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1. Introduction

Coordinated path following involves designing feedback con-
trollers that make a group of agents each follow an output path
while coordinating their motion. Coordinated motion along paths
includes tasks like maintaining formations, traversing paths at a
common speed and more general tasks like making the positions of
some agents obey functional constraints that depend on the states
of other agents. Coordinated path following is well-suited to appli-
cations in which accurate path traversal is vital and is motivated
by applications in marine vehicle control (Encarnacao & Pascoal,
2001; Lapierre, Soetanto, & Pascoal, 2004), search and rescue oper-
ations (Do & Pan, 2007), and patrolling a pre-defined region (Zhang,
Fratantoni, Paley, Lund, & Leonard, 2007).

Studies on coordinated path following can be broadly classified
by the manner in which the path following portion of the
problem is solved. The most common approach is to parameterize
each path, use the parameterization as a reference trajectory,
and treat the evolution of the path parameter as an additional
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control input (Aguiar & Hespanha, 2007; Daci¢, Nesi¢, & Kokotovic,
2007; Ihle, Arcak, & Fossen, 2007; Skjetne, Fossen, & Kokotovi¢,
2004). Linearization, Lyapunov-based methods, backstepping, and
neural networks have been used to stabilize the associated error
dynamics (Ghabcheloo, Pascoal, Silvestre, & Kaminer, 2006, 2007,
Ghommam & Mnif, 2009; Wang, Wang, & Peng, 2014; Xiang,
Lapierre, Jouvencel, & Parodi, 2009). Alternatively, in the curve
extension method (Chen & Tian, 2011; Paley, Leonard, & Sepulchre,
2008; Zhang et al.,, 2007; Zhang & Leonard, 2007), a smooth
function, valid in a neighbourhood of each path, is employed
such that the zero level set of this function is the desired path.
Convergence to the path is achieved when the value of the
smooth function reaches zero. A drawback of the aforementioned
approaches is that invariance of the paths is not guaranteed
independently of the coordination task. This is important because
itensures that even if coordination fails due to, say, communication
errors, the individual robots remain on their paths.

In this paper, extending our preliminary work (Doosthoseini &
Nielsen, 2013), we solve a coordinated path following problem for
a group of differential drive mobile robots modelled as dynamic
unicycles. We characterize an embedded product submanifold
in the state space of the unicycles called the multi-agent path
following manifold. Convergence and invariance of the each
unicycle’s path is accomplished by making this set attractive
and controlled invariant (El-Hawwary & Maggiore, 2008; Nielsen,
Fulford, & Maggiore, 2010). We show that each unicycle is feedback
equivalent, in a neighbourhood of its assigned path, to a system
whose transversal and tangential dynamics to the path following
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manifold are both double integrators. This makes path following
control design straightforward in comparison with other studies.
While our results are local, valid in a neighbourhood of each
unicycle’s path, it is possible to extend the region of attraction
of the proposed controllers using switched controllers (Tomlin &
Sastry, 1998).

The coordination aspect of the problem is typically enforced
through clever re-parameterization of each system’s assigned path.
In Ghabcheloo et al. (2006) and Lapierre et al. (2004) each path
is parameterized so that the desired formation corresponds to
having each system'’s path parameter approach a common value.
In Do and Pan (2007), Ihle et al. (2007) and Zhang, Lapierre,
and Xiang (2013) a method called formation reference point is
suggested to re-parameterize the assigned paths for each agent.
The desired formation, which can change over time, is treated
as a virtual geometric structure and a desired reference path is
assigned to the centroid of the virtual structure. The reference path
of the centroid determines the movement of the whole multi-agent
system. The path of each agent is then re-parameterized according
to its position in the virtual structure. A disadvantage of enforcing
coordination via clever re-parameterization of the assigned paths
is that the agents may leave their paths when the coordination
task changes. Furthermore, most previous studies only consider
position coordination, i.e., formation control, along the desired
paths.

We do not rely on re-parameterization of the assigned paths.
Instead, we model the coordination task as an embedded subman-
ifold of the multi-agent path following manifold. Coordination is
achieved if this submanifold is rendered attractive and controlled
invariant. This viewpoint allows us to guarantee that when the
robots are initialized on this submanifold, they remain coordinated
indefinitely. It also allows one to change the coordination specifi-
cation without causing the robots to leave their paths.

When all of the unicycles are assigned simple closed curves, our
coordination problem becomes closely related to the problem of
oscillator synchronization (Dorfler & Bullo, 2014). In this case each
unicycle’s path following manifold is diffeomorphic to S' x R. An
oscillator can be modelled as a double-integrator with state space
S! x R. In this case coordinating the unicycle’s velocities can be
viewed as frequency synchronization of oscillators (Dorogovtsev,
Goltsev, & Mendes, 2008). When all the unicycles must have the
same position along their paths, coordination can be viewed as a
phase synchronization problem (Scardovi, Sarlette, & Sepulchre,
2007). When all the unicycles are asked to maximally spread
themselves along their closed-paths, the coordination task can be
viewed as phase balancing (Sepulchre, Paley, & Leonard, 2007).

Similarly, when all unicycles are assigned non-closed paths,
coordination is closely related to consensus problem for double
integrator dynamics. In this case each unicycle’s path following
manifold is diffeomorphic to R?. Consequently, in this special case,
our approach allows one to use control laws in the literature
that achieve consensus for double-integrators for our coordination
tasks. For example, when coordination entails reaching consensus
along paths, the results in Ren (2007) provide minimal connected-
ness conditions on the communication graph. When coordination
involves reaching a common velocity along the paths the results
in Chen, Wang, and Xiao (2009) provide control laws respecting a
switching communication graph.

An advantage of our approach is that we allow for more general
forms of coordination than position or velocity consensus or those
discussed above. The penalty paid for allowing such a general
class of coordination is that our controllers only provide a local
solution and are generally centralized. However, one of the key
advantages of the approach taken in this paper is that we are
able to decouple the design of path following controllers from
coordination controllers. This allows one to use, as discussed

above, existing controllers from the literature in a modular fashion
when more stringent communication constraints exist.

A preliminary version of this paper without the results in
Sections 3.1 and 5.2, without Sections 5.3 and 5.4, and without
the experimental results of Section 6 appeared in Doosthoseini
and Nielsen (2013). In particular, the results in Section 5.2 contain
proofs of various results omitted in Doosthoseini and Nielsen
(2013).

1.1. Notation

Givenn € N, n := {1, ..., n}. We denote the Euclidean inner
product by (x, y) and the associated Euclidean norm by | x||. The
point-to-set distance between x € R" and A C R" is dist(x, A) =
inf{||x — y|| : y € A}. The symbolsI, and 0, represent, respectively,
the n x n identity matrix and matrix of zeros while 1, and 0,
represent the n x 1 vector of ones and vector of zeros. Let U, denote
an n x n upper-triangular matrix with uy; = 1,i < j,u; = 0,
i > jIff : R" — Ris a differentiable function, we denote by
0x.f its partial derivative with respect to x;. The Jacobian of a C 1
map f : R" — R™ evaluated at p € R" is written as df (p). If
f : R" — R"is a smooth vector field and ¢ : R" — R™is a
smooth map then Ligp(x) = (d¢(x), f(x)). Iff : R — R" then

{0
fro) =355
2. Coordinated path following problem

Following El-Hawwary and Maggiore (2013), the model of
unicyclei,i € N, is

)'(,' = V; COS(Qi)

¥i = v; sin(9;)
Qi = U, M
Vi = Ui

where (x;, y;) denotes the position of the unicycle in the plane,
0; is the heading angle, and v; is the forward velocity of the
unicycle. The control inputs u;; and u;, are, respectively, the
forward acceleration and angular velocity. Let x; := (x;, y;, 0;, v;) €
R? x S x R. Let 7(6;) := (cos(6)), sin(6;)) denote the unicycle’s
heading. We take the position of the unicycle i as its outputy; =
hi(x;) = (xi,y:). The state of the multi-agent system is X =
(X1, ...,Xy) € (R? x ST x R)N.

2.1. Communication

We model communication between unicycles using a weighted
directed graph ¢ hereafter called the communication graph. Let
V(¥9) = {ay,...,ay}and E(¥) C V(¥) x V(¥) be, respectively, the
vertex and edge set of ¥. Each vertex represents an agent and an
edge (a;, g;) indicates that agent j receives information from agent
i. We denote by w;; € R the weight associated to edge (a;, g;). For
each vertex define its in-degree as di, (a;) := Z(aj,a,-)ee Wji.

Definition 2.1. The in-degree matrix of ¥ is A(¥¢) := diag(d;,(a,),
.o din(ay)). o

Definition 2.2. The in-degree adjacency matrix of ¥ isan N x N
matrix whose ijth element is given by

. Jwi if (g, a) € E(9)
Wths = {0 otherwise. ©

Definition 2.3. The weighed graph Laplacian of ¢ is L(¥) =
AG) —W(@). o
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Definition 2.4. A directed graph ¥ is rooted out-branching if it
does not contain a directed cycle and there exists a vertex a, €
V(%) such that for all ; € V(¥) there is a directed path from a;, to
a;. <&

2.2. Path following

Each unicycle is assigned a path y; C R? in its output space.
The path y;, i € N, has a smooth, unit-speed, parameterization
o; : Dj — R?>withy; = o;(I)y). If pathiis closed then D; = R mod L;
where L; > 0 is the length of the curve. If path i is non-closed then
D; = R.Let ¢; : D; — S' be the map associating to each A € D; the
angle of the tangent vector o/ (1) to ; at o;(A).

Assumption 1. For i € N, the path y; C R? is a one-dimensional
embedded submanifold. There exists a smooth map s; : R> — R
such that y; = si’l(O) and ds;(y;) # O for ally; € y;. Moreover,
there exist 2N class- Ko, functions p; 1, pi2 : [0, 00) — R, such
that for all y; € R?

pi (dist(yi, 1)) < lIsi(y) |l < pi1 (dist(yi, ) - (2)

While the curve y; may be unbounded, condition (2) in Assump-
tion 1 ensures thaty; — y; if and only if s(y;) — 0. Our path fol-
lowing objective is to design a smooth feedback controller for each
unicycle that drives its closed-loop output towards y;. Moreover,
we ask that y; be output invariant in the sense defined in Nielsen
etal. (2010). Let

P = {Xi S Rz X 81 X R : Ol,'(Xi) =S5jo0 hi(Xi) = O} (3)
and P := P; X - - - X Py. Driving X; towards the set &; corresponds
to sending the outputy; of agent i to its desired path. Therefore, we
seek to stabilize the largest controlled-invariant subset of &, de-
noted #;. Intuitively, the set & is the collection of all those mo-
tions of agent i whose associated output signals can be made to lie
in & at all time by a suitable choice of input signal. The largest-
controlled invariant subset of #; is (Nielsen & Maggiore, 2004)

Pl ={x  ai(x;) = (ds;(h(xp)), T(6)) =0} . (4)

This set is called the path following manifold of the unicycle i with
respect to y; (Nielsen et al., 2010) and has dimension n} = 2.

Remark 2.5. The set #; = «; 1(0) is itself controlled invariant
because if unicycle i is initialized on &; with zero translational
velocity, v; = 0, then y;(t) € y; forall t > 0. This characterization
is not useful for coordinated path following because the unicycle
cannot traverse its path nor coordinate with other unicycles. This
motivates our definition (4). <«

Definition 2.6. The multi-agent path following manifold for N

paths y1, ..., yn that satisfy Assumption 1, in a neighbourhood of
X' =col(xj,...,Xy) € P,is
Pr=Pr XX P (5)

and its dimensionisn* = ) " nf =2N. o
2.3. Coordination

We model unicycle coordination as a constraint on the allow-
able motions on the multi-agent path following manifold Defini-
tion 2.6.

Definition 2.7. A coordination function on the multi-agent path
following manifold is a smooth map 8 : #* — R, ¢ < dim($*)
with constantrankc. <

Let B : #* — R be a coordination function and consider the set

¢ ={xe P :Bx =0}. (6)

Definition 2.7 and the constant-rank level set theorem (Lee,
2002, Theorem 8.8) imply that the, not necessarily bounded, set
C is a closed embedded submanifold of #* of dimension n* — c.
We take the view that stabilizing € corresponds to achieving coor-
dination. This motivates us to characterize the largest controlled-
invariant subset of C.

Definition 2.8. Given apointx € € C £*, the local coordination
set C* associated to a coordination function 8 : £* — R®is
the largest connected, controlled-invariant subset of € containing
X. ©

Intuitively, the set C* is the collection of all those motions of the
multi-agent system whose evolution can be made to satisfy the
coordination constraint for all time by a suitable choice of control
signal. Communication constraints between unicycles must be
respected when characterizing C*. Unless otherwise stated, we
make the following simplifying assumption.

Assumption 2. The communication graph ¢ of the multi-agent
unicycle system is complete.

Assumption 2 is unnecessarily restrictive for implementing the
proposed control laws. Characterizing the minimal communication
requirements needed for implementation is an open problem.

2.4. Control design objectives

The coordinated path following control design problem we
consider entails finding N feedback control laws ensuring that the
closed-loop multi-agent system satisfies:

PF For each initial condition x(0) in a neighbourhood of $*, the
corresponding solution x(t) is defined forall t > 0 and x(t) —
P*rast — +oo.

C1 For each initial condition x(0) in a neighbourhood of €*, with
x(0) € &*, the corresponding solution x(t) € #£* forallt > 0
and x(t) — C*.

C2 The dynamics of the multi-agent system restricted to C* satisfy
application specific specifications, e.g., boundedness, tracking,
etc.

C3 The proposed control laws respect the communication con-
straints imposed by the communication graph ¢.

While PF can be solved locally by each unicycle, C1 and C2
generally require the unicycles to exchange information. Under
Assumption 2, C3 is trivially satisfied. We loosen Assumption 2 in
Section 5.4.

We have cast the coordinated path following problem as two
set stabilization problems; namely the stabilization of $* and C*.
In this study we first stabilize $* and then €*. While one could, in
principle, achieve coordinated path following problem by directly
stabilizing C*, we take a nested set stabilization approach. This
approach has two distinct advantages. First, it ensures that even if
coordination fails due to, say, communication errors, the individual
unicycles remain on their paths. Second, it allows one to change
the coordination specification without causing the robots to leave
their paths.

Remark 2.9. For general multi-agent systems, even if the closed-
loop system satisfies PF and C1, there is no guarantee that when
x(0) ¢ #* thatx(t) — C*. For unicycles, the results of Section 5.2
prove that this problem does not occur. <

3. The multi-agent path following manifold

3.1. Characterization of the multi-agent path following manifold

By Definition 2.6, the multi-agent path following manifold is the
product of each agent’s individual path following manifold.

Proposition 3.1. For i € N the set #*\ {v; = 0}, where #" is given
by (4), consists of four disconnected components.
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v;T(6;)

(a) 27, f.

“&'T(HJ }

*,f
()P

(d) (-)*r

Fig. 1. The motion of unicycle i restricted to the four components of £\ {v; = 0}.

*f

Proof. Fixi € N and consider the set " := & +f UL UL U
2. where

o*f D* . /

Pro={xe P ui>0,(0/(V), T(6)) =1, % € Dy}
Pr={xe P v <0,(0/(V), T(6))= 1,1 €Dy} )
Pr= %€ PP v > 0,(0/ (), T(6)) = —1,1 € Dy}
Pr={xe P v <0,(0{(M), T(B)) =—1,1 €Dyj}.

We first show that & 0* ® has four disconnected components namely

the sets (7). The sets ,7’ fu J’l*f and J’” U J " are disjoint
because any curve in the state space connectmg these sets must
pass through a point at which v; = 0.

Next assume, without loss of generality, that X; € ﬂ’,*;:. To con-
nect X; to another point X; € "*’f it has to pass through a point
corresponding to (o7 (1), 7(6;)) = 0. This shows that £, "and P
are not path connected. A similar argument holds for J 0* g and P* r

Together, these facts show that &,° is not path connected which
implies that, see Lee (2002, Proposmon 1.8), it is not connected.

Lastly, we show that 27° = £\ {v; = 0}. By definition we
have that 4 °* cC o Conversely, letx; = (x, yi, 9,, Vi) € P with
v # 0. Smce !P* is an invariant set contained in &, the unlcycle S
heading must be tangent to the path for, otherwise, it would leave
the path for some time and hence leave the set &;. This implies that
|{o{ (1), T(6))] = 1where € D satisfies y; = o;(1). This shows
that 2 € 27°. O

1o
The notation in (7) is evocative of the physical interpretation of
these four sets, see Fig. 1. The superscript f stands for forward
direction, the superscript r stands for reverse direction, the
subscript + indicates the unicycle is moving in the same direction
as curve’s orientation, and subscript — indicates the unicycle is
moving opposite to the curve’s orientation.

3.2. Unicycle normal form

Using local transverse feedback linearization (Nielsen & Mag-
giore, 2008) we transform the model of unicycle i to a convenient
normal form. Among other useful properties, the normal form sug-
gests local coordinates on £ that simplify finding the coordination
set. It also facilitates the design of decentralized control laws to sta-
bilize £*.

Inspired by Consolini, Maggiore, Nielsen, and Tosques (2010),
we introduce a projection in the output space of the unicycle that

associates to each pointy; sufficiently close to the path y; a number
in ;. Let

i Ny) = Di
i arg inf |y — o) ®)

where W (y;) is a neighbourhood of y;. The open set N (y;) is such
that, for ally; € N (), there exists a unique y;* € y; closest to
Vi, so @; is well-defined. The higher the curvature of the path y;,
the smaller the domain & (y;) of (8). Using (8) define m;(x;) =
w; o h;(X;). Finally, define the path following output function

Vi := (mi(xy), oi(Xp)) . (9)

Lemma 3.2. The unicycle (1) with output (9) yields a well-defined
vector relative degree of {2, 2} at each x; € P\ {v; = 0}.

The proof of Lemma 3.2 is omitted because it is similar to Akhtar,
Nielsen, and Waslander (2015, Lemma 3.1). The next lemma
defines a coordinate transformation valid in a neighbourhood
of each component (7) of #7\ {v; = 0}. The lemma explicitly
addresses the component :7’1*; but a similar result can be obtained
for the remaining three components of #7.

Lemma 3.3. Thereexistsanopenset U, C R?xS' xR, with J °*‘f -
U, such that T; : Uf, — Ty(Uf,), x; (nn,mz,&],&z) =
(n,(xl) Lemri(Xi), o (x,) Lroi(X;)) is a diffeomorphism onto its image.

Proof. The generalized inverse function theorem (Guillemin &
Pollack, 2010, p. 56) is employed to prove this result. We must
show that

(1) forallx; € £ e dT (x;) is an isomorphism

(2) T oo isa dlffeomorphlsm

To show that (1) holds, observe that det(dT,—)IPx = —;(0y i 0y, 0t

— 3y, 0iy,77)2. On P,
in Consolini et al. (2010, Lemma 3.2), do; = [0y 0yt
and dm; = [dym Odym O O] are orthogonal on £
S0 (3, 7Ti0y,0t — Oyytiy, 1) # O.

To show that (2) holds, note that the restriction of T; to #; + fis
given by (ni.1, mi2. &1, &i2) = (%), Lmi(x), 0, 0). Forx; € ﬁj
we have thaty; = h(x;) € y; and so by the definition of ;; =
i (X;), (%, ¥i) = 0i(n;.1). The vector o’ (n; 1) is tangent to the curve

¥i at 0i(n;.1). On the component ”*f of 7, T(6;) = o’(mi,1) and
therefore 6; = i (1;.1).

v; # 0.Using arguments analogous to those
0 0]

*,f

iy and
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We are left to find an expression for v;. Direct calculations using
the expression n;, = Lemi(X;) yield v; = 1, /(0ymicos6; +
ay,.m sin 9;)

By Consolini et al. (2010, Lemma 3.2), for all i1 € Dy, dowi(o;
(1i.1)) = o/(n;1). Therefore, for x; € 27!, dmi(x) = [0/ (i) "

0 0] and we can write v; = 77:’,2/(0,- Mi.1), 1(0,)) On ”,'j,
(o’(mi1), T(6)) = 150 v; = n;,. In summary, we have derived

the inverse map T, |O*f = (0i(ni,1), ¢i(ni,1), mi2) which shows
that T;| n,f isa dlffeomorphlsm onto its image. O

By Lemma 3.2 the regular feedback transformation

[um] 1 [ Ly, L —Lg,-,sz”i} —Lja + v (10)
iz|  vf | =Ly lrei Ly, Lemi || =L 4o |

where (vi“ , vT) € RxRare auxiliary control inputs, is well defined
in a neighbourhood of #\ {v; = 0}. The elements in (10) can be
readily computed (Akhtar et al., 2015, Section V). Using the diffeo-
morphism T; in Lemma 3.3, and the feedback transformation (10),

the dynamic unicycle (1) is feedback equivalent, in a neighbour-
hood of each component of £\ {v; = 0}, to

Ni,1 = Ni,2

flizZU” (11a)
‘511 - EIZ
&2=U (11b)

Remark 3.4. We stress that unicycle i is not globally feedback
equivalent to (11). Furthermore, the equivalence does not hold
when its translational velocity equals zero v; = 0. The latter
obstacle can be overcome using the switching scheme in Tomlin
and Sastry (1998). «

We call the subsystem (11b) in (11) the transversal dynamics of
unicycle i to each component of #*. This is because making each
component of & attractive is equivalent, under Assumption 1
and in particular Eq. (2), to stabilizing the origin of (11b). The
subsystem (11a) is called tangential dynamics of unicycle i with
respect to each component of . The #; ; and n; ; states convey a
strong physical meaning for coordinated path following. The state
n;1 represents the position of unicycle i along the path and the
state n;; € R represents its velocity along the path. Let § =
115,881,812, - - -, En2) denote the transversal states of the
entire multi-agent unicycle system and v" = (v}, ..., v}). Let

N = 1IN M2 = (12, -+, n,2), = (01, 1), and
vl = (v'll, e v,”v) then the overall dynamics of the multi-agent
system can be compactly written as

i = Aly + Blv! (12a)
E=A"+ BV (12b)

where (A", B"), (Al, Bl) are controllable. The dynamics of the
multi-agent system restricted to * are given by (12a) and these
dynamics play a key role in achieving coordination.

3.3. Topology of multi-agent path following manifold

The tangential dynamics (11a) evolve on the set (4). When the
curve y; is non-closed then D; = R and the path is unbounded.
In this case 7;; € R and n;; € R; thus each component of
P\ {vi = 0} is diffeomorphic to R x R. When the path y; is closed
then, by Assumption 1, it is a Jordan curve. In this case n;; €
RmodL; ~ S! and n;, € R; thus each component of P\ {vi =0}
is diffeomorphic to S! x R.

Assume, without loss of generality, that y; is closed fori € r,
r < N and non-closed fori € {r+1, ..., N}.Then each component
of the multi-agent path following manifold is diffeomorphic to
T x RV~ x RN where T" is the r-torus. This shows that £* is
unbounded even if every curve is closed.

As shown in the proof of Lemma 3.3, the tangential states
in (11a) represent local coordinates on each component of

P\ {v; = 0}. When y; >~ R then (ﬂ’,*+, ¥i) with ¢ == (7l pr,
Lymi|#) is a global coordinate chart, i.e., a single chart that cov-
ers the entire set J 0* . When y; is closed each component of

P\ {vi=0}is dlffeomorphlc to S' x R and cannot be covered
with a single chart. Instead the coordinate chart (U,-, Y;) with U; .=

(Rmod ;) \ {0} xR C 5’* f covers “most” of? .One could define
another chart to cover the omitted region, but this complication is
not needed (Bullo & Lewis, 2005). Since #* is a product manifold,
U, y)ywithU :=U; x --- x Uyand ¢ := ¥y x --- X Yy is a co-
ordinate chart for £*. When all the paths are non-closed it covers
the entire set $*, otherwise it covers “most” of £*.

4. Feasible coordination constraints

Let B : #* — R® be a coordination function, see Definition 2.7.
As discussed in Section 3.3 each component of #* is diffeomorphic
to T" x RV~" x RN and the coordinate chart (U, y) covers most
of it. In this section we work with a local representation of the
coordination function,ﬁ : Y (U) — R, defined by

%RC

v (U) E

Remark 4.1. In order to define a coordination function globally,
and avoid the use of charts on $*, one uniquely identifies smooth
functions on the r-torus with smooth periodic functions on R'. In

light of the discussion in Section 3.3 we can then treat B as a map
RN — R€, L;-periodic in its first r arguments (Bhat & Bernstein,
2000). <«

For n € ¢ (U) the associated local coordination set introduced
in Definition 2.8 is the largest controlled-invariant subset of

={nevw : g =o (13)

containing . A coordination specification is feasible if its corre-
sponding coordination set is non-empty.

4.1. Linear-affine coordination

Consider a linear-affine coordination function
={nevw :pm=my+b=0 (14)

withA € RN rank(A) = c,and b € ImA. We write A =
[A1 A;]and b = (b4, by) in accordance with the partition n =

(M1, M)

Proposition 4.2. Consider the set (14) and let R be a full rank matrix
satisfying RA; = 0. If

(l; (Vn, € ©) RA1y, =0, 01

2

Im [g:| eIm |:/(‘)1 RIX:| (15)

then, for each n € G, the set C* is non-empty.



22 A. Doosthoseini, C. Nielsen / Automatica 60 (2015) 17-29

Proof. By the definition of (14), b € ImA, therefore the set € is
non-empty. For the set € itself to be controlled invariant there
must exist a control law v such that the derivative of Ay + b is
identically zero. Taking the derivative of B along solutions of the
system (12a) we obtain

Ay +Av'|e = 0. (16)
Left multiply Eq. (16) by R to obtain that Eq. (16) is solvable in v/
if and only if RA1n,|e = 0. In this case C¢* = € and is non-empty.
If, on the other hand, there exists n, € C for which RA1n, # O,
then (16) s not solvable using v!. In this case we add the constraint
RA1n, = 0 to € and obtain a new set C; = {5 € C : RA1y, = 0}.
In order for the set G4 to be controlled invariant there must exist a
control law v! such that the derivative of RA;3, along solutions of
system (12a)is identically zero. Setting the derivative equal to zero
we obtain RA;v/ le, = 0. Any feedback control law that satisfies,
for all € €1, vl(y) e Ker(RA;), solves this equation, so the
coordination set, G*, equals €. Condition (15) guarantees that ¢,
is non-empty. O

4.1.1. Nonlinear coordination

Consider a coordination specification described by a nonlinear
coordination function 8 : ¥ (U) € RN — R¢. We emphasize that
either (i) B is the local representation of a coordination function in
a chart (U, ¥) or (ii) it is a global function B : R — R which is
Li-periodic in its first r arguments. By Definition 2.7 the set (13) is
a smooth (2N — c)-dimensional embedded submanifold of v (U).

Consider the partition for dB(n) = [8"13 8023] in accordance
with » = (94, 1,). Propositions 4.3 and 4.4 give sufficient
conditions for velocity coordination and position coordination
constraints to be feasible.

Proposition 4.3 (Nonlinear Velocity Coordination). If the coordina-
tion function satisfies d,, B = 0 then, foreachn € C, C* = C and is
non-empty.

Proof. To check whether or not € is controlled-invariant we take
the derivative of B along solutions of the system (12a) to obtain
dy, PV = 0. Since vl = 0 trivially solves this equation we have
C*=¢C. O

Proposition 4.4 (Nonlinear Position Coordination). If the coordina-
tion function satisfies 0, = 0 and y € C is such that 3, (8,71
Bﬂz)ﬂz € Im 8,,13 then, the local coordination set C* is non-empty.

Proof. By assumption, the derivative of B along solutions of (12a)
equals d,, 85, = 0. Since no control inputs appear we impose the
additional constraint 8,“3172 = 0 to the set C and obtain ¢; =

fpec: 8,,13112 = 0}. This set is a closed-embedded submanifold
of dimension 2N — 2c¢ > 0 because its defining constraints are a
submersion

a'll B Oy
rank A ~ | =2c < 2N.
[arl] (a’hﬂ'h) aﬂlﬂ
In order to check controlled-invariance of ¢, we take the derivative

of the constraint 9, an = 0 along solutions of (12a) to obtain

Oy, (91,Bn2) ma + 0, V! = 0. The condition d,, B3y, Bu,)m, €

Im d,, B guarantees that the above equation is solvable in vl for
n € C; C C and therefore ¢* = ¢;. O

5. Control design

We now design feedback controllers to solve our coordinated
path following problem.

5.1. Stabilizing the multi-agent path following manifold

To accomplish PF the multi-agent path following manifold #*
must be made attractive and controlled invariant. As discussed in
Section 3.2, this can be done by asking each unicycle to stabilize
its own component 2. To stabilize # we select the simplest
transversal controller for unicycle i

V(&) = —ki1&i1 — ki2&io (17)

with k; 1, ki > 0,i € N. For fast convergence to the path one
typically chooses the gains so that the roots of the polynomial
s> + kias + ki are far to left in the open left-half complex
plane. Alternatively, optimal linear quadratic regulation or model
predictive control can be employed when actuator constraints are
a concern. With the above choice the origin of each transversal
subsystem is rendered exponentially stable.

Remark 5.1. If the trajectory of the unicycle is bounded, then
stabilizing (§; 1, &) = 0 is equivalent to stabilizing »*. When
D; = R the path y; itself is unbounded and so traversing the
path results in unbounded trajectories for the unicycle. In that
case, Assumption 1 and in particular (2) ensures that (§; 1, & 2) —
0 < x; — & (El-Hawwary & Maggiore, 2010). The
component of #* that the unicycle approaches depends on initial
conditions. <«

5.2. Centralized stabilization of the coordination set

Given a feasible local coordination set ¢* € ¢ (U) and 5 € C*
we seek to, under Assumption 2, feedback linearize that portion
of the tangential dynamics (12a) that governs whether or not
coordination is being achieved. This is equivalent to the following
zero dynamics assignment problem (Nielsen & Maggiore, 2008):
Find a function B : V C (U) — RS V is an open set
containing n such that (i) B yields a well-defined vector relative
degree for the tangential dynamics (12a) at  and (ii) the associated
zero dynamics manifold equals C* N V. Necessary and sufficient
conditions to determine the existence of such a function are given
in Nielsen and Maggiore (2008). If such a function exists then, in
a neighbourhood of 7, the tangential dynamics (12a) are locally
feedback equivalent to

E=f.w+g"¢ wr+g'@ wt (18)
jo = Ap + Bt"

where (¢, ) € R® xR2N=¢" ¢* .= dim €*, (A, B) controllable, and
C*, expressed in (¢, p)-coordinates, is given by {(¢, u) : w = 0}. A
natural candidate for the function B is the coordination function B
itself. We explore this possibility in Propositions 5.5 and 5.6.

In (18) the u-subsystem describes the motion transversal to
the set C* but tangential to #*. Since (A, B) is controllable, there
exists a linear feedback T" = Fu that exponentially stabilizes
the origin of the w-subsystem. Then, because the set C* is not
necessarily bounded, under similar caveats as those discussed in
Remark 5.1 the set C* is rendered locally attractive and invariant
and specification C1 is achieved.

The ¢-subsystem in (18) describes the dynamics tangent to both
C* and v (U). When restricted to ¢*, the multi-agent unicycle
system evolves according to

E=f 0 +g'@ 07l (19)

System (19) models the group dynamics while restricted to evolve
on the assigned paths and restricted to coordinated motion. In
some cases it may be possible to use the remaining control inputs
7! to satisfy C2, see Propositions 5.5 and 5.6. The proposed control
architecture is illustrated in Fig. 2.
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Fig. 2. Block diagram of the closed-loop system.

Remark 5.2. Instead of directly designing coordinated path fol-
lowing controllers, we first apply a coordinate and feedback trans-
formation that brings the unicycles into the normal form (11)
and then another that brings the multi-agent tangential dynam-
ics (12a) into the form (18). The process of bringing the uni-
cycles into these normal forms can involve complex, though
straightforward, computations depending on the assigned paths
and coordination task. However once the normal form is obtained,
controller design is greatly simplified. The main challenge in imple-
mentation is the computation of (8). In general this expression does
not have a closed-form solution so numerical optimization algo-
rithms must be employed (Consolini et al., 2010). A similar compu-
tation is required to implement methods relying on Frenet-Serret
frames (Ghabcheloo et al., 2007; Ghommam & Mnif, 2009). <«

The next theorem explicitly addresses the component J’jf =

PP x - x P #* but a similar result can be obtained for
other components of £*.

Theorem 5.3. FixX € § O*fand letUC (RZxS'xR)N, g ”*f cu
be an open set contammg X on which the multi-unicycle system is
feedback equivalent to (12). Let (3,0,v) = T(X). Let (12b) be
feedback equivalent, in an open set V. C T(U) containing T (X)
to (18) and suppose there exist class- K, functions pq, p, : [0, 00)
— Ry such that forally € V

pi (dist(n, €)) < k| < p (dist(y, €*)) . (20)

If each unicycle’s transversal control is given by (17), T = Fu is such
that A+ BF is Hurwitz, and ©! is such that for each (£(0), n(0)) € V,
(&), n(t)) e Vforallt > 0, thenx(t) — C*ast — oo.

Remark 5.4. We once again stress that the existence of the func-
tion ,B only guarantees local equivalence between the tangential
dynamics (12a) and (18). Intuitively this means that the controllers
of Theorem 5.3 only solve the coordinated path following problem
if the unicycles are not too far from coordination att = 0. <«

Proof of Theorem 5.3. Let v! = F®& be the overall transversal
controller where F" is an N x 2N matrix composed of the
gains in Eq. (17). By hypothesis, the multi-agent tangential
dynamics (12a) are locally feedback equivalent to (18). In V the
closed-loop system is feedback equivalent to

{=f&, w+g"¢ wFu +g'& w7
ju=(A+BF)p (21)
&= (A" + B'FME.
By hypothesis, solutions starting in V remain in V for all t >
0, and A" + B"F" and A + BF are Hurwitz, therefore (u, §) =
(0, 0) is exponentially stable for the (u, &)-subsystem. Under
conditions (2) and (20), (x, &) — (0, 0) is equivalent to x —
c*. O

Theorem 5.3 shows that under suitable assumptions, as
opposed to more general scenarios (Doosthoseini & Nielsen, 2012;
El-Hawwary & Maggiore, 2010), for a multi-agent unicycle system
the set C* can be rendered locally attractive via feedback regardless
of whether it is initialized on £*.

5.3. Velocity and position coordination

We investigate velocity and position coordination as two
special, but important, cases of coordination tasks.

Proposition 5.5 (Velocity Coordination). Given tangential dynam-
ics (12a), a coordination function 3 satisfying the hypotheses
of Proposition 4.3, and a point j € C*, there exist a neighbourhood
V C ¥ (U) containing  and afunctionB : V — RN which satisfies
rank dB,—, = N. Moreover, the tangential dynamics (12a) with output
B yields a well-defined relative degree of {1, 1} at 3.

Proof. Since 8,,1/§ = 0 it follows rank d,@ = rank 8,72,3 =c <N.
let¢ : V C ¥ (U) — RN be a function such that d,,¢
= 0 and rankd,,¢ = N — c. Define B = col(¢, B). It is
immediately evident that it has rank N at 7. Direct calculations

yield Lyi B(n) = (3,0 (), d,, (). Since rank Ly B () = N, the
proof is complete. [

Using the function B of Proposition 5.5 and employing in-
put-output feedback linearization, the tangential dynamics (12a)
are locally feedback equivalent to

f(CpCz,M)-i- (&1, & W+ 81 & !
1;2 = r (22)
L= 4

where col(;, &, p) € RY x RN =€ x RS, col(z”, Tl) € R® x RV,

f:vcRrN - R" is a smooth function, and g : V <€ R?N —
RVN=¢and §" : Vv € R — RN*¢ are smooth matrix-valued
functions. In (22), the p and ¢,-dynamics are decoupled which
allows one to design the control laws =", 7! separately, The input
7!l can be used to control the velocity of the coordinated unicycles
along their assigned paths.

Proposition 5.6 (Position Coordination). Given the tangential dy-

namics (12a), a coordination function B satisfying conditions
of Proposition 4.4, and a point 3 € C*, there exist a neighbourhood

V € ¥ (U) containing  and afunctionB : V. — RN which satisfies
rankdB; = N. Moreover, the tangential dynamics (12a) with output
Byield a well-defined vector relative degree of {2, ...,2}at y.

Proof. Let ¢ : V C v (U) — RN be a function such that 0y, =
Oandrankd, ¢ =N —c. DefineB = col(¢, B). Since 8,,2,3 =0it
follows rank dB = rank 8,“3 = ¢ < N.As aresult ,B has rank
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N at 5. Simple calculations give LBHB = Oy and Ly LAH,]B(n) =
(3y,¢(n), 3, B(1)) which has rank N at 7. O

The function B of Proposition 5.6 can be used to feedback linearize
the tangential dynamics (12a) to obtain

;1:%
LH=1 23
’:Ll:ﬂmz (23)
My =T

where col(,, &y, f1, fy) € RV ¢ x RV¢ x R x RS, col(z™, 7l) €
RS x RN=¢ In (23), the (p, p,) and (&, &,)-dynamics are
decoupled. As a result, the control inputs " and ! can be designed
separately. The input 7! can be used to control the position and
velocity of the coordinated unicycles along their assigned paths.

5.4. Semi-distributed stabilization of a linear-affine coordination set

Here we consider a specific, yet useful, choice of linear-affine
coordination function 3(17). Consider a coordination constraint in
which every two consecutive unicycles must maintain a constant
arc-length separation, ie., 911 — ni1 — b1 = 0,i € N —
1 where b;; € R. Moreover, it is required that once all the
agents are in formation they all move with a desired velocity
vg > 0,ie, 2 — vy = 0,i € N.This particular coordinated
path following problem is the same as the formation control
problem investigated in Ren (2007). We can represent this special
coordination function as a linear-affine function. In order to do so
we add a redundant constraint ny 1 — 71,1 — by,1 = 0 and define

the coordination function B(ﬂ) = Ap+ bas B(n) = Ap+ bas
by = (b1,1,...,bn,1), by = —v4ln,

A 0
A] = |:0:\Jl] s AZ = |:ll\[ji| )

1 -1 0 --- 0

0 1 -1 --- 0 (24)
Al] = . . . . .

-1 0 0 --- 1

Assumption 3. The numbering assigned to the agents, the pre-
scribed velocity vg4, the vector by, and a number k > 0 are known
to each unicycle.

The following less restrictive assumption replaces Assumption 2.

Assumption 4. The communication graph ¢ of the multi-agent
unicycle system is rooted out-branching.

Lemma 5.7. Let ¥ be a weighted and directed graph on N vertices
and let L be its Laplacian matrix. If H := —LUy then HA;; = —L
where Ay is given by (24).

Proof. Since H = —LUy we must show that —LUyA;; = —L.
Let L; denote the ith column of —L, for i € N. Then —LUyA{; =

[Ziz —L L

cian matrix is that its columns sum to zero,i.e,L{ +L{+---+Ly =
0 (Ren, Beard, & Atkins, 2007). So, we can write the first column, L,
in terms of other columns Ly = —(L, + L3 + - - - + Ly). As aresult

—LUAn =L L

LN]. A well-known property of the Lapla-

Iy]=-L O

Lemma 5.8. If each path y;, i € N is non-closed and the communi-
cation graph ¢ of the multi-unicycle system is rooted out-branching
then the control law

I N (] _ i) max{i,j}—1
v = Zwij N1 — N1 — T Z bip
=

p=min{i,j}

—k (1.2 — va) (25)

where wj; are entries of the adjacency matrix W(¢) and k > 0, ren-
ders C* globally asymptotically stable relative to $*.

Remark 5.9. Control law (25) is adapted from Ren (2007). Similar
control laws can be found in swarming problems (Jin & Gao, 2008).
We present (25) to demonstrate the use of existing distributed
controllers in specific cases of coordination. <

Proof of Lemma 5.8. We view the coordination function as an
error function e = Any + b. Partitioning e = (eq, e;) in accordance
with the linear coordination function we have

e =Anun + b

2
e2=ﬂ2+b2. ( 6)

The closed-loop error dynamics resulting from applying the control
law (25) to the dynamics on ¢ (U) given in (12a) are

e 0 A e
[éﬂ - [ Oy _,;;N] M — Fe. 27)

An immediate result is that 0 is an eigenvalue of matrix E since
Aq1 has rank N — 1. However, we do not yet know the algebraic
multiplicity of the eigenvalue 0. In the following we find the
remaining eigenvalues of the matrix E. Let A be an eigenvalue of E
with associated eigenvector (x, y) € CVxCN.The relation between
eigenvalues and eigenvectors of the matrix E is

Any = AX

Hx — ky = MAy. (28)

Suppose that A # 0. Combining the equations in (28) and using
the result from Lemma 5.7 we obtain

1
—HA1y—ky =Ly = —Ly = (k+ M)Ay. (29)
A S———

—L

The Laplacian L has eigenvalues {v1, ..., vy}, one of which is zero.
From (29) we deduce that (k + A)A is an eigenvalue of —L. This

yields the following N equations
(I(-f‘)»,'))u,':l)i, i€{1,...,N}.

There are 2N solutions to the above equations

—k £ /K2 + 4y;
Aii =——Y 1 ief{1,...,N}.
2
Since we assumed that A # 0 in (29), the solution )L;“ =0
corresponding to v; = 0 is not an allowable solution. However,

since we already know that 0 is an eigenvalue of E; it is just
not obtained from solving above equation. Since ¢ is rooted out-
branching, the algebraic and geometric multiplicity of v; = 0is 1.
Therefore, all the Aii's obtained from above equation have negative
real parts, since A; = —k and rest of v; have negative real parts. As
a result, the eigenvalue 0 has geometric and algebraic multiplicity
of 1. Using standard spectral theory, there exists a 2N x 2N matrix
V such that the similarity transform E — V~!EV yields the Jordan
form E = diag(0, /1, ...,Jr) where r is the number of distinct
eigenvalues of E and each Jordan block J; has the form A1 + N;j,



A. Doosthoseini, C. Nielsen / Automatica 60 (2015) 17-29 25

where N; is a nilpotent matrix in Jordan form and Re(A;) < 0. We
therefore have that
lim e® = lim Vefr'v—! = vdiag(1,0,...,0)V"!

t—00 t—00

= P11

where py is the first column of V and q; is the first row of V~1.
It is easy to see that p; and g, are, respectively, the right and left
eigenvectors of E associated with the eigenvalue 0. Thus, for any
e(0) € R?N, the solution to (27) can be written.

Jim e(t) = (g1e(0))ps. (30)

Direct calculations reveal that the following are, respectively, the
right and left eigenvectors of the matrix E associated with the zero
eigenvalue

p1=0Oy-1.1.0y) g = (Iy,0p). 31)
Therefore (30) is given by
tl—l>ngo e(t) = col(Oy—1, €1,1(0) + - - - + en,1(0), On).

Since the errors are not independent, they satisfy, for all t > 0,
61,1(0 —+ .-+ eN,l(t) =0 Vvt>0. Thus llmt_>oo e(t) = OZN- O

We now consider the case when all paths are closed, i.e., ;1 €
RmodL;. In order to define a similar formation coordination
constraint in this case we define n}, := 2Zp;;. The variable

4 i
n; , belongs to [0, 27r) so we can view it as an angular variable.
Accordingly, we define n;, := zL—j_Tniﬁz. Thus, the coordination
’ i
constraint (24) imposes that two consecutive unicycles maintain
aconstant angular separation, i.e., i ; —1j; —bi1 = 0,i e N—1
where b; ; € [0, 2mr). Moreover, the formation must move with a
common velocity wg > 0,i.e, 7, —wg =0,i € N.

Corollary 5.10. Suppose y;, i € N are closed paths and the commu-
nication graph ¢ of the multi-unicycle system is rooted out-branching
then the control law

N (] _ l) max{i,j}—1
viH = Z wisin |\ njy — iy — =i Z bi
=

p=min({i,j}
—k(n}, — va) (32)

where wj; are the entries of W(¢) and k > 0, renders C* locally ex-
ponentially stable relative to $*.

Proof. The closed-loop error dynamics resulting from applying the
control law (32) to the dynamics on #* given in (12a) are

élzez

éz = Hssin (91) — kINez (33)

where sin(e;) := sin(e; 1), ..., sin(e; y). Linearizing the above
closed-loop about (e, e;) = (0, 0) results in error dynamics given
in (27). Lemma 5.8 shows that (0, 0) is globally exponentially sta-
ble for error dynamics (27). Therefore (0, 0) is locally exponentially
stable for (33). O

Remark 5.11. When all the paths are closed the multi-agent path
following manifold is diffeomorphic to TN x RN. Since v! is 27-
periodic in its N arguments it is a continuous function that is
defined globally on the multi-agent path following manifold. <

6. Experimental implementation

We experimentally verify our results using two TurtleBots built
by Clearpath Inc. The robots have a maximum translational speed

of 65 cm/s and maximum rotational speed of 7 rad/s. Each robot
is controlled using the Robot Operating System (R.0.S.) running on
an Intel Atom Notebook with Linux. An Indoor Positioning System
(I.P.S.) using NaturalPoint OptiTrack provides the states (x;, y;, 6;)
of robot i over WiFi at 100 Hz. The state v; of robot i is obtained by
integrating the control input u; ;.

6.1. Coordination specification

The robots are assigned circular paths
vi={vieR |yl —rP=0}, ie2,

rn = 1.1, », = 0.75 m. These paths satisfy inequality (2) of
Assumption 1 with p; 1, pi2, taken as identity functions. Since
both robots can communicate with each other the communication
graph is fully connected and C3 is trivially satisfied. The
coordination specification C1 is that the two robots be on opposite
sides of their respective circles. Such a coordination specification
can arise in patrolling applications because it results in better
coverage of an area. For C2 we require that robots 1 and 2 move
with a prescribed angular velocity wy; = .03 rad/s. Note that
iy = 4., = 2,1 € 2. Thus the linear-affine coordination

ri '

function (24) becomes

1 —1 0 07[n, 7
N_|-1 1 0 0f]|ny, -
P =19 0o 1 of|n,| |
0 0 0 1 )722 wq
Using Proposition 4.2, condition (1), we immediately find that ¢ =
C* and dim ¢* = 2. After bringing each robot into the normal

form (11), the transversal control laws are taken to be (17) with
the high gains k;; = 30,k = 20,i € 2 to make the robots
approach their paths quickly. The coordination control laws are
obtained using Corollary 5.10
v‘l‘ = wiy Sin (77;,1 — Mg — n) —k (77;,2 - a)d)
v} = wy; sin (n\1 =y —7) —k(nhy — wq)
where w1y, wo1, k > 0. The communication graph weights are
treated as controller gains and taken to be wy; = wy; = k =
10. These gains are smaller, relatively, than the path following
controller gains because we prioritize convergence to the paths
over coordination.

Experimental output trajectories are shown in Fig. 3(a). The
path error for each unicycle is computed as

eipp = /X +y; — 1, i€{1,2} (35)

and shown in Fig. 3(b). Fig. 4(a) displays the coordination error,
ec1 = Ny, — 0y, — 7, expressed in radians, converging to zero.
Fig. 4(b) shows that each robot’s angular velocity error, eicy =
;7;‘2 — wyq, i € 2, converges to zero quickly. Fig. 5(a) and (b) shows
the control effort required in these experiments.

(34)

6.2. Switching coordination specifications

A distinguishing feature of the proposed controllers is that the
paths y; and y; are invariant for robots 1 and 2. Therefore, if the
coordination specification changes we expect the robots to remain
on their assigned paths, before eventually re-coordinating. In this
experiment we ask that robot 1 initially be phase shifted by %
radians from robot 2 and after 240 s the phase difference changes
tor.

Fig. 6(a) shows experimental output trajectories of the robots.
When the coordination specification is changed the robots are
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Fig. 6. Experiment 2: coordinated path following with changing coordination task. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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(b) Angular velocity error.

Fig. 7. Experiment 2: phase difference and angular velocity error when the coordination specification changes.

expected to stay on their paths. In this experiment the robots
actually leave their paths because their forward velocities, v;,
pass through 0 which are singularities. The control signals remain
bounded because we enforce actuator constraints |u,4,2| < %
and |v;] < 0.5, once the robots’ forward velocities become non-
zero, the nominal controllers take over and drive them back to
their paths as shown in Fig. 6(b). Fig. 7(a) plots the difference in
phase 1} ; — 15 ;. It is initially /2 and at t = 240 it increases
to 7. Fig. 7(b) shows that each robot's angular velocity error,
ei,c2, converges to zero quickly. Figs. 8(a) and (b) illustrate control
signals u; ; and u; » for i € {1, 2}, respectively.

7. Conclusions and future research

We have treated the coordinated path following problem
for a multi-agent system of dynamic unicycles as an instance
of nested set stabilization yielding a local solution with path

and coordination invariance. Each unicycle is transformed to
a normal form, valid in a neighbourhood of each component
of the path following manifold, which decouples the design of
path following and coordination controllers. A broad class of
coordination specifications are considered. Centralized control
laws that locally solve the coordination portion of the problem are
proposed and experimentally verified.

Future research entails taking into account communica-
tion constraints for general coordination constraints, developing
singularity avoidance methods and employing collision avoidance
techniques in conjunction with the results of this paper.
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