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Abstract

It is well-known that in the complete standard financial market model driven solely
by Brownian motion, one can always hedge a given contingent claim starting from an
appropriate initial wealth. In other words, there always exists an initial investment amount
and a trading strategy from which one can produce enough wealth to pay off a given
contingent claim. Furthermore, one can always produce just the right amount of wealth to
settle the claim. That is, one exactly hedges, rather than super-hedges (produces excess
wealth), a contingent claim in a standard financial market. In more general market models,
such as those where there are constraints on the amount one can invest or when there
are other processes driving the randomness in the market, it is not immediately obvious
whether one can exactly hedge, or even merely super-hedge, a given contingent claim.

We consider hedging problems in a generalization of the well-studied standard Brownian
motion market model, namely the regime-switching market model. A standard Brownian
motion market model is not very robust as it can only handle small-scale persistent changes
in market behaviour. The regime-switching market model, on the other hand, is able to
handle large-scale occasional changes in market behaviour, along with small-scale persistent
changes, by using a continuous-time Markov chain in addition to a multi-dimensional
Brownian motion to drive the randomness in the market. This generalization comes at
a cost, however; adding the additional source of randomness renders the financial market
incomplete. El-Karoui and Quenez [16] and Cvitanic and Karatzas [10] solved hedging
problems in an incomplete Brownian motion market model by introducing the cumulative
consumption process and the space of dual processes. These tools allowed them to show
that one could in fact promise to super-hedge a given contingent claim in their incomplete
market. We use these same tools to handle the incompleteness of the regime-switching
market, along with more advanced stochastic analysis, namely the study of discontinuous
local martingales, to handle the discontinuity of the paths of the Markov chain. We show
that under a certain integrability condition, one can always promise to super-hedge a given
contingent claim in a financial market with regime-switching. Furthermore, we characterize
both the minimum initial wealth, called the price of the contingent claim, and the trading
strategy needed to hedge the contingent claim.

We further generalize the problem of hedging in a regime-switching market model by
including convex portfolio constraints, introduced by Cvitanic and Karatzas [10], and mar-
gin requirements, of the kind introduced by Cuoco and Liu [7]. These additions allow us
to model, for example, markets where there are restrictions on investments and interest
rates that are higher for borrowing than for lending. Once again we show that in such a
market, under a certain integrability condition, one can always promise to super-hedge a
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given contingent claim. Furthermore, we characterize the minimum initial wealth and the
trading strategy needed to hedge the contingent claim. We then show that under specific
optimality conditions, one can exactly hedge a given contingent claim without producing
an excess amount of wealth at the end of trade. In other words, we provide conditions that
allow one to almost surely hedge a contingent claim without requiring them to consume
wealth through a cumulative consumption process.

Lastly, we address the problem of approximate hedging in a regime-switching market
model, where one tries to hedge a given contingent claim with initial wealth less than the
price of the claim. Since the price of the contingent claim is the minimal initial wealth one
needs to almost-surely hedge the claim, if one were to begin trading with an initial wealth
lower than this price, there is a non-zero probability of them failing to settle the claim.
In this case, an investor should trade in an optimal way so that their expected loss from
hedging is minimized.We use this approach to solve the approximate hedging problem in a
regime-switching market model with portfolio constraints and margin requirements. Using
convex duality and tools of non-smooth convex analysis, we show that there does exist
an optimal trading strategy that minimizes a specific cost criterion when starting from a
lower initial wealth than the price of the given contingent claim.
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Chapter 1

Introduction

In finance, hedging is a method of limiting one’s risk in investment. Simply put, hedging
is the practice of taking a position in a certain investment in order to counteract the risk
associated with an opposing investment. For example, an investor can take a position in
renewable energy sources, but also invest in fossil fuels to limit his or her risk of loss in
renewable energy. In mathematical finance, hedging is the act of finding both an initial
investment amount and a strategy of saving or trading so that one can guarantee they will
be able to cover some monetary obligation at a future point in time. This obligation is often
called a contingent claim or a derivative security, and its value can be reproduced by a
combination of stocks available for investment in the stock market. The future point in time
when the obligation must be settled is called the expiration date. One way an investor can
hedge a contingent claim is to invest the obligation amount (if known) into a bank account
and withdraw the amount on the expiration date. However, if the obligation amount is a
random variable whose value is unknown until the expiration date, this method of hedging
cannot work since one could not possibly know the future value of the contingent claim
with 100% certainty. Another approach to hedging is for the investor to begin with as little
money as possible such that they can find a strategy of trading in the stock market which
guarantees the obligation is settled on the expiration date. Such a method of hedging is
called almost sure hedging and solving the almost sure hedging problem requires one to find
both the an initial investment and a strategy for investing into each stock, called a portfolio
process, such that the given contingent claim can be payed off on the expiration date. If the
investor’s portfolio process successfully hedges the contingent claim, this strategy is called
a hedging strategy and consists of the portfolio process called a hedging portfolio and the
initial investment. The least initial investment for which a hedging strategy exists is called
the price of the the contingent claim, and together with associated hedging portfolio, is
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called the optimal hedging strategy. Solving the hedging problem, which amounts to finding
the optimal hedging strategy under certain conditions that will be discussed shortly, is the
primary goal of this thesis.

In order to solve the hedging problem, it is necessary to construct a model of the
financial market. This market model seeks to mimic the behaviour of the real-life stock
market. Additionally, the model must be amenable to mathematical analysis so that
investors can use it to find solutions to investment problems. Market models have been
studied since the early 1900’s, starting with the work of Louis Bachelier [2], and have now
become quite sophisticated. One such market model, which the hedging problem of this
thesis is based in, is called a regime-switching market model. Regime-switching models
allow for the market to undergo “shocks” at random times. At any point in time, the
market is assumed to be in some regime, for example a bull market where stock prices
are generally rising. When a shock occurs, the market’s behaviour can fundamentally
change. This is called a regime-switch and represents the sudden change of the market,
such as from a bull market to a bear market where stock prices are now generally falling.
Famous examples of a regime-switch would be the Wall Street crash of 1929 or even the
pandemic of 2020. There are many types of regime-switching market models which exist
in the literature. In this thesis we choose a very general regime-switching market model
as it offers significant advantages over other less general regime-switching market models.
For example, our model allows the use of stochastic volatility which, for instance, Markov
modulated regime-switching models do not. Simply put, the regime-switching market
model used in this work allows for a more realistic model of the stock market.

The study of hedging in mathematical finance begins with the portfolio selection work
of Markowitz [35] and the pricing work of Black, Scholes and Merton [4] [36], in what is
called the standard financial market model (no regime-switching). In very simple terms,
portfolio selection describes the method of how to invest wealth in the stock market,
and pricing describes how much to initially invest into the stock market. The almost
sure hedging problem can be thought of as a combination of both problems. Since the
papers of Markowitz, Black and Scholes, and Merton, both portfolio selection problems and
pricing problems have grown in complexity to include items such as portfolio constraints
and margin requirements. Based on the type of industry an investor works on behalf of,
limitations on the amount an investor can invest may be imposed. For example, there may
be a no short-selling restriction on an investor working on behalf of a pension fund, meaning
that the investor can never have negative holdings on a stock, as often times pension
funds may face regulatory requirements to never short-sell. These types of requirements
on investments act as constraints on the hedging portfolio, and as a result, are called
portfolio constraints. Other considerations, such as differing interest rates for borrowing
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and lending, also make these problems more complex. These payments can be collectively
grouped into what are called margin requirements. As we will see in this thesis, the presence
of portfolio constraints and margin requirements make problems in mathematical finance
more challenging to solve.

The almost sure hedging problem in a standard financial market model without market
constraints was originally solved in the aforementioned pricing work of Black, Scholes and
Merton [4] [36] using the properties of continuous martingales. When the almost sure hedg-
ing problem is instead posed in a regime-switching market model, the random changes in
regimes requires the analysis of more general discontinuous local martingales. Furthermore,
the concept of consumption of wealth needs to be introduced in the regime-switching mar-
ket model to make the almost sure hedging problem tractable. In the standard financial
market model, finding the optimal hedging strategy only requires the investor to solve for
a hedging portfolio and price of the contingent claim. However, once portfolio constraints
are imposed on the investor or additional sources of randomness assumed in the market,
the market model is rendered incomplete, and the investor needs to strategically spend
a certain amount of his or her money elsewhere to exactly hedge the contingent claim.
This strategy of spending is called the investor’s cumulative consumption process, and in
addition to the hedging portfolio and price of the contingent claim, forms the investor’s
optimal hedging strategy. The addition of regime-switching alone (that is, without market
constraints) to the financial market renders the market model incomplete; thus, requiring
the use of a cumulative consumption as part of the investor’s hedging strategy. As will be
shown in this thesis, finding this optimal consumption process is far from trivial and the
difficulty is further increased when portfolio constraints and margin requirements are added
to the regime-switching model. This leads us to solve three separate, but related, cases
of the almost sure hedging problems in this thesis. The first is a classical problem within
a standard financial market model without regime-switching, and thus without consump-
tion, which has already been established in the literature. However, purely for background
purposes and to enhance readability, we treat this problem in some detail because it will
then be used as a bootstrap to the hedging problems of genuine interest, namely within a
regime-switching model. In Chapter 4 we move on to the unconstrained hedging problem
in a regime-switching market model, and again use the results to develop a solution to our
general problem of interest, the constrained hedging problem in a regime-switching market
model, in Chapter 5.

The problems discussed above are all very conservative forms of hedging. Their solu-
tions promise the investor can cover his or her obligation with 100% certainty. As a result,
the investor will usually be required to begin trading with a very large initial wealth to
successfully pay off the contingent claim. Often times this initial wealth could be unac-
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ceptably high, which leads to the idea of approximate hedging. Here one gives up trying to
hedge exactly from an initial wealth and merely begins with some initial wealth that the
agent can “afford” but which may be well below the price of the given contingent claim.
The goal of the agent is now to trade in such a way as to minimize a specific risk criterion
which imposes a penalty when the agent falls short of being able to fund the contingent
claim. This is essentially a problem of stochastic optimal control with a convex but very
non-smooth cost criterion and has been solved in a standard financial market with port-
folio constraints, but without regime-switching or margin requirements. In Chapter 6 of
this thesis we describe and solve the approximate hedging problem in a regime-switching
market model with portfolio constraints and margin requirements.

1.1 Outline of Thesis

In Chapter 2, we provide the historical development of the hedging problem and methods
of solution from the literature. We give reasons for the specific choice of the regime-
switching model, including reasons for portfolio constraints and margin requirements, and
describe both the almost sure hedging problem and the approximate hedging problem in
very non-technical terms.

In Chapter 3, we define the standard financial market model and the almost sure
hedging problem in such a market in precise mathematical terms. We review the solution
to this well-studied problem and get the reader familiar to the methods and tools which
will be used for the remainder of the thesis. We also discuss the decorated Black-Scholes
formula as an important example of the hedging problem.

In Chapter 4, we define the regime-switching market model in mathematical terms
and introduce the necessary mathematical spaces and processes needed for working with
such a market model. We introduce the cumulative consumption process and the space of
dual process that allow us to analyze the unconstrained hedging problem, and determine
conditions for which there exists a solution to the hedging problem. Using the tools of
stochastic calculus, specifically a general martingale representation theorem and the Doob-
Meyer decomposition, we provide a characterization for the price and associated optimal
hedging strategy for a given contingent claim.

In Chapter 5, we introduce portfolio constraints and margin requirements to the hedging
problem in a regime-switching market model. By applying many of the methods introduced
in Chapter 4, along with tools of convex analysis, we find a solution to the almost sure
hedging problem. That is, we characterize the price and optimal hedging strategy of a
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given contingent claim. We then show that under a set of equivalent conditions, one can
hedge a given contingent claim without being required to consume wealth.

In Chapter 6, we turn our attention to approximate hedging in a constrained regime-
switching market model. We prove the existence of a hedging strategy that minimizes a
specific risk criterion. We proceed very much in the same way as Cvitanic [8] as most
of the results carry over directly from the approximate hedging problem in a constrained
standard financial market model. Many of the results in this chapter require the theory of
convex analysis, with a major result relying on the special use of the Komlós theorem.

In Chapter 7, we give the conclusion and outline briefly some future areas of investiga-
tion related to the work in this thesis.

Supplementary results for Chapters 4 and 5 are given in Appendix A while lengthy
proofs of key results are given in Appendix B. Appendix C and Appendix D review standard
definitions and results from stochastic processes and convex analysis theory that may be
referred to throughout the thesis document.
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Chapter 2

Background

In this thesis we the address the problems of almost sure hedging and approximate hedging
in a regime-switching market model. In both problems, the goal of an investor is to find
trading strategies that guarantee certain conditions are met. However, to define both
problems in detail, and thus state such conditions, we need to introduce essential concepts
of mathematical finance. In this chapter, we will introduce such concepts in informal
terms. We begin by reviewing the market models of mathematical finance, including the
regime-switching market model in non-technical terms. We will give reasons for why the
regime-switching market model is an improvement over prior market models. Once the
regime-switching model is constructed, the hedging problems can be precisely defined. We
will discuss the historical development of hedging problems in mathematical finance and
then give brief, non-mathematical descriptions of the almost sure hedging problem and the
approximate hedging problem. Full mathematical treatment of each hedging problem is
given in Chapter 3 through Chapter 6 of this thesis.

2.1 Financial Market Models

Stock market investors want to model the stock market to have a better understanding of
how to invest their money and how secure their investments are. For example, they may
want to know if they should invest all their money in one stock, or in many stocks, and if so,
in how many stocks? The main question that arises is: how can one capture the behaviour
of a stock market in a mathematical model? The most prominent model is based on the
idea that the stock market moves randomly. This randomness is classically described by
a Brownian motion, a phenomenon that can be observed physically in nature. A botanist
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named Robert Brown noticed that pollen grains jittered in a random fashion when sus-
pended in water. It was subsequently discovered that this jittery random movement can
be modeled in terms of a random process which is usually known as Brownian motion.
Historically, the first truly mathematical description of Brownian motion occurs in connec-
tion with mathematical finance, and is due to the French mathematician Louis Bachelier
[2], who noticed that stock market prices appear to jitter in a random fashion. Bachelier
derived the first mathematical model of Brownian motion in order to model stock prices.
At the time of Bachelier’s discovery in 1900, his work was not given very much attention
and it was only about fifty years later that Bachelier’s paper began to be recognized as
a ground-breaking piece of work. At this time the economist Robert Merton published
two additional significant papers based on the Brownian motion process, as we summarize
in the next paragraph. It may not be out of place to note here that Einstein [14][15], in
1905, also introduced a mathematical description of Brownian motion, essentially identical
to that of Bachelier, but from a completely different point of view, namely as a model in
the kinetic theory of ideal gases. The mathematical models of Brownian motion due to
Bachelier and Einstein preceded the axiomatization of probability based on measure the-
ory. They were largely based on physical intuition, and did not really conform to rigorous
standards of formulation and proof. That final stage in the development of a mathemat-
ically rigorous theory of Brownian motion based on measure theory was accomplished by
Norbert Wiener [49] during the 1920’s.

Robert Merton [36] used the mathematical model of Brownian motion established by
Wiener to develop the continuous-time market model of stock prices. Specifically, Merton
described stock prices as geometric Brownian motion, which is a continuous-time stochas-
tic processes. Having stock prices modeled by a geometric Brownian motion implies that
they are lognormally distributed, which makes sense as stock prices cannot assume nega-
tive values. Expressed mathematically, a stock has price S(t) at time t that satisfies the
stochastic differential equation

dS(t)

S(t)
= µdt+ σdW (t) (2.1)

where {W (t)} is a Brownian motion and µ and σ are constants called the market coeffi-
cients. µ is called the expected rate of return and σ is called the volatility of the stock. The
stock price process {S(t) : t ≥ 0} is a stochastic process which is a set of random variables
indexed by time. In a complementary paper [37], Merton modeled stock prices with mar-
ket coefficients which are no longer constants, but depend on the stock price and time to
further generalize the model. This model is given by the following stochastic differential
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equation:
dS(t)

S(t)
= µ(t, S(t))dt+ σ(t, S(t))dW (t). (2.2)

This model allows for greater latitude when fitting actual market data to the model. For
example, there is empirical evidence that suggests that a low stock price increases the
stock price volatility more than a high stock price (see Black [3]). In that case, σ(t, S(t))
would increase more when S(t) is small than when S(t) is large. The model with constant
coefficients (2.1) would not be able to reproduce such behaviour.

Harrison and Kreps [20] and Harrison and Pliska [21] developed mathematical models
of the stock market where the stock price processes are general stochastic processes instead
of just geometric Brownian motion. This allows the market coefficients, σ and µ, to be
general stochastic processes as well, such as in the equation

dS(t, ω)

S(t, ω)
= µ(t, ω)dt+ σ(t, ω)dW (t, ω). (2.3)

The market coefficients in this model are specified processes {µ(t)} and {σ(t)}, and as
such are functions of both time and the underlying probability space through ω. Modeling
the market coefficients as random processes increases the generality of the model past
that of (2.2). For example, it allows for the use of stochastic volatility models which
provide a better fit of actual market data to the model as shown by Hull [25]. From
a technical standpoint the main requirement on the processes µ and σ in (2.2) is that
these be adapted to some filtration with respect to which W is a Brownian motion (for
otherwise the stochastic integral in (2.3) is undefined). There is nevertheless considerable
leeway in satisfying this requirement, which greatly increases the generality of the model
(2.3). Of particular importance is the special case in which the processes µ and σ are
adapted to the filtration which is generated by the Brownian motion W . Such models (and
multidimensional extensions thereof) are typically known as standard financial market
models or Brownian motion market models. It is perhaps worth pointing out that the
special case of standard market models provides a very rich setting in which to address
numerous challenging problems in mathematical finance. For example, the definitive work
of Karatzas and Shreve [31] is devoted almost entirely to (multidimensional) standard
market models. In such models one can regard the Brownian motion W as “driving”
or “determining” the processes µ and σ (indeed the Doob measurability theorem makes
this mathematically explicit), and therefore the Brownian motion W is the sole source of
randomness in standard market models; the Brownian motion W “drives” the persistent,
short-duration, and small-scale microeconomic changes which are a characteristic feature
of the market parameters. The scope of (2.3) however goes well beyond standard market
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models, important though these are. Thus, one can specify that processes µ and σ are
adapted to a filtration which is strictly larger than the filtration generated by W , but with
respect to which W nevertheless remains a Brownian motion. For example, this is the case
when one stipulates some additional process, such as a Markov process {α(t)}, which is
independent of W , and then requires that the processes µ and σ in (2.3) be adapted to the
joint filtration of α and W . This joint filtration is of course larger than the filtration of W ,
but W is nevertheless still a Brownian motion with respect to the joint filtration in view
of the independence of α and W . There are now two sources of randomness in the market
model, namely the Brownian motion W and the Markov process α, and the additional
“degree of freedom” arising from availability of the Markov process provides scope for
constructing more realistic and accurate market models than would be obtained from
standard market models in which the Brownian motion is the only source of randomness.
The so-called regime-switching market models, with which this thesis is much concerned,
are in fact precisely of this kind, and we now turn to a discussion of these models.

2.2 The Regime-Switching Market Model

Financial traders have long been familiar with distinct “regimes” or “states” of a mar-
ket. For example “bullish” and “bearish” have clear significance as possible regimes of the
market. Other examples of regimes which influence the market are of course also possi-
ble, such as consumer confidence (e.g. “strong”, “moderate” or “weak”). Whatever the
significance of the regime states, when accounting for regimes in stock price models of the
form (2.1)-(2.3) above, one must clearly allow dependence of the expected rate of return
µ and the volatility σ on the regime state. The transition or switch from one regime to
another (such bullish to bearish or the opposite) is generally caused by non-deterministic
large-scale but typically rarely occurring events, for example the sudden insolvency of a
major bank, the election of an eccentric politician, an unexpected viral pandemic, or the
discovery of a major deposit of some resource (such as oil). Hamilton [19] introduced the
use of a finite-state Markov chain to model switches from one regime to another, it being
assumed that there are finitely many regimes associated with the market, with the Markov
states corresponding to the regime states.

If one denotes this finite-state Markov chain by {α(t)} then a simple price model which
includes regime-switching is of the form

dS(t)

S(t)
= µ(α(t))dt+ σ(α(t))dW (t) (2.4)
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in which µ and σ are real-valued functions defined on the set of regimes (i.e. Markov states),
and it is assumed that the Markov chain α and Brownian motion W are independent. This
independence is essential for technical reasons, for it ensures that W is a Brownian motion
with respect to the joint filtration of α and W ; since the processes {µ(α(t))} and {σ(α(t))}
are of course adapted to this joint filtration one sees that (2.4) makes sense as a stochastic
differential equation. There are, in addition, clear economic reasons for stipulating that
α and W be independent, and we shall indicate these shortly. At this point we note that
(2.4), in which the market parameters are said to be Markov modulated (in the sense that
the market parameters at any instant t are completely determined by the regime state α(t)
at the same instant), is a clear improvement on the model (2.1), in which the expected rate
of return µ and volatility σ are just constant. Because of its simplicity and tractability the
Markov modulated model (2.4) is used in the great majority of works on regime-switching,
for both hedging and portfolio optimization, including for example Buffington and Elliott
[5], Di Masi et-al [12], Jobert and Rogers [27], Sotomayor and Cadenillas [48], Yao et-al [51],
Yin et-al [52] Zhang [53], and Zhou and Yin [54]. Nevertheless, despite this wide use, the
model (2.4) is not without problems. For example the volatility σ(α(t)) is constant within
each regime state, thus one cannot model stochastic volatility in a fixed regime state, and
more generally one cannot treat the market parameters as stochastic processes in their
own right within a given regime state. For this reason, in the present thesis, we shall
instead use the more general market model (2.3), in which it is stipulated that the market
parameter processes µ and σ are adapted to the joint filtration of the Brownian motion W
and a finite-state Markov chain {α(t)} which models regime-switching, with α and W being
independent. Of course this independence is necessary for W to be a Brownian motion with
respect to the joint filtration, so that (2.3) makes sense as a stochastic differential equation.
In view of the Doob measurability theorem one sees that the market parameters µ and
σ are non-anticipatively determined by the processes W and α, which are the sources of
randomness for the model. The Brownian motion W drives short-duration and small-scale
but persistent microeconomic changes in the market parameters (exactly as noted above
for standard market models), while the finite-state Markov chain α on the other hand
drives occasional long-duration, large-scale macroeconomic changes. The independence of
the Brownian motion W and the Markov chain α amounts to the reasonable assumption
that the micro- and macroeconomic effects are independent.

There is one final point concerning regime-switching models which must be emphasized,
namely the occasional misconception that the goal of regime switching is to introduce jump-
discontinuities into the price model. This is most certainly not the case. No matter how
dire (or promising) the situation, one does not get a jump discontinuity in stock prices in
the transition from a bull to a bear (or a bear to a bull) market, although prices could
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change rapidly. The goal of regime switching is to model the consequences of remaining
locked in a particular regime state (such as a bull or a bear market) for a random but
usually extended period of time, resulting from the dependence of the market parameters
µ and σ on the regime state. This is not to say that price models with jump discontinuities
are of no interest. For example, Merton [37] introduces a price model given by the jump
diffusion:

dS(t)

S(t)
= µdt+ σdW (t) + dq(t),

which has a form similar to (2.1) (i.e. constant market parameters µ and σ) but includes
a compensated Poisson process {q(t)} as an additional term on the right to contribute
jumps in the price. This is not a regime switching model because the market parameters
are not influenced by any regime state. Indeed, such a model could never account for
the persistently rising/falling price between regime-switches which are the hallmark of
a bull/bear market; all one would get is a discontinuous change in price, followed by
normal market behaviour until another discontinuous change in price, followed by normal
market behaviour until another discontinuous change in price, and so on. In general, jump
discontinuities in stock prices are not a relevant concern in regime-switching market models.

2.3 The Almost Sure Hedging Problem

The motivation for having a mathematical model of the financial market is to address com-
plex problems involving an investor in the market. These problems can be of pricing, such
as finding the selling price of a call option, or of portfolio selection, essentially determining
how one should “best” distribute their wealth among a given set of assets. To solve a
portfolio selection problem, an investor is required to find a portfolio process that allows
him or her to attain some financial goal at a fixed, future point in time. A portfolio process
represents how much wealth an investor has invested in each asset in the stock market at
every instant in time between the beginning and end of trade. For example, consider an
investor who has $10,000 available to invest in the stock market. The investor would like
to invest this money so that, in thirty years time, the value of his or her investment has
grown to $100,000. In this case, the investor must find the portfolio process which allows
him or her to do this, and as a result, solve their portfolio selection problem. In making
investment choices, the investor can operate in two possible trading environments, namely:
(i) be free to distribute their current wealth at every instant among the assets without any
constraints on this distribution; or (ii) be compelled by various externally-imposed trading
regulations to respect some portfolio constraints when allocating their wealth among the

11



assets. An example of (ii) would be the prohibition on going short (i.e. having negative
dollars invested in an asset) on some or all stocks. Pension funds often place this kind of re-
striction on investments. The choice of portfolio can also be effected by certain regulations
such as differing interest rates in the market. These regulations can collectively be grouped
into margin requirements on the portfolio. Typically, investment problems with portfolio
constraints and margin requirements are more challenging than those in unconstrained
markets. In Chapters 3 and 4 of this thesis, we will assume that the portfolios we deal
with are unconstrained and without margin requirements. In Chapter 5 we generalize the
methods used in Chapters 3 and 4 concerning unconstrained market models to deal with
portfolio selection in a market with both constrained portfolios and margin requirements.

The birth of portfolio theory, the theory of solving portfolio selection problems, is
generally attributed to Markowitz [35], who published “Portfolio Selection” in 1952. He
considered a problem of selecting a portfolio of investments which minimizes the risk of
return for a given level of expected return on investments. He realized that investors
should consider the combined risk and return of a portfolio of assets, rather than just
the risk and return of individual assets. Since Markowtiz’s celebrated paper, portfolio
selection problems have grown in complexity. These newer problems may take place in
more sophisticated markets, such as the previously described regime-switching market, or
they may utilize more complex optimization criteria. Examples of optimization criteria
include minimizing risk (e.g. mean-variance portfolio selection), maximizing utility, or
just simply obtaining a specific dollar amount at the end of trade. Portfolio selection
problems in regime-switching market models, with varying risk criteria, have received a
fair amount of attention. Two works which address portfolio selection in the setting of
regime-switching are those of Zhou and Yin [54], who apply stochastic LQ-control to the
problem of mean-variance portfolio selection, and Sotomayor and Cadenillas [48], who
use dynamic programming to maximize the discounted expected utility from consumption
(utility maximization). In both Zhou and Yin [54] and Sotomayor and Cadenillas [48] the
regime-switching model is incorporated in a fairly simple way. The market coefficients were
assumed to be Markov-modulated as in (2.4), where the market parameters are completely
determined by the state of the regime-switching Markov chain at the same instant of time.
The work of Heunis [23] solves a utility maximization portfolio selection problem in a very
general regime-switching market model. The regime-switching market model in Heunis
[23] takes the form of (2.3), where the market coefficients are adapted to the joint filtration
generated by the combined effect of the Brownian motion and the regime-switching Markov
chain. The optimality results in Heunis [23] will motivate certain choices and constructions
which are made in this thesis. Some of these optimality results were also developed by
Donnelly and Heunis [13] who solved a mean-variance portfolio selection problem in the
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same general regime-switching market. Chapters 3 through 5 of this thesis is concerned
with the selection of a portfolio that allows an investor to almost surely meet an obligation
at the end of trade in a regime-switching market model, while Chapter 6 will be concerned
with a risk minimizing portfolio selection problem in the same financial market model.

Shifting our focus to pricing problems, a pricing problem generally involves answer-
ing the following question: what is the “fair price” one can charge for a given financial
instrument? This financial instrument often times happens to be a derivative security,
which is also known as a contingent claim. A derivative security, is a financial contract
whose value is derived from the value of underlying (and more “basic”) instruments such as
stocks or bonds. Some common derivative securities include put options, call options and
future contracts. Derivative securities, just like stocks themselves, are usually traded on
exchanges, but they can also be created as private contracts between financial institutions
and their clients. In fact, the world-wide market for derivative securities is so large that it
is valued in the trillions of dollars! The price for which a publicly traded derivative is sold
is usually determined by the law of supply and demand; however, privately sold derivatives
tend be be sold at a price which both parties agree to be “fair”. Even for publicly traded
derivatives, the fact that they are described in terms of underlying stocks or bonds, whose
price history is known, suggests there should be a rational way of pricing them through the
value of the underlying assets. Finding this price is the solution to the pricing problem of a
derivative security. If the price is not made fair, an arbitrage opportunity (an opportunity
to exploit the price difference between two identical financial instruments) presents itself,
and some investor will “lose” their position. Solving this particular pricing problem, the
pricing of derivative securities, is one of the main goals of financial hedging.

The hedging of a derivative security is a problem generally faced by financial institutions
that engage in selling some sort of derivative product designed to reduce their client’s risk.
By selling such a product, the financial institution has taken on the client’s possible risk
and will need to invest in other financial instruments so as to minimize its own exposure to
the risk. This method of investment, to minimize incurred risk, is called financial hedging.
If the institution correctly priced the derivative security which it sold to the client, they
should conceivably be able to duplicate the value of the derivative by trading in the stock
market. That is an investor employed by the institution can find some portfolio process,
whose assets are the underlying stocks and bonds of the derivative, such that the value
of the portfolio is the same as the value of the derivative security at each point in time.
The portfolio process that achieves this duplication is called the hedging portfolio. In the
case of the financial institution described above, this hedging portfolio is used to remove
the risk incurred by the sale of the security to its client. This is the essence of the most
common form of financial hedging, called almost sure hedging, which will now be described
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in more detail.

The almost sure hedging problem involves an investor or agent who must determine
some least initial wealth, such that by appropriately trading from this initial wealth in a
market of stocks and bonds, the agent earns sufficient wealth to pay off some obligation,
called a contingent claim, at a fixed future time T (almost surely!). Finding this least
initial wealth can be classified as a pricing problem, since the investor wants to find the
smallest dollar amount in which to invest so that he or she can meet a terminal wealth goal.
As described earlier, this initial wealth is the “fair” price for which the contingent claim
is sold. It goes without saying that the appropriate strategy for investing the least initial
wealth among the stocks and bonds in order to pay off the contingent claim must also
be determined, or at least characterized. This strategy is called the hedging portfolio, and
determination of this portfolio falls within the scope of portfolio selection. In summary, the
agent invests the least initial wealth in accordance with the hedging portfolio, and is assured
that the value of the hedging portfolio almost surely exceeds the value of the contingent
claim at close of trade T . The mathematics of almost sure hedging in a standard Brownian
motion market model, without regime-switching, is well understood and comprehensively
treated in many texts on mathematical finance, such as Karatzas and Shreve [31]. Despite
this, we summarize the essence of this problem in Chapter 3 of the thesis, since it is essential
background for the almost sure hedging problem in a regime-switching market model. This
latter problem is not currently well understood, and is the main goal of the research in
this thesis. Chapters 4 and 5 which follows are devoted to solving the almost sure hedging
problem in a regime-switching market model. In Chapter 4 we address the almost sure
hedging problem in a regime-switching market model and in Chapter 5 we build upon the
results of Chapter 4 to solve the almost sure hedging problem in a regime-switching market
model with both portfolio constraints and margin requirements.

A specific example of an almost sure hedging problem is the pricing of a European call
option. A European call option is a type of derivative security where the buyer of the
option has the right, but not the obligation, to buy the underlying stock at a pre-specified
price (called the strike price) on a specific date (called the expiration date) regardless of
the market value of the stock. If the market value of the stock is greater than the strike
price at the expiration date, the buyer will exercise his/her right to buy the stock. If the
market price is below the strike price on the expiration date, the buyer will decline buying
the stock and will have lost only his or her initial investment (the price of the option). The
seller of the call option needs to determine a price for the option that is fair for both the
buyer and the seller. Specifically, the seller would like to find a selling price for the option
such that when that amount is invested through a hedging portfolio, the seller will be able
to make back the strike price less the sell price of the option with probability one. In fact,
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this price of the option needs to be the lowest possible dollar amount such that the seller
can hedge their losses, to avoid an arbitrage opportunity. Generally, when a market has
the form (2.3), the solution to the almost sure hedging problem of a European call option
is not easily computable. However, if the interest rate and volatility of each stock are both
constant, as in (2.1), there is a formulaic method for determining both the selling price of
the European call option and the associated hedging portfolio. This method comprises the
celebrated Black and Scholes formula for the price of a European call option. By way of
general background, and because of its interest and importance, the Black-Scholes formula
is briefly discussed in Example 3.3.13.

The modern theory of pricing contingent claims began with the work of Samuelson [44],
Samuelson and Merton [45], Black and Scholes [4], and Merton [36]. These works dealt
with a market model in which the market coefficients are kept constant, as in (2.1), and led
to the development of the Black-Scholes option pricing model which began a revolution in
finance with the widespread creation of numerous derivative securities. The Black-Scholes
formula gives a computable version of the price of the option, which was useful in a time
where computational power was not as advanced as it is today. Again, it is important to
note that the Black-Scholes method is crucially dependent on accurate knowledge of the
volatility parameter σ (see (2.1)), and the success of the formula is tied to how well the
volatility parameter matches its real-world counterpart. Empirical evidence has shown that
the true volatility is usually not constant, and this led in turn to procedures for estimating
volatility changes, and the use of general stochastic volatilities. More contemporary meth-
ods for options pricing, such as the model developed by Heston [22], allows volatilities to be
modelled as stochastic processes. In this thesis we shall not be concerned with such mat-
ters, and will adopt the point of view introduced by Harrison and Kreps [20] and Harrison
and Pliska [21], namely that the market coefficients are stochastic processes given as part of
the market model, and the stock prices are modeled by multi-dimensional generalizations
of the basic relation (2.3). In this model the filtration with respect to which the market
coefficient processes µ and σ are adapted is an essential element, since this filtration is the
mathematical expression of the underlying randomness in the market model. The almost
sure hedging problem is much-studied and well understood in the case where the filtration
is generated only by the Brownian motions in the stock-price models (i.e. the process W
in (2.3)), and, by way of providing adequate background for this thesis, we summarize
the essential aspects of this problem in Chapter 3. Our main research goal involves the
case in which this filtration is generated jointly by the Brownian motion together with a
finite-state Markov chain (which models the regime-switching discussed above). There is a
considerable literature on hedging in the very simple and special case for which the market
coefficients are just Markov-modulated, as at (2.4) (we mention only two works of this kind,
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namely Jobert and Rogers [27] and Yao et-al [51]). Despite the attention it has received,
this special case of somewhat limited interest, for the reasons discussed above (following
(2.4)), and the solution methods involved are typically highly problem-specific and rely
crucially on the simplicity of the Markov-modulated coefficients. Considerably more chal-
lenging is the case where the market coefficients are non-anticipatively determined by both
the Brownian motion and the Markov chain together. We devote Chapter 4 to the hedging
problem formulated at this level of generality.

Our description of the almost sure hedging problem has so far dealt with a market in
which there are no portfolio constraints or margin requirements, that is at every instant
the investor can freely distribute wealth among all the assets in the market with no margin
payments. As noted earlier, portfolio constraints and margin requirements make problems
in mathematical finance much more challenging to solve. Karatzas, Lehoczky, Shreve and
Xu [29] were the first to solve the problem of constrained utility maximization in what they
describe to be an incomplete market. This market is a Brownian motion market model
where the prices of the n risky assets are driven by a d-dimensional Brownian motion.
The incompleteness arises since n is assumed to be strictly smaller than d. This makes it
impossible for an agent to “hedge without risk” every random contingent claim. That is,
there exists contingent claims for which the probability of an investor defaulting is non-
zero. Their method of solution relies upon fictitiously completing the incomplete market.
Fictitious stocks are carefully chosen so that the optimal portfolio will not invest in them,
and as a result, the optimal portfolio in the fictitious market is a potential solution to the
incomplete market. By creating optimal portfolios in many fictitious markets, the optimal
portfolio in the original incomplete market is the portfolio that minimizes a given expected
utility function.

El-Karoui and Quenez [16][17] were the first to produce results for the almost sure
hedging problem in an incomplete market - the same market posed by Karatzas, Lehoczky,
Shreve and Xu [29]. El-Karoui and Quenez showed that in such a market one could not
promise to exactly hedge a given contingent claim. However, they did show that one
could always super-hedge a given contingent claim. That is, an investor can always find a
least initial wealth and portfolio process that almost surely produces more wealth than a
given contingent claim. Using the same fictitious-completion approach as Karatzas et al.
these authors were able to derive formulas for the least initial wealth and super-hedging
portfolio of a contingent claim. Additionally, El-Karoui and Quenez introduced the notion
of a cumulative consumption process which allows an investor to consume wealth during the
trading interval. They showed that with the inclusion of a specifically chosen consumption
process, the least initial wealth and super-hedging portfolio does, in fact, exactly hedge a
given contingent claim. This notion of a cumulative consumption process is described in
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Chapter 4 and will be essential for the results developed in Chapters 4 and 5 of this thesis.

Cvitanic and Karatzas [10] extended the approach of El-Karoui and Quenez [16][17]
to the case of general convex constraints on portfolio proportions. These convex portfolio
constraints are far more general than the constraints imposed on the market by Karatzas
et-al [29]. Cvitanic and Karatzas developed representations of the least initial wealth and
super-hedging portfolio in such a constrained market by use of the Doob-Meyer decompo-
sition and martingale representation theorem. Their more probabilistic treatment of the
hedging problem is based upon very deep methods developed for stochastic control prob-
lems. Cvitanic and Karatzas also show how to modify their approach for hedging to include
very simple margin requirements, specifically higher interest rates for borrowing than for
investing ; however, in the absence of portfolio constraints. Follmer and Kramkov [18] have
extended the approach of El-Karoui and Quenez [16][17] and Cvitanic and Karatzas [10]
beyond the Brownian motion case to very general market models, with the asset prices
being represented by abstract semimartingales. Needless to say, with this general model,
one can establish only existence of a constrained super-hedging strategy, without the rather
concrete characterizations of the super-hedging strategy that one finds in El-Karoui and
Quenez [16][17] and Cvitanic and Karatzas [10] for the Brownian motion case. As a result,
in Chapter 5 of this thesis, we extend many of the methods of Cvitanic and Karatzas to
develop a characterization for the optimal hedging strategy in the almost sure hedging
problem in a regime-switching market model with both convex portfolio constraints and
general margin requirements.

Often times the least initial wealth required to super-hedge a contingent claim is so
high that it is unrealistic for an investor to pay such a price. For example, if an agent
sells a call option on one share of stock, and cannot borrow money, he must sell the option
for the price of the stock to come out even. However, nobody would pay this price for an
option if they can just buy the stock itself. Cvitanic [8] studied the problem of approximate
hedging, that is, the problem of minimizing the expected loss of hedging with an initial
investment less than the price of a given contingent claim. In a Brownian motion market
model with general convex constraints, Cvitanic shows that starting from some initial
wealth, there always exists a hedging strategy that minimizes a specific convex loss function.
What makes this problem difficult is the fact that the loss function is not smooth, and
therefore, one cannot simply resort to tools of smooth convex analysis. Instead, Cvitanic
uses methods such as the Komlós theorem and non-smooth convex analysis to prove the
existence of a risk-minimizing hedging strategy. In the last portion of this thesis we will
study the approximate hedging problem in a constrained regime-switching market model.
Specifically, in Chapter 6 of this thesis, we will show the existence of a risk-minimizing
hedging strategy in a regime-switching market with both convex portfolio constraints and
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general margin requirements using a procedure very similar to that of Cvitanic.
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Chapter 3

The Unconstrained Hedging Problem
in a Brownian Motion Market Model

The subject of this chapter is the almost sure hedging of contingent claims in a standard
financial market model. Specifically, if the seller of a contingent claim is required to pay
off some strictly positive amount at some final time only, the least initial wealth and the
associated portfolio process that almost surely promises the agent can pay off the claim
will be found. This chapter provides a summary of the main elements of unconstrained
hedging, as found in §5.2, §5.3 and §5.6 in Karatzas and Shreve [31]. All of the results in
this chapter are well known, and do not constitute new research. In particular the regime-
switching in the market model, which is the main goal of our research, is not addressed
here. However, the results of this chapter are essential prior background for posing the
problem we intend to address and for establishing a framework which we shall extend to
include regime-switching in Chapters 4 and 5.

3.1 Market Model

The model that will be used in this chapter is a continuous-time market model over a time
horizon [0, T ] for a constant T ∈ (0,∞). The market model comprises the basic elements
stipulated in Conditions 3.1.1 and 3.1.3.

Condition 3.1.1. A standard N-dimensional Brownian motion {W(t); t ∈ [0, T ]} with
scalar entries Wn(t) where n = 1, . . . , N , is given on the common complete probability
space (Ω,F , P ) and is the source of randomness in the model. With N (P ) the collection of
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all P -null events in F , that is N (P ) , {A ∈ F : P (A) = 0}, define the usual augmented
filtration {Ft} as

{Ft} , σ{W(s), s ∈ [0, t]} ∨ N (P ) (3.1)

for all t ∈ [0, T ]. In particular, {Ft} represents the information available to investors.

Notation 3.1.2. The notation F∗ is used to denote the {Ft}-progressively measurable σ-
algebra on [0, T ]× Ω, and η ∈ F∗ is used to indicate that the process η : [0, T ]× Ω→ RN

is {Ft}-progressively measurable. The qualifier “a.s.” always refers to the probability P
on (Ω,F), while the qualifier “a.e.” refers to the product measure λ⊗ P on B([0, T ])×F ,
where λ denotes the Lebesgue measure on the Borel σ-algebra of [0, T ], denoted B([0, T ]).

Condition 3.1.3. The market comprises a single risk-free asset with price {S0(t); t ∈
[0, T ]} and several risky assets with prices {Sn(t); t ∈ [0, T ]}, n = 1, . . . , N , modeled by
the stochastic differential equations

dS0(t) = r(t)S0(t)dt, dSn(t) = Sn(t)(bn(t)dt+
N∑
m=1

σnm(t)dWm(t)), (3.2)

with S0(0) , 1, and Sn(0), n = 1, . . . , N , being given, strictly positive constants. The
risk-free interest rate {r(t)}, the entries {bn(t)} of the RN -valued rate of return
{b(t)}, and the entries {σnm(t)} of the N×N matrix-valued volatility process {σ(t)} are
given uniformly bounded and {Ft}-progressively measurable scalar processes on [0, T ]× Ω.
Using ||z|| for the Euclidean norm and z> for the transpose of a vector z ∈ RN , we shall
suppose that there exists a constant κ ∈ (0,∞) such that z>σ(t, ω)σ(t, ω)>z ≥ κ||z||2 for
all (z, t, ω) ∈ RN × [0, T ]× Ω.

Remark 3.1.4. The risk-free interest rate process {r(t)}, the mean rate of return process
{b(t)}, and the volatility process {σ(t)}, stipulated at Condition 3.1.3 are assumed known,
and are together called the market coefficient processes of the market model.

Remark 3.1.5. From now on Conditions 3.1.1 and 3.1.3 will be assumed without explicit
mention for all theorems, lemmas and propositions in this chapter.

Remark 3.1.6. In view of the constant κ ∈ (0,∞) postulated in Condition 3.1.3, we get
from (2.4) and (2.5) on p. 90 of Xu and Shreve [50], the existence of a constant κ1 ∈ (1,∞)
such that

1

κ1

max{||(σ(t, ω))−1z||, ||(σ(t, ω)>)−1z||}

≤ ||z|| ≤ κ1 min{(||(σ(t, ω))−1z||, ||(σ(t, ω)>)−1z||}
(3.3)

for all (z, t, ω) ∈ RN × [0, T ]× Ω.
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Notation 3.1.7. Define the RN - valued market price of risk {θ(t), t ∈ [0, T ]} by

θ(t) , σ−1(t)(b(t)− r(t)1) (3.4)

for all t ∈ [0, T ] where 1 is the N -dimensional vector of unit entries. From Condition 3.1.3
and Remark 3.1.6, the process θ is {Ft}-progressively measurable and uniformly bounded,
i.e., κθ , sup(t,ω) ||θ(t, ω)|| <∞.

Before defining the problem of unconstrained hedging we make some preliminary com-
ments in the following remarks and text on how an agent trades in the market just defined:

Remark 3.1.8. It is assumed throughout that, at each and every instant t in the trading
interval [0, T ], an agent (or investor) allocates his or her total wealth among the risk-free
asset (with price S0(t)) and the risky assets (with prices Sn(t), n = 1, 2, . . . , N). To model
this investment we introduce the process {π0(t), t ∈ [0, T}, which denotes the monetary
(or dollar) amount allocated by the agent to the risk-free asset. We shall always assume
that this process is {Ft}-progressively measurable, that is π0 ∈ F∗. To model investment
in the N -risky assets we define the following space Π of portfolio processes :

Π ,

{
π : [0, T ]× Ω→ RN

∣∣∣∣π ∈ F∗, ∫ T

0

||π(t)||2dt <∞ a.s.

}
. (3.5)

The interpretation of elements π of Π is as follows: Each scalar component πn(t), for
n = 1 . . . N , of the RN -vector π(t), for t ∈ [0, T ], indicates the monetary (or dollar) amount
allocated by the agent to the risky asset with price Sn(t) at the instant t ∈ [0, T ]. It then
follows that the total wealth of the agent is the sum of the amounts in the risk-free and
risky assets, that is the total wealth of the agent is given by the process {X(t), t ∈ [0, T ]}
defined as follows:

X(t) ,
N∑
n=0

πn(t) = π(t)>1 + π0(t), t ∈ [0, T ], (3.6)

in which 1 is the N -dimensional vector with unit entries.

Denote by x the initial wealth of the agent at start of trade t = 0, that is

x ,
N∑
n=0

πn(0). (3.7)

From now on it will be assumed that the agent begins trading with non-negative initial
wealth, that is

x ∈ [0,∞). (3.8)
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Remark 3.1.9. A basic assumption that we shall adopt in the present chapter, and which is
common throughout much of mathematical finance, is that the agent follows a self funded
trading strategy over the entire trading interval t ∈ [0, T ]. This means that apart from
the initial wealth x assigned to the agent at start of trade t = 0, over the remaining
trading interval t ∈ (0, T ], there is never any infusion of cash to or removal of cash from
the investor’s wealth by an external source (e.g. a wealthy relative). The total investor
wealth at every t ∈ [0, T ] is distributed entirely among the risk-less and risky assets (so
that (3.6) holds). In particular there are never any payments out of the investor’s wealth
for consumption.

With the stipulation of self-funded trading, as in Remark 3.1.9, it is a standard result
of mathematical finance (see §1.2 - §1.3 in Methods of Mathematical Finance by Karatzas
and Shreve [31]) that the wealth process X of the agent necessarily satisfies the following
stochastic integral equation:

X(t) = x+

∫ t

0

{
r(s)X(s) + π(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π(s)>σ(s)dW(s), t ∈ [0, T ],

(3.9)

in which of course x is the initial wealth of the agent and π ∈ Π is the portfolio process
according to which the wealth of the agent is allocated among the N risky assets (see
Remark 3.1.8). The remarkable thing about (3.9) is that the process {π0(t)}, giving the
allocation of investor wealth to the riskless asset with price {S0(t)} (see Remark 3.1.8) does
not appear anywhere, and only the portfolio process π ∈ Π appears in the equation. The
reason for this, as a detailed derivation of (3.9) (which we do not give here) would make
clear, is that the assumption of a self-funded trading strategy renders π0(t) a redundant
variable which can be eliminated using the relation (3.6).

Remark 3.1.10. From the stochastic integral equation (3.9) it is clear that the wealth
process X is completely determined by the initial wealth x (which is effectively the “initial
value”) and the portfolio process π ∈ Π (which is effectively a “control input” decided
upon by the agent). From now on we shall denote the wealth process of the agent not by
X but instead by X(x,π), to make clear the dependence of the wealth process on the initial
wealth x and portfolio process π ∈ Π, so that (3.9) will be written as follows:

X(x,π)(t) = x+

∫ t

0

{
r(s)X(x,π)(s) + π(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π(s)>σ(s)dW(s), t ∈ [0, T ],

(3.10)
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or, in the more usual notation of stochastic differential equations, as

dX(x,π)(t) = {r(t)X(x,π)(t) + π(t)>σ(t)θ(t)}dt+ π(t)>σ(t)dW(t), t ∈ [0, T ], (3.11)

with the initial condition
X(x,π)(0) = x. (3.12)

The SDE (3.11) - (3.12) is simple enough that we can explicitly solve for the wealthX(x,π)(t)
in terms of x and π. In fact, from Condition 3.1.3 we see that the risk-free asset has the
price

S0(t) = exp

{∫ t

0

r(τ)dτ

}
, t ∈ [0, T ]. (3.13)

It then follows easily from Ito’s formula that the wealth process is given explicitly in terms
of x ∈ [0,∞) and π ∈ Π by the expression

X(x,π)(t) = S0(t)x+ S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)θ(τ)dτ

}
+ S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)dW(τ)

}
, t ∈ [0, T ].

(3.14)

3.2 Definition of the Hedging Problem

In the present section we shall define the problem of unconstrained hedging with reference
to the preliminaries outlined in the previous section. We begin by defining a contingent
claim. A contingent claim B is a specified strictly positive FT -measurable random variable.
That is

B : (Ω,F , P ) 7→ (0,∞), B ∈ FT . (3.15)

Since B is FT -measurable it incorporates all of the “randomness” in the market over the
entire trading interval t ∈ [0, T ], that is one sees a realization B(ω) of this random variable
only at the close of trade t = T . The random variable B defines an obligation on the part
of the agent in the following sense: starting from some initial wealth x ∈ [0,∞), the agent
must come up with some portfolio process π ∈ Π such that

X(x,π)(T ) = B a.s. (3.16)

In other words, the agent starts with an initial wealth x ∈ [0,∞) and must invest in the
risky assets in such a way that sufficient wealth is generated at close of trade t = T for
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the agent to be able to pay off the contingent claim B. For both technical and financial
reasons we restrict attention to portfolio processes π ∈ Π for which the corresponding
wealth process is non-negative over the entire trading interval. That is, for a given initial
wealth x ∈ [0,∞), the agent is restricted to portfolio processes π in the set A(x) defined
as follows:

A(x) ,

{
π ∈ Π

∣∣∣∣X(x,π)(t) ≥ 0 a.s. for all t ∈ [0, T ]

}
. (3.17)

Remark 3.2.1. Observe that A(x) 6= ∅ for each x ∈ [0,∞). To see this take π = 0. In
accordance with Remark 3.1.8 this amounts to investing zero wealth in the risky assets (so
that the entire wealth is invested in the risk-free asset with price S0.) With this π one sees
that the last two terms on the right side of (3.14) are zero so that

X(x,π)(t) = S0(t)x ≥ 0, t ∈ [0, T ], (3.18)

and therefore π ∈ A(x). Thus A(x) 6= ∅ for each x ∈ [0,∞).

Remark 3.2.2. An agent who begins with initial wealth x ∈ [0,∞) and determines some
π ∈ A(x) such that (3.16) holds is said to hedge the contingent claim B from the initial
wealth x, and the corresponding portfolio process π ∈ A(x) is called an unconstrained
hedging strategy from the initial wealth x.

Remark 3.2.3. In light of the preceding discussion, from now on we restrict to pairs (x,π)
for which x ∈ [0,∞) and π ∈ A(x), so that the wealth process X(x,π) is non-negative
over the trading interval t ∈ [0, T ]. From a financial point of view this is a reasonable
requirement, for it merely insists that the agent never go into debt during the trading
interval (negative wealth amounts to debt). From a mathematical viewpoint, removal of
the condition of non-negative wealth (essentially by requiring π ∈ Π instead of π ∈ A(x)),
which allows the agent to temporarily take on debt during the trading interval, leads to
a rather intractable hedging problem, which is in fact not well understood to this day.
We shall take care to point out the essential role played by non-negativity of the wealth
whenever this condition is used.

In light of the previous discussion of the hedging problem it is clear that the initial
wealth x ∈ [0,∞) is a factor of great importance. Indeed, from (3.14) one sees that if the
initial wealth x is too small then there may not even exist any π ∈ A(x) such that (3.16)
holds, that is there fails to exist an unconstrained hedging strategy from the initial wealth
x. Therefore, one of our principal goals is to determine the least possible initial wealth
for which there does exist a hedging strategy. To make this precise we define the set Λ
comprising all the initial x for which a hedging strategy does exist, that is

Λ ,

{
x ∈ [0,∞)

∣∣∣∣ ∃π ∈ A(x) s.t. X(x,π)(T ) = B a.s.

}
. (3.19)
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In view of (3.19) and (3.17) we can express Λ in expanded form as follows:

Λ =

{
x ∈ [0,∞)

∣∣∣∣ X(x,π)(T ) = B a.s. for some π ∈ Π

such that X(x,π)(t) ≥ 0 a.s. for all t ∈ [0, T ]

}
.

(3.20)

Remark 3.2.4. There is of course no guarantee that Λ is non-empty. Indeed, as we shall
see later on (at Remark 3.3.7), if the contingent claim random variable B is stipulated
to be “unreasonably large” then Λ will be empty. However, assuming that Λ is indeed
non-empty and furthermore attains its infimum at some û ∈ [0,∞) (that is û ∈ Λ and
û ≤ x for all x ∈ Λ), it is evident that x = û is the least initial wealth from which one
can hedge the contingent claim B. This least initial wealth is usually called the price of
the contingent claim B. The most important goals of this chapter can now be stated as
follows:

(a) Determine conditions on the contingent claim random variable B which ensure that
Λ is non-empty.

(b) With the conditions in (a) in force establish that there exists some û ∈ Λ such that
û ≤ x for all x ∈ Λ. It then follows from (3.19) that x = û is the least initial wealth from
which one can hedge the contingent claim B.

(c) With x = û characterize some π ∈ A(x) such that (3.16) holds. This portfolio
process hedges the contingent claim B from the least initial wealth û.

3.3 Solution to the Hedging Problem

Having outlined the problem of unconstrained hedging in Remark 3.2.4 we shall now ad-
dress this problem. To this end an essential role will be played by the so-called state price
density process.

Definition 3.3.1. The state price density process {H0(t), t ∈ [0, T ]} for the market model
defined by Conditions 3.1.1 and 3.1.3 is the process with values in (0,∞) defined as follows:

H0(t) , exp

{
−
∫ t

0

r(s)ds

}
E(−θ •W)(t), t ∈ [0, T ], (3.21)

in which we use the following abbreviated notation for stochastic integrals

(θ •W)(t) ,
∫ t

0

θ(τ)>dW(τ), t ∈ [0, T ], (3.22)
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and E(·)(t) is the usual Ito exponential function (see Remark C.10.3).

Remark 3.3.2. A simple exercise using Ito’s product rule allows us to write H0(t) as

H0(t) = 1−
∫ t

0

H0(s)θ(s)>dW(s)−
∫ t

0

H0(s)r(s)ds, t ∈ [0, T ]. (3.23)

Since W ∈Mc
loc({Ft}, P ), we have that

H0 ∈ SMc({Ft}, P ), (3.24)

that is H0 is a continuous {Ft}-semimartingale (see Definition C.8.1 and Notation C.8.2).
Furthermore, observe from (3.21) that

inf
t∈[0,T ]

H0(t) > 0 a.s. (3.25)

The significance of the state price density process is in the following result:

Proposition 3.3.3. For each x ∈ [0,∞) and π ∈ A(x), the process {J (x,π)
0 (t), t ∈ [0, T ]}

defined as
J

(x,π)
0 (t) , H0(t)X(x,π)(t), t ∈ [0, T ], (3.26)

is a non-negative {Ft}-supermartingale (i.e. J
(x,π)
0 ∈ SPM({Ft}, P ) and J

(x,π)
0 ≥ 0).

Proof. For ease of notation, use X(t) = X(x,π)(t) for all t ∈ [0, T ]. A routine calculation
using Ito’s product rule establishes that

J
(x,π)
0 (t) = x+

∫ t

0

H0(s)

(
π(s)>σ(s)−X(s)θ(s)>

)
dW(s), t ∈ [0, T ]. (3.27)

From W ∈Mc
loc({Ft}, P ) and (3.27) we get

J
(x,π)
0 ∈Mc

loc({Ft}, P ), (3.28)

that is J
(x,π)
0 is a continuous {Ft}-local martingale. From (3.25) and X(x,π)(t) ≥ 0 a.s. for

all t ∈ [0, T ] (from (3.17) and π ∈ A(x)), we have that

J
(x,π)
0 (t) ≥ 0 a.s., t ∈ [0, T ]. (3.29)

As a result of J
(x,π)
0 being a non-negative local martingale, from Proposition C.11.3, we

have that J
(x,π)
0 is a {Ft}-supermartingale, i.e.

J
(x,π)
0 ∈ SPM({Ft}, P ). (3.30)

�
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Remark 3.3.4. Note that non-negativity of the wealth process is essential for Proposition
3.3.3 to hold.

The following corollary, which is immediate from Proposition 3.3.3, is a key element to
the solution of the unconstrained hedging problem.

Corollary 3.3.4.1. For each x ∈ [0,∞),π ∈ A(x),

E
[
H0(T )X(x,π)(T )

]
≤ x. (3.31)

Remark 3.3.5. Suppose that Λ is non-empty. Then for each x ∈ Λ there exists a π ∈ A(x)
such that

X(x,π)(T ) = B a.s. (3.32)

Since B > 0 and H0(T ) > 0, from Corollary 3.3.4.1 and (3.32) we have

Λ 6= ∅ =⇒ E [H0(T )B] ≤ x, for all x ∈ Λ. (3.33)

Remark 3.3.6. Note that the expectation E [H0(T )B] is always defined, with values in
[0,∞], since the random variable H0(T )B is non-negative.

Remark 3.3.7. From (3.33) one sees that

Λ 6= ∅ =⇒ E [H0(T )B] <∞.

One of the main results of this chapter (see Theorem 3.3.10) establishes the converse
implication, so that we actually have the following equivalence:

Λ 6= ∅ ⇐⇒ E [H0(T )B] <∞.

Thus, if the contingent claim random variable B is stipulated so large that E [H0(T )B] =∞
then there is no possibility of hedging the claim B.

Notation 3.3.8. In the following an essential role will be played by the extended real number
û ∈ [0,∞] defined as follows:

û , E[H0(T )B]. (3.34)

The following result is then immediate:

Proposition 3.3.9. Suppose û <∞, and define the process process {X̂(t), t ∈ [0, T ]} as
follows:

X̂(t) ,
E[H0(T )B|Ft]

H0(t)
, t ∈ [0, T ]. (3.35)
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Then the following hold:

(1) X̂(0) = û a.s.

(2) X̂(T ) = B a.s.

(3) X̂(t) ≥ 0 a.s., t ∈ [0, T ]

(4) H0X̂ ∈Mc({Ft}, P ).

The main result of this chapter is as follows:

Theorem 3.3.10. Suppose that û <∞. Then û ∈ Λ (in particular Λ 6= ∅) and û = inf Λ,
that is û ≤ x for all x ∈ Λ.

Remark 3.3.11. From Theorem 3.3.10 and (3.17), one sees that û is the least initial wealth
which guarantees that X(û,π)(T ) = B a.s. for some π ∈ A(û) , that is û is the price of the
contingent claim B (see Remark 3.2.4).

Proof of Theorem 3.3.10 . We are going to establish that there exists some portfolio
process π̂ ∈ A(û) such that

X̂(t) = X(û,π̂)(t), t ∈ [0, T ], (3.36)

where X̂ is defined at (3.35), and from (3.10), the process X(û,π̂) satisfies the stochastic
integral equation

X(û,π̂)(t) = û+

∫ t

0

{
r(s)X(û,π̂)(s) + π̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π̂(s)>σ(s)dW(s), t ∈ [0, T ].

(3.37)

If the relation (3.36) indeed holds for some π̂ ∈ A(û) then, from Proposition 3.3.9(2), we
obtain

X(û,π̂)(T ) = B a.s. (3.38)

Since û is the initial wealth of the process X(û,π̂), this would mean, from (3.19),

û ∈ Λ thus Λ 6= ∅. (3.39)

Furthermore, from (3.33), we have that û ≤ inf Λ, and therefore, from (3.39),

û = inf Λ ∈ Λ. (3.40)
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Thus it remains to establish that (3.36) holds for some π̂ ∈ A(û), for then Theorem 3.3.10
follows from (3.39) and (3.40).

To begin, we have from Proposition 3.3.9(4) that H0X̂ ∈Mc({Ft}, P ). As a result, we
can use the martingale representation theorem from Theorem C.12.3 to write

H0(t)X̂(t) = û+

∫ t

0

Ψ0(s)>dW(s), t ∈ [0, T ], (3.41)

for some unique RN -valued and {Ft}-progressively measurable process {Ψ0(t), t ∈ [0, T ]}
such that ∫ T

0

||Ψ0(t)||2dt <∞ a.s. (3.42)

Dividing both sides of (3.41) by H0(t) (recall (3.25)) yields

X̂(t) =
1

H0(t)

(
û+

∫ t

0

Ψ0(s)>dW(s)

)
, t ∈ [0, T ]. (3.43)

Using Ito’s product formula we can expand the right-hand side of (3.43) to find

X̂(t) = û+

∫ t

0

(
Ψ0(s)>

H0(s)
+ X̂(s)θ(s)>

)
dW(s)

+

∫ t

0

(
Ψ0(s)>

H0(s)
+ X̂(s)θ(s)>

)
θ(s)ds+

∫ t

0

X̂(s)r(s)ds

(3.44)

for all t ∈ [0, T ]. Now define the RN -valued process

π̂(t) , [σ−1(t)]>
[

Ψ0(t)

H0(t)
+ X̂(t)θ(t)

]
, t ∈ [0, T ]. (3.45)

Since Ψ0 ∈ F∗ and σ ∈ F∗ (from Condition 3.1.3), one sees from (3.45) that

π̂ ∈ F∗. (3.46)

Moreover θ(·) is uniformly bounded on [0, T ]× Ω (see Notation 3.1.7), and from (3.44) it
follows that X̂(·, ω) is continuous on [0, T ] and therefore uniformly bounded on [0, T ] for
P -almost all ω ∈ Ω. As a result, X̂(·, ω)θ(·, ω) is uniformly bounded on [0, T ] for P -almost
all ω ∈ Ω, and so ∫ T

0

||X̂(t)θ(t)||2dt <∞ a.s. (3.47)

29



Additionally, since inft∈[0,T ] H0(t) > 0 a.s. (see (3.25)), from (3.42) we have∫ T

0

||Ψ0(t)

H0(t)
||2dt <∞ a.s. (3.48)

Combining (3.47) and (3.48) gives∫ T

0

||Ψ0(t)

H0(t)
+ X̂(t)θ(t)||2dt <∞ a.s. (3.49)

In view of (3.3), (3.45) and (3.49), we obtain∫ T

0

||π̂(t)||2dt <∞ a.s. (3.50)

and from (3.50), (3.46) and (3.5) we find that

π̂ ∈ Π, (3.51)

that is π̂ is a valid portfolio process. In view of (3.44) and (3.45) we have the identity

X̂(t) = û+

∫ t

0

{
r(s)X̂(s) + π̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π̂(s)>σ(s)dW(s), t ∈ [0, T ].

(3.52)

Now (3.36) follows upon comparison of (3.52) and (3.37), and it remains to verify that
π̂ ∈ A(û). From Proposition 3.3.9(3) together with (3.36) we have

X(û,π̂)(t) ≥ 0 a.s., t ∈ [0, T ], (3.53)

as required to get π̂ ∈ A(û) (see (3.17)). We have thus established that (3.36) holds for
some π̂ ∈ A(û), and Theorem 3.3.10 follows. �.

Remark 3.3.12. From Theorem 3.3.10, together with Remark 3.3.11, one sees that the price
of the contingent claim B is the quantity û defined at (3.34), that is û is the least initial
wealth from which the contingent claim can be hedged. We also note that the corresponding
hedging portfolio is the process π̂ ∈ Π defined at (3.45). That is,

π̂(t) , [σ−1(t)]>
[

Ψ0(t)

H0(t)
+ X̂(t)θ(t)

]
, t ∈ [0, T ], (3.54)

in which the process Ψ0 is the RN -valued {Ft}-progressively measurable integrand pro-
cess obtained from application of the martingale representation theorem at (3.41). This
integrand process is typically obtained from the Clark-Ocone formula of Malliavin calculus.
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Example 3.3.13. In this example we will look at a very common hedging problem, namely
the celebrated Black-Scholes problem. In this problem there is just one risky asset with
price S(t) (that is N = 1 at Conditions 3.41 and 3.1.3) and the market coefficient processes
are assumed constant. That means that the price process are given by the relations

dS0(t) = rS0(t)dt, dS(t) = S(t)(bdt+ σdW (t)), (3.55)

(c.f. (3.2)) in whichW is a scalar Brownian motion and r, b and σ are real-valued constants.
Furthermore, it is assumed that the contingent claim B is given by a deterministic function
of the price of the stock at close of trade t = T , i.e. B = φ(S(T )). An example of this
type of contingent claim is a European call option for which φ has the form

φ(S(T )) = (S(T )− q)+, q ∈ [0,∞), (3.56)

in which, as usual,
(x)+ , max{0, x}, x ∈ R, (3.57)

and q is a real constant called the strike price of the option. We would like to determine
the least initial wealth û and the optimal portfolio process π̂ that guarantees

X(û,π̂)(T ) ≥ φ(S(T )) a.s. (3.58)

Suppose that u(s, x) satisfies the partial differential equation

∂u

∂s
(s, x) =

σ2x2

2

∂2u

∂x2
(s, x), 0 ≤ s ≤ T, x ∈ R, (3.59)

with boundary condition
u(0, x) = φ(x), x ∈ R. (3.60)

Put
û , u(T, S(0)), (3.61)

and

π̂(t) , S(t)
∂u

∂x
(T − t, S(t)), 0 ≤ t ≤ T. (3.62)

Although we shall not give the details here, one can use Theorem 3.3.10, together with
the Clark-Ocone formula, to see that the price of the European call option B is given by
(3.61) and the hedging portfolio is given by (3.62). Notice that these quantities are directly
computable once the partial differential equation (3.59) is solved with the initial condition
(3.60).
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Remark 3.3.14. One can also establish the results of Example 3.3.13 quite easily by direct
application of Ito’s formula, without recourse to Theorem 3.3.10 and the Clark-Ocone
formula, because of the simplicity of the market coefficient processes (which are constant).
However, when the market coefficient processes are genuinely random then one must use
the full strength of Theorem 3.3.10. This remark is important because, in the next chapter,
we are going to deal with market coefficient processes which are “more random” than the
market coefficients stipulated at Condition 3.2.
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Chapter 4

The Unconstrained Hedging Problem
in a Regime-Switching Market Model

In this chapter we address the first significant research problem of this thesis, an extension
of the almost sure hedging problem to the so-called regime-switching financial market
model. The primary problem is still the same as in Chapter 3, that is we would like
to find the price of a contingent claim together with a portfolio process that promises
the seller almost surely covers his/her obligation to pay off this claim at close of trade.
However, in the present chapter, the market coefficient processes are determined not only
by an underlying Brownian motion (as was the case for the market coefficient processes
stipulated at Conditions 3.1.1 and 3.1.3 in the preceding chapter), but also by a finite-state
Markov chain. As explained in more detail later in the chapter, the dependency on a finite-
state Markov chain is introduced in order to model occasional but large-scale changes (or
“regime-switches”) in market conditions. Although the approach in this chapter follows
the same basic outline summarized in Chapter 3, it will quickly become clear that the
inclusion of regime-switching in the market model makes the problem significantly more
challenging. The structure of the present chapter will be very similar to that of Chapter
3 so the reader can easily compare the methods of solution and see the additional aspects
and challenges which arise from a regime-switching model.

4.1 Market Model

The model that will be used in this chapter is a continuous-time market model over a time
horizon [0, T ] for a constant T ∈ (0,∞). The market model comprises the basic elements
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in Conditions 4.1.1 and 4.1.4, which should be compared with Conditions 3.1.1 and 3.1.3
respectively.

Condition 4.1.1. A standard N-dimensional Brownian motion {W(t); t ∈ [0, T ]} with
scalar entries Wn(t), where n = 1, . . . , N , and a time-homogeneous continuous-time Markov
chain {α(t); t ∈ [0, T ]} with càdlàg paths in a finite state space S = {1, . . . , D} and non-
random initial state α(0) , i0 ∈ S, are given on the common complete probability space
(Ω,F , P ) and are assumed independent.

The Markov chain α(·) has a D ×D generator matrix G , [gij]
D, namely,

gii , −
∑
i 6=j

gij, gij ≥ 0 i, j ∈ S, i 6= j, (4.1)

so that Pt , etG is the Markov transition matrix of α(·). With N (P ) , {A ∈ F : P (A) =
0}, define the augmented filtrations {Fαt } and {FW

t } as

{Fαt } , σ{α(s), s ∈ [0, t]} ∨ N (P ), {FW
t } , σ{W(s), s ∈ [0, t]} ∨ N (P ) (4.2)

for all t ∈ [0, T ]. Define the joint filtration to be

{Ft} , {Fαt } ∨ {FW
t } (4.3)

for all t ∈ [0, T ]. In particular, {Ft} represents the information available to investors.

Remark 4.1.2. For later reference we note here that the filtrations {Fαt } and {FW
t } defined

at (4.2) are right continuous (see Definition C.1.4). To see this observe that the Markov
chain α(·) is a Feller process (see, e.g., p. 31 of Rogers and Williams [43]) with values in S,
and since the augmented filtration of any Feller process is right-continuous (see Proposition
III(2.10) of Revuz and Yor [39]), one sees that {Fαt } is right continuous. Similarly, since
the Brownian motion W(·) is also a Feller process, it follows that the filtration {FW

t } is
right continuous. Furthermore, the filtration {Ft} defined at (4.3) is also right continuous.
In fact, since the Markov processes α(·) and W(·) are independent Feller processes with
values in S and RN respectively, it follows from Kallenberg [28] (Chapter 19, Exercise 10,
p. 389) that the joint process (α(·),W(·)) with values in S × RN is also a Feller process.
That {Ft} is right continuous again follows from Proposition III(2.10) of Revuz and Yor
[39]. The right continuity of {Ft} will play an essential technical role later in the chapter.

Notation 4.1.3. Exactly as at Notation 3.1.2, the notation F∗ (respectively, P∗) is used
to denote the {Ft}-progressively measurable (respectively, {Ft}-predictable (see Definition
C.1.6)) σ-algebra on [0, T ] × Ω. The notation η ∈ F∗ (respectively, η ∈ P∗) is used to
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indicate that the process η : [0, T ]×Ω→ RN is {Ft}-progressively measurable (respectively,
{Ft}-predictable). Of course, here the filtration {Ft} is defined by (4.3), and not by (3.1).
The qualifier “a.s.” always refers to the probability P on (Ω,F), while the qualifier “a.e.”
refers to the product measure λ⊗P on B([0, T ])×F , where λ denotes the Lebesgue measure
on the Borel σ-algebra of [0, T ], denoted B([0, T ]).

Condition 4.1.4 which follows is formally identical to Condition 3.1.3, except that the
underlying filtration is now defined at (4.3) to include the regime-switching Markov chain
(rather than the filtration defined at (3.1)). For completeness we repeat the condition in
full:

Condition 4.1.4. The market comprises a single risk-free asset with price {S0(t); t ∈
[0, T ]} and several risky assets with prices {Sn(t); t ∈ [0, T ]}, n = 1, . . . , N , modeled by
the relations

dS0(t) = r(t)S0(t)dt, dSn(t) = Sn(t)(bn(t)dt+
N∑
m=1

σnm(t)dWm(t)). (4.4)

with S0(0) , 1, and Sn(0), n = 1, . . . , N , being given, strictly positive constants. Addi-
tionally, assume that S0(T ) ≥ s0 a.s. for some constant s0 > 0. The risk-free inter-
est rate {r(t)}, the entries {bn(t)} of the RN -valued rate of return {b(t)}, and the
entries {σnm(t)} of the N × N matrix-valued volatility process {σ(t)} are given uni-
formly bounded and {Ft}-progressively measurable scalar processes on [0, T ] × Ω. Using
||z|| for the Euclidean norm and z> for the transpose of a vector z ∈ RN , we shall sup-
pose that there exists a constant κ ∈ (0,∞) such that z>σ(t, ω)σ(t, ω)>z ≥ κ||z||2 for all
(z, t, ω) ∈ RN × [0, T ]× Ω.

Remark 4.1.5. From now on Conditions 4.1.1 and 4.1.4 will be assumed without explicit
mention in all subsequent theorems, lemmas and propositions in the present chapter.

Remark 4.1.6. In view of the constant κ ∈ (0,∞) postulated in Condition 4.1.4 we get
from Xu and Shreve (see (2.4) and (2.5) on p. 90 of Karatzas and Shreve [31]) the existence
of a constant κ1 ∈ (1,∞) such that

1

κ1

max{||(σ(t, ω))−1z||, ||(σ(t, ω)>)−1z||}

≤ ||z|| ≤ κ1 min{(||(σ(t, ω))−1z||, ||(σ(t, ω)>)−1z||}
(4.5)

for all (z, t, ω) ∈ RN × [0, T ]× Ω. This bound result will be used extensively.
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Remark 4.1.7. In view of the independence of W and α from Condition 4.1.1, the process
{W(t), t ∈ [0, T ]} is still a Brownian motion with respect to the joint filtration {Ft}. As
a result, the risky asset SDE in (4.4) makes sense and has the same interpretation as the
SDE in (3.2).

Notation 4.1.8. Exactly as at Notation 3.1.7, define the RN - valued market price of risk
{θ(t), t ∈ [0, T ]} by

θ(t) , σ−1(t)(b(t)− r(t)1) (4.6)

for all t ∈ [0, T ] in which 1 is the N -dimensional vector of unit entries. From Condition
4.1.4 and Remark 4.1.6, the process θ is {Ft}-progressively measurable and uniformly
bounded, i.e., κθ , sup(t,ω) ||θ(t, ω)|| <∞.

Throughout this chapter an essential role will be played by the canonical processes
associated with the Markov chain α(·) which are defined as follows:

Definition 4.1.9. For i, j ∈ S, i 6= j, put

Rij(t) ,
∑

0<s≤t

I{α(s−) = i}I{α(s) = j}, R̃ij(t) ,
∫ t

0

gijI{α(s) = i}ds, (4.7)

Mij(t) , Rij(t)− R̃ij(t), t ∈ [0, T ], (4.8)

in which I is the indicator function given by

I{α(s) = i} ,

{
1 if α(s) = i

0 otherwise
(4.9)

for each i ∈ S. For notational convenience we put Rii = R̃ii = Mii , 0 for all i ∈ S.
The processes Rij, R̃ij,Mij, for i, j ∈ S, are called the canonical processes of the regime
switching Markov chain α(·).

We next identify, for later reference, some properties of the processes formulated in
Definition 4.1.9:

Remark 4.1.10. From (4.7) it is clear that Rij(t, ω) counts the number of jumps from state
i to state j by the Markov chain path α(·, ω) over the interval (0, t], from which it follows
that

4Rij(t)4Ri1j1(t) = 0, t ∈ [0, T ],

when (i, j) 6= (i1, j1) (here 4Rij(t) , Rij(t) − Rij(t−), t ∈ (0, T ] is the discontinuous
change, or jump, in the process Rij at the instant t, see (C.2)). Now Rij and R̃ij are
non-decreasing {Fαt }-adapted processes (respectively, càdlàg and continuous), so that

Mij is an {Fαt }-adapted càdlàg process with finite-variation paths. (4.10)
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Furthermore, from IV(21.5) - IV(21.7) of Rogers and Williams [43] we have the following
essential property of the processes Mij:

Lemma 4.1.11. Mij is an {Fαt }-local martingale for all i, j ∈ S, i 6= j.

From IV(21.11) of Rogers and Williams [43] we have the elementary bound

γij , E [exp(Rij(T ))] <∞, i, j ∈ S, i 6= j. (4.11)

With this bound, together with the independence of α(·) and W(·), we immediately
strengthen Lemma 4.1.11 as follows:

Lemma 4.1.12. Mij is an {Ft}-square integrable martingale for all i, j ∈ S, i 6= j.

Furthermore, from (4.10), Lemma 4.1.12 and Lemma C.7.3 we have

Lemma 4.1.13. Mij is an {Ft}-square integrable and purely discontinuous martingale for
all i, j ∈ S, i 6= j.

From Lemma 4.1.13 and the decomposition Theorem C.8.3 we then get

M c
ij(t) = 0, Mij(t) = Md

ij(t), t ∈ [0, T ], (4.12)

for all i, j ∈ S, i 6= j. Due to the essential results of Lemmas 4.1.11-4.1.13, we call family
of process Mij, for i, j ∈ S, the canonical martingales of the Markov chain α(·). From
(4.7) and (4.8) together with Theorem C.8.9 and the fact that 4Mij(t) = 4Rij(t), t ∈
[0, T ] by Definition 4.1.9, we have that the quadratic co-variation process of the canonical
martingales Mij (see Definition C.8.8) are given by

[Mij,Mij](t) = Rij(t) a.s., t ∈ [0, T ], i, j ∈ S, i 6= j. (4.13)

The following two Lemmas give other important results regarding the quadratic co-variation
processes of the canonical martingales. These results are proved in Appendix B.1.

Lemma 4.1.14.
[Mij,Wk](t) = 0 a.s., t ∈ [0, T ], (4.14)

for i, j ∈ S and k = 1, . . . , N , where Wk(t) is the k-th element of the Brownian motion
W(t).

Lemma 4.1.15.
[Mij,Mi1j1 ](t) = 0 a.s., t ∈ [0, T ], (4.15)

for i, j, i1, j1 ∈ S and (i, j) 6= (i1, j1).
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Notation 4.1.16. For i, j ∈ S, i 6= j, define the measure ν[Mij ] on the measurable space
([0, T ]× Ω,P∗) as

ν[Mij ][A] , E

[∫ T

0

IA(t, ω)d[Mij](t)

]
= E

[∫ T

0

IA(t, ω)dRij(t)

]
, A ∈ P∗. (4.16)

This is the Doléans measure of Mij, which will be needed later in this chapter.

Before defining the problem of unconstrained hedging within a regime-switching market,
we make some preliminary comments in the following remarks and text on how an agent
trades in the market defined in Conditions 4.1.1 and 4.1.4, that is in a market which
incorporates a regime-switching Markov chain in the information filtration:

Remark 4.1.17. To model the investment we proceed much as we did in Remark 3.1.8,
that is we introduce the process {π0(t), t ∈ [0, T ]}, which denotes the monetary (or dollar)
amount allocated by the agent to the risk-free asset. We shall always assume that this
process is {Ft}-progressively measurable, that is π0 ∈ F∗. To model investment in the
N -risky assets, we define (exactly as in Remark 3.1.8) the following space Π of portfolio
processes :

Π ,

{
π : [0, T ]× Ω 7→ RN

∣∣∣∣π ∈ F∗, ∫ T

0

||π(t)||2dt <∞ a.s.

}
. (4.17)

Again, as in Remark 3.1.8, the interpretation of the elements of π of Π is as follows: Each
scalar component πn(t), for n = 1, . . . , N , of the RN -vector π(t), for t ∈ [0, T ], indicates
the monetary (or dollar) amount allocated by the agent to the risky asset with price Sn(t)
at the instant t ∈ [0, T ]. It then follows that the total wealth of the agent at any instant
t ∈ [0, T ] is the sum of the amounts in the risk-free and risky assets at instant t. That is
the total wealth of the agent is given by the process X defined as follows:

X(t) ,
N∑
n=0

πn(t) = π(t)>1 + π0(t), t ∈ [0, T ], (4.18)

in which 1 is the N -dimensional vector with unit entries.

To address the hedging problem with regime-switching it will prove necessary to gen-
eralize, or extend, the sense in which an agent trades in the market. In fact, it will be
assumed that, at each and every instant t in the trading interval [0, T ], the agent (or in-
vestor) not only allocates his or her total wealth among the risk-free asset (with price S0(t))
and the risky assets (with prices Sn(t), n = 1, 2, . . . , N), but is also free to consume wealth
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through a cumulative consumption process which, by definition, is a member of the set of
processes C formulated as follows:

C ,
{
c : [0, T ]× Ω 7→ [0,∞)

∣∣∣∣c(0) = 0, c ∈ F∗, c(T ) <∞ a.s.,

c(·) càdlàg, non-decreasing

}
.

(4.19)

A cumulative consumption process c(t) indicates the total amount of money expended by
the agent during the period [0, t].

Remark 4.1.18. In this chapter, the agent does not quite follow a self funded trading
strategy as in Chapter 3 (see Remark 3.1.9), for now the agent can also consume wealth
through the cumulative consumption process c ∈ C. However, there is still no infusion of
cash to the investor from an external source, and any change in the agent’s total wealth is
caused by a change in the asset price less the consumption.

Remark 4.1.19. The cumulative consumption process c ∈ C is part of a broader class of
processes called cumulative income processes (see Definition 1.3.1 in Karatzas and Shreve
[31]). A cumulative income process Γ(t) is interpreted as the cumulative wealth received
by an agent on the time interval [0, t]. In particular, the agent is given initial wealth Γ(0),
and consumption by the agent can be captured by a decrease in Γ(·). An agent’s portfolio
(π0,π) is called Γ(·)-financed if the agent’s wealth is given by (4.18).

As in Chapter 3 it will be assumed that the agent begins trading with non-negative
initial wealth, that is

x ∈ [0,∞). (4.20)

It is a standard result in mathematical finance (see §3.3 in Karatzas and Shreve [31]) that,
with consumption included, the wealth process {X(t), t ∈ [0, T ]} of the agent necessarily
satisfies the following stochastic integral equation:

X(t) = x+

∫ t

0

{
r(s)X(s) + π(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π(s)>σ(s)dW(s)− c(t), t ∈ [0, T ],

(4.21)

in which of course x is the initial wealth of the agent, π ∈ Π is the portfolio process
according to which the wealth of the agent is allocated among the N risky assets, and
c ∈ C is the cumulative consumption process. Similar to Remark 3.1.8, the process {π0(t)}
does not appear anywhere in (4.21), and only the portfolio process π ∈ Π and consumption
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process c ∈ C appear in the equation. The reason for this, as a detailed derivation of (4.21)
would make clear, is that any change in wealth is only caused by changes in asset prices
and consumption (in a linear fashion). As a result, π0(t) is a redundant variable which can
be eliminated using the relation (4.18).

Remark 4.1.20. From the stochastic integral equation (4.21), it is clear that the wealth
process X is completely determined by the initial wealth x (which is effectively the “initial
value”) and both the portfolio process π ∈ Π and cumulative consumption process c ∈ C
(which are effectively “control inputs” decided upon by the agent). From now on we shall
denote the wealth process of the agent not by X, but instead by X(x,c,π), to make clear
the dependence of the wealth process on the initial wealth x, the portfolio process π ∈ Π
and cumulative consumption process c ∈ C, so that (4.21) will be written as follows:

X(x,c,π)(t) = x+

∫ t

0

{
r(s)X(x,c,π)(s) + π(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π(s)>σ(s)dW(s)− c(t), t ∈ [0, T ],

(4.22)

or, in the more usual notation of stochastic differential equations, as

dX(x,c,π)(t) = {r(t)X(x,c,π)(t) + π(t)>σ(t)θ(t)}dt+ π(t)>σ(t)dW(t)− dc(t), (4.23)

for all t ∈ [0, T ], with the initial condition

X(x,c,π)(0) = x. (4.24)

It then follows easily from Ito’s formula that the wealth process is given explicitly in terms
of x ∈ [0,∞), π ∈ Π and c ∈ C by the expression

X(x,c,π)(t) = xS0(t) + S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)θ(τ)dτ

}
+ S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)dW(τ)

}
−
∫ t

0

1

S0(τ)
dc(τ)

(4.25)

for all t ∈ [0, T ].

Remark 4.1.21. When we take consumption c ∈ C to be the zero process (that is c(t) , 0,
t ∈ [0, T ]) at (4.25) we get

X(x,0,π)(t) = xS0(t) + S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)θ(τ)dτ

}
+ S0(t)

{∫ t

0

1

S0(τ)
π(τ)>σ(τ)dW(τ)

}
,

(4.26)
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for all t ∈ [0, T ], which is identical to the right hand side of (3.14). For this reason we shall
put

X(x,π)(t) , X(x,0,π)(t), t ∈ [0, T ], (4.27)

for all (x,π) ∈ [0,∞)×Π, in order to have notational consistency with the no-consumption
wealth process used throughout Chapter 3. We also see from (4.26) and (4.25) that

X(x,c,π)(t) = X(x,0,π)(t)−
∫ t

0

1

S0(τ)
dc(τ), t ∈ [0, T ], (4.28)

for all (x, c,π) ∈ [0,∞)× C × Π.

4.2 Definition of the Hedging Problem

In the present section we shall define the problem of unconstrained hedging within a regime-
switching market model with reference to the preliminaries outlined in the previous section.
The problem that we address in this chapter is formally very similar to the problem ad-
dressed in Chapter 3. Indeed the only visible difference between the two problems is the
inclusion of a regime-switching Markov chain α(·) in the basic filtration (compare the fil-
trations (3.1) in Chapter 3 and (4.3) in the present chapter). Nevertheless, we shall see
that this seemingly small difference makes the hedging problem substantially more chal-
lenging than the hedging problem of Chapter 3 (without regime-switching). In particular,
it will be necessary to include a cumulative consumption process in the formulation of the
hedging problem (something which was not necessary for the problem in Chapter 3). We
shall discuss the essential role of the consumption process later in this chapter.

Exactly as in Chapter 3, a contingent claim is a specified strictly positive FT -measurable
random variable B, that is

B : (Ω,F , P ) 7→ (0,∞), B ∈ FT . (4.29)

Since B is FT -measurable, it incorporates all of the “randomness” in the market over the
entire trading interval t ∈ [0, T ]. That is, one sees a realization B(ω) of this random
variable only at the close of the trade t = T . In the present case, the randomness of B is
contributed not only by the Brownian motion process W(t) (as was the case in Chapter
3) but also by the finite-state Markov chain α(t). It is this additional randomness from
the Markov chain which adds considerably to the challenge posed by the hedging problem.
The random variable B defines an obligation on the part of the agent in the following

41



sense: starting from some initial wealth x ∈ [0,∞), the agent must come up with some
portfolio process π ∈ Π and cumulative consumption process c ∈ C such that

X(x,c,π)(T ) = B a.s. (4.30)

That is, the agent starts with initial wealth x ∈ [0,∞) and must invest in the risky assets
and consume in such a way that sufficient wealth is generated at close of trade t = T for the
agent to be able to pay off the contingent claim B with probability one. For both technical
and financial reasons, we restrict attention to portfolio process π ∈ Π and cumulative
consumption process c ∈ C for which the corresponding wealth process is non-negative
over the entire trading interval. That is, for a given initial wealth x ∈ [0,∞), the agent is
restricted to portfolio processes π ∈ Π and cumulative consumption processes c ∈ C in the
set A(x) defined as follows:

A(x) ,

{
(c,π) ∈ C × Π

∣∣∣∣X(x,c,π)(t) ≥ 0 a.s. for all t ∈ [0, T ]

}
. (4.31)

The set A(x) is called the set of admissible portfolio-consumption pairs , and should be
compared with the set A(x) at (3.17) in Chapter 3, in which there is only a portfolio
process π without any consumption process c.

Remark 4.2.1. Observe that A(x) 6= ∅ for each x ∈ [0,∞). To see this take π ∈ Π defined
by π , 0 and c ∈ C defined by c , 0. In accordance with Remark 4.1.17 this amounts
to investing zero wealth in the risky assets (so the entire wealth is invested in the risk-free
asset with the price S0) with no consumption. With this π ∈ Π and c ∈ C one sees that
the last two terms on the right side of (4.22) are zero so that

X(x,c,π)(t) = S0(t)x ≥ 0, t ∈ [0, T ], (4.32)

and therefore, (c,π) ∈ A(x). Thus A(x) 6= ∅ for each x ∈ [0,∞).

Remark 4.2.2. In light of the preceding discussion, from now on we restrict ourselves to
triples (x, c,π) for which x ∈ [0,∞) and (c,π) ∈ A(x), so that the wealth process X(x,c,π) is
non-negative over the trading interval t ∈ [0, T ]. Exactly as in Chapter 3 this is a reasonable
requirement from the financial point of view, for it merely insists that the agent never go
into debt during the trading interval (negative wealth amounts to debt). Again, from
a mathematical view point, removal of the condition of non-negative wealth (essentially
requiring (c,π) ∈ C × Π instead of (c,π) ∈ A(x)), which allows the agent to temporarily
take on debt during the trading interval, leads to a rather intractable hedging problem,
much as in the case where no regime-switching is present. As in Chapter 3 we shall take
care to point out the essential role played by non-negativity of the wealth whenever this
condition is used.
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Remark 4.2.3. An agent who begins with initial wealth x ∈ [0,∞) and determines some
(c,π) ∈ A(x) such that (4.30) holds is said to hedge the contingent claim B from the
initial wealth x, and the corresponding portfolio-consumption pair (c,π) ∈ A(x) is called
an unconstrained hedging strategy from the initial wealth x.

In light of the previous discussion of the hedging problem, it is clear that the initial
wealth x ∈ [0,∞) is an essential parameter. Indeed, if the initial wealth is too small, then
there may not even exist any (c,π) ∈ A(x) such that (4.30) holds, that is there fails to be
an unconstrained hedging strategy from the initial wealth x. One of our principal goals is
to determine the least possible initial wealth for which there does exist a hedging strategy.
To make this precise, we define the set Λ comprising of all initial wealths x for which a
hedging strategy does exist, that is

Λ ,

{
x ∈ [0,∞)

∣∣∣∣∃(c,π) ∈ A(x) s.t. X(x,c,π)(T ) = B a.s.

}
. (4.33)

In view of (4.33) and (4.31) we have

Λ =

{
x ∈ [0,∞)

∣∣∣∣ X(x,c,π)(T ) = B a.s. for some (c,π) ∈ C × Π

such that X(x,c,π)(t) ≥ 0 a.s. for all t ∈ [0, T ]

}
.

(4.34)

Remark 4.2.4. There is of course no guarantee that Λ is non-empty. Indeed, as we shall
see in Remark 4.3.12, if the contingent claim random variable is stipulated to be “unrea-
sonably large” then Λ will be empty. However, assuming that Λ is indeed non-empty, and
furthermore, attains its infimum at some û ∈ [0,∞) (that is û ∈ Λ and û ≤ x for all
x ∈ Λ), it is evident that x = û is the least initial wealth from which one can hedge the
contingent claim B. This least initial wealth is usually called the price of the contingent
claim B. The most important goals of this chapter can now be stated as follows:

(a) Determine conditions on the contingent claim random variable B which ensures
that Λ is non-empty

(b) With the conditions in (a) in force, establish that there exists some û ∈ Λ such that
û ≤ x for all x ∈ Λ. It then follows from (4.33) that x = û is the least initial wealth from
which one can hedge the contingent claim B.

(c) With x = û characterize some (c,π) ∈ A(x) such that (4.30) holds. This portfolio-
consumption pair hedges the contingent claim B from the least initial wealth û.
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Remark 4.2.5. For the hedging problem addressed in Chapter 3 (i.e. defined by Conditions
3.1.1 and 3.1.3) the contingent claim B was hedged entirely with a portfolio process π,
without the use of any consumption process. With this in mind an obvious question is
the following: why do we not likewise try to hedge the contingent claim in the present
chapter (i.e. with Conditions 4.1.1 and 4.1.4 in force) entirely with a portfolio process, and
why do we need to introduce consumption? We cannot answer this question completely
until later in the chapter (see Remark 4.3.23), but at this point we can make the following
observations: removal of consumption means taking c , 0 in (4.34), so that Λ is replaced
with

Λ1 =

{
x ∈ [0,∞)

∣∣∣∣ X(x,0,π)(T ) = B a.s. for some π ∈ Π

such that X(x,0,π)(t) ≥ 0, a.s. for all t ∈ [0, T ]

}
.

(4.35)

It turns out that the introduction of regime-switching in the form of Conditions 4.1.1 and
4.1.4 “complicates” the hedging problem in the sense that there is no guarantee that Λ1

defined at (4.35) actually attains its infimum - there need not exist any û ∈ Λ1 such that
û ≤ x for all x ∈ Λ1. On the other hand, as we shall see in the remainder of this chapter,
the set Λ at (4.34), which allows for consumption, does attain its infimum. An alternative
way in which to see the need for a consumption process when hedging the claim B subject
to Conditions 4.1.1 and 4.1.4 is to define a variant of Λ1 at (4.35) as follows:

Λ2 =

{
x ∈ [0,∞)

∣∣∣∣ X(x,0,π)(T ) ≥ B a.s. for some π ∈ Π

such that X(x,0,π)(t) ≥ 0, a.s. for all t ∈ [0, T ]

}
.

(4.36)

Notice the difference between Λ1 and Λ2: in the latter case we require only that the final
wealth X(x,0,π)(T ) almost surely majorize the contingent claim B (rather than be equal to
B, as in the case of Λ1), thus Λ2 comprises all initial wealth x for which there exists some
admissible π ∈ Π (meaning that X(x,0,π)(t) ≥ 0 a.s. for all t ∈ [0, T ]) such that the final
wealth X(x,0,π)(T ) (without consumption) almost surely majorizes B. If Λ2 does attain its
infimal value at some û ∈ Λ2 then û is the least initial wealth such that one super-hedges the
contingent claim B and the associated portfolio processes π ∈ Π is called a super-hedging
portfolio. Since X(û,0,π)(T ) ≥ B for some admissible π ∈ Π, there is an unavoidable
non-negative “discrepancy” random variable X(û,0,π)(T ) − B. The consumption process
c ∈ C is introduced to model this discrepancy random variable in the sense that the pair
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(c,π) ∈ C × Π satisfies the relation

X(û,0,π)(T )−B =

∫ T

0

1

S0(τ)
dc(τ) a.s., (4.37)

so that from (4.37) and (4.28) we get

X(û,c,π)(T ) = B a.s. (4.38)

With this discussion in mind one sees that the hedging problem addressed in Chapter 3
is rather special, in the sense that, even when hedging with only an admissible portfolio
process π, the discrepancy random variable X(û,0,π)(T ) − B is automatically equal to
zero, so there is no need to introduce a compensating consumption process to model this
discrepancy.

Remark 4.2.6. The need to introduce consumption when hedging contingent claims was
first recognized by Cvitanic and Karatzas [10] and El Karoui and Quenez [16][17] for a
hedging problem subject to Conditions 3.1.1 and 3.1.3 of Chapter 3, but with the further
stipulation that the portfolio process π is constrained in the sense that, for some given
closed convex constraint set K ⊂ RN , one requires that π(t, ω) ∈ K a.e. They label
such a market an incomplete market . For the hedging problem in the present chapter, the
portfolio process π is of course unconstrained, but the introduction of regime-switching in
the market model nevertheless again requires the use of a consumption process as regime-
switching renders the market incomplete. We shall see later on that the construction of an
appropriate consumption process is one of the main challenges in dealing with the hedging
problem.

4.3 Solution to the Hedging Problem

Having outlined the problem of unconstrained hedging within a regime-switching market
model (see Remark 4.2.4), we shall now address this problem. We begin by introducing the
space of Markov chain integrand processes H which allows the regime-switching Markov
chain to interact with the agent’s wealth.

Notation 4.3.1. Recalling Definition A.1.1 we define the space of Markov chain dual pro-
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cesses H as the set

H ,
{
µ = {µij}i,j∈S

∣∣∣∣µij : [0, T ]× Ω→ R, µii = 0,

µij ∈ L1/2
loc (Rij), i, j ∈ S, i 6= j,

1 +4(µ •M)(t) > 0 a.s., t ∈ [0, T ]

}
,

(4.39)

where L
1/2
loc (Rij) is given in Definition A.1.1 and

(µ •M)(t) ,
∑
i,j∈S
i 6=j

∫ t

0

µij(s)dMij(s), t ∈ [0, T ], (4.40)

is the stochastic integral of the process µ(·) with respect to the martingale M(·) ,
{Mij(·)}i,j∈S, and is an {Ft}-local martingale.

Remark 4.3.2. From Theorem C.9.3 we have that the jumps of the stochastic integral
(µ •M) are given by

4(µ •M)(t) =
∑
i,j∈S
i 6=j

µij(t)4Mij(t), t ∈ [0, T ],µ ∈ H, (4.41)

and by Lemma C.7.3 that

µ •M is purely discontinuous for each µ ∈ H. (4.42)

We then have by Theorem C.10.1, (4.40), (4.41) and (4.42) that the Doléans Dade expo-
nential of the stochastic integral (µ •M) is given by

E(µ •M)(t) = exp

{
(µ •M)(t)

} ∏
0<s≤t

(1 +4(µ •M)(s)) exp

{
−4(µ •M)(s)

}
= exp

{∑
i,j∈S
i 6=j

∫ t

0

µij(s)dMij(s)

} ∏
0<s≤t

(1 +
∑
i,j∈S
i 6=j

µij(s)4Mij(s)) exp

{
−
∑
i,j∈S
i 6=j

µij(s)4Mij(s)

}
(4.43)

for all t ∈ [0, T ] and µ ∈ H.
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In Chapter 3 an essential role was played by the state price density process H0(t)
introduced at Definition 3.3.1. In particular, it was seen at Proposition 3.3.3 that the
process H0(t)X(x,π)(t) is a supermartingale for every π ∈ Π, and this supermartingale
property was key to the whole approach to the hedging problem addressed in Chapter 3.
We now introduce a generalization of the state price density process which will play an
analogous role for the hedging problem with regime-switching:

Definition 4.3.3. The generalized state price density process {Hµ(t), t ∈ [0, T ]} for the
market model defined by Conditions 4.1.1 and 4.1.4 is the process with values in (0,∞)
defined as follows:

Hµ(t) , exp

{
−
∫ t

0

r(s)ds

}
E(−θ •W)(t)E(µ •M)(t), t ∈ [0, T ],µ ∈ H, (4.44)

where (θ •W)(t) is the stochastic integral of θ(t) with respect to W(t) (see (3.22)) and
E(·)(t) is the Doléans-Dade exponential function (see Theorem C.10.1 and (4.43)).

Remark 4.3.4. The generalized state price density processes in Definition 4.3.3 is a special
case of the generalized state price density introduced in Heunis [23] in order to address
problems of utility maximization within a regime-switching market model basically identi-
cal to that formulated at Conditions 4.1.1 and 4.1.4. This generalized state price density
process will also be key to the hedging problem in this chapter.

Remark 4.3.5. A simple although lengthy exercise using Ito’s product rule allows us to
write Hµ(t) as

Hµ(t) = 1−
∫ t

0

Hµ(s−)θ(s)>dW(s)−
∫ t

0

Hµ(s−)r(s)ds

+
∑
i,j∈S
i 6=j

∫ t

0

Hµ(s−)µij(s)dMij(s), t ∈ [0, T ],µ ∈ H.
(4.45)

Since W ∈M({Ft}, P ) and Mij ∈M({Ft}, P ) for each i, j ∈ S, we have that

Hµ ∈ SM({Ft}, P ), (4.46)

that is Hµ is an {Ft}-semimartingale (recall Definition C.8.1). Also, observe from (4.39)
and (3.25) that

inf
t∈[0,T ]

Hµ(t) > 0 a.s., µ ∈ H. (4.47)

Therefore, Hµ is an almost surely strictly positive {Ft}-semimartingale for each µ ∈ H.
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Remark 4.3.6. Note that if µ(t) , 0 for all t ∈ [0, T ] we have

Hµ(t) = H0(t), t ∈ [0, T ], (4.48)

where the process {H0(t), t ∈ [0, T ]} is defined in Definition 3.3.1.

Remark 4.3.7. It is elementary to show that the process

z(t) ,
∫ t

0

Hµ(s−)dc(s) +
∑

0<s≤t

Hµ(s−)4c(s)4(µ •M)(s), t ∈ [0, T ], (4.49)

is almost surely non-negative for all t ∈ [0, T ], c ∈ C, and µ ∈ H, since c ∈ C must be
non-decreasing by (4.19), µ ∈ H must have the property 4(µ •M)(t) > −1 a.s. for all
t ∈ [0, T ] by (4.39), and Hµ is almost surely strictly positive for all µ ∈ H by (4.47). This
fact will be essential for the following results.

The significance of the state price density process Hµ is apparent in the following
proposition and corollary.

Proposition 4.3.8. For each x ∈ [0,∞), (c,π) ∈ A(x), and µ ∈ H, the process {J (x,c,π)
µ (t), t ∈

[0, T ]} defined as

J (x,c,π)
µ (t) , Hµ(t)X(x,c,π)(t) +

∫ t

0

Hµ(s−)dc(s)

+
∑

0<s≤t

Hµ(s−)4c(s)4(µ •M)(s), t ∈ [0, T ],
(4.50)

is a non-negative {Ft}-supermartingale (i.e. J
(x,c,π)
µ ∈ SPM({Ft}, P ) and J

(x,c,π)
µ ≥ 0).

Remark 4.3.9. Proposition 4.3.8 should be compared with Proposition 3.3.3. In fact, if one
takes c = 0 at (4.50), that is zero consumption, then the second and third terms on the
right side vanish and (4.50) reduces to (3.26).

Proof of Proposition 4.3.8. For ease of notation, set X(t) , X(x,c,π)(t) for all t ∈ [0, T ].
A lengthy but straightforward calculation using Ito’s product formula with (4.22) and
(4.45) establishes that

Hµ(t)X(t) = x+
∑
i,j∈S
i 6=j

∫ t

0

X(s−)Hµ(s−)µij(s)dMij(s)−
∫ t

0

X(s−)Hµ(s−)θ(s)>dW(s)

+

∫ t

0

Hµ(s−)π(s)>σ(s)dW(s)−
∫ t

0

Hµ(s−)dc(s)−
∑

0<s≤t

Hµ(s−)4c(s)4(µ •M)(s),

(4.51)
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for all t ∈ [0, T ]. By combining (4.50) and (4.51), J
(x,c,π)
µ can be written as

J (x,c,π)
µ (t) = x+

∫ t

0

Hµ(s−)

(
π(s)>σ(s)−X(s−)θ(s)>

)
dW(s)

+
∑
i,j∈S
i 6=j

∫ t

0

X(s−)Hµ(s−)µij(s)dMij(s), t ∈ [0, T ].
(4.52)

Since W,Mij ∈M({Ft}, P ), it is true from (4.52) that

J (x,c,π)
µ ∈Mloc({Ft}, P ). (4.53)

Since (c,π) ∈ A(x), we have from (4.47) and (4.31),

Hµ(t)X(x,c,π)(t) ≥ 0 a.s., t ∈ [0, T ]. (4.54)

Additionally, since c ∈ C and µ ∈ H, we have from Remark 4.3.7,∫ t

0

Hµ(s−)dc(s) +
∑

0<s≤t

Hµ(s−)4c(s)4(µ •M)(s) ≥ 0 a.s., t ∈ [0, T ]. (4.55)

From (4.54), (4.55) and (4.50), we have that

J (x,c,π)
µ (t) ≥ 0 a.s., t ∈ [0, T ]. (4.56)

As a result of J
(x,c,π)
µ being a non-negative local martingale, from Proposition C.11.3, we

conclude
J (x,c,π)
µ ∈ SPM({Ft}, P ). (4.57)

�

The following corollary is immediate from Proposition 4.3.8 and Remark 4.3.7.

Corollary 4.3.9.1. For each µ ∈ H, x ∈ [0,∞), and (c,π) ∈ A(x),

E
[
Hµ(T )X(x,c,π)(T )

]
≤ x. (4.58)

Remark 4.3.10. Suppose that Λ is non-empty. Then, from (4.33), for each x ∈ Λ there
exists a pair (c,π) ∈ A(x) such that

X(x,c,π)(T ) = B a.s. (4.59)

Using Corollary 4.3.9.1 and (4.59), we have

Λ 6= ∅ =⇒ sup
µ∈H

E [Hµ(T )B] ≤ x, for all x ∈ Λ. (4.60)
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Remark 4.3.11. Note that the supremum, supµ∈HE [Hµ(T )B], is defined in (0,∞], since,
for each and every µ ∈ H, P [Hµ(T )B > 0] = 1.

Remark 4.3.12. From (4.60) one sees that

Λ 6= ∅ =⇒ sup
µ∈H

E [Hµ(T )B] <∞. (4.61)

Note that this is very similar to Remark 3.3.7 in Chapter 3; however, in the case of regime-
switching, the supremum of E [Hµ(T )B] over all µ ∈ H is finite.

The main result of this chapter (see Theorem 4.3.17) establishes the converse implica-
tion of (4.61), so that we actually have the following equivalence:

Λ 6= ∅ ⇐⇒ sup
µ∈H

E [Hµ(T )B] <∞, (4.62)

that is, the contingent claim B can be hedged if and only if supµ∈HE [Hµ(T )B] < ∞.
Thus, if the contingent claim random variable B is stipulated so large that

sup
µ∈H

E [Hµ(T )B] =∞ (4.63)

then there is no possibility of hedging the claim B.

Notation 4.3.13. In the following, an essential role will be played by the extended real
number û ∈ [0,∞] defined as follows:

û , sup
µ∈H

E [Hµ(T )B] . (4.64)

The choice û will be our candidate for the least initial wealth which hedges the contingent
claim B.

Remark 4.3.14. Since Hµ(T )B > 0 a.s. for all µ ∈ H, the conditional expectation
E[Hµ(T )B|Ft] is almost surely non-negative for all µ ∈ H at each time t ∈ [0, T ]. Fur-
thermore, since inft∈[0,T ] Hµ(t) > 0 a.s. for all µ ∈ H, we have for each fixed t ∈ [0, T ]
that

X̂µ(t) ,
E[Hµ(T )B|Ft]

Hµ(t)
≥ 0 a.s., µ ∈ H. (4.65)

By Theorem C.13.2 in the Appendix, for each fixed t ∈ [0, T ] the essential-supremum (see
Definition C.13.1) of the family of random variables {X̂µ(t),µ ∈ H} exists. That is

ess-sup
µ∈H

X̂µ(t) = ess-sup
µ∈H

E
[
Hµ(T )B

∣∣Ft]
Hµ(t)

exists for each t ∈ [0, T ]. (4.66)
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Proposition 4.3.15 which follows is analogous to Proposition 3.3.9 for the case of hedging
without regime-switching. However, whereas Proposition 3.3.9 is completely self-evident
from the definitions, Proposition 4.3.15 is definitely not self-evident, largely on account of
the essential supremum over µ ∈ H at (4.67) (which should be compared with (3.35)).
Proposition 4.3.15 is proved in Appendix B.2.

Proposition 4.3.15. Suppose û <∞, and define the process {X̂(t), t ∈ [0, T ]} as follows

X̂(t) , ess-sup
µ∈H

E
[
Hµ(T )B

∣∣Ft]
Hµ(t)

, t ∈ [0, T ], (4.67)

where the right hand side of (4.67) exists by Remark 4.3.14. The following statements are
true:

(1) X̂(0) = û a.s.

(2) X̂(T ) = B a.s.

(3) X̂(t) ≥ 0 a.s., t ∈ [0, T ]

(4) HµX̂ ∈ SPM({Ft}, P ), µ ∈ H
(5) For each 0 ≤ s ≤ t ≤ T

X̂(s) = ess-sup
µ∈H

E[Hµ(t)X̂(t)|Fs]
Hµ(s)

a.s. (4.68)

(6) {X̂(t), t ∈ [0, T ]} has a càdlàg modification.

We now state a decomposition result involving X̂ and the generalized price state density
Hµ that is absolutely essential for proving our hedging results.

Lemma 4.3.16. For each µ ∈ H, the process {Hµ(t)X̂(t), t ∈ [0, T ]} has the decomposition

Hµ(t)X̂(t) = X̂(0) +

∫ t

0

Ψµ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γµij(s)dMij(s)− Aµ(t), (4.69)

for all t ∈ [0, T ] and µ ∈ H, where Ψµ is a unique, null-at-the-origin {Ft}-progressively
measurable process such that ∫ T

0

||Ψµ(s)||2ds <∞ a.s., (4.70)
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Γµ , {Γµij}i,j∈S is a unique, null-at-the-origin {Ft}-predictably measurable process such
that ∑

i,j∈S
i 6=j

(∫ T

0

|Γµij(s)|2d[Mij](s)

)1/2

<∞ a.s., (4.71)

and Aµ is a unique, null-at-the-origin and non-decreasing {Ft}-predictably measurable pro-
cess such that

E [Aµ(T )] <∞. (4.72)

Proof. Fix µ ∈ H. From Proposition 4.3.15(4) we know that HµX̂ is an {Ft}-
supermartingale. Using the Doob-Meyer decomposition from Theorem C.11.4, we can
write any {Ft}-supermartingale as the difference between a unique {Ft}-local martingale,
null at the origin, and a unique, non-decreasing, {Ft}-predictable càdlàg process. In the
case of HµX̂, we can write

Hµ(t)X̂(t) = X̂(0) + Φµ(t)− Aµ(t), t ∈ [0, T ], (4.73)

where
Φµ ∈Mloc,0({Ft}, P ) (4.74)

and
Aµ ∈ A+

0 ({Ft}, P ) and Aµ ∈ P∗, (4.75)

where the space A+
0 is defined in Notation C.5.5. Furthermore, since

E
[
Hµ(t)X̂(t)

]
> −∞, t ∈ [0, T ], (4.76)

it follows that
E [Aµ(T )] <∞, (4.77)

again by Theorem C.11.4. We can further expand the {Ft}-local martingale Φµ into more
insightful local martingales using the martingale representation theorem (see Appendix
C.12, specifically Theorem C.12.4), which in the present case states that we can write Φµ
uniquely in the following way:

Φµ(t) =

∫ t

0

Ψµ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γµij(s)dMij(s), t ∈ [0, T ], (4.78)

in which
Ψµ ∈ F∗, (4.79)
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and
Γµ , {Γµij}i,j∈S, Γµ ∈ P∗, (4.80)

are unique integrand processes such that∫ T

0

||Ψµ(s)||2ds <∞ a.s. and
∑
i,j∈S
i 6=j

(∫ T

0

|Γµij(s)|2d[Mij](s)

)1/2

<∞ a.s. (4.81)

Combining (4.78) and (4.73) we can write HµX̂ as

Hµ(t)X̂(t) = X̂(0) +

∫ t

0

Ψµ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γµij(s)dMij(s)− Aµ(t), (4.82)

for all t ∈ [0, T ]. �

The main result of this chapter is the following theorem.

Theorem 4.3.17. Suppose that û <∞. Then û ∈ Λ (in particular Λ 6= ∅) and û = inf Λ,
that is û ≤ x for all x ∈ Λ.

Remark 4.3.18. From Theorem 4.3.17 and (4.31), one sees that û is the least initial wealth
which guarantees that X(û,c,π)(T ) = B a.s. for some (c,π) ∈ A(û) , that is û is the price
of the contingent claim B.

Proof. We are going to establish that there exists some consumption-portfolio pair
(ĉ, π̂) ∈ A(û) such that

X̂(t) = X(û,ĉ,π̂)(t), t ∈ [0, T ], (4.83)

where, from (4.22), the process X(û,ĉ,π̂) satisfies the stochastic integral equation

X(û,ĉ,π̂)(t) = û+

∫ t

0

{
r(s)X(û,ĉ,π̂)(s) + π̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π̂(s)>σ(s)dW(s)− ĉ(t), t ∈ [0, T ].

(4.84)

If, in fact, one can establish (4.83), we would know from Proposition 4.3.15(2) and 4.3.15(3)
that there exists (û, ĉ, π̂) ∈ [0,∞)×A(û) such that

X(û,ĉ,π̂)(T ) = B a.s. (4.85)
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Since û is the initial wealth of the process X(û,ĉ,π̂), this would mean, from (4.33),

û ∈ Λ and therefore Λ 6= ∅. (4.86)

Furthermore, from Remark 4.3.10, we have that û ≤ inf Λ, and therefore, from (4.86),

û = inf Λ ∈ Λ. (4.87)

Thus, it remains to establish (4.83), as from (4.86) and (4.87), we will have proven Theorem
4.3.17.

To begin, fix some µ ∈ H. Isolating X̂(t) in (4.69) of Lemma 4.3.16 and using Propo-
sition 4.3.15(1) we get the expression

X̂(t) =
1

Hµ(t)

{
û+

∫ t

0

Ψµ(s)>dW(s)+
∑
i,j∈S
i 6=j

∫ t

0

Γµij(s)dMij(s)−Aµ(t)

}
, t ∈ [0, T ]. (4.88)

By an easy, although lengthy, calculation using the Ito product rule, the identity (4.45),
and the fact that [Mij](t) = Rij(t) by (4.13), we can expand the right hand side of (4.88)
as follows:

X̂(t) = û+

∫ t

0

(
Ψµ(s)>

Hµ(s)
+ X̂(s)θ(s)>

)
dW(s)

+

∫ t

0

(
Ψµ(s)>

Hµ(s)
θ(s) + X̂(s)r(s) + X̂(s)‖θ(s)‖2

)
ds

+
∑
i,j∈S
i 6=j

∫ t

0

(
Γµij(s)

Hµ(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
4Aµ(s)

Hµ(s−)
−

Γµij(s)

Hµ(s−)
+ X̂(s−)µij(s)

)
µ̃ij(s)dRij(s)

−
∫ t

0

1

Hµ(s−)
dAµ(s), t ∈ [0, T ],

(4.89)

in which we have put
µ̃ij(·) , µij(·)/(1 + µij(·)). (4.90)
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Remark 4.3.19. Since the Brownian motion W(t) is continuous, the integrands X̂(s−)
and Hµ(s−) can be written as X̂(s) and Hµ(s), respectively, in both the dW(s) and ds
integrals.

Since µ ∈ H is arbitrary we can of course take µ(t) , 0 for all t ∈ [0, T ] at (4.89) to
get

X̂(t) = û+

∫ t

0

(
Ψ0(s)>

H0(s)
+ X̂(s)θ(s)>

)
dW(s)

+

∫ t

0

(
Ψ0(s)>

H0(s)
θ(s) + X̂(s)r(s) + X̂(s)‖θ(s)‖2

)
ds

+
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s)−

∫ t

0

1

H0(s−)
dA0(s), t ∈ [0, T ].

(4.91)

We now define the RN -valued process π̂, which we will use as our candidate optimal
portfolio process, as follows.

π̂(t) , [σ−1(t)]>
[

Ψ0(t)

H0(t)
+ X̂(t)θ(t)

]
, t ∈ [0, T ]. (4.92)

For π̂ to be considered a portfolio process we must show that π̂ ∈ Π, as we do in the
following proposition.

Proposition 4.3.20. The process {π̂(t), t ∈ [0, T ]} defined by

π̂(t) , [σ−1(t)]>
[

Ψ0(t)

H0(t)
+ X̂(t)θ(t)

]
, t ∈ [0, T ], (4.93)

is a portfolio process. That is, π̂ ∈ Π.

Proof. Since σ,Ψ0, H0, X̂,θ ∈ F∗, one sees from (4.93) that

π̂ ∈ F∗. (4.94)

Now, θ(·) is uniformly bounded on [0, T ] × Ω (see Notation 4.1.8). Since X̂ has a càdlàg
modification, X̂ is bounded λ⊗ P a.e., thus we have that X̂θ is bounded λ⊗ P a.e., and
so ∫ T

0

||X̂(t)θ(t)||2dt <∞ a.s. (4.95)
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Since inft∈[0,T ] H0(t) > 0 a.s. by (4.47), from (4.70) in Lemma 4.3.16∫ T

0

||Ψ0(t)

H0(t)
||2dt <∞, a.s. (4.96)

Combining (4.95) and (4.96) gives∫ T

0

||Ψ0(t)

H0(t)
+ X̂(t)θ(t)||2dt <∞, a.s. (4.97)

In view of (4.93), (4.97) and Remark 4.1.6, we obtain∫ T

0

||π̂(t)||2dt <∞ a.s. (4.98)

and from (4.98), (4.94), and the definition of Π from (4.17), we find that

π̂ ∈ Π. (4.99)

That is, π̂ is a valid portfolio process. �

To continue the proof of Theorem 4.3.17 we need the following proposition, which
characterizes the optimal cumulative consumption process ĉ. As the proof of Proposition
4.3.21 is quite lengthy and technical, it is left in Appendix B.3.

Proposition 4.3.21. Define the process ĉ as follows,

ĉ(t) ,
∫ t

0

1

H0(s−)
dA0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s), t ∈ [0, T ]. (4.100)

Then ĉ is a cumulative consumption process, i.e.,

ĉ ∈ C. (4.101)

Completing the proof of Theorem 4.3.17, in view of (4.91), Proposition 4.3.20, and
Proposition 4.3.21 we have the identity

X̂(t) = û+

∫ t

0

{
r(s)X̂(s) + π̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

π̂(s)>σ(s)dW(s)− ĉ(t), t ∈ [0, T ],

(4.102)
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where (ĉ, π̂) ∈ C × Π. Now (4.83) follows upon comparison (4.102) and (4.84), and it
remains to verify that (ĉ, π̂) ∈ A(û). From Proposition 4.3.15(3) together with (4.83) we
have

X(û,ĉ,π̂)(t) ≥ 0 a.s., t ∈ [0, T ], (4.103)

as required to get (ĉ, π̂) ∈ A(û) (see (4.31)). We have thus established that (4.83) holds
for some (ĉ, π̂) ∈ A(û), and Theorem 4.3.17 follows.
�

Remark 4.3.22. From Theorem 4.3.17, together with Remark 4.3.18, one sees that the price
of the contingent claim B is the quantity û defined at (4.64), that is û is the least initial
wealth from which the contingent claim B can be hedged. We also note the corresponding
hedging portfolio is the process π̂ defined in Proposition 4.3.20, that is

π̂(t) , [σ−1(t)]>
[

Ψ0(t)

H0(t)
+ X̂(t)θ(t)

]
, t ∈ [0, T ]. (4.104)

Notice that the hedging portfolio π̂ has the exact same characterization as in Chapter 3
(see (3.45)), but is now adapted to the joint filtration defined in Condition 4.1.1. Lastly
we have the cumulative consumption process ĉ defined in Proposition 4.3.21, that is

ĉ(t) ,
∫ t

0

1

H0(s−)
dA0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s), t ∈ [0, T ]. (4.105)

Remark 4.3.23. Suppose that Conditions 3.1.1 and 3.1.3 of Chapter 3 are in force, in place
of the more general Conditions 4.1.1 and 4.1.4 of the present chapter. Then there is no
regime-switching in the model, so that we can take Mij = 0 in the consumption equation
(4.105). As for the process A0 on the right hand side of (4.105), we know that this process
is given by the Doob-Meyer decomposition in Lemma 4.3.16 when µ = 0 that is

H0(t)X̂(t) = X̂(0) + Φ0(t)− A0(t), t ∈ [0, T ], (4.106)

with Φ0 ∈ Mloc,0({Ft}, P ) and A0 ∈ FV0({Ft}, P ). But, when Conditions 3.1.1 and

3.1.3 are in force, then we know from Proposition 3.3.9(4) that H0X̂ ∈ M({Ft}, P ), and
therefore by the uniqueness part of the Doob-Meyer decomposition (see Theorem C.11.4)
we necessarily have A0 = 0. It then follows from (4.105) that ĉ = 0, that is the consumption
is necessarily zero when Conditions 3.1.1 and 3.1.3 hold.
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Chapter 5

The Constrained Hedging Problem in
a Regime-Switching Market Model

In this chapter we extend the hedging problems defined in Chapters 3 and 4 to the more
general context of almost sure hedging in a regime-switching market model with both
convex portfolio constraints and margin requirements . Just as in Chapter 4, we would like
to find the price of a contingent claim together with a consumption-portfolio pair which
promises that the seller of the claim almost surely covers his/her obligation at the close of
trade. However, in the present chapter, the agent now trades in a regime-switching market
where there are possible restrictions on investments and fees that depend on the agent’s
choice of portfolio. The results of this chapter generalize both the results of Chapter 4 and
the paper of Cvitanic and Karatzas [10] on almost sure hedging in a standard financial
market (driven solely by Brownian motion) with convex portfolio constraints. As many of
the definitions and conditions required for this chapter have already been stated in Chapter
4, the reader may be asked to refer to Chapter 4 in specific instances.

5.1 Market Model

The regime-switching market model that is used in this chapter is nearly identical to
the market model defined in Chapter 4. As a result, we refer to Chapter 4.1.1-4.1.16
for the appropriate conditions, remarks and results defining the regime-switching market
model. In addition to the conditions defining the regime-switching market model, we
impose conditions on an agent trading in the market through portfolio constraints and
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margin requirements. The portfolio constraints act through a convex constraint set K
given in Condition 5.1.1 and the margin requirements act through a margin function g
given in Condition 5.1.3.

Condition 5.1.1. We are given a closed convex portfolio constraint set K ⊂ RN with
0 ∈ K. The agent can only invest within the constraint set K during the entire trading
interval.

Notation 5.1.2. For a B([0, T ]) × F -measurable mapping ζ : [0, T ] × Ω 7→ RN and a set
K ⊂ RN , the statement “ζ(t) ∈ K a.e.” means that ζ(t, ω) ∈ K for λ ⊗ P -almost all
(t, ω) ∈ [0, T ]× Ω.

Condition 5.1.3. We are given a margin function (or margin term) g : [0, T ] ×
Ω × RN 7→ R that is F∗ × B(RN) measurable such that g(t, ω, 0) = 0 and g(t, ω, ·) is
concave on RN for each (t, ω) ∈ [0, T ]×Ω. Furthermore, g is uniformly upper-bounded and
g(t, ω, ·) is M(t)-Lipschitz continuous for each (t, ω) ∈ [0, T ]× Ω. That is, there exists an
F∗-measurable process M : [0, T ]× Ω 7→ [0,∞] where∫ T

0

|M(t)|2dt <∞ a.s., (5.1)

such that

|g(t, ω,p)− g(t, ω, q)| ≤M(t, ω)‖p− q‖, (t, ω) ∈ [0, T ]× Ω, p, q ∈ RN . (5.2)

Remark 5.1.4. Requiring the margin function g(t, ω, ·) to be Lipschitz continuous is a
reasonable condition as any concave function defined on all of RN is Lipschitz continuous
over every convex compact subset of RN (see Proposition D.0.19).

Remark 5.1.5. The function g(t, ω, ·), which is generally non-linear for each (t, ω) ∈ [0, T ]×
Ω, models payments levied on the investor by imposed margin requirements. This could
include an interest rate for borrowing which is higher than the interest rate for lending,
or margin payments to a broker when shorting stocks or borrowing to go long on stocks.
The modeling of margin requirements by the function g, which considerably enhances the
applicability and usefulness of Brownian motion market models, was introduced by Cuoco
and Liu [7].

Remark 5.1.6. In any practical market it is generally safe to assume that the margin
function is non-positive, that is g(t, ω,p) ≤ 0 for all (t, ω,p) ∈ [0, T ] × Ω × RN , since g
models a payment extracted from wealth. Having positive g would allow, for instance, an
investor to be given additional money when borrowing. In this chapter, we do, however,
assume g is more generally uniformly upper-bounded as it adds no additional complexity
to the problem.
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Remark 5.1.7. To model investment in a constrained market, we proceed in a slightly
different manner than in Chapter 4. We introduce the process {p0(t), t ∈ [0, T ]}, which
denotes the proportion of wealth allocated by the agent to the risk-free asset with price S0.
This process is {Ft}-progressively measurable, that is p0 ∈ F∗. We model investment in
the N -risky assets through the space Π of portfolio processes , which, with the inclusion of
margin requirements, is defined as follows:

Π ,

{
p : [0, T ]× Ω→ RN

∣∣∣∣p ∈ F∗, ∫ T

0

(
||p(t)||2 + |g(t,p(t))|

)
dt <∞ a.s.

}
. (5.3)

The vector p = {pn}Nn=1 has the interpretation as the proportion of wealth the agent invests
into the N risky assets. This space Π is more restrictive than the space defined in (4.17) as
it requires the function g(·,p(·)), defined in Condition 5.1.3, to be integrable, in addition
to requiring p(·) to be square integrable.

Consumption by the agent is modelled exactly as in Chapter 4. That is the agent is
free to “consume” through a cumulative consumption process c that exists in the space C:

C ,
{
c : [0, T ]× Ω→ [0,∞)

∣∣∣∣c(0) = 0, c ∈ F∗, c(T ) <∞ a.s.,

c(·) càdlàg, non-decreasing

}
.

(5.4)

The necessity of the cumulative consumption process is explained in detail in Remark 4.2.5.

The agent begins trading from a strictly positive initial wealth x ∈ (0,∞), as opposed
to a non-negative initial wealth as in Chapter 4, and has total wealth {X(t), t ∈ [0, T ]},
given by

X(t) ,
N∑
n=0

πn(t) = X(t)p0(t) +X(t)p(t)>1, t ∈ [0, T ], (5.5)

where π , {πn} is the monetary portfolio defined as in Remark 4.1.17 (see Remark 5.1.14).
Since the total wealth of the agent is defined in a similar manner as in Chapter 4, the agent
follows a Γ(·)-financed trading strategy; however in this case, the process Γ includes the
margin function. Due to the inclusion of margin requirements, the wealth process X no
longer satisfies the SDE in (4.23), but instead satisfies the stochastic integral equation

X(t) = x+

∫ t

0

X(s)

{
r(s) + g(s,p(s)) + p(s)>σ(s)θ(s)

}
ds

+

∫ t

0

X(s)p(s)>σ(s)dW(s)− c(t), t ∈ [0, T ],

(5.6)
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in which x ∈ (0,∞) is the initial wealth of the agent, p ∈ Π is the portfolio process
according to which the wealth of the agent is allocated among the N risky assets, and
c ∈ C is the agent’s cumulative consumption process. The pair (c,p) can be interpreted
as “control inputs” that control the wealth of the agent. Using this interpretation, we use
the more informative notation X(x,c,p) to denote the agent’s wealth process. The wealth of
the agent can also be expressed in the more usual stochastic differential equation form

dX(x,c,p)(t) = X(x,c,p)(t){r(t) + g(t,p(t)) + p(t)>σ(t)θ(t)}dt
+X(x,c,p)(t)p(t)>σ(t)dW(t)− dc(t),

(5.7)

for all t ∈ [0, T ], with the initial condition

X(x,c,p)(0) = x. (5.8)

Remark 5.1.8. As a parallel to Remark 3.1.8 and Remark 4.1.20, the process {p0(t)} does
not appear anywhere in (5.6), and only the portfolio process p ∈ Π and consumption
process c ∈ C appear in the equation. The reason for this is that any change in wealth is
caused only by changes in asset prices and consumption. As a result, p0(t) is a redundant
variable which can be eliminated.

Remark 5.1.9. There are two differences when comparing the wealth SDE (5.7) to the SDE
(4.23) given in Chapter 4. The first difference is the use of the proportional portfolio process
p ∈ Π in place of the monetary portfolio process π ∈ Π. Using the proportional portfolio
process instead of the monetary portfolio process allows us to deal with portfolio constraint
set K more naturally. One can easily convert from π to p by using Remark 5.1.14. The
second difference between (5.7) and (4.23) is the addition of the margin function g. Since
the margin function g, which usually becomes more negative as the value of the portfolio
increases, is added to the interest rate process r in (5.7), one can interpret the margin term
g as a “reduction in interest rate” due to penalties such as the higher cost of borrowing
than lending.

The following examples describe scenarios where a portfolio constraint setK and margin
function g are used.

Example 5.1.10. Consider a pension fund that is not permitted to invest in the company
which it sponsors. If that company’s stock is labelled stock N , then the pension fund’s
portfolio constraint corresponds to the set K = {p ∈ RN |pN = 0} (here p is a vector
representing the proportion of wealth invested into each of the N stocks). Furthermore,
pension funds are often times subject to a no-short-selling constraint. A no-short-selling
constraint set is given by K = {p ∈ RN |p1 ≥ 0, . . . , pN ≥ 0}. Combining both constraint
sets above corresponds to the set K = {p ∈ RN |p1 ≥ 0, . . . , pN−1 ≥ 0, pN = 0}.
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Remark 5.1.11. The constraint set K = {p ∈ RN |pM+1 = 0, . . . , pN = 0} for some M ∈
{1, . . . , N − 1} corresponds to market where certain stocks are inaccessible. This market
was called the incomplete market by Karatzas et al. [29] and El Karoui and Quenez [16][17]
in their seminal works.

Example 5.1.12. Let {R(t)} be a given uniformly bounded {Ft}-progressively measurable
process such that R(t) ≥ r(t) a.s. for all t ∈ [0, T ]. The process R(t) represents the interest
the agent pays for borrowing, while the process r(t) from Condition 4.1.4 now represents
the interest the agent earns from lending. We call this amended market model a market
with a higher interest rate for borrowing than for lending. We can represent such a market
by using the margin function

g(t, ω,p) , [r(t, ω)−R(t, ω)](1− p>1)−, (t, ω,p) ∈ [0, T ]× Ω× RN , (5.9)

where (1 − p>1)− , max{0,
∑N

i=1 pi − 1}, in the SDE (5.7). Cuoco and Liu (see section
3 of [7]) extended the function g beyond this simple case to model quite general margin
requirements.

Remark 5.1.13. If we are given the set K = RN and margin function g = 0, the constrained
market is the same as the unconstrained market of Chapter 4.

Remark 5.1.14. Using the notation of Chapters 3 and 4, we can define

p0(t, ω) , π0(t, ω)/X(t, ω) and p(t, ω) , π(t, ω)/X(t, ω), (t, ω) ∈ [0, T ]× Ω, (5.10)

where π0 and π are the monetary portfolio processes from (4.17), if∫ T

0

|g(t, ω,π(t, ω)/X(t, ω))|dt <∞ (5.11)

on the set {X 6= 0}. We always put p(t, ω) , 0 on the set {X = 0}.

5.2 Definition of the Hedging Problem

Similar to Chapter 3 and Chapter 4 a contingent claim is a specified strictly positive
FT -measurable random variable B, that is

B : (Ω,FT , P ) 7→ (0,∞). (5.12)
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The random variable B defines an obligation on the part of the agent in the following sense:
starting from an initial wealth x ∈ (0,∞), the agent must find some portfolio process p ∈ Π
and cumulative consumption process c ∈ C such that

X(x,c,p)(T ) = B a.s. (5.13)

Just as in Chapter 4, the randomness in B is attributed to the joint effect of the Brownian
motion W(t) and the Markov chain α(t).

For reasons described in Remark 4.2.2, the hedging problem is only tractable if we
assume that the agent’s wealth is non-negative over the entire trading interval. In this
chapter, we strengthen this condition by enforcing the agent’s wealth must be strictly
positive over the trading interval as this will be essential for proving our major results (it
eliminates the need for division by 0). To enforce this condition, as well as enforce that
the agent’s portfolio process p be within the constraint set K, defined in Condition 5.1.1,
we restrict the agent to portfolio processes p and cumulative consumption processes c to
the set A(x):

A(x) ,

{
(c,p) ∈ C × Π

∣∣∣∣p(t) ∈ K a.e., X(x,c,p)(t) > 0 a.s. for all t ∈ [0, T ]

}
, (5.14)

for some initial wealth x ∈ (0,∞). The setA(x) is called the admissible set of consumption-
portfolio pairs from initial wealth x.

Remark 5.2.1. Just as in Remark 4.2.1, the set A(x) is non-empty for every x ∈ (0,∞).
To see this take p ∈ Π defined by p , 0 and c ∈ C defined by c , 0. Since 0 ∈ K by
Condition 5.1.1, this is a valid choice for p. With this choice of p ∈ Π and c ∈ C, we have
g(t,p) = 0 a.s. for all t ∈ [0, T ]. One sees from (5.6) and the fact that x ∈ (0,∞)

X(x,c,p)(t) = S0(t)x > 0 a.s., t ∈ [0, T ]. (5.15)

Therefore, (c,p) ∈ A(x) and A(x) 6= ∅ for each x ∈ (0,∞).

Remark 5.2.2. Starting from some initial wealth x ∈ (0,∞), the agent hedges the contingent
claim B if he or she can find some admissible consumption-portfolio pair (c,p) ∈ A(x) such
that (5.13) holds. This consumption-portfolio pair is called a (constrained) hedging strategy
from initial wealth x.

Just as in Chapter 4, if the initial wealth x ∈ (0,∞) is too small, then there may not
exist any (c,p) ∈ A(x) such that (5.13) holds. That is, there may not exist a hedging
strategy from such an initial wealth. The goal of an agent in the hedging problem is to
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determine the least initial wealth x ∈ (0,∞) for which there does exist a hedging strategy
(c,p) ∈ A(x). To make this precise, we define the set Λ comprising of all initial wealths x
for which a hedging strategy does exist. That is

Λ ,

{
x ∈ (0,∞)

∣∣∣∣∃(c,p) ∈ A(x) s.t. X(x,c,p)(T ) = B a.s.

}
. (5.16)

In view of (5.16) and (5.14) we have

Λ =

{
x ∈ (0,∞)

∣∣∣∣X(x,c,p)(T ) = B a.s. for some (c,p) ∈ C × Π

such that X(x,c,p)(t) > 0 a.s. for all t ∈ [0, T ] and p(t) ∈ K a.e.

}
.

(5.17)

Remark 5.2.3. Exactly as in Chapter 4, there is of course no guarantee that Λ is non-
empty. If the contingent claim random variable is stipulated to be “unreasonably large”
then we shall see later that Λ is actually the empty set. However, assuming that Λ is
indeed non-empty, and furthermore, attains its infimum at some û ∈ (0,∞) (that is û ∈ Λ
and û ≤ x for all x ∈ Λ), it is evident that x = û is the least initial wealth from which one
can hedge the contingent claim B. This least initial wealth is usually called the price of
the contingent claim B and the associated hedging strategy is called the optimal hedging
strategy. The most important goals of this chapter can now be stated as follows:

(a) Determine conditions on the contingent claim random variable B which ensures
that Λ is non-empty

(b) With the conditions in (a) in force, establish that there exists some û ∈ Λ such that
û ≤ x for all x ∈ Λ. It then follows from (5.16) that x = û is the least initial wealth from
which one can hedge the contingent claim B.

(c) With x = û characterize some (c,p) ∈ A(x) such that (5.13) holds. This consumption-
portfolio pair hedges the contingent claim B from the least initial wealth û.

5.3 Solution to the Hedging Problem

Having outlined the problem of hedging within a constrained regime-switching market
model (see Remark 5.2.3), we shall now address this problem. We again use the space of
Markov chain dual processes H, given in Notation 4.3.1, which allows the regime-switching
Markov chain to interact with the agent’s wealth process. We also define the space of
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dual processes G in Notation 5.3.1 in order to handle the margin function g and constraint
p(t) ∈ K a.e. The space G × H of processes plays a role similar to the space of Lagrange
multipliers in classical convex optimization.

Notation 5.3.1. The joint space of dual processes is the space G × H where H is given in
Notation 4.3.1 and the space G is given by

G ,
{
ν : [0, T ]× Ω 7→ RN

∣∣∣∣ν ∈ F∗, ∫ T

0

||ν(t)||2dt <∞ a.s.,∫ T

0

sup
p∈K
{g(t,p)− p>ν(t)}dt <∞ a.s.

}
.

(5.18)

Remark 5.3.2. Since g is uniformly upper-bounded by Condition 5.1.3, it is immediate that
0 ∈ G.

Remark 5.3.3. In Chapters 3 and 4, an essential role in solving the hedging problem was
played by state price density processes. Similarly, in this chapter a generalized state price
density process is defined to handle portfolio constraints and margin requirements. This
new generalized state price density process given in Definition 5.3.4 differs from that given
in Definition 4.3.3 as it is now a function of (ν,µ) ∈ G ×H.

Definition 5.3.4. The generalized state price density process {Hν,µ(t), t ∈ [0, T ]} for the
market model defined in Section 5.1 is the process with values in (0,∞) defined as follows:

Hν,µ(t) , exp

{
−
∫ t

0

[r(s) + g̃K(s,ν(s))]ds

}
E(−θν •W)(t)E(µ •M)(t), (5.19)

for all t ∈ [0, T ] and (ν,µ) ∈ G ×H, where

θν(t) , θ(t) + σ−1(t)ν(t), t ∈ [0, T ],ν ∈ G
g̃K(t,ν) , sup

p∈K
{g(t,p)− p>ν}, t ∈ [0, T ],ν ∈ RN , (5.20)

and E(·)(t) is the Doléans-Dade exponential function (see Theorem C.10.1).

Remark 5.3.5. Similar to Hµ(t) defined in Definition 4.3.3, the generalized state price
density Hν,µ can be written as an {Ft}-semimartingale using Ito’s product rule:

Hν,µ(t) = 1−
∫ t

0

Hν,µ(s)θν(s)>dW(s)−
∫ t

0

Hν,µ(s)[r(s) + g̃K(s,ν(s))]ds

+
∑
i,j∈S
i 6=j

∫ t

0

Hν,µ(s−)µij(s)dMij(s), t ∈ [0, T ], (ν,µ) ∈ G ×H.
(5.21)
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Furthermore, we have the fact that Hν,µ is almost surely strictly positive, i.e.

inf
t∈[0,T ]

Hν,µ(t) > 0 a.s., (ν,µ) ∈ G ×H. (5.22)

Remark 5.3.6. Note that if K , RN and g(t, ·) , 0 for all t ∈ [0, T ] we can put ν , 0 to
get

H0,µ(t) = Hµ(t) a.s., t ∈ [0, T ],µ ∈ H, (5.23)

where the process {Hµ(t), t ∈ [0, T ]}, µ ∈ H, is defined in Definition 4.3.3.

Remark 5.3.7. The generalized state price density in Definition 5.3.4 is identical to that
introduced by Heunis [23] for problems of utility maximization in a regime-switching market
model with convex portfolio constraints and margin requirements.

Remark 5.3.8. It is elementary to show that the process

z(t) ,
∫ t

0

Hν,µ(s)X(x,c,p)(s)

[
g̃K(s,ν(s))−

(
g(s,p(s))− p(s)>ν(s)

)]
ds

+

∫ t

0

Hν,µ(s−)dc(s) +
∑

0<s≤t

Hν,µ(s−)4c(s)4(µ •M)(s), t ∈ [0, T ],
(5.24)

is almost surely non-negative for all t ∈ [0, T ], (c,p) ∈ A(x), and (ν,µ) ∈ G ×H. Indeed,
by (5.20) and the almost sure positivity of Hν,µX

(x,c,p), the first term on the right-hand
side of (5.24) is positive. Since c ∈ C must be non-decreasing by (4.19), µ ∈ H must have
the property 4(µ •M)(t) > −1 a.s. for all t ∈ [0, T ] by (4.39), and Hν,µ is almost surely
strictly positive, we have that z(t) is almost surely non-negative. This fact will be essential
for the following results.

We would like to show results similar to Proposition 4.3.8 and Corollary 4.3.9.1 as they
are again pertinent to the solution of the constrained hedging problem. As one will see,
due to the inclusion of the margin function g in the wealth equation and convex conjugate
g̃K in the state price density process, the statement of an equivalent proposition is slightly
more complex.

Proposition 5.3.9. For each x ∈ (0,∞), (c,p) ∈ A(x), and (ν,µ) ∈ G ×H, the process

{J (x,c,p)
ν,µ (t), t ∈ [0, T ]} defined as

J (x,c,p)
ν,µ (t) ,

∫ t

0

Hν,µ(s)X(x,c,p)(s)

[
g̃K(s,ν(s))−

(
g(s,p(s))− p(s)>ν(s)

)]
ds

+Hν,µ(t)X(x,c,p)(t) +

∫ t

0

Hν,µ(s−)dc(s) +
∑

0<s≤t

Hν,µ(s−)4c(s)4(µ •M)(s),
(5.25)
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for all t ∈ [0, T ], is a non-negative {Ft}-supermartingale (i.e. J
(x,c,p)
ν,µ ∈ SPM({Ft}, P )

and J
(x,c,p)
ν,µ ≥ 0).

Proof. For ease of notation let X(t, ω) , X(x,c,p)(t, ω) for all (t, ω) ∈ [0, T ] × Ω. By a
simple, yet lengthy calculation using Ito’s formula, we can write the product of Hν,µ(t)X(t)
as

Hν,µ(t)X(t) = x−
∫ t

0

Hν,µ(s)X(s)θν(s)>dW(s)

−
∫ t

0

Hν,µ(s)X(s)[r(s) + g̃K(s,ν(s))]ds

+

∫ t

0

Hν,µ(s)X(s)p(s)>σ(s)dW(s) +

∫ t

0

Hν,µ(s)X(s)[r(s) + g(s,p(s))]ds

+

∫ t

0

Hν,µ(s)X(s)p(s)>σ(s)[θ(s)− θν(s)]ds−
∫ t

0

Hν,µ(s−)dc(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Hν,µ(s−)X(s−)µij(s)dMij(s)−
∑

0<s≤t

Hν,µ(s−)4c(s)4(µ •M)(s),

(5.26)

for all t ∈ [0, T ]. By rearranging and simplifying (5.26) with (5.25) we have

J (x,c,p)
ν,µ (t) = x+

∫ t

0

Hν,µ(s)X(s)[p(s)>σ(s)− θν(s)>]dW(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Hν,µ(s−)X(s−)µij(s)dMij(s), t ∈ [0, T ].
(5.27)

It’s easy to see from (5.27) that J
(x,c,p)
ν,µ is {Ft}-local martingale, and using (5.25) and

Remark 5.3.8, J
(x,c,p)
ν,µ is non-negative. Therefore, from the fact that J

(x,c,p)
ν,µ is a non-

negative {Ft}-local martingale, we have from Proposition C.11.3

J (x,c,p)
ν,µ ∈ SPM({Ft}, P ), (5.28)

that is, J
(x,c,p)
ν,µ is an {Ft}-supermartingale. �

The following corollary is immediate from Proposition 5.3.9 and Remark 5.3.8.

Corollary 5.3.9.1. For each (ν,µ) ∈ G ×H, x ∈ (0,∞), (c,p) ∈ A(x)

E
[
Hν,µ(T )X(x,c,p)(T )

]
≤ x. (5.29)
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Remark 5.3.10. Suppose that Λ is non-empty. Then from (5.16), for each x ∈ Λ there
exists a pair (c,p) ∈ A(x) such that

X(x,c,p)(T ) = B a.s. (5.30)

Using Corollary 5.3.9.1 and (5.30), we have

Λ 6= ∅ =⇒ sup
(ν,µ)∈G×H

E [Hν,µ(T )B] ≤ x, for all x ∈ Λ. (5.31)

Remark 5.3.11. Note that sup(ν,µ)∈G×HE [Hν,µ(T )B] is defined in (0,∞], since, for each
and every pair (ν,µ) ∈ G ×H, we have P [Hν,µ(T )B > 0] = 1.

Remark 5.3.12. Once again, the main result of this chapter, Theorem 5.3.17, establishes
the converse implication of (5.31), so that we actually have the following equivalence:

Λ 6= ∅ ⇐⇒ sup
(ν,µ)∈G×H

E [Hν,µ(T )B] <∞. (5.32)

That is, the contingent claim B can be hedged if and only if sup(ν,µ)∈G×HE [Hν,µ(T )B] <
∞. Thus, if the contingent claim random variable B is stipulated so large that

sup
(ν,µ)∈G×H

E [Hν,µ(T )B] =∞ (5.33)

then there is no possibility of hedging the claim B.

Notation 5.3.13. In the following, an essential role will be played by the strictly positive
extended real number û ∈ (0,∞] defined as follows:

û , sup
(ν,µ)∈G×H

E [Hν,µ(T )B] . (5.34)

The choice û will be our candidate for the least initial wealth that can hedge the contingent
claim B.

Remark 5.3.14. Since Hν,µ(T )B > 0 a.s. for all (ν,µ) ∈ G×H, the conditional expectation
E[Hν,µ(T )B|Ft] is almost surely non-negative for all (ν,µ) ∈ G×H at each time t ∈ [0, T ].
Furthermore, since inft∈[0,T ] Hν,µ(t) > 0 a.s. for all (ν,µ) ∈ G ×H, we have for each fixed
t ∈ [0, T ] that

X̂ν,µ(t) ,
E[Hν,µ(T )B|Ft]

Hν,µ(t)
≥ 0 a.s., (ν,µ) ∈ G ×H. (5.35)

By Theorem C.13.2, for each fixed t ∈ [0, T ] the essential-supremum (see Definition C.13.1)
of the family of random variables {X̂ν,µ(t), (ν,µ) ∈ G ×H} exists. That is

ess-sup
(ν,µ)∈G×H

X̂ν,µ(t) = ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(T )B

∣∣Ft]
Hν,µ(t)

exists for each t ∈ [0, T ]. (5.36)
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As a parallel of Proposition 4.3.15, we have the following statement, the proof of which
is technical and therefore given in Appendix B.4.

Proposition 5.3.15. Suppose û <∞. Define the process {X̂(t), t ∈ [0, T ]} as follows,

X̂(t) , ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(T )B

∣∣Ft]
Hν,µ(t)

, t ∈ [0, T ], (5.37)

where the right-hand side of (5.37) exists by Remark 5.3.14. Then the following hold:

(1) X̂(0) = û a.s.

(2) X̂(T ) = B a.s.

(3) X̂(t) > 0 a.s., t ∈ [0, T ]

(4) Hν,µX̂ ∈ SPM({Ft}, P ), (ν,µ) ∈ G ×H

(5) For each 0 ≤ s ≤ t ≤ T

X̂(s) = ess-sup
(ν,µ)∈G×H

E[Hν,µ(t)X̂(t)|Fs]
Hν,µ(s)

a.s. (5.38)

(6) {X̂(t), t ∈ [0, T ]} has a càdlàg modification

(7) For each {Ft}-stopping time τ taking values in [0, T ], there exists a càdlàg modifi-
cation of X̂ such that

X̂(τ) = ess-sup
(ν,µ)∈G×H

E[Hν,µ(T )B|Fτ ]
Hν,µ(τ)

a.s. (5.39)

We now state a decomposition result involving X̂ and the generalized price state density
Hν,µ that is absolutely essential for proving our hedging results.

Lemma 5.3.16. For each (ν,µ) ∈ G × H, the process {Hν,µ(t)X̂(t), t ∈ [0, T ]} has the
decomposition

Hν,µ(t)X̂(t) = X̂(0) +

∫ t

0

Ψν,µ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γν,µij (s)dMij(s)− Aν,µ(t), (5.40)
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for all t ∈ [0, T ] and (ν,µ) ∈ G × H, where Ψν,µ is a unique, null-at-the-origin {Ft}-
progressively measurable process such that∫ T

0

||Ψν,µ(s)||2ds <∞ a.s., (5.41)

Γν,µ , {Γν,µij }i,j∈S is a unique, null-at-the-origin {Ft}-predictably measurable process such
that ∑

i,j∈S
i 6=j

(∫ T

0

|Γν,µij (s)|2d[Mij](s)

)1/2

<∞ a.s. (5.42)

and Aν,µ is a unique, null-at-the-origin and non-decreasing {Ft}-predictably measurable
process such that

E [Aν,µ(T )] <∞. (5.43)

Proof. Fix (ν,µ) ∈ G × H. From Proposition 5.3.15(4) we know that Hν,µX̂ is an
{Ft}-supermartingale. Using the Doob-Meyer decomposition from Theorem C.11.4, we can
write any {Ft}-supermartingale as the difference between a unique {Ft}-local martingale,
null at the origin, and a unique, non-decreasing, {Ft}-predictable càdlàg process. In the
case of Hν,µX̂, we can write

Hν,µ(t)X̂(t) = X̂(0) + Φν,µ(t)− Aν,µ(t), t ∈ [0, T ], (5.44)

where
Φν,µ ∈Mloc,0({Ft}, P ) (5.45)

and
Aν,µ ∈ A+

0 ({Ft}, P ) and Aν,µ ∈ P∗, (5.46)

where the space A+
0 is defined in Notation C.5.5. Furthermore, since

E
[
Hν,µ(t)X̂(t)

]
> −∞, t ∈ [0, T ], (5.47)

it follows that
E [Aν,µ(T )] <∞, (5.48)

again by Theorem C.11.4. We can further expand the {Ft}-local martingale Φν,µ into more
insightful local martingales using the martingale representation theorem (see Appendix
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C.12, specifically Theorem C.12.4), which in the present case states that we can write Φν,µ
uniquely in the following way:

Φν,µ(t) =

∫ t

0

Ψν,µ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γν,µij (s)dMij(s), t ∈ [0, T ], (5.49)

in which
Ψν,µ ∈ F∗, (5.50)

and
Γν,µ , {Γν,µij }i,j∈S, Γν,µ ∈ P∗, (5.51)

are unique integrand processes such that∫ T

0

||Ψν,µ(s)||2ds <∞ a.s. and
∑
i,j∈S
i 6=j

(∫ T

0

|Γν,µij (s)|2d[Mij](s)

)1/2

<∞ a.s. (5.52)

Combining (5.49) and (5.44) we can write Hν,µX̂ as

Hν,µ(t)X̂(t) = X̂(0) +

∫ t

0

Ψν,µ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γν,µij (s)dMij(s)− Aν,µ(t), (5.53)

for all t ∈ [0, T ]. �

The main hedging result of this chapter is given by the following theorem:

Theorem 5.3.17. Suppose that û <∞. Then û ∈ Λ (in particular Λ 6= ∅) and û = inf Λ,
that is û ≤ x for all x ∈ Λ.

Remark 5.3.18. Theorem 5.3.17 is written word-for-word the same as Theorem 4.3.17;
however, due to the inclusion of portfolio constraints and the margin function g, the proof
becomes far more challenging.

Remark 5.3.19. From Theorem 5.3.17 and (5.14), one sees that û is the least initial wealth
which guarantees that X(û,c,p)(T ) = B a.s. for some (c,p) ∈ A(û), that is û is the price of
the contingent claim B.

Proof. We are going to establish that there exists some admissible consumption-
portfolio pair (ĉ, p̂) ∈ A(û) such that
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X̂(t) = X(û,ĉ,p̂)(t) a.s., t ∈ [0, T ], (5.54)

where, from (5.6), the process X(û,ĉ,p̂) satisfies the stochastic integral equation

X(û,ĉ,p̂)(t) = û+

∫ t

0

X(û,ĉ,p̂)(s)

{
r(s) + g(s, p̂(s)) + p̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

X(û,ĉ,p̂)(s)p̂(s)>σ(s)dW(s)− ĉ(t), t ∈ [0, T ].

(5.55)

If, in fact, X̂(·) can be written in the form of a wealth equation, then from Proposition
5.3.15(2) and 5.3.15(3) we would know that there exists a triple (û, ĉ, p̂) ∈ (0,∞)×A(û)
such that

X(û,ĉ,p̂)(T ) = B a.s. (5.56)

Since û is the initial wealth of the wealth process X(û,ĉ,p̂), this would mean from (5.16)

û ∈ Λ and therefore Λ 6= ∅. (5.57)

Furthermore, from Remark 5.3.10, we have that û ≤ inf Λ, and therefore, from (5.57),

û = inf Λ ∈ Λ. (5.58)

Thus, it remains to establish (5.54), as from (5.57) and (5.58), we will have proven Theorem
5.3.17.

To begin, fix (ν,µ) ∈ G × H. Isolating X̂(t) in the decomposition (5.40) given in
Lemma 5.3.16 and using Proposition 5.3.15(1) we get the expression

X̂(t) =
1

Hν,µ(t)

{
û+

∫ t

0

Ψν,µ(s)>dW(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γν,µij (s)dMij(s)− Aν,µ(t)

}
, (5.59)

for all t ∈ [0, T ]. By using the Ito product rule, the identity (5.21), and the fact that
[Mij](t) = Rij(t) for all t ∈ [0, T ] and i, j ∈ S, i 6= j, a simple but tedious calculation allows
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us to expand the right hand side of (5.59) to be the following

X̂(t) = û+

∫ t

0

(
Ψν,µ(s)>

Hν,µ(s)
+ X̂(s)θν(s)>

)
dW(s)

+

∫ t

0

(
Ψν,µ(s)>

Hν,µ(s)
θν(s) + X̂(s)[r(s) + g̃K(s,ν(s))] + X̂(s)‖θν(s)‖2

)
ds

+
∑
i,j∈S
i 6=j

∫ t

0

(
Γν,µij (s)

Hν,µ(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
4Aν,µ(s)

Hν,µ(s−)
−

Γν,µij (s)

Hν,µ(s−)
+ X̂(s−)µij(s)

)
µ̃ij(s)dRij(s)

−
∫ t

0

1

Hν,µ(s−)
dAν,µ(s), t ∈ [0, T ],

(5.60)

where we have put
µ̃ij(·) , µij(·)/(1 + µij(·)). (5.61)

Since µ ∈ H was arbitrarily chosen, we can of course take µ(t) , 0 for all t ∈ [0, T ] at
(5.60) to get

X̂(t) = û+

∫ t

0

(
Ψν,0(s)>

Hν,0(s)
+ X̂(s)θν(s)>

)
dW(s)

+

∫ t

0

(
Ψν,0(s)>

Hν,0(s)
θν(s) + X̂(s)

[
r(s) + g̃K(s,ν(s)) + ‖θν(s)‖2

])
ds

+
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s)−

∫ t

0

1

Hν,0(s−)
dAν,0(s), t ∈ [0, T ].

(5.62)

Now set

ζν(t) , X̂(t)

[
θν(t) +

Ψν,0(t)

Hν,0(t)X̂(t)

]
, t ∈ [0, T ], (5.63)

and

ĉν(t) ,
∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s), t ∈ [0, T ]. (5.64)
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We now state the following proposition which establishes ĉν(t) is a valid cumulative
consumption process for each ν ∈ G. The proof of Proposition 5.3.20, which can be found
in Appendix B.5, is very similar to that of Proposition 4.3.21 for the case without portfolio
constraints and margin requirements and is given in full to illustrate the role played by the
dual process ν ∈ G.

Proposition 5.3.20. The process {ĉν(t), t ∈ [0, T ]} defined by

ĉν(t) ,
∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s), t ∈ [0, T ], (5.65)

is a cumulative consumption process for each ν ∈ G. That is ĉν ∈ C for each ν ∈ G.

Continuing the proof of Theorem 5.3.17, putting (5.63) and (5.64) into (5.62) yields

X̂(t) = û+

∫ t

0

ζν(s)>dW(s) +

∫ t

0

X̂(s)

[
r(s) + g̃K(s,ν(s))

]
ds

+

∫ t

0

X̂(s)
ζν(s)>θν(s)

X̂(s)
ds− ĉν(t), t ∈ [0, T ].

(5.66)

Fixing another ρ ∈ G, we can write the process X̂ as

X̂(t) = û+

∫ t

0

ζρ(s)
>dW(s) +

∫ t

0

X̂(s)

[
r(s) + g̃K(s,ρ(s))

]
ds

+

∫ t

0

X̂(s)
ζρ(s)

>θρ(s)

X̂(s)
ds− ĉρ(t), t ∈ [0, T ].

(5.67)

By Proposition C.8.6 we can equate the continuous local martingale parts of (5.66) and
(5.67), resulting in

ζν(t) = ζρ(t), λ⊗ P a.e. on [0, T ]× Ω, for all ν,ρ ∈ G. (5.68)

As a result of (5.68), we define our candidate optimal portfolio process {p̂(t), t ∈ [0, T ]} as
follows:

p̂(t) ,
[σ−1(t)]>ζν(t)

X̂(t)

= [σ−1(t)]>
[
θν(t) +

Ψν,0(t)

Hν,0(t)X̂(t)

]
, t ∈ [0, T ],ν ∈ G,

(5.69)

where we put p̂ , 0 on the zero-measure set {X̂ = 0}.
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Proposition 5.3.21. The process {p̂(t), t ∈ [0, T ]} defined as

p̂(t) , [σ−1(t)]>
[
θν(t) +

Ψν,0(t)

Hν,0(t)X̂(t)

]
, t ∈ [0, T ],ν ∈ G, (5.70)

is a portfolio process, i.e. p̂ ∈ Π.

Proof. Fix ν = 0. Similar to Proposition 4.3.20, we immediately have that p̂ ∈ F∗.
From (5.70),{∫ T

0

‖p̂(t)‖2dt

}1/2

≤
{∫ T

0

‖[σ−1(t)]>θ(t)‖2dt

}1/2

+

{∫ T

0

∥∥∥∥[σ−1(t)]>
Ψ0,0(t)

H0,0(t)X̂(t)

∥∥∥∥2

dt

}1/2

a.s.

(5.71)

From the Lemma 5.3.16, Conditions 4.1.1 and 4.1.4, (5.22), Proposition 5.3.15(6), and
(5.20) we have that {∫ T

0

‖p̂(t)‖2dt

}1/2

≤ A

{∫ T

0

‖θ(t)‖2dt

}1/2

+B, (5.72)

where A and B are non-negative real constants. From the fact that θ is uniformly bounded,

p̂ ∈ F∗,
∫ T

0

‖p̂(t)‖2dt <∞ a.s. (5.73)

For p̂ ∈ Π to be true, we require
∫ T

0
|g(t, p̂(t))(t)|dt <∞ a.s. By Condition 5.1.3

|g(t, ω, p̂(t, ω))| ≤M(t, ω)‖p̂(t, ω)‖, (t, ω) ∈ [0, T ]× Ω. (5.74)

Since M and p̂ are almost surely square integrable by Condition 5.1.3 and (5.73), respec-
tively, we have by (5.74),∫ T

0

|g(t, p̂(t))|dt ≤
∫ T

0

M(t)‖p̂(t)‖dt

≤
(∫ T

0

|M(t)|2dt
)1/2(∫ T

0

‖p̂(t)‖2dt

)1/2

<∞ a.s.

(5.75)
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Therefore, from (5.73) and (5.75),
p̂ ∈ Π. (5.76)

�

Continuing our proof of Theorem 5.3.17, we expand (5.66) with (5.69) to obtain

X̂(t) = û+

∫ t

0

X̂(s)

{
r(s) + g̃K(s,ν(s)) + p̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

X̂(s)p̂(s)>ν(s)ds+

∫ t

0

X̂(s)p̂(s)>σ(s)dW(s)− ĉν(t), t ∈ [0, T ],ν ∈ G.
(5.77)

Since the margin term g is not included in (5.77), we add and subtract
∫ ·

0
X̂(s)g(s, p̂(s))ds

in (5.77) to get

X̂(t) = û+

∫ t

0

X̂(s)

{
r(s) + g(s, p̂(s)) + p̂(s)>σ(s)θ(s)

}
ds+

∫ t

0

X̂(s)p̂(s)>σ(s)dW(s)

+

∫ t

0

X̂(s)

{
g̃K(s,ν(s))−

[
g(s, p̂(s))− p̂(s)>ν(s)

]}
ds− ĉν(t), t ∈ [0, T ],ν ∈ G.

(5.78)

Define the process {ĉ(t), t ∈ [0, T ]}, which will be our candidate optimal consumption
process, to be

ĉ(t) , −
∫ t

0

X̂(s)

{
g̃K(s,ν(s))−

[
g(s, p̂(s))− p̂(s)>ν(s)

]}
ds+ ĉν(t), (5.79)

for all t ∈ [0, T ] and ν ∈ G.

Remark 5.3.22. Note that the process {ĉ(t)} defined in (5.79) is not dependent on the
parameter ν ∈ G. This fact will be crucial when showing that ĉ is a cumulative consumption
process.

Using (5.78) and (5.79) we can write the process X̂ in the form of a wealth equation

X̂(t) = û+

∫ t

0

X̂(s)

{
r(s) + g(s, p̂(s)) + p̂(s)>σ(s)θ(s)

}
ds

+

∫ t

0

X̂(s)p̂(s)>σ(s)dW(s)− ĉ(t), t ∈ [0, T ].

(5.80)

However, for (5.80) to be considered a bona-fide wealth equation, we require ĉ ∈ C. To
show this, we first consider the following proposition.
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Proposition 5.3.23. For any p̄ ∈ Π there exists a ν̄ ∈ G such that

g̃K(t, ω, ν̄(t, ω)) ≤ g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω), (t, ω) ∈ [0, T ]× Ω. (5.81)

Furthermore, if p̄(t, ω) ∈ K for some (t, ω) ∈ [0, T ]× Ω then,

g̃K(t, ω, ν̄(t, ω)) = g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω). (5.82)

Proof. Fix some p̄ ∈ Π. From Definition D.0.9, the superdifferential of g(t, ω, p̄(t, ω))
at each (t, ω) ∈ [0, T ]× Ω is defined as

∂g(t, ω, p̄(t, ω)) ,

{
ν ∈ RN

∣∣∣∣g(t, ω,p) ≤ g(t, ω, p̄(t, ω))+(p− p̄(t, ω))>ν

for all p ∈ RN

}
.

(5.83)

Since g(t, ω, ·) is concave for every (t, ω) ∈ [0, T ] × Ω, Proposition D.0.11 states that the
superdifferential ∂g(t, ω,p) is a non-empty and compact set for every p ∈ RN . Now fix
ν̄(t, ω) ∈ ∂g(t, ω, p̄(t, ω)) for all (t, ω) ∈ [0, T ]× Ω. From (5.83) we have

g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω) ≥ g(t, ω,p)− p>ν̄(t, ω) (5.84)

for all p ∈ RN , (t, ω) ∈ [0, T ]× Ω, and thus

g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω) ≥ sup
p∈RN

{
g(t, ω,p)− p>ν̄(t, ω)

}
, (5.85)

for all (t, ω) ∈ [0, T ]× Ω. But by the definition of g̃K

sup
p∈RN

{
g(t, ω,p)− p>ν̄(t, ω)

}
≥ g̃K(t, ω, ν̄(t, ω)) , sup

p∈K

{
g(t, ω,p)− p>ν̄(t, ω)

}
, (5.86)

for all (t, ω) ∈ [0, T ]× Ω. We have from (5.85) and (5.86)

g̃K(t, ω, ν̄(t, ω)) ≤ g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω), (5.87)

for all (t, ω) ∈ [0, T ]× Ω.

We must now check whether ν̄ defined above is such that ν̄ ∈ G. Take ν̄(t, ω) ∈
∂g(t, ω, p̄(t, ω)) for each (t, ω) ∈ [0, T ] × Ω. Since g(t, ω, ·) is concave for each (t, ω) ∈
[0, T ] × Ω, −g is a convex integrand by Definition D.0.22. Furthermore, since g(·, ·,p) is
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F∗-measurable for each p ∈ RN and g never takes the values +∞ or −∞, −g is a normal
convex integrand by Proposition D.0.24. Therefore, by the measurable selection given by
Proposition D.0.27 and Proposition D.0.26, {ν̄(t)} is {Ft}-progressively measurable.

Now from Proposition D.0.21 and Condition 5.1.3 we have that the supergradient ν̄(t, ω)
of the concave function g(t, ω, ·) is bounded by the Lipschitz constant M(t, ω) for each
(t, ω) ∈ [0, T ]× Ω. By the square integrability of M(t),∫ T

0

‖ν̄(t)‖2dt ≤
∫ T

0

|M(t)|2dt <∞ a.s. (5.88)

Lastly, from the fact that p̄ ∈ Π, (5.87) and (5.88),∫ T

0

g̃K(t, ν̄(t))dt ≤
∫ T

0

g(t, p̄(t))dt−
∫ T

0

p̄(t)>ν̄(t)dt

≤
∫ T

0

|g(t, p̄(t))|dt+

∫ T

0

|p̄(t)>ν̄(t)|dt

≤
∫ T

0

|g(t, p̄(t))|dt+

(∫ T

0

‖p̄(t)‖2dt

)1/2(∫ T

0

‖ν̄(t)‖2dt

)1/2

<∞ a.s.

(5.89)

From (5.88) and (5.89), we have that

ν̄ ∈ G. (5.90)

To show (5.82) holds for some (t, ω) ∈ [0, T ]×Ω where p̄(t, ω) ∈ K, fix some p̄(t, ω) ∈ K.
We have from (5.86) and (5.87),

g̃K(t, ω, ν̄(t, ω)) = g(t, ω, p̄(t, ω))− p̄(t, ω)>ν̄(t, ω). (5.91)

�

We now show that ĉ is in fact a cumulative consumption process.

Proposition 5.3.24. The process {ĉ(t), t ∈ [0, T ]} defined by

ĉ(t) , −
∫ t

0

X̂(s)

{
g̃K(s,ν(s))−

[
g(s, p̂(s))− p̂(s)>ν(s)

]}
ds+ ĉν(t), t ∈ [0, T ],ν ∈ G,

(5.92)
where ĉν is given by Proposition 5.3.20, is a cumulative consumption process, i.e. ĉ ∈ C.

78



Proof. Fix ν̄(t, ω) ∈ ∂g(t, ω, p̂(t, ω)) for each (t, ω) ∈ [0, T ] × Ω. Using Propositions
5.3.15(3) and 5.3.23, this implies

X̂(t, ω)

{
g̃K(t, ω, ν̄(t, ω))−

[
g(t, ω, p̂(t, ω))− p̂(t, ω)>ν̄(t, ω)

]}
≤ 0, (5.93)

for λ⊗ P almost all (t, ω) ∈ [0, T ]× Ω. As a result, the process

c̃(t) , −
∫ t

0

X̂(s)

{
g̃K(s, ν̄(s))−

[
g(s, p̂(s))− p̂(s)>ν̄(s)

]}
ds, t ∈ [0, T ], (5.94)

is continuous, almost surely non-decreasing and null at the origin. Furthermore, since X̂ is
càdlàg, therefore X̂(t, ω) is uniformly bounded on [0, T ] for P -almost all ω ∈ Ω, and since
p̂ ∈ Π and ν̄ ∈ G by Propositions 5.3.21 and 5.3.23, respectively, we obtain

c̃(T ) <∞ a.s., (5.95)

and as a result
c̃ ∈ C. (5.96)

We have from Proposition 5.3.20, (5.92), and (5.94)

ĉ(t) = c̃(t) + ĉν̄(t), t ∈ [0, T ]. (5.97)

Since we have already shown in Proposition 5.3.20 that

ĉν ∈ C, ν ∈ G, (5.98)

from (5.96), (5.97), and (5.98)
ĉ ∈ C. (5.99)

�

Remark 5.3.25. We can now say from (5.80) and Proposition 5.3.24 that X̂ can be written
as the wealth process X(û,ĉ,p̂). However, we require (ĉ, p̂) ∈ A(û) to prove Theorem 5.3.17.
We already know from Propositions 5.3.21 and 5.3.24 that (ĉ, p̂) ∈ C × Π, and from
Proposition 5.3.15(3) that X(û,ĉ,p̂)(t) > 0 a.s. for all t ∈ [0, T ]. Therefore, it remains to
show p̂(t) ∈ K a.e.

Proposition 5.3.26. The process p̂ defined in Proposition 5.3.21 satisfies the portfolio
constraints. That is p̂(t) ∈ K a.e.
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Proof. Using the fact that ĉν ∈ C for all ν ∈ G from Proposition 5.3.20, we have from
(5.92) in Proposition 5.3.24 that

ĉ(T ) +

∫ T

0

X̂(t)

{
g̃K(t,ν(t))−

[
g(t, p̂(t))− p̂(t)>ν(t)

]}
dt ≥ 0 a.s., ν ∈ G. (5.100)

Using the subadditivity property of the supremum in (5.20),

sup
p∈K

g(t,p) + δ(ν) ≥ g̃K(t,ν) a.s., t ∈ [0, T ],ν ∈ RN , (5.101)

where
δ(ν) , sup

p∈K
{−p>ν}, ν ∈ RN (5.102)

is the support function of the convex set −K (see Definition D.0.16). Putting (5.101) into
(5.100) yields

ĉ(T ) +

∫ T

0

X̂(t)

[
sup
p∈K

g(t,p)− g(t, p̂(t))

]
dt+

∫ T

0

X̂(t)

[
δ(ν(t)) + p̂(t)>ν(t)

]
dt ≥ 0 a.s.,

(5.103)
for all ν ∈ G. Put

B ,
{

(t, ω) ∈ [0, T ]× Ω

∣∣∣∣p̂(t, ω) ∈ Kc

}
. (5.104)

From Lemma 5.4.2 in Karatzas and Shreve [31], there exists an {Ft}-progressively mea-
surable process ν̃ : [0, T ]× Ω 7→ RN such that

‖ν̃(t)‖ ≤ 1 a.s. and |δ(ν̃(t))| ≤ 1 a.s. (5.105)

and
ν̃(t, ω) = 0 if and only if (t, ω) ∈ Bc. (5.106)

From (5.106) we also have

δ(ν̃(t, ω)) + p̂(t, ω)>ν̃(t, ω) = 0 if and only if (t, ω) ∈ Bc. (5.107)

and
δ(ν̃(t, ω)) + p̂(t, ω)>ν̃(t, ω) < 0 if and only if (t, ω) ∈ B. (5.108)

It is easy to see from (5.105) and (5.101) that ν̃ ∈ G. Furthermore, from the positive
homogeneity of the support function δ(·) (see Remark D.0.17) we have

kν̃ ∈ G, k = 1, 2, . . . (5.109)
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Again from the positive homogeneity of δ(·) and (5.103), we have

ĉ(T ) +

∫ T

0

X̂(t)

[
sup
p∈K

g(t,p)− g(t, p̂(t))

]
dt+

∫ T

0

X̂(t)

[
δ(kν̃(t)) + p̂(t)>kν̃(t)

]
dt

= ĉ(T ) +

∫ T

0

X̂(t)

[
sup
p∈K

g(t,p)− g(t, p̂(t))

]
dt+ k

∫ T

0

X̂(t)

[
δ(ν̃(t)) + p̂(t)>ν̃(t)

]
dt,

(5.110)

for k = 1, 2, . . .. Combining (5.110) and (5.103)

ĉ(T ) +

∫ T

0

X̂(t)

[
sup
p∈K

g(t,p)− g(t, p̂(t))

]
dt ≥ −k

∫ T

0

X̂(t)

[
δ(ν̃(t)) + p̂(t)>ν̃(t)

]
dt a.s.

(5.111)
Define the set D as

D ,
{

(t, ω) ∈ B
∣∣∣∣X̂(t, ω)

[
δ(ν̃(t, ω)) + p̂(t, ω)>ν̃(t, ω)

]
< 0

}
, (5.112)

which by (5.108) and Proposition 5.3.15(3) has the property

λ⊗ P [D] = λ⊗ P [B]. (5.113)

Assume
λ⊗ P [D] > 0, or by Fubini’s Theorem, E[

∫ T
0
ID(t, ω)dt] > 0. (5.114)

Put

Z(ω) ,
∫ T

0

ID(t, ω)dt, ω ∈ Ω, (5.115)

so that from (5.114), E[Z] > 0. Define the subset

ΩD ,

{
ω ∈ Ω

∣∣∣∣Z(ω) > 0

}
. (5.116)

Since E[Z] > 0 we have P [ΩD] > 0. Also define the set

D(ω) ,

{
t ∈ [0, T ]

∣∣∣∣(t, ω) ∈ D
}
. (5.117)
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We then have by (5.116) that λ[D(ω)] > 0 for each ω ∈ ΩD. Fixing ω̄ ∈ ΩD, we can write∫ T

0

X̂(t, ω̄)

[
δ(ν̃(t, ω̄)) + p̂(t, ω̄)>ν̃(t, ω̄)

]
dt

=

∫
D(ω̄)

X̂(t, ω̄)

[
δ(ν̃(t, ω̄)) + p̂(t, ω̄)>ν̃(t, ω̄)

]
dt

+

∫
D(ω̄)c

X̂(t, ω̄)

[
δ(ν̃(t, ω̄)) + p̂(t, ω̄)>ν̃(t, ω̄)

]
dt.

(5.118)

By the definition of D in (5.112), the first term on the right side of (5.118) is negative and
from (5.107), the second term on the right side of (5.118) is zero. Therefore,∫ T

0

X̂(t, ω̄)

[
δ(ν̃(t, ω̄)) + p̂(t, ω̄)>ν̃(t, ω̄)

]
dt < 0. (5.119)

Putting (5.119) into (5.111) and taking k →∞ yields

ĉ(T, ω̄) +

∫ T

0

X̂(t, ω̄)

[
sup
p∈K

g(t, ω̄,p)− g(t, ω̄, p̂(t, ω̄))

]
dt =∞. (5.120)

From the integrability and uniform upper-boundedness of g(t, p̂), and the almost sure
boundedness of X̂,

ĉ(T, ω̄) =∞, ω̄ ∈ ΩD. (5.121)

Since P [ΩD] > 0, there is a contradiction in (5.114) because ĉ ∈ C (which implies ĉ(T ) <
∞ a.s.). Therefore, λ⊗P [D] = 0 and by (5.113), λ⊗P [B] = 0. Finally, we conclude from
(5.104),

p̂(t) ∈ K a.e. (5.122)

�

Completing the proof of Theorem 5.3.17, we have from Remark 5.3.25 and Proposition
5.3.26 that there does exist a pair (ĉ, p̂) ∈ A(û) such that

X̂(t) = X(û,ĉ,p̂)(t) a.s., t ∈ [0, T ], (5.123)

and Theorem 5.3.17 follows. �
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Remark 5.3.27. From Theorem 5.3.17, together with Remark 5.3.19, one sees that the price
of the contingent claim B is the quantity û defined at (5.34), that is

û , sup
(ν,µ)∈G×H

E [Hν,µ(T )B] . (5.124)

û is the least initial wealth from which the contingent claim B can be hedged. By setting
the dual process ν , ν̄, where ν̄(t, ω) ∈ ∂g(t, ω, p̂(t, ω)) for each (t, ω) ∈ [0, T ] × Ω,
the corresponding hedging portfolio process p̂ ∈ Π, which by Proposition 5.3.26 has the
property p̂(t) ∈ K a.e., is given by

p̂(t) , [σ−1(t)]>
[
θν̄(t) +

Ψν̄,0(t)

Hν̄,0(t)X̂(t)

]
, t ∈ [0, T ]. (5.125)

Lastly, by Proposition 5.3.23 and Proposition 5.3.24, we have the optimal cumulative con-
sumption process ĉ ∈ C is given by

ĉ(t) =

∫ t

0

1

Hν̄,0(s−)
dAν̄,0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γν̄,0ij (s)

Hν̄,0(s−)
dMij(s), t ∈ [0, T ]. (5.126)

5.4 Conditions for Zero Consumption

We have from Theorem 5.3.17 that if û defined in (5.34) is finite, then the contingent
claim B can be exactly hedged by a pair (ĉ, p̂) ∈ A(û) where ĉ and p̂ are given by (5.126)
and (5.125), respectively. Furthermore, as will be seen in Proposition 5.4.1, the optimal
portfolio process p̂ ∈ Π is in fact a super-hedging portfolio process. In other words, if an
agent starting with initial wealth û defined in (5.34) trades with the strategy (0, p̂) ∈ A(û),
where p̂ is defined in Proposition 5.3.21, they are guaranteed to have X(û,0,p̂)(T ) ≥ B a.s.
This means that an agent must use a portfolio that produces excess wealth to hedge the
contingent claim. In view of this, one may ask: under what conditions, if any, can an agent
exactly hedge a contingent claim in a regime-switching market without consuming wealth?
In other words, are there conditions which assert the existence of a pair (0,p) ∈ A(û) such
that X(û,0,p)(T ) = B a.s.? In this section we propose necessary and sufficient conditions
that guarantee the existence of such an optimal hedging strategy.

Proposition 5.4.1. Given a hedgeable contingent claim random variable B, i.e. there
exists a least initial wealth û and hedging strategy (ĉ, p̂) ∈ A(û) such that

X(û,ĉ,p̂)(T ) = B a.s., (5.127)
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the consumption-portfolio pair (0, p̂) is admissible and super-hedges the contingent claim
B. In other words, (0, p̂) ∈ A(û) and

X(û,0,p̂)(T ) ≥ B a.s. (5.128)

Proof. For ease of notation, let

a(t) , r(t) + g(t, p̂(t)) + p̂(t)>σ(t)θ(t),

b(t) , p̂(t)>σ(t),

z(t) , a(t)dt+ b(t)dW(t), t ∈ [0, T ].

(5.129)

Then, from (5.6) and (5.129),

X(û,ĉ,p̂)(t) = û+

∫ t

0

X(û,ĉ,p̂)(s)dz(s)− ĉ(t), t ∈ [0, T ], (5.130)

and

X(û,0,p̂)(t) = û+

∫ t

0

X(û,0,p̂)(s)dz(s), t ∈ [0, T ]. (5.131)

Setting Y (t) , X(û,0,p̂)(t)−X(û,ĉ,p̂)(t), t ∈ [0, T ], we have by (5.130) and (5.131)

Y (t) =

∫ t

0

Y (s)dz(s) + ĉ(t), t ∈ [0, T ]. (5.132)

From Theorem C.10.4, the solution to the stochastic integral equation (5.132) is given by

Y (t) = E(z)(t)

{
ĉ(0) +

∫ t

0

1

E(z)(s)
dĉ(s)−

∫ t

0

1

E(z)(s)
d[ĉ, z](s)

}
a.s., t ∈ [0, T ], (5.133)

where E(·) is the Ito Exponential (see Remark C.10.3). Since ĉ ∈ C and z is continuous,
ĉ(0) = 0 and [ĉ, z](t) = 0 a.s. for all t ∈ [0, T ]. Therefore, from (5.133),

Y (t) = E(z)(t)

∫ t

0

1

E(z)(s)
dĉ(s) a.s., t ∈ [0, T ]. (5.134)

We have by Remark C.10.3 that E(z)(t) > 0 a.s. and by (5.4) that ĉ(t) ≥ 0 a.s. for all
t ∈ [0, T ]. As a result, from (5.134)

X(û,0,p̂)(t)−X(û,ĉ,p̂)(t) = Y (t) ≥ 0 a.s., t ∈ [0, T ]. (5.135)

Setting t = T in (5.135) gives (5.128). Furthermore, since X(û,ĉ,p̂)(t) > 0 a.s., we have from
(5.135) that (0, p̂) ∈ A(û), as required. �
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Remark 5.4.2. Conditions that guarantee the existence of a exact hedging strategy without
consumption have been found in the context of a standard Brownian motion market model
with convex portfolio constraints by Cvitanic and Karatzas [10]. By virtue of the simi-
larities between our regime-switching market model and the constrained Brownian motion
market model used in Cvitanic and Karatzas [10], the statement of our main result is nearly
identical to Theorem 5.8.1 in Karatzas and Shreve [31]; however, instead of optimizing over
a single dual process as they do in Karatzas and Shreve [31], we deal with the joint space
of dual processes G ×H, which makes the proof far more challenging.

To state our result, we first need the following definition of a K-attainable contingent
claim, originally given in Cvitanic and Karatzas [10].

Definition 5.4.3. We say that a contingent claim B is K-attainable if there exists a
portfolio process p ∈ Π such that (0,p) ∈ A(û) and X(û,0,p)(T ) = B a.s.

Theorem 5.4.4. Let B : (Ω,FT , P ) 7→ (0,∞) be a contingent claim and assume that û
defined in (5.34) is finite. Let X̂ be defined as in (5.37) and let (ĉ, p̂) ∈ A(û) be such that
X(û,ĉ,p̂)(t) = X̂(t) a.s. for all t ∈ [0, T ]. For a given pair (ν̂, µ̂) ∈ G × H, the following
conditions are equivalent:

(1) The supremum at (5.34) is attained by some (ν̂, µ̂) ∈ G ×H, i.e. û = E[Hν̂,µ̂(T )B],

(2) Hν̂,µ̂X̂ is an {Ft}-martingale,

(3)

{
B is K-attainable, and for the associated wealth process X û,0,p,

the product Hν̂,µ̂X
û,0,p is an {Ft}-martingale.

Any of the above conditions imply

(4)

ĉ(t) = 0 a.s.,

g̃K(t, ν̂(t))−
[
g(t, p̂(t))− p̂(t)>ν̂(t)

]
= 0 a.s.,

for all t ∈ [0, T ].

Remark 5.4.5. To prove Theorem 5.4.4, we begin by showing that Theorem 5.4.4(1) and
5.4.4(2) are equivalent. From there we prove an intermediate result in Lemma 5.4.9 and
finally show Theorem 5.4.4 holds.
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Proposition 5.4.6. For a pair (ν̂, µ̂) ∈ G ×H, Hν̂,µ̂X̂ is an {Ft}-martingale if and only
if û = E[Hν̂,µ̂(T )B]. Therefore, Theorem 5.4.4(1) and 5.4.4(2) are equivalent.

Proof of Proposition 5.4.6. ( =⇒ ) First assume Hν̂,µ̂X̂ is an {Ft}-martingale. We
would then have

E[Hν̂,µ̂(T )X̂(T )] = E[X̂(0)]. (5.136)

From Proposition 5.3.15(1) and 5.3.15(2),

E[Hν̂,µ̂(T )B] = û. (5.137)

( ⇐= ) Now assume û = E[Hν̂,µ̂(T )B]. From Proposition 5.3.15(4) Hν̂,µ̂X̂ is an {Ft}-
supermartingale. From the supermartingale property of Hν̂,µ̂X̂,

E[Hν̂,µ̂(t)X̂(t)] ≤ E[Hν̂,µ̂(s)X̂(s)], 0 ≤ s ≤ t ≤ T. (5.138)

But since û = E[Hν̂,µ̂(T )B], from Proposition 5.3.15(1) and 5.3.15(2)

E[Hν̂,µ̂(T )X̂(T )] = E[X̂(0)], (5.139)

which in combination with (5.138) shows Hν̂,µ̂X̂ is an {Ft}-martingale. �

Lemma 5.4.7. If the supremum at (5.34) is attained by some (ν̂, µ̂) ∈ G ×H, then

Aν̂,µ̂(t) = 0 a.s., t ∈ [0, T ], (5.140)

where Aν,µ, (ν,µ) ∈ G ×H, is defined in Lemma 5.3.16.

Proof. By Proposition 5.4.6, Hν̂,µ̂X̂ is an {Ft}-martingale. It is immediate that
Aν̂,µ̂(t) = 0 a.s. for all t ∈ [0, T ] by the Doob-Meyer decomposition in Theorem C.11.4. �

Lemma 5.4.8. If the supremum at (5.34) is attained by some (ν̂, µ̂) ∈ G ×H, then∫ t

0

1

Hν̂,µ(s−)
dAν̂,µ(s) =

∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)

(
µ̂ij(s)− µij(s)

)
I{α(s−) = i}gijds, (5.141)

for all t ∈ [0, T ] and µ ∈ H, where Aν,µ and Γν,µij , (ν,µ) ∈ G × H, i, j ∈ S, i 6= j, are
defined in Lemma 5.3.16, and gij, i, j ∈ S, i 6= j, are the generators of the Markov chain
α.
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Proof. If we set (ν,µ) = (ν̂, µ̂) in (B.278) of Lemma B.5.2, we can use Lemma 5.4.7
to obtain∫ t

0

1

Hν̂,0(s−)
dAν̂,0(s) =

∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)
µ̂ij(s)dR̃ij(s), t ∈ [0, T ]. (5.142)

Putting (5.142) into (B.278) of Lemma B.5.2, where we set ν = ν̂, results in∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)
µ̂ij(s)dR̃ij(s) =

∫ t

0

1

Hν̂,µ(s−)
dAν̂,µ(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)
µij(s)dR̃ij(s),

(5.143)
for all t ∈ [0, T ] and µ ∈ H. Rearranging (5.143) and expanding the dR̃ij integral using
(4.7) gives∫ t

0

1

Hν̂,µ(s−)
dAν̂,µ(s) =

∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)

(
µ̂ij(s)− µij(s)

)
I{α(s−) = i}gijds (5.144)

for all t ∈ [0, T ] and µ ∈ H. �

Lemma 5.4.9. If the supremum at (5.34) is attained by some (ν̂, µ̂) ∈ G ×H, then

Γν̂,0ij (t)I{α(t−) = i}gij = 0, λ⊗ P a.e. on [0, T ]× Ω,

for all i, j ∈ S, i 6= j, where Γν,µij , (ν,µ) ∈ G × H, i, j ∈ S, i 6= j, is defined in Lemma
5.3.16, and gij, i, j ∈ S, i 6= j, are the generators of the Markov chain α.

Proof. Without loss of generality we assume the Markov chain generators gij are such
that for some i, j ∈ S, i 6= j, gij > 0. Indeed, since gij ≥ 0 for all i, j ∈ S where i 6= j, if
gij = 0 for some i, j ∈ S, i 6= j, then

Γν,0ij (t)I{α(t−) = i}gij = 0 λ⊗ P a.e. on [0, T ]× Ω,ν ∈ G (5.145)

for that choice of i, j ∈ S. Therefore, we assume gij > 0 for some i, j ∈ S, i 6= j.

From Lemma B.5.2,∫ t

0

1

Hν,0(s−)
dAν,0(s) =

∫ t

0

1

Hν,µ(s−)
dAν,µ(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ],

(5.146)
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for all (ν,µ) ∈ G ×H, where R̃ij is a canonical process of the Markov chain α introduced
in Definition 4.1.9. Since Aν,µ is a non-decreasing process and inft∈[0,T ] Hν,µ(t) > 0 a.s. for
every (ν,µ) ∈ G ×H, we have from (5.146) that∫ t

0

1

Hν,0(s−)
dAν,0(s) ≥

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ], (5.147)

for every (ν,µ) ∈ G ×H. Fix some ν ∈ G and some k, l ∈ S, such that k 6= l and gkl > 0.
For all other i, j ∈ S, i 6= j, set

µij(t) = 0, t ∈ [0, T ]. (5.148)

Define the set

U ,
{

(t, ω) ∈ [0, T ]× Ω

∣∣∣∣Γν,0kl (t, ω)I{α(t−, ω) = k}gkl > 0

}
, (5.149)

where we immediately see that U is in the predictable σ-algebra since Γν,0kl (t)I{α(t−) =
k}gkl is {Ft}-predictable. We would like to show

λ⊗ P [U ] = 0. (5.150)

Hence, we assume
λ⊗ P [U ] > 0, (5.151)

or, using Fubini’s Theorem,

E[

∫ T

0

IU(s, ω)ds] > 0. (5.152)

Set

Z(ω) ,
∫ T

0

IU(s, ω)ds, ω ∈ Ω, (5.153)

so from (5.153) we have Z(ω) ≥ 0 for all ω ∈ Ω. Define the subset

Ω2 ,

{
ω ∈ Ω

∣∣∣∣Z(ω) > 0

}
. (5.154)

Since E[Z] > 0 we have that P [Ω2] > 0. Define a sequence {µ(n)
kl } for n = 1, 2, . . . as

follows,
µ

(n)
kl (t, ω) , nHν,0(t−, ω)IU(t, ω), (t, ω) ∈ [0, T ]× Ω. (5.155)
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Using (5.155), we can define

µ(n)(t, ω) ,

{
µ

(n)
kl (t, ω), k, l ∈ S

0, for all other i, j ∈ S, i 6= j
, (5.156)

for all (t, ω) ∈ [0, T ] × Ω and n = 1, 2, . . .. Since inft∈[0,T ] Hν,0 > 0 a.s. and Hν,0 is

continuous, µ
(n)
kl (t)4Mij(t) > −1 a.s. for all t ∈ [0, T ], and µ

(n)
kl ∈ L

1/2
loc (Rkl) for each

n = 1, 2, . . ., where L
1/2
loc (Rij) is given in Definition A.1.1. We clearly then have µ(n) ∈ H

for every n = 1, 2, . . ., where H is given in Notation 4.3.1.

Define the set

Θ(ω) ,

{
t ∈ [0, T ]

∣∣∣∣IU(t, ω) = 1

}
, ω ∈ Ω. (5.157)

From (5.154), we have that λ[Θ(ω)] > 0 for each ω ∈ Ω2, where λ[·] is Lebesgue measure.
Fix ω̄ ∈ Ω2 and put (5.156) into (5.147). Using (5.155) and expanding the dR̃ij integral
using (4.7) results in∫ T

0

1

Hν,0(s−, ω̄)
dAν,0(s, ω̄) ≥ n

∫
Θ(ω̄)

Γν,0kl (s, ω̄)I{α(s−, ω̄) = k}gklds, (5.158)

where the right-hand side of (5.158) is strictly positive by (5.149). Taking n → ∞ in
(5.158) then gives ∫ T

0

1

Hν,0(s−, ω̄)
dAν,0(s, ω̄) =∞, ω̄ ∈ Ω2. (5.159)

Since Hν,0 is continuous, we have from (5.159) that Aν,0(T, ω̄) =∞. But since P [Ω2] > 0
and by the Doob-Meyer decomposition, Aν,0(T ) < ∞ a.s., we have a contradiction in
(5.151). As a result, we have shown (5.150) holds, and since k, l ∈ S and ν ∈ G were
chosen arbitrarily, we have that

Γν,0ij (t)I{α(t−) = i}gij ≤ 0, λ⊗ P a.e. on [0, T ]× Ω, (5.160)

for all i, j ∈ S, i 6= j and ν ∈ G. To complete the proof of Lemma 5.4.9, we shall now show
that equality in fact holds in (5.160) provided that ν = ν̂.

Fix ν = ν̂ and fix some k, l ∈ S where k 6= l and gkl > 0. Define the set

V ,
{

(t, ω) ∈ [0, T ]× Ω

∣∣∣∣Γν̂,0kl (t, ω)I{α(t−, ω) = k}gkl < 0

}
. (5.161)

89



We again clearly have that V is in the predictable σ-algebra. We would again like to show

λ⊗ P [V ] = 0. (5.162)

Therefore, we assume
λ⊗ P [V ] > 0. (5.163)

Define the ω-section of V as

V(ω) ,

{
t ∈ [0, T ]

∣∣∣∣Γν̂,0kl (t, ω)I{α(t−, ω) = k}gkl < 0

}
, ω ∈ Ω. (5.164)

Using (5.164) and Fubini’s Theorem, we can write (5.163) as

E[λ[V(ω)]] > 0, (5.165)

where λ[·] is Lebesgue measure. Define the set

Ω4 ,

{
ω ∈ Ω

∣∣∣∣λ[V(ω)] > 0

}
. (5.166)

By (5.165) and (5.166),
P [Ω4] > 0. (5.167)

Similar to V , define the set W as follows,

W ,
{

(t, ω) ∈ [0, T ]× Ω

∣∣∣∣Γν̂,0kl (t, ω)I{α(t−, ω) = k}gkl ≤ 0

}
. (5.168)

W is also in the predictable σ-algebra, and we immediately see from (5.161) and (5.168)
that

V ⊂ W . (5.169)

Again define the ω-section of W to be

W(ω) ,

{
t ∈ [0, T ]

∣∣∣∣Γν̂,0kl (t, ω)I{α(t−, ω) = k}gkl ≤ 0

}
, ω ∈ Ω. (5.170)

We have already shown by (5.160) that

E[λ[Wc(ω)]] = 0. (5.171)
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Therefore, we define the set

Ω5 ,

{
ω ∈ Ω

∣∣∣∣λ[Wc(ω)] = 0

}
, (5.172)

which by (5.171) has the property
P [Ω5] = 1. (5.173)

Since W(ω) ∪Wc(ω) = [0, T ] for all ω ∈ Ω, and λ[Wc(ω)] = 0 for all ω ∈ Ω by (5.160),

λ[W(ω)] = T, ω ∈ Ω. (5.174)

As a result, from (5.172) and (5.174), we have

Ω5 =

{
ω ∈ Ω

∣∣∣∣λ[W(ω)] = T

}
. (5.175)

Now, for all i, j ∈ S, i 6= j such that (i, j) 6= (k, l), define

µij(t, ω) , µ̂ij(t, ω), (t, ω) ∈ [0, T ]× Ω. (5.176)

Since µ̂ ∈ H, we have that µ̂ij ∈ P∗ and µ̂ij ∈ L
1/2
loc (Rij) (see Definition A.1.1) for all

i, j ∈ S, i 6= j. It is then immediate from (5.176) that

µij ∈ P∗ and µij ∈ L1/2
loc (Rij) for all i, j ∈ S, i 6= j, (i, j) 6= (k, l). (5.177)

For the fixed (k, l) ∈ S, we define

µkl(t, ω) ,
1

2

(
µ̂ij(t, ω)− 1

)
I{µ̂ij(t, ω) > −1}

+

(
µ̂ij(t, ω)− 1

)
I{µ̂ij(t, ω) ≤ −1}, (t, ω) ∈ [0, T ]× Ω.

(5.178)

Again, it is immediate that µkl ∈ P∗. Using the elementary bound

x >
1

2
(x− 1) > −1, for all x > −1, (5.179)

we have from (5.178) that

µ̂kl(t, ω) > µkl(t, ω), (t, ω) ∈ [0, T ]× Ω. (5.180)
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Therefore, from (5.180) and the fact that µ̂kl ∈ L1/2
loc (Rkl), we have

µkl ∈ P∗ and µkl ∈ L1/2
loc (Rkl). (5.181)

By (5.176), (5.178) and (5.179),

µij(t, ω) > −1, (t, ω) ∈ {µ̂ij(t, ω) > −1}, i, j ∈ S, i 6= j. (5.182)

Furthermore, since µ̂ ∈ H,

µ̂ij(t, ω) > −1, (t, ω) ∈ {4Mij(t, ω) = 1}, i, j ∈ S, i 6= j. (5.183)

We have from (5.182) and (5.183) that

µij(t, ω) > −1, (t, ω) ∈ {4Mij(t, ω) = 1}, i, j ∈ S, i 6= j. (5.184)

As a result, setting

µ(t, ω) , {µij(t, ω)}i,j∈S, (t, ω) ∈ [0, T ]× Ω, (5.185)

we have from (5.177), (5.181), and (5.183) that

µ ∈ H. (5.186)

Setting t = T in (5.141) of Lemma 5.4.8 and using (5.185), we have∫ T

0

1

Hν̂,µ(s−)
dAν̂,µ(s) =

∫ T

0

Γν̂,0kl (s)

Hν̂,0(s−)

(
µ̂kl(s)− µkl(s)

)
I{α(s−) = k}gklds. (5.187)

Fix ω̄ ∈ Ω4 ∩ Ω5. We can then write from (5.175) and (5.187)∫ T

0

1

Hν̂,µ(s−, ω̄)
dAν̂,µ(s, ω̄)

=

∫
W(ω̄)

(µ̂kl(s, ω̄)− µkl(s, ω̄))

Hν̂,0(s−, ω̄)
Γν̂,0kl (s, ω̄)I{α(s−, ω̄) = k}gklds.

(5.188)

We have from (5.169) that
V(ω̄) ⊂ W(ω̄), (5.189)

and therefore,
Γν̂,0kl (s, ω̄)I{α(s−, ω̄) = k}gkl = 0, s ∈ W(ω̄) \ V(ω̄). (5.190)

92



From (5.188), (5.189), and (5.190),∫ T

0

1

Hν̂,µ(s−, ω̄)
dAν̂,µ(s, ω̄)

=

∫
V(ω̄)

(µ̂kl(s, ω̄)− µkl(s, ω̄))

Hν̂,0(s−, ω̄)
Γν̂,0kl (s, ω̄)I{α(s−, ω̄) = k}gklds.

(5.191)

But from (5.180) and the fact that inft∈[0,T ] Hν̂,0(t) > 0 a.s.,

(µ̂kl(t, ω̄)− µkl(t, ω̄))

Hν̂,0(t−, ω̄)
> 0, t ∈ [0, T ], (5.192)

and from (5.164),
Γν̂,0kl (t, ω̄)I{α(t−, ω̄) = k}gkl < 0, t ∈ V(ω̄). (5.193)

Since λ[V(ω̄)] > 0 by (5.166), we have from (5.191), (5.192), and (5.193),∫ T

0

1

Hν̂,µ(s−, ω̄)
dAν̂,µ(s, ω̄) < 0, ω̄ ∈ Ω4 ∩ Ω5. (5.194)

But since P [Ω4∩Ω5] > 0 and Aν̂,µ(·, ω) must be non-decreasing for P -almost all ω ∈ Ω, by
Lemma 5.3.16, (5.194) cannot be true. Therefore, there is a contradiction in (5.163) and
(5.162) must be true.

Since k, l ∈ S were arbitrarily chosen and (5.160) holds for each i, j ∈ S, i 6= j,

Γν̂,0ij (t)I{α(t−) = i}gij = 0, λ⊗ P a.e. on [0, T ]× Ω (5.195)

for all i, j ∈ S, i 6= j.�

Proof of Theorem 5.4.4. We have from Proposition 5.4.6 that Theorem 5.4.4(1) and
Theorem 5.4.4(2) are equivalent conditions and either condition imply Lemma 5.4.9. As-
sume Theorem 5.4.4(2) holds. Then from Lemma 5.4.9 we have that

Γν̂,0ij (t)I{α(t−) = i}gij = 0, λ⊗ P a.e. on [0, T ]× Ω for all i, j ∈ S, i 6= j. (5.196)

By setting µ = 0 in (5.141) of Lemma 5.4.8 we obtain∫ t

0

1

Hν̂,0(s−)
dAν̂,0(s) =

∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)
µ̂ij(s)I{α(s−) = i}gijds, t ∈ [0, T ]. (5.197)
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Putting (5.196) into (5.197) yields∫ t

0

1

Hν̂,0(s−)
dAν̂,0(s) = 0 a.s., t ∈ [0, T ]. (5.198)

Putting (5.198) into the consumption process ĉν given in Proposition 5.3.20 with ν = ν̂
yields

ĉν̂(t) = −
∑
i,j∈S
i 6=j

∫ t

0

Γν̂,0ij (s)

Hν̂,0(s−)
dMij(s), t ∈ [0, T ], (5.199)

which is an {Ft}-local martingale since Mij is an {Ft}-martingale for all i, j ∈ S, i 6= j.
Since ĉν̂ is in C by Proposition 5.3.20, which asserts that ĉν̂ is a non-decreasing process,
we have by Proposition C.11.5 that the only null-at-the-origin local martingale which is
non-decreasing is the zero process, meaning

ĉν̂(t) = 0 a.s., t ∈ [0, T ]. (5.200)

Using (5.200), we can now write the optimal consumption process ĉ from Proposition 5.3.24
as

ĉ(t) = −
∫ t

0

X̂(s)

{
g̃K(s, ν̂(s))−

[
g(s, p̂(s))− p̂(s)>ν̂(s)

]}
ds, t ∈ [0, T ]. (5.201)

Since p̂(t) ∈ K a.e. by Proposition 5.3.26, we have from (5.20)

g̃K(t, ν̂(t)) ≥ g(t, p̂(t))− p̂(t)>ν̂(t) a.s., t ∈ [0, T ]. (5.202)

From (5.202) and the fact that X̂(t) > 0 a.s. for all t ∈ [0, T ] by Proposition 5.3.15(3), we
have from (5.201) that ĉ is a non-increasing process. But ĉ ∈ C implying that ĉ is a non-
decreasing process as well. Since ĉ is both a non-increasing and non-decreasing process,
we must have

ĉ(t) = 0 a.s., t ∈ [0, T ], (5.203)

which shows Theorem 5.4.4(4). Therefore, with û = E[Hν̂,µ̂(T )B], p(t) = p̂(t) as defined
in Proposition 5.3.21, and ĉ(t) = 0 a.s. for t ∈ [0, T ], from Theorem 5.3.17, we have that

X̂(t) = X û,0,p(t) a.s., t ∈ [0, T ], (5.204)

which is a wealth process that hedges the contingent claim B. From Theorem 5.4.4(2) and
(5.204) we have that

Hν̂,µ̂X
û,0,p is an {Ft}-martingale. (5.205)
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Thus, Theorem 5.4.4(2) implies Theorem 5.4.4(3). Finally, suppose Theorem 5.4.4(3) holds.
Then, using the martingale property of Hν̂,µ̂X

û,0,p gives

E[Hν̂,µ̂(T )B] = E[Hν̂,µ̂(T )X û,0,p(T )] = E[X û,0,p(0)] = û. (5.206)

Therefore, Theorem 5.4.4(3) implies Theorem 5.4.4(1), completing the proof. �

Remark 5.4.10. Theorem 5.4.4 most importantly tells us that if the price û of the contingent
claim B, given by a supremum taken over the space of dual processes G × H, is in fact
attained by some (ν̂, µ̂) ∈ G ×H, one can only then find a hedging strategy (0,p) ∈ A(û)
which exactly hedges B.

Remark 5.4.11. Theorem 5.4.4 can be reworded to fit the context of Chapter 4 with no
significant changes to the proof. In fact, proving this result in the unconstrained regime-
switching market only requires optimizing over the space H instead of the joint space
G ×H.

Remark 5.4.12. It may be of interest to have a converse of Theorem 5.4.4, since if one
could guarantee that the required consumption is zero, then the supremum defining û is
attained by some pair (ν̂, µ̂) ∈ G ×H. In general, this converse is not true; however under
the specific condition that the contingent claim B is almost surely bounded, we do obtain
a converse. In fact, under this boundedness condition on B, if the optimal consumption is
zero, one can guarantee that the supremum at (5.34) is attained by the pair (ν̂, µ̂) = (ν̄, 0)
where ν̄ ∈ G is defined by Proposition 5.3.23. The full statement of this result is given in
Theorem 5.4.15.

We must first establish the following lemma to prove Theorem 5.4.15.

Lemma 5.4.13. Let B : (Ω,FT , P ) 7→ (0,∞) be a contingent claim such that P [0 ≤ B ≤
β] = 1 for some β ∈ (0,∞) and let (ν̄, µ̄) ∈ G×H be a pair such that E(−θν̄ •W)(t)E(µ̄•
M)(t) is an {Ft}-martingale. Then Hν̄,µ̄X̂ is of class D[0, T ] (see Definition C.2.3).

Remark 5.4.14. One immediately sees that the set of pairs (ν̄, µ̄) ∈ G × H for which
E(−θν̄ •W)(t)E(µ̄ •M)(t) is an {Ft}-martingale is non-empty by setting µ̄ = 0 and using
the Novikov criterion (see Theorem C.10.5).

Proof. We have by Condition 4.1.4 that S0(T ) ≥ s0 a.s. for some constant s0 > 0. It is
also easy to see that g̃K(t,ν(t)) ≥ 0 a.s. for all t ∈ [0, T ] and ν ∈ G. Therefore,

0 ≤ Hν,µ(T )B ≤ β

s0

E(−θν •W)(T )E(µ •M)(T ) a.s., (5.207)
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for all t ∈ [0, T ] and (ν,µ) ∈ G × H. Since E(−θν •W)(t)E(µ •M)(t) ≥ 0 a.s. for all
t ∈ [0, T ] and it is an {Ft}-local martingale, it is an {Ft}-supermartingale by Proposition
C.11.3, and

E[E(−θν •W)(T )E(µ •M)(T )] ≤ 1, (ν,µ) ∈ G ×H. (5.208)

Denote by S the set of all stopping times taking values in [0, T ] and fix some τ ∈ S. Also
denote by Dτ,ν̄,µ̄ the set of processes (ν,µ) ∈ G × H that agree with (ν̄, µ̄) up until τ .
Using Proposition 5.3.15(7), we may then write

0 ≤ Hν̄,µ̄(τ)X̂(τ) = Hν̄,µ̄(τ) ess-sup
(ν,µ)∈G×H

E

[
Hν,µ(T )B

Hν,µ(τ)

∣∣∣∣Fτ]
= Hν̄,µ̄(τ) ess-sup

(ν,µ)∈Dτ,ν̄,µ̄
E

[
Hν,µ(T )B

Hν,µ(τ)

∣∣∣∣Fτ]
= ess-sup

(ν,µ)∈Dτ,ν̄,µ̄
E

[
Hν,µ(T )B

∣∣∣∣Fτ] a.s.,

(5.209)

since Hν̄,µ̄(τ) = Hν,µ(τ) for all (ν,µ) ∈ Dτ,ν̄,µ̄ and the conditional expectation on the right-
hand side of the first line only depends on t ∈ [τ, T ]. From (5.207) and the supermartingale
property of E(−θν •W)(t)E(µ •M)(t),

E

[
Hν,µ(T )B

∣∣∣∣Fτ] ≤ β

s0

E

[
E(−θν •W)(T )E(µ •M)(T )

∣∣∣∣Fτ]
≤ β

s0

E(−θν •W)(τ)E(µ •M)(τ)

=
β

s0

E(−θν̄ •W)(τ)E(µ̄ •M)(τ) a.s.,

(5.210)

for all (ν,µ) ∈ Dτ,ν̄,µ̄. Since E(−θν̄ •W)(t)E(µ̄ •M)(t) is an {Ft}-martingale, we have
from (5.209) and (5.210)

0 ≤ Hν̄,µ̄(τ)X̂(τ) ≤ β

s0

E

[
E(−θν̄ •W)(T )E(µ̄ •M)(T )

∣∣∣∣Fτ] a.s., (5.211)

for all stopping times τ ∈ S. Therefore, since the right-hand side of equation (5.211)
is uniformly integrable by the Proposition C.1.10, the collection of random variables
{Hν̄,µ̄(τ)X̂(τ)}τ∈S is uniformly integrable and by Definition C.2.3, Hν̄,µ̄X̂ is of class
D[0, T ]. �

Theorem 5.4.15. Let B : (Ω,FT , P ) 7→ (0,∞) be a contingent claim such that P [0 ≤
B ≤ β] = 1 for some β ∈ (0,∞). Then û < ∞ and Theorem 5.4.4(1)-(4) are equivalent
for the pair (ν̄, 0), where ν̄ ∈ G is given in Proposition 5.3.23.
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Proof. We have by Condition 4.1.4 that S0(T ) ≥ s0 a.s. for some constant s0 > 0. It is
also easy to see that g̃K(t,ν(t)) ≥ 0 a.s. for all t ∈ [0, T ] and ν ∈ G. Therefore,

0 ≤ Hν,µ(T )B ≤ β

s0

E(−θν •W)(T )E(µ •M)(T ) a.s., (5.212)

for all t ∈ [0, T ] and (ν,µ) ∈ G × H. Since E(−θν •W)(t)E(µ •M)(t) ≥ 0 a.s. for all
t ∈ [0, T ] and it is an {Ft}-local martingale,, it is an {Ft}-supermartingale by Proposition
C.11.3, and

E[E(−θν •W)(T )E(µ •M)(T )] ≤ 1, (ν,µ) ∈ G ×H. (5.213)

We have by (5.212) and (5.213),

uν,µ , E[Hν,µ(T )B] ≤ β

s0

, (ν,µ) ∈ G ×H. (5.214)

It is then easy to see that
û , sup

(ν,µ)∈G×H
uν,µ <∞. (5.215)

Now, assume that ĉ(t) = 0 a.s. for all t ∈ [0, T ]. For the choice (ν̄, 0) ∈ G × H we then
have that Theorem 5.4.4(4) holds. From Theorem 5.4.4(4) and the definition of ĉ from
Proposition 5.3.24, we obtain

Aν̄,0(t) = 0 a.s., t ∈ [0, T ], (5.216)

and from the Doob-Meyer decomposition (see Theorem C.11.4) we get Hν̄,0X̂ is an {Ft}-
local martingale. Furthermore, we have from the Novikov criterion (see Theorem C.10.5)
that E(−θν̄ •W)(t) is an {Ft}-martingale, and therefore from Lemma 5.4.13, Hν̄,0X̂ is a
class D[0, T ] local martingale. From Proposition C.11.2 any class D[0, T ] local martingale
is in fact an {Ft}-martingale. As a result we have that Hν̄,0X̂ is an {Ft}-martingale and,

û = E[Hν̄,0(0)X̂(0)] = E[Hν̄,0(T )X̂(T )] = E[Hν̄,0(T )B], (5.217)

which is Theorem 5.4.4(1). Since Theorem 5.4.4(1)-(3) are equivalent and each imply
Theorem 5.4.4(4), we have shown the equivalence of Theorem 5.4.4(1)-(4). �
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Chapter 6

Approximate Hedging in a
Regime-Switching Market Model

Often times the least initial wealth û required to hedge a contingent claim B, defined in
(5.34), is so high that it is unrealistic for an investor to pay such a price. This is due to
the fact that the value of û is determined by taking a supremum over the very large space
of dual processes G ×H. Instead of starting with initial wealth û, an investor may only be
able start with a much lower initial wealth x < û that they can “afford”, and therefore,
would like to invest in the “best” way as to minimize his/her exposure to risk when hedging
the contingent claim B. We call such an approach to hedging approximate hedging . In this
chapter we look at the approximate hedging of a given contingent claim B in a regime-
switching market model with both convex portfolio constraints and margin requirements.
Much of this chapter follows the work of Cvitanic [8] who solved a problem of approximate
hedging in a standard Brownian motion market model with convex portfolio constraints.
Cvitanic addresses the problem of minimizing an investor’s exposure to risk by minimizing
the convex utility function

V (x, c,p) = E[B −X(x,c,p)(T )]+ , E[max{B −X(x,c,p)(T ), 0}] (6.1)

over all investment strategies (c,p) ∈ A(x) for a given initial wealth x < û. Minimizing
(6.1) amounts to the agent finding an “optimal” investment strategy (c̃, p̃) ∈ A(x) which
results in the least expected loss between the value of the contingent claimB and the agent’s
own terminal wealth. Cvitanic’s method of optimizing (6.1) proves to be quite general as
many of the results simply depend on the final time σ-algebra FT . Therefore, most of the
results from Cvitanic [8] carry over to approximate hedging in a regime-switching market
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model. Even though this is the case, we give full treatment to the problem of approximate
hedging in this chapter, without requiring the reader to refer to Cvitanic [8].

6.1 The Approximate Hedging Problem

We suppose that an agent trades in the same regime-switching market model as in Chapter
5. That is a market defined by conditions, remarks and results of Section 5.1. We again
suppose that at time t = T , the agent is contracted to pay off a strictly positive contingent
claim B : (Ω,FT , P ) 7→ (0,∞), which in the present chapter is assumed to be a random
variable in L1(Ω,FT , P ). We know from Theorem 5.3.17 that if the extended real number
û, defined as

û , sup
(ν,µ)∈G×H

E [Hν,µ(T )B] , (6.2)

is finite, then there exists a hedging strategy (ĉ, p̂) ∈ A(û) where A(·) is the admissible set
defined in (5.14). In other words, if an investor begins trading with initial wealth û <∞,
then there exists a pair (ĉ, p̂) ∈ A(û) such that X(û,ĉ,p̂)(T ) = B a.s. Furthermore, û is the
least initial wealth in which a hedging strategy does exist. In light of this, we assume for
the rest of this chapter that B is given such that û is indeed finite.

We begin this section by extending Theorem 5.3.17 to show that the wealth process
X(û,ĉ,p̂) starting from initial wealth û with hedging strategy (ĉ, p̂) ∈ A(û) defined in Chapter
5 is the “cheapest” wealth process which hedges the claim B. We can then show that an
agent who begins trading with an initial wealth x that is greater than û can always hedge
the contingent claim B “without risk”, i.e. starting from initial wealth x ≥ û, there exists
a pair (c,p) ∈ A(x) such that P [X(x,c,p)(T ) ≥ B] = 1.

Theorem 6.1.1. Given a contingent claim random variable B : (Ω,FT , P ) 7→ (0,∞), with
û < ∞, the process X̂ defined in Proposition 5.3.15 is finite and is equal to the minimal
admissible wealth process hedging the contingent claim B. More precisely, there exists a
pair (ĉ, p̂) ∈ A(û) such that

X̂(t) = X(û,ĉ,p̂)(t) a.s., t ∈ [0, T ], (6.3)

and, if for some x > 0 and some pair (c,p) ∈ A(x) we have

X(x,c,p)(T ) ≥ B a.s., (6.4)

then
X(x,c,p)(t) ≥ X̂(t) a.s., t ∈ [0, T ]. (6.5)
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Proof. Since û <∞ and X̂(·) is a càdlàg process over [0, T ], it is almost surely bounded.
That is

X̂(t) <∞ a.s., t ∈ [0, T ]. (6.6)

From Theorem 5.3.17, we know there exists a pair (ĉ, p̂) ∈ A(û) which hedges the contin-
gent claim B from initial wealth û such that

X̂(t) = X(û,ĉ,p̂)(t) a.s., t ∈ [0, T ]. (6.7)

Now take some admissible wealth process X(x,c,p) where x ∈ (0,∞) and (c,p) ∈ A(x) such
that

X(x,c,p)(T ) ≥ B a.s. (6.8)

From Proposition 5.3.9 we have that J
(x,c,p)
ν,µ (·), defined in (5.25), is a non-negative {Ft}-

supermartingale for each (ν,µ) ∈ G ×H. Define the process {zν,µ(t), t ∈ [0, T ]} by

zν,µ(t) ,
∫ t

0

X(x,c,p)(s)Hν,µ(s)

[
g̃K(s,ν(s))−

(
g(s,p(s))− p(s)>ν(s)

)]
ds

+

∫ t

0

Hν,µ(s−)dc(s) +
∑

0<s≤t

Hν,µ(s−)4c(s)4(µ •M)(s),
(6.9)

for all t ∈ [0, T ] and (ν,µ) ∈ G × H. It is easy to check that zν,µ(·) is a non-decreasing
process for each (ν,µ) ∈ G ×H. From (6.9) and (5.25), we have

Hν,µ(t)X(x,c,p)(t) = J (x,c,p)
ν,µ (t)− zν,µ(t), t ∈ [0, T ], (ν,µ) ∈ G ×H. (6.10)

Using the supermartingale property of J
(x,c,p)
ν,µ and the non-decreasing property of zν,µ(·),

we have from (6.10) that

Hν,µX
(x,c,p) ∈ SPM({Ft}, P ), (ν,µ) ∈ G ×H. (6.11)

Using (6.8) and supermartingale property of Hν,µX
(x,c,p),

Hν,µ(t)X(x,c,p)(t) ≥ E[Hν,µ(T )B|Ft] a.s., t ∈ [0, T ], (ν,µ) ∈ G ×H, (6.12)

and as a result,

X(x,c,p)(t) ≥ ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(T )B

∣∣Ft]
Hν,µ(t)

= X̂(t) a.s., t ∈ [0, T ].

(6.13)

�
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Remark 6.1.2. Starting with initial wealth x ≥ û, an agent can always find a pair (c,p) ∈
A(x) such that X(x,c,p)(T ) ≥ B a.s. Indeed, from Proposition 5.4.1 we have

X(û,0,p̂)(t) ≥ X(û,ĉ,p̂)(t) a.s., t ∈ [0, T ], (6.14)

and similarly, for any x ≥ û,

X(x,0,p̂)(t) ≥ X(û,0,p̂)(t) a.s., t ∈ [0, T ]. (6.15)

As a result, from (6.14) and (6.15), (0, p̂) ∈ A(x) and

X(x,0,p̂)(T ) ≥ B a.s. (6.16)

Remark 6.1.3. By Theorem 6.1.1 and Remark 6.1.2 one can always “hedge without risk”
starting from some initial wealth x ≥ û. However, this is not possible for any x < û by
Remark 5.2.3. That is, if x < û then P [X(x,c,p)(T ) < B] > 0 for any pair (c,p) ∈ A(x).

By Remark 6.1.3, an agent cannot promise a trading strategy which super-hedges a
contingent claim B with probability one if they begin trading from some initial wealth
x less than û. Because of this, the agent may instead be interested in finding a trading
strategy that minimizes his/her losses at time t = T when starting from initial wealth
x < û. This motivates us to define the cost function (risk criterion) of approximate
hedging

V (x) , inf
(c,p)∈A(x)

E[B̄ − X̄(x,c,p)(T )]+, x ∈ (0,∞), (6.17)

where E[B̄ − X̄(x,c,p)(T )]+ , E[max {B̄ − X̄(x,c,p)(T ), 0}] and

B̄ ,
B

S0(T )
, X̄(x,c,p)(t) ,

X(x,c,p)(t)

S0(t)
, t ∈ [0, T ], (6.18)

which at each x ∈ (0,∞) returns the minimum expected discounted loss over all trading
strategies (c,p) ∈ A(x). The agent would be best served to follow such a risk criterion if
they cannot come up with enough capital to exactly hedge the claim B, as following such
a strategy minimizes monetary loss in a tangible way (as opposed to a mean-squared cost
function, for example). Therefore, the agent’s goal in solving this approximate hedging
problem is to find some pair (c̃, p̃) ∈ A(x) for some initial wealth x > 0 they can afford so
that their loss is given by

V (x) = inf
(c,p)∈A(x)

E[B̄ − X̄(x,c,p)(T )]+ = E[B̄ − X̄(x,c̃,p̃)(T )]+. (6.19)

It is not readily apparent that the infimum in (6.19) is attainable by some (c̃, p̃) ∈ A(x). As
a result, our goal in this chapter is to show that the infimum in (6.19) is indeed attainable
and one can construct a solution (c̃, p̃) ∈ A(x) which solves (6.19) for each x ∈ (0,∞).
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Remark 6.1.4. If x ≥ û, we have V (x) = 0 from (6.17) and Theorem 6.1.1. We can then
assume that

0 < x < û. (6.20)

We also assume that
X(y,c,p)(T ) ≤ B a.s., y ∈ (0,∞), (6.21)

since the agent can always “consume” down to the value B through the consumption
process c at time t = T if y ≥ û.

6.2 Solution to the Approximate Hedging Problem

To help us solve the optimization problem in (6.17), we define the equivalent probability
measure PB ≡ P

PB[A] ,
1

E[B̄]
E[B̄IA], A ∈ FT . (6.22)

Using the probability measure PB in the cost function (6.17), we get the equivalent for-
mulation

V (x) = E[B̄] inf
(c,p)∈A(x)

EB

[
1− X(x,c,p)(T )

B

]+

. (6.23)

We approach finding the solution to (6.23) by looking at a similar, but deterministic,
convex loss function

R(y) , (1− y)+ = max{1− y, 0}, (6.24)

and consider its Legendre-Fenchel transform

R̃(w) , min
0≤y≤1

[R(y) + yw] = w ∧ 1, w ≥ 0, (6.25)

where w ∧ 1 , min{w, 1}. The minimum in (6.25) is attained by any number I(w; b) of
the form

I(w; b) ,


0, w > 1

1, 0 ≤ w < 1

b, w = 1,

(6.26)

where 0 ≤ b ≤ 1. Following this approach, we would like to put (6.23) into the form of
(6.24) by denoting

Y (x,c,p) ,
X(x,c,p)(T )

B
≤ 1, PB − a.s. (6.27)
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and
H̄ν,µ(t) , Hν,µ(t)S0(t), t ∈ [0, T ], (ν,µ) ∈ G ×H. (6.28)

From (6.27) and (6.25), with w , zH̄ν,µ(T ) for z ≥ 0,

(1− Y (x,c,p))+ ≥ R̃(zH̄ν,µ(T ))− zH̄ν,µ(T )Y (x,c,p) PB − a.s., (6.29)

for some x ∈ (0, û), (c,p) ∈ A(x), and z ≥ 0. Multiplying both sides of (6.29) by E[B̄]
and taking PB expectations gives

E[B̄]EB[1− Y (x,c,p)]+ ≥ E[B̄]EB[R̃(zH̄ν,µ(T ))]− zE[B̄]EB[H̄ν,µ(T )Y (x,c,p)]. (6.30)

Since
E[Hν,µ(T )X(x,c,p)(T )] ≤ x, (ν,µ) ∈ G ×H (6.31)

for all x > 0 and (c,p) ∈ A(x) from the supermartingale property of Hν,µX
(x,c,p), we also

have that
E[B̄]EB[H̄ν,µ(T )Y (x,c,p)] ≤ x, (ν,µ) ∈ G ×H (6.32)

for all x > 0 and (c,p) ∈ A(x). Putting (6.32) into (6.30) gives

E[B̄]EB[1− Y (x,c,p)]+ ≥ E[B̄]EB[R̃(zH̄ν,µ(T ))]− xz, (6.33)

for all x ∈ (0, û), (c,p) ∈ A(x), and z ≥ 0.

Remark 6.2.1. The relation (6.33) is a type of duality relationship that has proved to be
very useful in the constrained portfolio optimization studied by Cvitanic and Karatzas [9].

We can consider the maximization of the right-hand side of (6.33) to be the dual
problem of our primal optimization problem (6.23). It would be ideal if we can show
equality in (6.33) by minimizing left-hand side over all (c,p) ∈ A(x) and maximizing the
right-hand side over z ∈ [0,∞) and {H̄ν,µ(T )|(ν,µ) ∈ G × H}, for then we can solve the
dual problem and work backwards to solve for a minimizing (c̃, p̃) ∈ A(x). However, as will
be shown in Proposition 6.2.6, we cannot promise equality if we maximize the right-hand
side of (6.33) over the set {H̄ν,µ(T )|(ν,µ) ∈ G × H}. Instead, we can look at the very
closely related duality relationship which is derived in the same manner as (6.33):

E[B̄]EB[1− Y (x,c,p)]+ ≥ E[B̄]EB[R̃(zH)]− xz, (6.34)

where x ∈ (0, û), (c,p) ∈ A(x), z ≥ 0, and H ∈ Z is defined as

Z ,
{
H ∈ L1(Ω,FT , PB)

∣∣∣∣H ≥ 0 PB a.s., E[B̄]EB[HY (x,c,p)] ≤ x for all (c,p) ∈ A(x)

}
.

(6.35)
The following proposition is an essential fact about the set Z.
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Proposition 6.2.2. The set Z is convex and closed in L1(Ω,FT , PB).

Proof. Fix x > 0 and (c,p) ∈ A(x). Take sequences {Hi} ∈ Z and {λi} ∈ [0, 1],
i = 1, 2, . . . , n, such that

∑n
i=1 λi = 1. Set

H ,
n∑
i=1

λiHi ≥ 0 PB − a.s. (6.36)

To see that H ∈ Z take

E[B̄]EB[HY (x,c,p)] ≤
n∑
i=1

λix = x. (6.37)

Therefore, Z is convex.
Now take another sequence {Hi} ∈ Z, i = 1, 2, . . ., such that

Hi → H in L1(Ω,FT , PB). (6.38)

From L1-convergence, there exists a subsequence {Hn(i)} ⊂ {Hi} such that

Hn(i) → H PB − a.s., (6.39)

and therefore,
H ≥ 0 PB − a.s. (6.40)

From Fatou’s Lemma

E[B̄]EB[HY (x,c,p)] = E[B̄]EB[lim inf
n(i)→∞

Hn(i)Y
(x,c,p)]

≤ lim inf
n(i)→∞

E[B̄]EB[Hn(i)Y
(x,c,p)] ≤ x.

(6.41)

Therefore, from (6.40) and (6.41), Z is closed in L1(Ω,FT , PB). �

Remark 6.2.3. Here we will show some properties of the set Z. By Theorem 5.3.17, there
exists a triple (û, ĉ, p̂) ∈ (0,∞)×A(û) such that

X(û,ĉ,p̂)(T ) = B P − a.s. (6.42)

From (6.27) and (6.42) we have

Y (û,ĉ,p̂) = 1 PB − a.s. (6.43)
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Therefore, since P [B > 0] = 1, we have E[B̄] > 0 and from (6.35)

E[B̄]EB[H] = E[B̄H] ≤ û, H ∈ Z. (6.44)

By using the fact thatX(x,0,0)(T ) = S0(T )x, which is valid since 0 is in the convex constraint
set K and (0, 0) ∈ A(x), we see that

E[B̄]EB[H/B] = E[H] ≤ 1, H ∈ Z. (6.45)

Moreover, since

∞ > û ≥ E[Hν,µ(T )X(û,ĉ,p̂)(T )]

= E[B̄]EB[H̄ν,µ(T )Y (û,ĉ,p̂)], (ν,µ) ∈ G ×H,
(6.46)

we have that

ZG,H ,
{
H̄ν,µ(T )

∣∣∣∣(ν,µ) ∈ G ×H
}
⊂ Z. (6.47)

Remark 6.2.4. As will be seen in Proposition 6.2.6, when optimizing over the larger set
Z, equality can in fact be shown in (6.34). Therefore, our agenda will be solve the dual
problem (the right-hand side of (6.34)) and work backwards to find some (c̃, p̃) ∈ A(x)
that minimizes the left-hand side of (6.34), solving our optimization problem.

To simplify notation, we define

J̃(H; z) , E[B̄]EB[(zH) ∧ 1], H ∈ L1(Ω,FT , PB), z ≥ 0. (6.48)

Putting (6.48) into (6.34) we rewrite the duality relation as

E[B̄]EB[1− Y (x,c,p)]+ ≥ J̃(H; z)− xz, H ∈ Z, z ≥ 0, (6.49)

for all x ∈ (0, û) and (c,p) ∈ A(x).

Proposition 6.2.5. −J̃(·, z) : L1(Ω,FT , PB) 7→ R is a lower semi-continuous and proper
convex functional for each z ≥ 0.

Proof. To see convexity, take H1, H2 ∈ L1(Ω,FT , PB), λ ∈ [0, 1], and fix z ≥ 0. Since
the minimum of affine functions is concave, we have

min{zλH1 + z(1− λ)H2, 1} ≥ λmin{zH1, 1}+ (1− λ) min{zH2, 1}. (6.50)
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Taking PB expectations on both sides of (6.50) and multiplying by E[B̄] gives

E[B̄]EB[(zλH1 + z(1−λ)H2)∧ 1] ≥ λE[B̄]EB[zH1∧ 1] + (1−λ)E[B̄]EB[zH2∧ 1], (6.51)

which shows that J̃(·, z) is concave and thus −J̃(·, z) is convex. It is immediate that
−J̃(·, z) is a lower semi-continuous and proper convex functional. �

The following proposition gives necessary and sufficient conditions for which equality
holds in (6.49) and therefore are conditions that promise the minimization of the cost
function (6.17). As a result, Proposition 6.2.6 provides a template which we will use to
show the existence of an optimal trading strategy (c̃, p̃) ∈ A(x) from a given x < û.

Proposition 6.2.6. For some (c̃, p̃) ∈ A(x), z̃ > 0, and H̃ ∈ Z,

E[B̄]EB[1− Y (x,c̃,p̃)]+ = J̃(H̃; z̃)− xz̃, (6.52)

that is the infimum in the primal problem (6.17) is attained, if and only if

E[B̄]EB[H̃Y (x,c̃,p̃)] = x (6.53)

and
Y (x,c̃,p̃) = I(z̃H̃; D̃) = I{z̃H̃<1} + D̃I{z̃H̃=1} PB − a.s., (6.54)

where I(·; ·) is defined in (6.26) and D̃ is an FT -measurable random variable such that

0 ≤ D̃ ≤ 1 PB − a.s. (6.55)

Proof.( =⇒ ) Assume (6.52) holds. Comparing (6.52) to (6.49), we have equality at
some (c̃, p̃) ∈ A(x), z̃ > 0, and H̃ ∈ Z. We also see from (6.49) and (6.35) that if
right-hand side of (6.52) is maximized then we must have

x = E[B̄]EB[H̃Y (x,c̃,p̃)]. (6.56)

We also have from (6.25) and (6.26) that the left-hand side of (6.52), E[B̄]EB[1−Y (x,c̃,p̃)]+,
is minimized by

Y (x,c̃,p̃) = I(z̃H̃; D̃) =


0, z̃H̃ > 1

1, 0 ≤ z̃H̃ < 1

D̃, z̃H̃ = 1

= I{z̃H̃<1} + D̃I{z̃H̃=1},

(6.57)
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for some FT random variable D̃, such that

0 ≤ D̃ ≤ 1 PB − a.s. (6.58)

(⇐= ) Assume (6.53)-(6.55) hold. From (6.25) and (6.54)

[1− Y (x,c̃,p̃)]+ + Y (x,c̃,p̃)z̃H̃ = z̃H̃ ∧ 1 PB − a.s., (6.59)

for some (c̃, p̃) ∈ A(x), z̃ > 0, and H̃ ∈ Z. Taking PB expectations on both sides and
multiplying by E[B̃] gives

E[B̄]EB[1− Y (x,c̃,p̃)]+ = J̃(H̃; z̃)− xz̃. (6.60)

�

Remark 6.2.7. We assert that z̃ > 0 because if z̃ = 0, then from (6.27) and (6.52), we
would have

X(x,c̃,p̃)(T ) = B PB − a.s. (6.61)

But since we have assumed x < û, from Remark 6.1.3, (6.61) cannot occur. Thus, we must
have z̃ > 0.

Remark 6.2.8. By Proposition 6.2.6 we see that the problem

sup
H∈Z
z≥0

{
J̃(H; z)− xz

}
(6.62)

is in fact the dual problem to the primal problem

inf
(c,p)∈A(x)

E[B̄]EB[1− Y (x,c,p)]+. (6.63)

Furthermore, if (6.53)-(6.55) are satisfied, then (z̃, H̃) ∈ (0,∞)× Z is the solution to the
dual problem and (c̃, p̃) ∈ A(x) is the solution to the primal problem. Moreover, we can
simplify the dual problem by realizing that H̃ ∈ Z is optimal for the auxiliary dual problem

Ṽ (z) , sup
H∈Z

J̃(H; z) (6.64)

when z = z̃. If we let
X(x,c̃,p̃)(T ) = BY (x,c̃,p̃) a.s., (6.65)

then we can re-write (6.53) and (6.54) as

x = E[H̃X̄(x,c̃,p̃)(T )] (6.66)

and
X(x,c̃,p̃)(T ) = B(I{z̃H̃<1} + D̃I{z̃H̃=1}) a.s. (6.67)
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Remark 6.2.9. We will approach the optimization problem as follows: we will first find
a solution to the dual problem (6.62) which amounts to finding a number z̃ > 0 and a
solution H̃ ∈ Z to (6.64) with z = z̃. We will then find an FT -measurable random variable
D̃ such that 0 ≤ D̃ ≤ 1 a.s., and a pair (c̃, p̃) ∈ A(x) such that (6.53) and (6.54) hold (or
equivalently (6.66) and (6.67) hold) so that (6.52) holds and the primal problem is solved.

Proposition 6.2.10. For any given z > 0, there exists an optimal solution H̃ ∈ Z for the
auxiliary problem (6.64).

Proof. Fix z > 0. Let {Hi} ∈ Z, i = 1, 2, . . ., be a sequence that attains the supremum
in (6.64), i.e.

Ṽ (z) = lim
i→∞

J̃(Hi; z). (6.68)

We know by (6.44) that,

EB[H] ≤ û

E[B̄]
<∞, H ∈ Z, (6.69)

which means that Z is a bounded set in L1(Ω,FT , PB). Therefore, we can use the Komlós
theorem (see Theorem C.14.2 in the Appendix), which states that there exists a random
variable H̃ ∈ L1(Ω,FT , PB) and a subsequence {Hn(i)} ⊂ {Hi} such that

Gm ,
1

m

m∑
i=1

Hn(i), m = 1, 2, . . . , (6.70)

has the property
lim
m→∞

Gm = H̃ PB − a.s. (6.71)

Since we have Hn(i) ≥ 0 PB a.s. for each n(i) ∈ 1, 2, . . ., Gm ≥ 0 PB a.s. for each m =
1, 2, . . .. Thus,

lim
m→∞

Gm = H̃ ≥ 0 PB − a.s. (6.72)

Now fix some (c,p) ∈ A(x). From the definition of Z in (6.35),

x ≥ E[B̄]EB[Hn(i)Y
(x,c,p)], n(i) ∈ 1, 2, . . . ,

≥ lim inf
m→∞

1

m

m∑
i=1

E[B̄]EB[Hn(i)Y
(x,c,p)].

(6.73)

By Fatou’s lemma,

E[B̄]EB[H̃Y (x,c,p)] ≤ lim inf
m→∞

1

m

m∑
i=1

E[B̄]EB[Hn(i)Y
(x,c,p)] ≤ x. (6.74)
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Thus, by (6.72) and (6.74),
H̃ ∈ Z. (6.75)

We can now write

J̃(H̃; z) = E[B̄]EB[zH̃ ∧ 1]

= E[B̄]EB[(z lim
m→∞

1

m

m∑
i=1

Hn(i)) ∧ 1],
(6.76)

and by the dominated convergence theorem

J̃(H̃; z) = lim
m→∞

J̃

(
1

m

m∑
i=1

Hn(i); z

)
. (6.77)

Since J̃(·; z) is concave,

J̃(H̃; z) ≥ lim
m→∞

1

m

m∑
i=1

J̃(Hn(i); z). (6.78)

Using Cesàro summability (see Proposition C.14.1 in the Appendix),

J̃(H̃; z) ≥ lim
m→∞

1

m

m∑
i=1

J̃(Hn(i); z)

= lim
m→∞

J̃(Hm; z)

= Ṽ (z),

(6.79)

but from (6.64), we have
Ṽ (z) ≥ J̃(H; z), H ∈ Z. (6.80)

Thus,
Ṽ (z) = J̃(H̃; z), (6.81)

meaning H̃ ∈ Z is optimal. �

Proposition 6.2.11. The function Ṽ (z) is continuous on [0,∞).

Proof. Let H ∈ Z and assume z1, z2 > 0. We have

J̃(H; z1) = E[B̄]EB[z1H ∧ 1]

= E[B̄]EB[z1H ∧ 1 + z2H ∧ 1− z2H ∧ 1]

= J̃(H; z2) + E[B̄]EB[H(z1 − z2)I{z1H<1,z2H<1}

+ (Hz1 − 1)I{z1H<1,z2H≥1} + (1−Hz2)I{z1H≥1,z2H<1}]

≤ Ṽ (z2) + 2E[B̄](1− z2

z1

)+.

(6.82)
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Rearranging (6.82) with the fact that Ṽ (z1) = J̃(H̃; z1) for some H̃ ∈ Z (see Proposition
6.2.10), we have

Ṽ (z1)− Ṽ (z2) ≤ 2E[B̄](1− z2

z1

)+. (6.83)

Taking z2 → z1 in (6.83) shows continuity of Ṽ when z1, z2 > 0. To show continuity at
z2 = 0, use the duality relation in (6.25) with (6.44) to obtain

J̃(H̃; z1) = E[B̄]EB[z1H̃ ∧ 1] ≤ E[B̄(1− y)+] + yz1E[B̄]EB[H̃]

≤ (1− y)+E[B̄] + yz1û,
(6.84)

for all 0 ≤ y ≤ 1 and z1 > 0. Taking y = 1 in (6.84) gives

Ṽ (z1) ≤ z1û, (6.85)

and taking z1 → 0 shows continuity of Ṽ . �

Proposition 6.2.12. For every 0 < x < û, there exists z̃ > 0 that attains the supremum

Ṽ (z̃)− xz̃ = sup
z≥0

[Ṽ (z)− xz] ≥ Ṽ (z)− xz, z ≥ 0. (6.86)

Proof. Denote
α(z) , Ṽ (z)− xz, z ≥ 0 (6.87)

We have
α(0) = Ṽ (0) = 0, (6.88)

and

lim sup
z→∞

α(z) = E[B̄] + lim sup
z→∞

{−xz} < 0. (6.89)

From (6.88) and (6.89), the supremum of α(z) cannot be attained at z = ∞. Now, since
α(·) is continuous from Proposition 6.2.11, we either have that α(z) attains its supremum
at some z̃ > 0, or α(z) attains its supremum at z̃ = 0 and α(z) ≤ 0 for all z > 0. Suppose
that α(z) attains its supremum at z̃ = 0. Then,

Ṽ (z)− xz ≤ 0, z > 0, (6.90)

and

x ≥ Ṽ (z)

z
≥ E[B̄]EB[zH ∧ 1]

z
, z > 0, H ∈ Z. (6.91)
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Since (zH ∧ 1)/z = H ∧ (1/z), from (6.91),

x ≥ E[B̄]EB[H ∧ 1

z
], z > 0, H ∈ Z. (6.92)

Thus,

x ≥ lim
z→0

E[B̄]EB[H ∧ 1

z
], H ∈ Z. (6.93)

But from (6.69),

EB[H ∧ 1

z
] ≤ EB[H] ≤ û

E[B̄]
<∞, z > 0. (6.94)

By (6.93), (6.94), and the dominated convergence theorem,

x ≥ E[HB̄], H ∈ Z. (6.95)

From (6.47), ZG,H ⊂ Z, thus, from (6.95),

x ≥ sup
(ν,µ)∈G×H

E [Hν,µ(T )B] = û, (6.96)

which is a contradiction since û > x. Therefore, α(z) attains its supremum at some z̃ > 0.
�

Remark 6.2.13. From Propositions 6.2.10 and 6.2.12 we have shown the following:
1) For any given z > 0, there exists an H̃ ∈ Z such that

Ṽ (z) = J̃(H̃; z) ≥ J̃(H; z), H ∈ Z. (6.97)

2) For every x such that 0 < x < û, there exists a z̃ > 0 such that

Ṽ (z̃)− xz̃ ≥ Ṽ (z)− xz, z ≥ 0. (6.98)

Combining (6.97) and (6.98) we have, for a given 0 < x < û,

Ṽ (z̃)− xz̃ = J̃(H̃; z̃)− xz̃ ≥ J̃(H; z)− xz, for all z ≥ 0, H ∈ Z. (6.99)

From (6.99) and (6.49) we have

inf
(c,p)∈A(x)

E[B̄]EB[1− Y (x,c,p)]+ ≥ sup
H∈Z
z≥0

{
J̃(H; z)− xz

}
= J̃(H̃; z̃)− xz̃
= Ṽ (z̃)− xz̃.

(6.100)

In summary, we know there exists some z̃ > 0 and H̃ ∈ Z which attains the maximum
value of the dual problem J̃(H; z)− xz.

111



Now that we have shown the existence of the optimal variables z̃ > 0 and H̃ ∈ Z which
solve the dual problem (6.62), we will show the existence of some strategy (c̃, p̃) ∈ A(x)
such that (6.53)-(6.55) hold. Introduce the space

L , L1(Ω,FT , PB)× R (6.101)

with norm
‖(Z, z)‖ , E[B̄]EB[|Z|] + |z|, (6.102)

for all Z ∈ L1(Ω,FT , PB) and z ∈ R. Define the subset

Q ,
{

(zH, z) ∈ L
∣∣∣∣H ∈ Z, z ≥ 0

}
. (6.103)

Proposition 6.2.14. The set Q is convex and closed in L.

Proof. Take sequences {qi} ∈ Q and {λi} ≥ 0 for i = 1, 2, . . . , n, such that
∑n

i=1 λi = 1.
Then

n∑
i=1

λiqi =
n∑
i=1

(λiziHi, λizi), (6.104)

for sequences {Hi} ∈ Z and {zi} ≥ 0, i = 1, 2, . . . , n. Since the set [0,∞) is convex and
the set Z is convex from Proposition 6.2.2, we have

n∑
i=1

λiqi ∈ Q. (6.105)

Therefore, Q is convex. To see that Q is closed in L, take sequences {zi} ≥ 0 and {Hi} ∈ Z
for i = 1, 2, . . ., such that

lim
n→∞

(ziHi, zi) = (Z, z), (6.106)

for some (Z, z) ∈ L. From (6.106), we obviously have

lim
i→∞

zi = z ≥ 0. (6.107)

Looking at

EB[|ziHi − zHi|] = EB[|(zi − z)Hi|]
≤ |zi − z|EB[Hi], i = 1, 2, . . . ,

(6.108)
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and (6.44), which states

EB[Hi] ≤
û

E[B̄]
, i = 1, 2, . . . , (6.109)

we have that

EB[|ziHi − zHi|] ≤ |zi − z|
û

E[B̄]
i = 1, 2, . . . . (6.110)

Taking i→∞ in (6.110) with (6.107) gives

zHi → Z in L1(Ω,FT , PB). (6.111)

If z = 0 in (6.111), we can choose any limit Hi → H ∈ Z since Z = 0. If z > 0, we get
from (6.111)

Hi → Z/z in L1(Ω,FT , PB). (6.112)

But since Z is closed in L1(Ω,FT , PB) by Proposition 6.2.2, Z/z ∈ Z and Q is shown to
be closed in L. �

To proceed, we define the functional Ũ : L → R

Ũ(Z, z) , −E[B̄]EB[Z ∧ 1] + xz

= −J̃(Z; 1) + xz, (Z, z) ∈ L.
(6.113)

Proposition 6.2.15. Ũ(·, ·) is a lower semi-continuous and proper convex function.

Proof. Take pairs (Z1, z1), (Z2, z2) ∈ L and λ ∈ [0, 1]. Now,

Ũ(λ(Z1, z1) + (1− λ)(Z2, z2)) = Ũ(λZ1 + (1− λ)Z2, λz1 + (1− λ)z2)

= −E[B̄]EB[(λZ1 + (1− λ)Z2) ∧ 1] + λxz1 + (1− λ)xz2,
(6.114)

but by the concavity of J̃(·; z) from Proposition 6.2.5,

Ũ(λ(Z1, z1) + (1− λ)(Z2, z2)) ≤ −λ(E[B̄]EB[Z1 ∧ 1] + xz1)− (1− λ)(E[B̄]EB[Z2 ∧ 1] + xz2)

= λŨ(Z1, z1) + (1− λ)Ũ(Z2, z2).

(6.115)

Therefore, Ũ(·, ·) is a convex function. It is easy to verify that Ũ is lower semi-continuous
and proper. �
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Since

inf
(Z,z)∈Q

Ũ(Z, z) = inf
(Z,z)∈Q

−J̃(Z; 1) + xz

= J̃(H̃, z̃)− xz̃

= sup
H∈Z
z≥0

{
J̃(H; z)− xz

}
,

(6.116)

we have that inf(Z,z)∈Q Ũ(Z, z) has the same solution as the dual problem in (6.100). There-
fore,

(z̃H̃, z̃) ∈ Q is optimal for the problem inf(Z,z)∈Q Ũ(Z, z). (6.117)

To characterize the pair (z̃H̃, z̃) in (6.117) we first rewrite the dual problem in terms of a
function f : L 7→ R ∪ {+∞} defined as

f(Z, z) ,

{
Ũ(Z, z), (Z, z) ∈ Q
+∞, otherwise,

(6.118)

or, more compactly as
f(Z, z) = Ũ(Z, z) + IQ(Z, z), (6.119)

where the set indicator function IQ(Z, z) = 0 when (Z, z) ∈ Q and IQ(Z, z) = +∞,
otherwise. The dual problem can be written as

inf
(Z,z)∈L

f(Z, z) = inf
(Z,z)∈Q

Ũ(Z, z) + IQ(Z, z)

= Ũ(z̃H̃, z̃).
(6.120)

Let
L∗ , L∞(Ω,FT , PB)× R (6.121)

be the dual space to L. The subdifferential of the function f at a point (Z̄, z̄) ∈ L is
defined as

∂f(Z̄, z̄) ,

{
(Y, y) ∈ L∗

∣∣∣∣f(Z̄, z̄)− f(Z, z) ≤ 〈(Y, y), (Z̄ − Z, z̄ − z)〉, for all (Z, z) ∈ L
}
,

(6.122)
where 〈·, ·〉 is a bilinear operator on the duality space (L,L∗, 〈·, ·〉) (see Definition D.0.4),
and using (6.119), can be written as

∂f(Z̄, z̄) = ∂Ũ(Z̄, z̄) + ∂IQ(Z̄, z̄)

= ∂Ũ(Z̄, z̄) +Nc(Z̄, z̄),
(6.123)
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where Nc(Z̄, z̄) is the normal cone of Q at the point (Z̄, z̄) which by Proposition 4.1.4 in
Aubin and Ekeland [1] is given by

Nc(Z̄, z̄) ,

{
(Y, y) ∈ L∗

∣∣∣∣〈(Y, y), (Z̄, z̄)〉 = max
(Z,z)∈Q

〈(Y, y), (Z, z)〉
}
,

=

{
(Y, y) ∈ L∗

∣∣∣∣E[B̄]EB[Z̄Y ] + z̄y = max
(Z,z)∈Q

(E[B̄]EB[ZY ] + zy)

}
,

(6.124)

and ∂Ũ(Z̄, z̄) is the subdifferential of Ũ at the point (Z̄, z̄), which by Proposition 4.3.3 in
Aubin and Ekeland [1] is given by

∂Ũ(Z̄, z̄) ,

{
(Y, y) ∈ L∗

∣∣∣∣Ũ(Z̄, z̄)− Ũ(Z, z) ≤ E[B̄]EB[Y (Z̄ − Z)]

+ y(z̄ − z), for all (Z, z) ∈ L
}
.

(6.125)

Remark 6.2.16. The bilinear form 〈·, ·〉 : L∗ × L 7→ R used in (6.124) and (6.125) is given
by

〈(U, u), (V, v)〉 , E[B̄]EB[V U ] + vu, (U, u) ∈ L∗, (V, v) ∈ L. (6.126)

Proposition 6.2.17. The pair (z̃H̃, z̃) ∈ Q is a solution to

0 ∈ ∂Ũ(Z, z) +Nc(Z, z). (6.127)

In other words, there must exist a pair (Ỹ , ỹ) ∈ L∗ that belongs to the normal cone
Nc(z̃H̃, z̃) such that (−Ỹ ,−ỹ) belongs to the subdifferential ∂Ũ(z̃H̃, z̃) at the point (z̃H̃, z̃) ∈
Q.

Proof. From (6.117), (z̃H̃, z̃) ∈ Q is optimal for the dual problem inf(Z,z)∈Q Ũ(Z, z),
and by (6.120), is optimal for the problem inf(Z,z)∈L f(Z, z). We have from Proposition
D.0.13 that a point (Z, z) ∈ L is optimal if and only if

0 ∈ ∂f(Z, z)

0 ∈ ∂Ũ(Z, z) +Nc(Z, z).
(6.128)

Thus,
0 ∈ ∂Ũ(z̃H̃, z̃) +Nc(z̃H̃, z̃). (6.129)

�
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Proposition 6.2.18. Fix some (Ỹ , ỹ) ∈ L∗ such that (Ỹ , ỹ) ∈ Nc(z̃H̃, z̃) and (−Ỹ ,−ỹ) ∈
∂Ũ(z̃H̃, z̃) where (z̃H̃, z̃) ∈ Q is optimal for the dual problem in (6.116). Then

E[B̄]EB[H̃Ỹ ] = x. (6.130)

and
x = −ỹ. (6.131)

Proof. From (6.125) and (6.113),

E[B̄]EB[(z̃H̃) ∧ 1]− E[B̄]EB[Z ∧ 1] + x(z − z̃)

≥ E[B̄]EB[Ỹ (z̃H̃ − Z)] + ỹ(z̃ − z), (Z, z) ∈ L.
(6.132)

Fixing Z ∈ L1(Ω,FT , PB) and taking z → +∞ in (6.132) yields

x ≥ −ỹ, (6.133)

taking z → −∞ yields
x ≤ −ỹ, (6.134)

and therefore,
x = −ỹ. (6.135)

From (6.124) and (6.103),

E[B̄]EB[z̃H̃Ỹ ] + z̃ỹ ≥ E[B̄]EB[zHỸ ] + zỹ, z ≥ 0, H ∈ Z. (6.136)

Now setting z = z̃ + ε for some ε > 0 and H = H̃ in (6.136) and using (6.135) gives

x ≥ E[B̄]EB[H̃Ỹ ]. (6.137)

Similarly, letting z = z̃ − ε for some ε > 0 and H = H̃ in (6.136) and using (6.135) gives

x ≤ E[B̄]EB[H̃Ỹ ]. (6.138)

Therefore, combining (6.137) and (6.138) yields

E[B̄]EB[H̃Ỹ ] = x. (6.139)

�

The following proposition shows the existence of a pair (c̃, p̃) ∈ A(x) that hedges the
FT random variable BỸ from initial wealth x.
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Proposition 6.2.19. There exists a pair (c̃, p̃) ∈ A(x) such that

X(x,c̃,p̃)(T ) = BỸ a.s. (6.140)

and
x = E[H̃X̄(x,c̃,p̃)(T )]. (6.141)

Proof. From Proposition 6.2.18 and (6.124) , we have

x = E[B̄]EB[H̃Ỹ ] ≥ E[B̄]EB[HỸ ], H ∈ Z, (6.142)

and therefore,

x = sup
H∈Z

E[B̄]EB[HỸ ] = sup
H∈Z

E[B̄HỸ ]. (6.143)

Since E[B̄HỸ ] ≤ x < û < ∞ for all H ∈ Z, we know the random variable BỸ can be
hedged by Theorem 5.3.17. Denote the minimum hedging price of the contingent claim
BỸ by

ûỸ , sup
(ν,µ)∈G×H

E[Hν,µ(T )BỸ ], (6.144)

which is guaranteed to be finite by Theorem 5.3.17. Since Hν,µ(T ) ∈ Z for all (ν,µ) ∈
G ×H, we have from (6.143)

x = sup
H∈Z

E[B̄HỸ ] ≥ sup
(ν,µ)∈G×H

E[Hν,µ(T )BỸ ] = ûỸ . (6.145)

From Proposition 6.1.1 and Remark 6.1.2 there exists some (c̃, p̃) ∈ A(x) such that

X(x,c̃,p̃)(T ) ≥ BỸ a.s. (6.146)

But since one can always consume down to the value BỸ at the close of trade, we have

X(x,c̃,p̃)(T ) = BỸ a.s., (6.147)

and therefore, from (6.142) and (6.147)

x = E[H̃X̄(x,c̃,p̃)(T )], (6.148)

for some (c̃, p̃) ∈ A(x). �

The following proposition provides a characterization for the pair (−Y,−y) ∈ ∂Ũ(z̃H̃, z̃).
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Proposition 6.2.20. Let (−Y,−y) ∈ ∂Ũ(z̃H̃, z̃). Then y = −x and Y is of the form

Y = I{z̃H̃<1} +DI{z̃H̃=1} PB − a.s. (6.149)

for some FT random variable D that satisfies

0 ≤ D ≤ 1 PB − a.s. (6.150)

Proof. Fix some (Y, y) ∈ L∗ such that (−Y,−y) ∈ ∂Ũ(z̃H̃, z̃). Define a random
variable A ∈ L∞(Ω,FT , PB) as follows

A , Y − I{z̃H̃<1}. (6.151)

From (6.131) in Proposition 6.2.18 we already know that y = −x. Using (6.125) and A
defined in (6.151) gives

EB[I{z̃H̃≥1}]−E
B[Z∧1] ≥ EB[A(z̃H̃−Z)]−EB[I{z̃H̃<1}Z], Z ∈ L1(Ω,FT , PB). (6.152)

Now fix Z ∈ L1(Ω,FT , PB) where

{Z < 1} = {z̃H̃ < 1}. (6.153)

We can write

EB[A(z̃H̃ − Z)] = EB[A(z̃H̃ − Z)I{z̃H̃<1}] + EB[A(z̃H̃ − Z)I{z̃H̃≥1}]. (6.154)

From (6.152) and (6.154)

EB[A(z̃H̃ − Z)I{z̃H̃<1}] + EB[A(z̃H̃ − Z)I{z̃H̃≥1}]

≤ EB[I{z̃H̃≥1}]− E
B[Z ∧ 1] + EB[ZI{z̃H̃<1}].

(6.155)

Using (6.153) in (6.155)

EB[A(z̃H̃ − Z)I{z̃H̃<1}] + EB[A(z̃H̃ − Z)I{z̃H̃≥1}] ≤ 0. (6.156)

Now, in (6.156), set
Z(ω) = z̃H̃(ω) on ω ∈ {z̃H̃ ≥ 1}. (6.157)

We would then have from (6.156)

EB[A(z̃H̃ − Z)I{z̃H̃<1}] ≤ 0, (6.158)

and when expanded,

EB[A(z̃H̃ − Z)I{z̃H̃<1}∩{A≤0}] + EB[A(z̃H̃ − Z)I{z̃H̃<1}∩{A>0}] ≤ 0. (6.159)

118



Remark 6.2.21. We can assume without loss of generality that z̃H̃ > 0 PB a.s. since from
Proposition 6.2.12, z̃ > 0, and since {H̃ = 0} only on {B = 0} and we know P [B = 0] = 0.
If {H̃ = 0} outside of {B = 0}, then x = 0 by Proposition 6.2.18, which by Remark 6.1.4
is not possible.

Now take

Z(ω) =

{
z̃H̃(ω), ω ∈ {z̃H̃ < 1} ∩ {A ≤ 0}
0, ω ∈ {z̃H̃ < 1} ∩ {A > 0}.

(6.160)

From (6.159) and (6.160), we have that

EB[Az̃H̃I{z̃H̃<1}∩{A>0}] ≤ 0, (6.161)

but since A > 0 and z̃H̃ > 0 PB a.s. (see Remark 6.2.21), we have

PB[{z̃H̃ < 1} ∩ {A > 0}] = 0. (6.162)

In (6.156), instead set
Z(ω) = z̃H̃(ω) on ω ∈ {z̃H̃ < 1}. (6.163)

This would result in

EB[A(z̃H̃ − Z)I{z̃H̃≥1}∩{A<0}] + EB[A(z̃H̃ − Z)I{z̃H̃≥1}∩{A≥0}] ≤ 0. (6.164)

Set

Z(ω) =

{
z̃H̃(ω), ω ∈ {z̃H̃ ≥ 1} ∩ {A ≥ 0}
z̃H̃(ω) + ε, ω ∈ {z̃H̃ ≥ 1} ∩ {A < 0},

(6.165)

for some ε > 0. Putting (6.165) into (6.164) yields,

εEB[AI{z̃H̃≥1}∩{A<0}] ≥ 0, (6.166)

and therefore,
PB[{z̃H̃ ≥ 1} ∩ {A < 0}] = 0. (6.167)

From (6.162) and (6.167)

A(ω) ≤ 0, PB almost all ω ∈ {z̃H̃ < 1},
A(ω) ≥ 0, PB almost all ω ∈ {z̃H̃ ≥ 1}.

(6.168)

Now suppose,
PB[{z̃H̃ < 1} ∩ {A < 0}] > 0. (6.169)
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Then by (6.168) there exists δ > 0 such that

EB[A(z̃H̃ − 1)I{z̃H̃<1}] > δ. (6.170)

For some ε > 0, set

Z(ω) =

{
1− ε, ω ∈ {z̃H̃ < 1}
1, ω ∈ {z̃H̃ ≥ 1}.

(6.171)

Putting (6.171) into (6.156) gives

0 ≥ EB[A(z̃H̃ − 1 + ε)I{z̃H̃<1}] + EB[A(z̃H̃ − 1)I{z̃H̃≥1}]

0 ≥ EB[A(z̃H̃ − 1)I{z̃H̃<1}] + εEB[AI{z̃H̃<1}] + EB[A(z̃H̃ − 1)I{z̃H̃≥1}]

0 ≥ δ + εEB[AI{z̃H̃<1}].

(6.172)

Taking ε→ 0 in (6.172) gives 0 ≥ δ which is a contradiction. Thus,

PB[{z̃H̃ < 1} ∩ {A = 0}] = 1. (6.173)

From (6.156) and (6.173), we have that

EB[A(z̃H̃ − Z)I{z̃H̃≥1}] ≤ 0, {Z < 1} = {z̃H̃ < 1}. (6.174)

Taking Z(ω) = 1 on ω ∈ {z̃H̃ ≥ 1} in (6.174) gives

EB[A(z̃H̃ − 1)I{z̃H̃>1}] ≤ 0. (6.175)

Since A(ω) ≥ 0, PB almost all ω ∈ {z̃H̃ ≥ 1} and z̃H̃(ω) − 1 > 0, PB almost all ω ∈
{z̃H̃ > 1}, we have from (6.175),

PB[{z̃H̃ > 1} ∩ {A = 0}] = 1. (6.176)

From (6.152), (6.173), and (6.176),

EB[I{z̃H̃≥1} − I{Z≥1}] ≥ EB[A(1− Z)I{z̃H̃=1}]− E
B[Z(I{z̃H̃<1} − I{Z<1})] (6.177)

for all Z ∈ L1(Ω,FT , PB). Suppose that

PB[{z̃H̃ = 1} ∩ {A > 1}] > 0. (6.178)

Then there exists δ > 0 such that

EB[AI{z̃H̃=1}∩{A>1}] > δ + PB[{z̃H̃ = 1} ∩ {A > 1}]. (6.179)
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For ε > 0, setting

Z(ω) =


0, ω ∈ {z̃H̃ = 1} ∩ {A > 1}
1, ω ∈ {z̃H̃ = 1} ∩ {A ≤ 1}
1− ε, otherwise

(6.180)

in (6.177) implies

PB[{z̃H̃ ≥ 1}] + PB[{z̃H̃ = 1} ∩ {A ≤ 1}] ≥ EB[AI{z̃H̃=1}∩{A>1}]

− (1− ε)
(
PB[{z̃H̃ < 1}] + PB[{z̃H̃ = 1} ∩ {A 6= 1}]

)
.

(6.181)

From (6.179) and (6.181), and some simplification,

0 > δ − εPB[{z̃H̃ > 1}] ≥ δ − ε. (6.182)

But since δ > 0, ε can be chosen so that ε ≥ δ giving a contradiction, and thus

PB[{z̃H̃ = 1} ∩ {A > 1}] = 0. (6.183)

From (6.168), (6.173), (6.176) and (6.183),{
0 ≤ A(ω) ≤ 1, PB almost all ω ∈ {z̃H̃ = 1}
A(ω) = 0, PB almost all ω ∈ {z̃H̃ 6= 1}

. (6.184)

Putting (6.184) into (6.151) gives

Y = I{z̃H̃<1} + AI{z̃H̃=1}. (6.185)

Putting an FT random variable D , A in place of A in (6.185) completes the proof. �

Now for the main result of this chapter.

Theorem 6.2.22. For any initial wealth 0 < x < û <∞, there exists a pair (c̃, p̃) ∈ A(x)
that solves the minimization problem

inf
(c,p)∈A(x)

E[B̄ − X̄(x,c,p)(T )]+. (6.186)

The pair (c̃, p̃) ∈ A(x) is the hedging strategy for which the terminal wealth X(x,c̃,p̃)(T ) is
given by

X(x,c̃,p̃)(T ) = B

(
I{z̃H̃<1} + D̃I{z̃H̃=1}

)
a.s. (6.187)

Here (z̃H̃, z̃) is an optimal solution for the dual problem (6.116), and D̃ can be taken
as the random variable D in Proposition 6.2.20, with (Y, y) replaced by some (Ỹ , ỹ) ∈
{−∂Ũ(z̃H̃, z̃) ∩Nc(z̃H̃, z̃)}, which exists by Proposition 6.2.17.
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Proof. From Proposition 6.2.19, we know there exists a pair (c̃, p̃) ∈ A(x) that
hedges the contingent claim BỸ from initial investment x where (Ỹ , ỹ) ∈ {−∂Ũ(z̃H̃, z̃) ∩
Nc(z̃H̃, z̃)}, ỹ = −x, and by Proposition 6.2.20

Ỹ = I{z̃H̃<1} + D̃I{z̃H̃=1} PB − a.s. (6.188)

for some FT random variable D̃ that satisfies

0 ≤ D̃ ≤ 1 PB − a.s., (6.189)

where z̃ > 0 and H̃ ∈ Z exist, are characterized by Proposition 6.2.17, and are optimal
for the dual problem (6.62). Therefore, (6.187) follows from the hedging of BỸ . By
Proposition 6.2.19

E[B̄]EB[
1

B
H̃X(x,c̃,p̃)(T )] = x. (6.190)

If we take

Y (x,c̃,p̃) =
X(x,c̃,p̃)(T )

B
a.s., (6.191)

then, from (6.187),
Y (x,c̃,p̃) = I{z̃H̃<1} + D̃I{z̃H̃=1} a.s. (6.192)

and from (6.190)
x = E[B̄]EB[H̃Y (x,c̃,p̃)]. (6.193)

By Proposition 6.2.6, (6.193), and (6.192) we have solved the minimization problem (6.186)
and the proof is complete. �

Remark 6.2.23. In summary of Theorem 6.2.22, we have shown that if an investor begins
trading with an initial wealth x < û, where û is the least initial wealth in which one can
hedge the contingent claim B, then there exists a hedging strategy (c̃, p̃) ∈ A(x) that
minimizes the investor’s expected net loss (6.186) at the close of trade. Furthermore, the
strategy (c̃, p̃) ∈ A(x) produces terminal wealth

X(x,c̃,p̃)(T ) = B

(
I{z̃H̃<1} + D̃I{z̃H̃=1}

)
a.s., (6.194)

where 0 ≤ D̃ ≤ 1 a.s. is some FT measurable random variable and the pair (z̃H̃, z̃) is
optimal for the dual problem (6.62) and the solution to

0 ∈ ∂Ũ(Z, z) +Nc(Z, z) (6.195)

for Ũ(·, ·) defined in (6.113) and Nc(·, ·) defined in (6.124).
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Chapter 7

Conclusions and Further
Developments

In this thesis we have addressed the problems of almost sure hedging and approximate
hedging in a market comprised of two independent sources of randomness: Brownian mo-
tion and a finite state Markov chain. These sources of randomness allow for both small
scale persistent movement in asset prices (caused by supply and demand, and modeled
by Brownian motion) and large scale occasional movement in the asset prices (caused, for
example, by global events, and modeled by the finite-state Markov chain). Unlike the
most common regime-switching market models, where the market parameters are Markov-
modulated, we allow the market coefficients to be truly random processes. Using this kind
of regime-switching market model is not only a significant generalization over the standard
Brownian motion market model but also other regime-switching market models, since it
allows for stochasticity within the market regimes.

In the almost sure hedging problem, an investor must find the least initial wealth so
they can trade in such a way to guarantee the full payment of a given contingent claim.
This least initial wealth and method of trading, called the price of the contingent claim and
the optimal hedging strategy, respectively, are given in Chapter 3 for the standard Brownian
motion market model. Although these results are well known and not new, they provide
the basic martingale methods required for more general hedging problems. One of such
problems is the almost sure hedging problem where the Brownian motion market model
includes a regime-switching Markov chain as an additional source of randomness. The
inclusion of a finite state Markov chain makes the almost sure hedging problem substan-
tially more challenging due to the intricacies of having the market coefficients dependant
on both a finite-state Markov chain and Brownian motion. Since the market model is now
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incomplete, one requires a cumulative consumption process and a space of dual processes
to make the hedging problem tractable. As a result, an investor is now required to find
a least initial wealth, an optimal portfolio process, and an optimal cumulative consump-
tion using a state price density process indexed over the space of dual processes to exactly
hedge a given contingent claim. The optimal hedging strategy is now used to denote a pair
of portfolio and consumption processes that hedges the given contingent from the least
initial wealth, and they are explicitly characterized in Chapter 4 using the Doob-Meyer
decomposition and an abstract martingale representation theorem.

We further generalize the almost sure hedging problem in a regime-switching market
model by including convex portfolio constraints, first proposed by Cvitanic and Karatzas
[10], and margin requirements, of the kind which were first introduced by Cuoco and Liu
[7] for utility maximization, in Chapter 5. In this market, a second space of dual processes,
which is similar to the dual space of Lagrange multipliers in classical convex analysis, is
required to deal with the effects of portfolio constraints and margin requirements. As a
result, we must use a generalized state price density process indexed over a joint space of
dual processes to find the least initial wealth and optimal hedging strategy to exactly hedge
a given contingent claim. What makes this problem particularly challenging is the nonlin-
earity of the margin function over the space of portfolio processes. Again, we are able to
characterize an optimal hedging strategy by use of the Doob-Meyer decomposition and the
martingale representation theorem, but due to the inclusion of portfolio constraints and
margin requirements, elements of convex analysis are required to guarantee that we abide
by the constraints. In addition to solving the hedging problem in a constrained regime-
switching market model, we propose conditions which allow an agent to hedge a contingent
claim without having to consume wealth through a cumulative consumption process. We
show that if the least initial wealth, defined by taking a supremum over the joint space of
dual processes, is indeed attained by an optimal pair of dual processes, one can exactly
hedge the contingent claim without consuming wealth. This result is an extension of the
conditions for zero consumption given by Cvitanic and Karatzas [10] in a standard Brow-
nian market model with only convex portfolio constraints. Since the characterization of
the optimal hedging strategy relies upon a general martingale representation theorem, we
cannot give computable formulae for the optimal portfolio and consumption processes. An
interesting area for future research would be in the numerical approximation of these pro-
cesses, or if possible, explicit solutions to these processes through a method similar to the
Clark-Ocone formula. Currently, there is a method which allows one to explicitly solve for
the processes given by the martingale representation theorem when the underlying filtra-
tion is generated by a Lévy process of which Brownian motion is a special kind (see Løkka
[34]). However, there are no such results when the underlying filtration is generated by a
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continuous time Markov chain, let alone a filtration jointly generated by a Markov chain
and Brownian motion. There have been promising developments in the Malliavin calculus
(which is a fundamental ingredient for a Clark-Ocone formula) for processes adapted to a
filtration generated by a continuous time Markov chain (see Siu [47] and Denis and Nguyen
[11]); however, as of yet, there seems to be no progress in the creation of a Clark-Ocone
formula for this case. Having formulae which explicitly solve for these unknown processes
would greatly advance the applicability of this work to real-world problems.

The problems discussed above all involve super-hedging a given claim, in which the
agent begins with some initial wealth which is large enough for the agent to trade in such
a way as to have sufficient wealth at close of trade to completely pay off the claim. In
the most general case of Chapter 5, the least initial wealth required to hedge a contingent
claim could be extremely large since it involves the supremum taken over the typically
large joint space of dual processes, which could be unacceptably high for a normal investor.
Therefore, in Chapter 6 we address the problem of approximate hedging where an agent
begins with an initial wealth they can “afford” and trades in such a way to minimize a
piece-wise linear one-sided risk criterion which imposes a penalty when the agent falls short
of being able to fund the contingent claim. Cvitanic [8] first addressed this problem in a
standard Brownian motion market model with convex portfolio constraints and showed
the existence of a trading strategy which in fact minimizes the risk criterion. In Chapter
6, we address the problem of approximate hedging in a regime-switching market model
with convex portfolio constraints and margin requirements and show the existence of a
trading strategy which minimizes the risk criterion, using nearly the identical approach as
[8]. Our solution utilizes the main hedging result of Chapter 5 along with tools of general
convex analysis to deal with non-smoothness of the risk criterion. Just as in the almost
sure hedging problem, there are currently no methods for finding computable solutions for
the optimal approximate hedging strategy. Future work would then be to study possible
numerical algorithms for approximating these processes. Convex programming techniques
and numerical PDE methods have been proposed as possible ways for solving these kinds
of problems.
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Appendix A

Supplementary Results

A.1 Spaces of Integrand Processes

Definition A.1.1. For each i, j ∈ S, i 6= j, denote L
1/2
loc (Rij) to be the vector space of

all R-valued, {Ft}-predictable processes Γ such that the process defined by the pathwise
Lebesgue-Stieltjes integral t 7→ {

∫ t
0
|Γ(s)|2dRij(s)}1/2 is a member of A+

loc({Ft}, P ) (see
Notation C.5.7).

Remark A.1.2. L
1/2
loc (Rij) is the largest space of integrand processes Γ for which the stochas-

tic integral Γ •Mij is defined and is a local martingale.

Similarly we can define the following spaces of integrands:

Definition A.1.3. For each i, j ∈ S, i 6= j, denote L1
loc(Rij) to be the vector space of

all R-valued, {Ft}-predictable processes Γ such that the process defined by the pathwise
Lebesgue-Stieltjes integral t 7→

∫ t
0
|Γ(s)|dRij(s) is a member of A+

loc({Ft}, P ) (see Notation
C.5.7).

Definition A.1.4. For each i, j ∈ S, i 6= j, denote L1
loc(R̃ij) to be the vector space of

all R-valued, {Ft}-predictable processes Γ such that the process defined by the pathwise
Lebesgue-Stieltjes integral t 7→

∫ t
0
|Γ(s)|dR̃ij(s) is a member of A+

loc({Ft}, P ) (see Notation
C.5.7).

Definition A.1.5. For each i, j ∈ S, i 6= j, denote L1
loc(var(Mij)) to be the vector space of

all R-valued, {Ft}-predictable processes Γ such that the process defined by the pathwise
Lebesgue-Stieltjes integral t 7→

∫ t
0
|Γ(s)|var(Mij)(ds), where var(Mij) is the variation of

the process Mij, is a member of A+
loc({Ft}, P ) (see Notation C.5.7).
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The purpose of this appendix is to show that if {Γ(t), t ∈ [0, T ]} is some {Ft}-
predictable processes that lives in the space L

1/2
loc (Rij), which is the usual space of inte-

grands that are dealt with when integrating with respect to Mij, we can unabashedly take
the integral of Γ with respect to the processes Rij and R̃ij and know they “make sense”.
This fact is used numerous times in Chapter 4 and Chapter 5.

Remark A.1.6. We recall that Rij is the quadratic variation process of Mij, R̃ij is the
predictable compensator Rij which we can denote as (Rij)

p, and var(Mij) is the total
variation of Mij for each i, j ∈ S, i 6= j.

Theorem A.1.7. The spaces L
1/2
loc (Rij), L1

loc(Rij), L1
loc(R̃ij) and L1

loc(var(Mij)) are equal
for i, j ∈ S, i 6= j.

Remark A.1.8. To prove Theorem A.1.7, we will first prove a series of Propositions from
which we can conclude our desired result.

Lemma A.1.9. For a sequence {an} ∈ R, n = 1, 2, . . . , N <∞ we have( N∑
n=1

|an|2
)1/2

≤
N∑
n=1

|an| ≤
√
N

( N∑
n=1

|an|2
)1/2

. (A.1)

Proof. Using the Cauchy-Schwarz inequality, we have( N∑
n=1

|an|
)2

≤
( N∑

n=1

12

)( N∑
n=1

|an|2
)

( N∑
n=1

|an|
)
≤
√
N

( N∑
n=1

|an|2
)1/2

(A.2)

which shows the right-hand inequality of (A.1). To show the left-hand side of (A.1),
suppose ( k∑

n=1

|an|2
)1/2

≤
k∑

n=1

|an|, (A.3)
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for some k < N . Then ( k+1∑
n=1

|an|2
)1/2

≤
( k∑

n=1

|an|2
)1/2

+ |ak+1|

≤
k∑

n=1

|an|+ |ak+1|

≤
k+1∑
n=1

|an|

(A.4)

Thus, by induction, ( N∑
n=1

|an|2
)1/2

≤
N∑
n=1

|an|. (A.5)

�

Lemma A.1.10. Suppose that a process {A(t), t ∈ [0, T ]} is of finite variation (i.e. A ∈
FV({Ft}, P )). Then

var(A)(t) ≥
∑

0<s≤t

|4A(s)|, t ∈ [0, T ], (A.6)

where var(A)(t) is the variation of A(t).

Proof. Put ν(t) , var(A)(t), for all t ∈ [0, T ]. It is easy to see that ν ∈ FV0({Ft}, P )
and ν(·) is non-decreasing and càdlàg. From pg. 29 in Lipster and Shiryayev [33], we have

ν(t) = ν(t−) + |4A(t)|, t ∈ [0, T ], (A.7)

thus,
4ν(t) = |4A(t)|, t ∈ [0, T ]. (A.8)

Now put

νd(t) ,
∑

0≤s≤t

4ν(s), (A.9)

for all t ∈ [0, T ]. Since ν(0) = 0 and ν(·) is right continuous, we have 4ν(0) = 0. Thus,
from (A.9)

νd(t) =
∑

0<s≤t

4ν(s), t ∈ [0, T ]. (A.10)
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Put
νc(t) , ν(t)− νd(t) (A.11)

for t ∈ [0, T ], then νc(0) = 0. From Theorem 5 in Kolmogorov and Fomin [32], νc(·) is
continuous and non-decreasing. Then from (A.11), νc(t) ≥ 0 for all t ∈ [0, T ], and

ν(t) = νc(t) + νd(t) ≥ νd(t), t ∈ [0, T ]. (A.12)

Now from (A.8) and (A.10)

νd(t) =
∑

0<s≤t

|4A(s)|, t ∈ [0, T ]. (A.13)

Thus, from (A.12)

ν(t) ≥
∑

0<s≤t

|4A(s)|, t ∈ [0, T ]. (A.14)

�

Proposition A.1.11.
L

1/2
loc (Rij) ⊆ L1

loc(Rij), (A.15)

for all i, j ∈ S, i 6= j

Proof. Fix (i, j) ∈ S such that i 6= j and {Γ(t), t ∈ [0, T ]} such that

Γ ∈ L1/2
loc (Rij). (A.16)

From Definition A.1.1 we know

Γ ∈ P∗, (|Γ|2 •Rij)
1/2 ∈ A+

loc. (A.17)

From the definition of A+
loc({Ft}, P ), there exists a sequence of {Ft}-stopping times T

(1)
n

such that T
(1)
n ↑ ∞ a.s. as n→∞ and

E[(|Γ|2 •Rij)
1/2(T (1)

n )] <∞, n = 1, 2, . . . (A.18)

Since the jumps of the process Rij are bounded (they can only take the value 0 or 1), one
has that Rij is locally bounded. That is, there exists a sequence of {Ft}-stopping times

T
(2)
n and constants Bn ∈ [0,∞) such that T

(2)
n ↑ ∞ a.s. as n→∞ and

Rij(t ∧ T (2)
n (ω), ω) ≤ Bn (t, ω) ∈ [0,∞)× Ω. (A.19)

135



Put
Tn , T (1)

n ∧ T (2)
n ∧ n (A.20)

then from (A.18) and (A.19), we have that Tn is an {Ft}-stopping time where Tn ↑ ∞ a.s.
as n→∞ and

E[(|Γ|2 •Rij)
1/2(Tn)] <∞, n = 1, 2, . . . . (A.21)

Rij(Tn(ω), ω) ≤ Bn, ω ∈ Ω n = 1, 2 . . . , (A.22)

Now define the set

Dij(Tn(ω), ω) ,
{

0 < s ≤ Tn(ω)
∣∣α(s−, ω) = i, α(s, ω) = j

}
, (A.23)

for all i, j ∈ S where i 6= j and ω ∈ Ω. Then

Rij(Tn(ω), ω) = |Dij(Tn(ω), ω)|, ω ∈ Ω, (A.24)

where | · | counts the number elements in a given set, since Rij(t, ω) counts the number of
jumps the Markov chain makes until some time t. Therefore, we have

(|Γ| •Rij)(Tn(ω), ω) ,
∫ Tn(ω)

0

|Γ(s, ω)|dRij(s, ω)

=
∑

s∈Dij(Tn(ω),ω)

|Γ(s, ω)|4Rij(s, ω), ω ∈ Ω.
(A.25)

Now, 4Rij(s, ω) = 1 for all s ∈ Dij(Tn(ω), ω) and ω ∈ Ω. Using this fact along with
Lemma A.1.9,

(|Γ| •Rij)(Tn(ω), ω) =
∑

s∈Dij(Tn(ω),ω)

|Γ(s, ω)|

≤
√
|Dij(Tn(ω), ω)|

( ∑
s∈Dij(Tn(ω),ω)

|Γ(s, ω)|2
)1/2

≤
√
Rij(Tn(ω), ω)

( ∑
s∈Dij(Tn(ω),ω)

|Γ(s, ω)|2
)1/2

≤
√
Bn

( ∑
s∈Dij(Tn(ω),ω)

|Γ(s, ω)|2
)1/2

, ω ∈ Ω.

(A.26)
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We also have, ∑
s∈Dij(Tn(ω),ω)

|Γ(s, ω)|2 =
∑

s∈Dij(Tn(ω),ω)

|Γ(s, ω)|24Rij(ω)

=

∫ Tn(ω)

0

|Γ(s, ω)|2dRij(s).

(A.27)

From (A.26), but using more condensed notation, and (A.27)∫ Tn(ω)

0

|Γ(s, ω)|Rij(ds, ω) ≤
√
Bn

(
(|Γ|2 •Rij)(Tn(ω), ω)

)1/2

, ω ∈ Ω, (A.28)

for n = 1, 2, . . .. Taking expectations of both sides of (A.28)

E

[ ∫ Tn(ω)

0

|Γ(s, ω)|Rij(ds, ω)

]
≤
√
BnE

[(∫ Tn(ω)

0

|Γ(s, ω)|2Rij(ds, ω)

)1/2]
<∞

(A.29)

for n = 1, 2, . . .. Therefore,
|Γ| •Rij ∈ A+

loc, (A.30)

and thus from (A.30) and (A.16), we conclude that

Γ ∈ L1
loc(Rij),

therefore,
L

1/2
loc (Rij) ⊆ L1

loc(Rij), (A.31)

for i, j ∈ S, i 6= j �.

Proposition A.1.12.
L1
loc(var(Mij)) ⊆ L

1/2
loc (Rij), (A.32)

for all i, j ∈ S, i 6= j.

Proof. Fix t ∈ [0,∞). We have from pg. 93 in Lipster and Shiryayev [33],

Rij(t) = [Mij](t) =
∑
s≤t

|4Mij(s)|2. (A.33)
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For some Γ ∈ P∗, from (A.33) write(∫ t

0

|Γ(s)|2dRij(s)

)1/2

=

(∑
s≤t

|Γ(s)|24Rij(s)

)1/2

=

(∑
s≤t

|Γ(s)|2|4Mij(s)|2
)1/2

.

(A.34)

Using Lemma A.1.9 and (A.34),(∫ t

0

|Γ(s)|2dRij(s)

)1/2

≤
∑
s≤t

|Γ(s)||4Mij(s)|. (A.35)

Put
B1(t) ,

∑
s≤t

|4Mij(s)|. (A.36)

Since Mij ∈ FV0({Ft}, P ), from Lemma A.1.10,

B1(t) ≤ var(Mij)(t). (A.37)

Then ∑
s≤t

|Γ(s)||4Mij(s)| =
∫ t

0

|Γ(s)|dB1(s)

≤
∫ t

0

|Γ(s)|var(Mij)(ds).

(A.38)

Thus, from (A.35) and (A.38) we have(∫ t

0

|Γ(s)|2Rij

)1/2

≤
∫ t

0

|Γ(s)|var(Mij)(ds), (A.39)

for all (t, ω) ∈ [0,∞) × Ω and Γ ∈ P∗. Now take some Γ ∈ L1
loc(var(Mij)). From the

definition of L1
loc(var(Mij)), Definition A.1.5, we have

|Γ| • var(Mij) ∈ A+
loc, (A.40)

and from (A.39) (
|Γ|2 •Rij

)1/2

∈ A+
loc, (A.41)
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thus, we can conclude from (A.40) and (A.41) that

Γ ∈ L1/2
loc (Rij),

therefore
L1
loc(var(Mij)) ⊆ L

1/2
loc (Rij), (A.42)

for i, j ∈ S, i 6= j. �

Proposition A.1.13.
L1
loc(Rij) = L1

loc(R̃ij), (A.43)

for i, j ∈ S, i 6= j.

To prove this statement, we need the following result:

Lemma A.1.14.

E

[ ∫ τ

0

|Γ(s)|dRij(s)

]
= E

[ ∫ τ

0

|Γ(s)|dR̃ij(s)

]
(A.44)

for all Γ ∈ P∗ and all {Ft}-stopping times τ .

Proof. Fix some Γ ∈ P∗ and some {Ft}-stopping time τ . Then∫ τ

0

|Γ(s)|dRij(s) =

∫ ∞
0

|Γ(s)|I(0,τ ](s)dRij(s), (A.45)

where I(a,b](s) is the indicator function that returns the value 1 if s ∈ (a, b] ⊂ R and returns
the value 0 otherwise. We obviously have that I(0,τ ] is {Ft}-adapted and is left continuous.
Thus, I(0,τ ] ∈ P∗. Since Γ is a predictable process, we have

|Γ|I(0,τ ] ∈ P∗. (A.46)

From (A.46), the fact that R̃ij = (Rij)
p, that is R̃ij is the predictable compensator of Rij,

and I.3.17(iii) of Jacod and Shiryayev [26]:

E

[ ∫ ∞
0

|Γ(s)|I(0,τ ](s)dR̃ij(s)

]
= E

[ ∫ ∞
0

|Γ(s)|I(0,τ ](s)dRij(s)

]
. (A.47)

Using the same method from (A.45),∫ τ

0

|Γ(s)|dR̃ij(s) =

∫ ∞
0

|Γ(s)|I(0,τ ](s)dR̃ij(s). (A.48)
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Finally, from (A.45), (A.47), and (A.48),

E

[ ∫ τ

0

|Γ(s)|dRij(s)

]
= E

[ ∫ τ

0

|Γ(s)|dR̃ij(s)

]
(A.49)

for i, j ∈ S, i 6= j.
�

Proof of Proposition A.1.13. Take Γ ∈ L1
loc(Rij) which implies

Γ ∈ P∗ and |Γ| •Rij ∈ A+
loc. (A.50)

This means that there exists a sequence {Tn}, n = 1, 2, . . ., of {Ft}-stopping times such
that Tn ↑ ∞ a.s. and

(|Γ| •Rij)(Tn) ∈ A+, n = 1, 2, . . . (A.51)

which means we can write

E

[ ∫ Tn

0

|Γ(s)|dRij(s)

]
<∞, n = 1, 2, . . . (A.52)

and from Lemma A.1.14

E

[ ∫ Tn

0

|Γ(s)|dR̃ij(s)

]
<∞, n = 1, 2, . . . , (A.53)

which means
|Γ| • R̃ij ∈ A+

loc. (A.54)

Since Γ was chosen to be predictable, by Definition A.1.4,

Γ ∈ L1
loc(R̃ij), (A.55)

and we can conclude
L1
loc(Rij) ⊆ L1

loc(R̃ij). (A.56)

We also obtain
L1
loc(R̃ij) ⊆ L1

loc(Rij) (A.57)

using the exact same reasoning and Lemma A.1.14. Thus, we have shown

L1
loc(Rij) = L1

loc(R̃ij). (A.58)

�
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Proposition A.1.15.
L1
loc(var(Mij)) = L1

loc(Rij) (A.59)

for i, j ∈ S, i 6= j.

Proof. Fix t ∈ [0,∞). We have from pg. 93 in Lipster and Shiryayev [33],

Rij(t) = [Mij](t) =
∑
s≤t

|4Mij(s)|2, (A.60)

and with Lemma (A.1.10),

Rij(t) =
∑
s≤t

|4Mij(s)|2 =
∑
s≤t

|4Mij(s)| ≤ var(Mij)(t), (A.61)

thus,
Rij(t) ≤ var(Mij)(t), t ∈ [0,∞). (A.62)

Integrating |Γ| on both sides of (A.62) gives

|Γ| •Rij ≤ |Γ| • var(Mij). (A.63)

Now take some Γ ∈ L1
loc(var(Mij)). We know from the definition of L1

loc(var(Mij)) that
|Γ| • var(Mij) ∈ A+

loc. Thus, from (A.63)

|Γ| •Rij ∈ A+
loc. (A.64)

From (A.64) and (A.63),

Γ ∈ L1
loc(Rij) =⇒ L1

loc(var(Mij)) ⊆ L1
loc(Rij). (A.65)

To the establish the converse, namely,

L1
loc(Rij) ⊆ L1

loc(var(Mij)), (A.66)

take Γ ∈ L1
loc(Rij). From Proposition A.1.13, this also means that Γ ∈ L1

loc(R̃ij). Thus, we
have that Γ is {Ft}-predictably measurable and both

|Γ| •Rij∈A+
loc and |Γ| • R̃ij∈A+

loc (A.67)

are true. As a result, we have that

|Γ| •Rij + |Γ| • R̃ij ∈ A+
loc

|Γ| • (Rij + R̃ij) ∈ A+
loc.

(A.68)
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But since we already know that the martingale Mij is defined as

Mij , Rij − R̃ij, (A.69)

we have

var(Mij) = var(Rij − R̃ij)

≤ var(Rij) + var(R̃ij).
(A.70)

Since Rij and R̃ij are non-decreasing,

var(Rij) = Rij and var(R̃ij) = R̃ij. (A.71)

From (A.70) and (A.71),
var(Mij) ≤ Rij + R̃ij, (A.72)

thus,
|Γ| • var(Mij) ≤ |Γ| • (Rij + R̃ij). (A.73)

As a result, from (A.68) we have that

|Γ| • var(Mij) ∈ A+
loc (A.74)

and since Γ ∈ P∗, we conclude that

Γ ∈ L1
loc(var(Mij)),

therefore,
L1
loc(Rij) ⊆ L1

loc(var(Mij)). (A.75)

As a result, from (A.75) and (A.65)

L1
loc(var(Mij)) = L1

loc(Rij) (A.76)

for i, j ∈ S, i 6= j. �.

Proof of Theorem A.1.7. From Propositions A.1.11, A.1.12, A.1.13, and A.1.15,

L
1/2
loc (Rij) = L1

loc(Rij) = L1
loc(R̃ij) = L1

loc(var(Mij)) (A.77)

for i, j ∈ S, i 6= j. �
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Appendix B

Technical Proofs

In this appendix we give proofs of several results which have been stated in the course
of this thesis. We locate these often rather technical proofs in an appendix because their
inclusion in the main body of the thesis obscuring the main lines of development.

B.1 Canonical Martingales of the Regime-Switching

Markov Chain Results

In this section we prove results regarding the canonical martingales of the regime-switching
Markov chain; specifically, Lemma 4.1.14 and Lemma 4.1.15.

Proof of Lemma 4.1.14. For i = j we have Mii = 0 and thus

[Mii,Wk](t) = 0, t ∈ [0, T ], (B.1)

for all i ∈ S and k = 1, . . . , N . For i, j ∈ S, i 6= j, we use the quadratic co-variation
formula given in Theorem C.8.9:

[Mij,Wk](t) = 〈M c
ij,W

c
k〉(t) +

∑
0≤s≤t

4Mij(s)4Wk(s), t ∈ [0, T ]. (B.2)

Since M c
ij = 0 from (4.12) and Wk is continuous for each k = 1, . . . , N , meaning 4Wk = 0,

we have from (B.2),
[Mij,Wk](t) = 0, t ∈ [0, T ], (B.3)
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for all i, j ∈ S and k = 1, . . . , N . �

Proof of Lemma 4.1.15. For i = j or i1 = j1 we trivially have

[Mii,Mi1i1 ](t) = 0, t ∈ [0, T ], (B.4)

for all i, i1 ∈ S. For i, j ∈ S, i 6= j and i1, j1 ∈ S, i1 6= j1 we use the quadratic co-variation
formula given in Theorem C.8.9:

[Mij,Mi1j1 ](t) =
∑

0≤s≤t

4Mij(s)4Mi1j1(s), t ∈ [0, T ]. (B.5)

However, from (4.8), we have

4Mij(t) = 4Rij(t), t ∈ [0, T ]. (B.6)

Thus, putting (B.6) into (B.5) gives

[Mij,Mi1j1 ](t) =
∑

0≤s≤t

I[α(s−) = i]I[α(s) = j]I[α(s−) = i1]I[α(s) = j1]

= 0 a.s., t ∈ [0, T ],

(B.7)

for all (i, j) 6= (i1, j1). �

B.2 Optimal Wealth Process Results in the Uncon-

strained Regime-Switching Market Model

In this section we prove Proposition 4.3.15:

Proof of Proposition 4.3.15(1). Set t = 0. From (4.67)

X̂(0) = ess-sup
µ∈H

E
[
Hµ(T )B

∣∣F0

]
Hµ(0)

, (B.8)

where the σ-algebra F0 is given by

F0 , {∅,Ω} ∨ N (P ). (B.9)
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Since Hµ(0) = 1 a.s. for each µ ∈ H, we have

X̂(0) = ess-sup
µ∈H

E [Hµ(T )B] = û a.s. (B.10)

�

Proof of Proposition 4.3.15(2). Set t = T . From (4.67)

X̂(T ) = ess-sup
µ∈H

E
[
Hµ(T )B

∣∣FT ]
Hµ(T )

. (B.11)

Since B is FT -measurable and Hµ(T ) > 0 a.s. and FT -measurable for all µ ∈ H, we have

X̂(T ) = ess-sup
µ∈H

Hµ(T )B

Hµ(T )
= B a.s. (B.12)

�

Proof of Proposition 4.3.15(3). Since Hµ(t) > 0 a.s. for all t ∈ [0, T ] and µ ∈ H,

and since B > 0 a.s., we have that X̂(t) ≥ 0 a.s. for all t ∈ [0, T ].
�

Proof of Proposition 4.3.15(4). For ease of notation, define

Hµ(s, t) ,
Hµ(t)

Hµ(s)
, µ ∈ H, (B.13)

for 0 ≤ s ≤ t ≤ T , and

Jµ(t) , E
[
Hµ(t, T )B

∣∣Ft] , µ ∈ H, (B.14)

for all t ∈ [0, T ]. Thus, from (4.67) and (B.14)

X̂(t) = ess-sup
µ∈H

Jµ(t), t ∈ [0, T ]. (B.15)

Fix some t̄ ∈ [0, T ] and µ̄ ∈ H. Put

Dt̄,µ̄ ,
{
µ ∈ H

∣∣∣∣µij(s, ω) = µ̄ij(s, ω),0 ≤ s ≤ t̄, ω ∈ Ω,

i, j ∈ S, i 6= j

}
.

(B.16)
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Dt̄,µ̄ is the set of all processes µ ∈ H that match the fixed µ̄ ∈ H for all times between 0
and t̄ and all ω ∈ Ω. Now, if we expand Hµ(t1, t2) for any 0 ≤ t1 ≤ t2 ≤ T , we have by
(4.44) and (4.43)

Hµ(t1, t2) = exp

{
−
∫ t2

t1

r(s)ds

}
E(−θ •W)(t2)

E(−θ •W)(t1)

E(µ •M)(t2)

E(µ •M)(t1)

= exp

{
−
∫ t2

t1

r(s)ds

}
exp

{
−
∫ t2

t1

θ(s)>dW(s)− 1

2

∫ t2

t1

||θ(s)||2ds
}

· exp

{∑
i,j∈S
i 6=j

∫ t2

t1

µij(s)dMij(s)

} ∏
t1<s≤t2

(1 +4(µ •M)(s)) exp

{
−4(µ •M)(s)

}
,

(B.17)

for all µ ∈ H. Viewing all terms of (B.17) we see that Hµ(t1, t2) is determined by values
of µ(s) for only s ∈ [t1, t2]. As a result, by setting t1 = t̄ and t2 = T , we have from (B.17)
that Hµ(t̄, T ) is determined by µ(s) for only s ∈ [t̄, T ]. Thus, by (B.14), (B.15) and (B.16),

X̂(t̄) = ess-sup
µ∈H

Jµ(t̄) = ess-sup
µ∈Dt̄,µ̄

E
[
Hµ(t̄, T )B

∣∣Ft̄] . (B.18)

For a fixed µ̄ ∈ H and t̄ ∈ [0, T ], define the set

J (t̄, µ̄) ,

{
Jµ(t̄)

∣∣∣∣µ ∈ Dt̄,µ̄}. (B.19)

The following lemma is essential as it allows us to use Theorem C.13.2 on the set J (t̄, µ̄).

Lemma B.2.1. The set J (t̄, µ̄) is closed under pairwise maximization in the following
sense: for arbitrary elements J1, J2 ∈ J (t̄, µ̄), there is some J ∈ J (t̄, µ̄) such that

J , J1 ∨ J2 a.s. (B.20)

Proof. Fix µ1,µ2 ∈ Dt̄,µ̄. To remove possible confusion with notation, we write

Jµi,t̄(ω) , Jµi(t̄, ω), i = 1, 2, (B.21)

for all ω ∈ Ω. Define the set

A ,

{
ω ∈ Ω

∣∣∣∣Jµ1,t̄(ω) ≥ Jµ2,t̄(ω)

}
. (B.22)
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Since Jµ1
(t) and Jµ2

(t) are {Ft}-adapted, A ∈ Ft̄. Define

µ̂(s, ω) , µ1(s, ω)IA(ω) + µ2(s, ω)IAc(ω), (s, ω) ∈ [0, T ]× Ω. (B.23)

Since µ1,µ2 ∈ Dt̄,µ̄, we have

µ̂(s, ω) = µ̄(s, ω), (s, ω) ∈ [0, t̄]× Ω. (B.24)

We then have from (B.23) and (B.24),

µ̂(s, ω) = µ̄(s, ω)I[0,t̄](s) + µ1(s, ω)I(t̄,T ]×A(s, ω) + µ2(s, ω)I(t̄,T ]×Ac(s, ω). (B.25)

for all (s, ω) ∈ [0, T ]×Ω. From (B.25) we see that each term is {Ft}-predictably measurable,
and thus, µ̂ is {Ft}-predictably measurable. Moreover, µ̂ij(t)4Mij(t) > −1 a.s. for all

t ∈ [0, T ] and µ̂ij ∈ L1/2
loc (Rij) (see Definition A.1.1) for all i, j ∈ S, i 6= j since µ̄,µ1,µ2 ∈ H.

Thus, µ̂ ∈ H, and with (B.24) we have that µ̂ ∈ Dt̄,µ̄. Therefore,

Jµ̂,t̄ = Jµ̂(t̄) , E
[
Hµ̂(t̄, T )B

∣∣Ft̄] , (B.26)

is a member of J (t̄, µ̄) (i.e. Jµ̂,t̄ ∈ J (t̄, µ̄)).

Using (B.23), and the fact that A ∈ Ft̄ (as noted above), we get

Hµ̂(t̄, T, ω) = IA(ω)Hµ1
(t̄, T, ω) + IAc(ω)Hµ2

(t̄, T, ω), P − a.a. ω ∈ Ω. (B.27)

Using (B.26) and (B.27) we can now write

Jµ̂,t̄(ω) = IA(ω)Jµ1,t̄(ω) + IAc(ω)Jµ2,t̄(ω), P − a.a. ω ∈ Ω. (B.28)

As a result, we have

Jµ1,t̄(ω) ≥ Jµ2,t̄(ω) and Jµ̂,t̄(ω) = Jµ1,t̄(ω), P − a.a. ω ∈ A. (B.29)

Similarly, we have

Jµ2,t̄(ω) ≥ Jµ1,t̄(ω) and Jµ̂,t̄(ω) = Jµ2,t̄(ω), P − a.a. ω ∈ Ac. (B.30)

Therefore,
Jµ̂,t̄(ω) = Jµ1,t̄(ω) ∨ Jµ2,t̄(ω), P − a.a. ω ∈ Ω. (B.31)

Since Jµ̂,t̄ ∈ J (t̄, µ̄) from (B.26), the set J (t̄, µ̄) is closed under pairwise maximization.
�
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Continuing the proof of Proposition 4.3.15(4), since

X̂(t̄) = ess-sup
µ∈Dt̄,µ̄

Jµ(t̄), (B.32)

we have,
X̂(t̄) = ess-supJ (t̄, µ̄). (B.33)

From Theorem C.13.2, due to the pairwise maximization property of J (t̄, µ̄), there exists
a sequence {ζn} ∈ J (t̄, µ̄) for n = 1, 2, . . . such that ζn ≤ ζn+1 ≤ . . . a.s. and

lim
n→∞

ζn = ess-supJ (t̄, µ̄) a.s.

= X̂(t̄) a.s.
(B.34)

This means there exists some sequence {µn} ∈ Dt̄,µ̄, n = 1, 2, . . ., such that Jµn ≤ Jµn+1
≤

. . . a.s. and from (B.34),
lim
n→∞

Jµn(t̄) = X̂(t̄) a.s. (B.35)

Now fix some s such that 0 ≤ s ≤ t̄ ≤ T , then by (B.17), and the reasoning that follows,

Hµ(s, t̄) = Hµ̄(s, t̄) a.s., µ ∈ Dt̄,µ̄. (B.36)

Since {µn} ∈ Dt̄,µ̄, from (B.36)

Hµn(s, t̄) = Hµ̄(s, t̄) a.s., n = 1, 2, . . . (B.37)

Using (B.35), we can write

E
[
Hµ̄(s, t̄)X̂(t̄)

∣∣Fs] = E
[
Hµ̄(s, t) lim

n→∞
Jµn(t̄)

∣∣Fs] a.s., (B.38)

and using the monotone convergence theorem,

E
[
Hµ̄(s, t̄)X̂(t̄)

∣∣Fs] = lim
n→∞

E
[
Hµ̄(s, t)Jµn(t̄)

∣∣Fs]
= lim

n→∞
E
[
E
[
Hµn(s, t̄)Hµn(t̄, T )B

∣∣Ft̄] ∣∣Fs]
= lim

n→∞
E
[
Hµn(s, T )B

∣∣Fs]
= lim

n→∞
Jµn(s) a.s.

(B.39)
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Therefore, by the fact that µn ∈ Dt̄,µ̄ ⊂ H and s ≤ t̄

E
[
Hµ̄(s, t̄)X̂(t̄)

∣∣Fs] = lim
n→∞

Jµn(s)

≤ ess-sup
µ∈H

Jµ(s)

= X̂(s) a.s.

(B.40)

Taking s = 0 in (B.40), from Proposition 4.3.15(1),

E
[
Hµ̄(t̄)X̂(t̄)

]
≤ E[X̂(0)] = û <∞. (B.41)

From the strict almost sure positivity of Hµ̄(t̄) and (B.41), we have X̂(t̄) <∞ a.s. Now,

1

Hµ̄(s)
E
[
Hµ̄(t̄)X̂(t̄)

∣∣Fs] = E
[
Hµ̄(s, t̄)X̂(t̄)

∣∣Fs]
≤ X̂(s) a.s.

(B.42)

for all 0 ≤ s ≤ t̄ ≤ T . Thus,

E
[
Hµ̄(t̄)X̂(t̄)

∣∣Fs] ≤ Hµ̄(s)X̂(s) a.s. (B.43)

for all 0 ≤ s ≤ t̄ ≤ T . Since t̄ and µ̄ were chosen arbitrarily, we have from (B.43) that the
supermartingale property holds for all µ ∈ H. Thus,

HµX̂ ∈ SPM({Ft}, P ), µ ∈ H. (B.44)

�

Proof of Proposition 4.3.15(5). Again define

Jµ(t) , E
[
Hµ(t, T )B

∣∣Ft] , t ∈ [0, T ],µ ∈ H, (B.45)

where,

Hµ(s, t) ,
Hµ(t)

Hµ(s)
, 0 ≤ s ≤ t ≤ T,µ ∈ H, (B.46)

so that
X̂(t) = ess-sup

µ∈H
Jµ(t), t ∈ [0, T ]. (B.47)
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Fix some s, t such that 0 ≤ s ≤ t ≤ T , then

E
[
Hµ(s, t)Jµ(t)

∣∣Fs] = E
[
Hµ(s, t)E

[
Hµ(t, T )B

∣∣Ft] ∣∣Fs]
= E

[
Hµ(s, T )B

∣∣Fs]
= Jµ(s) a.s., µ ∈ H

(B.48)

Using (B.47) we have
Jµ(t) ≤ X̂(t) a.s., µ ∈ H. (B.49)

Furthermore, from (B.48) and (B.47)

X̂(s) = ess-sup
µ∈H

E
[
Hµ(s, t)Jµ(t)

∣∣Fs] a.s. (B.50)

From (B.49) and the non-negativity of Hµ,

Hµ(s, t)Jµ(t) ≤ Hµ(s, t)X̂(t) a.s., µ ∈ H. (B.51)

Taking conditional expectations and essential suprema of both sides of (B.51) (which exists
by Theorem C.13.2) and then using (B.50) yields

X̂(s) ≤ ess-sup
µ∈H

E
[
Hµ(s, t)X̂(t)

∣∣Fs] a.s. (B.52)

But using the supermartingale property of HµX̂ from Proposition 4.3.15(4), we have

X̂(s) ≥ ess-sup
µ∈H

E
[
Hµ(s, t)X̂(t)

∣∣Fs] a.s. (B.53)

Combining (B.53) and (B.52), we conclude

X̂(s) = ess-sup
µ∈H

E
[
Hµ(s, t)X̂(t)

∣∣Fs]
= ess-sup

µ∈H

E[Hµ(t)X̂(t)|Fs]
Hµ(s)

a.s.

(B.54)

�

Proof of Proposition 4.3.15(6). Fix µ̄ ∈ H. Define

zµ̄(t) ,

{
Hµ̄(t)X̂(t), t ∈ [0, T ]

Hµ̄(T )X̂(T ), t ∈ (T,∞)
, (B.55)
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i.e.
zµ̄(t) , Hµ̄(t ∧ T )X̂(t ∧ T ), t ∈ [0,∞). (B.56)

Define Ft , FT for all t ∈ [T,∞). From Proposition 4.3.15(4), we have that

zµ̄ ∈ SPM({Ft}, P ). (B.57)

From §1.4 of Chung [6], there exists a set Ω∗(µ̄) ∈ F∞ ≡ FT such that P (Ω∗(µ̄)) = 1 and

z+
µ̄ (t, ω) , lim

s∈Q
s↓↓t

zµ̄(s, ω) (B.58)

exists in R for each t ∈ [0,∞) and ω ∈ Ω∗(µ̄).

Remark B.2.2. Equation (B.58) says that for each ω ∈ Ω∗(µ̄) and t ∈ [0,∞), there exists
some z+

µ̄ (t, ω) ∈ R with the following property: for each ε > 0 there is some δ = δ(ε, t, ω) >
0 such that

|z+
µ̄ (t, ω)− zµ̄(s, ω)| < ε (B.59)

for all s ∈ Q ∩ (t, t+ δ).

We have that t 7→ z+
µ̄ (t, ω) : [0, T ) 7→ R is càdlàg for each ω ∈ Ω∗(µ̄). Since X̂(T ) = B

a.s., we know
z+
µ̄ (t, ω) = Hµ̄(T, ω)B(ω), t ∈ [T,∞) ω ∈ Ω∗(µ̄). (B.60)

Put
z+
µ̄ (t, ω) , 0, t ∈ [0,∞) ω /∈ Ω∗(µ̄) (B.61)

Thus, due (B.60) and (B.61), t 7→ z+
µ̄ (t, ω) : [0,∞) 7→ R is càdlàg for each ω ∈ Ω (see

II(65.1) in Rogers and Williams [42]). Put

Gt , σ{Ft+,N (P )}. (B.62)

Since zµ̄ is {Ft}-adapted, from Lemma II (66.1) of Rogers and Williams [43], z+
µ̄ is {Gt}-

adapted. But since N (P ) ∈ Ft and Ft+ = Ft (from Remark 4.1.2), we therefore have
Gt = Ft. Thus, z+

µ̄ is {Ft}-adapted. From Lemma II (66.2) of Rogers and Williams [43],
and (B.57)

z+
µ̄ ∈ SPM({Gt}, P ), (B.63)

and therefore, z+
µ̄ ∈ SPM({Ft}, P ) and is càdlàg.

From (B.55)

X̂(t) =
1

Hµ̄(t)
zµ̄(t) a.s., t ∈ [0, T ]. (B.64)
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Put

X̂+
µ̄ (t) ,

1

Hµ̄(t)
z+
µ̄ (t), t ∈ [0, T ]. (B.65)

Now t 7→ 1
Hµ̄(t,ω)

: [0, T ] 7→ (0,∞) is càdlàg for each ω ∈ Ω. Since z+
µ̄ (·, ω) is also càdlàg for

each ω ∈ Ω, we have that

t 7→ X̂+
µ̄ (t, ω) : [0, T ] 7→ R is càdlàg for each ω ∈ Ω. (B.66)

Moreover, 1
Hµ̄

is {Ft}-adapted and z+
µ̄ is {Ft}-adapted meaning that X̂+

µ̄ is {Ft}-adapted.

As a result,
Hµ̄X̂

+
µ̄ ∈ SPM({Ft}, P ) (B.67)

and is a càdlàg process where
X̂+
µ̄ (T ) = B a.s. (B.68)

From the supermartingale property of Hµ̄X̂
+
µ̄ (B.67),

Hµ̄(t)X̂+
µ̄ (t) ≥ E

[
Hµ̄(T )B

∣∣Ft] a.s.

X̂+
µ̄ (t) ≥ E

[
Hµ̄(t, T )B

∣∣Ft] a.s., t ∈ [0, T ].
(B.69)

From (4.67)

X̂(t) ≥
E
[
Hµ(T )B

∣∣Ft]
Hµ(t)

a.s., t ∈ [0, T ],µ ∈ H. (B.70)

Then

zµ̄(t) , Hµ̄(t)X̂(t)

≥ Hµ̄(t)
E
[
Hµ(T )B

∣∣Ft]
Hµ(t)

a.s., t ∈ [0, T ],µ ∈ H.
(B.71)

Now fix a sequence {tn} ∈ Q for n = 1, 2, . . . such that t < . . . < tn+1 < tn < . . . and
limn→∞ tn = t. Then, by corollary II(2.4) in Revuz and Yor [39]

lim
s∈Q
s↓↓t

E
[
BHµ(T )

∣∣Fs] = lim
n→∞

E
[
BHµ(T )

∣∣Ftn]
= E

[
BHµ(T )

∣∣Ft+]
= E

[
BHµ(T )

∣∣Ft] a.s., t ∈ [0, T ),µ ∈ H.

(B.72)

Moreover, since

t 7→ Hµ̄(t, ω)

Hµ(t, ω)
: [0, T ) 7→ (0,∞) (B.73)
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is càdlàg on [0, T ) for each ω ∈ Ω and µ ∈ H, then

lim
s∈Q
s↓↓t

Hµ̄(s)

Hµ(s)
=
Hµ̄(t)

Hµ(t)
, t ∈ [0, T ),µ ∈ H. (B.74)

As a result, from (B.71), (B.72), and (B.74)

z+
µ̄ (t) = lim

n→∞
zµ̄(tn)

≥ lim
n→∞

Hµ̄(tn)

Hµ(tn)
lim
n→∞

E
[
BHµ(T )

∣∣Ftn]
=
Hµ̄(t)

Hµ(t)
E
[
BHµ(T )

∣∣Ft]
= Hµ̄(t)E

[
BHµ(t, T )

∣∣Ft] a.s., t ∈ [0, T ),µ ∈ H.

(B.75)

Thus

X̂+
µ̄ (t) ,

z+
µ̄ (t)

Hµ̄(t)
≥ E

[
BHµ(t, T )

∣∣Ft] a.s., t ∈ [0, T ),µ ∈ H. (B.76)

From the definition of X̂ (see (4.67)) and (B.76), we conclude

X̂+
µ̄ (t) ≥ X̂(t) a.s., t ∈ [0, T ). (B.77)

To show the opposite inequality, fix t ∈ [0, T ) and µ ∈ H and sequence {tn} ∈ Q such
that t < . . . tn+1 < tn < . . . ≤ T and limn→∞ tn = t. Since X̂+

µ̄ is càdlàg by (B.66),

X̂+
µ̄ (t) = lim

n→∞
X̂+
µ̄ (tn) a.s. (B.78)

Similarly, since Hµ is càdlàg

Hµ(t) = lim
n→∞

Hµ(tn) a.s. (B.79)

Thus,
lim
n→∞

Hµ(t, tn) = 1 a.s. (B.80)

From the non-negativity of Hµ and from (B.64) we can write

Hµ(t, tn)X̂(tn) = Hµ(t, tn)
zµ̄(tn)

Hµ̄(tn)
a.s. (B.81)
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It is easy to see from (B.58) that

lim
n→∞

zµ̄(tn) = z+
µ̄ (t) a.s. (B.82)

and from the càdlàg property of 1
Hµ̄

lim
n→∞

1

Hµ̄(tn)
=

1

Hµ̄(t)
a.s. (B.83)

Now, from (B.81), (B.80), (B.82) and (B.83),

lim
n→∞

Hµ(t, tn)X̂(tn) =
z+
µ̄ (t)

Hµ̄(t)
= X̂+

µ̄ (t) a.s. (B.84)

Since X̂+
µ̄ is {Ft}-adapted, from (B.84) and Fatou’s Lemma

X̂+
µ̄ (t) = E

[
X̂+
µ̄ (t)

∣∣Ft]
= E

[
lim
n→∞

Hµ(t, tn)X̂(tn)
∣∣Ft]

≤ lim
n→∞

E
[
Hµ(t, tn)X̂(tn)

∣∣Ft] a.s.

(B.85)

Now using the supermartingale property of HµX̂ from Proposition 4.3.15(4), and the fact
that t < tn for all n = 1, 2, . . .,

E
[
Hµ(tn)X̂(tn)

∣∣Ft] ≤ Hµ(t)X̂(t) a.s., (B.86)

E
[
Hµ(t, tn)X̂(tn)

∣∣Ft] ≤ X̂(t) a.s. (B.87)

Putting (B.87) into (B.85) gives

X̂+
µ̄ (t) ≤ X̂(t) a.s., t ∈ [0, T ). (B.88)

Therefore, from (B.77) and (B.88), we have

X̂(t) = X̂+
µ̄ (t) a.s., t ∈ [0, T ). (B.89)

Since X̂(T ) = X̂+
µ̄ (T ) = B a.s. we have by (B.89)

X̂(t) = X̂+
µ̄ (t) a.s., t ∈ [0, T ], (B.90)

and therefore, {X̂(t), t ∈ [0, T ]} has a càdlàg modification.
�
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B.3 Optimal Cumulative Consumption in the Uncon-

strained Regime-Switching Market Model

Proof of Proposition 4.3.21.

By Proposition C.8.6 we have that the continuous local martingale parts of (4.89) and
(4.91) are indistinguishable. Equating the continuous local martingale parts of (4.89) and
(4.91) yields∫ t

0

(
Ψ0(s)>

H0(s)
+ X̂(s)θ(s)>

)
dW(s) =

∫ t

0

(
Ψµ(s)>

Hµ(s)
+ X̂(s)θ(s)>

)
dW(s), t ∈ [0, T ],

(B.91)
for all µ ∈ H, and therefore,

Ψ0(t)

H0(t)
=

Ψµ(t)

Hµ(t)
λ⊗ P a.e. on [0, T ]× Ω, µ ∈ H. (B.92)

Combining (4.89) and (4.91) with (B.91) and (B.92) results in

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
Γµij(s)

Hµ(s−)
−

Γ0
ij(s)

H0(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γµij(s)

Hµ(s−)

)
µ̃ij(s)dRij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

4Aµ(s)

Hµ(s−)
µ̃ij(s)dRij(s)

+

∫ t

0

1

H0(s−)
dA0(s)−

∫ t

0

1

Hµ(s−)
dAµ(s), t ∈ [0, T ],µ ∈ H.

(B.93)

To move forward and help simplify (B.93), we state the following lemma:

Lemma B.3.1. The process

zµij(t) ,
∫ t

0

4Aµ(s)

Hµ(s−)
µ̃ij(s)dRij = 0, t ∈ [0, T ], (B.94)

for all i, j ∈ S, i 6= j, and µ ∈ H, where µ̃ij , µij/(1 + µij).
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Proof. Fix i, j ∈ S, i 6= j and µ ∈ H. Define

Gij(t) ,
4Aµ(t)

Hµ(t−)
µ̃ij(t), t ∈ [0, T ]. (B.95)

We know from the Doob-Meyer decomposition in Lemma 4.3.16 that Aµ ∈ P∗, and as a
result, 4Aµ ∈ P∗. We also have that (Hµ)− ∈ P∗ and µij ∈ P∗. Therefore,

Gij ∈ P∗. (B.96)

Define the positive and negative parts of Gij as follows

G+
ij , max{0, Gij} (B.97)

and
G−ij , max{0,−Gij}. (B.98)

We then see,
Gij = G+

ij −G−ij (B.99)

and from (B.96) both G+
ij, G

−
ij ∈ P∗. Now, substituting into zµij, we have

zµij(t) =

∫ t

0

G+
ij(s)dRij(s)−

∫ t

0

G−ij(s)dRij(s), t ∈ [0, T ]. (B.100)

Now, using the fact Mij , Rij − R̃ij, and Theorem A.1.7, we can write∫ t

0

G+
ij(s)dRij(s) =

∫ t

0

G+
ij(s)dMij(s) +

∫ t

0

G+
ij(s)dR̃ij(s), t ∈ [0, T ]. (B.101)

For any fixed ω ∈ Ω, from (B.95),{
0 ≤ s ≤ T

∣∣∣∣G+
ij(s, ω) 6= 0

}
⊆
{

0 ≤ s ≤ T

∣∣∣∣4Aµ(s, ω) 6= 0

}
. (B.102)

Since Aµ(·, ω) is càdlàg and non-decreasing for each ω ∈ Ω, the set{
0 ≤ s ≤ T

∣∣∣∣4Aµ(s, ω) 6= 0

}
(B.103)

is countable for each ω ∈ Ω. From (B.102), we also have that{
0 ≤ s ≤ T

∣∣∣∣G+
ij(s, ω) 6= 0

}
(B.104)
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is countable for each ω ∈ Ω. From Definition 4.1.9, R̃ij(·, ω) is continuous on [0, T ] for each
ω ∈ Ω, and thus ∫ ·

0

G+
ij(s, ω)dR̃ij(s, ω) = 0, ω ∈ Ω. (B.105)

From (B.101) and (B.105),∫ t

0

G+
ij(s)dRij(s) =

∫ t

0

G+
ij(s)dMij(s), t ∈ [0, T ]. (B.106)

Since Mij ∈M0({Ft}, P ) we have,∫ ·
0

G+
ij(s)dRij(s) ∈Mloc,0({Ft}, P ). (B.107)

Moreover, since G+
ij is non-negative,∫ t

0

G+
ij(s)dRij(s) ≥ 0, t ∈ [0, T ], (B.108)

because Rij is a non-decreasing process. Since
∫ ·

0
G+
ij(s)dRij(s) is non-negative by (B.108),

a local martingale by (B.107), and initially takes the value 0, we have from basic measure
theory that ∫ t

0

G+
ij(s)dRij(s) = 0, t ∈ [0, T ], (B.109)

and similarly, ∫ t

0

G−ij(s)dRij(s) = 0, t ∈ [0, T ]. (B.110)

Finally, from (B.100), (B.109) and (B.110),

zµij(t) = 0, t ∈ [0, T ],µ ∈ H, i, j ∈ S, i 6= j. (B.111)

�

Lemma B.3.2. The following equality holds∫ t

0

1

H0(s−)
dA0(s) =

∫ t

0

1

Hµ(s−)
dAµ(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ],µ ∈ H,

(B.112)
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where Aµ and Γ0
ij, µ ∈ H, i, j ∈ S, i 6= j, are processes from the Doob-Meyer decomposition

(Lemma 4.3.16).

Proof. Using Lemma B.3.1 with (B.93) we obtain

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
Γµij(s)

Hµ(s−)
−

Γ0
ij(s)

H0(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γµij(s)

Hµ(s−)

)
µ̃ij(s)dRij(s)

+

∫ t

0

1

H0(s−)
dA0(s)−

∫ t

0

1

Hµ(s−)
dAµ(s), t ∈ [0, T ],µ ∈ H,

(B.113)

where µ̃ij , µij/(1 + µij). Let

B(t) ,
∑
i,j∈S
i 6=j

∫ t

0

Φij(s)dRij(s), t ∈ [0, T ], (B.114)

where we have put

Φij(t) , µ̃ij(t)

(
X̂(t−)µij(t)−

Γµij(t)

Hµ(t−)

)
, t ∈ [0, T ],µ ∈ H, i, j ∈ S, i 6= j. (B.115)

Now, (X)− ∈ P∗ and Γµij ∈ P∗, therefore

Φij ∈ P∗. (B.116)

We have from (B.114) and (4.8),

B(t) =
∑
i,j∈S
i 6=j

(Φij •Rij)(t)

=
∑
i,j∈S
i 6=j

(Φij • (Rij − R̃ij + R̃ij))(t)

=
∑
i,j∈S
i 6=j

(Φij •Mij)(t) +
∑
i,j∈S
i 6=j

(Φij • R̃ij)(t), t ∈ [0, T ].

(B.117)
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Putting (B.117) into (B.113) yields

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
1

1 + µij(s)

)(
Γµij(s)

Hµ(s−)
− X̂(s−)µij(s)

)
dMij(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s) +

∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γµij(s)

Hµ(s−)

)
µ̃ij(s)dR̃ij(s)

+

∫ t

0

1

H0(s−)
dA0(s)−

∫ t

0

1

Hµ(s−)
dAµ(s), t ∈ [0, T ],µ ∈ H.

(B.118)

Define processes {F (t), t ∈ [0, T ]} and {K(t), t ∈ [0, T ]} as follows:

F (t) ,
∑
i,j∈S
i 6=j

∫ t

0

(
1

1 + µij(s)

)(
Γµij(s)

Hµ(s−)
− X̂(s−)µij(s)

)
dMij(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s), t ∈ [0, T ],µ ∈ H,

(B.119)

and

K(t) ,
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γµij(s)

Hµ(s−)

)
µ̃ij(s)dR̃ij(s)

+

∫ t

0

1

H0(s−)
dA0(s)−

∫ t

0

1

Hµ(s−)
dAµ(s), t ∈ [0, T ],µ ∈ H.

(B.120)

It is quite easy to see from (B.119) that F is a local martingale. Since Aµ is predictable
for each µ ∈ H by Lemma 4.3.16, we have by Proposition C.9.4 and (B.120) that K is
both predictable and has paths of finite variation. In summary,

F ∈Mloc,0({Ft}, P ) K ∈ FV0({Ft}, P ) ∩ P∗, (B.121)

and from (B.118),
F (t) = −K(t) t ∈ [0, T ]. (B.122)

From (B.121) and (B.122), we have

F ∈Mloc,0({Ft}, P ) ∩ FV0({Ft}, P ) ∩ P∗. (B.123)
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From Proposition C.11.5 and (B.123), we have that

F (t) = 0 a.s., t ∈ [0, T ] (B.124)

Now from (B.122) and (B.124)

F (t) = 0 a.s., t ∈ [0, T ] (B.125)

In light of (B.124), setting the left hand side of (B.119) to zero and using Lemma 4.1.15
yields (

1

1 + µij(t)

)(
Γµij(t)

Hµ(t−)
− X̂(t−)µij(t)

)
=

Γ0
ij(t)

H0(t−)
, ν[Mij ] − a.e., (B.126)

for i, j ∈ S, i 6= j and µ ∈ H. Now, putting (B.126) into (B.120),

K(t) =

∫ t

0

1

H0(s−)
dA0(s)−

∫ t

0

1

Hµ(s−)
dAµ(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ],µ ∈ H.

(B.127)

Since K(·) = 0 from (B.125),∫ t

0

1

H0(s−)
dA0(s) =

∫ t

0

1

Hµ(s−)
dAµ(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ],µ ∈ H,

(B.128)

which is the required result. �

To move forward, we state the following lemma, which provides an upper-bound for
the process Γ0

ij.

Lemma B.3.3. Γ0
ij(t) ≤ 0, ν[Mij ]-almost everywhere for i, j ∈ S, i 6= j.

Proof. Fix some k, l ∈ S where k 6= l. Put µij(t) , 0 for all t ∈ [0, T ] where
(i, j) 6= (k, l). From Lemma B.3.2 and the positivity of Aµ,∫ t

0

1

H0(s−)
dA0(s) ≥

∫ t

0

Γ0
kl(s)

H0(s−)
µkl(s)dR̃kl(s), t ∈ [0, T ]. (B.129)
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Put

U ,

{
(t, ω) ∈ [0, T ]× Ω

∣∣∣∣Γ0
kl(t, ω) > 0

}
. (B.130)

Since Γ0
kl is {Ft}-predictable,

U ∈ P∗. (B.131)

We would like to show that ν[Mkl][U ] = 0. Suppose

ν[Mkl][U ] > 0. (B.132)

By the definition of Doléans measure from Notation 4.16,

ν[Mkl][U ] , E

[∫ T

0

IU(t, ω)Rkl(dt, ω)

]
, (B.133)

and from I.3.17(iii) of Jacod and Shiryayev [26], we also have

ν[Mkl][U ] , E

[∫ T

0

IU(t, ω)R̃kl(dt, ω)

]
. (B.134)

From (B.132) and (B.134),∫
Ω

[ ∫ T

0

IU(t, ω)R̃kl(dt, ω)

]
P (dω) > 0. (B.135)

Put

z(ω) ,
∫ T

0

IU(t, ω)R̃kl(dt, ω), ω ∈ Ω. (B.136)

We then have by (B.135)
z(ω) ≥ 0 a.s. and E[z] > 0. (B.137)

Put

Ω1 ,

{
ω ∈ Ω

∣∣∣∣z(ω) > 0

}
. (B.138)

Since E[z] > 0, we have P [Ω1] > 0. Define a sequence {µ(n)
kl (t, ω)} for n = 1, 2, . . . as

µ
(n)
kl (t, ω) , nIU(t, ω)H0(t−, ω) (B.139)

for all (t, ω) ∈ [0, T ] × Ω. Since each component of µ
(n)
kl (t, ω) is predictable we have that

µ
(n)
kl ∈ P∗ for each n = 1, 2, . . .. Defining

µ(n) ,

{
µ

(n)
kl i = k, j = l

0 for all other i, j ∈ S, i 6= j
, (B.140)
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we then have µ(n) ∈ P∗. Also from the elementary bound in (4.11) and since H0(t) is

continuous on t ∈ [0, T ] with inft∈[0,T ] H0(t) > 0 a.s., we have that µ
(n)
kl ∈ L

1/2
loc (Rkl) and

thus µ(n) ∈ H for all n = 1, 2, . . .. Putting (B.139) into (B.129) and taking t = T yields∫ T

0

1

H0(s−, ω)
dA0(s, ω) ≥ n

∫ T

0

Γ0
kl(s, ω)IU(s, ω)R̃kl(ds, ω), (B.141)

for n = 1, 2, . . .. Define the set

Θ(ω) ,

{
t ∈ [0, T ]

∣∣∣∣IU(t, ω) = 1

}
(B.142)

for all ω ∈ Ω. Fix some ω̄ ∈ Ω1. From (B.138) we have that z(ω̄) > 0 and therefore by
(B.136) and (B.142) ∫

Θ(ω̄)

R̃kl(dt, ω̄) > 0. (B.143)

Now from (B.130) and (B.142) we have that

Γ0
kl(t, ω̄) > 0 for all t ∈ Θ(ω̄). (B.144)

As a result of (B.143) and (B.144), we can conclude∫
Θ(ω̄)

Γ0
kl(t, ω̄)R̃kl(dt, ω̄) > 0. (B.145)

Fixing some ω̄ ∈ Ω1 in (B.141) yields∫ T

0

1

H0(s−, ω̄)
dA0(s, ω̄) ≥ n

∫
Θ(ω̄)

Γ0
kl(s, ω̄)R̃kl(ds, ω̄) (B.146)

for each n = 1, 2, . . .. Putting (B.145) into (B.146) and taking n→∞ in (B.146) gives∫ T

0

1

H0(s−, ω̄)
dA0(s, ω̄) =∞, ω̄ ∈ Ω1. (B.147)

Since H0(t) is continuous on t ∈ [0, T ], therefore bounded for P -almost all ω, and A0(t)
is a non-decreasing process on t ∈ [0, T ] with A0(T ) < ∞ a.s. from Lemma 4.3.16, there
cannot be a set of non-zero probability in which ( 1

H0
•A0)(T ) takes the value∞. However,

P [Ω1] > 0. As a result, there is a contradiction in (B.132). Since k, l ∈ S were arbitrarily
chosen, we therefore have

Γ0
ij ≤ 0 ν[Mij ] − a.e., i, j ∈ S, i 6= j. (B.148)
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Now that we have established Lemma B.3.3, we can complete the proof of Proposition
4.3.21. From Lemma B.3.2 and the fact that Mij , Rij − R̃ij,∫ t

0

1

H0(s−)
dA0(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µij(s)dMij(s)

=

∫ t

0

1

Hµ(s−)
dAµ(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µij(s)dRij(s), t ∈ [0, T ],µ ∈ H.

(B.149)

Define a sequence {µ(m)
ij } for m = 2, 3, . . . where

µ
(m)
ij (t, ω) , −1 +

1

m
, (t, ω) ∈ [0, T ]× Ω. (B.150)

It is easy to see that µ(m) , {µ(m)
ij }i,j∈S ∈ H.

Also define the sequence of processes {ĉ(m)}, for m = 2, 3, . . .,

ĉ(m)(t) ,
∫ t

0

1

H0(s−)
dA0(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
µ

(m)
ij (s)dMij(s), t ∈ [0, T ]. (B.151)

From (B.150) and (B.149)

ĉ(m)(t) =

∫ t

0

1

Hµ(m)(s−)
dAµ(m) +

∑
i,j∈S
i 6=j

∫ t

0

(−1 + 1
m

)Γ0
ij(s)

H0(s−)
(s)dRij(s), t ∈ [0, T ], (B.152)

for all m = 2, 3, . . .. Since Aµ(m) and Rij are non-decreasing, one sees from Lemma B.3.3
and (B.152) that, for all large integers m, one has

ĉ(m)(t2) ≥ ĉ(m)(t1) a.s. (B.153)

for T ≥ t2 ≥ t1 ≥ 0. Thus ĉ(m)(t) is non-decreasing for all large values of m. Now from
(B.151) and (B.150)

ĉ(m)(t) =

∫ t

0

1

H0(s−)
dA0(s)− (1− 1

m
)
∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s), t ∈ [0, T ], (B.154)
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and taking m→∞

lim
m→∞

ĉ(m)(t) =

∫ t

0

1

H0(s−)
dA0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s) a.s., t ∈ [0, T ], (B.155)

and as a result, from (4.100),

ĉ(m)(t)→ ĉ(t) as m→∞ (B.156)

for all t ∈ [0, T ]. By taking m→∞ in (B.153), and observing (B.156), we have that

ĉ(·) is non-decreasing. (B.157)

Now, it is immediate from (4.100) that

ĉ(0) = 0, (B.158)

and from (4.71) and the fact that H0 is almost surely strictly positive,

Γ0
ij

(H0)−
∈ L1/2

loc (Rij) and ( 1
H0
• A0) ∈ F∗. (B.159)

Therefore, we have
ĉ ∈ F∗. (B.160)

Since H0 is almost surely strictly positive and continuous, and A0(T ) <∞ a.s. by Lemma
4.3.16, we have that the first term on the right-hand side of (4.100) is finite. Now since the
second term on the right-hand side of (4.100) is a local martingale by (B.159) and Remark
A.1.2, we know that it is finite as well. Therefore,

ĉ(T ) <∞ a.s. (B.161)

As a result, from (B.157), (B.158), (B.160), and (B.161), we can conclude

ĉ(t) ,
∫ t

0

1

H0(s−)
dA0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γ0
ij(s)

H0(s−)
dMij(s) ∈ C. (B.162)

�
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B.4 Optimal Wealth Process Results in the Constrained

Regime-Switching Market Model

In this section we prove Proposition 5.3.15:

Proof of Proposition 5.3.15(1). Set t = 0. From (5.37)

X̂(0) = ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(T )B

∣∣F0

]
Hν,µ(0)

, (B.163)

where the σ-algebra F0 is given by

F0 , {∅,Ω} ∨ N (P ). (B.164)

Since Hν,µ(0) = 1 a.s. for each (ν,µ) ∈ G ×H, we have

X̂(0) = ess-sup
(ν,µ)∈G×H

E [Hν,µ(T )B] = û a.s. (B.165)

�

Proof of Proposition 5.3.15(2). Set t = T . From (5.37),

X̂(T ) = ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(T )B

∣∣FT ]
Hν,µ(T )

. (B.166)

Since Hν,µ(T ) and B are FT -measurable, with inft∈[0,T ] Hν,µ(t) > 0 a.s., for all (ν,µ) ∈
G ×H, we have

X̂(T ) = ess-sup
(ν,µ)∈G×H

Hν,µ(T )B

Hν,µ(T )
= B a.s. (B.167)

�

Proof of Proposition 5.3.15(3). Since Hν,µ(t) > 0 a.s. for all t ∈ [0, T ] and (ν,µ) ∈ G ×H,

and since B > 0 a.s., we have from (5.37) that X̂(t) > 0 a.s. for all t ∈ [0, T ].
�

Proof of Proposition 5.3.15(4). For ease of notation, define

Hν,µ(s, t) ,
Hν,µ(t)

Hν,µ(s)
, (ν,µ) ∈ G ×H, (B.168)
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for 0 ≤ s ≤ t ≤ T and

Jν,µ(t) , E
[
Hν,µ(t, T )B

∣∣Ft] , (ν,µ) ∈ G ×H, (B.169)

for all t ∈ [0, T ]. From (5.37) and (B.169)

X̂(t) = ess-sup
(ν,µ)∈G×H

Jν,µ(t), t ∈ [0, T ]. (B.170)

Fix some t̄ ∈ [0, T ] and (ν̄, µ̄) ∈ G ×H. Put

Dt̄,ν̄,µ̄ ,
{

(ν,µ) ∈ G ×H
∣∣∣∣ν(s, ω) = ν̄(s, ω), µij(s, ω) = µ̄ij(s, ω),

0 ≤ s ≤ t̄, ω ∈ Ω, i, j ∈ S, i 6= j

}
.

(B.171)

Dt̄,ν̄,µ̄ is the set of all processes (ν,µ) ∈ G × H that match the fixed (ν̄, µ̄) ∈ G × H
for all times between 0 and t̄ and all ω ∈ Ω. Now, if we expand Hν,µ(t1, t2) for any
0 ≤ t1 ≤ t2 ≤ T , we have by (5.19) and (4.43)

Hν,µ(t1, t2) = exp

{
−
∫ t2

t1

[r(s) + g̃K(s,ν(s))]ds

}
E(−θν •W)(t2)

E(−θν •W)(t1)

E(µ •M)(t2)

E(µ •M)(t1)

= exp

{
−
∫ t2

t1

[r(s) + g̃K(s,ν(s))]ds

}
· exp

{
−
∫ t2

t1

θν(s)>dW(s)− 1

2

∫ t2

t1

||θν(s)||2ds
}

· exp

{∑
i,j∈S
i 6=j

∫ t2

t1

µij(s)dMij(s)

} ∏
t1<s≤t2

(1 +4(µ •M)(s)) exp

{
−4(µ •M)(s)

}
,

(B.172)

for t ∈ [0, T ] and (ν,µ) ∈ G × H. Viewing all terms of (B.172) we see that Hν,µ(t1, t2) is
determined only by values of ν(s) and µ(s) for s ∈ [t1, t2]. As a result, by setting t1 = t̄
and t2 = T , we have from (B.172) that Hν,µ(t̄, T ) is determined only by values of ν(s) and
µ(s) for s ∈ [t̄, T ]. Thus, by (B.169), (B.170) and (B.171),

X̂(t̄) = ess-sup
(ν,µ)∈G×H

Jν,µ(t̄) = ess-sup
(ν,µ)∈Dt̄,ν̄,µ̄

E[Hν,µ(t̄, T )B|Ft̄]. (B.173)
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For fixed (ν̄, µ̄) ∈ G ×H and t̄ ∈ [0, T ], define the set

J (t̄, ν̄, µ̄) ,

{
Jν,µ(t̄)

∣∣∣∣(ν,µ) ∈ Dt̄,ν̄,µ̄
}
. (B.174)

The following lemma is essential as it allows us to use Theorem C.13.2 on the set J (t̄, ν̄, µ̄).

Lemma B.4.1. The set J (t̄, ν̄, µ̄) is closed under pairwise maximization in the following
sense: for arbitrary elements J1, J2 ∈ J (t̄, ν̄, µ̄), there is some J ∈ J (t̄, ν̄, µ̄) such that

J , J1 ∨ J2 a.s. (B.175)

Proof. Fix (ν1,µ1), (ν2,µ2) ∈ Dt̄,ν̄,µ̄. To remove possible confusion with notation, we
write

Jνi,µi,t̄(ω) , Jνi,µi(t̄, ω), i = 1, 2. (B.176)

for all ω ∈ Ω. Define the set

A ,

{
ω ∈ Ω

∣∣∣∣Jν1,µ1,t̄(ω) ≥ Jν2,µ2,t̄(ω)

}
. (B.177)

Since Jν1,µ1
and Jν2,µ2

are {Ft}-adapted, A ∈ Ft̄. Define

µ̂(t, ω) , µ1(t, ω)IA(ω) + µ2(t, ω)IAc(ω), (t, ω) ∈ [0, T ]× Ω, (B.178)

and
ν̂(t, ω) , ν1(t, ω)IA(ω) + ν2(t, ω)IAc(ω), (t, ω) ∈ [0, T ]× Ω. (B.179)

Since (ν1,µ1), (ν2,µ2) ∈ Dt̄,ν̄,µ̄, we have

(ν̂(s, ω), µ̂(s, ω)) = (ν̄(s, ω), µ̄(s, ω)), (s, ω) ∈ [0, t̄]× Ω. (B.180)

We then have from (B.178)-(B.180),

µ̂(s, ω) = µ̄(s, ω)I[0,t̄](s) + µ1(s, ω)I(t̄,T ]×A(s, ω) + µ2(s, ω)I(t̄,T ]×Ac(s, ω), (B.181)

and

ν̂(s, ω) = ν̄(s, ω)I[0,t̄](s) + ν1(s, ω)I(t̄,T ]×A(s, ω) + ν2(s, ω)I(t̄,T ]×Ac(s, ω), (B.182)

for all (s, ω) ∈ [0, T ] × Ω. From (B.181) we see that each term is {Ft}-predictably mea-
surable, and thus, µ̂ is {Ft}-predictably measurable. Moreover, µ̂ij(t)4Mij(t) > −1 a.s.
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for all t ∈ [0, T ] and µ̂ij ∈ L
1/2
loc (Rij) (see Definition A.1.1) for all i, j ∈ S, i 6= j, since

µ̄,µ1,µ2 ∈ H. Thus, µ̂ ∈ H. Similarly, from (B.182) we see that each term is {Ft}-
progressively measurable, and thus, ν̂ is {Ft}-progressively measurable. Furthermore, ν̂ is
square-integrable on [0, T ]. Lastly, since

g̃K(t, ω, ν̂(t, ω)) = g̃K(t, ω,ν1(t, ω))IA(ω) + g̃K(t, ω,ν2(t, ω))IAc(ω), (t, ω) ∈ [0, T ]× Ω,
(B.183)

we easily see that ν̂ ∈ G. Therefore, from (B.180), we have that (ν̂, µ̂) ∈ Dt̄,ν̄,µ̄, and

Jν̂,µ̂,t̄ = Jν̂,µ̂(t̄) , E
[
Hν̂,µ̂(t̄, T )B

∣∣Ft̄] , (B.184)

is a member of J (t̄, ν̄, µ̄) (i.e. Jν̂,µ̂,t̄ ∈ J (t̄, ν̄, µ̄)). Using (B.181) and (B.182), and the
fact that A ∈ Ft̄ (as noted above),

Hν̂,µ̂(t̄, T, ω) = IA(ω)Hν1,µ1
(t̄, T, ω) + IAc(ω)Hν2,µ2

(t̄, T, ω), P − a.a. ω ∈ Ω. (B.185)

Furthermore from (B.184) and (B.185) we can write

Jν̂,µ̂,t̄(ω) = IA(ω)Jν1,µ1,t̄(ω) + IAc(ω)Jν2,µ2,t̄(ω), P − a.a. ω ∈ Ω. (B.186)

As a result, we have

Jν1,µ1,t̄(ω) ≥ Jν2,µ2,t̄(ω) and Jν̂,ν̂,t̄(ω) = Jν1,µ1,t̄(ω) P − a.a. ω ∈ A. (B.187)

Similarly, we have

Jν2,µ2,t̄(ω) ≥ Jν1,µ1,t̄(ω) and Jν̂,µ̂,t̄(ω) = Jν2,µ2,t̄(ω) P − a.a. ω ∈ Ac. (B.188)

Therefore,
Jν̂,µ̂,t̄(ω) = Jν1,µ1,t̄(ω) ∨ Jν2,µ2,t̄(ω), P − a.a. ω ∈ Ω. (B.189)

Since Jν̂,µ̂,t̄ ∈ J (t̄, ν̄, µ̄) from (B.184), the set J (t̄, ν̄, µ̄) is closed under pairwise maxi-
mization.
�

Continuing the proof of Proposition 5.3.15(4), since

X̂(t̄) = ess-sup
(ν,µ)∈Dt̄,ν̄,µ̄

Jν,µ(t̄), (B.190)

we have from (B.174),
X̂(t̄) = ess-supJ (t̄, ν̄, µ̄). (B.191)
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From Theorem C.13.2, due to the pairwise maximization property of J (t̄, ν̄, µ̄), there
exists a sequence {ζn} ∈ J (t̄, ν̄, µ̄) for n = 1, 2, . . . such that ζn ≤ ζn+1 ≤ . . . a.s. and

lim
n→∞

ζn = ess-supJ (t̄, ν̄, µ̄) a.s.

= X̂(t̄) a.s.
(B.192)

This means there exists some sequence {(νn,µn)} ∈ Dt̄,ν̄,µ̄ such that Jνn,µn ≤ Jνn+1,µn+1
≤

. . . a.s. and from (B.192),
lim
n→∞

Jνn,µn(t̄) = X̂(t̄) a.s. (B.193)

Now fix some s such that 0 ≤ s ≤ t̄ ≤ T , then by (B.172) and the reasoning that follows,

Hν,µ(s, t̄) = Hν̄,µ̄(s, t̄) a.s., (ν,µ) ∈ Dt̄,ν̄,µ̄. (B.194)

Since {(νn,µn)} ∈ Dt̄,ν̄,µ̄, from (B.194)

Hνn,µn(s, t̄) = Hν̄,µ̄(s, t̄) a.s., n = 1, 2, . . . (B.195)

Using (B.193), we can write

E
[
Hν̄,µ̄(s, t̄)X̂(t̄)

∣∣Fs] = E
[
Hν̄,µ̄(s, t̄) lim

n→∞
Jνn,µn(t̄)

∣∣Fs] a.s., (B.196)

and using the monotone convergence theorem

E
[
Hν̄,µ̄(s, t̄)X̂(t̄)

∣∣Fs] = lim
n→∞

E
[
Hν̄,µ̄(s, t̄)Jνn,µn(t̄)

∣∣Fs]
= lim

n→∞
E
[
E
[
Hνn,µn(s, t̄)Hνn,µn(t̄, T )B

∣∣Ft̄] ∣∣Fs]
= lim

n→∞
E
[
Hνn,µn(s, T )B

∣∣Fs]
= lim

n→∞
Jνn,µn(s) a.s.

(B.197)

Therefore, by the fact that (νn,µn) ∈ Dt̄,ν̄,µ̄ ⊂ G ×H and s ≤ t̄,

E
[
Hν̄,µ̄(s, t̄)X̂(t̄)

∣∣Fs] = lim
n→∞

Jνn,µn(s)

≤ ess-sup
(ν,µ)∈G×H

Jν,µ(s)

= X̂(s) a.s.

(B.198)

Taking s = 0 in (B.198), from Proposition 5.3.15(1),

E
[
Hν̄,µ̄(t̄)X̂(t̄)

]
≤ E[X̂(0)] = û <∞. (B.199)
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From the strict almost sure positivity of Hν̄,µ̄(t̄) and (B.199), we have X̂(t̄) <∞ a.s. Now,

1

Hν̄,µ̄(s)
E
[
Hν̄,µ̄(t̄)X̂(t̄)

∣∣Fs] = E
[
Hν̄,µ̄(s, t̄)X̂(t̄)

∣∣Fs]
≤ X̂(s) a.s.

(B.200)

for all 0 ≤ s ≤ t̄ ≤ T . Thus,

E
[
Hν̄,µ̄(t̄)X̂(t̄)

∣∣Fs] ≤ Hν̄,µ̄(s)X̂(s) a.s. (B.201)

for all 0 ≤ s ≤ t̄ ≤ T . Since t̄ and (ν̄, µ̄) ∈ G × H were chosen arbitrarily, we have from
(B.201) that the supermartingale property holds for all (ν,µ) ∈ G ×H. Thus,

Hν,µX̂ ∈ SPM({Ft}, P ), (ν,µ) ∈ G ×H. (B.202)

�

Proof of Proposition 5.3.15(5). Again define

Jν,µ(t) , E
[
Hν,µ(t, T )B

∣∣Ft] , t ∈ [0, T ], (ν,µ) ∈ G ×H, (B.203)

where,

Hν,µ(s, t) ,
Hν,µ(t)

Hν,µ(s)
, 0 ≤ s ≤ t ≤ T, (ν,µ) ∈ G ×H, (B.204)

so that
X̂(t) = ess-sup

(ν,µ)∈G×H
Jν,µ(t), t ∈ [0, T ]. (B.205)

Fix some s, t such that 0 ≤ s ≤ t ≤ T , then

E
[
Hν,µ(s, t)Jν,µ(t)

∣∣Fs] = E
[
Hν,µ(s, t)E

[
Hν,µ(t, T )B

∣∣Ft] ∣∣Fs]
= E

[
Hν,µ(s, T )B

∣∣Fs]
= Jν,µ(s) a.s., (ν,µ) ∈ G ×H.

(B.206)

Using (B.205) we have

Jν,µ(t) ≤ X̂(t) a.s., (ν,µ) ∈ G ×H. (B.207)

Furthermore, from (B.205) and (B.206),

X̂(s) = ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(s, t)Jν,µ(t)

∣∣Fs] a.s. (B.208)
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From (B.207) and the non-negativity of Hν,µ,

Hν,µ(s, t)Jν,µ(t) ≤ Hν,µ(s, t)X̂(t) a.s., (ν,µ) ∈ G ×H. (B.209)

Taking conditional expectations and essential suprema of both sides of (B.209) (which
exists by Theorem C.13.2) and then using (B.208) yields

X̂(s) ≤ ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(s, t)X̂(t)

∣∣Fs] a.s. (B.210)

But using the supermartingale property of Hν,µX̂ from Proposition 5.3.15(4), we have

X̂(s) ≥ ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(s, t)X̂(t)

∣∣Fs] a.s. (B.211)

Combining (B.211) and (B.210), we conclude

X̂(s) = ess-sup
(ν,µ)∈G×H

E
[
Hν,µ(s, t)X̂(t)

∣∣Fs]
= ess-sup

(ν,µ)∈G×H

E[Hν,µ(t)X̂(t)|Fs]
Hν,µ(s)

a.s.

(B.212)

�

Proof of Proposition 5.3.15(6). Fix (ν̄, µ̄) ∈ G ×H. Define

zν̄,µ̄(t) ,

{
Hν̄,µ̄(t)X̂(t), t ∈ [0, T ]

Hν̄,µ̄(T )X̂(T ), t ∈ (T,∞)
, (B.213)

i.e.
zν̄,µ̄(t) , Hν̄,µ̄(t ∧ T )X̂(t ∧ T ), t ∈ [0,∞). (B.214)

Define Ft , FT for all t ∈ [T,∞). From Proposition 5.3.15(4), we have that

zν̄,µ̄ ∈ SPM({Ft}, P ). (B.215)

From §1.4 of Chung [6], there exists a set Ω∗(ν̄, µ̄) ∈ F∞ ≡ FT such that P (Ω∗(ν̄, µ̄)) = 1
and

z+
ν̄,µ̄(t, ω) , lim

s∈Q
s↓↓t

zν̄,µ̄(s, ω) (B.216)

exists in R for each t ∈ [0,∞) and ω ∈ Ω∗(ν̄, µ̄).
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Remark B.4.2. Equation (B.216) says that for each ω ∈ Ω∗(ν̄, µ̄) and t ∈ [0,∞), there
exists some z+

ν̄,µ̄(t, ω) ∈ R with the following property: for each ε > 0 there is some
δ = δ(ε, t, ω) > 0 such that

|z+
ν̄,µ̄(t, ω)− zν̄,µ̄(s, ω)| < ε (B.217)

for all s ∈ Q ∩ (t, t+ δ).

We have that t 7→ z+
ν̄,µ̄(t, ω) : [0, T ) 7→ R is càdlàg for each ω ∈ Ω∗(ν̄, µ̄). Since

X̂(T ) = B a.s., we know

z+
ν̄,µ̄(t, ω) = Hν̄,µ̄(T, ω)B(ω), t ∈ [T,∞) ω ∈ Ω∗(ν̄, µ̄). (B.218)

Put
z+
ν̄,µ̄(t, ω) , 0, t ∈ [0,∞) ω /∈ Ω∗(ν̄, µ̄). (B.219)

Thus, due to (B.218) and (B.219), t 7→ z+
ν̄,µ̄(t, ω) : [0,∞) 7→ R is càdlàg for each ω ∈ Ω

(see II(65.1) in Rogers and Williams [42]). Define

Gt , σ{Ft+,N (P )}. (B.220)

Since zν̄,µ̄ is {Ft}-adapted, from Lemma II (66.1) of Rogers and Williams [43], z+
ν̄,µ̄ is

{Gt}-adapted. But since N (P ) ∈ Ft and Ft+ = Ft (from Remark 4.1.2), we therefore have
Gt = Ft. Thus, z+

ν̄,µ̄ is {Ft}-adapted. From Lemma II (66.2) of Rogers and Williams [43],
and (B.215)

z+
ν̄,µ̄ ∈ SPM({Gt}, P ), (B.221)

and therefore, z+
ν̄,µ̄ ∈ SPM({Ft}, P ) and is càdlàg.

From (B.213)

X̂(t) =
1

Hν̄,µ̄(t)
zν̄,µ̄(t) a.s., t ∈ [0, T ]. (B.222)

Put

X̂+
ν̄,µ̄(t) ,

1

Hν̄,µ̄(t)
z+
ν̄,µ̄(t), t ∈ [0, T ]. (B.223)

Now t 7→ 1
Hν̄,µ̄(t,ω)

: [0, T ] 7→ (0,∞) is càdlàg for each ω ∈ Ω. Since z+
ν̄,µ̄(·, ω) is also càdlàg

for each ω ∈ Ω, we have that

t→ X̂+
ν̄,µ̄(t, ω) : [0, T ]→ R is càdlàg for each ω ∈ Ω. (B.224)

Moreover, 1
Hν̄,µ̄

is {Ft}-adapted and z+
ν̄,µ̄ is {Ft}-adapted meaning that X̂+

ν̄,µ̄ is {Ft}-
adapted. As a result

Hν̄,µ̄X̂
+
ν̄,µ̄ ∈ SPM({Ft}, P ) (B.225)
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and is a càdlàg process where
X̂+
ν̄,µ̄(T ) = B a.s. (B.226)

From the supermartingale property of Hν̄,µ̄X̂
+
ν̄,µ̄ in (B.225),

Hν̄,µ̄(t)X̂+
ν̄,µ̄(t) ≥ E

[
Hν̄,µ̄(T )B

∣∣Ft] a.s.

X̂+
ν̄,µ̄(t) ≥ E

[
Hν̄,µ̄(t, T )B

∣∣Ft] a.s., t ∈ [0, T ].
(B.227)

From (5.37)

X̂(t) ≥
E
[
Hν,µ(T )B

∣∣Ft]
Hν,µ(t)

a.s., t ∈ [0, T ], (ν,µ) ∈ G ×H. (B.228)

Then

zν̄,µ̄(t) , Hν̄,µ̄(t)X̂(t)

≥ Hν̄,µ̄(t)
E
[
Hν,µ(T )B

∣∣Ft]
Hν,µ(t)

a.s., t ∈ [0, T ], (ν,µ) ∈ G ×H.
(B.229)

Now fix a sequence {tn} ∈ Q for n = 1, 2, . . . such that t < . . . < tn+1 < tn < . . . and
limn→∞ tn = t. Then, by corollary II(2.4) in Revuz and Yor [39]

lim
s∈Q
s↓↓t

E
[
BHν,µ(T )

∣∣Fs] = lim
n→∞

E
[
BHν,µ(T )

∣∣Ftn]
= E

[
BHν,µ(T )

∣∣Ft+]
= E

[
BHν,µ(T )

∣∣Ft] a.s., t ∈ [0, T ), (ν,µ) ∈ G ×H.

(B.230)

Moreover, since

t 7→ Hν̄,µ̄(t, ω)

Hν,µ(t, ω)
: [0, T ] 7→ (0,∞) (B.231)

is càdlàg on [0, T ) for each ω ∈ Ω and (ν,µ) ∈ G ×H, then

lim
s∈Q
s↓↓t

Hν̄,µ̄(s)

Hν,µ(s)
=
Hν̄,µ̄(t)

Hν,µ(t)
, t ∈ [0, T ), (ν,µ) ∈ G ×H. (B.232)
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As a result, from (B.216), (B.229), (B.230), and (B.232)

z+
ν̄,µ̄(t) = lim

n→∞
zν̄,µ̄(tn)

≥ lim
n→∞

Hν̄,µ̄(tn)

Hν,µ(tn)
lim
n→∞

E
[
BHν,µ(T )

∣∣Ftn]
=
Hν̄,µ̄(t)

Hν,µ(t)
E
[
BHν,µ(T )

∣∣Ft]
= Hν̄,µ̄(t)E

[
BHν,µ(t, T )

∣∣Ft] a.s., t ∈ [0, T ), (ν,µ) ∈ G ×H.

(B.233)

Thus

X̂+
ν̄,µ̄(t) ,

z+
ν̄,µ̄(t)

Hν̄,µ̄(t)
≥ E

[
BHν,µ(t, T )

∣∣Ft] a.s., t ∈ [0, T ), (ν,µ) ∈ G ×H. (B.234)

From the definition X̂ (see (5.37)) and (B.234), we conclude

X̂+
ν̄,µ̄(t) ≥ X̂(t) a.s., t ∈ [0, T ). (B.235)

To show the opposite inequality, fix t ∈ [0, T ) and (ν,µ) ∈ G × H and sequence
{tn} ∈ Q such that t < . . . tn+1 < tn < . . . ≤ T and limn→∞ tn = t. Since X̂+

ν̄,µ̄ is càdlàg
from (B.224),

X̂+
ν̄,µ̄(t) = lim

n→∞
X̂+
ν̄,µ̄(tn) a.s. (B.236)

Similarly, since Hν,µ is càdlàg

Hν,µ(t) = lim
n→∞

Hν,µ(tn) a.s. (B.237)

Thus,
lim
n→∞

Hν,µ(t, tn) = 1 a.s. (B.238)

From the non-negativity of Hν,µ and from (B.222) we can write

Hν,µ(t, tn)X̂(tn) = Hν,µ(t, tn)
zν̄,µ̄(tn)

Hν̄,µ̄(tn)
a.s. (B.239)

Again from (B.216) we have that

lim
n→∞

zν̄,µ̄(tn) = z+
ν̄,µ̄(t) a.s. (B.240)
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and from the càdlàg property of 1
Hν̄,µ̄

lim
n→∞

1

Hν̄,µ̄(tn)
=

1

Hν̄,µ̄(t)
a.s. (B.241)

Now, from (B.239), (B.238), (B.240) and (B.241),

lim
n→∞

Hν,µ(t, tn)X̂(tn) =
z+
ν̄,µ̄(t)

Hν̄,µ̄(t)
= X̂+

ν̄,µ̄(t) a.s. (B.242)

Since X̂+
ν̄,µ̄ is {Ft}-adapted, from (B.242) and Fatou’s Lemma

X̂+
ν̄,µ̄(t) = E

[
X̂+
ν̄,µ̄(t)

∣∣Ft]
= E

[
lim
n→∞

Hν,µ(t, tn)X̂(tn)
∣∣Ft]

≤ lim
n→∞

E
[
Hν,µ(t, tn)X̂(tn)

∣∣Ft] a.s.

(B.243)

Now using the supermartingale property of Hν,µX̂, from Proposition 5.3.15(4), and the
fact that t < tn for all n = 1, 2, . . .,

E
[
Hν,µ(tn)X̂(tn)

∣∣Ft] ≤ Hν,µ(t)X̂(t) a.s., (B.244)

E
[
Hν,µ(t, tn)X̂(tn)

∣∣Ft] ≤ X̂(t) a.s. (B.245)

Putting (B.245) into (B.243) gives

X̂+
ν̄,µ̄(t) ≤ X̂(t) a.s., t ∈ [0, T ). (B.246)

Therefore, from (B.235) and (B.246), we have

X̂(t) = X̂+
ν̄,µ̄(t) a.s., t ∈ [0, T ). (B.247)

Since X̂(T ) = X̂+
ν̄,µ̄(T ) = B a.s. we have by (B.247),

X̂(t) = X̂+
ν̄,µ̄(t) a.s., t ∈ [0, T ], (B.248)

and therefore, {X̂(t), t ∈ [0, T ]} has a càdlàg modification.
�
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Proof of Proposition 5.3.15(7): Fix some (ν,µ) ∈ G × H. Since Hν,µX̂ is an {Ft}-
supermartingale, we have from the optional sampling theorem (Theorem C.3.13) that for
any stopping time τ taking values in [0, T ]

Hν,µ(τ)X̂(τ) ≥ E[Hν,µ(T )B|Fτ ] a.s. (B.249)

By dividing both sides of (B.249) by Hν,µ(τ) and taking the essential supremum over G×H
(which exists by Theorem C.13.2), we obtain

X̂(τ) ≥ ess-sup
(ν,µ)∈G×H

E[Hν,µ(T )B|Fτ ]
Hν,µ(τ)

a.s. (B.250)

To show the opposite inequality, define for any stopping time τ taking values in [0, T ],

X̃(τ) , ess-sup
(ν,µ)∈G×H

E[Hν,µ(T )B|Fτ ]
Hν,µ(τ)

. (B.251)

By using Proposition 5.3.15(5), it is easy to see that for stopping times ρ and τ satisfying
0 ≤ ρ ≤ τ ≤ T almost surely, we have

X̃(ρ) = ess-sup
(ν,µ)∈G×H

E[Hν,µ(τ)X̃(τ)|Fρ]
Hν,µ(ρ)

a.s., (B.252)

and therefore,

Hν,µ(ρ)X̃(ρ) ≥ E[Hν,µ(τ)X̃(τ)|Fρ] a.s., (ν,µ) ∈ G ×H. (B.253)

It is immediate that X̂(t) = X̃(t) a.s. for each deterministic t ∈ [0, T ]. Furthermore, we
also have that X̂(τ) = X̃(τ) a.s. for each stopping time τ taking only finitely many values.
Let τ be an arbitrary stopping time taking values in [0, T ] and construct a sequence of
stopping times {τn}, for n = 1, 2, . . ., each element of which takes only finitely many values
and such that τn ↓ τ almost surely. The right continuity of X̂, Fatou’s lemma, and (B.253)
imply,

Hν,µ(τ)X̂(τ) = E[Hν,µ(τ)X̂(τ)|Fτ ]
= E[ lim

n→∞
Hν,µ(τn)X̂(τn)|Fτ ]

≤ lim
n→∞

E[Hν,µ(τn)X̂(τn)|Fτ ]

= lim
n→∞

E[Hν,µ(τn)X̃(τn)|Fτ ]

≤ Hν,µ(τ)X̃(τ) a.s.

(B.254)
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Dividing both sides of (B.254) by Hν,µ(τ) and using (B.251) gives

X̂(τ) ≤ ess-sup
(ν,µ)∈G×H

E[Hν,µ(T )B|Fτ ]
Hν,µ(τ)

a.s. (B.255)

Therefore, from (B.250) and (B.255),

X̂(τ) = ess-sup
(ν,µ)∈G×H

E[Hν,µ(T )B|Fτ ]
Hν,µ(τ)

a.s. (B.256)

�

B.5 Optimal Cumulative Consumption in the Con-

strained Regime-Switching Market Model

Proof of Proposition 5.3.20.

Fix ν ∈ G. By Proposition C.8.6 we have that the continuous local martingale parts of
(5.60) and (5.62) are indistinguishable. Equating the continuous local martingale parts of
(5.60) and (5.62) yields∫ t

0

(
Ψν,0(s)>

Hν,0(s)
+ X̂(s)θν(s)>

)
dW(s) =

∫ t

0

(
Ψν,µ(s)>

Hν,µ(s)
+ X̂(s)θν(s)>

)
dW(s), (B.257)

for all t ∈ [0, T ] and µ ∈ H, and therefore,

Ψν,0(t)

Hν,0(t)
=

Ψν,µ(t)

Hν,µ(t)
λ⊗ P a.e. on [0, T ]× Ω, µ ∈ H. (B.258)

Combining (5.60) and (5.62) with (B.257) and (B.258) results in

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
Γν,µij (s)

Hν,µ(s−)
−

Γν,0ij (s)

Hν,0(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γν,µij (s)

Hν,µ(s−)

)
µ̃ij(s)dRij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

4Aν,µ(s)

Hν,µ(s−)
µ̃ij(s)dRij(s)

+

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∫ t

0

1

Hν,µ(s−)
dAν,µ(s), t ∈ [0, T ],µ ∈ H

(B.259)
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To move forward and help simplify (B.259), we state the following lemma:

Lemma B.5.1. The process

zν,µij (t) ,
∫ t

0

4Aν,µ(s)

Hν,µ(s−)
µ̃ij(s)dRij(s) = 0, t ∈ [0, T ], (B.260)

for all i, j ∈ S, i 6= j, and (ν,µ) ∈ G ×H, where µ̃ij is given by (5.61).

Proof. Fix i, j ∈ S, i 6= j and (ν,µ) ∈ G ×H. Define

Gij(t) ,
4Aν,µ(t)

Hν,µ(t−)
µ̃ij(t), t ∈ [0, T ]. (B.261)

We know from the Doob-Meyer decomposition in Lemma 5.3.16 that Aν,µ ∈ P∗, and as a
result, 4Aν,µ ∈ P∗. We also have that (Hν,µ)− ∈ P∗ and µij ∈ P∗. Therefore,

Gij ∈ P∗. (B.262)

Define the positive and negative parts of Gij as follows

G+
ij , max{0, Gij} (B.263)

and
G−ij , max{0,−Gij}. (B.264)

We then see,
Gij = G+

ij −G−ij (B.265)

and from (B.262) both G+
ij, G

−
ij ∈ P∗. Now, substituting into zν,µij , we have

zν,µij (t) =

∫ t

0

G+
ij(s)dRij(s)−

∫ t

0

G−ij(s)dRij(s), t ∈ [0, T ] (B.266)

Now, using the fact Mij , Rij − R̃ij, and Theorem A.1.7, we can write∫ t

0

G+
ij(s)dRij(s) =

∫ t

0

G+
ij(s)dMij(s) +

∫ t

0

G+
ij(s)dR̃ij(s), t ∈ [0, T ]. (B.267)

For any fixed ω ∈ Ω, from (B.261),{
0 ≤ s ≤ T

∣∣∣∣G+
ij(s, ω) 6= 0

}
⊆
{

0 ≤ s ≤ T

∣∣∣∣4Aν,µ(s, ω) 6= 0

}
. (B.268)
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Since Aν,µ(·, ω) is càdlàg and non-decreasing for each ω ∈ Ω, the set{
0 ≤ s ≤ T

∣∣∣∣4Aν,µ(s, ω) 6= 0

}
(B.269)

is countable for each ω ∈ Ω. From (B.268), we also have that{
0 ≤ s ≤ T

∣∣∣∣G+
ij(s, ω) 6= 0

}
(B.270)

is countable for each ω ∈ Ω. From Definition 4.1.9, R̃ij(·, ω) is continuous on [0, T ] for each
ω ∈ Ω, and thus ∫ ·

0

G+
ij(s, ω)dR̃ij(s, ω) = 0, ω ∈ Ω. (B.271)

From (B.267) and (B.271),∫ t

0

G+
ij(s)dRij(s) =

∫ t

0

G+
ij(s)dMij(s), t ∈ [0, T ]. (B.272)

Since Mij ∈M0({Ft}, P ) we also have,∫ ·
0

G+
ij(s)dRij(s) ∈Mloc,0({Ft}, P ). (B.273)

Moreover, since G+
ij is non-negative,∫ t

0

G+
ij(s)dRij(s) ≥ 0, t ∈ [0, T ], (B.274)

becauseRij is a non-decreasing process. Since
∫ ·

0
G+
ij(s)dRij(s) is non-negative from (B.274),

a local martingale from (B.273), and initially takes the value 0, we have from basic measure
theory that ∫ t

0

G+
ij(s)dRij(s) = 0, t ∈ [0, T ], (B.275)

and similarly, ∫ t

0

G−ij(s)dRij(s) = 0, t ∈ [0, T ]. (B.276)

Finally, from (B.266), (B.275) and (B.276),

zν,µij (t) = 0, t ∈ [0, T ], i, j ∈ S, i 6= j. (B.277)

�
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Lemma B.5.2. The following equality holds,∫ t

0

1

Hν,0(s−)
dAν,0(s) =

∫ t

0

1

Hν,µ(s−)
dAν,µ(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ], (ν,µ) ∈ G ×H,

(B.278)

where Aν,µ and Γν,0ij , (ν,µ) ∈ G × H, i, j ∈ S, i 6= j, are processes from the Doob-Meyer
decomposition (Lemma 5.3.16).

Proof. Using Lemma B.5.1 with (B.259) we obtain

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
Γν,µij (s)

Hν,µ(s−)
−

Γν,0ij (s)

Hν,0(s−)
− X̂(s−)µij(s)

)
dMij(s)

+
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γν,µij (s)

Hν,µ(s−)

)
µ̃ij(s)dRij(s)

+

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∫ t

0

1

Hν,µ(s−)
dAν,µ(s), t ∈ [0, T ], (ν,µ) ∈ G ×H,

(B.279)

where µ̃ij , µij/(1 + µij). Let

B(t) ,
∑
i,j∈S
i 6=j

∫ t

0

Φij(s)dRij(s), t ∈ [0, T ], (B.280)

where we have put

Φij(t) , µ̃ij(t)

(
X̂(t−)µij(t)−

Γν,µij (t)

Hν,µ(t−)

)
, t ∈ [0, T ], (ν,µ) ∈ G ×H, i, j ∈ S, i 6= j.

(B.281)
Now, (X)− ∈ P∗ and Γν,µij ∈ P∗, therefore

Φij ∈ P∗. (B.282)
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From (B.280) and (4.8),

B(t) =
∑
i,j∈S
i 6=j

(Φij •Rij)(t)

=
∑
i,j∈S
i 6=j

(Φij • (Rij − R̃ij + R̃ij))(t)

=
∑
i,j∈S
i 6=j

(Φij •Mij)(t) +
∑
i,j∈S
i 6=j

(Φij • R̃ij)(t), t ∈ [0, T ].

(B.283)

Putting (B.283) into (B.279) yields

0 =
∑
i,j∈S
i 6=j

∫ t

0

(
1

1 + µij(s)

)(
Γν,µij (s)

Hν,µ(s−)
− X̂(s−)µij(s)

)
dMij(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s) +

∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γν,µij (s)

Hν,µ(s−)

)
µ̃ij(s)dR̃ij(s)

+

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∫ t

0

1

Hν,µ(s−)
dAν,µ(s), t ∈ [0, T ],µ ∈ H.

(B.284)

Define processes {F (t), t ∈ [0, T ]} and {K(t), t ∈ [0, T ]} as follows:

F (t) ,
∑
i,j∈S
i 6=j

∫ t

0

(
1

1 + µij(s)

)(
Γν,µij (s)

Hν,µ(s−)
− X̂(s−)µij(s)

)
dMij(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s), t ∈ [0, T ], (ν,µ) ∈ G ×H,

(B.285)

and

K(t) ,
∑
i,j∈S
i 6=j

∫ t

0

(
X̂(s−)µij(s)−

Γν,µij (s)

Hν,µ(s−)

)
µ̃ij(s)dR̃ij(s)

+

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∫ t

0

1

Hν,µ(s−)
dAν,µ(s), t ∈ [0, T ], (ν,µ) ∈ G ×H.

(B.286)
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It is quite easy to see from (B.285) that F is a local martingale. Since Aν,µ is predictable
for each (ν,µ) ∈ G ×H by Lemma 5.3.16, we have by Proposition C.9.4 and (B.286) that
K is both predictable and has paths of finite variation. In summary,

F ∈Mloc,0({Ft}, P ) K ∈ FV0({Ft}, P ) ∩ P∗, (B.287)

and from (B.284),
F (t) = −K(t) t ∈ [0, T ]. (B.288)

From (B.287) and (B.288), we have

F ∈Mloc,0({Ft}, P ) ∩ FV0({Ft}, P ) ∩ P∗. (B.289)

From Proposition C.11.5 and (B.289), we have that

F (t) = 0 a.s. t ∈ [0, T ]. (B.290)

Now from (B.288) and (B.290)

K(t) = 0 a.s. t ∈ [0, T ]. (B.291)

In light of (B.290) and (B.285), setting the left hand side of (B.285) to zero and using
Lemma 4.1.15 yields(

1

1 + µij(t)

)(
Γν,µij (t)

Hν,µ(t−)
− X̂(t−)µij(t)

)
=

Γν,0ij (t)

Hν,0(t−)
, ν[Mij ] − a.e., (B.292)

for i, j ∈ S, i 6= j and (ν,µ) ∈ G ×H. Now, putting (B.292) into (B.286),

K(t) =

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∫ t

0

1

Hν,µ(s−)
dAν,µ(s)

−
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ], (ν,µ) ∈ G ×H.

(B.293)

Since K(·) = 0 from (B.291),∫ t

0

1

Hν,0(s−)
dAν,0(s) =

∫ t

0

1

Hν,µ(s−)
dAν,µ(s)

+
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dR̃ij(s), t ∈ [0, T ], (ν,µ) ∈ G ×H,

(B.294)
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which is the required result. �

To move forward, we state the following lemma which provides an upper-bound for the
process Γν,0ij .

Lemma B.5.3. Γν,0ij (t) ≤ 0, ν[Mij ]-almost everywhere for i, j ∈ S, i 6= j and ν ∈ G.

Proof. Fix some k, l ∈ S where k 6= l. Put µij(t) , 0 for all t ∈ [0, T ] where
(i, j) 6= (k, l). From Lemma B.5.2 and the positivity of Aν,µ,∫ t

0

1

Hν,0(s−)
dAν,0(s) ≥

∫ t

0

Γν,0kl (s)

Hν,0(s−)
µkl(s)dR̃kl(s), t ∈ [0, T ]. (B.295)

Put

U ,

{
(t, ω) ∈ [0, T ]× Ω

∣∣∣∣Γν,0kl (t, ω) > 0

}
. (B.296)

Since Γν,0kl is {Ft}-predictable,
U ∈ P∗. (B.297)

We would like to show that ν[Mkl][U ] = 0. Suppose

ν[Mkl][U ] > 0. (B.298)

By the definition of Doléans measure from Notation 4.1.16,

ν[Mkl][U ] , E

[∫ T

0

IU(t, ω)Rkl(dt, ω)

]
, (B.299)

from I.3.17(iii) of Jacod and Shiryayev [26], we also have

ν[Mkl][U ] , E

[∫ T

0

IU(t, ω)R̃kl(dt, ω)

]
. (B.300)

From (B.298) and (B.300),∫
Ω

[ ∫ T

0

IU(t, ω)R̃kl(dt, ω)

]
P (dω) > 0. (B.301)

Put

z(ω) ,
∫ T

0

IU(t, ω)R̃kl(dt, ω), ω ∈ Ω (B.302)
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we then have by (B.301)
z(ω) ≥ 0 a.s. and E[z] > 0. (B.303)

Put

Ω1 ,

{
ω ∈ Ω

∣∣∣∣z(ω) > 0

}
. (B.304)

Since E[z] > 0, we have P [Ω1] > 0. Define a sequence {µ(n)
kl (t, ω)} for n = 1, 2, . . . as

µ
(n)
kl (t, ω) , nIU(t, ω)Hν,0(t−, ω) (B.305)

for all (t, ω) ∈ [0, T ] × Ω. Since each component of µ
(n)
kl (t, ω) is predictable we have that

µ
(n)
kl ∈ P∗ for each n = 1, 2, . . .. Defining

µ(n) ,

{
µ

(n)
kl i = k, j = l

0 for all other i, j ∈ S, i 6= j
, (B.306)

we then have µ(n) ∈ P∗. Also from the elementary bound in (4.11) and since Hν,0(t) is

continuous on t ∈ [0, T ] with inft∈[0,T ] Hν,0(t) > 0 a.s., we have that µ
(n)
kl ∈ L

1/2
loc (Rkl) and

thus µ(n) ∈ H for all n = 1, 2, . . .. Putting (B.305) into (B.295) and taking t = T yields∫ T

0

1

Hν,0(s−, ω)
dAν,0(s, ω) ≥ n

∫ T

0

Γν,0kl (s, ω)IU(s, ω)R̃kl(ds, ω). (B.307)

for n = 1, 2, . . . Define the set

Θ(ω) ,

{
t ∈ [0, T ]

∣∣∣∣IU(t, ω) = 1

}
(B.308)

for all ω ∈ Ω. Fix some ω̄ ∈ Ω1. From (B.304) we have that z(ω̄) > 0 and therefore by
(B.302) and (B.308) ∫

Θ(ω̄)

R̃kl(dt, ω̄) > 0. (B.309)

Now from (B.296) and (B.308) we have that

Γν,0kl (t, ω̄) > 0 for all t ∈ Θ(ω̄). (B.310)

As a result of (B.309) and (B.310), we can conclude∫
Θ(ω̄)

Γν,0kl (t, ω̄)R̃kl(dt, ω̄) > 0. (B.311)
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Fixing some ω̄ ∈ Ω1 in (B.307) yields∫ T

0

1

Hν,0(s−, ω̄)
dAν,0(s, ω̄) ≥ n

∫
Θ(ω̄)

Γν,0kl (s, ω̄)R̃kl(ds, ω̄) (B.312)

for each n = 1, 2, . . .. Putting (B.311) into (B.312) and taking n→∞ in (B.312) gives∫ T

0

1

Hν,0(s−, ω̄)
dAν,0(s, ω̄) =∞, ω̄ ∈ Ω1. (B.313)

Since Hν,0(t) is continuous on t ∈ [0, T ], therefore bounded for P-almost all ω, and Aν,0(t)
is a non-decreasing process on t ∈ [0, T ] with Aν,0(T ) < ∞ a.s. from (5.44), there cannot
be a set of non-zero probability in which ( 1

Hν,0
• Aν,0)(T ) takes the value ∞. However,

P [Ω1] > 0. As a result, there is a contradiction in (B.298). Since k, l ∈ S were arbitrarily
chosen, we therefore have

Γν,0ij ≤ 0 ν[Mij ] − a.e., ν ∈ G i, j ∈ S, i 6= j. (B.314)

�

Now that we have established Lemma B.5.3, we can complete the proof of Proposition
5.3.20. From Lemma B.5.2 and the fact that Mij , Rij − R̃ij,∫ t

0

1

Hν,0(s−)
dAν,0(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dMij(s)

=

∫ t

0

1

Hν,µ(s−)
dAν,µ(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µij(s)dRij(s), t ∈ [0, T ],µ ∈ H.

(B.315)

Define a sequence {µ(m)
ij } for m = 2, 3, . . . where

µ
(m)
ij (t, ω) , −1 +

1

m
, (t, ω) ∈ [0, T ]× Ω. (B.316)

It is easy to see that µ(m) , {µ(m)
ij }i,j∈S ∈ H for all m = 2, 3, . . .

Also define the sequence of processes {ĉ(m)
ν }, for m = 2, 3, . . .,

ĉ(m)
ν (t) ,

∫ t

0

1

Hν,0(s−)
dAν,0(s) +

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
µ

(m)
ij (s)dMij(s), t ∈ [0, T ]. (B.317)
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From (B.316) and (B.315)

ĉ(m)
ν (t) =

∫ t

0

1

Hν,µ(m)(s−)
dAν,µ(m)(s) +

∑
i,j∈S
i 6=j

∫ t

0

(−1 + 1
m

)Γν,0ij (s)

Hν,0(s−)
dRij(s), t ∈ [0, T ],

(B.318)
for all m = 2, 3, . . .. Since Aν,µ(m) and Rij are non-decreasing, one sees from Lemma B.5.3
and (B.318) that, for all large integers m, one has

ĉ(m)
ν (t2) ≥ ĉ(m)

ν (t1) a.s. (B.319)

for T ≥ t2 ≥ t1 ≥ 0. Thus ĉ
(m)
ν (t) is non-decreasing for all large values of m. Now from

(B.317) and (B.316)

ĉ(m)
ν (t) =

∫ t

0

1

Hν,0(s−)
dAν,0(s)− (1− 1

m
)
∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s), t ∈ [0, T ], (B.320)

and taking m→∞

lim
m→∞

ĉ(m)
ν (t) =

∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s) a.s., t ∈ [0, T ]. (B.321)

As a result, from (5.79),

ĉ(m)
ν (t)→ ĉν(t) a.s. as m→∞ (B.322)

for all t ∈ [0, T ]. By taking m→∞ in (B.319), and observing (B.322), we have that

ĉν(·) is non-decreasing. (B.323)

Now, it is immediate from (5.79) that

ĉν(0) = 0, (B.324)

and from (5.42) and the fact that Hν,0 is almost surely strictly positive,

Γν,0
ij

(Hν,0)−
∈ L1/2

loc (Rij) and ( 1
Hν,0
• Aν,0) ∈ F∗. (B.325)

Therefore, we have
ĉν ∈ F∗. (B.326)
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Since Hν,0 is almost surely strictly positive and continuous, and Aν,0(T ) < ∞ a.s. by
Lemma 5.3.16, we have that the first term on the right-hand side of (5.79) is finite. Now
since the second term on the right-hand side of (5.79) is a local martingale by (B.325) and
Remark A.1.2, we know that it is finite as well. Therefore,

ĉν(T ) <∞ a.s. (B.327)

As a result, from (B.323), (B.324), (B.326), and (B.327), we can conclude

ĉν(t) ,
∫ t

0

1

Hν,0(s−)
dAν,0(s)−

∑
i,j∈S
i 6=j

∫ t

0

Γν,0ij (s)

Hν,0(s−)
dMij(s) ∈ C, (B.328)

for all ν ∈ G. �
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Appendix C

Standard Definitions and Results

C.1 General Definitions and Conventions for Stochas-

tic Processes

Definition C.1.1. A process X = {X(t) : t ∈ [0, T ]} is called càdlàg (continu à droite
avec des limites à gauche) if the mappings t 7→ X(ω, t) are right-continuous with finite
left-hand limits on [0,∞) for all ω ∈ Ω. A process X = {X(t) : t ∈ [0, T ]} is called càg
(continu à gauche) if the mappings t 7→ X(ω, t) are left-continuous on [0,∞) for all ω ∈ Ω.

Remark C.1.2. If X is càdlàg then we define the process (X)− , {X(t−) : t ∈ [0, T ]} as

X(0−) , X(0) and X(t−) , lim
s→t
s<t

X(s), ∀t ∈ (0, T ] (C.1)

and we also define the process 4X(t) = {4X(t) : t ∈ [0, T ]} as

4X(t) , X(t)−X(t−), ∀t ∈ [0, T ]. (C.2)

Definition C.1.3. The raw filtration {FXt } generated by the stochastic process X =
{X(t) : t ∈ [0, T ]} is

FXt , σ{X(s) : s ∈ [0, t]} ∀t ∈ [0, T ]. (C.3)

The following definition is from Karatzas and Shreve [30] Chapter 1, page 4:
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Definition C.1.4. Let {Ft}t∈[0,T ] be a filtration. We define

Ft+ ,
⋂
ε>0

Ft+ε (C.4)

to be the σ-algebra of events immediately after t ∈ [0, T ]. We say that the filtration {Ft}
is right-continuous if

Ft = Ft+ (C.5)

holds for every t ∈ [0, T ].

Definition C.1.5. A filtered probability space is a pair ((Ω,F , P ), {Ft}) consisting of a
probability space (Ω,F , P ) and filtration {Ft}t∈[0,T ] on F .

Definition C.1.6. The predictable σ-algebra P is the σ-algebra generated by all {Ft}-
adapted càg processes.

Definition C.1.7. A process X = {X(t) : t ∈ [0, T ]} defined on a filtered probability
space ((Ω,F , P ), {Ft}) is non-decreasing if the mappings t 7→ X(t, ω) are non-decreasing
on [0,∞) for all ω ∈ Ω.

Definition C.1.8. A collection of random variables C on a probability space (Ω,F , P ) is
uniformly integrable when the following holds: corresponding to each ε ∈ (0,∞) there is
some c(ε) ∈ [0,∞) such that

sup
X∈C

E[|X|I{|X|≥c}] < ε, (C.6)

for all c ∈ [c(ε),∞).

Proposition C.1.9. Suppose that C is a given collection of random variables defined on
the probability space (Ω,F , P ). If there is some non-negative random variable Y on Ω such
that E[Y ] <∞ and |X| ≤ Y a.s. for all X ∈ C, then C is uniformly integrable.

Proposition C.1.10. Supposed that X is a random variable on the probability space
(Ω,F , P ) such that E|X| < ∞, and {Gλ, λ ∈ Λ} is a collection of sub σ-algebras of F .
For each λ ∈ Λ put Yλ , E[X|Gλ]. Then the collection of random variables {Yλ, λ ∈ Λ} is
uniformly integrable.

C.2 Stopping Time Results

Definition C.2.1. Suppose that {Ft, t ∈ [0, T ]} is a given filtration on a probability space
(Ω,F , P ), then a mapping τ : (Ω,F , P ) 7→ [0, T ] is called a continuous-parameter stopping
time with respect to {Ft} when {τ ≤ t} ∈ Ft for all t ∈ [0, T ].
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Definition C.2.2. Suppose that τ : (Ω,F , P ) 7→ [0, T ] is a stopping time with respect
to the filtration {Ft, t ∈ [0, T ]}. We denote by Fτ the collection of sets A ⊂ Ω having
the property that A ∩ {τ ≤ t} ∈ Ft for each t ∈ [0, T ]. We call the σ-algebra Fτ the
pre-σ-algebra generated by τ .

Definition C.2.3. Let S be the set of all stopping times taking values in [0, T ]. We
say that an {Ft}-adapted process Y is of class D[0, T ] if the family of random variables
{Y (τ)}τ∈S is uniformly integrable.

C.3 Spaces of Martingales

Definition C.3.1. A real-valued, {Ft}-adapted process M = {M(t) : t ∈ [0, T ]} on
(Ω,F , P ) such that

• E[|M(t)|] <∞ for all t ∈ [0, T ] and

• E[M(t)|Fs] = M(s) P -a.s., for all 0 ≤ s ≤ t ≤ T

is called an {Ft}-martingale. We denote the set of all {Ft}-martingalesM((Ω,F , P ), {Ft}).

If there is no ambiguity about the measurable space on which the space of martingales
is defined, we use the notation M({Ft}, P ) instead of M((Ω,F , P ), {Ft}). This notation
continues for the following spaces of processes.

Notation C.3.2. M0({Ft}, P ) denotes the set of M ∈ M({Ft}, P ) which are P -a.s. null
at the origin.

Notation C.3.3. Mc({Ft}, P ) denotes the set of M ∈M({Ft}, P ) whose sample paths are
continuous.

Notation C.3.4. Mc
0({Ft}, P ) denotes the set of M ∈ Mc({Ft}, P ) which are P -a.s. null

at the origin.

Definition C.3.5. A martingale M is square-integrable if E [|M(t)|2] < ∞, for all t ∈
[0, T ].

Definition C.3.6. A martingale M is L2-bounded if supt∈[0,T ] E [|M(t)|2] <∞.

Remark C.3.7. As we are dealing with a finite time interval [0, T ], then a martingale M is
square integrable if and only if it is L2-bounded.
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Notation C.3.8. M2({Ft}, P ) denotes the set of M ∈ M({Ft}, P ) which are square inte-
grable.

Notation C.3.9. M2
0({Ft}, P ) denotes the set of M ∈M0({Ft}, P ) which are square inte-

grable.

Definition C.3.10. A real-valued, {Ft}-adapted process M = {M(t) : t ∈ [0, T ]} on
(Ω,F , P ) such that

• E[|M(t)|] <∞ for all t ∈ [0, T ] and

• E[M(t)|Fs] ≤M(s) P -a.s., for all 0 ≤ s ≤ t ≤ T

is called an {Ft}-supermartingale. We denote the set of all {Ft}-supermartingales
SPM((Ω,F , P ), {Ft}) or SPM({Ft}, P ).

Definition C.3.11. A real-valued, {Ft}-adapted process M = {M(t) : t ∈ [0, T ]} on
(Ω,F , P ) such that

• E[|M(t)|] <∞ for all t ∈ [0, T ] and

• E[M(t)|Fs] ≥M(s) P -a.s., for all 0 ≤ s ≤ t ≤ T

is called an {Ft}-submartingale. We denote the set of all {Ft}-submartingales
SBM((Ω,F , P ), {Ft}) or SBM({Ft}, P ).

Remark C.3.12. If M ∈ SBM((Ω,F , P ), {Ft}) and M ∈ SPM((Ω,F , P ), {Ft}), then
M ∈M((Ω,F , P ), {Ft}).

The following is the famous Optional Sampling Theorem by Joseph Doob.

Theorem C.3.13. Suppose that {(Xt,Ft), t ∈ [0, T ]} is a right-continuous supermartingale
and τ and ρ are {Ft}-stopping times on (Ω,F , P ) such that ρ(ω) ≤ τ(ω) ≤ T for all ω ∈ Ω.
Then, E[|Xτ |] ≤ ∞ and E[Xτ |Fρ] ≤ Xρ a.s.

C.4 Spaces of Local Martingales

Notation C.4.1. For a sequence {Tm}m∈N of {Ft}-stopping times, we write

Tm ↑ T P − a.s. (C.7)

to mean that
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• 0 ≤ Tm(ω) ≤ Tm+1(ω) for all ω ∈ Ω for all m ∈ N; and

• there exists M(ω) ∈ N such that Tm(ω) = T , for all m ≥M(ω) and for all ω ∈ Ω

If there is no ambiguity about the measure, then we will write Tm ↑ T a.s.

Definition C.4.2. A real-valued process {Ft}-adapted process M = {M(t), t ∈ [0, T ]} on
(Ω,F , P ) where there exists a sequence {Tm}m∈N of {Ft}-stopping times such that

• Tm ↑ T P − a.s.

• {M(t ∧ Tm), t ∈ [0, T ]} ∈ M({Ft}, P ) for each m ∈ N,

is called an {Ft}-local martingale. We denote the set of all {Ft}-local martingalesMloc({Ft}, P ).
We say that the sequence {Tm}m∈N of {Ft}-stopping times is a localizing sequence for M .

Notation C.4.3. Mloc,0({Ft}, P ) denotes the set of M ∈ Mloc({Ft}, P ) which are P -a.s.
null at the origin.

Notation C.4.4. M2
loc({Ft}, P ) denotes the set of M ∈ Mloc({Ft}, P ) which are locally

square integrable. We say that M is a locally square-integrable local martingale.

Notation C.4.5. Mc
loc({Ft}, P ) denotes the set of M ∈Mloc({Ft}, P ) whose sample paths

are continuous. We say that M is a continuous local martingale.

C.5 Spaces of Finite Variation Processes

Definition C.5.1. A process {A(t), t ∈ [0, T ]} is a process of finite variation if it is an
{Ft}-adapted, càdlàg process such that t 7→ A(t, ω) is of finite variation for each ω ∈ Ω.
In other words, for all (t, ω) ∈ [0, T ]×Ω the variation VA(t, ω) of s 7→ A(ω, s) over (0, t] is
finite:

VA(t, ω) , sup
n∑
i=1

|A(ω, si)− A(ω, si−1)| <∞. (C.8)

The supremum is taken over all partitions 0 = s0 < s1 < . . . < sn = t of [0, t].

Notation C.5.2. We denote by FV({Ft}, P ) the set of all real-valued, {Ft}-adapted, càdlàg
processes A on (Ω,F , P ) which are of finite variation.

Notation C.5.3. We denote by FV0({Ft}, P ) the set of all A ∈ FV({Ft}, P ) (Notation
C.5.2) which are null at the origin.
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Notation C.5.4. We denote by A+({Ft}, P ) the set of all real-valued, {Ft}-adapted, càdlàg
processes A on (Ω,F , P ) which are non-decreasing and integrable, i.e. E[A(T )] < ∞.
When the filtration and probability measure are obvious, the notation A+ is used.

Notation C.5.5. We denote byA+
0 ({Ft}, P ) the set of all A ∈ A+({Ft}, P ) (Notation C.5.4)

which are null at the origin. When the filtration and probability measure are obvious, the
notation A+

0 is used.

Notation C.5.6. Let FVloc({Ft}, P ) denote the set of processes such that for each A ∈
FVloc({Ft}, P ) there exists a sequence of {Ft}-stopping times {Tm}m∈N (depending on A)
such that Tm ↑ T P −a.s. and each stopped process A(t∧Tm) ∈ FV({Ft}, P ) (Notation
C.5.2).

Notation C.5.7. Let A+
loc({Ft}, P ) denote the set of processes such that for each A ∈

A+
loc({Ft}, P ) there exists a sequence of {Ft}-stopping times {Tm}m∈N (depending on A)

such that Tm ↑ T P − a.s. and each stopped process A(t∧Tm) ∈ A+({Ft}, P ) (Notation
C.5.4). When the filtration and probability measure are obvious, the notation A+

loc is used.

C.6 Quadratic Co-variation and Variation Processes

The following theorem is from Jacod and Shiryaev [26], Theorem I.4.2

Theorem C.6.1. For each pair N,M ∈M2
loc({Ft}, P ), there exists a real-valued, càdlàg,

{Ft}-adapted, finite variation process 〈N,M〉, which is unique up to indistinguishability,
such that

1. 〈N,M〉(0) = 0 a.s.

2. 〈N,M〉 is {Ft}-predictable

3. NM − 〈N,M〉 ∈ Mloc({Ft}, P ).

Moreover,

〈N,M〉 =
1

4
(〈N +M,N +M〉 − 〈N −M,N −M〉). (C.9)

Remark C.6.2. We call 〈N,M〉 the angle-bracket co-variation process of N and M .

Remark C.6.3. For any M ∈M2
loc({Ft}, P ), the process 〈M,M〉 is called the angle-bracket

quadratic variation process of M . We often write 〈M〉 for 〈M,M〉.

193



From Jacod and Shiryaev [26], equation I.4.46 and Proposition I.4.50 and Rogers and
Williams [43], Theorem VI.36.6 and Theorem VI.37.8, we have the following theorem.

Theorem C.6.4. For each pair N,M ∈Mloc({Ft}, P ), there exists a càdlàg, {Ft}-adapted
process [N,M ] of finite variation, which is unique up to indistinguishability, such that

1. [N,M ](0) = 0 a.s.

2. 4[N,M ](t) = 4N(t)4M(t) for all t > 0

3. NM − [N,M ] ∈Mloc({Ft}, P )

Moreover,

[N,M ] =
1

4
([N +M,N +M ]− [N −M,N −M ]). (C.10)

Remark C.6.5. We call [N,M ] the square-bracket quadratic co-variation process of N and
M .

Remark C.6.6. For any M ∈Mloc({Ft}, P ), the process [M,M ] is called the square-bracket
quadratic variation process of M . We often write [M ] for [M,M ].

Remark C.6.7. The square-bracket quadratic co-variation process [N,M ] exists for all local
martingales N,M . This is the main reason for preferring [N,M ] to 〈N,M〉; the angle-
bracket co-variation process 〈N,M〉 only exists for locally square-integrable local martin-
gales. Furthermore, the square-bracket quadratic variation process [M ] is invariant under
absolutely continuous changes of measure (see Jacod and Shiryaev [26], Theorem III.3.13),
unlike the angle-bracket quadratic variation process 〈M〉.
Remark C.6.8. If M ∈Mc

loc({Ft}, P ), then

[M ] = 〈M〉. (C.11)

C.7 Purely Discontinuous Local Martingales

From Jacod and Shiryaev [26], Definition I.4.11 we have the following definitions.

Definition C.7.1. Two local martingales N and M are called orthogonal if their product
L = NM is a local martingale.
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Definition C.7.2. A local martingale M is called a purely discontinuous local martingale
if M(0) = 0 and if it is orthogonal to all continuous local martingales. We denote the set
of purely discontinuous local martingales by Md

loc({Ft}, P ).

From Jacod and Shiryaev [26], Lemma I.4.14(b) we have the following result.

Lemma C.7.3. A local martingale that belongs to FV({Ft}, P ) is a purely discontinuous
local martingale.

C.8 Decomposition of Semimartingales

Definition C.8.1. A real-valued process {S(t), t ∈ [0, T ]} on (Ω,F , P ) which can be
written in the form

S = S(0) +M + A, (C.12)

for some M ∈ Mloc,0({Ft}, P ) and A ∈ FV0({Ft}, P ) is called an {Ft}-semimartingale.
The set of all {Ft}-semimartingales is denoted SM({Ft}, P ). We call M the local martin-
gale part of the semimartingale S and call A the finite variation part of the semimartingale
S.

Notation C.8.2. Denote by SMc({Ft}, P ) the set of S ∈ SM({Ft}, P ) whose sample paths
are continuous. We say that S is a continuous semimartingale.

From Jacod and Shiryaev [26], Theorem I.4.18 we have the following theorem.

Theorem C.8.3. Any local martingale M admits a unique (up to indistinguishability)
decomposition

M = M(0) +M c +Md, (C.13)

where M c(0) = Md(0) = 0, M c is a continuous local martingale and Md is a purely
discontinuous local martingale.

Remark C.8.4. We call M c the continuous part of the local martingale M and we call Md

the purely discontinuous part of the local martingale M .

Remark C.8.5. Given some S ∈ SM({Ft}, P ), one may ask whether the decomposition of
S given by C.12 is unique. That is, for any two arbitrary decompositions

S = S(0) +M + A (C.14)
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and
S = S(0) + M̃ + Ã (C.15)

where M, M̃ ∈ Mloc,0({Ft}, P ) and A, Ã ∈ FV0({Ft}, P ), is it true that M and M̃ are
indistinguishable, and likewise, that A and Ã are indistinguishable? In general, this is not
the case. However, from Jacod and Shiryaev [26], Proposition I.4.27, if we use Theorem
C.8.3 to further decompose M and M̃ into their continuous and purely discontinuous local
martingale parts, i.e.

M = M(0) +M c +Md, (C.16)

and
M̃ = M̃(0) + M̃ c + M̃d, (C.17)

where M c(0) = Md(0) = M̃ c(0) = M̃d(0) = 0, M c, M̃ c are continuous local martin-
gales and Md, M̃d are purely discontinuous local martingales, we see from the following
proposition that the semimartingale S is unique in a weak sense.

Proposition C.8.6. Let S ∈ SM({Ft}, P ). Then for any two arbitrary decompositions

S = S(0) +M + A (C.18)

and
S = S(0) + M̃ + Ã, (C.19)

the continuous local martingale parts of M and M̃ given by M c and M̃ c, respectively (see
Remark C.8.5), are indistinguishable.

Remark C.8.7. Given any S ∈ SM({Ft}, P ) denote by Sc the unique (up to indistin-
guishability) member of Mc

loc,0({Ft}, P ) such that for any decomposition

S = S(0) +M + A (C.20)

forM ∈Mloc,0({Ft}, P ) and A ∈ FV0({Ft}, P ), the continuous part of the local martingale
M and Sc are indistinguishable.

From Jacod and Shiryaev [26], Definition I.4.45, we have the following definition.

Definition C.8.8. The square-bracket quadratic co-variation process of two semimartin-
gales X and Y is

[X, Y ] , X(t)Y (t)−X(0)Y (0)−
∫ t

0

X(s−)dY (s)−
∫ t

0

Y (s−)dX(s) (C.21)

which is defined uniquely up to indistinguishability.
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From Jacod and Shiryaev [26], Definition I.4.52, we have the following theorem.

Theorem C.8.9. Let X, Y be semimartingales and let Xc, Y c denote their continuous local
martingale parts, respectively. Then

[X, Y ](t) = 〈Xc, Y c〉(t) +
∑

0≤s≤t

4X(s)4Y (s) (C.22)

C.9 Stochastic Integration Results

From Rogers and Williams [43], Theorem IV.38.3, we have the following integration-by-
parts formula for semimartingales, also called Ito’s product rule.

Theorem C.9.1. Let X and Y be semimartingales. Then

X(t)Y (t) = X(0)Y (0) +

∫ t

0

X(s−)dY (s) +

∫ t

0

Y (s−)dX(s) + [X, Y ](t) (C.23)

From Rogers and Williams [43], Theorem VI.39.1, we have the following Ito’s Formula
for semimartingales.

Theorem C.9.2. Let f : RN → R be a function which has continuous derivatives up to
order two. Suppose X = (X1, . . . , Xn) is a semimartingale in RN . Then

f(X(t))− f(X(0)) =
n∑
i=1

∫ t

0

∂f

∂Xi

X(s−)dX(s)

+
1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2f

∂XiXj

X(s−)d〈(Xi)
c, (Xj)

c〉(s)

+
∑

0≤s≤t

(
f(X(s))− f(X(s−))−

n∑
i=1

∂f

∂Xi

X(s−)4Xi(s)

)
,

(C.24)

(Xi)
c denoting the continuous local martingale part of the semimartingale Xi.

From Rogers and Williams [43], Theorem IV.27.6.iv, we have the following result
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Theorem C.9.3. Let M ∈M2
0({Ft}, P ). Define the space

L2(M) ,

{
H : [0, T ]× Ω→ R

∣∣∣∣H is predictable and E

[∫ T

0

H2(s)d[M ](s)

]
<∞

}
.

(C.25)
Then for H ∈ L2(M), we have for all t ∈ [0, T ],

4
(∫ t

0

H(s)dM(s)

)
= H(t)4M(t) a.s. (C.26)

The next result comes from Proposition I.3.5 in Jacod and Shiryayev [26] and deals
with integration with respect to a process A ∈ A+({Ft}, P ) (see Notation C.5.4).

Proposition C.9.4. Let A ∈ A+({Ft}, P ) and let H be a non-negative {Ft}-progressively
measurable processes such that the process

B(t) ,
∫ t

0

H(s)dA(s) <∞ a.s., t ∈ [0, T ]. (C.27)

Then B ∈ A+({Ft}, P ). Moreover, if A and H are {Ft}-predictable, then B is {Ft}-
predictable.

C.10 Ito-Doléans-Dade Exponential Results

From Jacod and Shiryaev [26], Theorem I.4.61, we have the following theorem defining the
Doléans-Dade exponential.

Theorem C.10.1. Let X be an {Ft}-semimartingale. Then

Y (t) = 1 +

∫ t

0

Y (s−)dX(s), (C.28)

has one and only one (up to indistinguishability) càdlàg {Ft}-adapted solution. This solu-
tion is a semimartingale, and is given by

Y (t) = exp

{
X(t)− 1

2
〈Xc, Xc〉(t)

} ∏
0≤s≤t

(1 +4X(s)) exp

{
−4X(s)

}
, (C.29)

where the (possibly) infinite product is absolutely convergent. Furthermore,

a) If X ∈ FV({Ft}, P ), then Y ∈ FV({Ft}, P )

b) If X ∈Mloc({Ft}, P ), then Y ∈Mloc({Ft}, P ).
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Remark C.10.2. We will use the notation E(X)(t) to represent Y (t) in (C.29), that is
Y (t) = E(X)(t), and we call E(X) the Doléans-Dade exponential of the semimartingale X.

Remark C.10.3. From (C.29), E(X) is strictly positive if and only if 4X(t) > −1 a.s. for
all t ≥ 0. In particular, if X is continuous then,

E(X)(t) = exp

{
X(t)− 1

2
[X,X](t)

}
, (C.30)

and therefore,
E(X)(t) > 0 a.s. (C.31)

In this case, E(X) is called the Ito exponential of the continuous semimartingale X.

From Protter [38], Chapter V, Section 9, Theorem 52, we have the following theorem
which deals with solving a common linear SDE.

Theorem C.10.4. Let H be a semimartingale and let Z be a continuous semimartingale
with Z(0) = 0. The solution to the stochastic integral equation

X(t) = H(t) +

∫ t

0

X(s−)dZ(s), t ∈ [0, T ], (C.32)

is given by

X(t) = E(Z)(t)

{
H(0) +

∫ t

0+

1

E(Z)(s)
d(H(s)− [Z,H](s))

}
, t ∈ [0, T ]. (C.33)

From Protter [38], Chapter III, Section 8, Theorem 45, we have Novikov’s Criterion,
which gives conditions for the Doléans-Dade exponential of a continuous local martingale
to be a martingale.

Theorem C.10.5. Let M be a continuous local martingale and suppose that

E

[
exp

{
1

2
[M,M ](∞)

}]
<∞, (C.34)

Then E(M) is a uniformly integrable martingale.
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C.11 Martingale Results

The following propositions give conditions for a martingale to be a uniformly integrable
martingale and for a local martingale to be a martingale.

Proposition C.11.1. Let M be a càdlàg martingale. M is of class D[0, T ] if and only if
it is uniformly integrable.

Proposition C.11.2. Let M be a local martingale. If M is of class D[0, T ] then M is in
fact a martingale.

From Karatzas and Shreve [30] Problem 1.5.19(ii), we have conditions which make a
local martingale a supermartingale.

Proposition C.11.3. Suppose that X is an {Ft}-local martingale with X(t) ≥ 0 a.s. for
each t ∈ [0,∞). Then X is a {Ft}-supermartingale.

From Protter [38], Theorem 13, Chapter III, page 115 is the following result called the
Doob-Meyer decomposition.

Theorem C.11.4. Let Z be a càdlàg supermartingale. Then Z has the decomposition

Z = Z0 +M − A (C.35)

where M is a local martingale and A is an increasing process which is predictable, and
M0 = A0 = 0. Such a decomposition is unique. Moreover if limt→∞E [Z(t)] > −∞, then
E [A(∞)] <∞.

The following is an essential result about predictable local martingales from I.3.16 of
Jacod and Shiryaev [26].

Proposition C.11.5. Any {Ft}-predictable local martingale X which belongs to FV0({Ft}, P )
is equal to 0 (up to a set of measure zero).

C.12 Martingale Representation Theorems

Definition C.12.1. Suppose that {W(t), t ∈ [0, T ]} is a given d-dimensional Brownian
motion on a complete probability space (Ω,F , P ). The standard Wiener filtration is the
filtration given by

Ft , σ{W(s), 0 ≤ s ≤ t} ∨ N (P ), t ∈ [0, T ], (C.36)

where N (P ) , {A ∈ F : P (A) = 0} are the P -measure zero sets in F .
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The following is the famous Ito representation theorem.

Theorem C.12.2. Suppose that {W(t), t ∈ [0, T ]} is a given d-dimensional Brownian
motion on a complete probability space (Ω,F , P ) and {Ft} is the standard Wiener filtration
in (Ω,F , P ). For each X ∈ L2(Ω,F , P ) there exists some d-dimensional {Ft} progressively
measurable process Φ such that

E

[ d∑
k=1

∫ t

0

|Φk(s)|2ds
]
<∞, t ∈ [0, T ], (C.37)

and

X = E[X] +
d∑

k=1

∫ T

0

Φk(t)dW k(t) a.s., (C.38)

where Φk and W k, k = 1, . . . , d, are the k-th scalar components of Φ and W respectively.
Furthermore, Φ is unique λ⊗ P almost everywhere on [0, T ]× Ω.

Theorem C.12.2 can be extended to X ∈ M2({Ft}, P ) quite easily as stated by the
following corollary.

Corollary C.12.2.1. Suppose that {W(t), t ∈ [0, T ]} is a given d-dimensional Brownian
motion on a complete probability space (Ω,F , P ) and {Ft} is the standard Wiener filtration
in (Ω,F , P ). If X ∈M2({Ft}, P ) then there exists some d-dimensional {Ft} progressively
measurable process Φ such that

E

[ d∑
k=1

∫ t

0

|Φk(s)|2ds
]
<∞, t ∈ [0, T ], (C.39)

and

X(t) = E[X(0)] +
d∑

k=1

∫ t

0

Φk(s)dW k(s) a.s., t ∈ [0, T ], (C.40)

where Φk and W k, k = 1, . . . , d, are the k-th scalar components of Φ and W respectively.
Furthermore, Φ is unique λ⊗ P almost everywhere on [0, T ]× Ω.

The results of Corollary C.12.2.1 are extended to the class of {Ft} local martingales by
the following theorem.

201



Theorem C.12.3. Suppose that {W(t), t ∈ [0, T ]} is a given d-dimensional Brownian mo-
tion on a complete probability space (Ω,F , P ) and {Ft} is the standard Wiener filtration in
(Ω,F , P ). If X ∈Mloc,0({Ft}, P ) then there exists some d-dimensional {Ft} progressively
measurable process Φ such that∫ t

0

‖Φ(s)‖2ds <∞ a.s., t ∈ [0, T ], (C.41)

and

X(t) =
d∑

k=1

∫ t

0

Φk(s)dW k(s) a.s., t ∈ [0, T ], (C.42)

Furthermore, Φ is unique λ⊗ P almost everywhere on [0, T ]× Ω.

Using the abstract martingale representation theorem of Jacod and Shiryaev (see The-
orem III.4.29 of Jacod and Shiryaev [26]) we can extend Theorem C.12.3 to the case where
the filtration {Ft} is generated by both a Brownian motion and a Markov chain.

Theorem C.12.4. Suppose that {W(t), t ∈ [0, T ]} is a given d-dimensional Brownian
motion and {α(t), t ∈ [0, T ]} is a given continuous-time Markov chain with state space S
on a complete probability space (Ω,F , P ) and {Ft} is the joint filtration given in Condition
4.1.1. If X ∈Mloc,0({Ft}, P ) then there exists some some d-dimensional {Ft} progressively
measurable process Φ and some S × S-dimensional {Ft} predictably measurable process Γ
such that∫ t

0

‖Φ(s)‖2ds <∞ a.s. and
∑
i,j∈S
i 6=j

(∫ t

0

|Γij(s)|2d[Mij](s)

)1/2

<∞ a.s., (C.43)

for all t ∈ [0, T ], and

X(t) =
d∑

k=1

∫ t

0

Φk(s)dW k(s) +
∑
i,j∈S
i 6=j

∫ t

0

Γij(s)dMij(s) a.s., t ∈ [0, T ], (C.44)

where Mij are the canonical martingales of the Markov chain α (see Definition 4.1.9).
Furthermore, Φ is unique λ ⊗ P almost everywhere on [0, T ] × Ω and Γij is ν[Mij ] unique
for all i, j ∈ S, i 6= j.
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C.13 Essential Supremum of a Family of Random Vari-

ables

This section is taken from Appendix A of Karatzas and Shreve [31].

From Karatzas and Shreve Definition A.1 [31]:

Definition C.13.1. Let (Ω,F , P ) be a probability space and let X be a non-empty family
of non-negative random variables defined on (Ω,F , P ). The essential supremum of X ,
denoted by ess-supX , is a random variable X∗ satisfying:

(i) ∀X ∈ X , X ≤ X∗ a.s.

(ii) if Y is a random variable satisfying X ≤ Y a.s. for all X ∈ X , then X∗ ≤ Y a.s.

Because random variables are defined only up to P -almost surely, it is in general not
meaningful to speak of an “ω by ω” supremum sup{X(ω);X ∈ X}. The essential supre-
mum substitutes for this concept.

From Karatzas and Shreve Theorem A.3 [31]:

Theorem C.13.2. Let X be a non-empty family of non-negative random variables. Then
X∗ = ess-supX exists. Furthermore, if X is closed under pairwise maximization, i.e.,
X, Y ∈ X implies X ∨ Y ∈ X , then there is a non-decreasing sequence {Zn}∞n=1 of random
variables in X satisfying X∗ = limn→∞ Zn almost surely.

C.14 Komlós Theorem

Proposition C.14.1. Given a real number a and a sequence of real numbers {ai}, i =
1, 2, . . ., such that

lim
n→∞

ai = a, (C.45)

then {ai} is Cesàro Summable and converges Cesàro to a, that is,

lim
n→∞

1

n

n∑
i=1

ai = a. (C.46)

From Theorem 6 of Schwartz [46]
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Theorem C.14.2. Consider a probability space (Ω,F , P ). Suppose {Xn} is a sequence of
random variables on (Ω,F , P ) satisfying supnE|Xn| < ∞ a.s. Then there exists a subse-
quence {X0

n} and a random variable β ∈ L1(Ω,F , P ) such that for each further subsequence
{X ′n},

lim
n→∞

1

n

n∑
i=1

X ′i = β a.s. (C.47)

Remark C.14.3. Theorem C.14.2 asserts that for any L1(Ω,F , P ) bounded sequence, a
subsequence can be extracted so that every further subsequence converges Cesàro to the
same limit.

204



Appendix D

Elementary Convex Analysis Theory

Definition D.0.1. Let U be an arbitrary vector space over R. A set A ⊂ U is said to be
convex if for every finite set of elements {ai} ⊂ A where i = 1, . . . , n and non-negative real
constants {λi}, i = 1, . . . , n, such that λ1 + . . .+ λn = 1, we have

n∑
i=1

λiai ∈ A. (D.1)

Definition D.0.2. Let A be a convex subset of U and let f be a mapping f : A 7→ R̄. f
is said to be convex when we have

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v), (D.2)

for all λ ∈ [0, 1] and for all u, v ∈ A such that the right hand side of (D.2) is defined. A
mapping g : A 7→ R̄ is said to be concave when −g(·) is convex.

Definition D.0.3. Let A be a convex subset of U and let f be a convex mapping f : A 7→
R̄. The set of values u ∈ A for which f(u) < +∞ is a convex set and is called the effective
domain of f . The effective domain of f is denoted dom f .

Definition D.0.4. Given two vector spaces U and Y, a mapping α : U × Y 7→ R is a
bilinear form on U× Y when
(a) The mapping u 7→ α(u, y) : U 7→ R is linear for each fixed y ∈ Y,
(b) The mapping y 7→ α(u, y) : Y 7→ R is linear for each fixed u ∈ U.
When there is just one designated bilinear form α on U × Y, then the notation 〈·, ·〉 is
typically used to denote α, so that in particular α(u, y) is denoted by 〈u, y〉 for u ∈ U and
y ∈ Y. With a fixed bilinear form 〈·, ·〉 the triple (U,Y, 〈·, ·〉) is called a duality system.
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Example D.0.5. A bilinear form 〈·, ·〉 on the space RN × RN is given by

〈u, v〉 , u>v, u, v ∈ RN , (D.3)

which is the inner-product on RN .

Definition D.0.6. Fix any arbitrary duality system (U,Y, 〈·, ·〉) and take a function f :
U 7→ R̄ (f is not necessarily convex). Then the mapping f ∗ : Y 7→ R̄ defined as

f ∗(y) , sup
u∈U
{〈u, y〉 − f(u)}, y ∈ Y, (D.4)

is called the convex conjugate function of f .

Remark D.0.7. It is immediate from Definition D.0.6 that f ∗ is a convex function regardless
of whether or not f is a convex function.

Definition D.0.8. Fix any arbitrary duality system (U,Y, 〈·, ·〉) and a convex set A ⊂ U.
The direction y ∈ Y is said to be normal to A at u ∈ A when

〈y, x− u〉 ≤ 0 for all x ∈ A. (D.5)

The set of all such directions is called the normal cone to A at u, denoted NA
c (u),

NA
c (u) , {y ∈ Y|〈y, x− u〉 ≤ 0 for all x ∈ A}. (D.6)

Definition D.0.9. Fix any arbitrary duality system (U,Y, 〈·, ·〉) and take a function f :
U 7→ R̄ (f is not necessarily convex). Then the set ∂f(u) ⊂ Y given by

∂f(u) , {y ∈ Y|f(x) ≥ f(u) + 〈y, x− u〉, for all x ∈ U}, (D.7)

defined at each u ∈ U is called the subdifferential of f at u. An element y ∈ ∂f(u) is called
a subgradient of f at u. Similarly, if we define the set ∂f(u) ⊂ Y by

∂f(u) , {y ∈ Y|f(x) ≤ f(u) + 〈y, x− u〉, for all x ∈ U}, (D.8)

at each u ∈ U, it is called the superdifferential of f at u. An element y ∈ ∂f(u) is called a
supergradient of f at u.

Example D.0.10. The subdifferential of a function f : RN 7→ R is given by

∂f(u) , {y ∈ RN |f(x) ≥ f(u) + y>(x− u), for all x ∈ RN}, u ∈ RN . (D.9)
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Proposition D.0.11. If f : A 7→ R̄ is a convex (concave) function over a convex subset
A ⊂ U, then the subdifferential (superdifferential) ∂f(u) is a non-empty compact set in the
weak topology for each u ∈ A.

Example D.0.12. Fix any arbitrary duality system (U,Y, 〈·, ·〉) and define the set indi-
cator function of the convex set A ⊂ U, IA : U 7→ {0,+∞} by

IA(u) ,

{
0, u ∈ A
+∞, otherwise.

(D.10)

It is quite easy to determine that the subdifferential ∂IA(u) is given by the normal cone of
the set A at u, i.e.

∂IA(u) = NA
c (u), u ∈ A. (D.11)

Proposition D.0.13. Fix any arbitrary duality system (U,Y, 〈·, ·〉), a convex subset A ⊂
U, and a convex (concave) function f : A 7→ R̄. The point u ∈ A is the minimum
(maximum) of the convex (concave) function f if and only if 0 ∈ ∂f(u).

We now state definitions and results which deal with convex functions defined on RN .

Definition D.0.14. A convex function f : RN 7→ (−∞,+∞] is called a proper convex
function (f is not identically −∞). A convex function is called lower semi-continuous at
x ∈ RN if for every sequence {xi} ⊂ RN , i = 1, 2, . . . which converges in norm to x, we
have

f(x) ≤ lim inf
i→∞

f(xi). (D.12)

A convex function is called closed if for each α ∈ R, the set

{x ∈ RN |f(x) ≤ α} (D.13)

is closed.

Proposition D.0.15. A proper convex function is closed if and only if it is lower semi-
continuous.

From §5.4 in Karatzas and Shreve [31]

Definition D.0.16. For a given closed, convex subset K 6= 0 of RN , the mapping δ :
RN 7→ R ∪ {+∞} given by

δ(ν) , sup
p∈K
{−p>ν}, ν ∈ RN , (D.14)
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is the support function of the set −K. It is a closed and proper convex function, which is
finite on its effective domain

K̃ , {ν ∈ RN |δ(ν) < +∞}, (D.15)

a convex cone, called the barrier cone of −K. In particular, 0 ∈ K̃ and δ(0) = 0.

Remark D.0.17. The function δ is positively homogeneous,

δ(αν) = αδ(ν), ν ∈ RN , α ≥ 0, (D.16)

and subadditive,
δ(ν + µ) ≤ δ(ν) + δ(µ), ν, µ ∈ RN . (D.17)

Proposition D.0.18. p ∈ K if and only if δ(ν) + p>ν ≥ 0 for all ν ∈ K̃.

The next proposition is adapted from Theorem 3.1.2 in Hiriart-Urrut and Lemaréchal
[24] and deals with the local Lipschitz continuity of a convex function.

Proposition D.0.19. Let f : RN 7→ (−∞,∞) be a convex function and let S be a convex
compact subset of RN . Then there exists L = L(S) ≥ 0 such that

|f(x)− f(x′)| ≤ L‖x− x′‖ for all x and x′ in S. (D.18)

That is, f is Lipschitz continuous on S.

The following definition and proposition are adapted from pages 164-165 of §4.1 in
Hiriart-Urrut and Lemaréchal [24] .

Definition D.0.20. Let f : RN 7→ R be a finite valued convex function, let x and d be
fixed in RN , and consider the difference quotient of f at x in the direction d:

q(t) ,
f(x+ td)− f(x)

t
, for t > 0. (D.19)

The directional derivative of f at x in the direction d is

f ′(x, d) , lim
t→0+

q(t) = inf
t>0

q(t). (D.20)

Proposition D.0.21. For fixed x ∈ RN , the directional derivative f ′(x, ·) has the property,

|f ′(x, d)| ≤ L‖d‖, for all d ∈ RN , (D.21)

where L is the Lipschitz constant given in Proposition D.0.19. Furthermore, for any sub-
gradient s ∈ ∂f(x),

‖s‖ ≤ L. (D.22)
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The following statements which deal with normal convex integrands and measurable
selectors are from J.T. Rockafellar [40] [41].

Definition D.0.22. Let (E,S, µ) be a measure space. A convex integrand on E × RN is
a function

f : E × RN 7→ (−∞,∞] (D.23)

where f(e, x) is convex in x ∈ RN for each e ∈ E.

Definition D.0.23. A convex integrand f is called a normal convex integrand if f(e, x) is
proper and lower-semicontinuous in x for each e ∈ E, and there exists a countable collection
U of S measurable functions u : E 7→ RN having the following properties:

(a) for each u ∈ U , f(e, u(e)) is S measurable,

(b) for each e ∈ E, Ue ∩ dom fe is dense in dom fe where,

Ue , {u(e)|u ∈ U}. (D.24)

Here dom fe denotes the effective domain of the convex function fe(x) , f(e, x).

Proposition D.0.24. Suppose f is a convex integrand such that f(e, x) is S measurable
for each fixed x ∈ RN , and such that, for each e ∈ E, f(e, x) is lower semi-continuous
in x and has interior points in its effective domain dom fe. Then f is a normal convex
integrand.

Definition D.0.25. A multi-valued mapping K : E 7→ RN is called measurable if, for
every closed subset V ∈ RN , the set

K−1(V ) , {e ∈ E|K(e) ∩ V 6= ∅} (D.25)

is in S.

Proposition D.0.26. Let K : E 7→ RN be a measurable multi-valued mapping such that
K(e) is a non-empty closed set for every e ∈ E. Then there exists a measurable selector
for K, i.e. an S measurable function u : E 7→ RN such that u(e) ∈ K(e) for every e ∈ E.

Proposition D.0.27. Let f : E ×RN 7→ (−∞,∞] be a normal convex integrand, and for
each e ∈ E and x ∈ RN , let ∂f(e, x) be the subdifferential of f(e, ·) at x, i.e.,

∂f(e, x) , {ν ∈ RN |f(e, y) ≥ f(e, x) + (y − x)>ν, for all y ∈ RN}. (D.26)

Then for any S measurable function u : E 7→ RN , the multi-valued mapping

K : e 7→ ∂f(e, u(e)) (D.27)

is measurable.
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Glossary

Notation Description Page List

[0, T ] finite time horizon 19
W N -dimensional Brownian motion 19, 34
(Ω,F , P ) complete probability space 19
N (P ) P -null sets 19, 34
{Ft} filtration generated by driving processes 20, 34
F∗ progressively measurable σ-algebra 20, 34
λ⊗ P product measure 20
λ Lebesgue measure 20
B([0, T ]) Borel σ-algebra on [0, T ] 20
S0 price of risk-free asset 20, 35
Sn price of the n-th risky asset 20, 35
r risk-free interest rate process 20, 35
b rate of return process 20, 35
σ volatility process 20, 35
θ market price of risk 21, 36
Π space of portfolio processes 21, 38, 60
X(x,π), X(x,c,π), X(x,c,p) investor wealth process 22, 40, 61
B contingent claim random variable 23, 41, 62, 99
A set of admissible trading strategies 24, 42, 63
Λ set of initial wealths 24, 43, 64
H0, Hµ, Hν,µ state price density process 25, 47, 65
α Markov chain 34
S state space of Markov chain 34
G generator of α 34
P∗ predictably measurable σ-algebra 34
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Notation Description Page List

R, R̃ canonical processes of α 36
M canonical martingales of α 36
I{·} indicator function 36
ν[Mij ] Doléans measure of Mij 38
C space of cumulative consumption processes 39, 60
H space of Markov chain dual processes 45
K portfolio constraint set 59
g(t) margin function 59
G ×H joint space of dual processes 65
g̃K(t, ·) convex conjugate of g(t, ·) on K 65
∂g(t, ·) superdifferential of g(t, ·) 77
V (·) cost function of approximate hedging 101
PB P equivalent probability measure 102
Z convex subspace of L1(Ω,FT , PB) 103
L the space L1(Ω,FT , PB)× R 112
Q convex subspace of L 112
L∗ dual space of L 114
Nc(·, ·) normal cone of Q 115

∂Ũ(·, ·) subdifferential of convex functional Ũ 115

L
1/2
loc (Rij) space of Markov chain integrand processes 132
4X(t) jump of the process X at time t 188
M({Ft}, P ) space of {Ft}-martingales 190
SPM({Ft}, P ) space of {Ft}-supermartingales 191
Mloc({Ft}, P ) space of {Ft}-local martingales 192
FV({Ft}, P ) space of {Ft}-adapted finite variation pro-

cesses
192

A+({Ft}, P ) space of {Ft}-adapted non-decreasing and in-
tegrable processes

193

FVloc({Ft}, P ) processes that are locally in FV({Ft}, P ) 193
A+
loc({Ft}, P ) processes that are locally in A+({Ft}, P ) 193
〈X, Y 〉(t) angle bracket quadratic co-variation process of

X(t) and Y (t)
193

[X, Y ](t) square bracket quadratic co-variation process
of X(t) and Y (t)

194

SM({Ft}, P ) space of {Ft}-semimartingales 195
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Notation Description Page List

E(·)(t) Doléans Dade exponential 199
ess-sup essential supremum of a family of random vari-

ables
203

(U,Y, 〈·, ·〉) duality system 205
δ(·) support function of −K 207
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Index

admissible set, 24, 42, 63
approximate hedging, 98

Black-Scholes problem, 31
Brownian motion, 19

canonical martingale, 37
consumption-portfolio pair, 42, 63
contingent claim, 23, 41, 62
convex portfolio constraints, 58
cost function, 101
cumulative consumption process, 39, 60

Doléans Dade exponential, 46, 65
Doléans measure, 38
dual problem, 103
dual process

joint space, 65
Markov chain, 46

dual space, 114

essential-supremum, 50, 68

hedging strategy
constrained, 63
unconstrained, 24, 43

incomplete market, 45

joint filtration, 34

K-attainable, 85

Komlós theorem, 108

Lebesgue measure, 20
Legendre-Fenchel transform, 102

margin function, 59
margin requirements, 58
market price of risk, 21, 36

normal cone, 115

portfolio constraint set, 59
portfolio process, 21, 38, 60
price of contingent claim, 25, 43, 64
product measure, 20

regime-switching financial market, 33
regime-switching Markov chain, 34
risk-free asset, 20, 35
risky asset, 20, 35

standard financial market, 19
state price density process, 25

generalized, 47, 65
subdifferential, 114
superdifferential, 77

trading strategy
Γ-financed, 39
self-funded, 22

wealth process, 22, 39, 60
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