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Abstract

This thesis is about a conjecture of Geelen on the structure of graphs with a forbidden
vertex-minor; the conjecture is like the Graph Minors Structure Theorem of Robertson
and Seymour but for vertex-minors instead of minors. We take a step towards proving the
conjecture by determining the “local structure”.

Our first main theorem is a grid theorem for vertex-minors. We prove that any graph of
sufficiently large rank-width has a big comparability grid as a vertex-minor. Equivalently,
a class of graphs has unbounded rank-width if and only if it contains all circle graphs as
vertex-minors, up to isomorphism.

Our second main theorem is more like the Flat Wall Theorem of Robertson and Sey-
mour. Given a graph of large rank-width in a proper vertex-minor-closed class, we describe
how the rest of the graph “attaches” onto a circle graph that it contains. Informally, this
theorem says that the attachments are almost compatible with the circle graph, relative
to a large comparability grid.

We believe that the results presented in this thesis provide a path towards proving the
full conjecture. To make this area more accessible, we have organized the first chapter as
a survey on ‘structure for vertex-minors”.
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Chapter 1

Structure for vertex-minors

1.1 Introduction

Vertex-minors have been discovered several times independently, in biology [14, 48] and
quantum computing [36] as well as in mathematics [4, 7, 99]. Brijder and Hoogeboom [14]
showed how to model gene assembly in ciliates using transformations that relate to vertex-
minors. Van den Nest, Dehaene, and De Moor [36] showed how to use vertex-minors to
determine if two quantum graph states are equivalent (up to local Clifford operations).
Originally, vertex-minors arose from the work of Bouchet [4, 7] on isotropic systems, al-
though Oum [99] gave them their present, descriptive name. Very roughly, the vertex-
minors of a graph G are those graphs that can be obtained from G by performing “local
complementations at vertices” and by deleting vertices.

Vertex-minors typically yield dense graph classes; since we are only allowed to delete
vertices but not edges, almost no graphs are vertex-minors of cliques. This is very different
from most other notions of “minors”, like graph minors [111], topological minors [44, 68|,
and immersion minors [38, 46, 124]. So in some ways vertex-minors behave more like
induced subgraphs or induced subdivisions than “minors”. Yet Oum conjectures that
vertex-minors have the well-quasi-ordering property.

Well-Quasi-Ordering Conjecture (Oum [103, 102, Question 6]). Every infinite set of
graphs contains one graph that is isomorphic to a vertex-minor of another.

Equivalently, the conjecture states that every proper vertex-minor-closed class can be char-
acterized by a finite set of forbidden vertex-minors.



The Well-Quasi-Ordering Conjecture immediately brings to mind Wagner’s conjecture
on well-quasi-ordering for graph minors, which was famously proven by Robertson and
Seymour [112] in the twentieth paper of their graph minors series. Remarkably, the two
conjectures are in fact related; well-quasi-ordering for pivot-minors [102, Question 6] would
imply them both (see Section 1.6).

On the algorithmic side, well-quasi-ordering is useful because it oftentimes leads to
efficient algorithms for membership testing; we just need to test for a fixed graph as a
vertex-minor. Oum conjectures the following.

Membership Testing Conjecture (Oum [103, 102, Questions 6 and 7]). For any proper
vertex-minor-closed class of graphs F, there is a polynomial-time algorithm that determines
if a given graph is in F.

It even seems that the degree of the polynomial should be independent of F. This con-
jecture is again motivated by graph minors; Robertson and Seymour [110] proved that
there is a cubic algorithm (in the number of vertices) for testing membership within any
fixed minor-closed class. The running time has since been improved to quadratic [78],
although these algorithms are still extraordinarily non-practical (which is interesting in its
own right).

The cornerstone theorem of Robertson and Seymour’s graph minors series is their Graph
Minors Structure Theorem [111], which gives a constructive description of the graphs in
any proper minor-closed class. Informally, this theorem says that such graphs “decompose”
into parts that “almost embed” in a surface of bounded Euler genus. This theorem provides
the starting point for proving both well-quasi-ordering and membership testing for graph
minors.

So, motivated by the above conjectures, the topic of this thesis is an analogous struc-
tural conjecture for proper vertex-minor-closed classes. This conjecture was proposed by
Geelen [59], and the thesis consists of joint work with Jim Geelen and Paul Wollan towards
proving the conjecture. Chapter 2 is based on a paper that is also joint work with O-joung
Kwon [64]. We postpone the formal statement of the conjecture until Section 1.5, but here
is the idea.

Structural Conjecture (Informal statement — Geelen [59]). For any proper vertez-minor-
closed class of graphs F, each graph in F “decomposes” into parts that are “almost” circle
graphs.

So, informally, the conjecture says that any proper vertex-minor-closed class of graphs
F is contained in a constructively-defined class of graphs F’' whose closure under vertex-
minors remains proper. “Decomposes” and “almost” have very different meanings in this
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Figure 1.1: Chords of a circle (left, with a chord v labelled at its ends) and the correspond-
ing circle graph (right).

conjecture than for graph minors; intuitively, the difference is that we care about the
adjacency matrix rather than the incidence matrix. Moreover, the “basic graphs” have
geometric rather than topological representations; a circle graph is the intersection graph
of chords of a circle (so there is a vertex for each chord, and two chords are adjacent if
they intersect; see Figure 1.1).

The rest of the introduction is loosely organized as a survey on “structure for vertex-
minors”. Throughout the thesis, we follow Diestel [39] for standard graph theoretic nota-
tion, and all graphs are finite, simple, and loopless unless otherwise noted.

1.2 Contributions of the thesis

Recall that our goal is to prove something like the Graph Minors Structure Theorem, but
for vertex-minors instead of graph minors. The first step in Robertson and Seymour’s proof
of the Graph Minors Structure Theorem is their Grid Theorem [108], which says that for
any planar graph H, every graph of sufficiently large tree-width has a minor isomorphic to
H. In Chapter 2 we prove the following analogous theorem for vertex-minors.

The Grid Theorem for Vertex-Minors (Geelen, Kwon, McCarty, and Wollan [64]).
For any circle graph H, there exists an integer rg so that every graph with rank-width at
least v has a vertex-minor isomorphic to H.

This theorem characterizes when a graph has large rank-width; rank-width does not
increase when taking vertex-minors, and there are circle graphs of arbitrarily large rank-
width. As in the Grid Theorem of Robertson and Seymour, we usually work with particular



circle graphs of large rank-width called “comparability grids”. So, in order to prove the
Structural Conjecture, we just need to determine the structure of a graph relative to a
large comparability grid. (It is more standard, although essentially equivalent [114], to
work relative to a tangle as in [109]. However, we choose to work with a comparability
grid for the sake of simplicity. The “global structure” can be recovered from the “relative
structure” using the Tree of Tangles Theorem in [61, Theorem 9.1].)

The next main step is to determine the “local structure”, as in the Flat Wall Theorem
of Robertson and Seymour [110]. Consider a graph with a large grid minor in a proper
minor-closed class; the Flat Wall Theorem roughly says that there is a planar subgraph
containing much of the grid so that the rest of the graph “almost” attaches onto just the
outer face. As in the Grid Theorem for Vertex-Minors, the key piece of the analogy is
between planar graphs and circle graphs; we are interested in how the rest of the graph
“attaches” onto a circle graph containing much of the comparability grid. Our notion of
“attachment” is much more “local” than in the Flat Wall Theorem, however; it just refers
to edges with an end in the circle graph.

Furthermore, instead of finding one particular circle graph where the “attachments” are
well-behaved, we work with an arbitrary circle graph containing a comparability grid. This
approach lets us grow the circle graph and adjust the comparability grid over time. For
technical reasons having to do with unique representations of circle graphs (see [5] and [52]),
it is convenient to assume that the circle graph is prime in the sense of Cunningham [29].
This is a minor connectivity-like condition that is analogous to 3-connectivity. The final
main theorem of this thesis is the following, informally stated.

The Local Structure Theorem (Informal statement - Geelen, McCarty, Wollan). For
any proper vertex-minor-closed class of graphs F, and for any graph in F with an in-
duced subgraph that is a prime circle graph containing a comparability grid, the rest of the
graph “almost attaches” to the circle graph in a way that is “mostly compatible” with the
comparability grid.

We give a formal statement of the theorem in Section 3.3; it relies on a respresentation of
circle graphs by connected 4-regular graphs due to Kotzig [83]. This representation shows
that vertex-minors of circle graphs are roughly equivalent to immersion minors of connected
4-regular graphs. While the precise statement is somewhat technical, the main point is
simple; for circle graphs we can reduce to a notion of “minor” that is already very well-
understood. (In particular, Robertson and Seymour [113] proved well-quasi-ordering for
weak immersion minors, verifying a conjecture of Nash-Williams [95]. There are also very
short proofs regarding structure for both weak [38, 124] and strong [46] immersion minors.



For 4-regular graphs, weak and strong immersion minors are equivalent.) Our approach to
the Structural Conjecture is based on this surprising connection with immersion minors.

The connection goes beyond just circle graphs; Bouchet [10] showed how to use a
signature on the 4-regular graph to represent one additional vertex (that is, a vertex whose
deletion results in a circle graph). This approach is very similar to Gerards’ [67] proof of
the forbidden minors for graphic matroids (which was originally proven by Tutte [117]).
So, for each vertex v outside of the circle graph, we will have a signature on the 4-regular
graph; that signature represents the neighbourhood of v within the circle graph.

Outline of the thesis

The rest of this chapter is a survey on “structure for vertex-minors”. Some of the funda-
mental results discussed here will be used in later chapters.

In Chapter 2 we prove the Grid Theorem for Vertex-Minors. This theorem is not
explicitly used in this thesis. However, in the future it will let us apply the Local Structure
Theorem.

In Chapter 3 we give the formal statement of the Local Structure Theorem and outline
its proof. The key idea is that we can represent a circle graph and its “attachments” by an
associated graph called the “labelled tour graph”. Bouchet [10] and Kotzig [83] discovered
this representation and showed that it “efficiently captures” vertex-minors. We show how
to use their theorem (Theorem 3.4.2) to work entirely in the labelled tour graph.

In Chapter 4 we prove a precise min-max theorem in the simplest case: when the
labelled tour graph has just one signature. In fact we prove a somewhat more general
result. We characterize the maximum number of non-zero circuits in a “rooted” circuit-
decomposition of a signed Eulerian graph.

Finally, in Chapter 5 we use the results from the previous two chapters to prove the
Local Structure Theorem. We then briefly return to the overall question of “structure for
vertex-minors” in Section 5.6.

1.3 Vertex-minors and the main ingredients

For a vertex v of a graph G, locally complementing at v replaces the induced subgraph on
the neighbourhood of v by its complement. We denote the new graph by G *x v, as depicted
in Figure 1.2. Then a graph H is a vertex-minor of a graph G if H can be obtained from
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Figure 1.2: A graph before and after locally complementing at v, with the neighbours of v
in red.

G by a sequence of vertex deletions and local complementations (in any order). If H can
be obtained from G by local complementations alone, then H and G are locally equivalent.
This is an equivalence relation because G x v * v = (. It is important to notice that all
of the local complementations can be performed first; any vertex-minor of GG is an induced
subgraph of a graph that is locally equivalent to G.

So vertex-minors arise when we care not just about an individual graph, but about its
whole local equivalence class. In Section 1.6 we will see that local equivalence classes can
be further refined into “pivot-equivalence” classes. Given any graph G, we can construct a
pivot-equivalence class that has one graph for each spanning tree of GG. Deleting a vertex
from the pivot-equivalence class corresponds to deleting or contracting an edge from G,
depending on whether or not the edge is in the spanning tree. This hints at the remarkable
connection with graph minors.

Next we will discuss two properties that are invariant under local complementation.
The Structural Conjecture then says that, in some sense, these are the only two examples.

Circle graphs

Recall that a circle graph is the intersection graph of chords on a circle; we call a collection
of chords of the unit circle a chord diagram. The class of circle graphs is closed under
taking vertex-minors. To delete a vertex, we just delete its chord. To locally complement
at a vertex v, we “flip” one of the two arcs of the circle that has the same ends as the chord
v (see Figure 1.3, where we flip the arc on the right of v). In general we allow two chords
to have a common end on the circle, but when applying this argument we first perturb the
chords slightly so as to avoid this; it is always possible to do so.
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Figure 1.3: Chords on a circle (top) and the corresponding circle graphs (bottom), before
and after locally complementing at v.




Figure 1.4: The three forbidden vertex-minors for circle graphs.

Since the class of circle graphs is closed under taking vertex-minors, we could hope to
characterize circle graphs in a similar manner to Kuratowski’s characterization of planar
graphs. Bouchet [10] proved such a theorem.

Theorem 1.3.1 (Bouchet [10]). A graph is a circle graph if and only if it has no vertex-
manor isomorphic to any of the three graphs in Figure 1.4.

In fact, Geelen and Oum [66] proved a common generalization of Bouchet’s theorem and
Kuratowski’s theorem. Their theorem characterizes circle graphs by forbidden pivot-
minors; the remarkable connection between planar graphs and circle graphs is due to
de Fraysseix [34]. Unfortunately though, Geelen and Oum’s theorem is difficult to state;
there are 15 obstructions which were found by computer search.

There are other characterizations of circle graphs, such as Naji’s [94] algebraic charac-
terization (also see the proofs in [65] and [116]) and Brijder and Traldi’s [17, 18] character-
ization via representations of a multimatroid. However, there is no known characterization
of circle graphs by forbidden induced subgraphs (see the survey by Durén, Grippo, and
Safe [41]).

Cut-rank

Cut-rank is a function that measures the “complexity” of each cut in a graph. The most
standard such measure is the number of edges in a cut; cut-rank instead considers rank
in the adjacency matrix. The advantage is that strictly more cuts have “low complexity”
according to their cut-rank.

For this reason, cut-rank is particularly useful for algorithmic applications; it suggests a
way of generalizing the “divide-and-conquer” approach (see [87]) beyond classes of graphs
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Figure 1.5: A graph (top) and its adjacency matrix (bottom), before and after locally
complementing at v.

with small separators. This idea has been very effective; many problems that can be solved
using dynamic programming on graphs of bounded tree-width [26] can likewise be solved
on graphs of bounded rank-width [27, 104]. We will define rank-width later; for now let us
just say that it is similar to branch-width but defined using the cut-rank function. This
approach was introduced by Oum and Seymour [104].

Now here are the definitions. Let G be a graph, and recall that its adjacency matriz,
denoted Adjg, is the V(G) x V(G) matrix whose (u,v)-entry is 1 if uv € E(G) and 0
otherwise. In this thesis every matrix is over the binary field. This convention is important;
it makes cut-rank behave appropriately under local complementations. The cut-rank of a
set X C V(G), denoted pg(X) (or just p(X) if the graph is clear from context), is the
rank of the submatrix of the adjacency matrix with rows X and columns V(G) — X. The
cut-rank function is symmetric; that is, p(X) = p(V(G) — X) for any X C V(G).

Moreover, cut-rank is invariant under local complementation [99, Proposition 2.6]. To
see this, consider what happens in the adjacency matrix when we locally complement at a



Figure 1.6: A graph (left, with the set of leaves of the rightmost component of T'— e circled
in bold red) and a rank-decomposition 7" (right, with e in bold red).

vertex v. As depicted in Figure 1.5, the row of v is added to the rows of its neighbours,
and then the diagonal is corrected. (It is alright to correct the diagonal because cut-rank
only “sees” the off-diagonal entries.) So p(X) does not change for any X C V(G) that
contains v; this is enough because cut-rank is symmetric.

Combining the examples

The Structural Conjecture says that every graph in a proper vertex-minor-closed class
“decomposes” into parts that are “almost” circle graphs. Both “decomposes” and “almost”
have to do with the cut-rank function. Since the decomposition step is fairly technical, for
now we will just give the definition of rank-width instead. The informal intuition is that a
graph has low rank-width if it “successively decomposes” (along cuts of low cut-rank) into
the 1-vertex graph.

Here are the formal definitions; refer to Figure 1.6 for an example. First, a rank-
decomposition of a graph G is a tree T, with V(G) as its set of leaves, so that each vertex
of T has degree either one or three. The width of an edge e of T' is the cut-rank, in G, of
the set of all leaves of one of the components of T'— e. (The choice of component does not
matter since cut-rank is symmetric.) Finally, the rank-width of G is the minimum, over all
rank-decompositions 7" of G, of the maximum width of an edge of T'. Graphs with at most
one vertex do not technically admit rank-decompositions, so we define their rank-width to
be zero.

Because cut-rank is invariant under local complementation, if H is a vertex-minor of G,
then the rank-width of H is at most the rank-width of G. So for each k& € N, the class of

10



graphs with rank-width at most k is closed under taking vertex-minors. Oum [99] proved
that each such class can be characterized by a finite number of forbidden vertex-minors.
Furthermore, the Grid Theorem for Vertex-Minors gives a rough characterization.

Corollary 1.3.2. A class of graphs has bounded rank-width if and only if it does not
contain all circle graphs as vertex-minors, up to isomorphism.

So we have two main examples of proper vertex-minor-closed classes: the class of circle
graphs and, for each k € N, the class of graphs of rank-width at most k.

Now we formalize the notion of “almost”; this notion will let us create new proper
vertex-minor-closed classes. So, a rank-p perturbation of a graph G is a graph whose
adjacency matrix can be obtained from Adjs by first adding (over the binary field) a
symmetric matrix of rank at most p, and then changing all diagonal entries to be 0. Thus
the cut-rank of each set changes by at most p. In Lemma 1.6.7, we will prove that for
any p € N and any proper vertex-minor-closed class F, there exists a graph that is not
isomorphic to a vertex-minor of any rank-p perturbation of a graph in F. So this operation
allows us to obtain a new proper vertex-minor-closed class. (Any graph in the new class is
also a low-rank perturbation of a graph in F, but the precise rank can go up.)

Nguyen and Oum [98] showed that a number of notions are approximately equivalent to
low-rank perturbations. The most explicit definition comes from complementing on a set
X C V(G); this means to replace the induced subgraph on X by its complement. Every
graph that can be obtained from G by complementing on p sets (that is, by repeating
this operation p times) is a rank-p perturbation of G. In the other direction, every rank-p
perturbation of G can be obtained from G by complementing on |3p/2| sets. This follows
from the next lemma; note that any rank-2 matrix can be written as the sum of three
symmetric rank-1 matrices. (Furthermore, while we work over the binary field, this lemma
actually holds for any field. It is related to Bunch—-Kaufman decompositions for “nearly
diagonalizing” symmetric matrices; see [19].)

Lemma 1.3.3. For any p > 0, every symmetric rank-p matrix can be written as the sum
of p1 rank-1 matrices and ps rank-2 matrices, also symmetric, so that p = p1 + 2ps.

Proof. We proceed by induction on p. We may assume that p > 3 as otherwise the lemma
trivially holds. Let A denote the matrix in question, and suppose first that A has a non-
zero entry on its diagonal. Then, where x denotes the corresponding column vector, the
matrix A — xxT has lower rank than A. So we may assume that the diagonal of A has no
non-zero entries. Now consider an arbitrary non-zero entry A;;; let  and y be the column
vectors on columns ¢ and j. Then A — (zyT +yxT) has rank 2 less than the rank of A. This
now completes the proof by induction on p. O]

11



The examples of proper vertex-minor-closed classes discussed in this section give good
intuition for the Structural Conjecture. The only piece still missing is the full “decompo-
sition” step.

1.4 Motivating conjectures

In this section we discuss some conjectures that we hope can be approached using the
Structural Conjecture. For a conjecture about proper vertex-minor-closed classes to seem
reasonable and approachable using the Structural Conjecture, we would like for the follow-
ing to hold.

(i) The conjecture is true for the class of circle graphs.
(i1) The conjecture is true for any class of graphs of bounded rank-width.

(i11) If the conjecture holds for a class of graphs F, then it also holds for the class of all
graphs that can be obtained from a graph in F by complementing on a set.

These three conditions are not quite enough overall because there is still the technical
“decomposition” step in the Structural Conjecture. However, we believe that these three
conditions provide good evidence that a conjecture is likely to be true. In fact, the third
condition is most important to verify when F is the class of circle graphs.

Well-quasi-ordering and membership testing

Recall the Well-Quasi-Ordering Conjecture of Oum [102, 103] from Section 1; the conjecture
says that every infinite set of graphs contains one graph that is isomorphic to a vertex-minor
of another. Oum [100] proved this conjecture for classes of bounded rank-width; in fact he
proved a stronger statement about pivot-minors. The conjecture also holds for the class
of circle graphs. This fact is a corollary of well-quasi-ordering for immersion minors [113];
Kotzig [83] showed that vertex-minors of circle graphs are related to immersion minors of
4-regular graphs.

We need new techniques to deal with complementing on a set. The standard approach
is to allow vertices (or sometimes edges) to be labelled by a fixed well-quasi-order. Then
we would aim to use the fact that perturbations behave well with respect to taking vertex-
minors (see Lemma 1.6.7). For now, however, this case is open.

12



Next recall the Membership Testing Conjecture of Oum [102, 103] from Section 1. The
conjecture says that, for any fixed proper vertex-minor-closed class of graphs F, there is a
polynomial-time algorithm that determines if a given graph is in F. This conjecture holds
for classes of bounded rank-width by combining the well-quasi-ordering result of Oum [100]
with the approach of Courcelle and Oum [28]. The conjecture also holds for the class of
circle graphs [6, 52]. The general problem, however, likely requires a different approach.

Bounding the chromatic number

A graph class is x-bounded if the chromatic number of each graph in the class is bounded
above by some fixed function of its clique number. Such a function is called a y-bounding
function. In general it is very difficult to understand what else, besides a large clique, could
possibly make the chromatic number of a graph large. Yet these graphs are surprisingly
common; the classic random construction of Erdés [50] yields graphs of large chromatic
number and large girth. So we study y-bounded graph classes in order to understand what
structures these graphs must contain; see the survey by Scott and Seymour [115].

For vertex-minors, Davies [31] recently proved the following theorem, which was con-
jectured by Geelen (see [43, Conjecture 1]).

Theorem 1.4.1 (Davies [31]). Ewvery proper vertez-minor-closed class of graphs is x-
bounded.

Strikingly, Esperet [51, Conjecture 2.3.19] conjectures that every x-bounded graph class
which is closed under deleting vertices has a very efficient y-bounding function: one that is
a polynomial. Such a graph class is called polynomially x-bounded. 1t is difficult to believe
Esperet’s conjecture, yet the conjecture remains open despite a great deal of effort aimed
at disproving it. However, for vertex-minor-closed classes it seems likely to be true.

Polynomial y-boundedness Conjecture (Esperet [51], Kim, Kwon, Oum, and Sivara-
man [79]). Every proper vertez-minor-closed class of graphs is polynomially x-bounded.

Polynomial y-boundedness is particularly interesting because it implies the famous
Erdés-Hajnal property (that there exists € > 0 so that every n-vertex graph in the class
has a clique or stable set of size at least n¢). It is unknown whether or not x-boundedness
alone implies the Erdds-Hajnal property (even though the Erdés-Hajnal Conjecture says
that the property holds as long as an induced subgraph is forbidden); see the survey by
Chudnovsky [20]. However, Chudnovsky and Oum [23] have already proven that every
proper vertex-minor-closed class has the Erdés-Hajnal property.
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We believe that the Structural Conjecture would imply the Polynomial y-boundedness
Conjecture. McCarty and Davies [33] proved that circle graphs are polynomially x-
bounded; in fact Davies [32] very recently found a y-bounding function which is tight
up to a constant factor. This improved on the singly exponential bound of Kostochka
and Kratochvil [82] and the original proof of Gyarfas [69]. Furthermore, Bonamy and
Pilipczuk [1] proved that classes of bounded rank-width are polynomially y-bounded (in
fact they took care of the full “decomposition” step). This result improved the theorem of
Dvorak and Krél’ [43] that such classes are x-bounded.

For complementing on a set, first we consider complementing the entire graph. Kos-
tochka and Kratochvil [82] showed that the complements of circle graphs are polynomi-
ally y-bounded. The complements of graphs of bounded rank-width still have bounded
rank-width; so they are polynomially y-bounded as well. Moreover, the following equiv-
alent version of the conjecture is “stable” under complementing on a set; for any proper
vertex-minor-closed class F, both F and the class of all complements of graphs in F is
polynomially y-bounded.

Approximating the chromatic number and computing the clique
number

We would like to make the Polynomial y-boundedness Conjecture algorithmic; that is, we
would like to efficiently approximate the chromatic number of graphs in a proper vertex-
minor-closed class. It is natural to conjecture the following.

Chromatic Number Approximation Conjecture. For any proper vertex-minor-closed
class of graphs F, there exists € > 0 so that the chromatic number of an n-vertex graph in
F can be approzimated to within a factor of n*=¢ in polynomial time.

While this conjecture may not seem strong at first glance, it is typically very difficult
to approximate the chromatic number; Zuckerman [125] showed that it is NP-hard to
approximate the chromatic number of an n-vertex graph to within a factor of n!=¢ for any
fixed € > 0. We also cannot expect to get an exact algorithm for proper vertex-minor-closed
classes; it is NP-complete to compute the chromatic number of a circle graph [56].

In light of the Polynomial x-boundedness Conjecture, there should be a rather simple
approximation algorithm; return the size of a largest clique. Geelen conjectures that this
can be done in polynomial time.
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Max-Clique Conjecture (Geelen - see [115]). For any proper vertex-minor-closed class
of graphs F, there is a polynomial time algorithm that computes the clique number of a
graph in F.

The Polynomial y-boundedness and Max-Clique Conjectures would together imply the
Chromatic Number Approximation Conjecture.

The Max-Clique Conjecture is true when F is the class of circle graphs or their com-
plements [57], and when F has bounded rank-width [27]. Geelen [59] believes that the
conjecture also holds for the class of graphs obtained from circle graphs by complementing
on a set, provided the set is given as input. (The proof would follow the methods of [57]).

For these conjectures it seems important to obtain an algorithmic version of the Struc-
tural Conjecture. For any fixed circle graph H, the Grid Theorem for Vertex-Minors
yields a polynomial-time algorithm that finds either a vertex-minor isomorphic to H, or a
rank-decomposition of bounded width as follows.

First, fix an integer rgy so that every graph with rank-width at least ry has a vertex-
minor isomorphic to H. Jeong, Kim, and Oum [73] provided an efficient algorithm that,
for an input graph G, determines whether or not the rank-width of G is at most rg, and,
if it is, finds a rank-decomposition of width at most 5. So we may assume that the rank-
width is more than rg. Since deleting a vertex decreases the rank-width by at most one,
we can find an induced subgraph G’ of G that has rank-width exactly ry. Then, using a
rank-decomposition for G’ of width g, we can find a vertex-minor of G’ that is isomorphic
to H using dynamic programming [28]; for further details see the survey by Oum [102].

We believe that our proof of the Local Structure Theorem can also be made algorithmic,
but this would require additional work which is not included in the thesis. On a related
note, we should point out that local equivalence classes are not as complicated as they
might seem; Bouchet [9] gave a polynomial time algorithm to determine if two graphs are
locally equivalent.

First-order model-checking

We motivated vertex-minors by saying that they are like graph minors but for dense graph
classes. We will eventually formalize this analogy in Section 1.6 by considering fundamen-
tal graphs; this will show that planar graphs are like circle graphs and branch-width is like
rank-width. However, there is another nice way to formalize an analogy: by taking trans-
ductions. Sometimes the two approaches align; for example, a class of graphs has bounded
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rank-width if and only if it is contained in the image of a set of trees under a monadic
second-order transduction (see [28, Proposition 5.4]). However this type of transduction
is oftentimes too powerful; planar graphs can yield all graphs via a monadic second-order
transduction. So we consider first-order transductions instead.

Informally, a first-order sentence is a logical statement that can quantify over vertices,
express whether or not two vertices are adjacent or equal, and use logical connectives. A
typical example is that, for any fixed graph H, there is a first-order sentence expressing
that “there is an induced subgraph isomorphic to H”. Likewise, for a fixed ¢ € Z™, there
is a first-order sentence expressing that “there is a dominating set of size at most ¢”. A
sentence is either true or false for a given graph; if a sentence ¢ is true for a graph G, we
say that G models ¢. (In general, Ehrenfeucht—Fraissé games give a nice combinatorial
way to determine if two graphs model the same first-order sentences.)

We refer the reader to [53] for a short definition of first-order transductions. The
definition is roughly as follows. First we non-deterministically specify p sets of vertices
in a graph. Then we make m disjoint labelled copies. Finally we use first-order formulas
(which are like sentences but with free-variables; so they may be true or false for a given
vertex or pair of vertices) to specify which vertices and adjacencies to include. So a first-
order transduction is specified by fixed integers p and m, and some first-order formulas.
Because of the non-deterministic step, applying a transduction to a graph G yields a
collection of graphs. For example, for each p € N, there is a first-order transduction that
yields, when applied to a graph G, the collection of all graphs that can be obtained from
G by complementing on p sets. Likewise, a first-order transduction can be used to obtain
all induced subgraphs of a graph (but not necessarily all subgraphs because their edge-sets
may not be “definable”).

So we have another potential way to generalize theorems about proper minor-closed
classes. In fact, this approach applies more generally to “sparse” graph classes in the sense
of Negetiil and Ossona de Mendez [96]. The new, more general graph classes obtained
via first-order transductions are called “structurally sparse”; this approach was introduced
in [54] and [97]. There are a number of algorithmic applications of sparsity (see the survey
by Dvordk and Krél’ [42] and the book by Nesetfil and Ossona de Mendez [96]), but one
of the most important is first-order model-checking.

We say that first-order model-checking is fixed-parameter tractable on a class of graphs
F if there is an algorithm that takes as input an n-vertex graph G € F and a first-order
sentence ¢, and determines if G models ¢ in time f(|p|)n¢, for some fixed function f and
constant c. (We write |p| for the length of the sentence ¢, so this is the parameter.) We
conjecture the following.

16



First-Order Model-Checking Conjecture. For any proper vertex-minor-closed class
of graphs F and any integer w, first-order model-checking is fized-parameter tractable on
the class of all graphs in F that have clique number at most w.

In fact it seems possible that such classes have bounded twin-width [3]; if the appro-
priate linear order could be found in polynomial time, then this would imply the First-
Order Model-Checking Conjecture. We believe that this stronger conjecture holds for circle
graphs, graphs obtained from a circle graph by complementing on a set (when the set is
provided as part of the input), and graphs of bounded rank-width. The key fact is that
twin-width is preserved under first-order transductions, even when the linear order is part
of the structure [3]. So we can “obtain a circle graph from its chord diagram”, which can
be found in polynomial time [5, 52].

This conjecture about twin-width would imply Davies’ theorem [31] that every proper
vertex-minor-closed class is y-bounded, because classes of bounded twin-width are x-
bounded [2]. In fact, Gajarsky, Pilipczuk, and Torunczyk [55] very recently showed that
any monadically stable class of bounded twin-width has a linear x-bounding function. (In-
formally, a class is monadically stable if there is no first-order transduction that yields all
half graphs; half graphs will come up again in Section 2.4.) Circle graphs, however, do not
have a linear x-bounding function as shown by Kostochka [80, 81]. We believe that their
twin-width must somehow depend on their clique number; there is no obvious relationship
with the Polynomial y-boundedness Conjecture.

The same difficulty occurs in the First-Order Model-Checking Conjecture. While it
seems likely that w could be made a parameter, the dependence on w cannot be removed;
under the Exponential Time Hypothesis, first-order model-checking is not fixed-parameter
tractable for the class of circle graphs [72]. In that paper, Hlinény, Pokryvka, and Roy
proposed the First-Order Model-Checking Conjecture for the class of circle graphs; this
was our original motivation for looking into the case of vertex-minors.

The First-Order Model-Checking Conjecture should be seen as one concrete conjecture
in part of a larger project to relate vertex-minors to structural sparsity (and beyond). It
is tempting to think there should be a connection because graph minors are very closely
related to sparsity (see [96]).

Simulating measurement-based quantum computation

Measurement-based quantum computation (MBQC) is an alternate model of quantum
computation that was introduced by Raussendorf and Briegel [106]. MBQC is “polynomi-
ally equivalent” to the standard quantum gate model; see the survey by Jozsa [75]. The
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advantage of MBQC is that the “level of entanglement” can only decrease throughout
the course of computation; so it is useful for studying what resources can potentially give
quantum computing a speed-up over classical computing.

Here is the idea of how MBQC works. First a quantum state is prepared, and then
measurements are performed on individual qubits. Depending on the outcomes of prior
measurements, it is decided what qubit to measure next, and in what basis (this classical
step can use randomness). The output of the computation is then determined based on all
of the measurement outcomes. When talking about running time, we require a uniformity
condition on how the quantum state is prepared. That is, there is a separate classical
algorithm which says, in polynomial time, which state to prepare. It is convenient to use
n-qubit “graph states” (see [71]) because they are fully represented by an n-vertex graph.
(The original model of Raussendorf and Briegel [106] uses graph states where the graphs
are grids.)

So, in order to study what resources give quantum computing its power, we can re-
strict ourselves to preparing only graph states from a graph class F. Informally, we write
BQP » for the decision problems that can be solved in polynomial time (with bounded
error) using measurement-based quantum computation where only graph states from F
can be prepared. We said earlier that MBQC is “polynomially equivalent” to the standard
quantum gate model; so in particular, if G is the class of all graphs, then BQP; = BQP
(bounded-error quantum polynomial time). On the other hand BQP, = BPP (bounded-
error probabilistic polynomial time).

Geelen [59] conjectures that if we restrict ourselves to preparing graph states from any
proper vertex-minor-closed class, then measurement-based quantum computation can be
efficiently simulated classically. There are several ways to interpret this, but here is one.

Simulation Conjecture (Geelen [59]). For any proper vertex-minor-closed class of graphs
F, BQP; = BPP.

The conjecture is interesting because locally equivalent graphs yield graph states with the
same “level of entanglement” (see [120]). We will see later (in Lemma 1.6.5) that there
are really three main operations for vertex-minors; these three operations correspond to
the three Pauli matrices (see [30] for a nice discussion).

There are two main pieces of evidence for the Simulation Conjecture. First, it is known
that MBQC can be efficiently simulated when the prepared graph states correspond to
graphs of bounded rank-width [121]. Furthermore, the same holds for “planar code states”
under a minor connectivity-type condition on the measured qubits [12]; these states relate
to the graph states of circle graphs.
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1.5 Structural conjectures

This section is dedicated to formalizing the Structural Conjecture.

The weak structural conjecture

First we give a version of the conjecture that lets us avoid “decomposing” for “highly
rank-connected” graphs. This notion of connectivity is rather restrictive, yet there exist
circle graphs of arbitrarily large rank-connectivity (see Lemma 1.5.1). So, unlike the case of
graph minors and topological minors (see Mader [89]), high “connectivity” does not force a
vertex-minor. That is, it is not true that for each graph H, every graph of sufficiently large
rank-connectivity has a graph isomorphic to H as a vertex-minor. However, Geelen [59]
conjectures that the sufficiently rank-connected graphs in any proper vertex-minor-closed
class have a simple structure: that they are low-rank perturbations of circle graphs.

For k € N, a graph G is k-rank-connected if it has at least 2k vertices and p(X) >
min(| X|, |V(G) — X|, k) for each X C V(G). Equivalently, there exists a set of cut-rank k,
and every set X of cut-rank less than & has p(X) = min(| X, |V (G) — X|) (since the right-
hand side also upper bounds the cut-rank). Then the rank-connectivity of G is the minimum
k € N so that GG is k-rank-connected. This definition is similar to “Tutte connectivity” for

matroids [119]. In fact there is a direct connection for fundamental graphs; see Section 1.6
and [8, 99].

We have the following simpler version of the Structural Conjecture for highly rank-
connected graphs.

Weak Structural Conjecture (Geelen [59]). For any proper vertez-minor-closed class
of graphs F, there exist k,p € N so that each k-rank-connected graph in F is a rank-p
perturbation of a circle graph.

This conjecture is very similar to the conjecture of Geelen, Gerards, and Whittle [62]
about the structure of “highly vertically connected” binary matroids (vertical connectiv-
ity is less restrictive than Tutte connectivity). Geelen, Gerards, and Whittle [62] also
conjecture that every binary matroid of sufficiently large vertical connectivity has either
the graphic matroid of the t-vertex clique, or its dual, as a minor. This would generalize
the result of Mader [89] that every graph of sufficiently large vertex-connectivity has the
t-vertex clique as a minor. Furthermore, due to the connection with pivot-minors (see
Section 1.6), this conjecture would imply that every bipartite graph of sufficiently large
rank-connectivity has every t-vertex graph as a vertex-minor (up to isomorphism).
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Figure 1.7: The graph G with its vertices placed according to ¢ on the unit circle (left)
and the corresponding chord diagram (right).

So it is rather surprising that, as we will now show, there exists a proper vertex-minor-
closed class with graphs of arbitrarily large rank-connectivity. In some informal sense,
these graphs must be very far from bipartite.

Lemma 1.5.1. For each k € 7", there exists a circle graph that is k-rank-connected.

Proof. Fix k € Z*, and set d := (4k)(2k)*~1. Let G be a graph of girth at least 4k and
connectivity at least d; such a graph exists by, for instance, the classic random construction
of Erdos [50]. Next fix an arbitrary injective function ¢ from V(G) to the unit circle; this
just fixes a cyclic order of V(G). Then form a chord diagram by replacing each edge uv
of G with a chord whose ends are very close to ¢(u) and ¢(v); arrange these chords so
that for each vertex, the “incident” chords are non-intersecting (see Figure 1.7). We abuse
notation by referring to these chords and the edges of G interchangeably.

We are not yet done adding chords. We will define a chord diagram C that is disjoint
from E(G), and then consider the circle graph of C U E(G). This chord diagram C is
obtained by, for each vertex v € V(G), adding some non-intersecting chords “very close”
to ¢(v) as depicted in Figure 1.8. So, let v € V(G), let D > d be the degree of v, and let
v1,...,vp be the ends, in order and near ¢(v), of the D chords incident to v. First add a
chord that goes over all of vy,...,vp. We say that this chord has level I; there will be k
levels of chords. Suppose that we have already defined the chords at levels 1, ..., 7 for some
1 < k. Then for each chord J of level i, there are 2k new chords of level 7 + 1 “underneath”
J; place the new chords so that they partition whichever of vy,...,vp are underneath J
as evenly as possible. Thus, inductively, each chord of level i has at least (4k)(2k)*~% of
v1,...,vp underneath it.

This completes the definition of C. We say that two chords in C nest if they are at
the same vertex and one is “underneath” the other. We will show that the circle graph of
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Figure 1.8: A depiction of the chords in C (bold red; they are drawn curved for convenience)
and E(G) (black) when we have “zoomed in” to be very close to ¢(v). The exact number
of chords does not align with the proof.

C U E(G) is k-rank-connected. So, let (X,Y’) be a partition of C U E(G); we may assume
that |Y N E(G)| > | X N E(G)|. We split into cases.

Case 1: | X N E(G)| > 4k

Since G is 4k-connected and has girth at least 4k, there are at least 4k vertices that are
incident to both an edge in X N E(G) and an edge in Y NE(G). At least 2k of these vertices
have level 1 chords in the same side of (X,Y’). Then since each chord in E(G) intersects
precisely two chords of level 1, there is a perfect matching of size k induced between X
and Y. So p(X) > k, which completes the case.

Case 2: | X N E(G)| < 4k and X NC has 2k pairwise non-nested chords

Since | XNE(G)| < 4k, each chord in X NC intersects a chord in YN E(G). Furthermore,
each chord intersects at most two of the 2k pairwise non-nested chords in X NC. So there
is a matching of size k induced between between X and Y, and p(X) > k, which completes
the case.

Case 3: |X N E(G)| < 4k and X NC has k pairwise nested chords

These k pairwise nested chords are at levels 1,2, ...,k at some vertex v of G; denote
them by Ji, Jo, ..., Ji, respectively. We claim that for each level ¢ < k, there exists a chord
in Y N E(G) that intersects J; but none of J;,1, ..., Jr. This would imply that p(X) > k
(since any square matrix with 1’s on the diagonal and 0’s on the upper-right has full rank)
and we would be done. The claim holds since | X N E(G)| < 4k and, for each level i < k,
there exists a chord other than J;,; at level ¢ + 1 underneath J;.

Case 4: None of the above cases occurs.

In this case we will show that p(X) > |X|. It suffices to find an ordering J, ..., Jx|
of the chords in X so that for each ¢, there is a chord in Y that intersects .J; but none of
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Jit1, -5 Jjx|- The chords in X N E(G) will come first. Since G has girth at least 4k, the
set X N E(G) is acyclic. We successively delete an edge in X N E(G) that is incident to a
leaf vertex v. There is a chord in Y'NC at v (because X NC does not have k pairwise nested

chords since Case 3 does not occur); this chord does not intersect any of the “following”
chords in X.

It just remains to consider the chords in X NC. Among the chords in X NC that have
not yet been ordered, choose a chord J whose level is minimum. Say that J is at a vertex
v € V(G) and has level i. Since X N C does not contain 2k pairwise non-nested chords
(as Case 2 does not occur), there exists a chord underneath J at level i + 1 that is in
Y. By again looking underneath that chord, and so on, and then applying the fact that
|X N E(G)| < 4k (since Case 1 does not occur), we can find a chord in Y N E(G) that
intersects J but no other chord in X NC. By adding the chord J next, and continuing in this
fashion among all remaining chords in X N C, we obtain the desired ordering .J, ..., Jx|.
This completes the final case, and therefore also Lemma 1.5.1. O]

The full structural conjecture

We are almost ready to formalize the Structural Conjecture. We just need to discuss
“decompositions”. We call the following structure a “tree-decomposition” even though it
is different from the classic “tree-decompositions” that are used for tree-width.

So, a tree-decomposition of a graph G is a pair T = (T,¢) where T is a tree and
¢ : V(G) — V(T) is a function. So the vertices of T' yield a partition of V(G); for
each t € V(T), there is a (possibly empty) part ¢—1(¢) called the bag of t. The tree also
shows how to decompose at each bag; for each t € V(T'), there is a partition Az(t) of
V(G) — (¢71(t)) according to the connected components of T — t. More formally, for each
t € V(T), we write Az (t) for the collection of all sets ¢~ (X) where X is the vertex set of
a component of 1" — t.

The formal conjecture will say that there exists a tree-decomposition so that each
bag “becomes” a circle graph after first performing a low-rank perturbation and then
“decomposing on each set in A7 (t)”. Unfortunately we do not have a direct analog of clique
sums for vertex-minors. The Structural Conjecture is better compared with a version of the
Graph Minors Structure Theorem where, informally, as many of the “clique sum vertices”
as possible are turned into apex vertices (such statements are given in [35] and [37], for
example). Roughly, for graph minors, we are just left with gluing onto apex vertices and
facial triangles. So for vertex-minors, we first “lower the cut-rank as much as possible”
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Figure 1.9: Decomposing on a set A with p(A) = 2.

using a low-rank perturbation. Then, afterwards, each set in A7 (t) has cut-rank at most
2 (this is the analog of a 3-separation), and we can “decompose on each set in Az (t)”.

So, let G be a graph with A C V(G) so that p(A) < 2. If p(A) = 0, then define G o A
to be the graph obtained from G by deleting A. If p(A) = 1, then define G o A to be
the graph obtained from G by deleting all vertices in A other than one vertex that has a
neighbour in V(G) — A. Finally, if p(A) = 2, then there are vertices a,b € A with distinct
neighbourhoods in V' (G) — A (see Figure 1.9); define G o A to be the graph obtained from
G by deleting all vertices in A other than a and b, and then adding a new vertex that is
adjacent to just a and b. While there may be more than one choice for a and b, the graph
G o A is well-defined up to isomorphism and local equivalence; we omit the proof of this
fact. We call G o A the graph obtained from G by decomposing on A.

This decomposition operation can be successively performed on disjoint sets of vertices,
as long as they each have cut-rank at most 2. So, if G is a graph and A is a collection
of disjoint vertex sets each of cut-rank at most 2, then define G o A to be the graph
GoAjo...0A, where Ay,..., Ay is any enumeration of the sets in A. Again this graph is
well-defined up to isomorphism and local equivalence, though we omit the proof. We call
G o A the graph obtained from G by decomposing on A.

We are now ready to state the main conjecture.

Structural Conjecture (Geelen [59]). For any proper vertez-minor-closed class of graphs
F, there exists p € N so that each graph G € F has a tree-decomposition T = (T, $) so
that for each t € V(T'), there is a rank-p perturbation G, of G so that each set in Ar(t)

has cut-rank at most 2 in Gy, and Gy o A (t) is a circle graph.

The conjecture holds for classes of bounded-rank perturbations of circle graphs; take
a tree-decomposition (7', ¢) where T" has one vertex. The conjecture also holds for classes
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Figure 1.10: A graph before and after pivoting on uv, with the exchanged edges/non-edges
in red.

of bounded rank-width; if 7" is a rank-decomposition of G so that the maximum width
of an edge of T is minimum, then, where for a vertex v € V(G) we define ¢(v) = v,
the tree-decomposition (7', ¢) of G suffices. So these two examples are on opposite ends
of the spectrum; that is why we view them as the most important examples of proper
vertex-minor-closed classes.

The precise statement of the Structural Conjecture was motivated by the matroid
minors project of Geelen, Gerards, and Whittle (see [58] for an overview and [62] for the
case of “high connectivity”). We will discuss this motivation further in the next section.

1.6 Pivot-minors

Several times so far we have alluded to a common generalization of vertex-minors and graph
minors. That common generalization is provided by pivot-minors, as shown by Bouchet [7].
Not only is this connection useful for motivating conjectures, but it also provides one of
the most important proof techniques for vertex-minors.

For a graph G and an edge uv € E(G), pivoting on uv results in the graph Gxuxvku; this
operation is well-defined because Gxuxvsu = Gxvxu*v (see [99, Corollary 2.2]). We denote
this new graph by G x wv. Equivalently, G x uv is obtained from G by “complementing
between” the sets of all vertices other than u and v which are 1) adjacent to u but not v,
2) adjacent to v but not u, and 3) adjacent to both u and v, and then switching the labels
of u and v. See Figure 1.10 and [99, Proposition 2.1]. Complementing between pairwise
disjoint sets of vertices means to exchange edges/non-edges between the sets.
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Figure 1.11: A graph (left) with a spanning tree T (in bold red) and its fundamental graph
(right).

Now we can define pivot-minors and pivot equivalence in the same way that we defined
vertex-minors and local equivalence. (So a pivot-minor of a graph G is any graph that can
be obtained from G by pivoting on edges and deleting vertices. A graph is pivot-equivalent
to GG if it can be obtained from G by pivoting alone; this is an equivalence relation since
(G x uv) x uv = G.) Thus every pivot-minor of a graph G is also a vertex-minor of G, but
typically not vice-versa.

Remarkably, pivot-minors of bipartite graphs essentially generalize graph minors. (The
class of bipartite graphs is closed under pivot-minors; in fact, a graph is bipartite if and
only if it does not have a triangle as a pivot-minor.) We will explain this connection next.

Pivot-minors and graph minors

Let G be a graph; we will show how to obtain a pivot-equivalence class of bipartite graphs
from G. First, a fundamental graph of G is obtained by selecting a maximal spanning
forest T of G and creating a bipartite graph where one side is E(T") and the other side is
E(G)— E(T); each e € E(G) — E(T) is adjacent to the edges in the unique cycle of T+ e
(see Figure 1.11). Let F(G) denote the set of all fundamental graphs of G.

Bouchet [7] proved that F(G) is a pivot-equivalence class of bipartite graphs, and that
each pivot-minor of a graph in F(G) is a fundamental graph of a minor of G (also see the
nice explanation by Oum [99]). In the fundamental graph corresponding to a tree T of G,
pivoting exchanges edges in T, deleting e € E(G) — E(T) deletes it from G, and deleting
e € E(T) contracts it in G.

To go in the opposite direction (beginning with a pivot-equivalence class of bipartite
graphs), we would need to work with binary matroids. We will discuss this fact in the next
subsection, but for now we focus on graphs. So to state the following theorem in terms
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of graphs, we use Whitney’s planarity criterion [122] and Whitney’s theorem [123] about
representations of graphic matroids.

Theorem 1.6.1 (Bouchet [11] and Oum [99]). For any 3-connected graphs H and G, a
graph in F(H) is isomorphic to a pivot-minor of a graph in F(G) if and only if H is
isomorphic to a minor of G or, if G is planar, its planar dual.

It is much more technically complicated to state a version of Theorem 1.6.1 for graphs that
are not 3-connected, but it can be done.

Moreover, fundamental graphs let us formalize the relationship between planar graphs
and circle graphs.

Theorem 1.6.2 (de Fraysseix [34]). A bipartite graph is a circle graph if and only if it is
a fundamental graph of a planar graph.

This theorem characterizes circle graphs; every circle graph is a vertex-minor of one that
is bipartite (folklore, see [16]).

We can formalize a relationship between branch-width and rank-width as well. Using
a theorem of Mazoit and Thomassé [93] about the branch-width of a graphic matroid, we
have the following.

Theorem 1.6.3 (Oum [99]). The branch-width of a bridgeless graph is one more than the
rank-width of each of its fundamental graphs.

For graphs with bridges, the rank-width can be at most one off.

As was the case for circle graphs, every class of bounded rank-width comes from a
bipartite class of bounded rank-width. Formally, it follows from a theorem of Kwon and
Oum [84] that there exists a function f so that for each r € N, every graph of rank-width
r is a vertex-minor of a bipartite graph of rank-width at most f(r). We believe that this
sort of statement holds for any proper vertex-minor-closed class.

Bipartite Generation Conjecture. For any proper vertex-minor-closed class of graphs
F, there exists a proper vertex-minor-closed class of graphs F' so that each graph in F is
a vertex-minor of a bipartite graph in F'.

Next we will see that this conjecture would relate vertex-minors to binary matroid minors.
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Pivot-minors and binary matroid minors

We refer the reader to the book by Oxley [105] for an introduction to matroids. In this
section we formalize the connection between binary matroid minors and pivot-minors.

Let M be a binary matroid. We define F(M) and the fundamental graphs of M in
the same way as before. (So a fundamental graph of M is obtained by selecting a basis B
and creating a bipartite graph where one side is B and the other side is E(M) — B; each
element e € F(M) — B is adjacent to the other elements in the unique circuit of B U {e}.
We let F(M) denote the set of all fundamental graphs of M.) Bouchet [7] really proved
that F (M) is a pivot-equivalence class of bipartite graphs, and that each pivot-minor of a
graph in F(M) is a fundamental graph of a minor of M.

Now we can go in the opposite direction as well; every pivot-equivalence class of bipartite
graphs is the set of fundamental graphs of a binary matroid M. However, one side of a
fundamental graph corresponds to a basis B, the other side corresponds to E(M)— B, and
exchanging sides takes the dual of the matroid. More formally, a component-wise dual of
a matroid M is a matroid that can be obtained from M by replacing zero or more of its
components by their duals. We have the following theorem.

Theorem 1.6.4 (Bouchet [11] and Oum [99]). For any binary matroids M and N, a graph
in F(N) is isomorphic to a pivot-minor of a graph in F (M) if and only if N is isomorphic
to a minor of a component-wise dual of M.

This theorem can be used to make Theorem 1.6.1 precise for graphs that are not 3-
connected. It is also why well-quasi-ordering for pivot-minors would imply well-quasi-
ordering for graph minors (as mentioned by Oum [102]).

Now we can see why the Bipartite Generation Conjecture is interesting; it would let
us obtain “structure for vertex-minors” from “structure for binary matroids”. However,
the only way we can imagine proving the conjecture in the first place is to use “struc-
ture for vertex-minors”. (Brijder and Traldi [15, Corollary 35] gave an interesting way of
constructing a pivot-equivalence class of bipartite graphs from a local equivalence class,
but their construction does not yield proper vertex-minor-closed classes.) Still, this is why
the (ongoing) matroid minors project of Geelen, Gerards, and Whittle [58] motivated the
precise statement of the Structural Conjecture.

Pivot-minors and vertex-minors

The following definition is very useful for proving things about vertex-minors. For a graph
G and a vertex v € V(G), define G/v to be the graph G x uv — v for some neighbour u
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of v, or, if v has no neighbour, to be the graph G — v. We call G/v the graph obtained
from G by pivot-deleting v; it is well-defined up to pivot-equivalence (and therefore also
local equivalence). This is because, for any two neighbours u; and uy of v, we have
G x vu; = (G X vug) X ujug; see [99, Proposition 2.5].

Surprisingly, there are only three ways to remove a vertex from a graph, up to local
equivalence (see [66, Lemma 3.2] for a direct proof).

Lemma 1.6.5 (Bouchet [7]). If H is a vertez-minor of a graph G and v € V(G) — V(H),
then H is a vertex-minor of either G —v, Gxv — v, or G/v.

This fact gives us a very useful proof technique. Suppose that we are interested in two
properties P, and P,, and let G be a vertex-minor-minimal graph which satisfies P, and P.
Then there is no vertex v so that for ¢« = 1, 2, most of the three graphs G —v, G*v—wv, and
G /v satisfy P;. Thus we can oftentimes deal with P, and P separately. This approach is
used in the proofs of both of our main theorems, which is a major obstacle to generalizing
these theorems to pivot-minors (where there are only two ways to remove a vertex).

There is one particularly important example. For a graph G with disjoint sets of
vertices S and T, the connectivity between S and T, denoted kg(S,T) (or just x(S,T)
when the graph is clear from context), is the minimum cut-rank of a set of vertices which
contains S and is disjoint from 7. Removing a vertex cannot increase the connectivity, and
k(S,T) = k(T,S). Moreover, at least two of the three ways to remove a vertex maintain
the connectivity.

Theorem 1.6.6 (Oum [99, Lemma 4,4]). If S and T are disjoint sets of vertices in a
graph G, then for each v € V(G) — (SUT), at least two of kg—p(S,T), Kgsw—v(S,T'), and
kaw(S,T) are equal to ka(S,T).

(Oum gave a slightly different statement of the result, but Theorem 1.6.6 follows; see [64,
Theorem 4.1].) Oum’s theorem directly implies Tutte’s linking theorem [118] for binary
matroids due to Theorem 1.6.4 on fundamental graphs of binary matroids. This connection
makes Oum’s Theorem an analog of Menger’s theorem for vertex-minors.

Finally, we complete this chapter with another application of Lemma 1.6.5 (that there
are three ways to remove a vertex). We use the lemma to prove that low-rank perturbations
behave well with respect to taking vertex-minors.

Lemma 1.6.7. For any p € N and any proper vertex-minor-closed class F, there exists a
graph that is not isomorphic to a vertex-minor of any rank-p perturbation of a graph in F.
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Proof. Let F' be the class of all vertex-minors of a rank-p perturbation of a graph in F;
we want to show that F’ is a proper class. First we prove a claim.

Claim 1.6.7.1. Fach graph in F' can be obtained from a graph in F by complementing
on 3p sets.

Proof. Let H' € F'; so there is a graph G' € F’ that has H' as a vertex-minor and is a
rank-p perturbation of a graph G € F. We claim that there is a graph G which has both G/
and G as vertex-minors and has only p more vertices than G’ and G. By Lemma 1.3.3, any
symmetric rank-p matrix can be written as the sum of p; rank-1 matrices and p, rank-2
matrices, also symmetric, so that p = p; + 2ps. Then, to obtain G’ from G, we first add a
stable set of size p; and a perfect matching of size ps, then we locally complement at each
vertex in the stable set and pivot on each edge in the matching. So such a graph G exists.

Now, by locally complementing in é, we may assume that H’ is an induced subgraph
of G. Since G is a vertex-minor of G, by Lemma 1.6.5 (that there are three ways to remove
a vertex), we know that for each v € V(G) — V(G), the graph G is also a vertex-minor
of either G — v, G x v — v, or G/v. Each of these three graphs can be obtained from
G — v by complementing on 3 sets (some of which may be empty). So, by repeating this
argument for each of the p vertices in V(@) — V(G), we see that H' can be obtained from

a vertex-minor of G by complementing on 3p sets. The claim follows. m

Next we work with a particular type of graph that, informally, behaves like a complete
graph does for graph minors. For each ¢t € Z*, let Kt(l) denote the graph that is obtained
from a t-vertex clique by subdividing each edge once; subdividing an edge uv replaces it
by a new vertex which is only adjacent to u and v. This graph Kt(l) has every t-vertex
graph as a vertex-minor, up to isomorphism; we can choose to include an edge uv of the
t-vertex clique by locally complementing at the vertex adjacent to v and v. We will show

that F’ forbids one of these graphs Kt(l).

First, let r € Z™ be such that there exists an r-vertex graph that is not isomorphic to
any graph in F. Then fix t € Z* such that every t-vertex clique whose edges are coloured
with 2% colours contains a monochromatic ((r + 5)2%)-vertex clique; such an integer exists
by the multicolour version of Ramsey’s theorem. We have one more key claim.

Claim 1.6.7.2. Any graph which is obtained from Kt(l) by complementing on 3p sets has
every r-vertex graph as a vertex-minor, up to isomorphism.

Proof. First we apply some Ramsey theory. The vertices of Kt(l) correspond to the vertices
and edges of a t-vertex clique. So consider a ¢-vertex clique whose edges and vertices are
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coloured by binary vectors of length 3p indicating the 3p sets. By the multicolour version of
Ramsey’s theorem, this t-vertex clique contains an ((r + 5)2%)-vertex clique whose edges
all have the same colour. By the pigeonhole principle, this resulting clique contains an
(r 4+ 5)-vertex clique whose vertices all have the same colour.

In the resulting induced subgraph Kﬁ)g) of Kt(l), each of the 3p sets is either the entire
vertex-set, or is one of the two sides of the bipartition. Let (X,Y’) denote the bipartition

of Kgf), where Y is the set of vertices which correspond to subdivided edges. Let G,

denote the graph that is obtained from KT(}F)E) by complementing on 3p sets. Then G, 5 is

obtained from K,,(_% by possibly complementing on X, on Y, and/or between X and Y.

We will use two of the five “extra” vertices to “undo” a complementation on Y. So,
if we complemented on Y to obtain G, 5, then locally complement on a vertex in Y in
G,15. This vertex is either non-adjacent to all but two vertices in X, or adjacent to all
but two vertices in X. In any case, there exists a vertex-minor G, 3 of G,5 so that G, 3
is obtained from Kr(i)g by possibly complementing on the remaining vertices in X, and/or
between the two sides.

Now we will use the remaining three “extra” vertices to “undo” a complementation
between the two sides. If we complemented between the sides to obtain G5, then pivot
on an edge going between the sides. The end in Y is adjacent to all but two of the remaining
vertices in X and non-adjacent to the rest of Y. The end in X is adjacent to all of the
“relevant” Vertice(:s in Y. In any case, we find a vertex-minor G, of G, 3 so that G, is

obtained from K" by possibly complementing on the remaining vertices in X.

This graph G, has every r-vertex graph as a vertex-minor, up to isomorphism; we can
choose to remove an edge uv of the r-vertex clique by locally complementing at the vertex
adjacent to u and v. This finishes the proof of Claim 1.6.7.2. O

Now, if the graph Kt(l) was in F’, then by Claim 1.6.7.1 there would be a graph in F
that is obtained from Kt(l) by complementing on 3p sets. Then by Claim 1.6.7.2, the class
F would contain every r-vertex graph as a vertex-minor, up to isomorphism. This is a
contradiction, which means that F’ is a proper class and Lemma 1.6.7 holds. O]
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Chapter 2

The Grid Theorem for Vertex-Minors

2.1 Introduction

In this chapter we prove the Grid Theorem for Vertex-Minors, which is restated below for
convenience.

The Grid Theorem for Vertex-Minors (Geelen, Kwon, McCarty, and Wollan [64]).
For any circle graph H, there exists an integer ry so that every graph with rank-width at
least v has a vertex-minor isomorphic to H.

As in the Grid Theorem of Robertson and Seymour [108], we will first prove the theorem
for particular graphs called “comparability grids”. For a positive integer n, the n x n
comparability grid is the graph with vertex set {(i,7) : i,7 € {1,2,...,n}} where there
is an edge between any two distinct comparable vertices; vertices (i,7) and (i’,7') are
comparable if either i < ¢ and j < j', or i > ¢ and j > j'. We will prove that every circle
graph is isomorphic to a vertex-minor of a comparability grid in Lemma 2.2.3. Thus the
Grid Theorem for Vertex-Minors is equivalent to the following result.

Theorem 2.1.1. There is a function f : Z — Z so that for any positive integer n, every
graph of rank-width at least f(n) has a vertez-minor isomorphic to the n x n comparability
grid.

Despite the resemblance, we see no way of directly proving the Grid Theorem of Robert-

son and Seymour from the Grid Theorem for Vertex-Minors or vice-versa. However, the
following conjecture of Oum [101], if true, would imply both results.
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Figure 2.1: The n x n comparability grid with n = 3, where each vertex (i, 7) is placed at
position (a;, b,+1—;) (left), and the corresponding chord diagram (right).

Conjecture 2.1.2 (Oum [101]). For any bipartite circle graph H, there exists an integer
7y so that every graph with rank-width at least v’y has a pivot-minor isomorphic to H.

See Section 1.6 for an overview of the connection. The conjecture is known to hold for
bipartite graphs, as that special case is equivalent to the grid theorem for binary matroids
(see [60]). Oum [101] also proved Conjecture 2.1.2 for line graphs, and observed that, for
circle graphs, it follows from Johnson’s thesis [74]. It is natural to ask if something similar
could hold for induced subgraphs, but this seems unlikely; see [13] and [25].

2.2 Circle graphs

In this section we prove that each circle graph is isomorphic to a vertex-minor of a com-
parability grid. To prove this result, we show that 1) every circle graph is a vertex-minor
of a “permutation graph” and 2) every permutation graph is an induced subgraph of a
comparability grid. For a permutation 7 of {1,...,n}, the permutation graph represented
by 7 is the graph F, with vertex set {1,...,n} where vertices i and j, with ¢ < j, are
adjacent if m; > 7;.

Lemma 2.2.1. Fvery n-vertex permutation graph is isomorphic to an induced subgraph of
the n X n comparability grid.

Proof. To obtain a chord diagram for the n x n comparability grid, place distinct points
bi,ba, ..., by, Gn,ap_1,...,a; in clockwise order around a circle and include every chord
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Figure 2.2: A chord diagram for the 3 x 3 comparability grid, where the chords in bold red
represent the permutation graph Fy with 7 = (1)(3,2).

with one end in {as,...,a,} and one end in {by,...,b,} (see Figure 2.1). The circle graph
of this chord diagram is isomorphic to the n x n comparability grid, where the vertex (i, 7)
of the comparability grid is associated with the chord a;b,1—;. To obtain the permutation
graph F of a permutation 7 of {1,...,n}, represent each vertex ¢ € {1,...,n} by the
chord connecting a; to by, (see Figure 2.2). In this manner, every n-vertex permutation
graph is isomorphic to an induced subgraph of the n x n comparability grid.

]

Now we find circle graphs as vertex-minors of permutation graphs.

Lemma 2.2.2. FEvery circle graph on n vertices is a vertex-minor of a permutation graph
on 3n wvertices.

Proof. Consider a chord diagram C for a circle graph G so that no two chords in C share
an end (such a chord diagram exists). Let A be an arc of the unit circle whose ends are
disjoint from C. A chord is crossing if it has exactly one end in A. We may assume that
there exists a non-crossing chord in C since otherwise G is itself a permutation graph and
the result follows. We will construct a chord diagram C, such that:

() Co| = [C[ +2,
(17) Cy has fewer non-crossing chords than C, and
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Figure 2.3: The chord diagram C,

(i7i) the circle graph of Cy contains G as a vertex-minor.

The result follows by iterated applications of this construction.

Let v € C be a non-crossing chord with ends a and b; we may assume that a,b € A.
Now select a point ¢ on the unit circle disjoint from A and disjoint from C. Let C; be
obtained from C by adding two parallel chords z and y immediately on either side of the
chord [b, ¢], and let Co be obtained from C; by replacing the chord v with the chord [a, ¢].
See Figure 2.3. Clearly C, satisfies (i) and (i7). Let Gy and G5 denote the intersection
graphs of C; and Cy respectively. Then G is isomorphic to G * x * y (recall that to locally
complement at z, we “flip” one of the two arcs of the circle with the same ends as x) and
G is an induced subgraph of G;. Thus (#4i) holds, as required. O

Finally, we combine the two lemmas to obtain the desired result.

Lemma 2.2.3. Fvery circle graph on n wvertices is isomorphic to a vertex-minor of the
3n x 3n comparability grid.

Proof. The lemma follows immediately from Lemmas 2.2.1 and 2.2.2. O]

2.3 Main tools

The rest of this chapter is dedicated to proving Theorem 2.1.1, that every graph of suffi-
ciently large rank-width has a vertex-minor isomorphic to the n X n comparability grid.
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Our proof will use a result of Oum [99] to “obtain some connectivity”, and a theorem of
Kwon and Oum [85] to obtain a base case for induction. The main new tool is a Disen-
tangling Lemma (Lemma 2.3.4) which “displays the connectivity” while “maintaining an
induced subgraph”. This lemma is particular to vertex-minors; it relies on the fact that
there are three ways to remove a vertex (recall from Lemma 1.6.5 that a vertex can either
be deleted, locally complemented and deleted, or pivot-deleted). In this section we will
discuss these three results.

Obtaining connectivity

To prove the Grid Theorem for Vertex-Minors, it suffices to consider a vertex-minor-
minimal graph of rank-width at least rz. Oum [99] proved that in such a graph, any
cut of low cut-rank has one side that is small. Formally, for a positive integer m and a
function f, a graph G is (m, f)-connected if for every set X C V(G) with p(X) < m, either
|X| < f(p(X)) or |[V(G) — X| < f(p(X)). Observe that if G is (m, f)-connected, ¢ is an
integer which is less than m, and S and T are disjoint subsets of V(G) with cardinality
greater than f(t), then x(S,T") > t (recall from Section 1.6 that (S, T) is the connectivity
between S and T'). So the following lemma lets us “obtain some connectivity”.

Lemma 2.3.1 (Oum [99, Lemma 5.3]). If go31 : Z — 7 is the function defined by
g23.1(n) = (6™ — 1)/5, then, for any positive integer r, every vertex-minor-minimal graph
of rank-width at least r is (r, g2.3.1)-connected.

There is a partial converse to Lemma 2.3.1; any (7, g2.3.1)-connected graph with at least
3go.3.1(r — 1) vertices has rank-width at least r. It follows that, with respect to proving the
Grid Theorem for Vertex-Minors, it suffices to consider large (7, g2.3.1)-connected graphs.

Obtaining a base case
We will use the following theorem of Kwon and Oum [85] as a base case for an inductive
proof (see Figure 2.4). In this result, a star is a tree with at most one non-leaf vertex.

Theorem 2.3.2 (Kwon and Oum [85, Theorem 1.6]). There is a function 1932 : Z — Z
so that, for all positive integers m and k, every graph of rank-width at least o 39(m, k) has
a vertex-minor with m components, each of which is a star on k + 1 vertices.

So, after locally complementing, we will have an induced subgraph with m components,
each of which is a star on k + 1 vertices. Informally, at the first inductive step, we will find
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N N N

Figure 2.4: The base case: a graph with four components, each of which is a star on 6
vertices.

W TN W

Figure 2.5: A depiction of a vertex-minor we might find after one inductive step.

the following graph as a vertex-minor (after “sacrificing” some of m and k). First, take
the high-degree vertices x and y of two stars, and then change edges/non-edges between
the neighbourhoods X of x and Y of x so that the submatrix of the adjacency matrix with
rows X and columns Y has full rank. Then, in each inductive step, we “attach another star
via a full-rank submatrix of the adjacency matrix”. We do so in a “connected way” so that
there is one “highly connected component” and all other components are stars. We will
use Ramsey theory to control the “highly connected component”; the actual definitions
will be given in Section 2.5.

Disentangling

The Disentangling Lemma will “display” the connectivity between disjoint sets of vertices
S and T while “maintaining” the original subgraph induced by S UT. We will use the
following definition to “display” the connectivity.

Let S and T be disjoint sets of vertices in a graph G; recall that Adjs denotes the
adjacency matrix of GG, and all matrices are over the binary field. The local connectivity
of S and T, denoted by Mg (S, T) (or simply M(S,T) if the graph is clear from context), is
the rank of the submatrix of Adjg with rows S and columns T'. Notice that if (Si,...,Ss)
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is a partition of S and (71,...,T}) is a partition of 7', then

n(s,T) < Z i (i, T5);

i=1 j=1

we refer to this property as sub-additivity. Moreover, since a rank-k binary matrix has at
most 2F distinct columns, vertices in S have at most 2737) distinct neighbourhoods within
T.

Our proof will use Edmonds’ Matroid Intersection Theorem (see [47]). So, for a set
T C V(G), let My denote the binary matroid represented by the submatrix of Adjs with
rows 1" and columns V(G) — T. Thus the ground set of My is V(G) — T, and each set
X C E(Mr) has rank M(7,X). So a set I C E(Mr) is independent in the matroid if
|I| = (T, I); we refer to the independent sets of My as T-independent sets.

Recall that Theorem 1.6.6 of Oum [99] says that, if S and T are disjoint sets of vertices
in a graph G and v € V(G) — (SUT), then at least two of kg_,(S,T), KGsw—v(S,T),
and kg/y(S,T) are equal to kg(S,T). By repeatedly applying this theorem, we can find
a pivot-minor G of G with V(é) = SUT so that Mx(S,T) = ka(S,T). Unfortunately,
the graphs G[S UT] and G[S UT] may be different. Informally, the Disentangling Lemma,
makes the connectivity between S and T “somewhat local” without changing the subgraph
induced by S UT'. Here is what we mean by “somewhat local”.

Definition 2.3.3 (k-link). For a graph G with disjoint S,T C V(G), a k-link for (S,7T)
is a pair (X1, Xs2) of k-element subsets of V(G) — (SUT) such that X, is S-independent,
X5 18 T-independent, and either

(Z) Xl = XQ; or

(i) X1 and Xo are disjoint, T1(X1, Xo) = k, all vertices in X, have the same set of
neighbours in T, and all vertices in Xo have the same set of neighbours in S.

We will not explicitly use this fact, but the motivation for k-links is that they certify high
connectivity between S and T'; that is, if there exists a k-link for (S, T), then (S, T) > $k.
The Disentangling Lemma says that, if x(S,7) > k and M(S,T) < k, then we can find
a k-link in a locally equivalent graph without changing the induced subgraph on S UT.
We just assume that M(S,T") < k for the sake of convenience. We believe that the lemma
would not hold if “locally equivalent” were replaced by “equivalent up to pivoting”. (We
omit the proof, but the idea is to consider fundamental graphs of grids; see Section 1.6 for
the definition of fundamental graphs.)
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Lemma 2.3.4 (Disentangling Lemma). There is a function Lysy : Z — Z so that, for
every positive integer k, if G is a graph and S,T C V(G) are disjoint sets with x(S,T) >
Lys4(k) and M(S,T) < k, then there exists a graph G that is locally equivalent to G such

that G[SUT] = GISUT)] and G has a k-link for (S, T).
Proof. Fix a positive integer k. Define ky := 2¥~1 + 1 and
Loga(k) == 2Fh=2 L op 1.

Suppose that the lemma fails for this function, and choose a counterexample (G, S, T') with
|V (G)| minimum. We begin with two claims.

Claim 2.3.4.1. No two vertices in V(G) — (S UT) have the same set of neighbours in
SUT.

Proof. Suppose that u,v € V(G) — (S UT) have the same set of neighbours in S U T.
Consider the case that uv € F(G). Then G[SUT] = (Gxv*u)[SUT]|, so GISUT] is a
vertex-minor of both G —v and G v —v. However, by Theorem 1.6.6 (that at least two of
the three ways to remove a vertex maintain connectivity), either kg_,(S,T) = kg (S, T) or
Kaww—v(S, T) = ka(S,T), contradicting the minimality of G. In the case that uv € E(G),
we see that G[S UT] is a vertex-minor of both G — v and G/v = G X uwv — v. Again we
obtain a contradiction via Theorem 1.6.6. ]

Claim 2.3.4.2. There exist disjoint sets Y1,Y, CV(G) — (SUT) so that

(i) N(Y1,Yz) = V1] = [Ya| > 20071,
(17) all vertices in Y1 have the same set of neighbours in T, and

(7ii) all vertices in Yo have the same set of neighbours in S.

Proof. Note that, if X C V(G) — (SUT) is a common independent set of Mg — T and
My — S with cardinality k, then (X, X) is a k-link for (S,7T); however, there is no such
k-link, and hence Mg — T and M7 — S do not have a common independent set of size k.
So, by the Matroid Intersection Theorem, there is a partition (P, Q) of V(G) — (SUT) so
that M(S, P) +N(T,Q) < k.

Let (Py,..., Ps) be the partition of P into equivalence classes of identical columns of
A[S, P] and let (Qq,...,Q:) be the partition of @ into equivalence classes of identical
columns of A[T,Q]. Since M(S, P) +M(T,Q) < k — 1, we have st < 2"5P)2NTQ) < ok—1,
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Note that M(SUQ, T U P) > w(S,T) > Loga(k) > st2ko=1 + 2k — 1. Moreover, by
sub-additivity and since M(S,7) < k — 1,

Q. P) > nNSUQ, TUP)—-n(S,T)—nN(S,P)—1(Q,T)

> NSUQ, TUP) —2k+2

>

st2ko—1,

So, again using sub-additivity, there exist ¢ € {1,...,t} and j € {1,...,s} such that
M(Q:, P;) > 271, Now choose Y7 C @; and Yo C P; such that N(Yy,Ys) = |Vi] =
|Ys| > 2k0~1 Now it is straightforward to see that (Yi,Y5) satisfies (i), (i), and (iii), as
required. O]

By Claim 2.3.4.1 and part (ii) of Claim 2.3.4.2, no two vertices in Y7 have the same
set of neighbours in S. Then, since |Y;| > 2¥~1 we have M(Y},8) > ko. Let Y] C Y,
be a kg-element S-independent set. Since Y; is Ys-independent, Y/ is also Ys-independent.
So there is a kp-element subset Y; C Y5 that is Y/-independent. Now |YJ| > 2*~! so, by
similar reasoning, there exist a k-element subset X, C Y, that is 7-independent and a
k-element subset X; C Y] that is Xs-independent. Then (X, X») is a k-link for (S,T), a
contradiction. ]

2.4 Ramsey theory

For the rest of this chapter, the vertex set of every graph G is an ordered set, and every set
of vertices of G is considered as an ordered subset of V(G); an ordered set is a sequence
X = (z1,x9,...,x,) with no repeated elements, and a subset of X is a subsequence of
X. Oftentimes this assumption that the vertex-set of a graph is ordered will not matter,
but it will matter when we discuss disjoint sets X and Y of V(G) which are “coupled”.
This will mean that the bipartite subgraph of G which is “induced between” X and Y is
one of a few specific graphs, like a perfect matching, where the vertices which are paired
in the matching (for instance) are determined by the orderings of X and Y. So we use
the ordering of V(G) to induce fixed orderings on subsets which do not depend on the
particular coupled pair under consideration. We sometimes remind the reader of these
conventions by saying that the ordering of X is induced by the ordering of V(G).

Furthermore, if H is a subgraph of G, we mean that V(H) is a subset of V(G) as
ordered sets. Two graphs are isomorphic if they are isomorphic as graphs with unordered
vertex sets. For each positive integer n, we fix a lexicographic ordering on the vertex set of
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Ty @——O0 Y4 T4 Ys

T3 —0 Y3 T3 Ys
To @——0 Y2 X2 Y2
T 00— Y1 x Y1

X’ Px—y (X)

Figure 2.6: A coupled matching (left), up-coupled half graph (middle), and down-coupled
half graph.

the n x n comparability grid. The rest this chapter is dedicated to proving Theorem 2.1.1
with these conventions; this is easily seen to be equivalent to the original statement.

Let X and Y be disjoint ordered sets of cardinality k, and let X' C X. We write
¢x_y(X') for the subset of Y induced by the ordering of X’ with respect to X. That is, if
X = (v1,m9,...,2%), Y = (Y1, 92, .-, y), and X' = (24, T4y, ..., 25,), then ¢x_y(X') =
(Yirs Yia» - - Yi, ). We also write ¢x_x(X') for the set X' itself.

In the rest of this section we review some Ramsey theory for graphs with ordered vertex-
sets. We give a number of definitions so that we can simply state the possible outcomes.
First, for a graph G with disjoint sets X, Y C V(G), we say that X and Y are anticomplete
if G has no edges with one end in X and one end in Y, and complete if for all x € X and
y €Y, zy € E(G). We say that X and Y are homogeneous if they are either complete
or anticomplete. So far these definitions do not care about the ordering, but the following
definitions will.

Let X = (z1,22,...,2x) and Y = (y1, o, - .., yx) be disjoint sets of vertices in a graph
G with orderings induced by the ordering of V(G). Refer to Figure 2.6 for the following
definitions. We say that (X,Y) is

(1) a coupled matching if for each i € {1,2,...,k}, the neighbourhood of x; within Y is
(yl)>

(2) an up-coupled half graph if for each i € {1,2,... k}, the neighbourhood of x; within
Y is (yza Yit1, - - - )yk)7 and

(3) a down-coupled half graph if for each i € {1,2,..., k}, the neighbourhood of z; within
Y is (ylay% s 7yz>
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We say that (X, Y) is the complement of a coupled matching if (X,Y) is a coupled matching
in the complement of GG. Similarly we will talk about the complement of a down-coupled
half graph and the complement of an up-coupled half graph. If (X,Y) is either a down-
coupled half graph, an up-coupled half graph, or one of their complements, then we say
(X,Y) is a coupled half graph. If (X,Y’) is either a coupled matching, the complement of
a coupled matching, or a coupled half graph, we say X and Y are coupled. Notice that if
X and Y are coupled and X’ C X, then X’ and ¢x_,y(X') are coupled.

If X and Y are disjoint coupled sets in a graph G, then M(X,Y) > |X| — 1. The next
result, due to Ding, Oporowski, Oxley, and Vertigan [40], shows that a partial converse
holds; that is, if M1(X,Y") > k, then, up to possibly reordering the vertices in Y, there are
k-element subsets of X and Y that are coupled.

Lemma 2.4.1 (Ding, Oporowski, Oxley, and Vertigan [40, Theorem 2.3|). There is a
function Ry41 : Z — 7 so that for any positive integer k, if G is a graph and X, Y C V(G)
are disjoint sets with M(X,Y) > Ry41(k), then there exist k-element subsets X' C X and
Y’ CY that are coupled in a graph obtained from G by reordering the vertices in Y .

We will also use the following version of a theorem of Ramsey.

Ramsey’s Theorem. For each integer k, there is a function Ry : 7Z — 7 so that for
any positive integer n, every k-edge-coloured clique on at least Ry(n) vertices contains a
monochromatic clique of size n.

The following result can be proven using the multicolour version of Ramsey’s Theorem.
We omit the proof; the idea is to create an auxiliary graph with | X| vertices and an edge
colour for each “configuration” between two vertices in X and two vertices in Y.

Lemma 2.4.2. There is a function Rs 495 : Z — 7 so that for any positive integer k, if X
and Y are disjoint sets of vertices in a graph G with | X| = |Y| > Ra42(k), then there is a
k-element subset X' C X such that X' and ¢x_y(X') are either coupled or homogeneous.

The following lemma is a corollary of Lemma 2.4.2; we omit the proof.

Lemma 2.4.3. There is a function Rs 43 : Z — 7 so that for any positive integer k, if X
and Y are disjoint sets of vertices in a graph G with |X|,|Y| > Ra43(k), then there exist
k-element sets X' C X and Y’ CY such that X' and Y are homogeneous.

For a function R : Z — Z and an integer n > 1, we inductively define R™ to be the
function R(R™~Y), where for the base case R = R.
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2.5 Building a constellation

Roughly speaking, a “large constellation” in a graph is an induced subgraph consisting of
many large stars coupled together in a “connected way”. The proof of Theorem 2.1.1 then
consists of two parts; in this section we prove that, up to local equivalence and reordering
vertices, every graph of sufficiently large rank-width contains a large constellation. In the
next section we prove that every graph containing a sufficiently large constellation has a
vertex-minor isomorphic to the n x n comparability grid.

Recall that a coclique is a set of pairwise non-adjacent vertices.

Definition 2.5.1 (Constellations). Let G be a graph, let n and k be positive integers, and
let m be a non-negative integer. An (n,m,k)-constellation in G is a tuple (H, (W) : h €
H), K) such that

(i) H C V(G) is an (n + m)-vertex coclique,
(ii) the sets (W, : h € H) are disjoint k-vertex cocliques in G — H, with orderings induced
by the ordering of V(G),
(i1i) K is a connected n-vertex graph with V(K) C H,
(iv) for every h € H, the set W), is complete to {h} and anticomplete to H — {h},

(v) for distinct u,v € H, the pair (W,,W,) is either a coupled half graph or a coupled
matching if wv € E(K), and is anticomplete otherwise.

IfC=(H W,:he H),K) is an (n,m,k)-constellation in G, then we write H(C)
for H, we write K(C) for K, and for each h € H we write W¢ for W;,. We denote
the union of the sets ({v} UW, : v € H) by V(C), we denote the union of the sets
{v}uW, : ve V(K)) by A(C), and we denote V(C) — A(C) by B(C). We sometimes use
a sequence of constellations Cy,Cy, . .., and in that case we write W} for W,‘; 0 and likewise
for C;, and so on. For h € H(C) and X C Wf, we write C|X for

(H, (¢W§%W£ (X):z¢ H) ,K) .

Notice that C|X is an (n,m,|X|)-constellation in G.

This section is devoted to proving that, for positive integers n and k, every graph with
sufficiently large rank-width contains, up to local equivalence and reordering vertices, an
(n, 0, k)-constellation. To build constellations we use “augmentations”.
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Definition 2.5.2 (Weak augmentations). For positive integers n, m, and k, a weak
(n,m, k)-augmentation in a graph G is a tuple (C,z,y, X1, X3) such that C is an (n,m, k)-
constellation; x € V(K(C)) and y € H(C) — V(K (C)); and (X1, X2) is a pair of k-vertex
subsets of V(G) — (V(C)), with orderings induced by the ordering of V(G), such that W¢
and Xy are coupled, Wyc and Xy are coupled, and either

(Z) Xl = X27 or

(1) X1 and Xo are disjoint and coupled, all vertices in X have the same set of neighbours
in B(C), and all vertices in Xy have the same set of neighbours in A(C).

Lemma 2.5.3. There is a function kyss : Z3 — Z so that, for all positive integers n, m,
ko, k1, and ke with k1 > kos3(n,m, ko) and ky > ky, if C is an (n, m, ko)-constellation in a
graph G and k(A(C), B(C)) > ki, then there exists a graph that is equivalent to G up to local
complementation and reordering vertices and contains a weak (n, m, ko)-augmentation.

Proof. For positive integers n, m, and ky we define

t=mn (ng’il (ko) +m + 1) , and
ka.5.3(n,m, ko) = La3.4(t).
Now let ki and ko be positive integers such that
ko > ky > kay5.3(n,m, ko),

and let C be an (n,m, ks)-constellation in a graph G with k(A(C), B(C)) > k;. By
Lemma 2.3.4, there is a graph Gy that is locally equivalent to G such that Go[V(C)] =
G[V(C)], and Gy contains a t-link (X, X,) for (A(C), B(C)). Up to local equivalence we
may assume that Gog = G.

By sub-additivity, M(A(C) — H(C), X1) >t —n. Let Xy C A(C) — H(C) be a (t — n)-
element X;-independent set. Now let t' = ng’il(ko) +m. Thus

| Xo| =t —n=nt"

Thus, by the pigeonhole principle, there exist = € V(K (C)) and X{ C X, of cardinality ¢’
so that X} C W¢. Note that M(X}, X;) = | X}|. By the definition of X; and Xy, there exist
X7 € X and X} C X, so that (X7, X)) is a t'-link for (X, B(C)). By the same reasoning,
there exist a vertex y € H(C)—V (K (C)) and Rg’i_l(ko)-vertex subsets Xy C W<, X4 C X3,
and X{ C X/ so that (X7, XY) is a | X{|-link for (X, XY).
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Next, we apply Lemma 2.4.1 to the sets X{ and X7 so that, after possibly reordering
the vertices in X!, there exist R’} (ko)-element subsets Yy C X and ) C X7 so that Yj
and Y] are coupled. The claim follows by repeating this process one or two more times
depending on whether X; = X5, and possibly reordering the vertices in X/ and X{. Note
that it is fine to reorder vertices in XY since y € H(C) — V(K (C)). O

When taking restrictions of a weak (n, m, k)-augmentation (C, z,y, X1, X3), we need to
respect orders between the sets X, Xo, and (WS : h € V(K(C)) U {y}), but not with
the sets (WS : z € H(C) — (V(K(C)) U {y})). To be more precise, consider a k’-element
subset Y1 C Xj. Let Y3 == ¢x,,x, (Y1) and let C' be an (n, m, k’)-constellation such that
H(C') = H(C); for each h € V(K(C)) U {y} we have WF" = ¢x, ,we(Y1); and for each
z € H(C)—(V(K(C))U{y}) the set W is a k'-element subset of WE. Then (C', z,y, Y1, Ys)

is an (n,m, k’)-augmentation.

Definition 2.5.4 (Augmentations). For positive integers n, m, and k, we define an
(n,m, k)-augmentation to be a weak (n,m,k)-augmentation (C,x,y, X1, Xs) such that for
each i € {1,2}:

(1) X; is either a clique or a coclique,

(i4) for all h € V(K(C)) U{y}, the sets W& and X; are either homogeneous or coupled,
with orderings induced by the ordering of V(G),

(i4i) for all h € H(C) — (V(K(C)) U {y}), the sets WE and X; are homogeneous, and
(iv) for all h € H(C), the sets {h} and X; are homogeneous.

Lemma 2.5.5. There is a function ko5 : Z° — Z so that, for all positive integers n, m, ko,
and ky with ky > koss(n,m, ko), if G is a graph containing a weak (n, m, ky)-augmentation,
then G contains an (n, m, ky)-augmentation.

Proof. For positive integers n, m, and ko we define
kos.5(n,m, ko) = RéQ) (R;%T)Q <R§T:;2) (kO ’ 22(m+n)))) ‘

Now consider a weak (n, m, kj)-augmentation (C,z,y, X1, Xo) with k1 > kos5(n, m, ko).

By applying Ramsey’s Theorem first on X; and then on the specified subset of X5, we
can get statement (1) to hold. Now, for each i € {1,2} and h € V(K (C))U{y} so that W¢
and X; are not already coupled, we successively apply Lemma 2.4.2 to get statement (2) to

44



hold. Note that we apply the lemma at most 2n times since W¢ and X, are already coupled,
as are WY and X,. Then, for each i € {1,2} and for each h € H(C) — (V(K(C)) U{y}),
we successively apply Lemma 2.4.3 to get statement (3) to hold. Finally we get statement
(4) to hold by, for each i € {1,2} and each h € H(C), successively applying a majority
argument to the edges from h to what remains of Xj. O

We can now prove the main result of this section.

Lemma 2.5.6. There is a function ro56 : 22 — 7 so that, for all positive integers n, m,
and k, every graph of rank-width at least ro56(n, m, k) has a vertex-minor which contains
an (n, m, k)-constellation, after possibly reordering vertices.

Proof. For n = 1, the result is true by Theorem 2.3.2 with ro56(1,m, k) == roga2(m—+1, k).
Now assume that for some fixed integer n > 2, for all positive integers m and k, such a
function ro56(n — 1,m, k) exists. Now, for fixed m and k, we will show that ro56(n, m, k)
exists. Define

ki =koss(n—1,m+ 1 kyss(n—1,m+1k+4)),
ko == g2.3.1(k1), and

7“2.5.6(71, m, k’) ‘= max (7’2.5.6 (n - 1, m+ 1, ]{7(]), kl) .

Towards a contradiction, suppose that G is a graph of rank-width at least r9.56(n, m, k)
that does not have a vertex-minor containing an (n,m, k)-constellation, after possibly
reordering vertices. Choose such a graph with |V(G)| minimum; thus no proper vertex-
minor of G has rank-width at least ro5¢6(n, m, k). So, by Lemma 2.3.1, the graph G is
(k1, g2.3.1)-connected.

We may assume that G contains an (n — 1,m + 1, ko)-constellation Cy. Then, since
min(|A(Co)l, |B(Co)|) > g2.31(k1), we have k(A(Co), B(Cy)) > k1. Then, by Lemmas 2.5.3
and 2.5.5, there is a graph equivalent to G up to local complementation and reordering
vertices that contains an (n — 1,m + 1, k + 4)-augmentation.

We choose a graph G that is locally equivalent to G and has an (n — 1,m + 1,1)-
augmentation (Cy, z1, 29, Z1, Z3) such that:

(i) either

e /1=Zyandt=k+2, or
[ ] Z1¢Z2andt:k+4,
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(i1) subject to (1) we have Z; = Z, if possible, and

(#1i) subject to (2) the vertex z, is complete to Z, if possible.

We may assume that G; = G.

Claim 2.5.6.1. There is a vertex in W, U {2z} with at least t — 1 neighbours in either Z,
or Zs.

Proof. Suppose otherwise, then, by the assumption,

e 2, is anticomplete to Z; U Z,,

° (Wl

-, Z2) is a coupled matching, and

o if Z; # Z,, then W, is anticomplete to Z;.

Note that each vertex in W), has degree 2 in G[V (C;)UZ;UZ,]. Let G’ be the graph obtained
from G by locally complementing on each vertex in WZlQ. Note that (Cy, 21, 22, Z1, Z3) is an
(n—1,m+ 1, t)-augmentation in G’ and 2, is complete to Z, in G’, contrary to our choice
of Gy and (Cy, 21, 22, Z1, Z3). O

We break the proof into two cases; there is a lot of overlap in the proofs, but it is less
awkward with the cases separated.

Case 1: There is a vertex v € W, U {2z} with at least t — 1 neighbours in Z;.

We choose Gy € {G, G v} so that the set of neighbours of v in Z; is a coclique in Gs.
Let w be the first vertex in Z; that is a neighbour, in G5, of v, and let G5 = G5 x vw. We
will show that G3 contains an (n, m, k)-constellation Cs, giving a contradiction.

Let Hy == (H(Cy) — {#2}) U {w}, let W2 denote a k-element subset of the neighbours,
in Gy, of v in Z; — {w}, and, for each x € H(Cy) — {22}, let W = ¢4 w1 (W;). Note that
since w is the first neighbour of v in Z;, the vertex w is either complete or anticomplete
to each W2 in Gj.

Now let K3 denote the graph obtained from K(C;) by adding the vertex w and all
edges wx where z € V(K (Cy)) and (W2, W2) is coupled; since (W3, W2 ) is coupled, K
is connected. Finally let C3 := (Hz, (W2 : z € H3), K3). We claim that C3 is an (n,m, k)-
constellation in G3 which follows from the description of pivoting by complementing be-
tween three sets and the following observations about adjacencies in Gs:
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. . 1 . 3
v is anticomplete to V(C1) — ({22} UW,,) and is complete to W},

for each x € Hy — {w}, the vertex z is complete or anticomplete to W2 U {w},

for each z € H3 — V(K3), the set W2 is complete or anticomplete to W3 U {w}, and

for each x € V(K3), the vertex w is complete or anticomplete to W3.

Case 2: No vertex in W) U {2z} has at least t — 1 neighbours in Z;.

Then, by the above claim, there is a vertex v € W, U{z} with ¢t — 1 neighbours in Z,.
Thus Zy # Z; and, by the definition of an augmentation, v is anticomplete to Z.

We choose G2 € {G, G x v} so that the set of neighbours of v in Z5 is a coclique in
G5. Let w be the first neighbour, in Go, of v in Z; and let G35 = G5 x vw. We will show
that G3 contains an (n — 1,m + 1,k + 2)-augmentation (Cs, z1, w, X, X) for some C3 and
X, giving a contradiction to our choice of G and (Cy, 21, 22, Z1, Z2).

Let Hz == (H(C1) — {22}) U{w}, let W2 denote a (k + 2)-element subset of the set of
neighbours of v in Z, — {w}, and, for each x € H(Cy) — {2z}, let W2 = ¢z, (W3).
By the choice of w to be the first neighbour of v in Z5, the vertex w is either complete or
anticomplete to each W2 in Ga.

Finally let C3 = (Hs, (W2 : x € H3),K(Cy)) and let X = ¢z, 7 (W3). Again by
the choice of w, the vertex w is either complete or anticomplete to X in G5. We claim
that (Cs, z1,w, X, X) is an (n — 1, m + 1, k + 2)-augmentation in G3 which follows from the
description of pivoting by complementing between three sets and the following observations
about adjacencies in Gs:

e v is anticomplete to both V(C;) — ({22} UW,,) and X, and is complete to W,

for each x € Hs — {w}, the vertex z is complete or anticomplete to W3 U {w},

for each x € Hz — (V(K(Cy)) U {w}), the set W2 is complete or anticomplete to
Wi U {w},

for each x € V(K (Cy)), the vertex w is complete or anticomplete to W32, and

X is complete or anticomplete to w.
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2.6 Extracting a comparability grid

It remains to prove that every graph containing a sufficiently large constellation has a
vertex-minor isomorphic to the n x n comparability grid. Henceforth we will only consider
(n, m, k)-constellations with m = 0 and will abbreviate these to (n, k)-constellations.

We will apply the following well-known Ramsey-type lemma to reduce to constellations
whose associated graphs are stars, paths, or cliques.

Lemma 2.6.1. There is a function nogy @ Z — 7Z such that for every positive integer k,
every connected graph on at least nog1(k) vertices has a k-vertex induced subgraph that is
either a path, a star, or a clique.

The following result gives a sufficient condition for a graph to contain arbitrary n-vertex
graphs as vertex-minors.

Lemma 2.6.2. Let Z = (21,22,...,2,) be a set of vertices in a graph G, with ordering
induced by the ordering of V(G), so that there are distinct components (A;; : 1 <i<j <
n) of G — Z so that z; and z; have neighbours in A, ; and each neighbour of V(A; ;) is in
(2iy Zit1, - - -, 2j). Then every graph with vertex set Z is a vertex-minor of G.

Proof. Let H be a graph with vertex set Z. We say that a pair (4, 7), where 1 <1i < j < n,
is fized if for each i < i and j' > j the vertices z; and z; are adjacent in either both of
or neither of H and G. If all edges are fixed then H is an induced subgraph of G. Among
all non-fixed pairs choose (7, j) with ¢ minimum and, subject to that, j is maximum. We
will fix (4, j), without unfixing any other pair, by locally complementing in A, ;; the result
follows by repeating this until all pairs are fixed.

There is an induced path P = (vy,vs,...,v;) in A, ; such that z; is adjacent to v; but
not to any of vy, ..., v and z; is adjacent to vy but not to any of vy, ..., v (if 2; and z;
share a neighbour then it is possible that k = 1). Replacing G with G % vy * vg * - - - % vy
fixes (i,j) without unfixing any other pair, as required. ]

The following two results are applications of Lemma 2.6.2 to constellations.

n

Lemma 2.6.3. For any n-vertex graph H, if C is an (n, (2))—constellati0n mn a graph G
such that K (C) is either a path or a clique, and for each edge uv of K(C) the pair (WS, WE)
s a coupled matching, then G has a vertex-minor isomorphic to H.
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Proof. We may assume that V(G) = V(C). Let H(C) = {z1,...,2,} where, if K(C) is
a path, then the vertices are in the order (z1,...,z,) on the path. Note that G — H(C)
has (%) components which we label (G;; : 1 < i < j < n); each of these components
is isomorphic to K(C). For each 1 < i < j < n, let A;; denote the (unique) shortest
path from the neighbour of z; in G ; to the neighbour of z] in G; ;. The result follows by
applying Lemma 2.6.2 to the subgraph of G induced on the union of H(C) together with

the sets (V(A;;) : 1 <i<j<n). O

Lemma 2.6.4 (Star constellations). For any n-vertex graph H, if C is an ((3) + 1,n + 2)-

constellation in a graph G such that K(C) is a star, then G has a vertex-minor isomorphic
to H.

Proof. We may assume that V(G) = V(C). Let H(C) = {h} U{v;; : 1 < i < j < n},
where h is the hub of the star K(C), and let W¢ = (2, 21, . . - , 2n, 2n+1). Note that, for each
1 <i < j <n, the graph G[WUCZ,J U {v;;}] is a component of G — (W§ U {h}). By locally
complementing and deleting vertices within the subgraph G[WS , U{vi;} we will obtain
a connected graph A, ; such that z; and z; have neighbours in Ailj, and each neighbour of
V(A;;) is in (2;, Zit1, - - -, 2;). Then the result will follow by applying Lemma 2.6.2 to the
subgraph induced on the union of {z,..., z,} and the sets (V(4;;) : 1 <i<j <n).

In the case that (Wf],Wf) is a coupled matching, we take A;; to be the path in
G[Wc U {v;;}] connecting the neighbours of z; and z;. Thus we may assume that
(VVc Wh) is a coupled half graph. First suppose that (Wc ,WE) is either a down-
coupled half graph or the complement of an up-coupled half graph. Then, for each
k€ {0,1,...,n}, there is a vertex xj € WC whose neighbours in W¢ are {zo, ...,z }. Let
G' = G x v;;x;—1. Then, in G, the set of nelghbours of z;in {z,..., 2.} is {zi,..., 2},
and we take A, ; = G'[z;].

The final case that (Wc ,WE) is either an up-coupled half graph or the complement
of a down-coupled half graph is similar. In this case, for each k € {1,...,n+ 1}, there is a
vertex xj € Wc whose set of neighbours in W is {zk, ey Zne1). We set G'=Gxv x40
and then take A = G'[x]. O

Next we consider constellations whose associated graphs are cliques. In order to recog-
nize comparability grids we use the following easy characterization.

Lemma 2.6.5. For any positive integer n, if (Xi,...,X,) is a partition of the vertices of
a graph G into n-vertex cliques, with orderings induced by the ordering of V(G), such that,
for each 1 < i < j <n, the pair (X;, X;) is an up-coupled half graph, then G is isomorphic
to the n X n comparability grid.
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(1,3) (3,3)

(1,1) (3,1)

Figure 2.7: The 3 x 3 comparability grid.

Proof. Recall that the n x n comparability grid has vertex set {(¢,7) : 4,7 € {1,2,...,n}}
where there is an edge between vertices (i,7) and (¢, j') if either ¢ < i’ and j < j', or
i >4 and j > j'. Relabel the vertices of G so that, for each i € {1,...,n}, we have
X; = ((4,1),(¢,2),...,(i,n)). Then G is the n x n comparability grid. See Figure 2.7,
where the edges between X; and X, are bolded. O

Lemma 2.6.6. For any positive integer n, if (X1, ..., Xp2) s a partition of the vertices of
a graph G into sets of cardinality n* such that, for each 1 <i < j < n, the pair (X;, X;) is
either an up-coupled half graph or the complement of a down-coupled half graph, then there
1s an induced subgraph of G that is isomorphic to the n X n comparability grid.

Proof. Suppose that X; = (2;1,...,%;,2) for each ¢ € {1,...,n?}. Now, for each i,j €
{1,...,n}, let ij = T(-1ntj(—1)nti and let Y; = (yi1,...,¥in). Thus Yi,...)Y, are
cliques and, for each 1 < i < j < n, the pair (Y;,Y]) is an up-coupled half graph, so the
result follows from Lemma 2.6.5. ]
Lemma 2.6.7 (Clique constellations). There are functions nog7 : Z — 7 and kegr : 7 —
Z such that, for any positive integer n, if C is an (noe7(n), keg7(n))-constellation in a

graph G such that K(C) is a clique, then G has a vertex-minor isomorphic to the n X n
comparability grid.

Proof. Recall that the function Ry is defined in Ramsey’s Theorem. For a positive integer
n we define

nye7(n) = Rs(n?) and

koor(n) = max (nQ, (@)



Let C be an (ngg.7(n), kag7(n))-constellation in a graph G such that K(C) is a clique and
let H(C) = (hi,...,hy,), where n; = nygr7(n). Towards a contradiction we assume that
no vertex-minor of G is isomorphic to the n x n comparability grid.

By Ramsey’s Theorem, there is a subsequence (vy,vs, ..., v,2) of (hy, ha, ..., hy,) such
that one of the following holds:

(i) For each 1 <1i < j < n?, the pair (W¢, WUC]) is a coupled matching.

(i) For each 1 < i < j < n?, the pair (Wg,Wg) is either an up-coupled half graph or
the complement of a down-coupled half graph.

(i71) For each 1 < i < j < n?, the pair (WUCZ , ij ) is either a down-coupled half graph or
the complement of an up-coupled half graph.

By possibly reversing the order of the sequence (vy,vs,...,v,2) we may assume that we
are not in case (i77). However, Lemma 2.6.3 precludes case (i) and Lemma 2.6.6 precludes
case (7). O

It remains to consider constellations whose associated graphs are paths. We say that
a graph is an ordered path if the graph is a path and the order of the vertices on the path
agrees with the ordering of the vertices of the graph; thus every path is isomorphic to an
ordered path.

Lemma 2.6.8 (Path constellations). There are functions nogs : Z — Z and kygs : Z — Z
such that, for any positive integer n, if C is an (nags(n), kass(n))-constellation in a graph
G such that K(C) is a path, then G has a vertex-minor isomorphic to the nxn comparability
grid.

Proof. For a positive integer n we define

m = n-,

ks = m-2m1

ke = ks+m—1,

ki = ko+m—1,
nyes(n) = (n®>—1)m, and

koos(n) = max (k;l(f))
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For convenience we also define ng = nggs(n) and ko == kogs(n). Let C be an (ng, ko)-
constellation in a graph G such that K(C) is an ordered path on vertices (hq, ..., hy,).
Towards a contradiction we may assume that no vertex-minor of G is isomorphic to the
n X n comparability grid.

Claim 2.6.8.1. There is a graph G1 that is locally equivalent to G and has an (m, ky)-

constellation Cy such that K(Cy) is an ordered path with vertices (vy,...,v,) and, for each
i €{1,...,m— 1} the pair (W, , W, ) is a coupled half graph.

Proof. Let X denote the set of all i € {1,...,n9 — 1} such that (W,i, W,iH) is a coupled
matching. Let (vq,...,v;) be the restriction of the sequence (hq,...,h,,) to the elements
{h; : 7 €{l,...,n0} — X}. By Lemma 2.6.3, the set X cannot contain n? — 1 consec-
utive integers and hence t > m. Let Hy = {v1,...,v,}, let P be the ordered path on
(v1,...,0m), let Cy == (Hy, (chp . ,me), Py), and let G be the graph obtained from G
by locally complementing on each of the vertices in (VV,‘Zj 1 € X). It is routine to verify
that the pair (G1,C;) satisfies the conclusion of the claim. O

Suppose that A = (ay,...,a;,a41) and B = (by, ..., by, by1) are disjoint sets in a graph
and (A, B) is a coupled half graph. If (A, B) is the complement of a down-coupled half
graph then ((ay,...,a;), (b2, ...,b41)) is an up-coupled half graph, while, if (A, B) is a
down-coupled half graph, then ((ai,...,a),(bs,...,b41)) is the complement of an up-
coupled half graph. Starting with the first elements of T, and then choosing elements
appropriately from each of W1l .. .. I/Vvlm in turn we obtain the following result.

vt
Claim 2.6.8.2. There is an (m, ka)-constellation Cy in Gy such that K(Cs) is an ordered
path on vertices (vy,...,vy) and, for each i € {1,...,m — 1} the pair (W2, szm) is an
up-coupled half graph or the complement of an up-coupled half graph.

By pivoting we can further reduce to the case where all pairs are up-coupled half graphs.

Claim 2.6.8.3. There is a graph G3 that is obtained from G by pivoting and has an

(m, k3)-constellation Cs such that K(C3) is an ordered path on vertices (uy,ug,...,Un)
and, for each i € {1,...,m — 1} the pair (W, qu,ﬂ) s an up-coupled half graph.

Proof. We will prove by induction on m — t, where 1 < t < m, that if a graph G con-
tains an (m, ks + m — t)-constellation Cy such that K(Cy) is an ordered path on vertices
(w1, ws, ..., wy,) and for each i € {1,...,t — 1}, the pair (Wii,WiiH) is an up-coupled

half graph, and for each i € {t,...,m — 1}, the pair (W2 ,W_ ) is an up-coupled half
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graph or the complement of an up-coupled half graph, then there is a graph G3 that is
obtained from G by pivoting and has an (m, k3)-constellation C3 as in the claim. The case
where ¢ = 1 implies the claim since ky = k3 +m — 1. The base case where t = m holds by
deleting excess vertices from each set W .

Now we may assume that ¢t < m. We may also assume that the pair (W7, Wz ) is the
complement of an up-coupled half graph, as otherwise we may delete one vertex from each
set W2 and apply induction. Let w be the first vertex in W7, . Let G5 = G X wwyyq,
let Hy = (H(Cy) — {w1}) U {w}, and let K3 be the graph obtained from K(C3) by
relabeling w1 to w. Let W7 be the set obtained from W2 by deleting w, and, for

each h € H(Cy) — {wy1}, let W2 be the set obtained from W7 by deleting its first vertex.
Finally, let C3 = (Hg, (W}? che Hg), Kg)

Consider the neighbours of w and w1 in G[V(C3) U {ws41}]. The neighbourhood of
Wy 1s exactly W£t+ .- The vertex w is complete to W;Et and either complete or anticomplete

to W3 if t + 2 < m. These are the only neighbours of w other than w;,;. Thus Cj3 is

W27
an (m, ks +m — t — 1)-constellation in G3 so that all pairs are coupled in the same way

as in G, except for (W2 ,W3), which is an up-coupled half graph in G3, and (W3, W3
O

we? Wi+2

which may be complemented. The claim follows by the induction hypothesis.

For each s € {1,...,m}, we let Ly denote the graph with vertex set {us,...,u,} and
edge set
{ww; 1 <i<j <s}U{ustsi1, Usi1Ust, - s Upm—1Um }-

Thus L, is a path and L,, is a complete graph. For each s € {1,...,m} we let d; :== m2™~%;
thus dy = ks and d,,, = m = n?.

Claim 2.6.8.4. For each s € {1,...,m}, there is a graph G’ that is locally equivalent to
G and has disjoint ds-vertex cocliques (X5,...,X5) such that

(i) for eachie{l,...,m}, X; CW}2,

(i) for 1 <i<j<m, the pair (X7, X3) is an up-coupled half graph if uyu; € E(Ls) and
18 anticomplete otherwise, and

(1ii) for eachi € {s+1,...,m}, the vertex u; is complete to X} and anticomplete to each
of X{,..., X7 | and to each X7 U{uisa}, ..., X5 U{un}.

Proof. The proof is by induction on s; when s = 1 the conclusion is satisfied by G} == G3
and X! = W7 for each i € {1,...,m}. For some s € {2,...,m} suppose that there exist
G’ and (X;7', ..., X571 as claimed; we will determine G, and (X73,..., X?).
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We let G’ be the graph obtained from G’_; by locally complementing on each vertex
in X7} U{us}. Suppose that, for each i € {1,...,m}, we have X" = (af,...,2} ),
and let X7 = (z1,25, ..., (5, ;). We claim that G and (X7,..., X;) satisfy the result;
this follows from the following observations about adjacencies in G%,_;:

e for each i,7 € {1,3,...,ds_1 — 1} and each a,b € {1,...,s — 2}, the vertices 2¢ and
% have an even number of common neighbours in X3~} U {u,},

e for each i,j € {1,3,...,ds_1 — 1} and each a,b € {s,s + 1,...,m}, the vertices x¢
and xlj’ have an even number of common neighbours in X~ U {u,}, and

e foreachi,j € {1,3,...,ds-1 — 1} and each a € {1,...,s — 2}, the vertices z{ and x}
have an odd number of common neighbours in X~} U {u,} if and only if j > i.

]

We obtain the final contradiction to Lemma 2.6.8 by applying Lemma 2.6.6 to G/, and
(X7, X, O

We can now combine the above results to prove our main result, Theorem 2.1.1, which
we restate here for convenience.

Theorem 2.1.1. There is a function f : Z — Z so that for any positive integer n, every
graph of rank-width at least f(n) has a vertex-minor isomorphic to the n X n comparability
grid.

Proof. For a positive integer n we define
ki = max (n®+ 2, kag7(n), kags(n)) ,
n; = max ((TL;) +1, n2,6.7(n),n2_6_8(n)> , and
f(n) = rase(naei(ni),0, k).

Let G be a graph with rank-width at least f(n). By Lemmas 2.5.6 and 2.6.1, there is
a graph (i, equivalent to G up to local complementation and reordering vertices, that
contains an (nq, k1)-constellation C such that K(C) is either a star, a clique, or a path.
Now the result follows by Lemmas 2.6.4, 2.6.7, and 2.6.8. O
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Chapter 3

The Local Structure Theorem

3.1 Representing a circle graph and its “attachments”

The rest of this thesis is dedicated to proving the Local Structure Theorem. Recall that,
informally, the theorem says that for any graph in a proper vertex-minor-closed class with a
prime circle graph containing a comparability grid, the rest of the graph “almost attaches”
to the circle graph in a way that is “mostly compatible” with the comparability grid. In
this chapter we will formalize the theorem and discuss our proof approach.

More precisely, the Local Structure Theorem is about a graph G with sets B C C' C
V(G) so that B induces a comparability grid and C' induces a prime circle graph. (In light
of the Grid Theorem for Vertex-Minors, it is enough to prove the Structural Conjecture
for graphs with a large comparability grid H as a vertex-minor. We might as well locally
complement to obtain H as an induced subgraph; then our overall approach is to “grow a
circle graph around H”.)

Kotzig [83] and Bouchet [10] showed how to represent the edges/non-edges with an end
in C' by signatures on a connected 4-regular graph. This beautiful representation is called
the “labelled tour graph”, and is invariant under locally complementing at vertices in C.
Our proof approach is based on this representation; moreover, the labelled tour graph helps
us measure “how compatible the attachments are with B”.
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Figure 3.1: Two chord diagrams with the same circle graph (left) and the corresponding
tour graphs (right).

Representing a circle graph by its tour graph

Let G be a circle graph, and fix a chord diagram C for GG so that no two chords share an
end (such a chord diagram exists). Then C “breaks up” the unit circle into 2|C| arcs. That
is, there are 2|C| arcs I of the unit circle so that

(i) each end of I is the end of a chord in C, and

(71) no interior point of I is the end of a chord in C.

A tour graph of G has vertex-set V(G); it has an edge for each such arc I, and that edge
is incident to the vertices whose chords intersect I. Tour graphs are allowed to have loops
and multiple edges, and a single circle graph can have more than one tour graph; see
Figure 3.1. The circle becomes an Eulerian circuit of the tour graph. Conversely, a chord
diagram can be uniquely recovered from any connected 4-regular graph with a specified
Eulerian circuit.

Kotzig [83] proved the following wonderful theorem.

Theorem 3.1.1 (Kotzig [83]). Two circle graphs have a tour graph in common if and only
if they are locally equivalent, in which case they have all of the same tour graphs.
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v

Figure 3.2: A circle graph (left), chord diagram (middle), and tour graph (right), before
and after locally complementing at v.

So each local equivalence classes of circle graphs can be succinctly described by a collection
of connected 4-regular graphs.

To give some intuition for the theorem, consider locally complementing at a vertex v
in a circle graph with a fixed chord diagram. In the chord diagram, the corresponding
operation is to flip one of the two arcs of the circle that has the same ends as the chord
v (in Figure 3.2, we flip the bold blue arc). In the tour graph, the circle corresponds to
an Eulerian circuit, and the two arcs of the circle with the same ends as v correspond
to two proper subcircuits which begin and end at v. The corresponding operation in the
tour graph is to reverse one of those subcircuits (in Figure 3.2, we reverse the bold blue
subcircuit).

Throughout the rest of the thesis, we frequently work with Eulerian graphs; a graph is
Fulerian if it is connected and every vertex has even degree (or, equivalently, if it has an
Eulerian circuit). A trail is a walk with no repeated edges, and a circuit is a closed trail
(that is, a trail which begins and ends at the same vertex). The ends of a trail are the
vertices (or vertex, if the trail is also a circuit) at which it begins and ends.
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In the last paragraph, given an Eulerian circuit of the tour graph, we were interested in
the “two proper subcircuits” with v as their end. More formally, given a 4-regular graph
with a vertex v and an Eulerian circuit T, the circuits of v in T are the two circuits C,
and C so that

(i) both C} and Cy have at least one edge and have v as their end, and

(ii) T can be cyclically reordered so that T = Cy, Cs (as a sequence of edges).

These two circuits C and Cy are well-defined.

Representing an additional vertex by its signature

Let G be a graph with a vertex x so that G — x is a circle graph. We will see that the
neighbourhood of x can be represented by a certain “decoration” on the tour graph called a
signature. In this subsection we give an informal description to motivate the representation.

So, let G be a tour graph of G —z with an Eulerian circuit T so that the corresponding
chord diagram C represents G' — x. (Recall that a chord diagram can be uniquely recovered
from G and T this was discussed when tour graphs were first defined.) If we can add z as
a chord to C, then we can specify the ends of that chord by two edges in the tour graph
(see Figure 3.3). Furthermore, a vertex v # x is adjacent to x in G if and only if each of
the circuits of v in 7' contains one of those two edges (again see Figure 3.3). In general, we
can represent the neighbourhood of x in G by a “hyperchord” of the chord diagram: that
is, by a specified set of edges in the tour graph. This set of edges will be the “signature of

2

T .

First, for each neighbour v of x, choose an arbitrary end of the chord of v, and add it
to a set of points P. Then include an edge in the signature if its corresponding arc (on the
circle) has exactly one end in P; see Figure 3.4. In the depicted example, we do not end
up with the same set of edges from Figure 3.3. However, a vertex v # z is still adjacent to
z in G if and only if each of the circuits of v in T’ contains an odd number of edges in the
signature. (The signature has an even number of edges, so the “parity” of the two circuits
is the same.) To see that the neighbourhood of z in G is indeed as we have described,
imagine walking around the circle, beginning anywhere and only going around once. Each
time a point in P is passed, “switch” the two “incident” edges in/out of the signature. In
terms of the “parity” of the circuits of a vertex v # x in T, only the vertex v whose chord
has that point as an end is affected.
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Figure 3.3: A circle graph (left), chord diagram (middle), and tour graph (right); the chord
of z is dashed red and the two corresponding edges in the tour graph are bold red. The
arrows represent one of the circuits of v in 7.

Figure 3.4: A circle graph (left), chord diagram (middle), and tour graph (right); the points
in P are black points on the circle.
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a a
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Figure 3.5: A circle graph (left), chord diagram (middle), and tour graph (right), before
and after “switching” the non-loop edges incident to a in/out of the specified set.

Similarly, there is another operation which does not affect the “parity of circuits” at
all. For any vertex a of the tour graph, we can “switch” all non-loop edges incident to
a in/out of the specified set; see Figure 3.5. This operation will be called “shifting at
a”; shifting at a neighbour of x is like choosing the other end of its chord to add to P.
Bouchet [10] proved that G itself is a circle graph if and only if there exist G and T so
that, after performing some shiftings, there are at most two edges in the signature. We
will give the formal statement of this result in Lemma 3.3.2.

3.2 Labelled tour graphs

When we have a graph that contains a fixed circle graph, each vertex outside of the circle
graph will correspond to a signature on the tour graph. In this section we give the formal
definitions regarding this representation, which we call the “labelled tour graph”. We also
discuss when this representation is unique.
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Figure 3.6: Shifting a signature at a vertex v and then a vertex u; the non-zero edges are
bold red.

Labelled graphs

A signature on a graph is a function from its edge-set to the binary field, which we denote
by 5. This is non-standard; as discussed in the last subsection, a signature is typically
specified by the set of edges which are sent to 1. However, this formulation as a function
is much more convenient in our case because we have many signatures.

The weight of an edge is the corresponding element in [y, and the weight of a circuit
is the sum (over Fy) of the weights of its edges. An edge or circuit is zero or non-zero
depending on its weight. Signatures are used to specify which circuits of a graph are
zero/non-zero; so there is an equivalence relation on signatures as follows.

First, shifting at a vertex means to add 1 to the weight of each incident non-loop edge
(see Figure 3.6). A shifting of a signature A is any signature that can be obtained from A
by performing a sequence of shiftings at vertices. Equivalently, a shifting is obtained from
A by adding 1 to the weight of each edge in a cut. Thus shifting is an equivalence relation
that does not change the weight of any circuit. There is also a converse; Harary [70] proved
that if each circuit of a graph has the same weight according to two signatures, then the
signatures are shiftings of each other.

We need to keep track of many signatures at once. So, for a finite set V, we write FY
for the binary vector space where each vector is indexed by the elements of V. (If V is
empty, then Fy just has the element 0. For k € N, we also write F% for the binary vector
space of dimension k.) From now on, we will not specify that the set V' is finite, because
this will always be the case.

An Y -labelled graph is a tuple (G, \) so that G is a graph (which may have loops and
multiple edges) and ) is a function from the edge-set of G' to Fy . We call A an FY -labelling
on G. For an edge e, the weight of e is A(e). Likewise, the weight of a trail T, which we
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denote by A(T), is the sum of the weights of its edges. If V' consists of a single element,
then (G, \) is a signed graph. When we do not want to specify the set V', we call (G, \) a
labelled graph and \ a labelling.

For each A C V, we write A4 for the F4-labelling that is obtained from X by restricting
the weights to Fs. (If A is empty, then )4 labels every element 0.) When we want to
be more specific about the weight of an edge or trail, we talk about its \4-weight or,
equivalently, its F2'-weight. For a trail T, we write A4 (T) for its \s-weight, which is the
sum of the A 4-weights of its edges. For an element v € V', we write A, for Ay, and F5 for
ng} for convenience. Thus A is fully specified by the collection of signatures (A, : v € V');
we call those the signatures of A. Finally, a shifting of A is any labelling that can be
obtained from A by replacing each of its signatures A\, by a shifting of \,.

Sometimes we also need to combine labellings. Given a graph G with an FY -labelling
A and an FY-labelling y, for disjoint sets V and W, we write A x p for the Fy“W-labelling
where each edge e has weight (A(e), u(e)). Likewise we write Fy x FY for FyYW.

Labelled tour graphs

It is convenient to have a name for a graph that contains a fixed circle graph. So a circle-
structure is a tuple (G, C') so that G is a graph and C'is a set of vertices of G which induces
a circle graph. We call G its graph and G[C] its circle graph. Two circle-structures (G, C)
and (G, C) are locally equivalent if V(G) = V(G), C = C, and G can be obtained from G
by locally complementing at vertices in C'.

We will see how to represent the local equivalence class of a circle-structure (G, C'), up
to changing edges/non-edges with neither end in C'. Surprisingly, it is oftentimes possible
to find vertex-minors of G without knowing about such edges/non-edges; we show how to
do so in Section 3.5. For some intuition, suppose that there is a vertex v € C with exactly
two neighbours = and y, both of which are outside of C'. Then locally complementing at v
“exchanges the edge/non-edge” between x and y; so it does not matter whether there was
an edge/non-edge originally.

Now, let (G, C) be a circle-structure, and fix a chord diagram for G[C] so that no two
chords share an end. Let G and T be the Correspondlng tour graph and Fulerian circuit,
respectively. A labelled tour graph of (G,C) is an IF “ Jabelled graph (G )\) so that
the signatures of ) are as follows.

For each vertex x € V(G) — C, the signature of x on G with respect to T is the unique
signature, up to shifting, so that 7" has weight zero and z is adjacent to a vertex v € C'if and
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Figure 3.7: A circle graph (left), chord diagram (middle), and tour graph (right); the
non-zero edges (according to the signature of x) are bold red.

only if each of the two circuits of v in T is non-zero (see Figure 3.7). Such a signature exists
because we could begin with the uniformly zero signature and then, for each neighbour v
of z, add 1 to the two edges “incident” to one of the ends of the chord v (the choice of end
does not matter up to shifting at v). The signature is unique (given G and 7') because the
specified circuits generate the cycle space; see the paper by Bouchet [10], who introduced
this definition.

Bouchet [10] generalized the theorem of Kotzig [83] to labelled tour graphs as follows.

Theorem 3.2.1 (Bouchet [10]). Two circle-structures (G, C) and (G,G) have a labelled
tour graph in common if and only if (é, é) can be obtained from a circle-structure that is
locally equivalent to (G, C') by changing edges/non-edges with neither end in C'. Moreover,
if they have one labelled tour graph in common, then they have all of the same labelled tour
graphs.

Bouchet worked with a single vertex outside of the circle graph, but Theorem 3.2.1 is
equivalent to Bouchet’s work. See Lee’s thesis [86] for a nice explanation of this theorem.

We use labelled tour graphs to succinctly describe the edges/non-edges with an end in
the circle graph. We could also go in the other direction; the obvious necessary conditions
are also sufficient for a labelled graph to be a labelled tour graph. Formally, if V' is a set
and (G, \) is a connected 4-regular FY-labelled graph so that V' is disjoint from V(G) and
the sum (over FY) of the weights of the edges of G is zero, then (G, ) is a labelled tour
graph of a circle-structure.
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Prime graphs

There is a minor connectivity-like condition which guarantees that a circle-structure has
a unique labelled tour graph. A circle-structure is prime if its circle graph is prime, and
a graph is prime if it is 2-rank-connected (recall the definition from Section 1.5; a graph
is 2-rank-connected if it has at least four vertices, is connected, and its only cuts of cut-
rank 1 have one vertex on one side). The name “prime” comes from Cunningham [29], who
introduced primeness and showed how to “decompose” a graph into its “prime parts”.

Theorem 3.2.2 (Bouchet [5] and Gabor, Supowit, and Hsu [52]). Any prime circle-
structure has a unique labelled tour graph, up to renaming edges in a way that preserves
the labelling.

So from now on, we can talk about the labelled tour graph and the labelling or the signatures
of a prime circle-structure.

Bouchet [8] also gave the corresponding connectivity condition on tour graphs. A 4-
regular graph is internally 6-edge-connected if it is simple and loopless, and any cut with at
most four edges has at most one vertex on one side. (Thus any internally 6-edge-connected
graph is 4-edge-connected.)

Theorem 3.2.3 (Bouchet [5, 8]). The tour graph of a prime circle graph is internally
6-edge-connected, and each internally 6-edge-connected 4-regular graph is the tour graph of
a prime circle graph.

3.3 Stating the theorem

Here is the formal statement of the Local Structure Theorem; we will give the remaining
definitions afterwards. The theorem says that any prime circle-structure whose graph has
a forbidden vertex-minor can be “perturbed” so that each signature is “small relative to”
a fixed comparability grid.

The Local Structure Theorem (Geelen, McCarty, Wollan). For any t € N, there exists
¢, € N so that if (G,C) is a prime circle-structure whose graph does not have all (t + 1)-
vertex graphs as vertex-minors, up to isomorphism, and if B is a subset of C' that induces
a comparability grid, then there is a rank-t perturbation of (G,C) so that each signature is
li-small relative to B.
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So there are two definitions remaining: a “rank-t perturbation of a circle-structure”
and when a signature is “f;-small relative to B”. A perturbation of a circle-structure is not
allowed to change its circle graph; so the signatures of the perturbed circle-structure are
well-defined. Moreover, the rank of the perturbation in the theorem is, informally, optimal;
we believe that this will be important for proving the Structural Conjecture.

Perturbations of circle-structures

Perturbations of circle-structures are different from perturbations of graphs; for the rest
of the thesis we only work with perturbations of circle-structures. For ¢ € N, a rank-t
perturbation of a circle-structure (G, C) is a circle-structure (G, C) so that G[C] = G[C],
G-C=G- C, and the submatrix of Adjz + Adji with rows V(G) — C and columns C'

has rank at most t. (So using the prior definition on graphs, G is a rank-2¢ perturbation
of G; it is natural to give a different definition for circle-structures because we would like
to maintain the circle graph, and we do not care about edges/non-edges with neither end
in C.) Thus each perturbation of a prime circle-structure is also prime.

We need a better understanding of how a perturbation changes the signatures. Consider
the row space of the submatrix of Adjz + Adjg with rows V(G) — C and columns C.
Informally, this row space specifies at most ¢ signatures on the tour graph, and each new
signature is obtained from the old signature by adding some of those ¢ signatures (over
[Fy). This formulation is equivalent due to the following lemma which says that “summing
two rows sums the corresponding signatures”. Primeness is not necessary, but it makes
the statement simpler.

Lemma 3.3.1. If (G,C) is a prime circle-structure and x,y,z € V(G) — C are such that
the neighbourhood of z in C s the symmetric difference of the neighbourhoods of x and y
in C, then the signature of z is the sum (over Fy) of the signatures of x and y.

Proof. Let (G, A) be the labelled tour graph of (G, C), and consider the Eulerian circuit T
of G which yields the circle graph induced by C. A vertex v € C' is adjacent to a vertex
w € V(G) — C if and only if each of the two circuits of v in T has non-zero \,-weight;
denote this weight by )\” So XJ is the indicator function for whether or not w is adjacent
to v. Thus X” + )\” = )\” One signature for z which satisfies this property is Ae + )\ So
the lemma follows from uniqueness of signatures. m
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The size of a signature

The size of a signature A is the minimum, over all its shiftings )\, of the number of edges
with non-zero N-weight. Informally, the size measures how “compatible” a vertex is with
a circle graph; a vertex is “fully compatible” if and only if its signature has size at most 2.

Lemma 3.3.2 (Bouchet [10]). For any circle-structure (G,C) and vertex x € V(G) — C,
the set C' U {z} induces a circle graph if and only if there exists a labelled tour graph for
(G,C) so that the signature of x has size at most 2.

Intuitively, those two edges specify where to place the ends of the chord of x; recall Fig-
ure 3.3 and the related discussion.

There is a dual notion to the size of a signature: the maximum number of edge-disjoint
non-zero circuits. Certainly this number is at most the size of a signature. In the other
direction we have the following theorem (a k-edge-cut is a cut with precisely k edges).

Theorem 3.3.3 (Kawarabayashi and Kobayashi [77]). For each k € N, there exists an
integer fr so that the size of any signature on a graph with no 3-edge-cut and no k pairwise
edge-disjoint non-zero circuits is at most fy.

So in particular the theorem holds for graphs with an Eulerian circuit (because each cut
has an even number of edges). This type of property, where there is an approximate duality
between packing and covering (in this case, packing and covering edge-disjoint non-zero
circuits), is called the Erdés-Pésa property after [49]. The condition on 3-edge-cuts is
necessary; see the construction of Lovasz and Schrijver in the paper by Reed [107].

There is also a version of Theorem 3.3.3 for hitting circuits (a circuit hits a set of
vertices B if it contains an edge incident to a vertex in B). Kakimura, Kawarabayashi,
and Kobayashi [76] proved that, informally, edge-disjoint non-zero hitting circuits have the
Erdos-Poésa property on graphs with no 3-edge-cut. This motivates our main definition;
informally, we will say that a signature is “small relative to B” if we can constructively show
that there is no large collection of edge-disjoint non-zero circuits hitting B. In particular,
it suffices to find a small cut where one side contains all of B and has few non-zero edges
(possibly in a shifting).

Here is the formal definition. Let (G, C') be a prime circle-structure, and let B C C.
For convenience, let (G, \) denote the labelled tour graph of (G, C). Then, for a vertex
z € V(G) — C and an integer ¢, the signature X, is (-small relative to B if there exists a
set X C C which contains B and a shifting 5\; of A, so that
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(i) there are at most ¢ edges of G with exactly one end in X, and

(ii) there are at most £ edges of G with both ends in X that have non-zero ,-weight.

These conditions guarantee that there is no collection of more than 3¢/2 edge-disjoint non-
zero circuits hitting B (because at most /2 of the circuits can “use an edge in the cut”,
and at most ¢ can use an edge with both ends in X that has non-zero j\g—weight). So,
informally, a signature is “mostly compatible with B” if it is small relative to B.

3.4 Complete immersion minors

Labelled tour graphs represent local equivalence classes of circle-structures. By considering
vertex-deletion, we will obtain a notion of containment that corresponds to “vertex-minors
of circle-structures”. First, an induced substructure of a circle-structure (G, C) is a circle-
structure (G[X],C N X), where X C V(G). Then a vertex-minor of (G,C) is an induced
substructure of a circle-structure that is locally equivalent to (G, C). This notion of con-
tainment 1s transitive.

Here is the informal intuition for the corresponding notion of containment in labelled
tour graphs. To delete a vertex from outside of the circle graph, we just forget about its
signature. To delete a vertex from inside the circle graph, we “split off” its four incident
half-edges into two new edges according to the relevant Eulerian circuit (see Figure 3.8).
The weight of each new edge e is obtained by summing the weights of the two edges which
we “combined” to obtain e. There are three partitions of the four incident half-edges
into two parts of size two; they correspond to the three ways of removing a vertex from
Lemma 1.6.5 (delete, locally complement and delete, and pivot-delete). However, since we
must split off edges with respect to an Eulerian circuit, we are not allowed to disconnect
the tour graph.

Continuing this informal description, a “complete immersion minor” is any labelled
graph that can be obtained by shifting and successively “splitting off vertices by combining
their incident edges” and forgetting about signatures. In order to give the formal definition,
however, it is more convenient to look at things another way. Each edge of the smaller
graph comes from a trail in the larger graph; this trail must have the appropriate ends and
appropriate weight. Moreover, the collection of trails must partition the edge-set of the
larger graph. If instead the trails are edge-disjoint (but do not necessarily use every edge),
then we obtain the standard definition of (weak) immersion minors; see Figure 3.9.
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Figure 3.8: A circle graph (left), chord diagram (middle), and tour graph (right), before
and after removing b.
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Figure 3.9: A depiction of an immersion minor and a complete immersion minor, where
the colors/thickness denote the edges in the two trails in 7, and W =V = ().

Formally, let W and V be sets, and let (H, ) and (G, \) be an F}-labelled and FY -
labelled graph, respectively. Then (H, p) is an immersion minor of (G, \) if V(H) C V(G),
W C V, and there exists a shifting A" of A and a collection 7 = (T, : e € E(H)) of edge-
disjoint trails of G such that for each e € E(H), the trail T, has the same ends as e and
satisfies Ay, (T.) = p(e). (We allow H and G to have loops and multiple edges. So if e
is a loop, then T, is a circuit.) If additionally every edge of G is in a trail in 7, then
(H,p) is a complete immersion minor of (G, \). If N = X, then (H,p) is a shifting-free
(complete) immersion minor of (G, ). We also sometimes say that (G,\) (completely)
immerses (H,u). For (unlabelled) graphs H and G, we use these same definitions by
implicitly referring to the corresponding Fg—labelled graphs.

If (G, \) (completely) immerses (H, ) and g’ is a shifting of u, then (G, A) also (com-
pletely) immerses (H, y'); we can simply perform the same sequence of shiftings in (G, \).
Furthermore, for unlabelled Eulerian graphs, immersion minors and complete immersion
minors are equivalent.

Lemma 3.4.1. If H and G are FEulerian graphs so that G immerses H, then G also
completely immerses H.

Proof. Let T = (T, : e € E(H)) be a collection of trails which shows that G immerses H;
choose T to use as many edges of G as possible. Each component of the graph obtained
from G by removing all edges in a trail in 7 is Eulerian. Thus 7 must use every edge of
(G, as otherwise we could “add a circuit” onto a trail in 7. n

This lemma does not necessarily hold for signed Eulerian graphs (G,\) and (H, u); in-
formally, the weight of a trail could change when “adding on a circuit”. For instance, if
>cen(m H(€) # X ccme Ale), then (H, p) is not a complete immersion minor of (G, A).

Complete immersion minors are the right notion of containment for labelled tour graphs.

69



W2 w3 Wy Ws We wr

wn (D > > D e
U1 U7

Figure 3.10: A depiction of the word graph of W = wy, ..., w;, where w is the evaluation
of W.

Theorem 3.4.2 (Bouchet [10] and Kotzig [83]). The following hold for any circle-structure
(G,C) any labelled tour graph (G, \) of (G,C).

(i) Any complete immersion minor of (G, 5\) is a labelled tour graph of a vertex-minor

of (G,C).

(i) Any vertex-minor of (G,C) has at least one labelled tour graph that is a complete
immersion minor of (G, ).

This theorem motivates our overall approach to proving the Local Structure Theorem;
from now on we mainly work with complete immersion minors.

3.5 Finding vertex-minors

We have seen how to find vertex-minors of a circle-structure (G, C'); now we show how how
to find vertex-minors of G. In particular, we show (in Lemma 3.5.3) that if any labelled
tour graph of (G, C') completely immerses a particular type of labelled graph, then G has
every t-vertex graph as a vertex-minor, up to isomorphism.

We construct labelled graphs corresponding to words. For a set A, a word over F3 is
a sequence W = wy,...,w, of elements of F4. The elements wy,...,w, are letters. A
subword of W is a word that can be obtained from W by deleting zero or more letters at
its beginning and end; if we only delete letters at the end (respectively, beginning) then
we obtain a prefiz (respectively, suffiz) of W. We particularly care about “evaluations”
of prefixes; the evaluation of a word is the sum of its elements over F3 (where the empty
word evaluates to 0). For a letter w; of W, the prefix value of w; is the evaluation of the
corresponding prefix wy, ..., w;. We will occasionally also be interested in words over F}
for k € N, which are defined in the same way.

Now, for a set A and a non-empty word W = wy, ..., w, over F4, the word graph of W
(see Figure 3.10) is the Fsl-labelled graph with n vertices vy, ..., v, so that
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(1) there is a loop at vy of weight wy,

(11) for each i € {1,...,n — 1}, there are two edges between v; and v; 1, one of weight
zero and the other of weight w;1,

(i77) there is a loop at v, whose weight is the evaluation of W, and

(iv) there are no other edges.

The weights of the edges sum to zero and the graph is 4-regular and connected; so the
word graph is the labelled tour graph of some circle-structure.

The following lemma says that those circle-structures can be easily understood; the
neighbourhood of each vertex v; is the “support” of the prefix value of w;. The support
of an element w € Fy is the set of all @ € A so that the entry of w at a is non-zero.
So in particular, the following lemma says that {vq,...,v,} is a stable set in the circle-
structure, and locally complementing at vertices in the circle graph (which has vertex-set
{v1,...,v,}) does not change the neighbourhood of any v;.

Lemma 3.5.1. For any set A and any non-empty word W = wy, ..., w, over F4', a circle-
structure (G, C) has the word graph of W as a labelled tour graph if and only if

(i) A=V(GQ) - C,
(i1) C' = {vy,...,v,} is the vertez-set of the word graph, and

(i11) for each i € {1,...,n}, the neighbourhood of v; in G is precisely the support of the
prefix value of w;.

Proof. Fix an Eulerian circuit T of the word graph of W; it suffices to show that the
corresponding circle-structure, which we denote by (G, ('), satisfies condition (iii). By
considering the corresponding chord diagram, we can see that {vy,...,v,} is a stable set
in G. So it just remains to consider when a vertex v;, for ¢ € {1,...,n}, is adjacent to a
vertex a € A (in the graph G). Such vertices are adjacent if and only if each of the two
circuits of v in 7" has non-zero weight according to the signature of a. The Fj-weight of
each of these two subcircuits is precisely the prefix value of w;, so the lemma follows. [

Next we will show how to use Lemma 3.5.1 and Theorem 3.4.2 (on complete immersion
minors) to find vertex-minors in the graph of a circle-structure. In light of Lemma 3.5.1,
it is natural to consider words “with every possible prefix value”. So for a set A, an A-
universal word is a word over F2' so that every element of 3 is the prefix value of a letter.
It straightforward to construct small such words.
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Lemma 3.5.2. For any set A, there is an A-universal word with 214 letters.

Proof. We begin with the empty word (which has no prefix values since it has no letters),
and “add prefix values” one at a time. Suppose that the current word evaluates to o and
we want to add an element o/ € F2' as a prefix value. Then we add the element a+a’ € F3'
at the end of the word. This process results in the desired word after adding |F2'| = 2
letters. O

As one would hope, A-universal words let us find every graph with vertex-set A as a
vertex-minor.

Lemma 3.5.3. For any set A and any circle-structure (G,C) with at least one labelled
tour graph that completely immerses the word graph of an A-universal word, the graph G
has every graph with vertex-set A as a vertex-minor.

Proof. By Theorem 3.4.2, there exists a vertex-minor (G, 6) of (G, C) so that the word
graph of an A-universal word is a labelled tour graph of (G C’) By Lemma 3.5.1 and
A-universality, for each N C A, there exists a vertex in C whose neighbourhood, in G is
precisely V.

Now consider an arbitrary graph with vertex-set A. There are some pairs of vertices x, y
on which this graph differs from the subgraph of G induced on A (that is, where exactly
one of the two graphs has an edge between x and y). We can correct this difference by
locally complementing at the vertex in C with neighbourhood {z,y}. So the graph G and
thus also the graph G, has every graph with vertex set A as a vertex-minor. O

This lemma motivates our overall approach to proving the Local Structure Theorem,;
we will work entirely in the labelled tour graph, and we will find the word graph of an
A-universal word as a complete immersion minor.

Vertex-minors and the Growth Rate Theorem

While we will only need Lemma 3.5.3 in order to prove the Local Structure Theorem, we
believe that far fewer prefix values are needed in order to force every t-vertex graph as a
vertex-minor, up to isomorphism. In particular, notice that in the proof of Lemma 3.5.3,
we only actually used (‘Algl) of the prefix values. Informally, we believe that for every
integer ¢, there exists ¢ € R so that c¢|A|* + 1 prefix values suffice.
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In light of Lemma 3.5.1 about circle-structures and word graphs, we can state this
conjecture in terms of graphs with a bipartition (A, C') so that C is a stable set containing
many vertices with distinct neighbourhoods in A. Moreover, we conjecture that C' does
not need to be a stable set.

Conjecture 3.5.4. For anyt € 7", there exists ¢ € R so that any graph with a bipartition
(A, C) so that there are more than c|AJ* vertices in C' with distinct neighbourhoods in A
has every t-vertex graph as a vertex-minor, up to isomorphism.

We believe that we can prove Conjecture 3.5.4 when C' is a stable set. We omit the
proof, but the key point is the following corollary of the Growth Rate Theorem for minor-
closed classes of matroids, which was ultimately proven by Geelen, Kung, and Whittle [63].
For a matroid M, we write E(M) for the set of elements of M and r(M) for the rank of M.

Corollary 3.5.5 (Geelen, Kung, and Whittle [63]). For any t € Z*, there exists ¢ € R
so that any simple binary matroid M with |E(M)| > c(r(M))? has every t-element binary
matroid as a minor, up to isomorphism.

The connection comes from Bouchet’s [7] work relating pivot-minors of bipartite graphs
to minors of binary matroids (recall Theorem 1.6.1). As long as one side is a stable set,
pivot-minors still “behave appropriately between the two sides”. In this manner, we believe
that we can reduce Conjecture 3.5.4 to the “A-universal case” when C' is a stable set.
Again motivated by the Growth Rate Theorem, we also conjecture that the bound c|A|?
in Conjecture 3.5.4 can be replaced by the bound c¢(w|A|) for graphs G with clique number
at most w.

3.6 The proof approach

Our proof of the Local Structure Theorem relies on Lemma 3.5.3; to explain this connection,
consider a prime circle-structure (G, C') whose graph does not have all (¢ +1)-vertex graphs
as vertex-minors, up to isomorphism. By Lemma 3.5.3, there is no set A C V(G) — C of
size t + 1 so that the labelled tour graph of (G, ') completely immerses the word graph of
an A-universal word. So we “inductively grow” a set A C V(G) — C so that the labelled
tour graph of (G, C) does completely immerse such a word graph; we will eventually get
stuck and no longer be able to grow A. At that point, we will find a rank-|A| perturbation
of the circle-structure which makes each signature small relative to the fixed subset of C'
which induces a comparability grid. This perturbation will be “defined by” the signatures
of the vertices in A; we give the relevant definitions next.
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Keeping track of the perturbation

Let (G, C) be a prime circle-structure. For a,v € V(G) — C, a circle-structure (G, C) is
obtained from (G,C) by adding a to v if V(é) = V(G), and C = C, and the edge-set of
G is obtained from the edge-set of G by exchanging edges/non-edges between v and any
neighbour of a in C. So, equivalently, the submatrix of Adjs with rows V(G) — C and
columns C' is obtained from the submatrix of Adjs with the same rows and columns by
adding row a to row v, and all other incidences remain the same. Lemma 3.3.1 implies
that the signature of v in (G, C) is the sum of the signatures of v and a in (G, C).

In general, we will specify a set of vertices that we are allowed to “add”. So for a
circle-structure (G, C) and a set A C V(@) — C, a circle-structure (G, 5) is obtained from
(G,C) by perturbing to A if (é, 5) can be obtained from (G, C) by adding vertices in A
to vertices in V(G) — C. Thus (G, C) is a rank-|A| perturbation of (G, C). If we only add
vertices in A to a single vertex v € V(@) — C, then we say that (G, C) is obtained from
(G,C) by perturbing v to A. This is how we will find a perturbation.

Growing the set

Let (G, C) be a prime circle-structure, let B C C' be a set which induces a comparability
grid, and let (G , 5\) denote the labelled tour graph of (G, C'). We have shown how to keep
track of a perturbation by perturbing to a set A C V(G) — C. Next we discuss how to
build this set A. If A grows to size ¢ + 1, then we will find every (¢ + 1)-vertex graph
as vertex-minor, up to isomorphism. If instead we get stuck while |A| < ¢, then we will
perturb to A to make every signature small relative to B.

In order to guarantee that this strategy will work, we need to “certify” that each vertex
in A needs to be there. A good analogy is how in graph minors, the apex vertices are
chosen to be adjacent to many vertices far apart on a grid minor. Our graph will not be a
grid minor, but a labelled “grid-like graph” that is a complete immersion minor of (G’, 5\)
This graph, which we denote by (H,\), needs to relate to B; we will choose it so that
V(H) C B. Intuitively, this is sufficient because for any small edge-cut of G, almost all of
V(H), and therefore almost all of B, is on one of the sides (we will eventually prove results
to this effect in Lemmas 5.1.1 and 5.1.2). Since (' is 4-regular, we can move a few vertices
to the other side of a cut without making it too large; so, informally, a signature is small
relative to B if and only if it is small relative to V(H).

We also need to relate the signatures of vertices in A to the “grid-like graph” (H, \).
We will have many edge-disjoint collections of cycles whose \s-weights generate F5'. (We
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will use a different, more explicit definition, but this idea still motivates our approach.)
We call a grid-like graph with these properties “A-rich”. Such a graph “certifies” that we
cannot perturb to any proper subset of A in order to make each signature small relative
to B. Moreover, these graphs are “universal”; for any two Fi-labelled, A-rich grid-like
graphs whose weights sum to the same element, the larger one completely immerses the
smaller one (as long as it is in fact much larger; we will prove a result to this effect in
Proposition 5.2.1). So in particular we will be able to find a word graph of an A-universal
word as a complete immersion minor.

Now suppose that we are given an “A-rich grid-like graph” (H, \) with V(H) C B as a
complete immersion minor of (é , 5\) For each v € V(G) —C — A, we need to know whether
we can add v to A or perturb v to A. Our first step will be to “clean up the grid-like graph
with respect to v”. To explain this idea, it is easiest to just imagine that there is a subspace
N of F2 x FY of dimension |A| so that every edge of (H,\) has A4 x \,-weight in N. By
A-richness, restricting this subspace to A does not lower its dimension. So N tells us how
to perturb v to A.

After perturbing as specified, every edge of H will have Fi-weight zero; if the following
statement holds, then we will add v to A.

(*) There is a collection of trails of G so that their edge-sets partition the edge-set of G,
their ends are in V(H), and many have non-zero Fj-weight.

In order to tell whether or not such a collection exists, we will identify all vertices in V (H)
to a new vertex b and consider the resulting signed graph; it will be 4-edge-connected by
Theorem 3.2.3 of Bouchet [5, §].

Equivalently, in the resulting Eulerian signed graph, we will ask for the largest size of a
circuit-decomposition where each circuit is non-zero and hits {b}; a circuit-decomposition
is a collection of circuits whose edge-sets partition the edge-set of the graph. The next
chapter is dedicated to proving a precise min-max theorem for this problem. As a corollary
of the min-max theorem, we will prove that either (*) holds, or the “perturbed signature”
is small relative to V(H) (and therefore also small relative to B). We will formalize this
outline in Chapter 5 to prove the Local Structure Theorem.
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Chapter 4

Decomposing a rooted Eulerian
signed graph

4.1 Introduction

In this chapter we prove a precise min-max theorem (Theorem 4.2.1) for the following
problem. We allow graphs to have loops and multiple edges throughout this chapter.

Problem 4.1.1. Given a signed Eulerian graph (G, \) with a vertex b, what is the maxi-
mum size of a circuit-decomposition where each circuit is non-zero and hits b?

Recall that an Eulerian graph is a connected graph where each vertex has even degree, a
circuit hits b if it has an edge incident to b, and a circuit-decomposition is a collection of
circuits whose edge-sets partition the edge-set of the graph. See Section 3.2 for the relevant
definitions on signed graphs and Section 3.6 for an explanation of how this problem is
related to the Local Structure Theorem.

Mécajova and Skoviera [92] also studied Problem 4.1.1, especially for regular graphs,
and used their results to characterize signed Eulerian graphs with flow number three in [91].
We hope that our min-max theorem can be used to solve their conjectures (see [92, Conjec-
tures 1 and 2]), but we focus on the connection with vertex-minors. Recall from Section 3.3
that our motivation for the definition of “small signatures” was the problem of packing
edge-disjoint non-zero circuits. We obtain the following relationship between “packing”
and “decomposing”.
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Corollary 4.1.2. For any signed 4-edge-connected Fulerian graph with a vertex b, if there
are { edge-disjoint non-zero circuits hitting b, then there is a circuit decomposition of size
[£/2] where each circuit is non-zero and hits b.

The bound is best possible, and 4-edge-connectivity is necessary.

The following corollary of the min-max theorem is the only result from this chapter that
will be used in the proof of the Local Structure Theorem. However, we believe that the
full min-max theorem (Theorem 4.2.1) will be useful in proving the Structural Conjecture;
see Section 4.7 for a brief discussion. Notice that shifting does not change the answer to
Problem 4.1.1, and the conditions below closely resemble the conditions for a signature to
be “small relative to B”.

Corollary 4.1.3. If (G,~) is an Eulerian 4-edge-connected signed graph with a vertex b,
and there is no circuit decomposition of size larger than £ where each circuit is non-zero
and hits b, then there exist a shifting v' of v and a set of vertices X which contains b so
that

(1) there are at most 40 edges with ezxactly one end in X, and

(i1) there are at most ¢ edges with both ends in X that have non-zero N -weight.

Corollary 4.1.2 is already enough to conclude a version of Corollary 4.1.3 (with worse
bounds) without using the min-max theorem. This is because we could use the theorem
of Kakimura, Kawarabayashi, and Kobayashi [76] which was mentioned in Section 3.3
(informally, that edge-disjoint non-zero hitting circuits have the Erdds-Pésa property in
graphs with no 3-edge-cuts). The lemma of Churchley [24, Lemma 3.5] could also be used
in the same manner.

Churchley [24, Lemma 3.5] observed that a min-max theorem for the “packing ver-
sion” of Problem 4.1.1 follows from a theorem of Chudnovsky, Geelen, Gerards, Goddyn,
Lohman, and Seymour [22] on vertex-disjoint non-zero “rooted” paths in group-labelled
graphs. Our proof of the min-max theorem is based on [22], which, in turn, is based on a
short proof of the Tutte-Berge Formula using the matching matroid (see [22]). We will show
that there is a matroid, which we call the “flooding matroid”, underlying Problem 4.1.1.

4.2 The min-max theorem

Throughout the chapter we will be interested in “rooted Eulerian signed graphs”; so we
call an RES-graph a tuple (G,~,b) so that (G,~) is an Eulerian signed graph and b is a
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Figure 4.1: An RES-graph with four edge-disjoint non-zero circuits hitting b but flooding
number three. The non-zero edges are bold red; we will use this convention in all of the
figures in this chapter.

vertex of G. We call b the root of (G,~,b). We write 7(G,~,b) for the maximum size of
a circuit-decomposition where each circuit is non-zero and hits b; we call this the flooding
number of (G,~,b). If no such decomposition exists, then we consider the flooding number
to be zero.

If, after shifting, there is a small edge-cut so that the side containing b has few non-zero
edges, then the flooding number must be small. Formally, for a set of edges F' and a
shifting 7" of 7, we write 7/(F') for the number of non-zero edges in F' according to 7. For
a set of vertices X, we write £(X) for the set of edges with both ends in X and 6(X) for
the set of edges with exactly one end in X. Using this notation we can state a pretty good
upper bound on the flooding number;

1
(G b) < mip ((ECO) + 100)]). (@)
’y b
where the minimum is taken over all shiftings v’ of + and all sets of vertices X that
contain b.

If we did not require the edge-sets of the circuits to partition the edge-set of GG, but just
to be disjoint, then inequality (4.1) would be tight; this fact was observed by Churchley [24,
Lemma 3.5] following from [22]. For the flooding number, however, inequality (4.1) is
not tight. Intuitively, this is because parity matters; since we are interested in circuit-
decompositions, the flooding number has the same parity as v(E(G)). So in Figure 4.1, for
instance, the flooding number must be odd. Therefore, while that example has deg(b)/2 = 4
edge-disjoint non-zero circuits hitting b, its flooding number is just 3. (We write deg(v)
for the degree of a vertex v.)

It turns out that parity is the only problem; the min-max theorem says that if we
subtract one for each component of G—X where “the parity is wrong”, then inequality (4.1)
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becomes tight. So, let (G,~,b) be an RES-graph, and let 7’ be a shifting of 7. A set of
vertices Y is 7/-odd if the parity of v/ (E(Y)UJ(Y')) is different from the parity of |6(Y')|/2.
Then, for a set of vertices X that contains b, we write odd, (G — X) for the number of
components of G — X whose vertex-set is v-odd. Now we can state the min-max theorem.

Theorem 4.2.1. For any RES-graph (G,~,b),

v, X

v(G,7,b) = min (’y'(E(X)) + %\5(X)| —odd./ (G — X)) ,

where the minimum is taken over all shiftings v of v and all sets of vertices X that
contain b.

A certificate for an RES-graph (G,~,b) is a tuple (X,') as in Theorem 4.2.1 so that
equality holds. So, to prove the theorem, we need to show that a certificate exists.

We complete this section by proving the two corollaries of Theorem 4.2.1 (assuming
that the theorem holds). They are restated below for convenience.

Corollary 4.1.2. For any signed 4-edge-connected Fulerian graph with a vertex b, if there
are ¢ edge-disjoint non-zero circuits hitting b, then there is a circuit decomposition of size
[£/2] where each circuit is non-zero and hits b.

Proof. Let (G,~,b) be a 4-edge-connected RES-graph with a certificate (X,~’). Since G is
4-edge-connected, odd, (G — X) < 1[6(X)|. So

20(G,7,b) = 29/ (E(X)) + [6(X)| — 20dd (G — X)
> 9/ (B(X)) + 5 15(X)]
> f,

since each of the ¢ edge-disjoint non-zero circuits must use either a non-zero edge in E(X),
or at least two edges in 0(X). Then v(G,~,b) > [£/2] since v(G,~,b) is an integer. O

This proof of Corollary 4.1.2 also shows how to construct an example where the bound is
tight. Informally, we take [£/2] disjoint copies of graphs like the one depicted in Figure 4.1,
except where the vertex b has degree 4. Then we glue them together by identifying all of
the copies of b. The resulting RES-graph has ¢ edge-disjoint non-zero circuits hitting b,
and flooding number precisely [£/2].
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Corollary 4.1.3. If (G,~) is an Eulerian 4-edge-connected signed graph with a vertex b,
and there is no circuit decomposition of size larger than ¢ where each circuit is non-zero
and hits b, then there exist a shifting v of v and a set of vertices X which contains b so
that

(1) there are at most 4¢ edges with exactly one end in X, and

(i1) there are at most ¢ edges with both ends in X that have non-zero N -weight.

Proof. Let (G,7,b) be a 4-edge-connected RES-graph with (G, ~,b) < ¢, and let (X,~)
be a certificate. Since G is 4-edge-connected,

and the corollary holds. O

4.3 Preliminaries

Our approach to Theorem 4.2.1 is based on the observation that we do not need to require
every circuit in the circuit-decomposition to be non-zero. So for an RES-graph (G, ,b), a
flooding is a collection of deg(b)/2-many circuits that each hit b. A flooding is optimal if
it contains as many non-zero circuits as possible. This gives an alternate definition of the
flooding number as follows.

Lemma 4.3.1. For any RES-graph (G,,b), the mazimum number of non-zero circuits in
a flooding is equal to v(G,~,b).

Proof. By “splitting up” an Eulerian circuit at b, we can find a flooding that contains
at least (G, 7, b)-many non-zero circuits (since each non-zero circuit “splits up” into one
non-zero circuit and one zero circuit). In the other direction, all of the zero circuits in
an optimal flooding can be “combined” with one of its non-zero circuits (we may assume
a non-zero circuit exists since certainly 7(G,v,b) > 0) to obtain a circuit-decomposition
where each circuit is non-zero and hits b. This completes the proof. O

We will work with this alternate definition of the flooding number from now on.

Informally, our approach to Theorem 4.2.1 is to consider why the zero circuits in an
optimal flooding cannot be “turned into” non-zero circuits. Notice that each optimal
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flooding has the same number of zero circuits; we will define a matroid of this rank. The
bases of this matroid are obtained by selecting a “representative” for each zero circuit in an
optimal flooding. A representative specifies a “split” of the circuit into two subtrails, each
with b as one end, and the weight of the two subtrails (they must have the same weight
since the circuit is a zero circuit). Our goal is to reduce to the case that this matroid has
rank at most 1; then ({b}, ) will already be a certificate by a short parity argument.

Notation

We need some terminology to talk about trails more carefully. We think of RES-graphs as
having half-edges; so an edge is an unordered pair of half-edges and an arc is an ordered
pair of half-edges. (We use arcs to resolve technical issues with loops.) If {hy, ho} is an
edge, then there are two corresponding arcs, (hy, he) and (hg, hy). The tail (respectively
head) of an arc (hy, hs) is the vertex that is incident to h; (respectively hs). A trail is a
sequence of arcs so that the corresponding edges are all distinct and the head of each arc,
other than the last one, is the tail of the next. The tail of a trail T is the tail of its first
arc, and the head of T is the head of its last arc. If T' has the same head and tail, say v,
then T is a circuit or a v-circuit.

It is convenient to have some notation about how to “combine” trails. If 77 and 75
are trails so that the head of T} is the tail of 75, then we can compose them into a new
trail denoted (77,75). We simply write (73, T5) for its weight. Likewise, we can reverse
a trail T to obtain another trail denoted T'. We also use this notation if f is an arc; so
f~1is the arc with the same edge, but in the reverse direction. As an example, we have
(T, Ty)~" = (I, 5, T7Y). A subtrail of T is any trail which can be obtained from T by
deleting zero or more arcs at its beginning and end. It is a proper subtrail if it is not just
T, a prefiz if no arcs are deleted at the beginning, and a suffiz if no arcs are deleted at the
end. A subcircuit is a subtrail which also happens to be a circuit.

If C' is a circuit whose sequence of arcs is aq,...,a;, then any circuit of the form
@iy Aig1y -, Qp, A1, A, ..., 0;_1 18 obtained from C' by cyclically reordering its arcs. This
operation does not necessarily maintain the same subcircuits (because subcircuits are not
allowed to “wrap around”).

Proof approach

One direction of the min-max theorem (Theorem 4.2.1) is easy. So we will prove that
direction now. Afterwards, we will outline the proof of the other direction.
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Figure 4.2: A depiction for Lemma 4.3.2. The flooding C is not drawn since in this
particular example, any choice of C yields the same RES-graph (G, 4,0).

Lemma 4.3.2. For any RES-graph (G,~,b), shifting v' of v, and set of vertices X that
contains b,

7,7, 8) < 7 (B(X) + 515(X)] ~ 0ddo(G — X)) (4.2

Proof. Let C be an optimal flooding (so it contains precisely 7(G,~,b)-many non-zero
circuits). We will use C and X to define another RES-graph (G, 4,b) with vertex-set X.
For an example, see Figure 4.2. This RES-graph (G, 4,b) will have a flooding € with the
same number of non-zero circuits as C, but the number of non-zero edges will be at most
the right-hand side of inequality (4.2). This will complete the proof as every non-zero
circuit in ¢ must have a non-zero edge.

~

So, let (G, 4,b) be the graph obtained from (G,~/,b) by first deleting all vertices not in
X and then adding %|5 (X)|-many new edges as follows. We add an edge for each subtrail
T of a circuit in C so that the tail and head of 7" are in X, the first and last edge of T" are
in 0(X), and no other edges of T" are in 6(X). For each such trail T, we add an edge of
weight +/(T') whose ends are the tail and head of T. So indeed (&, 4,b) has a flooding C
with the same number of non-zero circuits as C.

N

Now we need to show that the number of non-zero edges of (G,4,b) is equal to the
right-hand side of inequality (4.2). So consider the vertex set Y of a component of G — X
so that Y is 74-odd. We will show that there exists a trail 7" as above so that T is incident
to a vertex in Y and satisfies 7/(T') = 0. First of all, observe that there are |§(Y)|/2
such trails T' that are incident to a vertex in Y; moreover, the sum of their weights is
Y(E(Y)Ud(Y)). So, since the parity of v/ (E(Y) Ud(Y)) is different from the parity of
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(f,0)

b

Figure 4.3: A b-circuit which is represented by (f,0), where f is the third arc of the circuit.

|0(Y)]/2, at least one of these trails 7" much have +/(T") = 0. This completes the proof of
Lemma 4.3.2. ]

Now we outline the rest of the proof of Theorem 4.2.1. We begin by defining the
“flooding matroid”, whose rank is the number of non-zero circuits in an optimal flooding.
We will prove that the relevant structure is in fact a matroid in Section 4.4.

Let (G,~,b) be an RES-graph. For a zero circuit C, a representative for C' is a tuple
(f,a) so that f is an arc of C' and a € {0, 1} is the weight of the prefix of C' whose last
arc is f. See Figure 4.3 for an example. A system of representatives for a flooding C is a
set B that consists of one representative for each zero circuit in C. We define the flooding
matroid M(G,~,b) by its ground set and its bases. The ground set of M(G,~,b) is the
set of all tuples (f,«) so that f is an arc of (G,7,b) and « € {0,1}. A set B is a basis
of M(G,~,b) if it is a system of representatives for an optimal flooding. (If the flooding
number is equal to deg(b)/2, then we view the empty set as a system of representatives for
an optimal flooding; this guarantees that M(G,,b) always has a basis.)

To prove Theorem 4.2.1, we will reduce to the case that M (G, ~,b) has rank at most 1.
Then a parity argument will immediately imply that ({b},~) is a certificate. The key
step in the reduction is to show that if (G,~,b) is a counterexample to Theorem 4.2.1
which is, in a certain sense, “minimal”, then for each arc f of G — b, both (f,0) and (f,1)
are non-loop elements of M(G,~,b). We will show that any “minimal counterexample”
to Theorem 4.2.1 has this property in Section 4.5. Then we will complete the proof of
the theorem in Section 4.6 using the transitivity of parallel pairs and the following key
lemma. (The proof of the lemma does not use the fact that M(G,~,b) is a matroid, just
the definition of its bases.)

Lemma 4.3.3. For any RES-graph (G,~,b) and arcs fy and f, with the same head, there
is no basis of M(G,~,b) which contains both (fy,0) and (f1,1).
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Figure 4.4: A depiction for Lemma 4.3.3. The bold arcs on the left represent fy and f.
The colours represent the weights of the trails, and the dashed arcs show which circuits
are in the floodings.

Proof. Suppose to the contrary that there is such a basis. Then there exists an optimal
flooding C that contains distinct zero circuits Cy, C; so that (fy,0) is a representative
for Cy and (f1,1) is a representative for C;. Thus there are trails Ty, Ry, T1, Ry so that
Co = (Ty, Ro), C1 = (T1, Ry), the trail Ty has weight 0, the trail 7} has weight 1, and T}
and 77 have the same head. See Figure 4.4 (left) for a depiction.

We can obtain another flooding C’' from C by replacing Cy and C; with the circuits
(To, T7') and (Ry*', Ry). This flooding is depicted in Figure 4.4 (right). This contradicts
the optimality of C as the new two circuits are both non-zero. O]

Transitions

We complete this section by introducing an important reduction operation involving tran-
sitions; a transition is a set of two half-edges which are incident to the same vertex, say v.
We say the transition is at v. The transitions of a trail T' are the transitions {h, ha} so
that T has two consecutive arcs of the form (A}, hy) and (he, k). Thus a trail with ¢ arcs
is fully determined by its first arc and its £ — 1 transitions. The transitions of a flooding
are the transitions of its circuits.

Informally, the reduction operation that we are interested in removes a transition by
combining two incident edges into a single edge. This is usually called “splitting oft” or
“lifting”. This operation provides a powerful reduction technique for problems involving
edge-connectivity (see the theorems of Lovasz [88] and Mader [90]). Moreover, complete
immersion minors could equivalently be defined via this operation. The formal definition
will sound technical, but the point is that we are only allowed to split off transitions when
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Figure 4.5: This figure depicts what happens when a transition is split off. The transi-
tions are depicted by thick dashed lines which indicate their half-edges; we will use this
convention in all of the figures.

the resulting graph is still connected. We can split off a transition at a vertex of degree 2,
other than the root, by combining the two incident edges and then deleting that vertex;
refer to Figure 4.5.

Let (G,7v,b) be an RES-graph . Let {hi,ho} be a transition at a vertex v so that
{h1, h2} is not a loop edge and, where {hy, |} and {hs, h}} are the two edges that contain
hy and hy (respectively), there is no 2-edge-cut consisting of {hy, h}} and {hg, hy}. Then
splitting off {hi,ha} deletes the edges {hi, h}} and {ho, h}, and then adds a new edge
{h, Y} of weight y({h1, R} }) + v({ha, h}}). So this operation results in another RES-
graph . If instead {hy, ho} was a transition at a vertex v # b of degree 2, then we define
the RES-graph obtained by splitting off {hi, ha} in the same way, except we also delete v
(which would otherwise have become an isolated vertex). So, in particular, we are allowed
to split off any transition of a flooding of (G, ~,b).

4.4 The flooding matroid

This section is dedicated to proving that the flooding matroid is in fact a matroid. To do
so, we will prove that the basis exchange axiom holds in Lemma 4.4.2. The proof will first
reduce to the 4-edge-connected case; notice that an RES-graph (G, ~, b) is 4-edge-connected
if and only if there is no set Y C V(G) — {b} so that [6(Y)| = 2.

After that, we will find a transition to split off that “maintains” two different bases.
We will need the following key lemma.

Lemma 4.4.1. For any 4-edge-connected RES-graph (G,~,b), vertex v # b, half-edge h
incident to v, and basis B of M(G,~,b), the following holds.

(*) For more than half of the transitions T at v which include h, there ezists an optimal
flooding C so that T is a transition of C and B is a system of representatives for C.
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Figure 4.6: A depiction of the transitions {hi, ho} and {h, '}, as well as the relevant
circuits in Case I of Lemma 4.4.1.

Proof. We will say that a transition is valid if it is a transition at v that includes h. We
will say that a valid transition 7" works if there exists an optimal flooding C so that 7" is a
transition of C and B is a system of representatives for C. So we are trying to show that
more than half of the valid transitions work.

Notice that there are exactly deg(v) — 1 valid transitions, which is an odd number.
Now, fix an optimal flooding C for which B is a system of representatives. There is a
unique half-edge h’ so that {h,h'} is a transition of C. So {h,h'} works. Thus it suffices
to show that half of the other valid transitions also work. We will do this by proving that
for each transition {h,ho} # {h,h'} of C at v, either {h, hi} or {h, ha} works. We need
to consider how these two transitions {hq, ho} and {h, '} of C “break up” the circuits of
C into subtrails. We will consider two separate cases. We begin with the hardest one.

Case 1: There exists a circuit C' € C so that {h,h'} and {hy, ho} are both transitions of
C.

Then there are trails T, L, Ty so that C' = (T}, L, T,) and exactly one half-edge from
each of the two transitions is contained in L, which is a v-circuit (see Figure 4.6, left). We
can obtain a new flooding from C by deleting C' and adding the circuit (73, L™, T3) instead
(see Figure 4.6, middle). If B is still a system of representatives, then we are done; so we
may assume otherwise. Then C' must be a zero circuit, and the arc of the representative
for C' must be in L. Now consider instead replacing C' by (Ty*, L, T; ') (see Figure 4.6,
right). Again we may assume that B is no longer a system of representatives. It follows
that v(T1) # ~v(T3), and therefore that L is a non-zero circuit.
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C/

Ry

T Ry
Figure 4.7: A depiction of how we use 4-edge-connectivity to find the new flooding C’ in
Case 1 of Lemma 4.4.1.

Next we will use 4-edge-connectivity to “find another place to put L”. This is the only
time that we will use 4-edge-connectivity. Refer to Figure 4.7 for the following definitions.
First of all, let us consider only the transitions of the circuit (77, 75) and of the circuits in
C —{(T\,L,Ty)}. Let T denote the transition that has exactly one half-edge from each of
Ty and T5. Since (G, 7, b) is 4-edge-connected, there exists another transition 7" # T' which
is at a vertex u that is incident to an edge of L. Let L’ be a w-circuit that is obtained
from L by cyclically reordering its arcs. Let R; and Ry be the trails so that 7" has exactly
one half-edge from each of R; and Ry and (R;, Ry) is a circuit under consideration (it is
possible that (Ry, Ry) = (11, T»)). By attaching L’ onto T”, we obtain a flooding C’ so that
T is a transition of C’' and (R, L', Ry) € C'.

We claim that C’ is an optimal flooding and (R, L', Ry) is a zero circuit. To see this,
notice that when we removed L, we gained the non-zero circuit (77, 75). So we must have
lost a non-zero circuit when we added L’ to (R, R2). So our system of representatives B
does not contain an element whose arc is in (R, Ry). Thus if B has a representative for
(Ry, L', Ry), then we are done. Otherwise, since L is a non-zero circuit that contains an
arc of an element in B, the set B must contain a representative for (Ry*, L', Ry''), and
again we are done. This completes the first case.

Case 2: There exist distinct circuits C,C" € C so that {h,h'} is a transition of C' and
{hy, hy} is a transition of C".

Notice that the transitions {h,h'} and {hy, he} “split” C' and C’ into four subtrails.
More formally, there are unique trails 77, Ty, Ry, Ry so that C' = (T}, T3) and each of T1, T,
has exactly one half-edge in {h, h'}, and C" = (Ry, Rs) and each of Ry, Ry has exactly one
half-edge in {hq, ho}. There are three ways to partition {7, Ts, Ry, Ry} into two parts of
size two, as depicted in Figure 4.8. Fach of these three ways yields a unique flooding of
(G,7,b), up to reversing the two circuits that contain any of the half-edges h, k', hy, ho.
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Figure 4.8: The three ways to partition {7}, Ts, Ry, Ry} into two parts of size two, from
Case 2 of Lemma 4.4.1.

We will call these two circuits the new circuits of the flooding.

One of these three floodings is our original flooding C; we are interested in the other
two floodings, which we denote by C; and C;. Note that reversing the new circuits of C;
(respectively Cy) does not affect whether or not C; (respectively Cs) is optimal. However, it
might affect whether or not B is a system of representatives for C; (respectively Cy). There
is an obvious choice to make though; if L is a new circuit of C; (respectively Cy) so that
more elements of B have arcs in L™! than in L, then replace L with L=!. We claim that,
with this choice, there exists i € {1,2} so that C; is an optimal flooding and B is a system
of representatives for C;. This will complete the proof of Lemma 4.4.1. We now break into
cases.

Case 2.1: Both (T1,T3) and (R, R2) are non-zero circuits.

Then, as a multi-set, {y(71),v(Ts),v(R1),7(R2)} = {0,0,1,1}. So for some i € {1, 2},
both of the new circuits of C; are non-zero. Then C; is an optimal flooding and B is a
system of representatives for C;.

Case 2.2: Exactly one of (T1,T5), (R1, Ry) is a non-zero circuit.

Then, as a multi-set, {v(71),7(12),v(R1),v(Rs)} is either {0,0,0,1} or {0,1,1,1}. So
in fact both C; and Cy are optimal. Let f be the arc of the element of B that represents
whichever of (71,73), (R, Ry) is a zero circuit. Then f is in a zero circuit in either C; or
Cy, and B is a system of representatives for that flooding.

Case 2.3: Both (T1,T3) and (R, Rs) are zero circuits.

As C is optimal, it follows that, as a multi-set, {v(71),7(T2),v(R1),v(R2)} is either
{0,0,0,0} or {1,1,1,1}. So both C; and Cy are optimal. Now let f; (respectively f3) be
the arc of the element in B that represents (77,7%) (respectively (Ry, Ry)). Then f; and
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fo are in distinct circuits in either C; or Co, and B is a system of representatives for that
flooding.

This completes all possible cases and therefore the proof of Lemma 4.4.1. O

Now we are ready to prove that the basis exchange axiom holds, which is the final
lemma of this section. As the flooding matroid always has a basis (possibly the empty
set), this proves that the flooding matroid is in fact a matroid.

Lemma 4.4.2. For any RES-graph (G,~,b), any bases By and By of M(G,~,b), and any
by € By — B, there exists by € By — By so that (By — {b1}) U{b2} is a basis of M(G,~,b).

Proof. Going for a contradiction, suppose that the lemma is false. Then choose a coun-
terexample so that (G,v,b) has as few edges as possible, and, subject to that, as many
vertices as possible. This may seem strange but will prove to be convenient later. Such a
choice is possible since an Eulerian graph with m edges has at most m vertices.

Our aim is to apply Lemma 4.4.1. So we need a vertex other than b to split off at,
and we need (G, ,b) to be 4-edge-connected. We take care of these things in the next two
claims.

Claim 4.4.2.1. There exists a vertex other than b.

Proof. Suppose otherwise. Then every zero circuit in a flooding consists of a single loop f
and must be represented by (f,0). We can reverse such a circuit to obtain a zero circuit
represented by (f71,0). Then the element b; must be of the form (f,0), and we can take
by to be the element (f~1,0) € By — By. O

The next claim is actually the hardest part of the proof.
Claim 4.4.2.2. The graph (G,~,b) is 4-edge-connected.

Proof. Otherwise, there exists a set Y C V(G) — {b} with [§(Y)| = 2. Let (G, A, b) be the
RES-graph that is obtained from (G, ~,b) by deleting all vertices in Y and then adding a
new edge é whose ends are the neighbours of Y (possibly ¢ is a lopp) and whose weight is
the sum of the weights of the edges in E(Y)Ud(Y). Note that o(G, A\, b) = 0(G,~,b). The
proof of the claim is fairly straightforward from here; we apply Lemma 4.4.2 to the graph
(@, A, b), which has fewer edges than (G,~,b). Unfortunately though, it is rather technical
to state this precisely. We will begin by giving some definitions related to B; and B;. So
let i € {1,2}.
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First of all, fix an optimal flooding C; of (G, v, b) so that B; is a system of representatives
for C;. Then there exists an optimal flooding C; of (G, 4,b) so that C; is obtained from C;
by replacing the arc f; that corresponds to é with a trail 7} with edge-set E(Y) U d(Y).
(To be more clear, ﬁ is the unique arc that corresponds to € and is also in a circuit of @)
Now, if no element of B; has an arc in 7}, then B; is also a system of representatives for C;.
Otherwise, let (f;, ;) € B; be the element whose arc is in 7;; then there exists &; € {0,1}
so that (B; — {(f;, a:)}) U{(fi, &)} is a system of representatives for C;. In either case, let
B; denote the system of representatives for C; that we have obtained. This completes the
definitions.

Next we will apply Lemma 4.4.2 to (G, A\, b), which has fewer edges than (G,v,b). So
let bl be the element of 31 that corresponds to by. It is possible that 61 is in EQ. In this
case, by = (f1,01) = (f2, s), and (By — {(f1,61)}) U{(fa, a2)} is a basis of M(G,~,b). To
see this, note that it is a system of representatives for the flooding that is obtained from
C, by replacing the arc fl with the trail T5.

So we may assume that bl € B1 — BQ. Then there exists 52 S Bg — El so that
(By — {by}) U{by} is a basis of M(G,4,b). If by is in B, as well, then (By — {b1}) U{b,} is a
basis of M (G, ~,b); we replace f1 or its inverse by T} or its inverse. Otherwise, by = ( fa, ao),
and instead (By — {b1}) U {(f2, az)} is a basis of M(G,~,b); we replace f, by Th. We note
that (f2, as) is not in By simply because (B — {b1}) U {(f2,a2)} is an optimal flooding
and therefore has the same size as B. This completes the proof of Claim 4.4.2.2. O]

Now, fix a vertex v # b and a half-edge h incident to v. By Lemma 4.4.1 applied to
By and By, there exists a transition {h,h'} at v so that there are optimal floodings C; and
Cy so that {h,h'} is a transition of both C; and Cy and By, By (respectively) is a system
of representatives for Cy,Cy (respectively). Let (@ ,%,b) be the RES-graph that is obtained
from (G,~,b) by adding a new vertex v' and making the half-edges h and A’ incident to v’
instead of v. Then B; and B, are both bases of M(G, 4,b). Moreover, Lemma 4.4.2 holds
for (G,#,b) since it has the same number of edges as (G, 7, b) but more vertices. It follows
that the lemma holds for (G,~,b) as well. This is a contradiction and completes the proof
of Lemma 4.4.2. m

4.5 The reduction step

Recall that our aim is to reduce to the case that the flooding matroid has rank at most 1.
As mentioned before, the key step is to first reduce to the case that every arc of G — b is
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Figure 4.9: An RES-graph to the left, and, to the right, an RES-graph that is obtained
from it by pulling e down to b.

the arc of two non-loop elements of M(G,~,b). That is what we will do in this section.
We begin with some definitions.

Let (G,~,b) be an RES-graph and let e be an edge of G —b. We say that an RES-graph
(CAJ,’Ay, b) is obtained from (G,~,b) by pulling e down to b if there exists a transition 7" so
that (G, 7, b) is obtained from (é, 4, b) by splitting off 7', and e is the new edge of (G, 7, b).
So pulling an edge down to b is the “inverse” of splitting off a transition at b. See Figure 4.9
for a depiction. Notice that G — b has fewer edges than GG — b; this is the sense in which
we are ‘reducing” to a smaller graph.

We call an RES-graph (G, 7, b) critical if for each edge e of G —b, the flooding number of
any RES-graph that is obtained from (G, v, b) by pulling e down to b is at least (G, v, b)+2.
This section is dedicated to proving two lemmas. The first essentially shows that any
counterexample to Theorem 4.2.1 with |E(G — b)| minimal must be critical. The second
shows that for any critical graph, every edge not incident to b is in two non-loop elements
of the flooding matroid.

N

Lemma 4.5.1. If (G,v,b) is an RES-graph, e is an edge of G —b, and (G, #,b) is obtained
from (G,~,b) by pulling e down to b, then if (G,7,b) has a certificate and v(G,7,b) <
v(G,v,b) + 1, the RES-graph (G,~,b) also has a certificate.

Proof. First of all, observe that v(E(G)) has the same parity as 4(E(G)). So the flooding

N

numbers also have the same parity and v(G,4,b) < v(G,~,b).

Now, observe that by performing the same sequence of shiftings in (G,~,b), we may

N

assume that there exists a set X C V(@) that contains b so that (X, %) is a certificate for
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Figure 4.10: A depiction for Case 4 of Lemma 4.5.1, where Y; and Y5 are both odd in
(G,4,b).

(G,4,b). We will show that (X,~) is a certificate for (G,7,b). Let vy and vy be the ends
of the edge e of G — b. We now break into cases.

Case 1: Both v; and vy are in X.

Then if «(e) # 0, then one of the two new edges of (é, 4,b) is also non-zero. So indeed
(X,7) is a certificate for (G,~,b).

Case 2: Exactly one of vy, v, is in X.

Then the other of vy, vy is in a component of G-X ; write Y for the vertex-set of that
component. The only way (X,7) might not be a certificate for (G,~,b) is if Y is odd in
(CA?,&, b) but not in (G, ~,b). However, if this occurs, then the new edge of (G,~,b) which
is not incident to a vertex in Y has non-zero weight. Therefore, it contributed to 4 (E£(X))

but not to y(E(X)); so again (X, ) is a certificate for (G,~,b).
Case 3: The vertices v; and vy are in the same component of G- X.

Then |0¢(X)| = |64(X)|—2, and regardless of whether the vertex set of that component
is odd in (G, ~,b), we still have that (X, ) is a certificate for (G,~,b).

Case 4: The vertices v; and vy are in different components of G- X.

Let Y7 and Y; be the vertex-sets of those components. Again we have that |dg(X)| =
04(X)| — 2. So the only possible problem is if Y; and Y, are odd in (G,4,b) and Y; UY; is
not odd in (G, ~,b). However, this is not possible; note that |0¢(Y: UY2)|/2 = [04(Y1)]/2+
|0¢(Y2)|/2 — 1, while the parity of the number of relevant non-zero edges just sums (as in

Figure 4.10). So indeed (X,7) is a certificate for (G,~,b).
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This completes all of the cases and therefore also the proof of Lemma 4.5.1. m

Here is the final lemma of this section.

Lemma 4.5.2. If (G,v,b) is an RES-graph that is critical, then every arc of G — b is in
two non-loop elements of the flooding matroid M(G,~,b).

Proof. Let f be an arc that is not incident to b, and let e be the corresponding edge.
We are trying to prove that for i = 0, 1, there exists an optimal flooding of (G,~,b) that
contains a zero circuit represented by (f,1).

~

Let (G,%,b) be an RES-graph that is obtained from (G,~,b) by pulling e down to
b. Such an RES-graph exists and, moreover, by adding 1 to both of the new edges of
(@, Y0, b), we obtain another RES-graph (CA}',%, b) that is also obtained from (G,~,b) by
pulling e down to b. Since (G,~,b) is critical, the flooding number of each of these two

new RES-graphs is at least 7(G,~,b) + 2.
Now, for i = 0,1, fix an optimal flooding C; of (é,’yi,b). We claim that for i = 0,1,

neither of the two new edges of (@, i, b), which we will denote by é; and é,, are in a zero
circuit in G;. Going for a contradiction, suppose otherwise. Then ¢é; and é; must be in
the same circuit C' € (fi, as otherwise we would obtain a contradiction to the fact that
the flooding number went up. Then in (G, ~,b), the circuit C becomes a circuit C' which
contains e. As (G,7,b) is connected, this circuit C' can be attached back onto some other
circuit in C; — {C'}. This again contradicts the fact that the flooding number went up.
Now suppose that for some ¢ = 0, 1, the edges é; and é; are in the same circuit Ced,.
Then C is non-zero, and, similarly to before, we can obtain an optimal flooding C of
(G,~,b) that contains a zero circuit with a non-zero subcircuit C' containing f. That is,
there exist trails 7} and T5 so that C contains a zero circuit (7}, C, T3), and C' is a non-zero
circuit that contains the arc f. We can obtain another optimal flooding of (G,~,b) by
replacing (7}, C,T) with the circuit (75, C,T7"). Then one of (Ty,C,Ty), (Ty ', C, T, )
is represented by (f,0), the other is represented by (f,1). So in this case the claim holds.

Finally, for the last case, suppose that the edges é; and é; are in distinct, non-zero
circuits in both (fo and él. By relabeling é; and é5, we may assume that f is an ordered
pair of half-edges (hi, ha), where hy is a half-edge of é; and hs is a half-edge of é;. Then the
flooding Cy of (G, 4, b) yields an optimal flooding of (G, ~,b) so that (f,1+4o(é2)) repre-
sents a zero circuit. Likewise, C; yields an optimal flooding of (G, b) so that (f, 1+41(é5))
represents a zero circuit. As J(é2) # 41(é2), this completes the proof of Lemma 4.5.2. [
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4.6 Completing the proof

This section is dedicated to completing the proof of Theorem 4.2.1, which is restated below
for convenience.

Theorem 4.2.1. For any RES-graph (G,~,b),

1

(G ) =iy (Y(BCO) + 5 00] - 0dd(G - X))
v,

where the minimum is taken over all shiftings v of v and all sets of vertices X that

contain b.

Proof. Suppose for a contradiction that the theorem is false. Let (G,~,b) be a counterex-
ample so that |E(G — b)| is as small as possible and, subject to that, so that |E(G)] is
as small as possible. Recall that we have already shown one direction of the inequality in
Lemma 4.3.2.

From the last two sections, we also know that every arc of G — b is in two non-loop
elements of the flooding matroid M(G,~,b). This is because, by the choice of (G,~,b),
every graph (G,4,b) that is obtained from (G,~,b) by pulling an edge in E(G — b) down
to b has a certificate. Thus, using Lemma 4.5.1 (which, informally, says when we can
“lift” certificates from (G,&,b) to (G,~,b)), it follows that (G,~,b) is critical. Thus, by
Lemma 4.5.2, every arc of G — b is in two non-loop elements of the flooding matroid

M(G,~,b).

The goal is to show that M (G, ~,b) has rank 1 and thereby find a certificate. However,
first we need to prove a straightforward claim.

Claim 4.2.1.1. There are no loops at b, the graph G — b is connected, and E(G —b) is
non-empty.

Proof. First of all, there is no loop at b; otherwise, any certificate for the graph obtained
from (G,~,b) by deleting that loop also yields a certificate for (G, ~,b).

Now suppose for a contradiction that the graph G' — b is not connected. Then there
are RES-graphs (G1,71,b) and (G, 72,b) so that G = G U Gs, the only vertex in common
between G and G is b, and both V(G1) — {b} and V(G2) — {b} are non-empty. Then by
the choice of the counterexample (G, ,b), it follows that for ¢ = 1,2, there is a certificate
(Xi,7)) for (Gi,7i,b). We may assume that ] and 5 are obtained without shifting at
b; any time we wish to shift at b, we can instead shift at every vertex other than b.
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Thus, there exists a shifting 4" of v which, for i = 1,2, agrees with +/ on E(G;). Then
v(G,v,b) = 0(Gy,71,b) + 7(Ga, 72, b), and (X7 U Xo,7') is a certificate for (G,~,b). This
is a contradiction, which shows that G — b is connected.

Finally, suppose for a contradiction that E(G — b) is empty. From the last two para-
graphs, this must mean that (G,~,b) has two vertices and no loops. Let C be an optimal
flooding of (G,~,b). If C has no zero circuits, then (G, ~,b) = deg(b)/2 and ({b},~) is
a certificate. So we may assume that C contains a zero circuit C. Then, after possibly
shifting at b, we may assume that both edges of C' have weight zero. Then, since every
other circuit of C “hits” C at the vertex other than b, this must mean that every zero circuit
in C has both of its edges of weight zero (otherwise C would not be optimal). It follows
that in this case (V(G),~) is a certificate. This is again a contradiction and completes the
proof of Claim 4.2.1.1. O

The next claim almost completes the proof.

Claim 4.2.1.2. The matroid M(G,~,b) has rank 1.

Proof. Let F' be the set of elements of M(G,~,b) whose arcs are not incident to b. We
claim that F' is a rank 1 set with no loops. We know that every arc of G — b is in two
non-loop elements of the flooding matroid M (G,~,b). Thus, for each arc f of G — b, the
four elements in ' whose arc is f or f~! are all parallel. So by Lemma 4.3.3, transitivity
of parallel pairs, and the fact that G — b is connected and has an edge, it follows that F'
has rank 1.

Now consider an arc f whose tail is b. Note that if (f~!,0) is a non-loop, then so is
(f,0). The same holds for (f~!,1) and (f,1). Furthermore, by Claim 4.2.1.1, there exists
an arc of G — b with the same head as f. Then as before, it follows that all of the non-loop
elements of M(G,~,b) with f or f~! as an arc are in the parallel class of F. It follows that
M (G, ~,b) has rank 1. O

Now, since the flooding matroid has rank 1, any optimal flooding C has exactly one
zero circuit. Then the parity of v(E(G)) is equal to the parity of |C| — 1, which is different
from the parity of |C| = deg(b)/2. So odd,(G —b) =1 and ({b}, ) is a certificate. This is
a contradiction, which completes the proof of Theorem 4.2.1. ]
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4.7 Possible generalization to group-labelled graphs

To understand the structure of graphs with a forbidden vertex-minor, we would like a
generalization of Theorem 4.2.1 to F5-labelled graphs. A precise theorem seems necessary
because, intuitively, a signature of size 2 does not help at all while a signature of size 4
does. (Recall from Lemma 3.3.2 of Bouchet [10] that a vertex can be “added” to a prime
circle graph if and only if its signature has size at most 2.) We believe that we can prove
such a generalization to group-labelled graphs using different proof techniques. (We just
care about the additive group structure of F5.) Moreover, we believe that our proof gives
a polynomial-time algorithm to find an optimal flooding, assuming that we can determine
if two words evaluate to the same element in polynomial time.

Here is the more general version of the problem. A group-labelled graph is a tuple (G, )
so that G is a directed graph and -y is a function from the arcs of G to a (not necessarily
abelian or finite) group I'. Trails are allowed to traverse arcs in either direction. The weight
of a trail is the sum of the contributions of its arcs in order, where an arc e contributes
v(e) if it is traversed in the forwards direction and v(e)~! if it is traversed in the backwards
direction. As before, for a vertex b, we are interested in the maximum size of a circuit-
decomposition where each circuit is non-zero and begins and ends at b.

We are allowed to shift at any vertex v and by any group element a. Shifting at v by
a changes the label of each non-loop arc e incident to v to

{’y(e) —a ifeed (v)

a+v(e) ifeedt(v).

Thus shifting just conjugates the weight of a circuit, so it does not change whether or not
a circuit is non-zero.

In the group-labelled case we must first “decompose” on certain 2-edge-cuts. A decom-
posable 2-edge-cut is a set X C V(G) — {b} so that [§(X)| = 2 and there is a shifting 7' of
v so that the group generated by {7/(e) : e € E(X)} is isomorphic to the additive group
of F% for some non-negative integer k. Let vy,vo € V(G) — X be the ends of the two arcs
in §(X). Then each trail that has arc-set §(X) U E(X), tail vy, and head vy has the same
~'-weight. We can decompose on X by deleting X and adding a new arc of that weight
from vy to wve; this does not change the flooding number.

We believe that Theorem 4.2.1 holds for group-labelled graphs with no decomposable
2-edge-cut, after subdividing each arc of G —b once (this step needs to be done for technical
reasons as shown in Figure 4.11; informally, odd components should really “count labelled
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(1,0) (1,1) (0,1)

Figure 4.11: A depiction of a graph labelled over the additive group of F3 for which we
need to subdivide at least the arc labelled (1, 1) to obtain a certificate.

half-edges”). As before, a set of vertices X is odd (with respect to a particular shifting)
if there exists an element « of order 2 so that every non-zero arc with an end in X has
weight «, and the parity of the number of non-zero arcs in F(X) U §(X) is different from
the parity of |§(X)]|/2.

The main difficulty in proving such a generalization is that it is possible for the flooding
matroid (which we believe still exists) to have rank 1 and yet for V/(G) — b to not be odd
with respect to . So it is substantially more difficult to find the desired shifting.
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Chapter 5

Completely immersing a rich
grid-like graph

5.1 Rich grid-like graphs

In this chapter we prove the Local Structure Theorem, which is restated below for conve-
nience; see Chapter 3 for the definitions and a discussion of labelled tour graphs.

The Local Structure Theorem (Geelen, McCarty, Wollan). For any t € N, there exists
l; € N so that if (G,C) is a prime circle-structure whose graph does not have all (t + 1)-
vertex graphs as vertex-minors, up to isomorphism, and if B is a subset of C' that induces
a comparability grid, then there is a rank-t perturbation of (G,C) so that each signature is
li-small relative to B.

Recall the outline of our proof approach from Section 3.6. Informally, we will grow a set
A C V(G) — C so that the labelled tour graph of (G, ) completely immerses a so-called
“A-rich grid-like graph” whose vertex-set is contained in B. The set A cannot grow to have
size t + 1 by Lemma 3.5.3 on A-universal words. So at some point we will get stuck; at
that point we will be able to perturb each vertex to A to make its signature small relative
to B.

In this section we introduce “A-rich grid-like graphs” and prove some basic lemmas
about them. This chapter will use some of the notation from the last chapter; in particular,
for a set of vertices X, we write §(X) for the set of edges with exactly one end in X.
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(4,1) e (4,7)

Figure 5.1: A 4 x 7 grid with a face on row 1 and column 2 (bold red), its four corner
vertices (labelled), and a vertical boundary edge (also bold red).

Grid-like graphs

We begin by introducing some notation on grids. This will take a little while since we will
be working with grids and grid-like graphs throughout the chapter. Refer to Figure 5.1 for
the following discussion.

For positive integers m and n, an m X n grid is the graph with vertex set {(,7) :
i€ {l,...,m},j € {1,...,n}}, where there is an edge between vertices (i,j) and (i, ;")
whenever |i —i'|+]j — j'| = 1. We think of the vertex set as having m rows and n columns.
Thus we call m the height and n the width, and we will refer to the row and column of
a vertex. A face is a cycle of length 4; its row (respectively, column) is the smallest row
(respectively, column) of one of its vertices.

As in the figure, we consider the vertex (1,1) to be the top-left vertez. We will view
the columns as being ordered from left to right and the rows as being ordered from top
to bottom (or equivalently, from smallest to largest). The corner vertices are the top-left,
top-right, bottom-left, and bottom-right vertices. The boundary vertices are the vertices
that are on the same row or column as a corner vertex, and the boundary edges are the
edges that are in only one face. An edge between vertices (i,7) and (i + 1,7) is vertical;
other edges are horizontal. Finally, a subgrid of a grid is just a subgraph that is isomorphic
to a grid. We will use all of this same terminology for subgrids.

We will usually work with 4-regular graphs. So we say that a graph G is grid-like if G is
4-regular and there exists F' C F(G) so that G — F' is isomorphic to a grid (see Figure 5.2).
Thus every end of an edge in F' is a boundary vertex of that grid. We call G — F' the
underlying grid of G and use all of the prior definitions on grids for G as well (by implicitly
referring to the underlying grid). With this set-up, we are implicitly fixing F' as well as an
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Figure 5.2: A 4 x 5 grid-like graph and its underlying grid (bold).
ay
~A KM
a2 b2 a2 %&
as bg as
1 ba bs

b

Figure 5.3: A chord diagram for the 3 x 3 comparability grid (left) and the corresponding
tour graph (right).

isomorphism from G — F' to an actual grid. This is an abuse of notation, but we believe
that the chapter is easiest to read this way.

Now let GG be a grid-like graph. An outside edge is one that is not part of the underlying
grid. The distance between two vertices is the length of a shortest path between them in
the underlying grid (where the length of a path is the number of edges it contains). Then
the distance between two sets of vertices S and T' is the smallest distance between a vertex
in S and a vertex in T'. This completes all of the basic definitions.

One reason we are interested in these graphs is that the tour graphs of comparability
grids are grid-like (the bound n > 5 in the following lemma is there to simplify the proof).

Lemma 5.1.1. Any tour graph of an n X n comparability grid with n > 5 is an n X n
grid-like graph.
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Proof. We considered a chord diagram for the n x n comparability grid in Lemma 2.2.1; we
placed distinct points by, bs, ..., b,, Gy, an_1,...,a; in clockwise order around a circle and
included every chord with one end in {ay,...,a,} and one end in {by,...,b,}. In order to
define the tour graph, however, we need a chord diagram where no two chords share an
end. We can perturb the chords at each of by,bs,...,b,, an,an_1,...,a; slightly so as to
achieve this; see Figure 5.3 (left).

The corresponding tour graph is depicted in Figure 5.3 (right); each vertex is labelled
by the tuple (a;,b;) of points that were originally the ends of its chord. Then, at each of
ai,as,...,a,, we have a corresponding row of horizontal edges; see the chords in bold red
in Figure 5.3. Similarly, each of by, bs, ..., b, yields a column of vertical edges. So this
particular tour graph is an n x n grid-like graph.

To consider other possible tour graphs, we need to consider cuts with at least two
vertices on each side and at most 4 edges; Bouchet [5, 8] showed how to obtain every tour
graph by changing such cuts in a certain fashion. By inspecting the underlying grid, since
n > b5, every such cut has at most four vertices on one side. Now consider the outside
edges; there is one matching between the top and bottom rows, and one matching between
the leftmost and rightmost columns. Then, again by inspection, there is exactly one
such cut: the cut where one side is {(ay,, 1), (a1,b,)}. These two vertices have the same
neighbourhood in the comparability grid, and the tour graph is unique up to switching
their labels. So indeed any tour graph of the n x n comparability grid is an n x n grid-like
graph. 0

Richness

We are now ready to define rich grid-like graphs. Let V be a set, let A C V', and let (G, \)
be an F -labeled grid-like graph. Then (G, \) is A-rich with richness k if each edge of the
underlying grid has A 4-weight zero, and there exist k pairwise disjoint sets of |A| outside
edges whose )\ s-weights generate F5'. We call those k pairwise disjoint sets the batches of

(G, N).

Note that every grid-like graph is (-rich with arbitrarily many batches (because the
empty set is an (-rich batch). This will be our base case. Then we will sacrifice height,
width, and richness to grow A. The base case holds since by Lemma 5.1.1, the tour graphs
of the n x n comparability grid, for n > 5, are n x n grid-like graphs.

In fact, we could have proven the Local Structure Theorem for any set B which induces,
instead of a comparability grid, a circle graph whose tour graphs are n x n grid-like graphs.
Moreover, working with an n x n grid-like graph as a complete immersion minor is roughly
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equivalent to working with a tangle; each tangle “controls” a grid minor [114, (2.3)], and,
for 4-edge-connected graphs, having a large grid as a minor is equivalent to having a large
grid as an immersion minor [21]. We have already seen that for unlabelled Eulerian graphs,
immersion minors and complete immersion minors are equivalent (Lemma 3.4.1).

We will not need any of the theory on tangles, however. We just need the fact that, for
any small cut of a grid, almost all of the vertices are on one side.

Lemma 5.1.2. For any grid G of height and width at least n and any X C V(G) with
|6(X)| < n, either X or V(G) — X has size at most |6(X)|*.

Proof. Each row and each column that contains a vertex on each side of the cut contributes
at least one to [0(X)|. So by symmetry between the two sides, we can assume that there
is a column with no vertices in X. Then there is also a row with no vertices in X. So X
is contained in at most |§(X)| rows and columns, and | X| < [6(X)|?, as desired. O

5.2 Universality

In this section we prove that A-rich grid-like graphs are “universal”, and then use univer-
sality to find vertex-minors. It is well-known that unlabelled grids are “universal”; Dvotrak
and Klimosova [45] proved that every class of 4-edge-connected graphs of unbounded tree-
width contains all graphs of maximum degree 4 as (strong) immersion minors.

Informally, the universality proposition says that for any Fs'-labelled A-rich grid-like
graphs (G, \) and (H, 1) whose edge-weights sum to the same element, if (G, \) has suf-
ficient height, width, and richness, then it completely immerses (H, ). In fact we prove
a stronger statement; if (G, \) has sufficient richness, then the underlying grid of H can
be “placed” on any subgrid of G with sufficient distance from the boundary. Intuitively,
(G, \) must then immerse (H,u) because we can “freely draw” edge-disjoint trails from
the boundary of H to the boundary of G. We can then “make the immersion complete” by
“adding on each component of unused edges”; the edge-weights of each of these components
will sum to zero since all non-zero edges of (G, \) are on the outside.

With this intuition in mind, we are ready to state the proposition.

Proposition 5.2.1 (Universality). There is a function fso1 : ZT x N — Z* so that for
any set A, if (G,\) and (H,u) are non-empty F5'-labelled A-rich grid-like graphs whose
edge-weights sum to the same element, so that
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(1) (G, ) has richness at least fs21(|V(H)],|A|), and

(i1) the underlying grid of H is a subgrid of G so that V(H) has distance at least
fs21(|V(H)|,|A|) from the boundary vertices of G,

then (G, \) completely immerses (H, p), where each edge of the underlying grid of H is
sent to the same edge of G.

Proof. Let t € Z™, let A be a set, and define

d=2t(|A| +1)+1,
k == 6t + 8d, and
fs21(t,|A]) = k.

Now, let (G, A) and (H, ;1) be labelled graphs that satisfy the conditions of the proposition,
where t is the number of vertices of H. Let H denote the underlying grid of H.

First of all, we claim that it suffices to find a collection T = (T : e is an outside edge
of H) of pairwise edge-disjoint trails of G so that

(i) for each outside edge e = uv of H, the trail T, has ends v and v and has \(T¢) = u(e),
and

(71) no trail in 7 uses any edge of H or any boundary edge of G.

So, suppose that such a collection 7T exists; we will show that then the proposition holds.

Consider the components of the graph obtained from (G, A) by deleting the edges of H
and the edges of each trail in 7. Since there is a component that includes all boundary
edges of (G, ), and only the outside edges of (G, \) can be non-zero, it follows that there
is at most one component with a non-zero edge. Furthermore, since the sum of the weights
of the edges is the same in the two graphs, the weights of the edges of that component sum
to zero. So each component is an Eulerian graph whose edge-weights sum to zero; thus we
can add on each component to a trail in 7 without changing its weight. In this manner,
we obtain another collection of trails with the appropriate weights so that the edge-sets of
the trails partition E(G) — E(H). Thus (G, \) completely immerses (H, 11), as desired.

Now it just remains to show that such a collection T exists. Here is our overall approach.
First of all, H has at most 2t edges and therefore at most 2t outside edges. For each of
those outside edges, we will use one of the k batches of (G, A) to build the corresponding
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[

Figure 5.4: The underlying grid of G, the concentric cycles at distances 1 and 2 (bold red),
and the subgrid H (also bold, with large vertices).

trail in 7. We have plenty of batches to choose from. Each batch has size |A], and we will
use |A| + 1 “consecutive concentric cycles around H” to build the corresponding trail.

To state the definition of a concentric cycle, let (m,n) be the bottom-right vertex of
G. For each i € {1,...,d — 1}, the concentric cycle at distance i is the cycle consisting
of the boundary edges of the subgrid with top-left vertex (1 + 4,1+ 4) and bottom-right
vertex (m —i,n —1); see Figure 5.4. These cycles exist and are disjoint from the boundary
of H. Since d = 2t(|A| 4+ 1) + 1, we can partition these concentric cycles into 2t parts of
size |A| 4+ 1. Furthermore, we can assume that the distances of each part are of the form
i,i+1,...,1+|A|. Now fix an arbitrary injection from the outside edges of H to these 2t
parts.

Next we show how to choose batches. Consider just those batches whose ends have
distance at least d from the corners of G and are not on a row or column of H. There are
at least 2t such batches; at most 8d outside edges are too close to a corner of GG, and at
most 4t outside edges are on a row or column of H. So we can fix an injection from the
outside edges of H to these 2t such batches.

Now we show how to obtain T; see Figure 5.5. Consider an outside edge e = uv of H
with an associated batch F' and associated concentric cycles at distances i,i+1,...,i+|A|.
The trail corresponding trail T, begins at u, and its first edge is an edge of E(G) — E(H)
that is incident to u. Then it proceeds along this direction until hitting the first concentric
cycle, at distance 7 + |A|. If u(e) = 0, then it proceeds around this concentric cycle and
then returns to v in the same manner.

So now assume that p(e) # 0. Then there are distinct edges fi,..., fr € F so that
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Figure 5.5: A depiction of a possible trail 7. (bold dashed) where the ends of e are the
top-left and bottom-right vertices of H.

pu(e) = A(f1) + ...+ A(fe). Then the trail proceeds along the concentric cycle, and then
directly out to an end of f;, then along f;, and finally back to the next concentric cycle, at
distance i 4+ |A| — 1. This process repeats until the trail has used all of the edges f1,..., fs
and returned to the concentric cycle at distance ¢ + |A| — ¢. Finally, the trail proceeds
along that concentric cycle, and then back to v in the same manner. Due to the choice of
the batches, these trails exist and satisfy all of the conditions that were outlined earlier.
So this completes the proof of Proposition 5.2.1. O]

We complete this section by showing how to use universality to find vertex-minors.

Lemma 5.2.2. There is a function fs20 : N — ZT so that if A is a set and (G,C) is
a prime circle-structure whose labelled tour graph completely immerses an A-rich grid-like
graph of richness, height, and width at least fs22(|A]), then G contains every graph with
verter set A as a vertex-minor.

Proof. We write fs551 for the function from Proposition 5.2.1. Now, define f522(|A]) =
2591 (214 |A|) + 2141, Suppose that the conditions of the lemma hold for a circle-structure
(G, C). Recall that, by Lemma 3.5.2, there exists an A-universal word W with 24! letters.
Moreover, the word graph of W is an A-rich grid-like graph of height 1 and width 2!
whose edge-weights sum to zero; see Figure 5.6. So by Proposition 5.2.1 on universality,
the labelled tour graph of (G,C) completely immerses the word graph of W. Thus by
Lemma 3.5.3 on A-universal words, GG has every graph with vertex-set A as a vertex-minor.
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Figure 5.6: The word graph of W = wy,...,wg as an A-rich grid-like graph, with the
underlying grid (bold), outside edges (labelled), and two corner vertices (also labelled).

5.3 Finding a clean toroidal grid

In the next few sections, we show that either we can grow A, or we can perturb to A so
that each signature is small relative to the vertex-set of the fixed comparability grid. In
order to do so, we attempt to add each vertex v to A one at a time. Our goal is to apply
Corollary 4.1.3 on floodings from the last chapter; this result will tell us whether to add v
to A or perturb v to A. However, before we apply the corollary, we reduce to the case of
an “(A,v)-clean toroidal grid”; this is a particular type of A-rich grid-like graph.

To motivate the “cleaning” step, suppose that we have an A-rich grid-like graph so
that every edge has A4 x \,-weight in a subspace N of F5' x Fy of dimension |A|. By
A-richness, the \s-weights of each batch generate F2'; so, intuitively, this subspace IV tells
us how to perturb v to A. We perturb v to A as specified and then apply Corollary 4.1.3
on floodings. Equivalently, we apply Corollary 4.1.3 to the signature which is obtained by
labelling edges in the quotient space F4' x Fy/N (which is isomorphic to Fy). The actual
definition will be somewhat different, but we will still have a particular subspace N which
“tells us how to perturb v to A”.

There are two main reasons we reduce to the case of “toroidal grids”. First, they are
4-edge-connected, and Corollary 4.1.3 only holds for 4-edge-connected graphs. Second,
they help us “find many disjoint A-rich grids”, informally.

Clean toroidal grids
A toroidal grid (see Figure 5.7) is a grid-like graph H so that for each column ¢ (respectively,

row r), there is an outside edge joining the topmost and bottom-most boundary vertices
on column ¢ (respectively, leftmost and rightmost boundary vertices on row r). We call
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Figure 5.7: A 4 x 7 toroidal grid with its underlying grid (bold) and an outside-vertical
edge on column 3 (bold red).
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these edges outside-vertical on column c (respectively, outside-horizontal on row r). We
use all of the same terminology for toroidal grids as for grid-like graphs.

As mentioned before, toroidal grids are 4-edge-connected.

Lemma 5.3.1. Any toroidal grid of height and width at least 2 is 4-edge-connected.

Proof. Consider a cut with at least one vertex on each side. Each row and each column
that has a vertex on either side contributes at least two edges towards the cut. There must
be at least two such columns or rows since the height and width is at least 2. O]

Now we can define “(A,v)-clean toroidal grids”. So, let A and V' be sets with A C V|
let v eV — A, and let (G, \) be an Fy-labelled toroidal grid. Then (G, \) is (A, v)-clean
with richness k (see Figure 5.8) if each edge of the underlying grid has Ay x A, -weight
zero, and there exist pairwise disjoint sets Fi, ..., Fj so that

(1) (G, ) is A-rich with batches F1,. .., Fy,

(i1) there exist disjoint subgrids Hi, ..., Hy of the same height as G so that for each
i€ {l,...,k}, every edge in F; is an outside-vertical edge with its ends in V (H;),
and

(117) the Ay x A\,-weights of each of Fi, ..., F}, generate the same subspace.

Again we call Fy, ..., F} the batches. We call the subspace that is generated by the A4 x A,-
weights of each batch the subspace of (G, \).
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(0, 1) (s, 0) (o1,1) (ag,0)

=

Figure 5.8: An (A, v)-clean toroidal grid with two batches of size |A| = 2 (in red, labelled
above by their A4 x A,-weights), and the subgrids H; and H, (bold).

Finding a complete immersion

To find an (A, v)-clean toroidal grid as a complete immersion, we will first find a grid where
every edge has \,-weight zero. This is the hardest part of the proof; the rest will follow
quickly from Proposition 5.2.1 on universality. To find this well-behaved grid, we need a
lemma on decomposing words.

A decomposition of a word W is a sequence zq, ..., 2, of non-empty subwords so that
W = z,..., zx. (It is important that the subwords in a decomposition must be non-empty.)
The following lemma can be proven by applying the pigeonhole principle to the sequence
of prefix values of a word (see Section 3.5 for the relevant definitions on words).

Lemma 5.3.2. There is a function fs35 : (Z7)* — Z% so that for any m,k € Z7,

every word over By of length fs532(m, k) has a decomposition wy, z1, . . ., 2k, W1 S0 that z;
evaluates to zero for each i € {1,... k}.
We will apply this lemma to a word w;,...,w, over F3' that is obtained from an

(m+1) x (n+ 1) grid; each letter w; will represent the A,-weights of the m faces that are
on column ¢. It is enough to consider the faces due to the following lemma.

Lemma 5.3.3. If (G,v) is a labelled grid so that each face has weight zero, then there
exists a shifting ' of v so that for each edge e, +'(e) = 0.

Proof. The set of facial cycles is a basis for the cycle space of G. So every circuit has weight
zero since, if C and Cy are the edge-sets of two circuits, then their symmetric difference
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has weight

So Harary’s theorem [70] on balanced signed graphs says that the desired shifting exists. [

Now we are ready to prove the main proposition of this section; it tells us that we can
always find an (A, v)-clean toroidal grid as a complete immersion minor of a sufficiently
large and rich A-rich grid-like graph.

Proposition 5.3.4. There is a function fsz4 : ZT x N — Z*1 so that for any m € Z7*,
ACV,andv €V — A, every FY -labelled, A-rich grid-like graph of richness, height, and
width at least fs34(m,|A]) completely immerses an (A,v)-clean toroidal grid of richness,
height, and width at least m.

Proof. We write f591 for the function from Proposition 5.2.1 and f5 35 for the function
from Lemma 5.3.2. Let m € Z", let a € N, and define

k= (a+ 1)m2°,
=(m+1(k+1),
= (a+2)fs01(t,a) + fs32(m, k) + m+1, and
f5.3.4(m, a) = 2f501(n% a) +n.

Suppose that the conditions of the proposition hold for some set A of size a and some

A-rich grid-like graph (G, \).

Our aim is to apply Lemma 5.3.2, the Ramsey-type theorem on words. Since each
letter of the word will come from a column of faces, we will want to “combine columns”.
So it is helpful to have the following claim.

Claim 5.3.4.1. The graph (G, \) completely immerses an A-rich grid-like graph (H, ) of
richness fs21(t,a) and height and width n so that for each column ¢ of H, there is an edge
of wa-weight zero whose ends are the two boundary vertices on column c.

Proof. Notice that (G, ) has an n x n subgrid whose vertex-set has distance at least
f5.21(n?,a) from the boundary vertices of G. So by Proposition 5.2.1 on universality, we
only need to show there exists a graph (H,p) which satisfies the claim so that the F-
weights of the edges sum to the same element in both graphs. Such a graph exists since
n > afs21(t,a) + 1; we can add f521(¢,a) batches of size a and then correct the sum of
the weights with one additional edge. O]
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c+1 ) ) c+1
Figure 5.9: Combining two columns, before removing the final vertex.

Now let (H,u) be the n x n grid-like graph from the claim; we may assume that it
is FY -labelled. By the definition of n, the graph (H, u) has a subgrid H of height m + 1
and width f532(m, k) + 1 so that V(ﬁ) has distance at least f52.1(t,a) from the boundary
vertices of H. For each column ¢ of faces of H, there is a corresponding element of FJ* which
represents the p,-weights of the m faces on column c. Thus we obtain a word over F" of
length f532(m, k). By Lemma 5.3.2, this word has a decomposition wy, z1, . . ., 2k, W11 SO
that for each i € {1,...,k}, the subword z; evaluates to zero. We will “combine” columns

according to these subwords, thereby finding a complete immersion minor.

We will say how to remove each vertex of (H,u) one at a time by specifying which
incident edges to “combine”. Suppose that we wish to “combine” columns ¢ and ¢ + 1 of
(H, ). The vertices on column ¢+ 1 are incident to one face on column ¢ and one face
on column c¢ + 1; these are the vertices that we will remove. So, first of all, remove every
vertex on column ¢ + 1 except for the vertex on the first row by “combining” the two
incident horizontal edges as in Figure 5.9. By Claim 5.3.4.1, the final remaining vertex on
column ¢+ 1 has a loop with p4-weight zero. Thus any way of removing this vertex results
in an A-rich grid-like graph of the same richness and one smaller width. Moreover, since
f521(t,a) > 1, none of the faces of H contain boundary edges of H; so the weights of the
faces of H sum.

Let us update the names of these graphs (H, i) and H as we combine columns according
to wo, 21, ..., 2k, Wgr1. We do not lose any richness as we “combine columns”; so in the
end we still have richness at least f521(¢,a). Furthermore, in the end, every face of H that
is not on the first or last column has p,-weight zero. Let H’ be the subgrid obtained from
H by deleting every vertex on the first or last column. Then H’ is an (m + 1) x (k + 1)
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subgrid of H so that V([:[ ') has distance at least f521(t,a) from the boundary vertices of
H. So, since t = (m + 1)(k + 1), we can apply Proposition 5.2.1 on universality to an
A-rich grid-like graph with underlying grid H'.

So, since k + 1 = (a + 1)m2* + 1, the labelled graph (H,u) completely immerses a
toroidal grid (H, i) so that

(i) (H,Ji) is A-rich with m2® batches,
(11) each batch consists of outside-vertical edges on consecutive columns,
(111) H’ is the underlying subgrid of H, and

(iv) each batch has the same set of j14-weights.

Furthermore, by applying Lemma 5.3.3 and shifting z,, we may assume that each edge of
the underlying grid of H’ has fl-weight zero. Now by the pigeonhole principle, there exist
m batches which each have the same set of 14 X f1,-weights. Then (H, z) is an (A, v)-clean
toroidal grid with richness m. This completes the proof of Proposition 5.3.4. O]

5.4 Perturbing or growing

Informally, this section is dedicated to proving that if we have a “sufficiently large and
rich” (A, v)-clean toroidal grid as a complete immersion minor, then either we can perturb
v to A or we can add v to A.

In order to add v to A (that is, to find an A U {v}-rich grid-like graph as a complete
immersion minor), we will use the following “rerouting lemma” on floodings. It says that
under minor conditions, we can find a half-edge at which we can “reroute” the flooding in
every possible way. See Section 4.3 for the relevant definitions; in particular, recall that an
RES-graph is a “rooted Eulerian signed graph”.

Lemma 5.4.1 (Rerouting Lemma). If (G,~,b) is a 4-edge-connected RES-graph with
v(G,7v,b) > £ and |5(b)|/2 > € + 1, then there ezists a verter x # b and a half-edge h
incident to x so that every transition at x which includes h is a transition of a flooding
with at least ¢ non-zero circuits.

Proof. The proof is a very reminiscent of the proof of Lemma 4.4.1, which, informally, said
that “most of the relevant transitions maintain a basis of the flooding matroid”. We say
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that a transition works if it is a transition of a flooding with at least ¢ non-zero circuits.
So the goal is to choose a particular half-edge where all of the “relevant” transitions work.

Let C be an optimal flooding. Since [0(b)|/2 > ¢+ 1, there are more than ¢+ 1 circuits
in C with more than one edge. Choose such a circuit C' € C; if possible, choose C' to be
a zero circuit. Let x # b be a vertex which is incident to a half-edge h in the first arc of
C' (thus, informally, x is the first vertex after b which is “hit” by C'). Let A’ denote the
half-edge so that {h, h'} is a transition of C. We consider each transition {hy, ho} # {h,h'}
of C at x one at a time. To prove the lemma, we need to show that both of the transitions
{h,h1} and {h, ho} work. We break into two cases.

Case 1: The transition {hy, he} is a transition of C'.

Then there are trails T, L, Ty so that C' = (T3, L, T5) and exactly one half-edge from
each of {hy,hy} and {h,h'} is contained in L, which is an z-circuit. Replacing C' by
(Ty, L™, T) does not change the number of non-zero circuits in the flooding. Furthermore,
since G is 4-edge-connected, is it possible to “move L off of C” and “onto” a transition
of C which does not include any of h,h’, hi, hy. The number of non-zero circuits in this
new flooding either stays the same or goes down by exactly 2 (because the parity of the
number of non-zero circuits stays the same). Furthermore, it can only go down by 2 if C
is non-zero, in which case there were at least ¢+ 2 non-zero circuits in C to begin with. So
in this case, both {h, h1} and {h, hy} work.

Case 2: The transition {hy, ho} is a transition of a circuit ¢’ € C — {C'}.

Then there are trails 77, Ty, Ry, Re so that C = (13,Ts), C' = (Ry, Rs), exactly one
half-edge from {h,R'} is in T3, and exactly one half-edge from {hy, ho} is in R;. Again
we have two new floodings to consider; we can replace C' and C’ by either (7}, Ry) and
(R1,Ty), or by (T1, Ri") and (R;',Ty). Again, the number of non-zero trails either stays
the same or goes down by exactly 2; the latter case can only occur when both C' and C’
are non-zero. So again, both {h, h;} and {h, hy} work.

In each of the cases, both {h, h1} and {h, ha} work, and so Lemma 5.4.1 holds. O
We are almost ready to state the main proposition about either adding v to A or
perturbing v to A. However, since we have quite a bit of setup at this point, it is convenient
to give another definition. (We give the graph of a circle-structure a different name than

“G” in the following definition because it is convenient to use “G” for the tour graph.) So,
an ezpanded circle-structure is a tuple C = (G, C, B, A, v) so that

(i) (é, (') is a prime circle-structure,
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(i) B is a subset of C' which induces a comparability grid,

(iii) A C V(G)—C, and

(iv) ve V(G)—C — A.

We say that C controls a labelled graph (H,pu) if V(H) C B and (H,p) is a complete

immersion minor of the labelled tour graph of (G, C).

Now we can state the main proposition, which will almost complete the proof of the
Local Structure Theorem. The proof is fairly long and is broken up into two parts based
on the flooding number of an associated RES-graph. However, we believe that it is easier
to take care of both parts in one proposition due to the amount of setup required.

Proposition 5.4.2. There is a_function fs42: Z* — Z* so that for any m € Z* and any
expanded circle-structure C = (G, C, B, A,v) which controls an (A, v)-clean toroidal grid of
richness, height, and width at least f542(m), either

(i) C controls an AU {v}-rich grid-like graph of richness, height, and width at least m,
or

(ii) there is a circle-structure that is obtained from (G,C) by perturbing v to A so that
the signature of v is f54.2(m)-small relative to B.

Proof. Let m € Z*, and define

¢ :=100(m —1)>+5(m —1) +2 and
0 =64(0—1)* +4(0 - 1).

Finally, set f5.42(m) to be the maximum of 5m(¢ + 2) and ¢'.

Now suppose that the conditions of the proposition hold for an expanded circle-structure
C = (G,C,B,A,v). Let (H, ) denote the relevant (A, v)-clean toroidal grid, and let N
denote its subspace. So N is a subspace of 5 x Fy of dimension |A|, and its dimension
does not decrease upon restricting to F2'. Furthermore, let (G, \) denote the labelled tour
graph of (G, C). By performing the relevant shiftings in (G, \), we may assume that (H, )
is a shifting-free complete immersion minor of (G, \) (see Section 3.4 for the definition).

The proof will be split into two cases based on the flooding number of an associated
RES-graph. So, let (G, A,b) be the RES-graph that is obtained from G by labelling each
edge in the quotient space Aq x \,/N (where each edge e is labelled by the coset of
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Aa(e) x Ay(e)), and then identifying all vertices in V' (H) to a single new vertex b. Now we
split into two cases; the first case is considerably harder than the second.

Case 1: The flooding number of (G’, A, b) is at least /.

In this case we will find, as a complete immersion minor of (G, ), an A U {v}-rich
grid-like graph of richness, height, and width at least m whose vertex-set is contained in
V(H). So we might as well assume that (G, \) is a complete immersion minor-minimal
graph so that

(i) (H,p) is a shifting-free complete immersion minor of (G, \), and

(71) the flooding number of the associated RES-graph (é, A, b) is at least £.

This is an abuse of notation, but we believe that the proof is easiest to read this way
(without changing the names of the graphs).

We begin by proving that this new graph is 4-edge-connected using minimality.
Claim 5.4.2.1. The graph G is 4-edge-connected.

Proof. The graph G is certainly connected since it completely immerses H. So, going for a
contradiction, suppose that G has a 2-edge-cut. By Lemma 5.3.1, the toroidal grid H is 4-
edge-connected. So all of V(H) is on one side of the cut; thus there exists X C V(G)—V (H)
so that |0¢(X)| = 2.

Now consider a trail 7" whose edge-set is precisely the set of edges with at least one
end in X, and whose head and tail are not in X. Such a trail exists, and, moreover, every
such trail has the same weight. Consider the labelled graph that is obtained from (G, \)
by deleting X and adding a new edge of weight A\(T") whose ends are the ends of 7". This
graph is a complete immersion minor of (G, A) and still contains (H, 1) as a shifting-free
immersion minor. Moreover, the associated RES-graph still has the same flooding number
as before; this contradicts the minimality of (G, \). O

The next claim will use the Rerouting Lemma (stated as Lemma 5.4.1) to show that
most of H is just a subgraph of G.

Claim 5.4.2.2. All but at most { + 1 edges of H are also edges of G.
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Figure 5.10: The subgraph of H induced by V(H) (bold) and a depiction of how to find
the complete immersion minor (the red dotted edges are the edge-set of a single trail).

Proof. Going for a contradiction, suppose otherwise. Then in any optimal flooding of the
associated RES-graph, more than ¢ + 1 circuits have more than one edge. Equivalently,
|0¢(b)]/2 > £+ 1. Furthermore, G is 4-edge-connected since G is 4-edge-connected by
Claim 5.4.2.1. So we can apply the Rerouting Lemma to find a vertex = # b and a
half-edge h incident to z so that, in (é, S\,b), every transition at x which includes A is
a transition of a flooding with at least ¢ non-zero circuits. However, splitting off one of
these transitions in (G, ) must maintain (H, u) as a shifting-free immersion minor. This
contradicts the minimality of (G, \). O

Next we find another (A, v)-clean toroidal grid as a shifting-free complete immersion
minor of (H, pu); almost all of its edges will also be edges of G.

Claim 5.4.2.3. There is an (A, v)-clean toroidal grid (H, i) of richness, height, and width
at least 5m so that

(i) (H,R) is a shifting-free complete immersion minor of (H, ), and

(i1) every edge ofITI that is not outside-horizontal is also an edge of G.

Proof. Recall from the definition of an (A, v)-clean toroidal grid that there are bm(¢ + 2)
disjoint subgrids of H which each have the same height as H and contain the ends of
a batch of (H, ). Then we can “break up H” into ¢ + 2 disjoint grids, each of which
contains 5m of those subgrids. By Claim 5.4.2.2, the vertex set of one of those grids, say
H, induces a subgraph in H which is also a subgraph of G. So we are just “missing”
the outside-horizontal edges. We can find an appropriate collection edge-disjoint trails of
H as depicted in Figure 5.10; thus we obtain the desired (A, v)-clean toroidal grid as a
shifting-free complete immersion minor, with underlying grid H.

]
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Now let (f[, i) be the (A,v)-clean toroidal grid from Claim 5.4.2.3. The subspace of
(f[ , i) is still N. Consider the RES-graph which is obtained from G by labelling each edge
in the quotient space Ay x A,/N and identifying all vertices in V (H) (instead of V(H) as
before) to a single new vertex, which is the root. If its flooding number is at least m, then
(G, \) completely immerses an AU{v}-rich grid-like graph of richness, height, and width at
least m whose vertex-set contained in V(H) C V(H). (Each circuit in an optimal flooding
“becomes” an outside-horizontal edge of (?[ , i), and the remaining edges of (?I , ) stay
the same. Then we can pair each batch of (ﬁ[ , ) with an outside-horizontal edge whose
Aa X A,-weight is not in N.) So, since in this case we would be done, we may assume that

the flooding number is less than m. We will obtain a contradiction.

The new RES-graph is is 4-edge-connected since G is 4-edge-connected by Claim 5.4.2.1.
So we can apply Corollary 4.1.3 on floodings to obtain the following statement. (We are
using the equivalent definition of shiftings in terms of cuts, and the fact that we only care
about the weights of edges with both ends in X.) Thus, there exist X’ C X C V(G) so
that X’ contains V (H) and

(i) there are at most 4(m — 1) edges of G with exactly one end in X, and

(ii) there are at most m — 1 edges of G with both ends in X which are either in §(X")
and have A4 x A\,-weight in N, or are not in §(X’) and have A4 X A,-weight not in
N.

Call an edge which satisfies either of these two conditions N-bad; so there are at most
5(m — 1)-many N-bad edges.

We will obtain a contradiction to the fact that the flooding number of (G, 5\, b) is at
least ¢. The key point is that almost all of V(H) (which was identified to obtain b) is
actually in X'

Claim 5.4.2.4. All but at most 25(m — 1)? vertices of H are in X'.

Proof. Fix a collection of trails of (G, ) which shows that it contains (H, u1) as a shifting-
free complete immersion minor. Let Y be the set of all v € V(H) so that there is a path

from v to V(H) in the underlying grid of H whose corresponding trails, in G, do not use
any N-bad edge. Thus there is a trail from v to V(H) in (G, A) which does not use any
N-bad edge and has F3 x F3-weight in N. An edge of the trail has F3' x F3-weight not in

N if and only if it is in §(X’). So in fact Y C X".
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We complete the proof by showing that |V (H)—Y| < 25(m —1)2. Observe that H and
H have height and width at least 5m > 5(m — 1), and the edge-boundary of Y within the
underlying grid of H has size at most 5(m — 1) (since there are at most that many N-bad
edges). So by Lemma 5.1.2 about cuts in a grid, either Y or V(H) — Y has size at most
25(m — 1)2. So the claim follows since |Y| > |V (H)| > 25m2 > 25(m — 1) O

Now consider a collection of trails of (G, \) which corresponds to an optimal flooding
of (G, \,b). By Claim 5.4.2.4, at most 100(m — 1)? of the trails have an end outside of X'.
Each of the other trails whose A4 x A,-weight is not in N must use an N-bad edge. So

100(m —1)2 +5(m —1) +2 =€ < (G, A, b) < 100(m — 1)> + 5(m — 1),

a contradiction. This completes the first case. Now we move onto the second and final
case.

Case 2: The flooding number of (G, A, b) is less than £.

In the last case we were working with a certain “minimal” graph (G, ). Recall that
now (G, ) is just the labelled tour graph of the circle-structure (G, C), shifted so that
it contains (H, u) as a shifting-free complete immersion minor. So, by Theorem 3.2.3 of
Bouchet [5, 8] about prime circle graphs, the graph G is internally 6-edge-connected, and
therefore 4-edge-connected. So we can apply Corollary 4.1.3 on floodings.

First, however, consider what it means to shift the quotient labelling that is obtained
from (G, A). Recall that the subspace N of (H, i) has dimension |A|, and that its dimension
does not change upon restricting from F2' xFy to F4. So the vector which is zero everywhere
except for the v-entry is not in N. Thus, equivalently, we can just shift \,. So, by
Corollary 4.1.3 applied to (é, A, b), which has flooding number at most £ — 1, there exist a
shifting A/ of A\, and a set X C V(G) which contains V (H) so that

(1) there are at most 4(¢ — 1) edges of G with exactly one end in X, and
(11) there are at most £ — 1 edges of G with both ends in X that have A4 x A -weight not
in V.
First we show that almost all of B (recall that this is the set inducing a comparability grid
in G) is in X.
Claim 5.4.2.5. All but at most 16(¢ — 1)* vertices of B are in X.
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Proof. Let n € Z* be such that B induces the n x n comparability grid in G. Since
V(H) C B and H has height and width at least ¢/, we have that n > /|V(H)| > ¢. So in

particular n > 5 and by Lemma 5.1.1, any tour graph of G [B] is an n x n grid-like graph.
One of these tour graphs is a complete immersion minor of G. So by Lemma 5.1.2 about
cuts in a grid and since [0g(X)| < 4(f — 1) < ¢’ < n, either BN X or B — X has size at
most 16(¢ — 1)2. So since

IBNX| > |V(H)| > (¢')* > 16(¢ — 1),
we must have that |B — X| < 16(¢ — 1)?, as desired. O

Finally, we show how to perturb v to A.

Claim 5.4.2.6. There is a circle-structure obtained from (é, C) by perturbing v to A so
that each edge with Aa x X, -weight in N has FS-weight zero (in the perturbation).

Proof. First of all, we may assume that A is non-empty, since otherwise N has dimension 0
and the claim trivially holds. Now recall from Lemma 3.3.1 that for each a € A, if we add
a to v then the new signature of v will be X, + A\,. So we wish to find a vector x € F%
(that indicates which vertices to add to v) so that the following holds.

(*) For each a € 3 and a,, € F} so that a x a, € N, we have a - 27 = a,.

Then the new signature of each edge with A4 x X -weight a x o, € N will be o, + - 27 = 0,
as desired.

We can view (*) as a system of linear inequalities of the form MazT = b. By the
definition of an (A,v)-clean toroidal grid, both M and the matrix [M | b] have rank |A|.
It follows that MaxT = b has a solution, which completes the proof of the claim. O

Now we perturb v to A as in Claim 5.4.2.6 and consider the set of vertices X U B. Since
there are at most 16(¢ — 1)? vertices of B that are not in X by Claim 5.4.2.5, there are

(i) at most 64(¢ — 1)?> + 4(¢ — 1) edges of G with exactly one end in X U B, and

(ii) at most 64(¢ — 1) + (£ — 1) edges of G whose Fy-weight is non-zero (in the pertur-
bation).

Thus, in the perturbation, the signature of v is f5 4.2(m)-small relative to B. This completes
the proof of Proposition 5.4.2. O]
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5.5 Completing the proof

In this section we finish the proof of the Local Structure Theorem, which is restated below
for convenience.

The Local Structure Theorem (Geelen, McCarty, Wollan). For any t € N, there exists
l; € N so that if (G,C) is a prime circle-structure whose graph does not have all (t + 1)-
vertex graphs as vertex-minors, up to isomorphism, and if B is a subset of C' that induces
a comparability grid, then there is a rank-t perturbation of (G,C) so that each signature is
li-small relative to B.

Proof. We write f599 for the function from Lemma 5.2.2 and f534 and f540 for the func-
tions from Propositions 5.3.4 and 5.4.2, respectively.

Let t € N; we may assume that ¢ > 1. We would like to grow the size of a set A for which
we have an A-rich grid-like graph as a complete immersion minor. We are happy to give up
some richness, height, and width in order to make A larger. In light of Lemma 5.2.2 about
finding vertex-minors, we know where we would like to end up; so we begin by defining

Mit1 = fs02(t +1).

Now we define m; for each ¢ € {0,1,...,¢} by induction on ¢ —i. So suppose that i <t
and we have already defined m; ;. Then define

m; = f5.3.4(f5.4.2(mz’+1)a Z)

This finishes the inductive definitions. Finally, let £; be the maximum of 64, 4(mgy — 1)?,
and max;ec{o,...,t} f5.4.2<mi+1)-

So, let (G,C') be a prime circle-structure so that G forbids a (f + 1)-vertex graph as
a vertex-minor, up to isomorphism, and let B C C be a set which induces an n x n
comparability grid. If n < 5 or n < my, then each signature of the labelled tour graph is
already f;-small relative to B since 4|B| = 4n? < {;. So we may assume that n > 5 and
n > mg. Thus by Lemma 5.1.1, any tour graph of the n x n comparability grid is an n x n
grid-like graph. So the labelled tour graph completely immerses an ()-rich grid-like graph
that has vertex-set B, is arbitrarily rich, and has height and width at least my.

Now choose the largest integer i € {0,1,...,t + 1} so that the labelled tour graph
completely immerses an A-rich grid-like graph (H, i) so that A is a subset of V(G) — C' of
size i, V(H) C B, and (H, ) has richness, height, and width at least m;. Such an integer
exists since we could take ¢ = 0. Furthermore, 7 < t since otherwise Lemma 5.2.2 would
imply that G has every graph with vertex-set A as a vertex-minor.

119



Now consider a vertex v € V(G) — C — A. By Proposition 5.3.4, the graph (H, u)
completely immerses an (A, v)-clean toroidal grid of richness, height, and width at least
fsa2(miy1). Then (G,C, B, A,v) controls that (A,v)-clean toroidal grid. Then by the
maximality of 7, we must have the second outcome of Proposition 5.4.2; there is a circle-
structure that is obtained from (G, C) by perturbing v to A so that the signature of v is
f5.4.2(m;i11)-small relative to B. Finally, we can also perturb vertices in A (to A) to make
their signatures 0-small relative to B. Thus there is a rank-|A| perturbation of (G, C)
so that each signature is ¢;-small relative to B. This completes the proof of the Local
Structure Theorem. O]

5.6 Going beyond the local structure

To conclude, let us return to the Structural Conjecture of Geelen from Section 1.5. Consider
a graph G of huge rank-width in a proper vertex-minor-closed class. By the Grid Theorem
for Vertex-Minors, we can assume (after possibly performing some local complementations)
that G contains a large comparability grid as an induced subgraph. Unfortunately, com-
parability grids are not prime. However, by looking within the comparability grid, it is not
hard to reduce to the case that there exist B C C' C V(G) so that C induces a prime circle
graph and B induces a huge comparability grid. We can then apply the Local Structure
Theorem to the circle-structure (G, C) and the set B.

In this manner we obtain a low-rank perturbation (G, C) of (G, C) which makes each
signature small relative to B. In an ideal world we could find the “global” structure from
the “local” structure using the following approach. First perform the perturbation to
obtain G from G, then grow C, and then repeat this process until C' = V(G). We grow C
by finding a set C' which properly contains C' so that G [5] is a prime circle graph. There
are two main problems with this approach. First, we might get stuck at any one step and
not be able to grow C. Second, the perturbations from many different steps might not
combine into a single low-rank perturbation of G. (In that case we would want to find a
vertex-minor. )

We suspect that the first problem can be avoided for sufficiently rank-connected graphs.
(Recall that the Weak Structural Conjecture says that such graphs are low-rank pertur-
bations of circle graphs.) So let us focus on the second problem. We need a better way
of keeping track of perturbations. The following definition is similar to the definition of a
t-perturbation of a graph, but it behaves much better under local complementation. Two
graphs G' and GG with the same vertex set are t-similar if there exists a graph G that has
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t more vertices than G (or, equivalently, than é) so that G contains both G and G as
vertex-minors. This definition is now invariant under locally complementing in G and G.

Moreover, the proof of the Local Structure Theorem actually gives a circle-structure
whose graph G is t-similar to the original graph GG. We believe that we can keep track
of the perturbation much better by working in G instead of G. With the appropriate
conditions, we believe that the set of ¢ new vertices of G can be treated like the original
set A from the proof presented here. We are optimistic that this approach can eventually
lead to a proof of the Structural Conjecture.
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