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Abstract 

Background 

Polysubstance use is on the rise among Canadian youth. Examining risk profiles and understanding 

how the transition occurs in use patterns can inform the design and implementation of polysubstance 

risk reduction intervention. The COMPASS study is longitudinal research examining health-related 

behaviours among Canadian secondary school students, capturing data from multiple sources. 

Machine learning (ML) techniques can reveal non-linearity and multivariate couplings associated 

with population-level longitudinal data to inform public health policies. 

Objectives  

The overarching goal of this thesis is to identify phenotypes of risk profiles of youth polysubstance 

use and examine the dynamic transitions of use patterns across time, utilizing both unsupervised ML 

methods and a latent variable modelling approach. This thesis also aims to understand how ML 

techniques are best used in modelling transitions and discovering the “hidden” patterns from large 

complex population-based health survey data, using the COMPASS dataset as a showcase.  

Methods  

A linked sample (N = 8824) of three annual waves of the COMPASS data collected starting from the 

school year of 2016-17 was used. Multiple imputations for missing values were performed. Substance 

use indicators, including cigarette smoking, e-cigarette use, alcohol drinking, and marijuana 

consumption, were categorized into “never use,” “occasional use,” and “current use.” To examine 

phenotypes of risk profiles, hierarchical clustering, partitioning around medoids (PAM), and fuzzy 

clustering algorithms were applied. The Boruta algorithm was used to identify a subset of features for 

cluster analysis. Both the internal and external indices were employed to evaluate the clustering 

validity. A multivariate latent Markov model (LMM) was implemented to explore the dynamic 

transitions of use patterns over time. The least absolute shrinkage and selection operator (LASSO) 

approach was applied to select the appropriate covariates for entering the LMM. Model selection was 

based on the Bayesian information criterion (BIC) and the goodness-of-fit test. 

Results  
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The top factors impacting youth polysubstance use included the number of smoking friends, the 

number of skipped classes, the weekly money to spend/save oneself, and others. Four risk profiles of 

polysubstance use were identified across the three waves: low, medium-low, medium-high, and high-

risk profiles. The heterogeneity in the prevalence and phenotype across these four risk profiles was 

confirmed. The internal measures of clustering performance measured by average silhouette width 

ranged from 0.51 to 0.55 across the three waves using different clustering algorithms. The clustering 

algorithms achieved a relatively high degree of agreement on cluster membership. Comparing the 

fuzzy (FANNY) clustering with PAM clustering, the adjusted Rand indices were 0.9698, 0.7676, and 

0.6452 for the three waves. Four distinct use patterns were identified: no use (S1), occasional single-

use of alcohol (S2), dual-use of e-cigarette and alcohol (S3), and current multi-use (S4). The initial 

probabilities of each subgroup were 0.5887, 0.2156, 0.1487, and 0.0470. The marginal distribution of 

S1 decreased, while that of S3 and S4 increased over time, indicating a tendency towards increased 

substance use as the students grew older. Although, generally, most students remained in the same 

subgroup across time, particularly the individuals in S4 with the highest transition probability 

(0.8668). Over time, those who transitioned typically moved towards a more severe use pattern group, 

e.g., S3 → S4. Factors that impact the initial membership of use patterns and the dynamic transitions 

were multifaceted and complex across the four use patterns across the three waves. Not only do use 

patterns change with time, but so does the evidence in use patterns. 

Conclusion 

As the first study of its kind to ascertain risk profiles and dynamics of use patterns in youth 

polysubstance use, by employing ML approaches to the COMPASS dataset, this thesis provides 

insights into the opportunities and possibilities ahead for ML in Public Health. Findings from this 

thesis can be beneficial to practitioners in the field, such as school program managers or 

policymakers, in their capacity to develop interventions to prevent or remedy polysubstance use 

among youth. 
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Chapter 1 

Background  

1.1 Polysubstance Use Among Youth 

Adolescence is a crucial period of development and transition from childhood to adulthood when 

risky behaviours usually occur. One of the major risky behaviours many adolescents are vulnerable to 

is substance use, such as alcohol drinking, cigarette smoking, marijuana consumption, and other drug 

use. Following alcohol drinking and cigarette smoking, marijuana is the third most widely used 

substance globally. A prior study indicates that Canadian secondary school students have the most 

significant incidence of using marijuana (1). Data from the most recent 2018-2019 Canadian Student 

Tobacco, Alcohol and Drugs Survey (CSTADS) demonstrate that 44% of grades 7 to 12 students 

reported alcohol use, and 18% reported marijuana consumption within the past year. Furthermore, 

23% admitted to using tobacco products within the last 30 days of the survey, while 20% reported 

using e-cigarettes at least once in their lifetime (2).  

“Polysubstance use” refers to using multiple addictive substances simultaneously or within a 

specified period (3). Polysubstance use has numerous negative impacts on health outcomes among 

youth. The literature reveals that polysubstance users tend to have susceptibility to mental illness such 

as depression or a combination of depression and anxiety (4–6), heightened risk of contracting 

sexually transmitted diseases (7), and an increased tendency towards violent behaviours (8,9). The 

specifics of adverse effects of individual substances follow.  

Alcohol intake can lead to serious short- and long-term health issues. For instance, traffic accidents 

due to drunk driving can end up causing severe injuries and death to persons involved. Automobile 

accidents are the leading cause of mortality among teenagers, and data suggests that over 50% of fatal 

injuries were due to drunk driving (1). Smoking cigarettes during adolescence can cause nicotine 

dependence (10). As one of the main risk factors of early death in adulthood, cigarette smoking leads 

to various health hazards, including cancer, respiratory, or cardiac diseases (1). Lastly, heavy use of 

marijuana has been linked to adverse health and psychological outcomes, particularly among youth. 

Due to regular marijuana consumption, hazards include increased anxiety and panic attacks, cognitive 

issues, and heightened risk of mental illnesses (11). Additionally, heavy use of marijuana is also 



 

2 

 

proven to reduce an individual’s reaction time, thus adversely impacting their driving abilities (12). 

The evidence suggests that substance use among youth can result in injuries, traffic accidents, school 

difficulties, and interpersonal problems, which may have a significant long-term impact on their 

health and well-being and severe consequences to those around them. 

Like many other countries, youth polysubstance use is an ongoing problem in Canada (13,14). 

Unfortunately, youth polysubstance use surveillance and prevention in North America typically focus 

on single substance use (15). While monitoring trends is crucial for surveillance purposes, 

ascertaining the underlying causes of polysubstance use among youth may provide invaluable 

contextual information in advancing prevention efforts. In combination, surveilling and understanding 

the factors contributing to polysubstance use patterns among youth may help determine relevant 

health threats, identify opportunities for intervention, and evaluate the effectiveness of existing 

policies and practices. The mitigating factors to counteract the growing trend of youth polysubstance 

use can be multifaceted, from family and peer support to school policies and settings.  

1.2 Machine Learning (ML) Models for Analyzing Cross-Sectional Data  

Essentially, ML is a learning process that uses mathematics, statistics, logic, and computer 

programming (16). There are three forms of ML: supervised learning, unsupervised learning, and 

reinforcement learning. At a high level, for supervised learning, the ML algorithms learn from data 

with labels. A supervised learning model is trained on data in an iterative procedure using 

reinforcement rules which adjusts the ML model accordingly (16). Once trained, this ML model can 

be applied to new data to inform decision-making, including detection, discrimination, and 

classification (16–18). For unsupervised learning models, the purpose is to discover essential 

groupings or defining features in the data (16). Unsupervised ML models use unlabelled data to 

identify hidden patterns or intrinsic structures in the dataset. The unsupervised learning models 

learn without labels (19,20). For reinforcement learning, the algorithms interact with given 

environments and take actions to receive penalties or rewards. As a process of learning to control 

data, reinforcement learning learns by what is referred to as “the best policy,” a series of actions that 

maximize the total rewards after trial and error search (16,20).  

The purpose of unsupervised ML models is to discover important clusters or defining features in 

the data. Unsupervised ML algorithms such as clustering analysis have been used to conduct public 
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health surveillance and associate patient characteristics with clinical outcomes (16,19,21). 

Unsupervised learning approaches have been applied to investigate addictive behaviours of substance 

and non-substance use. Cluster analysis is a class of multivariate techniques for classifying data 

elements into different groups that are relatively similar (homogeneous) within themselves and 

dissimilar (heterogeneous) between each other (22). Homogeneity and heterogeneity are measured 

based on a defined set of variables or characteristics the objects possess (22).  

Cluster analysis is commonly used for data exploration, anomaly/outlier detection, data 

segmentation/partitioning, data mining, and data visualization. Specific applications include similarity 

searches in patient profiles, medical images in clinical settings, gene categorization in bioinformatics, 

and many others (23). The primary purpose of cluster analysis is to identify groups within data, i.e., 

determine the data structure by grouping the most similar observations. As an exploratory technique, 

cluster analysis is descriptive and non-inferential. Thus, the results from the cluster analysis (a.k.a. 

subjective segmentation) are not generalizable. Compared to other multivariate methods discussed 

previously, cluster analysis has no dependent variables but depends on the selected set of independent 

variables for the similarity measure.  

1.3 Methodologies for Analyzing Longitudinal Data 

How and when change occurs in an ever-changing world are essential questions in social, 

behavioural, and health sciences. As research in modelling and predicting data in these fields gains 

momentum, considerable progress has already been made (24). In general, change can be classified 

into two mutually exclusive groups, random or stochastic and systematic. Different analytic 

techniques can be applied to modelling stochastic change (e.g., autoregressive models representing a 

random process) or systematic change (e.g., transition models that each individual follows a definite 

track) (24). 

Most publications in the health domain tend to rely on longitudinal study design to explore 

transitions of health conditions, identify risk profiles, or study social phenomena (25,26). In contrast 

with time-series data, longitudinal data are collected over a relatively few measurement times on a 

large number of subjects (27). A typical research study on substance use among adolescents tends to 

rely on health survey data from large samples (usually more than a thousand subjects) collected 

relatively few times (typically conducted biannually or annually throughout the participants’ 
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adolescence). Evaluating the dynamics of change over time is a common goal when collecting 

longitudinal data. Diggle et al. (2002) identified the top four reasons for applying longitudinal 

techniques. First, to make progress from assessing “association” towards analyzing “causality”; 

second, to make prognoses by incorporating historical data using time-varying covariates; third, to 

study historical information, e.g., transition analysis by applying Markov or autoregressive models; 

and fourth, to inform policy with subject-specific analysis using random-effects models (28).  

In the last few decades, longitudinal data analysis has advanced considerably since the early 

development of linear models based on analysis of variance (ANOVA). From linear models for 

continuous response variables to non-Gaussian models for discrete responses, Fitzmaurice and 

Molenberghs (2009) categorize techniques on longitudinal data analysis as follows: 1) marginal 

models addressing mean-level change between groups, such as repeated-measures ANOVA and 

multivariate ANOVA (MANOVA); 2) random-effects models analyzing intra-individual change by 

modelling within-subject variations related to processes such as growth curve model (GCM), and 

inter-individual change by modelling between-subject variations related to processes such as 

structural equation modelling (SEM) framework; and 3) transition models analyzing the effect of 

explanatory variables on the likelihood of change adjusted by the outcome (29). However, each 

technique addresses only certain aspects of the data, thus allowing only a few research questions 

corresponding to transition analysis to be answered with a single modelling technique.  

In statistical modelling, linearity is one of the common assumptions to be met before analysis. 

However, real-world scenarios often violate the linear association between the response and 

explanatory variable, especially in high-dimensional complex health data (30). Several non-linearity 

and multivariate couplings make it almost impossible to model the phenomenon using conventional 

statistical models. The efficiency of statistical modelling over linear and univariate data makes them a 

misfit for the non-linear and highly complex latent structure problem domain. Thus, there is a rising 

interest in using ML methods in health research. Public health information has a considerable volume. 

ML creates the opportunity to systematically analyze vast amounts of population data to assist in 

data-driven decision-making by examining what causes health change in a population, when it occurs, 

how it changes, and predict the impact of interventions or solutions (18).  
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1.4 Motivation  

The motivation of this thesis is two-fold. First, we need to understand how a transition of behavioural 

patterns occurs at the population level using the longitudinal design of survey questionnaires. Second, 

ML techniques, particularly various clustering methods, can be utilized in population research. 

Monitoring and understanding risk profiles of youth polysubstance use may help determine their 

overall health threats, identify their most need for intervention, and evaluate the effectiveness of 

existing policies and practices in their school environment. Discovering the nature of the hierarchical 

high-dimensional data structure will better understand longitudinal data analysis in real-world 

practice.  

1.5 Thesis Structure  

This thesis is organized as follows. Chapter 1 briefly introduces the background of this thesis. Chapter 

2 provides a comprehensive review of the existing literature related to youth polysubstance use and 

methodologies for modelling cross-sectional and longitudinal data in addiction and health research. 

The rationale, the overarching goal, specific objectives, and research questions for this study are 

presented in Chapter 3. Chapter 4 describes the research methodologies, introducing the dataset and 

the variables of interest. Chapter 5 presents the study results, including data preprocessing, 

descriptive statistics, cluster analysis, risk profiles of youth polysubstance use, and the modelling 

results of use patterns and dynamic transitions. Chapter 6 discusses the key findings of this thesis 

surrounding the research questions and perceptions from ML methodological perspectives. The 

contributions to practice in public health and research communities in literature, the strengths and 

limitations of this thesis, and future works are also discussed in this chapter. Finally, Chapter 7 

concludes this thesis by summarizing the principal findings and highlighting the contributions to 

bridging the ML and Public Health research communities.   
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Chapter 2 

Literature Review 

This chapter provides an overview of youth polysubstance use, methodologies for modelling cross-

sectional data in addiction research, and the current methods in transition modelling in the health 

domain. The review focuses on the descriptions of the methods used, their applications, and 

comparisons drawn by various studies in the published literature. This chapter summarizes the 

existing evidence on both the ML and statistical methods used in pattern discovery and transition 

analysis, including main applications employed using health data through a literature search, and 

identifies current research gaps and potentials for future research. In this chapter, the basic features of 

the clustering techniques and transition modelling are described. Additionally, a comprehensive 

literature review regarding the methodology, the nature of the research questions they can address, 

and the quality of the answer provided in real-life examples are summarized. 

2.1 Youth Polysubstance Use 

2.1.1 Prevalence of Risk Behaviours and Use Patterns 

Youth substance use is one of the persistent public health issues in Canada and many other countries. 

The Health Behaviour in School-aged Children (HBSC) study is the most prominent ongoing youth 

surveillance research across Canada that collects data from school-aged children between 11 to 15 

years old (grades 6 through 10) every four years (31). The HBSC study aims to obtain insights into 

youth health behaviours, well-being, and social determinants. The HBSC survey on youth substance 

use examines daily cigarette smoking, e-cigarettes use, binge drinking, marijuana consumption, and 

illegal drugs and medication use. According to the most recent national report by the HBSC survey in 

2018, among grades 6 to 10 students, boys who smoke cigarettes daily in the last 30 days range from 

0.1% to 2%, and 0.5% to 1.8% for girls. The proportion of boys who use e-cigarettes in the last 30 

days ranges from 7% to 28%, 4% to 24% for girls. Twenty-nine percent of grade 10 female students 

(vs. 1% in grade 6) and 26% of grade 10 males (vs. 1% in grade 6) get drunk on two or more 

occasions in their lifetime. 17% of grade 9 and 10 male students reported marijuana consumption in 

the past year, the proportion declined by 20% from the 2002 HBSC survey. The same proportion of 

17% female students in 2018 used marijuana in the last 12 months, declined by 14% from 2002. A 
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continued decline in marijuana use and low percentages of daily cigarette smoking and illegal drug 

use was reported in the 2018 survey cycle compared to the previous survey in 2014. Although 

encouraging, the 4-year data collection cycle has a significant gap in examining health behaviours 

among adolescents, mainly after non-medical cannabis was legalized in 2018.  

There is increasing evidence about youth polysubstance use in Canada. Recent work from the 

COMPASS study, a large prospective cohort study of a convenience sample of Canadian students, 

found that in the 2017-18 school year, 18% of high school students reported dual-use or multi-use of 

substances, 16% reported single-use (one substance), and 61% reported no substance use in the past 

30 days (14). Studies of these trends for the past five years indicate that approximately 60% of high 

school students have not used substances. Although the number of non-user has remained stable, the 

multi-use of substances cohort is on the rise, possibly due to the emerging trend of e-cigarette use 

(13).  

The majority of polysubstance use literature has identified three or four use patterns among youth 

(32). Common use patterns include no or low use, alcohol use (i.e., alcohol only or predominantly 

alcohol use), and multi-use (32). Most of these studies focus primarily on tobacco, alcohol, and 

marijuana consumption due to their high prevalence of use among youth. For example, a study of 

Canadian adolescents aged 12-18 in Victoria, BC, examined the past year substance use and 

identified three use patterns: low/no use (63%), dual-use of marijuana and alcohol (23%), and multi-

use of cigarettes, alcohol, marijuana, and other illicit drugs (11%) (33). E-cigarettes have not been 

considered in many of these studies due to their novelty. However, their popularity has surged among 

youth in recent years and may be contributing to a rise in youth polysubstance use (13,14,34). Recent 

research identifies classes of use that involve dual and multi-use e-cigarettes with other substances, 

indicating the importance of considering these devices when examining multiple substance use (14). 

2.1.2 Adverse Effects and Perceived Impact 

As opposed to a single substance, using multiple substances is associated with further risky 

behaviours and adverse health outcomes (35,36). First of all, adolescent polysubstance users tend to 

continue using numerous substances as they transition from adolescence to adulthood. They are more 

likely to increase the number of substances currently used instead of reducing them over time (37). 

This cohort is at higher risk of substance use disorder (SUD), with fewer chances of ceasing multi-

substances (37,38). Secondly, polysubstance users among youth tend to perform poorly academically 
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(6), with lower marks and less likely to complete their secondary education (39). In addition, 

polysubstance users tend to engage in other risky behaviours, including risky sexual behaviour (6) 

and participation in violence (8,9). The culminating evidence has shown that this cohort tends to have 

poorer overall health outcomes, including being more susceptible to mental illnesses than their peers 

(6).  

2.1.3 Current Evidence on Risk Factors  

2.1.3.1 Individual-Level Risk Factors 

Age, sex, and ethnicity are the primary individual-level risk factors impacting adolescent 

polysubstance users in the literature. With age, the older the students, the higher their risk of using 

multiple substances (13,14). Additionally, early use of the substance is a risk factor for becoming 

polysubstance users in the future (40). While evidence concerning age as a risk factor is apparent, sex 

and ethnicity on youth polysubstance use are inconsistent. Although most studies show that male 

students tend to be in a higher use subgroup than their female peers (13,14,40,41), there are some 

studies among Australian (42) and Brazilian adolescents (42,43) that found no difference. A few 

studies among US youth reveal that female students are at higher risk of using multiple substances, 

including non-medical and medical use for prescription drugs (44,45). 

Regarding the relationship between ethnicity and polysubstance use, Indigenous students in Canada 

(13,14) and the US (46) are more likely to engage in multiple substances. In contrast, studies of 

Asian, Hispanic, and other ethnical students consistently are shown to be at lower risk of using more 

than three substances (14,41). Other studies have also found that black students are less likely to use 

multiple substances than their white peers (47,48).  

Substance use was found associated with depression and anxiety among youth. However, most of 

this research has only focused on the effects of single substance use on mental illness (49,50). Other 

individual-level factors that may influence the risk of youth substance use have also been explored, 

including eating habits, sedentary lifestyle, social connectedness, and family and peer influence. 

Lesjak and Stanojević-Jerković (2015) revealed that sedentary behaviour is a risk factor associated 

with dual-use of alcohol and tobacco among youths, while leisure-time physical activity (PA) is a 

determinant for daily cigarette smoking (51). Substance use is associated with adolescents’ attitudes 

and behaviours towards health, including eating habits (52). Concerning the correlation between 
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youth polysubstance use behaviour and attitudes towards nutrition, Isralowitz & Trostler (1996) found 

that substance users were more likely to be at higher risk of unhealthy eating habits. These habits 

include skipping breakfast or not eating three meals daily (52).  

Other individual-level risk factors for multiple substance use among youth include low social 

connectedness (53). In contrast, youth disapproval of substance use is related to a lower possibility of 

belonging to a higher use class (54). School connectedness or engagement are also identified as being 

associated with substance use among youths. Adolescents' sense of connectedness has been found to 

have mixed results on multi-use. Some studies have shown no effect of school connectedness or 

engagement (54,55), whereas others have found lower school connectedness associated with 

increased multi-use (14,42).  

2.1.3.2 Population-Level Risk Factors 

Population-level (or environmental) factors such as living in a non-urban setting are associated with 

multi-use involving predominantly tobacco use (44). Family, peer, and school factors also influence 

youth polysubstance use. Parental drinking and peer effect have both been identified to correlate with 

multi-use positively (32,56). Not all studies have assessed socioeconomic status (SES), an 

environmental factor that contributes to youth polysubstance use, and among those that have 

considered SES, their results are inconsistent. Some studies have identified no effect (42,44,57), 

while others have determined that students in higher use classes are more likely to have higher family 

affluence or access to spending money (14,43). One study, in contrast, has found lower SES to be 

associated with increased multi-use (58). 

2.1.4 Research on Canadian Youth Substance Use on COMPASS Data  

2.1.4.1 The COMPASS System  

The COMPASS system is a longitudinal data system initiated in 2012-2013 examining health-related 

behaviours among Canadian secondary school students. Specifically, COMPASS is a prospective 

cohort study based on school settings, collecting hierarchical (student-level and school-level) health 

data via anonymous COMPASS Questionnaires (hereinafter “Cq”). The COMPASS system facilitates 

collecting, translating, and exchanging data from secondary school students and their participating 

schools that are convenience samples across several provinces in Canada each school year (59,60). In 

https://uwaterloo.ca/compass-system/about
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the COMPASS study, student participants are asked about various health behaviours, including 

healthy eating, PA, smoking, alcohol and drug use, school connectivity, and mental health (59). 

Participating schools use a different questionnaire surrounding the school policies and practices (SPP) 

concerning their students' health behaviours. Furthermore, school SES, urbanity, and built 

environment (BE) are collected as supplementary community-level information. A copy of Cq (2017-

18) is available in Appendix A. 

The primary objective of the COMPASS study is to improve youth prevention research and 

practice (60). Adapted from the Canadian Cancer Society's School Health Action Planning and 

Evaluation System (SHAPES) framework, the COMPASS study was developed to address 

knowledge gaps in school-based prevention research and provide a knowledge exchange system for 

comprehensive research and evaluation (59). Contextually relevant information is crucial for 

developing meaningful interventions that target modifiable risk factors for chronic diseases and health 

behaviours. Context-specific adaptation activities are supported by COMPASS research and generate 

additional practice-based evidence that can be reapplied to similar settings (61). With the COMPASS 

data, youth health interventions are better informed and can be optimized by adopting programs or 

policies based on recognized capacities and needs.  

Data collection is an integral aspect of the COMPASS system and is the foundation of subsequent 

processes (e.g., knowledge translation, intervention activities, system improvement). Strict protocols 

have been developed to ensure data collection is consistent across participating schools to preserve 

data integrity. COMPASS researchers make use of multiple data collection tools that have been 

specifically designed to capture actionable, context-specific data (62). Student-level data, which 

forms the bulk of the COMPASS dataset, is gathered using the paper-based Cq (63). The 12-page 

questionnaire is completed anonymously and consists mainly of multiple-choice questions about 

physical characteristics, health behaviours, and academic performance (59). The data generated 

through completion of the Cq are essentially categorical; however, some continuous values are 

reported for select variables such as weight, height, and the amount of PA in hours and minutes. 

Participating schools are first evaluated based on their existing health policies and programs. 

Subsequently, they undergo a facility evaluation (conducted by COMPASS researchers) that 

examines health influencing characteristics of their internal and external environment (59). For 

schools that participate in COMPASS research across multiple years, Cq is conducted annually. The 
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questionnaire has been adapted several times throughout the study in response to participant 

feedback. It better reflects emerging COMPASS research priorities (e.g., cannabis use among youth 

in the wake of legalization) (62). The characteristics of the schools participating in COMPASS 

research are evaluated using three data collection tools. Details regarding existing SPP are typically 

reported by having a knowledgeable school administrator complete the SPP Questionnaire (59). The 

SPP is completed annually (at the same time as the Cq and provides researchers with an overview of 

each schools' policy environment (59).  

Alternatively, the COMPASS School Environment Application (Co-SEA) is used to measure 

aspects of a school's internal BE related to youth health and youth health behaviour (59). Co-SEA is a 

software application used by COMPASS researchers as a direct observation tool when auditing 

participating schools for the presence of healthy or unhealthy physical features (e.g., vending 

machines, exercise facilities, and drinking fountains) (59). The contextual data captured by Co-SEA 

may exist as photographs, free-text, or categorical ratings. Data is obtained annually from the 

CanMap Route Logistics (CMRL) database with spatial information and the Enhanced Points of 

Interest (EPOI) data resource to assess the external school environment for health influencing factors 

(59). COMPASS researchers can remotely evaluate the physical environment surrounding 

participating schools in terms of impact on student health. This was achieved by combining land-use 

and street network data from CMRL with opportunity structure location data from EPOI (e.g., 

presence of fast food outlets, tobacco retailers, parks, recreation facilities etc.) (59).  

2.1.4.2 Substance Use Among Canadian Youth  

Recent focus has been given to substance use among Canadian secondary school students, such as 

exploring the two-way relationship between e-cigarette and tobacco smoking (63), examining the 

impact of a potential mediator facilitating the transition from one substance use to another (64), 

identifying alcohol drinking patterns (65), psychological and behavioural correlates of cannabis use 

(66), trends of polysubstance use (13), and many others. Over half of the 120 plus journal 

publications under the COMPASS study conducted research surrounding the topic of substance use, 

and the majority focused on one or dual substances and their correlation with other health behaviours, 

academic outcomes, and mental health.  
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2.2 Methodologies for Analyzing Cross-Sectional Evidence in Addiction 

Research  

Table 1 highlights the advantages and disadvantages of the various modelling techniques that have 

been discussed in this section.  

Table 1. Advantages and disadvantages of various clustering analysis techniques 

Method Type Advantages Disadvantages  

Latent Class 

Analysis 

(LCA) 

Statistical • Model-based approach: 

probabilistic models (finite 

mixture models) to describe 

the distribution of the data 

• Local vs. global maximum 

• Estimated probability zero/one 

yield extensive 

negative/positive logit 

parameters 

K-Means 

Clustering  

Unsupervised  • Simple, easy to understand 

• Objects are automatically 

assigned to clusters  

• Works effectively for small 

datasets - low time 

complexity 

• Sensitive to outliers  

• A priori knowledge of cluster 

# before analysis 

• All objects forced to a group  

• Unsuitable for non-convex 

groups  

• It does not scale well for large 

datasets - high time 

complexity 

Hierarchical 

Clustering 

Unsupervised  • A priori about the # of 

clusters not required  

• Easy visualization with a 

dendrogram  

• Provide hierarchical relations 

between clusters  

• Able to capture concentric 

clusters 

• Once a decision is made, 

cannot undo 

• Sensitive to outliers  

• Difficult to model clusters 

with varying sizes and convex 

shapes  

• Difficult to identify the 

optimal number of groups  

• High time complexity 

2.2.1 Statistical Methods  

Depending on the research questions, statistical methods for analyzing youth polysubstance use vary 

in the literature. A recent systematic review by Halladay et al. (2020) examined the substance use 

patterns among youth. Of the 70 included articles, the majority (50 out of 70) studies applied latent 
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class analysis (LCA) for the categorical outcome variable. In contrast, three studies used latent profile 

analysis (LPA) for the continuous outcome (67). 

Measuring polysubstance use, which can be estimated by adding the total amount of substances 

used in a certain period, presents some statistical challenges (13,14,42). When considering the use of 

multiple substances, the number of substances consumed and any potential use combinations must be 

considered (14). A contingency table of all possible groupings may result in low cell counts that limit 

statistical power. To additionally consider the frequency of use only intensifies this problem. LCA is 

a solution that uses responses to two or more categorical variables to identify homogeneous 

subgroups in mutually exclusive data (68). LCA is the most common method to measure the use of 

multiple substances (32,33,44,56).  

2.2.2 ML Approaches 

2.2.2.1 Supervised Learning   

In a recent systematic review on existing applications of ML in addiction studies, Mak, Lee, & Park 

(2019) revealed that most of the included articles applied supervised learning (13 out of 17). Among 

these studies, six used regression, five used ensemble learning approaches or comparing multiple 

algorithms, and two used classification. The results show that ML, mainly supervised learning 

methods, is increasingly used to assist in decision-making in addiction psychiatry (69). Jing et al. 

(2020) used the random forest (RF) classifier to predict individuals at high risk of developing SUD. 

The authors identified 30 predictors, including poor health behaviours in late childhood, 

psychological dysregulation, irregular social interactions in mid to late adolescence, among others 

that strongly predict SUD (70). The RF algorithm can optimally detect SUD individuals between 10 

and 22 years old, compared with other ML algorithms. The RF algorithm outperforms other ML 

classifiers by increasing the prediction accuracy from 74% for 10–12-year-old youths to 86% for 22-

year-old young adults (70).  

2.2.2.2 Unsupervised Learning  

The unsupervised learning method can be further divided into cluster analysis and dimensionality 

reduction. Clustering approaches include data-based, distance-based, similarity-based, kernel-based, 

information-theoretic-based, and graph-theory-based clustering. There are various types of clustering; 

some common ones are stochastic and non-stochastic, fuzzy and crisp clustering, hierarchical and 
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non-hierarchical clustering, and exact and approximate algorithms. According to Halladay et al. 

(2020), 13 out of the 70 included articles in their systematic review applied cluster analysis methods 

to examine the patterns of youth substance use. Among these studies, K-means and hierarchical 

clustering were the dominant clustering methods (67).  

2.2.2.2.1 K-Means Clustering  

Partition-based (or centroid-based) clustering algorithms group data elements into clusters based on 

their similarity. It considers the center of objects in each group as the cluster representative. K-means, 

one of the classical partition-based clustering algorithms, divides the total data points into 𝑘 clusters. 

This approach is computationally efficient but is sensitive to the number of 𝑘 clusters and outliers. In 

a cross-sectional survey study, Gray et al. (2015) examined subgroups of gamblers on two sites, 

implementing k-means clustering with gap statistics and elbow method. The first site is a casino with 

217 employees, and the second one is an online gambling company with 178 operators (71). The 

clustering results yield four subgroups and two subgroups on the first and second sites(71). For model 

evaluation, the authors performed ANOVA with post hoc tests. 

2.2.2.2.2 Hierarchical Clustering  

Hierarchical (or connectivity-based) clustering methods measure multivariate on each subject. 

Clusters are constructed by merging from bottom-up (agglomerative) or splitting (divisive) previously 

built clusters from top-down, represented with a dendrogram, a tree-like diagram. Hierarchical 

clustering algorithms are suitable for datasets with arbitrary shapes of clusters. Unlike partitional 

clustering, hierarchical clustering takes several partitions instead of grouping the data objects into a 

specific number of clusters at one step. Hierarchical clustering produces a set of nested clusters 

presented as a hierarchical tree. A dendrogram records the order of splitting or merging. 

Agglomerative and divisive clustering are the two major types of hierarchical clustering. The former 

approach starts with the data objects as individual clusters and merges the closest pair of clusters from 

the bottom up until only one cluster, or 𝑘 clusters, are left. The latter takes the opposite top-down 

approach by separating the data objects successively into more delicate clusters.  

The standard agglomerative methods include single linkage, complete linkage, group average 

linkage, weighted average, median, centroid linkage, and Ward's method (22). For example, single 

linkage (a.k.a. nearest neighbour) defines the minimum distance between clusters, whereas complete 
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linkage (a.k.a. furthest neighbour) represents the maximum distance between clusters. Single linkage 

and complete linkage do not consider the cluster structure. Group average linkage (a.k.a. unweighted 

pair-group method using the average approach, UPGMA) is an intermediate method between single 

and complete linkage, considering the cluster structure. Like the average linkage, the weighted 

average linkage weighs the distance between clusters based on the inverse of the number of data 

elements in each cluster. It is considered a practical approach for a dataset with unbalanced cluster 

sizes. Details of these methods are summarized in Appendix B. 

Hierarchical clustering has been widely used in health-related data. For example, Ashok et al. 

(2019) applied the agglomerative clustering technique to analyze Twitter data and disease 

surveillance. In this comparative study, the agglomerative clustering algorithm outperforms the other 

two clustering methods, namely k-means and spectral clustering (72). Elliott et al. (2019) applied 

cluster-type analyses, using dendrogram to visualize the relationships between substance types. The 

results show significant distinctions in the use patterns of substances and polysubstance between 

States in the U.S. Common combinations such as cannabis/MDMA and heroin/cocaine can be 

clustered well. In contrast, cathinone and synthetic cannabinoids do not cluster well with other 

substances. Interventions to address clinical challenges of multi-use of substances are essential for 

individuals who engage in concurrent use of other substances with binge drinking (73).  

A cross-sectional family-based genetic study recruited 5390 subjects in the US to identify inherited 

patterns of opioid use. Computer-assisted interviews and Semi-Structured Assessment for Drug 

Dependence and Alcoholism were applied to diagnose SUD defined by the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV) (74). The authors employed multiple correspondence analysis 

(MCA) for feature selection (74). Implementing hierarchical and k-medoids clustering algorithms, 

Sun et al. (2012) identified five homogenous inherited patterns of opioid use, varying by use levels, 

onset time, and comorbidity. 

In summary, the existing evidence on methodologies for modelling cross-sectional data in 

addiction research, LCA, K-means, and hierarchical clustering are commonly used techniques. LCA 

is a model-based approach for clustering, using probabilistic models (finite mixture models) to 

describe the data distribution (22). As a statistical modelling technique, LCA is based on the 

assumption of conditional independence; that is, the categorical variables in each subgroup are 
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independent of each other (22). Whereas K-means and hierarchical clustering are unsupervised ML 

methods, applying distance-based clustering algorithms to group objects into heterogeneous clusters.  

2.2.3 Comparison Between ML and Statistical Modelling  

There is often confusion between ML and statistical terminology and methods. ML is a practice that 

uses algorithms to analyze data, learn from data, and predict with new data. “Learning from data” is 

the primary focus of ML. As its name implies, with ML, the machine is trained using a large volume 

of data and algorithms to perform a task without explicit instructions.  As a newer field of study than 

statistics, ML can result in more detailed information than statistical modelling. ML is a sub-field of 

Computer Science (CS) and AI and contributes to building systems that can learn from data without 

explicit programming. ML emphasizes predictions and tends to evaluate prediction performance. Due 

to better accuracy from the predictive models, ML relies on fewer assumptions than statistical 

modelling. 

On the contrary, as a sub-field of Mathematics, statistical modelling uses mathematical equations to 

identify associations between predictors and outcomes. It handles small amounts of data with fewer 

predictors. Statistical modelling requires practitioners to understand the relationship and realization of 

variables on the equation to best estimate the output of the function or make inferences about specific 

errors. In comparison, ML requires minimal human effort, as the workload involved in computing is 

placed squarely on the machine. Furthermore, ML has strong predictive power, as the machine itself 

is fit and trained to find patterns within the data. Although ML models have the advantages of 

automating high throughput computational tasks, meaningful interpretation of the modelling results is 

of utmost importance in adopting ML techniques.  

The scenario of “the data is a sample from a larger population” is often not applicable to ML 

approaches, nor is it required to consider through statistical assumptions. There is much concern over 

performance and robustness, unlike traditional statistical analysis, which focuses on population 

inference. One of the main distinctions that make ML helpful is that it also works well with large 

datasets, such as population-level health data. In contrast, statistical modelling has difficulty 

performing the tasks. Overfitting is a common issue for ML with tremendous solutions to it. 

Generalizability from a classical statistical test is given by the connection of the data to a population-

level model. That theoretical construct provides generalizability. However, it is challenging to 

achieve generalizability in ML, which is usually obtained through the algorithm's performance on 
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novel datasets. ML works well for a particular dataset and does not generalize when applied to other 

datasets in conjunction with overfitting. The general approach of ML is from a data-driven, purely 

practical sense, which makes ML a very data-oriented discipline. That is why ML appeals to data 

scientists because they like to rely on the data as much as possible and a little bit less so on 

conceptual and statistical models.  

The rise of ML in decision-making has moved in tandem with big data, computational resources, 

and advanced information and computer technology (9). Big data can be viewed as the data source for 

ML. On the other hand, big data creates more dimensions (with more relationships between predictors 

and the outcome variable) and more complexity (landscape overlay of those relationships). As a 

learning process, ML applies mathematics, statistics, logic, and computer programming. Supervised 

learning employs reinforcement rules to train an ML model iteratively. These rules will adjust the ML 

model accordingly. After training, the model can be applied to new data to provide decision-making, 

such as classification, discrimination, and detection. The previous Section 2.2.2.1 provides an 

example of using the RF classifier to predict individuals at high risk of developing SUD. For 

unsupervised learning models, the purpose is to discover important clusters or defining features in the 

data. For example, k-means and hierarchical clustering are the two commonly used unsupervised 

learning methods in identifying the patterns of youth substance use.  

2.2.4 Gaps Identified 

Based on the literature review conducted, out of the 70 studies included in the systematic review by 

Mak, Lee, & Park (2019), only 13 studies applied ML techniques (69). The evidence shows that ML 

approaches have not been widely used in addiction research, particularly for unsupervised learning 

methods compared to supervised learning approaches. According to Wang et al. (2015), current 

obstacles that prevent unsupervised algorithms from getting accurate clustering results from large 

datasets include (75): 

• Leverage of existing knowledge: it is hard to use human knowledge during the 

identification step without deploying rule-based algorithms 

• Deriving distinct phenotypes: some algorithms may result in overlapping phenotypes 

• Missing and noisy data: robust algorithm required to deal with the missing data 
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• Scalability: when developing algorithms, it is necessary to pay more attention to scalability 

as health data has an exponential growth rate 

Unsupervised ML methods, particularly a variety of clustering algorithms, were applied in this 

thesis to ascertain meaningful phenotyping results in risk profiles of youth polysubstance use. The 

clustering algorithms that were implemented in this thesis are elaborated in Chapter 4 Methods, 

Section 4.4.4.  

2.3 Methodologies for Analyzing Longitudinal Evidence in Health Research 

Table 2 summarizes the advantages and disadvantages of the various modelling techniques that have 

been discussed in this section.  

Table 2. Advantages and disadvantages of various latent variable modelling techniques 

Method Type Advantages Disadvantages  

Latent 

Markov 

Model 

(LMM) 

Statistical/

ML 

• Formulated based on strong 

statistical foundation 

• Efficient learning algorithms can 

be learned directly from the 

original sequence data 

• Can handle variable-length 

inputs 

• Widely applied in many fields, 

such as data mining and 

classification, pattern discovery, 

structural analysis, etc.  

• Many unstructured 

parameters 

• Limitation on first-order 

Markov property: unable to 

capture higher-order 

correlation 

• Cannot express dependencies 

between latent states 

• A reasonably constrained 

LMM can only represent a 

small part of the distribution 

in the possible sequence 

space  

Latent 

Transition 

Analysis 

(LTA)  

Statistical • Some development can be 

represented as movement 

through discrete categories or 

stages 

• Heterogeneity may be 

unobserved  

• Not suitable for small 

samples 

• No consensus on the best 

approach for model selection  

• There may be errors 

associated with the 

measurement of the discrete 

categories 

Latent 

Growth 

Curve Models 

Statistical • Individual intercepts and slopes 

can be different 

• Allow predictors error  

• Cannot easily accommodate 

multilevel nesting  

• Data preprocessing: needs 
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(LGC) • Handle predictor errors, 

correlated errors and 

heterogeneity  

• Latent variables can have 

multiple indicators  

• The pattern of changes can be 

checked from multiple 

dimensions 

• Estimate direct and indirect 

effects  

time-structured data 

• No. of estimated parameters 

can increase rapidly  

• Fewer functions to test the 

interaction or adjust the effect  

2.3.1 Overview of Longitudinal Data Analysis  

Depending on the data structure of the response variable and research interest, longitudinal data can 

be divided into two main types, i.e., time-to-event data and repeated measures (RM) data (76). The 

best modelling tool for analyzing time-to-event data is survival analysis, with a particular research 

interest focusing on whether and when an event occurs. For example, Koenig, Haber, & Jacob (2020) 

examined the transitions in alcohol intake across time, assessing the determinants of the three 

transitions of onset, remission, and relapse, using survival analyses (77). Survival analysis is a special 

technique for modelling time-to-even data, which is out of the scope of this thesis.  

 

Figure 1. Types of longitudinal data 

RM data can be further classified into time-series, intensive longitudinal, and panel data, based on 

the number of subjects and the time occasions available. As a particular type of pooled data, panel 

data derives from individual surveys. A panel is a cohort of the same cross-sectional unit being 

surveyed repeatedly across time (78). Panel data is longitudinal, allowing for the study of dynamic 

processes (79). In addiction research, observed data are often collected through a relatively small 

number of time occasions (e.g., annual surveys) from a relatively large number of subjects, as the 

Longitudinal 
Data

Time-to-event 
data

RM data

Time-series data 

Intensive 
longitudinal data 

Panel data
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COMPASS data used in this thesis. By “relatively,” it is compared to time-series data, typically 

collected from a single sample unit with a long sequence of measurements (78). Figure 1 shows the 

common types of longitudinal data (76). 

In addition to the COMPASS dataset, the HBSC study also collects data from school-aged children 

in grades 6 to 10 every four years through a standard student questionnaire (31). Individual and 

societal resources, health behaviours and outcomes are the core data elements in the HBSC study 

(31). Another source of longitudinal data related to addiction research is the National Survey on Drug 

Use and Health (NSDUH), a household survey on substance use, SUD, mental health, and the receipt 

of treatment services for these disorders in the US. The data sample includes all 50 states and DC, 

with approximately 67500 participants are interviewed annually. The study population of NSDUH is 

the general public aged 12 and older, with data collected all year long, from January to December 

(80).  

Panel data analysis can be further divided into the marginal model and random effect growth 

model. The former focuses on modelling the mean change, while the latter focuses on the individual 

or within-subject variations (76). Marginal models allow for making inferences to the entire 

population based on the drawn sample. To further differentiate random effect models, assumptions 

about within-subject variation can be divided into continuums or categories. The multilevel, latent 

curve and mixed-effects models are the appropriate modelling tools for continuum differentiations. 

Semi-parametric groups-based approach and latent class growth analysis can be applied to qualitative 

differences between subgroups (76). Table 3 summarizes modelling techniques that are widely 

utilized in panel data analysis, adopted from Bauer & Curran (76). 

Table 3. Panel data analysis by research focus 

Research Focus Modelling Technique  

Mean differences 

across ≥ two waves  

RM-ANOVA 

Analysis of Covariance (ANCOVA) 

Generalized Estimating Equations (GEE) 
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Within-subject 

variation across ≥ 

three waves  

Quantitative variations: multilevel model, latent curve model, mixed-

effects model  

Qualitative variations: general growth mixture model 

Qualitative + Quantitative variations: semiparametric group-based 

approach, latent class growth analysis  

Change in one process 

related to another  

Trajectories: multivariate growth model  

Pairs of time points: latent change score model  

Bidirectional effects 

over time  

Auto-regressive (AR) cross lag  

Change + bidirectional  Latent curve model with structured residuals  

Progression through 

stages/sequence  

Latent transition analysis (LTA) 

2.3.2 Statistical Methods  

LTA, a longitudinal extension to LCA, analyzes longitudinal data to determine a transition between 

latent classes across time. Suppose a change occurs, how that transition is characterized (68). In LTA, 

latent classes are called latent states to convey the potentially temporary nature of the grouping (68). 

In addiction research, LTA is a commonly used analytic technique that helps researchers identify 

hidden subgroups of individuals within a population. In LCA, the classes (latent states) are static, but 

in LTA, the classes are dynamic, such that individuals can transition from one class to another across 

time. In LTA, researchers are interested in understanding how subjects transition over time between 

subgroups that are identified using LCA. Different individuals may take different pathways over time, 

which is what researchers are primarily interested in examining.  

For example, given that social networks are complex and multidimensional, Bray and colleagues 

used LTA to understand why smokers become more socially isolated when they try to quit. In this 

work, LTA was first used to describe subgroups of individuals post-quit with different social 

networks and then examine the dynamic transition of social network types over time (81). The study 

used data from the Wisconsin Smokers' Health Study, a long-term smoking cessation trial in 

Wisconsin (81). This analysis looked at 691 smokers who completed assessments at baseline and then 
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at one, two, and three years post-quit (81). The research focused on transitions of former smokers' 

social network statuses across that three-year post-quit date. In addition to understanding how people 

transition, the authors also examined how these different transitions were associated with abstinence 

over time. Modelling multiple features of social networks simultaneously allows researchers to 

explore how various sources of smoking exposure work together holistically (81). The authors also 

linked transitions of class membership to other outcomes. This study underscores the need for 

interventions that address situations in which subjects had partners who smoke and suggest new 

interventions to target broader social networks as people attempt to quit smoking (81). 

2.3.3 A Brief Introduction to Transition Models  

Transition models are statistical methods used to analyze longitudinal data to study change across 

time with natural, historical data. Transition models focus on modelling the response variable 𝑦𝑖𝑡 for 

subject 𝑖 at time occasion 𝑡, conditional on the subject's history, denoted as 𝐻𝑖𝑡, 

 𝐻𝑖𝑡 = {𝑦𝑖𝑘 , 𝑘 = 1,2, … , 𝑡 − 1} (1) 

Such methods are often modelled as a 𝑛-order Markov chain, where the conditional distribution of 𝑦𝑖𝑡 

depends only on the most previous 𝑛 responses for subject 𝑖,{𝑦𝑖𝑡−1, 𝑦𝑖𝑡−2, … , 𝑦𝑖𝑡−𝑛}. A Markov 

process is a chain of memoryless events, assuming that the next event will depend only on what is 

happening now and not what happened previously.  

The LMM is a generative model for analyzing panel data (82). As one practical class of 

probabilistic template models, the LMM contains two probabilistic components, the transition model 

and the observation model. The former reveals the change from one hidden state to another across 

time, and the latter indicates how likely different observations can be seen in a given state. 

Interestingly, the LMMs often have an internal structure that manifests most notably in the transition 

model but sometimes in the observation model. Although LMMs can be viewed as a subclass of 

dynamic Bayesian networks, they have a unique structure that makes them particularly useful for 

many successful applications. The architecture of LMMs is very similar to that of hidden Markov 

models (HMM), assuming to follow a Markov chain, typically of first order (27). Both HMM and 

LMM approaches rely on a latent process with conditionally independent response variables (27). 

HMMs are well-known for time-series and stochastic processes with various applications such as 

robot localization, speech recognition, activity recognition, machine translation, time series 

prediction, biological sequence analysis, and others (83–85). The HMMs and LMMs rely on a solid 
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statistical foundation. However, the literature also refers to such probability template models as ML 

models. Therefore, the LMM lies at the intersection between statistical modelling and ML modelling. 

To emphasize the analysis of longitudinal data, the LMM is the term used throughout this thesis. 

2.3.4 Latent Markov Models (LMM) 

The LMM was initially developed in multiple directions with applications in sociology, psychology, 

and medicine (86). The first development involves using covariates, which may be included either in 

the latent or measurement model. A multivariate LMM was developed by Bartolucci and Farcomeni 

(2009), in which the conditional response probabilities of a given latent process were parameterized 

by multivariate logistic transformation. Using both time-invariant and time-varying covariates, 

Vermunt et al. (1999) modelled the initial probability and transition probability of the LMM process 

with multinomial logit regression models. Further extending this method, Bartolucci et al. (2007) 

applied more than one response variable, estimating transition probabilities based on lagging response 

variables (87). The LMM methodology allows various models to be estimated, and the best model can 

be selected from a latent class model to a heterogeneous model with subgroups. 

The two fundamental problems that an LMM can address are predicting the probability of a 

sequence and predicting the most likely order of latent states based on observed data. Bartolucci, 

Farcomeni, & Pennoni (2012) stated two main applications of LMM, decoding and forecasting. 

Decoding uses the observed data of a sample unit to predict the order of its latent states (27). 

Decoding is further classified into local decoding and global decoding. The former refers to 

identifying the most likely latent state for each time occasion, while the latter identifies the most 

likely order of latent states. Another application of LMM is to forecast a latent state for future time 

occasions or a future response, given the observed historical data (27).  

LMMs have been utilized in recently published health-related research. Some examples include 

examining the tendency of substance use (88), evaluating the performance of different nursing homes 

(89), assessing the dynamic association between expenditures and health conditions in the ageing 

population (90), and modelling the determinants of health care utilization (91). To examine whether 

age is associated with an increasing tendency of marijuana consumption, Bartolucci (2006) applied a 

univariate LMM (with no covariates) to the “National Youth Survey” data with five annual waves of 

marijuana consumption. The analysis was based on three latent states (not inclined to use cannabis, 

incidental use of cannabis, and inclined to use cannabis), with homogenous transition probabilities 
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and a parametric measurement model with simplicity provided global logits. The author tested 

different hypotheses of the latent process on the transition matrix. A tridiagonal structure was 

identified for the transition matrix. It has been proven that the LMM can handle distribution 

assumptions, such as excessive dispersion of polynomial distribution flexibly, considering the 

measurement error (88). 

Mitchell et al. (2008) examined the drinking patterns of American Indian adolescents, the 

predictive factors and developmental outcomes that co-occurred (92). The authors applied an LMM to 

6 bi-annual data collected from American Indian high school students to study dynamics in latent 

statuses of youth alcohol drinking in the past six months (92). The three latent statuses identified to 

describe alcohol drinking patterns across the three years were: abstainers, inconsistent drinkers, and 

consistent drinkers (92). The modelling results provide valuable insights into distinguishing youth 

who should be considered inconsistent drinkers (92). This study also indicates that extensive 

interventions for youth may not be the most important measures to minimize adverse health 

outcomes. Given limited resources, future interventions for alcohol intake and the use of other drugs 

may be more strategic (92).  

The dynamic LMM has also been used to model the determinants of health care utilization leading 

to policy implications. Gil, Donni, & Zucchelli (2019) applied a bivariate LMM to model healthcare 

usage trends, dynamic unobserved heterogeneity, transitions between latent states, and the 

endogeneity of uncontrolled diabetes (91). The authors estimated the impact of uncontrolled diabetes 

on primary and secondary health care use on longitudinal administrative data, using biomarkers to 

measure uncontrolled diabetes (91). An LMM was applied to the longitudinal health survey and 

registration data on health care expenditures to examine the dynamic association between 

expenditures and health status in the ageing population (90). 

Rijmen, Vansteelandt, & De Boeck proposed a hierarchical structure of the LMM to examine the 

emotional change process of patients with anorexia based on the ecological transient assessment 

research (93). Four latent states were selected for the analysis, including “positive mood,” “neutral to 

moderately positive mood,” “low intensity for all emotions except tension,” and “negative mood” 

(93). To illustrate that data from different day levels are dependent, Rijmen et al. (2008) fitted a 

hierarchical LMM by incorporating latent variables at the day level. Assuming a first-order Markov 

chain that is time-homogeneous, the author modelled the dynamics between the latent statuses at 
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signal- and day levels. It is estimated that there will be more positive sentiment trends in the initial 

probability and conditional probability of the chain over signal and day (93). 

Bartolucci, Lupparelli, & Montanari proposed an LMM for assessing the performance of different 

nursing homes regarding the level of care provided for their patients in one region of Italy (89). This 

study is about the evolution of psycho-physic conditions of a sample of elderly individuals hosted in 

certain Italian nursing homes. Assuming a latent Markov chain exists for the transition of patients' 

health conditions, the LMM is used to analyze the repeated administration of questionnaires. With a 

manageable number of nursing homes (11) in this study, the authors utilized the multilevel structure 

of this longitudinal dataset. Instead of using random effects, fixed effects were applied to capture the 

impact of each institution on their patients' health conditions. The advantage of this method is that it 

explicitly considers the transition of health conditions, which is the metric used to evaluate the 

nursing homes' performance. However, this application may need a multilevel approach based on 

random effects with many clusters. 

The LMM approach has also been applied in psychological and educational research (94), labour 

market and marketing-related fields (95), criminological research (87), and many others.   

2.3.5 Multilevel Model (MLM) Framework  

The MLM framework is a hierarchical modelling approach that allows for nested data structure and 

provides clear and structured semantic descriptions of growth pathways. There are other terms in the 

literature, such as hierarchical linear model, general linear mixed model, GCM, and random 

coefficient model (96,97). Although these models are not identical, their analytic approach is similar. 

They contain variables defined at different levels of the structured population with hierarchy; thus, 

these terms can be used interchangeably in practice.  

LMMs can be extended to multilevel data, where individual samples are collected into subgroups. 

The fact that the samples are hierarchical is sufficient. Significant intraclass correlation coefficients 

(ICC) between levels are not required. Based on fixed effects, Bartolucci et al. (2009) employed a 

method to represent the common factors of all samples in the same subgroup. Based on random 

parameters with discrete distribution, Bartolucci et al. (2011) proposed a method related to mixed 

LMMs and LMM with random effects. These formulations for multilevel data are related to the 

extended LMM, allowing parameters to be changed in different latent subgroups. This method is 

known as the foundation of LTA (98). 
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This particular modelling technique has been applied in healthcare services, such as assessing the 

nursing homes' performances (99) and school services. For example, Bartolucci and colleagues (100) 

evaluated school performance, and Williford and Zinn identified bullying experiences with 

classroom-level mixtures taking advantage of nested structures of peer children in the classroom and 

school environments (101). These studies provide insights into individualized interventions 

corresponding to different latent states and transitions. This multilevel approach allows us to fit and 

further extend the LMMs by applying that same concept but at the level of repeated measures.  

Koukounari et al. (2013) used a nonparametric multilevel LMM approach to study two trachoma-

endemic communities in Gambia and Tanzania (102). This approach allows for nested data structure 

and addresses the computational difficulties of the multilevel longitudinal mixed model. 

Simultaneously, this study assesses three diagnostic and variance tests without a gold standard, based 

on data collected from a large-scale drug management intervention (102). The Multilevel LMM was 

used to assess the impact of interventions on infection and disease prevalence. Level 1 and level 2 

were the within-household model and the between-household model, respectively.  

2.4 ML in Public Health  

The two most common public health topics where ML is currently employed are chronic diseases and 

associated risk factors and infectious, parasitic, and communicable diseases (20). The most common 

ML algorithms used in the literature were classification algorithms, including decision trees, random 

forest, logistic regression, and support vector machines (20). It is likely driven by the number of use 

cases where text mining and sentiment analysis were used to classify the concerns of individuals 

towards public health problems. This analysis was most commonly completed using free/open-source 

tools like R and Python. Common datasets that were used for this analysis included census data, 

social media data (e.g., Twitter), and specialized databases such as vaccine or risk databases (20). 

Most ML techniques have been applied for descriptive and predictive purposes by mapping inputs 

to outputs in a data-driven manner. The objective includes public health surveillance, disease 

diagnosis, disease incidence, and individual-level and population-level prediction (19). ML offers 

health researchers new tools to tackle problems for which classical statistical methods may encounter 

limitations. ML is well-equipped to analyze vast amounts of health, environmental and other geo-

special data to explore associations, identify disease patterns, and predict health outcomes in a 
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population, when it occurs, how it changes, and predict the impact of interventions or solutions (18). 

ML techniques may also generate hypotheses from large datasets and could be used to inform health 

research (19). ML can help public health researchers explore causality in some studies, although these 

methods do not necessarily change our conceptual understanding of the causal paradigm (17).  

ML provides tremendous opportunities for improving public health. In a presentation of ML for 

public health hosted by Public Health Ontario, Rosella, Fisher, and Song (2019) summarized the 

rationale behind the rapidly growing interest in AI, including quickly evolving data environment, 

increasing computational capacity, improvements in data ingestion and processing, and greater 

demand for data-driven decisions (17). All these elements nurture our developing data science 

ecosystem in the public health sector. Population health focuses on the health outcomes of a group of 

people and the distribution of their results. Public health information has a considerable volume and 

can be viewed as the data source for ML, paving the way for precision public health (21). This term 

has recently been used in the public health literature, referring to “providing the right intervention to 

the right population at the right time (103).”  

In the early days of designing this thesis, we conducted some preliminary searches for the topic of 

“ML for Public Health” on a variety of bibliographic databases, including PubMed, Scopus, IEEE, 

Web of Science, ACM, and ProQuest. From this preliminary search, ML applications in public health 

are primarily focused on infectious disease epidemics, lifestyle diseases, and predicting demographic 

information. Major themes have emerged in the field of public health through the application of ML 

methods, including disease screening/prediction/detection/outbreak/surveillance, non-communicable 

diseases, communicable/infectious diseases, risk factors/behaviours, mental health, maternal and child 

health, accidents/injuries/disability, and respiratory diseases and allergic disorders (104).  

Some key enablers to facilitate the use of ML to understand and tackle public and population health 

problems have been identified (105). These enablers include understanding the governance context of 

big data in public health, modernizing data and analytic infrastructure, applying ML best practices, 

nurturing educated staffing, and establishing strategic collaborative partnerships between ML 

researchers and public health professionals. The significant hurdles of ML in public health include 

data acquisition (access and sharing), informed consent, security and privacy concerns, and making 

decisions under uncertainty (16,19). Overfitting is also a concern, which requires careful model 

evaluation before deployment. The potential ethics and bias-related issues related to ML-based 
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systems must also be considered. For example, biased data can lead to faulty algorithms, intensifying 

public health issues at the community level. How do we ensure that the data we are training and 

validating these automation tools do not contain inherent bias? Ethical issues such as who is 

accountable in the event of an error. Security and privacy of patient health data will be an ongoing 

concern (106). Achieving fairness, accountability and transparency (FAT) is the goal of explainable 

ML in the public health sector, with an interdisciplinary research focus. However, it is at an early 

stage of adopting ML in public health, and the level of sophistication is deficient.  

 

In summary, this chapter provided a literature review on youth polysubstance use, approaches for 

modelling cross-sectional data in addiction research, advanced methods in transition modelling, and 

ML in public health. The review explained the methodologies utilized, their applications, and 

comparisons drawn by diverse research in the published literature. The research gap was identified 

that ML approaches had not been widely applied in addiction research. The study rationale and 

specific objectives follow in the next chapter.   
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Chapter 3 

Study Rationale and Objectives  

This chapter presents the rationale for this study and summarizes the aims, specific objectives, and 

research questions for this thesis.  

3.1 Study Rationale  

Although it is known that healthy habits during adolescence tend to persist into adulthood, the amount 

of research focusing on social correlates of youth health behaviours (e.g., peer relations, parental 

support, school programs) has been inadequate (107). The COMPASS longitudinal study addresses 

this gap by collecting multifaceted information pertaining to youth health behaviours from multiple 

sources to examine the relationship between school environmental characteristics and youth health 

behaviours in Canada. The COMPASS dataset is diverse, including Cq, BE assessments and policy 

evaluations. It has been utilized in many health-related disciplines. The COMPASS research has 

produced over a hundred academic publications ranging from environmental health and health 

promotion to preventative medicine (108). Early COMPASS publications revealed the substantial 

variability across Canadian jurisdictions regarding youth PA levels, substance use, mental well-being, 

and healthy school environments and policies (59). The COMPASS data have been continuously used 

to assess how school environments, policies, and practices affect multiple youth health behaviours 

and outcomes (59).  

From a methodological perspective, the existing literature using the COMPASS data primarily 

applied LCA or LPA to identify single substance use patterns. For example, Lee et al. (2021) 

examined stage-sequential alcohol drinking patterns using multilevel latent class profile analysis 

(109).  Gohari et al. (2020) applied a multilevel LCA to discover alcohol consumption patterns 

among youths from Canadian secondary schools (65). Hammami et al. (2019) studied risk behaviours 

associated with BMI on chronic diseases using the sex-stratified multilevel LCA approach (110). In 

addition, using LCA, Laxer et al. (2017) examined modifiable behaviours and their impact on obesity 

and overweight among adolescents (111).  

However, none of the studies that used COMPASS data examined the transition of polysubstance 

use patterns among youth across time or explored risk profiling based on student characteristics and 
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school environment perspectives. Furthermore, current studies using the COMPASS data 

predominately select features for modelling based on a priori knowledge from existing literature in 

the appropriate research domain. By discriminatingly selecting only a few variables from the dataset 

that the researchers deem relevant to their study, they may inadvertently overlook meaningful 

relationships, hidden patterns, or underlying trends that could have been captured with the omitted 

variables. This could result in missed opportunities in identifying critical information to revise 

policies and interventions concerning youth health behaviours in school settings. Additionally, 

selectively overlooking variables provides an opportunity for implicit biases that can then be further 

imparted into the data analysis.  

ML algorithms have unique advantages for revealing “hidden” patterns and unexpected 

associations in large and complex datasets, discovering relevant patterns in such high-dimensional 

data that are structural and/or temporal. Unless otherwise well-established, these patterns 

(“knowledge”) are often unobservable, and human experts cannot directly access them. Yet, we may 

need these patterns to assist in better decision support. Most population-level health data are non-

standardized and are often weakly structured, with a high dimension >3 (112). Although human 

experts are good at ≤3-dimensional pattern recognition, any higher-dimensional datasets make 

manual analysis difficult and impossible (112). We are unsure about the hidden knowledge, and ML 

approaches hold a promise to quickly identify hidden patterns on a vast volume of health data. 

However, thus far, none of the published studies using the COMPASS data have applied ML 

methods. This thesis employed ML techniques to the COMPASS dataset to enhance data exploration 

capabilities and identify complex associations between variables. On the one hand, the COMPASS 

dataset is explicitly concerned with youth health behaviours and corresponding school policies and 

practices. On the other hand, the multifaceted characteristics of this large-scale survey data, including 

the complexity of influence/behaviour models, modifiable risk factors, and disease progression and 

intervention, make it the optimal candidate for ML approaches in population-based health research.  

3.2 Objectives  

ML in public health is a new field, and its applications are underutilized. This thesis is designed to 

realize the huge potential of ML applications in the public health domain, engaging ML practitioners 

to move towards research in this field and bridging these two communities. The overarching goal of 

this thesis is to further the understanding of the appropriate way of fitting transition models and 
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exploring the “hidden” patterns generated from large complex population-based health survey data. 

The research objectives are achieved by implementing appropriate ML models to the COMPASS 

data.  

First, this thesis aims to apply an LMM technique on longitudinal data to explore the dynamic 

transitions of polysubstance use patterns from one state to another across time, showcasing the ability 

of this type of modelling technique to examine inter-individual differences in transition analysis. 

Second, unsupervised ML algorithms have the unique advantages of revealing “hidden” patterns and 

unexpected associations in a large and complex dataset. The secondary aim of this thesis is to explore 

and obtain a better understanding of the structure of the COMPASS data in the context of risk 

profiling of polysubstance use among youth, which is primarily achieved through the application of 

cluster analysis.  

More specifically, the objectives of this thesis are to: 

• Estimate the transition probabilities of dynamic membership of use patterns over time using 

the COMPASS data.  

• Experiment and apply a variety of clustering algorithms to analyze the COMPASS data that 

are explainable. 

• Identify the most significant features or actionable insights for polysubstance use prevention 

derived from an ML model.  

3.3 Research Questions   

This thesis investigates how the various ML models can be applied to the longitudinal data for 

analyzing polysubstance use among adolescents using the COMPASS dataset. According to the 

literature on youth polysubstance use, it is anticipated to identify several latent states (subgroups) of 

individuals differing in their use patterns and transition over time. More specifically, this thesis is set 

to address the deficiency in understanding the dynamic transitions of use patterns using the 

COMPASS data. 

3.3.1 Primary Research Questions  

The primary research questions are:  
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• RQ1: What are the risk profiles of polysubstance use among Canadian secondary school 

students?  

• RQ2: What are the patterns of polysubstance use among Canadian secondary school 

students?  

• RQ3: How do transition behaviours change over time in use patterns?  

3.3.2 Secondary Research Questions  

The secondary research questions include:  

• RQ4: What factors are associated with patterns of polysubstance use among Canadian 

adolescents?  

• RQ5: What factors are associated with dynamic transitions of use patterns?   

• RQ6: What are the advantages and limitations of the ML methods appropriate to modelling 

risk profiles and dynamic transitions using the COMPASS data?  

 

In summary, this chapter provided the study rationale and summarized the specific objectives and 

research questions for this thesis. The research methodologies throughout this thesis follow in the 

next chapter.   
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Chapter 4 

Methods  

This thesis applied various research methodologies to achieve the aims and objectives outlined in the 

previous chapter. This chapter describes all these methods, ranging from data preprocessing, missing 

data analysis, feature selection, and various model fitting and validation approaches. The different 

research communities, i.e., ML and public health, use different terminologies in the same context. 

Table 4 summarizes the key terms/concepts used throughout this thesis, making it easy to understand 

by public health professionals and researchers.  

Table 4. Glossary of terms/concepts for public health practitioners 

Term  Relevant Public Health Concept/Term with Interpretation  

Cluster A.k.a “class” or “state” refers to a subgroup or a cohort of subjects with similar 

characteristics.  

Feature  A.k.a “predictor variable” or “covariate” refers to an independent variable (or 

explanatory variable) in statistical modelling 

Overfitting  A common issue in ML models with poor performance, referring to the model 

that fits the training data very well (i.e., very low training error, “too good to be 

true”) but fits the test data poorly (high test error). This phenomenon is often 

caused by too many complex predictors than necessary in the model and can be 

addressed with multiple solutions (see Section 6.1. 4.3).  

Phenotype Originated from genetics, meaning a set of observed characteristics of an 

organism. In the context of this thesis, it represents the characteristics of youth 

polysubstance use collected through the COMPASS host study. “Phenotyping 

risk profiles” refers to the process of identifying subgroups of individuals with 

different characteristics related to polysubstance use. 

Unsupervised 

learning 

A type of ML algorithm. Unlike supervised learning algorithms that use labelled 

data for prediction (discrimination, classification), unsupervised learning 

algorithms explore the data and draw inferences from unlabeled data (i.e., no pre-
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defined outcome variable) to uncover inherent structure or hidden patterns. As 

one type of unsupervised learning, cluster analysis has been extensively 

investigated and applied to partition data into homogenous clusters (see Section 

2.2.2.2). 

4.1 Study Design and Participants 

This study is a retrospective cohort study, taking the secondary analysis approach of an ongoing 

longitudinal study, i.e., the COMPASS study. The COMPASS data are a de-identified health survey 

at the population level. As introduced in Section 2.1.4.1, the COMPASS study collects student- and 

school-level information from a convenience sample of secondary schools across several provinces in 

Canada each school year (59,60). Substantial efforts have also been made to streamline data 

collection methods to minimize interruptions to class time and reduce the burden of work on 

participating schools (113). Eligible students at participating secondary institutions complete the 

questionnaire during class time on a prearranged “data collection day” (114).  

Since COMPASS research involves youth under 18 years old, parental/guardian consent is required 

for participation. The University of Waterloo Office of Research Ethics has approved the active-

information passive-consent protocols, which help achieve high participation rates and reduce 

sampling bias while preserving student confidentiality (113). The protocol provides parents with 

pamphlets that detail important COMPASS research and contact information, including contact 

information of the recruitment coordinator if parents would like to withdraw their child(ren) from the 

study. Eligible students whose parents do not contact the recruitment coordinator within the two-week 

time frame provided are considered participants who are allowed to complete the Cq (113). 

Additionally, students are permitted to withdraw participation during the consent process or data 

collection period (59).  

In this thesis, the three-year linked sample of the COMPASS data collected includes Wave I (the 

school year 2016-2017, Y5), Wave II (the school year 2017-2018, Y6), and Wave III (the school year 

2018-2019, Y7). The COMPASS study has received ethics clearance from the University of Waterloo 

Office of Research Ethics (ORE 30118). 
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4.2 Dataset and Data Preprocessing 

4.2.1 Dataset  

The longitudinal dataset being analyzed in this study is the three-year linked sample of the 

COMPASS data collected from Wave I, Wave II, and Wave III. Each linked dataset contains over 

200 variables collected from 9307 Canadian students from grades 7 to 12 (secondary I through V in 

Quebec) at the initial measurement occasion (Wave I). The participating students were from 76 

secondary schools located in Ontario, Quebec, British Columbia, and Alberta. Of the 9307 linked 

samples, the present analyses are restricted to the 8824 students with regular patterns on their grade 

levels. “Regular patterns” refer to the advancement of students from one grade to another at each 

school year. The COMPASS host study uses grade to be relevant to school planners who make plans 

based on grade, not age. Thus, the students’ grade level is a proxy of their age throughout this thesis. 

The Cq data contains demographic and personal information, such as grade, sex, ethnicity, primary 

language spoken, height and weight. Additionally, it includes student responses to multiple-choice 

questions regarding their behaviour and perspectives on health and wellness topics. The 

supplementary community-level data, i.e., school-level socioeconomic status, urbanity, and BE, are 

linked to each participating school. The survey is conducted annually, with three consecutive waves 

available for each subject within the same cohort.  

As previously discussed, the COMPASS data is collected using annual student questionnaires Cq, 

school program/policy questionnaires (SPP, completed by a school administrator), and 

internal/external school environmental assessments (Co-SEA) (59). Students complete the cover page 

of the Cq to generate a unique code that allows COMPASS researchers to link data collected from the 

same student across multiple years of participation (59). The use of self-generated identification 

codes for anonymizing questionnaire data collected in longitudinal studies has been well documented 

and strikes a favourable balance between privacy and research methodology (115). Anonymization 

using unique self-generated codes is perhaps the principal strategy for ensuring COMPASS data 

remains confidential throughout the remainder of its life cycle.  

Although the SPP data provides a wealth of information regarding policies and programs, they are 

not commonly used as student-level data, possibly due to the qualitative nature of many open-ended 

text responses. Since the research focus of this thesis is not directly related to the content from SPP 
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data, it was excluded in this thesis. Of note, the initial three waves COMPASS data contains 46862, 

66434, and 74501 subjects at Y5, Y6, and Y7, respectively. To distinguish the initial three waves data 

and the linked samples, Wave I, Wave II, and Wave III are used throughout this thesis, representing 

linked samples at Y5, Y6, and Y7, respectively.  

4.2.2 Data Preprocessing  

Several data preprocessing steps were taken to prepare the data for analyses, including data cleaning, 

linking, merging, and missing data analysis. Figure 2 illustrates the flowchart of the steps taken from 

full samples down to final linked samples.  

 

Figure 2. Flowchart of data preprocessing 

4.2.2.1 Step 1: Data Cleaning  

Redundant variables, such as nested questions which tend to have redundant information, and 

irrelevant variables, such as information inconsequential for analyses, were removed. For example, 

the subsequent question, “In the last 12 months, how often did you use marijuana or cannabis? (a 

joint, pot, weed, hash)”  is, “If you have used marijuana or cannabis in the last 12 months, how did 

you use it?” Since the response to the nested question assumes an affirmative response to the parent 

question, such questions were considered redundant and thus were removed from the analyses. 

Redundant and irrelevant variables were identified by individually reviewing each nested question. 
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The process of cleaning irrelevant data included removing original data while retaining the data 

derived from them. For instance, body mass index (BMI) is derived from weight and height; thus, the 

calculated BMI data is included while the original data, namely, weight and height, were discarded. 

Likewise, hours and minutes of PA from Monday to Sunday were aggregated to total PA, mental 

health-related measures such as FLOURISH (Diener’s Flourishing Scale), GAD7 (Generalized 

Anxiety Disorder 7-item Scale), CESD (Center for Epidemiologic Studies Depression 10-Item Scale-

Revised), and DERS (Difficulties in Emotion Regulation Scale) were derived from relative scale 

items. The original data they are derived from were discarded. Data cleaning aims to keep intact 

relevant and necessary data for analysis while removing irrelevant and redundant ones.   

4.2.2.2 Step 2: Data Linking  

In addition to the complete cross-sectional student datasets, a separate linked IDs file was available 

for connecting the samples across waves. The updated linked IDs file covers the last five years. The 

new linked sample is updated each year based on further information about students. There is a 

pattern variable within the linked IDs file as a flag, indicating if a student participated in a year 

(denoted by 1) or not (denoted by 0). The years go from 2015-16 to 2019-20. Although the link is 

available in 5-year cycles, most students only attend secondary school for four years, so a 4-year 

worth of data tends to be used when performing any analysis. This thesis only included students who 

participated across all three consecutive years from 2016-17 to 2018-19. Therefore, patterns 1110, 

1111, 11110, and 11111 were used to link the samples across these three waves. Table 5 demonstrates 

the identification of linking patterns across the three waves data. The scanID within each cross-

sectional student dataset was a primary index linking each individual across the three waves. 

Table 5. Identification of linking patterns across the three waves 

2015-16 2016-17  

(Wave I) 

2017-18 

(Wave II) 

2018-19 

(Wave III) 

2019-20 

0 1 1 1 0 

0 1 1 1 1 

1 1 1 1 0 

1 1 1 1 1 
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4.2.2.3 Step 3: Data Merging  

The supplementary school-level data, including household income level and urbanity, were merged 

into the student-level dataset using the corresponding school ID as the primary index. For the school-

level BE, although 1500 meters is closer to the 1-mile buffer often used in US studies (116),  the 

radial distance for points of interest, such as drug and liquor stores, were selected to be within1000 

meters of the school zone. This distance of 1000 meters has commonly been used in tobacco retailer 

density literature for examining the relationship between school environments and youth smoking 

behaviours since it is relatively close to the school (117,118). The radial distance of 1000 meters 

approximates the furthest commuting distance for students from home to school, approximately 15-20 

minutes walking distance. The school-level BE variables that were utilized in this thesis include total 

points of interest, such as the number of locations that sell alcohol, drugs, and tobacco products,  

within a 1000 meters radius of a school.  

4.2.2.4 Step 4: Missing Data Analysis  

Missing data were analyzed by identifying the missing patterns. Multiple imputations (MI) for 

missing values were performed by implementing the MICE (Multivariate Imputation via Chained 

Equations) package, generating five imputed datasets, with 50 iterations for each imputed dataset. It is 

assumed that the missing values are Missing at Random (MAR) using the MICE package. Missing 

data were imputed by specifying an imputation model for each variable with missing values one by 

one. For numeric variables, such as total points of interest within the school BE, sedentary time in 

minutes, total scores related to mental health assessment like CESD, predictive mean matching 

(PMM) was selected as the method for MI. A logistic regression model was specified for binary 

variables, responses with only two levels/options, e.g., gamble online for money (Yes/No). In 

contrast, for unordered factor variables with more than two levels, e.g., ethnicity 

(“White/Black/Asian/Indigenous/Latin American/Other”), a polytomous logistic regression was 

specified for imputing missing values. Lastly, for ordered factor variables with greater than two 

levels, e.g., evaluating the level of school support available for students to help quit drugs and/or 

alcohol (“Very supportive/Supportive/Unsupportive/Very unsupportive”), a proportional odds model 

was specified. After performing MI, statistical tests on each imputed dataset were conducted to pool 

the results for summary estimates. The optimal imputed dataset was identified by obtaining the best 

pooling statistical tests on most covariates.  
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Of note, the mental health-related items (FLOURISH, GAD7, CESD, and DERS) and the online 

gamble question were not asked in the Year 5 survey questionnaire. Those items were collected from 

Year 6 onwards. Since these variables are completely missing and the missing value imputation was 

not applicable for this type of missingness, these variables were imputed based on “Next Observation 

Carried Backward (NOCB).” NOCB is a reverse approach to the well-known “Last Observation 

Carried Forward (LOCF)” method by taking the first available value after the missingness and 

moving it backward (119). In addition to these missing values, BMI has been top missingness across 

the three waves data. Since BMI data are usually missing not at random (MNAR), multiple 

imputations may not be appropriate for this specific variable. In some papers, what researchers have 

done instead is coded missing as its category. Instead of the initial four classification categories, i.e., 

underweight, healthy weight, overweight, and obese, one more category was added, representing “not 

stated.” In this thesis, we follow the same strategy of imputing the BMI missing data.  

4.3 Substance Use Indicators  

Substance use indicators, including cigarette smoking, e-cigarette use, alcohol drinking, and 

marijuana consumption, were assessed using the COMPASS Cq. Given that there is so much 

variability in the initial responses to the use frequency of the four substances (ranging from 1 to 8 or 1 

to 9 for each substance), it generates a relatively large contingency table with 8 x 8 x 9 x 9 = 5184 

cells. Each cell of the contingency table corresponds to the combination of response patterns of 

substance use. As this thesis focuses on risk profiles and use patterns rather than frequencies, the 

ordinal responses were collapsed into three-category indicators to avoid the sparseness of the 

observed frequency table. Following the most common categorization for determining the patterns of 

youth polysubstance use, the initial responses were categorized into “0,” “1,” and "2,” representing 

“never use,” “occasional use,” and “current use,” respectively. Further information on the Cq 

questions and their categorization follows. 

Cq posed two questions for cigarette smoking and e-cigarette use to determine the incidence and 

frequency of these substances. The questions and the categorization of the initial responses can be 

seen in Figures 3-4. While for alcohol drinking and marijuana consumption, only a single measure 

was used on Cq. Figures 5-6 demonstrate the questions and the categorization of the initial responses 

for these two substances.  
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Figure 3. Measurement of cigarette smoking 

Q1: “Have you ever tried cigarette 
smoking, even just a few puffs?” 

0 = Nnever Use

"No" 
"Yes"

Q2: “On how many of the last 30 days did 
you smoke one or more cigarettes?”

1 = Occasional Use

"None" 

2 = Current Use

"1 day," "2 to 3 days," "4 to 5 days," "6 to 10 
days," "11 to 20 days," "21 to 29 days," "30 days 

(every day)."
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Figure 4. Measurement of e-cigarette use 

 

 

 

Figure 5. Measurement of alcohol drinking 

Q1: “Have you ever tried an electronic cigarette, 
also known as an e-cigarette?” 

0 = Never Use

"No" 
"Yes"

Q2: “On how many of the last 30 days did 
you use an e-cigarette?”

1 = Occasional Use

"None" 

2 = Current Use

"1 day," "2 to 3 days," "4 to 5 days," "6 to 10 days," 
"11 to 20 days," "21 to 29 days," "30 days (every 

day)."

Alcohol Drinking

Q: "In the last 12 months, how often did you have a drink of alcohol that was more 
than just a sip?"

0 = Never Use

• “I have never drunk 
alcohol”

• "I have only had a sip 
of alcohol"

1 = Occasional Use

• “I did not drink 
alcohol in the last 12 
months”

• "Less than once a 
month"

2 = Current Use

• "Once a month"

• "2 or 3 times a 
month"

• "Once a week"

• "2 or 3 times a week"

• "4 to 6 times a week"

• "Every day"
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Figure 6. Measurement of marijuana consumption 

4.4 Cluster Analysis   

4.4.1 Feature Selection   

Feature selection and feature extraction are the two main methods of dimensionality reduction, which 

is crucial in modelling, especially when the dataset contains redundant or unnecessary variables for 

model fitting. To better preserve the interpretability of ML results, the feature selection approach was 

employed instead of feature extraction algorithms. Feature selection refers to selecting a subset of the 

original features, whereas feature extraction constructs derived features from the initial ones to 

achieve good modelling performance. In this thesis, a commonly used feature selection algorithm, 

Boruta, was applied to obtain the most representative subset of features for clustering. Boruta works 

as a random forest-based feature selection algorithm, an ensemble of decision trees. See Appendix E 

for a detailed description of the Boruta algorithm. 

The same procedure of feature selection was repeated for each wave. The most notable subset of 

features was identified for the cluster analysis. For each feature, the score of variable importance was 

summed up across the three waves. The total score was sorted from largest to smallest. At the 

experimental stage, we selected from the top one up to all the features into modelling clusters. 

Preliminary results demonstrated that the number of features around 10 led to more meaningful 

clustering solutions. Since the top 8 features covered as many risk aspects as the top 10, the former 

Marijuana Consumption 

Q: "In the last 12 months, how often did you use marijuana or cannabis? (a joint, pot, 
weed, hash)."

0 = Never Use 

• “I have never used 
marijuana”

1 = Occasional Use

• “I have used 
marijuana but not in 
the last 12 months”

• “Less than once a 
month"

2 = Current Use

• “Once a month”

• “2 or 3 times a 
month”

• “Once a week”

• “2 or 3 times a week”

• “4 to 6 times a week”

• “Every day”
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was selected for parsimonious model fitting and a more straightforward interpretation. Including the 

four substance use indicators, all the variables specified in the cluster analysis were standardized to 

ensure equal weighting before clustering. 

4.4.2 Data Visualization  

t-Distributed Stochastic Neighbor Embedding (t-SNE) was employed in this thesis to visually present 

both the local and global structure of high-dimensional COMPASS data in one map. t-SNE is a non-

linear ML algorithm used for reducing dimensionality and visualizing high-dimensional data. That is, 

it takes a high-dimensional dataset and projects it onto a lower-dimensional (two-dimensional or 2D 

in this thesis) space for visualization. Van der Maaten & Hinton (2008) developed the t-SNE 

algorithm, which has since been well adopted by various research communities, such as genomics, 

natural language processing (NLP), speech recognition, and many other fields (120). t-SNE tends to 

preserve both local and global structures as much as possible simultaneously. Principal components 

analysis (PCA) or multi-dimensional scaling are other dimensionality reduction methods that can 

preserve the global structure while losing the local structure.  

An essential step to use the t-SNE algorithm effectively is to tune hyperparameters, such as 

perplexity and the number of iterations. As a smooth measure of the adequate number of neighbours, 

Van der Maaten suggests setting the typical range of perplexity values between 5 and 50 to achieve a 

fairly robust performance of t-SNE (120). For a larger or denser dataset, the rule of thumb is to select 

a larger value of perplexity (121). Oskolkov proposed the optimal perplexity approximates √𝑁
2

, 

which is analytically derived from the power law, given that t-SNE is based on the minimization of 

Kullback-Leibler (KL) divergence (121). In this thesis, a range of perplexity, from 5 to 100, was 

experimented with. Perplexity = 100, which approximates √𝑁
2

, is the optimal value for the linked 

three waves COMPASS datasets. A detailed description of the t-SNE algorithm can be seen in 

Appendix F.  

4.4.3 Determining the Optimal Number of Clusters  

One of the most challenging decisions to make in cluster analysis is determining the optimal number 

of clusters. When plotting the number of clusters, the optimal number can be found by observing the 

number of clusters with inflection points, peaks or declining points in the evaluation measures. Some 

commonly used approaches include the elbow method, silhouette analysis, the sum of squares 
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method, the GAP statistic, the D index, the Hubert index, among many others (22). For example, both 

the Hubert and D index are graphical methods. They seek the significant peak that corresponds to a 

substantial increase in the value of the measure. The silhouette analysis can help determine the 

optimal number of clusters via visualization. The average silhouette method calculates the silhouette 

coefficient of different 𝑘 observations, where 𝑘 is the number of clusters that maximizes the average 

silhouette coefficient over a selected range of values. The sum of squares method picks the best 

number of clusters by minimizing the sum of squares within-cluster and maximizing the sum of 

squares between-cluster. Within-cluster is a measure of how tight each cluster is, and between-cluster 

measures how separated each cluster is from the others.  

Although each method helps identify the best clustering numbers, different criteria often suggest 

different numbers of clusters. This is mainly due to each stopping criterion being in favour of one 

particular validation method. Shi and Zeng (2013) presented a biased result of using the silhouette 

analysis alone without considering the sum of squared errors (SSE) for each 𝑘 value. Therefore, they 

proposed a combination of SSE and silhouette coefficient in determining the best clustering numbers 

(122). A voting scheme by implementing 26 available indices was applied in this thesis. The optimal 

clustering analysis was proposed from the results obtained from all cluster combinations, distance 

measures, and clustering algorithms. Based on the majority voting among all indices, the optimal 

number of clusters was obtained for each of the three waves datasets. Although the computational 

complexity is much higher than a single index, this method provides an unbiased approach to 

selecting the most appropriate clusters for the COMPASS data. 

4.4.4 Clustering Algorithms   

This thesis implemented various clustering algorithms to explore and identify the most appropriate 

method for the COMPASS data, including hierarchical clustering, partitioning around medoid 

(PAM), and fuzzy clustering.  

4.4.4.1 Hierarchical Clustering  

Hierarchical clustering is one of the commonly used clustering algorithms to identify use patterns in 

addiction research (see Chapter 2 Literature Review, Section 2.2.2.2.2). We applied the 

agglomerative clustering algorithm with all the available linkage methods on the linked three waves 

of the COMPASS data. A detailed description of all the linkage methods can be seen in Appendix B.  
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4.4.4.2 PAM  

As its name implies, PAM is a type of partitional clustering method. The average dissimilarity 

between data elements of the cluster and all the data elements in the cluster is minimal, that is, the 

center point in the cluster. Compared with the classic k-means algorithm, k-medoids selects the data 

point as the center (a.k.a. medoids or exemplars). The PAM algorithm is the most common 

implementation of k-medoids. It initializes and randomly selects k of the n data points as the medoids. 

Then it associates each object to the closest medoid. For each medoid m and each non-medoid object 

o, the PAM algorithm swaps m and o and computes the total cost associated with the configuration. 

The lowest cost of the configuration is selected. The PAM algorithm repeats the above-described 

steps until the medoid does not change. See Appendix C for a detailed description of the PAM 

algorithm with diagrams to illustrate each step.  

4.4.4.3 Fuzzy Clustering  

In fuzzy clustering, data objects are not grouped into one specific cluster. On the contrary, a 

membership function assigns each object the membership of all or some clusters. In the previously 

discussed clustering algorithms, the membership value is either one or zero. These clustering 

techniques are often referred to as hard clustering or crisp methods. Fuzzy clustering is different from 

other hard clustering techniques by estimating membership probabilities for each observation in each 

cluster. 

In contrast to hard clustering techniques, fuzzy clustering is a type of soft clustering with two 

significant advantages. First, cluster memberships can combine other information. Second, the cluster 

membership for any given object may exist as a “second best” subgroup, often unavailable with 

different clustering algorithms (22). Given the multifaceted and intricate nature of risk profiling in 

substance use data, which can be illustrated through the data visualization, this thesis mainly focuses 

on applying fuzzy clustering methodology. This thesis applied two fuzzy clustering algorithms, Fuzzy 

C-Means (FCM) and FANNY (Fuzzy ANalYsis). See Appendix D for a detailed description of these 

two fuzzy clustering algorithms.  

The clustering results were compared. Only the best clustering results were reported in Chapter 5 

Results. 
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4.4.5 Clustering Validation  

Two types of validity indices, i.e., external and internal measures for clustering validation, can be 

used to objectively and quantitatively assess clustering results. External measures are used where the 

clustering structure is known (123). External indices use the adjusted Rand index (ARI) or Meila's 

variation index VI to measure the consistency between the partition clusters and the external 

reference. Although the Rand index ranges between 0 and 1, the value of ARI can be negative, 

indicating the index is less than expected. Thus, the range of ARI is between -1 and 1, representing no 

agreement to perfect agreement (123). External measures can be applied to choose the appropriate 

clustering method for a given dataset by comparing the identified clusters to an external reference. In 

this analysis, the ARI was implemented for selecting the proper clustering algorithms for the 

COMPASS data. 

Given that knowing the clustering structure is not the typical case in a real-world scenario, an 

internal index uses inherent quantities and features in the dataset to measure an unknown clustering 

structure (124). There are tens of internal indices, among which the silhouette coefficient is the most 

common measure for evaluating clustering results. The silhouette coefficient assesses the 

applicability of assigning a subject to one cluster rather than another, considering cluster compactness 

and separation (125). Silhouette values close to 1 indicate the data element is strongly matched to its 

cluster and weakly matched to other clusters. Silhouette values close to 0 indicate observations 

between two clusters. Any inaccurate clustering assignment will get a negative silhouette value (125). 

In addition to the total silhouette value, the silhouette coefficient for each cluster was also calculated 

by taking the average of the total silhouette values for the objects within that cluster.  

For consistency and robustness, results from each applied clustering method were compared with 

the indices discussed in this section. 

4.5 Latent Markov Model (LMM) 

The LMM was employed in this thesis to test hypotheses that subgroups of youths tend to differ in 

their patterns of polysubstance use behaviours over time. Derived from latent variable models, an 

LMM consists of two components: the structural and measurement models (27). Structural models 

include latent (or unobserved) endogenous factors, such as the substance use indicators in this thesis,  

to model the conditional probabilities of the response variables. While measurement models only 
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have manifested (or observed) endogenous factors, conditional on the latent status of substance use 

patterns.  

4.5.1 Selection of the Covariates    

It is essential to select the appropriate covariates for model fitting. Each covariate is considered to 

have a strong correlation with substance use. This thesis employed the least absolute shrinkage and 

selection operator (LASSO) method to select a subset of covariates for fitting LMMs. LASSO 

regression is a feature selection technique used to filter out irrelevant or redundant features from a 

large number of variables by shrinking coefficients towards zero. This is achieved by imposing a 

LASSO regression penalty. See Appendix H for a detailed description of the LASSO regression.  

In this thesis, the response variable for substance use is ordinal (see Section 4.3). An adaptive 

approach to LASSO regression was applied by implementing the coordinate descent fitting algorithm 

with an ordinal response (126). A penalized regularization model was fitted by extracting all 

estimated coefficients and non-zero coefficient estimates. Lambda, the tuning parameter, regulates the 

penalty strength. That is, the smaller the lambda value, the less penalty it applies to all regression 

parameters. The LASSO regression essentially leads to the least squares estimates. Therefore, 

shrinkage of coefficient occurs as lambda increases. The optimal value of lambda was determined 

using the k-fold cross-validation during the selection process. We repeated the same procedure of 

adaptive LASSO regression for each wave. Only variables with non-zero coefficients after shrinking 

were selected and fitted in the follow-up LMMs for further analysis.  

4.5.2 A General LMM Framework   

For a general LMM framework, response variables are denoted as 𝑌𝑖𝑡, where 𝑖 = 1, … , 𝑛 and 𝑡 =

1, … , 𝑇 representing the number of observed time occasions. For each time point, 𝑌𝑖𝑡 are collected in 

the random vector 𝑌𝑡 , 𝑡 =  1, . . . , 𝑇. The overall vector of response variables in a vector 𝑛 × 𝑇 can be 

denoted by 𝑌̂. Corresponding to 𝑌𝑡, a vector of covariates is denoted by 𝑋𝑡. Similarly, the vector of all 

the covariates, obtained by stacking 𝑋1, … , 𝑋𝑇, can be denoted as 𝑋̂ (127). The LMM framework 

assumes that there exists a latent process, 𝑈 =  (𝑈1, . . . , 𝑈𝑇), which follows a first-order Markov 

chain with 𝑘 number of latent states. Assuming local independence, the random vectors 𝑌1, . . . , 𝑌𝑇 are 

conditionally independent given 𝑈. Based on this assumption, the LMM can be simplified and 
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relaxed. Another assumption is that the distribution of each response vector 𝑌𝑡 only depends on the 

covariates 𝑋̂ and the latent process 𝑈 (127). 

Based on a set of measure time points in classical Markov models, transition probabilities are 

estimated to describe whether a subject stays in the same subgroup (representing stability) over time 

or transitions to another subgroup (representing change). LMMs are transition models developed for 

panel data where subjects can transition between classes (27). In LMMs, transition probabilities 

represent how the transition occurs from time 𝑡 − 1 to 𝑡 between subgroups. Besides observed data, 

LMMs include a latent process (sequence of latent variables) for each subject, which follows a finite 

state of the Markov chain. Applied to substance use measures, the LMM estimates the overall 

probability of being in a particular use pattern (latent state) given the use pattern at the previous time 

occasion. A detailed description of the LMM framework with covariates and multivariate extension to 

the basic LMM and decoding can be seen in Appendix I. 

4.5.3 Model Selection  

The final model was selected based on one of the most common model fit criteria, Bayesian 

information criteria (BIC). Although Akaike's information criteria (AIC) is also commonly used, due 

to a less severe penalization, AIC tends to select a larger number of latent states than BIC, especially 

with large sample sizes (27). Several studies in the literature of latent variable modelling have 

demonstrated that AIC often yields to a larger number of latent classes than necessary. In contrast, 

BIC is a more reliable model selection criterion to identify the optimal number of latent states. In 

addition to BIC and AIC, there are other criteria, such as the likelihood ratio approach. However, this 

method is not encouraged due to the need for a bootstrap resampling procedure (27). 

The goodness-of-fit was measured to evaluate the quality of the fitted models, using the index  

 𝑅2 = 1 − exp (
2(𝑙𝑘1 − 𝑙𝑘𝜃)

𝑛𝐽
) (2) 

where 𝑙𝑘1 is the maximum likelihood of basic version of LMM, corresponding to 𝑀1 with 𝑘 = 1 and 

the number of parameters 𝐽. 𝑅2 can be explained as average improvement of the new model in 

predicting each observed response sequence, as compared to the baseline model 𝑀1 (89,128). Similar 

to other indicators of model goodness-of-fit, 𝑅2 is a relative index with a value between 0 and 1. The 
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higher the value of 𝑅2, the better the fit of the model. In this thesis, we estimated 𝑅2 as an additional 

measure to the BIC index for model selection.  

4.6 Software Packages and Computing Environment  

In this thesis, the data analysis was performed primarily using the R language, open-source software 

to compute statistics and perform graphics. In particular, the following key packages were employed.  

• FactoMineR, missMDA, and naniar packages for missing data analysis and visualization  

• MICE package for missing data imputation  

• Boruta, a wrapper Algorithm for all relevant feature selection 

• glmnetcr package for LASSO (L1 regularization) for ordinal response  

• NbClust, cluster, ppclust, factoextra, clvalid, fpc, and Rtsne packages for cluster analysis and 

visualization  

• LMest for generalized LMMs 

RStudio Server 1.4 was set up on Ubuntu 18.04 with a 64 GiB RAM virtual machine running on 

Microsoft Azure.  

 

In summary, this chapter described all the methods applied in this thesis, including missing data 

analysis, feature selection, clustering analysis, transition modelling, and various model fitting and 

validation approaches (see Figure 7). The results of this thesis will be presented in the next chapter. 
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Figure 7. Summary of the methods applied in this thesis 
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Chapter 5 

Results  

This chapter presents the results of this thesis in the following seven sections. Section 5.1 reports the 

results of data preprocessing, followed by descriptive statistics of the linked three waves data 

presented in Section 5.2. Sections 5.3 and 5.4 report the clustering and LMM modelling results. 

Sections 5.5 through 5.7 present the risk profiles of youth polysubstance use, the patterns of 

polysubstance use among Canadian secondary school students, and the dynamic transitions of these 

use patterns across time.  

5.1 Data Preprocessing 

5.1.1 Missing Data Analysis  

The overall percentage of missing values for the three waves linked data were 14.5%, 2.3%, and 2.1% 

for Wave I, Wave II, and Wave III, respectively. The much higher missingness for Wave I data was 

because questions regarding mental health-related (FLOURISH, GAD7, CESD, and DERS) and 

online gambling were not asked in the Year 5 survey questionnaire. Aside from these, BMI and 

SupportQuitDrugAlcohol variables accounted for 27.1% and 4.2% of total missingness for Wave I. 

BMI, CESD, and GAD7  were identified as the top 3 missingness for Wave II and Wave III datasets, 

with 22.6%, 11.6%, and 5.8% of total missingness for Wave II, and 18.2%, 10.1%, and 5.4% of total 

missingness for Wave III data, respectively.  

Fortunately, the missingness of substance use indicators was much less than those of the other 

features in all three wave datasets. For example, there were only 237, 122, and 136 missing responses 

to the substance use variables at Wave I, Wave II, and Wave III, accounting for 2.5%, 1.3%, and 

1.5% of total missingness, respectively. The missing values were omitted during cluster analysis due 

to the low missingness of these variables of interest. Since LMMs can facilitate multivariate 

responses by treating the missingness as MAR. Thus, missing values for these response variables 

were not imputed prior to fitting the LMMs. This approach can maximize the use of linked data with 

missing responses at the time occasions of measurement. See Appendix J for a detailed illustration of 

the amount of missing data and the missing patterns (i.e., the combinations of missingness across 
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observations) for each wave. The plots of the missing patterns of substance use indicators can be seen 

in Appendix J as well.  

Figures 8-10 demonstrate the distribution of imputed data for each wave. It is observed that the five 

imputed datasets (as represented in red lines) had a reasonably consistent distribution as the original 

dataset with no missing values (as described in a blue line) for each feature.  

 

 

Figure 8. Density plot of imputed data by feature (Wave I, 2016-17) 
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Figure 9. Density plot of imputed data by feature (Wave II, 2017-18) 

 

 

Figure 10. Density plot of imputed data by feature (Wave III, 2018-19) 
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5.2 Descriptive Statistics  

Of the 8824 linked samples collected from the COMPASS study of grades 7 to 10 Canadian 

secondary school students at Wave I, 54.6% were females while 45.4% were males, and 74.2% were 

white. Grades 9 and 10 students accounted for 50.9% and 34.2% of the total linked sample size, 

respectively. 67.5% of the students were from Ontario, and 54.3% live in large urban areas. In terms 

of cigarette smoking in the last 30 days, 90% responded as having never smoked, while 6.6% 

admitted to smoking occasionally, and 2.8% identified as current smokers. 82% of the students 

admitted that they have never used an e-cigarette, while those who acknowledged themselves as 

occasional and current users of e-cigarette accounted for 10.1% and 6.5%, respectively. 61.2% of the 

students indicated that they never had drunk alcohol in the past year, while those admitted to 

occasional use and current alcohol use accounted for 20.4% and 17.2%, respectively. Lastly, 88.7% 

of the students said they never used marijuana in the past year,  while admittance to occasional use 

and current use of marijuana accounted for 5.9% and 4.0%, respectively. These frequencies make 

sense compared to surveillance data from representative samples. Thus, we are confident that our 

linked samples are similar to the youth population in general. Tables 6-7 demonstrate the 

characteristics of this linked sample (N = 8824) and the prevalence of each substance used by type 

and by wave, respectively.  

 

 

Table 6. Characteristics of the linked samples 

  TOTAL 

TOTAL  N = 8824 100 (%) 

Sex Female 4814 54.6 

Male 4010 45.4 

Grade 7 691 7.8 

8 628 7.1 

9 4487 50.9 

10 3018 34.2 
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  TOTAL 

TOTAL  N = 8824 100 (%) 

Ethnicity White 6545 74.2 

Black 255 2.9 

Asian 610 6.9 

Aboriginal 192 2.2 

Latin American 186 2.1 

Other 1036 11.7 

Province AB 428 4.9 

BC 420 4.8 

ON 5960 67.5 

QC 2016 22.8 

Urbanity Rural 26 0.3 

Small urban 2726 30.9 

Medium urban 1280 14.5 

Large urban 4792 54.3 

Household Income  $25K - $50K 1381 15.6 

$50K - $75K 4109 46.6 

$75K - $100K 2935 33.3 

> $100K 399 4.5 
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Table 7. Prevalence of each substance used by type and by wave 

Substance Use 

Indicator 

Label Wave I (2016-17) 

Frequency (%) 

Wave II (2017-18) 

Frequency (%) 

Wave III (2018-19) 

Frequency (%) 

Cigarette Never use 7944 (90.0) 7310 (82.8) 6728 (76.2) 

 Occasional use 580 (6.6) 974 (11.0) 1437 (16.3) 

 Current use 250 (2.8) 508 (5.8) 615 (7.0) 

 Missing 50 (0.6) 32 (0.4) 44 (0.5) 

E-Cigarette Never use 7238 (82.0) 5982 (67.8) 4403 (49.9) 

 Occasional use 889 (10.1) 1195 (13.5) 1525 (17.3) 

 Current use 577 (6.5) 1589 (18.0) 2834 (32.1) 

 Missing 120 (1.4) 58 (0.7) 62 (0.7) 

Alcohol Never use 5400 (61.2) 3710 (42.0) 2573 (29.2) 

 Occasional use 1799 (20.4) 2490 (28.2) 2684 (30.4) 

 Current use 1515 (17.2) 2565 (29.1) 3501 (39.7) 

 Missing 110 (1.2) 59 (0.7) 66 (0.7) 

Marijuana Never use 7831 (88.7) 6784 (76.9) 5569 (63.1) 

 Occasional use 521 (5.9) 1162 (13.2) 1784 (20.2) 

 Current use 357 (4.0) 820 (9.3) 1401 (15.9) 

 Missing 115 (1.3) 58 (0.7) 70 (0.8) 

 

Figures 11-14 are 3D graphs of substance use prevalence by type and wave for cigarettes, e-

cigarette, alcohol, and marijuana use. The overall trend shows that, in general, the prevalence of 

“never use” had been decreasing over time, while the prevalence of “occasional use” and “current 

use” had been increasing for all substances across the three waves. In particular, as demonstrated in 

Figures 12 and 14, respectively, the prevalence of current use for e-cigarette and marijuana 

consumption had increased significantly. E-cigarette use increased by  4.94 times from 6.5% in 2016 
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to 32.1% in 2018, while marijuana consumption had increased by 3.98 times from 4.0% in 2016 to 

15.9% in 2018. Regarding alcohol drinking, the increase in the prevalence of occasional or current 

use was not as significant as that of e-cigarette and marijuana consumption. However, the much lower 

prevalence of never use at Wave I and the considerable decrease of never use over time (from 61.2% 

in 2016 to 29.2% in 2018) raise as much concern as the other substances.    

 

 

Figure 11. Prevalence of cigarette smoking by type and wave 
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Figure 12. Prevalence of e-cigarette use by type and wave 
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Figure 13. Prevalence of alcohol drinking by type and wave 

 

Figure 14. Prevalence of marijuana consumption by type and wave 
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5.3 Cluster Analysis  

5.3.1 The Optimal Number of Clusters  

The indices of clustering validity inconsistently voted for different numbers of clusters across the 

three waves. For Wave II and Wave III, 9 and 10 indices proposed that the best number of clusters is 

4, respectively. While for Wave I, seven indices each proposed, the best number of clusters is either 2 

or 6, and the second-best number of clusters is 4 with four indices voted. The optimal number of 4 

clusters was selected across the three waves for further clustering analysis to make the results 

consistent and easier to interpret. Figures 15-17 illustrate the voting results for the optimal number of 

clusters for the three waves datasets.  

 

 

Figure 15. Voting results for the optimal number of clusters (Wave I, 2016-17) 
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Figure 16. Voting results for the optimal number of clusters (Wave II, 2017-18) 

 

 

Figure 17. Voting results for the optimal number of clusters (Wave III, 2018-19) 
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5.3.2 Clustering Results  

5.3.2.1 Fuzzy (FANNY) Clustering  

The left panels of Figures 18-20 demonstrate the 2D representation of the student data with coloured 

cluster membership based on the fuzzy (FANNY) clustering. The cluster subgroups ranged from 986 

to 2799 students at Wave I, 684 to 3082 at Wave II, and 686 to 3385 at Wave III. It is observed that 

except for the minority group with the lowest silhouette value, the average silhouette width for all 

clusters was positive. The average silhouette widths were 0.52, 0.53, and 0.53 at Wave I, Wave II, 

and Wave III, respectively. The silhouette values for each cluster ranged from 0.31 to 0.57 at Wave I, 

0.35 to 0.58 at Wave II, and 0.30 to 0.56 at Wave III. Kaufman et al. (2009) proposed that the 

silhouette values between 0.71 and 1 indicate a strong structure for that particular cluster (129). 

Reasonable and weak structures are shown by the silhouette values between 0.51 and 0.70 and below 

0.50, respectively. The two clusters with the second-largest and largest sample size had reasonable 

structures, whereas the other two with the smallest and the second smallest sample size had weak 

structures at Wave I and II. As for Wave III, three clusters had reasonable structures, and only one 

cluster with the smallest sample size had a weak structure. The right panels of Figures 18-20 

demonstrate the average silhouette widths for all clusters. These clustering results support the 

applicability of phenotyping risk profiles of youth polysubstance use.  

 

Figure 18. Fuzzy (FANNY) Clustering, left-panel: 2D representation; right-panel: silhouette 

plot (Wave I, 2016-17) 



 

63 

 

 

Figure 19. Fuzzy (FANNY) Clustering, left-panel: 2D representation; right-panel: silhouette 

plot (Wave II, 2017-18) 

 

Figure 20. Fuzzy (FANNY) Clustering, left-panel: 2D representation; right-panel: silhouette 

plot (Wave III, 2018-19) 

5.3.2.2 FCM Clustering  

The cluster subgroups ranged from 1042 to 3312 students at Wave I, 994 to 3390 at Wave II, and 863 

to 3607 at Wave III. Similar to the FANNY algorithm of fuzzy clustering, the average silhouette 

widths for all clusters were positive. The average silhouette widths were 0.51 across the three waves. 
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The silhouette values for each cluster ranged from 0.26 to 0.58 at Wave I, 0.21 to 0.56 at Wave II, 

and 0.23 to 0.60 at Wave III. It is observed across the three waves that three clusters had reasonable 

structures while only one cluster with the smallest sample size had a weak structure. The 2D 

representation of the student data with coloured cluster membership and the average silhouette widths 

for all clusters based on the FCM clustering can be seen in Appendix K. 

5.3.2.3 PAM Clustering  

The cluster subgroups ranged from 1138 to 2799 students at Wave I, 1018 to 2879 at Wave II, and 

841 to 2925 at Wave III. The average silhouette widths for all clusters were positive. Same as the 

FCM clustering, the average silhouette widths were 0.51 at all three waves. The silhouette values for 

each cluster ranged from 0.27 to 0.56 at Wave I, 0.26 to 0.57 at Wave II, and 0.29 to 0.57 at Wave III. 

Three clusters had reasonable structures for Wave I and Wave II, and only one cluster with the 

smallest sample size had a weak structure. For Wave I, the two clusters with the second-largest and 

largest sample size had reasonable structures, and the other two clusters with the smallest and the 

second smallest sample size had weak structures. The 2D representation of the student data with 

coloured cluster membership and the average silhouette widths for all clusters based on the PAM 

clustering can be seen in Appendix L.  

5.3.2.4 Hierarchical Clustering  

The cluster subgroups ranged from 383 to 4975 students at Wave I, 131 to 3627 at Wave II, and 175 

to 4037 at Wave III. The average silhouette widths for all clusters were positive, being 0.55, 0.53, 

0.53 at Wave I, Wave II, and Wave III, respectively. The silhouette values for each cluster ranged 

from 0.35 to 0.64 at Wave I, 0.43 to 0.66 at Wave II, and 0.38 to 0.68 at Wave III. Three clusters had 

reasonable structures for Wave I, and only one cluster with the smallest sample size had a weak 

structure. For Wave II, clusters #3 and #4, the two clusters with the smallest and the second-largest 

sample size had reasonable structures, while the other two clusters with the largest and the second 

smallest sample size (cluster #1, #2) had weak structures. For Wave III, the two clusters with the 

second-largest and the second-smallest sample size had reasonable structures, while the other two 

clusters with the smallest and the largest sample size had weak structures. The dendrogram based on 

hierarchical clustering for each wave, the 2D representation of the student data with coloured cluster 

membership, and the average silhouette widths for all clusters can be seen in Appendix M.  
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5.3.3 Clustering Validity   

The internal measures of clustering performance measured by average silhouette width ranged from 

0.51 to 0.55 across the three waves with different clustering algorithms. Both the partitioning and 

hierarchical clustering algorithms achieved a relatively high degree of agreement on cluster 

membership. Comparing the fuzzy clustering (FANNY) and PAM clustering, the ARIs were 0.9698, 

0.7676, and 0.6452. The variation of information (VI) indices was 0.1154, 0.6023 0.7621 for Wave I, 

Wave II, and Wave III, respectively. Nevertheless, the results of the two fuzzy clustering algorithms 

achieved a high degree of the membership agreement. Considering the overlapping nature of risk 

profiles related to polysubstance use, we decided to use fuzzy clustering (FANNY) to analyze further 

and report risk profiles. Table 8 shows the comparison of clustering validity for each pair of the 

clustering algorithms.  

Table 8. Comparison of clustering validity for each pair of clustering algorithms 

Clustering Algorithm Index  Wave I  

(2016-17) 

Wave II 

(2017-18) 

Wave III 

(2018-19)  

FCM vs FANNY ARI 0.7447 0.8221 0.8603 

VI 0.5696 0.4315 0.4096 

FANNY vs PAM ARI 0.9698 0.7676 0.6452 

VI 0.1154 0.6023 0.7621 

FCM vs PAM ARI 0.7394 0.7046 0.6366 

VI 0.5942 0.6179 0.7024 

PAM vs Hierarchical  ARI 0.4905 0.5093 0.4898 

VI 0.8621 0.9181 0.9315 

FANNY vs Hierarchical ARI 0.4736 0.5449 0.6651 

VI 0.9241 0.9106 0.7029 

FCM vs Hierarchical  ARI 0.4903 0.6839 0.7483 

VI 0.9305 0.6761 0.4786 
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5.4 LMM  

5.4.1 Selection of Covariates  

As stated in Section 4.5.1, the lambda value in the LASSO regression controls the penalty of the 

regression parameters. The smaller the lambda value, the less penalty it applies to all coefficients of 

the predictors. It results in having more predictors in the model. In this thesis, the optimal value of 

lambda was determined using the 10-fold cross-validation during the selection process. The best 

lambda for the LASSO regression was set as 0.1, 0.0794, and 0.0794 for Wave I, Wave II, and Wave 

III, respectively. Table 9 demonstrates the selected covariates by waves, sorted by alphabet. See 

Appendix N for the detailed report and plots of final coefficients from the LASSO regression by 

waves.  

Table 9. LASSO selected covariates by wave 

 Wave I (2016-17) Wave II (2017-18)  Wave III (2018-19)  

Selected 

Covariates1 

BMI_CATEGORY_16 

EatingBreakfast_16 

EnglishMarks_16 

GetMoney_16 

Grade_16 

SchoolConnectedness_16 

SedentaryTime_16 

SkipClass_16 

SmokingFriends_16 

SupportQuitDrugAlcohol_16 

Urbanity_16  

WillingEdu_16 

 

 

BMI_CATEGORY_17 

CESD_17 

DERS_17 

EatingBreakfast_17 

EnglishMarks_17 

GambleOnline_17  

GetMoney_17 

Grade_17 

PAfriends_17 

Race_17 

SchoolConnectedness_17 

SedentaryTime_17 

SkipClass_17 

SmokingFriends_17 

SupportQuitDrugAlcohol_17 

Urbanity_17  

WillingEdu_17 

BMI_CATEGORY_18 

CESD_18 

DERS_18 

DrugStores_18 

EatingBreakfast_18 

EnglishMarks_18 

GAD7_18 

GambleOnline_18 

GetMoney_18 

Grade_18 

PAfriends_18 

PA_LEVEL_18  

Race_18 

SchoolConnectedness_18 

SedentaryTime_18 

SkipClass_18 

SmokingFriends_18 

SupportQuitDrugAlcohol_18 

Urbanity_18  

WillingEdu_18 

The number of coefficients being shrunk to zero varies across the three waves. 12, 17, and 20 

features were selected from Wave I, Wave II, and Wave III, respectively. We chose the 20 features 

 
1 The last three characters of each feature name indicate the school year of the survey, i.e., “_16,” “_17,” and 

“_18” represents the school year of 2016-17, 2017-18, and 2018-19, respectively. 
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from the LASSO regression on Wave III to model the initial probabilities of the latent process. Note 

that these 20 features are nested within confirmed features derived from the Boruta algorithm in 

clustering analysis. The same 20 covariates and time between occasions (T = 3) were used to model 

the transition probabilities, assuming time is heterogeneous, i.e., the dynamics are different across the 

three waves. Table 10 summarizes the final selected covariates by level and time-varying status, 

sorted by alphabet.  

Table 10. Final selected covariates for LMM 

 Student-Level School-Level 

Time-Invariant Race/Ethnicity DrugStores 

Urbanity 

Time-Varying BMI_CATEGORY 

CESD 

DERS 

EatingBreakfast 

EnglishMarks 

GAD7 

GambleOnline 

GetMoney 

Grade  

PAfriends  

PA_LEVEL 

SchoolConnectedness  

SedentaryTime 

SkipClass 

SmokingFriends 

WillingEdu 

SupportQuitDrugAlcohol 

 

A description of the features follows.  

BMI_CATEGORY – This is a derived variable representing BMI categories, including 0 = “Not 

Stated,” 1 = “Underweight,” 2 = “Healthy Weight,” 3 = “Overweight,” and 4 = “Obese.”  

CESD – This is a derived variable, scoring from 0 to 30. In the COMPASS study, depressive 

symptoms were assessed using CESD-R-10, the Center for Epidemiologic Studies Depression 10-

Item Scale-Revised. For example, one of the ten scale items was, “On how many of the last 7 days 

did you feel the following ways? I was bothered by things that usually don't bother me.” The other 

nine items were “I had trouble keeping my mind on what I was doing,” “I felt depressed,” “I felt that 
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everything I did was an effort,” “I felt hopeful about the future,” “I felt fearful,” “My sleep was 

restless.” “I was happy,” “I felt lonely,” and “I could not get “going.” The response options were 

“None or less than 1 day,” “1-2 days,” “3-4 days,” and “5-7 days.” The response to each of the 10- 

items was reverse-scored from 0 to 3 and then summed. The higher the score is, the more significant 

depressive symptoms are.  

DERS – This is a derived variable, scoring from 6 to 30. In the COMPASS study, difficulties in 

regulating emotion were assessed using the Difficulties in Emotion Regulation Scale (DERS). For 

example, one of the ten scale items was, “Please indicate how often the following statements apply to 

you: I have difficulty making sense out of my feelings.” The response options were “Almost never,” 

“Sometimes,” “About half the time,” “Most of the time,” and “Almost always.” The other five items 

were “I pay attention to how I feel,” “When I'm upset, I have difficulty concentrating,” “When I'm 

upset, I believe there is nothing I can do to make myself feel better,” “When I'm upset, I lose control 

over my behaviour,” “When I'm upset, I feel ashamed for feeling that way,” and “Feeling afraid as if 

something awful might happen.” The response to each of the 6- items was reverse-scored from 1 to 5 

and then summed. The higher the score is, the more complicated an individual is in regulating 

emotion. 

DrugStores – BE data, the number of drug stores & proprietary stores within 1000 meters of 

schools.  

EatingBreakfast – Binary indicator variable, 0 = “No” and 1 = “Yes.”  

EnglishMarks – Students were asked, “In your current or most recent French/English course, what 

is your approximate overall mark? (Think about last year if you have not taken English this year).” 

The response options were 1 = “90% - 100%,” 2 = “80% - 89%,” 3 = “70% - 79%,” 4 = “60% - 

69%,” 5 = “55% - 59%,” 6 = “50% - 54%,” and 7 = “Less than 50%.”  

GAD7 – This is a derived variable, scoring from 0 to 21. In the COMPASS study, generalized 

anxiety symptoms were assessed using GAD7, the Generalized Anxiety Disorder 7-item Scale. For 

example, one of the seven scale items was, “Over the last 2 weeks, how often have you been bothered 

by the following problems? Feeling nervous, anxious, or on edge.” The response options were “Not at 

all,” “Several days,” “Over half the days,” and “Nearly every day.” The other six items were “Not 

being able to stop or control worrying,” “Worrying too much about different things,” “Trouble 
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relaxing,” “Being so restless that it's hard to sit still,” “Becoming easily annoyed or irritable,” and 

“Feeling afraid as if something awful might happen.” The response to each of the 7- items was scored 

from 0 to 3 and then summed. The higher the score is, the more severe level of anxiety is per the 

GAD-7 scaling.  

GambleOnline – Students were asked, “In the last 30 gays, did you gamble online for money?” 

The response options are 1 = “Yes” and 2 = “No.”  

GetMoney – Students were asked, “About how much money do you usually get each week to 

spend on yourself or to save? (Remember to include all money from allowances and jobs like 

babysitting, delivering papers, etc.).” The initial responses were categorized into 0 = “I do not know 

how much money I get each week,” 1 = “Zero,” 2 = “$1-$20,” 3 = “$21-$100,” and 4 = “$100+.”  

Grade – Students were asked, “What grade are you in?” The responses include grades 9-12 and 

students in Quebec in secondary 1 and 2 (equivalent to Ontario grades 7 and 8). This variable is a 

proxy of students’ age.  

PAfriends – Students were asked, “Your closest friends are the friends you like to spend the most 

time with. How many of your closest friends are physically active?” The response options are 0 = 

“None,” 1 = “1 friend,” 2 = “2 friends,” 3 = “3 friends,” 4 = “4 friends,” and 5 = “5 friends or more.” 

PA_LEVEL – This is a derived variable, indicating whether respondents meet the guidelines for at 

least 60 minutes of PA per day. Binary variable, 0 = “No” and 1 = “Yes.”  

Race/Ethnicity – Students were asked, “How would you describe yourself?” The response options 

are 1 = “White,” 2 = “Black,” 3 =  “Asian,” 4 = “Aboriginal (First Nations, Métis, Inuit),” 5 = “Latin 

American/Hispanic,” and 6 = “Other.”  

SchoolConnectedness – This is a derived variable, scoring from 6 to 24. Higher scores indicate 

higher connectedness. 

SedentaryTime - This is a derived variable representing “Total daily sedentary activity, with 

homework excluded,” ranging from 0 to 2925 in minutes.  

SkipClass – Students were asked, “In the last 4 weeks, how many classes did you skip when you 

were not supposed to?” The response options are 1 = “0 classes,” 2 = “1 or 2 classes,” 3 = “3 to 5 

classes,” 4 = “6 to 10 classes,” 5 = “11 to 20 classes,” and 6 = “More than 20 classes.”  
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SmokingFriends – Students were asked, “Your closest friends are the friends you like to spend the 

most time with. How many of your closest friends smoke cigarettes?” The response options are 0 =  

“None,” 1 = “1 friend,” 2 = “2 friends,” 3 = “3 friends,” 4 = “4 friends,” and 5 = “5 or more friends.”  

SupportQuitDrugAlcohol – Students were asked, “How supportive is your school of the 

following? Giving students the support they need to resist or quit tobacco.” The response options are 

1 = “Very supportive,” 2 = “Supportive,” 3 = “Unsupportive,” and 4 = “Very unsupportive.”  

Urbanity – In which the school resides, including “rural,” “small urban,” “medium urban,” and 

“large urban.” The urban/rural classification is defined according to the number of populations and 

population density per square kilometre (126). The detailed definition of the four categories used in 

the COMPASS study is listed in Appendix O.  

WillingEdu – Students were asked, “What is the highest level of education you think you will 

get?” The response options are 0 = “I don’t know,” 1 = “Some high school or less,” 2 = “High school 

diploma or graduation equivalency,” 3 = “College/trade/vocational certificate,” 4 = “University 

Bachelor's degree,” and 5 = “University Master’s/PhD/law school/medical school/teachers’ college 

degree.”  

5.4.2 Selection of the Number of Latent States  

Determining the number of latent states was an essential step of the analysis. An increasing number of 

latent statuses between 1 and 6 was fitted to a multivariate LMM, assuming that: i) the conditional 

response probabilities are time homogenous and are independent of the included covariates, ii) the 

probability of using a substance is constrained to 0 for the first latent state; iii) the initial probabilities 

are distinct for any categories of the included covariates, and iv) the transition probabilities are time 

heterogeneous and distinct for any categories of the included covariates.  

The information criteria provided slightly different results of which model best balances model fit 

and parsimony. The BIC value indicated that the model with four latent statuses is preferred, whereas 

the AIC value pointed to a preferable six latent states. Since BIC is a more reliable criterion (27) and 

considers parsimony, conceptual appeal, and more straightforward interpretation, the 4-latent-status 

model was selected for further analysis. Figure 21 shows the BIC and AIC criteria for the multivariate 

LMM.  
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Figure 21. BIC and AIC criteria for selecting the number of latent states 

5.4.3 Model Selection and Evaluation  

Table 11 displays the number of parameters (𝑛), the maximum log-likelihood (𝑙𝑘), the BIC values of 

the initial LMM (denoted as 𝑀1) for several latent states (𝑘) between 1 and 6, as well as the value of 

𝑅2 for assessing the goodness-of-fit.  The lowest BIC value corresponding to 𝑀1 was obtained when 

𝑘 = 4, where the model showed a fair value of 𝑅2.  

We found that a few covariates, including EnglishMarks, WillingEdu, PA_LEVEL, DrugStores, 

CESD, GAD7, and DERS were not consistently significant from the preliminary model fitting results 

in their effects on both the initial and transition probabilities between latent states. To fine-tune the 

initial model (denoted as 𝑀1) and obtain the best-fitted model, we considered several models nested 

in 𝑀1 with four latent states. For example, 𝑀2 was based on removing PA_LEVEL effects on both 

the initial and transition probability formulas. From the model fitting results in Table 11, under the 

same number of latent states (𝑘 =  4), the BIC value of 𝑀2 was smaller than that of M1 (122825.8 < 

122935.5), and the number of parameters of 𝑀2 was smaller than that of 𝑀1 (332 < 347). Thus, 𝑀2 

was preferable over 𝑀1 with the same number of latent states. The covariate PA_LEVEL was 

therefore removed from the model. 
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Similarly, the other covariates EnglishMarks, WillingEdu, and SedentaryTime, were removed from 

model fitting one by one and by pairs. That is how the models 𝑀2 ~ 𝑀18 were fitted, assuming that 

certain covariate(s) do not affect the initial and the transition probabilities of the latent process. 

Comparing these models with 𝑀1, it is concluded that EnglishMarks, WillingEdu, PA_ LEVEL, 

DrugStores, CESD, GAD7, and DERS did not significantly affect these probabilities. The model was 

formulated by removing these covariates, denoted by  𝑀16.  

Although sex was not identified as an important predictor by the LASSO regression, the literature 

review on the risk factors of youth polysubstance use indicates its inconsistent effects from various 

studies; it was determined as a factor worth investigating as a predictor. Therefore, we decided to 

include the covariate sex into LMMs as one of the time-invariant covariates (𝑀17 and 𝑀18). In the 

COMPASS dataset, sex was dummy coded as 1 = “Female” and 2 = “Male” across all waves. Since 

further simplification significantly increased the BIC value, 𝑀18 was selected as the final model. 

Among all the fitted models, 𝑀18 had the lowest BIC, which equals 122349.6. Under this model, the 

maximum log-likelihood equals -60007.4 with 257 parameters, and a fair value of the index 𝑅2 was 

obtained. Table 11 summarizes the preliminary fitting of the LMMs with different values of 𝑘 and 

various constraints discussed in this section.  

Table 11. Preliminary fitting of various LMMs 

Model  k n lk BIC R2 

𝑀1  1 8 -83391.2 166855.1  

 2 79 -64967.2 130652 0.4067 

 3 192 -61218.2 124180.8 0.4664 

 4 347 -59891.5 122935.5 0.4861 

 5 544 -59168.5 123279.3 0.4966 

 6 783 -58391.4 123896.5 0.5075 

𝑀2: 𝑀1 – PA_LEVEL   4 332 -59904.8 122825.8 0.4859 

𝑀3: 𝑀1 – GAD7          4 332 -59908 122832.4 0.4859 
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Model  k n lk BIC R2 

𝑀4: 𝑀1 – CESD                     4 332 -59903.1 122822.5 0.4860 

𝑀5: 𝑀1 – DERS                    4 332 -59914.7 122845.6 0.4858 

𝑀6: 𝑀1 – EnglishMarks  4 332 -59928.8 122873.8 0.4856 

𝑀7: 𝑀1 – WillingEdu 4 332 -59932.8 122881.9 0.4855 

𝑀8: 𝑀7 – EnglishMarks 4 317 -59977.1 122834.3 0.4849 

𝑀9: 𝑀7 – PA_LEVEL  4 317 -59943.1 122766.2 0.4854 

𝑀10: 𝑀9 – CESD 4 302 -59952.8 122649.4 0.4852 

𝑀11: 𝑀8 – PA_LEVEL  4 317 -59946.8 122773.6 0.4853 

𝑀12: 𝑀11 – CESD 4 302 -59960.3 122664.3 0.4851 

𝑀13: 𝑀1 – CESD – GAD7 – DERS 4 302 -59963.1 122669.9 0.4851 

𝑀14: 𝑀13 – EnglishMarks – PA_LEVEL  4 272 -60021.6 122514.3 0.4842 

𝑀15: 𝑀13 – WillingEdu – PA_LEVEL  4 272 -60005 122481.2 0.4845 

𝑀16: 𝑀14 – WillingEdu  4 257 -60053.3 122441.5 0.4838 

𝑀17: 𝑀16 + Sex 4 272 -59994.1 122459.3 0.4846 

𝑴𝟏𝟖: 𝑴𝟏𝟕 – DrugStores 4 257 -60007.4 122349.6 0.4844 

5.5 Phenotyping Risk Profiles of Youth Polysubstance Use  

5.5.1 Factors Associated with Polysubstance Use Among Canadian Adolescents  

The first primary research question (RQ1) investigated was, “What are the prominent risk profiles of 

polysubstance use among Canadian secondary school students?” Before answering this question, we 

need to identify factors associated with youth polysubstance use. Table 12 lists the top 8 factors for 

each of the three waves, with the importance scores in brackets. The number of smoking friends, the 

number of skipped classes, and weekly money to spend/save oneself were the top 3 factors 
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consistently appearing across the three waves. Other correlates ranked differently by waves. The total 

importance scores for each factor can be seen in the last column of Table 12.  

Table 12. Top 8 factors associated with polysubstance use by wave 

Ranki

ng 

Wave I  

(2016-17) 

Wave II  

(2017-18) 

Wave III  

(2018-19) 

Voting  

(Total Score) 

1 SmokingFriends_16 

(47.92) 

SmokingFriends_17 

(60.05) 

SmokingFriends

_18 (56.90) 

SmokingFriends 

(164.87) 

2 SkipClass_16 (38.01) SkipClass_17 (43.76) SkipClass_18 

(54.12) 

SkipClass 

(135.89) 

3 GetMoney_16 (17.48) GetMoney_17 

(31.07) 

GetMoney_18 

(37.66) 

GetMoney (86.21) 

4 SchoolConnectedness_1

6 (16.65) 

SedentaryTime_17 

(20.12) 

SedentaryTime_

18 (20.26) 

SedentaryTime 

(53.14) 

5 Grade_16 (15.58) CESD_17 (15.87) EatingBreakfast

_18 (19.03) 

CESD (42.74) 

6 CESD_16 (14.19) SchoolConnectednes

s_17 (14.29) 

PAfriends_18 

(17.41) 

SchoolConnected

ness (42.51) 

7 Province_16 (13.38) Urbanity_17 (13.95) EnglishMarks_1

8 (15.16) 

EatingBreakfast 

(38.29) 

8 SedentaryTime_16 

(12.76) 

EatingBreakfast_17 

(13.32) 

Urbanity_18 

(14.95) 

Grade/Age 

(38.05) 

 

Figures 22-24 illustrate variable importance by waves. X-axis and Y-axis represent variables and 

importance, respectively. The higher value of Y, the more important the corresponding variable was.  
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Figure 22. Variable importance (Wave I, 2016-17) 

 

 

Figure 23. Variable importance (Wave II, 2017-18) 
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Figure 24. Variable importance (Wave III, 2018-19) 
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5.5.2 Risk Profiles of Polysubstance Use Among Canadian Secondary School 

Students  

Four risk profiles of polysubstance use were identified across the three waves, i.e., low risk (L1), 

medium-low risk (L2), medium-high risk (L3), and high risk (L4). This was determined by the 

average group score of substance use indicators and the included risk factors. In general, students 

with the lowest mean values (scores) of each substance use, CESD and sedentary time, fewest 

smoking friends, fewest skipped classes, highest mean scores of school connectedness, and the 

majority eating breakfast were in the low-risk group. On the contrary, those majority who reported 

not eating breakfast, with the lowest mean scores of school connectedness, highest mean values 

(scores) of each substance use, CESD and sedentary time, a larger number of smoking friends, and a 

higher number of skipped classes were in the high-risk group. Two intermediate risk profiles were 

identified in-between, i.e., medium-low risk and medium-high risk groups. The average group scores 

of substance use indicators and risk factors ranged between L1 and L4. Tables 13-15 list the group 

mean scores with standard deviation (SD in bracket) of substance use indicators and all risk factors of 

these four risk profiles by waves based on fuzzy (FANNY) clustering.  

Each of the four substance use indicators was categorized as 0 = “never use,” 1 = “occasional use,” 

and 2 = “current use.” These values were treated as continuous scores to fit the Euclidean distance 

calculation. That is, the higher scores are indicative of more frequent use of the corresponding 

substance. In general, the lower the risk profile, the lower the score of the substance use indicator that 

the risk group had. At Wave I, on average, the low-risk (L1) group had the lowest score of indicators 

0.06 ± 0.29 (mean ± SD, cigarette smoking), 0.14 ± 0.44 (e-cigarette use), 0.39 ± 0.68 (alcohol 

drinking), and 0.06 ± 0.30 (marijuana consumption). Whereas the high-risk (L4) group had the 

highest scores of 0.25 ± 0.56 (cigarette smoking), 0.35 ± 0.65 (e-cigarette use), 0.71 ± 0.82 (alcohol 

drinking), and 0.29 ± 0.63 (marijuana consumption). The magnitudes comparing L4 vs. L1 are 4.17 

(cigarette smoking), 2.5 (e-cigarette use), 1.82 (alcohol drinking), and 4.83 (marijuana consumption) 

times at Wave I.  

By observing the top risk factor, “the number of smoking friends,” students in the high-risk group 

(L4) had the highest score being 0.64 ± 1.21 at Wave I. In contrast, students in the low-risk group 

(L1) had the lowest score of 0.19 ± 0.65, significantly differentiating between risk groups. Students at 

medium-high (L3) and medium-low (L2) risk groups scored between 0.46 ± 1.03 and 0.31 ± 0.81. 
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The initial values of this variable are categorical, coded as 0 = “None”, 1 = “1 friend”, 2 = “2 

friends”, 3 = “3 friends”, 4 = “4 friends”, and 5 = “5 or more friends”. These values were treated as 

continuous scores; the higher the score is, the more smoking friends it represents. The magnitudes of 

these scores across the four risk groups (Wave III vs. Wave I) are close to each other, ranging from 

1.41 times (L3) to 1.68 times (L1) over time.  

The difference between students who were at low risk (L1) having, on average, the smallest 

sedentary time (170 ± 61.3 minutes) compared to their peers at high risk (L4, 1021 ± 269 minutes) 

was by a magnitude of 6.01 times. The sedentary time significantly increased with the increasing risk 

profiles, 345 ± 50.7 and 563 ± 83.3 minutes for L2 and L3, respectively. In Wave I data, students in 

the L4 group have a CESD score of 10.8 ± 6.70, whereas those in the low-risk group (L1) have the 

smallest CESD score of 7.08 ± 5.39, with significant differences between risk groups. The medium-

low (L2) and medium-high (L3) risk groups have moderate CESD scores of 8.34 ± 5.89 and 9.30 ± 

6.04, respectively. The same trend is observed in Wave II and III datasets. 

The risk profiling reveals that students in the high-risk group (L4) of polysubstance use have the 

lowest school connectedness score, 18.0 ± 3.35 at Wave I. In contrast, students in the low-risk group 

(L1) have the highest score of 19.8 ± 2.78, significantly different between risk groups. In between, 

students in the medium-low (L2) and medium-high risk group (L3) have the scores of school 

connectedness being 19.1 ± 2.66 and 18.6 ± 2.81, respectively. 

At Wave I, the majority (65.4%) of the participants who ate breakfast were in the low-risk group 

(L1), while the majority (68.1%) of the participants in the high-risk group (L4) did not eat breakfast. 

The prevalence of eating breakfast decreases while the risk level rises from low-risk (65.4%), 

medium-low (51.6%), medium-high (42.4%), to high-risk (31.9%). A similar pattern can be seen 

throughout the three waves. The longitudinal evidence suggests that the prevalence of the students 

eating breakfast decreased across the three waves in the low-risk group, being 61.7% and 55.5% at 

Wave II and Wave III. In this cohort, the percentage of students eating breakfast at Wave III (55.5%) 

was 0.85 times less than that of Wave I (65.4%), indicating a decrease over time. The same trend was 

observed among the other three risk profile groups (L2 to L4). Comparing the other three risk profiles 

(Wave III vs. Wave I), the differences were similar to that of L1, being 0.81 times (L2), 0.79 times 

(L3), and 0.78 times (L4). 
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This study identified that age is one of the top factors associated with youth polysubstance use, 

using students’ grade level to proxy their age.  Among the four risk profiles of polysubstance use, the 

high-risk group comprises mostly older students, while the majority in the low-risk group are their 

younger peers. For example, within the low-risk group (L1) at Wave I, 23.9% of students in grades 7 

and 8 and 26.9% in grade 10. Whereas in the high-risk group (L4) at the same wave, only 7.8% of 

students are in grades 7 and 8, and 42.9% in grade 10. 

It is observed that similar trends of risk profiling appear throughout the three waves, showing 

consistent risk profiles over time, including the four substance use indicators and the top factors 

associated with youth polysubstance use. 

Table 13. Group mean scores of substance use indicators and all risk factors of the four risk 

profiles (Wave I, 2016-17) 

 
L1 

(Low) 
L2 

(Medium-low) 
L3 

(Medium-high) 
L4 

(High) 

 N=2799 (32.5%) N=2712 (31.5%) N=2113 (24.5%) 
N=986 
(11.5%) 

Cigarette_16 0.06 (0.29) 0.11 (0.38) 0.17 (0.47) 0.25 (0.56) 

eCigarette_16 0.14 (0.44) 0.22 (0.55) 0.31 (0.63) 0.35 (0.65) 

Alcohol_16 0.39 (0.68) 0.57 (0.77) 0.65 (0.82) 0.71 (0.82) 

Marijuana_16 0.06 (0.30) 0.12 (0.40) 0.21 (0.54) 0.29 (0.63) 

SmokingFriends_16 0.19 (0.65) 0.31 (0.81) 0.46 (1.03) 0.64 (1.21) 

SkipClass_16 1.20 (0.58) 1.23 (0.59) 1.31 (0.70) 1.38 (0.81) 

GetMoney_16 1.70 (1.14) 1.81 (1.11) 1.82 (1.13) 1.90 (1.15) 

SedentaryTime_16 170 (61.3) 345 (50.7) 563 (83.3) 1012 (269) 

CESD_16 7.08 (5.39) 8.34 (5.89) 9.30 (6.04) 10.8 (6.70) 

SchoolConnectedness_16 19.8 (2.78) 19.1 (2.66) 18.6 (2.81) 18.0 (3.35) 

EatingBreakfast_16 1831 (65.4%) 1400 (51.6%) 896 (42.4%) 315 (31.9%) 

Grade_16     

7 370 (13.2%) 170 (6.27%) 107 (5.06%) 33 (3.35%) 

8 299 (10.7%) 176 (6.49%) 100 (4.73%) 44 (4.46%) 

9 1377 (49.2%) 1430 (52.7%) 1088 (51.5%) 486 (49.3%) 

10 753 (26.9%) 936 (34.5%) 818 (38.7%) 423 (42.9%) 
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Table 14. Group mean scores of substance use indicators and all risk factors of the four risk 

profiles (Wave II, 2017-18) 

 
L1 

(Low) 
L2 

(Medium-low) 
L3 

(Medium-high) 
L4 

(High) 

 N=3022 (34.7%) N=3082 (35.4%) N=1920 (22.0%) N=684 (7.9%) 

Cigarette_17 0.14 (0.43) 0.22 (0.52) 0.29 (0.60) 0.45 (0.72) 

eCigarette_17 0.35 (0.68) 0.52 (0.80) 0.61 (0.83) 0.67 (0.85) 

Alcohol_17 0.73 (0.80) 0.91 (0.84) 0.96 (0.84) 1.05 (0.86) 

Marijuana_17 0.17 (0.48) 0.33 (0.64) 0.43 (0.72) 0.57 (0.78) 

SmokingFriends_17 0.28 (0.79) 0.44 (1.01) 0.64 (1.21) 0.94 (1.47) 

SkipClass_17 1.28 (0.65) 1.37 (0.76) 1.40 (0.75) 1.62 (1.06) 

GetMoney_17 2.06 (1.31) 2.17 (1.32) 2.24 (1.28) 2.24 (1.31) 

SedentaryTime_17 193 (64.2) 385 (60.0) 647 (101) 1176 (308) 

CESD_17 7.31 (5.54) 8.33 (5.80) 9.37 (5.96) 11.5 (7.07) 

SchoolConnectedness_17 19.4 (2.97) 18.7 (3.01) 18.0 (3.15) 17.3 (3.54) 

EatingBreakfast_17 1865 (61.7%) 1443 (46.8%) 718 (37.4%) 201 (29.4%) 

Grade_17     

8 336 (11.1%) 231 (7.50%) 93 (4.84%) 25 (3.65%) 

9 302 (9.99%) 207 (6.72%) 87 (4.53%) 24 (3.51%) 

10 1415 (46.8%) 1578 (51.2%) 1035 (53.9%) 390 (57.0%) 

11 969 (32.1%) 1066 (34.6%) 705 (36.7%) 245 (35.8%) 
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Table 15. Group mean scores of substance use indicators and all risk factors of the four risk 

profiles (Wave III, 2018-19) 

 
L1 

(Low) 
L2 

(Medium-low) 
L3 

(Medium-high) 
L4 

(High) 

 N=3385 (38.9%) N=2847 (32.7%) N=1776 (20.4%) N=686 (7.9%) 

Cigarette_18 0.21 (0.50) 0.30 (0.59) 0.40 (0.66) 0.53 (0.74) 

eCigarette_18 0.66 (0.84) 0.87 (0.90) 0.95 (0.91) 1.05 (0.90) 

Alcohol_18 1.03 (0.83) 1.14 (0.82) 1.16 (0.82) 1.19 (0.82) 

Marijuana_18 0.37 (0.66) 0.53 (0.75) 0.68 (0.82) 0.83 (0.87) 

SmokingFriends_18 0.32 (0.86) 0.46 (0.99) 0.65 (1.19) 0.94 (1.50) 

SkipClass_18 1.47 (0.83) 1.56 (0.88) 1.69 (1.03) 1.87 (1.21) 

GetMoney_18 2.47 (1.38) 2.57 (1.36) 2.58 (1.33) 2.50 (1.32) 

SedentaryTime_18 209 (68.0) 403 (58.2) 653 (94.2) 1191 (347) 

CESD_18 8.02 (5.57) 9.16 (5.95) 10.0 (6.15) 12.2 (6.87) 

SchoolConnectedness_18 18.9 (3.08) 18.4 (3.04) 17.7 (3.32) 17.0 (3.81) 

EatingBreakfast_18 1878 (55.5%) 1195 (42.0%) 593 (33.4%) 170 (24.8%) 

Grade_18     

9 363 (10.7%) 202 (7.10%) 99 (5.57%) 20 (2.92%) 

10 346 (10.2%) 179 (6.29%) 75 (4.22%) 22 (3.21%) 

11 1611 (47.6%) 1441 (50.6%) 976 (55.0%) 392 (57.1%) 

12 1065 (31.5%) 1025 (36.0%) 626 (35.2%) 252 (36.7%) 

 

5.6 Patterns of Polysubstance Use Among Canadian Secondary School 

Students 

5.6.1 What are the Polysubstance Use Patterns? 

In this thesis, another primary research question (RQ2) investigated was, “What are the patterns of 

polysubstance use among Canadian secondary school students?” Overall, four distinct polysubstance 

use patterns were identified and summarized as follows: subgroup 1 (S1) represented no use of any 

substances; subgroup 2 (S2) was the cohort with occasional single-use of alcohol; individuals in 

subgroup 3 (S3) had dual-use of e-cigarette and alcohol; and subgroup 4 (S4) represented current 

multi-use group, respectively.  

Table 16 summarizes the estimates of the conditional response probabilities of each substance use 

under the selected model with four latent statuses, denoted as states 1 to 4. Category 0, 1, and 2 
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correspond to the “never use,” “occasional use,” and “current use,” respectively. Predominant 

conditional response probabilities with larger values are highlighted in bold font to help with 

interpretation. Overall, the conditional response probabilities were well separated, demonstrating 

good heterogeneity between subgroups. 

Table 16. Conditional response probabilities 

Cigarette 

 Subgroup    

Category       S1 S2 S3 S4 

0 (Never)  0.9910 0.9976 0.7653 0.1494 

1 (Occasional)  0.0087 0.0024 0.2114 0.4736 

2 (Current)  0.0002 0.0000 0.0232 0.3770 

E-Cigarette 

 Subgroup    

Category       S1 S2 S3 S4 

0 (Never)  0.9637 0.8545 0.2946 0.1115 

1 (Occasional)  0.0327 0.1218 0.3249 0.1438 

2 (Current)  0.0036 0.0237 0.3805 0.7448 

Alcohol  

 Subgroup    

Category       S1 S2 S3 S4 

0 (Never)  0.9472 0.1048 0.1412 0.0296 

1 (Occasional)  0.0528 0.6066 0.3441 0.1755 

2 (Current)  0.0000 0.2887 0.5147 0.7949 

Marijuana  

 Subgroup    

Category       S1 S2 S3 S4 

0 (Never)  0.9979 0.9803 0.5453 0.0653 

1 (Occasional)  0.0016 0.0196 0.3553 0.3337 

2 (Current)  0.0005 0.0001 0.0994 0.6010 
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Figure 25 illustrates conditional response probabilities involving multivariate response categories. 

Each subgroup was determined by the predominant conditional response probabilities of the 

substance use(s). The latent status can be explained based on the corresponding distribution of the 

response variables in the parameter estimation.  

 

 

Figure 25. Conditional response probabilities 

It is observed that Class 1 (S1) corresponds to students with no use of any substances, where the 

probability of the first category (never use) was greater than 94.7% for any substance. Class 2 (S2) 

was composed of individuals who typically used alcohol on an occasional basis. This is due to a more 

significant probability of occasional alcohol drinking (60.7%), whereas over 85.5% of probabilities 

never used the other three substances in this subgroup. Individuals in Class 3 (S3) had larger 

probabilities of occasional and current use of e-cigarette and alcohol, being 70.5% and 85.9%, 

respectively. The probabilities of using other substances in this subgroup were not prominent, 

although there were 21.1% and 35.5% of probabilities of smoking cigarettes and consuming 

marijuana, respectively. Individuals in Class 4 (S4) differed from those in S3 by having a greater 

probability of using multiple substances concurrently. For instance, the conditional response 
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probabilities of current e-cigarette use, alcohol drinking, and marijuana consumption were 74.5%, 

79.5%, and 60.1%, respectively. Thus, S4 corresponds to the heavy multi-user group. 

At the beginning of the observation period, the initial probabilities of each use pattern were 0.5887, 

0.2156, 0.1487, and 0.0470, representing the chance of being in the no-use (S1), occasional single-use 

of alcohol (S2), dual-use of e-cigarette and alcohol (S3), and multi-use (S4) subgroup, respectively. 

The sizes of each use pattern are summarized in Table 17. In particular, S1 was the largest subgroup, 

containing 5320 students, accounting for 60.3% of the total sample size (N = 8824) at Wave I, 

followed by S2 (21.1%) and S3 (14.1%). Lastly, S4, the highest risk group, comprising current multi-

use of substance users, consisted of 399 students, accounting for 4.5% of the total sample size at 

Wave I.  

Table 17. Size of each pattern at Wave I (2016-17)  

 Count % 

Wave I (2016-17)   

      S1: No-use 5320 60.3 

      S2: Occasional single-use (A) 1859 21.1 

      S3: Dual-use (E+A) 1246 14.1 

      S4: Multi-use 399 4.5 

Grand Total 8824 100.0 

  

5.6.2 What Factors are Associated with Patterns of Polysubstance Use? 

Associated with the primary research question RQ2, a secondary research question (RQ4) examined 

was, “What factors are associated with patterns of polysubstance use among Canadian adolescents?” 

We estimated the covariates' effects on their initial probabilities to investigate the factors associated 

with the diverse use patterns of substances among youth. Table 18 lists the coefficients of all 

predictors with corresponding odds ratios (OR) affecting the initial probabilities for each use pattern 

membership under the selected model. To evaluate the significance of predictors on the effect of 

subgroup membership for the initial probabilities, Wald test statistics (t-test) was performed based on 



 

86 

 

the parameter estimates and standard errors. Corresponding p-values were obtained, as shown in 

Table 18 below.  

Table 18. Predictors of subgroup membership for the initial probabilities at Wave I (Ref: S1) 

 Subgroup   

 S2 S3 S4 

intercept 

β (beta coefficient) -0.84 -0.54 -0.44 

Odds Ratios 0.43*** 0.58*** 0.65*** 

Urbanity   

β (beta coefficient) -0.20 -0.27 -0.42 

Odds Ratios  0.82*** 0.77*** 0.66*** 

Grade/Age 

β (beta coefficient) 0.28  0.23 0.41 

Odds Ratios  1.32*** 1.26*** 1.51*** 

Race/Ethnicity    

β (beta coefficient) -0.08 -0.06 -0.04 

Odds Ratios  0.92** 0.94* 0.96+++ 

GetMoney     

β (beta coefficient) 0.13  0.25  0.29 

Odds Ratios  1.14*** 1.29*** 1.34*** 

PAfriends 

β (beta coefficient) 0.19 0.17 0.10 

Odds Ratios  1.21*** 1.18*** 1.10* 

EatingBreakfast   

β (beta coefficient) -0.22 -0.45 -0.59 

Odds Ratios  0.80* 0.64*** 0.56** 

SmokingFriends   

β (beta coefficient) 0.30  0.59 1.01 

Odds Ratios  1.35*** 1.81*** 2.75*** 
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 Subgroup   

 S2 S3 S4 

SupportQuitDrugAlcohol 

β (beta coefficient) 0.22 0.26 0.36 

Odds Ratios  1.25*** 1.30*** 1.43*** 

Sex    

β (beta coefficient) -0.30 0.29 -0.22 

Odds Ratios  0.74** 1.34** 0.80+++ 

SkipClass    

β (beta coefficient) 0.51 0.65 1.03 

Odds Ratios  1.67*** 1.92*** 2.79*** 

BMI_CATEGORY   

β (beta coefficient) 0.20  0.18 0.25 

Odds Ratios  1.22*** 1.20*** 1.28** 

SchoolConnectedness   

β (beta coefficient) -0.05 -0.09 -0.20 

Odds Ratios  0.95** 0.91*** 0.82*** 

SedentaryTime  

β (beta coefficient) 0.00 0.00  0.00 

Odds Ratios  1.00* 1.00*** 1.00*** 

GambleOnline   

β (beta coefficient) -1.55 -1.98 -2.54 

Odds Ratios  0.22*** 0.14*** 0.08*** 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 

This table demonstrates that most of the predictors had statistically significant effects on the 

subgroup membership across all groups, relative to S1. A couple of predictors did not have consistent 

results showing significant effects of the initial probability across subgroups. For example, although 

ethnicity and sex had significant effects on the membership of S2 and S3 for the initial probability, 

they were not significant on the initial membership of S4.  
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The following sections summarize the variable impact based on their positive, negative, or mixed 

effects.  

5.6.2.1 Positive Effects  

Overall, urbanity, race/ethnicity, eating breakfast, school connectedness, and (not) gambling online 

consistently had positive effects on the initial membership in the S2 through S4 subgroups, relative to 

S1. In other words, the odds of starting in any of the S2 to S4 patterns, relative to S1, were 

consistently lower for students who reported, for example, living in large urban (vs. medium urban2), 

being Black (vs. White3), eating breakfast (vs. not eating breakfast), having a higher score of school 

connectedness (vs. one-score lower), or not gambling online (vs. gambling online).  

Taking the covariate “GambleOnline” as an example (see Figure 26), at Wave I, students who 

reported not gambling online for money for the last 30 days were less than 0.08 times likely to start in 

the current multi-use (S4) subgroup, relative to the no-use (S1) subgroup than were those who 

reported gambling online, assuming that all the other variables were held constant. Similar 

interpretations apply to other positive-effect covariates, referring to Table 18.  

 

Figure 26. Example of positive effects on the initial membership 

5.6.2.2 Negative Effects  

On the contrary, eight covariates, namely: grade/age, weekly money to spend/save oneself, the 

number of physically active friends, the number of smoking friends, school support for quitting drugs 

and alcohol, the number of skipped classes, BMI category, and sedentary time consistently had 

negative effects on the initial membership in the S2 through S4 subgroups, relative to S1. That is, the 

odds of starting in any of the S2 to S4 patterns, relative to S1, were consistently higher for students 

who reported, for example, in a higher grade (vs. one-grade lower), having greater than $100 weekly 

 
2 Large urban vs. medium urban vs. small urban vs. rural 
3 Other vs. Latin American/Hispanic vs. First Nations vs. Asian vs. Black vs. White 

•REF

•OR = 0.08***

S4

•REF

•OR = 0.14***

S3

•REF

•OR = 0.22***

S2

•REF

•REF

S1 (REF)

•Yes (REF)

•No

GambleOnline
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money (vs. $21-$1004), five or more physically active friends (vs. 45), five or more smoking friends 

(vs. 46), residing in a school very unsupportive (vs. unsupportive7), having more than 20 classes 

skipped (vs. 11 to 20 classes8), being obese (vs. overweight9), or having longer sedentary time (vs. 

one-minute shorter).  

Taking the covariate “SkipClass” as an example (see Figure 27), at Wave I, an individual who 

reported skipping 1 or 2 classes was more than 2.79 times likely to start in the current multi-use (S4) 

subgroup relative to the no-use (S1) subgroup than was an individual who reported zero skipped 

classes, assuming that all the other variables were held constant. The same OR applies to comparing 

all the categories, i.e., “zero” vs. “1 or 2 classes” vs. “3 to 5 classes” vs. “6 to 10 classes” vs. “11 to 

20 classes” vs. “More than 20 classes.” Similar interpretations hold for other negative-effect 

covariates, referring to Table 18.  

 

Figure 27. Example of negative effects on the initial membership 

5.6.2.3 Mixed Effects 

The covariate sex had mixed negative and positive effects on the initial membership in the S2 through 

S4 subgroups relative to S1. The interpretation of this finding can be summarized as follows. 

Assuming that all the other variables were held constant, at Wave I, a male student was less than 0.74 

times as likely to be in the occasional single-use of alcohol (S2) subgroup relative to the no-use (S1) 

subgroup and was less than 0.80 times as likely to be in the current multi-use (S4) subgroup relative 

to non-users (S1) subgroup than a female student. Whereas at Wave I, a male student was more than 

1.34 times as likely to be in the dual-use of e-cigarette and alcohol (S3) subgroup relative to the no-

use (S1) subgroup than a female student, with all the other variables held constant. Figure 28 

 
4 Greater than $100 vs. $21-$100 vs. $1-$20 vs. zero 
5 5 or more friends vs. 4 friends vs. 3 friends vs. 2 friends vs. 1 friend vs. none 
6 5 or more friends vs. 4 friends vs. 3 friends vs. 2 friends vs. 1 friend vs. zero 
7 Very unsupportive vs. unsupportive vs. supportive vs. very supportive  
8 More than 20 classes vs. 11 to 20 classes vs. 6 to 10 classes vs. 3 to 5 classes vs. 1 or 2 classes vs. zero  
9 Obese vs. overweight vs. healthy weight vs. underweight vs. not stated  

•REF

•OR = 2.79***

S4

•REF

•OR = 1.92***

S3

•REF

•OR = 1.67***

S2

•REF

•REF

S1 (REF)

•Zero (REF)

•1 or 2 classes

SkipClass
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illustrates the mixed effects of sex on the initial membership of use patterns, with a positive effect 

highlighted in green and a negative effect in red.  

 

Figure 28. Example of mixed effects on the initial membership 

5.6.3 Initial Probabilities of Different Subgroup Membership by Demographics 

To further investigate initial probabilities of different subgroup membership by various demographic 

cohorts, e.g., sex, grade, etc., Table 19 summarizes the initial probabilities of diverse subgroup 

membership by additional demographic information, with significant information highlighted in bold 

font.  

Table 19. Initial probabilities of different subgroup membership by a demographic cohort at 

Wave I (2016-17) 

Characteristics Subgroup  

  S1 S2 S3 S4 

Sex Female 0.5896      0.2350 0.1245 0.0509 

Male 0.5877 0.1923 0.1778 0.0422 

Grade 7 0.7578 0.1354 0.0895 0.0173 

8 0.6743 0.1852 0.1139  0.0266 

9 0.6125 0.2077 0.1392 0.0405 

10 0.4967 0.2520 0.1836 0.0676 

Province AB 0.4505 0.2594 0.2024 0.0878 

BC 0.5876 0.2135 0.1494 0.0495 

ON 0.5691 0.2240 0.1568 0.0501 

QC 0.6762 0.1820 0.1133 0.0285 

      

•REF

•OR = 0.80+++

S4

•REF

•OR = 1.34**

S3

•REF

•OR = 0.74**

S2

•REF

•REF

S1 (REF)

•Female (REF)

•Male

Sex
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Characteristics Subgroup  

  S1 S2 S3 S4 

Urbanity Rural 0.2977 0.2734 0.2539 0.1751 

Small urban 0.5155 0.2370 0.1811 0.0664 

Medium urban 0.5435 0.2335 0.1682 0.0548 

Large urban 0.6440 0.1983 0.1245 0.0332 

Ethnicity  White 0.5828     0.2264 0.1483 0.0426 

Black 0.5668 0.2094 0.1698 0.0540 

Asian 0.6375 0.1882 0.1327 0.0416 

Aboriginal 0.4354 0.1935 0.2253 0.1457 

Latin American 0.6129 0.1735 0.1533 0.0603 

Other 0.6269 0.1771 0.1406 0.0555 

Household 

Income  

$25K - $50K 0.6845 0.1831 0.1062 0.0262 

$50K - $75K 0.5723 0.2184 0.1579 0.0514 

$75K - $100K 0.5711 0.2260 0.1536 0.0492 

>$100K 0.5548 0.2233 0.1650 0.0568 

BMI Not stated  0.6684 0.1651 0.1248 0.0418 

Underweight 0.6598 0.1850 0.1214 0.0338 

Healthy weight 0.5778 0.2303 0.1481 0.0438 

Overweight 0.5030 0.2493 0.1836 0.0641 

Obese 0.4540 0.2577 0.2128 0.0755 

5.7 Exploring Dynamic Transitions of Youth Polysubstance Use Patterns  

5.7.1 How Do Transition Behaviours Change Over Time? 

The last primary research question (RQ3) investigated was, “How do transition behaviours change 

over time in use patterns?” Transition probabilities were calculated with the LMM modelling to 

address this research question. Tables 20-21 show the averaged transition probability matrix across 
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the three waves and the transition probabilities from Wave I to Wave II (upper portion) and Wave II 

to Wave III (lower part), with the diagonal in bold font to assist interpretation. Figures 29-31 illustrate 

the averaged transition probabilities and transition probabilities between subgroups (Wave I → Wave 

II and Wave II → Wave III). Although the subgroup prevalence at different time occasions was 

similar, and the transition probability matrix revealed that an individual's use pattern membership at 

any time occasion was likely to be the same as the previous time occasion, there was nevertheless 

change between subgroups. Except for the diagonal, the largest transition probabilities under each 

subgroup were marked with an underscore, showing the most significant chance of change between 

subgroups. For instance, those in the S1 subgroup at Wave I had a 25.1% chance of being in the S2 at 

Wave II. Those in the S2 subgroup had a 43.8% chance of transitioning to the S3 subgroup at Wave 

II. Those in the S4 subgroup had a 9.4% chance of moving to the S1 subgroup and a 6.4% chance of 

moving to the S3 subgroup at Wave II.  

Table 20. Averaged transition probability matrix across the three waves 

Subgroup S1 S2 S3 S4 

S1 0.5740 0.2510 0.1528 0.0223 

S2 0.0061 0.5210 0.4447 0.0283 

S3 0.0098 0.0007 0.7092 0.2804 

S4 0.0754 0.0051 0.0528 0.8668 
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Figure 29. Diagram of averaged transition probabilities across the three waves 

Table 21. Transition probabilities by waves (upper portion: Wave I → Wave II; lower portion: 

Wave II → Wave III) 

Wave Subgroup S1 S2 S3 S4 

II  

(2017-18) 

S1 0.5845 0.2512 0.1433 0.0209 

S2 0.0066 0.5271 0.4375 0.0288 

S3 0.0127 0.0007 0.7176 0.2690 

S4 0.0943 0.0061 0.0635 0.8361 

III 

(2018-19) 

S1 0.5635 0.2507 0.1622 0.0236 

S2 0.0055 0.5149 0.4519 0.0277 

S3 0.0068 0.0007 0.7007 0.2918 

S4 0.0565 0.0040 0.0420 0.8975 
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Figure 30. Diagram of transition probabilities (Wave I → Wave II)

 

Figure 31. Diagram of transition probabilities (Wave II → Wave III) 
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Table 22 demonstrates the estimated marginal distribution of the four patterns of polysubstance use 

(S1 through S4) for each wave.  

Table 22. Estimated marginal distribution of the four use patterns (S1-S4) 

Wave Subgroup  

S1 S2 S3 S4 

I (2016-17)  0.5887 0.2156 0.1487 0.0470 

II (2017-18)  0.3742 0.2504 0.2652 0.1101 

III (2018-19)  0.2368 0.2201 0.3408 0.2022 

 

It shows that the probability of S1 constantly decreased across the three waves (0.5887 → 0.3742 

→ 0.2368); the probability of S2 increased from Wave I to Wave II (0.2156 → 0.2504) and then 

decreased from Wave II to Wave III (0.2504 → 0.2201). The marginal distribution of S3 (0.1487 → 

0.2652 → 0.3408) and S4 (0.0470 → 0.1101 → 0.2022) steadily increased over time, indicating a 

general tendency towards increasing use in dual and multiple substances. It is observed that the 

growth rate of S3 (Δ = +0.1156) was greater than that of S4 (Δ = +0.0631) from Wave I to Wave II, 

and the growth rate for S3 (Δ = +0.0756) and S4 (Δ = +0.0921) was similar from Wave II to Wave 

III. Figure 32 illustrates the marginal distribution of all the four use patterns over time. 
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Figure 32. Estimated marginal distribution of the four subgroups (S1-S4) 

By examining the incremental change (Δ) in transition probabilities from Wave II to Wave III vs. 

Wave I to Wave II, we found that the probability of staying in S4 increased (ΔS4 = +0.0614) across 

time. In contrast, the probability of staying in any of the lower use pattern subgroups S1 to S3 

decreased over time (ΔS1 = -0.0210, ΔS2 = -0.0122, and ΔS3 = -0.0169). In terms of change, the 

following transition probabilities increased across time: S1 → S3 (ΔS1→S3 = +0.0189), S1 → S4 

(ΔS1→S4 = +0.0027), S2 → S3 (ΔS2→S3 = +0.0144), and S3 → S4 (ΔS3→S4 = +0.0228). On the contrary, 

the decreased transition probabilities included S1 → S2 (ΔS1→S2 = -0.0005), S2 → S1 (ΔS2→S1 = -

0.0011), S2 → S4 (ΔS2→S4 = -0.0011), S3 → S1 (ΔS3→S1 = -0.0059), S4 → S1 (ΔS4→S1 = -0.0378), S4 

→ S2 (ΔS4→S2 = -0.0021), and S4 → S3 (ΔS4→S3 = -0.0215). The transition probability of S3 → S2 

across the three waves was unchanged (ΔS3→S2 = 0). Table 23 summarizes these incremental changes 

of the initial membership probabilities over time.  
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Table 23. Incremental change in transition probabilities across the three waves 

Δ = PWIIWIII – PWIWII S1 S2 S3 S4 

S1 -0.0210 -0.0005 0.0189 0.0027 

S2 -0.0011 -0.0122 0.0144 -0.0011 

S3 -0.0059 0 -0.0169 0.0228 

S4 -0.0378 -0.0021 -0.0215 0.0614 

 

Local decoding is based on the maximum posterior probability. Table 24 presents the prediction of 

each subgroup membership at different time occasions. It is noted that the prevalence of S1 through 

S4 gradually decreased at Wave II as well, being 38.8%, 24.8%, 24.7%, and 11.7%. A similar trend 

was observed in Wave III data, 24.9%, 22.6%,  32.4%, and 20.1%, with the obvious exception in S3, 

with the highest prevalence of 32.4%, instead of S1 found with the other two waves. The longitudinal 

evidence of use patterns showed that although the no-use (S1) subgroup at Wave I was prominent, its 

prevalence decreased over time (Wave I → Wave II: ΔS1 = -21.5%; Wave II → Wave III: ΔS1 = -

13.9%). In contrast, the prevalence of the other three use patterns (S2 to S4) increased (Wave I → 

Wave II: ΔS2 = +3.7%, ΔS3 = +10.6%, ΔS4 = +7.2%; Wave II → Wave III: ΔS2 = -2.2%, ΔS3 = +7.7%, 

ΔS4 = +8.4%), except for S2 decreased by 2.2% from Wave II to Wave III. By Wave III, S3 became 

the prominent use pattern. Although S4 had been the minor use pattern across the three waves, it is 

alarming that the prevalence increased by 4.5 times from Wave I to Wave III, and by Wave III, its 

prevalence became very close to S2 and S1. The estimated marginal distribution plot and transition 

patterns (Figures 32-33 in Chapter 5 Results, Section 5.7.1) depict this trend.  
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Table 24. Prediction of subgroup membership at different time occasions 

 Count % 

T1 (Wave I, 2016-17)   

      S1: No-use 5320 60.3 

      S2: Occasional single-use (A) 1859 21.1 

      S3: Dual-use (E+A) 1246 14.1 

      S4: Multi-use 399 4.5 

T2 (Wave II, 2017-18)   

      S1: No-use 3425 38.8 

      S2: Occasional single-use (A) 2191 24.8 

      S3: Dual-use (E+A) 2178 24.7 

      S4: Multi-use 1030 11.7 

T3 (Wave III, 2018-19)   

      S1: No-use 2197 24.9 

      S2: Occasional single-use (A) 1992 22.6 

      S3: Dual-use (E+A) 2861 32.4 

      S4: Multi-use 1774 20.1 

Grand Total 8824 100.0 

 

Figure 33 illustrates each individual's transition curves (left panel) and transition patterns (right 

panel) across the three waves.  
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Figure 33. Transition curves (left panel) and transition patterns (right panel) 

5.7.2 What Factors are Associated with Dynamic Transitions of Use Patterns? 

One of the secondary research questions (RQ5), in association with the primary research question 

RQ3, examined, “What factors are associated with dynamic transitions of use patterns?” Given that 

the parameter estimation is cumbersome and the interpretation may be difficult, the ORs for all 

covariates of transition between different use patterns are presented in Table 25. This table 

demonstrates the average effect of each covariate on the transition probability to the different 

subgroups, conditional on the subgroup at Wave I. See Appendix P for detailed covariates' effects on 

the transition probabilities with coefficients.  
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Table 25. Odds ratios for all predictors of transition between use patterns (N = 8824) 

Characteristics/Subgroup  S1 S2 S3 S4 

Urbanity      

    S1 REF 0.87** 0.87* 0.74+++ 

    S2 5.19*** REF 0.93+++ 1.20+++ 

    S3 0.83+++ 0.62*** REF 0.86* 

    S4 51.62*** 3.25*** 0.03*** REF 

Grade/Age      

    S1 REF 0.93* 0.90* 0.77* 

    S2 0.68* REF 0.93+++ 0.66* 

    S3 0.97+++ 1.28* REF 0.95+++ 

    S4 0.41*** 0.69* 0.75+++ REF 

Race/Ethnicity     

    S1 REF 0.90*** 0.99+++ 0.54* 

    S2 1.76* REF 0.97+++ 0.94+++ 

    S3 1.25+++ 0.56*** REF 0.82*** 

    S4 1.29+++ 0.85+++ 1.86* REF 

GetMoney      

    S1 REF 1.20*** 1.38*** 1.59* 

    S2 0.59+++ REF 1.19*** 1.30+++ 

    S3 0.59* 0.71* REF 1.18* 

    S4 0.72+++ 0.87+++ 0.21*** REF 

PAfriends      

    S1 REF 1.25*** 1.25*** 1.34* 

    S2 0.33*** REF 1.23*** 0.94+++ 

    S3 0.67+++ 1.03+++ REF 1.10* 
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Characteristics/Subgroup  S1 S2 S3 S4 

    S4 0.18*** 0.30*** 175.92*** REF 

EatingBreakfast      

    S1 REF 0.81* 0.56*** 0.42* 

    S2 1.55*** REF 0.69** 0.96+++ 

    S3 1.16** 1.15** REF 0.60** 

    S4 59.03*** 0.03*** 135.32*** REF 

SmokingFriends      

    S1 REF 1.14* 1.60*** 2.98*** 

    S2 0.51*** REF 1.39** 2.95*** 

    S3 0.46*** 7.18*** REF 2.29*** 

    S4 0.00*** 0.96+++ 0.00*** REF 

SupportQuitDrugAlcohol      

    S1 REF 1.25*** 1.22** 1.97** 

    S2 5.67*** REF 1.14* 1.55* 

    S3 0.13*** 1.82** REF 1.03+++ 

    S4 0.14*** 0.96+++ 0.02*** REF 

Sex      

    S1 REF 1.28*** 1.72*** 2.53*** 

    S2 0.63*** REF 1.38*** 2.43*** 

    S3 0.36*** 0.53*** REF 1.50*** 

    S4 0.00*** 0.96+++ 0.06*** REF 

SkipClass      

    S1 REF 1.17*** 1.16** 0.95+++ 

    S2 0.27** REF 1.00+++ 1.16+++ 

    S3 0.29*** 0.27*** REF 1.06+++ 
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Characteristics/Subgroup  S1 S2 S3 S4 

    S4 0.71* 0.02*** 98.97*** REF 

BMI_CATEGORY      

    S1 REF 1.02* 0.94** 0.94+++ 

    S2 0.68* REF 1.00+++ 0.88* 

    S3 1.44** 0.73* REF 0.95* 

    S4 1.15+++ 1.35* 1.03+++ REF 

SchoolConnectedness      

    S1 REF 0.65*** 1.31* 2.29* 

    S2 2.26*** REF 1.10+++ 0.18*** 

    S3 1.65*** 1.30*** REF 1.82*** 

    S4 300.22*** 0.05*** 0.46*** REF 

SedentaryTime      

    S1 REF 1.00+++ 1.00*** 1.00* 

    S2 0.99* REF 1.00** 1.00* 

    S3 1.00+++ 0.99+++ REF 1.00** 

    S4 1.00* 1.00+++ 1.01*** REF 

GambleOnline      

    S1 REF 1.37+++ 0.91+++ 0.17*** 

    S2 1.44*** REF 1.32+++ 3.34*** 

    S3 0.72*** 0.70*** REF 1.38+++ 

    S4 0.68*** 1.02+++ 0.00*** REF 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 

Similar to the interpretation of the covariates' effects on initial probabilities, we summarize the 

covariates’ effects on the transition probabilities based on their positive, negative, or mixed effects. 

This was determined by examining the upper and lower triangular matrices of each covariate in Table 

25. Suppose the odds ratios on the upper-triangular matrix were greater than one. In that case, it 
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indicates a higher OR (>1) of transitioning to a higher use pattern, conditional on the reference group 

at Wave I. In other words, these factors are more likely to contribute to the dynamic transition to a 

higher subgroup. Suppose the odds ratios on the upper-triangular matrix were less than 1. In that case, 

it indicates a lower OR (<1) of transitioning to a higher use pattern, conditional on the reference 

group at Wave I, suggesting a positive effect on the transition probability to a higher subgroup. 

Suppose the ORs on the upper-triangular matrix were mixed with values greater than one and less 

than one. In that case, it indicates mixed effects on transition probability to a higher use pattern, 

conditional on the reference group at Wave I.  

5.7.2.1 Moving From a Lower Use Pattern to a Higher One 

5.7.2.1.1 Positive Effects 

Overall, grade/age, race/ethnicity, and eating breakfast consistently had positive effects on the 

transition probabilities from a lower use pattern to a higher use group over time. Taking the covariate 

EatingBreakfast as an example (see Figure 34), among students who started in the no-use subgroup 

(S1) at Wave I, those who reported eating breakfast were less than 0.42 times likely to move to the 

current multi-use subgroup (S4) relative to S1 at Wave II than were those who reported not eating 

breakfast, with all the other variables held constant.  

 

Figure 34. Example of positive effects on the dynamic transitions from a lower use pattern to a 

higher one 

5.7.2.1.2 Negative Effects 

Generally, five covariates, including weekly money to spend/save oneself, the number of smoking 

friends, school support for quitting drugs and alcohol, sex (being males), and sedentary time had 

consistently negative effects on the dynamic transitions from a lower use pattern to a higher one. For 

instance, for the covariate “the number of smoking friends” (see Figure 35), with all the other 
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variables held constant, among students who started in the no-use subgroup (S1) at Wave I, those who 

reported having one smoking friend were more than 2.98 times likely to transition to the current 

multi-use subgroup (S4) in relation to S1 at Wave II than were those who reported zero friends who 

smoke. The same OR applies to “None” vs. “1 friend” vs. “2 friends” vs. “3 friends” vs. “4 friends” 

vs. “5 or more friends.” 

 

Figure 35. Example of negative effects on the dynamic transitions from a lower use pattern to a 

higher one 

5.7.2.1.3 Mixed Effects 

More covariates had mixed effects on transition probabilities than on initial probabilities. The 

variables with inconsistent effects on the transition probabilities from a lower use pattern to a higher 

one include urbanity, the number of physically active friends, the number of skipped classes, BMI 

category, school connectedness, and gamble online. Taking the GambleOnline effect as an example, 

with all the other variables held constant, among students who started in the single-use of alcohol 

subgroup (S2) at Wave I, those who reported not gambling online for money for the last 30 days were 

more than 3.34 times likely to move to the multi-use subgroup (S4) in relation to S2 at Wave II than 

were those who reported gambling online. Whereas among students who started in the no-use 

subgroup (S1) at Wave I, those who reported not gambling online for money for the last 30 days were 

less than 0.17 times likely to transition to the current multi-use subgroup (S4) in relation to S1 at 

Wave II than were those who reported gamble online. Figure 36 demonstrates the mixed effects of 

GambleOnline on the dynamic transitions from a lower use pattern to a higher one, with a positive 

effect highlighted in green and a negative effect in red.  
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Figure 36. Example of mixed effects on the dynamic transitions from a lower use pattern to a 

higher one 

5.7.2.2 Moving from a Higher Use Pattern to a Lower One 

Likewise, the odds ratios on the lower-triangular matrix indicate the effects on transition probability 

from a higher use pattern to a lower one, conditional on the reference group at Wave I. A summary of 

the variables and their effects follows, based on the lower-triangular matrix presented in Table 25.  

5.7.2.2.1 Negative Effects 

Only two covariates, weekly money to spend/save oneself and sex, consistently affected the transition 

probabilities from a higher use pattern to a lower one in a negative way. Being males or having more 

weekly money was associated with an increased risk of dynamic transitioning from a higher use 

pattern to a lower one over time. For instance, among students who started in the dual-use of e-

cigarette and alcohol subgroup (S3) at Wave I, male students were less than 0.36 times as likely to 

transition to the no-use subgroup (S1) in relation to S3 at Wave II than were female students, with all 

the other variables held constant. Figure 37 demonstrates the negative effects of gender on the 

dynamic transitions from a higher use pattern to a lower one. 

 

Figure 37. Example of negative effects on the dynamic transitions from a higher use pattern to a 

lower one 
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5.7.2.2.2 Mixed Effects 

More covariates had inconsistent effects on the transition probabilities from a higher use pattern to a 

lower one. These variables are urbanity, grade/age, race/ethnicity, the number of physically active 

friends, eating breakfast, the number of smoking friends, school support for quitting drugs and 

alcohol, the number of skipped classes, BMI category, school connectedness, sedentary time, and 

gamble online. For example, with all the other variables held constant, among students who started in 

the single-use of alcohol subgroup (S2) at Wave I, those who reported not gambling online were more 

than 1.44 times as likely to transition to the no-use subgroup (S1) in relation to S2 at Wave II than 

were those who reported gamble online. However, among students who started in the current multi-

use subgroup (S4) at Wave I, those who reported not gambling online were less than 0.68 times as 

likely to transition to the no-use subgroup (S1) in relation to S4 at Wave II than were those who 

reported gamble online. Figure 38 shows the mixed effects of GambleOnline on the dynamic 

transitions from a higher use pattern to a lower one, with a positive effect highlighted in green and a 

negative effect in red. 

 

Figure 38. Example of mixed effects on the dynamic transitions from a higher use pattern to a 

lower one 

 

In summary, this chapter reported the study results, starting from MI for missing values, descriptive 

statistics, factors associated with youth polysubstance use, risk profiles phenotypes, and the dynamic 

transitions of polysubstance use patterns among youth. The next chapter will discuss the key findings 

from public health and ML methodological perspectives, the contributions to the practice and the 

literature, strengths and limitations of this thesis, and future research directions.   
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Chapter 6 

Discussion  

This chapter discusses the key findings of this thesis, including the main results of risk profiling, 

patterns of polysubstance use among youths, and the dynamic transitions of these use patterns over 

time. The perceptions from a methodological perspective, particularly the selection and appropriate 

application of ML methods modelling risk profiles and dynamic transitions using the COMPASS 

data, ML interpretability and fairness, and data infrastructure and capacity that enables ML, are also 

discussed. Finally, the contributions of this thesis to public health practitioners and the research 

communities, the strengths and limitations, and future works are presented in this chapter. 

6.1 Key Findings   

6.1.1 Phenotyping Risk Profiles of Youth Polysubstance Use  

6.1.1.1 Overview of the Risk Profiles and Associated Factors  

One of the primary research questions (RQ1) of this thesis was, “What are the risk profiles of 

polysubstance use among Canadian secondary school students?” Before examining the risk profiles, 

we first identified the top eight factors associated with youth polysubstance use. Ranked by the 

variable importance, these factors include the number of smoking friends, the number of skipped 

classes, weekly money to spend/save oneself, sedentary time, CESD, school connectedness, eating 

breakfast, and grade (as a proxy of age). These factors are consistent with the findings in the 

literature. Some of the risk factors that correlate with polysubstance use among youth included age, 

sex, ethnicity, eating habits, PA and sedentary behaviour, social connectedness, and family and peer 

influence (see Chapter 2 Literature Review, Section 2.1.3). Although some studies reported that sex 

and race/ethnicity play an important role in youth polysubstance use (13,14,40,41), these two were 

not ranked as top features in the COMPASS data. Therefore, we did not include them for phenotyping 

risk profiles.  

The four risk profiles of polysubstance use among Canadian youth identified in this thesis were low 

risk (L1), medium-low risk (L2), medium-high risk (L3), and high risk (L4), based on the three 

annual waves of the linked samples from the COMPASS datasets analyzed. This was achieved by 
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utilizing the top eight factors correlated with polysubstance use and the four substance use indicators, 

i.e., cigarette smoking, e-cigarette use, alcohol drinking, and marijuana consumption. Numerous 

studies in addiction research have examined the risk factors associated with polysubstance use among 

youth or have identified use patterns. To our knowledge, no literature thus far has ever taken such a 

holistic approach to explore risk profiles among youth. Although no direct comparisons between our 

results and other studies can be performed, this thesis sheds light on the phenotyping risk profiles of 

youth polysubstance use with cross-sectional and longitudinal evidence. The four profiles identified 

in this thesis provide a more comprehensive overview of the prominent characteristics for each of the 

different risk levels of engaging in polysubstance use among this cohort.  

The following section discusses the heterogeneity in the prevalence and phenotype across these 

four risk profiles. The numbers presented in the next section represent the group average across the 

risk profiles unless otherwise stated.  

6.1.1.2 Heterogeneity in Risk Profile Phenotypes 

Overall, at Wave I, the majority of students (32.5%) were at low risk (L1), closely followed by L2 

(31.5%) and then L3 (24.5%). Only about a tenth of students belonged to the high-risk (L4) profile 

for Wave 1, accounting for 11.5% of the total sample size (N =  8610), which equates to 

approximately one-third of the low-risk population for all three waves. This trend is observed across 

all three waves, except for Wave II, where a slightly higher percentage (35.4%) of students were at 

medium-low risk (L2) than those at low risk (L1, 34.7%) (see Tables 13-15 in Chapter 5 Results, 

Section 5.5.2). By examining the longitudinal prevalence across the three waves, we found that over 

time, the number of students at low risk (L1) increased (from Wave I to Wave III: 32.5% → 34.7% → 

38.9%). In contrast, the number of students decreased at both the medium-high risk (L3, from Wave I 

to Wave III: 24.5% → 22.0% → 20.4% ) and the high-risk group (L4, from Wave I to Wave III: 

11.5% → 7.9% → 7.9%), over time. Interestingly, the prevalence of students at medium-low risk 

(L2) increased from Wave I to Wave II (31.5% → 35.4%) and decreased from Wave II to Wave III 

(35.4% → 32.7%). 

In general, our findings reveal that students who belonged to the low-risk (L1) profile group, on 

average, had the lowest mean values (scores) for substance use, CESD, and sedentary time. They also 

had, on average, fewest smoking friends, fewest skipped classes, highest mean scores of school 

connectedness, and reported eating breakfast. On the contrary, those who belonged to the high-risk 
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group (L4), on average, had the highest mean values (scores) for substance use, CESD, and sedentary 

time. And in contrast to L1, they tended to have the highest number of smoking friends, the highest 

number of skipped classes, the lowest mean scores of school connectedness, and on average, reported 

not eating breakfast. Additionally, two intermediate risk profiles were identified between L1 and L4: 

the medium-low risk (L2) and the medium-high risk (L3) group. It is observed that similar trends of 

risk profiling appear throughout the three waves, showing consistent risk profiles over time, including 

the four substance use indicators and the top factors associated with youth polysubstance use.  

It is observed that alcohol was the most prevalent substance used by Canadian youth, followed by 

e-cigarettes. Cigarette and marijuana shared a similar prevalence at Wave I across the four risk 

profiles. However, the prevalence of marijuana consumption increased more rapidly than that of 

cigarette smoking over time. 

Based on the Boruta algorithm of variable importance ranking, the top 3 features that affect youth 

polysubstance use are unrelated to demographic information like age or sex. Instead, “the number of 

smoking friends,” “the number of skipped classes,” and “weekly money to spend/save oneself” 

ranked top 3 across the three waves. The first two features reflect peer influence and risky behaviour. 

The risk profiling indicates that peer influence has more impact on polysubstance use among youth 

than any other identified risk factors. 

By investigating the cross-sectional evidence on other included factors, this thesis reveals that a 

sedentary lifestyle was associated with high risk of polysubstance use. Our finding agrees with West 

et al. (2020) that sedentary behaviour was positively related to adolescent drinking and marijuana 

consumption (130). Existing research indicates that sedentary behaviour might be a determinant for 

adolescent alcohol and marijuana consumption (130). The same trend was observed for Wave II and 

Wave III. Comparing L4 vs. L1 for the last two waves, the sedentary time differences were similar to 

Wave I, 6.09 times (1176/193) for Wave II and 5.70 times (1191/209) for Wave III. Similar to the top 

3 factors, the magnitudes of sedentary time across the four risk groups (Wave III vs. Wave I) range 

from 1.16 times (L3) to 1.23 times (L1) over time.  

Students in the high-risk group (L4) had a lower mental health status, which was indicated by the 

largest CESD scores. That is, the higher the CESD scores, the more significant the depressive 

symptoms that were reported. According to Radloff (1977), a CESD score ≥ 10 indicates clinically 

relevant depressive symptoms (131). In Wave I data, students in the L4 group had a CESD score of 
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10.8 ± 6.70, indicating that, on average, this group of individuals already experienced clinically 

relevant depressive symptoms. In contrast, those in the low-risk group (L1) had the smallest CESD 

score of 7.08 ± 5.39. Subsequently, the medium-low (L2) and medium-high (L3) risk groups had 

average CESD scores of 8.34 ± 5.89 and 9.30 ± 6.04, respectively, with significant differences 

between each risk group. The same trend was observed in Wave II and III data. This agrees with 

Halladay et al. (2020), which also found an association between substance use and mental health. 

Many studies have found that individuals in the multi-use group report higher psychiatric symptoms, 

including depression and anxiety, than the single-use group (49,50). In a systematic review by Cairns 

et al. (2014), the authors identified polysubstance use as a modifiable risk factor for depression 

among youth (132).  

Comparing across the four risk profiles L1 through L4 (Wave III vs. Wave I), the magnitudes of 

the CESD score were similar, 1.13 times (L1), 1.10 times (L2), 1.08 times (L3), and 1.13 times (L4), 

implying that the incremental rates for the CESD score were consistent across the four risk patterns 

over time. As previously discussed, students in the high-risk group (L4) already experienced 

clinically relevant depressive symptoms at Wave I and throughout Wave III due to the increasing 

CESD scores over time. It was noted that, on average, individuals in the L3 risk group started to have 

clinically relevant depressive symptoms at Wave III. 

In addition, this thesis identified good nutritional habits, such as eating breakfast, were associated 

with the low risk of polysubstance use among Canadian youth. For example, at Wave I, the majority 

(65.4%) of the students in the low-risk group (L1) ate breakfast, while only 31.9% of the students in 

the high-risk group (L4) ate breakfast. The prevalence of eating breakfast decreased while the risk 

level increased from low-risk (65.4%), medium-low (51.6%), medium-high (42.4%), to high-risk 

(31.9%). This similar pattern can be seen throughout the three waves, as shown in Tables 13-15. Our 

finding is consistent with the literature about youth polysubstance use and the correlation of nutrition-

related attitudes. For example, Isralowitz and Trostler (1996) reported that substance users were more 

likely to be at greater risk of poor eating habits, including not eating breakfast or not eating three 

meals daily (52). 

The longitudinal evidence of the risk profiles concerning the four substance use indicators showed 

that, in general, the scores of these indicators increased across the three waves, indicating that with 

time, students engaged to higher use of each substance across the risk profiles (L1 through L4). Note 
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that the incremental rate of marijuana consumption in the low risk (L1) group from Wave I to Wave 

III was the largest (6.17) among the four substances, followed by e-cigarette use (4.71), cigarette 

smoking (3.5), and alcohol drinking (1.64). Comparing the incremental rates of the score of substance 

use indicators across the four risk profiles, the low-risk group had the most significant increase, 

followed by L2, L3, and L4, subsequently. 

Lastly, using students’ grade level as a proxy of their age, this thesis identified that age was one of 

the top factors associated with youth polysubstance use. Among the four risk profiles identified, the 

high-risk group comprises mainly older students, while most low-risk groups were their younger 

peers. For example, within the low-risk group (L1) at Wave I, 23.9% of students were in grades 7/8 

and 26.9% in grade 10. In the high-risk group (L4) at the same wave, only 7.8% of students were in 

grades 7/ 8, and 42.9% were in grade 10. A similar pattern was observed at Wave II and III (see 

Tables 13-15 in Chapter 5 Results, Section 5.5.2). This finding concurs with published literature that 

the age of adolescents directly correlates with increased risk of using substances 

(13,32,41,44,46,133,134), i.e., the older the youth, the higher the likelihood of using substances. 

6.1.2 Patterns of Polysubstance Use Among Canadian Secondary School Students  

6.1.2.1 What are the Polysubstance Use Patterns? 

Another primary research question (RQ2) investigated in this thesis was, “What are the patterns of 

polysubstance use among Canadian secondary school students?” We identified four distinctive 

polysubstance use patterns among youth, which were no-use (S1), occasional single-use of alcohol 

(S2), dual-use of e-cigarette and alcohol (S3), and current multi-use (S4). Each use pattern represents 

a mutually exclusive overarching theme. The patterns identified suggest an increasing tendency and 

frequency of polysubstance use with decreasing membership size with higher risk groups, and each 

use pattern has considerably different sizes.  

Most studies on polysubstance use among youth focus primarily on tobacco, alcohol, and 

marijuana use due to the high prevalence of use in this cohort (67). E-cigarettes have not been 

considered in many of these studies due to their novelty. However, the popularity of e-cigarette use 

has surged among youth in recent years; it may now be a significant contributing factor to the rise in 

youth polysubstance use (13,14). Morean et al. (2016) examined the co-use of multiple substances 

such as tobacco products, e-cigarettes, alcohol, and marijuana among high school students in 
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Connecticut, US (133). They identified four classes of use: abstainers (82% of the sample), alcohol 

and e-cigarette users (5%), cannabis and alcohol users (7%), and users of all products (7%) (133). 

Recent research identifies use patterns that involve dual- and multi-use of e-cigarettes with other 

substances, indicating the importance of considering these devices when examining multiple 

substance use (133).  

In the existing literature on youth polysubstance use utilizing LCA, most studies have identified 

three or four patterns of polysubstance use (32). Typical patterns include no or low use, alcohol use 

(i.e., alcohol only or predominantly alcohol use), and polysubstance use (32). In a systematic review 

of substance use patterns among youth, Halladay et al. (2020) highlighted an average of four use 

patterns, including low use, one- or dual-use, moderate multi-use, and high multi-use (67). Their 

results have been drawn from 70 individual studies and 89 cluster solutions. Before model 

enumeration, the minimum and maximum users are two and six, respectively (67). Our research has 

identified four use patterns, which align with the findings by Halladay et al. (2020).  

6.1.2.2 What Factors are Associated with Patterns of Polysubstance Use? 

One of the secondary research questions (RQ4) examined in this thesis was, “What factors are 

associated with patterns of polysubstance use among Canadian adolescents?” Existing evidence 

suggests that the factors impacting youth polysubstance use patterns include gender, race, early onset 

of alcohol drinking, academic achievements in secondary school, and friendship goals (135). 

According to Lanza, Patrick & Maggs (2010), examining alcohol, cigarette, and marijuana use, males 

were 4.5 times more likely to be in the highest use group (“bingers with marijuana use”) than their 

female counterparts, in comparison to non-users (135). However, with non-users being the reference, 

in contrast, females were more prone to smoking cigarettes (OR = 1/0.6) or binge drinking (OR = 

1/0.9) than their male counterparts (135). Their findings were consistent with the results of this thesis 

concerning the mixed effects of gender on polysubstance use membership among youth. Yet, the 

gender difference between the study results by Lanza, Patrick & Maggs (2010) and ours was 

inconsistent.  

In this thesis, the gender of the cohort had mixed effects on the initial probabilities for different use 

patterns. In particular, we found that males were 1.34 times more likely to start in the dual-use of e-

cigarette and alcohol subgroup (S3) than females, relative to the no-use subgroup (S1). In contrast, at 

Wave I, females were 1.35 times more likely to engage in occasional single-use of alcohol (S2) and 
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1.25 times more likely to experience current multi-use (S4), the highest use group in this thesis than 

their male peers, relative to S1. Except for the implication that female students tend to be more likely 

to engage in alcohol intake than their male counterparts, the disparity in gender differences between 

our findings and those by Lanza, Patrick & Maggs (2010) could be due to the differences between 

substance use indicators and the corresponding measurements assigned. For instance, this thesis 

included e-cigarette as an emerging substance, whereas Lanza, Patrick & Maggs (2010) did not. 

Additionally, this thesis did not differentiate between regular drinking and binge drinking for alcohol 

use, as was it done by Lanza, Patrick & Maggs (2010). Some other differences include the method of 

data collection and the age of the population. Lanza, Patrick & Maggs (2010) used data collected at 

baseline and 14-days follow-ups in Fall 2007 and Spring 2008 among first-year college students 

(135). In comparison, our three waves data were collected from 2016-2017 among secondary school 

students. As such, a difference in nearly a decade in data collection and a study population age and 

level of education difference between the two studies cannot be neglected as contributing to the 

difference in findings.   

There is inadequate literature about factors that impact the initial membership of polysubstance use 

patterns among youth. Regarding race/ethnicity contributing to polysubstance use membership among 

youth, Lanza, Patrick & Maggs (2010) identified that Hispanic Americans were 1.5 times more likely 

to be cigarette smokers or “bingers with marijuana use” than European Americans, relative to non-

users. African Americans and Asian Americans were less likely to engage in substance use than 

European Americans relative to non-users (135). Our results showed that Black students were 0.92 

times less likely to engage in the single-use subgroup (S2) than their White peers, relative to non-

users (S1). Concerning the no-use subgroup (S1), the odds ratios to start in the dual-use (S3) and 

current multi-use pattern (S4) for Black vs. White were 0.94 and 0.96, respectively. The study results 

indicate that Black students were less likely to engage in a higher use group than their White peers, 

same as Black vs. Asian, Asian vs. First Nations, First Nations vs. Latin American/Hispanic, and 

Latin American/Hispanic vs. Other. However, the effect was not statistically significant for S4 vs. S1.  

In addition to the gender difference and race/ethnicity, what brings new insights into the literature 

on the patterns of youth polysubstance use in this thesis is the multifaceted covariates and their effects 

that we examined. Within the limited evidence, no other studies included all the variables investigated 

in this thesis to evaluate the impact on the initial membership of use patterns, summarized based on 
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their positive, negative, or mixed effects. One should be cautious about interpreting the BMI effect on 

the initial membership. The missing values were coded as one category instead of performing 

multiple imputations as other missing data. However, the results show that the BMI category did 

impact the initial probabilities of the use pattern membership. Generally, the higher the BMI (i.e., not 

stated vs. underweight vs. healthy weight vs. overweight vs. obese), the more likely the individual 

started in a higher use pattern at Wave I.  

It is observed that students who reported, for example, at lower grade levels (e.g., grades 7 or 8), 

residing in Quebec, living in large urban settings in Canada, from a household income level between 

$25K and $50K, or being underweight according to their BMI, tended to belong to the no-use (S1) 

subgroup. Additionally, students with these characteristics generally had a lower chance of being at 

the other three higher use groups (S2 to S4) than non-users (S1) at Wave I. In contrast, at Wave I, 

students with the highest grade (grade 10), residing in Alberta, from rural areas across Canada, self-

identified as Indigenous, or being obese according to their BMI had a higher chance of belonging to 

one of the higher use groups (S2 to S4) and a lower chance of being in the no-use (S1) subgroup.  

6.1.3 Exploring Dynamic Transitions of Youth Polysubstance Use Patterns  

6.1.3.1 How Do Transition Behaviours Change Over Time? 

One of the primary research questions (RQ3) explored in this thesis was, “How do transition 

behaviours change over time according to use patterns analysis?” The LMM applied for this thesis 

allowed us to investigate the dynamics of polysubstance use patterns among youth. In general, the 

resulting transition probabilities provide us with two aspects of the dynamics across time, i.e., 

stability (a subject stays in the same subgroup) and change (transitions to another subgroup). This 

section discusses our findings surrounding these two perspectives. 

6.1.3.1.1 Stability 

Our results revealed that generally, students remained in the same use pattern subgroup across time. 

On average, across the three waves, the probabilities for students staying in the no-use (S1), single-

use (S2), dual-use (S3), and multi-use (S4) subgroup were 0.5740, 0.5210, 0.7092, and 0.8668, 

respectively. The current multi-use (S4) was the most stable use pattern, followed by the dual-use 

(S3) and the no-use (S1) pattern. Among these four patterns, occasional single-use of alcohol (S2) 
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was the least stable pattern, with the probability of remaining in this subgroup across time was the 

lowest (0.5210). When they transitioned, it was typically to a higher use pattern adjacent to their 

current subgroup (i.e., S1 → S2, S2 → S3, or S3 → S4), rather than to a lower one, except for the 

highest use group S4. This finding is consistent with current literature that examines adolescent 

polysubstance use with LTA. The evidence suggests that youth are most likely to remain in the same 

subgroup of use pattern or transition to a higher use group as they grow older (134,136).  

A similar trend was observed by investigating the longitudinal evidence of the transition patterns, 

i.e., Wave I → Wave II and Wave II → Wave III. In particular, from Wave I to Wave II, probabilities 

for students staying in the no-use (S1), single-use (S2), dual-use (S3), and multi-use (S4) subgroup 

were 0.5845, 0.5271, 0.7176, and 0.8361, respectively. From Wave II to Wave III, the probabilities 

were 0.5635, 0.5149, 0.7007, and 0.8975 for remaining in the S1, S2, S3, and S4 subgroup. It is 

observed that the chance of staying in S4 from Wave II to Wave III was higher (Δ = +0.0614) than 

that of from Wave I to Wave II, meaning that with time, current multi-users were more likely than the 

last time occasion to stay in this highest use pattern subgroup. While for the other three use patterns 

(S1 through S3), the stability decreased over time (ΔS1 = -0.0210; ΔS2 = -0.0122; and ΔS3 = -0.0169). 

The decreased stability implies that students starting at any of these use patterns had an increased 

chance of transitioning to other use patterns across time.  

6.1.3.1.2 Change 

Table 20 highlights the changing pattern, with underscores indicating the largest transition 

probabilities within each subgroup. For example, on average of the two transitions (i.e., Wave I → 

Wave II and Wave II → Wave III), for students in the S2 subgroup, the chance of moving to S3 was 

0.4447, the largest probability representing the change of use patterns across the three waves. The 

second-largest transition probability was S3 → S4 (0.2804), followed by S1 → S2 (0.2510). In 

contrast, students in the S3 subgroup were least likely to transition to S2, with the slimmest chance of 

0.0007. Similarly, students in the S4 subgroup were unlikely to move to S2 across time, with the 

transition probability being 0.0051. In addition, those in S2 or S3 subgroups were less likely to 

transition to the S1 subgroup, with small transition probabilities for S2 → S1 (0.0061) and S3 → S1 

(0.0098).  

Similar to the longitudinal observation of the transition probabilities for stability, we examined the 

incremental change in transition probabilities, comparing Wave II → Wave III vs. Wave I → Wave 
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II. Concerning change, in general, the chances of transitioning from a lower use pattern to a higher 

one increased over time. This was determined by the increased transition probabilities across time 

(positive Δ in Table 23 in Chapter 5 Results, Section 5.7.1). On the contrary, the decreased transition 

probabilities (negative Δ in Table 23) indicate slimmer chances of moving from a higher use pattern 

to a lower one with time. There were two exceptions, moving from S1 to S2 and S2 to S4, with 

decreased probabilities of 0.0005 and 0.0011, respectively.  

Note that the measurement interval of cigarette and e-cigarette smoking was the last 30 days, 

whereas the measurement interval of alcohol and marijuana use was past year. Many transitions may 

have occurred between when student participants were asked about cigarette or e-cigarette smoking in 

the last 30 days at Wave I and when they were asked again one year later. It is impossible to estimate 

how much movement between subgroups has occurred between these measurement windows for 

these two specific substances. In this case, the upper bound of the diagonal elements and the lower 

bound of the off-diagonal elements of the transition matrix were used to explain the transition 

probabilities (68). Although the lower bound of the off-diagonal elements tends to underestimate 

transition over time, the general transition pattern is consistent, as previously discussed.  

It is worth noting that not only do use patterns change with time but so does the evidence in use 

patterns. For example, with the emerging trend of e-cigarette use among youth, adding e-cigarette as 

new evidence while examining use patterns would be more meaningful than ever. Unfortunately, no 

prior research examined the dynamic transitions of polysubstance use patterns among youth include 

the e-cigarette as a substance use indicator. It contributes to one of the novelties to this thesis. In the 

meantime, it makes the direct comparison between our findings and others impossible.  

6.1.3.2 What Factors are Associated with Dynamic Transitions of Use Patterns? 

One of the secondary research questions (RQ5) explored was, “What factors are associated with 

dynamic transitions of use patterns?” Choi et al. (2018) reported that males were more likely to 

transition from using legal to more illicit substances than females, while female polysubstance users 

were more likely to transition to a less use pattern than males  (131,135). Although we did not 

examine licit vs. illicit substances in this thesis, the finding is consistent with our results. Our finding 

of the gender difference on the dynamic transition of use patterns indicates that male students were 

more likely to transition to a higher use group and were less likely to transition to a lower one than 

their female peers over time. For example, among students who started in the no-use subgroup (S1) at 
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Wave I, males were 2.53 times more likely to transition to the current multi-use subgroup (S4) at 

Wave II than were female students. Whereas transitioning from a higher use pattern to a lower one, 

among students who started in the current multi-use subgroup (S4), females were 16.67 times more 

likely to move to the dual-use subgroup (S3) relative to S4 at Wave II than were males.  

Except for the gender difference, there is inadequate literature about what other variables lead to 

the dynamic transitions of membership. Thanks to the rich longitudinal evidence available in the 

COMPASS data, we examined multifaceted covariates to determine if they were significant in 

predicting the subgroup membership at baseline (Wave I) as discussed in Section 6.1.2.2 or predicting 

the dynamic transitions of use patterns over time. These covariates range from demographic 

information to health behaviours, from individual-level to population-level (environmental). 

Ultimately, our study results provide new insights into what characteristics lead to the dynamic 

transitions of youth polysubstance use patterns, summarizing in two directions, i.e., moving from a 

lower use pattern to a higher one or the other way around.  

On the bright side, students in a higher grade (grade 10 vs. grade 9 vs. grade 8 vs. grade 7), being 

Black (vs. White10), or eating breakfast were less likely to transition from a lower use pattern to a 

higher one. Among these covariates, eating breakfast had a statistically significant effect on the 

dynamic transition of use pattern membership except for moving from S2 to S4. Except for 

transitioning from S2 to S3 and S3 to S4, grade/age significantly affected the dynamic transition of 

use pattern membership. Race/Ethnicity demonstrated statistical significance in the dynamic change 

of membership, i.e., S1 → S2, S1 → S4, and S3 → S4. On the other hand, having more weekly 

money, having more smoking friends, attending schools with less support for quitting drugs and 

alcohol, being male, or experiencing larger sedentary time were more likely to transition from a lower 

use pattern to a higher one. In particular, having more weekly money or being male was less likely to 

experience a positive change, i.e., transition from a higher use pattern to a lower one over time.  

The other covariates, including urbanity, the number of physically active friends, the number of 

skipped classes, BMI category, school connectedness, and tendency to gamble online, had mixed 

effects on the transition probabilities from a lower use pattern to a higher one. Among these 

covariates, school connectedness had statistically significant effects on the transition probabilities of 

 
10 The same OR applies to the comparison of other ethnicity categories, i.e., Other vs. Latin American/Hispanic 

vs. First Nation vs. Asian vs. Black vs. White 
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use patterns for individuals who started in the S1, S3, and S4 subgroups. The number of physically 

active friends significantly affected the transition probabilities for students who began in subgroups 

S1 and S4. Urbanity, the number of skipped classes, and BMI category significantly affected the 

dynamic transition of use pattern membership in S3 and S4. The covariate GambleOnline 

demonstrated non-significance on the dynamic change of membership for any subgroup.  

We found that more covariates had mixed effects by investigating the transition probabilities from 

a higher use pattern to a lower one. These additional covariates included grade/age, race/ethnicity, 

eating breakfast, the number of smoking friends, school support for quitting drugs and alcohol, and 

sedentary time. It is observed that many covariates had significant effects on the transition 

probabilities among some use pattern subgroups. However, none of the covariates was consistently 

significant for the dynamic transitions between all use pattern membership (see Table 25 in Chapter 5 

Results, Section 5.7.2).  

In summary, our findings indicate that the factors leading to the dynamic transitions of use patterns 

are multifaceted. Their effects are more complex than those on the initial membership of use patterns. 

Some factors, such as grade/age, race/ethnicity, are non-modifiable. Public health practitioners should 

pay more attention to those modifiable factors, including individual health behaviours (e.g., eating 

habits, PA and sedentary lifestyle), peer influence (e.g., friends who smoke), and environmental 

impact factors (e.g., school support initiatives). On that note, more discussion follows in Section 

6.2.1.  

6.1.4 Learnings from ML Methodological Perspectives  

One of the secondary research questions (RQ6) asked, “What are the advantages and limitations of 

the ML methods appropriate to modelling risk profiles and dynamic transitions using the COMPASS 

data?” This section addresses RQ6, discussing the two feature selection methods applied in this 

thesis, unsupervised ML methods for phenotyping risk profiles and an LMM approach for exploring 

the dynamic transitions of use patterns. Then we discuss perceptions from ML interpretability and 

fairness to data infrastructure and capacity that enables ML in public health.  

6.1.4.1 Feature Selection  

While working with high-dimensional datasets, mainly where the number of features is much larger 

than the sample size, raises the problem called “the curse of dimensionality.” As the number of 
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features increases, the number of samples needed to train the model increases proportionally. 

Although this issue is not prominent in our study, redundant or unnecessary variables exist for model 

fitting on the COMPASS dataset. Therefore, performing dimensionality reduction and selecting the 

most appropriate features for model fitting is an essential step in our analysis. As previously 

discussed in Chapter 4 Methods, Section 4.4.1, we prefer feature selection approaches over feature 

extraction due to better interpretation of the model.  

In an unsupervised learning paradigm, the class label is unknown, which increases complexity and 

uncertainty. Unsupervised feature selection methods tend to address this issue. For example, 

Laplacian Score is one of the unsupervised feature selection algorithms. However, the idea behind 

Laplacian Score is to employ the k-means clustering method to select the top 𝑘 features. 

Unfortunately, the disadvantages of the k-means clustering algorithm significantly affect the feature 

selection result, increasing the complexity of the Laplacian Score. For example, some of the 

disadvantages of the k-means clustering algorithm include: 1) it requires a priori knowledge of the 

optimal value of 𝑘, 2) it is sensitive to noise and outliers, and 3) it is sensitive to an initial assignment 

of the centroid (i.e., different initial partitions can lead to different clustering results). As a result, the 

preliminary results applying the Laplacian Score for feature selection are highly inconsistent across 

the three waves datasets, with less meaningful interpretation. Therefore, we did not implement an 

unsupervised feature selection method for further analysis.  

Moreover, preliminary feature selection results for clustering analysis indicated that including all 

features tends to cause overfitting. In addition to learning from the data and identifying authentic 

patterns, the clustering algorithms also learn from stochastic noises in the dataset and thus identify 

“patterns” that are not representative of the COMPASS data. On the contrary, too few features in this 

research, such as less than 5, also impact clustering results based on the internal validation criterion. 

Therefore, different subsets of features have been experimented with to leverage the model 

performance and a more meaningful clustering solution. Eventually, a subset of features (top 8) that 

contributes to the risk profile phenotypes was identified. 

In this thesis, we explored two commonly used embedded feature selection approaches. In 

particular, Boruta uses a random forest-based algorithm to select the top features for clustering 

analysis. For the selection of covariates fitting the LMM, regression-based LASSO (or L1 

regularization) was applied. Each method has its advantages and limitations. For example, as an 
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approach to model fitting and variable selection, LASSO can be used for different regression types. 

Regularization adds additional constraints or penalties to a model for preventing overfitting and 

improving generalization. Each non-zero coefficient will increase the penalty in LASSO regression 

and force the coefficient of weak features to zero. Therefore, LASSO regression produces sparse 

solutions, meaning that few features are used in the prediction model. When the number of non-zero 

parameters is small enough, practitioners can interpret whether the variables corresponding to these 

parameters are meaningful or not. LASSO has proven to be a better method than other automatic 

variable selection approaches in statistical modellings, such as forward selection, backward 

elimination, and stepwise selection. However, LASSO tends to ignore non-significant features that 

may be important to the response variables during the penalization procedure. To overcome this 

drawback, we purposely selected the largest subset of features from the results of LASSO regression 

on the three waves data.  

6.1.4.2 Phenotyping Using Unsupervised Learning Methods 

To our knowledge, none of the studies in the current literature on youth polysubstance use ever took 

such an approach of phenotyping risk profiles. Instead, individual risk factors associated with 

substance use among youth have been identified, and the statistical power of each factor has been 

investigated. Applying statistical models, such as LCA for static class membership analysis and LTA 

for the dynamic membership transition, polysubstance use patterns among youth have been examined. 

Clustering algorithms, primarily k-means and hierarchical clustering, have been employed for 

identifying use patterns. However, none of these studies assessed risk profiling of youth 

polysubstance use, involving the indicators of substance use and their multifaceted impact factors.  

Unsupervised learning methods, particularly the various clustering algorithms implemented in this 

thesis, showcase their capability of revealing the hidden patterns in the COMPASS dataset. We 

implemented different similarity and dissimilarity measures, including Euclidean distance and Gower 

distance specific to categorical data. The preliminary results indicate that using the Euclidean distance 

matrix achieved better clustering results with a higher silhouette index than Gower distance. 

Furthermore, for hierarchical clustering, among the different linkage methods discussed in Chapter 2 

Literature Review, Section 2.2.2.2.2, average linkage outperforms other linkage methods.  

Cluster analysis has advantages and potential limitations; for example, the various clustering 

algorithms usually provide very different results due to the different criteria for merging clusters. 
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Although cluster analyses have unique advantages for revealing “hidden” patterns and unexpected 

associations in variables, no backward option can be made in earlier steps due to the hierarchical 

nature of the analysis. Therefore, to mitigate these limitations, we implemented various clustering 

algorithms, including partitioning-based, hierarchical-based, and fuzzy clustering. The first two types 

of cluster methods are hard clustering algorithms that assign data elements to one cluster. Unlike hard 

clustering, fuzzy clustering algorithms are soft-clustering methods, assigning membership coefficients 

of objects to all clusters.  

Particular focus was given to fuzzy clustering algorithms, considering the overlapping nature of 

risk profiling observed on the linked sample of COMPASS data. Both the FCM and FANNY 

algorithms were implemented in this thesis. The optimal number of clusters was determined by 

implementing multiple validation indices available in the NbClust package. In addition, an automatic 

voting scheme was applied to avoid bias towards a specific criterion, such as the silhouette index 

alone. The majority of indices proposed 4 clusters as the optimal number for the linked COMPASS 

data. 

Moreover, one hyperparameter to determine the distribution of membership values was tuned with 

variation between 1 and 2 to evaluate the appropriate value of the fuzziness. The fuzziness parameter 

(a.k.a. fuzzifier) is a weighting exponent; closing to 1 indicates hard clustering. The larger value of 

the fuzzifier, the better the FCM handles noise and outliers. In this thesis, we set the fuzzifier to 

equals 2. Except for the silhouette index, an internal index, external indices like ARI and VI were 

assessed for each pair of clustering algorithms. Compared to FCM clustering, the FANNY algorithm 

slightly outperforms FCM on both the internal and external validities across the three waves data, 

achieving good agreement on clustering membership.  

6.1.4.3 Exploring Dynamic Transitions with an LMM Approach  

As longitudinal data becomes more available in many fields, researchers rely on specific statistical 

models tailored to their applications. This thesis applied an LMM modelling technique on a linked 

sample of the COMPASS dataset, with three annual waves available for analysis. LMMs can provide 

three types of analysis, including i) identifying subgroups of units and examining how the transition 

occurs between these subgroups, ii) transition analysis with measurement errors, and iii) unobserved 

heterogeneity analysis (27). When we estimate the LMM with a function lmest available in the LMest 
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package in R, we estimate the covariates' effects on the initial probabilities of various use patterns and 

the transition probabilities of the use pattern membership.  

Started with the basic version of the LMM without covariates, the preliminary results yield a 

relatively large number of latent statuses (𝑘 = 10) with the lowest 𝐵𝐼𝐶 = 121524.6. Then we tried 

model fitting with 29 covariates selected from the Boruta algorithm, the number of latent statuses 

reduced to 𝑘 = 4. However, the corresponding 𝐵𝐼𝐶 = 124018.1, and the number of parameters for 

estimation increased to 497. The evidence showed that the more covariates added in the LMMs, the 

more complex the model is. It implies potential overfitting.  

Eventually, we added the covariates selected from the LASSO regularization into the basic version 

of the LMM. During fine-tuning of the models, it is observed that fewer covariates lead to a larger 

value of 𝑘, which increases the difficulty of interpretation. There is a trade-off between the 

appropriate number of latent statuses (𝑘) and the BIC value. The model selection was performed 

based on adding covariates derived from the LASSO regression with certain constraints, as discussed 

in Chapter 5 Results, Section 5.4.3. The best model was selected considering both the lowest 𝐵𝐼𝐶 =

122349.6 and the parsimony of the selected model with 257 parameters for estimation, compared to 

other fitted models.  

To evaluate the goodness-of-fit for the selected LMMs, we used the index 𝑅2. The main difference 

between BIC and 𝑅2 is that the latter is suitable for measuring overall fit instead of comparison 

between models because model complexity is not included in the index 𝑅2. In this thesis, the values 

of 𝑅2 where 𝑘 = 4 were very similar, ranging from 0.4838 (𝑀16) to 0.4861(𝑀1), indicating the 

overall fit amongst the fitted models is good. This confirms the adequacy of the proposed LMM 

modelling using the COMPASS data at hand.  

In terms of computational complexity, the EM algorithm converged much faster on the basic 

version of the LMM without covariates than the subsequent models with various constraints. It is 

observed that the EM algorithm rapidly increases the log-likelihood, but the run-time becomes much 

slower when it is close to convergence. 

This thesis has demonstrated that LMMs can be used to evaluate how the polysubstance use 

patterns among youth transition over time using the multivariate COMPASS dataset with selected 

covariates. It is generally recommended that the LMM methodology considers transition profiling of 
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latent processes corresponding to health behaviours without standard measurement protocols. To 

analyze longitudinal data with repeated observations, LMMs take advantage of the additional 

information, detecting other latent states compared to using the LCA method at each point in time. 

This provides the LMM methodology with greater statistical power than LCA. Moreover, LMM is 

particularly suitable for evaluation intervention monitoring and evaluation studies because it can 

model dynamics in latent states transition and hypothesis test the measurement invariance across time 

(27).  

6.1.4.4 ML Interpretability and Fairness  

Along with the rising opportunities, there also exist challenges to adopting ML approaches in public 

health. For instance, although ML models are recognized for their predictive powers, how they 

function and achieve this end remains obscure. As a result, some ML models, particularly those using 

deep learning techniques, are considered a “black box.” This thesis challenges this assumption and 

provides practitioners with the appropriate tools to explain the ML model. The most fundamental 

reason is a lack of explainability/interpretability in outcomes that creates hesitation in adopting and 

implementing policies driven by ML. Interpretability is the degree to which a human can understand 

how a decision is made (19). Interpretability of model output and models themselves has been noted 

as a concern for ML has been applied to public health and clinical medicine (19). Early clinical 

applications of ML were criticized for “black-box” decision-making processes, but this issue can now 

be mitigated using interpretable models and model-agnostic methods (19). For reasons of 

interpretability and knowledge creation, parsimony is a crucial attribute of classical statistical 

methods. ML also emphasizes parsimony, with the simplest possible explanation of the data still fits 

the model reasonably well. For example, in this thesis, we selected the final LMM based on the BIC 

criterion with fewer latent states than the AIC value indicating a larger number of latent states.  

Interpretability can be helpful in model validation, model debugging, knowledge discovery, and 

social acceptance. We investigate fairness and trust through model validation, i.e., whether the ML 

model has employed valid evidence instead of biases. Debugging and analyzing the misbehaviour of 

models can assist in accountability and transparency of the modelling results. Obtaining new insights 

from the decision-making process of the ML model can achieve knowledge discovery. Health 

researchers are currently investigating if ML algorithms would have better success in end-user 

acceptance if they can provide rationale/justification for its prediction. With increased efforts towards 



 

124 

 

achieving interpretability, we expect (are hopeful) that ML decision-making systems will become 

more acceptable, and in turn, play a more conducive role in human decision processes. 

Working towards fairness and justice goals, ML models that are FAT-driven can mitigate the 

effects of unwarranted bias or discrimination on people in the ML applications. Fairness is inherently 

a social and ethical concept, representing a growing area of interdisciplinary research. The primary 

focus is on algorithmic formalisms of fairness and developing solutions for these formalisms. In this 

thesis, we attempted to address issues of fairness and bias in the following ways. Firstly, instead of 

handpicking important variables based on substance use research available in the literature, we 

applied feature selection algorithms as previously discussed. These algorithms are robust and highly 

interpretable among ML algorithms for automatically selecting a subset of features important to youth 

polysubstance use applicable to the COMPASS dataset. Secondly, having unbiased approaches in 

mind, we applied a voting scheme to determine the optimal number of clusters from all available 

indices to avoid biases towards a specific criterion. Although issues of fairness are out of the scope of 

this thesis, as ML practitioners, we could examine further by conducting subgroup analysis based on 

students’ demographic differences to achieve a fairer interpretation of the modelling results.  

Note that the definition of bias differs from statistics (such as the bias-variance trade-off) or social 

science. Instead, algorithmic bias has a wide range of social and political influences, and in these 

scientific fields, the exact meaning of bias may become blurred. Even the dataset itself can reflect 

human biases since humans sometimes label data. The dataset may also exclude specific populations 

or not be representative. Biases beyond statistical contexts are our focus when discussing this issue. 

According to Danks & London (2017), different algorithmic biases co-exist in autonomous systems, 

including biases deriving from training data, algorithmic focus or processing, transfer context, and 

interpretation (137).  

Various strategies can be employed at different developmental stages to create a fair ML system, 

i.e., preprocessing, training, and post-processing. For example, eliminating sensitive features from the 

dataset is a naïve approach for unbiased ML models at the preprocessing stage, which can be 

achieved by applying dimensionality reduction techniques. At the training stage, the adversarial 

debiasing method can be utilized by training two models simultaneously (138). While at the post-

processing stage, the decision threshold for different subgroups can be shifted towards meeting the 

fairness goals. For predictive models, calibration can be performed to ensure that the matching ratio 
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of actual labels reflects the probability output. A well-calibrated model will have similar error rates 

across different values of sensitive features (137).  

6.1.4.5 Data Infrastructure and Capacity Enabling ML 

Rosella, Fisher, and Song (2019) identified the opportunities for adopting ML solutions in public 

health, including more quickly identification of emerging threats, more detailed and up-to-date 

understanding of population disease and risk factor distributions such as online disease surveillance 

tools, forecasting of disease incidence of population health planning, improved targeting of health 

promotion activities such as sentiment analysis, and many more related to population health 

management. In the meantime, there exist challenges from explainability, bias, security and privacy 

concerns, data access and sharing, outdated data and analytic infrastructure, and lack of ML education 

and skills within public health.  

Availability of high quality and adequate quantity of data is essential to enable ML systems. First 

of all, ML algorithms rely on a good quality large volume of training data. Although ML is known for 

making predictions and focusing less on variables, understanding the data is essential. This includes 

data elements, variable characteristics, data collection and data quality procedures, such as who 

collects data, how often data is collected, self-reported survey questionnaires, unmoderated or in-

person moderated, and so on. From a data science perspective, both the quantity and quality of 

training data contribute to the successful adoption of ML systems. Taking a prescriptive approach, 

collecting, organizing, analyzing, and infusing data are deemed a four-step AI ladder as part of data 

management (139).  

Data infrastructure enables data-driven decision-making (e.g., analytic techniques) and drives AI-

powered solutions, including information systems with ML-enabled intelligence. The data 

infrastructure ranges from the pipes that carry data to storage solutions such as cloud-based storage 

analytics that house data, ML models that analyze data, dashboards that make data easy to understand 

and interpret ML models, and much more. From ML libraries to automated data pipelines, to data 

catalogues, depending on the goal of scaling up or scaling down, ML-enabled intelligent 

infrastructure varies. Data infrastructure requirements can be distilled down to the following key 

areas: compute integration, data persistence and access, scaling and tiering, software-defined storage, 

deployment agility and flexibility (140).  
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The capacity that enables ML (or AI ecosystem) includes technical aspects (e.g., computational 

power, data environment, data interoperability, legacy system migration), organizational or 

management capacity/incentives, and environmental or societal capacity fostering ML applications. 

When organizations are ready to scale their ML applications, they face a wide range of challenges. 

From data preparation to model development to runtime environments to training, deploying, and 

managing ML models, the requirements for the underlying infrastructure defy the old models of 

general-purpose hardware. Investments in an infrastructure designed for data-intensive workloads, 

superior performance, scaling, data access and integration, and blend into a hybrid cloud environment 

provide long-term value and service quality. Organizations will need to make decisions about 

replacing or supplementing existing general-purpose storage platforms with storage systems that are 

geared towards ML-specific processing tasks.  

Adequate talent is a vital capacity to ensure the successful adoption and scale-up of ML systems. 

Bridging and accelerating joint research with ML techniques applied in public health require more 

interdisciplinary training and a research environment. Thus, addressing the shortage of ML education 

and skills within public health is a mandate. ML certificate programs and online courses provide a 

good opportunity for data science practitioners to obtain the necessary education and skills to adopt 

ML. Increasing numbers of ML certification courses are available, such as ML Stanford Online, 

eCornell ML Certificate, Harvard University ML, to name a few (141). Similar certificate programs 

are offered by prestigious universities, such as Applied AI for Health Care by Harvard University, AI 

in Healthcare by Stanford, AI in Health by the University of Toronto, etc. However, professional 

training on ML in public health seems lacking. Designing and delivering ML courses customized for 

students at schools of public health can facilitate the best preparation of existing and new students 

with appropriate education and skills working in the public health sector after graduation. All of this 

will serve as the foundation for developing and running cutting-edge ML solutions. 

6.2 Contributions  

6.2.1 Contribution to Practice in Public Health 

The practice perspective brings insights from multifaceted COMPASS data to phenotyping risk 

profiles of youth polysubstance use and examining how the use patterns transition from one type to 

another across time. Youth is a crucial period of development and transition when risky behaviours 
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usually occur, such as polysubstance use. Taking advantage of an ongoing health survey from a 

sample of Canadian secondary school students and their attending institutions, it provides a holistic 

view of the longitudinal COMPASS data. The study results offer stakeholders evidence-based best 

practices to guide the implementation of the school environment, policies and procedures for 

improving youth health behaviours. 

The complexity of student characteristics, modifiable individual-level risk factors, school 

environment and community-level status can lead to the transition of risk profiles. Taking the natural 

multilevel structure within the multiple sources of the COMPASS data brings new insights into 

strengthening the longitudinal evidence of risk profiling and polysubstance use patterns. There are 

distinct patterns in the associations between risk factors and polysubstance use among youth. The 

dynamic process of use patterns can inform clinicians and intervention experts how to deal with these 

behaviours at this developmental stage and throughout the process.  

The thesis results have implications from public health and health policy perspectives. First, the 

study results suggest that the correlates of youth polysubstance use are multifaceted, concerning 

individual-level factors, peer influence, and population-level (environmental) effects. In the context 

of our research, age, sedentary behaviour, eating habits, depression status, truancy, weekly money to 

spend/save oneself, and school connectedness are individual-level factors. Peer influence includes the 

number of smoking friends and the number of physically active friends. Province and urbanity are 

population-level effects. The diverse associations between polysubstance use and multifaceted health-

related behaviours should be considered for decision-makers who want to invest in interventions 

targeting multiple youth behaviours.  

A good understanding of the risk profiles will help school program managers or policymakers 

identify and characterize valuable measures to evaluate control interventions. For instance, designing 

and implementing any quit smoking/alcohol/drugs programs should not be a stand-alone practice. 

Instead, the school policies should integrate such a program with other approaches like fostering PA, 

healthy eating, anti-depression, etc. Counselling programs such as peer mentoring or group therapy 

for high-risk students can help this cohort learn coping strategies, improve health behaviours, and 

prevent more costly substance abuse treatment later in their lives.  

Furthermore, province and urbanity differences have been shown to impact the initial membership 

of polysubstance use patterns among Canadian youth at Wave I (see Table 19 in Chapter 5 Results, 
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Section 5.6.3). Therefore, provincial and federal jurisdictions should collaborate to establish more 

specialized preventive programmes tailored to the requirements of the youths. For example, our study 

results revealed that students from Alberta or living in rural areas had a higher chance of starting at a 

higher substance use pattern than those from other provinces or living in other urban areas (see Table 

19). Particular programs should be considered in these jurisdictions to be more specific to these 

problematic areas.  

The overall trend of substance use is increasing, and the four use patterns of substances identified 

in this thesis indicate an increase of severity by each subgroup. For example, our results revealed that 

students residing in the intermediate use pattern groups, particularly starting in the occasional single-

use of alcohol (S2) subgroup at Wave I, were most likely to transition to a higher level use group. An 

early detection-prevention approach should be initiated across all jurisdictional school boards. It is 

observed that use patterns generally remain in the same subgroup across time. However, transitions 

do occur, typically to the adjacent severe use pattern rather than mild. Except for the multi-use 

subgroup (S4), the most significant change is transitioning to the no-use (S1) subgroup over time. 

Although this highest level of polysubstance use is the most stable subgroup, with an averaged 

probability of 86.7% staying in the same use pattern over time, there is still a 7.5% chance that these 

heavy users would transition to the no-use subgroup over time. Prevention programs should target 

their particular needs for making such a good switch.  

 The complexity of risk profiles, modifiable individual-level risk factors, family/friends/school 

environment and community-level status can lead to the transition of use patterns. Due to the 

multifaceted determinants associated with youth polysubstance use, there is a need to initiate 

prevention programs that are more comprehensive to tackle the wide range of risk factors. The study 

results will provide stakeholders with evidence-based best practices to guide the implementation of 

the school environment, policies and procedures for improving youth health behaviours. 

6.2.2 Contribution to Research Communities in Literature  

This thesis is the first study that takes advantage of data-driven approaches using advanced ML 

techniques on the COMPASS data. It contributes to ML in public health by investigating a complex 

public health challenge, i.e., youth polysubstance use as a case study using a range of machine 

learning techniques.  Both unsupervised ML methods and a multivariate LM modelling approach are 

employed in this thesis. The applied methodologies are on population-level health surveys to enhance 
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data exploration capabilities and further discover hidden patterns. ML methods can quickly identify 

hidden patterns from such high-dimensional population-level data. When applied holistically, the 

result is quick detection of phenotypes acquired. The study results are consistent with other research 

that have taken statistical modelling approaches.  

Firstly, we applied the methodologies on population-level health surveys to enhance data 

exploration capabilities and further discover hidden patterns and the transition of patterns over time. 

From the population level, differences between risk profiling may have essential effects on subjective 

youth behavioural and mental health. This can be further conceptualized by having different 

preventive capabilities against addictive behaviours in school settings. 

Secondly, the multidimensional impact factors are highly representative of how ML approaches 

can be used to process large amounts of survey data in health research. Instead of hand-picking a few 

variables from the dataset relevant to the research questions, the feature selection algorithms, as 

previously discussed, are a superior approach to identifying the correlates to the outcome variable. 

The algorithms calculate the variable importance (the Boruta algorithm) or shrink the coefficients of 

unimportant variables into zeros (the LASSO regression). Implementing these algorithms was within 

a few minutes based on the linked samples of the COMPASS data with high computational capacity, 

as highlighted in Chapter 4 Methods, Section 4.6. The resulting impact factors are highly interpretable 

with visualized graphs demonstrating the importance scores (the Boruta algorithm) or variable 

coefficients (the LASSO regression).  

Furthermore, although statistical modelling is the dominating approach in quantitative health 

research, our study demonstrated that ML techniques are more than adequate for identifying inherent 

structures like hidden patterns of high-dimensional data. Unsupervised ML approaches automatically 

explore the data for pattern discovery without referring to an outcome variable. The LMM modelling 

takes advantage of a latent Markov chain to investigate the transition of youth polysubstance use 

patterns, revealing the dynamics of use patterns across time. Lying at the intersection between 

statistical modelling and ML approaches, the LMMs seem easier to adopt than any other advanced 

ML algorithms residing in a black box. This is particularly true for researchers from the public health 

realm.  

In the ML paradigm, the trade-off is a standard agreement, such as interpretability and accuracy. 

Although this thesis does not involve measuring accuracy as predictive models do, we applied a few 
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strategies to improve the interpretability of the various ML models in this thesis. Our interpretable 

techniques include feature selection over feature extraction method and feature importance plots to 

inform us how important the feature is in predicting polysubstance use. Furthermore, we performed 

data visualization via the t-SNE algorithm to project high-dimensional data to lower-dimensional 

space. In addition, silhouette plots demonstrate the internal index of clustering validation, and 

different risk levels with associated characteristics represent risk profiling. In terms of the modelling 

results of LMM and parameter estimation with odds ratios that are easier to interpret for public health 

practitioners, various plots were generated. Plots such as initial probabilities by item, estimated 

marginal distribution, transition probabilities, transition curves, and transition patterns present an 

excellent visualization method, conveying our findings to the audience outside the ML field. We are 

highly confident that the results of our ML models in this thesis are explainable. 

In addition, the ML pipeline developed in this thesis can be used in real-world decision support. 

The terminology “pipeline” is derived from bioinformatics, representing a sequence of tools applied 

to a dataset, making it from raw data towards the final analysis results interpretable to the 

stakeholders (19). In this thesis, the ML pipeline includes data preprocessing (Section 4.2.2), feature 

selections (Section 4.4.1 using Boruta algorithm and Section 4.5.1 using LASSO regression), data 

visualization (Section 4.4.2), cluster analysis and validation (Sections 4.4.4 and 4.4.5), and LMM 

modelling (Sections 4.5.2 and 4.5.3), using a variety of R packages summarized in Section 4.6.  

6.3 Strengths and Limitations   

This section outlines the strengths and limitations of this thesis. We first detail the significant 

strengths, identify the limitations, and discuss methods for mitigating these limitations with future 

research.  

The strengths of this thesis lie in the COMPASS dataset and the methodologies we applied. One of 

the strengths of the COMPASS data derives from the large sample size with reliable data quality, 

using national surveillance instruments-based measurements (142). The Cq uses the active-

information passive-consent protocols, which help achieve high participation rates and reduce 

sampling bias while preserving student confidentiality (113). This protocol is of utmost importance in 

research related to youth health behaviours, such as polysubstance use, encouraging honest responses. 

In general, the COMPASS study had a high percentage of participation each school year, with a 
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reasonable participation rate of 78%, 82%, and 84% for all student participants across the three 

waves. The COMPASS host study collects multifaceted information annually in Canada as 

longitudinal evidence. The complexity of data structure provides real-world evidence pertaining to 

youth health behaviours from multiple sources to examine the relationship between school 

environmental characteristics and youth health outcomes. 

Another strength of this thesis is that we undertook a comprehensive data preprocessing process, 

and some of the work that we did may be useful to future COMPASS researchers. One of the most 

challenging aspects of this thesis was cleaning up the raw data, including missing pattern analysis and 

MI for handling missing data. We applied a variety of imputation techniques to impute missing values 

based on different types of missingness. MI assumes that the data are at least MAR, which means that 

the MI procedures can also be applied on data that are MCAR and work best when data are MCAR. 

For data were MNAR, e.g., BMI category, we treated differently than MAR or MCAR mechanisms. 

That is, instead of performing MI procedures, we coded missing BMI as its category “not stated.” 

Ultimately, by having this clean and imputed linked dataset, the hope is that COMPASS researchers 

can spend less time processing raw data and more time analyzing it. We also plan to provide all 

necessary code to COMPASS researchers to learn how the ML models were implemented, and 

perhaps they can customize them for their individual research needs. The same goes for all of the 

visualizations presented in this thesis, which were designed to make it flexible across different 

research scenarios.  

Finally, we applied comprehensive modelling strategies for addressing different research questions. 

For example, considering the overlapping nature of youth polysubstance use risk profiles, advanced 

ML methods such as fuzzy clustering were implemented to identify risk profiles among Canadian 

adolescents. It helps discover hidden patterns or intrinsic structures within the COMPASS dataset. 

Furthermore, applying a dynamic modelling approach on the three annual waves of linked data 

showcasing the ability of this type of model to evaluate individual differences in transition behaviours 

across time. These diverse modelling strategies help public health practitioners gain insights into the 

COMPASS data with a holistic approach.   

This thesis has certain limitations. The ability of this research to provide multi-level granularity for 

modelling transitions in youth polysubstance use patterns is hindered by the limited number of waves 

available for analysis. It would be ideal to have all waves available from the beginning of the 
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COMPASS data collection up to the latest school year of 2019-2020 (Y8). However, there was a 

fundamental change in 2016, and the SPP has been changed significantly throughout the COMPASS 

study. Therefore, a decision was made to use student-level, and supplementary community-level 

(school SES, urbanity, and BE) linked data from 2016-2017 onward.  

As an extension to the classical Markov model and the LMM, the multilevel LMM is a structured 

stochastic process, generalizing LMM with a bottom-up hierarchical control structure. The multilevel 

LMM structures have the following properties: i) a vector of response variables (multivariate) is in 

discrete state-space, ranging from 0 to 2, ii) covariates are stochastic, and iii) transition of use patterns 

(sequences) are correlated in time (27). The model selection can be performed without covariates, and 

once the best model is selected, covariates are added at both levels and estimate the model jointly, not 

separately. However, the currently available function in the LMest package for MLMM modelling 

does not allow covariates. When completing this thesis, the LMest package developers are still 

working on adding this function. As one limitation, the data analyses in this thesis could not benefit 

from the multilevel modelling approach.  

As for the model validation, we were hoping to obtain Wave IV (the school year 2019-2020, Y8) 

data to serve as a test set for validating the models. However, this school year's COMPASS data 

collection cycle was challenging due to the COVID-19 pandemic. Given the impact of COVID-19 on 

school closures in March 2020, half of the school sample completed a pre-COVID paper-based 

questionnaire, and another half completed an online questionnaire in May-June. The online 

questionnaire included many new questions specific to COVID-19 and removed many of the 

questions used in the paper-based version. The sample size for the paper-based questionnaire is 

~30,000 students from 51 participating schools, while the sample size for the online questionnaire is 

~9,500 students from 51 schools. The participation rate for the online questionnaire was much lower 

than the paper-based (~30% vs. ~80%) due to the school closures and lack of set class time for data 

collections. Although linked longitudinal data are available for both questionnaire types, connecting 

to the previous three waves (i.e., Wave I, Wave II, and Wave III in the current study) significantly 

reduces the sample size from ~9,000 to ~1,000. It is preferable to have external validation data. 

However, we stick to the current study design with the three waves data due to the constraints above.  

Lastly, many participating schools in the COMPASS study are purposefully sampled (i.e., a non-

random convenience sample). As a result, the COMPASS data is not extensible for use in population-
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level statistics (59). Therefore, one must be cautious when interpreting and generalizing results since 

the sample of schools may not be genuinely representative and external validity cannot be guaranteed. 

As with any large-scale health survey, response bias is inevitable; mainly, non-responses introduce 

missing values. This research applied multiple imputation techniques to impute missing values. 

Regardless, the consensus among stakeholders remains that COMPASS methodologies are 

sufficiently robust given the delicate balance of data accuracy and participant anonymity in 

longitudinal studies that concern youth health behaviours (143). 

6.4 Future Works 

Although the results of this thesis are meaningful, more work is guaranteed to analyze school 

programs and policies, hierarchical BE effects, and dynamic social characteristics on youth 

polysubstance use. For example, immediate effort should be given to the multilevel LMM framework 

to examine geographical distribution and variation further. This approach uses SPP measures to 

account for school policy perspectives and contextual features surrounding polysubstance use among 

youth. In addition to the students' health behaviours, adding data from multi-sources like SPP would 

undoubtedly leverage the strengths of ML modelling strategies.  

Another future work is to conduct external validation. This can be achieved by obtaining a 

validation dataset from external sources to ensure our final models fit the new data well. 

Alternatively, using any data collected from the COMPASS study in the future years can also validate 

our models generated from this thesis internally. Given the particularity of the school year 2019-2020 

due to the COVID-19 pandemic situation, it would be insightful to evaluate the impact of 

overwhelming social events such as lockdown during the pandemic. Analyses like comparing the 

commonality and dissimilarity of polysubstance use patterns in the same cohort and any change of 

their characteristics would make future research appealing. 

After model development, more work can be done to transform the modelling results into 

tools/apps in a real-world scenario. After all, there is a significant difference between building an ML 

model and preparing it for end-users to use in their organizations. For example, more careful model 

evaluation before deployment is required. One of the most challenging aspects of adopting ML 

systems is deploying and maintaining an accurate model, which requires constant access to new data 

to update and validate the model and improve its accuracy (144). In addition, beyond building ML 
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models, turning the ML solutions into a genuine product is an interdisciplinary effort involving not 

only technical but organizational strategic planning (145).  

One of the objectives of this thesis was to identify the most significant features associated with risk 

profiles or use patterns of youth polysubstance use with an ML modelling approach, which is a 

typical association analysis. As previously discussed, most ML methods are being used for 

descriptive and predictive purposes, such as association studies, public health surveillance, disease 

diagnosis and incidence, individual- vs. population-level prediction, data-driven mapping of inputs to 

outputs, and so on. Although ML models are good at uncovering subtle patterns in large high-

dimensional datasets, they have struggled to make causal inferences. Causal inference approaches are 

well-known methods in statistics, with many practical applications in numerous industries, such as 

healthcare (145). Pearl (2019) highlighted that causal inference is restricted and governed by a three-

level causal hierarchy, i.e., association, intervention and counterfactual (146). From association 

towards causality, intervention modelling is in the causal pathway. Prosperi et al. (2020) argued that 

health practitioners need to apply causal approaches with causal structures when pursuing 

intervention modelling (147). Researchers can use the same tools for causal purposes to reveal 

mechanisms of causality, going beyond association to investigate causation and building this into our 

models. Once a causal model is available, focusing on particular exposures, whether through a 

learning process or subject matter experts' knowledge, causal inference allows conclusions to be 

drawn on the impact of interventions, counterfactuals, and potential outcomes (148). A more causal 

approach can be achieved by removing confounders. In intervention studies, double-blinded 

randomized controlled trials (RCT) are considered gold-standard to control confounding. For 

observational studies, we can take a mathematical approach to conduct causal analysis by stratifying 

on confounders or via propensity score matching (149).  

In this thesis, both the ML models and statistics provide numeric information about phenotypes of 

risk profiles and dynamic transitions of polysubstance use patterns among youth. In addition to these 

quantitative methodologies, we may obtain qualitative evidence to supplement the statistical 

evidence. Qualitative research can provide a more comprehensive understanding of students’ risk 

behaviours, their perceptions towards polysubstance use, and the pros and cons of school practices 

and policies to tackle this public health issue. Furthermore, a more comprehensive profile of 

participants’ health behaviours may offer a deeper understanding of WHY these behaviours affect the 
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dynamic transition of polysubstance use patterns in this cohort. For example, future research can 

integrate the SPP data with open- and closed-ended questions, drawing on all possibilities from 

multiple forms of the COMPASS host study. It may lead to a mixed-methods study, an emerging 

method in social health sciences, combining both the statistical trends of what occurs and the 

phenomenon of why it happens.  

 

In summary, this chapter discussed the key findings of this thesis surrounding the risk profiles of 

youth polysubstance use, the patterns and the dynamics among Canadian youth, followed by 

reviewing the advantages and limitations of the ML methods appropriate to modelling risk profiles 

and dynamic transition using the COMPASS data. Finally, the contributions, strengths and 

limitations, and future works were discussed. The next chapter will review the principal findings of 

this thesis, highlighting the contributions to the ML and Public Health research communities and 

concluding with some final remarks.  
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Chapter 7 

Summary of the Key Points  

7.1 What We Know from this Research  

Phenotyping risk profiles of youth polysubstance use among Canadian youth  

• The four risk profiles of polysubstance use among Canadian youth identified in this research 

were low risk, medium-low risk, medium-high risk, and high risk, demonstrating the 

heterogeneity in the prevalence and phenotype across these four risk profiles.  

Patterns of polysubstance use among Canadian secondary school students  

• The four distinctive polysubstance use patterns among Canadian adolescents were no-use, 

occasional single-use of alcohol, dual-use of e-cigarette and alcohol, and current multi-use.  

• Although the no-use subgroup was prominent at Wave I, its prevalence decreased over time. 

The prevalence of the other three use patterns increased across time, except for the occasional 

single-use of alcohol subgroup. 

• The current multi-use subgroup was the most stable use pattern, followed by the dual-use and 

the no-use subgroups. Among these four patterns, occasional single-use of alcohol was the 

least stable pattern.  

Exploring dynamic transitions of youth polysubstance use patterns 

• As they grow older, youth were most likely to remain in the same subgroup of use pattern 

across time or transition to a higher use pattern instead of a lower one.  

• Factors that impact the initial membership of polysubstance use patterns and the dynamics 

were multifaceted and complex across the four use patterns across the three waves.  

• Not only do use patterns change with time, but so does the evidence in use patterns. 

The appropriateness of ML methods to modelling risk profiles and dynamic transitions using 

the COMPASS data  

• The application of cluster analysis determined risk profiles of youth polysubstance use. 

LMMs identified polysubstance use patterns and examined the dynamic transitions of these 
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use patterns over time. It is recommended that these advanced ML methods be applied in 

settings with high-dimensional population-level longitudinal data. 

• However, not all studies have all those same variables, neither have we in the COMPASS 

dataset. This dilemma makes the study results difficult to compare or consolidate.  

 

7.2 What this Dissertation Contributes to the Research Communities  

  

  

To the COMPASS 
Host Study

• The first application of ML models on the COMPASS dataset

• First research applying dynamic models (LMM) to examine the transition of polysubstance use patterns 
over time

• First research phenotyping risk profiles taking a holistic approach 

To the Public 
Health 

Community
• Identification of risk profiles of polysubstance use among Canadian secondary school students, 
providing a more comprehensive overview of the prominent characteristics for each of the different risk 
levels

• Examination of factors (and estimates) that impact the initial membership of use patterns at baseline 
(Wave I) 

• Examination of factors (and estimates) that lead to the dynamic transitions of use patterns over time

• Inclusion of e-cigarette as an emerging substance for modelling the dynamics of use patterns 

To the ML 
Community 

• Showcasing the application of various ML models (both unsupervised and supervised learning) using 
real-world longitudinal health survey data 

• Bridging the ML and Public Health communities
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7.3 What We Still Need to Know and How We Can Get there 

• How well do our models perform?  

o Internal validation: e.g., cross-replication, comparing statistical model-based methods 

(e.g., LCA) vs. clustering algorithms, LTA vs. LMM  

o External validation: using external data, e.g., newer waves   

• What are the characteristic differences in the dynamic transition of use patterns among youth? 

This will be achieved by conducting a stratified analysis with the LMM framework, e.g., sex, 

race, age, urbanity, etc.  

• How do the school programs and policies impact youth behaviours on polysubstance use? 

This will be performed by adding the SPP data into a multilevel LMM framework upon the 

availability of the software package.  

• What are the risk profiles at the school level reflecting youth polysubstance use? This will be 

examined using aggregated student-level data and hierarchical BE and other environmental 

data available in the COMPASS study.  

• Given the impact of COVID-19 on school closures and lockdown throughout the school year 

of 2020-2021, it would be worthwhile to examine any rare patterns or emerging trends of 

polysubstance use among Canadian secondary school students. Comparing the use patterns 

and the dynamic transitions between this school year and other years would be meaningful to 

public health practitioners.  

 

7.4 Final Thoughts  

This thesis epitomizes the emergence of a new and exciting field at the intersection of two research 

communities, ML and Public Health. As this is also the first study of its kind to ascertain risk profiles 

and dynamics of use patterns in youth polysubstance use, by employing ML approaches to the 

COMPASS dataset, this research provides insights into the opportunities and possibilities ahead for 

ML in Public Health. By using complex and high-dimensional longitudinal health survey data,  this 

thesis demonstrates the application of LMMs to evaluate the transition of youth substance use 



 

139 

 

patterns over time. Furthermore, this thesis describes the application of cluster analysis, one type of 

unsupervised ML approach in determining the risk profiles of polysubstance use in this cohort. 

Findings from studies like this can be beneficial to practitioners in the field, such as school program 

managers or policymakers, in their capacity to develop interventions to prevent or remedy 

polysubstance use among youth.  

This thesis exemplifies one specific application of ML in public health, namely, identifying 

behavioural patterns affecting health. By tackling prevalent population health issues, such as youth 

substance uses investigated herein, this research contributes to advancing public health research and 

practices. One of humanity’s collective responsibilities is to ensure the welfare of our youth, as they 

are the future generation. Unfortunately, the current trend in polysubstance use among adolescents is 

becoming a growing challenge facing many countries with severe consequences both for the 

individual and our society. Thus, an aspiration behind this thesis is to provide a means to accelerate 

the research that can provide insights to design and implement programs and interventions for those 

directly affected by the detrimental effects of youth polysubstance use.  
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Appendix A 

The COMPASS Questionnaire (2017-18)  
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Appendix B 

Agglomerative Clustering Linkage Methods (Dissimilarity 

Measures) 

Single Linkage (Nearest Neighbor) 

Minimum distance or dissimilarity between nearest data points in clusters  

 𝐷(𝑘1, 𝑘2) = min 𝐷(𝑥1, 𝑥2) (3) 

 

Complete Linkage (Furthest Neighbor) 

Maximum distance or dissimilarity between furthest data points in clusters  

 𝐷(𝑘1, 𝑘2) = max 𝐷(𝑥1, 𝑥2) (4) 

 

Average Linkage (UPGMA) 

The average distance of all pairs of data points between clusters  

 𝐷(𝑘1, 𝑘2) =
1

|𝑘1|

1

|𝑘2|
∑ 𝐷(𝑥1, 𝑥2) (5) 
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Centroid Method (UPGMC) 

Squared Euclidean distance between centroids of clusters, combining clusters with minimum 

distance between centroids of the two clusters 

 

Ward’s Method (Minimum Sum of Squares)  

It aims to minimize the total within-cluster variance, combining clusters where an increase in 

within-cluster variance to the minimal degree.  
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Appendix C 

PAM Clustering Algorithm 

Step 1 

Arbitrarily choose 𝑘 object as initial medoids (e.g., 𝑘 = 2) 

 

 

Step 2 

Assign each remaining object to the nearest medoids, compute the initial cost (𝐶1)  

 

Step 3 

Randomly select a non-medoid object 𝑜𝑟𝑎𝑛𝑑𝑜𝑚 

 

Step 4 
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Swap medoid 𝑚 and non-medoid object 𝑜𝑟𝑎𝑛𝑑𝑜𝑚, compute the total cost of swapping (𝐶2), 

evaluate if cost function decreases (𝐶2 < 𝐶1) 

 

Step 5 

Repeat Steps 2-4 until the total cost of swapping is not improving anymore  
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Appendix D 

Fuzzy Clustering Algorithms 

Fuzzy C-Means (FCM) 

The FCM algorithm applies a weighted sum-of-squares criterion for continuous data. The FCM 

clustering algorithm calculates the optimal membership degree by minimizing the Euclidean distance 

between the data element and the cluster centre (22), expressed as  

 ∑ ∑ u(i, v)t 𝑑2(x𝑖, 𝑚𝑣)

𝑛

𝑖=1

𝑘

𝑣=1

 (6) 

where 𝑛 is the sample size, 𝑘 is the number of clusters, 𝑡 is the fuzzifier,  u(i, v)t is the membership, 

and 𝑑2(x𝑖, 𝑚𝑣) is the Euclidean distance between subject 𝑖 and the cluster center 𝑚𝑣. The fuzzifier 𝑡 

affects the distribution of the final membership; 𝑡 = 1 leads to the hard clustering (i.e., crisp 

solution), and a default setting of 𝑡 = 2 for soft clustering (fuzzy clustering). The applications of the 

FCM algorithm in the health domain have been published in the literature. For instance, Kettenring 

(2009) implemented it in the immediate valuation of patient portfolio assets with cluster analysis 

(150). A fuzzy version of density-based spatial clustering was applied by Nasibov and Ulutagay 

(2010) for comparison with fuzzy k-means (151). 

Like any fuzzy clustering, data elements can belong to any cluster with a certain degree of 

membership. It provides a more detailed description of the objects in the cluster. In addition, the time 

complexity is low. The FCM algorithm also has some disadvantages: 1) it is sensitive to outliers and 

initial centroid; 2) different initialization may lead to different clustering results; 3) the FCM 

algorithm can become trapped into local maxima resulting in the final clustering being in a local 

optimum instead of global maxima.  

FANNY (Fuzzy ANalYsis) 

Another well-known fuzzy algorithm, FANNY, minimizes the objective function 

 ∑ ∑
u(i, v)r u(j, v)r d(i, j))

(2 ∑ u(j, v)r
𝑗 )

𝑛

𝑖,𝑗=1

𝑘

𝑣=1

 (7) 

where 𝑛 is the sample size, 𝑘 is the number of clusters, 𝑟 is the membership exponent, and 𝑑(𝑖, 𝑗) is 

the dissimilarity between subjects 𝑖 and 𝑗. Increasingly crisper clustering can be achieved when 𝑟 is 
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close to 1 and complete fuzziness when 𝑟 approaches infinity (129). Further note that even the default 

value, 𝑟 = 2, will lead to complete fuzziness, that is, the degree of membership 𝑢(𝑖, 𝑣)  =  
1

𝑘
. FANNY 

is more robust to non-spherical clusters than other fuzzy clustering algorithms, accepting a proximity 

matrix 𝑑(𝑖, 𝑗) instead of estimating central values, i.e., Euclidean distances as in the FCM algorithm 

(22). 

Given the mixed type of COMPASS data, with most of the data being categorical, different 

dissimilarity matrices have experimented, and the clustering results were compared. Firstly, as part of 

the clustering process, grade-of-membership (GOM) analysis assigns two or more latent subgroups 

for each object based on probabilities of their cluster membership. One specific distance metric, the 

Gower distance, was implemented in this study. Gower distance is calculated as the average of partial 

dissimilarities between data elements, depending on the evaluated variable types (152). Each feature 

has a specific standardization applied, and the distance between two individuals is the average of the 

particular distances of all. Each partial dissimilarity (i.e., the Gower distance) ranges between 0 and 1. 

Secondly, the ordinal data were treated as continuous, so the most commonly used Euclidean distance 

measure can be implemented. The Euclidean distance measure is appealing because the distance 

between two objects can be interpreted as physical distance obtained from multivariate used for 

clustering.  
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Appendix E 

Boruta Algorithm 

The Boruta algorithm is an RF-based feature selection algorithm utilizing an ensemble of decision 

trees. With tree-based models, a sequence of decisions (or splits) is calculated at training time. A 

stopping criterion can be specified by not splitting nodes once the decision cannot bring a specific 

minimum benefit to control the overfitting of the decision trees. Reduction in Gini impurity is often 

defined as a benefit within this context. Corresponding to the Gini coefficient, Gini impurity indicates 

the effectiveness of the classifier for a given subset of data. Non-parametric is one property of Gini 

impurity, which works with any numerical data containing a large sample size for choosing input 

features. The feature ranking mechanism extends the decision tree mechanism as the impurity 

decreased from each feature is averaged over all the trees. The term impurity represents either the 

Gini impurity or entropy for classification and the variance for regression trees. These impurity 

measures are used to select the feature that best splits the dataset.  

The Boruta algorithm can be described as follows (153).  

Step 1: For each feature 𝑋𝑗, randomly permute it to generate a “shadow feature” (random feature) 

𝑋𝑗
(𝑠)

.  

Step 2: Fit a random forest classifier to the original features {𝑋1, … , 𝑋𝑝} and the shadow features 

{𝑋1
(𝑠)

, … , 𝑋𝑝
(𝑠)

}.  

Step 3: Calculate feature importance on the original features {𝐻1, … , 𝐻𝑝} and the shadow features 

{𝐻1
(𝑠)

, … , 𝐻𝑝
(𝑠)

}. 

Step 4: The feature is important for a single run if its importance is higher than the maximum 

importance of all shadow features, i.e., 𝐻1 > 𝐸(𝐻).  

Step 5: Eliminate all features whose importance across all runs is low enough. Keep all features 

whose importance across all runs are high enough.  

Step 6: Repeat Steps 1-5 with all tentative features for a pre-defined number of iterations until all 

features have been identified as important or rejected.  
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The pseudo-code of the Boruta algorithm (153) can be written as follows.  

Input: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎 (input dataset); 𝑅𝐹𝑟𝑢𝑛𝑠 (# of iterations of RF) 

Output: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡  

𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑆𝑒𝑡 = ∅ 

𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 = ∅ 

for 𝑒𝑎𝑐ℎ 𝑅𝐹𝑟𝑢𝑛𝑠 do 

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 < − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠)  

 𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 < − 𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠) 

 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 < − 𝑐𝑏𝑖𝑛𝑑(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠, 𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝐷𝑎𝑡𝑎 < − 𝑐𝑏𝑖𝑛𝑑(𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠, 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝐷𝑎𝑡𝑎(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠)) 

 𝑧𝑆𝑐𝑜𝑟𝑒𝑆𝑒𝑡 < − 𝑟𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝐷𝑎𝑡𝑎) 

 𝑚𝑎𝑥𝑧𝑆𝑐𝑜𝑟𝑒𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 < − 𝑚𝑎𝑥(𝑧𝑆𝑐𝑜𝑟𝑒𝑆𝑒𝑡(𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)) 

 for 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 do 

  if 𝑧𝑆𝑐𝑜𝑟𝑒𝑆𝑒𝑡(𝑥)  >  𝑚𝑎𝑥𝑧𝑆𝑐𝑜𝑟𝑒𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 then 

   𝐻(𝑥) + + 

for 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 do 

 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒(𝑥) < −𝑡𝑤𝑜𝑆𝑖𝑑𝑒𝑑𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑇𝑒𝑠𝑡(𝑥) 

 if 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒(𝑥) ≫ 𝑚𝑎𝑥𝑧𝑆𝑐𝑜𝑟𝑒𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 then 

  𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑆𝑒𝑡 < −𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡 ∪ 𝑥 

 else if 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒(𝑥) ≪ 𝑚𝑎𝑥𝑧𝑆𝑐𝑜𝑟𝑒𝑠ℎ𝑎𝑑𝑜𝑤𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 then 

  𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 < −𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ∪ 𝑥 

return 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡 < − 𝑐𝑜𝑛𝑓𝑖𝑟𝑚𝑒𝑑𝑆𝑒𝑡 ∪ 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 
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Appendix F 

t-SNE Algorithm 

A precursor method of t-SNE, Stochastic Neighbor Embedding (SNE), aims to match distributions of 

distances between data elements in high- and low-dimensional space via conditional probabilities. 

SNE assumes that the distances in both high- and low-dimensional space are Gaussian distributed. 

SNE is performed by defining the similarities and a cost function, obtaining the gradient for the cost 

function and minimizing it to get the low-dimensional map. SNE has two main drawbacks. The first 

one is that it is challenging to optimize the cost function. The second one is related to the “crowding 

problem,” representing the phenomenon that SNE clumps data elements nearby and moderately far 

apart to make them crowded.  

t-SNE with novel features represented to cost function overcome these two drawbacks. The first 

improvement of t-SNE is that its cost function is symmetrized version of that in SNE, i.e.,𝑝𝑖|𝑗 = 𝑝𝑗|𝑖 

and 𝑞𝑖|𝑗 = 𝑞𝑗|𝑖. The main feature in symmetric SNE is that 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and 𝑝𝑖𝑖 = 𝑞𝑖𝑖 = 0 for all i,j. The 

low-dimensional representation is  

 𝑞𝑖𝑗 =
exp (−||𝑦𝑖 − 𝑦𝑗||2)

∑ exp (−||𝑦𝑘 − 𝑦𝑙||2)𝑘≠𝑙
 (8) 

The high-dimensional representation is  

 𝑝𝑖𝑗 =
exp (− ||𝑥𝑖 − 𝑥𝑗||

2
/2𝜎2)

∑ exp (−||𝑥𝑘 − 𝑥𝑙||2/2𝜎2)𝑘≠𝑙
 (9) 

The gradient of the cost function is  

 
𝛿𝐶

𝛿𝑦𝑖
= 4 ∑(𝑝𝑗𝑖 − 𝑞𝑗𝑖)(𝑦𝑖 − 𝑦𝑗)

𝑗

 (10) 

The second improvement in t-SNE is that t-SNE uses Student t-distribution instead of the normal 

distribution to compute the similarities between data elements in a low-dimensional map. In t-SNE, a 

Student t-distribution with one degree of freedom, Cauchy distribution, represents the low-

dimensional map.   

 𝑞𝑖𝑗 =
(1 + ||𝑦𝑖 − 𝑦𝑗||2)−1

∑ (1 + ||𝑦𝑘 − 𝑦𝑙||2)−1
𝑘≠𝑙

 (11) 
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It is observed that this representation has no exponent and looks similar to the kernel of a t-

distribution. The main reason for using t-distribution is that it is robust to outliers. Unlike the 

Gaussian distribution, it has no exponent, making it faster to evaluate. In Gaussian distribution, there 

is an exponent in the kernel, making the calculation more computationally expensive. Thus, choosing 

a certain t-distribution is much faster.  

The gradient of the cost function via the KL divergence can be expressed as follows.  

 
𝛿𝐶

𝛿𝑦𝑖
= 4 ∑(𝑝𝑗𝑖 − 𝑞𝑗𝑖)(𝑦𝑖 − 𝑦𝑗)

𝑗

(1 + ||𝑦𝑖 − 𝑦𝑗||2)−1 (12) 

The general idea of the t-SNE algorithm is that for a high-dimensional dataset ᵡ with data elements 

𝑥1, 𝑥2, … 𝑥𝑛, each data element has high dimensions. The cost function parameter, perplexity, is 

associated with variance σ in the cost function. The optimization parameters include the number of 

iterations 𝑇, learning rate 𝜑, and momentum 𝛼(𝑡). All these components are utilized to obtain the 

low-dimensional representation 𝑌. 

Essentially, the t-SNE algorithm starts with pairwise affinities 𝑝𝑗|𝑖 in the high-dimensional map 

with a given perplexity. Then set 𝑝𝑖𝑗 =
𝑝𝑖|𝑗+𝑝𝑗|𝑖

2𝑛
, where n is the number of data elements. Then sample 

the initial solution for 𝑌 at the 0𝑡ℎ iteration for 𝑦1, 𝑦2, … 𝑦𝑛 from a normal distribution with the mean 

0 and variance 10−4 𝑁(0, 10−4𝐼), where I represents the identity matrix. Then start with the iteration 

for 𝑡 = 1 to 𝑇, which is the maximum number of iteration, first compute the lower-dimensional 

affinities 𝑞𝑖𝑗, and then compute the gradient  
𝛿𝐶

𝛿𝑦
 through the KL divergence. Then use the gradient 

descent formula to get the solution at the 𝑡𝑡ℎ solution, set  

 𝑦(𝑡) = 𝑦(𝑡−1) + 𝜑
𝛿𝐶

𝛿𝑦
+ 𝛼(𝑡)(𝑦(𝑡−1) − 𝑦(𝑡−2)) (13) 

Iterate through all these processes until the maximum iteration is reached or until it converges to the 

asymptotic point of the solution.  

Beyond the basic t-SNE algorithm, there are modifications to reduce complexity using Barnes-Hut-

SNE approximation, a sophisticated methodology with a tree-based algorithm.  

t-SNE is a popular method, which has been implemented in various software packages and 

languages. The research community has widely adopted t-SNE, but there are also some criticisms 
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against it. Wattenberg, Viegas, & Johnson (2016) list some of the drawbacks of t-SNE with some 

interactive visualization tools. The first drawback is that the different perplexity can lead to entirely 

different clusters (154). The perplexity measure is loosely interpreted as several neighbours of a 

certain point. Wattenberg, Viegas, & Johnson (2016) suggested that a perplexity between 5 and 50 is 

optimal and robust within that range (154). If a perplexity is too small, then the local variations are 

dominant. On the other hand, a too large perplexity leads to a dominating global change (154).  

Another disadvantage of t-SNE is that cluster size does not have any meaning to it. In PCA, the X-

axis has a reasonable interpretation, and the Y-axis is the direction with the highest variance 

explained. However, t-SNE does not have that intrinsic interpretation. It also tends to expand dense 

clusters and contrast sparse clusters. Therefore, a dense cluster does not mean that cluster points have 

minimal variance. A huge cluster does not necessarily imply those data elements have enormous 

within-cluster variance.  

Another criticism is that the distance between clusters might not have a clear interpretation. For 

example, if two clusters are close to each other, two clusters are far apart. The inter-cluster distance 

does not mean those clusters are far apart are very different from each other, or close enough clusters 

are very similar.  

Finally, if random noise is provided in the data, t-SNE can lead to a false positive structure in the 

projection, where in reality, no structure in this random noise. Researchers need to be careful about 

using t-SNE, tuning the hyperparameters, and interpreting the results. In summary, t-SNE is a 

valuable tool for clustering and data visualization. It provides a better structure for high-dimensional 

data. Its high flexibility leads to other drawbacks such as a lack of interpretability, not being intuitive 

for parameter tuning, including perplexity, iterations, tolerance or convergence, etc. 
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Appendix G 

Clustering Procedures 

In a nutshell, clustering procedures include the following major steps (22).  

1. Identify Objects to Cluster  

Ideally, objects should be randomly sampled and representative of the cluster structure. However, 

since cluster analysis is a non-inferential tool, if generalization to a larger population is not required, 

it may be acceptable for over-sampling small populations.  

2. Select Variables (Features)  

Feature selection or extraction is one of the key steps for cluster analysis, particularly with high-

dimensional data. Feature selection refers to choosing a subset of original features from the dataset. In 

contrast, feature extraction applies transformation methods to the original features to generate new 

ones that are useful for analysis. Ideally, a good choice of features should distinguish various patterns 

belonging to different clusters, be insensitive to outliers, and be easy to interpret. Feature extraction is 

often used for dimensionality reduction and data visualization, where interpretability is not 

mandatory. Considerations will also be given to data standardization and addressing multicollinearity 

issues among features (155).  

3. Measure Proximity  

Proximity is a general term used to quantitatively measure how close (similarity) objects are to 

each other or how far apart (dissimilarity or distance) they are. There exists a large number of 

similarity or dissimilarity coefficients. The choice between coefficients is given by the nature of the 

data, i.e., continuous or categorical.  

3.1 Distance or Dissimilarity Measures  

The most commonly used dissimilarity measure is Euclidean distance, which is written as  

 𝑑(𝑎, 𝑏) = √[∑(𝑥𝑎𝑛 − 𝑥𝑏𝑛)2

𝑘

𝑛=1

] (14) 
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where 𝑥𝑎𝑛 and 𝑥𝑏𝑛 represent for object 𝑎 and 𝑏, respectively, the value of 𝑛𝑡ℎ variable of the 𝑝-

dimensional observations. 𝑑(𝑎, 𝑏) represents physical distances  between two 𝑝-dimensional 

observations 𝑥𝑎 = (𝑥𝑎1, … , 𝑥𝑎𝑝) and 𝑥𝑏 = (𝑥𝑏1, … , 𝑥𝑏𝑝) in Euclidean space (22). A variety of 

dissimilarity measures has been developed to accommodate different weighting of multivariate. For 

example, the well-known Manhattan distance (156) is the city block distance that measures distances 

on a rectilinear configuration, similar to travelling in street configuration. The correlation coefficients, 

e.g., Pearson correlation, can be transformed into dissimilarities within the interval [0,1].  

3.2 Similarity Measures  

Similarity measures are often used for categorical data, in which the measurements are scaled 

within the interval [0,1]. A similarity coefficient 𝑠(𝑎, 𝑏) describes how close the two objects 𝑎 and 𝑏 

to each other. The value of 𝑠(𝑎, 𝑏) equals one represents the two objects 𝑎 and 𝑏 differ minimally for 

all variables. A dissimilarity coefficient 𝑑(𝑎, 𝑏) takes a simple manner to convert its similarity 

coefficient 𝑠(𝑎, 𝑏) by taking 1 − 𝑠(𝑎, 𝑏). The commonly used similarity measures for binary 

variables include the matching coefficient, Jaccard coefficient, and Gower and Legendre (157).  

4. Choose Clustering Algorithm  

Appropriate clustering algorithms should be a good fit for the dataset, discovering the underlying 

structure of the clusters and insensitive to errors (22). In addition, a model-based algorithm is 

recommended to accommodate data-generating processes. An ML pipeline was built to implement 

various clustering algorithms in this research, as discussed in Section 4.4.4. 

5. Evaluate and Interpret Clustering Results  

As an exploratory analysis, one of the most challenging aspects of cluster analysis is evaluating the 

results. Some classical validity indices, including external and internal measures, were introduced in 

Section 4.4.5. As part of the interpretation of clustering results, descriptive statistics and cluster 

visualization are often appropriate for clustering analysis. The commonly used techniques include 

PCA, correspondence analysis (158), silhouette plot, neighbourhood plot, and stripes and shadow plot 

(159). 
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Appendix H 

LASSO Regression 

The LASSO regression is similar to Ridge regression, which minimizes the sum of the squared 

residuals plus lambda times the squared slope. Ridge regression is least squares plus the ridge 

regression penalty. Ridge regression has more bias than least squares. In turn, for that small amount 

of bias, the ridge regression has a significant drop in the variance. The main idea is that ridge 

regression provides better long-term predictions by starting with a slightly worse fit. The ridge 

regression penalty uses the slope squared, while the lasso regression takes the absolute value of the 

regressors instead of squaring it. The value of lambda is determined by cross-validation. Similar to 

ridge regression, a lambda can go from zero to positive infinity. When lambda equals zero, then the 

LASSO regression will be the same as the least squares. As lambda increases in value, the slope gets 

smaller until the slope equals zero. Likewise, LASSO regression leads to a small amount of bias but 

less variance than least squares. Both ridge and LASSO regression can be applied to complicated 

models that combine different types of data.  

The significant difference between ridge and LASSO regression is that the former can only shrink 

the slope asymptotically close to zero. In contrast, the latter can shrink the slope to zero. The greater 

the value of lambda, the greater the shrinkage rate is. Generally, a moderate lambda value will cause 

the solution to shrinking towards zero, and some coefficients may end up precisely zero. Since 

LASSO regression can exclude unimportant variables from the equation, it is better than ridge 

regression to reduce the variance in models containing many irrelevant features, making the final 

equation simpler and easier to interpret. As an alternative to a model or subset of feature selection, 

LASSO often gives sparse solutions due to the 𝐿1 penalty (160).  

Consider a simple least squares regression model  

 𝑌 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜀, (15) 

where 𝑥1, … , 𝑥𝑝 are predictor variables, 𝑌 is the response variable, and 𝜀 is the residual error term. 

The LASSO regression corresponds to the penalization, shown as the second component in the 

following expression 
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 ∑(𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)2

𝑛

𝑖=1

+ 𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=1

 (16) 

Instead of penalizing the sum of the beta squares as in Ridge regression, the penalization term of 

LASSO regression is the sum of the absolute of the regression parameters.  
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Appendix I 

Latent Markov Model (LMM) 

Latent Variable Models in General 

Latent variable models are a type of statistical model, including latent variables which are not directly 

observable. The purposes of including latent variables in the statistical models are i) to account for the 

unobserved heterogeneity among objects, ii) to account for measurement errors, and iii) to summarize 

different measurements of the same unobservable characteristics (127). Essentially a latent variable 

model formulates assumptions on: 

• Measurement Model: 𝑓(𝑦|𝑢, 𝑥) implies the conditional distribution of a set of response 

variables denoted as 𝑌 given latent variables denoted by 𝑈 and possible covariates denoted by 

𝑋.  

• Structural Model: 𝑓(𝑢|𝑥) formulates the assumption of latent variable 𝑈 distribution given 

covariates 𝑋. 

By marginalizing out the latent variables, the manifest distribution 𝑓(𝑦|𝑥) will be obtained; by the 

Bayes theorem, the posterior distribution of the latent variable given the observable variables 

𝑓(𝑢|𝑥, 𝑦) will be obtained. 

A common assumption of latent variable models is local independence, meaning the response 

variables are conditionally independent given the latent variables and covariates (161). In this 

research, a particular focus was given to LMM for panel data.  

The Basic Version of LMM 

Let 𝑋 denotes a categorical latent variable with 𝐾 categories (latent states), 𝑇 denotes equidistant time 

occasions, subject 𝑖 can be in a different latent states 𝑘 = 1,2, . . . , 𝐾 at different time occasions 𝑡 =

0,1, . . . , 𝑇 

𝑥_{𝑡} = latent state variable at time 𝑡. 

 𝑃(𝑦𝑖) = ∑ ∑ … ∑ 𝑃(𝑥0, 𝑥1, … 𝑥𝑇)𝑃(𝑦𝑖|𝑥0, 𝑥1, … 𝑥𝑇)

𝐾

𝑥𝑇=1

𝐾

𝑥1=1

𝐾

𝑥0=1

 (17) 

LMM parameters: each latent state 𝑢 (𝑢 = 1, . . . , 𝑘) corresponds to a class of subjects in the 

population and consists of the following probability parameters  

• Initial State Probability (𝒃𝟎)  
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 𝑃(𝑋0 = 𝑘) (18) 

Logit model may include covariates 𝑋 (e.g., sex, ethnicity in this study) 

 𝑙𝑜𝑔
𝑃(𝑥0 = 𝑘)

𝑃(𝑥0 = 1)
= 𝛼0𝑘 (19) 

• Transition Probabilities (𝒃𝒕)  

 𝑃(𝑋𝑡 = 𝑟|𝑋𝑡−1 = 𝑘) (20) 

 𝑙𝑜𝑔
𝑃(𝑥𝑡 = 𝑟|𝑥𝑡−1 = 𝑘)

𝑃(𝑥𝑡 = 1|𝑥𝑡−1 = 𝑘)
= 𝛾0𝑟 + 𝛾1𝑟𝑘 + 𝛾2𝑟𝑡 + 𝛾3𝑟𝑘𝑡 (21) 

Logit model may include fixed and time-varying predictors.  

To combine the initial latent state and transition sub-models,  

 𝑃(𝑥0, 𝑥1, … 𝑥𝑇) = 𝑃(𝑥0) ∏ 𝑃(𝑥𝑡|𝑥𝑡−1

𝑇

𝑡=1

) (22) 

The transition matrix ∏  of size 𝑘 × 𝑘 represents transition probabilities.  

• Measurement Probabilities  

Measurement equivalence, distribution of the response variables with categorical responses  

 𝑃(𝑦𝑡 = 𝑗|𝑋𝑡 = 𝑘) (23) 

One or more response variables Y can accommodate different scale types (e.g., continuous, 

categorical, count, nominal). For a single categorical response variable,  

 𝑙𝑜𝑔
𝑃(𝑦𝑖𝑡 = 𝑙|𝑥𝑡 = 𝑘)

𝑃(𝑦𝑖𝑡 = 1|𝑥𝑡 = 𝑘)
= 𝛽0𝑙 + 𝛽1𝑙𝑘 (24) 

 𝑃(𝑦𝑖|𝑥0, 𝑥1, … 𝑥𝑇) = ∏ 𝑃(𝑦𝑖𝑡|𝑥𝑡)

𝑇

𝑡=0

= ∏

𝑇

𝑡=0

∏ 𝑃(𝑦𝑖𝑡𝑗|𝑥𝑖

𝐽

𝑗=1

) (25) 

The particular set of latent states (𝑘0, 𝑘1, 𝑘2) defines a changing pattern for subject 𝑖. Given 

the unconditional distribution (no predictor) of a basic version of LMM, extension to multiple 

indicators is immediate (162).  

Manifest distribution: local independence indicates that the conditional distribution of 𝑌𝑖 

given 𝑋𝑖 is  

 𝑝(𝑦𝑖|𝑥𝑖) = 𝑝(𝑌𝑖 = 𝑦𝑖|𝑋𝑖 = 𝑥𝑖) ∏ ∅𝑦𝑖𝑡|𝑥𝑖𝑡

𝑇

𝑡=1

 (26) 

Distribution of  𝑋𝑖 is:  
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 𝑝(𝑥𝑖) = 𝑝(𝑋𝑖 = 𝑥𝑖) = 𝜋𝑥𝑖1 ∏ 𝜋𝑥𝑖𝑡|𝑥𝑖,𝑡−1

𝑡>1

 (27) 

Manifest distribution of 𝑌𝑖 is:  

 𝑝(𝑦𝑖) = 𝑝(𝑋𝑖 = 𝑥𝑖) = ∑ 𝑝(𝑦𝑖|𝑥)𝑝(𝑥)

𝑥

 (28) 

Maximum likelihood estimation of the basic LMM 

Model log-likelihood can be expressed as  

 𝑙(𝜃) = ∑ log 𝑝(𝑦𝑖)

𝑛

𝑖=1

= ∑ 𝑛(𝑦) log 𝑝(𝑦)

𝑦

 (29) 

where 𝜃 is the vector of all model parameters 𝜋𝑢, 𝜋𝑣|𝑢, ∅𝑦|𝑢 for categorical data. 𝑛(𝑦) is the 

frequency of the response variable 𝑦. The Expectation-Maximization (EM) algorithm can be 

applied to maximize 𝑙(𝜃) (163,164).  

The EM algorithms iterate the following two steps until convergence.  

• E-Step computes the posterior distribution of the latent states given the current value of 

observed data and parameters.  

• M-Step maximizes the posterior expected value of the log-likelihood of complete data 

concerning the model parameters. 

Suitable recursions must compute the 𝑙(𝜃) and perform the E-Step (163). Being 𝑙(𝜃) multimodal, 

different initializations (deterministic and random) of the algorithm are necessary to increase the 

chance to get its global maximum. Extended models, such as multivariate, with covariates, and 

mixed are still fitted by the EM algorithm in which the main adjustments are in the M-Step. If 

necessary, the selection of k may be based on suitable statistical criteria (165):  

• 𝐴𝐼𝐶 = −2𝑙(𝜃) + 2𝑘 (𝑘: number of estimated parameters in the model) 

• 𝐵𝐼𝐶 = −2𝑙(𝜃) + log(𝑛) 𝑘  (𝑛: sample size; 𝑘: number of estimated parameters in the model) 

Inclusion of Covariates in the Basic LMM 

Two possible choices to include individual covariates collected in 𝑋𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑇 

• The first is random intercepts in the measurement model; for binary variables, it is assumed  

 𝜆𝑖𝑡𝑢 = 𝑝(𝑌𝑖𝑡 = 1|𝑈𝑖 = 𝑢, 𝑋𝑖) (30) 

 log
𝜆𝑖𝑡𝑢

1 − 𝜆𝑖𝑡𝑢
= 𝛼𝑢 + 𝑥′𝑖𝑡𝛽 → (𝑖 = 1, … , 𝑛; 𝑡 = 1, … , 𝑇; 𝑢 = 1, … , 𝑘) (31) 

• The second is in the structural model, governing the distribution of the latent variables via a 

multinomial logit parametrization.  
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Initial Probabilities:  

 𝜋𝑖𝑢 = 𝑝(𝑈𝑖1 = 𝑢|𝑥𝑖1) (32) 

 log
𝜋𝑖𝑢

𝜋𝑖1
= 𝑥′𝑖1𝛽𝑢 → (𝑢 = 2, … , 𝑘) (33) 

Transition Probabilities:  

 𝜋𝑖𝑡𝑣|𝑢 = 𝑝(𝑈𝑖𝑡 = 𝑣|𝑈𝑖,𝑡−1 = 𝑢, 𝑥𝑖𝑡) (34) 

 log
𝜋𝑖𝑡𝑣|𝑢

𝜋𝑖𝑡𝑢|𝑢
= 𝑥′𝑖𝑡𝛾𝑢𝑣 → (𝑢, 𝑣 = 1, … , 𝑘, 𝑢 ≠ 𝑣) (35) 

Multivariate Extension to the Basic LMM 

A vector of 𝐽 response variables 𝑌𝑖𝑡 = (𝑌𝑖|𝑡 , … , 𝑌𝑖𝐽𝑡)′ is considered for subject 𝑖 at time occasion 𝑡, 𝑖 =

1, … , 𝑛; 𝑡 = 1, … , 𝑇. With categorical responses, it is assumed that the components of 𝑦𝑖𝑡 are 

conditionally independent given 𝑋𝑖𝑡 (local independence), so that  

 𝑝(𝑦𝑖𝑡|𝑥𝑖𝑡) = 𝑝(𝑌𝑖𝑡 = 𝑦𝑖𝑡|𝑋𝑖𝑡 = 𝑥𝑖𝑡) = ∏ ∅𝑗𝑦𝑖𝑗𝑡|𝑥𝑖𝑡

𝐽

𝑗=1

 (36) 

 ∅𝑗𝑦|𝑥 = 𝑝(𝑌𝑖𝑗𝑡 = 𝑦|𝑥𝑖𝑡 = 𝑥) (37) 

Another assumption is that the latent variables 𝑋𝑖1, … , 𝑋𝑖𝑇 follow a first-order Markov chain, possibly 

non-homogeneous.  

Model Specification with Multivariate Extension  

In this thesis, we started with fitting an unrestricted LMM, the basic version of an LMM, denoted by 

𝑀1. For the 𝑖𝑡ℎ individual at time 𝑡 on 𝑄 observed substance use indicators (𝑄 =  4), a response 

pattern can be expressed as 𝑌𝑖
(𝑡)

= (𝑦𝑖1
(𝑡)

, … , 𝑦𝑖𝑄
(𝑡)

). In this thesis, each of the observed substance use 

indicators has three categories, being 0, 1, and 2, indicating “never use,” “occasional use,” and 

“current use,” respectively. It is assumed that for each subject, the actual underlying substance use 

pattern at each time occasion 𝑡 (where 𝑡 =  1, … , 𝑇, and 𝑇 =  3 representing Wave I, Wave II, and 

Wave III) is explained by a vector of covariates with 𝐾 latent states of substance use patterns. It is 

assumed that the responses to the (𝑄 𝑥 𝑇) 𝑦 indicators are conditionally independent given the 

substance use patterns. 



 

190 

 

Given that the response variables have more than two categories with ordinal in nature, Colombi 

and Forcina (2001) suggest that local logits, global logits, or continuation logits can be applied as the 

specific function (166). In particular, the global logit function, related to cumulative logits for ordinal 

response variables, is the counterpart of the logit link function for binary response variables (27). The 

vector of global logits can be expressed as  

 𝜂𝑦|𝑢
(𝑡)

= log
∅𝑦|𝑢

(𝑡)
+ ⋯ + ∅𝑐−1|𝑢

(𝑡)

∅0|𝑢
(𝑡)

+ ⋯ + ∅𝑦−1|𝑢
(𝑡)

       (𝑡 =  1, … , 𝑇;  𝑢 = 1, … , 𝑘;  𝑦 = 0, … , 𝑐 − 1) (38) 

where 𝑐 is the number of categories (𝑐 = 3) of the response variables, 𝑢 is the latent state, and 𝜂𝑦|𝑢
(𝑡)

 is 

the 𝑦𝑡ℎ global logit given 𝑢𝑡ℎ latent state for the 𝑡𝑡ℎ time occasion (27).  

To further extend the LMM with multivariate responses, local independence is the key assumption 

for the response variables and the corresponding latent variable. In the case of restrictions on the 

measurement model, the same principles apply. Let ∅𝑞|𝑢
(𝑡)

 be the vector with elements ∅𝑞𝑦|𝑢
(𝑡)

, (𝑦 =

0, … , 𝑐𝑞 − 1). As an extension to the univariate response formulation, ∅𝑞|𝑢
(𝑡)

= ∅𝑞|𝑢, (𝑞 = 1, … 𝑟; 𝑢 =

1, … , 𝑘; 𝑡 = 1, … , 𝑇), where ∅𝑞|𝑢 is the vector of conditional response probabilities with elements 

∅𝑞𝑦|𝑢, (𝑦 = 0, … , 𝑐𝑞 − 1). The conditional distribution of each response variable can be 

parameterized using generalized linear models (GLM). The corresponding link function can be 

simplified as 𝜂𝑞|𝑢
(𝑡)

= 𝑊𝑞|𝑢
(𝑡)

𝛽 = 𝑔𝑞(∅𝑞|𝑢
(𝑡)

 ), where 𝑔𝑞(∗) is a type of link function discussed previously.  

The Expectation-Maximization (EM) algorithm was implemented in this thesis to estimate the 

maximum likelihood of LMM parameters. Given the existing values of the parameters and the 

observed data,  the E-step computes the frequency of subjects belonging to latent states (conditional 

response probabilities), the frequency of subjects in latent state 𝑢 at time point 𝑡 (initial 

probabilities), and the number of transitions from one latent state to another at time point 𝑡 (transition 

probabilities). The expected values of these three components may be maximized separately via M-

step. Applying the EM algorithm on multivariate response variables, the complete data log-likelihood 

is expressed as  
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 𝑙∗(𝜃) = ∑ ∑ ∑ ∑ 𝑎𝑞𝑢𝑦
(𝑡)

log ∅𝑞𝑦|𝑢 + ∑ 𝑏𝑢
(1)

log 𝜋𝑢 +

𝑘

𝑢=1

𝑟

𝑞=1

𝑇

𝑡=1

𝑘

𝑢=1

𝑐𝑞−1

𝑦=0

∑ ∑ ∑ 𝑏𝑢̂𝑢
(𝑡)

log 𝜋𝑢|𝑢̂
(𝑡)

𝑇

𝑡=2

𝑘

𝑢̂=1

𝑘

𝑢=1

 (39) 

where 𝑎𝑞𝑢𝑦
(𝑡)

 represents the frequency of subjects with outcome 𝑦 in latent state 𝑢 for the 𝑞𝑡ℎ response 

variable at time occasion 𝑡 (27). In general, the EM algorithm has the same structure as outlined 

above. An alternative method to the EM algorithm, Bayesian estimation of LMM, can also estimate 

maximum likelihood. However, the existing software package only supports the EM algorithm; this 

thesis did not implement Bayesian inference.  

Decoding  

As introduced in Section 2.3.4, decoding refers to a process of dynamic pattern recognition, 

predicting the order of the latent states with observed data for a subject (27). The two types of 

decoding, local and global decoding, each has its purposes. Local decoding aims to identify the most 

likely latent state for each time occasion. Global decoding finds the most likely order of latent states, 

requiring specific algorithms, such as an iterative algorithm developed by Viterbi (83,167).  

In local decoding, the estimated posterior probabilities 𝑝(𝑢𝑡|𝑦𝑖) = 𝑝(𝑈𝑖𝑡 = 𝑢𝑡|𝑌𝑖 = 𝑦𝑖) maybe 

used to assign subject 𝑖 to a latent state at a given time occasion 𝑡: 𝑢̂𝑖𝑡: 𝑝(𝑢̂𝑖𝑡|𝑦𝑖) = max
𝑢𝑡

𝑝(𝑢𝑡|𝑦𝑖), 

derived from the EM algorithm. Whereas in global decoding, the problem of path detection is more 

complex, i.e., identifying the most likely order 𝑢̃𝑖 = (𝑢̃𝑖1, … , 𝑢̃𝑖𝑇)′ for subject 𝑖: 

𝑢̃𝑖: 𝑝(𝑈𝑖1 = 𝑢̃𝑖1, … , 𝑈𝑖𝑇 = 𝑢̃𝑖𝑇|𝑦𝑖) = max
𝑢

𝑝(𝑢|𝑦𝑖).  

Mixed LMM 

Additional random effects/latent variables may be included in an LMM to account for other sources 

of unobserved heterogeneity (168). Among the mixed LMMs, a particular focus is based on initial 

and transition probabilities of the individual latent processes defined conditional on a discrete latent 

variable 𝑉𝑖(𝑖 = 1, … , 𝑛) The model assumes that individuals are divided into latent clusters, with 

individuals in the same cluster following the same LMM, while the measurement model is common 

to all individuals. Mixed LMMs may also be used for multilevel longitudinal data collected in 

observable groups (100).  

 



 

192 

 

Appendix J 

Missing Data Analysis 

Figures 39-41 illustrate missing data distribution, missing patterns, and missing patterns on response 

variables for Wave I (2016-17).  

 

Figure 39. Missing data distribution (Wave I, 2016-17) 
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Figure 40. Missing patterns (Wave I, 2016-17) 
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Figure 41. Missing patterns on response variables (Wave I, 2016-17) 
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Figures 42-44 illustrate missing data distribution, missing patterns, and missing patterns on response 

variables for Wave II (2017-18).  

 

Figure 42. Missing data distribution (Wave II, 2017-18) 
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Figure 43. Missing patterns (Wave II, 2017-18) 
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Figure 44. Missing patterns on response variables (Wave II, 2017-18) 
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Figures 45-47 illustrate missing data distribution, missing patterns, and missing patterns on response 

variables for Wave III (2018-19).  

 

Figure 45. Missing data distribution (Wave III, 2018-19) 
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Figure 46. Missing patterns (Wave III, 2018-19) 
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Figure 47. Missing patterns on response variables (Wave III, 2018-19) 
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Appendix K 

Clustering Results – FCM Clustering 

Figures 48-50 illustrate the two-dimensional (2D) representation and the silhouette plot of FCM 

clustering on the linked COMPASS data by waves.  

 

Figure 48. FCM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave I, 

2016-17) 

e  

Figure 49. FCM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave II, 

2017-18) 
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Figure 50. FCM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave 

III, 2018-19) 
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Appendix L 

Clustering Results – PAM Clustering 

Figures 51-53 illustrate the two-dimensional (2D) representation and the silhouette plot of PAM 

clustering on the linked COMPASS data by waves. 

 

Figure 51. PAM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave I, 

2016-17) 

 

Figure 52. PAM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave II, 

2017-18) 
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Figure 53. PAM Clustering, left-panel: 2D representation; right-panel: silhouette plot (Wave 

III, 2018-19) 
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Appendix M 

Clustering Results – Hierarchical Clustering 

Figures 54, 56, & 58 demonstrate the dendrogram of hierarchical clustering on the linked COMPASS 

data by waves. Figures 55, 57, & 59 illustrate the two-dimensional (2D) representation and the 

silhouette plot of hierarchical clustering on the linked COMPASS data by waves. 

 

Figure 54. Hierarchical Clustering, Dendrogram (Wave I, 2016-17) 
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Figure 55. Hierarchical Clustering, left-panel: 2D representation; right-panel: silhouette plot 

(Wave I, 2016-17) 

 

Figure 56. Hierarchical Clustering, Dendrogram (Wave II, 2017-18) 
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Figure 57. Hierarchical Clustering, left-panel: 2D representation; right-panel: silhouette plot 

(Wave II, 2017-18) 

 

 

 

Figure 58. Hierarchical Clustering, Dendrogram (Wave III, 2018-19) 
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Figure 59. Hierarchical Clustering, left-panel: 2D representation; right-panel: silhouette plot 

(Wave III, 2018-19) 
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Appendix N 

Selection of the Covariates Using LASSO Regression 

Tables 26-28 summarize LASSO regression coefficients for all features by waves. Coefficients that 

were not shrunk to zero are highlighted in bold font, which was selected for further modelling. 

Figures 60-62 illustrate the LASSO coefficients for all features by waves.  

Table 26. LASSO coefficients (Wave I, 2016-17) 

Number Feature* Coefficient 

1 (Intercept) 0.0000 

2 HouseholdIncome_16 0.0000 

3 Urbanity_16 a -0.0126 

4 TotalPointsInterest_16 0.0000 

5 DrinkingPlaces_16 0.0000 

6 DrugStores_16 0.0000 

7 LiquorStores_16 0.0000 

8 TobaccoStores_16 0.0000 

9 Province_16 a 0.0000 

10 Grade_16 a 0.1000 

11 Sex_16 0.0000 

12 Race_16 a 0.0000 

13 GetMoney_16 a 0.0780 

14 TransportationToSchool_16 0.0000 

15 PAfriends_16 a 0.0000 

16 EatingBreakfast_16 a -0.0650 

17 SmokingFriends_16 a 0.4925 

18 SupportQuitDrugAlcohol_16 a 0.1088 

19 EnglishMarks_16 a 0.0194 

20 WillingEdu_16 a -0.0269 

21 SkipClass_16 a 0.3878 
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Number Feature* Coefficient 

22 BMI_CATEGORY_16 a 0.0161 

23 SchoolConnectedness_16 a -0.0180 

24 SedentaryTime_16 a 0.0003 

25 TotalPAtime_16 0.0000 

26 PA_LEVEL_16a 0.0000 

27 FLOURISH_16 0.0000 

28 GAD7_16 a 0.0000 

29 CESD_16 a 0.0000 

31 DERS_16 a 0.0000 

31 GambleOnline_16 a 0.0000 

*The last three char “_16” indicates the school year of 2016-17; a see Section 5.4.1 for descriptions   

 

DrinkingPlaces – BE data, counts of drinking places within 1000 meters of schools. Establishments 

primarily engaged in the retail sale of alcoholic drinks, such as beer, ale, wine, and liquor, for 

consumption on the premises. The sale of food frequently accounts for a substantial portion of the 

receipts of these establishments. 

FLOURISH – This is a derived variable, scoring from 8 to 40. The higher the score is, the more 

psychological resources and strengths are, based on the Flourishing Scale. 

HouseholdIncome – SES data, the median total income of households in 2015 ($), categorized into 

“25001-50000,” “50001-75000,” “75001-100000,” and “>100000,” dummy coded from 1 to 4, 

respectively.  

LiquorStores – BE data, counts of liquor stores within 1000 meters of schools. Establishments 

primarily engaged in retailing packaged alcoholic beverages, such as ale, beer, wine, and liquor, for 

consumption off the premises. Stores selling prepared drinks for consumption on the premises are 

classified in Industry 5813. 

TobaccoStores – BE data, counts of tobacco stores & stands within 1000 meters of schools. 

Establishments primarily engaged in the retail sale of cigarettes, cigars, tobacco, and smokers’ 

supplies.  

TotalPAtime - This is a derived variable, representing total combined HARD and MODERATE 

physical activity in minutes, ranging from 0 to 3990.  
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TotalPointsInterest – BE data, counts of EPOI total points of interest within 1000 meters of schools. 

TransportationToSchool – Students were asked, “How do you usually travel to and from school? (If 

you use two or more modes or travel, choose the one that you spend most time doing) To school” The 

response options are: “By car (as a passenger),” “By car (as a driver),” “By school bus,” “By public 

bus, subway, or streetcar,” “By walking,” “By bicycling,” and “Other,” dummy coded from 1 to 7, 

respectively. 

 

 

Figure 60. LASSO coefficients (Wave I, 2016-17) 
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Table 27. LASSO coefficients (Wave II, 2017-18) 

Number Feature* Coefficient 

1 (Intercept) 0.0000 

2 HouseholdIncome_17 0.0000 

3 Urbanity_17 a -0.1336 

4 TotalPointsInterest_17 0.0000 

5 DrinkingPlaces_17 0.0000 

6 DrugStores_17 0.0000 

7 LiquorStores_17 0.0000 

8 TobaccoStores_17 0.0000 

9 Province_17 a 0.0000 

10 Grade_17 a 0.0705 

11 Sex_17 0.0000 

12 Race_17 a -0.0090 

13 GetMoney_17 a 0.2031 

14 TransportationToSchool_17 0.0000 

15 PAfriends_17 a 0.0750 

16 EatingBreakfast_17 a -0.2294 

17 SmokingFriends_17 a 0.5538 

18 SupportQuitDrugAlcohol_17 a 0.1280 

19 EnglishMarks_17 a 0.0974 

20 WillingEdu_17 a -0.0593 

21 SkipClass_17 a 0.4602 

22 BMI_CATEGORY_17 a 0.0671 

23 SchoolConnectedness_17 a -0.0122 

24 SedentaryTime_17 a 0.0003 

25 TotalPAtime_17 0.0000 

26 PA_LEVEL_17 a 0.0000 

27 FLOURISH_17 0.0000 
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Number Feature* Coefficient 

28 GAD7_17 a 0.0000 

29 CESD_17 a 0.0071 

31 DERS_17 a 0.0047 

31 GambleOnline_17 a -0.2051 

*The last three char “_17” indicates the school year of 2017-18; a see Section 5.4.1 for descriptions  

 

 

 

Figure 61. LASSO coefficients (Wave II, 2017-18) 
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Table 28. LASSO coefficients (Wave III, 2018-19) 

Number Feature* Coefficient 

1 (Intercept) 0.0000 

2 HouseholdIncome_18 0.0000 

3 Urbanity_18 a -0.1697 

4 TotalPointsInterest_18 0.0000 

5 DrinkingPlaces_18 0.0000 

6 DrugStores_18 -0.0026 

7 LiquorStores_18 0.0000 

8 TobaccoStores_18 0.0000 

9 Province_18 a 0.0000 

10 Grade_18 a 0.0238 

11 Sex_18 0.0000 

12 Race_18 a -0.0387 

13 GetMoney_18 a 0.2642 

14 TransportationToSchool_18 0.0000 

15 PAfriends_18 a 0.1221 

16 EatingBreakfast_18 a -0.4282 

17 SmokingFriends_18 a 0.5113 

18 SupportQuitDrugAlcohol_18 a 0.0569 

19 EnglishMarks_18 a 0.1049 

20 WillingEdu_18 a -0.0461 

21 SkipClass_18 a 0.4876 

22 BMI_CATEGORY_18 a 0.0696 

23 SchoolConnectedness_18 a -0.0007 

24 SedentaryTime_18 a 0.0004 

25 TotalPAtime_18 0.0000 

26 PA_LEVEL_18 a -0.0240 

27 FLOURISH_18 0.0000 
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Number Feature* Coefficient 

28 GAD7_18 a 0.0036 

29 CESD_18 a 0.0051 

31 DERS_18 a 0.0073 

31 GambleOnline_18 a -0.1580 

*The last three char “_18” indicates the school year of 2018-19; a see Section 5.4.1 for descriptions  

 

 

Figure 62. LASSO coefficients (Wave III, 2018-19) 
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Appendix O 

Definition of urban/rural classification11 

Large Urban Populations from ≥100,000 and a population density of at least 400 per square 

kilometre 

Medium 

Urban 

Populations between 30,000 to 99,999 and a population density of at least 400 

per square kilometre 

Small Urban Populations between 1,000 to 29,999 and a population density of at least 400 

per square kilometre 

Rural Population less than 1,000 or population density less than 400 per square 

kilometre 

 

 

  

 
11 Source: Dictionary, Census of Population, 2016, Population Centre (POPCTR) 

https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo049a-eng.cfm  

https://www12.statcan.gc.ca/census-recensement/2016/ref/dict/geo049a-eng.cfm
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Appendix P 

Variables Lead to the Dynamic Transition of Use Patterns 

The covariates' effects on the transition probabilities were estimated, as shown in Tables 29-32.  

Table 29. Estimated effects on the transition probabilities (Ref: S1) 

 Subgroup   

 S2 S3 S4 

intercept 

β (beta coefficient) -2.2200 -2.4323 -2.6834 

Odds Ratios 0.11*** 0.09*** 0.07*** 

Urbanity   

β (beta coefficient) -0.1372 -0.1388 -0.2968 

Odds Ratios 0.87** 0.87* 0.74+++ 

Grade 

β (beta coefficient) -0.0762 -0.1052 -0.2646 

Odds Ratios 0.93* 0.90* 0.77* 

Race/Ethnicity    

β (beta coefficient) -0.1001 -0.0063 -0.6236 

Odds Ratios 0.90*** 0.99+++ 0.54* 

GetMoney     

β (beta coefficient) 0.1817  0.3237 0.4645 

Odds Ratios 1.20*** 1.38*** 1.59* 

PA_Friends 

β (beta coefficient) 0.2255 0.2246 0.2913 

Odds Ratios 1.25*** 1.25*** 1.34* 

EatingBreakfast   

β (beta coefficient) -0.2147 -0.5852 -0.8587 

Odds Ratios 0.81* 0.56*** 0.42* 
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 Subgroup   

 S2 S3 S4 

SmokingFriends   

β (beta coefficient) 0.1268 0.4672  1.0920 

Odds Ratios 1.14* 1.60*** 2.98*** 

SupportQuitDrugAlcohol 

β (beta coefficient) 0.2249 0.2011 0.6768 

Odds Ratios 1.25*** 1.22** 1.97** 

Sex    

β (beta coefficient) 0.2451 0.5443 0.9265 

Odds Ratios 1.28*** 1.72*** 2.53*** 

SkipClass    

β (beta coefficient) 0.1563 0.1515 -0.0565 

Odds Ratios 1.17*** 1.16** 0.95+++ 

BMI_CATEGORY   

β (beta coefficient) 0.0235 -0.0622 -0.0672 

Odds Ratios 1.02* 0.94** 0.94+++ 

SchoolConnectedness   

β (beta coefficient) -0.4251 0.2683 0.8271 

Odds Ratios 0.65*** 1.31* 2.29* 

SedentaryTime  

β (beta coefficient) 0.0002 0.0009  0.0014 

Odds Ratios 1.00+++ 1.00*** 1.00* 

GambleOnline   

β (beta coefficient) 0.3140 -0.0981 -1.7807 

Odds Ratios 1.37+++ 0.91+++ 0.17*** 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 
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Table 30. Estimated effects on the transition probabilities (Ref: S2) 

 Subgroup   

 S1 S3 S4 

intercept 

β (beta coefficient) -2.1540 -2.0710 -2.1830 

Odds Ratios 0.12*** 0.13*** 0.11*** 

Urbanity   

β (beta coefficient) 1.6465 -0.0724 0.1817 

Odds Ratios 5.19*** 0.93+++ 1.20+++ 

Grade 

β (beta coefficient) -0.3805 -0.0682 -0.4207 

Odds Ratios 0.68* 0.93+++ 0.66* 

Race/Ethnicity    

β (beta coefficient) 0.5650  -0.0325 -0.0636 

Odds Ratios 1.76* 0.97+++ 0.94+++ 

GetMoney     

β (beta coefficient) -0.5312 0.1749  0.2594 

Odds Ratios 0.59+++ 1.19*** 1.30+++ 

PA_Friends 

β (beta coefficient) -1.1226 0.2104 -0.0643 

Odds Ratios 0.33*** 1.23*** 0.94+++ 

EatingBreakfast   

β (beta coefficient) 0.4412  -0.3779 -0.0386 

Odds Ratios 1.55*** 0.69** 0.96+++ 

SmokingFriends   

β (beta coefficient) -0.6685 0.3290 1.0821 

Odds Ratios 0.51*** 1.39** 2.95*** 

SupportQuitDrugAlcohol 

β (beta coefficient) 1.7343 0.1345 0.4364 

Odds Ratios 5.67*** 1.14* 1.55* 
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 Subgroup   

 S1 S3 S4 

Sex    

β (beta coefficient) -0.4571 0.3200  0.8886 

Odds Ratios 0.63*** 1.38*** 2.43*** 

SkipClass    

β (beta coefficient) -1.2956 -0.0010 0.1493 

Odds Ratios 0.27** 1.00+++ 1.16+++ 

BMI_CATEGORY   

β (beta coefficient) -0.3804 0.0027 -0.1336 

Odds Ratios 0.68* 1.00+++ 0.88* 

SchoolConnectedness   

β (beta coefficient) 0.8150 0.0996  -1.7318 

Odds Ratios 2.26*** 1.10+++ 0.18*** 

SedentaryTime  

β (beta coefficient) -0.0070 0.0008 0.0014 

Odds Ratios 0.99* 1.00** 1.00* 

GambleOnline   

β (beta coefficient) 0.3639  0.2774 1.2055 

Odds Ratios 1.44*** 1.32+++ 3.34*** 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 
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Table 31. Estimated effects on the transition probabilities (Ref: S3) 

 Subgroup   

 S1 S2 S4 

intercept 

β (beta coefficient) -2.4023 -2.3339 -2.2921 

Odds Ratios 0.09*** 0.10*** 0.10*** 

Urbanity   

β (beta coefficient) -0.1822 -0.4733 -0.1478 

Odds Ratios 0.83+++ 0.62*** 0.86* 

Grade 

β (beta coefficient) -0.0294 0.2473 -0.0504 

Odds Ratios 0.97+++ 1.28* 0.95+++ 

Race/Ethnicity    

β (beta coefficient) 0.2227  -0.5857 -0.1943 

Odds Ratios 1.25+++ 0.56*** 0.82*** 

GetMoney     

β (beta coefficient) -0.5358 -0.3363 0.1615 

Odds Ratios 0.59* 0.71* 1.18* 

PA_Friends 

β (beta coefficient) -0.3957 0.0263  0.0917 

Odds Ratios 0.67+++ 1.03+++ 1.10* 

EatingBreakfast   

β (beta coefficient) 0.1441  0.1383 -0.5118 

Odds Ratios 1.16** 1.15** 0.60** 

SmokingFriends   

β (beta coefficient) -0.7769 1.9719 0.8264 

Odds Ratios 0.46*** 7.18*** 2.29*** 

SupportQuitDrugAlcohol 

β (beta coefficient) -2.0587 0.5995 0.0252 

Odds Ratios 0.13*** 1.82** 1.03+++ 
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 Subgroup   

 S1 S2 S4 

Sex    

β (beta coefficient) -1.0160 -0.6422 0.4037 

Odds Ratios 0.36*** 0.53*** 1.50*** 

SkipClass    

β (beta coefficient) -1.2329 -1.3169 0.0608 

Odds Ratios 0.29*** 0.27*** 1.06+++ 

BMI_CATEGORY   

β (beta coefficient) 0.3661 -0.3142 -0.0467 

Odds Ratios 1.44** 0.73* 0.95* 

SchoolConnectedness   

β (beta coefficient) 0.5030  0.2629  0.5969 

Odds Ratios 1.65*** 1.30*** 1.82*** 

SedentaryTime  

β (beta coefficient) -0.0027 -0.0069 0.0008 

Odds Ratios 1.00+++ 0.99+++ 1.00** 

GambleOnline   

β (beta coefficient) -0.3335 -0.3544 0.3193 

Odds Ratios 0.72*** 0.70*** 1.38+++ 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 
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Table 32. Estimated effects on the transition probabilities (Ref: S4) 

 Subgroup   

 S1 S2 S3 

intercept 

β (beta coefficient) -2.6126 -2.1970 -2.1976 

Odds Ratios 0.07*** 0.11*** 0.11*** 

Urbanity   

β (beta coefficient) 3.9439 1.1785 -3.5171 

Odds Ratios 51.62*** 3.25*** 0.03*** 

Grade 

β (beta coefficient) -0.8983 -0.3643 -0.2941 

Odds Ratios 0.41*** 0.69* 0.75+++ 

Race/Ethnicity    

β (beta coefficient) 0.2548 -0.1680 0.6228 

Odds Ratios 1.29+++ 0.85+++ 1.86* 

GetMoney     

β (beta coefficient) -0.3315 -0.1367 -1.5793 

Odds Ratios 0.72+++ 0.87+++ 0.21*** 

PA_Friends 

β (beta coefficient) -1.7282 -1.1891 5.1700 

Odds Ratios 0.18*** 0.30*** 175.92*** 

EatingBreakfast   

β (beta coefficient) 4.0780 -3.6413 4.9077 

Odds Ratios 59.03*** 0.03*** 135.33*** 

SmokingFriends   

β (beta coefficient) -6.0500 -0.0407 -8.7344 

Odds Ratios 0.00*** 0.96+++ 0.00*** 

SupportQuitDrugAlcohol 

β (beta coefficient) -1.9738 -0.0413 -3.8081 

Odds Ratios 0.14*** 0.96+++ 0.02*** 
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 Subgroup   

 S1 S2 S3 

Sex    

β (beta coefficient) -7.2141 -0.0427 -2.8812 

Odds Ratios 0.00*** 0.96+++ 0.06*** 

SkipClass    

β (beta coefficient) -0.3462 -3.9090 4.5949 

Odds Ratios 0.71* 0.02*** 98.97*** 

BMI_CATEGORY   

β (beta coefficient) 0.1361 0.2995 0.0328 

Odds Ratios 1.15+++ 1.35* 1.03+++ 

SchoolConnectedness   

β (beta coefficient) 5.7045 -3.0077 -0.7665 

Odds Ratios 300.22*** 0.05*** 0.46*** 

SedentaryTime  

β (beta coefficient) -0.0048 -0.0001 0.0058 

Odds Ratios 1.00* 1.00+++ 1.01*** 

GambleOnline   

β (beta coefficient) -0.3883 0.0197 -6.7661 

Odds Ratios 0.68*** 1.02+++ 0.00*** 

Note: *** p < .00001; ** p < .001; * p < .05; +++The result is not significant at p < .05. 
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Glossary 

Term  Definition  

Bayesian 

information criterion 

(BIC) 

A criterion based on the likelihood function for model selection in 

statistics (closely associated with the Akaike information criterion, AIC 

criterion) 

Boruta  A random forest-based feature selection algorithm 

Cluster A.k.a “class” or “state” refers to a subgroup or a cohort of subjects with 

similar characteristics  

Conditional 

probability 

The probability of one event occurring given the condition of another 

event occurs  

Dimensionality 

reduction 

A method to convert high-dimensional data to a low-dimensional space 

retains relevant characteristics of the original data as close as possible to 

its intrinsic dimension  

Elbow method A heuristic technique used in cluster analysis to determine the number of 

clusters in a given dataset  

FANNY A type of fuzzy clustering algorithm  

Feature  A.k.a “predictor variable” or “covariate” refers to an independent variable 

(or explanatory variable) in statistical modelling 

Fuzzy clustering A type of soft clustering where each object can belong to more than one 

cluster 

Fuzzy C-Means A type of fuzzy clustering algorithm 

GAP statistic A method for estimating the number of clusters in a given dataset, using 

the output of any clustering algorithm to compare the variation in within-

cluster dispersion with that predicted under an acceptable reference null 

distribution  

Goodness-of-Fit A statistical test to evaluate how well a model fits a set of observed data  

Hierarchical 

clustering 

A type of clustering method produces nested clusters that can be visually 

represented as a tree-like diagram (a.k.a, dendrogram) 

Interpretability The degree to which a human can understand how a decision is made 
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Latent Markov 

model (LMM) 

A type of latent variable model, similar to the hidden Markov model 

(HMM) for modelling the probability of a sequence, assuming a Markov 

process with hidden states  

Latent variable 

model 

A type of statistical model, modelling a collection of observable variables 

to hidden variables 

Least absolute 

shrinkage and 

selection operator 

(LASSO) 

A regression analysis technique for variable selection and regularization  

Marginal 

distribution 

The probability distribution of an event occurring regardless of the values 

of the other variables 

Multiple imputation 

(MI) 

Imputation in statistics is the process of substituting values for missing 

data. MI is a method to generate multiple different imputed datasets that 

are plausible to account for uncertainty about missing data 

Multivariate analysis A type of statistical analysis, including the simultaneous observation and 

analysis of multiple outcome variables 

Non-linearity A statistical concept describes a scenario in which an independent variable 

and a dependent variable do not have a linear (straight-line) relationship. 

In other words, changes in the output are not proportional to changes in 

any of the inputs in a nonlinear relationship 

Partitioning around 

medoids (PAM)  

A type of partitional clustering belonging to the family of the k-medoids 

algorithm, selecting real data points as centres (medoids or exemplars), 

allowing for higher interpretability of cluster centres than k-means 

Polysubstance use Use of multiple addictive substances simultaneously or within a specified 

time 

Rand index A similarity measure between two data clusterings. Adjusted Rand index 

(ARI) is a form of the Rand index adjusting for the chance grouping of 

elements. 

Silhouette index One of the internal validity indices evaluates clustering results. It 

measures the consistency within-cluster of data compared to other 

clusters. This method visually represents how well each data element is 

clustered.  

Spectral clustering A type of clustering algorithm rooted in graph theory to identify 

communities of nodes in a graph based on the edges connecting them  
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t-Distributed 

Stochastic Neighbor 

Embedding (t-SNE) 

A non-linear machine learning algorithm for reducing dimensionality and 

visually presenting high-dimensional data  

 


