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Abstract 
 
Poly (o-anisidine) (PoANI) and PoANI doped with nickel oxide and zinc oxide were evaluated as 
sensing materials for four gas analytes (methanol, ethanol, acetone, and benzene). The sensing 
materials had high sensitivity (showing an affinity towards the target analytes even at low 
concentrations, in the range of 1 ppm to 5 ppm), but rather poor selectivity, especially when the 
gas analytes were in a mixture. To exploit the poor selectivity, the three sensing materials were 
combined into a sensor array using principal component analysis (PCA) as a sensing algorithm. It 
was found that using a sensor array, the four individual gases could be separated. However, when 
all four gases were present (in analyte mixtures), there was too much overlap in the responses to 
distinguish between individual gas analytes and their related mixtures.  
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1 Introduction 
 
Sensor arrays or electronic noses (e-noses) have been developed for a wide variety of applications, 
including discrimination between and detection of specific ingredients in food1,2 and beverage3,4 

industries, wastewater assessment5, disease diagnosis6,7, and chemical process analysis8. Sensor 
arrays combine multiple sensing materials into one sensor. The response from each of the sensing 
materials is incorporated into some algorithm (often an artificial neural network), which analyzes 
all of the data and provides an output where specific analytes are identified.5 For an effective sensor 
array, both the algorithm and the sensing materials are important. 
 
The algorithms are used in principle to discriminate between different analytes through pattern 
recognition. Fine-tuning an algorithm can improve the selectivity of a sensor array for a specific 
application.9 However, as a proof of concept, widely available cluster analysis tools, such as 
principal component analysis (PCA), are used by researchers.10,11 
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When selecting sensing materials, the specific materials do not need to exhibit high selectivity 
towards different analytes (that is, they do not need to sorb one specific analyte significantly more 
than other competing or interfering analytes). However, the response pattern should be different 
from that of the other sensing materials used.12 A pattern with a larger variation in sensing material 
response to gas analytes generally means that fewer sensing materials may be needed in a sensor 
array.13 In other words, if two materials respond similarly to gas analytes (sorbing approximately 
equal amounts of a given analyte, showing similar affinity to specific gas mixtures, etc.), 
incorporating both materials into a sensor array may not show significant improvement in terms 
of gas analyte separation and/or identification (compared to only using one of the materials in an 
array). Rather, in developing a sensor array, the goal is to find materials that respond uniquely; if 
material A preferentially sorbs a different analyte than material B, using the two materials in a 
sensor array will complement each other and enrich the information content of the array. Therefore, 
synthesizing, characterizing and evaluating sensing materials for various applications and 
environments are all important steps/aspects for the development of new sensor arrays.   
 
Poly (o-anisidine) (PoANI) is a derivative of polyaniline and has been used as a sensing material 
for a variety of volatile organic compounds (VOCs), including aliphatic alcohols and aldehydes.14-

16 Since it has been used as a sensing material for multiple VOCs, it has partial selectivity. This 
means that PoANI can respond somewhat non-discriminately to a range of gases; this non-specific 
sorption can be advantageous for sensor arrays, since it shows a partial response to several different 
gas analytes. However, to provide some specificity (that is, to improve the selectivity of PoANI), 
the material was often doped with nickel (II) oxide (NiO) and zinc oxide (ZnO).10,17 Selectivity is 
a measure of how much a sensing material favours a target analyte over other possible interferents 
(or competing gases) and can be calculated as per Equation 1.  
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 
(1) 

 
These three polymeric materials (pure PoANI, PoANI doped with NiO, and PoANI doped with 
ZnO) were evaluated as sensing materials for methanol, ethanol, acetone, and benzene. In addition, 
a sensor array was assessed using these three sensing materials and PCA as the ‘clustering’ 
algorithm. 
 
2 Experimental 
 
2.1 Material Synthesis 
 
The poly (o-anisidine) (PoANI) nanocomposites were synthesized by mixing o-anisidine 
(monomer), ammonium persulfate (initiator), and (if present), the dopants in deionized water. All 
chemicals were used as received. Up to 0.41 mL of o-anisidine (A.C.S. reagent, Sigma-Aldrich, 
Oakville, Ontario, Canada) was added to 20 mL of deionized water along with the metal oxide 
dopant (20 wt. % of the total polymeric sample weight). Two dopants were used: nickel (II) oxide 
(particle size < 50 nm, 99.8 % purity, Sigma-Aldrich, Oakville, Ontario, Canada) and zinc oxide 
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(ZnO) (particle size <100 nm, 50 wt. % in water, Sigma-Aldrich, Oakville, Ontario, Canada). The 
(doped) monomer solution was mixed using a sonicator for 30 minutes. It was then cooled to -1˚C 
before adding a solution containing 1.0 g of ammonium persulfate (A.C.S. Reagent, Sigma-
Aldrich, Oakville, Ontario, Canada) in 5 mL of deionized water. The resulting solution was shaken 
by hand for 1 minute to ensure thorough mixing, then left to polymerize (at -1˚C) for 6 hours. The 
polymer was filtered (out of the solution) using a Büchner funnel and Whatman #5 filter paper, 
washed with acetone, and subsequently left overnight to dry in air. The PoANI nanocomposites 
were stored under atmospheric conditions in 20 mL scintillation vials.18 
 
2.2 Gas Sorption Test System 
 
A specially designed gas test system was used to evaluate the sorption capabilities of different 
potential sensing materials. The set-up exploits a difference in gas concentration (before and after 
exposure to the sensing material) to establish how much of the target analyte has been sorbed. The 
test system consists of an analyte source (standard grade mixtures of a gas analyte in a balance of 
nitrogen) in gas cylinders, with the gas flow controlled by MKS RS-485 mass flow controllers 
(MFCs). The gas flows through an MKS 640A pressure controller (PC) and an MKS 1179A flow 
meter (FM) to ensure the pressure remains above 15 psi and that the flow rate is maintained at 200 
sccm. Each gas analyte (or gas analyte mixture) passes through a 100 mL round bottom flask, 
which contains a sample of the sensing material. 
 
Before the gas analyte flows over a specific sensing material, a ‘blank’ run can be performed (an 
empty flask is used to establish the baseline). Results are collected using a highly accurate Varian 
450 gas chromatograph (GC) (with a specialized photon discharge helium ionization detector 
(PDHID)), which determines the gas concentration for the case of no sorption. When the sensing 
material is present, i.e., once the empty flask is replaced with a flask containing polymeric material, 
the gas stream again flows into the GC, which can distinguish between similar analytes and record 
concentrations down to the parts-per-billion (ppb) level (see Figure 1).19 
 
 

 
Figure 1 Experimental test set-up, where MFC, PC, and FM are mass flow controller, pressure controller, 
and flow meter, respectively.   
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2.3 Evaluation of Potential Sensing Materials 
 
Test samples of each PoANI nanocomposite were prepared by adding 0.120 g of sample to a 100 
mL round bottom flask with 5 mL of ethanol. Each sample was swirled around the flask to coat 
the interior of the flask, and then placed in an oven at 50˚C for 18 hours. The samples were cooled 
to room temperature (21˚C) before being tested. 
 
Prior to evaluation, each sample was purged with dry nitrogen (5.0 grade, Praxair, Mississauga, 
Ontario, Canada) for 60 minutes. This purge was conducted immediately before a sample was 
exposed to an analyte. Four gas analytes were used to evaluate the effectiveness of these polymeric 
nanocomposites as sensing materials. These gas analytes were all approximately 5 ppm, standard 
grade mixtures in a balance of nitrogen (Praxair, California, USA): methanol (4.66 ppm), ethanol 
(5.00 ppm), acetone (5.50 ppm) and benzene (5.10 ppm). 
 
The PoANI nanocomposites were evaluated (at room temperature, around 21˚C) by exposing each 
PoANI nanocomposite to specific concentrations of different gas analytes (methanol (M), ethanol 
(E), acetone (A), and benzene (B)) individually and in mixtures (up to all four gases). Mixtures 
containing approximately 1 ppm (three- and four-gas mixtures), 2 ppm (two-gas mixtures), and 5 
ppm (individual gases) of each analyte were used and the PoANI nanocomposites were exposed 
to the gas for at least 60 minutes to ensure that equilibrium had been reached. The amount that did 
not sorb onto the PoANI nanocomposite was measured using the highly specialized GC. By 
subtracting this amount from the initial concentration exposed (from the ‘blank’ run verification 
measurement), the amount of gas analyte that sorbed onto each PoANI nanocomposite was 
ascertained. Three independent replicates were conducted for each polymeric nanocomposite for 
each gas tested.   
 
3 Results and Discussion 
 
3.1 Sorption Performance 
 
The three sensing materials (PoANI, PoANI 20% NiO, and PoANI 20% ZnO) were independently 
exposed to each of the four (individual) gas analytes (methanol, ethanol, acetone, and benzene); 
sorption results are shown in Figure 2. In terms of sensitivity, PoANI 20% ZnO showed the highest 
sorption, which indicates that it was the most sensitive (had the highest affinity to most of the 
gases). In comparing the sorption of the four gas analytes, PoANI 20% ZnO was most sensitive to 
methanol (that is, methanol had higher sorption onto PoANI 20% ZnO compared to the other 
analytes). However, the selectivity of the PoANI 20% ZnO should also be considered. Since 
methanol had the highest sorption for PoANI 20% ZnO, we can designate it the target analyte (as 
per Equation 1). The selectivity towards methanol was 1.1 with respect to ethanol (Msorbed/Esorbed 
= 1.1), 1.5 with respect to acetone, and 7.1 with respect to benzene. This indicates that the 
selectivity of PoANI 20% ZnO towards methanol was low with respect to ethanol and acetone, but 
high with respect to benzene.  Therefore, despite good sensitivity, PoANI 20% ZnO exhibited poor 
selectivity. 
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In contrast, PoANI had the lowest sensitivity (lowest affinity) for all four gas analytes (this is 
evidenced by the significantly lower amount of each analyte sorbed compared to both NiO-doped 
and ZnO-doped PoANI. This validates the decision to add metal oxide dopants to the pure PoANI, 
since both metal oxide-doped materials increase the amount of each analytes sorbed. As shown in 
Figure 2, PoANI promoted acetone sorption more than the sorption of other gas analytes (therefore, 
it was partially selective towards acetone). Specifically, PoANI had a selectivity towards acetone 
of 2.5 with respect to methanol, 2.0 with respect to ethanol, and 8.8 with respect to benzene (note 
that these calculations consider acetone as the target analyte, since it is sorbed in the largest 
proportion, and that Asorbed would be used in the numerator as per Equation 1). Given this 
information, PoANI can be useful in a sensor array (which will be discussed in what follows), but 
the low sorption (poor sensitivity) and low selectivity suggest that PoANI would be a poor stand-
alone sensing material for these analytes. For many applications, selectivity of 2.0 is not high 
enough, as it may result in too many false positives.   
 
Finally, PoANI 20% NiO had moderate sensitivity (better than PoANI, but generally lower 
sorption than PoANI 20% ZnO), and selectivity was poor (all four gas analytes showed similar 
sorption). As for the PoANI 20% ZnO, methanol had the highest sorption. Interestingly, even 
though most analytes demonstrated lower sorption on the NiO-doped material (compared to the 
ZnO-doped material), the benzene sorption was twice as high for the NiO-doped material (again, 
compared to the ZnO-doped material). This difference in material responses should enrich the data 
available for multivariate analysis (that is, the development of a sensor array). 
 
Overall, all three sensing materials were rather poor with respect to selectivity on their own, but 
provide a wealth of information that can be combined in a sensor array.   
 

 
Figure 2 The amount of each gas analyte (methanol, ethanol, acetone, and benzene) sorbed onto each 
sensing material (PoANI, PoANI 20% NiO, and PoANI 20% ZnO) when each analyte was tested 
individually. 
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Since multiple analytes are often present in the environment where chemical sensors are used, the 
sensing materials were exposed to different combinations of the gas analytes simultaneously. 
Figure 3 shows the material responses when two-analyte combinations were used, Figure 4 shows 
material responses for three-analyte combinations, and Figure 5 gives each material’s response to 
the mixture of all four gas analytes (exposed to a given polymeric sensing material 
simultaneously).  
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Figure 3 The amount of each gas analyte (methanol, ethanol, acetone, and benzene) sorbed onto each 
sensing material (PoANI, PoANI 20% NiO, and PoANI 20% ZnO) when two analytes were present in the 
gas mixture.  
 

 

 
Figure 4 The amount of each gas analyte (methanol, ethanol, acetone, and benzene) sorbed onto each 
sensing material (PoANI, PoANI 20% NiO, and PoANI 20% ZnO) when three analytes were present in the 
gas mixture. 
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Figure 5 The amount of each gas analyte (methanol, ethanol, acetone, and benzene) sorbed onto each 
sensing material (PoANI, PoANI 20% NiO, and PoANI 20% ZnO) when all four analytes were present in 
the gas mixture. 
 
When gas mixtures are used, the concentration of each analyte in the ‘source’ gas necessarily 
decreases (recall that the individual gases contain ~5 ppm of the target analyte, but that three- and 
four-gas mixtures only contain ~1 ppm of each analyte present in the mixture). This immediately 
reduces the amount of analyte molecules that are available to sorb. Also, as more gas analytes are 
simultaneously exposed to a sensing material, they compete for available sorption (sensing) sites.20 
This often results in lower sorption of each gas analyte, which can be seen in Figures 3 through 5. 
 
As shown in the progression of Figures 2 through 5, the sorption of each gas analyte often 
decreases as the number of gas analytes increases. For example, PoANI 20% ZnO had an ethanol 
sorption of almost 0.4 ppm when ethanol was the only analyte (Figure 2), but the response to 
ethanol dropped to an average of 0.2 ppm when two analytes were present simultaneously (Figure 
3), then down to an average of 0.1 ppm when three-gas mixtures were tested (Figure 4), and finally 
down to 0.08 ppm when all four analytes were simultaneously present in the gas mixture (Figure 
5). 
 
The reduced affinity toward each gas analyte as more analytes are present in the mixture often 
results in lower selectivity (values much closer to 1.0). The poorer selectivity can be seen in 
Figures 3 through 5, compared to the responses of individual gases (Figure 2). Poor selectivity, 
especially when a material is exposed to multiple gas analytes simultaneously (as in a real-world 
application), means that each sensing material cannot be used individually for a sensor. However, 
these sensing materials do sorb these analytes at room temperature and thus, could be used in a 
different application either as a sensor array (to be discussed shortly) or as an absorbent to remove 
analytes from air.   
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3.2 Sensor Array 
 
One way to improve the performance of a sensor is to create a sensor array. A sensor array exploits 
low selectivity of sensing materials by combining the response of multiple materials. The goal is 
to create a signature for an analyte or mixture using a data processing algorithm.21 
 
As a proof of concept, principal component analysis (PCA) was used as the data processing 
algorithm to separate the gas analyte signatures from these three sensing materials. PCA is a well-
known multivariate tool, often used to determine the inter-relationships between variables in large 
data sets. The goal is to explain the variation of a data set with fewer factors than were originally 
provided. By reducing the number of factors (components) in the data set, PCA simplifies the 
analysis while retaining the majority of the statistical information. This is useful for providing an 
understanding of relationships within and between variables and is often useful for troubleshooting 
and/or process analysis.22 For example, plotting data often reveals clusters of data, indicating a 
collection of experimental runs/trials had similar properties and, in some cases, outlying trials. In 
addition, PCA can be used to identify influential variables and provide a qualitative idea of the 
relationships within or between variables. 
 
PCA was applied to the responses from the individual gas analytes (that is, the sorption 
measurements from Figure 2) and two principal components (or factors) were plotted against each 
other (see Figure 6). As a reminder, in Figure 6 (and throughout this work), M stands for methanol, 
E stands for ethanol, A stands for acetone, and B stands for benzene. It should be noted that for 
the individual gases, Factor 1 vs. Factor 3 was used, whereas Factor 1 vs. Factor 2 was used for all 
of the other PCA plots. In general, Factor 1 vs. Factor 2 provides the best separation (since the first 
two factors contain the most statistical information). However, when using PCA as an algorithm 
for sensor arrays, these two factors may not always provide the best separation of analyte 
signatures. It is more important for a sensor array to have good separation of analytes than it is to 
maximize information content with fewer factors. This motivated the decision to plot Factor 1 
versus Factor 3 for the individual gases (Figure 6) and Factor 1 versus Factor 2 for the gas mixture 
analyses (Figures 7-11). 
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Figure 6 Sensor array results for individual gases of methanol (M), ethanol (E), acetone (A), and benzene 
(B). 
 
For individual gas analytes (as in Figure 2), these three PoANI-based sensing materials (along with 
PCA as a clustering algorithm) are able to differentiate between methanol, ethanol, acetone and 
benzene. However, for real world applications, gas analytes are always present with other gas 
analytes (interferents). Therefore, the various possible mixtures of these four gas analytes must be 
considered. PCA was applied to all of the related combinations of gas analytes with the goal of 
using these sensing materials and PCA in a more realistic setting (see Figure 7). 
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Figure 7 Sensor array results for all possible gas mixture combinations of methanol (M), ethanol (E), 
acetone (A), and benzene (B).  
 
From Figure 7, we can see the clustered responses of all four (individual) gas analytes and all of 
the gas mixtures (composed of two, three or four of the analytes). The individual gas responses 
(shown as diamonds in Figure 7) are generally on the outskirts of the plot; methanol and ethanol 
are in the top left quadrant, acetone is in the top right quadrant, and benzene is central in the lower 
half of the plot. As discussed earlier, the individual gases typically have the highest amount of 
sorption (the sorption of each gas analyte decreases as the number of gas analytes in the mixture 
increases). The larger response of the pure gases is somewhat amplified by the PCA projection, 
which explains why the clusters related to individual gases are on the periphery in Figure 7. 
 
Upon closer inspection, Figure 7 also shows the relationship between certain gas analytes and gas 
mixtures. For example, it is not coincidental that the four-gas mixture of methanol, ethanol, 
acetone, and benzene (MEAB, circles in Figure 7) is in the centre of the plot. The response to the 
MEAB mixture is centrally located between each of the individual analytes because it contains 
attributes of each of the four gases. Similarly, if we look at a simpler case (like a two-gas mixture 
of methanol and ethanol), the ME response falls in between the pure methanol and the pure ethanol 
responses. In plotting these factors (Factor 1 and Factor 2 from PCA), methanol and ethanol give 
similar responses. Because they are close together, there is some overlap between the individual 
gases and the ME mixture; as shown in the top left corner, the ethanol (E) response and the ME 
response overlap somewhat. This overlap could be eliminated if different factors were plotted 
(Factor 1 vs Factor 3, for example), but at the expense of different analytes and mixtures 
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overlapping elsewhere. To obtain even better separation, one might consider using a different 
combination of sensing materials (more selective to either methanol or ethanol); this will be 
discussed further in what follows. However, the fact that methanol and ethanol responses fall in 
the same quadrant does make physico-chemical sense. Since the two analytes are chemically 
similar, it is likely that they will have a similar ‘footprint’ for this type of analysis. 
 
While the plot in Figure 7 contains a very large amount of information about individual gases and 
related gas mixtures, the clusters for each gas combination do not show sufficient separation to use 
the data as a reference plot for a sensor array for these four gas analytes. To ‘unclutter’ the sensor 
array plot, new plots can be constructed using the same three sensing materials, but with 
combinations of up to three gas analytes (Figures 8 through 11). That is, one gas analyte and all 
related mixtures are excluded from each plot. Benzene is excluded in Figure 8, methanol is 
excluded in Figure 9, ethanol is excluded in Figure 10, and acetone is excluded in Figure 11. By 
dropping the number of gas analytes from four to three, the potential combinations drop from 
fifteen to seven. This results in significantly better separation, especially for the individual gas 
responses; single gas clusters are almost always independent, with the exception of benzene (which 
is somewhat overlapping with the MAB three-gas mixture in Figure 10).  
 
This ‘simplification’ of the data also highlights the relationship between single gases, two-gas 
mixtures and three-gas mixtures. Take, for example, Figure 8: the three individual gases (M, E and 
A) are on the periphery (as we saw in Figure 7), and the two-gas mixture responses fall in between 
the two related single-gas responses. Similarly, the three-gas mixture response falls in the middle 
of the ‘triangle’ that forms between the three single-gas responses. 
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Figure 8 Sensor array results for all combinations of methanol (M), ethanol (E), and acetone (A) gas 
mixtures.  
 

 
Figure 9 Sensor array results for all combinations of ethanol (E), acetone (A), and benzene (B) gas 
mixtures. 
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Figure 10 Sensor array results for all combinations of methanol (M), acetone (A), and benzene (B) gas 
mixtures. 
 

 
Figure 11 Sensor array results for all combinations of methanol (M), ethanol (E), and benzene (B) gas 
mixtures. 
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Although these three-gas analyses significantly improve the separation of analytes, some 
overlapping responses are still observed in Figure 10 and Figure 11. In Figure 10, B and MAB 
responses overlap in the upper right quadrant of the plot. Similarly, in Figure 11, EB and MEB 
responses overlap in the lower middle portion of the plot. Interestingly, in both cases, the common 
analyte is benzene. The poor separation observed here may be due to the low sorption of benzene; 
low sorption (or low response) from experimental data limits the potential for separation of clusters 
using an algorithm like PCA. Also, all three PoANI-based sensing materials showed a (similar) 
poor affinity toward benzene (both alone and in analyte mixtures). Therefore, to improve 
separation in this case, one might consider using a material that has a higher affinity to benzene as 
part of the sensing material array. 
 
The overlap shown on PCA plots with gas mixture data (especially Figures 7, 10 and 11) may be 
due to similar responses of the sensing materials to the different analytes in mixtures, the use of 
PCA as a clustering network, or a combination thereof. Figures 4 and 5 show similar patterns of 
response for the sensing materials to the combinations of gas analytes. This is especially true for 
PoANI and PoANI 20% NiO. Therefore, to improve the usefulness of a sensor array, these PoANI-
based sensing materials could be paired with different sensing materials (that is, different polymer 
backbones). In addition, a sensor array with more sensing materials could have better separation 
of analyte responses due to more information being included in the pattern recognition of the 
employed algorithm.23 
 
For example, such a sensor array could be one consisting of PoANI, poly (vinyl pyrrolidone) 
(PVP)20, poly (2,5-dimethyl aniline) (P25DMA)24, and SXFA25. These potential sensing materials 
were chosen because each one has acceptable partial selectivity to one of the four gas analytes 
evaluated in this paper; PoANI to acetone, PVP to ethanol, P25DMA to methanol, and SXFA to 
benzene. This combination of potential sensing materials may resolve the issues by having a wider 
variation in selectivity (to different gas analytes), as well as a larger number of sensing materials 
for the sensor array, which would provide more data for the pattern recognition algorithm.   
 
Another way to identify the four gases using these three sensing materials would be to have a two-
stage algorithm. Stage 1 would use the PCA algorithm to plot the unknown sample against each 
of the three-gas mixtures (Figures 8-11). Stage 2 would compile the location on each of these four 
plots to determine the composition of the unknown gas sample. Although this method could work, 
a superior algorithm that is capable of separating these data points26 and/or a different combination 
of sensing materials would result in a better sensor array for these four gases23. 
 
PCA is often used as a proof-of-concept tool because of its availability in many statistical analysis 
packages and its ability to group data. PCA works best when dealing with very large sets of data 
(thousands of data points), which means that using it as a tool to reveal the data correlation 
structure requires very large sets of data to create plots with which to identify unknown samples. 
This requires significant investment in both time and cost, as this depends on the nature of the 
specific experimental trials. In addition, PCA can have difficulty with noisy or drifting data, which 
can often occur as a sensor ages.27 



16 
 

 
Therefore, to improve the sensor array, these sensing materials should be combined with other 
sensing materials that have different response patterns to the target analytes and interferents. In 
addition, a better (more sophisticated) neural network or clustering algorithm could be used to 
better identify the gas analytes present in the sample. While this particular combination of sensing 
materials did not provide an ideal sensor array for methanol, ethanol, acetone, and benzene, three 
highly sensitive sensing materials were identified for these four gas analytes that could be used in 
a room temperature sensor array with other sensing materials.  
 
Overall, these three sensing materials in combination with PCA were not ideal for creating a sensor 
array capable of analyzing all possible combinations of methanol, ethanol, acetone, and benzene. 
However, sensor arrays that were able to distinguish between three of the four analytes were 
developed. Since the PoANI-based sensing materials showed affinity to these four gas analytes, 
there is potential to use them in sensor arrays, especially for a room temperature sensor. To 
improve these sensor arrays, a different combination of sensing materials could be used (including 
some of the PoANI-based sensing materials) and/or an improved pattern recognition technique 
could be employed to improve the separation of the response clusters, which would allow for better 
identification of the gas analytes. 
 
4 Conclusions 
 
The three sensing materials (PoANI, PoANI doped with NiO, and PoANI doped with ZnO) 
evaluated herein had high sensitivity (showing an affinity towards the target analytes at low 
concentrations); however, in general, selectivity was low (that is, the sorption amount measured 
was similar for several distinct analytes). To improve the selectivity, the responses of these sensing 
materials were combined in a sensor array. A sensor array containing PoANI, PoANI 20% NiO, 
and PoANI 20% ZnO, which used PCA in a sense as an artificial intelligence algorithm, could 
identify the four gases (methanol, ethanol, acetone, and benzene) if individually present; however, 
if all four gases were present, it could not decipher all gas analyte combinations. Therefore, to 
create an improved sensor array, these sensing materials could be combined with other sensing 
materials and/or a better algorithm to fully separate different gas analytes as well as gas mixtures. 
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