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Abstract

The use of three-dimensional galaxy surveys and large cosmological simulations of the
galaxy distribution has advanced our understanding of large-scale structure over the last
few decades. At the forefront of this are clustering measurements that seek to determine
cosmological parameters including the linear growth function, f . When making clustering
measurements using group catalogues, whether they be dark matter halos or galaxy clus-
ters, various selections in our catalogues are generally performed that can alter the outputs
for our measurements. An example of this is when objects are selected based on a certain
mass threshold, a primary bias is introduced that alters our perceived two-point clustering
statistics. Additionally, when using spectroscopic data to measure the positions of groups
in the Universe, an observational effect caused by peculiar velocities, known as redshift
space distortions, can also alter our perceived clustering and create an anisotropic effect in
the power spectrum. Furthermore, many recent works have focused on secondary proper-
ties, independent of mass, that can alter clustering measurements for groups. In this work,
we will explore selection-based contamination effects when finding groups in redshift space
with a focus on intrinsic alignments for our selections. The selections used in this work
consider halo size as a proxy for its mass and could lead to intrinsic alignments altering
the anisotropic signal. We will utilize a current model that includes selection-based effects
to the standard redshift space distortion model where this contamination incorporates a
dependence on the configuration of the large-scale tidal fields and thus intrinsic align-
ments. If the selection of our groups is further biased, this can result in systematic errors
to f , altering growth of structure measurements. To investigate, we primarily use ΛCDM
simulations for dark matter only particles and explore how the selection of groups with
preferential halo alignments can produce an anisotropic signal, even in real space. We will
also create a variety of mock galaxy catalogues using a halo occupation distribution for our
dark matter groups. This population technique is optimized and modified to include sim-
ilar intrinsic alignment statistics as our dark matter halo catalogue. We will then perform
various tests of intrinsic alignments on these galaxy catalogues and attempt to differenti-
ate between anisotropic effects induced by such alignments in our selection with respect
to a catalogue that lacks their presence. We find that utilizing various selection-based
algorithms produced a weak differential anisotropic signal between these catalogues, most
likely as a consequence of significant noise sources. These noise sources will be discussed
and potential advancements to the limitations faced are considered for future work.
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Chapter 1

Introduction To Large Scale

Structure and Galaxy Surveys

1.1 Introduction

The physics of the early Universe can be described in terms of its chemical composition,

geometry and density through a combination of theories including Big Bang nucleosynthe-

sis and general relativity, along with observations of the Cosmic Microwave Background.

The present day Universe, however, is more complex and the use of galaxy surveys help

create a link between the physics of the early Universe and the current observed large-scale

structure. By measuring the properties of the early and late Universe, we are able to test

models of how it may have formed and the components that make it up. The ΛCDM model

is our current benchmark for describing these components, tested and measured in several
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experiments such as Planck (for recent results see: Aghanim et al. 2020) and the Baryon

Oscillation Spectroscopic Survey, Schlegel et al. (2009).

Over the last few decades our understanding of large-scale structure in the Universe has

seen rapid progress, utilizing precise measurements of the galaxy distribution in surveys

in combination with large cosmological simulations. A main focus has been the use of

certain statistics to measure the clustering properties of collapsed objects including dark

matter halos and/or galaxy clusters. On large-scales, the clustering of collapsed objects

is said to be linearly biased with respect to the clustering of the full matter density field.

This is based on a simple model stating that the galaxies trace the dark matter up to this

overall linear bias constant. This linear relation tells us that larger over-densities should

be more strongly clustered, well-described by the peak-background-split model, Bardeen

et al. (1986) (see appendix C).

Of late, a considerable amount of attention has been put on understanding secondary

clustering properties of dark matter halos and/or galaxy clusters that can produce an ad-

ditional bias. It has been shown that the clustering properties of collapsed objects can

additionally depend on various internal properties as reviewed in Wechsler and Tinker

(2018). This secondary bias, often referred to as assembly bias, is a more complicated

picture since internal halo properties in turn can be correlated with themselves. Several

works have shown that the large-scale tidal fields are a key physical ingredient in the as-

sembly history of collapsed objects. In Obuljen et al. (2019) we see that of these secondary

properties, certain non-scalar quantities such as the velocity dispersion tensor, inertia ten-

sor and angular momentum tensor strongly correlate with the large-scale tidal fields. In

particular, the strongest correlation was seen between the dimensionless tidal field tensor
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and the moment of inertia tensor for a dark matter halo. This is due to the fact that the

halo or cluster shapes are dictated by the stretching axis of the tidal field tensor which

allows objects to align and cluster in specific ways. We will utilize this correlation with

the inertia tensor to make several measurements of alignments in chapters 2 and 3.

In this work, my initial analysis for selection-based contamination as a function of orien-

tation will be performed on dark matter group catalogues utilizing the Quijote simulations,

Villaescusa-Navarro et al. (2020). This type of analysis was previously accomplished in Ob-

uljen et al. (2019) where selection contamination from a Friends-of-Friends group finder

produced a systematic difference between the redshift space quadrupole and linear Kaiser

prediction (see Appendix G). It was also shown that this effect can be very large, even in

real space, if we have preferential selection for objects orientated along the line-of-sight. I

will present such selection dependencies in both real and redshift space in chapter 2. I will

include further insight to this selection effect by examining the stacked halo orientations

along the line-of-sight when using a similar group finder along with an example of what

a combination of anisotropies from Kaiser theory and selection contamination based on

orientation may look like in redshift space. A simple model for this selection contamina-

tion will also be briefly derived in this chapter that follows the one found in Hirata (2009).

I will then take this analysis one step further and populate our dark matter halos with

galaxies using a halo occupation distribution, similar to the one found in Reid et al. (2014).

However, I will modify the population technique by creating an algorithm that includes

the three-dimensional shape of our halo upon population (code can be found in Appendix

H). Thus, our newly populated galaxy clusters should contain similar internal information

as the halos regarding their orientation and alignment.
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In chapter 3 I will utilize similar statistics as presented in Mandelbaum et al. (2010)

but consider halo and cluster shapes as a function of the moment of inertia tensor rather

than galaxy imaging data based on pixels. The inertia tensor can be used instead in the

case that we have the three-dimensional particle positions. Furthermore, following the

analysis by Hopkins et al. (2005), I will use the alignment functions to test for two types

of intrinsic alignments for both my dark matter catalogue in chapter 3 and my galaxy

cluster catalogues in chapter 4. Pair-counting and alignment function codes were created

to accomplish this task and are also attached in Appendix H. From Hirata (2009) it is

argued that selection effects due to intrinsic alignments will lead to anisotropic clustering,

altering the amplitude of the multipoles. The amplitude of this effect will depend on the

selection method used and I will investigate such effects for multiple selection algorithms

used on dark matter and galaxy catalogues. Publicly available group finders were used from

the python package nbodykit (Hand et al. 2018) to make these selections. This package was

also used to make measurements the power spectrum. In chapter 4 I will conclude with

a comparative analysis between various galaxy group catalogues I create from our dark

matter halos to test for potential deviations from linear redshift distortions that intrinsic

alignments may have on our groups found in redshift space.

1.2 Motivation for group catalogues

In this work, in order to identify a dark matter halo or galaxy cluster, and to study these

internal properties better, various group finding algorithms will be used. At the forefront

of such algorithms are the Friends-of-Friends based algorithms which will be discussed

4



in chapter 4. A few fundamental questions drive the development of these algorithms,

including: i) How does one identify a group ? ii) Where is the central object of a group?

iii) How can we account for redshift distortions when identifying these groups ? This third

question has significant impact to this work and also for measurements of the growth of

cosmic structure. When selecting objects using our group finders, redshift space distortions

add an additional complication for galaxy survey data in that we do not observe the real

space positions of objects. Instead, we observe a combination of their recessional velocity

and peculiar velocity from spectroscopic data. To compare between galaxy surveys and

simulation data we rely heavily upon the capability in identifying these groups properly

in redshift space (for a review of various group finding algorithms and their success in

accomplishing this task see Knebe et al. (2011)). Furthermore, in order to precisely measure

certain cosmological parameters such as the growth function and primary bias (discussed

in more detail in sections 1.6 and 1.9 respectively) we depend on the ability of obtaining

real groups that lack any contamination upon selection.

The use of group catalogues is a very interesting topic to study since almost all galaxies

exist in groups, forming the building blocks of our Universe. It is essential to extract groups

of galaxies from surveys to understand criteria including the evolution of galaxies, halo and

cluster properties, the growth of large-scale structure and thus the underlying cosmological

model. For instance, when using group catalogues, since we can obtain halo masses, we

may split our sample based on this quantity to explore clustering as a function of mass (see

figure 1.1). We may also split our group catalogues on other internal properties besides

mass, such as their shapes. Thus, we are able to study the clustering of halos split on

different bias populations (briefly discussed in chapter 2). We generally refer to this bias
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Figure 1.1: Expected large-scale clustering amplitude for halos of different masses as a
function of redshift. We notice that halos of different masses will cluster differently and
in particular that more massive halos exhibit a stronger clustering amplitude. At low
redshifts, halos are expected to grow in mass and will not evolve along these solid lines
which are each for halos of a specified mass over time. The dashed line shows the expected
growth in clustering for all the mass described by the growth rate, Percival (2013)
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as deviations from the linear matter density field for our tracer used, and on large-scales,

reduces to a local, linear function (briefly discussed in chapter 1 and in Appendix C by

the peak-background split model). For example, splitting our catalogue based on mass is

important if one wishes to use a multi-tracer analysis to measure redshift-space distortions,

McDonald and Seljak (2009). This approach requires that the split must be made in a

clean way that is not affected by systematic errors that would change the clustering, such

as selection-based contamination and intrinsic alignment effects. If one could determine

this bias with sufficiently small error then halo clustering would become a leading method

for measuring this parameter. Therefore, I will utilize groups selected based on some mass

threshold and seek to extract information for other internal properties such as preferential

orientations and alignments that may be present upon selection. As mentioned, intrinsic

alignments are a potential cause of systematic error by contaminating our selection and

thus the inferred value of the redshift space distortion parameter when making clustering

measurements. Thus, we need to explore the presence of selection-based contamination for

our redshift space groups and the size of the effect intrinsic alignments may have in this

contamination. This will be the main focus of this work and we will aim at extracting this

potential effect from our group catalogues utilizing various selections in redshift space.

1.3 The density field and distribution of matter

On large scales, the Universe can be described by the density field, δ, which gives

information about the massive clusters and filamentary structures that make up our Cosmic

Web (see Bond et al. 1996). Given the quantities ρb(r) and ρ(r) representing the expected
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mean density and observed density respectively, we can define δ(r) as:

δ(r) =
ρ(r)

ρb(r)
− 1 (1.1)

In this definition, regions with δ > 0 are considered to be over-dense, while δ < 0 are

under-dense. An important property of this density field is the overall spatial distribution

of galaxies. However, one important piece of information while studying the distribution

of galaxies is that there is no reason to assume that their distribution exactly traces the

distribution of mass in the Universe. One can make the following two assumptions about

the galaxy distribution:

• Since galaxy formation involves processes like radiative cooling of hot gas and gravi-

tational collapse, one can expect that the efficiency of galaxy formation is related to

the density of matter, δm.

• Galaxies may only form in special regions and thus the relation between the galaxy

distribution and large-scale matter distribution is not a complete description.

Various works have shown, that on large-scales, galaxies are biased tracers of the mass in

the Universe, such as in Kaiser (1984). We will discuss this bias in further detail in section

1.9. In general, detailed studies of the distribution of galaxies in surveys along with studies

of the overall matter distribution in simulations can help us understand the overall picture

of structure formation in the Universe. From Planck, at early times, it was shown that δ is

well described by a Gaussian distribution and structure formation via gravitational collapse

of these over-dense regions gives rise to anisotropic regions at smaller scales where δ >> 1
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and isotropic regions at larger scales where δ << 1. In terms of the collapsed regions, we

refer to these as dark matter halos which contain several galaxies that have formed within

them. A simple model for the spherical collapse of mass into these concentrated regions

we call halos is described by the Press-Schechter theory (see Press and Schechter 1974).

In terms of the distribution of matter, figure 1.2 gives an example of observational and

simulation data of matter in the Universe. At the top of this figure we have slices in the

distribution of galaxies out to a redshift of z = 0.15 compiled from the Sloan Digital Sky

Survey (SDSS), Blanton et al. (2017). Galaxies are colored according to the ages of their

stellar population (g − r magnitude) and the distances of each galaxy are estimated from

their observational redshift. Here the redder, more strongly clustered points are galaxies

that are made of older stars. The empty regions were not mapped by the SDSS because of

dust from our own galaxy that obscures the view of the distant universe. On the bottom of

figure 1.2 is a comparison of this galaxy survey with one of the most accurate cosmological

simulations, the Bolshoi simulation, which adopts a ΛCDM framework (see Klypin et al.

2011). A crucial observation from these distributions is the fact that the distribution of

material is not random but instead shows a variety of structures. Also, a large portion

of the galaxies are distributed in low-density filamentary structures that surround larger

voids, regions where the galaxy population is low. Embedded in the filamentary structure

are the high-density regions containing clusters of galaxies which we described as halos.
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Figure 1.2: Top: Slices through the three dimensional map of the distribution of galaxies
from SDSS-3. Earth is at the center, and each point represents a galaxy, Blanton et al.
(2017). Bottom: Slices through the same SDSS survey (left) and the ΛCDM Bolshoi
simulation (right), Riebe et al. (2011).
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1.4 The correlation function and power spectrum

In order to quantify the distribution of material in the Universe one can adopt the

statistics of the two-point correlation function, ξ(r), as described in Peebles (1980). In

general, ξ(r) is defined as the excess number of galaxy pairs found at a given separation,

r, with respect to an expected random distribution of pairs. This two-point statistic can

be described from the over-density field by:

ξ(r) = 〈δ(r)δ(r′)〉 (1.2)

In an actual galaxy survey, we do not directly measure the over-densities of each region.

However, since we know the positions of objects, we can use this as an estimate for the

over-density field. There exists various estimators such as the Landy-Szalay estimator (for

a comparison of various estimators, see Kerscher et al. 2000) which is described by:

ξ̂LS(r) =
DD − 2DR +RR

RR
(1.3)

Here, DD,DR,RR are the amount of data-data, data-random and random-random pairs

respectively, normalized by the total possible pairs for each calculation.

In addition to the correlation function, another important observable that I will mainly

be focused on is the power spectrum, P (k). In the case of the formation of large-scale

structure (LSS) where fluctuations in the density field are drawn from a Gaussian distribu-

tion, the power spectrum gives a complete statistical description of these fluctuations. We

can define the power spectrum from the expected two-point function of the over-density in
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Fourier space. Therefore, we will first consider the Fourier transform of the dimensionless

over-density:

δ(k) =

∫ +∞

−∞
δ(r)eik·rd3r (1.4)

The power spectrum is then defined as:

P (k) =
1

(2π)3
〈δ(k)δ(k′)〉 (1.5)

From equation 1.4 and 1.5, we can deduce that the correlation function and power spectrum

form a Fourier pair where the power spectrum is the Fourier transform of the correlation

function. In general, we can reduce the power spectrum into a one-dimensional function due

to the cosmological principle, such that, P (k) = P (k). However, when calculations of the

power spectrum or correlation function are made in a galaxy survey, the redshift distances

used are a combination of both the Hubble flow and peculiar velocity of the galaxies.

Therefore, it should be noted that this relation is not entirely true. For the observed

power spectrum, peculiar velocities break down the rotational invariance, changing the

expected isotropic clustering. The peculiar velocities of galaxies are deviations from the

uniform Hubble expansion generated by the gravitational field of surrounding matter such

that the Hubble relation becomes: vrad = zc = Hor+ vpec where r is the radial distance in

Mpc. We will discuss in the next section the effects of peculiar velocities on the observed

quantities P (k) and ξ(r).
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1.5 Peculiar velocities and redshift space distortions

When the 3D distribution of galaxies is mapped out in a galaxy survey, the radial, co-

moving distance to an object can be determined from the measured observational redshift,

zob. In general, the 3D position of an object is inferred from its right ascension (RA), dec-

lination (DEC) and redshift (zob). There exists two contributions for the observed redshift

that affect the measured radial distance of an object. They are:

• The expansion of the Universe (or Hubble flow):

r(z) =

∫ z

0

cdz′

H(z′)
(1.6)

• Change in position (or deviation of Hubble flow) caused by peculiar motions of an

object:

s = r + (1 + z)
v · r̂
H(z)

(1.7)

Here, v · r̂ = vlos is the peculiar velocity of the object along the observers radial direction,

or line-of-sight (LOS). The definition of s tells us that we do not observe galaxies in their

real space positions, r, but instead their redshift space positions as a result of vlos. The

contribution of the peculiar velocity term is generally very small, however, it has a non-

negligible impact on the clustering statistics of the matter density field, δm, and thus the

power spectrum or correlation function. As previously mentioned, the peculiar velocities

break down the rotational invariance as defined by the cosmological principle and thus

make redshift space clustering anisotropic. This anisotropy is referred to as redshift space

distortions (RSD).
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Figure 1.3: Schematic of redshift space distortions for an over-density and the Kaiser
effect (top) and a virialized object and the FoG effect (bottom).

The effects of RSD on clustering can be described on both large scales and small scales

in the Universe. At large scales, objects that reside within an over-dense region of matter

tend to coherently fall into the over-density, squashing the appearance of the density field

along an observers LOS. This squashing along the LOS changes the clustering amplitude

such that clustering appears stronger in this direction. This effect was first derived in 1987

by Kaiser (see Kaiser 1987) and is often referred to as the Kaiser effect. At small scales,

virialized objects have random motions and in this case, the peculiar velocities can stretch

out the density field along an observers LOS. This stretching decreases the clustering

amplitude in this direction. This effect is often referred to as the Fingers-of-God (FoG)

effect (see Jackson 1972). Figure 1.3 gives a visual of these two effects for redshift space

observations. These effects are important because in a galaxy survey one can only measure
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the clustering quantities as a function of their redshift space position. Therefore, we must

consider this effect when calculating the observed power spectrum and correlation function

as mentioned. It should be noted that although RSD affects the true, real space positions

of objects, we can gain useful insight on theories of gravity and the growth of structure

using the linear redshift space velocity field (see Sargent and Turner 1977 and Lahav et al.

1991). This is because, in linear theory, velocities are related to nearby over-densities via

the continuity equation:

δ̇ + ikv = 0 (1.8)

Making a change of variable for our derivative and solving for the velocity, one can obtain

(in 1D):

v(k) = ifaH
δ(k)

k
(1.9)

Here, f = d lnD
d ln a

is the linear growth rate (or growth function) and D is the growth factor

for a growing mode. Equation 1.9 presents us with a relation between the linear velocity

field and the linear growth rate. From this, we can extract information about the growth

function and the cosmological density parameter, which are of importance in developing a

standard set of cosmological parameters describing our Universe.

1.6 Modeling RSD in the linear regime

To model RSD in the linear regime, we can first consider the divergence of the three

dimensional velocity field, ∇ · v(r) = −aHfθ(r), and its Fourier transform, v(k) =

−iaHf k
k2
θ(k). From equation 1.8 and 1.9 it is clear that δ(k) = θ(k) in the linear regime
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where perturbations in δ are small. Next, density conservation from real to redshift space

implies that:

{1 + δsm(s)}d3s = {1 + δm(r)}d3r (1.10)

which comes from linear conservation laws for ODE’s (in general, we define the Jacobian

as, J = | ∂si
∂rj
|). Using equation 1.7 and that 1

a
= (1 + z), and considering a global plane-

parallel approximation (i.e. that RSD only depends on one direction, fixed as the LOS of

the observer) we can solve this Jacobian matrix to be:

J ≈
(

1− 1

aH

∂vz
∂z

)−1

(1.11)

Here we have chosen the observers LOS to be in the ẑ direction. Therefore, we have the

relation, δsm(s) = J−1{1 + δm(r)} − 1. The Fourier component, at linear order, can be

derived to give 1:

δsm(k) =

∫ (
δm(r)− 1

aH

∂vz(r)

∂z

)
eik·rd3r

= δm(k)− 1

aH

∫
eik·rd3r

∂

∂z

∫
vz(k

′)

(2π)3
e−ik

′·rd3k′
(1.12)

Substituting vz(k) = −iaHf kz
k2
θ(k) and taking the partial derivative in the integrand gives:

δsm(k) = δm(k) + f

∫
d3k′

(2π)3

∫
kzk

′
z

k2
ei(k−k′)·rθ(k)d3r (1.13)

1See Appendix A for a full derivation for the redshift space density field
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Since we have fixed our LOS direction to be ẑ, we can define the directional cosine as

µ = k̂ · ẑ = kz
k

. Using the relation above that, δ(k) = θ(k), we arrive at the following

description:

δsm(k) = (1 + fµ2)δm(k) (1.14)

Equation 1.14 tells us about the transformation of our matter density field in redshift space

in terms of the real space density field, the growth function and the directional cosine for

our observation.

1.7 Current result of RSD measurements

In general, a key test for dark energy against modified gravity models is through the

growth of structure using RSDs. Our current models assume general relativity (GR) to be

the correct theory of gravity where predictions about RSDs are made. Our derivation of

equation 1.14 which includes the growth function parameter f , assumes GR to be correct

and predicts the growth rate of cosmological structure. There are a number of galaxy

surveys that have made such cosmological measurements for the growth of structure and

having precise measurements of f are of great importance. Such surveys include: WiggleZ

(Drinkwater et al. 2010), BOSS (Schlegel et al. 2009), VIMOS public extra-galactic redshift

survey (Scodeggio et al. 2018) and DES (Collaboration et al. 2021). As such, constraining

the parameter f (or fσ8 in a survey where σ8 is a normalization for our power spectrum

calculated as the root-mean-square of mass fluctuation in spheres with radius 8 h−1Mpc) is

of importance to test our models against observation. For instance, an analysis to measure
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Figure 1.4: Various surveys and their measurements of the logarithmic growth function
fσ8 for their specific survey depths, Okumura et al. (2016)

f(z)σ8(z) from the SDSS luminous red galaxy data, gives f(z = 0.25)σ8(z = 0.25) =

0.3930± 0.0457 and f(z = 0.37)σ8(z = 0.37) = 0.4328± 0.0370 where no prior is imposed

on the growth rate, Samushia et al. (2012). In comparison, our ΛCDM model with general

relativity predicts f(z = 0.25)σ8(z = 0.25) = 0.4260 ± 0.0141 and f(z = 0.37)σ8(z =

0.37) = 0.4367± 0.0136, which is consistent with these prior survey measurements. Figure

1.4 presents a variety of surveys and their measurements of f .

1.8 Aside: Quijote simulations and dark matter cat-

alogues

To investigate the properties of dark matter halos, we will use 100 dark matter only

Quijote N-body simulations to create the skeleton of a ΛCDM universe Villaescusa-Navarro
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et al. (2020). The subset of simulations we use are output snapshots at z = 0 of dark matter

particles in a periodic box of length 1 h−1Gpc. Each simulation contains 5123 particles

of mass Mp = 6.57 × 1011 h−1M�. All simulations were run using the following set of

cosmological parameters: {Ωm,Ωb,ΩΛ, ns, h = 0.3175, 0.049, 0.6825, 0.9624, 0.6711}. These

parameters are in agreement with the constraints from the Planck satellite (Aghanim et al.,

2020).

In order to create dark matter group catalogues we will use an isotropic Friends-of-

Friends group finder. This group finder utilizes the three-dimensional particle positions in

our simulations to link pairs of particles within some sphere of radius bll = 0.2×mps, where

mps is the mean particle separation for our data. If we link together a pair of particles

then this pair will exist in the same group. Any particles that subsequently also link to

either particle in that pair are then also added to the same group. Thus, this group finder

will look for regions in our data where objects are clumped together. In terms of defining

a group size, this is achieved by setting a minimum ’mass cutoff’. Since all particles in our

simulation are of the same mass, we may set a minimum number of particles limit in order

to be classified a group. For majority of our catalogues, this minimum is set to be groups

that contain more than 20 particles.

1.9 Primary linear bias

In the section 1.6 we went through a brief derivation of the redshift space Kaiser factor

that describes the anisotropies we see on large scales due to peculiar velocities. However,

one final variable must be included in this derivation for equation 1.14 and that is the
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galaxy bias term. When we observe galaxies to probe the density field, we must consider

that all the mass in the Universe is not within the galaxies and thus they are only biased

tracers of the full matter density field. It is worth noting that this bias encodes the physics

of galaxy formation and so it can be considered in general a non-linear function. However,

on large scales, we can reduce this bias term into a linear function as shown in Bardeen

et al. (1986) and Cole and Kaiser (1989) by means of the peak-background split model (see

Appendix C for further discussion). Thus, on large scales, where density fluctuations are

small, it is common to assume a linear bias, denoted bg, between fluctuations in the mass,

δm, and fluctuations in the galaxy distribution, δg, given by:

δg(k) = bgδm(k) (1.15)

In this definition our subscript g will denote that the tracer of the matter density field will

be our groups rather than galaxies2. In general, the value of bg depends on the mass of

collapsed objects and the redshift at which they are observed such that the clustering of

objects is stronger for more massive objects and for objects that formed earlier. Figure

1.5 gives an example of the calculated linear bias used for a dark matter simulation only

for two separate mass cuts. We see that for more massive objects we obtain a larger value

for our linear bias on large scales (i.e k > 0.1 hMpc−1). Therefore, if we start from our

linear conservation law described in section 1.6 and use the relation between the density

fluctuation of our tracer and the mass given by equation 1.15, we can derive the density

2Objects such as galaxies, halos/clusters or voids can be used as biased tracers of the density field
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Figure 1.5: An example for calculations of bg using an N-body dark matter only
simulation. The green solid line is for groups with more than 50 particles (Mh >
3.28 × 1013h−1M�) while the blue solid line is for groups with more than 20 particles
(Mh > 1.31 × 1013h−1M�). The dotted-dashed (dotted) black line is the approximated
linear galaxy bias for scales k < 0.1 hMpc−1 for the green (blue) lines.
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field to be:

δsg(k) = (bg + fµ2)δm(k) (1.16)

Equation 1.16 is the simplest model to described the large scale density fluctuations in

redshift space, derived in Kaiser (1987), and thus, is often referred to as the Kaiser formula

to describe the Kaiser effect. Comparing equation 1.16 above with equation 1.14, we notice

that the anisotropic term in the transformation between real and redshift space comes from

the velocity field and does not depend on this primary bias. Our bias will only affect the

observed δm term and not the anisotropy caused by the peculiar velocity. Using this

equation, one can then easily derive the redshift space power spectrum at linear order:

P s
g (k) = P s

g (k, µ) = (bg + fµ2)2Pm(k) (1.17)

Finally, in order to calculate the anisotropic effect that RSD causes, we can decompose our

power spectrum, equation 1.17, using the Legendre polynomials 3:

P s
` (k) =

2`+ 1

2

∫ +1

−1

P s(k, µ)L`(µ)dµ (1.18)

Only even ` values up to ` = 4 survive in this multipole expansion for the Kaiser formula.

Thus, we have terms for the monopole, quadrupole and hexadecapole. These are:

P s
0 (k) =

(
b2
g +

2

3
bgf +

1

5
f 2

)
Pm(k) (1.19)

3See Appendix B for discussion on Legendre polynomials
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P s
2 (k) =

(
4

3
bgf +

4

7
f 2

)
Pm(k) (1.20)

P s
4 (k) =

8

35
f 2Pm(k) (1.21)

Since f determines the amplitude of peculiar velocity flows and RSD, in real space

we would set f = 0 in 1.19, 1.20 and 1.21. Below in figure 1.6 we show the monopole

and quadrupole computed for dark matter halos only in a ΛCDM simulation. Although

anisotropies are not so obvious from the monopole, we notice that RSD introduces an

overall correction of, P s
0 (k)/P r

0 (k) =
(
1 + 2

3
β + 1

5
β2
)

where β = f/bg. This correction is

outlined by the separation in the black solid line and the black dashed line. When observing

the quadrupole however, we know that for an isotropic Universe, P r
2 (k) = 0 (as shown by

the black solid line). RSD that squashes over-densities on large scales produce anisotropies

in the radial direction (or along the ẑ direction in the plane-parallel approximation). This

anisotropy results in a non-zero quadrupole on large scales, which can be seen in the red

curve (our measured P s
2 (k)) and the corresponding black dashed line given by equation

1.20. Because figure 1.6 shows the measured power spectrum for dark matter halos only

by using their centre of mass positions, we do not see the small scale suppression in the

redshift space monopole and quadrupole due the FoG effect. We also notice that P r
0 (k)

and P s
0 (k) begin to disagree with the measured monopoles on small scales since we start to

shift from linear to non-linear theory at larger k values. For our theory curves over-plotted

in black described by equations 1.19 and 1.20 we will compute the linear bias as outline in

this section in figure 1.5 for groups with more than 20 particles. We will also use a current
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theoretical model for f from Lahav et al. (1991) described by:

f(z) = Ωm(z)4/7 +

(
1 +

Ωm(z)

2

)
ΩΛ(z)

70
≈ Ωm(z)0.57 (1.22)

Figure 1.6: Top: The measured dark matter halo monopole in real space (blue solid) and
redshift space (red dashed) for a ΛCDM simulation. Over plotted are the linear theory
curves for real space (black solid) and redshift space (black dashed). Bottom: The measured
quadrupole in real and redshift space. Line colours are the same as for the monopole.
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Chapter 2

Introduction to Assembly Bias

In modern cosmological models, the vast majority of the mass in the Universe (∼ 85 %)

consists of dark matter (see measured matter densities from Aghanim et al. 2020). In these

models, dark matter forms the skeleton of the Universe that can be traced in observations

by baryonic material such as galaxies that will form, merge and evolve within dark matter

halos. The relationship between galaxies and their host dark matter halo is known as the

galaxy-halo connection. These halos represent high density regions in the Universe, seeds

from the primordial fluctuations in the matter distribution, which have grown through

gravitational instability over time, as discussed in section 1. The galaxy-halo connection

began with an understanding of modern galaxy formation theories and large-scale structure

formation theories, which is well-described by our benchmark ΛCDM model. There now

exist several, large numerical, semi-analytic and hydrodynamic simulations that are used

to piece together this connection. In terms of clustering, early works recognize a strong

dependence on halo mass and redshift (Mo and White 1996 and Jenkins et al. 1998) which
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are assembly history properties for structures in the Universe. In chapter 1 we discussed

that a primary property of clustering is related to the mass and this gives rise to a primary

bias. However, there also exists a range of secondary halo properties that can influence the

assembly histories and clustering. Some of these secondary properties have been shown to

depend on the large-scale environment (Hahn et al. 2009) and the large-scale tidal fields

(Hirata 2009, Martens et al. 2018, Obuljen et al. 2019). In these works, the alignment of

halos or galaxies are studied and shown to correlate with the large-scale tidal fields and can

alter the measured large-scale clustering statistics. In this chapter, we will discuss these

secondary properties of halos along with the tidal fields and how they can influence our

measurements.

2.1 Basics of assembly bias

In section 1 we introduced the primary bias (or galaxy bias), bg, which tells us that

the clustering strength of halos (or galaxies in a survey) is approximately linearly biased

compared to the clustering of matter. We have also introduced that more massive halos

or early type halos are more strongly clustered than small mass halos or late type halos

Kaiser (1984). However, the spatial distribution of galaxies can also correlate with various

secondary properties of halos, such as their concentration, spin, formation epoch, angular

momentum, shape, velocity dispersion etc. (for example, Faltenbacher and White 2009

and Mao et al. 2017). Furthermore, at a fixed halo mass, Mh, we find that the clustering

of halos can exhibit a strong dependence on these secondary properties. We often refer to
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this dependence as halo assembly bias, or secondary biasing1. In general, we can define

assembly bias as the dependence of halo clustering on a halo property other than its mass,

Mh. Halo assembly bias is a key effect in understanding the clustering of virialized objects

in the Universe and was initially detected while sorting through various halo properties

at a given mass in Wechsler et al. (2002) and Gao et al. (2005). Figure 2.1 gives an

example of the dependence of clustering based on the selection of halos at a fixed mass

as a function of certain halo assembly properties. The figures to the left and middle

are slices through a ΛCDM simulation where the red and green dots are halos with high

concentration and low concentration respectively. We notice that for high concentrated

1Secondary bias is a preferred term since halo assembly histories are not solely responsible for the clus-
tering of halos/clusters. However, most works have continued to use the term assembly bias in describing
this effect.

Figure 2.1: Illustration of halo assembly bias based on concentration, formation time,
and angular momentum. Left: Slice through cosmological simulation at z = 0 where red
dots are the top 5% of high concentration halos of mass, mh = 1010.8. Middle: Slice
through same simulation with green dots the top 5% of low concentration halos of the
same mass. Right: Dependence of halo bias when we split on formation time (red and
blue) and angular momentum (green and orange). The solid black line is the overall bias
for all halos as a function of their halo mass, Wechsler and Tinker (2018).
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halos at a fixed mass, objects tend to be more clustered within the high density regions

or filaments, while for the low concentration halos their exists a more random distribution

of their locations. On the right of figure 2.1 is a plot generated by Wechsler and Tinker

(2018) with data taken from Bett et al. (2007) and Li et al. (2008). This plot shows the

dependence of halo bias on secondary halo properties such as formation time (red and blue

dots) and angular momentum (orange and green points). It should be noted that this

figure considers relatively low mass halos, Mh = 6.3× 1010M�. The general assembly bias

trend seen in these numerical studies is that for smaller mass halos, highly concentrated

regions, or older halos, tend to exhibit stronger clustering, whereas for high mass halos,

or younger halos, the opposite is true and they are weakly clustered. As mentioned, there

exist other properties in the literature such as spin, velocity dispersion and shape that can

produce secondary bias trends. Some of these other properties are highlighted in figure

2.2.

In terms of the clustering of massive halos based on concentration and formation time,

simple models for structure formation predict this trend such as peaks theory (Dalal et al.

2008) and ellipsoidal dynamics (Desjacques 2008). In these theories, assembly bias arises

from the strong correlation between the density of proto-halo structures that will eventually

become virialized and collapse and its large scale density environment. The correlation

between these produce halos with a large inner density (i.e. high concentration) which will

form early and live in under-dense regions compared to halos of the same mass which have

low inner density and form late, living inside denser regions of the Universe. In the peaks

theory, it is expected that this trend should stay consistent at any fixed halo mass and

goes against the inversion we see of the assembly bias trend at fixed high and low masses.
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Figure 2.2: Secondary halo bias, b1 as a function of different populations. Upwards
triangles are for the top 25 percent of objects exhibiting a certain halo characteristic and
the downwards triangles of for the lowest 25 percent. Left: The purple circles show the
full halo catalog in each mass bin. Blue triangles are halos split on the internal anisotropic
velocity dispersion of dark matter particles and red triangles are split on the halo velocity
anisotropy. Right: Orange triangles are halos split on tidal anisotropy, dark brown is halos
split on shape, light brown is halos split on concentration and light green is halos slit on
spin, Ramakrishnan et al. (2019).

A possible explanation for this inversion was proposed in Hahn et al. (2009) where mass

accretion is suppressed for low mass halos in filaments due to mass flows being redirected

along the filament towards the massive halo as a result of the large-scale tidal environment.

This tidal effect slows down the assembly of halos along the large-scale filaments that ’feed’

the massive halo along with mass loss for halos in filaments that pass through or close to

the massive halo. This suggests that the formation epoch and environment density are
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secondary effects induced by the enhanced density of halos in filaments near a massive

halo where tidal effects are strongest. This allows for small mass halos to end up being

clustered together near over-dense regions where the massive halo exists as seen in the left

hand image of figure 2.1. This interesting result, studied using N-body simulations, was

further established in a sequence of works using ZOMG simulations of low mass halos in

different large scale tidal environments; Borzyszkowski et al. (2014), Romano-Dı́az et al.

(2017) Garaldi et al. (2017). In this picture, it is argued that structure formation extends

beyond the density peaks model and the assembly behaviour of halos can be modulated

by their tidal environment2. In the next section we will look further into the role of the

tidal fields and the large-scale clustering of halos.

2.2 Halo alignments and the tidal field

We have now introduced the systematic effects of galaxy bias, bg, velocity flows and

redshift space distortions, described by f , and selection effects based on internal halo

properties referred to as assembly bias. When studying N-body simulations of dark matter

only, we introduced in section 2.1 that the assembly behaviour of halos can be modulated

by the tidal fields with effects such as the suppression of halo growth and tidal mass loss

due to encounters with massive halos. Further, it is shown in Hirata (2009) and Obuljen

et al. (2019) that the large-scale tidal fields are responsible for additional systematic errors

2Recall that in section 1 we introduced the hierarchical structure formation model based on the Press-
Schechter formalism where the mass of a halo is determined by the density peaks on large-scales that
exceed some threshold for collapse. In this model, formation time of halos depends only on the halo mass
without influence of the large scale environment and our primary bias arises form the peak background
split model.
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in power spectrum measurements due to the preferential selection of objects aligned along

the stretching axis of the tidal field for instance. This secondary effect is understood by

orientation-dependant selection effects and can be studied when one makes a selection

based on certain non-scalar internal halo properties. For example, objects that exist in

under-dense regions will align towards the denser regions (i.e. the stretching axis of the

tidal field will be pointing towards the over-densities), while objects in the denser regions

will align along the overdensity. Now imagine a case where the stretching axis of the tidal

field aligns objects in these dense regions along our LOS. If we have a selection method

where objects that are aligned with the LOS are more likely to be picked up, an anisotropic

signal will be produced. This is because, for k-modes perpendicular to our LOS, regions of

low-density will have more objects that were not aligned with our LOS resulting in deeper

troughs and an over-estimate of the amplitude of our Fourier density modes. Alternatively,

k-modes parallel to our LOS, where more dense regions contain objects perpendicular to

our LOS will dampen the peaks giving an under-estimate for the amplitude of our Fourier

density modes. The resulting average of Fourier modes over various angles can then give

us this anisotropic signal. Thus, the resulting anisotropy can be defined by the following

two criteria:

• Objects must be intrinsically aligned along the stretching axis of the tidal field (known

as ’linear alignment’ in weak lensing literature)

• Our sample must have a selection effect that depends on this orientation relative to

the line of sight

The resulting product (i.e. an inequality in clustering and an inequality in selection) will
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Figure 2.3: Two situations of selection bias that result in anisotropic effects on the
resulting k-modes. Assuming objects are less likely to be observed if aligned perpendicular
to our line of sight, then some objects will not appear to the observer (crossed out). Fourier
modes perpendicular to the line of sight will have deeper troughs (left) while Fourier modes
parallel to the line of sight will have shallower peaks (right), Martens et al. (2018).

create an additional systematic error in the measurement of f which gives information

about redshift space distortions. A simple and exaggerated example of this is shown in

figure 2.3. In this figure, objects that are aligned perpendicular to the LOS, n̂, are less

likely to be selected. For k-modes across the LOS, under dense regions will appear even

less dense, giving us a higher inferred amplitude, while a k-mode parallel to the LOS can

have shallower peaks and thus a lower inferred amplitude. As mentioned, the end result

can be an anisotropic signal based on the orientation-dependant selection of these objects

and tidal field alignments. Let us now further inspect how we can quantify this effect in

the observed power spectrum.
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2.3 Intrinsic alignment effects on RSD measurements

The dynamics of dark matter can be described by the gravitational potential, φ and its

gradient, Laplacian and tidal tensor, the latter given by:

Tij(x) =

[
∇i∇j −

1

3
δKij∇2

]
φ(x) (2.1)

where δKij denotes the Kronecker delta function. The presence of massive dark matter

halos that dominate the local gravitational potential can generate a strong tidal field to

its smaller neighbouring halos. Over time, this strong tidal field can induce a shear in

the velocity field of the surrounding objects. This field will affect the flow of dark matter

such that neighbouring objects will become stretched and aligned in the direction of the

massive halo and compressed in the plane perpendicular to it. From Hahn et al. (2007), it

was shown that the majority of halos tend to reside in filaments and sheets and so the tidal

forces will accumulate coherently. This creates a well-known intrinsic alignment effect of

small mass objects being stretched and pointing towards more massive objects.

Let us now take a closer look at how RSDs can be altered by objects with tidal align-

ments and direction dependant selection effects. From Hirata (2009), it is shown that the

best model for intrinsic alignments is to suppose that the large-scale tidal fields can in-

duce a preferred orientation for objects. The selection of a certain orientation would then

depend on the observers LOS and configuration of the tidal field. A plausible model for

tidal alignments can be derived where the large scale tidal field is taken as a perturbation

and then Taylor expanded to its lowest non-vanishing term. The observed galaxy density
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field in the linear regime will thus include a direction dependant selection function, ε(n̂|x),

which was derived to be:

ε(n̂|x) =
A

4πGa2ρm

(
n̂in̂j∇i∇j −

1

3
δKij∇2

)
φ(x) =

A

4πGa2ρm
Tij(x)n̂in̂j (2.2)

where A is the Taylor expansion coefficient. Using the Poisson equation we can simplify

equation 2.2 to :

ε(n̂|x) = Asij(x)n̂in̂j (2.3)

where

sij(x) =

(
∇i∇j∇−2 − 1

3
δKij

)
δm(x) (2.4)

is the dimensionless tidal field tensor. Finally, considering the Fourier transform of ε(n̂|x)

we can now estimate the effect of tidal alignments on the observed galaxy power spectrum

in redshift space. In Fourier space, equation 2.3 becomes:

ε(n̂|k) = Asij(k)δm(k) = A

(
(n̂ · k̂)2 − 1

3

)
δm(k) (2.5)

In Hirata (2009), it is argued that the final observed redshift space galaxy density in the

linear regime will be:

δsg(k) = (bg + fµ2)δm(k) + ε(n̂|k) (2.6)

Since sij(k) is a rank-2, 3× 3, traceless matrix (i.e. sxx + syy + szz = 0) it can be described

by a quadrupole moment tensor and thus is a projection of the quadrupole. Therefore,

when expanding ε(n̂|k) in terms of spherical harmonics as described in Hirata (2009),
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the expansion gives a quadrupole term only with all others being zero. This leads to the

following:

P s
g (k) = (bg + fµ2)2Pm(k) +

[
4

3
A(bg + fµ2)L2(µ)Pm(k) +

4

9
A2L2(µ)2Pm(k)

]
(2.7)

where the terms in square brackets are from the surviving l = 2 components of ε which

transform as a quadrupole. Since our two tidal alignment terms present are completely

determined by δm in this model, we can simplify the above expression to:

P s
g (k) = P s

g (k, µ) =

(
bg −

A

3
+ (f + A)µ2

)2

Pm(k) (2.8)

We notice that the redshift space power spectrum retains the same functional form as

equation 1.17 in Chapter 1, however, the addition of the intrinsic alignments alter the

parameters bg and f . Equation 2.8 is known as the tidal alignment model. In this model,

the constant A will affect the apparent rate of structure growth, f , depending on the

selection of objects. If objects are selected in a region where the tidal fields compress

objects along the LOS, then A > 0, enhancing RSD, while if in regions where the tidal field

stretches objects along the LOS, then A < 0, suppressing RSD. In general, the parameter

A describes how tidal fields feed into the orientation of objects and ultimately affect their

selection. Thus, the constant A encodes the physical correlation of halo properties with

the tidal fields adding to the Kaiser distortion. In the case where tracer objects are not

correlated with the tides, A = 0 and we recover the general Kaiser model for RSDs.

In figure 2.4 we present an example where we consider selected objects in real space
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Figure 2.4: Anisotropic signal for real space selection of halos based on their orientation
with respect to the LOS (for this example we choose the x-axis to be our LOS). Halos
orientated parallel to the LOS (red solid, ‖ halos), perpendicular to the LOS (blue solid, ⊥
halos), and randomly orientated (green and magenta solid), are composed of halos of mass
Mh > 9.86 × 1013h−1M�. The random distributions are of the same size as each aligned
halo catalogue. The solution to the Kaiser RSD term when your LOS is perpendicular to
the direction RSD is applied is shown by the black dashed line. Our two kinds of selection
clearly deviate from this line.

that are either orientated perpendicular or parallel to the LOS (similar to what is shown

in figure 2.3). To split our halo catalogue based on orientation we consider the ratio of

the dispersion of particles within a halo, R = σx/σy. Wherever this ratio is greater than

one we will have selected a halo that is more aligned with the x-axis and wherever this
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ratio is less than one we will have selected a halo that is more aligned with the y-axis. We

will also consider the case of the most extreme orientations and select only the top 25% of

halos aligned parallel or perpendicular to our LOS (in order to remove the large number of

spherical halos in real space at z = 0). In this figure, we have also decided to make a mass

cut by using only objects with more than 150 particles (Mh > 9.86 × 1013h−1M�). The

reason for this mass cut is to highlight this effect for some of the more massive halos that

will not exist close by in filaments. From this plot, it is obvious that even in real space,

we will produce a large scale anisotropic signal based on the selection of objects with a

preferred orientation. As described in Obuljen et al. (2019), the correlations seen between

non-scalar properties and the tidal fields implies that halos will exhibit an anisotropic

assembly bias signal if selected based on these properties. Ultimately, since the tidal field

tensor along the LOS has a similar weighting to the quadrupole (i.e. slos/δm = (µ2 − 1
3
)

and L2(µ) = 3
2
(µ2 − 1

3
)), if using an object selection algorithm that is correlated with the

tidal field, we will complicate the interpretation of measurements for the growth of cosmic

structure using RSDs.

2.4 Tidal alignment in redshift space for our simula-

tion data

In figure 2.4 we illustrated how our selection can introduce an anisotropy to the real

space power spectrum, contaminating redshift space clustering measurements of the growth

of structure for group catalogues. Next, we would like to make the same selection but on
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objects in redshift space space as would be the case in a survey. First, we can show that

on average, the orientation of all halos in redshift space will not be random but instead

are inherently aligned along the LOS (or where RSD is applied).

In figures 2.5-2.8 we show contours for the shapes of our low mass halos in a 2D plane

that includes the direction RSD was applied to (in our case the z-axis in a cube). If we

group find in real space, and move objects to redshift space, we notice that on average

most objects will be aligned and orientated along the LOS. This is expected for individual

halo shapes while using an isotropic group finder. However, if we instead were to make

a selection of halos in redshift space (more realistic case) and then take those halos and

move them back into real space, we notice that our selection is no longer isotropic and

we have added in some preferred orientation and alignment along our LOS. This means

that when selecting in redshift space, our group finder preferentially selects object aligned

along the LOS in real space, even in our case of low mass halos. For more massive halos,

this selection effect becomes even stronger and we have a greater deviation from isotropic

selection. In order to avoid this selection dependence we can attempt to select objects

based on their orientations perpendicular to our LOS and RSD in redshift space.

In figure 2.9 we show an example of the same selection as figure 2.4 but now for the

more realistic case in redshift space. In this example, we can see that our anisotropy is now

a combination of the RSD Kaiser effect and the anisotropic assembly bias effect. However,

for this example we have identified objects not on their LOS orientations as in a survey

but based on their orientation perpendicular to the LOS. This is because if we apply RSD

along the z-axis (our LOS) then the xy-plane will not be as affected by RSDs. We can

re-derive the quadrupole for the Kaiser effect when our LOS is set to be perpendicular to
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RSD to be:

P s
2,⊥(k) =

1

2π

5

2

∫ +1

−1

∫ 2π

0

[
bg + f(1− µ2) cosφ2

]2

Pm(k)L2(µ)dµdφ

= −2Pm(k)
[1
3
bgf +

1

7
f 2
]

= −1

2
P s

2,‖(k)

(2.9)

Unfortunately, this is a main advantage that we can easily use in a simulation box but not

for a galaxy survey. More care would be needed into setting up a Fast-Fourier-Transform

(FFT) algorithm where we can compute the power spectrum in the sky-plane (i.e. per-

pendicular to our LOS) and then take into consideration the orientation of objects in this

plane. Ultimately, we have shown here that anisotropic assembly bias is present where

you have a specific selection and RSD can provide us with that selection where objects are

preferentially aligned along the LOS.
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Figure 2.5: Real space contours (10 levels) from Friends-of-Friends selection in the xz-
plane for halos with mass Mh > 9.86×1013h−1M�. On average, we notice halo shapes give
a spherical distribution signifying their orientations are isotropically selected.
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Figure 2.6: Orientation of halos in the same plane as figure 2.5 when we move the particles
of each halo into redshift space. Since we use the plane-parallel approximation particles
will only be dispersed in one direction, elongating structures along the LOS.
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Figure 2.7: Contours for halos found in redshift space using the same isotropic Friends-
of-Friends group finder. Overall distribution is equivalent to the case where halos are found
in real space and moved to redshift space.
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Figure 2.8: Halos found in redshift space moved back into real space. Preferred orienta-
tion of halos no longer random and redshift space halos show a preference of being aligned
along the LOS. This is the result of redshift space selection effects from a isotropic group
finder.
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Figure 2.9: Combination of Kaiser RSD and anisotropic selection effects. Catalogues are
split based on their orientations in the ’sky-plane’ (i.e. the xy-plane in our cube). Here,
P2 is measured perpendicular to the LOS in order to better distinguish object orientation
and RSD effects. The solid red (blue) curved are for selection of objects in redshift space
that are orientated parallel (perpendicular) to the LOS. The dot-dashed red (blue) lines
are the same lines from figure 2.4 for real space selection. The green and magenta lines
are two random samples for objects selected in redshift space. As we can see the random
samples to not exhibit an additional anisotropic selection effect and follow the linear RSD
theory curve (dotted black line). The dashed black line is the expected anisotropic signal
if we combine real space selection effects and Kaiser RSD.
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Chapter 3

Halo Alignments From a Weak

Lensing Perspective

In this Chapter we will explore a different way of detecting the alignments responsible

for our additional anisotropic signal. This will be achieved using the statistics from weak

gravitational lensing studies, and in particular, intrinsic alignment (IA) measurements

such as the the shear-shear and galaxy-shear correlation functions. We will also use the

alignment functions from IA studies which is a statistic that can detect the presence of tidal

alignments for a range of scales. In Chapter 2 we introduced the tidal field alignments and

how an anisotropic signal can be measured if splitting or selecting your catalogue based

on specific internal properties that correlate with the large-scale tidal field. In Obuljen

et al. (2019), it was shown that the strongest correlation is seen between the tidal field

tensor, sij, and the inertia tensor, Iij. For this chapter, without having to explicitly split

our catalogue based on orientation, we are able to show the presence of these alignments
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in the statistics mentioned above. Utilizing the inertia tensor we are able to find the tidal

fields stretching axis of our halos and compute our various statistics.

3.1 Intrinsic alignment measurements

The variety of galaxy morphologies we observe is related to their interactions with

the local environment influencing their evolution along with the initial conditions of their

formation. The connection of galaxy morphology and the local environment was made

early on by Hubble (1926) and further established in work by Dressler (1980) with the

morphology-density relation. Furthermore, the orientations of galaxies, their alignments

with local structure, and the impact of their shapes on measurements of gravitational weak

lensing has been a prominent area of research in the 21st century as reviewed in Joachimi

et al. (2015). We will adopt the statistics from such studies in the context of orientations

and shapes of dark matter halos and galaxy clusters.

A crucial ingredient in weak lensing studies is the measurement of the alignments of

galaxy shapes. This can be quantified by using a galaxies ellipticity, εi, and position

angle, θp,i, with respect to some local coordinate system. We should note that although

most works of intrinsic alignments derived from weak lensing focus on galaxy shapes and

orientations as contamination, we may apply similar principles and statistics to galaxy

clusters or dark matter halos to see if orientations of clusters/halos are correlated.

The ellipticity of a galaxy or cluster can be calculated using the quadrupole moments

of the surface brightness distribution of an image. In weak lensing studies this can be
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expressed by,

Qij =
1

F0

∫
xixjW (x)Σ(x)dx (3.1)

where x is the two-dimensional position on the sky, Σ(x) is the surface brightness of

the galaxy, F0 is the weighted monopole moment (corresponding to the flux in the case

of unweighted moments) and W (x) is a weight function. In other words, Qij will give

information on the shapes of a galaxy or cluster such that a circular image will have

Qxx = Qyy and Qxy = 0. However, in the case of our N-body simulation data, where we do

not have the surface brightness distribution of objects, we can easily quantify the shapes

of our clusters using the traceless moment of inertia tensor instead,

Iij =
1

N

N∑
k=1

∆xk,i∆xk,j (3.2)

where a cluster has N particles and ∆xk,i is the ith component of the unit vector ∆x̂k

pointing from the cluster centre of mass to the position of the kth particle. From here, if

we consider the sky-plane to be the xy-plane in our simulation, a good measure for the

ellipticities ε1, ε2 (sometimes referred to as third flattening) can be calculated as:

ε1 =
Ixx − Iyy

Ixx + Iyy + 2
√
IxxIyy − I2

xy

(3.3)

ε2 =
2Ixy

Ixx + Iyy + 2
√
IxxIyy − I2

xy

(3.4)

Figure 3.1 is a sample of the orientations of objects in this plane for different values of ε1
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Figure 3.1: Ellipticities ε1 and ε2 in the xy-plane. Circular objects will have ε1 = ε2 = 0,
Dodelson (2003).

and ε2. As mentioned at the beginning of this chapter, using both the ellipticities and the

position angle we may derive our statistic for intrinsic alignments in a local environment.

The position angle (or pointing angle1), θp, can be defined as the radial vector that joins

a pair of objects together. In the sky-plane we will define the position angle relative

to the x-axis. Thus, using our ellipticities and position angle for a pair of objects we

can now compute the tangential and cross ellipticities to quantify our shape correlation

measurements2. These are:

ε+ = −
(
ε1 cos 2θp + ε2 sin 2θp

)
(3.5)

1Depends on the context of use, but both the position angle defined in section 3.1 and pointing angle
that will be defined in section 3.4 are equivalent angles.

2For GI correlations this is usually defined as the shear γ+,×. For the rest of this work we will refer
to the use of the ellipticities for intrinsic alignment measurements as a pure shape statistic rather than a
shear statistic as in weak lensing.
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ε× = −
(
ε1 sin 2θp − ε2 cos 2θp

)
(3.6)

In the next section we will use the tangential and cross ellipticities to calculate the most

common statistic in the intrinsic alignment and weak lensing literature: the large-scale

two-point correlation functions know as the galaxy-shear and shear-shear correlations. As

mentioned, we will refer to these as the galaxy-shape and shape-shape correlations. Com-

bined with the standard galaxy-galaxy correlation function, these make up what is known

as the three-two-points (3-2PCF).

3.2 Ellipticity correlations

If our density field, δ and our ellipticities, ε, are Gaussian, then all cosmological infor-

mation will be contained in the auto and cross correlations between positions and shapes

of our halos/clusters. Thus, we can derive estimators of the two-point correlation functions

between the positions of our tracers and their corresponding shapes. Using the ellipticities

with respect to axes orientated tangentially(+) or at 45 degrees (×) to a line joining a pair

of objects we can define the ellipticity correlation function as:

ξ±(rp,Π) = 〈ε+ε+〉(rp,Π)± 〈ε×ε×〉(rp,Π) (3.7)

It should be noted that in clustering studies, ξ is commonly used to describes the 3D

correlation function while wp describes the projected correlation function. Here we use the

symbol ξ to describe projected quantities such as the ellipticities and will make it clear by

writing ξ as a function of rp and Π which are the projected sky-plane and LOS separations
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respectively. Thus, the 3D redshift space separation between a pair of objects would be

s =
√
r2
p + Π2. In our analysis, rp is chosen to be the projected separation of a pair of

objects that do not include the axis RSD is applied.

The ellipticity correlations are pretty straight-forward to estimate from a survey or

simulation box. In terms of the galaxy-galaxy correlation which considers objects linked

together based on their separation in rp and Π we can use the Landy-Szalay estimator

discussed in chapter 1:

ξ̂gg(rp,Π) =
DD(rp,Π)− 2DR(rp,Π) +RR(rp,Π)

RR(rp,Π)
(3.8)

Where DD,DR,RR are the pair counts normalized by the total possible pairs of each data

set. For example, given a catalogue D that contains nD objects with a given position, if we

make PDD possible pairs in various bins of rp and Π, then our calculation for DD(rp,Π)

would be:

DD(rp,Π) =
PDD(rp,Π)

nD(nD − 1)/2
(3.9)

Next, we can adopt a version of this estimator for galaxy-shape correlations that modifies

the Landy-Szalay estimator as described in Mandelbaum et al. (2010). This estimator

makes use of equation 3.5 to see on average how many objects are either parallel or per-

pendicular with the vector joining it to another object in your data set. To do this we will

define the following calculation for a pair of objects denoted by indices i and j:

S+D =
∑

i 6=j|rp,Π

= ε+(i|j) (3.10)
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Simply put, S+D is the sum of the tangential ellipticity over all pairs of objects with

separations rp and Π, where one object is in the shape sample and one object is in the

position sample. The modified galaxy-shape correlation then reads:

ξ̂g+(rp,Π) =
S+D − S+R

RR
(3.11)

Similarly, we can define an estimator for the shape-shape correlation for both the tangential

and cross ellipticities. These are:

ξ̂++(rp,Π) =
S+S+

RR
(3.12)

ξ̂××(rp,Π) =
S×S×
RR

(3.13)

where,

S+S+ =
∑

i 6=j|rp,Π

= ε+(i|j)ε+(j|i) (3.14)

and likewise for S×S×, where the cross ellipticities are used instead. Alternatively, the

above correlation functions can use the position angle or spin parameters, however, a

direct relation for the impact of intrinsic alignments requires knowledge on the shapes of

our objects, and thus the ellipticities are most useful in our study.
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3.3 Projected correlation functions

As with our previous analysis in chapter 2, we wish to find a way to measure our

statistic with minimal influence of RSDs. To do this in the previous chapter we considered

the sky-plane (recall this is the xy-plane in our simulation) to select objects based on their

orientations. This had allowed us to minimize the effects of RSDs from our selection. In

terms of our ellipticity correlations, we can collapse this statistic along our axis where

RSD is applied (i.e the Π axis) to obtain the projected correlation function, w(rp). The

projected correlation function is unaffected by RSD since it will only depend on rp which

is in-fact the xy-plane where we will measure ε1 and ε2. To do this, an integrator is

created to collapse our matrix of values stored in Π bins for various rp bins3. For some

pair a, b ∈ {δ, g,+,×}, the corresponding projected correlation function, wab(rp) is given

by integrating the correlation function as follows,

wab(rp) =

∫ +Πmax

−Πmax

ξab(rp,Π)dΠ (3.15)

where we have established that Π is the distance between objects along the LOS. A detailed

physical understanding of our projected correlation function for our shape and position cat-

alogues requires a comparison with theoretical alignment models, such as the ones detailed

in Kiessling et al. (2015) and Samuroff et al. (2020). These are,

wgg(rp) = b2
g

∫
J0(krp)Pδ(k)

kdk

2π
(3.16)

3see Appendix H for source code of correlations function.
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wg+(rp) = −bg
∫
J2(krp)PGI(k)

kdk

2π
(3.17)

w++(rp) =

∫ [
J0(krp) + J4(krp)

]
PII(k)

kdk

2π
(3.18)

where Jn(krp) is the nth order Bessel function of the first kind and bg is the linear galaxy

bias. In these integrals, we define the large-scale galaxy-shape and shape-shape power

spectrum’s from Hirata and Seljak (2004) which have the form,

PGI(k) = −C1ρ̄(z)a2(z)

D(z)
Pδ(k) (3.19)

PII(k) =

(
C1ρ̄(z)a2(z)

D(z)

)2

Pδ(k) (3.20)

where C1, is a normalization constant, ρ̄(z), a(z), D(z), are the mean density in the Uni-

verse, scale factor and growth function at some redshift z respectively, and Pδ(k) is the

linear matter power spectrum. We follow many previous analyses in fixing C1 to the value

from Brown et al. (2002) and parameterizing deviations in strength of alignment from this

baseline, such that we have a free amplitude A1 when numerically computing the integrals

where PGI(k)→ A1PGI and PII → A2
1PII .

Figure 3.2 is our measured projected correlation functions using our estimators de-

scribed by equation 3.8, 3.11 and 3.12 with our theory curves over-plotted. The presence

of non-zero galaxy-shape and shape-shape correlation functions over all scales indicates the

presence of both small and large scale alignments as a result of the tidal fields. It should be

noted that the large scale tidal fields will orient and stretch massive objects certain ways

which will then dictate the orientation and alignment of objects on smaller scales, such as
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Figure 3.2: Our three 2-point projected correlation functions (solid lines). Shaded areas
represent 1σ uncertainties, computed as the error on the mean of our simulations. Dashed
lines of similar colour to the solid lines are the associated linear alignment theory curves
(Note that our fits are only seen for scales > 20−30 h−1Mpc). Non-linear alignment theory
can predict the shape of our projected correlations for small scales.
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the halos/clusters residing in filaments. Thus, we can say that our large scale alignment

amplitude A presented in equation 2.8 in chapter 2 is related to the constant A1 used in

equations 3.17 and 3.18 and holds information about our alignment signal (this is presented

in more detail in Samuroff et al. 2020). In the next section we will look at an alternative

statistic that is easier to use when measuring the alignments of massive/compact objects

based on tidal interactions within a local environment.

3.4 The alignment functions

As discussed, structures in the Universe are predicted to have shapes that are aligned in

specific ways with each other due to tidal forces and physical processes like the coherent in-

fall of matter along filaments for instance. These alignments can be manifested in various

ways such as the relative orientation and alignment of pairs of galaxies or cluster shapes

with one another or the alignment of their shapes with the largest cluster in its local

environment (usually chosen to be the Brightest Cluster Galaxy (BCG) in a survey). As

mentioned, most of the intrinsic alignment studies have put a focus on galaxies mainly

because of its effects on weak lensing measurements, Hirata and Seljak (2004). In this

section we once again consider a statistic that is discussed in terms of intrinsic alignments

in weak lensing literature. We will measure the large-scale intrinsic alignments of halos in

our simulations and search for two types of alignments discussed in Hopkins et al. (2005)

using pairs of halos. The first statistics we consider is the alignment between the projected

major axes of a pair of halos, commonly referred to as the correlation alignment. The

second is the alignment between one halos major axis and the radial vector connecting it
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to the other halo in its pair, referred to as the pointing alignment.

To start, for each identified halo in our simulation we can find pairs of separation

rp < 100 h−1Mpc. To group pairs separated by their projected distance rp we must also

consider ’redshift’ bins along the LOS where RSD is applied. This will be a maximum

separation in what we have called the Π direction for this analysis. From Smargon et al.

(2012) we can consider redshift bins of ∆z ≤ 0.015 that are used. In the adopted ΛCDM

cosmology for our simulations, this works out to be about Π ≤ 100 h−1Mpc. We then

compute the two statistics mentioned where the pointing angle, θp, indicates whether halos

tend to point towards one another and the correlation angle, θc, which tells us about the

relative alignment of cluster shapes of the pair. Ultimately, we will compute the quantity

〈cos2 θn〉 for n ∈ {c, p} in each rp bin4. This is the dot product of the vector that points

along the largest axis of our halo with either another halos largest axis vector, 〈cos2 θc〉 ,

or the vector joining it to another halo, 〈cos2 θp〉. These two statistics are referred to as

the alignment functions in the literature.

In order to identify halo shapes and the stretching axis vector as a result of the tidal

fields we once again use the inertia tensor in our simulation given by equation 3.2. We

then solve our characteristic equation: det(Iij − λI) where I is the identity matrix to find

the eigenvalues λi and corresponding eigenvectors, ~vi. These eigenvalues are sorted such

that λ1 > λ2 > λ3 where our largest eigenvalue λ1 corresponds to the largest length of

our halos axes. Thus, the normalized eigenvector ~v1 associated with eigenvalue λ1 is the

stretching or long axis of our inertia tensor.

4In terms of projected shapes, ±cos(θn) are physically identical, since there is no preferred ’positive’
direction for the unit vectors used. Thus, 〈cos2 θn〉 is a good statistic to include the full range of values
without boosting our amplitude.
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In figure 3.3 we show our measurements of both alignment functions 〈cos2 θn〉. For

our projected case, this statistic would be equal to 〈cos2 θn〉 = 0.5 for a purely random

distribution of cluster shapes. Thus, the error bars on each point is estimated by assigning

all halos a random orientation angle and redoing the measurement with the random angles

(i.e. lack of any physical alignments). As mentioned, the random signal is a known value

for both the pointing and correlation angles and so deviations from 0.5 in our random

orientation angle measurements can be used to quantify the noise in our measurement of

each function. We notice that for separations rp < 30 h−1Mpc we have a strong indication

that alignments are not random for both statistics. As we move to larger and larger

separations we tend to the mean signal for randomly orientated objects where information

about the environment for a pair of halos becomes less correlated. Also, equivalent to

Splinter et al. (1997), Hopkins et al. (2005) and Smargon et al. (2012) we find a stronger

alignment signal for the pointing angle and that the pointing angle signal extends to larger

scales. The features of these measurements indicate that tidal alignments are present,

orientating our halos in specific ways, such as halos in filaments pointing towards over-

densities and the tidal fields stretching axis influencing the alignments of our pairs.
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Figure 3.3: Correlation alignment(green) and pointing alignment (blue) averaged over
100 Quijote simulations for halos of mass Mh > 6.57 × 1013 h−1M�. The shaded regions
are the uncertainties for deviations from 〈cos2(θn)〉. We have plotted the 5σ uncertainty
here since the width of our solid line is larger than the 1σ uncertainty. We have used
z = 0 snapshots in this scenario and at late times we expect halos to be more spherical
on average and to obtain the weakest signal for both alignment functions. As we move to
early times in the Universe the halo ellipticities become more defined and our alignment
function signal becomes stronger. The yellow dashed line represents the mean of 〈cos2(θn)〉
which would be the expected value of our calculation if we do not have the presence of
alignments.
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Chapter 4

On the Difficulty of Using Group

Catalogues to Make Clustering

Measurements

In this chapter, we will create various galaxy catalogues that mimic a BOSS galaxy

survey (such as the one used in Reid et al. (2014)) in attempt to differentiate between

pure RSD anisotropy and tidal alignment anisotropy based on selection, introduced in the

previous chapters. To create these catalogues, we will use our Quijote ΛCDM simulations

and then populate our dark matter groups with galaxies using a Halo Occupation Distri-

bution (HOD). We will include information about the shapes of the parent dark matter

halo, since, as mentioned in chapters 2 and 3, this internal property strongly correlates

with the tidal field and can be used to infer information about how clusters are aligned.
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These alignments can add an additional contamination to our selection and thus redshift

space clustering measurements. In this chapter we wish to present a measurement of how

alignments can produce an additional anisotropic effect in the multipoles and its depen-

dence on selection method. In section 4.1 we will briefly present the simulation data used

to set up the framework of our dark matter catalogues. In section 4.2 and 4.3 we discuss

our population technique for three separate galaxy catalogues that will be used. We will

describe a standard HOD analysis, a modified HOD that was used in order to recover infor-

mation about the parent dark matter halo shapes, lost with a standard HOD, along with a

control catalogue that serves to differentiate between pure RSD and RSD+IA anisotropies.

In section 4.4 we present the algorithms that participated in both our real and redshift

space group finding. In section 4.5 we use our statistics from chapters 2 and 3 to confirm

the presence of alignments and shape information in our galaxy catalogue. Finally, in sec-

tion 4.6 we combine our selection effects and alignments analysis in attempt to recover an

anisotropic assembly bias signal for a survey-like galaxy catalogue.

4.1 Quijote simulations and dark matter halos

To investigate the properties of galaxy clusters, we use 100 Quijote N-body simulations

to create the skeleton of a ΛCDM universe Villaescusa-Navarro et al. (2020) in a periodic

box of length 1 h−1Gpc. . These snapshots are similar to those used in previous chapters,

however, the subset of simulations we use here are output snapshots at z = 0.5. The

choice of this redshift is based on the subsequent choice of HOD parameters that follow

Reid et al. (2014) (described in section 4.3). Each simulation contains 5123 particles of mass
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Mp = 6.57× 1011 h−1M�. All simulations were run using the following set of cosmological

parameters: {Ωm,Ωb,ΩΛ, ns, h = 0.3175, 0.049, 0.6825, 0.9624, 0.6711}. These parameters

are in agreement with the constraints from the Planck satellite (Aghanim et al., 2020). We

will then group dark matter particles in real space using an isotropic Friends-of-Friends

(FoF) group finder with linking length parameter bll = 0.2. We consider a dark matter

halo to be a group with more than 20 particles and thus set nmin = 20. These catalogues

are saved and then used when populating galaxies into our halos. More details on further

use of the grouping algorithms is discussed in 4.4.

4.2 Galaxy catalogues and the halo occupation distri-

bution

Using our dark matter catalogues, we wish to create mock galaxy catalogues that

resemble a galaxy survey. For this work we have decided to consider the analysis conducted

in Reid et al. (2014) in order to populate our dark matter halos. Here the authors create

a mock catalogue to mimic the CMASS sample from SDSS data release 10 (DR10) which

covers galaxies in the redshift range 0.43 < z < 0.7. For details on DR10 see Ahn et al.

(2014) and for details of the sub-sample used see Anderson et al. (2014). Using our dark

matter snapshots, we will populate our halos with galaxies based on the Zheng07Model

from Zheng et al. (2007). This HOD will be our baseline used in this work where the

amount of centrals and satellites populated within a dark matter halo is given by the
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Parameter Choice
logMmin 13.031
σlogM 0.38
α 0.76

logMo 13.27
logM1 14.08

Table 4.1: List of the HOD parameters used in this work.

following numerical calculations:

Ncen(M) =
1

2

(
1 + erf

[
logM − logMmin

σlogM

])
(4.1)

Nsat(M) =

(
M −Mo

M1

)α
(4.2)

Here, logMmin is the minimum mass required for a dark matter halo to host a central

galaxy, σlogM is the rate of transition from Ncen = 0 to Ncen = 1, α is the power law slope of

the relation between the dark matter halo mass and the number of satellites, Mo is the low-

mass cutoff for a dark matter halo of mass M to host a satellite and M1 is the characteristic

halo mass where the function Nsat begins to assume a power law. To mimic the SDSS DR10

data and the LowRes simulation used in Reid et al. (2014), we adopt similar parameters

used for their HOD as outlined in table 4.1. For our Quijote simulations, this HOD

population technique and parameter choice gives us a number density of approximately,

n = 3.3× 10−4 for each simulation. This is about a factor of 1.3 times smaller than what

this HOD gives on the simulations we are comparing to which has a number density of

nLowRes = 4.2× 10−4. From here on out we will refer to this populated galaxy catalogue as

our Zheng catalogue. In general, this population technique assumes a spherical Navarro-
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Frenk-White (NFW) profile (Navarro et al. 1997) in which a central galaxy is placed in

the halo centre of mass position and satellites are randomly placed within some sphere of

maximum radius, Rvir. We should note that from our lower mass limit of dark matter

halos, some halos will only receive a central galaxy and thus it is not possible to retrieve

information about the shape for such objects. Also, the clustering description of this

HOD assumes the galaxy-halo connection depends only on the halo mass removing the

3D information of our halo and does not allow our tracer galaxies to give us information

about the orientation of the host halo of a particular mass. We will discuss a modification

to work around this in the next section, 4.3, along with a control catalogue that serves

as a better comparison to the modifications we make. In general, the modifications will

change the outputs of the Zheng07Model to include information of the shape of our parent

dark matter halo that galaxies are populated in. Simply put, this standard Zheng07 HOD

does not include information about intrinsic alignments and we wish to include this in our

catalogue to see if we will introduce anisotropic assembly bias, similar to what was shown

for dark matter halos in Obuljen et al. (2019).

4.3 Modified HOD and control catalogue

As mentioned, in our standard HOD analysis, information about the orientation and

shape of our parent dark matter halo, that should be reflected in our galaxy clusters

after population, disappears. In order to create a galaxy catalogue that includes this

information we will modify the HOD output used by placing satellites in locations that

trace out the 3D distribution of dark matter particles in the halo. Following the same
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formalism as described in section 4.2, we populate centrals the same way but alter the

location of our satellites. Instead of having our satellites randomly placed within a sphere

of radius Rvir for each halo, we will move these satellites into randomly selected dark

matter particle positions of that associated halo. Thus, when we populate our satellites,

we essentially are sub-sampling the dark matter halos. We also make sure to include the

dark matter particle velocities that are selected to become our satellites. Since the standard

HOD randomly places satellites, the standard HODs velocities are thus also randomized,

removing redshift space shape information. To verify that we have maintained majority of

the information about the stretching axis of a halo with our new galaxy clusters, we will

use the calculation of our stretching axis (i.e. largest eigenvector associated with largest

eigenvalue of Iij) of the parent dark matter halo with its newly populated galaxies. To

compare, we then compute the dot product between these vectors. If our galaxy clusters

maintain similar shape information then this calculation should be approximately 1 since

the angle φ between these eigenvectors should be zero. Figure 4.1 shows the distribution

of cosφ for the case where we use the standard HOD cluster shapes and the new modified

HOD cluster shapes. As expected, since the standard HOD removes information about

the dark matter halo shapes, we have a flat, random distribution of galaxy cluster shapes

compared to the parent dark matter halo shapes. For our modified HOD we see a skewed

distribution towards cosφ = 1 were we have successfully recovered shape information for

majority of our halos. Values of cosφ→ 0 are dominated by our 2-particle galaxy clusters

since these will add a great deal of noise to the shape information as these only allow

1 satellite to be placed relative to the central with a very low probability of tracing out

the correct parent dark matter halo shape. We find that 98% of clusters that give back
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Figure 4.1: Histogram of the misalignment angle which is the dot product of parent dark
matter halo shape with corresponding populated cluster shape (in terms of the stretching
axis or longest axis eigenvector used to calculate shape correlations and alignment func-
tions). The solid red line is for our modified HOD which is designed to give back similar
eigenvectors used to compute alignments of dark matter halos. The shaded grey region is if
we had a random uniform distribution of cluster shapes (i.e. the newly populated clusters
do not represent the proper shape of the parent halo). Over-plotted is the Zheng07Model
HOD output and my rotated catalogue galaxy cluster shapes that are random relative
to their parent dark matter halo (purple and green lines respectively). Notice that the
Zheng07Model or rotated catalogue do not give back information of shapes equivalent to
their parent halo shapes or an alignment signal and thus follows the random distribution
given by the shaded grey region.
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values of cosφ ≤ 0.5 are from 2-particle clusters. This number drops of exponentially for

cosφ → 1. It is true that this adds significant noise to the alignment signal, however, for

many of the low mass halos, we still recovered some 2-particle clusters that ended up in

our final bin of 0.98 < cosφ ≤ 1.0. In order to utilize the entire galaxy catalogue, we

decide to keep these clusters and make our measurements. If we attempt to remove these

2-particle clusters and make similar measurements, this will remove 85% of all clusters

in the sample. We will show in 4.5 that even if we include these noisy cluster shapes, we

still recover a clear alignment signal in our galaxy catalogue. We will refer to this galaxy

catalogue as our Modified catalogue.

Our third and final catalogue to be used will be a control catalogue that utilizes our

modified HOD technique but removes any alignment signal. In order to do this, after our

modified population technique, we rotate the satellites in each halo in order to randomize

our alignments. The rotation is achieved using a randomized orthogonal rotation matrix

that follows a Haar distribution (Stewart 1980). This is the only known uniform distri-

bution for a n-dimensional special orthogonal group1. We will also make sure to rotate

the satellite velocities by the same random matrix used to rotate its positions. Thus, once

this 3× 3 rotation matrix is applied to each cluster, this catalogue will only contain RSD

effects and be equivalent to the standard HOD technique. However, this catalogue makes

for a better comparison to our modified HOD in the analysis since it adopts the same

population technique and then removes the presence of intrinsic alignments as described.

It also maintains the same radial separations between satellites and the central galaxy

1The scipy.stats python package contains a function special ortho group() that can calculate this
rotation matrix for us.
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Group Finder Linking length choice
FoFzheng, mod, rot bll = 0.215

CGMzheng, mod, rot r⊥ = 0.1, r‖ = 0.513

Table 4.2: The different galaxy group catalogues used and their corresponding linking
lengths. The subscripts ’zheng’, ’mod’ and ’rot’ represent the standard Zheng HOD output,
the modified HOD output and the rotated shape catalogues respectively.

after rotation in real space. We will refer to this catalogue in our analysis as our Rotation

catalogue. Appendix E gives a brief visualization of how this rotation is applied in creating

our control catalogue.

4.4 Group finding algorithms

In order to analyze large cosmological simulations, we adopt the hierarchical Friends-

of-Friends (FoF) algorithm that is publicly available with the Python package nbodykit

adapting techniques from Efstathiou et al. (1985). We have created our group catalogue

in real space utilizing the snapshots described in section 4.1. We consider groups with at

least 20 particles (Mh > 1.314 × 1013 h−1M�) selected with an isotropic linking length,

bll = 0.2. This results in grouping > 300, 000 dark matter halos per simulation. Once these

dark matter halos have been found in real space we then proceed to populate our halos

with galaxies using our standard HOD. Using our populated galaxy catalogues, we then

move our galaxies to redshift space by the transformation: s = r+ v·ẑ
aH

. We then proceed to

group our galaxies in each catalogue considering both an isotropic FoF and a Cylindrical

Grouping Method (CGM) algorithm. The names of the different group catalogues and the

linking lengths used on the galaxy catalogues is outlined in table 4.2.
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Figure 4.2: Keeping r⊥ fix at a value if 0.1 we adjust r‖ in order to recover an equivalent
amount of redshift space clusters as the ones that exist when we initially populated galaxies
into our groups.

We arrive at the choice of and isotropic FoF linking length of 0.215. This choice is

based on a few criteria. First, in real space, bll will no longer be the most ideal linking

length since we have greatly sub-sampled our dark matter catalogue and the mean parti-

cle separation between our populated galaxies and the original dark matter particles has

changed substantially. The second is that we have then moved particles into redshift space

where the apparent field is non-physical and so we must consider a wider range of values.

Thus, by altering our value of bll we can attempt to group together galaxies that were
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populated into a specific dark matter halo by extending the linking length a bit2. For

our CGM linking lengths we consider an optimal redshift space grouping algorithm that

keeps the transverse linking length the same as our standard FoF in real space (i.e. found

to be r⊥ = bll = 0.1 as discussed in appendix D for our galaxies) and then change the

LOS linking length (r‖) to recover an identical number of real space groups in redshift

space. Figure 4.2 shows the ratio of real space groups recovered in redshift space and the

corresponding choice of r‖. We found the most optimal choice based on this criteria to be

rparallel = 0.513.

4.5 Identifying alignments in galaxy catalogues

In order to confirm that we have indeed included the proper cluster shapes and halo

alignments in our galaxy catalogue, we can use the alignment functions described in chapter

3. A good comparison for our case is Smargon et al. (2012) where the alignment functions

were used on two pre-existing galaxy survey catalogues, a maxBCG catalogue from SDSS

photometric imaging data (Koester et al. 2007) and an adaptive matched filter catalogue

that identifies galaxy over-densities (Dong et al. 2008). Figures 1 and 2 in Smargon et al.

(2012) show a comparison of their correlation and pointing alignment signal relative to a

ΛCDM simulation (see Appendix F for plots).

In figures 4.3 and 4.4 we try to depict the same sort of plot where we have calculated

our galaxy alignment functions and include the original dark matter halo alignment signal

recovered in chapter 3 using our ΛCDM simulations. As we see, the alignment function

2See appendix D for further discussion on FoF linking length on our galaxy catalogue
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Figure 4.3: Similar to figure 3.3 but for the correlation angle alignment of galaxy clusters
(blue) compared to dark matter halos (black). Also included are the Zheng catalogue and
control catalogue in orange and green respectively. These catalogues lack any IA signal.
After making use of our modified population technique we see that we have a clear signal
for galaxy cluster alignments that follows a similar trend as to the dark matter halos.
Here, our galaxy cluster correlation alignment signal is suppressed, most likely due to the
noise our 2-particle clusters adds to our sample. Shaded errors are measured using the
uncertainty on 100 simulations. For a comparison to Smargon et al. (2012) see figure F.1
in Appendix F.

70



101 102

rp[h 1Mpc]

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

co
s2 (

p)

 Mean 2d projected pointing alignment
 Galaxy Clusters
 Halos
Rotated Clusters
Zheng Clusters

Figure 4.4: Similar to figure 3.3 but for the pointing angle alignment of galaxy clusters
(blue) compared to dark matter halos (black). The Zheng and control catalogue is also
included in orange and green respectively. Once again we have a clear signal for galaxy
cluster alignments that is suppressed compared to the halos but present for all scales. Can
also compare with figure F.2 in Appendix F.
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signals become suppressed since we have sub-sampled our dark matter halos and added

noise to our shape calculations. This is dominated by our 2-particle clusters as mentioned

in section 4.3, and is particularly weak for the correlation alignment. From Smargon et al.

(2012) this same trend is noticeable as a result of the smaller amount of cluster pairs

identified in the survey compared to a simulation.

From this, we can confirm we are clearly recovering a signal for the pointing alignment

on all scales along with a correlation alignment as a consequence of galaxy cluster align-

ments not being completely random. As mentioned, this also includes the shot-noise from

the 2-particle clusters that do not perfectly trace the proper parent halo shapes.

4.6 Large-scale anisotropy: RSD + alignments

In chapter 2, we have that shown that if a particular selection of halos in real and

redshift space couple to certain internal halo properties, such as the inertia tensor, one can

recover an additional anisotropy in the power spectrum (seen in the quadrupoles of figure

2.4 and figure 2.9). These internal properties themselves correlate with the large-scale tidal

fields (Hirata 2009, Martens et al. 2018, Obuljen et al. 2019) and selections independent

of these properties, will not result in this additional anisotropy and be dominated by RSD

selection effects. Thus, if our selection method is more likely to pick up halos orientated

a certain way then we will introduce an anisotropic assembly bias in our measurements

Obuljen et al. (2019). We have also shown in figure 2.8 that once we move into redshift

space and make a selection, we inherently are making an anisotropic selection since objects

will preferentially align along our LOS where RSD effects are present (for reference, figure
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3 in Obuljen et al. (2019) gives back similar information where if we find groups in redshift

space and move back to real space, the resulting quadrupole will be different than the real

space power and Kaiser prediction due to this anisotropic selection3). This is because once

the halos (or galaxies) are systematically moved from real to redshift space, performing

our group finding using an isotropic FoF for instance in redshift space will produce biased

groups. Thus, we create a catalogue of objects found in redshift space that are preferentially

orientated a particular way. In this section we plan to utilize all three of our galaxy

catalogues created (as discussed in section 4.3) in an attempt to differentiate between

the anisotropies caused by RSD selection effects with various group finders compared to

RSD and intrinsic alignment selection effects with the same group finders. Therefore,

regardless of the selection effects that may be caused by RSDs, we plan on extracting the

contamination of our groups based solely on the inclusion of intrinsic alignments.

To make a comparison between each catalogue, we will use our Rotation Catalogue

which serves as our control group for our galaxy catalogues. This control group should

only include RSD effects and removes any intrinsic alignments present and thus should not

include any additional selection effects based on these alignments. First, to make sure that

our control group is not changing our power spectrum measurements prior to any group

finding and selection, we will measure the multipoles and compare to our modified cata-

logue. This will allow us to confirm that both catalogues contain the same RSD effects and

that we do not inherently add in some discrepancy that is selection-independent between

them. Figure 4.5 shows that we have identical monopole and quadrupole measurements

for each catalogue and thus can now proceed with our selections on each.

3See Appendix G
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Figure 4.5: The monopole and quadrupole for our baseline model before and after rotation
on a log-linear scale. The monopole (quadrupole) before rotation is given by the magenta
(cyan) lines. The monopole and quadrupole after rotation are over-plotted given by the
black dashed lines. Clusters are from populated halos that had more than 20 dark matter
particles.
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To analyze the difference between our catalogues and selection method adopted, we

will plot the ratio,

Rl,j =
1
n

∑n
i

(
P s
l,i,j(k)− P s

l,i,control(k)
)

〈P s
l,control(k)〉

for l ∈ {0, 2} (4.3)

where n is the amount of simulations used, P s
l,i,control(k) is the redshift space multipole

for the ith simulation of the rotation catalogue and 〈P s
l,control(k)〉 is the average, smoothed

multipole for the rotation catalogue. Here, P s
l,i,j(k) is the ith simulation measurement on

the jth catalogue where j ∈ {FoFmod,FoFZheng,CGMmod,CGMZheng}. Equation 4.3 is a

way of determining the size of the effect our parameter A can have on the selection of

groups from equation 2.8. For all three catalogues we will use both our isotropic FoF and

CGM group finder. Therefore, we will have a total 6 group catalogues and 4 lines per

plot (2 galaxy catalogues will be compared relative to our control × 2 different selection

methods for each). In figure 4.6 we show these ratios for each catalogue for both the

monopole and quadrupole (for reference to the actual individual multipole outputs for all

catalogues, see appendix J.). Since we do not expect much difference in the monopoles,

information regarding an additional anisotropic signal will be seen in the quadrupole plot,

at the bottom of figure 4.6. However, from our quadrupole measurements, we can see

that we lack a strong and noticeable difference between the control catalogue and my

modified galaxy catalogue that includes intrinsic alignments (red dashed and solid blue

lines). We believe this can be a result of the already suppressed intrinsic alignment signal

being washed out on large-scales by RSDs for such small group sizes. As mentioned, we are

dominated by 2-particle clusters that add noise to our shape statistics and may not know
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Figure 4.6: The monopole fractions (top) and quadrupole fractions (bottom) for our
modified and Zheng07 catalogues relative to the control catalogue. Uncertainty for groups
found with CGM and FoF in the case of our modified catalogue comparison is calculated
as the standard deviation of the mean for equation 4.3 over 100 simulations.
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about the proper halo shapes in real space, let alone in redshift space. Since we modify

the shapes of our clusters in real space and then move these clusters into redshift space, a

cluster with 2-particles will distort the alignment and become preferentially aligned along

the LOS in our plane-parallel approximation.

For our FoF selection, we see very minor differences between the control and modified

catalogue (solid blue line) in our quadrupole which can be a result of a combination of a

weak intrinsic alignment signal and sub-optimal selection method to extract this potential

systematic effect in redshift space. We also notice that the Zheng07 catalogue comparison

using this selection (solid yellow line) tells us that this difference is also present for a

catalogue lacking intrinsic alignments. As discussed in chapter 2, we find that an isotropic

FoF gives us an anisotropic selection along our LOS in redshift space. This group finder

will mainly group the most compact ’massive’ objects in redshift space that exist in large

over-densities relative to CGM. If we do not change the linking length, this would result

in only approximately 25% of the more massive clusters being grouped. For our case, the

small change to the linking length allows us to recover more clusters, however, we must

be obtaining similar objects, whether it be the modified catalogue, Zheng07 catalogue or

control catalogue, dominated by RSD selection effects. For the CGM finder, which does a

better job at recovering clusters in redshift space, and is more commonly used on galaxy

catalogues, there also is a lack of a strong signal for differences between the quadrupoles

on large-scales as seen by the dashed red line. We note that at small scales for the Zheng07

catalogue with CGM, given by the dashed green line, we begin to diverge from the control

and this is believed to be a result of changing the sizes of our halos with our new population

technique. Ultimately, this signal is so faint for each group finder that it currently has very
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little consequence on our measurements.

At some point the intrinsic alignment signal has to be present as we are essentially

sub-sampling the halos. It is clear there is a strong signal in the halos as seen in Obuljen

et al. (2019) and for preferential selection as seen from our plots in chapters 2. For our sub-

sampled galaxy catalogue measurements, the weak signal may be a result of an insufficient

selection method along with our catalogue being dominated by noise. For our modification

technique, we are dominated by two noise sources. The first is the fact that we drastically

sub-sampled the halos and have many clusters with particles that do not know about the

halo orientation. Also, we have the probability of ’chance pairs’ because of such a small

minimum clusters size (i.e nmin > 1 in our selection for clusters). Therefore, we may have

non-real groups from halos that only received 1 galaxy for instance and were then grouped

together in redshift space. If we compare to our halos where we use much larger values

for nmin, we have a greater probability of obtaining real groups that are composed of 100

or more particles rather than 2 or more. Secondly, we are utilizing an HOD in which the

choice of parameters are set to match the CMASS SDSS DR10 sample. Future galaxy

samples that are deeper than CMASS will pick up fainter satellite galaxies, altering the

number density and thus parameter choices for the HOD, better reflecting the number of

objects typically in galaxy cluster. Also, for our low-resolution simulations we generally

only obtain massive halos and so for deeper surveys a simulation with better resolution

can create a mock galaxy catalogue utilizing a smaller M1 in terms of the HOD population

and thus we can have more objects in our halos to better trace the dark matter. In doing

so these selection effects may become more prominent and of interest in contaminating

our groups. Therefore, it is clear that in order to obtain a clear signal for anisotropic
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assembly bias in a mock galaxy catalogue, more care in our population and group sizes

could be important, along with our selection and cuts to our sample in order to extract

such a signal.
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Chapter 5

Summary and Discussion

Throughout this work we have studied the significance of group finders and selection

effects when making clustering measurements for LSS. In chapter 1 we introduced the

theory behind RSD anisotropy known as the Kaiser effect along with primary bias, bg.

In chapter 2 we explored some background theory on secondary bias and clustering along

with the relation of tidal field alignments and selection dependant contamination effects.

This selection effect can cause additional anisotropies in the power spectrum as seen in

the quadrupole and is referred to as anisotropic assembly bias, Obuljen et al. (2019). In

chapter 3 we explored the relation between large-scale tidal fields and the alignments of

halos utilizing some weak lensing statistics. We observe that the large-scale alignments

and orientations that are present within an over or under-dense region can dictate the

alignments of individual halos or clusters. Utilizing our simulations, we detect the presence

of various intrinsic alignments using an adopted form for the projected shape correlations

along with the alignment functions. In chapter 4 we created a mock galaxy catalogue
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that includes information about halo shapes and orientations in order to include intrinsic

alignments in our sample (not typically present in standard HOD analyses). We compare

this catalogue with a control catalogue that only contains RSD effects along with a standard

and commonly used Zheng07 HOD Model that lacks intrinsic alignments. We believe that

intrinsic alignments play a role in the selection of clusters when using group finders and

results in additional anisotropic effects as described by the tidal alignment model in Hirata

(2009). We found that extracting this systematic effect was not so trivial. Our attempt was

to separate selection effects between a catalogue that only contains RSD effects along our

LOS and a catalogue that includes both RSD and intrinsic alignment selection effects, the

latter being a more realistic and physical description of a survey. Ultimately, each catalogue

contained similar selection effects dominated by RSDs that inherently align objects with

our LOS. However, as initially shown in Obuljen et al. (2019), RSD selection effects can

also provide us with an additional anisotropic signal and thus each catalogue has the

presence of contamination in our selection of groups, albeit similar, and lacking a strong

indication of intrinsic alignment contamination. This makes the picture of using these

groups to make clustering measurements rather difficult as one would need to separate the

presence of such a selection effect. Thus, care must be taken when using group catalogues

where our selection is coupled to specific internal halo or cluster properties, as these may

add additional anisotropies, especially for more massive objects. There exists room for

improvement and advancement in this work in terms of addressing some of the noise sources

and limitations encountered to extract the intrinsic alignment effect. In general, selection

on halo size could lead to intrinsic alignments altering the anisotropic signal and should be

of interest in future, deeper surveys, like Euclid (Scaramella et al. 2021) and DESI (Levi
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et al. 2019) when using group catalogues where this systematic error could become more

significant.
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R. Farinelli, J. Graciá-Carpio, D. Maino, E. Medinaceli, S. Mei, C. Neissner, G. Polenta,

A. Renzi, E. Romelli, C. Rosset, F. Sureau, M. Tenti, T. Vassallo, E. Zucca, C. Bacci-
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Appendix A

Full Derivation of the Redshift Space

Density Field

Starting from the conservation relation, δsm(s) = J−1{1 + δm(r)} − 1, and taking the

Fourier transform, we get:

δsm(k) =

∫
δsm(s)eik·sd3s

=

∫ (
J−1{1 + δm(r)} − 1

)
eik·sd3s

=

∫
d3r

d3s
{1 + δm(r)}eik·sd3s−

∫
eik·sd3s

=

∫
{1 + δm(r)}eik·sd3r −

∫
eik·s

d3r

d3r
d3s

=

∫
{1 + δm(r)}eik·sd3r −

∫ {
1 +

1

aH

∂vz
∂z

}
eik·sd3r

=

∫
δm(r)eik·sd3r −

∫
1

aH

∂vz
∂z

eik·sd3r

(A.1)
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From here, we will make the substitution, s = r + v·ẑ
aH

, such that, ik · s = ik · r + ikvzµ
aH

,

where µ = k̂ · ẑ = cos θ. Thus,

δsm(k) =

∫ {
δm(r)− 1

aH

∂vz
∂z

}
eik·r+ikµvz/(aH)d3r (A.2)

This expression is exact under the distant observer and plane-parallel approximations. In

the derivation of equation 1.16, the extra term in the exponent is dropped out at linear

order to obtain our Kaiser formula. This exact expression is very difficult to evaluate and

is sensitive to non-linear physics. There are works that have sought to evaluate the full

form of this integral, such as the Taruya-Nishimichi-Saito (TNS) formula, Taruya et al.

(2010).
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Appendix B

Legendre Polynomials

Recall the compact expression for the Legendre polynomials is:

Ln(µ) =
1

2nn!

dn

dµn
(
µ2 − 1

)n
(B.1)

Equation B.1 is known as the Rodrigues’ formula. The first few Legendre polynomials are:

n Ln(µ)
0 1
1 µ
2 1

2
(3µ2 − 1)

3 1
2

(5µ3 − 3µ)
4 1

8
(35µ4 − 30µ2 + 3)

5 1
8

(63µ5 − 70µ3 + 15µ)

Table B.1: The first 5 Legendre Polynomials
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Figure B.1: Illustration of the first 5 Legendre polynomials. Curved produced using the
python package scipy.special.eval legendre
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Appendix C

Peak-Background Split Model

In cosmological theories, we generally describe the dark matter distribution and not the

galaxy distribution. However, what we observe from surveys is galaxies which we say are

biased tracers of the underlining dark matter density field. The general picture of galaxy

bias is that dark matter halos form at the peaks of the density field and then galaxies

can form inside these dark matter halos (although not every halo necessarily will host a

galaxy). However, not all peaks will form halos since the peak has to have a sufficiently

high enough over-density. If the peak of the smoothed density field is greater than this

threshold, a halo of mass Mh will form in this region. Figure C.1 gives an example where

we consider the 2D smoothed matter density field and identify the peaks that exist above

some threshold where dark matter halos form and thus where galaxies will form. Likewise,

figure C.2 gives a 1D example of how regions that lie above a value of ν times the root-

mean-squared of density fluctuations, σ(M), will be clustered in specific (shaded) regions.

Objects that form inside these peaks will give rise to a non-uniform spatial distribution that
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Figure C.1: A 2D example of the perturbations in the matter density field where the
peak densities after smoothing will form halos that will then host galaxies. Here a halo of
mass Mh is defined as a region in the space around the peak of the smoothed density field
where its over-density δ is greater than some threshold δc, Desjacques et al. (2018).

traces specific regions of the matter density field (i.e. a bias). Although this description

gives us a simple picture of where halos will form and thus a description of the observed

biased galaxy distribution, this galaxy bias can be both a non-linear and non-local function.

However, on large enough scales we are able to reduce this bias to a local, linear function

via the peak background split model, Bardeen et al. (1986). The general idea of this model is

to decompose the density field into peaks (fluctuations on small scales, δs) and background

(large scale matter fluctuations, δl) as shown in figure C.3. According to this model, a

central mechanism of biased clustering is related to rare high density fluctuations that will

have collapsed sooner if it lies in a large scale over-dense region. This means that long

wavelength modes can help enhance the abundance of massive objects that have collapsed

in an over-density with respect to a mean mass of collapsed objects. As described above in

the simple peaks model, let us first consider a density threshold to be some critical value δc
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Figure C.2: 1D picture but with peaks shown as shaded regions that exist above some
threshold. Notice in these shaded areas where halos are expected to form, the peaks are
clustered together, Peacock (2003).

Figure C.3: An example of 1D perturbations in the density field (blue line) that are
separated into large scale, δl (red line), and small scale, δs (black line), modes. The number
of objects that form in the highlighted region depends on the function Fh,l which encodes a
departure from the deterministic number of ’tracer’ objects that will form. Schmidt et al.
(2013)
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(generally, δc = 1.686 in spherical collapse models). We can then assume a perturbed case

where we add some large scale shift to the density perturbations, δl. This shift is meant to

perturb the density threshold altering the local number density of halos n(M), described

by:

n→ n− dn

dδc
δl (C.1)

In this sense, a positive background, δl, will effectively reduce the threshold overdensity, δc,

such that fluctuations only needed to achieve a value of δc− δl, allowing for more peaks to

be pushed above this threshold, ultimately enhancing the number of objects that collapsed

in that region. A key ingredient for this analysis is the mass-function of dark matter halos.

Using the Press-Schechter formalism (see Press and Schechter 1974) we can describe the

number density of halos in the mass range dM by:

n(M)dM =

√
2

π

ρo
M2

δc
σ

∣∣∣∣ d lnσ

d lnM

∣∣∣∣e− δ2c
2σ2 dM (C.2)

To first order, using the peak background split method, the long wavelength mode leads

to a bias described by:

b =
δh
δl

= 1− 1

n

dn

dδc
(C.3)

Here we have used a boosted over-density for halos denoted as δh on large scales. Using

the mass function described in equation C.2 we can arrive at a bias term:

b =
δc
σ2
− 1

δc
=
ν − 1

δc
(C.4)

106



Here we have used the substitution of ν = δc
σ

(the same ν detailed in figure C.2). This is the

general theory and formalism for calculating the linear galaxy bias. More accurate mass

functions such as that of Sheth and Tormen (1999) have also been used in the literature

to predict the value of b.
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Appendix D

FoF for Galaxy Catalogue

In chapter 4 we discussed the use of an isotropic FoF to group together dark matter

particles for our Quijote simulations. The standard choice of linking length parameter bll

is usually set to be 0.2 times the mean particle separation. However, after populating our

dark matter halos (that were found with this linking length) with galaxies, we have now

changed the mean particle separation of our new galaxy catalogue that we will be using to

once again apply our grouping algorithms to. Thus, taking into account the new positions

of objects we arrive at a new linking length parameter to use of bll = 0.1 in real space. This

choice is based on trying to match the amount of galaxy groups we find to the amount that

are already present in the catalogue. Below in figure D.1 we plot the ratio of the groups

identified by FoF for various choices of bll and the true groups that we know already existed

after populating halos (i.e by use of the existing group ID’s).
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Figure D.1: The ratio of groups found to the true number of groups in our galaxy
catalogue for various choices of bll. This takes into account the new mean particle separation
in real space. The over-plotted dashed line that follows the solid red line is an attempted
interpolation technique to better estimate this ratio. The star is our best choice of bll =
0.099 ≈ 0.1.
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Appendix E

Uniform Rotation of Galaxy Clusters

Consider a dark matter halo that has been populated with galaxies using our HOD

population technique described in chapter 4. Our central galaxy position of a cluster will

be given by the centre of mass position ~rcom. If we consider a rotation matrix M , then our

rotation of the satellites about the centre of mass position (i.e. the central galaxy) will be:

~rrot = ~rcom + M(~rsat,i − ~rcom) (E.1)

where ~rsat,i is the position of the ith satellite of our cluster. Let us consider a randomly

populated galaxy cluster where we will plot all satellite positions relative to the central

position in units of h−1Mpc as shown in the left of figure E.1. We will then apply our

rotation matrix and compute equation E.1 to recover a randomly rotated cluster. This is

shown to the right of figure E.1 where the orange points is our new rotated satellites and

the blue points are the original satellite positions from the left plot. We can visualize this
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Figure E.1: Visual of central and satellite galaxies of a random cluster inside a cube.
Positions of satellites are plotted relative to the centre of mass position (i.e. the cen-
tral position) in h−1Mpc.(left) Satellite positions before rotation in blue.(right) Satellite
positions after rotation in orange (relative to original positions in blue).

uniform rotation by considering a central galaxy and one satellite galaxy. If we rotate the

satellite N times by our matrix, then in 2D we should trace out a uniform circle about the

central galaxy. Likewise, in 3D, this process should create a sphere of N points about our

central. This is shown in figures E.2 and E.3.

Lastly, we must also apply this rotation matrix to the velocities since we have rotated

the positions by this matrix. The matrix must be the same matrix we used to randomize

the positions. In doing so, we must make sure the the x and y positions are not changing

and only the z-component is affected by our velocity rotation. This is due to the fact that

we consider a plane-parallel approximation for RSD in our simulations that only affects

the z-component of our positions. To prove that we have not altered the xy-plane, we can
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Figure E.2: Visual representation of satellite rotated 1000 times by our matrix about the
central.

first apply our rotation matrix to our satellite velocities only and then plot the positions of

our satellites before and after rotation in this plane. The positions should match up which

is shown by figure E.4. [t!] Finally, if we combine rotation to our positions and rotation to

the velocities we will get two independent clusters with different redshift space positions

and orientations (albeit still preferentially aligned along the z-axis since RSD provides us

with this alignment). This is shown in figure E.5.
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Figure E.3: Same visual as figure E.2 but now in 3 dimensions.
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Figure E.4: Case where we only rotate the velocities of our satellites. Shown here is the
xy-plane where rotation will only affect the z-components of our velocities. Satellite and
central positions are plotted based on their positions in a cube of 1 h−1Mpc.
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Figure E.5: Combination of rotation applied to both the satellite positions and velocities.
Satellite positions are plotted relative to the centre of mass positions in h−1Mpc.
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Appendix F

Alignment Function Measurements

in Galaxy Surveys

116



Figure F.1: Cluster correlation angle alignments as a function of comoving separation
for adaptive matched filter (AMF) catalogue (top) and maxBCG catalogue (bottom). Blue
points with error bars are the observational results with 2.5 (AMF) and 2σ (maxBCG)
uncertainties. The red dashed lines are theoretical predictions from comparative simulation
data.
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Figure F.2: Cluster pointing angle alignment as a function of comoving separation For
the same two catalogues with 6σ (AMF) and 10σ (maxBCG) uncertainties. Line format
is the same as in figure F.1.
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Appendix G

Redshift Space to Real Space

Quadrupole
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Figure G.1: Quadrupole of the halo-matter cross power spectrum from Obuljen et al.
(2019). Shown are the cases of halos found in redshift space and moved back to real space
(purple) versus halos found in real space (blue). As we can see, these quadrupoles are
different and is based upon anisotropic selection of halos in redshift space. Over-plotted
are the Kaiser theory predictions for each.
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Appendix H

Python Module: Algorithms

Below is majority of the code that was used to modify our HOD by including halo

shape statistics along with our own pair counting algorithm to compute the auto and cross

correlations with information of shapes.
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1

2 from nbodykit.lab import *

3 import numpy as np

4 from nbodykit.algorithms.fof import equiv_class

5 from numba import jit

6

7 # Algorithm to replace satellite positions with new positions from halo

catalog.

8 # Requires particle catalog , hod catalog and halo labels starting from 0

9

10 class new_galaxies(object):

11

12 def __init__(self , cat , hod , labels):

13

14 self.cat = cat

15

16 self.hod = hod

17

18 self.labels = labels

19

20 self.run()

21

22 def run(self):

23

24 new_data = new_satellites(self)

25

26 self.hod_pos = new_data [0]
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27

28 self.hod_vel = new_data [1]

29

30 self.hod_id = new_data [2]

31

32 self.cen_pos = new_data [3]

33

34 self.cen_vel = new_data [4]

35

36 self.cen_id = new_data [5]

37

38 self.sat_pos = new_data [6]

39

40 self.sat_vel = new_data [7]

41

42 self.sat_id = new_data [8]

43

44

45

46 # The functions used

47

48 def new_satellites(self):

49

50 print("starting new satellite positions function")

51

52 u_sat = np.unique(self.hod[’halo_id ’][self.hod[’gal_type ’]==1].

compute (), return_counts = True)[0]
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53

54 u_cen = np.unique(self.hod[’halo_id ’][self.hod[’gal_type ’]==0].

compute (), return_counts = True)[0]

55

56 if np.isin(u_sat , u_cen).all() != True:

57

58 print("Not all satellite labels have a corresponding central

label")# this shows a few satellites do not have centrals

59

60 else:

61

62 print(" All satellites have a central")

63

64 new_u_sat = np.array(list(set(u_sat).intersection(u_cen))) # change

sats to only be ones where we have a cen

65

66 if np.isin(new_u_sat , u_cen).all() == True:

67

68 print("Fixed: all satellite labels are now associated with

central labels") # now this shows all satellites have a central

69

70 if np.isin(u_cen , new_u_sat).all() == True:

71

72 print("All centrals have a satellite")

73

74 else:

75
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76 print("Some centrals do not have a satellite")

77

78 sat_ids = self.hod[’halo_id ’][self.hod[’gal_type ’]==1]. compute ()

79

80 if np.isin(sat_ids , u_cen).all() != True:

81

82 print("Some satellite ID’s are not associated with central ID") #

shows the satellite by number not paired with cen

83

84 wrong_ids = np.array(list(set(u_sat).difference(u_cen)))

85

86 new_sat_ids = np.array ([i for i in sat_ids if i not in wrong_ids ])

87

88 new_sat_counts = np.unique(new_sat_ids , return_counts = True)[1]

89

90 alternate_counts = np.bincount(new_sat_ids)[np.bincount(new_sat_ids)

!= 0]

91

92 if np.any(alternate_counts == new_sat_counts):

93

94 print("Satellite counts are complete")

95

96 if np.isin(new_sat_ids , u_cen).all() == True:

97

98 print("Fixed: all satellite ID’s are associated with Central ID")

# check that new sat_ids exist with centrals

99
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100 new_pos = []

101

102 new_vel = []

103

104 new_id = []

105

106 for i,j in enumerate(new_u_sat):

107

108 Ns = new_sat_counts[i]

109

110 S = self.cat[’Position ’][np.where(self.labels ==j)]. compute ()

111

112 V = self.cat[’Velocity ’][np.where(self.labels ==j)]. compute ()

113

114 ind = np.random.choice(S.shape[0], Ns , replace = False)

115

116 new_pos.append(S[ind ,:])

117

118 new_vel.append(V[ind ,:])

119

120 l = [j]*Ns

121

122 new_id.append(l)

123

124 sat_pos = np.concatenate(new_pos)

125

126 sat_id = np.concatenate(new_id)
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127

128 sat_vel = np.concatenate(new_vel)

129

130 u_cen = np.unique(self.hod[’halo_id ’][self.hod[’gal_type ’]==0].

compute (), return_counts = True)[0]

131

132 cen_pos = self.hod[’Position ’][np.where(self.hod[’gal_type ’] == 0)].

compute ()

133

134 cen_vel = self.hod[’Velocity ’][np.where(self.hod[’gal_type ’] == 0)].

compute ()

135

136 cen_id = np.array([j for i,j in enumerate(u_cen)])

137

138 hod_pos = np.concatenate ((cen_pos ,sat_pos))

139

140 hod_vel = np.concatenate ((cen_vel , sat_vel))

141

142 hod_id = np.concatenate ((cen_id ,sat_id))

143

144 return hod_pos , hod_vel , hod_id , cen_pos , cen_vel , cen_id , sat_pos ,

sat_vel , sat_id

145

146 # Fast 3d Inertia tensor

147

148 def three_d_inertia_values(halos , particles , label):

149
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150 Nhalo0 = label.max()+1

151

152 N = np.bincount(label , minlength=Nhalo0)

153

154 lenN = len(N)

155

156 dx = (particles [:,0]- halos[label ][: ,0])

157

158 dy = (particles [:,1]- halos[label ][: ,1])

159

160 dz = (particles [:,2]- halos[label ][: ,2])

161

162 dr2 = np.sum(( particles [:,:3]- halos[label ][: ,:3])**2, axis =1)

163

164 Ixy = equiv_class(label , dx*dy/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

165

166 Ixz = equiv_class(label , dx*dz/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

167

168 Iyz = equiv_class(label , dy*dz/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

169

170 Ixx = equiv_class(label , dx**2/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

171
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172 Iyy = equiv_class(label , dy**2/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

173

174 Izz = equiv_class(label , dz**2/dr2 , op=np.add , dense_labels=True ,

minlength=lenN)/N

175

176 return Ixx ,Iyy ,Izz ,Ixy ,Ixz ,Iyz

177

178 # compute max 3d eigenvector. Points along major axis

179

180 def max_3d_eigenvector(Ixx ,Iyy ,Izz ,Ixy ,Ixz ,Iyz):

181

182 eigenvectors = np.zeros((Ixx.size ,3))

183

184 for i in range(0,Ixx.size):

185

186 tensor = np.array ((( Ixx[i],Ixy[i],Ixz[i]) ,(Ixy[i],Iyy[i],Iyz[i])

,(Ixz[i],Iyz[i],Izz[i])))

187

188 output = np.linalg.eig(tensor)

189

190 array_max = np.amax(abs(output [0]))

191

192 ind = np.where(abs(output [0])== array_max)[0]

193

194 eigenvectors[i] = output [1][:, ind].T[0]

195
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196 return eigenvectors

197

198 @jit(nopython=True)

199 def two_d_cos_thetas(data , eigenvectors , rp_edges , pimax):

200

201 # Bins in rp

202

203 Nrpbins = rp_edges.size -1

204

205 # Number of halos for loop

206

207 n1 = len(data)

208

209 bin_centres = (rp_edges [1:]+ rp_edges [: -1])/2

210

211 #Set all arrays

212

213 cos_thetac , cos_thetap , counts = np.zeros ((3, Nrpbins))

214

215 # Double loop for pair counts with data

216

217 for i in range(0,n1):

218

219 for j in range(i+1,n1):

220

221 dd_rp = np.sqrt((data[i,0]-data[j,0]) **2 + (data[i,1]-data[j

,1]) **2)
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222

223 dd_pi = np.sqrt((data[i,2]-data[j,2]) **2)

224

225 bin_i = int(Nrpbins *(dd_rp -rp_edges [0])/( rp_edges [-1]-

rp_edges [0]))

226

227 if (bin_i <= Nrpbins -1) & (dd_rp >= rp_edges [0]) & (dd_pi <=

pimax):

228

229 rx, ry = (data[i,0] - data[j,0]), (data[i,1] - data[j,1])

230

231 rps = np.array((rx ,ry)) / dd_rp

232

233 counts[bin_i] += 1

234

235 cos_thetac[bin_i] += np.dot(eigenvectors[i],eigenvectors[

j])*np.dot(eigenvectors[j],eigenvectors[i])

236

237 cos_thetap[bin_i] += np.dot(eigenvectors[i],rps)*np.dot(

rps ,eigenvectors[i])

238

239 return cos_thetac , cos_thetap , bin_centres , counts

240

241 @jit(nopython=True)

242 def three_d_cos_thetas(data ,eigenvectors ,edges):

243

244 # Bins in r
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245

246 Nrbins = edges.size -1

247

248 # Number of halos for loop

249

250 n1 = len(data)

251

252 bin_centres = (edges [1:]+ edges [: -1])/2

253

254 #Set all arrays

255

256 cos_thetac , cos_thetap , counts = np.zeros ((3, Nrbins))

257

258 # Double loop for pair counts with data

259

260 for i in range(0,n1):

261

262 for j in range(i+1,n1):

263

264 dd_r = (np.sqrt((data[i,0]-data[j,0]) **2 + (data[i,1]-data[j

,1]) **2 + (data[i,2] - data[j,2]) **2))

265

266 bin_i = int(Nrbins *(dd_r -edges [0])/(edges[-1]-edges [0]))

267

268 if (bin_i <= Nrbins -1) & (dd_r >= edges [0]):

269

270 counts[bin_i] += 1
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271

272 rx,ry,rz = (data[i,0] - data[j,0]), (data[i,1] - data[j

,1]), (data[i,2] - data[j,2])

273

274 R = np.array ((rx,ry,rz))

275

276 rs = R / dd_r

277

278 cos_thetac[bin_i] += (np.dot(eigenvectors[i],eigenvectors

[j]))**2

279

280 cos_thetap[bin_i] += (np.dot(eigenvectors[i],rs))**2

281

282 return cos_thetac , cos_thetap , bin_centres , counts

283

284

285

286 @jit(nopython=True)

287 def PairCounts(data ,randoms ,edges ,pimax ,e1 ,e2):

288

289 # Set my bins

290

291 Nrpbins = edges.size -1

292

293 Npibins = pimax

294

295 # Use unit depth spacing for pi bins ( 1 Mpc/h)
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296

297 pi_values = np.linspace(0,pimax ,pimax +1)

298

299 # Number of halos for each loop

300

301 n1 = len(data)

302

303 n2 = len(randoms)

304

305 #Set all arrays

306

307 dd_counts ,dr_counts ,rr_counts ,ss ,sd ,sr = np.zeros((6,Nrpbins ,Npibins

))

308

309 #Bin centres for rp

310

311 bin_centres = (edges [1:]+ edges [: -1]) /2.

312

313 # Double loop for pair counts with data

314

315 for i in range(0,n1):

316

317 for j in range(i+1,n1):

318

319 dd_rp = (np.sqrt((data[i,0]-data[j,0]) **2+( data[i,1]-data[j

,1]) **2))

320
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321 dd_pi = (np.sqrt((data[i,2]-data[j,2]) **2))

322

323 bin_i = int(Nrpbins *(dd_rp -edges [0])/(edges[-1]-edges [0]))

324

325 bin_j = int(Npibins *(dd_pi -pi_values [0])/( pi_values [-1]-

pi_values [0]))

326

327 if (bin_i <= Nrpbins -1) & (dd_rp >= edges [0]) & (bin_j <=

Npibins -1):

328

329 dd_counts[bin_i ,bin_j] += 1

330

331 rx,ry = (data[i,0] - data[j,0]), (data[i,1] - data[j,1])

332

333 r_squared = rx**2 + ry**2

334

335 sin2phi = (2*rx*ry)/r_squared

336

337 cos2phi = 1 - 2*(ry**2)/r_squared

338

339 SplusSplus = (-1*(e1[i]* cos2phi + e2[i]* sin2phi) * (-1*(

e1[j]* cos2phi + e2[j]* sin2phi)))

340

341 SplusD = -1*(e1[i]* cos2phi + e2[i]* sin2phi)

342

343 ss[bin_i ,bin_j] += SplusSplus

344
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345 sd[bin_i ,bin_j] += SplusD

346

347 print(" Completed dd ")

348

349 #Double loop for randoms

350

351 for i in range(0,n2):

352

353 for j in range(i+1,n2):

354

355 rr_rp = (np.sqrt(( randoms[i,0]- randoms[j,0]) **2+( randoms[i

,1]- randoms[j,1]) **2))

356

357 rr_pi = (np.sqrt(( randoms[i,2]- randoms[j,2]) **2))

358

359 bin_i = int(Nrpbins *(rr_rp -edges [0])/(edges[-1]-edges [0]))

360

361 bin_j = int(Npibins *(rr_pi -pi_values [0])/( pi_values [-1]-

pi_values [0]))

362

363 if (bin_i <= Nrpbins -1) & (rr_rp >= edges [0]) & (bin_j <=

Npibins -1):

364

365 rr_counts[bin_i ,bin_j] += 1

366

367 print(" Completed rr ")

368
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369 # Double loop for data -randoms

370

371 for i in range(0,n1):

372

373 for j in range(0,n2):

374

375 dr_rp = ((np.sqrt((data[i,0]- randoms[j,0]) **2 + (data[i,1]-

randoms[j,1]) **2)))

376

377 dr_pi = ((np.sqrt((data[i,2]- randoms[j,2]) **2)))

378

379 bin_i = int(Nrpbins *(dr_rp -edges [0])/(edges[-1]-edges [0]))

380

381 bin_j = int(Npibins *(dr_pi -pi_values [0])/( pi_values [-1]-

pi_values [0]))

382

383 if (bin_i <= Nrpbins -1) & (dr_rp >= edges [0]) &( bin_j <=

Npibins -1):

384

385 dr_counts[bin_i ,bin_j] += 1

386

387 dr_tan_phi = (data[i,1]- randoms[j,1])/(data[i,0]- randoms[

j,0])

388

389 dr_cos2phi = (1 - dr_tan_phi **2) /(1 + dr_tan_phi **2)

390

391 dr_sin2phi = (2* dr_tan_phi)/(1 + dr_tan_phi **2)
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392

393 SplusR = -1*(e1[i]* dr_cos2phi + e2[i]* dr_sin2phi)

394

395 sr[bin_i ,bin_j] += SplusR

396

397 print(" Completed dr ")

398

399 return dd_counts , dr_counts , rr_counts , ss , sd , sr , bin_centres

400

401 # defined separate correlation function outside of my own pair counter

function that takes a long time ( O(N^2)).

402

403 def correlations(DataSize ,RandomsSize ,dd ,dr ,rr ,ss ,sd ,sr ,dpi ,pimax ,edges):

404

405 DD = dd /(0.5* DataSize *(DataSize -1))

406

407 RR = rr /(0.5* RandomsSize *( RandomsSize -1))

408

409 DR = dr/( DataSize*RandomsSize)

410

411 SS = ss /(0.5* DataSize *(DataSize -1))

412

413 SD = sd /(0.5* DataSize *(DataSize -1))

414

415 SR = sr/( DataSize*RandomsSize)

416

417 LS = (DD -2.*DR+RR)/RR

138



418

419 LSc = np.concatenate ((LS))

420

421 XiPlusPlus1 = np.concatenate ((SS/RR))

422

423 XiPlusG1 = np.concatenate (((SD - SR)/ RR))

424

425 nrpbins = edges.size - 1

426

427 npibins = dd.size // nrpbins

428

429 if npibins != pimax:

430

431 msg = ’pibins shouls equal pimax value , check pimax , dd_counts

and rpbins ’

432

433 raise ValueError(msg)

434

435 wp ,wp_plusplus ,wp_plusg = np.zeros ((3, nrpbins))

436

437 for i in range(nrpbins):

438

439 wp[i] = 2.0 * dpi * np.sum(LSc[i * npibins: (i+1) * npibins ])

440

441 wp_plusplus[i] = 2.0* dpi*sum(XiPlusPlus1[j] for j in range(i*

npibins ,npibins *(i+1)))

442
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443 wp_plusg[i] = 2.0* dpi*sum(XiPlusG1[j] for j in range(i*npibins ,

npibins *(i+1)))

444

445 return wp , wp_plusg , wp_plusplus

Listing H.1: Python example
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Appendix I

Systematic Error in f

Although the use of our various catalogues did not provide us with a distinct difference

in our multipole measurements, the change to a larger positive ratio than say a theoretical

calculation for P 2
2 (k) using Kaiser can indicate that there is some additional large-scale bias

that is contaminating f when using FoF for our RSD+IA catalogue. This contamination is

related to the additional anisotropic assembly bias term, A, in equation 2.8. If we consider

equation 1.19 and 1.20, our Kaiser predictions include a positive non-zero galaxy bias, bg,

and a positive, non-zero f that will boost both our multipole measurements. If we only

contain bg and f then these ratio values between each catalogue should be similar for P0

and P2. However, if we include the presence of tidal alignments and direction dependant

selection, we must re-derive our multipoles using equation 2.8. In doing so we obtain the

following:

P s
0 (k) =

[
(bg −

A

3
)2 +

2

3
(bg −

A

3
)(f + A) +

1

5
(f + A)2

]
Pm(k) (I.1)
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P s
2 (k) =

[
4

3
(bg −

A

3
)(f + A) +

4

7
(f + A)2

]
Pm(k) (I.2)

From these predictions, by inspection we notice that if our constant A is non-zero and

negative, this can result in the suppression of our quadrupole measurements and perceived

f . However, if A > 0 we can boost RSD allowing for the quadrupole mainly to become

larger while the monopole would remain unaffected (i.e. for different values of A in equation

I.1 the terms out-front of our linear power would be equivalent). For example, if we were to

use the theoretical prediction of f , estimate bg from real space and then estimate A for our

measured P2 from our RSD+IA catalogue grouped with FoF, we find for our simulations

we would obtain a value of A = 0.4 for instance which greatly changes the perceived growth

function. In figure I.1 we show this estimation with standard kaiser over-plotted. Here the

black solid line represents our measurements and the orange dashed line would be equation

I.2 with a positive anisotropic assembly bias term. If we were to have pure RSD (the blue

dashed line), since our monopole ratio is zero with respect to Kaiser then this quadrupole

ratio would have to follow the same pattern. It is clear this would not be the case here.

This difference may be of interest for future work if we have a stronger intrinsic alignment

signal that contaminated our redshift space measurements. In doing so, one may then use

these models to extract a value for A based on your selection of objects in redshift space.
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Figure I.1: Example of our measured quadrupole (solid black) against various theory
curves. In blue is the standard Kaiser prediction in redshift space with a calculated bias,
bg, from the monopole and theoretical prediction of f for a redshift of z = 0.5. In orange
(magenta) we have included our anisotropic assembly bias term, A with an example for a
positive value (orange) and negative value (magenta) that would either enhance or suppress
RSD respectively.
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Appendix J

Multipoles for Galaxy Catalogues
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Figure J.1: Monopole and quadrupole for all galaxy catalogues. Included are our mod-
ified catalogue (blue), rotated catalogue (green), Zheng07 catalogue (yellow) along with
a baseline model (black). The baseline model if the power spectrum computed on our
galaxy catalogue before any grouping using FoF or CGM. The different group finders are
separated by line style (Solid lines are for groups found using FoF and dashed lines are for
groups found using CGM).
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