
Flags and Error Weight Parities:

A Development of Fault-tolerant

Quantum Computation with Few Ancillas

by

Theerapat Tansuwannont

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2021

© Theerapat Tansuwannont 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Dan Browne

Professor, Department of Physics and Astronomy,

University College London

Supervisor: Debbie Leung

Professor, Department of Combinatorics and Optimization,

University of Waterloo

Internal Member: Raymond Laflamme

Professor, Department of Physics and Astronomy,

University of Waterloo

Internal-External Member: David Gosset

Associate Professor, Department of Combinatorics and

Optimization, University of Waterloo

Other Member: Beni Yoshida

Faculty, Perimeter Institute for Theoretical Physics

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In quantum computation, errors in a quantum circuit arising from its interaction with

the environment is one of the biggest obstacles to building large-scale quantum comput-

ers. One way to deal with such errors is using fault-tolerant error correction (FTEC), a

procedure which suppresses error propagation in a quantum circuit, together with other

fault-tolerant gadgets for quantum computation to simulate a quantum circuit. However,

for some platforms in which the number of physical qubits is limited, achieving a fault-

tolerant simulation with very low logical error rate can be challenging since large overhead

is required.

In this thesis, flag and weight parity techniques for FTEC which use only small number

of ancillas are studied. The flag technique uses a few ancillas in circuits for syndrome

measurement to detect high-weight errors arising from a few faults, while the weight par-

ity technique uses weight parities and syndromes of errors to determine whether they are

logically equivalent. The concepts of these two techniques can lead to the notion of dis-

tinguishable fault set, the central idea for the fault-tolerant protocol development in this

thesis. In addition, fault-tolerant protocols for two families of codes are constructed: an

FTEC protocol for the [[49, 1, 9]] concatenated Steane code which can correct up to 3 faults

and uses 2 ancillas, and protocols for fault-tolerant quantum computation on capped color

codes which require 1, 1, and 2 ancillas for the codes of distance 3, 5, and 7. The concept

of distinguishable fault set also leads to a generalization of the definitions of fault-tolerant

gadgets which give more flexibility when designing fault-tolerant protocols.

iv

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Debbie Leung, who

has been an inspirational researcher as well as generous and understanding mentor. My

research skills have been vastly improved in the past five years thanks to Debbie’s insight

and conscientiousness. I truly appreciate her helpful advice.

I am very grateful to Christopher Chamberland and Michael Vasmer for their suggestion of

considering weight parity error correction on color codes. I would like to thank members of

quantum error correction research group at Duke University, especially Prof. Ken Brown,

Prof. Robert Calderbank, Rui Chao, Narayanan Rengaswamy, Arun Aloshious, Eric Sabo,

and Shilin Huang for helpful discussions on the results, the manuscripts, and possible

research directions. I would like to extend my gratitude to Prof. Dan Browne, Prof. David

Gosset, Prof. Raymond Laflamme, Prof. Roger Melko, and Beni Yoshida for being parts of

the advisory committee and the thesis defense committee, and for providing very helpful

comments and suggestions. I would like to thank Junan Lin who has been a great friend

and classmate at IQC.

I gratefully acknowledge Prof. Sujin Suwanna and Prof. Pruet Kalasuwan for helpful dis-

cussions on possible career paths in Thailand. I am also grateful to members of Thailand

Quantum Initiative for interesting talks and discussions on recent works on quantum tech-

nologies. My Ph.D. studies are supported by The Queen Sirikit Scholarship under The

Royal Patronage of Her Majesty Queen Sirikit of Thailand.

Last but not least, I would like to thank my beloved family and friends for always being

there for me through good times and bad times. Your support means a lot to me.

v

Dedication

To my parents, Piyawadee and Wicharn, my elder brother, Pattarapong, and my little

brothers and sisters, Owen, Beck, Ole, Ovi, Tigger, Sunny, and Rainy. Without you, I

would not have made it this far.

vi

Table of Contents

List of Figures x

List of Tables xii

1 Introduction and Motivation 1

2 Quantum Error Correction in Stabilizer Formalism 5

2.1 Basics of quantum error correction . 5

2.2 Stabilizer code . 8

2.3 Syndrome measurement . 11

2.4 Normalizer group and logical operators . 12

2.5 Error decoding problem . 14

3 Flags and Error Weight Parities in Error Correction 16

3.1 Flag error correction . 17

3.2 Distinguishable fault set . 21

3.3 Finding equivalent errors using error weight parities 25

4 Redefining Fault Tolerance 29

4.1 Conventional definitions of fault-tolerant gadgets 30

vii

4.2 Revised definitions of fault-tolerant gadgets 35

5 Fault-tolerant Error Correction for the 49-qubit Concatenated Steane

Code 42

5.1 Weight parity error correction for the Steane code 43

5.2 Fault-tolerant error correction protocol for the 49-qubit concatenated Steane

code . 50

5.3 Weight parity error correction for other codes 56

6 Fault-tolerant Error Correction and Quantum Computation for Capped

Color Codes 59

6.1 Syndrome measurement circuits for the 3D color code of distance 3 61

6.1.1 The 3D color code of distance 3 . 62

6.1.2 Circuit configuration for the 3D color code of distance 3 65

6.2 Syndrome measurement circuits for a capped color code 72

6.2.1 Capped color codes . 72

6.2.2 Circuit configuration for a capped color code 81

6.3 Fault-tolerant protocols for a capped color code 103

6.3.1 Fault-tolerant error correction protocol 103

6.3.2 Fault-tolerant measurement and state preparation protocols 106

6.3.3 Transversal gates and other gate gadgets 112

6.4 Fault-tolerant error correction protocol for a general stabilizer code 115

7 Discussion and Conclusions 117

7.1 Fault-tolerant error correction for the 49-qubit concatenated Steane code . 117

7.2 Fault-tolerant error correction and quantum computation for capped color

codes . 119

viii

Bibliography 124

APPENDIX 133

A Simulations of possible faults during the FTEC protocol for the 49-qubit

concatenated Steane code 134

A.1 Simulation of possible faults assuming that the last round of full syndrome

measurement has no faults . 134

A.2 Simulation of possible faults assuming that the last round of full syndrome

measurement has some faults . 137

Glossary 142

ix

List of Figures

2.1 Circuits for measuring eigenvalues of stabilizer generators gz1 = Z4Z5Z6Z7

and gx1 = X4X5X6X7 of the 7-qubit Steane code 12

3.1 (a) An example of non-flag circuit for measuring generator gz1 of the [[7, 1, 3]]

Steane code. (b) An example of flag circuit for measuring gz1. A circuit for

measuring X-type generator can be obtained by replacing each CNOT gate

with the gate shown in (c). 19

5.1 (a) An example of circuit for measuring generator g̃z1 = ZIZZZII. A circuit

for measuring X-type operator such as g̃x1 = XIXXXII can be obtained by

replacing all CNOT gates with the gate illustrated in (b). 48

5.2 Circuits for measuring 2nd-level and 1st-level generators being used in [TL21b]. 51

6.1 The 3D color code of distance 3. 63

6.2 A non-flag circuit for measuring a Z-type generator of weight w for the 3D

color code of distance 3. 66

6.3 An example of the orderings of CNOT gates for the 3D color code of distance

3 in H form which give a distinguishable fault set F1. 70

6.4 2D color codes of distance 3, 5, and 7. 72

6.5 Capped color codes CCC(d) with d = 5 (top) and d = 7 (bottom). (a) The

set of qubits of any capped color code is bipartite, as displayed by black and

white vertices. (b) The dual lattice of each capped color code. (c) Stabilizer

generators of each code can be illustrated by volume operators. 74

x

6.6 (a) An example of flag circuit for measuring f generator with two flag an-

cillas. (b) A flag circuit for measuring the corresponding v generator. . . . 83

6.7 A single fault in a circuit for measuring a v generator of Z type is either

v type or v∗ type, depending on whether the data errors on the center and

the bottom planes have the same form. 85

6.8 (a) Examples of faults of each type on the 3D structure. (b) Examples of

faults of each type on the 2D plane. 90

6.9 (a) A non-flag circuit for measuring a generator of the capped color code of

distance 5 in H form. (b) The orderings of data CNOT gates which give a

distinguishable fault set F2. 102

6.10 (a) A flag circuit for measuring a generator the capped color code of dis-

tance 7 in H form. (b) The orderings of data CNOT gates which give a

distinguishable fault set F3. 102

6.11 Fault-tolerant error correction protocol for a capped color code. 105

6.12 Fault-tolerant measurement protocol for a capped color code. 109

A.1 The outcome bundle from the last round can be used in WPEC to correct

the data error occurred before any correct round 137

xi

List of Tables

5.1 All possible forms of data errors arising from a single fault occurred during

syndrome measurement using a circuit in Fig. 5.1a. 49

6.1 The exhaustive list of all possible Z-type errors arising from 1 fault and

their syndrome corresponding to the CNOT orderings in Fig. 6.3. 71

6.2 Syndrome, weight parity, and flag vector corresponding to a single fault of

each type which leads to a Z-type error. 86

6.3 The correspondence between the notations for types of faults on the 2D

plane and the 3D structure. 91

xii

Chapter 1

Introduction and Motivation

Computers developed on the current technology or classical computers are without doubt

one of the most impactful innovations of the last century. Due to their impressive processing

power, these tools have been used in almost every field of research, including quantum

physics. However, there are several problems involving complicated quantum systems

which cannot be solved efficiently by a classical computer. Although the performance of

classical computers is still improving every year, the improvement seems slowing down

because of the hardware limitation. Perhaps one solution to this problem is to build a

computer on a different platform which is more compatible with the quantum systems.

In 1981, Richard Feynman proposed that a computer built on a quantum system, called

quantum computer, might be able to solve a problem on other quantum systems efficiently

because of the similarities in their nature [Fey82]. The notion of quantum computer later

developed by David Deutsch in 1985 suggests that quantum computers can be viewed as

a generalization of classical computers [Deu85]. In addition, several features of quantum

systems which are not exhibited in classical systems may allow us to solve some problems

unrelated to quantum physics on a quantum computer more efficiently than solving them

on a classical computer. One of the most remarkable quantum algorithms that draws pub-

lic attention to quantum computer is Shor’s factoring algorithm in 1994 [Sho94]; the best

known classical factoring algorithm requires sub-exponential time, while Shor’s result pre-

dicts that solving a factoring problem on a quantum computer could be done in polynomial

time.

1

Although quantum algorithms could be more powerful than classical algorithms for some

types of problems, building a reliable quantum computer is not easy. One major obstacle

is that a physical implementation of qubits and quantum gates in a quantum circuit can

sometimes cause small errors, and such errors can propagate throughout the circuit and

become intractable. One solution to this problem is to use quantum error correction (QEC),

a process in which quantum data is encoded by a quantum error correcting code (QECC) so

that small errors can be later detected and corrected. Unfortunately, the error correction

procedure itself can sometimes be faulty and cause logical errors. For this reason, the

procedure must be modified so that a few number of faults can be tolerated.

Fault-tolerant error correction (FTEC), a procedure which suppresses error propagation

in a quantum circuit, is one of the most important components for building large-scale

quantum computers. Given that the physical error rate is below some constant threshold

value, an FTEC scheme along with other schemes for fault-tolerant quantum computation

(FTQC) allow us to fault-tolerantly simulate any quantum circuit with arbitrarily low

logical error rates [Sho96, ABO08, Kit97, KLZ96, Pre98, TB05, ND05, AL06, AGP06].

However, lower logical error rate requires more overhead (e.g., quantum gates and ancilla

qubits) [Ste03, PR12, CJOL17, TYC17], making practical implementation on a platform

in which the number of qubits is very limited more difficult. Therefore, fault-tolerant

protocols which require a small number of ancillas and give high threshold value are very

desirable.

Traditional FTEC schemes require substantial number of ancillas for error syndrome mea-

surements. For example, the Shor error correction (EC) scheme [Sho96, DA07] which

is applicable to any stabilizer code requires as many ancillas as the maximum weight of

the stabilizer generators. The Knill EC scheme [Kni05], which is also applicable to any

stabilizer code, requires two code block of ancillas. Meanwhile, the Steane EC scheme

[Ste97, Ste02] which is applicable to any CSS code requires one code block of ancillas.

(The Shor scheme also requires repeated syndrome measurement, while the Knill and the

Steane schemes do not.) There are several recently proposed schemes which require fewer

ancillas. Yoder and Kim proposed an FTEC scheme for the [[7, 1, 3]] code which requires

only 2 ancillas [YK17], and their scheme is further developed into a well-known flag FTEC

scheme for the [[5, 1, 3]] code and the [[7, 1, 3]] code which also require only 2 ancillas [CR18c]

(where an [[n, k, d]] stabilizer code encodes k logical qubits into n physical qubits and has

distance d). In general, a flag FTEC scheme for any stabilizer code requires as few as d+ 1

2

ancillas where d is the code distance [CR20], with further reduction known for certain

families of codes [CR18c, CB18, TCL20, CKYZ20, CZY+20]. The flag technique can also

be applied to other schemes for FTQC [CR18b, CC19, SCC19, BCC+19, BXG+19, Vui18,

GMB19, LA20, CN20, DB20, RBBMS21].

How errors spread during the protocols depends on several factors such as the order of

quantum gates in the circuits for syndrome measurement and the choice of stabilizer gen-

erators being measured. The idea behind the flag technique is that a few ancillas are

added to the circuits in order to detect errors of high weight arising from a few faults, and

the errors will be distinguished by their syndromes obtained from subsequent syndrome

measurements. Note that some possible errors may be logically equivalent and need not

be distinguished, and for some families of codes, we can tell whether the errors are log-

ically equivalent using their syndromes and error weight parities. Moreover, the use of

error weight parities can further reduce the number of required ancillas for some families

of codes. In this thesis, fault-tolerant protocols for a family of concatenated codes and a

family of capped color codes will be developed. These protocols are the main results of

two papers: Fault-tolerant quantum error correction using error weight parities [TL21b]

and Achieving fault tolerance on capped color codes with few ancillas [TL21a].

In [TL21b], we introduce a technique called weight parity error correction (WPEC) and

construct an FTEC scheme for the [[49, 1, 9]] concatenated Steane code using only two

ancilla qubits. The scheme relies on the fact that, for the [[7, 1, 3]] code, errors with the

same syndrome and weight parity differ by the multiplication of some stabilizer; these errors

are thus logically equivalent and need not be distinguished from one another. Therefore,

error correction on each subblock of 7 qubits in the [[49, 1, 9]] code can be accomplished using

only two ingredients: the error syndrome and the weight parity of error in each subblock.

Most importantly, the weight parity for each subblock of 7 qubits in the [[49, 1, 9]] code can

be obtained from the full syndrome measurement. Using this idea in conjunction with 2

ancilla qubits, our FTEC protocol for the [[49, 1, 9]] code can correct up to 3 faults. As a

result, our protocol can suppress the error rate from p to O(p4) using 51 qubits in total.

The EC technique using weight parities introduced in [TL21b] which is originally developed

for the [[7, 1, 3]] code can also be extended to some families of codes such as 2D color codes.

In [TL21a], the weight parity of an error on a 2D color code is obtained by measuring

stabilizer generators of a bigger code which contains the 2D color code as a subcode.

In contrast to [TL21b], the bigger code presented in [TL21a] is not obtained from code

3

concatenation. Our development for FTEC protocols leads to a family of capped color

codes which are CSS subsystem codes [Pou05, Bac06]. We study two stabilizer codes

obtained from a (subsystem) capped color code through gauge fixing, namely capped color

codes in H form and T form. The code in H form which contains a 2D color code as a

subcode has transversal Clifford gates, while the code in T form has transversal CNOT

and transversal T gates. In fact, our capped color codes bear similarities to the subsystem

codes presented in [JOB16, BC15, JBH16], in which qubits can be arranged on a 2D plane.

Here is a summary of our contributions in [TL21a]. First, we develop a notion of dis-

tinguishable fault set which replaces the role of correctable errors in prior work. This

facilitates the correction of high-weight errors using the flag and weight parity techniques.

Second, we construct circuits for measuring generators of a capped color code in H form,

and construct an FTEC scheme as well as other fault-tolerant schemes for measurement

and state preparation. This requires the notion of distinguishable fault set, extension of

weight parity techniques from [TL21b], suitable embedding of the 2D color code, and ju-

dicious ordering of gates in the measurement circuits. Our schemes for capped color codes

in H form of distance 3, 5, and 7 require only 1, 1, and 2 ancillas, respectively. We also

propose a theorem which can be helpful for finding the circuits for a capped color code of

higher distance. Third, we extend the definitions of fault-tolerant gadgets that are com-

patible with the notion of distinguishable fault set, which can be viewed as a generalization

of the definitions of fault-tolerant gadgets proposed by Aliferis, Gottesman, and Preskill

[AGP06].

This thesis is organized as follows: In Chapter 2, the basics of quantum error correction in

stabilizer formalism will be reviewed. Next, FTEC techniques using flags and error weight

parities and the notion of distinguishable fault set will be discussed in Chapter 3. The

concept of distinguishable fault set can lead to an alternate version of definitions of fault-

tolerant gadgets, which will be presented alongside the conventional definitions by Aliferis,

Gottesman, and Preskill in Chapter 4. Afterwards, fault-tolerant protocols developed

for the [[49, 1, 9]] concatenated Steane code and capped color codes will be elaborated in

Chapter 5 and Chapter 6, respectively. Finally, the results of [TL21b] and [TL21a] and

possible directions for future work will be discussed in Chapter 7.

4

Chapter 2

Quantum Error Correction in

Stabilizer Formalism

Physical noises on a quantum system arising from its interaction with the environment

are one of the biggest obstacles to building large-scale quantum computers. In classical

computation, one way to protect the logical information against noises is encoding the

information using a classical error correcting code. Similar ideas can be developed for

quantum computation. However, due to the differences in their natures, some techniques

must be modified so that error correction on a quantum system is possible.

In this section, we will first review the basics of quantum error correction in Section 2.1.

Afterwards, the stabilizer formalism will be described in Section 2.2. The concepts of syn-

drome measurement, logical operators, and error decoding problem will be later elaborated

in Sections 2.3 and 2.4, and 2.5.

2.1 Basics of quantum error correction

In classical information processing, the smallest unit of information is called bit, which

can be in either state 0 or 1. Any classical information can be represented by a bitstring

of length n for some positive integer n, denoted by ~x ∈ Zn2 . Similarly, the smallest unit

used to represent quantum information is called quantum bit or qubit. However, one major

5

difference between the state of qubits and the state of classical bits is that a superposition of

states is allowed in the quantum case. In particular, the state of a qubit can be represented

by a vector in the 2-dimensional complex Euclidean space C2 of the form,

α|0〉+ β|1〉,

where |0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
, and α, β are some complex numbers satisfying |α|2 + |β|2 = 1.

In addition, any quantum information can be represented by a state of n qubits for some

positive interger n which, in general, can be written as,

|ψ〉 = c00...0|00 . . . 0〉+ c00...1|00 . . . 1〉+ · · ·+ c11...1|11 . . . 1〉

=
∑
~x∈Zn

2

c~x|~x〉, (2.1)

where {|~x〉} is an orthonormal basis of the 2n-dimensional complex Euclidean space C2n ,

and the complex numbers c~x satisfy
∑

~x∈Zn
2
|c~x|2 = 1. If the quantum state in Eq. (2.1) is

measured in the computational basis, the state in superposition will collapse to some state

|~x〉 with probability |c~x|2.

When classical information is sent through a classical channel, some errors due to physical

noises may occur, and the state of each classical bit may be flipped. One way to suppress

the error rate is to encode each classical bit by a classical error correcting code and perform

error correction afterwards. Let us consider the following encoding and decoding schemes

of the 3-bit repetition code as an example:

Encoding : 0 7→ 000,

1 7→ 111,

Decoding : 000, 001, 010, or 100 7→ 0,

111, 110, 101, or 011 7→ 1.

These schemes can correct a bit-flip error on up to 1 bit; that is, if at least two out of

three bits of each encoded state remain unaffected after transmission, the original data (0

or 1) can be recovered. However, if bit-flip errors occur on two or more bits, the decoding

scheme above will fail to retrieve the original data. Suppose that a single bit is flipped

from 0 to 1 (or from 1 to 0) with probability p and remains unchanged with probability

6

1−p after transmission. Then the probability that two or more bits in a bitstring of length

3 will flip after transmission is 3p2(1−p)+p3, which is less than p if p < 1
2
. In other words,

the 3-bit repetition code described above can suppress the error rate whenever p < 1
2
.

One may want to apply the aforementioned schemes directly to a quantum system in order

to protect its quantum information. However, there are a few obstacles that prevent us

to do so: First, it is impossible to construct a quantum state |ψ〉 ⊗ |ψ〉 ⊗ |ψ〉 from an

unknown state |ψ〉; this fact is also known as the no-cloning theorem [NC00]. Second,

the aforementioned decoding scheme requires the knowledge of the states of classical bits

in order to recover the original data. In quantum settings, this method of decoding is

equivalent to measuring the state of a quantum system, which can cause a superposition of

quantum states to collapse. Third, possible errors in quantum settings are not limited to

bit-flip errors, and they can be continuous in general. To overcome these issues, an error

correction scheme for a quantum state must be improved.

A quantum error correcting code (QECC) Q can be defined as a subspace of the complex

Euclidean space C2n (where n is the number of physical qubits). Let E be a set of errors

that we aim to correct. In order to recover the original state from an erroneous state, we

have to make sure that two orthogonal codewords remain orthogonal after some errors in

E occur to the codewords. That is, the QECC Q and the set of errors E must satisfy the

following condition [KL97]:

Theorem 2.1 Let Q be a subspace of the complex Euclidean space C2n, {|ψ̄i〉} be an or-

thonormal basis of Q, and E be a set of errors. A quantum error correcting code Q can

correct all errors in E if and only if for all pairs of basis vectors |ψ̄i〉, |ψ̄j〉, for all pairs of

errors Ea, Eb ∈ E,

〈ψ̄i|E†aEb|ψ̄j〉 = Cabδij, (2.2)

where Cab are some constants independent of the codewords, δij = 1 if i = j, and δij = 0 if

i 6= j.

If the condition in Theorem 2.1 is satisfied, a QEC scheme which works for all basis

states will also work for any superposition state. (To make this possible, we must obtain

the information of the occurred error when performing QEC, not the information of the

quantum state. An EC procedure will be further discussed in Section 2.3.) Moreover,

if a QECC can correct two errors E and F , it can also correct any error of the form

7

αE + βF , where α, β are some complex numbers. Let us consider the following Pauli

operators defined on a single qubit:

I =

(
1 0

0 1

)
, X =

(
0 1

1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0

0 −1

)
. (2.3)

Since any error on a single qubit can be written as a linear combination of I,X, Y, and Z,

a QECC which can correct all Pauli errors (where I is the identity operator and need not

be corrected) can also correct any error on a single qubit. This idea can also be generalized

to the case of multi-qubit errors.

2.2 Stabilizer code

In the previous section, a QECC is described by the basis states {|ψ̄i〉} of the coding

subspace. However, this representation of a QECC may not be convenient in calculation

since each basis state |ψ̄i〉 may have many terms. Fortunately, there is a family of quantum

codes called stabilizer codes whose codewords can be described by +1 eigenvectors of some

Pauli operators. In this section, the stabilizer formalism [Got96, Got97] for quantum codes

will be elaborated.

To begin with, let us define a Pauli group as follows:

Definition 2.1 Pauli group and the weight of Pauli operator

The 1-qubit Pauli group P1 is a group of I,X, Y and Z operators with a ±1 or ±i phase

factor; i.e.,

P1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}. (2.4)

The n-qubit Pauli group Pn is a group of n-qubit tensor products of operators in P1; i.e.,

Pn = {P1 ⊗ · · · ⊗ Pn : Pi ∈ P1 for all i = 1, . . . , n}. (2.5)

The weight wt(P) of P ∈ Pn is the number of non-identity tensor factors of P .

8

The Pauli group Pn has the following properties:

1. A product of any operators in Pn is also an operator in Pn.

2. An operator P in Pn is either Hermitian (P † = P) or anti-Hermitian (P † = −P).

3. For all P ∈ Pn, P 2 is I⊗n (when P is Hermitian) or −I⊗n (when P is anti-Hermitian).

4. Any two operators P1, P2 in Pn either commute ([P1, P2] = P1P2 − P2P1 = 0) or

anticommute ({P1, P2} = P1P2 + P2P1 = 0).

A stabilizer group is an Abelian group of Pauli operators which does not contain −I⊗n. The

group can be generated from some independent, commuting operators in Pn. Operators

in a stabilizer group are sometimes called stabilizers. For each stabilizer group S, we can

define the coding subspace T (S) corresponding to S as follows:

Definition 2.2 Stabilizer group and stabilizer code

Let stabilizer group S ⊂ Pn be an Abelian group with −I⊗n /∈ S. The stabilizer code T (S)

is the subspace of the complex Euclidean space C2n defined by,

T (S) = {|ψ̄〉 : M |ψ̄〉 = |ψ̄〉 for all M ∈ S}. (2.6)

A stabilizer group S has the following properties:

1. For all M,N ∈ S, MN is also in S (the group is closed under multiplication). That

is, for all |ψ̄〉 ∈ T (S),

MN |ψ̄〉 = M |ψ̄〉 = |ψ̄〉. (2.7)

2. For all M,N ∈ S, MN = NM (the group is Abelian). That is, for all |ψ̄〉 ∈ T (S),

MN |ψ̄〉 = NM |ψ̄〉 = |ψ̄〉. (2.8)

3. Because −I⊗n /∈ S by the definition of stabilizer group, all stabilizers in S is Hermi-

tian (M2 = I⊗n for all M ∈ S).

9

4. S can be generated by r independent, commuting Pauli operators {g1, g2, . . . , gr} for

some positive integer r. Here we will write S = 〈g1, g2, . . . , gr〉. In addition, any

stabilizer M ∈ S can be written as,

M = ga11 g
a2
2 · · · garr , (2.9)

where ai ∈ {0, 1}, i = 1, 2, . . . , r. Consequently, the size of S is |S| = 2r.

5. Because T (S) is the subspace defined by common +1 eigenvectors of r independent,

commuting Pauli operators, the dimension in T (S) is dim(T (S)) = 2n−r. We define

k = n− r to be the number of logical qubits encoded by a stabilizer code.

It should be noted that not all QECCs are stabilizer codes. Nevertheless, this thesis will

consider only QECCs which are stabilizer codes. Because of simpler representations, the

codes and related EC techniques in this thesis will be described in the stabilizer formalism.

One example of a QECC which is a stabilizer code is the Shor code [Sho95]. This code

encodes 1 logical qubit into 9 physical qubits and can correct up to 1 error. A codeword

(or an encoded state) of the Shor code can be expressed by the following basis states:

|0̄〉 =

(
|000〉+ |111〉√

2

)
⊗
(
|000〉+ |111〉√

2

)
⊗
(
|000〉+ |111〉√

2

)
, (2.10)

|1̄〉 =

(
|000〉 − |111〉√

2

)
⊗
(
|000〉 − |111〉√

2

)
⊗
(
|000〉 − |111〉√

2

)
. (2.11)

The Shor code can be considered as an extension of the classical 3-bit repetition code

described in Section 2.1 to the quantum settings. In the stabilizer formalism, the Shor

code can be described by the following generators:

g1 : Z Z I I I I I I I

g2 : I Z Z I I I I I I

g3 : I I I Z Z I I I I

g4 : I I I I Z Z I I I

g5 : I I I I I I Z Z I

g6 : I I I I I I I Z Z

g7 : X X X X X X I I I

g8 : I I I X X X X X X

. (2.12)

10

Another example of a stabilizer code is the 7-qubit Steane code [Ste96], which encodes

1 logical qubit into 7 physical qubits and can correct up to 1 error. The Steane code

can be constructed from the parity check matrix of the classical 7-bit Hamming code

[MS77, CS96, Ste96]. In the stabilizer formalism, we can describe the Steane code by the

following generators:

gx1 : I I I X X X X, gz1 : I I I Z Z Z Z,

gx2 : I X X I I X X, gz2 : I Z Z I I Z Z,

gx3 :X I X I X I X, gz3 :Z I Z I Z I Z.

(2.13)

The Steane code plays an important role in the fault-tolerant protocols developed [TL21b]

and [TL21a], which will be described later in Chapter 5 and Chapter 6.

2.3 Syndrome measurement

Whenever an error occurs to the encoded state, in order to perform error correction, we need

to obtain some information about the error without measuring the encoded state directly

(otherwise a superposition state will collapse). Observe that any encoded state |ψ̄〉 is a

+1 eigenvector of any generator of the stabilizer group. Whenever a Pauli error E ∈ Pn
occurs to the encoded state, the corrupted state E|ψ̄〉may become a −1 eigenvector of some

generators. In an EC procedure, whether the corrupted state is a +1 or −1 eigenvector of

each generator will determined through a process called syndrome measurement, described

in this section.

Let us consider a stabilizer M ∈ S and a Pauli error E ∈ Pn. From the properties of

the Pauli group, we know that E and M either commute ([E,M] = 0) or anticommute

({E,M} = 0). If E commutes with M , we find that

ME|ψ̄〉 = EM |ψ̄〉 = E|ψ̄〉, (2.14)

for all |ψ̄〉 ∈ T (S). That is, E|ψ̄〉 is a +1 eigenvector of M . In contrast, if E anticommutes

with M , then

ME|ψ̄〉 = −EM |ψ̄〉 = −E|ψ̄〉, (2.15)

11

for all |ψ̄〉 ∈ T (S). That is, E|ψ̄〉 is a −1 eigenvector of M .

Suppose that the stabilizer group can be generated by {g1, g2, . . . , gr}. We define the

syndrome of E (denoted by ~s(E)) to be an r-bit string, where the i-th bit is 0 (or 1) if

[E, gi] = 0 (or {E, gi} = 0). If E anticommutes with at least one generator (i.e., ~s(E) is

nontrivial), we say that E is detectable. In addition, if the weight of E is no more than the

number of errors that a QECC can correct, then the syndrome ~s(E) can be used to find

an error correction operator F such that FE|ψ̄〉 = |ψ̄〉 for all |ψ̄〉 ∈ T (S); that is, F maps

a corrupted state back to the original encoded state.

The error syndrome of an error occurred to a codeword can be obtained by measuring

eigenvalues of all generators of the stabilizer code. Let us consider the 7-qubit Steane code

as an example. The eigenvalue of the generator gz1 = Z4Z5Z6Z7 (or gx1 = X4X5X6X7)

can be obtained by measuring the ancilla qubit in the circuit displayed in Fig. 2.1a (or

Fig. 2.1b), where the subscripts denote the qubits that the operators act on. In each

circuit, the ancilla qubit is initially prepared in state |0〉 and measured in Z basis (the

computational basis) at the end. The measurement results 0 and 1 correspond to +1 and

−1 eigenvalues, respectively.

(a) (b)

Figure 2.1: Eigenvalues of stabilizer generators gz1 = Z4Z5Z6Z7 and gx1 = X4X5X6X7 of
the 7-qubit Steane code can be measured using the circuits illustrated in (a) and (b). Only
qubits on which each operator acts nontrivially are displayed.

2.4 Normalizer group and logical operators

Some Pauli error may commute with all stabilizer generators. In that case, the syndrome

of the error is trivial, and the error is undetectable. Let us consider the group of Pauli

12

operators that commute with all generators of a stabilizer group defined as follows:

Definition 2.3 Normalizer group and code distance

Let S ⊂ Pn be a stabilizer group. The normalizer group N(S) of S is defined by,

N(S) = {L ∈ Pn : LM = ML for all M ∈ S}. (2.16)

The distance of the stabilizer code T (S) is defined as the minimum weight of Pauli operators

in N(S)− S.

Obviously, any stabilizer M ∈ S is also an element of N(S), thus S ⊆ N(S).

Let us consider the action of any operator L ∈ N(S) on a codeword. Since L commutes

with all stabilizers in S, we find that,

ML|ψ̄〉 = LM |ψ̄〉 = L|ψ̄〉, (2.17)

for all |ψ̄〉 ∈ T (S), for all M ∈ S. Here we can see that L|ψ̄〉 is a +1 eigenvector of all

stabilizers, i.e., L|ψ̄〉 is also a valid codeword. Since L maps a valid codeword to another

valid codeword, we sometimes called operators in N(S) logical operators. If L is a stabilizer

in S, it is equivalent to the logical identity operator since it acts trivially on a codeword.

However, if L ∈ N(S) − S, it is a nontrivial logical operator since it maps a codeword to

a different codeword.

When an error E ∈ S occurs to a codeword, error correction is not needed since E stabilizes

the codeword (E|ψ̄〉 = |ψ̄〉 for all |ψ̄〉 ∈ T (S)). However, if an error E ∈ N(S)− S occurs

to a codeword, the EC procedure fails to recover the original state. This is because E|ψ̄〉 is

different from |ψ̄〉 but E cannot be detected since it commutes with all stabilizer generators.

The distance of a stabilizer code is therefore the minimum weight of errors undetectable

by the code. This means that a stabilizer code of distance d can detect any error of weight

≤ d− 1.

Now, let us consider the relationship between the code distance and the weight of errors

that a stabilizer code can correct. Suppose that E is a set of all Pauli errors of weight up

to τ and a stabilizer code T (S) can correct all errors in E . Because T (S) is a QECC, the

13

condition in Theorem 2.1 must hold, i.e.,

〈ψ̄i|E†aEb|ψ̄j〉 = Cabδij, (2.18)

for all pairs of basis vectors |ψ̄i〉, |ψ̄j〉, for all pairs of errors Ea, Eb ∈ E . Here we find that

E†aEb cannot be an operator in N(S)− S (otherwise, the inner product between E†aEb|ψ̄j〉
and |ψ̄i〉 is not zero for some i 6= j, and the condition will not be satisfied). That is, E†aEb
must be detectable, i.e., the syndrome of E†aEb is nontrivial. Since E contains all Pauli

errors of weight ≤ τ , the maximum weight of E†aEb is 2τ . Therefore, the distance of the

code must be at least 2τ + 1.

The relationship between the code distance, the weight of correctable errors, and the weight

of detectable errors can be summarized as follows:

Proposition 2.1 A stabilizer code of distance d can detect errors up to weight d− 1 and

correct errors up to weight τ = b(d− 1)/2c.

We sometimes use the following notation to describe a stabilizer code:

Definition 2.4 An [[n, k, d]] code is a stabilizer code which encodes k logical qubits into n

physical qubits and has distance d.

2.5 Error decoding problem

As previously mentioned, whenever an error E occurs to a codeword, we will try to remove

the error by measuring the error syndrome ~s(E) then find an EC operator F which has the

same syndrome as ~s(E). In this thesis, we follow several prior works on QEC and adopt

the terminology ‘decoding’ for the process to determine F from ~s(E). This should not be

confused with the process of finding an unencoded state corresponding to each codeword

as previously discussed in Section 2.1 (although these two processes are closely related).

In this section, we will consider an issue that may occur when E has high weight.

If the weight of an error E occurred to a codeword is no more than the weight of errors

τ that the code can correct, then an EC operator F in which ~s(F) = ~s(E) are logically

equivalent to E, and the original codeword |ψ̄〉 can be obtained by applying F to the

14

corrupted codeword E|ψ̄〉. However, if the weight of E is more than τ , there is no guarantee

that FE|ψ̄〉 will be the same state as |ψ̄〉. Let us consider two Pauli operators E1, E2

which correspond to the same syndrome. From the fact that an operator L ∈ N(S)

commutes with all stabilizer generators, and because E1 commutes (or anticommutes)

with generator gi if and only if E2 commutes (or anticommutes) with the same generator

gi for all i = 1, . . . , r, it is possible to write E2 = E1 · L for some L ∈ N(S) (up to some

phase factor).

Note that L ∈ N(S) can be either trivial (such as I⊗n or some stabilizer) or nontrivial

(such as logical X or logical Z operator). From the aforementioned EC procedure where

we choose an EC operator F such that ~s(F) = ~s(E), if we pick F such that F ·E ∈ S, then

the output state after error correction will be the same as the original state. However, if

we pick F such that F · E ∈ N(S)− S, then the output state will differ from the original

state and we fail to perform error correction.

In an actual EC protocol, errors of weight greater than τ may arise depending on the noise

model and other factors such as the structure of the circuits being used. Since we can only

measure the error syndrome but do not know what error has occurred to the codeword,

finding an appropriate EC operator for each syndrome is one of the main challenges when

developing an EC protocol.

15

Chapter 3

Flags and Error Weight Parities in

Error Correction

In general, a QEC procedure described in Chapter 2 may not be perfect, and errors arising

from a few faults during the procedure can propagate throughout the circuit as the quantum

state evolves. If not treated properly, these errors may become too large to correct in later

parts of the computation. Fortunately, if the QEC procedure satisfies some conditions,

fault-tolerant quantum computation can be done; i.e., the logical error rate can be made

arbitrarily small when the physical error rate is smaller than some constant threshold value.

This result is known as the threshold theorem. There are several works on the proofs of

the threshold theorem which consider different sets of assumptions [Sho96, ABO08, Kit97,

KLZ96, Pre98, TB05, ND05, AL06, AGP06]. In this thesis, a version of the threshold

theorem proved by Aliferis, Gottesman, and Preskill [AGP06] will be considered; we will

try to construct fault-tolerant protocols satisfying the definitions of fault-tolerant gadgets

proposed in [AGP06] (these definitions will be later discussed in Chapter 4).

One common goal of the two papers [TL21b] and [TL21a] presented in this thesis is to

construct FTEC protocols using the flag and weight parity EC techniques. In this chapter,

we start by providing a brief review on the flag technique applied to the case of one fault

in Section 3.1. Next, the idea will be extended to the case of multiple faults in Section 3.2,

and the notion of distinguishable fault set will be introduced in Definition 3.3. Afterwards,

how weight parities can be used in error correction will be explained in Section 3.3. The

contents of this chapter follows Section II of [TL21a].

16

3.1 Flag error correction

Quantum computation is prone to noise, and an error on a few qubits can spread and cause

a big problem in the computation if the error is not treated properly. As we have seen

in Chapter 2, one way to protect quantum data against noise is to use a quantum error

correcting code (QECC) to encode a small number of logical qubits into a larger number

of physical qubits. A quantum [[n, k, d]] stabilizer code [Got96, Got97] encodes k logical

qubits into n physical qubits and can correct errors up to weight τ = b(d−1)/2c. Quantum

error correction (QEC) is a process that aims to undo the corruption that happens to a

codeword.

A stabilizer code is a simultaneous +1 eigenspace of a list of commuting independent Pauli

operators; they generates the stabilizer group for the code. For a stabilizer code, the error

correction (EC) procedure involves measurements of stabilizer generators, which results in

an error syndrome. The QEC is designed so that the more likely Pauli errors are either

logically equivalent or have distinguishable syndrome. If the weight of the Pauli error E

occurred to a codeword is no bigger than τ , E can be identified by the error syndrome

~s(E) obtained from the generator measurements, and be corrected by applying E† to the

codeword.

The above working principle for a stabilizer code assumes that the syndrome measurements

are perfect. In practice, every step in a quantum computation, including those in the

syndrome measurements, is subject to error. An initial error can lead to a complex overall

effect in the circuit. We adhere to the following terminologies and noise model in our

discussion.

Definition 3.1 Location, noise model, and fault [AGP06]

A circuit consists of a number of time steps and a number of qubits and is specified by

operations to the qubits in each time step. The operations can be single qubit state prepara-

tion, 1- or 2-qubit gates, or single qubit measurement. (When nothing happens to a qubit,

it goes through the 1-qubit gate of identity.) A location is labeled by a time step and the

index (or indices) of a qubit (or pair of qubits) involved in an operation.

We consider the circuit-level noise in which every location is followed by depolarizing

noise: every one-qubit operation is followed by a single-qubit Pauli error I,X, Y, or Z, and

every two-qubit operation is followed by a two-qubit Pauli error of the form P1 ⊗ P2 where

17

P1, P2 ∈ {I,X, Y, Z}.

A fault is specified by a location and a nontrivial 1- or 2-qubit Pauli operation which

describes a deviation from the ideal operation on the location. This Pauli operation is

called the “Pauli error due to the fault”.

A small number of faults during the measurements can lead to an error of weight higher

than τ which may cause the EC protocol to fail. To see this, first, we describe how an

error of weight 1 or 2 arising from a faulty operation can propagate through a circuit and

become an error of higher weight. Specifically, a Hadamard gate and a CNOT gate will

transform X-type and Z-type errors as follows:

H : X 7→ Z, Z 7→ X,

CNOT : XI 7→XX, ZI 7→ ZI,

IX 7→ IX, IZ 7→ZZ.

To see how errors from a few faults can cause an EC protocol to fail, let us consider a

circuit for measuring a stabilizer generator of the Steane code as an example. Recall that

the [[7, 1, 3]] Steane code [Ste96] is a stabilizer code which can be described by the following

generators:
gx1 : I I I X X X X, gz1 : I I I Z Z Z Z,

gx2 : I X X I I X X, gz2 : I Z Z I I Z Z,

gx3 :X I X I X I X, gz3 :Z I Z I Z I Z.

(3.1)

Logical X and logical Z operators of the Steane code are X⊗7M and Z⊗7N for any stabi-

lizers M,N . The syndrome is a 6-bit string of the form (~sx|~sz), with the i-th bit being 0

(or 1) if measuring the i-th generator (ordered as gx1 , gx2 , gx3 , then gz1, gz2, gz3) gives +1 (or

−1) eigenvalue.

Suppose that during the syndrome measurement, all circuits for measuring stabilizer gener-

ators are perfect except for a circuit for measuring gz1 which has at most 1 fault. Consider

a circuit for measuring gz1 and storing the syndrome using one ancilla qubit (called the

syndrome ancilla) as in Fig. 3.1a. Also, assume that at most one CNOT gate causes either

II, IZ, ZI, or ZZ error. Because of error propagation, a Z error occurred to the syndrome

ancilla can propagate back to one or more data qubit(s). As a result, we find that possible

18

(a) (b) (c)

Figure 3.1: (a) An example of non-flag circuit for measuring generator gz1 of the [[7, 1, 3]]
code. Only qubits on which the operator acts are displayed. The measurement result 0
and 1 obtained from the syndrome ancilla correspond to the +1 and −1 eigenvalues of gz1.
(b) An example of flag circuit for measuring gz1. The state of the flag ancilla can flip from
|+〉 to |−〉 if some fault occurs in between two flag CNOT gates. A circuit for measuring
X-type generator can be obtained by replacing each CNOT gate with the gate shown in
(c).

errors on data qubits arising from at most 1 CNOT fault (up to multiplication of gz1) are,

I, Z4, Z5, Z6, Z7, Z6Z7. (3.2)

A circuit fault may also cause the syndrome bit to flip. In order to obtain the syndrome

exactly corresponding to the data error, one can perform full syndrome measurements

until the outcomes are repeated two times in a row, then do the error correction using the

repeated syndrome. However, note that the Steane code which can correct any error up to

weight 1 must be able to correct the following errors as well:

I, Z1, Z2, Z3, Z4, Z5, Z6, Z7. (3.3)

Errors Z1 and Z6Z7 have the same syndrome (0, 0, 1|0, 0, 0) but are not logically equivalent,

and subsequent syndrome measurements cannot distinguish between these two cases. This

means that if a CNOT fault leads to the Z6Z7 error, a correction step for the syndrome

(0, 0, 1|0, 0, 0) that applies Z†1 to the data qubits will result in a logical error Z1Z6Z7 on

the data qubits, causing the EC protocol to fail.

The goal of this work is to design an EC protocol which is fault tolerant ; that is, we want

to make sure that any subsequent error arising from a small number of faults will still be

19

correctable by the protocol regardless of its weight (the formal definitions of fault tolerance

will be discussed in Chapter 4).

One way to solve the error distinguishing issue is to use traditional FTEC schemes such as

the ones proposed by Shor [Sho96, DA07], Steane [Ste97, Ste02], or Knill [Kni05]. However,

these schemes require a large number of ancillas (as previously mentioned in Chapter 1).

An alternative way to solve the problem is to add an additional ancilla qubit in a circuit

for measuring gz1 as shown in Fig. 3.1b. A circuit of this form is called flag circuit [CR18c]

(in contrast to the circuit in Fig. 3.1a, which is called non-flag circuit). The additional

ancilla qubit is called flag ancilla, which is initially prepared in the state |+〉. There are

two types of CNOT gates in a flag circuit: a data CNOT which couples one of the data

qubits and the syndrome ancilla, and a flag CNOT which couples the flag ancilla and the

syndrome ancilla. Whenever a data CNOT in between two flag CNOTs causes either IZ

or ZZ error, a Z error will propagate from the syndrome ancilla to the flag ancilla, causing

the state of the flag ancilla to flip to |−〉. In general, a flag circuit may have more than

one flag ancilla, and data and flag CNOTs may be arranged in a complicated way so that

a certain number of faults can be caught by the flag ancillas.

By using the circuit in Fig. 3.1b for measuring gz1, we find that possible errors on the

data qubits arising from at most 1 CNOT fault corresponding to each flag measurement

outcome are,
0 : I, Z4, Z5, Z6, Z7,

1 : I, Z4, Z6Z7, Z7,
(3.4)

where the outcome 0 and 1 correspond to |+〉 and |−〉 states, respectively. We can see that

the flag measurement outcome is 1 whenever Z6Z7 occurs. In contrast, an input error Z1

will not flip the state of the flag ancilla, so it always corresponds to the flag measurement

outcome 0. Therefore, Z1 and Z6Z7 can be distinguished using the flag measurement

outcome, and an appropriate error correction for each case can be applied to correct such

an error. The main advantage of the flag technique is that the number of ancillas required

for the flag FTEC protocol is relatively small compared to that required for the traditional

FTEC protocols (assuming that ancilla preparation and measurement are fast and the

ancillas can be reused).

20

3.2 Distinguishable fault set

For a general stabilizer code which can correct errors up to weight τ = b(d−1)/2c, we would

like to construct circuits for syndrome measurement in a way that all possible errors arising

from up to t faults (where t ≤ τ) can be corrected, and t is as close to τ as possible. Note

that these errors include any single-qubit errors and errors arising from any fault in any

circuit involved in the syndrome measurement. For simplicity, this work will focus mainly

on a stabilizer code in the Calderbank-Shor-Steane (CSS) code family [CS96, Ste96], in

which X-type and Z-type errors can be detected and corrected separately.

For a given CSS code, a circuit for measuring Z-type generator will look similar to a

circuit in Fig. 3.1a or Fig. 3.1b, except that there will be w data CNOT gates for a Z-type

generator of weight w. A circuit can have any number of flag ancillas (or have no flag

ancillas). There are several factors that can determine the ability to distinguish possible

errors; for example, the number of flag ancillas, the ordering of data and flag CNOT gates,

and the choice of generators being used for the syndrome measurement [CR18c]. A circuit

for measuring X-type generator is similar to a circuit for measuring Z-type generator,

except that each CNOT gate is replaced by the gate displayed in Fig. 3.1c.

For a given t, finding all possible combinations of faults up to t faults can be laborious

since there are many circuits involved in the syndrome measurement, and each circuit have

many gates. To simplify our analysis, we will first consider the case that there is only one

CNOT fault in one of the circuits for measuring Z-type generators (similar to Fig. 3.1a or

Fig. 3.1b). Suppose that there are a total of c flag ancillas involved in a single round of

full syndrome measurement (counted from all circuits). We define a flag vector ∈ Zc2 to be

a bitstring wherein each bit is the measurement outcome of each flag ancilla. There are

two mathematical objects associated with each fault: a data error arising from the fault,

and a flag vector corresponding to the fault.

Recall that a faulty CNOT gate can cause a two-qubit error of the form P1 ⊗ P2 where

P1, P2 ∈ {I,X, Y, Z}. However, there are many cases of a single fault which are equivalent,

meaning that they can give rise to the same data error and the same flag vector. We find

that all possible cases in which a single fault can lead to a purely Z-type error on the data

qubits can be obtained by considering only (1) the cases that a faulty CNOT gate in a

circuit for measuring Z-type generator causes IZ error, and (2) the cases that a Z error

occurs to any data qubit. This results from the following facts [TCL20]:

21

1. The case that a faulty CNOT gate causes ZZ error is equivalent to the case that the

preceding CNOT gate causes error IZ.

2. The case that a faulty CNOT gate causes XZ, Y Z error is equivalent to the case that

an X error occurs to a data qubit and a faulty CNOT gate causes IZ or ZZ error.

3. The case that a faulty CNOT gate causes XI, Y I, ZI, IX,XX, Y X or ZX error can

be considered as the case that a single-qubit error occurs to a data qubit since an X

error occurred to the syndrome ancilla will not propagate back to any data qubit.

4. The case that a faulty CNOT gate causes IY,XY, Y Y or ZY error is similar to the

case that a faulty CNOT gate causes IZ,XZ, Y Z or ZZ error,

5. An ancilla preparation or measurement fault can be considered as the case that X

or Z error occurred to an ancilla qubit (either syndrome or flag ancilla).

6. A CSS code can detect and correct X-type and Z-type errors separately, and a single

fault in a circuit for measuring X-type generator cannot cause an Z-type error of

weight greater than 1 (and vice versa).

Moreover, if X-type and Z-type generators have similar forms and the gate permutations

in the measuring circuits are the same, then all possible faults that can lead to X-type

errors on the data qubits are of similar form.

If there are many faults during the protocol, the data errors and the flag vectors caused

by each fault can be combined [TL21b]. In particular, a fault combination can be defined

as follows:

Definition 3.2 Fault combination

A fault combination Λ = {λ1, λ2, . . . , λr} is a set of r faults λ1, λ2, · · · , λr. Suppose that the

Pauli error due to the fault λi can propagate through the circuit and lead to data error Ei
and flag vector ~fi. The combined data error E and cumulative flag vector ~f corresponding

22

to Λ are defined as follows:

E =
r∏
i=1

Ei, (3.5)

~f =
r∑
i=1

~fi . (3.6)

(Note that the error syndrome of the combined data error is ~s(E) =
∑r

i=1 ~s(Ei).) For

example, suppose that a fault combination Λ arises from two faults λ1 and λ2 which can

lead to data errors E1 and E2, and cumulative flag vectors ~f1 and ~f2. Then, the combined

data error E and the cumulative flag vector ~f of Λ are E = E1 · E2 and ~f = ~f1 + ~f2 (

mod 2).

When faults occur in an actual protocol, the faulty locations and the combined data error

are not known. In order to determine the combined data error so that the error correction

can be done, we will try to measure the error syndrome of the combined data error, and

calculate the cumulative flag vector from the flag measurement results obtained since the

beginning of the protocol. These measurements, in turn, are subject to errors. The full

syndrome measurements will be performed until the syndromes and the cumulative flag

vectors are repeated for a certain number of times (similar to the Shor FTEC scheme);

examples of FTEC protocols for the [[49, 1, 9]] concatenated Steane code and a capped color

code can be found in Section 5.2 and Section 6.3. (Note that by defining the cumulative

flag vector as a sum of flag vectors, we lose the information of the ordering in which each

fault occurs. However, we find that fault-tolerant protocols presented in this work can still

be constructed without such information.)

As previously explained, error correction can fail if there are different faults that lead to

non-equivalent errors but there is no way to distinguish them using their error syndromes

or flag measurement results. To avoid this, all possible fault combinations must satisfy

some conditions so that they can be distinguished. In particular, for a given set of circuits

for measuring stabilizer generators, all possible fault combinations can be found, and their

corresponding combined data error and cumulative flag vector can be calculated. Let the

fault set Ft be the set of all possible fault combinations arising from up to t faults. We

will be able to distinguish all fault combinations if the fault set satisfies the conditions in

23

the following definition:

Definition 3.3 Distinguishable fault set

Let the fault set Ft denote the set of all possible fault combinations arising from up to

t faults and let S be the stabilizer group of the quantum error correcting code used to

encode the data. We say that Ft is distinguishable if for any pair of fault combinations

Λp,Λq ∈ Ft, at least one of the following conditions is satisfied:

1. ~s(Ep) 6= ~s(Eq), or

2. ~fp 6= ~fq, or

3. Ep = Eq ·M for some stabilizer M ∈ S,

where Ep,~fp correspond to Λp, and Eq,~fq correspond to Λq. Otherwise, we say that Ft is

indistinguishable.

An example of a distinguishable fault set with t = 1 is the fault set corresponding to

Eq. (3.4). In that case, we can see that for any pair of faults, either the syndromes of the

data errors or the flag measurement outcomes are different.

The following proposition states the relationship between ‘correctable’ and ‘detectable’

faults. This is similar to Proposition 2.1 which states that a stabilizer code of distance d

can detect errors up to weight d − 1 and can correct errors up to weight τ = b(d − 1)/2c
[Got97].

Proposition 3.1 Ft is distinguishable if and only if a fault combination corresponding to

a nontrivial logical operator and the zero cumulative flag vector is not in F2t.

Proof :

(⇒) Let Λp,Λq ∈ Ft be fault combinations arising from up to t faults, let Λ̃r ∈ F2t be a

fault combination arising from up to 2t faults, and let S be the stabilizer group. First,

observe that for any Λ̃r ∈ F2t, there exist Λp,Λq ∈ Ft such that Λ̃r = Λp ∪ Λq (where the

union of two fault combinations is similar to the union of two sets). Now suppose that Ft is

distinguishable. Then, for each pair of Λp,Λq in Ft, ~s(Ep) 6= ~s(Eq) or ~fp 6= ~fq or Ep = Eq ·M

24

for some stabilizer M ∈ S. We find that Λ̃r = Λp ∪ Λq corresponds to Er and ~fr such that

~s(Er) = ~s(Ep) + ~s(Eq) 6= 0 or ~fr = ~fp + ~fq 6= 0 or Er = Ep · Eq = M for some stabilizer

M ∈ S. This is true for any Λ̃r ∈ F2t, meaning that there is no fault combination in F2t

which corresponds to a nontrivial logical operator and the zero cumulative flag vector.

(⇐) As before, we know that for any Λ̃r ∈ F2t, there exist Λp,Λq ∈ Ft such that Λ̃r =

Λp ∪ Λq. Now suppose that Ft is indistinguishable. Then, there are some pair of Λp,Λq in

Ft such that ~s(Ep) = ~s(Eq), ~fp = ~fq, and Ep · Eq is not a stabilizer in S. For such pair,

we find that Λ̃r = Λp ∪ Λq corresponds to Er and ~fr such that ~s(Er) = ~s(Ep) + ~s(Eq) = 0,
~fr = ~fp + ~fq = 0, and Er = Ep · Eq is not a stabilizer in S. Therefore, there is a fault

combination corresponding to a nontrivial logical operator and the zero cumulative flag

vector in F2t. �

Finding a circuit configuration which gives a distinguishable fault set is one of the main

goals of the protocol developments in Chapters 5 and 6. For a given set of circuits for

measuring generators of a stabilizer code, if the fault set is distinguishable, an FTEC

protocol for such a code can be constructed. However, we will defer the proof of this claim

until Sections 6.3.1 and 6.4.

3.3 Finding equivalent errors using error weight par-

ities

One common theme of the works presented in Chapters 5 and 6 is to find a good combina-

tion of stabilizer code and a set of circuits for measuring the code generators in which the

corresponding fault set is distinguishable. As we see in Definition 3.3, whether each pair

of fault combinations can be distinguished depends on the syndrome of the combined data

error and the cumulative flag vector corresponding to each fault combination, and these

features heavily depend on the structure of the circuits. However, we should note that

there is no need to distinguish a pair of fault combinations whose combined data errors are

logically equivalent. Therefore, if the circuits for a particular code are designed in a way

that large portions of fault combinations can give equivalent errors, the fault set arising

from the circuits will be more likely distinguishable.

For a general stabilizer code, it is not obvious to see whether two Pauli errors with the

25

same syndrome are logically equivalent or off by a multiplication of some nontrivial logical

operator. Fortunately, for some CSS codes, it is possible to check whether two Pauli errors

with the same syndrome are logically equivalent by comparing their weight parities, defined

as follows:

Definition 3.4 The weight parity of Pauli error E, denoted by wp(E), is 0 if E has even

weight, or is 1 if E has odd weight.

In [TL21b], we prove that for the [[7, 1, 3]] Steane code and the [[23, 1, 7]] Golay code, errors

with the same syndrome and weight parity are logically equivalent. The idea is further

extended in [TL21a] to a family of [[n, k, d]] CSS codes in which n is odd, k is 1, all stabilizer

generators have even weight, and X⊗n and Z⊗n are logical X and logical Z operators,

respectively. The lemma presented in [TL21a] (which is adapted from Claim 1 in [TL21b])

is as follows:

Lemma 3.1 Let C be an [[n, k, d]] CSS code in which n is odd, k = 1, all stabilizer gener-

ators have even weight, and X⊗n and Z⊗n are logical X and logical Z operators. Also, let

Sx, Sz be subgroups generated by X-type and Z-type generators of C, respectively. Suppose

E1, E2 are Pauli errors of any weights with the same syndrome.

1. If E1, E2 are Z-type errors, then E1, E2 have the same weight parity if and only if

E1 = E2 ·M for some M ∈ Sz.

2. If E1, E2 are X-type errors, then E1, E2 have the same weight parity if and only if

E1 = E2 ·M for some M ∈ Sx.

Proof :

We focus on the first case when E1, E2 are Z-type errors and omit the similar proof for the

second case. First, recall that the normalizer group of the stabilizer group (the subgroup of

Pauli operators that commute with all stabilizers) is generated by the stabilizer generators

together with the logical X and the logical Z. Since E1, E2 have the same syndrome, their

product L = E1E2 has trivial syndrome, and is thus in the normalizer group. So we can

express L as a product of the stabilizer generators and the logical X and Z’s. But there

is no X-type factors (since L is Z-type). Therefore, L = M(Z⊗n)a where M ∈ Sz and

a ∈ {0, 1}.

26

Next, we make an observation. Let M1,M2 be two Z-type operators, with respective

weights w1, w2. The weight of the product M1M2 is w1 + w2 − 2c, where c is the number

of qubits supported on both M1 and M2. From this observation, and the fact that all

generators have even weight, we know M has even weight. Also, from the same observation,

and the hypothesis that E1, E2 have the same weight parity, L also has even weight. If

a = 1, L = M(Z⊗n)a will contradict the observation, so, a = 0, L = M , and E1E2 = M ∈
Sz as claimed. On the other hand, if we assume that E1, E2 have different weight parities,

then L has odd weight and a = 1, which implies that E1E2 = M(Z⊗n) for some M ∈ Sz.

�

Lemma 3.1 provides a possible way to perform error correction using syndromes and weight

parities, and it can help us find a good code and circuits in which the fault set is distin-

guishable. In particular, for a given CSS code satisfying Lemma 3.1, if the error syndrome

and the weight parity of the data error can be measured perfectly, then an EC operator

which can map the erroneous codeword back to the original codeword can be determined

without failure. The EC operator can be any Pauli operator that has the same syndrome

and the same weight parity as those of the data error. For example, if the [[7, 1, 3]] Steane

code is being used and the data error is Z1Z3Z6Z7, we can use Z1Z2 as an EC operator to

do the error correction.

However, measuring the weight parity should not be done directly on the codeword; mea-

suring weight parities of Z-type and X-type errors correspond to measuring X⊗n and Z⊗n,

respectively, which may destroy the superposition of the encoded state. Moreover, X⊗n

and Z⊗n do not commute. Fortunately, if we have two codes CA, CB such that CA is a

subcode of CB, then the weight parity of an error on CA can sometimes be determined by

the measurement results of the generators of CB.

In [TL21b] in which an FTEC protocol for a [[49, 1, 9]] concatenated Steane code is de-

veloped, we consider the case that CA is the [[7, 1, 3]] Steane code and CB is the [[49, 1, 9]]

concatenated code. The error weight parities for each subblock of the 7-qubit code are

determined by the syndrome obtained from the measurement of the [[49, 1, 9]] code genera-

tors. Afterwards, error correction is performed blockwisely using the weight parity of the

error in each subblock, together with the syndrome obtained from the measurement of the

7-qubit code generators for such a subblock. We also find some evidences suggesting that

a similar error correction technique may be applicable to other concatenated codes such as

the concatenated Golay code and a concatenated Steane code with more than 2 levels of

27

concatenation. The technical details of [TL21b] can be found in Chapter 5.

In [TL21a], a different approach has been used; we consider a case that CB is not con-

structed from concatenating CA’s. We first consider the 3D color code of distance 3 in

the form that has the 2D color code of distance 3 as a subcode, and try to construct cir-

cuits for measuring generators of the 3D color code which give a distinguishable fault set.

Afterwards, we extend the construction ideas to a capped color code of distance d which

has the 2D color code of distance d on the center plane as a subcode. The work uses the

fact that the biggest stabilizer generators of a capped color code (called cap generators)

cover all qubits on the center plane. Therefore, any error occurred on the center plane can

always be corrected using the syndrome obtained from measuring generators on the center

plane (the generators of the 2D color code), together with the weight parity obtained from

measuring the cap generator of X or Z type. Our schemes for capped color codes in H

form of distance 3, 5, and 7 require only 1, 1, and 2 ancillas, respectively. In addition, we

prove a theorem which can be helpful for finding the circuits for a capped color code of

higher distance. The technical details of [TL21a] are discussed in Chapter 6.

28

Chapter 4

Redefining Fault Tolerance

In Chapter 3, we already discussed how flags and weight parities could be used in an FTEC

protocol, and the notion of distinguishable fault set was introduced in Definition 3.3. When

a fault set Ft is distinguishable, all possible errors of any weight arising from up to t faults

can be accurately identified (up to a multiplication of some stabilizer) using their syndromes

and cumulative flag vectors obtained from perfect subsequent syndrome measurements.

Therefore, all possible errors arising from up to t faults are correctable. However, one

should be aware that faults can happen anywhere in an EC protocol, including the locations

in the subsequent syndrome measurements. Our goal is to construct a protocol which is

fault tolerant ; vaguely speaking, if an input state to an EC protocol has some error, we

want to make sure that the output state is the same logical state as the input, and if output

state has any error, the error must not be ‘too large’.

What does it mean for the output error to be not too large? The general idea is that if

an output error of a single round of the protocol becomes an input error of the next round

of the protocol, the error should still be correctable by the latter round. In [AGP06], the

authors proposed that the weight of the output error from a fault-tolerant protocol should

be no more than the number of total faults occurred during the protocol. However, it should

be noted that for an [[n, k, d]] code which can correct errors up to weight τ = b(d − 1)/2c
and is not a perfect code (or not a perfect CSS code)1, the idea of correctable errors can

1A perfect code is a quantum code which saturates the quantum Hamming bound; i.e., there is a one-to-
one correspondence between correctable errors and all possible syndromes [Got96, Got97]. A perfect CSS
code is defined similarly, except that the syndromes of X-type and Z-type errors are considered separately.

29

be extended to some errors of weight more than τ . For example, if the code being used is

a non-perfect code of distance 3, there will be some error E of weight more than 1 whose

syndrome ~s(E) is different from those of errors of weight 1. If no other error E ′ has the

same syndrome as E in the set of correctable errors, then in this case, E is also correctable

in the sense that we can perform an error correction by applying E† every time we obtained

the syndrome ~s(E).

In this chapter, we will ‘refine’ the idea of high-weight error correction and ‘redefine’ fault

tolerance using the notion of distinguishable fault set. In Section 4.1, conventional defini-

tions of fault-tolerant gadgets proposed by Aliferis, Gottesman, and Preskill [AGP06] will

be described. Afterwards, the definitions will be revised using the notion of distinguishable

fault set in Section 4.2. The contents of this chapter follow Section V A of [TL21a].

4.1 Conventional definitions of fault-tolerant gadgets

Recall that τ denotes the weight of errors that a stabilizer code can correct, and t denotes

the number of faults. We will start by stating the definitions of an r-filter and an ideal

decoder from [AGP06], which are the main tools for describing the properties of fault-

tolerant gadgets. The definitions are as follows:

Definition 4.1 r-filter (AGP version)

Let T (S) be the coding subspace defined by the stabilizer group S. An r-filter is the projector

onto the subspace spanned by{
E
∣∣ψ̄〉 ;

∣∣ψ̄〉 ∈ T (S), the weight of E is at most r
}
. (4.1)

An r-filter in the circuit form is displayed below:

where a thick line represents a block of code.

30

Definition 4.2 ideal decoder (AGP version)

Let τ = b(d − 1)/2c where d is the code distance. An ideal decoder is a gadget which can

correct any error of weight up to τ and map an encoded state
∣∣ψ̄〉 on a code block to the

corresponding (unencoded) state |ψ〉 on a single qubit without any fault. An ideal decoder

in the circuit form is displayed below:

where a thick line represents a block of code, and a thin line represents a single qubit.

The intuition behind the definitions of these two gadgets are as follows: If an input state

of an r-filter differs from a codeword by an error of weight ≤ r, then the output state will

also differ from the same codeword by an error of weight ≤ r. However, if the input state

has an error of weight > r, then the input and output states may correspond to different

ideal codewords (i.e., they may be ideally decoded to different unencoded states). An ideal

decoder is a gadget which guarantees that the output (unencoded) state and the input

(encoded) state will be logically the same whenever the input state has an error of weight

no more than τ .

(Note that an r-filter is a linear, completely positive map but it is not trace-preserving;

an r-filter cannot be physically implemented. In the definitions of fault-tolerant gadgets

to be described, r-filters will be used as mathematical objects to express circuit identities

that must be held when the weight of input or output errors and the number of faults are

restricted. When each identity holds, both sides of the equation give the same output,

including normalization, for the same input state, but the trace of the output might not

be one.)

Using the definitions of r-filter and ideal decoder, fault-tolerant gate (FTG) gadget and

fault-tolerant error correction (FTEC) gadget can be defined as follows:

Definition 4.3 Fault-tolerant gate gadget (AGP version)

A gate gadget with s faults simulating an ideal m-qubit gate is represented by the following

31

picture:

where each thick line represents a block of code. Let t ≤ b(d − 1)/2c. A gate gadget is

t-fault tolerant if it satisfies both of the following properties:

1. Gate correctness property (GCP): whenever
∑m

i=1 ri + s ≤ t,

2. Gate error propagation property (GPP): whenever
∑m

i=1 ri + s ≤ t,

where the r-filter and the ideal decoder are as defined in Definition 4.1 and Definition 4.2.

Definition 4.4 Fault-tolerant error correction gadget (AGP version)

An error correction gadget with s faults is represented by the following picture:

32

where a thick line represents a block of code. Let t ≤ b(d − 1)/2c. An error correction

gadget is t-fault tolerant if it satisfies both of the following properties:

1. Error correction correctness property (ECCP): whenever r + s ≤ t,

2. Error correction recovery property (ECRP): whenever s ≤ t,

where the r-filter and the ideal decoder are as defined in Definition 4.1 and Definition 4.2.

When an FTG gadget satisfies both properties in Definition 4.3, it is guaranteed that

whenever the weight of the input error plus the number of faults is no more than t, (1)

the operation of an FTG gadget on an encoded state will be similar to the operation of its

corresponding quantum gate on an unencoded state, and (2) an output state of an FTG

gadget will have an error of weight no more than t (which is also ≤ τ). Meanwhile, the

two properties of an FTEC gadget in Definition 4.4 guarantee that (1) the output and the

input states of an FTEC gadget are logically the same whenever the weight of the input

error plus the number of faults is no more than t, and (2) the weight of the output error

of an FTEC gadget is no more than the number of faults whenever the number of faults is

at most t, regardless of the weight of the input error.

Fault-tolerant state preparation (FTP) gadget and fault-tolerant (non-destructive) mea-

surement (FTM) gadget, which are special cases of FTG gadget, can be defined as follows:

33

Definition 4.5 Fault-tolerant state preparation gadget (AGP version)

A state preparation gadget with s faults is represented by the following picture:

where a thick line represents a block of code. Let t ≤ b(d − 1)/2c. A state preparation

gadget is t-fault tolerant if it satisfies both of the following properties:

1. Preparation correctness property (PCP): whenever s ≤ t,

2. Preparation error propagation property (PPP): whenever s ≤ t,

where the r-filter and the ideal decoder are defined as in Definition 4.1 and Definition 4.2.

Definition 4.6 Fault-tolerant (non-destructive) measurement gadget (AGP version)

A (non-destructive) measurement gadget with s faults is represented by the following pic-

ture:

where a thick line represents a block of code. Let t ≤ b(d − 1)/2c. A (non-destructive)

measurement gadget is t-fault tolerant if it satisfies both of the following properties:

34

1. Measurement correctness property (MCP): whenever r + s ≤ t,

2. Measurement error propagation property (MPP): whenever r + s ≤ t,

where the r-filter and the ideal decoder are defined as in Definition 4.1 and Definition 4.2.

The meanings of the properties of FTP and FTM gadgets are similar to the meanings of

the properties of an FTG gadgets as previously explained.

From Definitions 4.3 to 4.6, we can see that an action of a fault-tolerant gadget is guar-

anteed in the circumstance that the weight of the input error r and the number of faults

occurred in the gadget s satisfy some condition. Now, a question arises: what will happen

if the input error has weight greater than τ = b(d − 1)/2c, which is the weight of errors

that a code can correct? By Definition 3.3, we know that if a fault set Ft is distinguishable,

possible errors arising from up to t faults in an EC protocol (where t ≤ b(d−1)/2c) can be

distinguished using their corresponding syndromes or cumulative flag vectors, regardless

of the error weights. Would it be more natural if the definitions of fault-tolerant gadgets

depend on the number of faults related to an input error, instead of the weight of an input

error? In the next section, we will try to modify the definitions of fault-tolerant gadgets

and rewrite them using the notion of distinguishable fault set.

4.2 Revised definitions of fault-tolerant gadgets

In order to modify the definitions of fault-tolerant gadgets proposed in [AGP06], first, let

us define distinguishable error set as follows:

35

Definition 4.7 Distinguishable error set

Let Fr be a distinguishable fault set, and let Fr|~f=0 be a subset of Fr defined as follows:

Fr|~f=0 = {Λ ∈ Fr; ~f of Λ is zero}. (4.2)

A distinguishable error set Er corresponding to Fr is,

Er = {E of Λ ∈ Fr|~f=0}. (4.3)

If Fr is distinguishable, Fr|~f=0 is also distinguishable since all pairs of fault combinations

in Fr|~f=0 also satisfy the conditions in Definition 3.3. Moreover, because all fault combi-

nations in Fr|~f=0 correspond to the zero cumulative flag vector, we find that for any pair

of errors in Er, the errors either have different syndromes or are logically equivalent (up

to a multiplication of a stabilizer). For this reason, we can safely say that Er is a set of

correctable errors.

Because the set of correctable errors is now expanded, the definitions of r-filter and ideal

decoder can be revised as follows:

Definition 4.8 r-filter (revised version)

Let T (S) be the coding subspace defined by the stabilizer group S, and let Er be the dis-

tinguishable error set corresponding to a distinguishable fault set Fr. An r-filter is the

projector onto subspace spanned by{
E
∣∣ψ̄〉 ;

∣∣ψ̄〉 ∈ T (S), E ∈ Er
}
. (4.4)

An r-filter in the circuit form is similar to the one illustrated in Definition 4.1.

Definition 4.9 ideal decoder (revised version)

Let Et be the distinguishable error set corresponding to a distinguishable fault set Ft, where

t ≤ b(d−1)/2c and d is the code distance. An ideal decoder is a gadget which can correct any

error in Et and map an encoded state
∣∣ψ̄〉 on a code block to the corresponding (unencoded)

state |ψ〉 on a single qubit without any faults. An ideal decoder in the circuit form is similar

to the one illustrated in Definition 4.2.

36

Using the revised definitions of r-filter and ideal decoder, fault-tolerant gadgets can be

defined as follows:

Definition 4.10 Fault-tolerant gadgets (revised version)

Let t ≤ b(d− 1)/2c. Fault-tolerant gadgets are defined as follows:

1. A gate gadget is t-fault tolerant if it satisfies both of the properties in Definition 4.3,

except that r-filter and ideal decoder are defined as in Definition 4.8 and Defini-

tion 4.9.

2. An error correction gadget is t-fault tolerant if it satisfies both of the properties in

Definition 4.4, except that r-filter and ideal decoder are defined as in Definition 4.8

and Definition 4.9.

3. A state preparation gadget is t-fault tolerant if it satisfies both of the properties in

Definition 4.5, except that r-filter and ideal decoder are defined as in Definition 4.8

and Definition 4.9.

4. A (non-destructive) measurement gadget is t-fault tolerant if it satisfies both of the

properties in Definition 4.6, except that r-filter and ideal decoder are defined as in

Definition 4.8 and Definition 4.9.

The revised definitions of fault-tolerant gadgets in the circuit form may look very similar

to the old definitions proposed in [AGP06], but the meanings are different: the conditions

in the revised definitions depend on the number of faults which can cause an input or an

output error, instead of the weight of an input or an output error. Roughly speaking, this

means that (1) a fault-tolerant gadget is allowed to produce an output error of weight

greater than τ (where τ = b(d− 1)/2c), and (2) a fault-tolerant gadget can work perfectly

even though the input error has weight greater than τ , as long as the input or the output

error is similar to an error caused by no more than t ≤ τ faults. Because the revised defini-

tions of r-filter and ideal decoder are more general than the old definitions, we expect that

a gadget that satisfies one of the old definitions of fault-tolerant gadgets (Definitions 4.3

to 4.6) will also satisfy the new definitions in Definition 4.10. Note that the revised defi-

nitions are based on the fact that a fault set relevant to a gadget is distinguishable, that

is, whether the gadgets are fault tolerant depends on the way they are designed.

37

In a special case where the code being used is a CSS code and possible X-type and Z-

type errors have the same form, the definition of distinguishable error set can be further

extended as follows:

Definition 4.11 Distinguishable error set (for a special family of CSS codes)

Let Fr be a distinguishable fault set, and let Fr|~f=0 be a subset of Fr defined as follows:

Fr|~f=0 = {Λ ∈ Fr; ~f of Λ is zero}. (4.5)

A distinguishable-X error set Exr and a distinguishable-Z error set Ezr corresponding to Fr
are,

Exr = {E of Λ ∈ Fr|~f=0; E is an X-type error}, (4.6)

Ezr = {E of Λ ∈ Fr|~f=0; E is a Z-type error}. (4.7)

For a CSS code in which the elements of Exr and Ezr have a similar form, a distinguishable

error set Er corresponding to Fr is defined as follows:

Er = {Ex · Ez;Ex ∈ Exr , Ez ∈ Ezr }. (4.8)

Since a CSS code can detect and correct X-type and Z-type errors separately, here we

modify the definition of distinguishable error set for a CSS code in which Exr and Ezr are

in the same form so that more Y -type errors are included in Er. For example, suppose

that t = 2, each of XXXX and ZZZZ can be caused by 2 faults, and Y Y Y Y can be

caused by 4 faults. By the old definition (Definition 4.7), we will say that XXXX and

ZZZZ are in E2, and Y Y Y Y is in E4 but not in E2. In contrast, by Definition 4.11, we

will say that XXXX, Y Y Y Y , and ZZZZ are all in E2. This modification will give more

flexibility when developing a fault-tolerant gadget for this special kind of CSS codes, e.g.,

a transversal S gate which produces an output error Y Y Y Y from an input error XXXX

still satisfies the properties in Definition 4.10 when a distinguishable fault set is defined as

in Definition 4.11.

When performing a fault-tolerant quantum computation, FTEC gadgets will be used re-

peatedly in order to reduce the error accumulation during the computation. Normally,

38

FTEC gadgets will be placed before and after other gadgets (FTG, FTP, or FTM gad-

gets). A group of gadgets including an FTG gadget, leading EC gadgets (the FTEC gadgets

before the FTG gadget), and trailing EC gadgets (FTEC gadgets after the FTG gadget)

as shown below is called an extended rectangle at level 1 or 1-exRec:

(A 1-exRec of an FTP or FTM gadget is defined similarly to a 1-exRec of an FTG gadget,

except that there is no leading gadget in an FTP gadget.) We say that a 1-exRec is good

if the total number of faults in a 1-exRec is no more than t. Using the revised definitions

of fault-tolerant gadgets in Definition 4.10, a revised version of the exRec-Cor lemma at

level 1, originally proposed in [AGP06], can be obtained:

Lemma 4.1 ExRec-Cor lemma at level 1 (revised version)

Suppose that all gadgets are t-fault tolerant according to Definition 4.10. If a 1-exRec is

good (i.e., a 1-exRec has no more than t faults), then the 1-exRec is correct; that is, the

following condition is satisfied:

where the r-filter and the ideal decoder are defined as in Definitions 4.8 and 4.9.

Proof :

Here we will focus only on the case that a gate gadget simulates a single-qubit gate. The

proofs for the case of multiple-qubit gate and other gadgets are similar. Suppose that the

leading EC gadget, the gate gadget, and the trailing EC gadget in an exRec have s1, s2,

39

and s3 faults where s1 + s2 + s3 ≤ t. We will show that the following equation holds:

(4.9)

Because the gate gadget satisfies GPP and the EC gadgets satisfy ECRP, the left-hand

side of Eq. (4.9) is

Using GCP, ECCP, and the fact that an ideal decoder can correct any error in Et, we

obtain the following:

�

(Note that both sides of the equation in Lemma 4.1 are trace-preserving, completely posi-

tive maps, even though r-filters introduced during the proof are not trace-preserving. This

is possible since the total number of faults in a 1-exRec is restricted and all gadgets satisfy

Definition 4.10.)

The revised version of the exRec-cor lemma developed in this section is very similar to

the original version in [AGP06], even though the r-filter, the ideal decoder, and the fault-

tolerant gadgets are redefined. The exRec-Cor lemma is one of the main ingredients for

40

the proofs of other lemmas and theorems in [AGP06]. As a result, other lemmas and

theorems developed in [AGP06] are also applicable to our case, including their version of

the threshold theorem (the proofs of revised versions of the lemmas and theorems are similar

to the proofs presented in [AGP06], except that Lemma 4.1 is used instead of the original

exRec-Cor lemma). This means that fault-tolerant gadgets satisfying Definition 4.10 can

be used to simulate any quantum circuit, and the logical error rate can be made arbitrarily

small if the physical error rate is below some constant threshold value. The main advantage

of the revised definitions of fault-tolerant gadgets over the conventional definitions is that

high-weight errors are allowed as long as they arise from a small number of faults. These

revised definitions can give us more flexibility when developing fault-tolerant protocols.

41

Chapter 5

Fault-tolerant Error Correction for

the 49-qubit Concatenated Steane

Code

By simulating a quantum circuit using fault-tolerant gadgets defined in Section 4.1 or Sec-

tion 4.2, it is possible to achieve an arbitrarily low error rate through code concatenation.

However, doing so can be difficult in practice because very large overhead (such as gates

and ancillas) is required if one desires to achieve a very small error rate. Traditional FTEC

schemes require substantial number of ancillas. For example, Shor [Sho96, DA07], Steane

[Ste97, Ste02], and Knill [Kni05] EC schemes applied to the [[7, 1, 3]] Steane code require

4, 7, and 14 ancillas, respectively. Fortunately, there are several schemes for the Steane

code which require fewer; the FTEC scheme due to Yoder and Kim [YK17] and the flag

FTEC scheme by Chao and Reichardt [CR18c] for the Steane code require only 2 ancillas.

Meanwhile, the FTEC scheme for the Steane code proposed by Reichardt that extracts

several syndrome bits at once requires no ancillas, provided that there are at least two

code blocks (so at least 14 qubits are required in total) [Rei20].

In order to extend an FTEC scheme designed for a single-level code to a concatenated

code, the scheme must be modified accordingly. One way to do so is replacing all physical

qubits with code blocks and replacing all physical gates with corresponding logical gates

[AGP06]. For the [[7, 1, 3]] Steane code, each qubit (including each ancilla qubit) required in

42

an FTEC scheme will become a block of 7 physical qubits in the modified scheme. Following

this modification, the schemes in [YK17, CR18c] applied to the [[49, 1, 9]] concatenated

Steane code will require 63 qubits in total. Meanwhile, the scheme in [Rei20] requires

98 qubits in total, encoding 2 logical qubits. Note that the maximum weight for the

stabilizer generators increases quickly with concatenation. These difficulties motivate our

main question in [TL21b]: how to reduce the number of ancillas required for an FTEC

scheme for a concatenated code?

The ideas behind the FTEC scheme for the [[49, 1, 9]] concatenated Steane code proposed

in [TL21b] will be elaborated in this chapter. In Section 5.1, we observe the equivalence

between errors of any weight with the same syndrome and weight parity for the [[7, 1, 3]]

Steane code (whose generalized version is given in Lemma 3.1), and introduce the weight

parity error correction (WPEC) technique. In Section 5.2, we provide sufficient condi-

tions for WPEC, then provide syndrome extraction circuits and an FTEC protocol for the

[[49, 1, 9]] concatenated Steane code using only two ancilla qubits. In Section 5.3, WPEC

is extended to the [[23, 1, 7]] Golay code and concatenated Steane codes with more than 2

levels of concatenation.

5.1 Weight parity error correction for the Steane code

The [[7, 1, 3]] Steane code [Ste96] is a quantum error correcting code that encodes 1 logical

qubit into 7 physical qubits and can correct any error on up to 1 qubit. It has several de-

sirable properties for fault-tolerant quantum computation, e.g., logical Clifford operations

are transversal [Sho96]. The Steane code is a code in the Calderbank-Shor-Steane (CSS)

code family [CS96, Ste96] where X-type and Z-type errors can be detected and corrected

separately. The Steane code in the stabilizer formalism can be constructed from the parity

check matrix of the classical [7, 4, 3] Hamming code through the CSS construction [Got97].

In addition, it is known that any classical Hamming code can be rearranged into a cyclic

code, a binary linear code in which any cyclic shift of a codeword is also a codeword [MS77].

We can describe the Steane code in cyclic form with the following stabilizer generators:

gx1 :X I X X X I I, gz1 :Z I Z Z Z I I,

gx2 : I X I X X X I, gz2 : I Z I Z Z Z I,

gx3 : I I X I X X X, gz3 : I I Z I Z Z Z.

(5.1)

43

(Note that the generators of the Steane code defined in this chapter and those defined in

Chapters 2 and 3 are equivalent up to a permutation of qubits.)

The generators of a stabilizer code define not only the codespace, but also the measurements

that give rise to the error syndrome. When these measurements are imperfect, different

sets of generators for the same code can have different fault-tolerant properties. The use of

the Steane code in cyclic form gives some advantages in distinguishing high-weight errors

in consecutive form [TCL20] (see the discussion in Section 7.1 for more details). We can

choose the logical X and logical Z operators to be X⊗7M and Z⊗7N for any stabilizer

operators M,N . With this convention, we state the following crucial property of the Steane

code that goes into our construction.

Fact 5.1 Let L be any Z-type operator (a tensor product of Is and Zs) defined on 7 qubits.

Suppose L commutes with all X-type generators of the [[7, 1, 3]] code. If L has even weight,

then it is a logical I; otherwise, if L has odd weight, then it is a logical Z.

Proof :

Because L is a Z-type operator that commutes with all X-type generators, L is either

a stabilizer of Z type or a logical Z operator. Let E1 and E2 be Z-type operators with

weights w1 and w2. Then E1E2 is an operator of weight w1 + w2 − 2c, where c is the

number of qubits supported by both E1 and E2. Observe that all stabilizer generators of

the Steane code have even weight, and a multiplication of two operators with even weight

always gives an operator with even weight. Thus, all stabilizers of Z type (which are logical

I operators) have even weight. Moreover, a Z-type operator which is a logical Z operator

is of the form Z⊗7N where N is a stabilizer of Z type. Therefore, all logical Z operators

of Z type have odd weight. �

For a Pauli error E on a block of 7 qubits, the syndrome is a 6-bit string denoted by

~s(E) = (~sx|~sz) where ~sx, ~sz ∈ Z3
2. The i-th bit of ~sx (or ~sz) is 0 if E commutes with gxi (or

gzi), and 1 if E anticommutes with gxi (gzi). If E occurs to a codeword of the Steane code,

~s(E) corresponds to the outcomes of measuring the six generators (0 and 1 correspond to

+1 and −1 outcomes, respectively). The Steane code is a perfect CSS code of distance

3 meaning that for each ~sx, (~sx|000) is the syndrome of a unique weight-1 Z-type error,

which we denote as Ez
wt-1(~sx), and similarly each (000|~sz) is the syndrome of a unique

44

X-type error.1 For CSS codes, the X-type and Z-type error corrections are independent of

one another. Furthermore, we focus on CSS codes in which X-type and Z-type generators

have the same form, and the same method applies to both types of error correction. So we

focus on Z errors for simplicity. Since Z-type errors have trivial ~sz, we focus on ~sx from

now on.

With the above notations, consider the following simple error correction procedure on

the Steane code: if the syndrome is (~sx|000), do nothing if ~sx is trivial, apply Ez
wt-1(~sx)

otherwise. We observe that if the syndrome is caused by a Z-type error, then the procedure

outputs the encoded data transformed by a logical I or logical Z. This is because the

actual Z-type error combined with the correction remains Z-type and commutes with all

of gx1 , g
x
2 , g

x
3 , so the conclusion follows from Fact 5.1.

If a codeword is corrupted by an arbitrary Z-type error E, the above procedure always

recovers the codeword, but sometimes with an undesirable logical Z error. The technique

of weight parity error correction, to be developed next, is a revised procedure that will

always correct the error E, but it requires knowing whether E has odd or even weight.

Measuring the error weight parity should not be done on a single layer of Steane code since

it measures a logical operator on the Steane code. Fortunately, the parity information can

be safely learned for the constituent blocks when we concatenate the Steane code with

itself. We will describe these ideas in detail in the rest of this section, and apply them for

fault-tolerant error correction in Section 5.2.

First, we use Fact 5.1 to show that Z-type errors with the same syndrome and the same

weight parity (whether odd or even) differ by the multiplication of some stabilizer. (Note

that the following claim from [TL21b] is later developed into Lemma 3.1, which is the main

ingredient of [TL21a].)

Claim 5.1 Logical equivalence of errors with the same syndrome and weight parity for the

[[7, 1, 3]] Steane code

Let Sz be the subgroup generated by Z-type generators of the [[7, 1, 3]] Steane code. Suppose

E1, E2 are arbitrary Z-type errors (of any weights) on the [[7, 1, 3]] code with the same

syndrome. Then, E1 and E2 have the same weight parity if and only if E1 = E2 ·M for

some stabilizer M ∈ Sz.
1This is from the fact that the [[7, 1, 3]] Steane code can be constructed from the classical [7, 4, 3]

Hamming code which is a classical perfect code, a code saturating the classical Hamming bound [MS77].

45

Proof :

Let w1, w2 be the weights of E1, E2, respectively. Let L = E1E2 (so E2 = E1L as E1 = E†1).

The weight of L is equal to w1 + w2 − 2c where c is the number of qubits supported by

both E1 and E2. As L commutes with all of gx1 , g
x
2 , g

x
3 , from Fact 5.1, L is a logical I (a

stabilizer in Sz) if and only if w1 +w2− 2c is even (when E1 and E2 have the same weight

parity). �

Second, we use Claim 5.1 to provide a method for error correction of Z-type error of

arbitrary weight on the Steane code, if the weight parity of the error is known:

Definition 5.1 Weight parity error correction (WPEC) for the [[7, 1, 3]] code

Suppose a Z-type error E occurs to a codeword of the [[7, 1, 3]] code. Let ~sx and w be the

syndrome and the weight of E, Ez
wt-1(~sx) be the weight-1 Z-type operator with syndrome

~sx, and Ez
wt-2(~sx) be any weight-2 Z-type operator with syndrome ~sx, respectively. The

following procedure is called weight parity error correction (WPEC):

1. If ~sx is trivial, do nothing if w is even, or apply any logical Z if w is odd.

2. If ~sx is nontrivial, apply Ez
wt-1(~sx) if w is odd, or apply Ez

wt-2(~sx) if w is even.

WPEC always returns the original codewords because in each case, the error E and the

correction operation have the same syndrome and weight parity, so by Claim 5.1, the

correction is logically equivalent to E.

WPEC allows us to correct high-weight errors in the Steane code, but we need to know the

weight parity of the error. The weight parity of a Z-type error is the outcome of measuring

X⊗7, so learning the weight parity is equivalent to a logical X measurement, which destroys

the superposition of the logical state. Fortunately, there is a setting in which the weight

parity can be obtained without affecting the encoded data. Consider code concatenation

in which each qubit of an error correcting code C2 is encoded into another quantum error

correcting code C1. If C1 is chosen to be the Steane code, the weight parity of each code

block can potentially be learned from the syndrome of C2. We will develop WPEC for the

concatenated Steane code in the rest of this section and show the advantage in the context

of fault tolerance in the next section.

46

Consider code concatenation using two Steane codes in cyclic form. The resulting code

which is a [[49, 1, 9]] code can be described by 48 stabilizer generators. The first group of

42 generators, called 1st-level generators, have the form gxi ⊗ I⊗42, gzi ⊗ I⊗42, I⊗7 ⊗ gxi ⊗
I⊗35, I⊗7 ⊗ gzi ⊗ I⊗35, . . . , I⊗42 ⊗ gxi , I

⊗42 ⊗ gzi for i = 1, 2, 3. The remaining 6 of these

generators, called 2nd-level generators, have the form

g̃x1 : X I X X X I I, g̃z1 : Z I Z Z Z I I,

g̃x2 : I X I X X X I, g̃z2 : I Z I Z Z Z I,

g̃x3 : I I X I X X X, g̃z3 : I I Z I Z Z Z,

(5.2)

where I = I⊗7,X = X⊗7, and Z = Z⊗7 (note that I, X, and Z act as logical operators

for the 1st-level Steane code C1). The logical X and logical Z operators of the [[49, 1, 9]]

code can be chosen to be X̄ = X⊗49M and Z̄ = Z⊗49N for any stabilizer operators M,N .

Relevant parts of the error syndrome corresponding to the 1st-level and the 2nd-level

generators will be called 1st-level and 2nd-level syndromes, respectively.

Let us consider error correction on the [[49, 1, 9]] concatenated Steane code and assume for

now that error syndromes are reliable (which can be obtained from repetitive measure-

ments). First, consider a simple motivating example, and suppose that a Z-type error E

acts nontrivially on at most one subblock of 7-qubit code. In order to perform WPEC, the

weight parity of E and the subblock in which E occurs must be known. Suppose that E

has nontrivial 1st-level syndrome. The subblock in which E occurs is actually the subblock

whose corresponding 1st-level syndrome is nontrivial, while the weight parity of E is a mea-

surement result from a 2nd-level generator which acts nontrivially on that subblock (note

that the 2nd-level generator must act nontrivially on all qubits in such a subblock, thus

a choice of 2nd-level generators is important). Now, suppose that E has trivial 1st-level

syndrome. The subblock in which E occurs can no longer be identified by the 1st-level

syndrome. Fortunately, since the 2nd-level Steane code (C2) is a distance-3 code, it can

identify if any of the 7 subblocks of [[7, 1, 3]] code (the C1 subblocks) has a Z-type error

logically equivalent to Z⊗7, thus providing the weight parity for each subblock of [[7, 1, 3]]

code. That is, if E has trivial 1st-level syndrome and its weight is odd, the weight parity

of E and the subblock in which E occurs can be determined using only the 2nd-level syn-

drome. (If E has trivial 1st-level syndrome and has even weight, it is a stabilizer and no

error correction is needed.)

If the Z-type error is more general and may act on multiple subblocks, the 2nd-level

47

(a) (b)

Figure 5.1: (a) An example of circuit for measuring generator g̃z1 = ZIZZZII. Here we
display only the subblocks in which the operator acts nontrivially (the 1st, 2nd, 3rd, and
4th subblocks in the figure correspond to the 1st, 3rd, 4th, and 5th subblocks of g̃z1).
A circuit for measuring X-type operator such as g̃x1 = XIXXXII can be obtained by
replacing each CNOT gate in (a) with the gate illustrated in (b).

syndrome may not provide the weight parities of the subblocks. Instead, we consider only

Z-type errors that arise from a small number of faults in specially designed generator

measurements. We will show that for these errors, the weight parity for each subblock

can be determined by the 2nd-level syndrome along with the information whether each

subblock has trivial 1st-level syndrome or not.

In particular, let block parity ~px ∈ Z7
2 be a bitstring, where each bit is the weight parity

of the Z error in one subblock, and 0 and 1 represent even and odd weights, respectively.

Also, define the triviality of a subblock to be 0 or 1 if the subblock has trivial or non-

trivial 1st-level syndrome, and let block triviality ~ηx ∈ Z7
2 be a 7-bit string in which the

i-th bit represents the triviality of the i-th subblock. If the block parity can be accurately

determined using the 2nd-level syndrome together with the block triviality (we will elabo-

rate how this can be done later), then we can blockwisely perform WPEC as described in

Definition 5.1 by using the 1st-level syndrome and the weight parity of each subblock.

In this work, we develop an FTEC protocol that uses WPEC to correct high-weight errors

arising from up to 3 faults. As an example, consider the measurement of g̃z1 using the circuit

depicted in Fig. 5.1a. Here we assume that a fault from any two-qubit gate can cause any

48

Form of
m

2nd-level Block
Block parity

error syndrome triviality

PIZZZII
7 (0,0,0) (0,0,0,0,0,0,0) (1,0,1,1,1,0,0)

2,4,6 (1,0,0) (1,0,0,0,0,0,0) (0,0,1,1,1,0,0)
1,3,5 (0,0,0) (1,0,0,0,0,0,0) (1,0,1,1,1,0,0)

IIPZZII
7 (1,0,0) (0,0,0,0,0,0,0) (0,0,1,1,1,0,0)

2,4,6 (0,0,1) (0,0,1,0,0,0,0) (0,0,0,1,1,0,0)
1,3,5 (1,0,0) (0,0,1,0,0,0,0) (0,0,1,1,1,0,0)

IIIPZII
7 (0,0,1) (0,0,0,0,0,0,0) (0,0,0,1,1,0,0)

2,4,6 (1,1,1) (0,0,0,1,0,0,0) (0,0,0,0,1,0,0)
1,3,5 (0,0,1) (0,0,0,1,0,0,0) (0,0,0,1,1,0,0)

IIIIPII
7 (1,1,1) (0,0,0,0,0,0,0) (0,0,0,0,1,0,0)

2,4,6 (0,0,0) (0,0,0,0,1,0,0) (0,0,0,0,0,0,0)
1,3,5 (1,1,1) (0,0,0,0,1,0,0) (0,0,0,0,1,0,0)

I⊗7 - (0,0,0) (0,0,0,0,0,0,0) (0,0,0,0,0,0,0)

Table 5.1: All possible forms of data errors arising from a single fault occurred during
syndrome measurement using a circuit in Fig. 5.1a (where P = I⊗7−m ⊗ Z⊗m). The block
parity corresponding to each form of errors can be determined by the 2nd-level syndrome
and the block triviality obtained from a full syndrome measurement. By knowing the block
parity, high-weight errors can be corrected using WPEC.

two-qubit Pauli errors on the qubits where the gate acts nontrivially (which corresponds

to the noise model in Definition 3.1), and X-type and Z-type errors can be detected sepa-

rately. Thus, we may assume that high-weight errors arising from a single CNOT fault is

of the form PIZZZII, IIPZZII, IIIPZII, or IIIIPII, where Z = Z⊗7, P = I⊗7−m⊗Z⊗m,

and m ∈ {1, . . . , 7} (see the analysis of possible errors in Section 3.2 or [TCL20] for

more details). It is not hard to find 2nd-level syndrome, block triviality, and block parity

corresponding to each possible error. For example, error PIZZZII with m = 6 anticom-

mutes with gx1 and g̃x1 , and commutes with the other generators. Thus, its corresponding

2nd-level syndrome, block triviality, and block parity are (1, 0, 0), (1, 0, 0, 0, 0, 0, 0), and

(0, 0, 1, 1, 1, 0, 0), respectively. Table 5.1 displays all possible high-weight errors arising

from a single fault during g̃z1 measurement and their corresponding 2nd-level syndrome,

block triviality, and block parity. Note that except for the first and the last row (with

errors differing by multiplication of a stabilizer), each row has a unique combination of

49

2nd-level syndrome and block triviality, so the block parity can be determined from the ta-

ble. Since the 2nd-level syndrome and the block triviality can in turn be obtained from the

generator measurements, all possible errors arising from a single CNOT fault during the

measurement of g̃z1 can be corrected using WPEC. In addition, observe that ZIZZZII and

I⊗7 are equivalent up to a multiplication of g̃z1 but their block parities are different. Here

we can see that multiplying an error with some 2nd-level generators may change its block

parity, but its 2nd-level syndrome and block triviality (which is deduced from its 1st-level

syndrome) remain the same. In this case, WPEC is still applicable. We say that block

parities are equivalent whenever they can be transformed to one another by multiplying

the corresponding errors with some stabilizer.

In an actual fault-tolerant protocol, we want to distinguish all possible high-weight errors

arising from various types of faults up to 3 faults, including any gate faults, faults during

the preparation and measurement of ancilla qubits, and faults during wait time. The circuit

construction in Fig. 5.1a, however, might not cause errors that can be distinguished. Note

that possible errors arising from CNOT faults heavily depend on the ordering of CNOT

gates being used in the measurement circuit. In Section 5.2, we will discuss conditions

in which WPEC can be applied. We will also provide a family of circuits with specific

CNOT ordering and an FTEC protocol for the [[49, 1, 9]] concatenated Steane code which

can correct high-weight errors arising from up to 3 faults.

5.2 Fault-tolerant error correction protocol for the

49-qubit concatenated Steane code

As previously discussed in Chapter 4, FTEC gadget is one of the most essential gadgets

for constructing large-scale quantum computers since it will be used repetitively in a fault-

tolerant simulation of a quantum circuit. In [TL21b], an FTEC protocol which satisfies

the following definition (which is equivalent to Definition 4.4, the conventional definition

of FTEC gadget from [AGP06]) has been developed:

Definition 5.2 Fault-tolerant error correction

For τ = b(d − 1)/2c and t ≤ τ , an error correction protocol using a distance-d stabilizer

code is t-fault tolerant if the following two conditions are satisfied:

50

1. For any input codeword with error of weight r, if s faults occur during the protocol

with r + s ≤ t, ideally decoding the output state gives the same codeword as ideally

decoding the input state.

2. If s faults happen during the protocol with s ≤ t, no matter how many errors are

present in the input state, the output state differs from any valid codeword by an

error of at most weight s.

The FTEC protocol for the [[49, 1, 9]] code developed in [TL21b] can correct up to 3 faults.

The circuits for measuring 1st-level and 2nd-level generators are shown in Fig. 5.2. The

types of faults being considered include faults that happen to the physical gates, faults

during the preparation and measurement of ancilla qubits in the circuits, and faults during

wait time.

(a) (b)

Figure 5.2: Circuits for measuring 2nd-level and 1st-level generators being used in [TL21b]
are shown in (a) and (b), respectively. With this gate permutation, the block parity corre-
sponding to every possible high-weight error arising from up to 3 faults can be accurately
determined. As such, our protocol can correct up to 3 faults.

Let fault combination be a set of faults up to 3 faults (which may be of different types and

can cause errors of weight much higher than 3 on the data qubits) as previously defined in

Definition 3.2. Our goal is to distinguish all fault combinations that can be confusing and

may cause WPEC to fail. Similar to an example of WPEC in Section 5.1, we can categorize

51

all possible fault combinations into subsets by their 2nd-level syndrome and block triviality.

The following sufficient condition can determine when the WPEC technique can be applied:

Claim 5.2 Sufficient condition for WPEC

Let F3 be the set of all possible fault combinations arising from up to 3 faults during an

FTEC protocol for the [[49, 1, 9]] code, and let Gj ⊆ F3 be a subset of fault combinations with

the same 2nd-level syndrome and the same block triviality (where
⋃
j Gj = F3). WPEC is

applicable in the FTEC protocol if each Gj satisfies one of the following conditions:

1. Data errors from all fault combinations in Gj give equivalent block parities.

2. Not every data error from a fault combination in Gj give the same block parity (or

its equivalence), but for each pair of fault combinations in Gj whose block parities of

their data errors are not equivalent, their 1st-level syndromes or flag measurement

results (or both) are different.

Proof :

Whenever subset Gj satisfies the first condition in Claim 5.2, we can find a block parity

that works for all fault combinations in Gj using only the 2nd-level syndrome and the block

triviality. A correction operator for each fault combination can be found following the def-

inition of WPEC (Definition 5.1) using the 1st-level syndrome and the block parity. On

the other hand, if Gj satisfies the second condition in Claim 5.2, a block parity cannot be

accurately determined using only the 2nd-level syndrome and the block triviality. Fortu-

nately, with the assistance of the 1st-level syndrome and the flag measurement result, fault

combinations that correspond to non-equivalent block parities can be distinguished and

the block parity of each fault combination can be found. Similarly, a correction operator

for each fault combination can be determined following Definition 5.1. �

(Note that if Gj satisfies one of the conditions in Claim 5.2, any pair of errors in Gj either

correspond to different syndromes or different flag measurement results, or are logically

equivalent; that is, the subset Gj is distinguishable according to Definition 3.3. This means

that F3 =
⋃
j Gj is distinguishable whenever Claim 5.2 is satisfied for all Gj’s.)

Whether a set of possible fault combinations satisfies Claim 5.2 or not depends heavily on

the ordering of the CNOT gates and the use of flag ancillas in the circuits for syndrome

52

measurements. In our FTEC protocol for the [[49, 1, 9]] code, the CNOT gates being used

in the circuits for measuring 2nd-level generator are applied in the following ordering:

(1, 8, 15, 22, 2, 9, 16, 23, . . . , 7, 14, 21, 28), (5.3)

where the numbers 1 to 28 represent the qubits in which g̃zi acts nontrivially. That is,

CNOT gates are applied on the first qubit in each subblock for all subblocks, then on the

second qubit in each subblock for all subblocks, and so on. The circuit for measuring g̃z1
is shown in Fig. 5.2a. In addition, CNOT gates being used in the circuits for measuring

1st-level generator are in the normal ordering as shown in Fig. 5.2b. Note that there is

no flag ancilla involved in the measurement of a 2nd-level generator, and there is one flag

ancilla in the circuit for measuring a 1st-level generator.

Consider the case that there are some faults during Z-type generator measurements. Faulty

circuits can produce nontrivial flag measurement results and cause error of any weight on

the data qubits. Our goal is to detect and correct such an error using the flag measurement

results from the faulty circuits, together with 1st-level and 2nd-level syndromes obtained

from subsequent syndrome measurements. In particular, let the flag vector ∈ Z
21
2 be a

bitstring wherein each bit is the flag measurement result from each circuit for measuring

gzi on each of the 7 subblocks. We define the cumulative flag vector ~fz ∈ Z21
2 to be the entry-

wise sum of flag vectors (modulo 2) obtained from gzi measurements accumulated from the

first round up until the current round of measurements (see the protocol described below

for the definition of a round of measurements). Cumulative flag vector ~fz together with

1st-level syndrome ~s1x ∈ Z21
2 , 2nd-level syndrome ~s2x ∈ Z3

2, and block triviality ~ηx ∈ Z7
2

from the latest round of measurements will be used for distinguishing all possible fault

combinations that can occur during the syndrome measurements as described in Claim 5.2.

Using the computer simulation described in Appendix A.1, we can verify that Claim 5.2 is

satisfied when the number of input errors r and the number of faults s satisfy r + s ≤ 3.

A table of possible data errors and their corresponding ~s1x,~s2x, ~ηx,~fz, and block parity ~px
(similar to Table 5.1) can also be obtained from the simulation. Moreover, the subsets Gj
can be deduced from this table (see Appendix A.1 for more details).

Let outcome bundle (~s1,~s2, ~η,~f) be the collection of 1st-level syndrome ~s1 = (~s1x|~s1z),
2nd-level syndrome ~s2 = (~s2x|~s2z), block triviality ~η = (~ηx|~ηz), and cumulative flag vector
~f = (~fx|~fz) obtained during a single round of full syndrome measurement, where subscripts

x and z denote results corresponding to X-type and Z-type generator measurements.

53

Using the simulation result together with the fact that X-type and Z-type errors can be

corrected separately, an FTEC protocol for the [[49, 1, 9]] code can be constructed as follows.

FTEC protocol for the [[49, 1, 9]] code

A full syndrome measurement, or a round of measurements, measure the generators in

the following order: measure all g̃zi ’s, then all g̃xi ’s, then all gzi ’s, then all gxi ’s. Perform

full syndrome measurements until the outcome bundles are repeated 4 times in a row.

Afterwards, perform the following error correction procedure:

1. Find the subset Gj corresponding to ~s2x and ~ηx from the table of possible errors

(obtained from the simulation in Appendix A.1).

(a) If Gj satisfies Condition 1 in Claim 5.2, use a block parity of any fault combi-

nation in Gj.
(b) If Gj satisfies Condition 2 in Claim 5.2, use a block parity of any combination

in Gj that corresponds to ~s1x and ~fz.

(c) If there is no Gj from the table of possible errors which corresponds to ~s2x and

~ηx, use the block parity with all 1’s.

2. Let (~s1x)i be the 1st-level syndrome and wpi be the weight parity of the i-th sub-

block. Apply Z-type error correction on each subblock as given by Definition 5.1. In

particular:

(a) If (~s1x)i is trivial, apply ZZIZIII (logically equivalent to Z⊗7) to the i-th

subblock when wpi is odd, or do nothing when wpi is even.

(b) If (~s1x)i is nontrivial, apply Ez
wt-1((~s1x)i) to the i-th subblock when wpi is odd,

or apply Ez
wt-2((~s1x)i) when wpi is even.

3. If there is no Gj from the table of possible errors which corresponds to ~s2x and

~ηx, further apply the following error correction procedure: find a Pauli operator

from {ZIIIIII, IZIIIII, . . . , IIIIIIZ} which corresponds to ~s2x, then apply such an

operator (or its logically equivalent operator) to the data qubits.

4. Repeat steps 1–3 but use ~s1z, ~s2z, ~ηz, and ~fx to deduce the X-type error correction

(Ex
wt-1((~s1z)i), E

x
wt-2((~s1z)i), or XXIXIII) for each subblock.

54

Here we will assume that there are at most 3 faults during the protocol and the error is of Z

type. The assumption on the number of faults guarantees that the outcome bundles must

be repeated 4 times in a row within 16 rounds (the outcome bundle cannot keep changing

forever since the number of faults is limited). To verify that the protocol above is 3-fault

tolerant, i.e., it satisfies the FTEC conditions in Definition 5.2 with t = 3 (the [[49, 1, 9]]

code acts as a distance-7 code), first let us consider the case that there are no faults during

the last round of full syndrome measurement. In this case, the outcome bundle corresponds

to the actual data error. From the simulation in Appendix A.1, we know that whenever

r + s ≤ 3, one of the conditions in Claim 5.2 is satisfied and the block parity can be

accurately determined. The operation in Step 2 will give the correct output state, thus

both of the FTEC conditions are satisfied. On the other hand, if r + s > 3 but s ≤ 3, ~s2x
and ~ηx may not correspond to any error in the table of possible errors. By using the block

parity with all 1’s, the operation in Step 2 will project the state in each subblock back to

the subspace of the [[7, 1, 3]] code, where each subblock has an error equivalent to either I

or Z after the operation. Afterwards, the operation in Step 3 will project the output state

back to the subspace of the [[49, 1, 9]] code. Thus, the second condition in Definition 5.2 is

satisfied.

Now, let us consider the case that there are some faults during the last round of full

syndrome measurement. The outcome bundle we obtained from the last round may not

correspond to the data error since some errors arising during the last round may be un-

detectable. Since we perform full syndrome measurements until the outcome bundles are

repeated 4 times in a row and there are at most 3 faults during the whole protocol, at least

one of the last 4 rounds of full syndrome measurement must be correct. From the simula-

tion result in Appendix A.1, the outcome bundle obtained from the last round (which is

equal to that obtained from any correct round in the last 4 rounds) can definitely correct

the error occurred before the last correct round. Here we want to verify that whenever

the last 4 rounds have s faults (where s ≤ 3), after the last round, the weight of the data

error is increased by no more than s. This can be verified using the computer simulation

described in Appendix A.2. By applying operation in Step 2 (and possibly Step 3) as

previously discussed, the output state differs from a valid codeword by an error of weight

at most s, regardless of the number of input errors. Thus, the second condition in Defi-

nition 5.2 is satisfied. Furthermore, whenever r + s ≤ 3, we will obtain an output state

which differs from a correct output state by an error of weight at most 3. Therefore, the

first condition in Definition 5.2 is also satisfied.

55

The analysis for X-type errors is similar to that of Z-type errors. Note that during the

measurement of Z-type generators, a single gate fault can cause an X-type error of weight

1 on the data qubits. This error can be considered as an input error for the measurement

of X-type generators, thus the same analysis is applicable.

It should be noted that the FTEC protocol for the [[49, 1, 9]] concatenated Steane code

proposed in [TL21b] was designed with the conventional definition of FTEC gadget (Defi-

nition 5.2) in mind. Nevertheless, it is also possible to construct an FTEC protocol satis-

fying the revised definition of FTEC gadget (Definition 4.10) since the circuit construction

presented in [TL21b] gives a distinguishable fault set F3. One applicable protocol is the

FTEC protocol for a capped color code in Section 6.3.1 (which is also applicable to any

CSS code whose fault set is distinguishable and satisfies Definition 4.11).

5.3 Weight parity error correction for other codes

Besides the Steane code, we find that the WPEC technique is applicable to the [[23, 1, 7]]

Golay code [Ste03], which is a perfect CSS code of distance 7. The [[23, 1, 7]] Golay code can

correct up to 3 errors and can be constructed from the parity check matrix of the classical

[23, 12, 7] Golay code [MS77]. In cyclic form, the [[23, 1, 7]] Golay code can be constructed

from the parity check matrix,

1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1



,

56

which can be generated from the check polynomial h(x) = x12+x10+x7+x4+x3+x2+x+1

[MS77]. The i-th Z-type (or X-type) generator of this code will be denoted as gzi (or gxi)

where i = 1, . . . , 11. The logical X and logical Z operators of this code can be chosen to

be X̄ = X⊗23M and Z̄ = Z⊗23N for any stabilizer operators M,N .

Similar to the [[7, 1, 3]] code, we can prove the equivalence of errors with the same syndrome

and the same weight parity as follows:

Claim 5.3 Logical equivalence of errors with the same syndrome for the [[23, 1, 7]] Golay

code

Let Sz be the subgroup generated by Z-type generators of the [[23, 1, 7]] Golay code. Suppose

E1, E2 are arbitrary Z-type errors (of any weights) on the [[23, 1, 7]] code with the same

syndrome. Then, E1 and E2 have the same weight parity if and only if E1 = E2 ·M for

some stabilizer M ∈ Sz.

Proof :

We can verify that every Z-type stabilizer in Sz has even weight, and every logical Z

operator has odd weight. The rest of the proof follows the proof of Claim 5.1. �

Let us consider Z-type error correction for the [[23, 1, 7]] code. Since the code is a perfect

CSS code of distance 7, for each ~sx ∈ Z11
2 , (~sx|0...0) is the syndrome of a unique Z-type error

of weight ≤ 3. Suppose that a codeword is corrupted by a Z-type error with syndrome ~sx.

If we apply the minimal weight error correction corresponding to ~sx, we sometimes obtain

the codeword with undesirable logical Z operator. Fortunately, by knowing the weight

parity of the error, the WPEC technique can be applied. The error correction procedure

for the [[23, 1, 7]] code is defined as follows:

Definition 5.3 Weight parity error correction for the [[23, 1, 7]] Golay code

Suppose a Z-type error E occurs to a codeword of the [[23, 1, 7]] code. Let ~sx and w be

the syndrome and the weight of E, and let Ez
min(~sx) be the unique minimal weight error

correction corresponding to the syndrome ~sx. The following procedure is called weight

parity error correction (WPEC):

1. If Ez
min(~sx) has even weight (0 or 2), apply Ez

min(~sx) to the data qubits whenever w

is even, or apply any Z-type operator P that has odd weight and corresponds to ~sx to

the data qubits whenever w is odd.

57

2. If Ez
min(~sx) has odd weight (1 or 3), apply Ez

min(~sx) to the data qubits whenever w is

odd, or apply any Z-type operator P that has even weight and corresponds to ~sx to

the data qubits whenever w is even.

Note that the [[23, 1, 7]] Golay code can be made cyclic, thus it can distinguish high-weight

errors in consecutive form [TCL20]. Claim 5.3 together with the cyclic property give us

some possibilities to construct an FTEC protocol for the [[529, 1, 49]] concatenated Golay

code in the same way as what we have done for the [[49, 1, 9]] code. We expect that

our technique can lead to a protocol which can correct a large number of faults and will

compare well with other FTEC schemes. To reach this goal, syndrome extraction circuits

with appropriate permutation of gates (and possibly with flag ancillas) must be found so

that conditions similar to those in Claim 5.2 are satisfied. The search for such circuits

with careful numerical verification of fault tolerance is a challenging and interesting future

research direction.

The WPEC technique may also apply to the code obtained from concatenating the Steane

code to the k-th level, e.g., the [[7k, 1, 3k]] code. Since the k-th-level Steane code is a

distance-3 code, we expect that a block of errors in the (k− 1)-th level can be determined

and corrected using the syndrome and the block parity defined at the k-th level. Again,

however, appropriate syndrome extraction circuits must be found, which is beyond the

scope of this work.

58

Chapter 6

Fault-tolerant Error Correction and

Quantum Computation for Capped

Color Codes

In Chapter 5, we describe how an FTEC protocol for the [[49, 1, 9]] concatenated Steane

code can be constructed using flag and weight parity techniques, and we discuss possi-

bilities of applying such techniques to other concatenated codes such as the [[529, 1, 49]]

concatenated Golay code and concatenated Steane codes with more than 2 levels of con-

catenation. Nevertheless, there are families of codes that attain high distance without

code concatenation. Topological codes in which the code distance can be made arbitrarily

large by increasing the lattice size are good candidates for practical implementation of

quantum computers since fault-tolerant protocols for these codes typically give very high

accuracy thresholds [DKLP02, DCP10, BH13, DCP13, ABCB14, BSV14, Del14, BLP+16,

BNB16, CR18a, DBT18, DP18, KD19, KP19, MKJO19, NB19, VBK21]. Examples of

two-dimensional (2D) topological stabilizer codes are 2D toric codes [Kit97, BK98] and 2D

color codes [BMD06]. These codes are suitable for physical implementations using super-

conducting qubits [FMMC12, CZY+20, CKYZ20] and qubits realized by Majorana zero

modes [KKL+17, CBDH20] since qubits can be arranged on a 2D plane and only quan-

tum gates involving neighboring qubits are required. Toric codes and color codes can be

transformed to one another using the techniques developed in [KYP15] (see also [VB19]).

59

The simplest way to perform FTQC on a topological stabilizer code is to implement logical

gates by applying physical gates transversally since doing so does not spread errors (there-

fore fault tolerant). Unfortunately, it is known by the Eastin-Knill theorem that a universal

set of quantum operations cannot be achieved using only transversal gates [EK09]. More-

over, logical gates which can be implemented transversally on a 2D topological stabilizer

code are in the Clifford group [BK13] (see also [PY15]). The Clifford group can be gener-

ated by the Hadamard gate (H), the π
4
-gate (S), and the CNOT gate [CRSS97, Got98].

A transversal CNOT gate is achievable by both 2D toric codes and 2D color codes since

these codes are in the CSS code family [CS96, Ste96]. In addition, the 2D color codes

have transversal H and S gates [BMD06], so, any Clifford operation can be implemented

transversally on any 2D color code.

Implementing only Clifford gates on a 2D color code is not particularly interesting since

Clifford operation can be efficiently simulated by a classical computer (the result is known

as Gottesman-Knill theorem) [Got97, NC00]. However, universality can be achieved by

Clifford gates together with any gate not in the Clifford group [NRS01]. There are two

compelling approaches for implementing a non-Clifford gate on a 2D color code: magic

state distillation [BK05] and code switching [PR13, ADCP14, Bom15a, KB15]. The former

approach focuses on producing high-fidelity T states from noisy T states and Clifford

operations, where |T 〉 = (|0〉+
√
i|1〉)/

√
2 is the state that can be used to implement non-

Clifford T =
(
1 0
0
√
i

)
operation. By replacing any physical gates and qubits with logical

gates and blocks of code, a logical T gate can be implemented using a method similar

to that proposed in [BK05]. The latter approach uses the gauge fixing method to switch

between a 2D color code (in which Clifford gates are transversal) and a 3D color code (in

which the T gate is transversal). A recent study [BKS21] which compares the overhead

required for these two approaches shows that code switching does not outperform magic

state distillation when certain FT schemes are used, except for some small values of physical

error rate. Nevertheless, their results do not rule out the possibilities of FT schemes have

yet to be discovered, in which the authors are hopeful that such schemes could reduce the

overhead required for either of the aforementioned approaches.

In this chapter, we will extend the ideas of FTEC using flags and weight parities from

Chapter 5 to the 2D color codes. The major difference between the constructions in this

chapter and the previous chapter is that the bigger code being used in this chapter is not

obtained from concatenating smaller codes. Our study leads to a family of capped color

60

codes, which are CSS subsystem codes [Pou05, Bac06]. Two stabilizer codes obtained from

a subsystem capped color code, namely capped color codes in H form and T form, will be

studied in this chapter. The code in H form possesses transversal H, S, and CNOT gates,

while the code in T form possesses transversal CNOT and T gates. Similar to 2D and

3D color codes, one can transform between the capped color codes in H form and T form

through code switching.

This chapter is organized as follows: In Section 6.1, we review basic properties of the

3D color code of distance 3 (which is defined as a subsystem code). We then provide a

construction of circuits for measuring the stabilizer generators of the 3D color code in H

form which give a distinguishable fault set. In Section 6.2, we define a family of capped

color codes, whose properties are very similar to those of the 3D color code of distance 3.

Afterwards, circuits for measuring the stabilizer generators of the capped code in H form

are constructed using ideas from the previous section. We also prove Theorem 6.1 which

states sufficient conditions for the circuits that can give a distinguishable fault set, then

provide circuits for the capped color codes of distance 5 and 7 which satisfy the sufficient

conditions. In Section 6.3, we construct fault-tolerant protocols for a capped color code in

H form, including FTEC, FTM, and FTP protocols. In addition, an FTEC protocol for a

stabilizer code whose syndrome measurement circuits give a distinguishable fault set can be

developed using similar ideas. The protocol for such a code is provided in Section 6.4. All

protocols provided in this chapter satisfy the revised definitions of fault-tolerant gadgets

previously discussed in Section 4.2. The FTEC techniques and protocols presented in this

chapter follow Sections III, IV, and V of [TL21a].

6.1 Syndrome measurement circuits for the 3D color

code of distance 3

In this section, we will try to find circuits for measuring generators of the 3D color code

of distance 3 which gives a distinguishable fault set. We will first define a 3D color code

of distance 3 as a CSS subsystem code and observe some of its properties which is useful

for FTQC. Afterwards, we will give the CNOT orderings for the circuits which can make

the fault set become distinguishable.

61

6.1.1 The 3D color code of distance 3

First, let us consider the qubit arrangement as displayed in Fig. 6.1a. A 3D color code

of distance 3 [Bom15a] is a [[15, 1, 3]] CSS subsystem code [Pou05, Bac06] which can be

described by the stabilizer group S3D = 〈vxi , vzi 〉 and the gauge group G3D = 〈vxi , vzi , fxj , f zj 〉,
i = 0, 1, 2, 3 and j = 1, 2, ..., 6, where vxi ’s and fxj ’s (or vzi ’s and f zj ’s) are X-type (or Z-type)

operators defined on the following set of qubits:

� vx0 (or vz0) is defined on q0, q1, q2, q3, q4, q5, q6, q7

� vx1 (or vz1) is defined on q1, q2, q3, q5, q8, q9, q10, q12

� vx2 (or vz2) is defined on q1, q3, q4, q6, q8, q10, q11, q13

� vx3 (or vz3) is defined on q1, q2, q4, q7, q8, q9, q11, q14

� fx1 (or f z4) is defined on q1, q2, q3, q5

� fx2 (or f z5) is defined on q1, q3, q4, q6

� fx3 (or f z6) is defined on q1, q2, q4, q7

� fx4 (or f z1) is defined on q1, q4, q8, q11

� fx5 (or f z2) is defined on q1, q2, q8, q9

� fx6 (or f z3) is defined on q1, q3, q8, q10

where qubit i in Fig. 6.1a is denoted by qi. Graphically, vxi ’s and vzi ’s are 8-body volumes

shown in Fig. 6.1b, and fxj ’s and f zj ’s are 4-body faces shown in Fig. 6.1c. Note that fxj
and f zk anticommute when j = k, and they commute when j 6= k. The dual lattice of the

3D color code of distance 3 is illustrated in Fig. 6.1d, where each vertex represents each

stabilizer generator.

The 3D color code of distance 3 can be viewed as the [[15, 7, 3]] Hamming code in which 6

out of 7 logical qubits become gauge qubits. From the subsystem code previously described,

a [[15, 1, 3]] stabilizer code can be constructed by fixing some gauge qubits; i.e., choosing

some gauge operators which commute with one another and including them in the stabilizer

group. In this work, we will discuss two possible ways to construct a stabilizer code from

62

Figure 6.1: The 3D color code of distance 3. In (a), qubits are represented by vertices.
Note that the set of qubits are bipartite, as displayed by black and white colors. Stabilizer
generators and gauge generators of the code are illustrated by volume operators in (b) and
face operators in (c), respectively. The dual lattice of the code is shown in (d).

the 3D color code of distance 3. The resulting codes will be called the 3D color code in H

form and the 3D color code in T form.

The 3D color code of distance 3 in H form

Let us consider the center plane of the code shown in Fig. 6.1a which covers q1 to q7.

We can see that the plane looks exactly like the 2D color code of distance 3 [BMD06],

whose stabilizer group is S2D = 〈fx1 , fx2 , fx3 , f z4 , f z5 , f z6 〉 (the 2D color code of distance 3 is

equivalent to the [[7, 1, 3]] Steane code). The 3D color code in H form is constructed by

adding the stabilizer generators of the 2D color code to the old generating set of the 3D

color code; the stabilizer group of the 3D color code of distance 3 in H form is

SH = 〈vx0 , vx1 , vx2 , vx3 , vz0, vz1, vz2, vz3, fx1 , fx2 , fx3 , f z4 , f z5 , f z6 〉. (6.1)

We can choose logical X and logical Z operators of this code to be X⊗nM and Z⊗nN

for some stabilizers M,N ∈ SH. One important property of the code in H form for fault-

tolerant quantum computation is that the logical Hadamard, S, and CNOT gates are

63

transversal; i.e., H̄ = H⊗n is a logical Hadamard gate, S̄ = (S†)⊗n is a logical S gate, and

CNOT = CNOT⊗n is a logical CNOT gate, where H = 1√
2

(
1 1
1 −1

)
and S =

(
1 0
0 i

)
.

Note that the choice of stabilizer generators for SH is not unique. However, the choice of

generators determines how the error syndrome will be measured, and different choices of

generators can give different fault sets. The circuits for measuring generators discussed

later in Section 6.1.2 only correspond to the choice of generators in Eq. (6.1).

The 3D color code of distance 3 in T form

Compared to the code in H form, the 3D color code of distance 3 in T form is constructed

from different gauge operators of the [[15, 1, 3]] subsystem code. In particular, the generators

of the code in T form consist of the generators of the [[15, 1, 3]] subsystem code and all Z-

type 4-body face generators; i.e., the stabilizer group of the code in T form is

ST = 〈vx0 , vx1 , vx2 , vx3 , vz0, vz1, vz2, vz3, f z1 , f z2 , f z3 , f z4 , f z5 , f z6 〉. (6.2)

Similar to the code in H form, we can choose logical X and logical Z operators of this code

to be X⊗nM and Z⊗nN for some stabilizers M,N ∈ ST. Also, CNOT gate is transversal

in the code of T form. However, one major difference from the code in H form is that

Hadamard and S gates are not transversal in this code. Instead, a T gate is transversal; a

logical T gate can be implemented by applying T gates on all qubits represented by black

vertices in Fig. 6.1a and applying T † gates on all qubits represented by white vertices,

where T =
(
1 0
0
√
i

)
.

In fact, the code in T form is equivalent to the [[15, 1, 3]] quantum Reed-Muller code. Note

that Lemma 3.1 is applicable to both codes in H form and T form since they have all

code properties required by the lemma, even though X-type and Z-type generators are

not similar in the case of the code in T form.

Code switching

It is possible to transform between the code in H form and the code in T form using the

technique called code switching [PR13, ADCP14, Bom15a, KB15]. The process involves

measurements of gauge operators of the [[15, 1, 3]] subsystem code, which can be done as

follows: Suppose that we start from the code in H form. We can switch to the code in

64

T form by first measuring f z1 , f
z
2 and f z3 . Afterwards, we must apply an X-type Pauli

operator that

1. commutes with all vxi ’s and vzi ’s (i = 0, 1, 2, 3), and

2. commutes with f z4 , f
z
5 , f

z
6 , and

3. for each j = 1, 2, 3, commutes with f zj if the outcome from measuring such an operator

is 0 (the eigenvalue is +1) or anticommutes with f zj if the outcome is 1 (the eigenvalue

is −1).

Switching from the code in T form to the code in H form can be done similarly, except

that fx1 , f
x
2 and fx3 will be measured and the operator to be applied must be a Z-type

Pauli operator that commutes or anticommutes with fx1 , f
x
2 and fx3 (depending on the

measurement outcomes).

Transversal gates satisfy the conditions for fault-tolerant gate gadgets proposed in [AGP06]

(see Definition 4.3), thus they are very useful for fault-tolerant quantum computation. It

is known that universal quantum computation can be performed using only H,S, CNOT,

and T gates [CRSS97, Got98, NRS01]. However, for any QECC, universal quantum com-

putation cannot be achieved using only transversal gates due to the Eastin-Knill theorem

[EK09]. Fortunately, the code switching technique allows us to perform universal quantum

computation using both codes in H form and T form; any logical Clifford gate can be per-

formed transversally on the code in H form since the Clifford group can be generated by

{H,S,CNOT}, and a logical T gate can be performed transversally on the code in T form.

For the 3D color code of distance 3, code switching can be done fault-tolerantly using the

above method [Bom15a, KB15] or a method presented in [BKS21] which involves a logical

Einstein-Podolsky-Rosen (EPR) state.

6.1.2 Circuit configuration for the 3D color code of distance 3

In this section, circuits for measuring the generators of the 3D color code of distance 3 in

H form will be developed. Here we will try to find CNOT orderings for the circuits which

make fault set F1 distinguishable (where F1 is the set of all fault combinations arising

from up to 1 fault as defined in Definition 3.3). The ideas used for the circuit construction

65

in this section will be later adapted to the circuits for measuring generators of a capped

color code (the code will be defined in Section 6.2.1 and the circuit construction will be

discussed in Section 6.2.2). Fault-tolerant protocols for the 3D color code is distance 3 and

capped color codes will be later discussed in Section 6.3.

For simplicity, since X-type and Z-type data errors can be corrected separately and X-

type and Z-type generators of our choice have the same form, we will only discussed the

case that a single fault can give rise to a Z-type data error. Similar analysis will also be

applicable to the case of X-type errors. We start by observing that the 2D color code of

distance 3 is a subcode of the the 3D color code of distance 3 in H form, where the 2D color

code lies on the center plane of the code illustrated in Fig. 6.1a. The 2D color code is a

code to which Lemma 3.1 is applicable, meaning that if we can measure the syndrome and

the weight parity of any Z-type Pauli error occurred on the center plane, we can always

find a Pauli operator logically equivalent to such an error. Moreover, we can see that the

generator vx0 has support on all qubits on the center plane (q1 to q7). This means that

the weight parity of a Z-type error on the center plane can be obtained by measuring vx0 .

For these reasons, we can always find an error correction operator for any Z-type error

occurred on the center plane using the measurement outcomes of fx1 , f
x
2 , f

x
3 (which give the

syndrome of the error evaluated on the 2D color code) and the measurement outcome of

vx0 (which gives the weight parity of the error).

All circuits for measuring generators of the 3D color code in H form used in this section are

non-flag circuits. Each circuit has w data CNOTs where w is the weight of the operator

being measured. The circuit for each generator looks similar a circuit in Fig. 6.2, but the

ordering of data CNOTs has yet to be determined.

Figure 6.2: A non-flag circuit for measuring a Z-type generator of weight w for the 3D
color code of distance 3. The ordering of the CNOT gates for each generator has yet to be
determined.

66

Our goal is to find CNOT orderings for all circuits involved in the syndrome measurement

so that F1 is distinguishable. Thus, we have to consider all possible errors arising from

a single fault, not only the errors occurred on the center plane. Let us first consider an

arbitrary single fault which can lead to a purely Z-type error. Since the 3D color code in

H form has distance 3, all Z-type errors of weight 1 correspond to different syndromes. All

we have to worry about are single faults which can lead to a Z-type error of weight > 1

that has the same syndrome as some error of weight 1 but is not logically equivalent to

such an error. Note that a Z-type error of weight > 1 arising from a single fault can only

be caused by a faulty CNOT gate in some circuit for measuring a Z-type generator.

We can divide the generators of the 3D color code in H form into 3 categories:

1. cap generators, consisting of vx0 and vz0,

2. f generators, consisting of fx1 , f
x
2 , f

x
3 , f

z
4 , f

z
5 , f

z
6 ,

3. v generators, consisting of vx1 , v
x
2 , v

x
3 , v

z
1, v

z
2, v

z
3.

(vx0 and vz0 are considered separately from other v generators because they cover all qubits

on the center plane.) Here we will analyze the pattern of Z-type errors arising from the

measurement of Z-type generators of each category. The syndrome of each Z-type error

will be represented in the form (u,~v, ~w), where u,~v, ~w are syndromes obtained from the

measurement of cap, f, and v generators of X type, respectively. Note that for each v

generator, there will be only one f generator such that the set of supporting qubits of the

v generator contains all supporting qubits of the f generator (for example, vx1 and fx1 , or

vz1 and f z4).

Let us start by observing the syndromes of any Z-type error of weight 1. An error on the

following qubits gives the syndrome of the following form:

� An error on q0 gives syndrome (1,~0,~0).

� An error on qi (i = 1, . . . , 7) gives syndrome of the form (1, ~qi, ~qi).

� An error on q7+i (i = 1, . . . , 7) gives syndrome of the form (0,~0, ~qi).

where ~qi ∈ Z3
2 is not zero (see Table 6.1 as an example). We can see that all Z-type errors

of weight 1 give different syndromes as expected. Next, let us consider a Z-type error E of

67

any weight which occurs only on the center plane. Suppose that the weight parity of E is

wp (wp is 0 or 1), and the syndrome of E obtained from measuring fx1 , f
x
2 , f

x
3 is ~p. Then,

the syndrome of E obtained from measuring all X-type generators is as follows:

� An error E on the center plane gives syndrome of the form (wp, ~p, ~p).

We find that:

1. E and the error on q0 will have the same syndrome if E has odd weight and ~p is

trivial, which means that E is equivalent to Z⊗7 on the center plane. In this case, E

and Z0 are logically equivalent up to a multiplication of vz0 and some stabilizer.

2. E and an error on qi (i = 1, 2, . . . , 7) will have the same syndrome if E has odd

weight and ~p = ~qi for some i. In this case, E and Zi have the same weight parity

and the same syndrome (evaluated by the generators of the 2D color code), meaning

that E and Zi are logically equivalent by Lemma 3.1.

3. E and an error on qi (i = 7, 8, . . . , 14) cannot have the same syndrome since ~qi 6= ~0.

Therefore, a Z-type error of any weight occurred only on the center plane either has

syndrome different from those of Z-type errors of weight 1, or is logically equivalent to

some Z-type error of weight 1.

Because of the aforementioned properties of a Z-type error on the center plane, we will

try to design circuits for measuring Z-type generators so that most of the possible Z-type

errors arising from a single fault are on the center plane. Finding a circuit for any f

generator is easy since for the 3D color code in H form, any f generator lies on the center

plane, so any CNOT ordering will work. Finding a circuit for a cap generator is also easy;

if the first data CNOT in the circuit is the one that couples q0 with the syndrome ancilla,

we can make sure that all possible Z-type errors arising from a faulty CNOT in this circuit

are on the center plane (up to a multiplication of vz0 or vx0).

Finding a circuit for measuring a v generator is not obvious. Since some parts of any v

generator of Z type are on the center plane and some parts are off the plane, some Z-type

errors from a faulty data CNOT have support on some qubits which are not on the center

plane. We want to make sure that in such cases, the error will not cause any problem; i.e.,

its syndrome must be different from those of other Z-type errors, or it must be logically

68

equivalent to some Z-type error. In particular, we will try to avoid the case that a CNOT

fault can cause a Z error of weight > 1 which is totally off-plane. This is because such a

high-weight error and some Zi with i = 8, 9, ..., 14 may have the same syndrome but they

are not logically equivalent (for example, Z10Z12 and Z13 have the same syndrome but they

are not logically equivalent).

One possible way to avoid such an error is to arrange the data CNOTs so that the qubits

on which they act are alternated between on-plane and off-plane qubits. An ordering of

data CNOTs used in the circuit for any v generator will be referenced by the ordering of

data CNOTs used in the circuit for its corresponding f generator. For example, if the

ordering of data CNOTs used for f z4 is (2,5,3,1), then the ordering of data CNOTs used

for vz1 will be (2,9,5,12,3,10,1,8). A configuration of data CNOTs for a v generator similar

to this setting will be called sawtooth configuration. Using this configuration for every

v generator, we find that there exists a CNOT ordering for each generator such that all

possible (non-equivalent) Z-type errors from all circuits can be distinguished.

An example of the CNOT orderings which give a distinguishable fault set can be represented

by the diagram in Fig. 6.3. The diagram looks similar to the 2D color code on the center

plane, thus all f generators are displayed. The meanings of the diagram are as follows:

1. Each arrow represents the ordering of data CNOTs for each f generator: the qubits

on which data CNOTs act start from the qubit at the tail of an arrow, then proceed

counterclockwise.

2. The ordering of data CNOTs for each v generator can be obtained from its corre-

sponding f generator using the sawtooth configuration.

3. The ordering of data CNOTs for the cap generator is in numerical order.

From the diagram, the exact orderings of data CNOTs for f, v, and cap generators are,

1. f generators: (2,5,3,1), (3,6,4,1), and (4,7,2,1).

2. v generators: (2,9,5,12,3,10,1,8), (3,10,6,13,4,11,1,8), and (4,11,7,14,2,9,1,8).

3. cap generator: (0,1,2,3,4,5,6,7).

69

Figure 6.3: An example of the orderings of CNOT gates for the 3D color code of distance
3 in H form which give a distinguishable fault set F1. For each f generator, the qubits
on which data CNOT gates act start from the tail of each arrow, then proceed counter-
clockwise. The ordering of CNOT gates for the cap generator is determined by the qubit
numbering.

(Please note that the CNOT orderings displayed here are not the only orderings which give

a distinguishable fault set.)

Possible Z-type errors of weight greater than 1 depend heavily on the ordering of CNOT

gates in the circuits for measuring Z-type generators. The exhaustive list of all possible Z-

type errors arising from 1 fault and their syndrome corresponding to the CNOT orderings

in Fig. 6.3 is given in Table 6.1. From the list, we find that any pair of possible Z-type

errors either have different syndromes or are logically equivalent.

Since X-type and Z-type generators have the same form, this result is also applicable to

the case of X-type errors. In general, a single fault in any circuit can cause an error of

mixed types. However, note that a single fault in a circuit for measuring a Z-type generator

cannot cause an X-type error of weight > 1 (and vice versa), and X-type and Z-type errors

can be detected and corrected separately. Therefore, our results for X-type and Z-type

errors implies that all fault combinations arising from up to 1 fault satisfy the condition in

Definition 3.3. This means that F1 is distinguishable, and the protocols in Section 6.3 will

be applicable. Since the circuits for measuring generators of the 3D color code are non-flag

circuits, only one ancilla is required in each protocol (assuming that the qubit preparation

and measurement are fast and the ancilla can be reused).

In the next section, we will generalize our technique to a family of capped color codes. A

capped color code whose properties are similar to the 3D color code of distance 3 will be

defined in Section 6.2.1, and the construction of circuits for measuring its generators will

be discussed in Section 6.2.2.

70

Fault
Error

Syndrome (u,~v, ~w) Fault
Error

Syndrome (u,~v, ~w)
origin u ~v ~w origin u ~v ~w
q0 Z0 1 (0,0,0) (0,0,0)

vz0

Z0 1 (0,0,0) (0,0,0)
q1 Z1 1 (1,1,1) (1,1,1) Z0Z1 0 (1,1,1) (1,1,1)
q2 Z2 1 (1,0,1) (1,0,1) Z0Z1Z2 1 (0,1,0) (0,1,0)
q3 Z3 1 (1,1,0) (1,1,0) Z0Z1Z2Z3 0 (1,0,0) (1,0,0)
q4 Z4 1 (0,1,1) (0,1,1) Z5Z6Z7 1 (1,1,1) (1,1,1)
q5 Z5 1 (1,0,0) (1,0,0) Z6Z7 0 (0,1,1) (0,1,1)
q6 Z6 1 (0,1,0) (0,1,0) Z7 1 (0,0,1) (0,0,1)
q7 Z7 1 (0,0,1) (0,0,1)

vz1

Z2 1 (1,0,1) (1,0,1)
q8 Z8 0 (0,0,0) (1,1,1) Z2Z9 1 (1,0,1) (0,0,0)
q9 Z9 0 (0,0,0) (1,0,1) Z2Z9Z5 0 (0,0,1) (1,0,0)
q10 Z10 0 (0,0,0) (1,1,0) Z2Z9Z5Z12 0 (0,0,1) (0,0,0)
q11 Z11 0 (0,0,0) (0,1,1) Z10Z1Z8 1 (1,1,1) (1,1,0)
q12 Z12 0 (0,0,0) (1,0,0) Z1Z8 1 (1,1,1) (0,0,0)
q13 Z13 0 (0,0,0) (0,1,0) Z8 0 (0,0,0) (1,1,1)
q14 Z14 0 (0,0,0) (0,0,1)

vz2

Z3 1 (1,1,0) (1,1,0)

f z4

Z2 1 (1,0,1) (1,0,1) Z3Z10 1 (1,1,0) (0,0,0)
Z2Z5 0 (0,0,1) (0,0,1) Z3Z10Z6 0 (1,0,0) (0,1,0)
Z1 1 (1,1,1) (1,1,1) Z3Z10Z6Z13 0 (1,0,0) (0,0,0)

f z5

Z3 1 (1,1,0) (1,1,0) Z11Z1Z8 1 (1,1,1) (0,1,1)
Z3Z6 0 (1,0,0) (1,0,0) Z1Z8 1 (1,1,1) (0,0,0)
Z1 1 (1,1,1) (1,1,1) Z8 0 (0,0,0) (1,1,1)

f z6

Z4 1 (0,1,1) (0,1,1)

vz3

Z4 1 (0,1,1) (0,1,1)
Z4Z7 0 (0,1,0) (0,1,0) Z4Z11 1 (0,1,1) (0,0,0)
Z1 1 (1,1,1) (1,1,1) Z4Z11Z7 0 (0,1,0) (0,0,1)

Z4Z11Z7Z14 0 (0,1,0) (0,0,0)
Z9Z1Z8 1 (1,1,1) (1,0,1)
Z1Z8 1 (1,1,1) (0,0,0)
Z8 0 (0,0,0) (1,1,1)

Table 6.1: The exhaustive list of all possible Z-type errors arising from 1 fault and their
syndrome corresponding to the CNOT orderings in Fig. 6.3. Any pair of possible Z-type
errors on the list either have different syndromes or are logically equivalent.

71

6.2 Syndrome measurement circuits for a capped color

code

In the previous section, we have seen that it is possible to construct circuits for the 3D

color code of distance 3 such that the fault set is distinguishable. In this section, we will

extend our construction ideas to quantum codes of higher distance. First, we will introduce

a new family of codes called capped color codes, whose properties are similar to those of

the 3D color codes, but the structures of the capped color codes of higher distance are more

suitable for our construction rather than those of the 3D color codes of higher distance (as

defined in [Bom15a]). Afterwards, we will apply the error correction ideas using weight

parities from the previous section and develop the main theorem of this work, which can

help us find proper CNOT orderings for a capped color code of any distance.

6.2.1 Capped color codes

We begin by defining some notations for the 2D color codes [BMD06] and stating some code

properties. A 2D color code of distance d (d = 3, 5, 7, . . .) is an [[n2D, 1, d]] CSS code where

n2D = (3d2 + 1)/4. The number of stabilizer generators of each type is r = (n2D − 1)/2

(note that the total number of generators is 2r). For any 2D color code, it is possible to

choose generators so that those of each type (X or Z) are 3-colorable. The three smallest

2D color codes are shown in Fig. 6.4.

Figure 6.4: 2D color codes of distance 3, 5, and 7.

A 2D color code of any distance has the following properties [KB15]:

72

1. the number of qubits n2D is odd,

2. every generator has even weight,

3. the code encodes 1 logical qubit,

4. logical X and logical Z operators are of the form X⊗n2DM and Z⊗n2DN , where M,N

are some stabilizers,

5. the set of physical qubits of a 2D color code is bipartite.

With properties 1-4, we can see that Lemma 3.1 is applicable to a 2D color code of any

distance.

A capped color code CCC(d) is constructed from 2 layers of the 2D color code of distance d

plus one qubit. Thus, the number of qubits of CCC(d) is 2n2D+1 = 3(d2+1)/2. Examples

of capped color codes with d = 5 and 7 are displayed in Fig. 6.5a, and their dual lattices

are shown in Fig. 6.5b. Let qi denote qubit i. For convenience, we will divide each code

into 3 areas: the top qubit (consisting of q0), the center plane (consisting of q1 to qn2D
),

and the bottom plane (consisting of qn2D+1 to q2n2D
). We will primarily use the center

plane as a reference, and sometimes call the qubits on the center plane on-plane qubits and

call the qubits on the bottom plane off-plane qubits. Note that the set of physical qubits

of CCC(d) is also bipartite (as colored in black and white in Fig. 6.5a) since the set of

physical qubits of any 2D color code is bipartite.

A capped color code CCC(d) is a CSS subsystem code [Pou05, Bac06]. Its stabilizer

generators are volume operators which can be defined as follows:

1. vx0 and vz0 are X-type and Z-type operators that cover q0 and all qubits on the center

plane. These operators are called cap generators; and

2. vx1 , . . . , v
x
r and vz1, . . . , v

z
r are X-type and Z-type operators in which each vxi (or vzi)

acts as an X-type (or a Z-type) generator of the 2D color code on both center and

bottom planes. These operators are called v generators.

The stabilizer generators of a capped color code are illustrated in Fig. 6.5c. Using these

notations, the stabilizer group of the code is

SCCC = 〈vx0 , vx1 , . . . , vxr , vz0, vz1, . . . , vzr〉. (6.3)

73

Figure 6.5: Capped color codes CCC(d) with d = 5 (top) and d = 7 (bottom). (a) The set
of qubits of any capped color code is bipartite, as displayed by black and white vertices.
(b) The dual lattice of each capped color code. (c) Stabilizer generators of each code can
be illustrated by volume operators.

For each CCC(d), the generators of the gauge group are face operators which can be

defined as follows:

1. fx1 , . . . , f
x
r are X-type operators in which each operator acts as an X-type generator

of the 2D color code on the center plane.

2. f zr+1, . . . , f
z
2r are Z-type operators in which each operator acts as a Z-type generator

of the 2D color code on the center plane, and fxi and f zr+i (i = 1, . . . , r) act on the

same set of qubits.

3. f z1 , . . . , f
z
r and fxr+1, . . . , f

x
2r are Z-type andX-type operators that satisfy the following

conditions:

(a) fxi and f zj anticommute when i = j (i, j = 1, . . . , 2r),

(b) fxi and f zj commute when i 6= j (i, j = 1, . . . , 2r),

(c) f zi and fxr+i (i = 1, . . . , r) act on the same set of qubits.

74

With these notations, the gauge group of each CCC(d) is,

GCCC = 〈vxi , vzi , fxj , f zj 〉, (6.4)

where i = 0, 1, . . . , r and j = 1, . . . , 2r.

It should be noted that in this work, the term “color code” is used to describe a subsystem

code satisfying two conditions proposed in [KB15]. This may be different from common

usages in other literature in which the term refers to a stabilizer code. A capped color code

is actually a color code in 3 dimensions since the dual lattice of the code (see Fig. 6.5b

for examples) is 4-colorable and can be constructed by attaching tetrahedra together (see

[KB15] for more details). However, the capped color code and the 3D color code defined

in [Bom15a] are different codes.

A capped color code is a subsystem code which encodes 1 logical qubit, meaning that there

are n2D gauge qubits for each CCC(d). We can clearly see that CCC(3) is exactly the 3D

color code of distance 3 discussed in Section 6.1.1. Similarly, a stabilizer code encoding

1 logical qubit can be obtained from CCC(d) by choosing n2D independent, commuting

gauge operators and including them in the stabilizer group. This work will discuss two

possible ways to do so, and the resulting codes will be called the code in H form and the

code in T form (similar to the case of the 3D color code of distance 3).

Capped color codes in H form

Observe that the center plane of CCC(d) which covers qubits 1 to n2D looks exactly

like the 2D color code of distance d. The stabilizer group of the 2D color code is S2D =

〈fx1 , . . . , fxr , f zr+1, . . . , f
z
2r〉. A capped color code in H form constructed from CCC(d) can be

obtained by adding the stabilizer generators of the 2D color code to the original generating

set of CCC(d). Thus, the stabilizer group of the code in H form is,

SH = 〈vxi , fxj , vzi , f zk 〉, (6.5)

where i = 0, 1, . . . , r, j = 1, 2, . . . , r, and k = r + 1, r + 2, . . . , 2r. Logical X and logical Z

operators of this code are of the form X⊗nM and Z⊗nN , where M,N are some stabilizers

in SH. Note that Lemma 3.1 is applicable to the code in H form constructed from any

CCC(d).

75

The code in H form is a code of distance d. This can be proved as follows:

Proposition 6.1 The capped color code in H form constructed from CCC(d) has distance

d.

Proof :

In order to prove that the distance of a stabilizer code is d, we will show that the weight

of a nontrivial logical operator is at least d; that is, any Pauli error of weight < d is either

a stabilizer or an error with a nontrivial syndrome, and there exists a nontrivial logical

operator of weight exactly d. Since the capped color code in H form is a CSS code and

X-type and Z-type generators have the same form, we can consider X-type and Z-type

errors separately. For an error occurred on the code in H form, we will represent its weight

by a triple (a, b, c) where a, b, c are the weights of the errors occurred on the top qubit, the

center plane, and the bottom plane, respectively.

Suppose that a Z-type error has weight k < d. The weight of such an error will be of the

form (a, b, c) with a = 0 and b + c = k, or with a = 1 and b + c = k − 1. Observe that

the stabilizer generators of the 2D color code on the center plane (which is a subcode of

the capped color code in H form) are fx1 , . . . , f
x
r and f zr+1, . . . , f

z
2r. Moreover, the 2D color

code on the bottom plane is also a subcode of the capped color code in H form, whose

stabilizer generators are fx1 ·vx1 , . . . , fxr ·vxr and f zr+1 ·vz1, . . . , f z2r ·vzr (the syndrome obtained

by measuring v generators is the sum of the syndromes obtained from the 2D color codes

on both planes). Since both 2D color codes on the center and the bottom planes have

distance d, any Z-type error of weight < d which occurs solely on the center or the bottom

plane either has nontrivial syndrome or acts as a stabilizer on such a plane. From the

possible forms of error, a Z-type error of weight < d on the capped color code in H form

corresponding to the trivial syndrome must act as a stabilizer on both planes and commute

with vx0 . Using Lemma 3.1, the weight of such an operator must be in the form (0, b, c)

where b, c are even numbers. So the total weight of the error is even, and it cannot be a

logical Z operator (by Lemma 3.1). Therefore, any Z-type error of weight < d is either

a stabilizer or an error with a nontrivial syndrome. The same analysis is applicable to

X-type errors of weight < d.

Next, we will show that there exists a logical Z operator of weight exactly d. Consider

a Z-type operator whose weight is of the form (0, 0, d) and acts as a logical Z operator

on the 2D color code on bottom plane (the operator exists because the 2D color code has

76

distance d). Such an operator commutes with all generators of the capped color code in H

form and has odd weight. By Lemma 3.1, this operator is a logical Z operator. The proof

is now completed. �

The capped color code in H form constructed from CCC(d) is an [[n, 1, d]] code where

n = 2n2D + 1. Similar to the 3D color code of distance 3 in H form, it is not hard to verify

that Hadamard, S, and CNOT gates are transversal; their logical gates are H̄ = H⊗n,

S̄ = (S†)⊗n, and CNOT = CNOT⊗n.

It should be noted that there are many other choices of stabilizer generators that can give

the same code as what is constructed here. However, different choices of generators can

give different fault sets, which may or may not be distinguishable. In Section 6.2.2, we will

only discuss circuits for measuring generators corresponding to Eq. (6.5).

Capped color codes in T form

A capped color code in T form is constructed from CCC(d) by adding all Z-type 4-body

face generators to the old generating set of CCC(d). That is, the stabilizer group of the

code in T form is

ST = 〈vxi , vzi , f zj 〉, (6.6)

where i = 0, 1, . . . , r and j = 1, 2, . . . , 2r. Similar to the code in H form, logical X and

logical Z operators of this code are of the form X⊗nM and Z⊗nN , where M,N are some

stabilizers in ST. Note that Lemma 3.1 is also applicable to the code in T form constructed

for any CCC(d).

Unlike the code in H form, the capped color code in T form constructed from CCC(d)

is a code of distance 3 regardless of the parameter d, i.e., it is an [[n, 1, 3]] code where

n = 2n2D + 1. The proof of the code distance is as follows:

Proposition 6.2 The capped color code in T form constructed from CCC(d) has distance

3.

Proof :

Similar to the proof of Proposition 6.1, we will show that (1) any Pauli error of weight < 3

is either a stabilizer or an error with a nontrivial syndrome, and (2) there exists a nontrivial

logical operator of weight exactly 3. However, for the capped color code in T form, X-type

77

and Z-type generators have different forms, so we have to analyze both types of errors.

Observe that all of the Z-type generators of the code in H form are also Z-type generators

of the code in T form, thus we can use the analysis in the proof of Proposition 6.1 to show

that any X-type error of weight < d is either a stabilizer or an error with a nontrivial

syndrome. Thus, we only have to show that any Z-type error of weight < 3 is either a

stabilizer or an error with a nontrivial syndrome, and there exists a logical Z operator of

weight exactly 3. Similar to the proof of Proposition 6.1, we will represent its weight by

a triple (a, b, c) where a, b, c are the weights of the errors occurred on the top qubit, the

center plane, and the bottom plane, respectively.

The X-type generators of the capped color code in T form are vx0 , v
x
1 , . . . , v

x
r . First, let

us consider any Z-type error of weight 1. We can easily verify that the error anticom-

mutes with at least one X-type generator, so its syndrome is nontrivial. Next, con-

sider a Z-type error of weight 2. The weight of the error will have one of the following

forms: (0, 2, 0), (0, 1, 1), (0, 0, 2), (1, 1, 0), or (1, 0, 1). We find that (1) a Z-type error of

the form (0, 1, 1) or (1, 0, 1) anticommutes with vx0 , and (2) a Z-type errors of the form

(0, 2, 0), (0, 0, 2), or (1, 1, 0) anticommutes with at least one v generator (since v generators

act as generators of the 2D color code on both planes simultaneously, and the 2D color

code has distance d). Therefore, the syndrome of any Z-type error of weight 2 is nontrivial.

Next, we will show that there exists a logical Z operator of distance exactly 3. Consider

a Z-type operator of weight 3 of the form Z0ZiZr+i, where i = 1, 2, . . . , r. We can verify

that such an operator commutes with all X-type generators. Since the operator has odd

weight, it is a logical Z operator by Lemma 3.1. �

CNOT and T gates are transversal for the code in T form, while Hadamard and S gates

are not. In order to prove the transversalily of the T gate, we will use the following lemma

[KB15]:

Lemma 6.1 Let C be an [[n, k, d]] CSS subsystem code in which n is odd, k is 1, and X⊗n

and Z⊗n are bare logical X and Z operators1. Also, let Q be the set of all physical qubits

of C, and let p be any positive integer. Suppose there exists V ⊂ Q such that for any

m = 1, . . . , p, for every subset {gx1 , . . . , gxm} of the X-type gauge generators of the code, the

1A bare logical operator is a logical operator that acts on the logical qubit(s) of a subsystem code and
does not affect the gauge qubit(s); see [Pou05, Bac06, Bra11].

78

following holds: ∣∣∣∣∣V ∩
m⋂
i=1

Gi

∣∣∣∣∣ =

∣∣∣∣∣V c ∩
m⋂
i=1

Gi

∣∣∣∣∣ mod 2p−m+1, (6.7)

where Gi is the set of physical qubits that support gxi . Then, a logical Rp gate (denoted by

R̄p) can be implemented by applying Rq
p to all qubits in V and applying R−qp to all qubits

in V c, where Rp = diag (1, exp (2πi/p)), q is a solution to q(|V | − |V c|) = 1 mod 2p, and

V c = Q\V .

The proof of the transversality of the T gate is as follows:

Proposition 6.3 A T gate is transversal for the capped color code in T form constructed

from any CCC(d).

Proof :

Let C be the capped color code in T form constructed from any CCC(d) (C is a stabilizer

code, i.e., it is a subsystem code in which the stabilizer group and the gauge group are

the same). Note that the X-type stabilizer generators of the code are vx0 , v
x
1 , . . . , v

x
r , which

are also the X-type gauge generators. Also, let p = 3 (since T = R3), q = 1, and let V

and V c be the sets of qubits similar to those represented by black and white vertices in

Fig. 6.5a (this kind of representation is always possible for any CCC(d) since the set of

physical qubits of CCC(d) is bipartite). We will use Lemma 6.1 and show that Eq. (6.7)

is satisfied for m = 1, 2, 3.

Let Gi be the set of qubits that support X-type generator gxi . If m = 1, we can easily verify

that |V ∩G1| = |V c ∩G1| mod 8 for every gx1 ∈ {vx0 , vx1 , . . . , vxr } since half of supporting

qubits of any X-type generator is in V and the other half is in V c.

In the case when m = 2, let {gx1 , gx2} be a subset of {vx0 , vx1 , . . . , vxr }. If gx1 is a cap generator

vx0 and gx2 is a v generator vxi , i = 1, . . . , r, then G1 ∩ G2 are the qubits that support the

face generator fxi . Since half of qubits in G1 ∩ G2 is in V and the other half is in V c, we

have that |V ∩G1 ∩G2| = |V c ∩G1 ∩G2| (equal to 2 or 3, depending on vxi). If gx1 and gx2
are adjacent v generators, then G1 ∩G2 have 4 qubits, two of them are in V and the other

two are in V c. So |V ∩G1 ∩G2| = |V c ∩G1 ∩G2| = 2. If gx1 and gx2 are non-adjacent v

generators, then |V ∩G1 ∩G2| = |V c ∩G1 ∩G2| = 0. Therefore, Eq. (6.7) is satisfied for

any subset {gx1 , gx2}.

79

In the case when m = 3, let {gx1 , gx2 , gx3} be a subset of {vx0 , vx1 , . . . , vxr }. If gx1 is a cap

generator vx0 and gx2 , g
x
3 are adjacent v generators, or gx1 , g

x
2 , g

x
3 are v generators in which

any two of them are adjacent, then G1 ∩ G2 ∩ G3 have 2 qubits, one of them is in V and

the other one is in V c. Thus, |V ∩G1 ∩G2 ∩G3| = |V c ∩G1 ∩G2 ∩G3| = 1. If gx1 is a

cap generator vx0 and gx2 , g
x
3 are non-adjacent v generators, or gx1 , g

x
2 , g

x
3 are v generators

in which some pair of them are not adjacent, then G1 ∩ G2 ∩ G3 is the empty set. So

|V ∩G1 ∩G2 ∩G3| = |V c ∩G1 ∩G2 ∩G3| = 0. Therefore, Eq. (6.7) is satisfied for any

subset {gx1 , gx2 , gx3}.

Since the sufficient condition in Lemma 6.1 is satisfied, a transversal T gate can be imple-

mented by applying T gates to all qubits in V (represented by black vertices) and applying

T † gates to all qubits in V c (represented by white vertices). �

Incidentally, the capped color codes in T form presented here are similar to some codes

that appear in other literature. In fact, the capped color codes in T form is the same as the

stacked codes with distance 3 protection defined in [JOB16] (where alternative proofs of

Propositions 6.2 and 6.3 are also presented). Such a code is the basis for the construction

of the (d− 1) + 1 stacked code defined in the same work, whose code distance is d (see also

[BC15, JBH16] for other subsystem codes with similar construction).

Code switching

Similar to the 3D color code of distance 3, one can transform between the capped color code

in H form and the code in T form derived from the same CCC(d) using the code switching

technique [PR13, ADCP14, Bom15a, KB15]. Suppose that we start from the code in H

form. The code switching can be done by first measuring f z1 , . . . , f
z
r , then applying an

X-type Pauli operator that

1. commutes with all vxi ’s and vzi ’s (i = 0, 1, . . . , r), and

2. commutes with f zr+1, . . . , f
z
2r, and

3. for each j = 1, . . . , r, commutes with f zj if the outcome from measuring such an

operator is 0 (the eigenvalue is +1) or anticommutes with f zj if the outcome is 1 (the

eigenvalue is −1).

We can use a similar process to switch from the code in T form to the code in H form,

80

except that fx1 , . . . , f
x
r will be measured and the operator to be applied is a Z-type Pauli

operator that commutes or anticommutes with fx1 , . . . , f
x
r (depending on the outcomes).

We have not yet discussed whether the procedure above is fault tolerant when we switch

between the capped color codes in H form and T form. However, the discussion of the

fault-tolerant implementation of T gate will be deferred until Section 6.3.3.

6.2.2 Circuit configuration for a capped color code

One of the main goals of [TL21a] is to find circuits for measuring generators of a capped

color code in H form in which the corresponding fault set Ft is distinguishable (where

t = τ = (d− 1)/2 and d = 3, 5, 7, ... is the code distance). As discussed before, the CNOT

orderings and the number of flag ancillas are crucial for the circuit design. Finding such

circuits for a capped code of any distance using a random approach can be very challenging

because of a few reasons: (1) the number of stabilizer generators of a capped color code

increases quadratically as the distance increases. This means that the number of possible

single faults in the circuits grow quadratically as well. (2) for a code with larger distance, a

fault set Ft with larger t will be considered. Since it concerns all possible fault combinations

arising from up to t faults, the size of Ft grows dramatically (perhaps exponentially) as

t and the number of possible single faults increase. For these reasons, verifying whether

Ft is distinguishable using the conditions in Definition 3.3 requires a lot of computational

resources, and exhaustive search for appropriate CNOT orderings may turn intractable.

Fortunately, there is a way to simplify the search for the CNOT orderings. From the

structure of the capped color code in H form, it is possible to relate CNOT orderings

for the 3D-like generators to those for the 2D-like generators, as we have seen in the

circuit construction in Section 6.1.2. Instead of finding CNOT orderings directly for all

generators, we will simplify the problem and develop sufficient conditions for the CNOT

orderings of the 2D-like generators which, if satisfied, can guarantee that the fault set Ft
(which concerns both 3D-like and 2D-like generators) is distinguishable. Although we still

need to check whether the sufficient conditions are satisfied for given CNOT orderings, the

process is much simpler than checking the conditions in Definition 3.3 directly when the

size of Ft is large.

We begin by dividing the stabilizer generators of the capped color code in H form con-

structed from CCC(d) into 3 categories (similar to the discussion in Section 6.1.2):

81

1. cap generators consisting of vx0 and vz0,

2. v generators consisting of vx1 , . . . , v
x
r , and vz1, . . . , v

z
r ,

3. f generators consisting of fx1 , . . . , f
x
r , and f zr+1, . . . , f

z
2r.

Here we will only consider fault combinations arising from circuits for measuring Z-type

generators which can lead to purely Z-type data errors of any weight. This is because i

faults in circuits for measuring X-type generators cannot cause Z-type data error of weight

greater than i (and vice versa). Similar analysis will be applicable to the case of purely

X-type errors, and also the case of mixed-type errors. We will first consider a Z-type

data error and a flag vector arising from each single fault. Afterwards, fault combinations

constructed from multiple faults will be considered, where the combined data error and

the cumulative flag vector for each fault combination can be calculated using Eqs. (3.5)

and (3.6).

Observe that the center plane of a capped color code behaves like a 2D color code, and

the weight of a Z-type error occurred on the center plane can be measured by the cap

generator vx0 . In order to find CNOT orderings for generators of each category, we will

use an idea similar to that presented in Section 6.1.2; we will try to design circuits for

measuring Z-type generators so that most of possible Z-type errors arising from a single

fault are on the center plane. In this work, we will start by imposing general configurations

of data and flag CNOT gates; these general configurations will facilitate finding CNOT

orderings. Then, exact configurations of CNOT gates which can make Ft distinguishable

will be found using the theorem developed later in this section. The general configurations

of data CNOT gates, which depend on the category of the generator, are as follows:

General configurations of data CNOT gates

1. f generator: there is no constraint for the ordering of data CNOTs since each f

generator lies on the center plane, but the ordering for f zr+i (or fxi) must be related

to the ordering for vzi (or vxi) where i = 1, . . . , r.

2. v generator: The sawtooth configuration will be used; the qubits on which the data

CNOTs act must be alternated between on-plane and off-plane qubits. The ordering

of data CNOTs for vzi (or vxi) is referenced by the ordering of data CNOTs for f zr+i
(or fxi) where i = 1, . . . , r (see examples in Fig. 6.6 and Section 6.1.2).

82

(a)

(b)

Figure 6.6: (a) An example of flag circuit for measuring f generator with two flag ancillas.
(b) A flag circuit for measuring the corresponding v generator. The circuit is obtained
by replacing each data CNOT which couples qj with the syndrome ancilla by two data
CNOTs which couple qj and qn2D+j with the syndrome ancilla.

3. cap generator: The first data CNOT must always be the one that couples q0 with

the syndrome ancilla. The ordering of the other data CNOTs has yet to be fixed.

In general, some flag ancillas may be added to the circuits for measuring a generator to

help distinguish some possible errors and make Ft distinguishable. In that case, the general

configurations for data CNOT gates will also be applied to the data CNOTs in each flag

circuit. Moreover, additional configurations for flag CNOT gates will be required.

General configurations of flag CNOT gates

1. For each flag circuit, the first and the last data CNOTs must not be in between any

pair of flag CNOT gates.

2. The arrangements of flag CNOTs in the circuits for each pair of f and v generators

must be similar; Suppose that a flag circuit for f zr+i (or fxi) where i = 1, . . . , r is

83

given. A flag circuit for vzi (or vxi) is obtained by replacing each data CNOT which

couples qj with the syndrome ancilla (j = 1, . . . , n2D) by two data CNOTs which

couple qj and qn2D+j with the syndrome ancilla; see an example in Fig. 6.6.

By imposing the general configurations for data and flag CNOTs, what have yet to be

determined before Ft is specified are the ordering of data CNOTs for each f generator,

the ordering of data CNOTs after the first data CNOT for each cap generator, and the

number of flag ancillas and the ordering of their relevant flag CNOTs. (Note that having

more flag ancillas can make fault distinguishing become easier, but more resources such as

qubits and gates are also required.)

In this work, possible single faults which can give Z-type errors will be divided into 7 types

(based on relevant faulty locations) as follows:

1. Type q0: a fault causing a Z-type error on q0 which does not arise from any Z-type

generator measurement. The total number of q0 faults is n0 (which is 0 or 1).

2. Type qon: a fault causing a single-qubit Z-type error on the center plane which does

not arise from any Z-type generator measurement. The syndrome of an error is

denoted by ~qon. The total number of qon faults is non.

3. Type qoff: a fault causing a single-qubit Z-type error on the bottom plane which

does not arise from any Z-type generator measurement. The syndrome of an error

is denoted by ~qoff. The total number of qoff faults is noff.

4. Type f: a fault occurred during a measurement of a f generator of Z type. A Z-type

error from each fault of this type and its syndrome are denoted by σf and ~pf. A flag

vector corresponding to each fault of this type is denoted by ~ff. The total number

of f faults is nf.

5. Type v: a fault occurred during a measurement of a v generator of Z type which

give errors of the same form on both center and bottom planes (see an example in

Fig. 6.7). A part of a Z-type error from each fault of this type occurred on the center

plane only (or the bottom plane only) and its syndrome are denoted by σv and ~pv.

A flag vector corresponding to each fault of this type is denoted by ~fv. The total

number of v faults is nv.

84

Figure 6.7: Consider a circuit for measuring a v generator of Z type in which its supporting
qubits are labeled as displayed above and the ordering of data CNOT gates is (1, 2, . . . , 12).
A single fault in the circuit is either v type or v∗ type, depending on whether the data
errors on the center and the bottom planes have the same form. For example, an IZ
fault on the 7th data CNOT is a v∗ fault since the data error arising from the fault is
Z9Z11 ⊗ Z8Z10Z12, while an IZ fault on the 8th data CNOT is a v fault since the data
error arising from the fault is Z9Z11 ⊗ Z10Z12.

6. Type v∗: a fault occurred during a measurement of a v generator of Z-type in which

an error occurred on the center plane and an error on the bottom plane are different

(see an example in Fig. 6.7). A part of a Z-type error from each fault of this type

occurred on the center plane only and its syndrome are denoted by σv∗,cen and ~pv∗,cen.

The other part of the Z-type error that occurred on the bottom plane only and its

syndrome are denoted by σv∗,bot and ~pv∗,bot. A flag vector corresponding to each fault

of this type is denoted by ~fv∗ . The total number of v∗ faults is nv∗ .

7. Type cap: a fault occurred during a measurement of a cap generator of Z type. A

Z-type error from each fault of this type and its syndrome are denoted by σcap and

~pcap (σcap is always on the center plane up to a multiplication of the cap generator

being measured). A flag vector corresponding to each fault of this type is denoted

by ~fcap. The total number of cap faults is ncap.

Examples of faults of each type on the 3D structure are illustrated in Fig. 6.8a on page 90.

Note that a fault of q0, qon, or qoff type can be a Z-type input error, a single-qubit error

from phase flip, or a single fault during any X-type generator measurement which gives a

Z-type error.

Suppose that a single fault causes a Z-type data error E and a flag vector ~f . The syndrome

of E evaluated by X-type generators can be written as (sa, ~sb, ~sc), where sa, ~sb, ~sc are

85

syndromes obtained from measuring cap, f, and v generators of X type. In addition, the

flag vector can be written as (~fa, ~fb, ~fc), where ~fa, ~fb, ~fc are flag outcomes obtained from

circuits for measuring cap, f, and v generators of Z type, respectively. (The lengths of

sa, ~sb, ~sc are equal to the number of generators of each category, while the lengths of ~fa, ~fb, ~fc
are equal to the number of generators of each category times the number of flag ancillas

in each flag circuit, assuming that all flag circuits have equal number of flag ancillas.) Let

wp(σ) denote the weight parity of error σ. Due to the general configurations of CNOT

gates being used, the weight parity and the syndromes of a Z-type error (evaluated by

X-type generators) and a flag vector arising from each type of faults can be summarized

as in Table 6.2. Note that for a v∗ fault, σv∗,cen and σv∗,bot differ by a Z error on a single

qubit; i.e., wp(σv∗,cen) + wp(σv∗,bot) = 1. Sometimes we will write ~pv∗,cen + ~pv∗,bot = ~qv∗ to

emphasize its similarity to the syndrome of a single-qubit error.

Type of fault
q0 qon qoff f v v∗ cap

S
y
n
d
ro

m
e sa (cap) 1 1 0 wp(σf) wp(σv) wp(σv∗,cen) wp(σcap)

~sb (f) 0 ~qon 0 ~pf ~pv ~pv∗,cen ~pcap

~sc (v) 0 ~qon ~qoff ~pf 0
~pv∗,cen + ~pv∗,bot ~pcap(or ~qv∗)

Weight parity 1 1 1 wp(σf) 0 1 wp(σcap)

F
la

g

~fa (cap) 0 0 0 0 0 0 ~fcap
~fb (f) 0 0 0 ~ff 0 0 0
~fc (v) 0 0 0 0 ~fv ~fv∗ 0

Table 6.2: Syndrome ~s = (sa, ~sb, ~sc), weight parity, and flag vector ~f = (~fa, ~fb, ~fc) corre-
sponding to a single fault of each type which leads to a Z-type error. sa, ~sb, ~sc are syndromes
evaluated by cap, f and v generators of X type, while ~fa, ~fb, ~fc are flag outcomes obtained
from circuits for measuring cap, f and v generators of Z type. Note that in some cases, a
syndrome bit is equal to the weight parity of an error.

Now, let us consider the case that a fault combination arises from multiple faults. The

syndrome and the weight parity of the combined error, and the cumulative flag vector of

a fault combination can be calculated by adding the syndromes and the flag outcomes of

all faults in the fault combination (the addition is modulo 2). For example, suppose that

a fault combination consists of 2 faults which are of qon type and v type. The syndrome

86

~s(E) and the weight parity wp(E) of the combined error E, and the cumulative flag vector
~f correspond to such a fault combination are,

~s(E) = (1 + wp(σv), ~qon + ~pv, ~qon),

wp(E) = 1,

~f = (~0,~0, ~fv).

For a general fault combination composed of multiple faults, the corresponding syndrome,

weight parity, and cumulative flag vector can be calculated as follows: let scap, ~sf, ~sv denote

syndromes of the combined error evaluated by cap, f, and v generators of X type, let wptot

denote the weight parity, and let ~fcap,~ff,~fv denote parts of the cumulative flag vector

obtained from circuits for measuring cap, f, and v generators of Z type. From Table 6.2,

we find that for each fault combination,

scap = n0 + non +
∑

wp(σf) +
∑

wp(σv) +
∑

wp(σv∗,cen) +
∑

wp(σcap), (6.8)

~sf =
∑

~qon +
∑

~pf +
∑

~pv +
∑

~pv∗,cen +
∑

~pcap, (6.9)

~sv =
∑

~qon +
∑

~qoff +
∑

~pf +
∑

~qv∗ +
∑

~pcap, (6.10)

wptot = n0 + non + noff +
∑

wp(σf) + nv∗ +
∑

wp(σcap), (6.11)

~fcap =
∑

~fcap, (6.12)

~ff =
∑

~ff, (6.13)

~fv =
∑

~fv +
∑

~fv∗ , (6.14)

where each sum is over the same type of faults (the equations are modulo 2). In addi-

tion, adding Eq. (6.8) to Eq. (6.11) and adding Eq. (6.9) to Eq. (6.10) give the following

equations:

wpbot =noff +
∑

wp(σv) +
∑

wp(σv∗,bot), (6.15)

~sbot =
∑

~qoff +
∑

~pv +
∑

~pv∗,bot, (6.16)

where wpbot = scap + wptot and ~sbot = ~sf + ~sv.

Eqs. (6.8) to (6.16) are the main ingredients for the proof of the main theorem to be

87

developed. One may notice that Eqs. (6.8) and (6.9), Eqs. (6.10) and (6.11), and Eqs. (6.15)

and (6.16) come in pairs. They have the following physical meanings: suppose that the

combined error E is E0 ·Eon ·Eoff where E0,Eon,Eoff are the error on q0, the error on the

center plane, and the error on the bottom plane. Then,

1. Eq. (6.9) is the syndrome of Eon, while Eq. (6.8) is the weight parity Eon plus the

weight parity of E0.

2. Eq. (6.10) is the syndrome of Eon · Eoff, while Eq. (6.11) is the weight parity of

Eon · Eoff plus the weight parity of E0. (Since v generators capture errors on both

planes simultaneously, Eon · Eoff can be viewed as a remaining error when Eon and

Eoff are ‘projected’ on the same plane.)

3. Eq. (6.16) is the syndrome of Eoff, while Eq. (6.15) is the weight parity of Eoff.

From these pairs of equations, and from the fact that now we only have to specify the

ordering of data CNOTs for each f generator, the ordering of data CNOTs after the first

gate for the cap generator, and the ordering of flag CNOTs for each flag circuit, we can

now simplify the CNOT ordering finding problem for a 3D structure to the problem of

finding CNOT orderings on a 2D plane (which is similar to the 2D color code of distance

d). In particular, each pair of equations concern errors on a 2D plane (the center, the

bottom, or the projected plane). We will try to find conditions for the CNOT orderings

on a 2D plane such that if satisfied, a bad case which makes Ft indistinguishable cannot

happen.

Some types of faults on the 3D structure can be considered as the same type of faults when

the problem is simplified. The followings are types of possible single faults on the 2D plane

and their correspondence on the 3D structure:

1. Type q2D: a fault causing a single-qubit Z-type error on the 2D plane which does not

arise from any Z-type generator measurement. The syndrome of an error is denoted

by ~q2D. The total number of q2D faults is nq2D . The combined error from only q2D

faults is denoted by Eq2D . This type of faults corresponds to qon and qoff faults on

the 3D structure.

2. Type f2D: a fault occurred during a measurement of a f generator of Z type. A

Z-type error from each fault of this type and its syndrome are denoted by σf2D and

88

~pf2D . A flag vector corresponding to each fault of this type is denoted by ~ff2D . The

total number of f2D faults is nf2D . The combined error from only f2D faults is denoted

by Ef2D . This type of faults corresponds to f and v faults on the 3D structure (since

an error on the center plane and an error on the bottom plane from a v fault have

the same form; see an example in Fig. 6.7).

3. Type v∗2D: a fault occurred during a measurement of a v generator of Z type in which

an error occurred on the center plane and an error on the bottom plane are different

(see an example in Fig. 6.7). A part of a Z-type error from each fault of this type

occurred on the center plane only and its syndrome are denoted by σv∗2D,cen and ~pv∗2D,cen.

The other part of the Z-type error that occurred on the bottom plane only and its

syndrome are denoted by σv∗2D,bot and ~pv∗2D,bot. A flag vector corresponding to each

fault of this type is denoted by ~fv∗2D . The total number of v∗2D faults is nv∗2D . The part

of the combined error from only v∗2D faults on the center plane and the part on the

bottom plane are denoted by Ev∗2D,cen
and Ev∗2D,bot

. This type of faults corresponds

to v∗ faults on the 3D structure. (Note that this is the only type of faults which

cannot be represented completely on the 2D plane since the error on the center plane

and the error on the bottom plane are different. However, when running a computer

simulation, we can treat a fault of v∗2D type similarly to a fault of f2D type except that

two values of errors will be assigned to each fault.)

4. Type cap2D: a fault occurred during a measurement of a cap generator of Z type. A

Z-type error from each fault of this type and its syndrome are denoted by σcap2D and

~pcap2D (σcap2D is always on the center plane up to a multiplication of the cap generator

being measured). A flag vector corresponding to each fault of this type is denoted

by ~fcap2D . The total number of cap2D faults is ncap2D . The combined error from only

cap2D faults is denoted by Ecap2D . This type of faults corresponds to cap faults on

the 3D structure.

Examples of faults of each type on the 2D plane are illustrated in Fig. 6.8b on page 90.

The correspondence between the notations for types of faults on the 2D plane and the 3D

structure can be summarized in Table 6.3 on page 91.

89

Figure 6.8: (a) Examples of faults of each type on the 3D structure. (b) Examples of faults
of each type on the 2D plane.

90

2D
p
la

n
e

3D
st

ru
ct

u
re

F
au

lt
ty

p
e

S
y
n

d
ro

m
e

W
ei

gh
t

p
ar

it
y

F
la

g
ve

ct
or

F
au

lt
ty

p
e

S
y
n

d
ro

m
e

W
ei

gh
t

p
ar

it
y

F
la

g
ve

ct
o
r

q
2
D

~q 2
D

1
-

q
o
n
,
q
o
f
f
,

~q o
n
,
~q o

f
f
,

1
-

or
q
v
∗

or
~q v
∗

f
2
D

~p f
2
D

w
p
(σ

f
2
D
)

~ f f
2
D

f
,
v
,

or
v
∗

~p f
,
~p v

,
w

p
(σ

f
),

w
p
(σ

v
),

~ f f
,
~ f v

,

or
~ f v
∗

~p v
∗
,c
e
n
,

or
w

p
(σ

v
∗
,c
e
n
),

or
~p v
∗
,b
o
t

w
p
(σ

v
∗
,b
o
t
)

v
∗ 2D

~p v
∗ 2D
,c
e
n

w
p
(σ

v
∗ 2D
,c
e
n
)

~ f v
∗ 2D

v
∗

~p v
∗
,c
e
n

w
p
(σ

v
∗
,c
e
n
)

~ f v
∗

~p v
∗ 2D
,b
o
t

w
p
(σ

v
∗ 2D
,b
o
t
)

~p v
∗
,b
o
t

w
p
(σ

v
∗
,b
o
t
)

c
a
p
2
D

~p c
a
p
2
D

w
p
(σ

c
a
p
2
D
)

~ f c
a
p
2
D

c
a
p

~p c
a
p

w
p
(σ

c
a
p
)

~ f c
a
p

T
ab

le
6.

3:
T

h
e

co
rr

es
p

on
d
en

ce
b

et
w

ee
n

th
e

n
ot

at
io

n
s

fo
r

ty
p

es
of

fa
u
lt

s
on

th
e

2D
p
la

n
e

an
d

th
e

3D
st

ru
ct

u
re

.

91

We can see that possible Z-type errors on the 2D plane depend on the CNOT orderings

for measuring f and cap generators of Z type. Next, we will state the sufficient conditions

for the CNOT orderings on the 2D plane which will make Ft (which concerns fault combi-

nations from the 3D structure) distinguishable. These sufficient conditions are introduced

in order to prevent the case that can lead to an ‘indistinguishable’ pair (a pair of fault

combinations from the 3D structure which does not satisfy any condition in Definition 3.3).

First, we will state a condition which is automatically satisfied if a code being considered

on the 2D plane is a code of distance d to which Lemma 3.1 is applicable:

Condition 0 For any fault combination on the 2D plane which satisfies nq2D ≤ d− 1, Eq2D

is not a nontrivial logical operator; equivalently, at least one of the followings is satisfied:

1.
∑
~q2D 6= 0 mod 2, or

2. nq2D 6= 1 mod 2.

Note that a nontrivial logical operator is an error corresponding to the trivial syndrome

whose weight parity is odd (from Lemma 3.1). Condition 0 is equivalent to the fact that an

error of weight ≤ d− 1 is detectable by a code of distance d; i.e., it either has a nontrivial

syndrome or is a stabilizer. We state Condition 0 explicitly (although it is automatically

satisfied) because the condition in this form looks similar to other conditions, which will

simplify the proof of the main theorem.

Next, we will state five sufficient conditions for the CNOT orderings on the 2D plane which

will make Ft distinguishable. The conditions are as follows:

Condition 1 For any fault combination on the 2D plane which satisfies nf2D ≤ d− 2, Ef2D

is not a nontrivial logical operator or the cumulative flag vector is not zero; equivalently,

at least one of the followings is satisfied:

1.
∑
~pf2D 6= 0 mod 2, or

2.
∑

wp(σf2D) 6= 1 mod 2, or

3.
∑ ~ff2D 6= 0 mod 2.

92

Condition 2 For any fault combination on the 2D plane which satisfies nq2D +nf2D ≤ d−3,

Eq2D · Ef2D is not a nontrivial logical operator or the cumulative flag vector is not zero;

equivalently, at least one of the followings is satisfied:

1.
∑
~q2D +

∑
~pf2D 6= 0 mod 2, or

2. nq2D +
∑

wp(σf2D) 6= 1 mod 2, or

3.
∑ ~ff2D 6= 0 mod 2.

Condition 3 For any fault combination on the 2D plane which satisfies nf2D = 1 and

nq2D + nf2D ≤ d − 2, Eq2D · Ef2D is not a nontrivial logical operator or the cumulative flag

vector is not zero; equivalently, at least one of the followings is satisfied:

1.
∑
~q2D +

∑
~pf2D 6= 0 mod 2, or

2. nq2D +
∑

wp(σf2D) 6= 1 mod 2, or

3.
∑ ~ff2D 6= 0 mod 2.

Condition 4 For any fault combination on the 2D plane which satisfies nf2D = 1, nq2D ≥ 1,

nv∗2D ≥ 2, and nq2D + nf2D + nv∗2D = d − 1, the following does not happen: Ef2D · Ev∗2D,cen
is a

stabilizer, and Eq2D ·Ev∗2D,bot
is a nontrivial logical operator, and the cumulative flag vector

is zero; equivalently, at least one of the followings is satisfied:

1.
∑
~pf2D +

∑
~pv∗2D,cen 6= 0 mod 2, or

2.
∑

wp(σf2D) +
∑

wp(σv∗2D,cen) 6= 0 mod 2, or

3.
∑
~q2D +

∑
~pv∗2D,bot 6= 0 mod 2, or

4. nq2D +
∑

wp(σv∗2D,bot) 6= 1 mod 2, or

5.
∑ ~ff2D 6= 0 mod 2, or

6.
∑ ~fv∗2D 6= 0 mod 2.

93

Condition 5 For any fault combination on the 2D plane which satisfies ncap2D = 1, nq2D ≥
1, nf2D + nv∗2D ≥ 2, and nq2D + nf2D + nv∗2D + ncap2D = d − 1, the following does not happen:

Ef2D ·Ev∗2D,cen
·Ecap2D is a stabilizer, and Eq2D ·Ef2D ·Ev∗2D,bot

is a nontrivial logical operator, and

the cumulative flag vector is zero; equivalently, at least one of the followings is satisfied:

1.
∑
~pf2D +

∑
~pv∗2D,cen +

∑
~pcap2D 6= 0 mod 2, or

2.
∑

wp(σf2D) +
∑

wp(σv∗2D,cen) +
∑

wp(σcap2D) 6= 0 mod 2, or

3.
∑
~q2D +

∑
~pf2D +

∑
~pv∗2D,bot 6= 0 mod 2, or

4. nq2D +
∑

wp(σf2D) +
∑

wp(σv∗2D,bot) 6= 1 mod 2, or

5.
∑ ~ff2D + ~fv∗2D 6= 0 mod 2, or

6.
∑ ~fcap2D 6= 0 mod 2.

Conditions 1 to 5 prevent fault combinations of some form from occurring on the 2D plane

(such fault combinations can lead to an indistinguishable fault set). If we arrange the

CNOT gates in the circuits for f and cap generators so that all conditions are satisfied,

then a fault set Ft (which considers the 3D structure) will be distinguishable. The main

theorem of [TL21a] is as follows:

Theorem 6.1 Let Ft be the fault set corresponding to circuits for measuring f, v, and

cap generators of the capped color code in H form constructed from CCC(d) (where t =

(d − 1)/2, d = 3, 5, 7, ...), and suppose that the general configurations of CNOT gates for

f, v, and cap generators are imposed, and the circuits for each pair of X-type and Z-type

generators use the same CNOT ordering. Let the code on the (simplified) 2D plane be

the 2D color code of distance d. If all possible fault combinations on the 2D plane arising

from the circuits for measuring f and cap generators satisfy Conditions 1 to 5, then Ft is

distinguishable.

Proof ideas: The proof is organized as follows: First, we try to show that if Conditions 1 to

5 are satisfied, then for any fault combination arising from up to d−1 faults whose combined

error is purely Z type, the fault combination cannot lead to a logical Z operator and the

zero cumulative flag vector. The same analysis is also applicable to fault combinations

94

whose combined error is purely X type since the circuits for measuring each pair of X-type

and Z-type generators are of the same form. Afterwards, we use the fact that i faults

during the measurements of Z-type generators cannot cause an X-type error of weight

more than i (and vice versa), and show that there is no fault combination arising from up

to d − 1 faults which leads to a nontrivial logical operator and the zero cumulative flag

vector. By Proposition 3.1, this implies that Ft is distinguishable.

In order to prove the first part, we will assume that Conditions 1 to 5 are satisfied and

there exists a fault combination arising from < d faults whose combined error is a logical

Z operator and its cumulative flag vector is zero, then show that some contradiction will

happen. From Lemma 3.1, a logical Z operator is a Z-type error with trivial syndrome

and odd weight parity. Therefore, such a fault combination will give scap = 0, ~sf = ~0,

~sv = ~0, wptot = 1, ~fcap = ~0, ~ff = ~0, ~fv = ~0, wpbot = 1, and ~sbot = 0 in the main equations

(Eqs. (6.8) to (6.16)). A proof for this part will be divided into 4 cases: (1) nf = 0 and

ncap = 0, (2) nf ≥ 1 and ncap = 0, (3) nf = 0 and ncap ≥ 1, and (4) nf ≥ 1 and ncap ≥ 1.

In each case, the main equations will be simplified by eliminating the terms which are

equal to zero. Afterwards, We will consider the following pairs of equations: Eq. (6.8) and

Eq. (6.9), Eq. (6.10) and Eq. (6.11), Eq. (6.15) and Eq. (6.16). For each pair, the types

of faults on the 3D structure will be translated to their corresponding types of faults on

the 2D plane in order to find matching conditions from Conditions 1 to 5. Note that the

total number of faults of each type will also help in finding the matching conditions, and

the total number of faults of all types is at most d− 1. When the matching conditions are

found, we will find that some contradictions will happen (assuming that all conditions are

satisfied), and this is true for all possible cases.

Proof :

In the first part of the proof, we will assume that data errors arising from all faults are

purely Z type, and show that if Conditions 1 to 5 are satisfied, then there is no fault

combination arising from up to d − 1 faults whose combined error is a logical Z operator

and its cumulative flag vector is zero. Because i faults during the measurements of X-type

generators cannot cause a Z-type error of weight more than i, we can assume that each

fault is either a qubit fault causing a Z-type error (which is q0, qon, or qoff fault), or a

fault during a measurement of some Z-type generator (which is f, v, v∗, or cap fault).

95

First, recall the main equations (in mod 2):

scap =n0 + non +
∑

wp(σf) +
∑

wp(σv) +
∑

wp(σv∗,cen) +
∑

wp(σcap), (6.8)

~sf =
∑

~qon +
∑

~pf +
∑

~pv +
∑

~pv∗,cen +
∑

~pcap, (6.9)

~sv =
∑

~qon +
∑

~qoff +
∑

~pf +
∑

~qv∗ +
∑

~pcap, (6.10)

wptot =n0 + non + noff +
∑

wp(σf) + nv∗ +
∑

wp(σcap), (6.11)

~fcap =
∑

~fcap, (6.12)

~ff =
∑

~ff, (6.13)

~fv =
∑

~fv +
∑

~fv∗ , (6.14)

wpbot =noff +
∑

wp(σv) +
∑

wp(σv∗,bot), (6.15)

~sbot =
∑

~qoff +
∑

~pv +
∑

~pv∗,bot. (6.16)

Note that the types of faults involved in the main equations and the types of faults involved

in the conditions are related by the correspondence in Table 6.3. Here we will show that

if Conditions 1 to 5 are satisfied and there exists a fault combination arising from up to

d− 1 faults which corresponds to a logical Z operator and the zero cumulative flag vector,

some contradictions will happen (also note that Condition 0 is automatically satisfied).

By Lemma 3.1, a fault combination corresponding to a logical Z operator and the zero

cumulative flag vector gives scap = 0, ~sf = ~0, ~sv = ~0, wptot = 1, ~fcap = ~0, ~ff = ~0, ~fv = ~0,

wpbot = 1, and ~sbot = 0. We will divide the proof into 4 cases: (1) nf = 0 and ncap = 0,

(2) nf ≥ 1 and ncap = 0, (3) nf = 0 and ncap ≥ 1, and (4) nf ≥ 1 and ncap ≥ 1.

Case 1 : nf = 0 and ncap = 0. The main equations can be simplified as follows (trivial

equations are neglected):

0 =n0 + non +
∑

wp(σv) +
∑

wp(σv∗,cen), (6.8)

~0 =
∑

~qon +
∑

~pv +
∑

~pv∗,cen, (6.9)

~0 =
∑

~qon +
∑

~qoff +
∑

~qv∗ , (6.10)

1 =n0 + non + noff + nv∗ , (6.11)

96

~0 =
∑

~fv +
∑

~fv∗ , (6.14)

1 =noff +
∑

wp(σv) +
∑

wp(σv∗,bot), (6.15)

~0 =
∑

~qoff +
∑

~pv +
∑

~pv∗,bot. (6.16)

All faults involved in Eqs. (6.10) and (6.11) correspond to q2D faults on the 2D code and the

total number of faults are at most d− 1. Because Condition 0 is satisfied, from Eqs. (6.10)

and (6.11), we must have that non + noff + nv∗ = 0 (mod 2) which implies that n0 = 1.

Thus, Eq. (6.8) becomes,

1 = non +
∑

wp(σv) +
∑

wp(σv∗,cen). (6.8)

Since the total number of faults are n0 + non + noff + nv + nv∗ ≤ d − 1, we find that

non + noff + nv + nv∗ ≤ d− 2. Let us consider the following cases:

(1.a) If noff = 0, we have nv +nv∗ ≤ d− 2−non ≤ d− 2. In this case, Eqs. (6.14) to (6.16)

contradict Condition 1 (where v and v∗ faults correspond to f2D fault).

(1.b) If noff ≥ 1, we have non + nv + nv∗ ≤ d − 2 − noff ≤ d − 3. In this case, Eqs. (6.8),

(6.9) and (6.14) contradict Condition 2 (where qon fault corresponds to q2D fault, and v

and v∗ faults correspond to f2D fault).

Case 2 : nf ≥ 1 and ncap = 0. The main equations can be simplified as follows:

0 =n0 + non +
∑

wp(σf) +
∑

wp(σv) +
∑

wp(σv∗,cen), (6.8)

~0 =
∑

~qon +
∑

~pf +
∑

~pv +
∑

~pv∗,cen, (6.9)

~0 =
∑

~qon +
∑

~qoff +
∑

~pf +
∑

~qv∗ , (6.10)

1 =n0 + non + noff +
∑

wp(σf) + nv∗ , (6.11)

~0 =
∑

~ff, (6.13)

~0 =
∑

~fv +
∑

~fv∗ , (6.14)

1 =noff +
∑

wp(σv) +
∑

wp(σv∗,bot), (6.15)

~0 =
∑

~qoff +
∑

~pv +
∑

~pv∗,bot. (6.16)

97

The total number of faults are n0 + non + noff + nf + nv + nv∗ ≤ d− 1, which means that

noff + nv + nv∗ ≤ d− 1− n0 − non − nf (where nf ≥ 1). Consider the following cases:

(2.a) If n0 = 1 or non ≥ 1 or nf ≥ 2, we have noff + nv + nv∗ ≤ d − 3. In this case,

Eqs. (6.14) to (6.16) contradict Condition 2 (where qoff fault corresponds to q2D fault, and

v and v∗ faults correspond to f2D fault).

(2.b) If n0 = 0, non = 0, and nf = 1, we find that noff + nf + nv + nv∗ ≤ d − 1 and

noff + nv + nv∗ ≤ d − 2. Let us divide this case into the following subcases (where some

subcases may overlap):

(i) If nv ≥ 1, then noff + nf + nv∗ ≤ d − 2. In this case, Eqs. (6.10), (6.11) and (6.13)

contradict Condition 3 (where qoff and qv∗ faults correspond to q2D fault, and f fault

corresponds to f2D fault).

(ii) If nv = 0 and nv∗ = 0, then Eqs. (6.15) and (6.16) contradict Condition 0 (where

qoff fault corresponds to q2D fault).

(iii) If noff = 0, then nv + nv∗ ≤ d − 2 and Eqs. (6.14) to (6.16) contradict Condition 1

(where v and v∗ faults correspond to f2D fault).

(iv) If noff ≥ 1, nv = 0, and nv∗ = 1, then noff+nv∗ ≤ d−2 and Eqs. (6.14) to (6.16) con-

tradict Condition 3 (where qoff fault correspond to q2D fault, and v∗ fault corresponds

to f2D fault).

(v) If noff ≥ 1, nv = 0, nv∗ ≥ 2, and noff + nf + nv∗ ≤ d − 2, then Eqs. (6.10), (6.11)

and (6.13) contradict Condition 3 (where qoff and qv∗ faults correspond to q2D fault,

and f fault corresponds to f2D fault).

(vi) If noff ≥ 1, nv = 0, nv∗ ≥ 2, and noff + nf + nv∗ = d − 1, then Eqs. (6.8), (6.9)

and (6.13) to (6.16) contradict Condition 4 (where qoff, qf, and qv∗ faults correspond

to q2D, f2D, and v∗2D faults, respectively).

98

Case 3 : nf = 0 and ncap ≥ 1. The main equations can be simplified as follows:

0 =n0 + non +
∑

wp(σv) +
∑

wp(σv∗,cen) +
∑

wp(σcap), (6.8)

~0 =
∑

~qon +
∑

~pv +
∑

~pv∗,cen +
∑

~pcap, (6.9)

~0 =
∑

~qon +
∑

~qoff +
∑

~qv∗ +
∑

~pcap, (6.10)

1 =n0 + non + noff + nv∗ +
∑

wp(σcap), (6.11)

~0 =
∑

~fcap, (6.12)

~0 =
∑

~fv +
∑

~fv∗ , (6.14)

1 =noff +
∑

wp(σv) +
∑

wp(σv∗,bot), (6.15)

~0 =
∑

~qoff +
∑

~pv +
∑

~pv∗,bot. (6.16)

The total number of faults are n0 + non + noff + nv + nv∗ + ncap ≤ d− 1, which means that

noff + nv + nv∗ ≤ d− 1− n0 − non − ncap (where ncap ≥ 1). Consider the following cases:

(3.a) If n0 ≥ 1 or non ≥ 1 or ncap ≥ 2, then noff +nv +nv∗ ≤ d−3. In this case, Eqs. (6.14)

to (6.16) contradict Condition 2 (where qoff fault corresponds to q2D fault, and v and v∗

faults correspond to f2D fault).

(3.b) If n0 = 0, non = 0, and ncap = 1, we find that noff + nv + nv∗ + ncap ≤ d − 1 and

noff + nv + nv∗ ≤ d − 2. Let us divide the proof into the following subcases (where some

subcases may overlap):

(i) If nv + nv∗ = 0, then Eqs. (6.15) and (6.16) contradict Condition 0 (where qoff fault

corresponds to q2D fault).

(ii) If nv + nv∗ = 1, then Eqs. (6.14) to (6.16) contradict Condition 3 (where qoff fault

corresponds to q2D fault, and v and v∗ faults correspond to f2D fault).

(iii) If noff = 0, then nv + nv∗ ≤ d − 2. In this case, Eqs. (6.14) to (6.16) contradict

Condition 1 (where v and v∗ faults correspond to f2D fault).

(iv) If noff + nv + nv∗ + ncap ≤ d − 2 (or equivalently, noff + nv + nv∗ ≤ d − 3), then

Eqs. (6.14) to (6.16) contradict Condition 2 (where qoff fault corresponds to q2D fault,

and v and v∗ faults correspond to f2D fault).

99

(v) If noff ≥ 1, nv + nv∗ ≥ 2, and noff + nv + nv∗ + ncap = d − 1, then Eqs. (6.8),

(6.9), (6.12) and (6.14) to (6.16) contradict Condition 5 (where qoff, v, v∗, cap faults

correspond to q2D, f2D, v
∗
2D, and cap2D faults, respectively).

Case 4 : nf ≥ 1 and ncap ≥ 1 (the main equations cannot be simplified in this case). From

the fact that the total number of faults is at most d− 1, we have noff + nv + nv∗ ≤ d− 3.

In this case, we find that Eqs. (6.14) to (6.16) contradict Condition 2 (where qoff fault

corresponds to q2D fault, and v and v∗ faults correspond to f2D fault).

So far, we have shown that if Conditions 1 to 5 are satisfied and all faults give rise to purely

Z-type errors, then there is no fault combination arising from up to d − 1 faults whose

combined error is a logical Z operator and its cumulative flag vector is zero. Because the

circuits for each pair of X-type and Z-type generators use the same CNOT ordering, the

same analysis is also applicable to the case of purely X-type errors; i.e., if Conditions 1

to 5 are satisfied and all faults give rise to purely X-type errors, then there is no fault

combination arising from up to d− 1 faults whose combined error is a logical X operator

and its cumulative flag vector is zero. In the next part of the proof, we will use these

results to show that Ft is distinguishable.

Let us consider a fault combination whose combined error is of mixed type. Let tx and tz
denote the total number of faults during the measurements of X-type and Z-type genera-

tors, and let ux, uy, uz denote the number of qubit faults which give X-type, Y -type, and

Z-type errors, respectively. Suppose that the fault combination arises from no more than

d− 1 faults, we have tx + tz +ux +uy +uz ≤ d− 1. Next, observe that tx faults during the

measurement of X-type generators cannot cause a Z-type error of weight more than tx,

and tz faults during the measurement of Z-type generators cannot cause a X-type error

of weight more than tz. Thus, the Z-part of the combined error and the cumulative flag

vector corresponding to Z-type generators can be considered as an error and a cumulative

flag vector arising from tz + tx + uz + uy ≤ d − 1 faults which give rise to purely Z-type

errors. Similarly, the X-part of the combined error and the cumulative flag vector corre-

sponding to X-type generators can be considered as an error and a cumulative flag vector

arising from tx + tz +ux +uy ≤ d− 1 faults which give rise to purely X-type errors. Recall

that there is no fault combination arising from up to d− 1 faults whose combined error is

a logical X (or a logical Z) operator and its cumulative flag vector is zero when all faults

give rise to purely X-type (or purely Z-type) errors. Using this, we find that for any fault

combination arising from d− 1 faults, it cannot correspond to a nontrivial logical operator

100

and the zero cumulative flag vector. That is, there is no fault combination corresponding

to a nontrivial logical operator and the zero cumulative flag vector in F2t where 2t = d−1.

By Proposition 3.1, this implies that Ft is distinguishable. �

Theorem 6.1 can make the process of finding CNOT orderings which give a distinguishable

fault set less laborious; instead of finding all possible fault combinations arising from the

circuits for f, v, and cap generators and check whether any condition in Definition 3.3 is

satisfied, we just have to check whether all possible fault combinations arising from the

circuits for f and cap generators satisfy Conditions 1 to 5. Note that number of possible

fault combinations of the latter task is much smaller than that of the prior task because

the total number of generators involved in the latter calculation roughly decreases by half,

and the weight of an f generator is half of the weight of its corresponding v generator.

After good CNOT orderings for f and cap generators are found, we can find the CNOT

orderings of v generators by the constraints imposed by the general configurations for data

and flag CNOTs.

Using Theorem 6.1, we can find circuits for capped color codes in H form of distance 5 and

7, which give distinguishable fault sets with t = 2 and t = 3, respectively. The circuit for

measuring a generator of weight w of the code of distance 5 is a non-flag circuit as shown

in Fig. 6.9a, and the orderings of data CNOTs for f and cap generators are presented by

the diagram in Fig. 6.9b. The circuit for measuring a generator of weight w of the code of

distance 7 is a flag circuit with one flag ancilla as shown in Fig. 6.10a, and the orderings

of data CNOTs for f and cap generators are presented by the diagram in Fig. 6.10b. (For

the meanings of these diagrams, please refer to the description of the diagram presented

in Section 6.1.2.) Since the fault sets in both cases are distinguishable, the fault-tolerant

protocols in Section 6.3 are applicable. Note that the protocols for the capped color code

of distance 5 and 7 only need one and two ancillas, respectively. This means that our

protocols for the codes of distance 5 and 7 require 40 and 77 qubits in total.

101

(a) (b)

Figure 6.9: (a) A non-flag circuit for measuring a generator of the capped color code of
distance 5 in H form, where w is the weight of the generator. (b) The orderings of data
CNOT gates which give a distinguishable fault set F2.

(a) (b)

Figure 6.10: (a) A flag circuit for measuring a generator the capped color code of distance
7 in H form, where w is the weight of the generator. (b) The orderings of data CNOT
gates which give a distinguishable fault set F3.

102

6.3 Fault-tolerant protocols for a capped color code

Previously in Section 4.2, we have shown that it is possible to redefine r-filter and ideal

decoder as in Definitions 4.8 and 4.9 using the notions of distinguishable fault set (Def-

inition 3.3) and distinguishable error set (Definition 4.7 or Definition 4.11), and redefine

fault-tolerant gadgets as in Definition 4.10. These revised definitions give us more flex-

ibility when designing fault-tolerant protocols, while ensuring that the simulated circuit

constructed from these protocols still work fault-tolerantly. In Section 6.3.1, we will con-

struct an FTEC protocol for a capped color code in H form of any distance in which its

fault set is distinguishable. Note that having only the FTEC protocol is not enough for

general fault-tolerant quantum computation, so we will also construct other fault-tolerant

protocols which share the same distinguishable fault set with the FTEC protocol for a

particular code in Sections 6.3.2 and 6.3.3.

6.3.1 Fault-tolerant error correction protocol

To construct an FTEC protocol for a capped color code in H form obtained from CCC(d),

we will first assume that the fault set Ft (where t = (d − 1)/2) corresponding to the

circuits for measuring the generators of the code is distinguishable, and the orderings of

gates in the circuits for each pair of X-type and Z-type generators are the same. From the

fact that Ft is distinguishable, we can build a list of all possible fault combinations and

their corresponding combined error, syndrome of the combined error, and cumulative flag

vector. Note that if several fault combinations have the same syndrome and cumulative

flag vector, their combined errors are all logically equivalent (from Definition 3.3).

Let ~s = (~sx|~sz) be the syndrome obtained from the measurements of X-type and Z-

type generators, and let ~f = (~fx|~fz) be the cumulative flag vector corresponding to the

flag outcomes from the circuits for measuring X-type and Z-type generators, where ~f is

accumulated from the first round until the current round. We define the outcome bundle

(~s,~f) to be the collection of ~s and ~f obtained during a single round of full syndrome

measurement. An FTEC protocol for the capped color code in H form is as follows:

103

FTEC protocol for a capped color code in H form

During a single round of full syndrome measurement, measure the generators in the fol-

lowing order: measure vxi ’s, then fxi ’s, then vzi ’s, then f zi ’s. Perform full syndrome mea-

surements until the outcome bundles (~s,~f) are repeated t+ 1 times in a row. Afterwards,

do the following:

1. Determine an EC operator Fx using the list of possible fault combinations as follows:

(a) If there is a fault combination on the list whose syndrome and cumulative flag

vector are (~0|~sz) and (~fx|~0), then Fx is the combined error of such a fault com-

bination. (If there are more than one fault combination corresponding to (~0|~sz)
and (~fx|~0), a combined error of any of such fault combinations will work.)

(b) If none of the fault combinations on the list corresponds to (~0|~sz) and (~fx|~0),

then Fx can be any Pauli X operator whose syndrome is (~0|~sz).

2. Determine an EC operator Fz using the list of possible fault combinations:

(a) If there is a fault combination on the list whose syndrome and cumulative flag

vector are (~sx|~0) and (~0|~fz), then Fz is the combined error of such a fault com-

bination. (If there are more than one fault combination corresponding to (~sx|~0)

and (~0|~fz), a combined error of any of such fault combinations will work.)

(b) If none of the fault combinations on the list corresponds to (~sx|~0) and (~0|~fz),
then Fz can be any Pauli Z operator whose syndrome is (~sx|~0).

3. Apply Fx · Fz to the data qubits to perform error correction.

To verify that the above EC protocol is fault tolerant according to the revised definition

(Definition 4.10), we have to show that the two properties in Definition 4.4 are satisfied

when the r-filter and the ideal decoder are defined as in Definitions 4.8 and 4.9 (instead

of Definitions 4.1 and 4.2) and the distinguishable error set is defined as in Definition 4.11

(the circuits for X-type and Z-type generators of the capped color code in H form use

similar gate orderings). Here we will assume that there are no more than t faults during

the whole protocol. Therefore, the condition that the outcome bundles are repeated t+ 1

times in a row will be satisfied within (t+ 1)2 rounds. We will divide the analysis into two

cases: (1) the case that the last round of the full syndrome measurement has no faults,

and (2) the case that the last round has some faults.

104

Figure 6.11: Fault-tolerant error correction protocol for a capped color code.

(1) Because the outcome bundles are repeated t + 1 times and the last round of the full

syndrome measurement has no faults, we know that the outcome bundle of the last round

is correct and corresponds to the data error before the error correction in Step 3. Let Ein

be the input error and Ea be the combined error of a fault combination arising from the sa
faults where sa ≤ t. The error on the data qubits before Step 3 is Ea ·Ein. First, consider

the case that Ein is in Er (defined in Definition 4.11) where r + sa ≤ t. Both Ein and Ea
can be separated into X and Z parts. We find that the X part of Ein is in Exr (which

is derived from Fr|~f=0). Thus, the X part of Ea · Ein is the combined error of X type of

some fault combination in Fr+sa . Similarly, the Z part of Ein is in Ezr , and the Z part of

Ea · Ein is the combined error of Z type of some fault combination in Fr+sa . By picking

EC operators Fx and Fz as in Steps 1a and 2a, Step 3 can completely remove the data

error. Thus, both ECCP and ECRP in Definition 4.4 are satisfied. On the other hand, if

Ein is not in Er where r+ sa ≤ t, the X part or the Z part of Ea ·Ein might not correspond

to any fault combination in Ft. In this case, Fx or Fz will be picked as in Step 1b or 2b.

Because the X part (or the Z part) of Ea ·Ein and Fx (or Fz) have the same syndrome no

matter how we pick Fx (or Fz), the output state after Step 3 is a valid codeword, but it

may or may not be logically the same as the input state. In any cases, the output state

can pass the sa-filter, so the ECRP in Definition 4.4 is satisfied.

(2) In the case that the last round of the full syndrome measurement has some faults, the

outcome bundle of the last round may not correspond to the data error before the error

correction in Step 3. Fortunately, since the outcome bundles are repeated t+ 1 times in a

row and there are no more than t faults during the whole protocol, we know that at least

one round in the last t + 1 rounds must be correct, and the outcome bundle of the last

round must correspond to the data error right before the last correct round. Let Ein be

the input error, Ea be the combined error arising from sa faults which happen before the

last correct round, and Eb be the combined error arising from sb faults which happen after

105

the last correct round, where the total number of faults is s = sa + sb ≤ t (see Fig. 6.11).

First, consider the case that Ein is in Er where r + s ≤ t. By an analysis similar to that

presented in (1), we find that both X and Z parts of Ea ·Ein are the combined errors of some

fault combinations in Fr+sa , and Fx and Fz from Steps 1a and 2a can completely remove

Ea · Ein. Thus, the output data error after Step 3 is Eb. Since sb ≤ t and the cumulative

flag vectors do not change after the last correct round, we find that Eb is the combined

error of some fault combination arising from sb faults whose cumulative flag vector is zero;

that is, Eb is in Esb where sb ≤ t. For this reason, Eb can pass the s-filter and can be

corrected by the ideal decoder, meaning that both ECCP and ECRP in Definition 4.4 are

satisfied. In contrast, if Ein is not in Er where r + s ≤ t, Ein may not correspond to any

fault combination in Ft, and Fx or Fz may be picked as in Step 1b or 2b. Similar to the

previous analysis, Fx ·Fz will have the same syndrome as that of Ea ·Ein. By an operation

in Step 3, the output state will be a valid codeword with error Eb, which can pass the the

s-filter. Therefore, the ECRP in Definition 4.4 is satisfied in this case.

In addition to the capped color code in H form, the FTEC protocol above is also applicable

to any CSS code in which Ft is distinguishable and the possible X-type and Z-type errors

are of the same form (i.e., a code to which Definition 4.11 is applicable for all r ∈ {1, . . . , t},
t ≤ b(d − 1)/2c). Besides this, we can also construct an FTEC protocol for a general

stabilizer code whose circuits for the syndrome measurement give a distinguishable fault

set (a code in which Er is defined by Definition 4.7 instead of Definition 4.11) using similar

ideas. An FTEC protocol for such a code is provided in Section 6.4.

6.3.2 Fault-tolerant measurement and state preparation proto-

cols

Besides FTEC protocols, we also need other gadgets such as FTM, FTP, and FTG gadgets

in order to perform fault-tolerant quantum computation. Note that the definitions of

the r-filter (Definition 4.8) and the ideal decoder (Definition 4.9) depend on how the

distinguishable error set is defined. Therefore, in order to utilize the new definitions of

fault-tolerant gadgets in Definition 4.10, all protocols used in the computation must share

the same definition of distinguishable error set. In this section, we will construct an FTM

protocol for a capped color code in H form, which is also applicable to other CSS codes

with similar properties. The distinguishable error set being used in the construction of

106

the FTM protocol will be similar to the distinguishable error set defined for the FTEC

protocol for the same code. In addition, an FTP protocol can also be obtained from the

FTM protocol.

We will start by constructing an FTM protocol for a capped color code in H form obtained

from CCC(d). The FTM protocol discussed below can be used to fault-tolerantly measure

any logical X or logical Z operator of the form X⊗nM or Z⊗nN , where M,N are some

stabilizers. Let L be the logical operator being measured. We will assume that the circuits

for measuring X-type and Z-type generators are similar to the ones used in the FTEC pro-

tocol for a capped color code, which give a distinguishable fault set Ft with t = (d− 1)/2

(the list of possible fault combinations for the FTM protocol is the same as the list used

in the FTEC protocol). In addition, we can always use a non-flag circuit with an arbitrary

gate ordering for measuring L (since any error arising from the circuit faults can always

be corrected as we will see later in the protocol analysis). For the FTM protocol, the

outcome bundle will be defined as (m,~s,~f), where m is the measurement outcome of the

logical operator L (m = 0 and m = 1 correspond to +1 and −1 eigenvalues of L), and

~s = (~sx|~sz) and ~f = (~fx|~fz) are the syndrome and the cumulative flag vector obtained from

the measurements of X-type and Z-type generators (~f is accumulated from the first round

until the current round). An FTM protocol is as follows:

FTM protocol for a capped color code in H form

During a single round of logical operator and full syndrome measurements, measure the

operators in the following order: measure L, then vxi ’s, then fxi ’s, then vzi ’s, then f zi ’s. Per-

form logical operator and full syndrome measurements until the outcome bundles (m,~s,~f)

are repeated t+ 1 times in a row. Afterwards, do the following:

1. Determine an EC operator Fx using the list of possible fault combinations as follows:

(a) If there is a fault combination on the list whose syndrome and cumulative flag

vector are (~0|~sz) and (~fx|~0), then Fx is the combined error of such a fault com-

bination. (If there are more than one fault combination corresponding to (~0|~sz)
and (~fx|~0), a combined error of any of such fault combinations will work.)

(b) If none of the fault combinations on the list corresponds to (~0|~sz) and (~fx|~0),

then Fx can be any Pauli X operator whose syndrome is (~0|~sz).

107

2. Determine an EC operator Fz using the list of possible fault combinations as follows:

(a) If there is a fault combination on the list whose syndrome and cumulative flag

vector are (~sx|~0) and (~0|~fz), then Fz is the combined error of such a fault com-

bination. (If there are more than one fault combination corresponding to (~sx|~0)

and (~0|~fz), a combined error of any of such fault combinations will work.)

(b) If none of the fault combinations on the list corresponds to (~sx|~0) and (~0|~fz),
then Fz can be any Pauli Z operator whose syndrome is (~sx|~0).

3. Apply Fx · Fz to the data qubits to perform error correction.

4. If L and Fx · Fz anticommute, modify m from 0 to 1 or from 1 to 0. If L and Fx · Fz
commute, do nothing.

5. Output m as the operator measurement outcome, wherem = 0 and m = 1 correspond

to +1 and −1 eigenvalues of L. If L is a logical Z operator, the output state is the

logical |0〉 or logical |1〉 state for m = 0 or 1. If L is a logical X operator, the output

state is the logical |+〉 or logical |−〉 state for m = 0 or 1.

To verify that the FTM protocol for a capped color code is fault tolerant according to the

revised definition (Definition 4.10), we will show that both of the properties in Definition 4.6

is satisfied when the r-filter, the ideal decoder, and the distinguishable fault set Er are

defined as in Definitions 4.8, 4.9 and 4.11. The distinguishable fault set Ft for this protocol

is the same fault set as the one defined for the FTEC protocol (i.e., Ft concerns the

circuits for measuring X-type and Z-type generators, and does not concern the circuit for

measuring L). We will also assume that there are no more than t faults during the whole

protocol, so the outcome bundles must be repeated t + 1 times in a row within (t + 1)2

rounds. First, suppose that the operator being measured L is a logical Z operator. The

analysis will be divided into two cases: (1) the case that the last round of operator and

full syndrome measurements has no faults, and (2) the case that the last round of operator

and full syndrome measurements has some faults.

(1) Because the last round is correct and the outcome bundles are repeated (t + 1) times

in a row, m,~s, and ~f exactly correspond to the error on the state before Step 3. Let

Ein ∈ Er be the input error, Ea be the combined error arising from sa faults in the circuits

for measuring L, and Eb be the combined error arising from sb faults in the syndrome

108

Figure 6.12: Fault-tolerant measurement protocol for a capped color code.

measurement circuits, where r + sa + sb ≤ t. Also, assume that the (uncorrupted) input

state is |m̄in〉 where min = 0 or 1. The data error on the state before the last round is

EbEaEin. Since L is of the form Z⊗nN where N is some stabilizer, the X part of Ea
has weight no more than sa, while the Z part of Ea can be any Z-type error. We find

that the X part of EbEaEin, denoted as (EbEaEin)x, is similar to a combined error of X

type of some fault combination in Fr+sa+sb . However, the Z part of EbEaEin, denoted as

(EbEaEin)z, may or may not correspond to a Z-type error of some fault combination in

Ft. By picking Fx and Fz as in Steps 1 and 2, Fx is logically equivalent to (EbEaEin)x and

Fz is logically equivalent to (EbEaEin)z or (EbEaEin)zZ
⊗n. So after the error correction in

Step 3, the output state is |m̄in〉 or Z⊗n|m̄in〉. Note that |m̄in〉 and Z⊗n|m̄in〉 are the same

state for both min = 0 and min = 1 cases (the −1 global phase can be neglected in the case

of min = 1).

Next, let us consider the result m obtained from the last round, which tell us whether

the state before the measurement of L during the last round is +1 or −1 eigenstate of

L. We find that if min = 0, m = 0 whenever EbEaEin commutes with L, and m = 1

whenever EbEaEin anticommutes with L. On the other hand, if min = 1, m = 1 whenever

EbEaEin commutes with L, and m = 0 whenever EbEaEin anticommutes with L. Also,

note that Fx ·Fz is either EbEaEin or EbEaEinZ
⊗n and L is a logical Z operator, so EbEaEin

commutes (or anticommutes) with L if and only if Fx · Fz commutes (or anticommutes)

with L. Thus, we need to flip the output as in Step 4 whenever Fx ·Fz anticommutes with

L so that m = min. As a result, the measurement protocol gives an output state |m̄in〉
and its corresponding measurement outcome m = min which reflect the uncorrupted input

state.

Now, let us consider the case that the uncorrupted input state is of the form α|0̄〉 + β|1̄〉.
If there is at least one round before the last correct round in which the measurement of

L is correct, then the superposition state collapses and the state before the last correct

109

round is either EbEaEin|0̄〉 or EbEaEin|1̄〉, so the analysis above is applicable. However, if

the measurements of L before the last correct round are all incorrect, it is possible that the

superposition state may not collapse and the state before the last correct round is of the

form EbEaEin(α|0̄〉+ β|1̄〉). Suppose that the measurement of L in the last correct round

gives m = 0. Then the output state from the last correct round is a +1 eigenstate of L,

which is EbEaEin|0̄〉 if EbEaEin commutes with L, or EbEaEin|1̄〉 if EbEaEin anticommutes

with L. In constrast, if the measurement of L in the last correct round gives m = 1,

then the output state from the last correct round is a −1 eigenstate of L. This state is

EbEaEin|1̄〉 if EbEaEin commutes with L, or EbEaEin|0̄〉 if EbEaEin anticommutes with L.

By applying Fx · Fz as in Step 3 and modifying m whenever Fx · Fz anticommutes with L

as in Step 4, the outputs from the protocol are either m = 0 and |0̄〉, or m = 1 and |1̄〉 (up

to some global phase). Therefore, both MCP and MPP in Definition 4.6 are satisfied.

(2) In the case that the last round has some faults, because the outcome bundles are

repeated (t + 1) times in a row and there are no more than t faults in the protocol, there

must be at least one correct round in the last t + 1 rounds, and the outcome bundles

correspond to the error on the state before the last correct round. Let Ein ∈ Er be the

input error, Ea be the combined error arising from sa faults in the circuits for measuring

L before the last correct round, Eb be the combined error arising from sb faults in the

syndrome measurement circuits before the last correct round, and Ec be the combined

error arising from sc faults in any circuits after the last correct round but before the

syndrome measurement circuits of the very last round, and Ed be the combined error

arising from sd faults in the syndrome measurement circuits of the very last round, where

r+ sa + sb + sc + sd ≤ t (see Fig. 6.12). By an analysis similar to (1), we find that Fx from

Step 1 is logically equivalent to (EbEaEin)x, and Fz from Step 2 is logically equivalent to

(EbEaEin)z or (EbEaEin)zZ
⊗n.

Now, let us consider Ec which can arise from the circuits for measuring L or the syndrome

measurement circuits, and Ed which can arise from the syndrome measurement circuits.

Because the syndromes and the cumulative flag vectors do not change after the last correct

round, and because i faults in the circuits for measuring L cannot cause X-type error of

weight more than i, the X part of Ec (denoted as (Ec)x) is similar to the combined error

of X type of a fault combination arising from sc faults whose cumulative flag vector is

zero, i.e., (Ec)x is an error in Exsc . In contrast, because the circuits for measuring L can

cause Z-type error of any weight but the syndromes and the cumulative flag vectors do not

110

change after the last correct round, the Z part of Ec (denoted as (Ec)z) can be written as

(Ẽc)z or (Ẽc)zZ
⊗n, where (Ẽc)z ∈ Ezsc . That is, Ec is either Ẽc or ẼcZ

⊗n where Ẽc ∈ Esc .
For Ed which arising from sd the syndrome measurement circuits in the very last round,

we find that it is an error in Esd since the cumulative flag vector from the very last round

remains the same.

Let the (uncorrupted) input state be of the form α|0̄〉+β|1̄〉. Suppose that the measurement

outcome of L from the last correct round is m = 0. From the argument on a superposition

state in (1), we find that the output state from the last correct round is EbEaEin|0̄〉 if

EbEaEin commutes with L, or EbEaEin|1̄〉 if EbEaEin anticommutes with L. Thus, the

state before Step 3 is EdẼcEbEaEin|0̄〉 or EdẼcZ
⊗nEbEaEin|0̄〉 if EbEaEin commutes with

L, or EdẼcEbEaEin|1̄〉 or EdẼcZ
⊗nEbEaEin|1̄〉 if EbEaEin anticommutes with L. Recall

that Fx · Fz is either EbEaEin or EbEaEinZ
⊗n, and EbEaEin commutes (or anticommutes)

with L if and only if Fx ·Fz commutes (or anticommutes) with L. By applying Fx ·Fz as in

Step 3 and modifying m whenever Fx · Fz anticommutes with L as in Step 4, the protocol

either outputs m = 0 with the output state EdẼc|0̄〉 (up to some global phase), or outputs

m = 1 with the output state EdẼc|1̄〉 (up to some global phase). Similar results will be

obtained in the case that the measurement outcome of L from the last correct round is

m = 1.

Since EdẼc ∈ Es where s = sa + sb + sc + sd and r + s ≤ t, the output bit corresponds

to the logical qubit of the output state in every case, and the output bit is 0 (or 1) if

the (uncorrupted) input state is |0̄〉 (or |1̄〉), both of MCP and MPP in Definition 4.6 are

satisfied. Similar analysis can be made for the case that L is a logical X operator. In that

case, we will let m = 0 and m = 1 correspond to |+̄〉 and |−̄〉, and the analysis similar to

(1) and (2) can be applied.

In addition, it is possible to construct an FTP protocol from the FTM protocol described

above. For example, if we want to prepare the state |0̄〉, we can do so by applying the

FTM protocol for a logical Z operator to any state, then applying a logical X operator on

the output state if m = 1 or do nothing if m = 0.

The FTM and the FTP protocols presented in this section is also applicable to any CSS

code in which the number of encoded qubit is 1, Ft is distinguishable (where Ft corresponds

to the circuits for measuring code generators), and the errors in Exr and Ezr have the same

form for all r = 1, . . . , t, t ≤ b(d− 1)/2c.

111

6.3.3 Transversal gates and other gate gadgets

From the properties of a capped color code in H form discussed in Section 6.2.1, we know

that H, S, and CNOT gates are transversal. These gates can play an important role

in fault-tolerant quantum computation because transversal gates satisfy both properties

of fault-tolerant gate gadgets originally proposed in [AGP06] (Definition 4.3). However,

since the definition of fault-tolerant gadgets being used in this work is revised as in Defini-

tion 4.10, transversal gates which satisfy the old definition may or may not satisfy the new

one. In this section, we will show that transversal H, S, and CNOT gates are still fault

tolerant according to the new definition of fault-tolerant gadgets when the distinguishable

error set Er of a capped color code in H form is defined as in Definition 4.11. Afterwards,

we will also discuss some possibilities of building other fault-tolerant gate gadgets in order

to achieve the universal set of quantum gates.

We start by observing the operations of H, S, and CNOT gates. These gates can transform

Pauli operators as follows:

H : X 7→ Z, Y 7→ −Y, Z 7→X,

S : X 7→ Y, Y 7→−X, Z 7→ Z,

CNOT : XI 7→XX, ZI 7→ ZI,

IX 7→ IX, IZ 7→ ZZ.

Meanwhile, the transversal H, S, and CNOT gates can map logical operators X̄ = X⊗n

and Z̄ = Z⊗n as follows:

H⊗n : X̄ 7→ Z̄, Z̄ 7→ X̄,

S⊗n : X̄ 7→ −Ȳ , Z̄ 7→ Z̄,

CNOT⊗n : X̄ ⊗ Ī 7→X̄ ⊗ X̄, Z̄ ⊗ Ī 7→ Z̄ ⊗ Ī ,
Ī ⊗ X̄ 7→ Ī ⊗ X̄, Ī ⊗ Z̄ 7→ Z̄ ⊗ Z̄,

where Ī = I⊗n, Ȳ = iX̄Z̄ = −Y ⊗n, and n = 3(d2 + 1)/2 is the total number of qubits for

each CCC(d) (since d = 3, 5, 7, ..., we find that n = 3 (mod 4) and Ȳ = −Y ⊗n for any

CCC(d)). In addition, the coding subspace is preserved under the operation of H⊗n, S⊗n,

or CNOT⊗n (i.e., each stabilizer is mapped to another stabilizer). Therefore, H⊗n, S⊗n,

and CNOT⊗n are logical H, logical S†, and logical CNOT gates, respectively.

Next, we will verify whether the new definition of fault-tolerant gate gadgets in Defini-

112

tion 4.10 is satisfied. Let the distinguishable error set Er (r = 1, . . . , t) be defined as in

Definition 4.11, where the distinguishable fault set Ft is the same fault set as the one de-

fined for the FTEC protocol for a capped color code in H form. Suppose that the operation

of H⊗n, S⊗n or CNOT⊗n has s faults, the input error of H⊗n or S⊗n is an error in Er where

r + s ≤ t, and the input error of CNOT⊗n is an error in Er1 × Er2 where r1 + r2 + s ≤ t.

The input error for H⊗n and S⊗n can be written as Ex
1 · Ez

2 where Ex
1 ∈ Exr and Ez

2 ∈ Ezr ,

and the input error for CNOT⊗n can be written as (Ex
3 ⊗Ex

4) · (Ez
5 ⊗Ez

6) where Ex
3 ∈ Exr1 ,

Ex
4 ∈ Exr2 , E

z
5 ∈ Ezr1 , E

z
6 ∈ Ezr2 . Let Ex

i and Ez
i be X-type and Z-type operators which act

on the same qubits. We find that,

1. H⊗n maps Ex
1 · Ez

2 to Ez
1 · Ex

2 , which is an error in Er.

2. S⊗n maps Ex
1 · Ez

2 to eiθEx
1 · Ez

1 · Ez
2 for some phase eiθ (which is ±1 or ±i), where

Ex
1 · Ez

1 · Ez
2 is an error in Er.

3. CNOT⊗n maps (Ex
3 ⊗ Ex

4) · (Ez
5 ⊗ Ez

6) to (Ex
3 ⊗ Ex

3E
x
4) · (Ez

5E
z
6 ⊗ Ez

6), which is an

error in Er1+r2 × Er1+r2 .

In addition, s faults during the application of H⊗n or S⊗n can cause an error in Es, and

s faults during the application of CNOT⊗n can cause an error in Es × Es. Combining the

input error and the error from faults, we find that an output error from H⊗n or S⊗n is an

error in Er+s, while an output error from CNOT⊗n is an error in Er1+r2+s × Er1+r2+s. As

a result, H⊗n, S⊗n, and CNOT⊗n satisfy both GCP and GPP in Definition 4.3 when the

r-filter, the ideal decoder, and the distinguishable error set are defined in Definitions 4.8,

4.9 and 4.11. That is, transversal H, S, and CNOT gates are fault tolerant according to

the revised definition.

(Note that whether a transversal gate satisfies the revised definition of fault-tolerant gate

gadgets in Definition 4.10 depends on how the distinguishable error set is defined (as in

either Definition 4.7 or Definition 4.11). For example, if the input error Ein can arise from

t faults (Ein is in Et) and a transversal gate transforms such an error to another error Eout

which cannot arise from ≤ t faults (Eout is not in Et), then this transversal gate is not

considered fault tolerant.)

Since the Clifford group can be generated by H, S, and CNOT [CRSS97, Got98], any

Clifford gate can be fault-tolerantly implemented on the capped code in H form using

transversal H, S, and CNOT gates. In order to achieve a universal set of quantum gates, we

113

also need a fault-tolerant implementation of some gate outside the Clifford group [NRS01].

One possible way to implement a non-Clifford gate on the capped color code in H form is

to use magic state distillation [BK05], but large overhead might be required [FMMC12].

Another possible way is to perform code switching; since the code in H form possesses

transversal H, S, and CNOT gates, and the code in T form possesses a transversal T gate,

we can apply transversal H, S, or CNOT gates and perform FTEC on the code in H form,

and switch to code in T form to apply a transversal T gate when necessary. However,

a careful analysis to verify whether the traditional code switching method described in

Section 6.2.1 is fault tolerant has yet to be done.

In [JOB16], the implementation of a transversal T gate is done on the (d− 1) + 1 stacked

code while the code switching is done by the traditional procedure, and the whole process is

fault tolerant since the code has distance d. However, the capped color code in T form has

only distance 3 (even though it looks very similar to the stacked code), so the traditional

method might not be fault tolerant in our case. Another way to perform code switching is

to use the method involving a logical EPR state proposed in [BKS21], which works perfectly

on the capped color code in the case of no faults. However, their error analysis for the case

that some faults happen may not be directly applicable to our case since the capped color

code and the traditional 3D color code have different structure. Nevertheless, it should be

noted that possible errors from circuit faults depend heavily on the structure of the circuits

involved in the code switching, and the FTEC protocol the capped color code developed in

Section 6.3.1 can correct some errors of weight more than τ = b(d− 1)/2c. Therefore, we

are hopeful that circuits for measuring gauge operators could be carefully designed so that

any possible errors from the circuit faults arising during the code switching are correctable

by the FTEC protocol.

Another possible way to achieve universality is to design a gate gadget which can implement

a logical T gate (or another non-Clifford gate) without using magic state distillation or

code switching. To do so, we have to make sure that the newly-obtained error set (which

includes possible errors arising from the FTEC protocol and the gadget implementing a

non-Clifford gate) is still distinguishable, so that any errors arising during the computation

can be corrected by the FTEC protocol.

114

6.4 Fault-tolerant error correction protocol for a gen-

eral stabilizer code

In Section 6.3.1, we construct an FTEC protocol for a capped color code in H form of any

distance in which its fault set is distinguishable. We also show that such a protocol is fault

tolerant when the r-filter, the ideal decoder, and the distinguishable error set are defined

as in Definitions 4.8, 4.9 and 4.11. Using similar ideas, we can also construct an FTEC

protocol for a general stabilizer code whose circuits for the syndrome measurement give a

distinguishable fault set Ft, i.e., a code in which Er is defined by Definition 4.7 instead of

Definition 4.11. The outcome bundle defined for the protocol in this section is similar to

the outcome bundle defined for the FTEC protocol for a capped color code, except that

the syndrome ~s and the cumulative flag vector ~f are not separated into X and Z parts. We

can also build a list of all possible fault combinations and their corresponding combined

error and cumulative vector from the distinguishable fault set Ft. The FTEC protocol for

a general stabilizer code is as follows:

FTEC protocol for a stabilizer code whose syndrome measurement circuits give

a distinguishable fault set

During a single round of full syndrome measurement, measure the all generators in any

order. Perform full syndrome measurements until the outcome bundles (~s,~f) are repeated

t+ 1 times in a row. Afterwards, do the following:

1. Determine an EC operator F using the list of possible fault combinations as follows:

(a) If there is a fault combination on the list whose syndrome and cumulative flag

vector are ~s and ~f , then F is the combined error of such a fault combination.

(If there are more than one fault combination corresponding to ~s and ~f , a com-

bined error of any of such fault combinations will work since they are logically

equivalent.)

(b) If none of the fault combinations on the list corresponds to ~s and ~f , then F can

be any Pauli operator whose syndrome is ~s.

2. Apply F to the data qubits to perform error correction.

115

To verify that the FTEC protocol for a general stabilizer code satisfies both properties of an

FTEC gadget according to the revised definition (Definition 4.10), we can use an analysis

similar to that presented in Section 6.3.1, except that Er is defined by Definition 4.7 instead

of Definition 4.11 and the errors in the analysis (Ein, Ea, and Eb) need not be separated

into X and Z parts.

116

Chapter 7

Discussion and Conclusions

So far, the FTEC techniques for two families of codes developed in [TL21b] and [TL21a]

have been elaborated in this thesis. In particular, the FTEC protocol for the [[49, 1, 9]]

concatenated Steane code is presented in Chapter 5, while the notion of distinguishable

fault set, the revised definitions of fault-tolerant gadgets, and the fault-tolerant protocols

for a capped color code are provided in Chapters 3, 4 and 6. In this chapter, we will discuss

the main results of [TL21b] and [TL21a], and provide possible directions for future work.

7.1 Fault-tolerant error correction for the 49-qubit

concatenated Steane code

In [TL21b], we prove the logical equivalence between errors of any weight on 7 qubits

which have the same weight parity and correspond to the same error syndrome when error

detection is performed by the [[7, 1, 3]] Steane code in Claim 5.1. From this result, we

introduce the WPEC technique in Definition 5.1, which can correct errors of any weight

on 7 qubits whenever their weight parity is known. We show that the WPEC technique

can be extended to error correction in subblocks of the [[49, 1, 9]] concatenated Steane code,

and we prove the sufficient condition for WPEC in Claim 5.2. Afterwards, we provide a

family of circuits and an FTEC protocol for the [[49, 1, 9]] code which can correct up to 3

faults. We also point out that the WPEC technique seems applicable to FTEC schemes

117

for other codes such as the concatenated Golay code and concatenated Steane code with

more than 2 levels of concatenation.

Since the FTEC protocol provided in this work satisfies the definition of FTEC in Defi-

nition 5.2 with t = 3, we can guarantee that the logical error rate is suppressed to O(p4)

whenever the physical error rate is p under the random Pauli noise model. Note that we

did not use the full ability of a code with distance 9 which, in principle, can correct up to

4 errors. In terms of error suppression, our FTEC protocol is as good as typical FTEC

protocols for a concatenated code which are constructed by replacing each physical qubit

with a code block and replacing each physical gate with the corresponding logical gate

[AGP06].

One major advantage of our FTEC protocol in [TL21b] is that only 2 ancillas are needed:

one ancilla for a syndrome measurement result and another ancilla for a flag measurement

result (assuming that the qubit preparation and measurement are fast compared to the

gate operation time). As a result, our protocol requires 51 qubits in total. The number

of required qubits is very low compared to other FTEC protocols for the [[49, 1, 9]] code;

the FTEC schemes in [YK17, CR18c] extended to the [[49, 1, 9]] code require 63 qubits in

total (the minimum number of required ancillas is 14 assuming that they are recyclable).

Meanwhile, the FTEC protocol in [Rei20] which extracts multiple syndromes at once en-

codes 2 logical qubits and requires no ancilla, but needs to work on two code blocks of 98

qubits in total. Our protocol might not have the fewest total number of qubits compared

with other protocols for a different code which can correct up to 3 faults; for example, the

flag FTEC protocol in [CR20] applying to the [[37, 1, 7]] 2D color code requires 45 qubits

in total. Nevertheless, our work provides a substantial improvement over other FTEC

protocols for a concatenated code, an approach that is still advantageous in some circum-

stances. Furthermore, the use of weight parities in error correction may be extended to

other families of codes as discussed in [TL21a]. We believe that if the protocol requires

fewer ancillas, the number of total locations will decrease, which can result in higher ac-

curacy threshold. However, a simulation with careful analysis is required for the accuracy

threshold calculation, thus we leave this for future work.

The protocol in Section 5.2 which can correct up to 3 faults exploits two techniques;

the flag technique which partitions set of possible errors using flag measurement results,

and the WPEC technique which corrects errors of any weight using their syndromes and

weight parities. It should be emphasized that flag ancillas are not necessarily required for

118

a protocol exploiting WPEC technique; we find that a protocol which uses circuits similar

to a circuit in Fig. 5.2a for 2nd-level syndrome measurements and uses non-flag circuits for

1st-level measurements can correct up to 2 faults.

We point out that the permutation of CNOT gates in the syndrome extraction circuits

that make the protocol satisfies Claim 5.2 is not unique. We choose the permutation in

Eq. (5.3) by using the fact that a CSS code constructed from classical cyclic codes can

distinguish high-weight errors in the consecutive form [TCL20]. In particular, the circuit is

designed in the way that high-weight errors arising in each subblock can be determined by

the underlying [[7, 1, 3]] code in cyclic form. We did not prove the optimality of the choice

of gate permutation in our protocol, so an FTEC protocol for the [[49, 1, 9]] code with only

one ancilla or a protocol that can correct up to 4 faults might be possible.

Last, we note that the WPEC technique introduced in [TL21b] is not limited to the [[49, 1, 9]]

concatenated Steane code. In Section 5.3, we prove the logical equivalence of errors with

the same syndrome and weight parity for the [[23, 1, 7]] Golay code in Claim 5.3 and provide

a WPEC scheme in Definition 5.3, which shows that WPEC can correct some high-weight

errors in a subblock of the [[529, 1, 49]] concatenated Golay code. In addition, we expect

that WPEC can be applied to any concatenated Steane code with more than 2 levels of

concatenation in a similar fashion. However, circuits and a protocol must be carefully

designed so that the full error correction ability of the code can be achieved. Another

interesting future direction would be extending the WPEC technique to other families of

quantum codes (such as the families of codes discussed in [TL21a]).

7.2 Fault-tolerant error correction and quantum com-

putation for capped color codes

In [TL21a], we observe that errors arising from a few faults depend on the structure of the

circuits chosen for syndrome measurement, and develop an FTEC protocol accordingly.

A fault set which includes all possible fault combinations arising from at most a certain

number of faults is said to be distinguishable if any pair of fault combinations in the set

either lead to logically equivalent data errors, or lead to different syndromes or cumulative

flag vectors (as defined in Definition 3.3). Distinguishability may depend on the number of

flag ancillas being used in the circuits, the ordering of gates in the circuits, and the choice

119

of stabilizer generators being measured. If we can find a set of circuits for a stabilizer code

which leads to a distinguishable fault set, we can construct an FTEC protocol, as shown

in Sections 6.3.1 and 6.4.

We prove in Lemma 3.1 that if an [[n, k, d]] CSS code has odd n, k = 1, even weight

stabilizer generators, and logical X and Z being X⊗n and Z⊗n, then two Pauli errors

of X type (or Z type) with the same syndrome are logically equivalent if and only if

they have the same weight parity. One may notice that the weight parity of a Pauli

operator and the anticommutation between the Pauli operator and a logical operator are

closely related. In fact, for a given stabilizer code, the normalizer group can be generated

by the stabilizer generators of the code and all independent logical Pauli operators; for

example, the normalizer group of the Steane code is N(S) = 〈gxi , gzi , X⊗7, Z⊗7〉i=1,2,3. If

the anticommutation between a Pauli error E and each of the generators of N(S) can be

found, then a Pauli error logically equivalent to E can be determined with certainty. The

EC techniques presented in Chapters 5 and 6 use the fact that the weight parity of an

error on a smaller code (or the anticommutation between the error and a logical operator

of a smaller code) can be inferred by the measurement results of the stabilizer generators

of a bigger code. We are hopeful that the relationship between the weight parity and the

anticommutation can lead to EC techniques similar to the weight parity technique for a

general stabilizer code in which the number of logical qubits can be greater than 1.

With Lemma 3.1 in mind, we present the 3D color code of distance 3 in Section 6.1 and

construct a family of capped color codes in Section 6.2, which are good candidates for our

protocol construction (the 3D color code of distance 3 is the smallest capped color code).

A capped color code is a subsystem code; it can be transformed to stabilizer codes, namely

capped color codes in H form and T form, by the gauge fixing method. The code in H form

has transversal H, S, and CNOT gates, while the code in T form has transversal CNOT

and T gates. One interesting property of a capped color code in H form is that the code

contains a 2D color code as a subcode lying on the center plane. Since a cap generator of X

type (or Z type) has support on all qubits on the center plane, the weight parity of an error

of Z type (or X type) occurred on the center plane can be obtained from the measurement

result of the cap generator. The syndrome of the error on the center plane corresponding

to the measurements of the 2D code generators together with the error weight parity can

lead to an EC operator for such an error by Lemma 3.1. Exploiting these facts, we design

circuits for measuring generators of a capped color code such that most of the possible

120

errors are on the center plane. We prove in Theorem 6.1 that if the circuits satisfy some

conditions, the fault set corresponding to all possible fault combinations arising from up to

t = (d− 1)/2 faults is distinguishable, where d = 3, 5, 7, ... is the distance of the code. We

also provide examples of circuit construction for capped color codes in H form of distance

3, 5, and 7 which can give distinguishable fault sets. The circuits for these codes require

only 1, 1, and 2 ancillas, respectively (including syndrome and flag ancillas). This means

that the FTEC protocols for capped color codes of distance 3, 5, and 7 (which can correct

up to 1, 2, and 3 faults) require 16, 40, and 77 qubits in total.

The sufficient conditions of Theorem 6.1 give us some possibilities to construct good syn-

drome measurement circuits for a capped color code in H form of any distance. The

intuition behind the proof of Theorem 6.1 is that several conditions are introduced in

order to prevent indistinguishable pair of fault combinations from happening. It should

be noted that (1) some conditions may imply one another, (2) some conditions might be

automatically satisfied from the structure of the 2D color code (which is a subcode of a

capped color code in H form), and (3) some conditions can be satisfied with the use of only

few flag ancillas. We are hopeful that the conditions in Theorem 6.1 will lead to FTEC

protocols for capped color codes of any distance in which the number of required ancillas

does not grow rapidly as the distance grows. However, careful analysis of the relationship

between these conditions and the number of required ancillas is required, thus we leave

this for future work.

In Section 6.3, we construct several fault-tolerant protocols using the fact that the fault

set corresponding to the protocols being used is distinguishable. Our definitions of fault-

tolerant gadgets in Definition 4.10 also take the fact that some errors can be distinguished

by their relevant flag information, so they can be viewed as a generalization of the defini-

tions of fault-tolerant gadgets proposed in [AGP06] (Definitions 4.3 to 4.6). Our protocols

are not limited to the capped color codes; some of the protocols are also applicable to

other families of stabilizer codes if their syndrome measurement circuits give a distinguish-

able fault set. Since possible errors depend on every fault-tolerant gadget being used, all

protocols for quantum computation (including error correction, gate, measurement, and

state preparation gadgets) must be designed in tandem in order to achieve fault tolerance.

Note that in this work we only use the cumulative flag vector within the FTEC protocol;

all fault-tolerant gadgets defined in Definition 4.10 does not output any flag information,

and the ideal decoder defined in Definition 4.9 does not take any flag information as an

121

input. One interesting future direction would be studying how fault-tolerant protocols can

be further improved by exploiting the flag information outside of the FTEC protocol.

One should note that it is possible to use fault-tolerant protocols satisfying the old defi-

nitions of fault-tolerant gadgets (Definitions 4.3 to 4.6) in conjunction with fault-tolerant

protocols satisfying our definitions of fault-tolerant gadgets (Definition 4.10). In particular,

observe that for any Pauli error of weight w ≤ t, we can always find a fault combination

arising from w faults whose combined error is such an error; i.e., any Pauli error of weight

up to t is contained in a distinguishable fault set Ft. Therefore, an FTEC protocol satis-

fying Definition 4.10 can be used to correct an output error of any fault-tolerant protocol

satisfying one of the old definitions (assuming that both protocols can tolerate the same

number of faults). However, the converse might not be true since an FTEC protocol satis-

fying the old definition of FTEC gadget might not be able to correct errors of high weight

arising from a small number of faults in the protocol satisfying Definition 4.10.

In Section 6.3, we provide FTEC, FTM, and FTP protocols for a capped color code in H

form which are applicable to the code of any distance as long as the fault set is distinguish-

able. We also show that transversal H, S, and CNOT gates are fault tolerant (according to

our definitions of fault-tolerant gadgets in Definition 4.10). These gates and protocols are

sufficient for implementing any Clifford operation on the capped color code fault-tolerantly.

In order to achieve the universal set of quantum gates, we still need an implementation of

a non-Clifford gate. One possible approach is to use magic state distillation [BK05], which

can be done fault-tolerantly on the capped color code. Another approach is to perform

code switching [PR13, ADCP14, Bom15a, KB15] and apply a transversal T gate on the

code in T form if necessary. Further study is required to show whether the traditional code

switching method (as in Section 6.2.1) or an alternative method involving a logical EPR

state (as proposed in [BKS21]) is fault tolerant when applied to the capped color code.

Nevertheless, we hope that the circuits for measuring gauge operators could be designed

so that any possible errors are correctable by our FTEC protocol (i.e., the fault set is still

distinguishable).

Compared with other fault-tolerant protocols for other codes with the same distance, our

protocols for a capped color code may not have the fewest total number of qubits (including

data qubits and all ancillas). For example, the flag FTEC protocols from [CR20] applied

to the 2D color codes of distance 5 and 7 require 25 and 45 total qubits, while the FTEC

protocol using error weight parities from [TL21b] applied to the [[49, 1, 9]] concatenated

122

Steane code can correct up to 3 faults and requires 51 total qubits. However, one advantage

that the capped color codes have over the aforementioned codes is that a transversal T gate

can be operated on the capped color codes through code switching. Recently, Beverland,

Kubica, and Svore [BKS21] compare the overhead required for T gate implementation with

two methods: using a 2D color code via magic state distillation versus using a (traditional)

3D color code via code switching. They found that magic state distillation outperforms

code switching except at some low physical error rate and when certain fault-tolerant

schemes are used in the simulation. Since our protocols require only a few ancillas and

the data block of a capped color code is much smaller than that of a 3D color code of the

same distance, we are hopeful that the range of physical error rate in which code switching

beats magic state distillation could be improved by our protocols. A careful simulation on

the overhead is required, thus we leave this for future work.

Last, we point out that our fault-tolerant protocols using the flag and the weight parity

techniques are specially designed for the circuit-level noise so that all possible data errors

arising from a few faults (including any 1- and 2-qubit gate faults, faults during the ancilla

preparation and measurement, and faults during wait time) can be corrected. However,

our protocols require repeated syndrome measurements in order to avoid syndrome bit

flips which may occur during the protocols, and the processes can increase the number

of gate operations. The single-shot error correction [Bom15b] is one technique that can

deal with the syndrome bit flips without using repeated syndrome measurements. We

hope that the flag, the weight parity, and the single-shot error correction techniques could

be used together to build fault-tolerant protocols which can protect the data against the

circuit-level noise and require only small numbers of gates and ancillas.

123

Bibliography

[ABCB14] Hussain Anwar, Benjamin J Brown, Earl T Campbell, and Dan E Browne.

Fast decoders for qudit topological codes. New Journal of Physics,

16(6):063038, 2014.

[ABO08] Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation

with constant error rate. SIAM Journal on Computing, 2008.

[ADCP14] Jonas T Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-

tolerant conversion between the Steane and Reed-Muller quantum codes.

Physical review letters, 113(8):080501, 2014.

[AGP06] Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy

threshold for concatenated distance-3 codes. Quantum Information and Com-

putation, 6(2):97–165, 2006.

[AL06] Panos Aliferis and Debbie W Leung. Simple proof of fault tolerance in the

graph-state model. Physical Review A, 73(3):032308, 2006.

[Bac06] Dave Bacon. Operator quantum error-correcting subsystems for self-

correcting quantum memories. Physical Review A, 73(1):012340, 2006.

[BC15] Sergey Bravyi and Andrew Cross. Doubled color codes. arXiv preprint

arXiv:1509.03239, 2015.

[BCC+19] Paul Baireuther, MD Caio, B Criger, Carlo WJ Beenakker, and Thomas E

O’Brien. Neural network decoder for topological color codes with circuit level

noise. New Journal of Physics, 21(1):013003, 2019.

124

[BH13] Sergey Bravyi and Jeongwan Haah. Quantum self-correction in the 3d cubic

code model. Physical review letters, 111(20):200501, 2013.

[BK98] Sergey B Bravyi and A Yu Kitaev. Quantum codes on a lattice with boundary.

arXiv preprint quant-ph/9811052, 1998.

[BK05] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal

Clifford gates and noisy ancillas. Physical Review A, 71(2):022316, 2005.

[BK13] Sergey Bravyi and Robert König. Classification of topologically protected

gates for local stabilizer codes. Physical review letters, 110(17):170503, 2013.

[BKS21] Michael E Beverland, Aleksander Kubica, and Krysta M Svore. Cost of uni-

versality: A comparative study of the overhead of state distillation and code

switching with color codes. PRX Quantum, 2(2):020341, 2021.

[BLP+16] Benjamin J Brown, Daniel Loss, Jiannis K Pachos, Chris N Self, and James R

Wootton. Quantum memories at finite temperature. Reviews of Modern

Physics, 88(4):045005, 2016.

[BMD06] Hector Bombin and Miguel Angel Martin-Delgado. Topological quantum dis-

tillation. Physical review letters, 97(18):180501, 2006.

[BNB16] Benjamin J Brown, Naomi H Nickerson, and Dan E Browne. Fault-tolerant

error correction with the gauge color code. Nature communications, 7(1):1–8,

2016.

[Bom15a] Héctor Bomb́ın. Gauge color codes: optimal transversal gates and gauge fixing

in topological stabilizer codes. New Journal of Physics, 17(8):083002, 2015.

[Bom15b] Héctor Bomb́ın. Single-shot fault-tolerant quantum error correction. Physical

Review X, 5(3):031043, 2015.

[Bra11] Sergey Bravyi. Subsystem codes with spatially local generators. Physical

Review A, 83(1):012320, 2011.

[BSV14] Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms

for maximum likelihood decoding in the surface code. Physical Review A,

90(3):032326, 2014.

125

[BXG+19] A Bermudez, X Xu, M Gutiérrez, SC Benjamin, and M Müller. Fault-tolerant

protection of near-term trapped-ion topological qubits under realistic noise

sources. Physical Review A, 100(6):062307, 2019.

[CB18] Christopher Chamberland and Michael E. Beverland. Flag fault-tolerant error

correction with arbitrary distance codes. Quantum, 2:53, February 2018.

[CBDH20] Rui Chao, Michael E Beverland, Nicolas Delfosse, and Jeongwan Haah. Op-

timization of the surface code design for Majorana-based qubits. Quantum,

4:352, 2020.

[CC19] Christopher Chamberland and Andrew W Cross. Fault-tolerant magic state

preparation with flag qubits. Quantum, 3:143, 2019.

[CJOL17] Christopher Chamberland, Tomas Jochym-O’Connor, and Raymond

Laflamme. Overhead analysis of universal concatenated quantum codes. Phys-

ical Review A, 95(2):022313, 2017.

[CKYZ20] Christopher Chamberland, Aleksander Kubica, Theodore J Yoder, and

Guanyu Zhu. Triangular color codes on trivalent graphs with flag qubits.

New Journal of Physics, 22(2):023019, 2020.

[CN20] Christopher Chamberland and Kyungjoo Noh. Very low overhead fault-

tolerant magic state preparation using redundant ancilla encoding and flag

qubits. npj Quantum Information, 6(1):1–12, 2020.

[CR18a] Christopher Chamberland and Pooya Ronagh. Deep neural decoders for

near term fault-tolerant experiments. Quantum Science and Technology,

3(4):044002, 2018.

[CR18b] Rui Chao and Ben W. Reichardt. Fault-tolerant quantum computation with

few qubits. npj Quantum Information, 4(1):42, 2018.

[CR18c] Rui Chao and Ben W Reichardt. Quantum error correction with only two

extra qubits. Physical review letters, 121(5):050502, 2018.

[CR20] Rui Chao and Ben W Reichardt. Flag fault-tolerant error correction for any

stabilizer code. PRX Quantum, 1(1):010302, 2020.

126

[CRSS97] A Robert Calderbank, Eric M Rains, Peter W Shor, and Neil JA Sloane.

Quantum error correction and orthogonal geometry. Physical Review Letters,

78(3):405, 1997.

[CS96] A Robert Calderbank and Peter W Shor. Good quantum error-correcting

codes exist. Physical Review A, 54(2):1098, 1996.

[CZY+20] Christopher Chamberland, Guanyu Zhu, Theodore J Yoder, Jared B

Hertzberg, and Andrew W Cross. Topological and subsystem codes on low-

degree graphs with flag qubits. Physical Review X, 10(1):011022, 2020.

[DA07] David P DiVincenzo and Panos Aliferis. Effective fault-tolerant quantum

computation with slow measurements. Physical review letters, 98(2):020501,

2007.

[DB20] Dripto M Debroy and Kenneth R Brown. Extended flag gadgets for low-

overhead circuit verification. Physical Review A, 102(5):052409, 2020.

[DBT18] Kasper Duivenvoorden, Nikolas P Breuckmann, and Barbara M Terhal.

Renormalization group decoder for a four-dimensional toric code. IEEE

Transactions on Information Theory, 65(4):2545–2562, 2018.

[DCP10] Guillaume Duclos-Cianci and David Poulin. Fast decoders for topological

quantum codes. Physical review letters, 104(5):050504, 2010.

[DCP13] Guillaume Duclos-Cianci and David Poulin. Kitaev’s Z d-code threshold es-

timates. Physical Review A, 87(6):062338, 2013.

[Del14] Nicolas Delfosse. Decoding color codes by projection onto surface codes. Phys-

ical Review A, 89(1):012317, 2014.

[Deu85] David Deutsch. Quantum theory, the Church–Turing principle and the uni-

versal quantum computer. Proceedings of the Royal Society of London. Series

A: Mathematical, Physical and Engineering Sciences, 400(1818):97–117, 1985.

[DKLP02] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological

quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

127

[DP18] Andrew S Darmawan and David Poulin. Linear-time general decoding algo-

rithm for the surface code. Physical Review E, 97(5):051302, 2018.

[EK09] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quan-

tum gate sets. Physical review letters, 102(11):110502, 2009.

[Fey82] R. P. Feynman. Simulating physics with computers. International Journal of

Theoretical Physics, 21(6):467–488, 1982.

[FMMC12] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cle-

land. Surface codes: Towards practical large-scale quantum computation.

Physical Review A, 86(3):032324, 2012.

[GMB19] M Gutiérrez, M Müller, and Alejandro Bermúdez. Transversality and lattice

surgery: Exploring realistic routes toward coupled logical qubits with trapped-

ion quantum processors. Physical Review A, 99(2):022330, 2019.

[Got96] Daniel Gottesman. Class of quantum error-correcting codes saturating the

quantum Hamming bound. Physical Review A, 54(3):1862, 1996.

[Got97] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD

thesis, California Institute of Technology, 1997.

[Got98] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical

Review A, 57(1):127, 1998.

[JBH16] Cody Jones, Peter Brooks, and Jim Harrington. Gauge color codes in two

dimensions. Physical Review A, 93(5):052332, 2016.

[JOB16] Tomas Jochym-O’Connor and Stephen D Bartlett. Stacked codes: Universal

fault-tolerant quantum computation in a two-dimensional layout. Physical

Review A, 93(2):022323, 2016.

[KB15] Aleksander Kubica and Michael E Beverland. Universal transversal gates with

color codes: A simplified approach. Physical Review A, 91(3):032330, 2015.

[KD19] Aleksander Kubica and Nicolas Delfosse. Efficient color code decoders in

d ≥ 2 dimensions from toric code decoders. arXiv preprint arXiv:1905.07393,

2019.

128

[Kit97] Alexei Y. Kitaev. Quantum computations: algorithms and error correction.

Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[KKL+17] Torsten Karzig, Christina Knapp, Roman M Lutchyn, Parsa Bonderson,

Matthew B Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg,

Stephan Plugge, Yuval Oreg, et al. Scalable designs for quasiparticle-

poisoning-protected topological quantum computation with Majorana zero

modes. Physical Review B, 95(23):235305, 2017.

[KL97] Emanuel Knill and Raymond Laflamme. Theory of quantum error-correcting

codes. Physical Review A, 55(2):900, 1997.

[KLZ96] Emanuel Knill, Raymond Laflamme, and Wojciech H. Zurek. Threshold ac-

curacy for quantum computation. arXiv: quant-ph/9610011, 1996.

[Kni05] Emanuel Knill. Scalable quantum computing in the presence of large detected-

error rates. Physical Review A, 71(4):042322, 2005.

[KP19] Aleksander Kubica and John Preskill. Cellular-automaton decoders with prov-

able thresholds for topological codes. Physical review letters, 123(2):020501,

2019.

[KYP15] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. Unfolding the

color code. New Journal of Physics, 17(8):083026, 2015.

[LA20] Lingling Lao and Carmen G Almudever. Fault-tolerant quantum error correc-

tion on near-term quantum processors using flag and bridge qubits. Physical

Review A, 101(3):032333, 2020.

[MKJO19] Nishad Maskara, Aleksander Kubica, and Tomas Jochym-O’Connor. Advan-

tages of versatile neural-network decoding for topological codes. Physical

Review A, 99(5):052351, 2019.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes.

North-Holland, New York, 1977.

[NB19] Naomi H Nickerson and Benjamin J Brown. Analysing correlated noise on

the surface code using adaptive decoding algorithms. Quantum, 3:131, 2019.

129

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-

tum Information. Cambridge University Press, Cambridge, England, 2000.

[ND05] Michael A Nielsen and Christopher M Dawson. Fault-tolerant quantum com-

putation with cluster states. Physical Review A, 71(4):042323, 2005.

[NRS01] Gabriele Nebe, Eric M. Rains, and Neil JA Sloane. The invariants of the

Clifford groups. Designs, Codes and Cryptography, 24(1):99–122, 2001.

[Pou05] David Poulin. Stabilizer formalism for operator quantum error correction.

Physical review letters, 95(23):230504, 2005.

[PR12] Adam Paetznick and Ben W. Reichardt. Fault-tolerant ancilla preparation

and noise threshold lower bounds for the 23-qubit Golay code. Quantum

Information and Computation, 12(11-12):1034–1080, November 2012.

[PR13] Adam Paetznick and Ben W Reichardt. Universal fault-tolerant quantum

computation with only transversal gates and error correction. Physical review

letters, 111(9):090505, 2013.

[Pre98] John Preskill. Reliable quantum computers. Proceedings of the Royal Soci-

ety of London. Series A: Mathematical, Physical and Engineering Sciences,

454(1969):385–410, 1998.

[PY15] Fernando Pastawski and Beni Yoshida. Fault-tolerant logical gates in quan-

tum error-correcting codes. Physical Review A, 91(1):012305, 2015.

[RBBMS21] Andrea Rodriguez-Blanco, Alejandro Bermudez, Markus Müller, and Farid

Shahandeh. Efficient and robust certification of genuine multipartite entangle-

ment in noisy quantum error correction circuits. PRX Quantum, 2(2):020304,

2021.

[Rei20] Ben W Reichardt. Fault-tolerant quantum error correction for Steane’s seven-

qubit color code with few or no extra qubits. Quantum Science and Technol-

ogy, 6(1):015007, 2020.

[SCC19] Yunong Shi, Christopher Chamberland, and Andrew Cross. Fault-

tolerant preparation of approximate GKP states. New Journal of Physics,

21(9):093007, 2019.

130

[Sho94] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. Proceedings., 35th Annual Symposium on Foundations of Computer

Science, pages 124–134, 1994.

[Sho95] Peter W Shor. Scheme for reducing decoherence in quantum computer mem-

ory. Physical review A, 52(4):R2493, 1995.

[Sho96] Peter W. Shor. Fault-tolerant quantum computation. Proceedings., 37th An-

nual Symposium on Foundations of Computer Science, pages 56–65, 1996.

[Ste96] Andrew Steane. Multiple-particle interference and quantum error correction.

Proceedings of the Royal Society of London. Series A: Mathematical, Physical

and Engineering Sciences, 452(1954):2551–2577, 1996.

[Ste97] Andrew M Steane. Active stabilization, quantum computation, and quantum

state synthesis. Physical Review Letters, 78(11):2252, 1997.

[Ste02] Andrew M Steane. Fast fault-tolerant filtering of quantum codewords. arXiv

preprint quant-ph/0202036, 2002.

[Ste03] Andrew M Steane. Overhead and noise threshold of fault-tolerant quantum

error correction. Physical Review A, 68(4):042322, 2003.

[TB05] Barbara M Terhal and Guido Burkard. Fault-tolerant quantum computation

for local non-Markovian noise. Physical Review A, 71(1):012336, 2005.

[TCL20] Theerapat Tansuwannont, Christopher Chamberland, and Debbie Leung.

Flag fault-tolerant error correction, measurement, and quantum computation

for cyclic Calderbank-Shor-Steane codes. Physical Review A, 101(1):012342,

2020.

[TL21a] Theerapat Tansuwannont and Debbie Leung. Achieving fault tolerance on

capped color codes with few ancillas. arXiv preprint arXiv:2106.02649, 2021.

[TL21b] Theerapat Tansuwannont and Debbie Leung. Fault-tolerant quantum error

correction using error weight parities. Physical Review A, 104(4):042410, 2021.

“Copyright (2021) by the American Physical Society”.

131

[TYC17] Ryuji Takagi, Theodore J Yoder, and Isaac L Chuang. Error rates

and resource overheads of encoded three-qubit gates. Physical Review A,

96(4):042302, 2017.

[VB19] Michael Vasmer and Dan E Browne. Three-dimensional surface codes:

Transversal gates and fault-tolerant architectures. Physical Review A,

100(1):012312, 2019.

[VBK21] Michael Vasmer, Dan E Browne, and Aleksander Kubica. Cellular automaton

decoders for topological quantum codes with noisy measurements and beyond.

Scientific reports, 11(1):1–14, 2021.

[Vui18] Christophe Vuillot. Is error detection helpful on IBM 5q chips? Quantum

Information and Computation, 18(11&12):0949–0964, 2018.

[YK17] Theodore J. Yoder and Isaac H. Kim. The surface code with a twist. Quantum,

1:2, April 2017.

132

APPENDIX

133

Appendix A

Simulations of possible faults during

the FTEC protocol for the 49-qubit

concatenated Steane code

A.1 Simulation of possible faults assuming that the

last round of full syndrome measurement has no

faults

As discussed in Section 5.2, in order to verify that the FTEC protocol for the [[49, 1, 9]]

code satisfies the FTEC conditions in Definition 5.2, we consider two separate cases: the

case that there are some faults during the last round of full syndrome measurement, and

the case that there are not. In this section, we provide details of a simulation to show that

whenever the number of faults is at most 3 and none of the faults occurs during the last

round, all possible fault combinations satisfy Claim 5.2 and our protocol can correct errors

on the data qubits.

In our protocol, we will perform full syndrome measurements until the outcome bundles

are repeated 4 times in a row. Since there are at most 3 faults, the repetition condition will

be satisfied within 16 rounds of full syndrome measurement. In this simulation, we assume

that the last round of measurement has no faults, thus the high-weight error on the data

134

qubits arising from at most 3 faults is accumulated from up to 15 rounds. We will use the

outcome bundle (syndromes and flag vector) obtained from the last round to determine

the fault combination that cause the error so that the corresponding weight parity can be

found and the WPEC can be done.

We first define mathematical objects being used in our simulation. Let fault be an object

with two associated variables: Pauli error defined on the code block of 49 qubits arising

from the fault, and flag vector ∈ Z21
2 which indicates the flag measurement results associ-

ated with the fault. There are 4 types of possible faults: faults during wait time (denoted

by W), faults arising from the measurement of 1st-level and 2nd-level generators (denoted

by G1 and G2, respectively), and flag measurement faults (denoted by F). A fault combi-

nation can be constructed by combining faults of same or different types up to 3 faults,

i.e., multiplying their Pauli errors and adding their flag vectors. The errors on the input

codeword can be considered as wait time faults in which associated Pauli errors do not

propagate to other data qubits during the FTEC protocol. In addition, the X-type errors

on the data qubits arising from the faults during the measurement of Z-type generators

can be considered as wait time faults during the measurement of subsequent X-type gen-

erators, in which our simulation is also applicable. (Since the last round of measurement

has no faults, we can assume that the syndromes obtained from the last round are correct

and the syndrome measurement faults can be neglected.)

Next, we define fault set as follows: for faults of type G1 (or type G2), we denote FG1
i,j

(or FG2

i,j′) to be sets of possible G1 (or G2) faults arising from a circuit for measuring gzj ,

j = 1, . . . , 21 (or g̃zj′ , j
′ = 1, 2, 3) where the number of faults is i ∈ {0, 1, 2, 3} (gzj refers

to the generator gz(j−1) mod 3+1 on the dj/3e-th subblock). Also, we denote FW
i and F F

i

to be sets of possible faults of type W and F , respectively, where the number of faults is

i ∈ {0, 1, 2, 3}. In addition, we define fault set combination to be a set of fault sets up to

3 sets.

Last, let vG1 , vG2 , vW , vF be the number of faults of type G1, G2,W, and F , respectively.

(vG1 , vG2 , vW , vF) that satisfies vG1 +vG2 +vW +vF ≤ 3 is called fault number combination.

With the definitions of fault, fault combination, fault set, fault set combination, and fault

number combination, now we are ready to describe the simulation.

135

Pseudocode for a simulation of possible faults assuming that the last round of

full syndrome measurement has no faults

1. Construct fault sets FG1
i,j , F

G2

i,j′ , F
W
i , and F F

i for all i = 0, 1, 2, 3, j = 1, . . . , 21, j′ =

1, 2, 3.

2. Construct all possible fault number combinations that satisfy vG1 +vG2 +vW +vF ≤ 3.

3. For each (vG1 , vG2 , vW , vF), find all possible fault set combinations from vG1 , vG2 , vW , vF .

Note that if vG1 is 2, the fault set combination can have FG1
i,j and FG1

i′,j′ with i = i′ = 1,

or have FG1
i,j with i = 2. Also, if vG1 is 3, the fault set combination can have FG1

i,j ,

FG1

i′,j′ , and FG1

i′′,j′′ with i = i′ = i′′ = 1, or have FG1
i,j and FG1

i′,j′ with i = 2, i′ = 1, or have

FG1
i,j with i = 3. The same goes for vG2 .

(a) For each fault set combination, find all possible fault combinations. Each fault

combination can be found by picking one fault from each fault set (up to 3 sets)

in the fault set combination, then combine the faults to get the combined Pauli

error E and the cumulative flag vector ~fz associated with the fault combination.

(b) For each fault combination, find 1st-level syndrome ~s1x, 2nd-level syndrome ~s2x,

block triviality ~ηx, and block parity ~px from the associated combined data error

E. Store (~s1x,~s2x, ~ηx,~fz, ~px) for each fault combination in a lookup table.

4. After the lookup table is complete, categorize fault combinations by their 2nd-level

syndromes and block trivialities in order to get Gj’s as in Claim 5.2.

5. For each Gj, verify whether Condition 1 or 2 in Claim 5.2 is satisfied.

From the simulation above, we find that all possible fault combinations satisfy Claim 5.2.

That is, for each fault combination, we can determine the weight parity from the outcome

bundles obtained from the last round of full syndrome measurement by looking at the table

constructed in Step 3b. The weight parity can be later used to perform WPEC on the

code block. With this simulation result, we can verify our FTEC protocol for the [[49, 1, 9]]

code satisfies FTEC conditions as previously discussed in Section 5.2.

136

A.2 Simulation of possible faults assuming that the

last round of full syndrome measurement has some

faults

In Appendix A.1, we describe the simulation of possible faults during the FTEC protocol

for the [[49, 1, 9]] code which is applicable to the case that there are no faults during the

last round of full syndrome measurement. In this appendix, we will extend the ideas and

construct a simulation of possible faults for the case that some faults occur during the last

round.

As previously described, we will perform full syndrome measurements in the protocol until

the outcome bundles are repeated 4 times in a row. Now, suppose that the last round of

full syndrome measurement has some faults. In this case, we cannot be sure whether the

outcome bundle from the last round exactly corresponds to the error in the data qubits.

Fortunately, since there are at most 3 faults during the whole protocol, at least one outcome

bundle obtained from the last 4 rounds must be correct. Note that the outcome bundles

from the last 4 rounds are identical. From the simulation result discussed in Appendix A.1,

the outcome bundle from the last round can be used to correct the data error occurred

before any correct round using the WPEC technique (see Fig. A.1 for more details). The

goal of the simulation in this section is to verify that all possible fault combinations which

can happen after the last correct round give data error of weight no more than 3.

Figure A.1: At least one of the last 4 rounds of full syndrome measurement is correct
since there are at most 3 faults. Because the outcome bundles from the last 4 rounds are
identical, the outcome bundle from the last round can be used in WPEC to correct both
errors E1 and E2 (even though E1 and E2 may not be equal).

A straightforward way to verify the claim above is to find all possible fault combinations and

check the weight of their combined data errors. Unfortunately, this process requires many

137

computational resources. Thus, we will use “relaxed conditions” for the verification instead;

for each fault combination, if the corresponding combined data error and cumulative flag

vector satisfy all relaxed conditions, the fault combination will be marked (indicating that

the fault combination might cause the protocol to fail). We want to make sure that for

all fault combination that can cause the protocol to fail (i.e., its combined data error

has weight more than 3), the fault combination will be marked. Note that some fault

combinations may be marked by the relaxed conditions but will not cause the protocol

to fail. For this reason, all of the marked fault combinations must be examined after the

simulation is done.

We should note that the order of generator measurements is important for the fault tol-

erance of our FTEC protocol. Consider the protocol description in Section 5.2 in which

we measure generator measurements in the following order during a single round of full

syndrome measurement: measuring all g̃zi ’s, then all g̃xi ’s, then all gzi ’s, then all gxi ’s. Let

us first consider the errors that can be caught by the gxi measurements of the last round.

Observe that all Z-type data errors that arise before the gxi measurements of the last round

will be evaluated by the 1st-level syndrome ~s1x. However, some faults during gxi measure-

ments of the last round may cause X-type or Z-type errors that will not be caught by any

syndrome. Without loss of generality, we will construct a simulation using an assumption

that faults before the gxi measurements of the last round can cause only Z-type errors,

and faults during or after the gxi measurements can cause X-type or Z-type errors. The

simulation is also applicable to the case of gzi measurements.

Let E, Ẽa, and Ẽb be data errors arising from faults occurred before the last correct round

among the last 4 rounds, faults occurred after the last correct round but before the gxi
measurements of the last round, and faults occurred during or after the gxi measurements

of the last round. The errors can be illustrated as follows:

The outcome bundle obtained from the last round is equal to the outcome bundle obtained

from the correct round and can be used to correct E. Thus, we would like to mark

138

every fault combination that can occur after the correct round, corresponds to the trivial

outcome bundle (since the outcome bundle obtained from the last round is the same as

that obtained from the correct round), and its combined data error has weight more than

3. In particular, our relaxed conditions will examine 3 objects for each fault combination:

the 1st-level syndrome, the cumulative flag vector, and the weight of the combined data

error.

The mathematical objects being used in this simulation are similar to those defined in

Appendix A.1. In addition, we will consider syndrome measurement faults (denoted by

S) as another type of faults in this simulation since we will assume that the syndrome

measurement during the last 4 rounds can be faulty. Also, let vG1a be the number of G1

faults that occur before the gxi measurements of the last round, and let vG1b
be the number

of G1 faults that occur during or after the gxi measurements of the last round. Fault number

combination is a tuple (vG1a , vG1b
, vG2 , vW , vF , vS) that satisfies vG1a + vG1b

+ vG2 + vW +

vF + vS ≤ 3.

For the first relaxed condition, let us first assume that none of the faults of type W occurs

before or during the gxi measurements of the last round. For each (vG1a , vG1b
, vG2 , vW , vF , vS),

error Ẽa will be constructed from possible fault combinations that correspond to vG1a and

vG2 . We will mark every fault combination whose associated Ẽa gives a 1st-level syndrome

that has Hamming weight no more than vS (where the Hamming weight is the number

of 1’s in a bitstring). This is because each fault of type S can alter at most 1 syndrome

bit. Now let us consider the case that some faults of type W occurs before or during the

gxi measurements. Each W fault (which corresponds to error of weight 1) can change at

most 3 bits of ~s1x, but the change will affect only the subblock in which the fault acts

nontrivially. We will define function σ(Ẽa, vW) by the following calculation:

1. Find the 1st-level syndrome of Ẽa and calculate the Hamming weight of the syndrome

for each subblock.

2. Sort the Hamming weights from all subblocks. The function value is the the sum of

the 7− vW smallest Hamming weights.

The value of σ(Ẽa, vW) is the minimum Hamming weight of the 1st-level syndrome when

vW faults of type W occur. Taking all fault types into account, our first relaxed condition

becomes

σ(Ẽa, vW) ≤ vS. (A.1)

139

For the second relaxed condition, we will consider the cumulative flag vector associated

with each fault combination. Note that a flag measurement result will be obtained during

any gxi or gzi measurement. Let ~f = (~fx|~fz) denote the cumulative flag vector associated

with each fault combination, and let h(~f) denote the Hamming weight of ~f . Since each

fault of type F can alter at most 1 bit of ~f , our second relaxed condition becomes,

h(~f) ≤ vF . (A.2)

For the third relaxed condition, we will consider the weight of the combined data error

associated with each fault combination. The weight is evaluated at the end of the protocol

where the resulting error is caused by all faults of type G1, G2, and W (errors arising

during or after the gxi measurements of the last round can be X-type or Z-type). If W

faults do not occur before or during the gxi measurements at the last round, the weight of

the resulting error is the weight of Ẽa · Ẽb. If they do, each W fault can increase the total

weight by at most 1. Hence, our third condition becomes,

wt(Ẽa · Ẽb) + vW > 3. (A.3)

Note that the weight of Ẽa · Ẽb can be reduced by multiplication of some stabilizer, and the

fault combination will not be marked unless Eq. (A.3) is satisfied for all choice of stabilizer.

Using the relaxed conditions in Eqs. (A.1) to (A.3), our simulation to verify that all possible

data errors arising after the correct round have weight no more than 3 can be constructed

as follows:

Pseudocode for a simulation of possible faults assuming that the last round of

full syndrome measurement has some faults

1. Construct fault sets FG1
i,j , F

G2

i,j′ for all i = 0, 1, 2, 3, j = 1, . . . , 21, j′ = 1, 2, 3.

2. Construct all possible fault number combinations that satisfies vG1a + vG1b
+ vG2 +

vW + vF + vS ≤ 3.

3. For each (vG1a , vG1b
, vG2 , vW , vF , vS), construct all possible fault set combinations from

only vG1a , vG1b
, and vG2 . During the construction of each fault set combination, label

fault sets that come from vG1a or vG2 with letter a, and label fault sets that come

from vG1b
with letter b. Note that if vG1a is 2, the fault set combination can have

140

FG1
i,j and FG1

i′,j′ with i = i′ = 1, or have FG1
i,j with i = 2. Also, if vG1a is 3, the fault set

combination can have FG1
i,j , FG1

i′,j′ , and FG1

i′′,j′′ with i = i′ = i′′ = 1, or have FG1
i,j and

FG1

i′,j′ with i = 2, i′ = 1, or have FG1
i,j with i = 3. The same goes for vG1b

and vG2 .

(a) For each fault set combination, find all possible fault combinations. Each fault

combination can be found by picking one fault from each fault set (up to 3 sets)

in the fault set combination. Ẽa associated with each fault combination can be

found by combining only faults from fault sets with label a, while ~f and Ẽa · Ẽb
can be found by combining faults from all fault sets.

i. For each fault combination, if Eqs. (A.1) to (A.3) are all satisfied, the fault

combination will be marked. Note that for Eq. (A.3), the weight of Ẽa · Ẽb
must be minimized by stabilizer multiplication.

From the simulation above, we find that there are 6 fault combinations which are marked

by the relaxed conditions in Eqs. (A.1) to (A.3). All of them correspond to the case that

vG2 = 1, vW = 2, vG1a , vG1b
, vF , vS = 0, and their combined data errors are trivial on 5

subblocks and have either IIIIIIZ or ZIIIIII on 2 subblocks. We find that IIIIIIZ and

ZIIIIII correspond to 1st-level syndrome (001) and (100), respectively. Since vS = 0, the

associated 1st-level syndrome must be trivial whenever errors from W faults are taken into

account. This can happen only when errors from W faults cancel with the aforementioned

Pauli error, which means that the resulting error has weight 0. As a result, we find that

all of the marked fault combinations cannot cause data error of weight higher than 3.

Similar simulations can be done to show that whenever s faults occur where s = 0, 1, 2,

the weight of the output error is at most s. This result verifies that the FTEC protocol

for the [[49, 1, 9]] code satisfies FTEC conditions as discussed in Section 5.2.

141

Glossary

Abelian group A group in which all operators commute with one another.

anticommute We say that two operators A and B anticommute if AB +BA = 0.

bit The smallest unit of classical information. A bit can be in either state 0 or 1.

block parity A bitstring in which each bit is the weight parity of an error in each subblock

of a concatenated code.

block triviality A bitstring in which each bit is the triviality of an error in each subblock

of a concatenated code.

Clifford operation An operation which maps a Pauli operator to another Pauli operator.

code switching A procedure involving gauge operator measurements which can be used

to switch between two stabilizer codes with similar structures.

combined data error A product of data errors of all faults in a fault combination.

commute We say that two operators A and B commute if AB −BA = 0.

concatenated code A quantum error correcting code obtained from code concatenation

(in which the quantum data is encoded repeatedly).

CSS code A stabilizer code whose stabilizer generators can be chosen to be purely X

type or purely Z type.

cumulative flag vector A sum of flag vectors of all faults in a fault combination.

142

cyclic code A code in which any cyclic shift of a codeword is also a codeword.

data CNOT gate A CNOT gate which couples one of the data qubits and the syndrome

ancilla.

data error Pauli errors on the data qubits caused by a Pauli error due to the fault prop-

agating through the circuit for measuring a stabilizer generator.

data qubits Physical qubits in a code block which are used to encode the quantum data.

distance The distance of a stabilizer code is the minimum weight of Pauli operators which

are in the normalizer group but not in the stabilizer group.

distinguishable error set A set of combined data errors of all fault combinations with

trivial cumulative flag vectors in a distinguishable fault set.

distinguishable fault set We say that a fault set is distinguishable if for any pair of

fault combinations in the fault set, the syndromes of their combined data errors are

different, or their cumulative flag vectors are different, or their combined data errors

are logically equivalent. Otherwise, we say that the fault set is indistinguishable.

error decoding A procedure to find an error correction operator corresponding to the

error syndrome obtained from syndrome measurements.

extended rectangle A group of gadgets including leading error correction gadget(s), a

gate (or a measurement or a state preparation) gadget, and trailing error correction

gadget(s).

fault A location and a 1- or 2-qubit Pauli operation describing a deviation of an actual

quantum operation from its ideal operation.

fault combination A set of faults. There are combined data error and cumulative flag

vector associated with each fault combination.

fault set A fault set Ft is a set of all fault combinations arising from up to t faults.

fault tolerance The property of a quantum operation or a gadget which does not produce

errors beyond the error correction ability of a quantum error correcting code when

the input error is small.

143

flag ancilla An ancilla qubit used to keep the flag measurement outcome in a circuit for

measuring a stabilizer generator.

flag circuit A circuit for measuring a stabilizer generator which has at least one flag

ancilla.

flag CNOT gate A CNOT gate which couples one of the flag ancillas and the syndrome

ancilla.

flag vector A bitstring of the measurement outcomes of all flag ancillas. A flag vector

is caused by a Pauli error due to the fault propagating through the flag circuit for

measuring a stabilizer generator.

gauge operator An operator which commutes with all stabilizers of a subsystem code.

In general, gauge operators may not commute with one another. Gauge operators

can be viewed as logical operators corresponding to the logical qubits which are not

used to encode any quantum data.

location A time step and the index (or indices) of a qubit (or pair of qubits) involved in

a quantum operation.

logical operator An operator in the normalizer group. A logical operator maps a valid

codeword of the stabilizer code to another valid codeword.

logically equivalent errors Two Pauli operators are logically equivalent if they are off

by a multiplication of some stabilizer.

magic state distillation A procedure to produce high-fidelity quantum states (which

can be used to perform a non-Clifford operation) from noisy quantum states.

non-flag circuit A circuit for measuring a stabilizer generator which has no flag ancillas.

normalizer group A group of Pauli operators which commute with all operators in the

stabilizer group.

outcome bundle The collection of measurement outcomes obtained during each single

round of operator measurements in a fault-tolerant protocol.

144

Pauli error due to the fault A 1- or 2-qubit Pauli operation describing a deviation of

an actual quantum operation from its ideal operation.

Pauli group A group of tensor products of Pauli operators (I,X, Y or Z) with a ±1 or

±i phase factor.

perfect code A quantum error correcing code which saturates the quantum Hamming

bound; i.e., there is a one-to-one correspondence between correctable errors and all

possible syndromes.

perfect CSS code A CSS code constructed from classical error correcting codes which

saturate the classical Hamming bound; i.e., there is a one-to-one correspondence

between correctable X-type (or Z-type) errors and all possible syndromes obtained

from measuring Z-type (or X-type) stabilizer generators.

quantum error correcting code A subspace of the complex Euclidean space which can

be used to protect quantum data against noise.

quantum error correction A procedure to recover the original quantum state after some

errors occur.

qubit The smallest unit of quantum information. A qubit can be in state 0, 1, or a

superposition of states 0 and 1.

stabilizer An operator in the stabilizer group.

stabilizer code A +1 simulteneous eigenspace of all operators in a stabilizer group. A

quantum state in this subspace is called codeword.

stabilizer group An Abelian group of Pauli operators which does not contain −I⊗n. A

stabilizer group can be generated by stabilizer generators (which are independent,

commuting Pauli operators).

subcode A quantum error correcting code defined on a subset of physical qubits of a

bigger code.

subsystem code A quantum error correcting code which can be described by stabilizers

and gauge operators.

145

syndrome The syndrome of an error E is a bitstring where the i-th bit is 0 if E commutes

with stabilizer generator gi, or is 1 if E anticommutes with gi.

syndrome ancilla An ancilla qubit used to keep the syndrome measurement outcome in

a circuit for measuring a stabilizer generator.

threshold An error rate in which if the physical error rate is below this value, the logical

error rate can be made arbitrarily small.

transversal gate A logical gate which can be implemented on a code block by applying

physical gates transversally.

triviality The triviality of an error E is 0 if E has the trivial syndrome, or is 1 if E has

a non-trivial syndrome.

weight The number of non-identity factors of a multi-qubit Pauli operator.

weight parity The weight parity of an error E is 0 (or even) if E has even weight, or is

1 (or odd) if E has odd weight.

weight parity error correction An error correction procedure which uses the fact that

for some stabilizer codes, Pauli errors with the same syndrome and weight parity are

logically equivalent.

146

	List of Figures
	List of Tables
	Introduction and Motivation
	Quantum Error Correction in Stabilizer Formalism
	Basics of quantum error correction
	Stabilizer code
	Syndrome measurement
	Normalizer group and logical operators
	Error decoding problem

	Flags and Error Weight Parities in Error Correction
	Flag error correction
	Distinguishable fault set
	Finding equivalent errors using error weight parities

	Redefining Fault Tolerance
	Conventional definitions of fault-tolerant gadgets
	Revised definitions of fault-tolerant gadgets

	Fault-tolerant Error Correction for the 49-qubit Concatenated Steane Code
	Weight parity error correction for the Steane code
	Fault-tolerant error correction protocol for the 49-qubit concatenated Steane code
	Weight parity error correction for other codes

	Fault-tolerant Error Correction and Quantum Computation for Capped Color Codes
	Syndrome measurement circuits for the 3D color code of distance 3
	The 3D color code of distance 3
	Circuit configuration for the 3D color code of distance 3

	Syndrome measurement circuits for a capped color code
	Capped color codes
	Circuit configuration for a capped color code

	Fault-tolerant protocols for a capped color code
	Fault-tolerant error correction protocol
	Fault-tolerant measurement and state preparation protocols
	Transversal gates and other gate gadgets

	Fault-tolerant error correction protocol for a general stabilizer code

	Discussion and Conclusions
	Fault-tolerant error correction for the 49-qubit concatenated Steane code
	Fault-tolerant error correction and quantum computation for capped color codes

	Bibliography
	APPENDIX
	Simulations of possible faults during the FTEC protocol for the 49-qubit concatenated Steane code
	Simulation of possible faults assuming that the last round of full syndrome measurement has no faults
	Simulation of possible faults assuming that the last round of full syndrome measurement has some faults

	Glossary

