesis when compared against restrictive hypothesis (#4) based on the 

chemical combination of the stimulus with BF01’s of 2.76 and 4.29 respectively. The NHST 

analysis using ANOVA showed no significant difference (F (2,26)= 3.25; p = 0.06) between 

the d’ of the stimulus types. 

 

  

Figure 3.3: A) Histogram of the predicted posteriors using the default prior distribution for the paired 

mean differences of detectability along with the HDI. (B) The variance of the paired differences of the d’ 

of cold stimuli between 2 stimulus probabilities. C) The boxplot (center) and density distribution (grey 

shaded area) of the original data represented using violin plots. 
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3.5.3 Bias estimates: 

The average c (± SE) for the cold supra-threshold stimulus with an experiment stimulus 

probability of 40% and 60% were 0.33 ± 0.09 and 0.54 ± 0.13 respectively. The average lnβ 

(± SE) for the cold supra-threshold stimulus were 0.08 ± 0.03 (40% stimulus probability) and 

0.27 ± 0.11 (60%). The BF10 for c (1.23) and lnβ (1.04) between stimulus probabilities, 

anecdotally favored the alternate hypothesis of the bias being marginally different between the 

probabilities. Although the BF10 for bias provided evidence of anecdotal favoring of the 

alternate hypothesis, the Bayesian estimation for c (HDI: -0.51 to 0.09) and lnβ (-1.16 to 0.27) 

suggested zero paired difference between the probabilities as a credible parameter (Figure 3.5). 

Figure 3.4 : The d’ of the supra-threshold stimuli at 40% stimulus probability for three stimulus types are 

presented as boxplots in the middle of the violin plot. The white dot in the middle of the box plot represents the 

median with the edges of the box representing the quartiles. The outlines of the violin plot represent the kernel 

density curves, i.e., the width of the shaded area represents the proportion of data located there. 
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An NHST paired t-test of bias showed no significant difference in the bias (c, p = 0.09 & lnβ, 

p = 0.13). The variance of the paired sample using Bayesian (95% HDI) ranged from 0.015 to 

0.41 for c and 0.095 to 2.31 for lnβ. The difference in the variance of the bias compared using 

Bonnet-Seier test showed no significant difference for the c (p = 0.95), whereas a significant 

difference (p < 0.001) was observed for the lnβ between stimulus probabilities. 

The average (± SE) criterion with 40% stimulus probability for the mechanical, 

chemical and cold stimuli were 0.58 ± 0.097, 0.37 ± 0.13 and 0.33 ± 0.09 respectively. The 

comparison of c between the stimulus types produced a BF10 of 1.08, suggesting the data 

neither favored the null nor the alternate hypothesis. Similar to d’, the restrictive hypotheses 

were tested against the null and alternative hypothesis for the bias estimates as well. The c was 

anecdotally in favor of nociception (#2) and nerve fiber type (#3) restrictive hypothesis by a 

BF10 of 1.19 and 1.7 respectively against the null hypothesis; 1.09 and 1.57 respectively against 

the default alternate hypothesis. The c did not support the hypothesis based on the chemical 

composition hypothesis (#4) by a BF01 of 2.7 and 2.9 against null and alternate hypothesis 

respectively. The lnβ also anecdotally favored the default alternate hypothesis (BF10= 1.278) 

against the null hypothesis. The lnβ favored the nerve conductance (#2) against the null 

hypothesis with the BF10 of 2.32. The lnβ favored the default alternate hypothesis or the null 

hypothesis more than the first (BF10= 1.08) or third (BF01= 2.5) restrictive hypotheses. The 

NHST one-way ANOVA of criterion showed no significant difference (p = 0.09) between 

stimulus types (Figure 3.6). A Kruskal-Wallis rank sum test was performed on lnβ values due 

to the chemical and mechanical distribution being non-normal. The lnβ was significantly 

different between the stimulus types (p = 0.03). 
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Figure 3.5: The posterior Bayesian probabilities and HDI for paired mean criteria (A) and lnβ (D) 

differences; the posterior distribution of the variance of paired difference (B and E); The violin plots for 

original data of criteria (c) and lnβ (F). Each plot compares the values obtained using the 40% and 60% 

stimulus probabilities. 
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3.5.4 Correlations:  

A Bayesian Pearson correlation analysis was performed to obtain the relationship 

between thresholds, d’, c and lnβ for each stimulus type. Mild to strong positive relationships 

were observed between the parameters. However, the Bayesian analysis found only a few 

relationships that were supported by the data (Figure 3.7). Strong evidence (BF10= 44.02) was 

found in favor of a positive association between the mechanical thresholds and d’ of the 

mechanical stimuli with a 95% HDI between 0.67 and 0.99. Strong evidence (BF10= 12.13) 

was found in favor of a positive association between the mechanical d’ and lnβ with a 95% 

HDI between 0.47 and 0.98. Substantial evidence (BF10= 7.07) was observed in favor of a 

positive relationship between the mechanical threshold and lnβ with a 95% HDI between 0.33 

and 0.97. Anecdotal evidence (BF10= 3.51) was observed in favor of a positive relationship 

between the cold threshold and lnβ with a 95% HDI between 0.17 and 0.96.  

Figure 3.6: Violin plot with boxplot in the middle of the violin plot. The violin plot representing the 

distribution, median and quartiles of the c (A) and lnβ (B) for supra-threshold stimulus types. The 

frequency distribution of the data is given by the kernel density curve on either of the boxplot. 
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The NHST Pearson correlation analysis (Figure 3.8) revealed that the mechanical 

threshold was positively correlated with d’ (r = 0.93, p < 0.001) and lnβ (r= 0.81, p = 0.005). 

The d’ for the mechanical stimuli was positively correlated with lnβ (r= 0.86, p = 0.002). 

Similarly, the cold stimulus threshold was positively correlated with the lnβ (r= 0.76, p = 

0.017). 

 

  

Figure 3.7: Bayesian estimation of Pearson correlation to obtain the relationship between the threshold, d’, 

c and lnβ for each stimulus type. Data that favored the relationship have been shown in graphs between 

(A) threshold and d’ of mechanical stimuli, B) threshold and lnβ of mechanical stimuli, C) d’ and lnβ of 

mechanical stimuli, and D) threshold and lnβ of cold stimuli. 
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Figure 3.8: Correlation matrix with Pearson correlations to analyse the relationship between the thresholds, d’, c and lnβ for A) mechanical, B) cold and 

C) chemical stimuli. The scatter plot with loess line fit and correlation ellipses providing the relationship between the variables analyzed. The numbers 

represent the correlation coefficient values with variable font size indicating the strength of the relationship along with stars indicating the significance.  
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3.6 Discussion: 

In the present study, we showed that sensory and non-sensory (bias) signal detection 

parameters could be assessed for all three types of corneal pneumatic stimuli and this is the 

first study to obtain SDT parameters for such potentially problematic stimuli. We also showed 

using Bayesian analysis that the detection theory estimates from human participants were in 

favor of theories based on non-primate corneal neurophysiology. We also showed that the 

detection theory estimates favored responses to different types of stimuli being independent of 

each other, based on chemical composition and temperature.  

The literature on using SDT to study pain has indicated a need for careful selection of 

the stimulus to obtain d’ and bias.68,98 Since no detection theory experiments have been 

conducted before for corneal pneumatic stimuli, we used the somatic pain literature to choose 

an appropriate stimulus for our feasibility study. The experimenters in pain SDT studies have 

either used stimuli scaled to detection thresholds99–103 or stimuli of predefined intensities.98,104 

The advantages and disadvantage of both methods were discussed in the thesis by Tan98. An 

experiment with a predefined stimulus intensity for ocular pneumatic stimuli will not be 

plausible due to the unavailability of any normative data and the possibility of damaging the 

corneal surface with a high intense stimulus. So, it is advisable to use a stimulus that is scaled 

to detection thresholds. To determine whether a detection theory approach was feasible with 

pneumatic esthesiometry, we needed a ‘Goldilocks stimulus” that was neither too strong nor 

too weak. Studies that have previously examined the intensity of the stimuli for SDT 

experiments have commonly used the threshold level stimuli, but there are suggestions from 

pain literature to rather use more intense (supra-threshold) stimuli to examine pain.64,105 A very 

strong stimulus might be easily detectable, but it would have produced a perfect HR and no 

FAR resulting in an error/difficulty in the calculating SDT parameters. Participants could also 

adapt to the strong stimulus if multiple presentations were presented, altering the perceived 

intensity as the experiment progressed.51,53 On the other hand, a weak stimulus may not be 

readily detected, resulting in a higher FAR and lower HR.106 Also, in the previous corneal 

sensitivity experiment in our lab, with the same instrument and stimulus, participants 

categorized the 1.5x detection threshold stimuli as mild to moderately intense.50,51 Therefore, 
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pilot experimentation and theoretical considerations led us to use the stimulus intensity of 1.5x 

detection threshold.  

The feasibility of this type of experimental assessment of corneal sensory processing 

was determined in terms of the variability of the detection theory estimates, the number of 

participant discontinuations and frequency of the symptoms of severe discomfort during/end 

of the experiment or severe staining at the end of the experiment. All participants completed 

the 40% stimulus probability experiments, but one participant discontinued the study before 

the 60% stimulus probability experiment of the cold stimuli for personal reasons not related to 

the stimulation or the psychophysical task. Only 5 out of 30 participants took extra breaks 

during the experiment, which were mostly due to non-experiment related factors. Mild corneal 

staining was observed for 3 participants at the end of the experiment with the mechanical supra-

threshold stimulus, but no discomfort, irritation, or pain sensations were reported by the 

participants. The next day, no symptoms were present and there was no corneal staining. In 

terms of study outcomes, we were able to obtain d’ and bias for all participants who completed 

the experiment. In addition to being able to derive detection and criteria metrics, we were able 

to use Bayesian analysis to evaluate different hypotheses based on hypothetical extensions of 

non-primate corneal neuro-physiology and somatic nociception. Higher variability in d’ was 

observed for the experiment with the cold stimulus and 60% stimulus probability compared to 

the experiment with 40% stimulus probability. A similar observation was observed for the bias 

estimates as well. The variability of d’ of the mechanical and chemical stimuli was also larger 

than cold stimuli at 40% stimulus probability, but the variability of the criteria was lower and 

similar for all the experiments with 40% stimulus probabilities similar across stimulus types. 

The criterion has been considered as an unbiased estimate of bias by SDT literature and 

considering the criterion was not highly variable between the stimulus types, the variability in 

the d’ between stimulus types was analyzed further. These observations collectively suggest 

that this suprathreshold protocol is feasible and safe when measuring SDT attributes of ocular 

surface sensing. 

With the limitation of not being able to measure a neurophysiological effect of human 

corneal stimulation, it was also evident from the studies that the corneal sensory information 

such as thresholds could not be compared between the stimulus types due to the difference in 
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the stimulus characteristics/measurement units. However, with SDT, d’ becomes a common 

measure of sensitivity across the stimulus types provided the intensity was relatively same 

across stimulus types. We did scale the stimulus based on the detection thresholds (1.5x 

threshold) to keep the perceived sensation similar across participants and stimulus types 

psychophysically.98 There were no negative d-primes obtained for the mechanical and 

chemical stimuli, but two participants (one for each stimulus probability) had a small negative 

d’ in the cold stimulus category. The average d’ of the cold stimuli was also low, indicating a 

general difficulty in detecting cold stimuli. The bias (both c and lnβ) for all three stimulus types 

were generally towards the conservative side, indicating a cautious approach by the 

participants in their responses to the supra-threshold stimuli. There is only one previous report 

of ocular surface sensing based on SDT (in contact lens wearers) by Beuerman and Rozsa103, 

but the study reported detection theory parameters for corneal thermal stimuli (warm waterjet), 

delivered when the ocular surface was immersed in a water bath. Since the water bath produces 

a raised background stimulation compared to normal conditions, this experiment is more 

similar to the discrimination experiment for the thermal stimuli than a detection experiment. 

This difference in their sampling, stimulation and psychophysical task, making it rather 

difficult to perform comparisons between the results of their and our experiments.  

As mentioned earlier, the average d’ of the cold stimuli was lower than the mechanical 

and chemical stimuli. We could only speculate on the reason for the smaller d’ for cold stimuli 

because there are electrophysiological studies on non-primate corneas, but no similar studies 

on the human cornea and a general assumption is that the neural behavior is similar. One 

possibility for the lower detectability is higher background activity of the cold receptor and 

another is the non-noxious nature of the cold stimuli compared to other stimuli affecting 

mechano- and polymodal nociceptors (that also, have been reported to have little background 

activity).3,4,18,21,23,24 This sort of distinction between painful and non-painful stimuli has been 

proposed before.107 

Our linking hypothesis explicitly assumes similar functioning in primate as in non-

primate corneas.108 In reports about corneal sensitivity, the authors appear to assume similar 

animal-human linking hypotheses in reaching conclusions about the human cornea.3,12,18 Many 

factors in this assumption are unknown and making these links becomes problematic when 
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attempting to apply SDT to a human cornea. For example, the amount of noise (frequency and 

amplitude of background activity) and the factors controlling the background activity are 

unknown and could not be controlled. After deliberation, assuming all the factors mentioned 

above were constant during the experiment, we analyzed the psychophysical data using 

Bayesian ANOVA. The Bayes factor and Bayesian estimates find the data were in favor of this 

nociception theory and this is the first time the theory has been psychophysically tested directly 

in human participants.  

Similar to nociception theory, the psychophysical data also supported the nerve 

conductance theory. Since histo-chemical109 and nerve conductance analyses3 are currently 

impossible in living human cornea, the identification and classification of the type of nerve 

fibers in the human cornea have not been achieved. Even though there is still little evidence of 

presence these fibers109, the Aδ- and C- fibers have been assumed to be present in the human 

cornea similar to the non-primate cornea.  

As described in the methods, the mechanical and cold stimulus use medical air at 

different temperatures, whereas the chemical stimulus contains a mixture of CO2 and medical 

air. Cold stimuli have been used to evaluate corneal sensitivity and it has been debated about 

whether this is also contaminated by a mechanical stimulus.28,36,43,110,111 According to a study 

by Nosch et.al 110, room temperature plus 10 or 15°C (similar to the temperature of the 

mechanical stimuli of our study) produced the least amount of change in the ocular surface 

temperature and suggested that if the stimulus was outside of this range (room + 10 degrees) 

there would be a thermal component in a pneumatic mechanical stimulus. We tested the 

hypothesis with the assumption that if the mechanical stimulus had a cold component, then the 

mechanical and cold would be detected similarly by the participants. However, our 

psychophysical data did not favor this hypothesis.  

We observed a higher variability in the d’ of the mechanical and chemical stimuli. Also, 

we observed a significant correlation between the mechanical threshold and d’ and also a 

significant correlation between the mechanical threshold and lnβ (Figure 3.7). Even though 

there were no obvious grouping of the data in the mechanical threshold, we observed two 

groups of participants in the d’ of mechanical stimuli. Participants either had a low d’ or high 
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d’ and the participants who had lower d’ had a low threshold and lower bias using lnβ or vice 

versa. A similar decrease in d’ and bias has been seen in SDT literature that analyzed the effect 

of anxiety 58,68,105,112–117, though most of the articles reported changes in the β and no change 

in the detectability. It is also not clear whether the conservative approach by the participants 

resulted in higher threshold which in turn increased the detectability in SDT (since we used 

threshold from the AMOL to obtain supra-threshold stimulus) or participants really had high 

thresholds. In addition, we obtained a binary (yes/no) response from the participants and used 

a conservative stimulus probability (40%) which may have constrained the participants to 

choose a more conservative strategy (less false alarms). We were also unable to statistically 

detect criterion changes during the experiment that might partly be due to the binary response 

that participants used: Uncertainty was not allowed and, perhaps, this too was a drawback of a 

yes-no experimental design. We would need a multiple criterion experiment such as the rating 

SDT to analyze the changes in the criterion and evaluate the role of other psychological factors 

such as anxiety that as we state earlier can affect the signal detection metrics. 
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4.1 Introduction: 

The yes-no SDT experiment in the previous chapter (Chapter 3) involved a detection 

task, in which participants detected the presence of a signal (supra-threshold stimulus) against 

the background noise. The yes-no SDT experiment demonstrated the feasibility of using one-

interval two response (yes-no) design signal detection theory (SDT) to analyze the ocular 

surface sensory processing (OSSP) of pneumatic stimuli. However, there were a few 

limitations in the experiment that needed to be addressed, such as the assumption of fixed 

criterion, detection indices obtained only for a single signal intensity, and longer experiment 

duration if needing to test each intensity separately in a similar protocol. The yes-no SDT 

assumes that participants use a single criterion throughout the experiment when responding 

“Yes” or “No” to a trial, similar to the assumed single (and fixed) criterion in a classical 

psychophysical method but with the ability to estimate bias.1–3 However, if the participants 

vary their criterion during the experiment, the variation cannot be distinguished/evaluated due 

to the two response design. Pay-off matrices or changes in instructions provided before the 

experiment have been reported in the literature to control/ alter the criterion assumed by the 

participants.1–3 However, these restrict the participants from choosing their criterion 

independently during the experiment. Also, in a normal/clinical/experimental environment, the 

cornea receives multiple stimuli of different types and intensity at the same time. For example, 

in a clinical environment, participants may have to detect the stimuli of different intensities 

while they are already experiencing discomfort from the pre-existing dry eyes or factors such 

as the draft winds and dry airconditioned environment4,5. The limitations make the yes-no one-

interval SDT design less efficient, but the flexibility of SDT is that the same experiment could 

be conducted with variable criteria and multiple stimuli instead of a single stimulus intensity 

yes-no design. The SDT experiment with variable criteria is usually referred to as a multi-

criterion or rating SDT experiment. In rating SDT experiments, instead of reporting a yes/no 

detection response, participants rate their confidence with which they detected a signal 

compared to the background noise.1–3,6–8 Each level is then ‘converted’ to a yes-no design to 

obtain different criteria adopted by the participants during the experiment, which will be 

similar to conducting multiple yes-no experiments with different pay-off matrices. The either 

ends of the rating scale (1 and 5, if 1-5 rating scale is used) represent the most conservative or 

most lax criteria used by the participants during the experiment, but participants can 
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independently choose and vary their criterion during the experiment.2,7–9 Also, the detection 

indices could be estimated for multiple intensities within a single rating SDT experiment and 

it is referred to as multi-stimuli rating SDT (MSDT) in this thesis.2,9 

MSDT experiments with pneumatic stimuli have never been conducted to examine 

OSSP. In the only previously reported OSSP study using MSDT, detection of thermal waterjet 

corneal stimuli was obtained from rating responses, but the results were reported as though the 

experiment was conducted as a yes-no SDT experiment.10 Studies have used MSDT in other 

areas such as studies on audition, pain and memory.2,3,9,11–13 The concepts of SDT from the 

pain literature will be applied and evaluated in this study. OSSP is similar to somatic pain 

processing despite using the trigeminal pathway and partly because of its initiation with similar 

pain receptors.14–19  

According to the International Association for Study of Pain, pain is an “unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage”20,21, and recently Williams and Craig22 defined pain as “a 

distressing experience associated with actual or potential tissue damage with sensory, 

emotional, cognitive, and social components.” Studies have often found that psycho-social 

entities such as anxiety, fear, personality, confidence, decision-making, self-esteem and stress 

affect the perception of painful stimuli.23–25 Similar issues have been suggested in the literature 

of corneal sensitivity17, but have never been addressed before.  

According to SDT, to elicit a response for a given trial, the sensory process first detects 

the stimulus and this is then followed by the decision process (influenced by multiple factors) 

that shifts the response either in favor of signal or noise.2,8 Both psychological and 

physiological factors have been shown to alter the detectability and bias.26 Specifically, the 

detectability is linked with stimulus parameters such as the intensity, and the bias is associated 

with motivational, attitudinal and learning factors that influence the decision process.27,28 

Anxiety has been shown to affect the d-prime and response bias.27–30 Similarly, decision-

making has been an essential factor addressed in literature from various disciplines. The 

Melbourne Decision-Making Questionnaires (MDMQ II) is a redesigned Flinder’s decision-

making questionnaire to address motivational effect, cognitive styles and personality 
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components on decision-coping style.31 Similarly, anxiety has been shown to affect decision-

making.25,32–36 Both anxiety and decision-making are processed in the amygdala, insular 

cortex, and prefrontal cortex.36 The involvement of the amygdala in pain processing has also 

been studied in recent years, as the nociceptive pathway passes through the amygdala before 

it reaches the thalamus and cortex.37,38 Even though there does not appear to be enough 

evidence of one influencing the other, in recent studies, it has been proposed that anxiety 

influences decision-making due to the shared pathways.36 It is unclear whether these 

psychological factors affect the detection of corneal stimuli because these predictor variables 

have never been explored in experiments examining corneal sensory processing. In addition, 

corneal esthesiometry is considered an anxiety-inducing technique due to the proximity of the 

esthesiometer to the eye and anticipatory effect pertaining to the severity of the impending 

stimuli.  

In addition to psychological factors, the factors such as gender, symptoms and contact 

lens usage have been evaluated frequently in ocular surface sensitivity studies. Studies have 

shown differences in the perception of pain with gender.39–41 There are no studies that 

evaluated the pain perception in symptomatic participants and participants who use contact 

lenses. There is no literature available on the noise levels in these conditions, but I speculate 

that participants might have elevated background noise levels against which the signal needs 

to be detected. The speculated elevation in noise levels is either due to discomfort or contact 

lens use and the level of noise might be different depending on the level of adaptation (chronic 

or acute). SDT studies have shown that clinical conditions (chronic or acute) affect the 

detection indices.26,42–44 

The initial aim of this experiment was to evaluate the feasibility of using MSDT to 

understand the OSSP, and once feasibility was established, to compare detection theory 

estimates between different groups, and examine the non-sensory decision and anxiety factors 

and then, analyze the relationship between the psychological factors and psychophysical 

outcomes of detection thresholds, da, and criterion. Also, evaluate the effect of different factors 

on detection theory indices. 
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 Research questions:  

• Are the indices of detection different between stimulus types and intensities?  

• Is there any interaction of groups (based on symptoms and contact lens use) in the 

detection of pneumatic stimuli? 

• Do psychological factors such as anxiety and decision-making show any relationship 

with the outcomes of psychophysical methods used in this study? 

 Hypothesis: 

• The detectability of stimulus intensities is different between each other. 

• The detectability is different between stimulus types. 

• The bias adopted by the participants is different between stimulus types but constant 

within each of the stimulus types.  

• The detectability of the stimulus is the same, but bias is different between non-contact 

lens wearers and contact lens wearers.  

• The detectability of the stimulus is the same, but bias is different between an 

asymptomatic and symptomatic group of participants. 

• The decision-making and anxiety have no effect on the sensory estimates. 

• The decision-making and anxiety scores have an effect on the bias adopted by the 

participants. 

4.2 Methods:  

Forty-one participants were recruited in the study using convenience sampling from the 

students and staff community of the University of Waterloo. The study was conducted 

according to the guidelines of the Declaration of Helsinki and ethics approval was obtained 

from the University of Waterloo, Office of Research Ethics (Waterloo, Ontario, Canada). 

Informed consent was obtained from each participant and participants were allowed to 

discontinue at any stage of the study. The screening and recruitment of the participants were 

performed on the first study visit. On arrival, participants filled the questionnaire on dry-eye 

symptoms using the DEQ-5 questionnaire and the history of contact lens usage was also 
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recorded. The ocular surface was screened for any active signs of inflammation or infection. 

The scores from the DEQ-5 questionnaire was later used in the analysis by grouping them into 

asymptomatic and symptomatic participants. Participants who wore their contact lenses at least 

three days per week were grouped under the contact lens wearer group, otherwise under non-

contact lens wearers. There were only soft contact lens wearers in this study and the lens 

wearers were instructed not to wear their contact lenses on the day of their study visits. The 

visits were scheduled to occur at the same time of the day (± 30 min) to reduce diurnal variation 

affecting the measurement.  

 Stimulus characteristics:  

The stimulus types used in this experiment were mechanical, chemical, and cold (or 

cool, room temperature). A Waterloo Belmonte pneumatic esthesiometer was used to deliver 

each stimulus to the center of the anterior corneal surface. The mechanical stimulus was 

medical air, heated to 50°C (converts to 33°C at the corneal surface) at the nozzle, and the cold 

stimulus was a room-temperature medical air. The flow rate of the stimulus was either 

increased or decreased to alter the intensity of the output, depending on the response provided 

by the participants. In the case of the chemical stimulus, the flow rate of the stimulus was kept 

constant at half of the mechanical threshold to remove any mechanical effect influencing the 

judgment. The ratio of carbon dioxide mixing with the medical air was changed at a given flow 

rate to produce a chemical stimulus. The % CO2 in the stimulus defines the intensity of the 

chemical sensation induced. The flow meters in the control box of the esthesiometer regulates 

the flow of medical air and CO2 to the desired concentration and flow. The temperature of the 

chemical stimuli was the same as the mechanical stimuli. The preparation and delivery of the 

stimulus were automated using the custom software according to the psychophysical procedure 

conducted. Each stimulus type was randomly assigned to one of the 3 study visits at the start 

of the first study visit. Each visit was approximately an hour long and was separated by at least 

a day to avoid fatigue effects and allow ‘recovery’ of the ocular surface and the pain processing 

system.  
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 Ascending method of limits:  

Though it is an MSDT experiment, the detection thresholds were calculated to use as a 

baseline for the following MSDT experiment. At the start of the visit, detection thresholds for 

the assigned stimulus was measured using the ascending method of limits (AMOL). An 

average of three measures was considered as a threshold. The duration of the chemical stimulus 

was 2 seconds, and mechanical and cold stimuli were 3 seconds long. The inter-stimulus 

interval for cold and mechanical stimuli were 10 seconds; for chemical stimuli, the inter-

stimulus interval was 30 seconds (to enable purging of the stimulus in preparation for the 

subsequent stimulus). The oral instructions were provided by me before the start of the 

experiment, followed by the automated audio prompts for each trial. The training was 

provided. Participants were advised to blink between each trial. Participants responded yes/no 

to each trial using the button box and the responses were recorded in the software. If the 

difference in detection thresholds between 3 measures were larger than 15ml/min or 15%, the 

experiment was repeated another day. If the thresholds were still variable, the participants were 

excluded from the study.  

 Detectability experiment:  

The signal intensities for the MSDT experiments were scaled based on their respective 

corneal detection thresholds and the signals (in the analysis and report) were referred based on 

relative intensity to the threshold. The scaled intensities are described later in the methods. 

Instructions for the detectability experiment were accompanied by a short demonstration of the 

trial sequence. ‘Neutral’ instructions were scripted and delivered to all participants at the start 

of the experiment, in an attempt to minimize examiner induced bias and variability. The 

stimulus probabilities and feedbacks, indicating the correctness of the response were not 

provided to the participants. Instead, audio feedback confirmed each button press. Participants 

rated each trial using the button box and the number of button presses was stored as the rating 

for each trial. Participants were advised to blink between stimulus presentations.  

4.2.3.1 Cold and mechanical detectability experiment:  

The cold and mechanical MSDT experiments consisted of 100 trials with random 

presentations of a signal or a noise stimulus. Each experiment consisted of four signal 
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intensities of 20 trials each and a noise stimulus of 20 trials. The signal intensities (scaled based 

on detection thresholds) were a sub-threshold (0.5x threshold), a threshold and two supra-

threshold (1.5x and 2x threshold) intensities. The noise stimulus was a catch trial with no 

stimulus. If the estimated threshold for cold or mechanical stimulus was between 15 ml/min 

and 20 ml/min, a flow rate of 10 ml/min was used as the intensity of the sub-threshold stimulus. 

If the threshold was below 15 ml/min, the trials involving sub-threshold stimulus were replaced 

with the blanks (catch trials) as the flow rate of 50% threshold would be well below the 

esthesiometer’s reliable output range of 10-200 ml/min. On a given trial, either a signal (one 

of the four scaled stimulus intensities) or a noise (blank stimulus) trial was randomly presented, 

and the instructions for the noise trials were exactly the same as signal trials. 

The inter-stimulus interval and presentation time was the same as the threshold 

experiment. A confidence rating scale of 5 ratings was used by the participants to respond to 

each trial. Breaks were provided after 50 trials by default or whenever participants pause the 

experiment using a button box.  

1 2 3 4 5 

Definitely “No” 

signal was not 

presented 

Probably “No” 

signal was not 

presented 

Not sure/ 

Uncertain 

Probably “Yes” 

a signal was 

presented 

Definitely “Yes” 

signal was 

presented 

Table 4-1: The confidence rating scale used by the participants to respond to a mechanical or a cold 

stimulus trials.  

4.2.3.2 Chemical detectability experiment:  

Chemical MSDT experiment consisted of 50 trials with random presentations of either 

a signal or a noise stimulus. There were two signal intensities (the threshold and the 2x 

threshold) of 20 trials each and 10 noise trials. Unlike cold and mechanical MSDT 

experiments, the noise/catch trial for chemical stimuli were not completely blank stimuli; 

instead, a medical air stimulus with 0% CO2 added at the same flow rate as signal trials. A 

confidence rating of 4 ratings was used by the participants to respond to each trial. Breaks were 

provided after 25 trials by default or whenever participants pause the experiment using a button 

box.  
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1 2 3 4 

Definitely “No” 

signal was not 

presented 

Probably “No” 

signal was not 

presented 

Probably “Yes” 

a signal was 

presented 

Definitely “Yes” 

a signal was 

presented 

Table 4-2: The confidence rating scale used by the participants to respond to a chemical stimulus trials. 

 Anxiety and decision making: 

The decision-making scores were obtained at the start of the first study visit using the 

Melbourne Decision-Making Questionnaire II (MDMQ II). The decision-making was 

evaluated before the start of the experiment, followed by DEQ-5 and anxiety questionnaires. 

The anxiety was evaluated using the State-Trait Inventory for Cognitive and Somatic Anxiety 

questionnaire (STICSA). There were two components of anxiety measured: Trait (anxiety in 

general) and state (anxiety at that instance). The STICSA-trait questionnaire was administered 

only once and it was administered after the DEQ-5 questionnaire on the first study visit. 

Participants were instructed to respond based on how they feel in general. The instructions for 

the threshold experiment were provided, followed by the state anxiety questionnaire to respond 

based on how they feel at the particular instance after the instructions. The anxiety 

questionnaires were obtained before and after each threshold measurements in each study visit. 

4.3 Data analysis:  

The rating data for each participant was exported to Microsoft Excel spreadsheet. The 

RscorePlus software (v.5.6.1)45 was used to calculate the detection theory parameters. These 

were based on assumptions of Gaussian signal and noise distributions. The RscorePlus data 

input file had the information on the number of rating categories, a number of signals 

(including catch trials), participant id, commands specific for SDT analysis along with the 

response frequency for each rating category. The commands included code for collapsing data 

in case of unsuccessful analysis, treatment of zero frequencies and type of the SDT experiment. 

For this study, the SDT indices were calculated with a SINT (single-interval experiment 

paradigm) SDT protocol and zero frequencies were replaced with 1/number of rating 

categories to eliminate errors due to zero frequencies. The hit rate (HR) and false alarm rate 

(FAR) were calculated by cumulating the rating responses of n ratings for (n-1) decision 
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criteria similar to the yes-no procedure. The HR and FAR was used in the calculation of 

detection theory parameters. The outputs included the detection theory parameters for each 

signal and formatted datasheet for creating detection theory graphs using R. The equations 

used in calculating each detection theory parameter as provided by the software manual are 

listed below:45  

𝑑′ = 𝑧(𝐻𝑅) − 𝑧(𝐹𝐴𝑅)   (Equal variance model) 

𝑑𝑎 = √
2

1+𝑏2  . (𝑧(𝐻𝑅) − 𝑏. 𝑧(𝐹𝐴𝑅))  (Unequal variance model) 

𝐴𝑧 = 𝑧−1 [
𝑑𝑎

√2
] 

𝑐 = −0.5 (𝑧(𝐻𝑅) + 𝑧(𝐹𝐴𝑅)) 

𝑋𝑐 = −𝑧(𝐹𝐴𝑅) 

ln(𝛽) =
[𝑧(𝐹𝐴𝑅)2] − [𝑧(𝐻𝑅)2]

2
 

The da and d’ are numerically the same if the variance of the Gaussian distribution of 

noise and signal + noise are the same.45,46 The standardized criterion, Xc, gives the bias status 

of the participants for the whole SDT experiment (each stimulus type), whereas criteria (c and 

lnβ) gives independent bias indices for each stimulus intensity used inside the MSDT 

experiment. The Az provides the area under the curve estimate for each signal. The receiver 

operating characteristics (ROC) curves were plotted for individual and cumulated (grouped) 

data. The cumulated data ROCs were plotted by using the rating data obtained by adding the 

response frequencies of each stimulus rating category across all the participants within the 

group as though a single participant received all the trails (Figure 4.1). For example, all 3600 

trials (720 catch and 2880 signal trials) for mechanical stimuli were received by a single 

participant compared to 100 trials each by 36 participants. The R programming codes provided 

in the RscorePlus software package47 were used in plotting the ROCs, zROCs and Gaussian 

distributions reported in this chapter.  
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To analyze the bias between the types of stimulus, the multiple criterion data from the 

rating dataset were collapsed to a single criterion yes-no type analysis due to the difference in 

the rating scales between the stimulus types used by the participants to respond to the trials. 

The ratings were accumulated based on ‘liberal’ and ‘strict’ criteria. In case of the ‘liberal 

criterion’, a rating of 1 (definitely “no” there was no signal presented) was used as the 

frequency of “no” response and ratings of more than 1 were cumulated as the frequency of 

“yes” response which would be similar to criterion 1 from the rating analysis. In the case of 

the ‘strict criterion’, a rating of 5 (definitely “yes” there was signal) was used as the frequency 

of “yes” response (rating 4 for chemical stimuli) and the ratings of less than 5 were cumulated 

as the frequency of “no” response which would be similar as criterion 4 (criterion 3 for 

chemical) from the rating analysis. Both the standardized criterion (Xc) of the Gaussian 

distribution and the biases for individual stimulus types were used for the analysis between 

stimulus types. 

The detection theory indices were analyzed using a mixed-model analysis of variance 

(mixed-model ANOVA) (‘lmerTest’ package48) and paired sample t-test in R. The post-

hoc/contrast analysis for the mixed-models were performed using the “psycho” package.49 

Several R packages were used in sorting, rearranging and analyzing data, and in creating and 

Figure 4.1: Example for the cumulated ratings to calculate group detection indices and draw group ROC 

curves. 
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exporting graphs.48,50–66 An alpha value of p ≤ 0.05 was assumed to be significant in all the 

analyses conducted. 

 Outline of the analysis conducted:  

Parameters from the experiment: 

• Stimulus types: Cold, mechanical, and chemical 

• # of stimulus intensities: Cold- 4, Mechanical- 4, Chemical- 2 

• # of rating categories: Cold- 5, Mechanical- 5, Chemical- 4 

• Groups: CL use (2), symptoms (2), symptoms & CL (4) 

• Detection theory parameters: da, Az, criteria (c and lnβ), Xc  

• Decision-making components: Vigilance, buck-passing, procrastination, and 

hypervigilance 

• Anxiety components: Trait & State- Cognitive and somatic anxiety 

 

Outline of analyses: 

Rating SDT (Paragraph 4.4.2) 

• Summary statistics for threshold, detection theory parameters, decision-making scores, 

and anxiety scores  

• Comparisons of the detection theory parameters between stimulus intensities within 

each stimulus type and between stimulus types 

• Comparisons of the detection theory parameters between groups based on factors 

• Correlation between detection thresholds and detection theory parameters 

Decision-making (Paragraph 4.4.5) 

• Comparisons of the decision-making scores between the 4 categories and analysis of 

the interaction between groups based on factors 

• Correlations between the detection thresholds and DM scores 

• Correlations between the detection theory parameters and DM scores 
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Trait anxiety (Paragraph 4.4.6) 

• Comparisons of the trait anxiety scores between the 2 anxiety components and analysis 

of the interaction between groups based on factors 

• Correlations between the detection thresholds and trait anxiety scores, and interaction 

between groups based on factors 

• Correlations between the detection theory parameters and trait anxiety scores 

• Correlation between decision-making and trait anxiety scores 

State anxiety (Paragraph 4.4.7) 

• Mixed model analysis of change in anxiety over the course of the experiment and 

analysis between groups based on factors 

• Comparisons of the state anxiety scores between the two components and between the 

pre- and post-AMOL scores  

• Comparisons between the pre- and post- AMOL state anxiety scores and interaction of 

groups based on factors 

• Correlations between the detection thresholds and state anxiety scores (pre & post) and 

the interaction of groups based on factors 

• Correlations between the detection theory parameters and state anxiety scores (pre & 

post) 

• Comparisons of the state anxiety scores between anxiety components (pre & post) 

• Comparisons of the state anxiety scores between groups (pre & post) 

• Correlations between the detection thresholds and state anxiety scores (pre & post) 

• Correlations between the detection theory parameters and state anxiety scores (pre & 

post) 

4.4 Results:  

Forty-one participants were recruited in this study. The mean (± SD) age group of the 

participants was 30.20 ± 7.44 (range: 19 to 50) years. Five participants were discontinued at 

different stages of the study: Three discontinued due to variable detection thresholds obtained 

while repeating the AMOL and 2 participants discontinued due to high threshold. As 
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mentioned earlier, the detection theory indices for all participants and groups were calculated 

in two formats: 1) calculated using the summed rating data (for each rating) within the group/all 

participants and 2) calculated from each participant’s rating data. Along with the detection 

theory indices, 135 sets of ROCs, z-ROCs and gaussian distributions were plotted (individual 

participant: 108 (3 stimulus type * 36 participants); groups: 27 (3 stimulus * 1 all participants 

+ 3 stimulus * 2 groups based on symptoms + 3 stimulus * 2 groups based on contact lens 

usage + 3 stimulus * 4 groups of both symptoms & contact lens)). Since this chapter consists 

of a large number of analyses, the format of the result section has been categorized in sub-

sections based on detection thresholds, SDT indices, and psychological indices. Under each 

sub-section, there are summary statistics, followed by comparisons between stimulus types, 

comparisons with other study variables, and finally the interactions of factors as listed in 

outline above (4.3.1).  

 Detection thresholds: 

The average (±SE) detection thresholds for cold, mechanical, and chemical stimuli 

were 26.01 ± 2.10 (ml/min@ room temperature), 28.60 ± 2.25 (ml/min @ corneal 

temperature), and 24.83 ± 2.30 (%). Within each stimulus type, the detection thresholds were 

compared between groups based on gender, contact lens wear and symptoms using the 

independent t-test. The mechanical detection thresholds were significantly different between 

the groups based on gender (t (27.6) = -2.06, p = 0.049) and the cold detection thresholds were 

significantly different between the groups based on symptoms (t (31.75) = -2.28, p = 0.03) 

(Figure 4.2).  
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Figure 4.2: Boxplot for mechanical detection thresholds compared between gender (A) and cold thresholds 

compared between groups based on symptoms (B) 

 Comparisons of detection theory indices between stimulus types: 

4.4.2.1 Detectability:  

The average (±se) da of each stimulus type and intensity are listed in Table 4-3. Since 

the sub-threshold and 1.5x threshold intensity stimuli were not used in the chemical MSDT 

experiment, the da was analyzed independently for each intensity level between stimulus types. 

A paired sample t-test was conducted to compare the da between cold and mechanical stimuli 

of sub-threshold and 1.5x threshold intensity. The da’s of both sub-threshold and 1.5x threshold 

intensity were not significantly different between the stimulus types (p > 0.05). On the other 

hand, a mixed-model analysis was conducted to compare the da’s between the stimulus types 

of threshold and 2x threshold intensity. The da’s of the threshold intensity stimuli were not 

significantly different between the stimulus types (F (2, 70) = 2.988, p = 0.057), though the 

box plot showed a higher da for chemical stimuli in comparison to cold and mechanical stimuli 

(Figure 4.3). The da’s of the 2x threshold intensity was not significantly different between 

stimulus types. A similar analysis for the Az also showed similar comparisons as the da. No 

significant main effect or interactions of factors were observed for both da and Az (all p > 0.05). 
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SDT 

Parameters 

Stimulus 

intensity 

Cold 

(non-noxious) 

Mechanical 

(noxious) 

Chemical 

(noxious) 

Detectability 

(da) 

(mean ± SE) 

Sub-threshold -0.15 ± 0.13 0.10 ± 0.14 NA 

Threshold 0.66 ± 0.12 0.68 ± 0.11 0.97 ± 0.12 

1.5x threshold 1.33 ± 0.17 1.57 ± 0.17 NA 

2x threshold 1.90 ± 0.17 2.08 ± 0.19 1.88 ± 0.16 

Table 4-3: Average (±SE) da for all three stimulus types and stimulus intensities. 

4.4.2.2 Standardized / Decision Criterion (Xc):  

Mixed model analyses between stimulus types were conducted only for the most liberal 

(Xc1) and most strict (Xc 4) criterion levels. A significant main effect of stimulus types (F 

(2,70) = 22.93, p < 0.001) was observed for the standardized criterion level 1 (Xc1) 

(assumption of the liberal observer), whereas no significant effect was observed for 

standardized criterion 4 (Xc4) (an assumption of the strict observer) (Figure 4.4). Contrast 

analysis of Xc1 showed that the criterion used for chemical stimuli was significantly different 

from the cold and mechanical stimuli (p < 0.001). No main effect or interaction of factors was 

observed for both Xc1 and Xc4. 

Figure 4.3: Comparison of da between stimulus intensities and stimulus types. 
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4.4.2.3 Criterion (c) for each stimulus intensity: 

4.4.2.3.1 Assuming a liberal criterion (c1) for collapsing into yes/no paradigm: 

A significant main effect of stimulus types was observed for the c1 of threshold (F 

(2,70) = 27.15, p < 0.001) and 2x threshold intensity stimuli (F (2,70) = 20.30, p < 0.001) 

(Figure 4.5). The contrast analysis of the c1 of threshold intensity stimulus indicated a 

significant difference between all three stimulus types. However, for c1 of 2x thresholds 

intensity stimuli, only the chemical stimuli were different from the other two stimulus types. 

The c1’s of the sub-threshold and 1.5x threshold intensity stimuli were not significantly 

different between the two stimulus types (chemical was not tested) (all p > 0.05). Compared 

to cold and mechanical stimuli, the participants assumed the stricter criterion (at c1) to respond 

to the chemical stimuli. 

4.4.2.3.2 Assuming a strict criterion (c4) for collapsing into yes/no paradigm: 

A significant main effect of stimulus type was observed only for the c4 of threshold intensity 

stimuli (F (2,70) = 9.41, p < 0.001) and the contrast analysis showed the c4’s of the chemical 

stimuli were significantly more liberal in comparison to other two stimulus types (Figure 4.5). 

The c4’s of other intensities was not significantly different between the stimulus types (p > 

0.05).  
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 Within Stimulus comparisons: 

4.4.3.1 Cold stimulus:  

The ROC curves plotted using the cumulated ratings showed a good separation in the 

da between the scaled stimulus intensities (Figure 4.6). The ROC curve of cold sub-threshold 

intensity stimuli was inverted, indicating a negative da. The z-ROC curves for all stimuli were 

almost parallel to the chance line and only the z-ROC of the sub-threshold intensity stimuli 

was below the chance line similar to the ROC curve. The slopes of the supra-threshold z-ROC 

were less than 1, but the curves did not cross each other or other curves within the stimulus 

type. A mixed-model analysis was conducted to compare the da of the cold stimuli between the 

intensities. A significant main effect of stimulus intensity (F (3,130) = 29.91, p < 0.001) was 

observed for da between the cold stimulus intensities (Figure 4.7). The contrast analysis 

showed that the da of each intensity was significantly different from the other. Similarly, the 

analysis of the area under the curve was also found to be significantly different between the 

intensities (F (3,94.96) = 129.91, p < 0.001). 

Figure 4.4: Comparison of decision criterion (Xc) between stimulus types considering liberal condition(A) 

and strict condition (B). At liberal criteria, the Xc are significantly different between stimulus types.  
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Figure 4.6: ROC and Gaussian distribution for the cold stimuli. The green line represents the sub-threshold 

stimuli followed by orange (threshold), purple (1.5x threshold) and pink (2x threshold). The black line (S0) in 

density functions represent the noise distribution. 

Figure 4.5: Boxplot of c1 (A) and c4 (B) for all the stimulus intensities and stimulus types. Note: in plot B 

for chemical stimuli, c3 was used as criteria in place of c4, as c3 is the strictest criteria for chemical stimuli.  
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Figure 4.7: The da and Az transducer functions for cold stimuli. 

Figure 4.8: The bias function for c (A) and lnβ (B) of cold stimulus. The lines represent the 4 (n-1) criteria 

derived from the 5 rating responses from the participants for each stimulus intensity. Lighter to darker grey 

represent the lowest to highest criterion respectively.  
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A mixed-model analysis was conducted to compare the c between the stimulus 

intensities within each stimulus type. Significant main effects of criterion (F (3,77.35) = 

131.32, p < 0.001) and stimulus intensity (F (3,106.8) = 130.96, p < 0.001) were observed, 

indicating the bias was different between the four c levels and intensities. Though there were 

main effects, no interactions were observed between the c and stimulus intensities. Mixed-

model analysis of bias using lnβ also showed a significant main effect of β criterion (F (3,95.94) 

= 15.34, p < 0.001) and stimulus intensity (F (3,104.83) = 32.5, p < 0.001) similar to c. 

However, a significant interaction was also observed between the β criterion and intensity (F 

(9,285.85) = 51.59, p < 0.001) (Figure 4.8). 

Mixed-model analyses for the da and Az with factors showed no significant main effect 

or interactions of the groups (all p > 0.05), though the main effect of the stimulus intensity was 

observed on all analyses (p < 0.05). The ROCs using cumulated data for groups based on 

symptoms and contact lens usage are shown in Figure 4.9 and they showed slight variations in 

the curves between the types of groups. Even though there were no significant effects of 

groups, there was a significant interaction of the study visit in the comparison between c 

criterion level and intensities for cold stimulus (F (18, 268.05) = 1.97, p = 0.012).  
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Figure 4.9: ROCs for cold stimuli for groups based on symptoms and contact lens wear. 
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4.4.3.2 Chemical stimulus:  

The ROC for the cumulated ratings of all participants showed good separation between 

the da’s of the threshold and 2x threshold intensity chemical stimuli (Figure 4.10). The slope 

of the z-ROC of the 2x threshold intensity stimuli was parallel to the chance line, whereas the 

slope was slightly less than 1 for threshold intensity stimuli. A paired sample t-test was 

conducted, and a significant difference was observed between the da’s of the threshold (0.97 ± 

0.12) and 2x threshold (1.88 ± 0.16) intensity stimuli; t (35) = -5.93, p < 0.001 (Figure 4.11). 

Similarly, the Az was also significantly different between the two stimulus intensities (t (35) = 

-5.41, p < 0.001) (Figure 4.11). No significant main effect or interactions of the groups based 

on factors were observed in the detection of chemical stimuli. The cumulated ratings ROCs for 

groups based on symptoms and contact lens usage are shown in Figure 4.14 and they showed 

variations in the curves between the types of groups. 

 

 

Figure 4.10: ROC and Gaussian distribution for the chemical stimuli. The orange line represents the threshold 

stimuli followed by pink (2x threshold). The density functions in black (s0) represent the noise distribution. 
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The bias (c and lnβ) presumed by the participants in detecting the chemical stimuli was 

analyzed using mixed model analysis. Significant main effects were observed for the bias 

estimated using the c criterion between the criterion levels (F (1,55.89) = 33.69, p < 0.001) 

and between the stimulus intensities (F (2,76.43) = 161.77, p < 0.001) (Figure 4.12). There 

was no significant main effect of factors, although a few significant interactions were observed. 

The subgrouping of participants based on symptoms produced a significant interaction with 

the stimulus intensities (F (1,53.01)= 6.1, p = 0.017). The asymptomatic participants were 

more liberal to say “yes” to a supra-threshold stimulus in comparison to the symptomatic 

participants (Figure 4.13). There was also a three-way interaction observed for bias between 

stimulus intensity, c criterion levels and contact lens wear (F (2,67.39)= 8.17, p < 0.001). When 

the participants were further sub-divided based on both contact lens wear and symptoms, there 

was a significant interaction between the stimulus intensity and subgroups (F (3,48.42)= 4.48, 

p = 0.008), and there was a significant three-way interaction between stimulus intensity, c 

criterion levels and the subgroups (F (6,63.39)= 4.16, p = 0.002) (Figure 4.13).  

Figure 4.11: The transducer function for da and Az of chemical threshold and 2x threshold stimuli.  
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Mixed-model analyses of bias using lnβ were conducted to compare the bias between 

the stimulus intensities and the lnβ criteria. A significant main effect of lnβ criterion was 

observed (F (2,70) = 52.1, p < 0.001) along with a significant interaction between the stimulus 

intensities and β criterion (F (2,70) = 19.68, p < 0.001). However, lnβ bias was not significantly 

different between the stimulus intensities (Figure 4.12). A three-way significant interaction 

was also observed between intensity, β criteria levels and groups based on symptoms (F 

(2,170)= 4.32, p = 0.015). There was also a significant two-way interaction for bias between 

the stimulus intensities and groups based on both contact lens wear and symptoms (F (1,170)= 

7.78, p = 0.006).  

Figure 4.12: The bias function for c and lnβ of chemical threshold and 2x threshold stimuli. 
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Figure 4.13: The bias (c) comparisons for different subgroup based on; A) contact lens wear, B) symptoms score, 

and C) combination of contact lens wear and symptom score 
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Figure 4.14: ROCs for chemical stimuli for groups based on symptoms and contact lens wear. 
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4.4.3.3 Mechanical stimulus:  

Similar to the cold and chemical stimuli, there was good separation between the ROC 

curves of different stimulus intensities (Figure 4.15). The slopes of z-ROC were less than one 

and the z-ROC of sub-threshold intensity crossed the chance line. The mixed-model analysis 

showed that the da’s of the mechanical stimuli were significantly different between the 

intensities used in the experiment (F (3,100.92) = 66.46, p < 0.001) (Figure 4.16). No other 

significant main effect or interaction with the factors were observed. The cumulated data ROCs 

for subgroups based on symptoms and contact lens usage is shown in Figure 4.19 and showed 

variations in the ROC curves between groups. A mixed-model analysis of the Az showed a 

similar significant main effect of the intensities (F (3,100.63) = 60.96, p < 0.001) (Figure 4.16). 

Also, a significant interaction of group based on symptoms was observed for Az between the 

stimulus intensity and the groups (F (3,97.6) = 3.089, p = 0.031) (Figure 4.17). When the 

groups were further divided based on both contact lens use and symptoms, a significant 

interaction was observed between the intensity of the stimulus and group was observed for Az 

(F (6,95.38) = 2.86, p = 0.013) (Figure 4.17).  

 

Figure 4.15: The transducer function for da and Az of mechanical stimuli. 
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The bias (c and lnβ) to respond to the mechanical stimuli was similar to the cold and 

chemical stimuli. Significant main effects of intensity (F (3,101.52)= 84.03, p < 0.001) and c 

criterion (F (3,105.23)= 198.69, p < 0.001) were observed for mechanical stimuli indicating 

that the bias changed with the intensity of the stimuli and the bias was significantly different 

between the criterion levels (Figure 4.18). No other significant interactions were observed. The 

analysis of bias using lnβ showed main effect of stimulus intensity (F (3,101.64) = 7.56, p < 

0.001) and lnβ criterion (F (3,105) = 49.44, p < 0.001) and a significant interaction between 

the stimulus intensity and lnβ criterion (F (9,304.08) = 38.38, p < 0.001) (Figure 4.18).   

Figure 4.16: ROC, zROC and Gaussian distribution for the mechanical stimuli. 
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Figure 4.17: The mean (SE) Az for subgroups based on (A) symptoms, and (B) symptoms and contact lens wear 

Figure 4.18: The bias function for mechanical stimuli using (A) c criterion and (B) lnβ criterion plotted against 

the stimulus intensity 
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Figure 4.19: ROCs for mechanical stimuli for groups based on symptoms and contact lens wear 
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 Correlation between detection thresholds and detection theory parameters: 

The correlations between threshold and detection theory indices were conducted using 

Spearman correlations for each stimulus type. A significant positive relationship was observed 

between the cold detection thresholds and da of the cold threshold intensity stimuli (Figure 

4.20), indicating a high detectability of threshold intensity stimuli with high baseline detection 

thresholds. The detection thresholds were positively correlated with the da of sub and supra-

threshold stimulus intensities for all three stimulus types (p < 0.05) (Figure 4.20, Figure 4.21, 

Figure 4.22). The c (2,3) and lnβ (2,3,4) for the cold stimuli showed a significant positive 

correlation with the threshold (Figure 4.23 & Figure 4.25). Similarly, the criterion (1 & 2) of 

the chemical threshold stimuli was positively correlated with the chemical threshold (Figure 

4.24).  

 

  

Figure 4.20: Correlation matrix for cold stimuli comparing corneal thresholds with the da of different 

stimulus intensities 
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Figure 4.21: Correlation matrix for mechanical stimuli comparing corneal thresholds with the da of different 

stimulus intensities 

Figure 4.22: Correlation matrix for chemical stimuli comparing corneal thresholds with the da of different 

stimulus intensities 
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Figure 4.23: Correlation between the cold threshold and the c of cold threshold intensity stimuli 

Figure 4.24: Correlation between chemical threshold and the c for chemical threshold intensity stimuli 
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 Decision-making: 

The average (±se) DM scores of the participants and groups are listed in Table 4-4. The 

profile of DM scores for each participant in the study is shown in Figure 4.26 and the profile 

indicates that the majority of the participants had more vigilance score compared to other DM 

types. A mixed-model analysis of DM scores showed a significant difference in the scores 

between DM types (F (3,105) = 121, p < 0.001). The contrast analysis of the DM types showed 

that the vigilance scores were significantly different from all other DM types (p < 0.001) 

(Figure 4.28). Also, the procrastination scores were significantly different from hypervigilance 

scores (p = 0.005). Spearman correlations between the DM parameters were conducted (Figure 

4.27) to analyze the relationship between the DM types and interactions with groups. The buck-

passing, hypervigilance, and procrastination scores were significantly correlated with each 

other (p < 0.01), but the vigilance scores were not correlated with other DM types. No 

significant main effect or interactions of groups were observed.   

Figure 4.25: Correlation between the cold threshold and lnβ of cold threshold intensity stimuli 
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Table 4-4: Mean (SE) of the scores for each DM component. The mean (SE) of the scores for groups based on gender, contact lens use and symptoms. 

 

Scale (items) Overall Gender Symptoms Contact Lens 

 (n=36) 
Male 

(n=13) 

Female 

(n=23) 

Asymptomatic 

(n=18) 

Symptomatic 

(n=18) 

Non-contact 

lens wearers 

(n=18) 

Contact lens 

wearers 

(n=18) 

Vigilance 

(6 items) 

9.89 

(0.30) 

9.46 

(0.57) 

10.13 

(0.51) 

10.06 

(0.46) 

9.72 

(0.40) 

10.06 

(0.43) 

9.72 

(0.44) 

Buck-passing 

(6 items) 

3.22 

(0.39) 

2.39 

(0.56) 

3.70 

(0.51) 

3.00 

(0.58) 

3.45 

(0.54) 

3.11 

(0.53) 

3.34 

(0.59) 

Hyper-vigilance 

(6 items) 

4.03 

(0.36) 

3.69 

(0.61) 

4.21 

(0.44) 

4.22 

(0.50) 

3.83 

(0.51) 

4.28 

(0.50) 

3.78 

(0.52) 

Procrastination 

(6 items) 

2.56 

(0.40) 

2.31 

(0.71) 

2.70 

(0.49) 

2.67 

(0.66) 

2.45 

(0.48) 

2.34 

(0.45) 

2.78 

(0.68) 
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Figure 4.26: Profile of DM scores for each DM components. 

Figure 4.27: Correlation matrix between DM parameters. 
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4.4.5.1 Correlation between DM scores and corneal detection thresholds: 

The relationship between the DM scores and the corneal detection thresholds were 

analyzed along with interactions of factors using Spearman correlations. A significant negative 

relationship was observed between the vigilance scores and the chemical detection thresholds 

(ρ= -0.35, p = 0.04) (Figure 4.29).  

 

Figure 4.29: Correlation between chemical thresholds and vigilance DM scores.  

Figure 4.28: Boxplot representing the average scores for each DM item from the MDMQ2 questionnaire. 
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4.4.5.1.1 Group interactions:  

A significant negative correlation was observed in the symptomatic group of 

participants between vigilance score and detection thresholds of chemical (ρ= -0.7, p = 0.001) 

and cold (ρ= -0.61, p = 0.007) stimuli (Figure 4.30), whereas a significant positive relationship 

was observed in the asymptomatic group between vigilance scores and cold detection 

thresholds (ρ= 0.51, p = 0.029). A significant positive correlation was observed in the male 

group of participants between procrastination scores and mechanical detection thresholds (ρ= 

0.66, p = 0.013) (Figure 4.31).  

 

 

Figure 4.30: Correlations by group between vigilance scores of the participants and their thresholds.  

Figure 4.31: Correlation between mechanical threshold and procrastination scores.  
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4.4.5.2 Correlation between DM scores and d’:  

The relationship between the da and DM were analyzed using Spearman correlations. 

Only 1 out of 40 (4 decision scales * da of 10 stimulus intensities (4 intensities each for cold 

& mechanical stimuli; 2 for chemical)) correlation analyses conducted were significantly 

correlated. A significant positive relationship (Figure 4.32) was observed between buck-

passing DM scores and da of the mechanical threshold intensity stimuli (ρ=0.33, p = 0.049).  

 

4.4.5.3 Correlation between DM and bias: 

The relationships between the DM and criteria were analyzed using Spearman 

correlation (Table 4-5). For cold and mechanical stimuli, there were four criteria for each 

intensity tested from the 5-rating scale. There were 64 correlations (4 stimulus intensity * 4 

criteria each * 4 DM types) each for mechanical and cold stimuli. 2 out of 64 correlations for 

mechanical stimuli and 9 out of 64 correlations for cold stimuli showed significant 

relationships. For chemical stimuli, there were three criteria for each intensity from the 4-rating 

scale. Only 1 out of 24 (2 stimulus intensity * 3 criteria each * 4 DM types) analyzed was 

significantly correlated.  

 

Figure 4.32: Correlation between the da of the mechanical threshold stimuli and buck-passing scores of the 

participants.  
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Table 4-5: List of significant relationships between the c obtained for each stimulus type and DM scores 

Most of the significant relationships were observed either for c1 or c4 of the criterion 

level. The c4’s for cold threshold, 1.5x, and 2x threshold intensity stimuli were significantly 

correlated with the buck-passing and procrastination DM scores (p < 0.05) (Figure 4.33). 

Similar to the analysis of the c, for lnβ, there were 64 correlations analyzed each for 

mechanical and cold stimuli. There were 24 correlations analyzed for chemical stimuli. 6 out 

of 64 and 3 out of 64 correlations analyses conducted were significant for mechanical and cold 

stimuli, respectively. Unlike c, most of the significant relationships were observed for either 

sub-threshold or threshold intensity stimuli (Table 4-6). 1 out of 24 correlation analyses 

conducted was significant for chemical stimuli. The lnβ4 of 2x chemical threshold intensity 

stimuli was significantly correlated with the buck-passing DM scores (ρ= -0.35, p = 0.034). 

  

DM type 
Stimulus type and 

intensity 
Criterion Spearman correlations 

Vigilance 
Mechanical 

threshold 
c1 ρ= -0.37, p = 0.025 

Vigilance 
Mechanical 1.5x 

threshold 
c3 ρ= -0.34, p = 0.046 

Vigilance Cold threshold c1 ρ= -0.37, p = 0.029 

Buck-passing Cold threshold c4 ρ= 0.43, p = 0.0097 

Buck-passing 
Cold 1.5x 

threshold 
c4 ρ= 0.33, p = 0.05 

Buck-passing Cold 2x threshold c4 ρ= 0.37, p = 0.026 

Procrastination Cold threshold c4 ρ= 0.44, p = 0.008 

Procrastination 
Cold 1.5x 

threshold 
c4 ρ= 0.46, p = 0.0047 

Procrastination Cold 2x threshold c4 ρ= 0.39, p = 0.019 

Procrastination 
Chemical 

Threshold 
c1 ρ= -0.37, p = 0.026 



 

137 

 

DM type 
Stimulus type and 

intensity 

Log-Likelihood 

ratio 

Spearman 

correlations 

Vigilance 
Mechanical 

threshold 
lnβ1 ρ= -0.43, p = 0.0087 

Vigilance 
Mechanical 

threshold 
lnβ2 ρ= -0.37, p = 0.026 

Vigilance Cold sub-threshold lnβ1 ρ= 0.52, p = 0.0063 

Vigilance Cold sub-threshold lnβ4 ρ= -0.5, p = 0.0089 

Buck-passing Cold sub-threshold lnβ4 ρ= 0.53, p = 0.0051 

Buck-passing 
Chemical 2x 

threshold 
lnβ4 ρ= -0.35, p = 0.034 

Hypervigilance 
Mechanical sub-

threshold 
lnβ1 ρ= -0.45, p = 0.011 

Hypervigilance 
Mechanical sub-

threshold 
lnβ2 ρ= -0.44, p = 0.012 

Procrastination 
Mechanical sub-

threshold 
lnβ1 ρ= -0.44, p = 0.012 

Procrastination 
Mechanical sub-

threshold 
lnβ2 ρ= -0.41, p = 0.021 

Table 4-6: List of significant relationships between lnβ and DM scores 
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Figure 4.33: (Top row) Correlation between buck-passing scores and c4 of cold stimuli. (Bottom row) Correlation between procrastination scores and 

c4 of cold stimuli.  
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 Trait Anxiety: 

Paired t-test analysis showed a significant difference between the cognitive and somatic 

scores of trait anxiety (t (35) =4.0536, p < 0.001). The average scores for cognitive and somatic 

components of trait anxiety were 17.92 ± 0.94 and 14.58 ± 0.50, respectively (Figure 4.34(A)). 

A significant positive relationship was observed between the cognitive and somatic 

components of trait anxiety (Spearman’s ρ= 0.483, p < 0.001) (Figure 4.34(B)). No significant 

interactions of factors were observed. 

 

Figure 4.34: (A) Comparison between cognitive and somatic trait anxiety scores using boxplot;  

 (B) correlation between cognitive and somatic trait anxiety scores. 

4.4.6.1 Correlation between trait anxiety and detection thresholds: 

The correlations between the trait anxiety scores and detection thresholds were 

evaluated along with group interactions. Even though there were no significant relationships 

between the detection thresholds and the trait anxiety scores, a significant interaction of gender 

(Figure 4.35) was observed in the relationship between the mechanical detection thresholds 

and trait anxieties (cognitive, F (1,32) = 15.599, p < 0.001; somatic, F (1,32) = 5.468, p = 

0.026).  
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Figure 4.35: The interaction of gender in the association between the mechanical threshold and trait 

anxiety scores.  

4.4.6.2 Correlation between trait anxiety and da: 

20 (2 trait anxiety types * da of 10 stimulus intensities (4 intensities each for cold & 

mechanical stimuli; 2 intensities for chemical stimuli)). Spearman correlation analyses were 

conducted and there were no correlations or interactions of groups observed between the trait 

anxiety scores and da. 

4.4.6.3 Correlation between trait anxiety and bias: 

There were 32 Spearman correlations (4 stimulus intensity* 4 criteria each * 2 trait 

anxiety types) conducted between the trait anxiety scores and bias for mechanical and cold 

stimuli. 12 out of 64 correlation analyses conducted were significant with most of the 

relationships observed for the c1’s of cold stimuli. A notable observation is that the c1 of cold 

sub-threshold, threshold, 1.5x threshold, and 2x threshold stimuli were negatively correlated 

with the cognitive trait anxiety scores (Figure 4.36). Similarly, the c1 of the cold threshold, 

1.5x threshold, and 2x threshold stimuli were negatively correlated with the somatic trait 

anxiety scores (Figure 4.37). There were 16 (2 stimulus intensity* 4 criteria each * 2 trait 

anxiety types) relationships analyzed for chemical stimuli and there were no correlations 

observed. The significant relationships are listed in Table 4-7. 
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Similar to c, there were 80 correlation (32 cold, 32 mechanical and 16 chemical) 

analyses conducted for lnβ and 5 significant relationships were observed. The lnβ1 and lnβ2 

of mechanical sub-threshold stimuli were significantly correlated with cognitive trait anxiety 

(ρ= -0.37, p = 0.036, ρ= -0.38, p = 0.033). lnβ1 of mechanical 2x threshold correlated with 

somatic trait anxiety (ρ= -0.38, p = 0.024). lnβ1 of cold 1.5x threshold correlated with somatic 

trait anxiety (ρ= -0.38, p = 0.021). lnβ2 of cold 2x threshold correlated with somatic trait 

anxiety (ρ= -0.35, p = 0.034). 

 

Figure 4.36: Spearman correlation between c1’s of cold stimuli and cognitive trait anxiety scores.  
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Table 4-7: List of significant correlations observed between the c and trait anxiety scores. 

Anxiety 

type 

(Trait) 

Criterion 
Stimulus type 

and intensity 

Relationship between 

variables 

Spearman 

Correlations 

Cognitive c1 
Cold 

sub-threshold 
Negative ρ= -0.42, p = 0.033 

Cognitive c1 
Cold 

threshold 
Negative ρ= -0.35, p = 0.039 

Cognitive c1 
Cold 

1.5x threshold 
Negative ρ= -0.42, p = 0.011 

Cognitive c1 
Cold 

2x threshold 
Negative ρ= -0.34, p = 0.044 

Somatic c1 
Cold 

threshold 
Negative ρ= -0.47, p = 0.004 

Somatic c1 
Cold 

1.5x threshold 
Negative ρ= -0.59, p < 0.001 

Somatic c1 
Cold 

2x threshold 
Negative ρ= -0.47, p = 0.004 

Somatic c2 
Cold 

1.5x threshold 
Negative ρ= -0.45, p = 0.007 

Somatic c4 
Cold 

sub-threshold 
Positive ρ= 0.46, p = 0.019 

Somatic c1 
Mechanical 

1.5x threshold 
Negative ρ= -0.37, p = 0.027 

Somatic c1 
Mechanical 

2x threshold 
Negative ρ= -0.44, p = 0.007 

Somatic c2 
Mechanical 

2x threshold 
Negative ρ= -0.34, p = 0.045 
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Figure 4.37: Spearman correlation between the somatic trait anxiety scores and c’s of cold and mechanical 

stimuli.  
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 Correlation between DM and trait-anxiety: 

Spearman correlation analyses were conducted to evaluate the relationship between the 

DM and trait anxiety scores (Figure 4.38). The vigilance scores were not significantly 

correlated with any of the DM categories and trait anxiety scores. The cognitive trait anxiety 

scores were significantly correlated with the buck-passing (ρ= 0.48, p = 0.003), procrastination 

(ρ= 0.55, p < 0.001) and hypervigilance (ρ= 0.76, p < 0.001) DM scores. The somatic trait 

anxiety scores were not correlated with DM scores.  

Figure 4.38: Spearman correlation between DM and trait anxiety scores. 
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 State anxiety: 

Similar to the trait anxiety scores, the state anxiety scores were also analyzed. Since 

the state anxiety questionnaires were administered before (pre) and after (post) each threshold 

experiment, the relationships were analyzed for both pre- and post-experiment scores. Data 

were analyzed using mixed model design with two within-subject factors (6 questionnaires 

(from 3 study visits) and 2 anxiety types (cognitive and somatic)) and subject ID as a random 

variable. A significant main effect of anxiety type was observed in the state anxiety scores (F 

(1,385) = 6.05, p = 0.014) (Figure 4.39). The somatic state anxiety scores were found to reduce 

significantly at the end of the three study visits (F (5,175) = 2.57, p = 0.029) compared to the 

start of the first visit, but the cognitive anxiety scores remained constant. The interaction of 

groups based on gender, symptoms and contact lens use was also analyzed and multiple 

significant two-way interactions were observed between the anxiety type and factors. Gender 

(F (1,374) =17.16, p < 0.001) (Figure 4.40) , contact lens use (F (1,374) =21.14, p < 0.001) 

(Figure 4.41), and symptoms (F (1,374) =8.64, p = 0.004) (Figure 4.42) showed significant 

two way interactions with the type of state anxiety.  

Paired t-test analyses were conducted to compare the state anxiety scores between pre- 

and post- threshold experiment for each stimulus type, and no significant differences were 

observed (Figure 4.43). 
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Figure 4.40: The mean (±se) state anxiety scores for cognitive and somatic state anxiety with interaction 

of gender at each visit (pre- & post- threshold measures). 

Figure 4.39: The mean (±se) state anxiety scores for cognitive and somatic state anxiety at each visit (pre- 

& post- threshold measures).  
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Figure 4.42: The mean (±se) state anxiety scores for cognitive and somatic state anxiety with interaction 

of symptoms at each visit (pre- & post- threshold measures). 

Figure 4.41: The mean (±se) state anxiety scores for cognitive and somatic state anxiety with interaction 

of contact lens use at each visit (pre- & post- threshold measures). 
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4.4.8.1 Analysis based on starting stimulus for each participant: 

The starting stimulus was different for each participant as the stimulus types have been 

randomly assigned to each study visit. For each stimulus, the change in anxiety scores along 

the study was evaluated using mixed-model analysis and no significant main effect or 

interaction with groups was observed (Figure 4.44). 

Figure 4.43: The cognitive (A) and somatic (B) state anxiety scores for different stimulus types before and 

after the threshold experiment. 



 

149 

 

Figure 4.44: Analysis based on starting stimulus for pre- (top row) and post- (bottom row) threshold 

measure’s state anxiety scores. The first column is for the group started with a mechanical stimulus, the 

middle column for participants started with a chemical, and the last column is for the group with a cold 

stimulus. 

4.4.8.2 Relationship between the state anxiety scores and detection thresholds:  

No significant relationships were observed between the pre- scores and detection 

thresholds, although a significant interaction of gender was observed in the relationship 

between cognitive state anxiety scores (pre) and mechanical detection thresholds (p < 0.05). 

A similar interaction of gender was observed in the relationship between cognitive state anxiety 

scores (pre) and cold detection thresholds (Figure 4.45). A similar relationship was also 

observed for post- scores (all p < 0.05) (Figure 4.46). The contact lens group showed a 

significant negative relationship between chemical detection thresholds and cognitive state 

anxiety scores (pre (ρ= -0.49, p = 0.039); post (ρ= -0.51, p = 0.029)) (Figure 4.47).  
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Figure 4.45: Interaction of gender in the relationship between cognitive state anxiety scores (pre) and 

thresholds of stimulus types. 

Figure 4.46: Interaction of gender in the relationship between cognitive state anxiety scores (post) and 

thresholds of stimulus types. 
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4.4.8.3 Relationship between the state anxiety scores and da: 

Similar to the correlation analyses with trait anxiety scores, the relationships between 

the state anxiety scores (cognitive and somatic) and da of each stimulus type and intensity were 

analyzed using Spearman correlations. There were 16 correlations each (4 stimulus intensity * 

1 da * 2 anxiety types * 2 measures (pre & post)) for mechanical and cold stimuli. Similarly, 

for chemical stimuli, there were 8 correlations (2 stimulus intensity * 1 da * 2 anxiety types * 

2 measures (pre & post)) analyzed. No significant relationships were observed between the 

state anxiety scores and da of cold, chemical and mechanical stimuli (0 out of 40 correlations). 

4.4.8.4 Relationship between state anxiety scores and bias: 

The relationship between the criterion and state anxiety scores were evaluated. There 

were 64 Spearman correlations each (4 stimulus intensity * 4 criteria each * 2 anxiety types * 

2 measures (pre & post)) for mechanical and cold stimuli. 10 out of 132 correlations showed a 

significant relationship for mechanical and cold stimuli. For chemical stimuli, there were 24 

correlations (2 stimulus intensity * 3 criteria each * 2 anxiety types * 2 measures (pre & post)) 

analyzed and there were no significant relationships observed. Similar to the trait anxiety, the 

significant relationships were observed only for c1 or c4 (Table 4-8). The somatic state anxiety 

scores were negatively correlated with the c1 of cold sub-threshold, threshold, and 1.5x 

threshold stimuli (p < 0.05). 
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Table 4-8: List of significant correlations between the state anxiety scores and criterion for pre- and post- 

AMOL anxiety measures. 

Pre/post Criterion 
Stimulus type 

and intensity 

Anxiety 

type 

(State) 

Relationship 

between 

variables 

Spearman 

correlations 

Pre c4 
Mechanical 

Threshold 
Cognitive Positive ρ= 0.33, p = 0.049 

Pre c4 
Mechanical 

2x threshold 
Cognitive Positive ρ= 0.35, p = 0.036 

Pre c1 
Mechanical 

threshold 
Somatic Negative ρ= -0.34, p = 0.04 

Post c4 
Mechanical 

2x threshold 
Cognitive Positive ρ= 0.34, p = 0.045 

Pre c4 
Cold 

sub-threshold 
Somatic Positive ρ= 0.4, p = 0.042 

Pre c1 
Cold 

1.5x threshold 
Somatic Negative ρ= -0.37, p = 0.025 

Post c1 
Cold 

threshold 
Cognitive Negative ρ= -0.34, p = 0.041 

Post c1 
Cold 

sub-threshold 
Somatic Negative ρ= -0.44, p = 0.025 

Post c1 
Cold 

threshold 
Somatic Negative ρ= -0.42, p = 0.01 

Post c1 
Cold 

1.5x threshold 
Somatic Negative ρ= -0.36, p = 0.031 
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Similar to the c, there were 156 Spearman correlations analyzed for lnβ. Only 5 of 156 

the correlations were significant. The lnβ1 of mechanical sub-threshold stimuli was negatively 

correlated with the cognitive state anxiety scores (pre) (ρ= -0.43, p = 0.014). Similarly, lnβ1 

of mechanical sub-threshold stimuli was negatively correlated with the state cognitive anxiety 

scores (post) (ρ=-0.4, p = 0.022). Unlike the c, only one significant correlation was observed 

for cold stimuli. The lnβ1 of cold 2x threshold stimuli was negatively correlated with the 

cognitive state anxiety scores (post) (ρ= -0.34, p = 0.045). Also, lnβ1 of chemical threshold 

stimuli was correlated with the cognitive state anxiety scores (pre) (ρ=-0.36, p = 0.03) and the 

lnβ1 of chemical 2x threshold stimuli was correlated with the somatic state anxiety score (post) 

(ρ= -0.33, p = 0.048). 

Figure 4.47: Interaction of contact lens use in the relationship between cognitive state anxiety scores 

(A-pre, B-post) and thresholds of stimulus types. 
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4.5 Discussion: 

The primary purpose of this experiment was to determine the feasibility of conducting 

an MSDT experiment using pneumatic ocular surface stimuli. The previous chapter (Chapter 

3) revealed that SDT could be used in a simple form (yes/no), but there were a number of 

drawbacks discussed in the chapter which might be overcome if multiple stimulus intensities 

were used and having participants use multiple criteria. Provided the MSDT method generally 

was feasible, and it was possible to reliably estimate the detection indices for different types 

and intensities of pneumatic corneal stimuli, the effect of clinical and psychological predictors 

on the OSSP of pneumatic stimuli could be examined using those outcomes. It is evident from 

the results that both da and bias indices can be estimated consistently and there is a systematic 

change in the detection indices in relation to the intensity of the stimuli. The interaction of 

clinical factors was observed only in the experiments with chemical stimuli. The results from 

psychometric analyses showed hidden relationships of the bias with the psychological indices 

that could not be evaluated using the classical psychophysical method. Overall, this study 

demonstrates the feasibility of utilizing MSDT to analyze OSSP and also demonstrates the 

feasibility and importance of measuring the psychological indices in psychophysical 

experiments. This is the first study to utilize and report an OSSP experiment with the MSDT 

protocol and the first OSSP study to analyze the interactions of sensory, clinical and 

psychological factors in the same group of participants.  

 Feasibility of MSDT: 

Although this chapter is about signal detectability (and in signal detection theory, 

“thresholds” do not exist), the detection thresholds (used in scaling stimuli for MSDT 

experiments) obtained in this study were consistent with previous studies that measured 

corneal detection thresholds as a primary outcome measure.67–71 The similarity in the detection 

thresholds externally validates the measures obtained in previous experiments. The MSDT data 

for all pneumatic stimuli used in this study followed the assumptions of SDT, which were 

evident in the ROC curves and Gaussian distributions reported in the results (Figure 4.6, Figure 
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4.9 and Figure 4.10). The ROC curves obtained were well behaved (with low residuals for each 

ROC line) for all stimulus types and the curves (both in ROC and z-ROC space) for intensities 

within each stimulus type did not overlap, indicating independent detectabilities for the scaled 

intensities. The z-ROC curves were almost parallel to the chance line, indicating the adherence 

of the obtained data to Gaussian assumptions of SDT and equal variance. Though the number 

of trials for each participant in this study was less than a typical SDT study, the da’s calculated 

were similar using both cumulated rating data method and the average of the individual 

detectabilities (Table 4-9). This similarity in the da between the two methods indicates that the 

group detectability can be computed either way for ocular surface stimuli scaled based on 

detection thresholds. It also implies that the extrapolations used in place of zero frequency 

rating categories to calculate detectability did not considerably affect the detectability of the 

group. These results collectively point to the feasibility of using MSDT (with intensities scaled 

based on detection thresholds) in analyzing the OSSP of the pneumatic stimuli.  

Another metric of feasibility is the number of participants who could not complete the 

experimental protocol. It is not useful if a large proportion of participants cannot do the 

experiments, even if the data from (a smaller number of) participants are well behaved. Two 

participants could not complete all the experiments due to their high baseline detection 

thresholds, and three participants could not complete due to variable detection thresholds. 

Since the strongest stimuli produced by esthesiometer is 200 ml/min or 100% (chemical), the 

supra-threshold stimuli cannot be scaled for high threshold participants. While considering the 

complex and noisy nature of the OSSP system, the results were remarkably consistent and 

indicative of feasible study methods.  
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Stimulus type Stimulus intensity 
da using cumulated 

rating data 

Average da 

calculated from the 

da of each participant  

Cold 

Sub-threshold -0.46 -0.15 ± 0.13 

Threshold 0.40 0.66 ± 0.12 

1.5x threshold 1.17 1.33 ± 0.17 

2x threshold 1.77 1.90 ± 0.17 

Mechanical 

Sub-threshold 0.03 0.10 ± 0.14 

Threshold 0.55 0.68 ± 0.11 

1.5x threshold 1.43 1.57 ± 0.17 

2x threshold 2.11 2.08 ± 0.19 

Chemical 
Threshold 0.87 0.97 ± 0.12 

2x threshold 1.99 1.88 ± 0.16 

Table 4-9: Comparison of da obtained using cumulated and individual rating data 

 Detection theory indices: 

The da (obtained from ROC using cumulated data) of all three stimulus types, which 

were scaled based on their respective detection thresholds, showed a systematic increase in the 

detectability of the stimuli with an increase in the intensity of the stimuli. Similar increases in 

the average da have observed in the transducer functions e.g., in vision 72 (generally d’ vs. 

stimulus intensity) plotted using the individual participant data. Though the da was different 

between the intensities within each stimulus type, they were not different between the stimulus 

types.  

The two types of bias indices (c and lnβ) calculated in this study showed distinct 

characteristics. The “bias functions” plotted for each rating level between the amount of bias 
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and stimulus intensity showed significant separation between the levels for c, but not for lnβ. 

The vertical separation of criterion levels in c was similar for all the intensities within the 

stimulus type, indicating a proportional shift in criterion with an increase in stimulus intensity 

(Figure 4.8 (A), Figure 4.12 (A) and Figure 4.18 (A)). In contrast, the lnβ showed a dependency 

on the detectability of stimulus as there was an increase in the vertical separation of β criterion 

levels with an increase in stimulus intensity (Figure 4.8 (B), Figure 4.12 (B) and Figure 4.18 

(B)). The lnβ levels were less separated and close to zero (no bias) for sub-threshold stimuli 

but separated for 2x threshold stimuli. The differences in the dependency of c and lnβ are 

somewhat scientifically problematic, because, ideally, the bias metrics should be 

approximately independent of stimulus intensity. Still, the criteria used by participants should 

be different (so, using conservative and liberal criteria should be consistent throughout the 

experiment). The optimal performance of c and the less-than-optimal performance of lnβ is 

illustrated in Figure 4.8, Figure 4.12, and Figure 4.18, suggesting that the former should be 

used rather than the latter. 

4.5.2.1 Detectability: 

The da of the corneal pneumatic stimuli was proposed to be different between the 

intensities and between the stimulus types. The difference in detectability between the stimulus 

intensities was proposed from the basics of SDT. SDT defines the sensory process as a 

continuous output, and the detectability depends on the strength of the signal against random 

noise, unlike the high threshold theory that defines the stimulus as always detectable once it 

crosses a threshold (and not detectable below threshold).8 The change in the detectability with 

stimulus intensity was evident in this study for all three types of stimuli, something reported 

previously in other senses. e.g., 73–75 Since MSDT studies are not available for comparison, the 

tendency of the participant’s responses in classical psychophysics and psychophysiology 

literature has been compared to the detectability obtained using MSDT which may be directly 

related to the detectability of the stimulus. Alabi and Simpson71,76,77 have observed a similar 

dose-effect increase in the autonomic responses such as redness, pupillary response, and 
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accommodation for pneumatic stimuli. Situ et. al78 also reported an increase in the tear 

meniscus height as a response to an increase in the stimulus intensity of pneumatic corneal 

stimuli. Studies have also shown a similar increase in the discomfort rating with visual analog 

scales.79–85  

The difference in detectability between stimulus types was proposed from the results 

of the Yes/No SDT experiment (Chapter 3), in which it was shown that the detectability of 

supra-threshold intensity stimuli was different between the three stimulus types. However, the 

difference was not apparent in the MSDT experiment when compared to the Yes-No SDT 

experiment (reported in chapter 3). The average detectability of the threshold intensity stimuli 

was relatively low for noxious mechanical (0.68) stimuli in comparison to noxious chemical 

(0.97) or non-noxious cold (0.66) stimuli. Also, the average da of the 1.5x mechanical threshold 

intensity stimuli was similar to the yes/no study but with lower variability. The da of the cold 

1.5x threshold intensity stimuli was higher in the MSDT experiment (1.33 ± 0.17) than the 

yes/no SDT study (0.60 ± 0.13). The observed variation in the detectability between yes-no 

and MSDT experiments might be due to the difference in the type of SDT, as shown by Clark 

and Mehl12. Higher stimulus probability (though different intensities) and having more 

detectable stimuli has been shown to encourage participants to say “Yes” more to the trials (a 

liberal criterion).86 Also, a similar increase in the detectability of the cold supra-threshold 

stimuli was observed in the yes/no experiment with higher stimulus probability. Future work 

with the same group of participants performing both yes-no and MSDT or rating SDT could 

provide more information on the actual differences in the detectability of ocular surface stimuli 

between the types of SDT protocols. 

Among all the stimulus intensities, only sub-threshold stimuli had negative 

detectabilities indicating difficulty in detecting the stimuli from the background noise. The 

negative detectabilities were obtained often for cold sub-threshold stimuli compared to 

mechanical sub-threshold stimuli. The average da of cold sub-threshold stimuli was negative, 

while the average da of mechanical sub-threshold stimuli was slightly more than zero. In SDT 
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literature, a negative da generally indicate that the participant did not understand the 

experiment/instructions resulting in higher false alarm rate compared to hit rate. However, in 

this experiment, participants performed well for all other stimulus intensities as no negative 

da’s were observed for other stimulus intensities. It is evident that there is difficulty in detecting 

the cold sub-threshold stimuli and the sub-threshold stimuli appear to be either suppressing the 

background noise or it is being detected as noise. The only way to confirm the above 

speculation will be by using the electrophysiology and observing the changes in single nerve 

recordings which was not available for this study.  

4.5.2.2 Bias indices: 

To my knowledge, this is the first study to analyze both overall experiment bias and 

biases for each stimulus intensity in the same experiment. In addition, the biases were also 

compared between stimulus types for both overall experiment bias and bias for each intensity.  

Between stimulus type:  

The standardized bias (Xc) or the overall bias for each experiment was different 

between the stimulus types (4.4.2.2). Similar differences were observed when c’s for threshold 

and 2x threshold intensity stimuli were compared between all three stimulus types (both most 

liberal and strict c) (4.4.2.3). The biases were noticeably different for the chemical stimuli and 

the difference might have been due to several factors such as nature, intensity and duration of 

the perceived sensation, trial/experiment duration, and the number of ratings. Though both 

mechanical and chemical stimuli are noxious in nature, the sensation produced by the chemical 

stimuli is probably more apparent , easily identifiable87 and perceived longer than the sensation 

produced by the mechanical stimuli. Chemical stimuli produce a stinging/ burning sensation, 

and they may last longer on the eye as the carbonic acid from the dissolved CO2 may take some 

time to disappear from the ocular surface. Also, the chemical stimuli are detected by the 

polymodal nociceptors and the nerve impulses are conducted through the slow conducting C- 

fibers, which may prolong the sensation perceived.82,87  
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In addition to the physiological differences, there were also a few experimental 

differences in chemical experiment due to longer stimulus preparation time, which may have 

affected their bias as well. The number of trials and signal intensities were reduced to keep the 

duration and signal probability of the chemical experiment consistent among all stimulus types. 

The number of ratings were also reduced to 4 to avoid ratings with no associated responses. 

The effect of these changes is unknown and needs further experimentation with different 

experimental methods to estimate the effect of each parameter on the resultant bias.  

Within stimulus type: 

The relationship between stimulus intensity (in relation to detection thresholds) and 

bias has not been evaluated before, but the bias has been shown to shift with detectability due 

to the larger separation between the distributions.2,3,7 Though the two types of bias (c and lnβ) 

estimated are supposedly measuring the same bias, studies have shown both to be different 

from each other.2,3,7,8,88 However, often only one type of bias metric was reported in previous 

SDT studies.2,3,7,8,88 In this thesis, both bias indices were evaluated, and both showed a 

systematic change in the amount of bias within the stimulus type, but the interaction of criterion 

levels with stimulus intensities was observed only for lnβ. Both c and lnβ indicated that the 

participants, in general, adopted stricter criteria during the experiments, though these criteria 

shifted towards liberal criteria for higher intensities.  

Of the two types of bias estimated, c showed an equivalent shift in bias towards being 

more liberal for all criterion levels with an increase in the stimulus intensity and the lnβ (which 

is known to be affected by the detectability of the stimuli7) showed an increase in the separation 

of β criterion levels with an increase in stimulus intensity. A dependency of lnβ with stimulus 

intensity was also observed in this study as there were significant interactions between lnβ, β 

criterion and stimulus intensities for all three stimulus types. A diverging fan-like distribution 

was seen for lnβ due to the larger separation/variation between the β criterion levels for 

stronger stimulus intensities compared to almost overlapping levels for sub-threshold stimuli, 
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indicating possibility of large criterion shifts to respond to stronger stimulus intensities. This 

indicate that future studies should adopt a stricter control of criteria to detect esthesiometer 

stimuli. 

 Effects of symptoms and contact lens usage on detection theory estimates:  

The interactions of two clinical factors, contact lens usage and symptoms of dry eye, 

in the detection of ocular surface stimuli was analyzed in this study due to increase in the 

prevalence of dry eye and contact lens discontinuations related to discomfort. There are 

contrasting reports on the effect of these factors on ocular surface sensitivity.69,89–104 If only 

the experiments with Belmonte esthesiometers are considered, the mechanical detection 

thresholds have been shown to be negatively associated in symptomatic participants96 and the 

symptomatic contact lens wearers have been shown to have higher cold detection sensitivity 

compared to asymptomatic contact lens wearers92,95,97. In addition, studies comparing signs 

and symptoms of dry eye also showed contrasting results.69,93,96,105–116 The sensory etiology or 

physiological mechanism of both dry eye and contact lens related discomfort still remains 

unclear. This section of the thesis analyses the interaction of the factors in the association 

between stimulus intensity and detection indices. Both sensory and decisional aspects of these 

groups were analyzed. 

The da’s for mechanical and cold stimuli types were not affected by the predictor 

variables. Surprisingly, there were difference in da’s for chemical stimuli. These chemical 

stimuli are distinctive producing a burning sensation, and perhaps the contact lens wearers are 

adapted to the stinging sensation arising from the contact lenses and /or lens solution.  

For bias, the interactions were different between symptoms factors and contact lens 

wear; Contact lens wearers had similar bias to controls (non-contact lens wearers) for the supra-

threshold stimuli, but their bias was different for less intense stimuli. Symptomatic participants 

had similar bias to controls (asymptomatics) at threshold but different bias for supra-threshold 

stimuli. In both analyses, the non-control group had stricter biases compared to the controls, 
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and unfortunately, reasons for these differences are unclear and needs more experimentation 

perhaps with a wider range of lens wearers and symptoms would make these differences more 

apparent.  

 Effects of gender on detection theory estimates:  

The da has been shown to be different between gender in pain studies.39,117–120 However, 

in this study, no effects of gender were observed for any detection theory indices. The 

interactions were observed only for the bias in the chemical stimuli experiment.  

 Are the detection thresholds a good baseline for MSDT experiments? 

The detection thresholds were used as a baseline for this SDT experiment so that the 

scaling of the stimuli will be similar for all participants. The effectiveness of detection 

thresholds as a baseline was examined using the association between detection thresholds 

themselves and da for the stimuli at threshold intensities for all subjects. Ideally, da will be 

unrelated to the detection threshold. This is demonstrated in the observation of the detection 

thresholds and da of the threshold intensity stimuli were not correlated for noxious mechanical 

and chemical stimuli. There was however a positive correlation observed for the non-noxious 

cold stimuli. This positive correlation indicates that participants with higher detection 

thresholds had higher detectability (easily detected the threshold intensity stimuli). It is 

possible that participants adopted a stricter criterion (waiting until stimulus was more obvious) 

during the threshold measurements, which artificially inflated their measured detection 

thresholds. Since the estimated detection thresholds would be in the supra-threshold intensity 

range, the detectability of the stimulus may have been higher than the participants with no bias. 

The above speculation is supported by the positive relationships seen between the cold 

detection thresholds and a few of the bias metrics obtained for cold threshold stimuli (Figure 

4.23 and Figure 4.25). Though all bias metrics were not significant, it is important to note that 

the bias assumed by participants during threshold experiments might have been of any amount 

and may even have varied during the experiment. In addition, the detection thresholds were 



 

163 

positively correlated with da’s of all other supra-threshold intensities within the stimulus type. 

The effect was seen for observed even for the mechanical and chemical stimuli, which did not 

have significant correlations with da’s of threshold intensity stimuli. Among others, a probable 

reason for the correlation is the linear scaling of the stimulus intensities, which produces higher 

intensity (supra-threshold) stimuli for participants with high detection thresholds. Further 

analysis/experimentation is needed to analyze the best scaling method for MSDT experiments, 

as well as finding an optimal way to obtain detection threshold with least amount of bias.  

 Psychological parameters:  

The general validity of the psychological indices obtained in this study was evaluated 

and both psychological parameters obtained were comparable to their respective validation 

studies. The DM scores of this study group were similar to the experiment conducted by Mann 

et. al121 on 2002 participants from six different countries. In our study group, the vigilance 

scores were higher compared to other DM components and positive correlations were observed 

between the buck-passing, hypervigilance and procrastination scores. The vigilance scores 

were not correlated with other DM scores. Similar observations were also reported by Mann 

et. al121. Similar to DM scores, the trait and state anxiety scores demonstrated external validity 

when compared to the validation studies by Ree et al.122 and Grös et al.123 A positive correlation 

was observed between the cognitive and somatic trait anxiety scores, which was also similar 

to the validation studies.122,123 In the correlation analyses between DM and trait anxiety scores, 

significant correlations were observed only for the relationships involving cognitive trait 

anxiety scores. There were positive correlations between cognitive trait anxiety scores and 

scores of 3 DM components (procrastination, hypervigilance, and buck-passing) (Figure 4.38). 

Somatic trait anxiety and vigilance scores were not correlated with other variables. 

Surprisingly, there was no interaction of any factors, including gender, on both DM and trait 

anxiety scores. 
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The state anxiety scores were obtained before and after each threshold experiment, and 

no significant differences were observed between pre- and post- anxiety scores. Similarly, no 

interactions of factors were observed. There was no order effect in the anxiety scores as well, 

and scores were not dependent on the type of the stimulus. Though pre- and post- 

measurements did not show any difference, overall, there was a difference in the scores 

between the cognitive and somatic components of anxiety. The cognitive component remained 

the same until the end of the study, but the somatic component reduced significantly. Though 

the validation study by Ree et al.122 showed an increase in anxiety after introducing stress, the 

cognitive component remained the same in their study as well. This reduction in somatic 

component indicates that a dimension of anxiety about the experiment, the esthesiometer and 

the stimuli (in any combination) decreased as the study progressed, though cognitively anxiety 

remained the same. There were also interactions of factors in how the anxiety changed during 

the study. The cognitive component of state anxiety was lower for male participants compared 

to females during the study. A similar observation was observed for non-contact lens wearers 

and contact lens wearers. This was surprising because contact lens wearers who are habituated 

to experiencing closer objects, still had more cognitive and somatic anxiety than non-contact 

lens wearers. Interactions were observed between the asymptomatic and symptomatic groups 

of participants as well.  

 Relationship between psychological and psychophysical parameters: 

The psychological components were evaluated to analyze the relationship between the 

psychological and psychophysical variables. The inclusion of evaluating psycho-social factors 

in the experiments measuring pain was suggested in pain literature as well.22 There were many 

significant associations between psychological and psychophysical parameters (Table 4-10). 

Most of the associations were observed between the criteria and psychological parameters: 

Both DM and anxiety scores showed these relationships. The significant relationships were 

with either C1s or C4s and the relationships were positive in case of C4 and negative in case 

of C1 and this was consistent for all the significant relationships observed. The reasons for 
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these complex relationships are unclear, but I speculate that the psychological differences 

between the participants becomes manifest when they are forced to assume the most (extreme) 

strict or liberal criterion and their underlying makeup becomes manifest. For example, the 

negative correlation of C1 of the cold threshold stimuli with vigilance score could indicate that 

the participants who are more vigilant assumed a stricter liberal bias because they don’t say 

yes unless they are more certain about it. This tendency also translates to C4 where they show 

a positive correlation (i.e., participants who are more vigilant adopts stricter criteria).  

There were significant correlations between the cold and chemical detection thresholds 

with the DM vigilance scores. None of the other relationships with the psychological 

parameters were significant. The correlations were dependent on whether the subjects were 

symptomatic or asymptomatic. The cold thresholds were negatively correlated with the 

vigilance scores for symptomatic group, but they were positively correlated for the 

asymptomatic group. A possible reason for the positive correlation is that people who are more 

vigilant tend to adopt stricter criterion. The opposite relationship in the symptomatic group 

could be a result of habituation to the pre-existing discomfort that is more likely to occur in 

participants who are less vigilant. A similar negative relationship was observed between the 

chemical threshold of symptomatic group and vigilance scores. Because there was no 

correlation with mechanical stimulus, the possible implication is that the habituation is due to 

a chemical/ cold stimulus.  

Similar to the DM scores, an interaction of gender was observed in the correlation 

between mechanical detection thresholds and cognitive scores of trait and state anxiety. Male 

participants with higher cognitive anxiety had a high mechanical threshold, whereas the female 

participants with high cognitive anxiety had a low threshold. A gender difference in corneal 

sensitivity has been shown before, but the contribution of psychological components has never 

been obtained. Our study shows that there is a possible confounding variable in the form of 

anxiety affecting the responses. A similar observation has been seen in other pain 

studies.39,40,117–120,124,125   
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Stimulus DM Trait Anxiety State Anxiety 

   Pre Post 

Cold Sub-

Threshold 

lnβ1 (-) Vigilance 

lnβ4 (+) Vigilance 

lnβ4 (+) Buck-

passing 

c1 (-) Cognitive 

c4 (+) Somatic 
c4 (+) Somatic c1 (-) Somatic 

Cold Threshold 

c1 (-) Vigilance 

c4 (+) Buck-passing 

c4 (+) 

Procrastination 

c1 (-) Cognitive 

c1 (-) Somatic 
 

c1 (-) Cognitive 

c1 (-) Somatic 

Cold 1.5x 

Threshold 

c4 (+) Buck-passing 

c4 (+) 

Procrastination 

c1 (-) Cognitive 

c1 (-) Somatic 

c2 (-) Somatic 

lnβ1 (-) Somatic 

c1 (-) Somatic c1 (-) Somatic 

Cold 2x 

Threshold 

c4 (+) Buck-passing 

c4 (+) 

Procrastination 

c1 (-) Cognitive 

c1 (-) Somatic 

lnβ2 (-) Somatic 

 
lnβ1 (-) 

Cognitive 

Mechanical Sub-

Threshold 

lnβ1 (-) 

Hypervigilance 

lnβ2 (-) 

Hypervigilance 

lnβ1 (-) 

Procrastination 

lnβ2 (-) 

Procrastination 

lnβ1 (-) 

Cognitive 

lnβ2 (-) 

Cognitive 

lnβ1 (-) 

Cognitive 

lnβ1 (-) 

Cognitive 

Mechanical 

Threshold 

c1 (-) Vigilance 

lnβ1 (-) Vigilance 

lnβ2 (-) Vigilance 

 

c1 (-) Somatic 

c4 (+) 

Cognitive 

 

Mechanical 1.5x 

Threshold 
c3 (-) Vigilance c1 (-) Somatic   

Mechanical 2x 

Threshold 
 

c1 (-) Somatic 

c2 (-) Somatic 

lnβ1 (-) Somatic 

c4 (+) 

Cognitive 

c4 (+) 

Cognitive 

Chemical 

Threshold 
c1 (-) Procrastination  

lnβ1 (-) 

Cognitive 
 

Chemical 2x 

Threshold 

lnβ4 (-) Buck-

passing 
  lnβ1 (-) Somatic 

Table 4-10: Summary of significant relationships between the bias from SDT and psychological 

parameters. (+) indicates a significant positive correlation and (-) indicates a significant negative 

correlation.  
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 Limitations 

There were a few instrument and psychophysical method related limitations in this 

experiment. The instrument related limitations were the Belmonte esthesiometer’s stimulus 

range and the time taken to prepare the chemical stimuli. The Waterloo Belmonte 

esthesiometer has a reliable stimulus flow rate range of 10-200 ml/min. In addition, the 

maximum concentration of added CO2 in chemical stimuli can be only 100%. Since the MSDT 

experiment has stimuli of intensities at detection threshold, as well as sub-threshold (0.5x 

detection threshold) and supra-threshold (1.5x and 2x detection threshold) levels, the 

limitations arise when the scaled intensities fall outside the stimulus range available. For 

example, if the participant has a high chemical detection threshold of 70%, both supra-

threshold intensities (105% and 140%) are outside the physical range of concentrations 

possible. Similarly, if the participant has high mechanical detection threshold of 115 ml/min, 

the 2x supra-threshold (230 ml/min) stimuli would be outside the stimulus range available from 

the Waterloo Belmonte instrument. The stimulus range cannot be increased and the options 

available were not to test that particular intensity or not to use that participant data. But losing 

two stimulus intensities would affect both stimulus probability and overall duration of the 

MSDT experiment. So, the participants with high detection thresholds (2 of 41 participants 

recruited) were dropped from the experiment.  

Similarly, there was also limitation with stimulus range for participants with low 

detection thresholds of cold or mechanical stimulus. The intensity of sub-threshold stimuli 

would be out of range of the esthesiometer if the detection thresholds were below 20ml/min. 

To overcome this limitation, for participants with detection thresholds between 15-20 ml/min, 

the intensity of the sub-threshold stimuli was set at 10 ml/min. If the detection thresholds were 

lower than 15 ml/min, then the sub-threshold stimuli trials were replaced with blank trials. The 

stimulus probability would be affected by the replacement of sub-threshold trials with blank 

trials but considering the low intensity of the stimulus, it was assumed it would not produce 
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larger difference to the stimulus probability. This would also keep the duration of the 

experiment constant across participants.  

The limitation of longer time taken to prepare each chemical stimulus trial was 

addressed by using fewer intensities compared to cold and mechanical stimuli experiments. 

Fewer intensities also meant fewer trial to keep the overall time and stimulus probability 

similar as other two stimuli experiments. The number of ratings were reduced to avoid rating 

categories with zero frequency responses. An unavoidable (obvious) consequence of these 

changes was observed in the analysis when detection indices were compared between stimulus 

types due to difference in the number of ratings and number of intensities between stimulus 

types. Instead of overall comparison between all 3 stimulus types using ANOVA, analyses 

were obtained for each intensity. Similar analyses were conducted for bias as well. This 

modifications in the analyses did not alter the hypothesis tests possible (except for those tested 

with the, perhaps, irrelevant omnibus F-test) but the principle concern was to keep the 

mechanical, thermal and chemical trials approximately equal length, in order to eliminate the 

possibility of participants showing different fatigue effects with different stimulus types, and 

therefore affecting the SDT decision metrics as well as the psychometric predictors.  

In addition to the changes in number of trials, intensities and ratings for chemical 

experiment, there might be a general MSDT method limitation for all stimulus types used in 

this experiment. The MSDT parameters (number of trials, stimulus probability, number of 

intensities, number of catch trials and number of ratings) were assumed to be best for this 

experiment based on non-OSSP MSDT literature. There have never been studies to test the 

effects of different MSDT parameter combination on OSSP experiments. Since these would 

essentially be about signal detection theory, and my thesis used detection theory to examine 

ocular surface processes, the extensive experimental studies need to be conducted to analyze 

the effect of each parameter and find a best combination of MSDT parameters, which was 

beyond the scope of this thesis. The results do however demonstrate that the 

estimates/compromise parameters selected, allowed the revelations reported in the previous 
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chapter and so it seems that if not optimum, the parameters selected did not appear to mask the 

effects found. 

Training was provided to participants to familiarize them to the experiment, audio 

prompts during the experiment and how to use the response button box. Participants were also 

trained to appreciate/recognize threshold intensities, prior to MSDT trials. Because of the 

inclusion of anxiety measurement between experiments, training was not separately provided 

for participants to familiarize themselves with each stimulus intensity. Future work may be 

needed to evaluate the exact effect of protracted training and also the effects of perceptual 

learning on the sensory and decision metrics used in this experiment. There has been no reports 

covering ocular surface processing that have ever raised/addressed this topic.  

 Summary: 

MSDT is feasible for analyzing ocular surface sensory processing and provides insight 

into the possible bias associated with the use of pneumatic stimuli. The detectability of scaled 

threshold intensities showed a systematic increase, and the bias varied within the stimulus type. 

With noxious and non-noxious pneumatic stimulation, detectability and criteria vary 

systematically with stimulus intensity, a result that cannot be derived using classical 

psychophysics. Both decision-making and anxiety showed relationships with the bias, which 

may influence the threshold measurements if not properly controlled. 
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Chapter 5 

Discussion 

The experiments in this thesis were about the sensory and decisional aspects of ocular 

surface sensory processes along with an evaluation of the effects of clinical and psychological 

factors. The objective of this thesis was to gain insight into the sensory mechanism underlying 

the detection of several ocular surface stimuli and the associated bias. Also, to relate these 

findings to a few clinical and psychological factors that may have an effect or an association 

with the sensory detectability and associated decisions. This is the first set of experiments with 

pneumatic corneal esthesiometer that have been conducted using signal detection theory 

examining the ocular surface sensory processing (OSSP) and a subset are also the first 

experiments to analyze the relationships between the psychological and psychophysical 

aspects of detecting ocular surface stimuli.  

In addition to the sensory characteristics of the esthesiometer stimuli, some of the 

physical characteristics of the stimuli were also needed to be evaluated. There were studies on 

the calibration of mechanical and thermal components of the pneumatic stimuli but there were 

no similar studies available for the chemical stimuli.1–4 In all previous works specifying 

additional CO2 (‘added CO2’ or ‘CO2 concentration’ or ‘%CO2’), the concentration of CO2 in 

the chemical stimuli was nominal, measured internally by flow meters and reported by the dials 

on the instrument. This means the %CO2 reflected the CO2 concentration somewhere inside 

the instruments and not the concentration at the ocular surface. The speculated reasons since 

none of the articles explicitly described the reasons for using nominal CO2 were the 

unavailability of proper calibration device and the assumption that smaller working distance 

and laminar flow of the gases will produce only a minimal drop in the concentration which is 

possibly insignificant. The concentrations have never been estimated at the ocular surface – 

how does concentration vary in the column between the tip of the esthesiometer and the ocular 

surface? With more advanced and portable CO2 sensors available and the possibility of 
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obtaining instantaneous %CO2 measurements, in Chapter 2 of this thesis, the calibration of the 

CO2 stimuli was conducted at different working distances. Contrary to the beliefs, a larger and 

significant loss in the %CO2 was observed even at the shortest working distance (Figure 2-5, 

2-6). Also observed were even larger reductions in the concentration with an increase in the 

working distance (Figure 2-5, 2-6). Even with reduced concentrations, all the stimuli that were 

calibrated on this experiment had good test-retest repeatability indicating consistent stimulus 

flow rates and concentrations generated by the esthesiometer each trial and a consistent loss in 

the CO2 to the surroundings while the stimulus is traveling from the esthesiometer nozzle to 

the testing surface. It is recommended from these results that the use of smaller working 

distances and lower flowrates (below 100 ml/min) are optimal for chemical stimuli 

experiments.  

The initial intent of this calibration experiment in this thesis was to conduct data 

analyses in subsequent experiments using both the nominal and calibrated concentrations. 

Though this experiment provided insights about the physical characteristics of the chemical 

stimuli, there were a few limitations in the experimental design and CO2 sensor used in this 

experiment that suggested the need for further experimentation before using the calibrated 

%CO2 for analysis. Since the sensor worked on the principle of diffusion with a larger gas 

collection chamber compared to the volume of the stimulus delivered and continuous exchange 

of the gases inside the chamber, the stimulus had to be delivered for longer (99 seconds) than 

the usual stimulus duration of 2 or 3 seconds. Also, for calibration, a room temperature CO2 

was used instead of actual heated CO2 stimuli due to the use of non-dispersive infrared (NDIR) 

technology to quantify the %CO2 inside the gas chamber. The sensor may produce conflicting 

values with changes in the temperatures inside the chamber. Considering the limited choice of 

CO2 sensors that were available for this type of application and the limitations highlighted 

before, calibrated concentrations were not part of further analyses in other experimental 

chapters and only nominal concentrations were used. A suggestion provided by the external 

examiner is to consider mass estimate of the stimuli (kg/min) delivered instead of flow rates 
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and concentrations. This is not done because volumetric flow has been used as a standard 

metric of pneumatic esthesiometry since its development by Belmonte et al.5 (eg. Figure 2). 

On the other hand, even if it were mass and not volumetric flow that was the most accurate 

scale for the predictor variable, the transducer functions show (Figure 4.7, Figure 4.11 and 

Figure 4.15) how well-behaved detectability (the sensory outcome) versus flow (the predictor 

outcome) relationships are. This suggests that gains in rescaling the predictor variable would 

be modest. In addition, the mass unit addresses only one aspect of the stimuli tested 

(mechanical) but the esthesiometers also use chemical and thermal components which cannot 

be differentiated one from other if just volumetric unit is used. 

Chapters 3 and 4 were experiments that were conducted with two different SDT 

methods to measure sensory and decisional components of ocular surface sensory processing. 

A basic yes or no single intensity SDT was used in Chapter 3 and a multi-criterion multi-

intensity SDT was used in chapter 4. The primary reason for using SDT is that the sensory 

processing of the pneumatic stimuli could be estimated independent of the bias and the bias 

could be estimated in the same experiment as well, unlike classical psychophysical methods in 

which both are not feasible (classical theory simply does not include decision component 

estimation). Also, in classical psychophysical methods, the sensory estimates obtained in the 

form of thresholds are in different units depending on the type of stimulus tested. This impedes 

the comparison of results between the stimulus types. Whereas the sensory estimate of SDT, 

detectability or d’, gives how detectable the given stimulus is from the background noise. d’ is 

independent of bias and can be compared between different stimulus types provided the 

intensities are matched. There were multiple options provided in the literature to match the 

stimulus, but the viable options for OSSP experiments were matching with stimulus intensity 

or detection thresholds due to the complexity of the experiments and lack of relatively 

sophisticated instruments (esthesiometers). Matching the stimulus across stimulus types with 

a randomly chosen intensity is not feasible due to the difference in the units of measurements 

of each stimulus type, as well as possible physiological and neuro-physiological differences in 
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how each stimulus type is detected. For example, if the randomly chosen intensity was 50, a 

50 ml/min cold stimulus is not the same as a 50 ml/min mechanical or 50% chemical stimulus. 

Similarly, choosing a specific intensity based on previous studies is also not optimal due to the 

wider detection threshold range in the studies even for a normal or asymptomatic group of 

participants.4–19  

The other feasible option is to match the stimulus using the detection thresholds and 

this method has been used before in studies with esthesiometer to scale the intensities between 

participants such as using sub or supra thresholds stimuli to understand other aspects of 

OSSP.15–17,20–23 However, though not explicitly stated in previous experiments, the thresholds 

were used to scale the intensities under the assumption that the bias was similar across the 

participants (there is no preference to say yes/no to the trials). The reason for this assumption 

is because of the limitation with the classical psychophysical methods with which bias could 

not be estimated.24 The use of thresholds to match the stimuli across stimulus types is also not 

perfect because bias is unknown and it could alter the thresholds obtained. For example, a 

trigger happy participant could say “yes” to all the trials resulting in a completely different 

sensory threshold than actual. But since the main objective is to match the stimulus across the 

participants to find the sensory and decisional aspects of the stimulus, the detection thresholds 

were used as the baseline for the signal trials of SDT experiments.  

In chapter 3 of this thesis, a basic yes-no SDT experiment was conducted to estimate 

the sensory and decisional aspects of 1.5x detection threshold intensities stimuli. Since this is 

the first of a kind experiment among ocular surface sensory processing experiments, relatively 

easily identifiable stimulus intensity was chosen based on the literature.16,25,26 The experiment 

was conducted with a relatively ‘conservative’ signal probability of 40% in 100 trials of 

mechanical and cold stimuli, and 50 trials of chemical stimuli. The results from this experiment 

were that the supra-threshold stimuli (mechanical, chemical, and cool) were detected 

differently from each other, though the intensities were matched and scaled (Figure 3.4). 

However, the bias calculated was similar across stimulus types and the bias was towards the 
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stricter side of the criterion as the experiment designed (Figure 3.6). There also appeared to be 

some difficulty in the detection of supra-threshold stimuli by a few participants, resulting in 

lower average detectability for the group. In addition to estimating the sensory and decisional 

aspects, these SDT estimates also allowed testing specific theories that were based on previous 

literature on corneal neurophysiology. 

As mentioned earlier, the comparison between the stimulus types was not feasible with 

detection thresholds. But with the SDT estimates, comparisons could be performed as d’ and 

bias has the same units for all stimulus types. Based on the literature, three hypotheses were 

proposed (Section 3.2.1(restrictive hypothesis)) and the support for these hypotheses by the 

SDT estimates was analyzed using Bayesian analysis. The nerve conduction hypothesis tested 

the physiological theory that two kinds of nerve fibers exist in the human corneal sensory 

processing which is similar to other non-primate literature. The second hypothesis on the 

nociception tested the physiological theory that there are two kinds of pain perception 

(nociceptive and non-nociceptive) in the human corneal sensory processing similar to non-

primate literature. The third hypothesis tested the physical characteristics of the esthesiometer 

stimuli in particular the similarity between mechanical and cold stimuli. Considering the 

current impossibility of performing in-vivo neurophysiology experiments on human corneas, 

the results provided a direct test of theories using psychophysical data obtained from human 

participants instead of electrophysiological data. The analyses showed support for both nerve 

conduction and nociception theories but did not find any support for using cold stimuli as a 

replacement for mechanical stimuli. The d’ of cold and mechanical stimuli were different from 

each other. This indicates the presence of a similar neural mechanism in humans as in animals 

(as previously hypothesized by Feng and Simpson17) but there are still questions on the density 

of these receptors and their receptive fields and the higher-order processing mechanism of 

these pneumatic stimuli. 

The chapter 3 experiments provided a lot of insights into the psychophysical, sensory, 

decisional, and neurophysiological aspects of ocular surface sensory processing of pneumatic, 
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however, there were a few limitations in the study to consider for further experimentation. The 

detection parameters were estimated only for supra-threshold stimuli that were scaled to 1.5x 

the detection threshold and the responses provided by the participants were binary (yes/no) 

which does not help in identifying the changes in the criterion that may have occurred during 

the experiment, as they reported the stimuli as only presence/absence. There was also a 

different group of participants for each stimulus type but the male to female ratio (roughly 6-

7 male and 3-4 female) and age group was similar for all three stimulus types. Less than half 

the subjects were repeated for each stimulus type, and since there is no priori reason to suppose 

that d’ would be correlated across stimulus types, unpaired analysis were used. This was later 

addressed in the MSDT experiments (chapter 4) were same set of participants participated in 

experiments of all three stimulus types. In addition, a lack of understanding of the empirical 

effect of psychological factors on sensory processing of pneumatic stimuli provided the 

impetus for the development of hypotheses related to the effects of decision making and 

anxiety on ocular surface sensing: This, in turn, resulted in the inclusion of psychometric 

instruments examining decision and anxiety predictors. What was therefore done was a multi-

intensity multi-criteria SDT (MSDT) experiment (chapter 4), with additional assessments of 

effects of clinical (dry eye symptoms and contact lens wear) and psychological (decision and 

anxiety) predictors on the sensory and bias estimates.  

There were a few basic theoretical predictions, based on detection theory that provide 

simple tests of internal validity of the experimental methods and/or outcomes, that can be 

examined in Chapter 4. First, the detectability of pneumatic stimuli increased systematically 

with an increase in the intensity of stimuli. Of course, this is a seemingly trivial result, but 

using the rating methods chosen and the intensities selected, there is no prior necessity for this 

to have been the case. Second, bias also changed systematically. These results were observed 

for all three stimulus types and they illustrate, for the first time, that systematic changes in both 

sensory and decisional aspects of ocular surface sensing are in line with what would be 

expected directly from signal detection theory. 
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These results are perhaps more crucial due to the lack of human corneal 

electrophysiological studies conducted to understand the noise characteristics, signal 

conductance, and higher-order processing of the stimuli. In addition to these issues, I 

speculated a noisy corneal sensory processing because the detection of the stimuli could be 

easily masked by the normal background process like the detection of tear film breakup, 

background activity of cold neurons, and detection of stimulations caused by blinking/ ambient 

room conditions. Contrary to speculations, the group’s MSDT data for all three stimulus types 

followed the assumptions of SDT and the da for each stimulus intensity was significantly 

different from the other (Figure 4.3). The ROC curves from the group data showed a good 

separation of the curves between the stimulus intensities with very high R-square values 

(Figure 4.6, Figure 4.10, Figure 4.16). The slopes of the z-ROCs were very close to 1 as well. 

These indicate the adherence of data to Gaussian distribution and equal variance. However, the 

MSDT data of a few participants deviated from what might be predicted if the noise and signal 

+ noise distributions were gaussian mainly when the false alarm rates were low resulting in 

crowding of all data points at one end of the distribution. This might be because there was a 

relatively low number of trials for each stimulus (especially for chemical stimuli) compared to 

the grouped data. The number of trials (when considered for individual intensity) was also 

lower than traditional SDT experiments which suggests using more number of trials.27–29 More 

experiments examining the number of trials and intensities are needed to understand the effect 

of these parameters on the detection of pneumatic stimuli.  

Among the ROC curves obtained for different stimulus intensities, the group ROC 

curve for the cold sub-threshold stimulus was slightly negative. Cold is a non-nociceptive 

stimulus and the sub-threshold intensity might be very difficult to differentiate from noise and 

so sometimes might be anticipated to produce a low negative d’ in the same way as you might 

expect a stimulus that is difficult to differentiate from noise to produce a low positive d’. The 

data were not removed, as this change is happening only for this particular intensity among all 

others tested. In addition, cold receptors have a background activity in general and perhaps this 
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might have added more difficulty to detect a sub-threshold stimulus. Also, as is apparent in the 

figure of the cold transducer function (Figure 4.7) the slightly negative d’ in no way detracts 

from the very good, almost perfectly linear relationship. Even though at the sub-threshold level 

an “almost impossible” detectability was estimated, the fact that its standard error of the 

estimate of the mean d’ included zero, illustrates that its computed value should not be over 

interpreted. Finally, even though it is negative, there were also a number of significant 

relationships observed between the log-likelihood ratio for the sub-threshold stimulus and 

psychological parameters.  

The MSDT experiments were also conducted with an aim of analyzing the effects of 

some clinical parameters. These were the presence of symptoms of dry eye, and contact lens 

wear. Both of these predictors have been shown to have contrasting effects on corneal 

sensitivity.12,26,30–43 In my experiments, only cold thresholds were found to be different 

between the groups based on symptoms, and no effect of contact lens wear was seen for any 

of the stimulus type tested. In the comparison between stimulus intensities and da, neither 

symptoms nor lens wear showed significant interactions for any stimulus type but there were 

a few significant interactions observed in the comparison between stimulus intensity and bias. 

This indicates that there is no effect of the predictors on the detection of stimulus but the 

predictors might have an effect on the bias. This is significant because bias can influence the 

threshold in the classical psychophysical methods and that might be the source of contrasting 

results from the studies that evaluated the effect of predictors on corneal sensitivity.  

The contact lens wearers used stricter bias compared to non-contact lens wearers for 

chemical stimuli of threshold intensity (Figure 4.13). However, the bias was similar for 

chemical stimuli of 2x threshold intensity. A similar but the opposite effect was seen in the 

comparison between groups based on symptoms. The symptomatic participants used stricter 

bias compared to asymptomatic participants for chemical stimuli of 2x threshold intensity and 

no difference in bias for threshold intensity stimuli. The above interaction was observed only 

for the chemical stimuli and similar effects were not observed for mechanical and cold stimuli. 
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The differences in bias was possibly due to the difference in the type of discomfort experienced 

by the two groups of participants. Both symptomatic participants and contact lens wearers 

experience some level of discomfort, but whether they experience a similar type of discomfort 

is unknown. I speculate that habituated contact lens wearers suppress the low-level discomfort 

and have a stricter bias when they respond to lower intensity stimuli as the sensation produced 

by the lower intensity stimuli might get suppressed or participants might think the sensation as 

a result of contact lens-related dryness. On the other hand, the symptomatic participants 

experience higher levels of discomfort and have a stricter bias in response to more intense 

stimuli. More experimentation is needed to further understand the bias in each of these groups.  

Along with the MSDT OSSP experiment, anxiety and general decision-making were 

evaluated. I expected the results, using the instruments I selected, to be in line with previous 

validation work, therefore demonstrating both internal and external validity of the data I 

collected: Fortunately, and buttressing these expectations, both the anxiety and decision data 

were remarkably similar, in many ways, to the previous work used to demonstrate the 

instruments’ validity.44,45 Since these validation studies were not conducted on a Canadian 

sample, and in a way not resembling an experimental setting similar to my experiment, the 

external validity of the scores helped reassure me about the quality of the metrics I obtained. 

In general, my sample had higher vigilance scores compared to other dimensions of decision-

making and had more cognitive trait anxiety compared to somatic trait anxiety. Though the 

somatic component of state anxiety declined with study visits, the cognitive component stayed 

the same throughout the study: This result was in accord with a broad theory that we have, that 

participants’ anxiety should lessen during the experiment, as they get more familiar with the 

experimental procedures, and realize that the stimuli are less painful than their imagined 

stimulus intensity/painfulness before they began the experiments. This perhaps indicates that 

participants might feel less anxious in some ways as the study progressed, but at a cognitive 

level might understand that some aspects of their anxiety are unchanged: This difference (or 

perhaps even conflict in aspects of anxiety) might very well be expected to influence their 
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decisions, and so affect the psychophysical results, as was found. This theoretical expectation 

is again supported in the number of significant relationships observed between the anxiety and 

bias/decisional metrics but not with the sensory metrics. Consistent negative relationships 

were observed between anxiety and liberal bias metric (c1) indicating that more anxious 

participants adopted more liberal criteria. A few positive relationships were observed between 

anxiety and strict bias metric (c4) indicating that anxious participants were adopting stricter 

biases than less anxious participants. On the other hand, the decision-making showed a 

different relationship with bias metrics compared to anxiety. The bias for non-noxious cold 

stimuli had more positive relationships with DM metrics, while the bias for noxious 

mechanical and chemical stimuli showed all negative relationships with DM metrics. Of these 

relationships with the decision metrics, a majority of those relationships for the cold stimuli 

were observed for the stricter end of the bias (c4) whereas the relationships for nociceptive 

mechanical and chemical stimuli were observed for the liberal end of the bias (c1) (Table 4-5).  

The state anxiety was measured before and after threshold experiments at each study 

visit and the progression of the state anxiety was evaluated along with the interaction of clinical 

factors. Both contact lens wearers and symptomatic participants have shown significant 

interaction in the progression of state anxiety levels with study visits. The cognitive and 

somatic components of state anxiety were similar for the control group (either asymptomatic 

or non-contact lens wearers), whereas the symptomatic group and contact lens wearing group 

had cognitive and somatic scores different from each other. The reason for these interactions 

is unknown and these relationships warrant future studies to analyze the effect of psychological 

parameters in OSSP and inclusion of psychological estimates in all OSSP studies.  

In summary, I made a number of important scientific discoveries in my thesis: First, 

the column of air that is the pneumatic stimulus is more complex than has previously been 

assumed. The psychophysical results show for the first time that signal detection theory applies 

to complex stimulus intensities and criteria/biases adopted in my experiment. Also, contact 

lens wear and dry eye symptoms can be much more fully explored with these signal detection 
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methods than with traditional psychophysical tools. Finally, and importantly, relatively 

uncomplicated psychometric instruments may be used to show how complicated decision 

making and anxiety seem to be during these types of pneumatic esthesiometry experiments, 

and that these psychometric variables are related to detection theory detectability and bias 

outcomes estimated when ocular surface sensory processing occurs. 
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Appendix A Questionnaires 

DEQ-5 Questionnaire: 
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Melbourne Decision Making Questionnaire 
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State-Trait Inventory for Cognitive and Somatic Anxiety- Trait Anxiety: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 1: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 2: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 3: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 4: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 5: 
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State-Trait Inventory for Cognitive and Somatic Anxiety- State Anxiety- Version 6: 
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