
A Quantitative and Qualitative
Empirical Evaluation of a Test

Refactoring Tool

by

Aliasghar Iman

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Aliasghar Iman 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Reducing the gap between what practitioners want vs. what researchers assume they
want is one of the vital challenges in software projects. When it comes to software tools,
many people develop tools, but only some tools end up being useful to developers. Since
this problem is more attached to short-term industry imperatives, several new software
development practices and methodologies have been established to get frequent feedback
from potential clients and adjust the project based on their feedback, to address this issue.
We thought that agile-style techniques as in industry could be transplanted to evaluate the
usefulness of tools in software engineering and programming languages research systems.

JTestParametrizer is an existing refactoring tool that aims to automatically refactor the
method-scope renamed clones in test suites. This research aimed to use different practices
and methodologies formulated on the aforementioned concept to evaluate, modify, and
extend the JTestParametrizer tool. First, we ran the tool on 18 benchmarks that we picked
for our benchmark suite. Then by studying the feedback that we got from quantitative
results, we detected and fixed some conceptual and non-conceptual bugs in the tool. Next,
we developed questionnaires and used manual assessments and pull requests submitted to
developers to solicit feedback on the quality of the tool. Then after studying this feedback,
we modified the tool and added new configurations to adjust the tool to the feedback.

Furthermore, we used a technique similar to the Minimum Viable Product technique
in industry to collect feedback on potential features for JTestParametrizer before actually
implementing them. We did this by manually applying the effect of different potential
features that the tool could have on cases used for pull requests. By studying feedback from
these manually modified pull requests, we determined the factors that the practitioners care
about the most in the context of refactoring unit tests, allowing us to formulate and support
hypotheses about suitable features to implement in JTestParametrizer next.

iii

Acknowledgements

I would like to thank my supervisor, Professor Patrick Lam, for his priceless guidance
and assistance throughout my program. It was a pleasure to learn from him. His patience
and constant support were crucial factors that helped me advance my work during an
unprecedented time of a pandemic. I like to thank Professor Derek Rayside and Profes-
sor Mahesh Tripunitara for reading my thesis and providing me with invaluable insights.
Finally, I want to thank my family for their unconditional love and support.

iv

Dedication

I dedicate this thesis to my family.

v

Table of Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Reproducible Research 4

2.1 Reproducibility Challenges Related to This Work 5

3 Evaluating PL/SE Research 7

3.1 Concrete Examples of Evaluations in PL Research 8

4 Selecting Benchmarks 10

4.1 Existing Benchmark Collections . 10

4.2 Constraints . 11

4.3 Process of Choosing the Benchmarks . 12

4.3.1 Benchmark Requirements Checklist 12

4.4 Deckard and Potential Nominees for Refactoring 13

4.5 Our Benchmark Suite . 14

4.5.1 Numeric Facts . 14

4.5.2 Gson . 15

4.5.3 Jimfs . 16

vi

4.5.4 Bootique . 17

4.5.5 Joda-time . 17

4.5.6 Commons-lang . 17

4.5.7 Commons-io . 18

4.5.8 Commons-collections . 18

4.5.9 Jfreechart . 18

4.5.10 Netty/Codec-http . 18

4.5.11 Netty/Buffer . 19

4.5.12 Checkstyle . 19

4.5.13 Git-commit-id-maven-plugin . 19

4.5.14 Docker-maven-plugin . 20

4.5.15 Maven/Maven-core . 20

4.5.16 Mybatis-3 . 20

4.6 Benchmarks for Different Types of Feedback 21

4.7 Factors Learned Throughout . 21

4.7.1 Maintenance Mode . 22

4.7.2 Estimated Response Time . 22

4.7.3 Familiarity with Benchmark’s Domain 23

5 JTestParametrizer Tool 24

5.1 Parameterization Techniques . 25

5.1.1 Data Parameterization Simplified Example 25

5.1.2 Type Parameterization Simplified Example 25

5.1.3 Behavior Parameterization Simplified Example 27

5.2 JUnit 5’s Parameterized Tests . 28

vii

6 JTestParametrizer Quantitative Results and Discussion 30

6.1 Quantitative Results . 31

6.2 Potential Errors . 33

6.3 Debugging Procedure . 34

6.3.1 Protected Method Access Issue Example 35

6.4 Undetectable Errors . 40

6.4.1 Undetectable Issue Example . 40

7 JTestParametrizer Qualitative Results and Discussion 43

7.1 The Questionnaire . 44

7.2 Manual Quality Evaluation . 44

7.2.1 The Process of Manual Quality Evaluation 45

7.2.2 Rating Example . 45

7.2.3 Behavior Parameterization Evaluation 48

7.2.4 Discarding Behavioral Effect on Quantitative Results 50

7.2.5 Manual Quality Evaluation Discussion 54

7.3 Selecting Pull Requests . 54

7.3.1 Important Considerations . 55

7.3.2 Process of Selecting Pull Requests 56

7.3.3 Minor Manual Modifications . 56

7.3.4 Representative Cases . 58

7.3.5 Discussion . 58

7.4 Submitting Pull Requests . 59

7.4.1 Jimfs Pull Request . 60

7.4.2 First Gson Pull Request . 61

7.4.3 Second Gson Pull Request . 66

7.4.4 Joda-time Pull Request . 69

7.4.5 Bootique Pull Request . 69

viii

7.5 Learning From our Experience . 74

7.5.1 Processes for Getting Feedback . 74

7.5.2 Factors Learned . 74

7.5.3 Potential Configurations for the Tool 75

7.5.4 Potential Best Next Step for the Tool 75

8 Conclusion 76

8.1 Summary of the Work . 76

8.2 Heuristics for Selecting Benchmarks . 78

8.2.1 Familiarity With the Benchmark’s Domain 78

8.2.2 Estimated Response Time . 79

8.2.3 Maintenance Mode . 79

8.3 Quantitative vs. Qualitative Evaluation . 79

8.4 Processes for Quantitative Evaluation . 80

8.4.1 Questionnaire . 80

8.4.2 Manual Quality Evaluation . 80

8.4.3 Submitting Pull Requests . 81

8.5 Deduplication in Tests vs. in Main Code 82

8.6 Best Potential Extensions . 82

8.6.1 Method Pairs vs. Cases With Multiple Methods 82

8.6.2 Pairing With Inliner IDE . 83

References 84

ix

List of Figures

5.1 Data Parameterization Simplified Example 26

5.2 Type Parameterization Simplified Example 27

5.3 Behavior Parameterization Simplified Example 29

6.1 Compilation error example: before refactoring 36

6.2 Compilation error example: refactored test methods 37

6.3 Compilation error example: Template file 38

6.4 JTestParametrizer tool: new visitor . 39

6.5 JTestParametrizer tool: new condition in CloneRefactor 39

6.6 Undetectable error example: before refactoring 41

6.7 Undetectable error example: refactored test methods 41

6.8 Undetectable error example: fixed refactored test methods 42

7.1 Rating example: before refactoring . 46

7.2 Rating example: after refactoring . 47

7.3 Behavioral example: before refactoring . 48

7.4 Behavioral example: after refactoring . 49

7.5 Rating example: after minor manual modifications 57

7.6 First idea example: after manual modification 62

7.7 Second idea example: before manual modification 63

7.8 Second idea example: after manual modification 64

x

7.9 Third idea example: before running the JTestParametrizer tool 67

7.10 Third idea example: before manual modification 67

7.11 Third idea example: after manual modification 68

7.12 Fourth idea example: before running the JTestParametrizer tool 71

7.13 Fourth idea example: before manual modification 72

7.14 Fourth idea example: after manual modification 73

xi

List of Tables

4.1 Numeric Characteristics of Benchmarks . 15

4.2 Benchmarks’ Refactoring Nominees . 16

6.1 The JTestParametrizer Tool Quantitative Results 32

7.1 Quantitative Results With Skip Behavioral Configuration 51

7.2 With and Without Skip Behavioral Configuration Comparison 53

xii

Chapter 1

Introduction

Researchers develop many tools, but only some of those tools end up being helpful to
developers. This could be due to many reasons, but one of the important ones is that the
tool does not solve a problem developers have.

Particularly for refactoring tools, Eilertsen et al. [17] conducted a study to determine
how to enhance the usability of these tools. The problem was that even though developers
have access to various refactoring tools, most developers avoid using most of these tools.
The identified reasons for this disuse include a lack of awareness by developers, a lack of
predictability of the tools, and a lack of need for the tools. Eilertsen et al. studied the
experiences of 17 developers working on three change tasks designed to be amendable to
the use of refactoring tools. Based on this lab study, they provided some insights into what
developers need from a refactoring tool.

Furthermore, Sadowski et al. [25] expressed lessons from building static analysis tools
at Google and mentioned reasons engineers do not always use these tools. Some of these
reasons include the tool not being trustworthy, not being integrated, and issues identified
by the tool being too expensive to fix. Sadowski et al. also provided some critical insights,
including that “static analysis authors should focus on the developer and listen to their
feedback”, “careful developer workflow integration is key for static analysis tool adoption”,
and “static analysis tools can scale by crowdsourcing analysis development”.

Determining what practitioners want vs. what researchers assume they want is a crucial
challenge of Programming Languages / Software Engineering research. This problem can
happen in both research and industry, but typically, the consequences are more apparent
in the industry since this problem is more attached to short-term industry imperatives,
whereas in research, how authors represent their work and the factors that they learn can

1

have higher importance. Lack of evaluation and feedback is a factor that leads to this issue.
If we seek feedback from practitioners on the quality of our work throughout our research
and adjust our work based on that, there will be a lower chance of our final product being
something that no one would want to use.

Over the years, there have been plenty of new software development practices and
methodologies to mitigate the “something developers assumed that the customer wants vs.
what customers wanted” issue. Many newer software development practices (such as Agile)
are based on getting frequent feedback from potential customers, responding to changes
over following a plan, and adjusting the project based on their feedback. Even though the
better response to this problem in the industry compared to research could be because
this problem is more tied to short-term industry imperatives, we could still benefit from
using agile-style techniques to evaluate the usefulness of tools in software engineering and
programming languages research systems.

This work aimed to evaluate, modify, and extend an existing automatic test refactoring
tool called JTestParametrizer based on the mentioned concepts. JTestParametrizer [29]
is a refactoring tool that aims to refactor the method-scope renamed clones in test suites
automatically. The idea behind this tool is that when developers write unit tests, in order
to increase the coverage criteria, they usually tend to create multiple test methods that
are very similar and only differ in tiny details. This will lead to having duplicated code
in tests. Now, if we can automatically deduplicate the tests, we are decreasing the code
repetition in the test, which, in theory, will lead to higher maintenance and higher overall
quality of the test code.

However, the major problem with the JTestParametrizer tool was that even though,
in theory, it should have increased the overall quality of the test code, there was no proof
or empirical evidence to show JTestParametrizer’s effectiveness. The main goal of this
research was to provide that empirical evidence that showed the JTestParametrizer’s effec-
tiveness, and in doing so, modify and extend the tool based on the feedback that we got
to enhance the overall quality of the tool.

We ran the tool on 18 open-source benchmark projects, and based on the quantitative
feedback, we fixed some conceptual and non-conceptual bugs in the tool. Then we tried
different processes such as questionnaires and manual assessment of the refactoring cases to
provide quantitative feedback on the tool. After analyzing the feedback, we figured that one
of the three parametrization techniques in JTestParametrizer decreases the overall quality
of the refactored test methods. We added a configuration to the tool to discard that specific
parametrization technique, and then we ran the tool with the new configuration on all the
18 benchmarks again and studied the results. Based on this new feedback, we determined

2

that even after using the new configuration, there is no significant enhancement in the
overall quality of the refactored tests.

Furthermore, we submitted vetted proposed refactorings upstream using Pull Requests
to get the developer’s feedback on the quality of the tool. First, we submitted one Pull Re-
quest only containing the refactoring cases created by running the tool on Jimfs benchmark.
This confirmed our previous assessment that the current version of the JTestParametrizer
tool was not significantly enhancing the overall quality of the refactored tests.

Then, we used a technique similar to the Minimum Viable Product technique to de-
termine which potential feature of the JTestParametrizer tool will have the best feedback
before implementing that feature. We did this by manually implementing the effect of
each potential feature to the refactored test methods that we selected for a Pull Request.
After investigating the feedback for these Pull Requests, we determined the best potential
feature that will provide the highest enhancement to the quality of the JTestParametrizer
tool. We also found some new configurations for the tool that might positively affect the
overall quality.

Throughout this work, we also learned some heuristics for determining which bench-
marks would suit which processes the best. We recognized the importance of “maintenance
mode”, “estimated response time”, and “familiarity with the benchmark’s domain” factors
when choosing a benchmark to get feedback using the Pull Requests process. We com-
pared three processes (Questionnaire, Manual Quality Evaluation, and Submitting Pull
Requests) for getting qualitative feedback. We discussed the priority of qualitative feed-
back vs. quantitative feedback. Furthermore, we learned some critical factors developers
care about when refactoring unit tests, such as the higher importance of understandability
and readability in tests vs. production code and the lower importance of code repetition
in tests vs. production code.

3

Chapter 2

Reproducible Research

Researchers have advocated for transparency and reproducibility as essential tools used in
modern academic literature for establishing the validity and reliability of research efforts.
The challenges in performing reproducible research range from technical issues concerning
input data, under-specification in methodology or metrics, obfuscated or unavailable code-
bases, and selective or exaggerated reporting [3] to the general culture of the computer
science community, which typically has a lower than ideal emphasis on reproducibility,
both in the review process and during the development of scientific publications [4].

Research in Programming Languages has been notoriously susceptible to such chal-
lenges as reproducing the results of one experiment is also heavily affected by the environ-
ment and software specifications of the set-up used by the authors. This is closely related
to the age-old problem of cross-platform software development and deployment, which has
shaped many trends in the industry. For instance, the Write Once, Run Anywhere prin-
ciple in Java and the recent explosion of scripting languages in popularity have all been
more or less related to the need for transferability of software projects from one platform
to the other.

This problem is exacerbated in complex systems where diverse artifacts are brought
into play to carry out an objective. Slight differences in OS kernels, distributions, pack-
age versions, configurations, and file systems can hinder the successful redeployment of a
software set-up.

Guo et al. [19] have approached this problem by introducing a packaging framework
called CDE which recreates the file system tree of the source environment accurately and
ships the code along with its input data to an arbitrary environment by creating a fake
root containing the mentioned artifacts in the destination machine. While the authors’

4

idea of shipping the entire environment as an apparatus for reproducible software runs is
interesting, their focus is entirely on the file system. In contrast, many different factors
such as the kernel, pre-loaded system object files, host specs, networks, shared resources
can play a role in the successful reproduction of the software execution.

This strategy has evolved into modern containerization technologies such as Docker and
LXC, which make use of various features in the Linux kernel (e.g., namespaces, Cgroups,
Netfilter, AppArmor, Netlink) to replicate the desired environment as accurately as possible
in isolation from other containers and the host operating system. Thus, containers provide
a comprehensive framework for creating the desired environment in machines with different
OS distributions and installed packages.

This has led many researchers to advocate for containers as a solution for reproducible
research. For instance, Boettiger et al. [12] have proposed Docker as such a solution while
defining best practices in doing so, e.g., using the containers during development, test cases,
and checks, using Dockerfiles instead of manual instructions. Virtualization technologies,
in general, can play an essential role in future research by providing a snapshot of the
testing environment and the evaluation results, making a robust case for an experiment.

Without such arrangements, reproducing studies on programming languages and soft-
ware evaluations can often be challenging. For instance, in a comprehensive technical
report, Berger et al. [7] follow the footsteps of the authors in [24] along with their GitHub
repository, documenting the results and cross-checking the claims. In this effort, reproduc-
ing some of the case studies has proven technically complex, with many steps in between.
While most claims in [24] have been convincingly proven, some results seem to be contra-
dicting the authors’ claims.

Having a reliable method and baseline for comparing results in such measurements is
of the highest importance for the future of this research area. With a combination of the
mentioned methods, we expect the openness, transparency, and reliability of such efforts to
be enhanced. Contradictory measurements can thus be investigated much more effectively
as the testing environment along with its input data would be effectively specified and
reproduced easily by consequent research projects building upon the same methods.

2.1 Reproducibility Challenges Related to This Work

The first step to empirically evaluate the JTestParametrizer tool was to run the tool on the
selected benchmarks (see Chapter 4). I included all five benchmarks Zhao used to evaluate
the JTestParametrizer tool [29] in the benchmark suite for this work.

5

I used the exact version of those benchmarks that Zhao used since the git commit for
those versions was documented. I also used the exact version of the JTestParametrizet tool.
However, I could not reproduce the same experiment as Zhao’s since the JTestParametrizer
tool takes an XLS file, including all the potential nominees for refactoring, as an input (see
Section 4.4), and I did not have all the information to create the exact XLS files Zhao
used. To create these XLS files, we both used Deckard’s clone detection ability to create
some cluster files and then ran a python script on the cluster files to generate the XLS files.
However, Deckard’s clone detection ability takes three arguments to operate, and I could
not deduce which three numbers Zhao used for his work. Hence, I could not reproduce
his XLS files. Consequently, I got different quantitative findings for those five benchmarks
as I encountered several compile errors when building the refactored benchmarks (after
running the JTestParametrizer tool), while Zhao stated that he did not encounter any
compile errors on those five benchmarks.

Another crucial challenge for the reproducibility of this work is that JTestParametrizer
is an Eclipse-based tool. To run the tool on a benchmark, we need two Eclipse workspaces,
one for the tool and one for the benchmark. Now there are two essential things that we need
to consider for reproducing this work. First, we need to have the Eclipse run configurations
for each benchmark, including the main arguments, VM arguments, working directory, and
program arguments. Second, we need to have all the information about the workspaces,
including the versions and all the plugins they are using; otherwise, we will not recreate
the exact results.

To address all the mentioned issues for reproducibility of this work, I documented all the
required information in a Figshare article (https://figshare.com/articles/software/A_Quantitative_and_

Qualitative_Empirical_Evaluation_of_a_Test_Refactoring_Tool_-_Information_for_Reproducing_Results/16755622).

This Figshare includes three base directories. The “refactoring nominees XLS files”
directory includes the 18 refactoring nominees XLS files that I used for 18 benchmarks.
It is possible to create these XLS files by using Decard’s clone detection ability and the
information documented in Section 4.4. However, I thought it might be better to document
the final XLS files as well. The “eclipse workspaces” directory includes all the information
about the two workspaces I used for this work, including all the versions and plugins I
used in each workspace. Finally, the “eclipse run configurations” directory includes all the
arguments needed to create a run configuration for each of the 18 benchmarks.

6

https://figshare.com/articles/software/A_Quantitative_and_Qualitative_Empirical_Evaluation_of_a_Test_Refactoring_Tool_-_Information_for_Reproducing_Results/16755622
https://figshare.com/articles/software/A_Quantitative_and_Qualitative_Empirical_Evaluation_of_a_Test_Refactoring_Tool_-_Information_for_Reproducing_Results/16755622

Chapter 3

Evaluating PL/SE Research

Often in the programming languages research community, the worth of an idea is evaluated
empirically. Research developments depend on empirical evidence to prove their effective-
ness. In August of 2017, SIGPLAN [11] formed an ad hoc committee on Programming
Languages Research Empirical Evaluation to find out best practices for putting together
better empirical evaluation in PL research that would lead to more reliable conclusions.
They examined the literature to distinguish common forms of empirical evaluation used in
PL research. In doing so, they identified some common inadequacies even in recent papers
in highly regarded venues. Based on this, they came up with a one-page Empirical Evalu-
ation Checklist that includes the best practices and guidelines for empirical evaluation in
programming languages research.

One of the common inadequacies that they found states that, unfortunately: “(Pro-
gramming Languages) papers we looked at often subset a benchmark, or cherry-picked
particular programs.”. This threatens the validity of the claims. We included the docu-
mented process of choosing the benchmarks and benchmark requirement list to avoid this
issue in our work.

“An unsound claim can misdirect a field, encouraging the pursuit of unworthy ideas
and the abandonment of promising ideas.”. S. M. Blackburn et al. [9] believed that having
a methodical approach to exploring, exposing, and addressing the root of unsound claims
and poor exposition would help to solve this issue. They proposed a framework that
identifies two categories of sins: Three sins of reasoning that lead to unsound claims and
two exposition sins that lead to poorly specified claims and evaluations. Their framework
provides practitioners with methodological techniques for evaluating the integrity of their
work or the work of others.

7

Krishnamurthi et al. [21] advocated the importance of Artifact Evaluation Committees
in programming languages research. Software artifacts play a central role in the program-
ming languages field, yet we rarely provide a software artifact for evaluation when we
publish research. Krishnamurthi et al. stated that “If a paper makes, or implies, claims
that require software, those claims must be backed up.”. They also discussed the artifact
evaluation process, the mechanics of artifact evaluation, who should evaluate artifacts,
whether the artifacts should be published, and the benefits of artifact evaluation, such as
that “Artifact evaluation encourages authors to produce reasonable artifacts, which are
the cornerstone of future research.”.

3.1 Concrete Examples of Evaluations in PL Research

Linking user bug reports and code changes for fixing those bugs are missing for several
software projects since the bug tracking and version control systems are often maintained
independently. There have been some solutions, such as ReLink [27], proposed for this
problem. However, Bissyandé et al. [8] believed that the presentation of the effectiveness
of ReLink is subject to several issues, including a reliability issue with their ground truth
datasets in addition to the extent of their measurement. They proposed a benchmark
for evaluating this bug-linking solution, and they designed some research questions for
quantitative and qualitative assessment of the effectiveness of this tool. Furthermore, they
applied their benchmark to ReLink to determine the strengths and limitations of this tool.

The i∗ modeling framework is a modeling language used in the early system modeling
phase to help understand the problem domain. This framework has been widely used in
research and some industrial projects. However, Estrada et al. [18] concluded that no
empirical evaluation existed to identify the strengths and weaknesses of this framework.
They presented an empirical evaluation of the i∗ framework using industrial case studies.
They conducted their work in collaboration with an industrial partner who was using
object-oriented and model-driven approaches for their software development. Estrada et
al. report lessons learned from this experience showing the strengths and weaknesses of
this framework and, they believe that this evaluation could play a crucial role in guiding
extensions of the i∗ framework.

Questionnaires are one method for soliciting feedback. However, a questionnaire does
not guarantee quality results because it is difficult to find the right engaged target audience
for a technical software tool questionnaire. Furthermore, feedback from the questionnaires
tends to have a lower level of detail. Laugwitz et al. [22] designed a user experience ques-
tionnaire to get feedback on six factors: Attractiveness, Perspicuity, Efficiency, Depend-

8

ability, Stimulation, and Novelty. Their results indicated a satisfying level of reliability
and construct validity.

Another method for getting feedback on the quality of a software tool and qualitative
evaluation is manual self-assessment. The feedback received from this assessment can be as
detailed as required. This method does not need external help, but it could be vulnerable
to potential unconscious bias and wrong assumptions about what factors would be the
most crucial for the overall quality of the tool.

One of the best techniques to obtain valuable feedback for a specific software tool would
be to contact potential customers directly about the quality of the changes that our tool has
made to their codebase. Submitting pull requests is a method that makes this technique
possible. This allows us to determine which factors are the most crucial for the quality of
our tool from the potential customers’ point of view. However, using this method to get
feedback requires spending more time.

When using the methods that require external help for getting feedback on the overall
quality of changes (such as using questionnaires or submitting pull requests), an essential
consideration is that ethical standards should be held whenever a method seeks external
help. Violations of those ethical standards can cause irremediable consequences.

An example of these consequences occurred when the University of Minnesota got a
university-wide ban by the Linux kernel. One of their systems-security researchers submit-
ted pull requests to the Linux kernel for a hidden purpose that they did not state, which
the Linux Foundation deemed very unethical. Developers were offended that the university
had purposely wasted the reviewers’ time. This resulted in a university-wide ban following
an email from Linux Foundation fellow Greg Kroah-Hartman which stated: “I suggest you
find a different community to do experiments on,” and “You are not welcome here.” [13]

9

Chapter 4

Selecting Benchmarks

The choice of benchmarks directly affects the result of the research. Choosing the proper
benchmark collection is one of the most challenging and essential parts of any software
engineering/programming languages research, and yet it is frequently underestimated.

I started with some considerations about my benchmark collection and learned more
along the way. This chapter will discuss considerations for the benchmark collection, the
forced constraints I dealt with, the constraint that I added, the process of choosing the
benchmarks, preparing the needed data for a specific benchmark, each of the benchmarks,
different usages of benchmarks, and what I have learned.

4.1 Existing Benchmark Collections

Industrial consortia and researchers have created collections of benchmarks for various
purposes. The earliest Java benchmark collection was SPEC JVM 98 [1, 2], designed
to measure the performance of both Java virtual machine client platforms and hardware
systems. Then there is the DaCapo benchmark collection [10], consisting of open-source,
real-world Java applications. They introduced new value, time-series, and statistical met-
rics for static and dynamic properties such as code complexity, code size, heap composition,
and pointer mutations. Nevertheless, both these benchmark collections are mainly trying
to evaluate the performance and memory management of a virtual machine.

Furthermore, there exists the Qualitas Corpus [26]. Per the authors, “Qualitas Corpus
is a curated collection of software systems intended for analyzing empirical studies of code
artifacts with the primary goal of providing a resource that supports reproducible studies

10

of software.”. However, Qualitas’s open-source Java software systems are not necessarily
executable. Finally, XCorpus [14] is “a set of 76 executable, real-world Java programs,
including a subset of Qualitas Corpus, XCorpus uses a harness that is a combination of
built-in and generated test cases, resulting in a branch coverage that is significantly better
than what is available from DaCapo.”.

4.2 Constraints

The JTestParametrizer tool forced some conditions on the candidate benchmarks, and I
added some more conditions to either simplify the process of running the benchmarks or
increase the potential quality of the feedback. Due to these constraints and because I
knew that the feedback I was looking for was mainly on the quality of the refactorings
and not quantitative metrics such as performance, I decided to create a new specific set of
benchmarks for this work.

Here, I will discuss the main constraints on benchmarks for this part. The JTest-
Parametrizer tool required:

1. That the benchmarks be Java projects because the JTestParametrizer tool is designed
for the Java programming language.

2. That the benchmarks run and pass all the test runs successfully on my machines (I
used a macOS machine to run the JTestParametrizer tool and an Ubuntu machine
for running Deckard [20]).

3. That the benchmarks run successfully on Eclipse because the JTestParametrizer is
an Eclipse-based tool.

Furthermore, here are three constraints that I added to simplify the process of running
the benchmarks or increase the potential value of the feedback on the quality of refactorings:

1. I added a constraint to use a setup based on the Maven project management tool.
Having this constraint enables having the same build setup process for all of the
benchmarks, which will lead to simplicity and consistency of the process. However,
it limits the benchmarks to Maven projects.

2. I added another constraint to restrict the minimum number of stars and forks on
GitHub for candidate benchmarks to have more relevant and widely used benchmarks.

11

Stars and forks are indicators of how many people decide to use or work on a specific
project, and even though they are not the perfect metrics, to some degree, they
show the reliability and the quality of that project and its developers. Therefore,
this constraint can enhance the potential quality of feedback from the developers.
Nevertheless, it limits the benchmarks to project with a certain minimum number of
stars and forks.

3. I added another constraint to discard the benchmarks that took more than one hour to
run all the test runs on the macOS machine. Each benchmark will be run repeatedly,
and using the projects that take longer to build has no particular advantage to make
up for the unnecessary time it takes. Therefore, this constraint will help to simplify
the process of running benchmarks by saving time. However, it adds a time constraint
on the possible candidate benchmarks.

4.3 Process of Choosing the Benchmarks

To find candidate benchmarks that satisfy the stated constraints, I started with the bench-
marks that Jun Zhao used in his thesis [29]. And then, I went through over a hundred
open source projects to find the candidates that fit our requirements.

I used the suggested Java projects on GitHub lists by IssueHunt, awesomeopensource,
and Henn Idan to find potential open-source Java project candidates, although I discarded
the Github projects where their number of stars plus their number of forks on GitHub was
less than 800.

I also considered all the open-source Java projects from the Google, Spotify, Apache,
Airbnb, and Netflix companies on GitHub that had the minimum number of stars + forks
as potential benchmark candidates.

4.3.1 Benchmark Requirements Checklist

Checklists are a helpful way for quickly evaluating things. They help to be more organized
and to not skip any vital step in the process. I used the following checklist to determine
if a candidate benchmark has the minimum requirements needed to be in the benchmark
collection for this work.

1. Ensure that the candidate is an open-source Java project built by Maven.

12

https://medium.com/issuehunt/50-top-java-projects-on-github-adbfe9f67dbc
https://awesomeopensource.com/projects/maven-plugin
https://www.overops.com/blog/the-hitchhikers-guide-to-github-13-java-projects-you-should-try/
https://github.com/google/?q=&type=&language=java&sort=stargazers
https://github.com/spotify/?q=&type=&language=java&sort=stargazers
https://github.com/apache/?q=&type=&language=java&sort=stargazers
https://github.com/airbnb/?q=&type=&language=java&sort=stargazers
https://github.com/Netflix?q=&type=&language=java&sort=stargazers

2. Ensure that the candidate contains tests.

3. Ensure that I can build the candidate on my machines (macOS and Ubuntu machines)
and that all the test runs pass successfully; if this is not the case, spend up to one
hour fixing the issues. If I cannot fix it, discard this candidate.

4. Ensure that I can build the candidate on Eclipse; if this is not the case, spend one
hour fixing the issues. If I cannot fix it, discard this candidate.

5. Create the cluster files for that project using Deckard, and then use the cluster files
to create the XLS file of the potential nominees for refactoring. Now, discard this
candidate if the created XLS file is empty, meaning that there are no nominees for
refactoring.

If a project satisfied all these conditions, then I could consider it as a potential bench-
mark. However, these were the minimum requirements, and some projects had these re-
quirements but still failed to make the benchmark collection due to having a low number of
refactoring nominees or not having any refactored cases after running the JTestPrametrizer
tool.

4.4 Deckard and Potential Nominees for Refactoring

One of the primary inputs of the JTestParametrizer tool for every benchmark is an XLS
file that includes basic information (folder, class, package, method, start line, end line, and
clone group size) about the potential nominees for refactoring in the benchmark. I created
this XLS file by running a process on the cluster files that I receive from running Deckard’s
clone detection tool on that benchmark.

To use Deckard’s clone detection ability, we need to set up specific parameters such
as Min tokens (“minimum number of tokens required for clones”), Stride (“size of the
sliding window”), and Similarity described in Deckard: scalable and accurate tree-based
detection of code clones [20].

Jun Zhao did not document the parameters he used in his research. I deduce that he
used 0 for Stride (equivalent to no merging of vectors), but I could not deduce what he
used for Min tokens and Similarity. Increasing the Min tokens will decrease the
number of potential nominees for refactoring since the nominees have to have at least that
many tokens to be eligible. On the other hand, if the Min tokens is too low, we will

13

have nominees that can be refactored, but the refactoring would not be worth doing since
the nominees were very trivial. Furthermore, Similarity should be a number between
0.9 and 1. If it is too high, we will miss several nominees (false negatives), and if it is too
low, we will have poor nominees (false positives).

After considering eight different sets of values, Min tokens=50–100, Stride=2–0,
and Similarity=0.95–0.90, for these three parameters for the three benchmarks Gson,
Joda-time, and Jfreechart, and evaluating the differences between the final XLS files created
by each set of variables, I decided to use 50 for the Min tokens, 0 for Stride, and 0.95 for
Similarity for every benchmark to keep the results consistent. These chosen parameters
produced good results for the three benchmarks that I was using for evaluation.

With 50 for Min tokens, we will not have many false positives (nominees that can be
refactored, but it would be better if not, because they are already trivial), and 50 is not
too high to miss good nominees because of the eligibility constraint. Furthermore, Jiang et
al. [20] state that for clone detection, Similarity could be a number between 0.9 and 1,
and with 0.95, it is not too high to miss on several nominees, and it is not too low to have
poor nominees. Also, for the three benchmarks discussed above, changing the Similarity
from 0.9 to 0.95 did not considerably impact the final list of nominees.

4.5 Our Benchmark Suite

In this section, I will go over the projects that I used as benchmarks for this work. First,
I will go over the numeric facts of each benchmark in table 4.1, then I will explain each of
the benchmarks briefly.

4.5.1 Numeric Facts

Table 4.1 lists the numbers related to the essential aspects of the GitHub repository, includ-
ing the number of stars, number of forks, number of GitHub issues, number of contributors,
number of closed pull requests, and number of open pull requests, on GitHub, for each of
the projects used as benchmarks. As for the number of lines of java code, I used SLOC-
Count1 to measure it for the latest version of each benchmark.

There are 14 repositories in this table but 18 benchmarks in total. This is because two of
the benchmarks (Netty/Codec-http and Netty/Buffer) are subprojects of the same GitHub

1Source Lines of Code Count, https://dwheeler.com/sloccount/

14

https://dwheeler.com/sloccount/

repository, Netty. Also, I used two different versions of each of the three repositories Gson,
Bootique, and Joda-time, as separate benchmarks.

Repository Stars Forks Lines of Java GitHub Issues Contributors Closed PRs Open PRs

Gson 20k 3.9k 25.6k 503 114 358 151
Jimfs 2k 245 17.4k 26 23 96 4
Bootique 1.3k 286 18.5k 31 17 84 4
Joda-time 4.7k 888 86.5k 23 77 160 3
Commons-lang 2.2k 1.3k 85.1k - 161 682 107
Commons-io 800 519 41.5k - 76 232 29
Commons-collections 506 339 67.6k - 57 215 28
Jfreechart 732 296 133.5k 65 22 75 65
Netty 27.4k 13.5k 312.1k 451 531 5,963 43
Checkstyle 6.2k 8k 286.5k 642 290 6,530 41
Git-commit-id-maven-plugin 1.3k 253 3.7k 23 73 241 3
Docker-maven-plugin 2.6k 556 2.5k 10 38 160 11
Maven 2.7k 2k 91.9k - 143 428 55
Mybatis-3 16.1k 10.9k 60.8k 123 182 1,156 55

Table 4.1: Numeric Characteristics of Benchmarks

Table 4.2 lists the necessary information that we retrieved for each benchmark before
running the JTestParametrizer tool on that benchmark. This information includes the
version of that benchmark, the number of Java code lines for that specific version using
SLOCCount, the number of tests run, failures, errors, and skipped from building that
benchmark and running all the tests on my macOS machine, and finally, the number of
refactoring nominees that I got from running a process on the cluster files that I got from
running the Deckard clone detection tool on that version of the benchmark.

4.5.2 Gson

Gson is an open-source Maven project described as “a Java library that can be used to
convert Java Objects into their JSON representation. It can also be used to convert a
JSON string to an equivalent Java object. Gson can work with arbitrary Java objects
including pre-existing objects that you do not have source-code of.”

I used two versions of the Gson project, the first one being gson-parent-2.8.5 (21 May
2018) which was the version that Jun Zhao used, and the second one f319c1b8e5 (27 May
2021), which was the version I used to create the pull request. Each run of all tests took
under a minute. Furthermore, Gson ran successfully on Eclipse. After running Deckard’s
clone detection tool with the stated parameters and analyzing the cluster files, I got 39

15

Repository Version Lines of Java Tests run Failures Errors Skipped Nominees

Gson f649e05 25193 1050 0 0 1 39
Gson f319c1b 25269 1063 0 0 1 42
Jimfs 3c9d8ba 17472 5834 0 0 0 45
Bootique d0648eb 18589 231 0 0 0 22
Bootique 9939bc6 18591 228 0 0 0 23
Joda-time 0ae5311 86138 4222 0 0 0 261
Joda-time 27edfff 86536 4238 0 0 0 260
Commons-lang 425d808 77224 4068 0 0 5 154
Commons-io e4ff4a5 40336 1852 0 0 6 32
Commons-collections 7d8b979 67647 16923 0 0 4 47
Jfreechart d03e68a 132452 2176 0 0 0 124
Netty/Codec-http e69107c 41014 858 0 0 0 47
Netty/Buffer e69107c 33564 10458 0 0 1198 20
Checkstyle 6cbc1dc 255741 3528 0 0 0 130
Git-commit-id-maven-plugin 4a1ac8f 7238 214 0 0 1 4
Docker-maven-plugin 84020ac 2434 59 0 0 0 7
Maven/Maven-core 3fabb63 38653 388 0 0 4 26
Mybatis-3 1d82865 60825 1675 0 0 14 26

Table 4.2: Benchmarks’ Refactoring Nominees

test method pairs as refactoring nominees for the first version, and for the second version,
42 test method pairs as refactoring nominees.

4.5.3 Jimfs

Jimfs is an open-source Maven project described as “an in-memory file system for Java 7
and above, implementing the java.nio.file abstract file system APIs.”

I used the 3c9d8babec version (1 June 2021), which was also the version that I used to
create the pull request for this benchmark. Each run of all tests took about one and a half
minutes.

I fixed the problems with Eclipse by changing the setting for Maven → Errors/Warnings
in Eclipse. I set the “groupId” duplicate of parent groupId to Warning, “version” duplicate
of parent version to Warning, Out-of-date project configuration to Error, Plugin execution
not covered by lifecycle configuration to warning, and finally, Overriding manged version
to Warning.

The number of test refactoring nominees I got for this version using Deckard’s clone
detection tool with specified parameters was 45.

16

4.5.4 Bootique

Bootique is an open-source Maven project described as “a minimally opinionated java
launcher and integration technology which is intended for building container-less runnable
Java applications.”

I used two versions of the Bootique project, the first one being the d0648eb612 (19 Feb
2021) and the second one 9939bc640c (11 Jun 2021), which was the version I used to create
the pull request. Each run of all tests took under a minute. Furthermore, it ran successfully
on Eclipse. After running Deckard’s clone detection tool with the stated parameters and
analyzing the cluster files, I got 22 test method pairs as refactoring nominees for the first
version, and for the second version, 23 test method pairs as refactoring nominees.

4.5.5 Joda-time

Joda-time is an open-source Maven project expressed as “a quality replacement for the
Java date and time classes. The design allows for multiple calendar systems while still
providing a simple API.”

I used two versions of the Joda-time project: the 0ae5311895 (30 May 2018), which
was the version that Jun Zhao used, and the second one, 27edfffa58 (20 Apr 2021), which
was the version I used to create the pull request. For both versions, I changed the Maven
compiler from 1.5 to 1.8 in the pom.xml file to fix the build errors. Each run of all tests
took under a minute. Furthermore, it ran successfully on Eclipse. After running Deckard’s
clone detection tool with the stated parameters and analyzing the cluster files, I got 261
test method pairs as refactoring nominees for the first version, and for the second version,
260 test method pairs as refactoring nominees.

4.5.6 Commons-lang

Commons-lang is an open-source Maven project expressed as “a package of Java utility
classes for the classes that are in java.lang’s hierarchy, or are considered to be so standard
as to justify existence in java.lang.”

I used the 425d8085cf version (4 Nov 2017) with some custom changes, the same version
that Jun Zhao used. Each run of all tests took just over one minute. This project ran
successfully on Eclipse. The number of test refactoring nominees I got for this version
using Deckard’s clone detection tool with specified parameters was 154.

17

4.5.7 Commons-io

Commons-io is an open-source Maven project described as “a library containing utility
classes, stream implementations, file filters, file comparators, endian transformation classes,
and much more.”

I used the e4ff4a589b version (31 May 2021). Each run of all tests took about seven
minutes. There were some issues when running the project on Eclipse, but those issues
were fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number
of test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 32.

4.5.8 Commons-collections

Commons-collections is an open-source Maven project described as “a package containing
types that extend and augment the Java Collections Framework.”

I used the 7d8b979612 version (28 May 2021). Each run of all tests took about one
minute. There were some issues when running the project on Eclipse, but those issues were
fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number of
test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 47.

4.5.9 Jfreechart

Jfreechart is an open-source Maven project described as “a comprehensive free chart library
for the Java(tm) platform that can be used on the client-side (JavaFX and Swing) or the
server-side (with export to multiple formats including SVG, PNG, and PDF).”

I used the d03e68acaf version (7 Feb 2019). I changed the project.source.level and
project.target.level from 1.6 to 1.8 in the pom.xml file to fix the build errors. Each run of
all tests took less than a minute. The project ran successfully on Eclipse. The number of
test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 124.

4.5.10 Netty/Codec-http

Codec-http is a subproject of the Netty project. Netty is an open-source Maven project
described as “an asynchronous event-driven network application framework for rapid de-

18

velopment of maintainable high-performance protocol servers & clients.”

I used the e69107ceaf version (8 Jun 2021). Each run of all tests took just under
a minute. There were some issues when running the project on Eclipse, but those issues
were fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number
of test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 47.

4.5.11 Netty/Buffer

Buffer is another subproject of the Netty project. I used the same e69107ceaf version (8
Jun 2021) for Buffer too. Each run of all tests took less than two minutes. There were some
issues when running the project on Eclipse, but those issues were fixed by changing the
setting for Maven → Errors/Warnings (in Eclipse). The number of test refactoring nom-
inees I got for this version using Deckard’s clone detection tool with specified parameters
was 20.

4.5.12 Checkstyle

Checkstyle is an open-source Maven project described as “a tool for checking Java source
code for adherence to a Code Standard or set of validation rules (best practices).”

I used the 6cbc1dc3c0 version (31 May 2021). Each run of all tests took about four
minutes. There were some issues when running the project on Eclipse, but those issues
were fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number
of test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 130.

4.5.13 Git-commit-id-maven-plugin

Git-commit-id-maven-plugin is an open-source Maven project described as “a Maven plugin
which includes build-time git repository information into a POJO / *.properties). Make
the apps tell which version exactly they were built from!”

I used the 4a1ac8fbad version (23 Apr 2021). Each run of all tests took less than four
minutes. There were some issues when running the project on Eclipse, but those issues
were fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number

19

of test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 4.

4.5.14 Docker-maven-plugin

Docker-maven-plugin is an open-source Maven project described as “A Maven plugin for
building and pushing Docker images.”

I used the 84020acb55 version (14 Jan 2020). Each run of all tests took less than a
minute. The project ran successfully on Eclipse. The number of test refactoring nominees
I got for this version using Deckard’s clone detection tool with specified parameters was 7.

4.5.15 Maven/Maven-core

Maven-core is a subproject of the Maven project. Maven is an open-source project de-
scribed as “software project management and comprehension tool. Based on the concept
of a project object model (POM), Maven can manage a project’s build, reporting, and
documentation from a central piece of information.”

I used the 3fabb639a3 version (15 May 2021). Each run of all tests took about three
minutes. There were some issues when running the project on Eclipse, but those issues
were fixed by changing the setting for Maven → Errors/Warnings (in Eclipse). The number
of test refactoring nominees I got for this version using Deckard’s clone detection tool with
specified parameters was 26.

4.5.16 Mybatis-3

Mybatis-3 is an open-source Maven project described as “The MyBatis SQL mapper frame-
work makes it easier to use a relational database with object-oriented applications.”

I used the 1d82865816 version (11 Apr 2021). Each run of all tests took slightly less
than four minutes. The project ran successfully on Eclipse. The number of test refac-
toring nominees I got for this version using Deckard’s clone detection tool with specified
parameters was 26.

20

4.6 Benchmarks for Different Types of Feedback

As we previously discussed in chapter 3, we were aiming for different types of feedback.

A refactoring case might be correct, meaning that it does not cause any errors or
failures, and the behavior of the refactored test case stays the same, but that refactoring
case might still be poor due to decreasing the maintainability or readability of the code.
In that sense, verifying the correctness of refactorings and validating their quality are two
different topics.

I used all 18 benchmarks to get numerical metrics and statistics. Besides, I used Gson,
Joda-time, Jfreechart, Commons-lang, Bootique, and Jimfs benchmarks to verify the JTest-
Parametrizer tool’s correctness and to find the errors and bugs of the JTestParametrizer
tool. If an error occurred when running the JTestParametrizer tool on a benchmark, or if
after running the JTestParametrizer on a benchmark that benchmark had some compile
errors, or if after running the JTestParametrizer on a benchmark, some of the tests run of
that benchmark resulted in failures or errors, then I documented those incidents, and in
most cases, tried to find the source of that problem and fix the JTestParametrizer tool.

I used Gson and Joda-time to develop practical examples for the questionnaire to
validate the quality of the refactoring instead of the correctness (all the examples were
correct), which we ended up not pursuing due to the reasons explained in chapter 7.

We manually validated refactoring quality for the benchmarks Jimfs, Gson, Joda-time,
and Bootique. We also sought developer feedback about test refactorings of these bench-
marks using pull requests.

4.7 Factors Learned Throughout

Besides the three necessary constraints and the three unnecessary ones discussed earlier,
we learned some factors that led us to create new optional constraints throughout the work.
These newly created constraints were not necessarily for all benchmarks and were based
on the type of feedback we wanted for that benchmark.

We did not use all the benchmarks the same way. There were some benchmarks such
as Checkstyle that we only used for getting numerical metrics and quantitative evaluation.
Whereas, there were benchmarks like Gson that we used not only for that purpose but also
for coming up with practical examples for the questionnaire, validating the quality of the
refactorings by ourselves, and validating the quality of the refactorings by their developers.

21

Here we discuss three of these new constraints that are specialized for certain types of
feedback.

4.7.1 Maintenance Mode

For the benchmarks used for validating the quality of the refactorings by their developers,
it would be best if there are some constraints to check that that specific benchmark is not in
maintenance mode. For instance, after submitting the pull request for the Gson benchmark,
the first part of the feedback that we got was this: “This project is in maintenance mode,
and we are generally going to be reluctant to accept PRs that are essentially cosmetic,
especially if it is not trivially obvious that they do not change anything.”. Also, in the
case of Joda-time Benchmark, after going over all the steps and just before submitting the
pull request, we realized that the project is in maintenance mode.

How to figure out if a benchmark is in maintenance mode? There are multiple ways.
After learning about the importance of this factor, we did the following steps to deter-
mine whether a project is in maintenance mode for the following candidate benchmark for
sending a pull request:

1. Examine the last few commits to the codebase and checking if they are adding new
features.

2. Check out the time gap between the last few commits to see how frequently they are
committing.

3. Investigate if they mention that they are in maintenance mode in a message some-
where, such as the pull request message.

For instance, for the Joda-time case, the last commit was about four months ago, the
last few commits were all about the version release, and the pull request message pointed
out that they are in maintenance mode.

4.7.2 Estimated Response Time

Another good constraint for the benchmarks used to validate the quality of the refactorings
by their developers would be to prioritize the projects that take much less time to provide

22

feedback. For instance, the Gson project provided feedback to our pull request in less than
an hour, whereas the Bootique project has not reacted to our pull request after a month.

How to check this? Checking the list of open/closed pull requests for that project
and looking at the last few closed pull request and some of the open ones will provide a
reasonable estimate on how long it takes for them to come up with feedback. Furthermore,
the number of contributors can be an indicator too.

4.7.3 Familiarity with Benchmark’s Domain

One factor to have in mind when choosing benchmarks used to validate the quality of the
refactorings is that when we evaluate the quality of changes, we have to understand the
domain of that project and understand the semantics behind the changes. So choosing the
projects that we understand better would be very helpful. Especially when we want to
evaluate the quality of each refactoring case by giving them a rating, being familiar with
the context of refactoring enhances our judgment.

Nevertheless, even though a benchmark might not be ideal for getting developer feed-
back, it does not necessarily mean that it will not be great for retrieving quantitive feedback
or feedback on the quality of the refactoring cases using a questioner or self-assessment. For
instance, although I could not get the developer feedback that I was hoping for Joda-time
(due to it being in maintenance mode), I used Joda-time for self-assessment of the quality
of refactorings.

23

Chapter 5

JTestParametrizer Tool

JTestParametrizer is a refactoring tool that Zhao presented in his thesis [29]. This tool
aims to refactor the method-scope renamed clones in test suites automatically. It uses
three parametrization techniques “Type Parametrization”, “Data Parametrization”, and
“Behavior Parametrization” to refactor clone pairs with type, data, and behavior differ-
ences. This tool operates at the Abstract Syntax Tree level. It extracts a parametrized
template method and instantiates it with suitable parameter values.

Type differences in a clone pair refer to entries with different type identifiers. The tool
uses the common superclass of the different types as the bound of the extracted generic
type for the “Type Parametrization” technique. Furthermore, data differences in a clone
pair refer to differences in literal values and variables. For the “Data Parametrization”
technique, the tool replaces the differing values with a parameter and passes the particular
values as arguments to the extracted template method. Finally, behavioral differences refer
to method invocation calls with the same length argument lists but different signatures in
the clone pair. The “Behavior Parametrization” technique used in the tool is more complex
than the other two.

The JTestParametrizer tool works as an Eclipse application, with the tool being on
one Eclipse workspace and the benchmark project being on another Eclipse workspace.
One of the most crucial inputs for this tool is an XLS file for each benchmark containing
information about the refactoring nominees in the project we are using as the benchmark.
As I explained in Section 4.4, we used Deckard’s clone detection ability to create cluster
files for the project and then ran a process to retrieve the desired information from the
cluster files into an XLS file. I included all the refactoring nominees XLS files I created
and used in the Figshare article mentioned in Chapter 2.

24

Zhao used five open-source Java benchmark projects (Jfreechart, Gson, Commons-
lang, Commons-io, and Joda-time) for the empirical study. He claimed that all of the
refactored tests methods were compilable. I included these five benchmarks as part of the
18 benchmarks I used in this work’s benchmark suite. Due to a lack of documentation of
the Deckard parameters, I could not reproduce Zhaos’s exact refactoring nominees’ XLS
files for these five benchmarks. Consequently, using the XLS files that I created with
parameters explained in Section 4.4, I got inconsistent results (represented in Section 6.1)
as 13 refactoring cases were causing compile errors in these five benchmarks.

5.1 Parameterization Techniques

As aforementioned, the JTestParameterizer tool uses three parameterization techniques to
refactor the test methods. Here, I will provide three simplified examples for each of these
three techniques. Each of these three examples only uses one of the three techniques.

5.1.1 Data Parameterization Simplified Example

In the example shown in Figure 5.1, the two test methods only differ in an integer value as
one of them invokes f(5) while the other one invokes f(7). The rest of the two test methods
are the same, meaning that there is code duplication.

JTestParameterizer extracts the body of these two test methods into a template method
(helper function) but parametrizes the value that was different between the two into an
integer argument. Now, both test methods can invoke the same created template method
with different arguments.

5.1.2 Type Parameterization Simplified Example

The example in Figure 5.2 presents two test methods with the same body, except for a
difference in the type of variable x. In the first test method, the type of x is A1, while in
the second test method, the type of x is A2. Furthermore, A1 and A2 are both subclasses
of type A. The rest of the two test methods are the same, and regardless of the type of x,
they both follow the same logic.

JTestParameterizer extracts the body of these two test methods into a template method
but also declares a generic type TA constrained to extend the type A to represent types A1

25

1 // BEFORE:

2 public void firstTestMethod () {

3 ... // some test code here

4 x = y.f(5);

5 ...

6 }

7

8 public void secondTestMethod () {

9 ... // same test code appears here again (code duplication)

10 x = y.f(7);

11 ...

12 }

13

14 // AFTER:

15 public templateMethod(Integer int1) {

16 ... // same test code appears here

17 x = y.f(int1);

18 ...

19 }

20

21 public void firstTestMethod () {

22 templateMethod (5);

23 }

24

25 public void secondTestMethod () {

26 templateMethod (7);

27 }

28

Figure 5.1: Data Parameterization Simplified Example

26

1 // BEFORE:

2 public void firstTestMethod () {

3 ... // some test code here

4 A1 x = new A1();

5 ...

6 }

7

8 public void secondTestMethod () {

9 ... // same test code appears here again (code duplication)

10 A2 x = new A2();

11 ...

12 }

13

14 // AFTER:

15 public <TA extends A> void templateMethod(Class <TA > clazzTA) {

16 ... // same test code appears here

17 TA x = clazzTA.newInstance ();

18 ...

19 }

20

21 public void firstTestMethod () {

22 templateMethod(A1.class);

23 }

24

25 public void secondTestMethod () {

26 templateMethod(A2.class);

27 }

28

Figure 5.2: Type Parameterization Simplified Example

and A2. The created template method uses this generic type as its argument and uses the
“newInstance” method to invoke a new instance of that class in its body. Consequently,
both the first and second test methods can invoke the same template method with different
arguments A1.class and A2.class.

5.1.3 Behavior Parameterization Simplified Example

The example in Figure 5.3 presents two test methods with the same body except for a
difference in a method invocation which consequently could differentiate the behavior of
the two test methods. In the first test method, function f is invoked on variable y, while

27

in the second test method, function g is invoked on variable y. The rest of the two test
methods are the same, but the behavior of the two test methods could be different.

To refactor these two test methods, the JTestParameterizer creates an interface with
a method to encapsulate the behavioral difference between the two test methods. Then it
creates two new adaptor implementation classes that both implement that created inter-
face. The first adaptor implementation class implements the interface’s method with the
behavior of the first test method. In contrast, the second adaptor implementation class
implements the interface’s method with the behavior of the second test method. Next, the
JTestParameterizer tool creates a template method with the extracted bodies of the two
test methods. However, the template method gets an instance of the created interface as
an argument and then invokes the interface’s method in its body. Consequently, the two
test methods can invoke the created template method now, but the first test method will
pass the first adaptor implementation class as the argument while the second test method
passes the second adaptor implementation class as the argument to the template method.

5.2 JUnit 5’s Parameterized Tests

JUnit 5 [6] provides a Parameterized Tests facility that makes it possible to run a test mul-
tiple times with different arguments. This feature is available using annotations. Instead
of putting the regular “@Test” annotation, using “@ParameterizedTest” will enable this
feature, and then we need to declare at least one source of values for the arguments in each
invocation of that parameterized test.

Using this feature will help prevent the problem of having many test methods that are
very similar and only differ in some data values, which will help to reduce the duplicated
code in test methods and reduce the number of test methods. However, this feature works
as a prevention mechanism and requires the developer to know which test methods will
be similar and only differ in data values. In comparison, the JTestParameterizer tool
works as a refactoring mechanism that scans existing test methods and deduplicates them
by creating new parametrized template methods. Furthermore, the JTestParameterizer
tool also refactors the test methods with type differences and behavior differences. This
is due to three parameterization techniques used in the JTestParameterizer tool (Data
Parametrization, Type Parametrization, and Behavior Parameterization).

28

1 // BEFORE:

2 public void firstTestMethod () {

3 ... // some test code here

4 x = y.f();

5 ...

6 }

7

8 public void secondTestMethod () {

9 ... // same test code appears here again (code duplication)

10 x = y.g();

11 ...

12 }

13

14 // AFTER:

15 interface behaviorAdaptor {

16 int method(Y y);

17 }

18

19 class firstTestMethodAdaptorImpl implements behaviorAdaptor {

20 public int method(Y y) {

21 return y.f();

22 }

23 }

24 class secondTestMethodAdaptorImpl implements behaviorAdaptor {

25 public int method(Y y) {

26 return y.g();

27 }

28 }

29

30 public templateMethod(behaviorAdaptor adaptor) {

31 ... // same test code appears here

32 x = adaptor.method(y);

33 ...

34 }

35

36 public void firstTestMethod () {

37 templateMethod(new firstTestMethodAdaptorImpl ());

38 }

39

40 public void secondTestMethod () {

41 templateMethod(new secondTestMethodAdaptorImpl ());

42 }

Figure 5.3: Behavior Parameterization Simplified Example

29

Chapter 6

JTestParametrizer Quantitative
Results and Discussion

This chapter explains the quantitative results obtained from running the JTestParametrizer
tool on the benchmarks. Furthermore, it shows how we examined the quantitative results
and used the retrieved information to determine and fix some of the existing bugs in the
JTestParametrizer tool.

Running JTestParametrizer on the benchmarks enabled us to figure out the stats for the
applicability of the JTestParametrizer. Furthermore, when I encountered run-time errors
when running the tool on a benchmark, compile errors in the benchmark after running the
tool, or errors or failures in the test runs, I examined those problems that led to fixing bugs
in the JTestParametrizer tool. This feedback helped with the verification of the correctness
of the tool in that sense.

Suppose I do not encounter any of the stated problems (run-time errors when running
the tool on a benchmark or compile errors in the benchmark after running the tool, or
errors or failures in the test runs) when working on a benchmark. In that case, it does not
necessarily mean that there is no problem with the correctness of the JTestParametrizer
tool. However, if I do encounter a run-time error when running the tool on a benchmark
or a compile error when building the refactored benchmark, then it does mean that there
is a bug in the tool.

This feedback was exceedingly feasible to collect because I could do so without any
external help. Moreover, since I did not need external help, I had a more reliable estimate
of how much time this feedback would take. Also, spending more time on this process
equals faster feedback, which does not necessarily hold for other processes for getting

30

feedback. Furthermore, using this process does not require being familiar with the domain
of that specific benchmark.

However, this feedback will not help with evaluating the quality of refactoring cases at
all. That is, using this feedback, I can detect things that are definitely wrong and count how
often the tool works, but there is a lot that I am not catching, especially domain-specific
things.

6.1 Quantitative Results

Table 6.1 presents the quantitative results of running the JTestParametrizer tool on the
benchmarks. The first two columns (Repository, version) identify the benchmark. The
third column (Nominees) represents the number of refactoring nominees, also seen in Ta-
ble 4.2. The fourth column (Run-time errors) denotes the number of refactoring nominees
that caused a run-time error when running the JTestParametrizer tool on that benchmark.
The fifth column (Compile-time errors) represents the number of refactoring nominees
that caused a compile error when I was trying to build the benchmark after running the
JTestParametrizer tool. The sixth column (Refactored) represents the number of refac-
tored nominees; I got this after excluding those in the fourth and fifth columns categories.
Columns Tests run, Failures, Errors, and Skipped represent the result of running the test
cases of the refactored benchmark.

31

R
ep

os
it

or
y

V
er

si
on

N
om

in
ee

s
R

u
n
-t

im
e

C
om

p
il
e-

ti
m

e
R

ef
ac

to
re

d
T

es
ts

F
ai

lu
re

s
E

rr
or

s
S

k
ip

p
ed

er
ro

rs
er

ro
rs

ru
n

G
so

n
f6

49
e0

5
39

0
0

17
10

50
0

0
1

G
so

n
f3

19
c1

b
42

0
0

18
10

63
0

0
1

J
im

fs
3c

9d
8b

a
45

0
1

5
58

34
0

0
0

B
o
ot

iq
u
e

d
06

48
eb

22
0

2
10

23
1

0
1

0

B
o
ot

iq
u
e

99
39

b
c6

23
0

2
11

22
8

0
1

0

J
o
d
a-

ti
m

e
0a

e5
31

1
26

1
1

1
11

2
42

24
5

6
0

J
o
d
a-

ti
m

e
27

ed
ff

f
26

0
1

1
11

2
42

40
5

6
0

C
om

m
on

s-
la

n
g

42
5d

80
8

15
4

1
8

62
40

68
2

4
5

C
om

m
on

s-
io

e4
ff

4a
5

32
0

3
9

18
52

0
0

6

C
om

m
on

s-
co

ll
ec

ti
on

s
7d

8b
97

9
47

1
1

4
16

92
3

0
0

4

J
fr

ee
ch

ar
t

d
03

e6
8a

12
4

0
1

65
21

76
2

3
0

N
et

ty
/C

o
d
ec

-h
tt

p
e6

91
07

c
47

0
3

12
-

-
-

-

N
et

ty
/B

u
ff

er
e6

91
07

c
20

0
3

2
-

-
-

-

C
h
ec

k
st

y
le

6c
b

c1
d
c

13
0

0
1

25
35

28
0

2
0

G
it

-c
om

m
it

-i
d
-m

av
en

-p
lu

gi
n

4a
1a

c8
f

4
0

0
2

21
4

0
0

1

D
o
ck

er
-m

av
en

-p
lu

gi
n

84
02

0a
c

7
0

0
2

59
0

0
0

M
av

en
/M

av
en

-c
or

e
3f

ab
b
63

26
0

0
12

38
8

0
0

4

M
y
b
at

is
-3

1d
82

86
5

26
0

0
0

16
75

0
0

14

T
ab

le
6.

1:
T

h
e

J
T

es
tP

ar
am

et
ri

ze
r

T
o
ol

Q
u
an

ti
ta

ti
ve

R
es

u
lt

s

32

To determine the fourth column (Run-time errors), which represents the number of
refactoring nominees that caused a run-time error when I ran the JTestParametrizer tool
on that benchmark, I first ran the JTestParametrizer on the benchmark. If there were no
run-time errors, the number would be zero, but if there were a run-time error, I would use
a combination of log files and debugging using breakpoints to find out which nominee was
causing that compile error. Then I would record this problem, discard that refactoring
nominee and repeat this process until there are no more run-time errors.

To determine the fifth column (Compile-time errors), which represents the number of
refactoring nominees that caused a compile error when I was trying to build the benchmark
after running the JTestParametrizer tool, I tried to build the refactored benchmark. If I
did not get any compile errors, then the number would be zero, but if I did get compile
errors, then I checked them one by one, figured out which refactored test cases are causing
these compile errors using git diff, and then determined which nominees are responsible for
these refactored test cases using the refactoring nominees XLS file. Then I recorded these
problems and discarded these refactoring nominees that led to compile errors.

To determine the numbers in the sixth column (Refactored), after following the ex-
plained process for the fourth and fifth columns and discarding those refactoring nominees,
I ran the JTestParametrizer tool on the benchmark one more time, knowing that I would
not get any run-time errors and that the refactored benchmark would not have any compile
errors. Then I examined the log file and determined how many refactoring cases were in
that last execution of the JTestParametrizer tool on that benchmark.

To determine the numbers in columns seven, eight, nine, and ten, I used the “mvn
clean test” (or “mvn clean test -Drat.skip=true” if the benchmark is using Apache RAT1

in Maven) command on the refactored benchmark that I got from the process explained for
the sixth column, and then I reported the number of tests run, failures, errors, and skipped.
I could not run the “mvn clean test” command on the refactored Netty successfully because
a copyright header would cause errors when running that command for modified Netty.

6.2 Potential Errors

As discussed earlier, any occurrence of run-time errors when running the JTestParametrizer
tool on a benchmark or any occurrence of compile errors when building a refactored bench-
mark represents a potential problem in the JTestParametrizer tool. Furthermore, any fail-

1Apache RAT (Release Audit Tool), http://creadur.apache.org/rat/

33

http://creadur.apache.org/rat/

ures or errors resulting from running tests for a refactored benchmark can also hint at a
potential problem in the JTestParametrizer tool.

As seen in Table 6.1, there were multiple cases of those occurrences in columns Run,
Compile, Failures, and Errors. I began with identifying which nominees were causing each
of those occurrences and recorded those nominees to go over them one by one.

I explained how I recorded the nominees that were causing the run-time or compile-
time errors in Section 6.1. As for the test errors and failures, I followed a similar process.
I determined which test cases were failing or causing errors. Then using the refactoring
nominees XLS file for that benchmark (which contains the name of all the test methods
involved in a refactoring case), I identified the refactoring nominees that were causing those
problems.

6.3 Debugging Procedure

Now that I had recorded all the refactoring nominees leading to potential errors, I used
the following procedure to go over them, one at a time.

1. I isolated that specific refactoring nominee by running JTestParametrizer with only
the nominee of interest. To do so, I retracted all changes to the benchmark and then
ran the tool on the benchmark one more time, but I used a different XLS file this
time around and only put that one specific nominee into the XLS file. This way, the
only refactoring was that one case.

2. I compared the refactored test and the original test manually and tried figuring out
what the test case was doing, what caused the problem in the refactored version, and
why the refactored version is wrong.

3. I used breakpoints and the new XLS file mentioned in the first step to go over
this refactoring case until I figured out what part of the JTestParametrizer code is
responsible for the problem in the refactored test.

4. I tried understanding why that part of the JTestParametrizer code is wrong and how
I can modify it to fix that problem. Then I came up with a solution and modified
the JTestParametrizer tool.

5. I checked whether the modified tool fixed that specific problem. If not, I would go
back to step four and try coming up with a new solution.

34

6. I ran the modified JTestParametrizer tool on the five benchmarks Gson, Joda-time,
Bootique, Commons-lang, and Jfreechart to ensure that the modified version is not
causing any new problems. If it did, I would try to understand the new problem and
why it is happening, and how to change the solution in step four to avoid the new
problem.

7. Finally, if the modified tool fixed the problem with this specific refactoring nominee,
and did not cause any new problems in those five benchmarks, then I used the
modified version as the main version from that point forward.

This process was time-consuming. Depending on the complexity of the problem in
the JTestParametrizer tool, fixing each of these errors took from a few days to a few
weeks. I only used five benchmarks (instead of using them all) to check whether the
modified tool caused any problems, which saved some time but was a time-consuming
process nonetheless.

Every fix enhanced our confidence about the correctness of the code a bit more. Some
modifications only affected one of those refactoring nominees, whereas some were fixing
multiple issues because the same problem was repeated in multiple places, and modifying
the tool to fix one occurrence of that problem, also fixed the other ones.

Next, I discuss an example of these errors and corresponding modifications to the
JTestParametrizer tool for fixing it.

6.3.1 Protected Method Access Issue Example

Here, I will go over one of the refactoring cases causing a compilation error in the refactored
Bootique benchmark and how I followed the debugging procedure explained in Section 6.3
to fix that issue.

1. The refactoring nominee that was causing this problem included two test meth-
ods in the Bootique benchmark: OffsetDateTimeDeserializerIT.testDeserialization03
and ZonedDateTimeDeserializerIT.testDeserialization03. I created a new XLS file
with only this refactoring nominee inside that file so that after running the JTest-
Parametrizer tool on Bootique benchmark using this new XLS file, the only refactor-
ing case would be the one that I want to examine.

2. Figure 6.1 shows the original test methods before the refactoring, and Figure 6.2
shows the methods after refactoring. Since the two participating methods in this

35

1 // OffsetDateTimeDeserializerIT.java

2

3 public void testDeserialization03 () throws IOException {

4 Bean1 bean1 = deserialize(Bean1.class , "a: \"x\"\n" +

5 "c:\n" +

6 " offsetDateTime: 2017 -09 -02 T10 :15:30+01:00");

7 assertEquals(OffsetDateTime.of(2017, 9, 2, 10, 15, 30, 0,

8 ZoneOffset.ofHours (1)), bean1.c.offsetDateTime);

9 }

10

11 // ZonedDateTimeDeserializerIT.java

12

13 public void testDeserialization03 () throws IOException {

14 Bean1 bean1 = deserialize(Bean1.class , "a: \"x\"\n" +

15 "c:\n" +

16 " zonedDateTime: 2017 -09 -02 T10 :15:30+01:00");

17 assertEquals(ZonedDateTime.of(2017, 9, 2, 10, 15, 30, 0,

18 ZoneOffset.ofHours (1)), bean1.c.zonedDateTime);

19 }

20

Figure 6.1: Compilation error example: before refactoring

refactoring were in two different classes/files, the JTestParametrizer tool created a
template class/file, shown in Figure 6.3.

The invocation of the “deserialize” method in line seven of Figure 6.3 is causing the
compile error. The problem is that the “deserialize” method is undefined for the type
“DateTimeDeserializerITTestDeserialization03Template”.

Both “OffsetDateTimeDeserializerIT” and “ZonedDateTimeDeserializerIT” classes
extend the “DeserializerTestBase” class, and the “deserialize” method is a pro-
tected method of the “DeserializerTestBase” class. With this in mind, all the meth-
ods inside the “OffsetDateTimeDeserializerIT” and “ZonedDateTimeDeserializerIT”
classes have access to the “deserialize” method through inheritence, but the newly cre-
ated “dateTimeDeserializerITTestDeserialization03Template” method will not have
access to it, since “DateTimeDeserializerITTestDeserialization03Template” class is
not extending the “DeserializerTestBase” class.

3. The problem is that this issue was not considered in the JTestParametrizer code.
This issue could have been addressed in “CloneRefactor.java” by checking if both
methods in the clone both have at least one invocation of an inherited protected

36

1 // OffsetDateTimeDeserializerIT.java

2

3 public void testDeserialization03 () throws Exception {

4 DateTimeDeserializerITTestDeserialization03Template.

5 dateTimeDeserializerITTestDeserialization03Template(

6 new OffsetDateTimeDeserializerITTestDeserialization03AdapterImpl (),

7 " offsetDateTime: 2017 -09 -02 T10 :15:30+01:00",

8 bean1.c.offsetDateTime);

9 }

10

11 class OffsetDateTimeDeserializerITTestDeserialization03AdapterImpl

12 implements DateTimeDeserializerITTestDeserialization03Adapter {

13 public Object of(int i1 , int i2 , int i3 , int i4 , int i5 , int i6 ,

14 int i7 , ZoneOffset zoneOffset1) {

15 return OffsetDateTime.of(i1 , i2 , i3 , i4 , i5 , i6 , i7 , zoneOffset1);

16 }

17 }

18

19 // ZonedDateTimeDeserializerIT.java

20

21 public void testDeserialization03 () throws Exception {

22 DateTimeDeserializerITTestDeserialization03Template.

23 dateTimeDeserializerITTestDeserialization03Template(

24 new ZonedDateTimeDeserializerITTestDeserialization03AdapterImpl (),

25 " zonedDateTime: 2017 -09 -02 T10 :15:30+01:00",

26 bean1.c.zonedDateTime);

27 }

28

29 class ZonedDateTimeDeserializerITTestDeserialization03AdapterImpl

30 implements DateTimeDeserializerITTestDeserialization03Adapter {

31 public Object of(int i1 , int i2 , int i3 , int i4 , int i5 , int i6 ,

32 int i7 , ZoneOffset zoneOffset1) {

33 return ZonedDateTime.of(i1 , i2 , i3 , i4 , i5 , i6 , i7 , zoneOffset1);

34 }

35 }

36

Figure 6.2: Compilation error example: refactored test methods

37

1 // DateTimeDeserializerITTestDeserialization03Template.java

2

3 public class DateTimeDeserializerITTestDeserialization03Template {

4 public static void dateTimeDeserializerITTestDeserialization03Template(

5 DateTimeDeserializerITTestDeserialization03Adapter adapter ,

6 String string1 , Object object1) throws Exception {

7 Bean1 bean1=deserialize(Bean1.class ,"a: \"x\"\n" + "c:\n" + string1);

8 assertEquals(adapter.of(2017,9,2,10,15,30,0,

9 ZoneOffset.ofHours (1)),object1);

10 }

11 }

12

13 interface DateTimeDeserializerITTestDeserialization03Adapter {

14 Object of(int i1, int i2 , int i3 , int i4 , int i5 , int i6 ,

15 int i7 , ZoneOffset zoneOffset1);

16 }

17

Figure 6.3: Compilation error example: Template file

method and making a decision based on that, or by adding some conditions in
“visit(MethodInvocation node)” method of the “RFVisitor” class.

4. First, I created a new ASTVisitor, shown in Figure 6.4, that would record all the
method invocations and check if any of them bind to an inherited protected call.
Then I used this visitor in the “CloneRefactor.refactor” method to discard the clones
for which all their methods have at least one invocation that binds to a protected
method. Figure 6.5 shows this condition.

5. Running this modified version of the JTestParametrizer tool on Bootique benchmark
fixed the problem I aimed to fix.

6. Initially, I came up with another solution in step four which passed step five but failed
step six since the new condition I added in “CloneRefactor.refactor” was not strong
enough, and it discarded a refactoring nominee in Joda-time that had no problems.
Technically, discarding a refactoring nominee that is not causing any issues is not
an error and will not threaten the correctness of the tool, but it will decrease the
number of cases that the tool can refactor.

So I went back to step four and tried coming up with a new solution that did not
have this issue. The new solution, stated in step four, did not affect the results of
running the tool on Gson, Joda-time, Commons-lang, and Jfreechart.

38

1 public class CheckProtectedCallsVisitor extends ASTVisitor {

2 private Set <MethodInvocation > methodInvocations;

3 public CheckProtectedCallsVisitor () {

4 methodInvocations = new HashSet <MethodInvocation >();

5 }

6

7 @Override

8 public boolean visit(MethodInvocation methodInvocation) {

9 methodInvocations.add(methodInvocation);

10 return true;

11 }

12

13 public boolean hasProtectedCall () {

14 for(MethodInvocation methodInvocation : methodInvocations) {

15 if((methodInvocation.getExpression () == null) &&

16 ((methodInvocation.resolveMethodBinding ().getModifiers () &

17 Modifier.PROTECTED) == Modifier.PROTECTED)) {

18 return true;

19 }

20 }

21 return false;

22 }

23 }

24

Figure 6.4: JTestParametrizer tool: new visitor

1 CheckProtectedCallsVisitor checkVisitor1 =

2 new CheckProtectedCallsVisitor ();

3 CheckProtectedCallsVisitor checkVisitor2 =

4 new CheckProtectedCallsVisitor ();

5 method1.getBody ().accept(checkVisitor1);

6 method2.getBody ().accept(checkVisitor2);

7 if(checkVisitor1.hasProtectedCall () &&

8 checkVisitor2.hasProtectedCall ()) {

9 log.info("marked non -refactorable: both methods have calls to

10 a protected inherited method in their bodies!");

11 countSkip ++;

12 return;

13 }

14

Figure 6.5: JTestParametrizer tool: new condition in CloneRefactor

39

7. I used this new modified version of the JTestParametrizer tool as the new base and
updated the quantitative results using this new version of the tool.

The numbers in Table 6.1 are based on the latest version of the JTestParametrizer
that passed these seven steps.

6.4 Undetectable Errors

Even if I do not encounter any run-time errors when running the tool on a benchmark
or any compiler errors when building that refactored benchmark, or any failure or errors
when running the tests of that refactored benchmark, it does not necessarily mean that
running the JParametrizer tool did not cause any problems on that benchmark.

Due to existing bugs in the JTestParametrizer tool, running the JTestParametrizer tool
on a benchmark might change the behavior of a test method, and even though that test
method might still pass, it will not cover what it was supposed to cover. This problem
can not be detected by examining the quantitative results, and the only way to detect this
problem is by going through every refactored test manually and check the correctness of
the changes.

6.4.1 Undetectable Issue Example

Here, I will provide an example of this problem in the Jimfs benchmark that I noticed
while doing a manual inspection on the refactoring cases of that benchmark. When trying
to refactor the “testNormalizeNfc pattern” and “testNormalizeNfd pattern” methods in
“PathNormalizationTest” class, displayed in Figure 6.6, the tool somehow ignored the
difference between “NFC” and “NFD”, and assumed that both of them are “NFC”, and
came up with the the refactored tests shown in Figure 6.7.

Now looking at Figure 6.7, we can see that both refactored test methods cover the
scenario that the “testNormalizeNfc pattern” was covering before. There will not be any
errors, and both refactored tests will pass successfully, but this is an issue nonetheless since
we lost the “testNormalizeNfd pattern” test after the refactoring.

I followed the debugging procedure explained in Section 6.3 and found out that this
problem was caused by a simple mistake in the “RFVisitor.visit(SimpleName node)”
method. I continued the procedure and fixed that mistake by adding a new line in that

40

1 // PathNormalizationTest.java

2

3 public void testNormalizeNfc_pattern () {

4 normalizations = ImmutableSet.of(NFC);

5 assertNormalizedPatternMatches("foo", "foo");

6 assertNormalizedPatternDoesNotMatch("foo", "FOO");

7 assertNormalizedPatternDoesNotMatch("FOO", "foo");

8 assertNormalizedPatternMatches("Am\u00e9lie", "Ame\u0301lie");

9 assertNormalizedPatternDoesNotMatch("Am\u00e9lie", "AME\u0301LIE");

10 }

11

12 public void testNormalizeNfd_pattern () {

13 normalizations = ImmutableSet.of(NFD);

14 assertNormalizedPatternMatches("foo", "foo");

15 assertNormalizedPatternDoesNotMatch("foo", "FOO");

16 assertNormalizedPatternDoesNotMatch("FOO", "foo");

17 assertNormalizedPatternMatches("Am\u00e9lie", "Ame\u0301lie");

18 assertNormalizedPatternDoesNotMatch("Am\u00e9lie", "AME\u0301LIE");

19 }

Figure 6.6: Undetectable error example: before refactoring

1 // PathNormalizationTest.java

2

3 public void testNormalizeNfc_pattern () {

4 this.pathNormalizationTestTestNormalizeTemplate ();

5 }

6

7 public void testNormalizeNfd_pattern () {

8 this.pathNormalizationTestTestNormalizeTemplate ();

9 }

10

11 public void pathNormalizationTestTestNormalizeTemplate () {

12 normalizations = ImmutableSet.of(NFC);

13 assertNormalizedPatternMatches("foo", "foo");

14 assertNormalizedPatternDoesNotMatch("foo", "FOO");

15 assertNormalizedPatternDoesNotMatch("FOO", "foo");

16 assertNormalizedPatternMatches("Am\u00e9lie", "Ame\u0301lie");

17 assertNormalizedPatternDoesNotMatch("Am\u00e9lie", "AME\u0301LIE");

18 }

Figure 6.7: Undetectable error example: refactored test methods

41

1 // PathNormalizationTest.java

2

3 public void testNormalizeNfc_pattern () {

4 this.pathNormalizationTestTestNormalizeTemplate(NFC);

5 }

6

7 public void testNormalizeNfd_pattern () {

8 this.pathNormalizationTestTestNormalizeTemplate(NFD);

9 }

10

11 public void pathNormalizationTestTestNormalizeTemplate(

12 PathNormalization pathNormalization1) {

13 normalizations = ImmutableSet.of(pathNormalization1);

14 assertNormalizedPatternMatches("foo", "foo");

15 assertNormalizedPatternDoesNotMatch("foo", "FOO");

16 assertNormalizedPatternDoesNotMatch("FOO", "foo");

17 assertNormalizedPatternMatches("Am\u00e9lie", "Ame\u0301lie");

18 assertNormalizedPatternDoesNotMatch("Am\u00e9lie", "AME\u0301LIE");

19 }

Figure 6.8: Undetectable error example: fixed refactored test methods

method. This was just a simple bug in the JTestParametrizer tool, and I did not make
any conceptual changes to fix this issue.

The correct version of this refactoring case that I got after running the modified version
of the JTestParametrizer tool on the benchmark is shown in Figure 6.8.

42

Chapter 7

JTestParametrizer Qualitative
Results and Discussion

When working on a relatively large project, whether in PL or SE research, there will be a
point where we need feedback to determine whether what we have is the right thing and
to decide how to continue, otherwise we will waste a lot of time and energy.

In this chapter, I will explain the processes that I used for getting feedback on the
quality of refactorings, how I used this feedback to modify the JTestParametrizer tool,
how I gathered feedback on what would be the best way to extend the JTestParametrizer
tool project, and finally, what I learned from this experience.

Up until this point, we only worked on the correctness of the JTestParametrizer tool.
We tried fixing the existing errors and making sure that running the tool on a bench-
mark will not change the behavior of the test cases. However, the main idea behind the
JTestParametrizer tool was to enhance the quality of test cases.

There were many potential errors in the JTestParametrizer tool that we have not ad-
dressed yet (represented in Table 6.1), but we decided that we should switch to validation
of the quality of refactoring first, as it might affect the errors that we are getting.

It would be better to modify the tool to get something that is desirable and accepted
by potential users and then work on the correctness of that version instead of fixing all of
the errors in the version of the tool that we have now and then trying to change the tool
to something desirable by the potential users of the tool. This will save time because there
might be mistakes in the tool that will be eliminated by modifying the tool first, and we
will not need to address those mistakes anymore.

43

7.1 The Questionnaire

Using a questionnaire is one way of getting feedback. It is inexpensive, easy to analyze, and
scalable. However, a questionnaire does not come with any guarantee of quality results
because it is very hard to find the right target audience for a technical questionnaire.
Furthermore, even if we do so, there is no guarantee of the target audience being moderately
engaged and putting any time or effort into the answers.

We decided to create a questionnaire to get feedback on the quality of the refactored
test cases. Our questionnaire included:

1. seven demographic questions to determine the familiarity of that person with SE/PL
research in general;

2. seven demographic questions to determine the familiarity of that person with our
research, unit tests, and refactoring; and,

3. twenty-four questions on three refactoring cases that I picked from the refactored
Gson benchmark compared to the original version

These twenty-four questions included comparisons based on maintainability, concise-
ness, readability, understandability, extensibility, and repetition criteria, and overall qual-
ity of the refactorings. I hand-picked those three refactoring cases since they represented
three different refactoring groups in the Gson benchmark.

However, before submitting the questionnaire for the ethics clearance, we decided that
it would be better if we use our time to seek feedback on the quality of the refactorings
in a different way. This decision was mainly due to not having a great target audience
for our questionnaire, potentially dealing with low-quality feedback that might not help
our assessment, and knowing that we can get higher-quality feedback using other methods
such as self-assessment and pull requests.

7.2 Manual Quality Evaluation

Manual quality evaluation is another way to get feedback on the quality of refactorings. A
key advantage of this method is that I do not need assistance from others, and I do not
need to wait for an unknown amount of time to get this feedback. Furthermore, I can force
myself to study the domain of benchmarks before assessing, which I could not force using

44

a questionnaire. This will guarantee a lower bound on the quality of the feedback that I
get using this method. Also, by using this method, I will be in charge of the level of detail
that I want in the feedback.

However, manual quality evaluation is a self-assessment, and like any other type of
self-assessments, it could be vulnerable to unconscious bias. I asked for my supervisor’s
help in every assessment to decrease the unconscious bias that I might have had.

7.2.1 The Process of Manual Quality Evaluation

We used Gson (f319c1b version), Jimfs, and Bootique (9939bc6 version) for this work.
First, I ran the JTestParametrizer on these three benchmarks, and then I discarded all the
refactoring cases causing errors and failures on the test runs, which was only one case in the
Bootique benchmark. Doing this resulted in 18 refactoring cases for Gson, five refactorings
cased for Jimfs, and ten refactoring cases for Bootique.

Then we went over each of these 33 refactoring cases one by one, discussed the quality
of that case for a few minutes, and then based on the effect of the changes on maintain-
ability, conciseness, readability, understandability, extensibility, and repetition criteria, we
allocated a rating between 0 and 10 to that refactoring case.

In our rating system, five represented a refactoring that did not change the quality
of the test case and that the refactored version had the same overall quality as before.
Anything above five meant that the refactoring was improving the overall quality of the
test method. And anything below five meant that the refactoring was decreasing the overall
quality of the code.

7.2.2 Rating Example

Here, I will go over one of the refactoring cases and explain how I evaluated this case. This
refactoring case belongs to the Gson benchmark and is between “testExceptionWithout-
Cause” and “testErrorWithoutCause” methods which are both in the “ThrowableFunc-
tionalTest” class.

Looking at Figure 7.1, we can see that, before running the tool, the only difference
between the two test methods is in a class type (“RuntimeException.class” vs. “Out-
OfMemoryError.class”), and the rest is the same. Now, in Figure 7.2, JTestParametrizer
tool creates a parametrized method (throwableFunctionalTestTestWithoutCauseTemplate)
that will allows us to add similar test cases with different class types.

45

1 // ThrowableFunctionalTest.java

2

3 public void testExceptionWithoutCause () {

4 RuntimeException e = new RuntimeException("hello");

5 String json = gson.toJson(e);

6 assertTrue(json.contains("hello"));

7

8 e = gson.

9 fromJson("{’detailMessage ’:’hello ’}", RuntimeException.class);

10 assertEquals("hello", e.getMessage ());

11 }

12

13 public void testErrorWithoutCause () {

14 OutOfMemoryError e = new OutOfMemoryError("hello");

15 String json = gson.toJson(e);

16 assertTrue(json.contains("hello"));

17

18 e = gson.

19 fromJson("{’detailMessage ’:’hello ’}", OutOfMemoryError.class);

20 assertEquals("hello", e.getMessage ());

21 }

Figure 7.1: Rating example: before refactoring

The refactored code is slightly more maintainable because the shared part of the two
test methods is in one place, and when we decide to change something about the scenario
of the test, we do not need to worry about keeping the shared part consistent. The name of
the template method is not ideal, but changing that name to a more meaningful and shorter
name such as “testThrowableWithoutCauseTemplate” will make the refactored case more
concise than the original version. The readability and understandability of code are slightly
worse due to the increase in the complexity of the code. However, the extensibility of the
code is higher since now we can easily add a similar test for a new class type. Furthermore,
the refactored version has a lower repetition in the code.

Based on the criteria I mentioned, I allocated a 5 rating for the out-of-the-box version of
this refactoring case, but a potential 6. That is, if we change the template method’s name
to something more meaningful, the overall quality of the refactored code will be slightly
higher than the overall quality of the original version.

46

1 // ThrowableFunctionalTest.java

2

3 public void testExceptionWithoutCause () throws Exception {

4 this.throwableFunctionalTestTestWithoutCauseTemplate(

5 RuntimeException.class);

6 }

7

8 public void testErrorWithoutCause () throws Exception {

9 this.throwableFunctionalTestTestWithoutCauseTemplate(

10 OutOfMemoryError.class);

11 }

12

13 public <TThrowable extends Throwable > void

14 throwableFunctionalTestTestWithoutCauseTemplate(

15 Class <TThrowable > clazzTThrowable) throws Exception {

16

17 TThrowable e = clazzTThrowable.getDeclaredConstructor(String.class).

18 newInstance("hello");

19 String json = gson.toJson(e);

20 assertTrue(json.contains("hello"));

21 e = (TThrowable) gson.

22 fromJson("{’detailMessage ’:’hello ’}", clazzTThrowable);

23 assertEquals("hello", e.getMessage ());

24 }

Figure 7.2: Rating example: after refactoring

47

1 // Gson benchmark - JavaUtilConcurrentAtomicTest.java

2

3 public void testAtomicInteger () throws Exception {

4 AtomicInteger target = gson.fromJson("10", AtomicInteger.class);

5 assertEquals (10, target.get());

6 String json = gson.toJson(target);

7 assertEquals("10", json);

8 }

9

10 public void testAtomicLong () throws Exception {

11 AtomicLong target = gson.fromJson("10", AtomicLong.class);

12 assertEquals (10, target.get());

13 String json = gson.toJson(target);

14 assertEquals("10", json);

15 }

Figure 7.3: Behavioral example: before refactoring

7.2.3 Behavior Parameterization Evaluation

One of the parametrization techniques that Jun Zhao used in JTestParametrizer is Be-
havior Parameterization. In his thesis, Jun Zhao described Behavior parameterization as
“parameterizing methods with behavioral differences, that is, method invocation calls hav-
ing different signatures. These method calls must still have the same length argument lists
but may have different method names or perhaps different receiver objects.”.

Based on his thesis and JTestParameterizer code, he creates a common interface to
collect all unified behavioral methods with compatible signatures. He adds an argument,
“adapter”, to the parameterized template method with the common interface type. Finally,
for each pair of different method invocations in the clone pair, he extracts an interface
method declaration into the common interface.

For example, in Figure 7.3, since the type of “target” is different in the two test methods,
the “target.get()” method will invoke different methods. Hence this refactoring case has a
behavioral difference.

Now, as shown in Figure 7.4, to refactor this clone pair, the tool creates an interface
and two new classes, plus the template method. We allocated a 0 rating to this refactoring
case as it clearly decreases the overall quality of the code due to decreasing the conciseness,
lowering readability, lowering understandability, massively increasing the complexity, and
potentially lowering the maintainability of the code.

48

1 // Gson benchmark - JavaUtilConcurrentAtomicTest.java

2

3 public void testAtomicInteger () throws Exception {

4 this.javaUtilConcurrentAtomicTestTestAtomicTemplate(

5 new JavaUtilConcurrentAtomicTestTestAtomicIntegerAdapterImpl (),

6 AtomicInteger.class);

7 }

8

9 public void testAtomicLong () throws Exception {

10 this.javaUtilConcurrentAtomicTestTestAtomicTemplate(

11 new JavaUtilConcurrentAtomicTestTestAtomicLongAdapterImpl (),

12 AtomicLong.class);

13 }

14

15 public <TAtomic extends Number > void

16 javaUtilConcurrentAtomicTestTestAtomicTemplate(

17 JavaUtilConcurrentAtomicTestTestAtomicAdapter <TAtomic > adapter ,

18 Class <TAtomic > clazzTAtomic) throws Exception {

19

20 TAtomic target = (TAtomic) gson.fromJson("10", clazzTAtomic);

21 assertEquals (10, adapter.get(target));

22 String json = gson.toJson(target);

23 assertEquals("10", json);

24 }

25

26 interface JavaUtilConcurrentAtomicTestTestAtomicAdapter <TAtomic > {

27 long get(TAtomic tAtomic1);

28 }

29

30 class JavaUtilConcurrentAtomicTestTestAtomicIntegerAdapterImpl

31 implements

32 JavaUtilConcurrentAtomicTestTestAtomicAdapter <AtomicInteger > {

33 public long get(AtomicInteger target) {

34 return target.get();

35 }

36 }

37

38 class JavaUtilConcurrentAtomicTestTestAtomicLongAdapterImpl

39 implements

40 JavaUtilConcurrentAtomicTestTestAtomicAdapter <AtomicLong > {

41 public long get(AtomicLong target) {

42 return target.get();

43 }

44 }

Figure 7.4: Behavioral example: after refactoring

49

After manual evaluation of 33 refactoring cases in Gson, Jimfs, and Bootique, we real-
ized that the 8 cases with behavioral parametrizations had the lowest ratings out of all the
cases, with a considerable gap, which was due to the lack of conciseness, very high com-
plexity, lower readability, lower understandability, and arguably lower maintainability that
the behavioral parametrization produces, which indicated that behavioral parametrization
decreases the overall quality of the code.

We decided to modify the JTestParametrizer tool and add a new configuration that
skips the cases that need the behavioral parametrization technique.

I implemented this option by adding a new class called “SimilarityAspects” in the
“template” package that keeps track of the aspects of differentiation between the methods
in a refactoring case (such as behavioral difference). Then I used an instance of this
new class as a public variable in the “RFTemplate” class. Next, I set the behavioral
differences to true in the “RFVisitor.visit(MethodInvocation node)” method in a condition
that determines if behavioral parametrization is needed. Finally, I added a condition to skip
the clones with behavioral differences set to true in the “CloneRefactor.refactor” method.

7.2.4 Discarding Behavioral Effect on Quantitative Results

Table 7.1 lists the quantitative results of running the JTestParametrizer tool, discarding
behavioral clones on the benchmarks. The process that I used to get these results is the
same process that I used in Section 6.1, with the only difference being the addition of
the “-skipBehaviourals” option at the end of the arguments that I passed to the JTest-
Parametrizer tool.

50

R
ep

os
it

or
y

V
er

si
on

N
om

in
ee

s
R

u
n
-t

im
e

C
om

p
il
e-

ti
m

e
R

ef
ac

to
re

d
T

es
ts

F
ai

lu
re

s
E

rr
or

s
S

k
ip

p
ed

er
ro

rs
er

ro
rs

ru
n

G
so

n
f6

49
e0

5
39

0
0

12
10

50
0

0
1

G
so

n
f3

19
c1

b
42

0
0

13
10

63
0

0
1

J
im

fs
3c

9d
8b

a
45

0
0

4
58

34
0

0
0

B
o
ot

iq
u
e

d
06

48
eb

22
0

0
8

23
1

0
1

0

B
o
ot

iq
u
e

99
39

b
c6

23
0

0
9

22
8

0
1

0

J
o
d
a-

ti
m

e
0a

e5
31

1
26

1
1

0
39

42
24

3
4

0

J
o
d
a-

ti
m

e
27

ed
ff

f
26

0
1

0
39

42
40

3
4

0

C
om

m
on

s-
la

n
g

42
5d

80
8

15
4

1
8

13
40

68
0

0
5

C
om

m
on

s-
io

e4
ff

4a
5

32
0

1
4

18
52

0
0

6

C
om

m
on

s-
co

ll
ec

ti
on

s
7d

8b
97

9
47

1
1

2
16

92
3

1
0

4

J
fr

ee
ch

ar
t

d
03

e6
8a

12
4

0
1

13
21

76
0

0
0

N
et

ty
/C

o
d
ec

-h
tt

p
e6

91
07

c
47

0
3

8
-

-
-

-

N
et

ty
/B

u
ff

er
e6

91
07

c
20

0
2

1
-

-
-

-

C
h
ec

k
st

y
le

6c
b

c1
d
c

13
0

0
1

16
35

28
0

1
0

G
it

-c
om

m
it

-i
d
-m

av
en

-p
lu

gi
n

4a
1a

c8
f

4
0

0
1

21
4

0
0

1

D
o
ck

er
-m

av
en

-p
lu

gi
n

84
02

0a
c

7
0

0
1

59
0

0
0

M
av

en
/M

av
en

-c
or

e
3f

ab
b
63

26
0

0
11

38
8

0
0

4

M
y
b
at

is
-3

1d
82

86
5

26
0

0
0

16
75

0
0

14

T
ab

le
7.

1:
Q

u
an

ti
ta

ti
ve

R
es

u
lt

s
W

it
h

S
k
ip

B
eh

av
io

ra
l

C
on

fi
gu

ra
ti

on

51

Furthermore, Table 7.2 shows the comparison between the test results of the tool with
(Table 7.1) and without (Table 6.1) the discard behavioral configuration.

The number of tests run and skipped did not change for any of the benchmarks after
adding the skip behavioral option, so I did not include those columns in this table. The
four numerical columns on the left show the results, including behavioral refactorings, and
the four columns on the right show the results without behavioral refactoring.

By examining Table 7.2, we can see that running the tool with the new configuration
causes a lot fewer problems, failures, and errors. This might be due to discarding some
refactoring nominees that might trigger a fault in the JTestParametrizer tool that other
nominees do not. However, it is also highly likely that some of these errors were due to
mistakes in the behavior parametrization code, and now that we decided to skip those
cases, we do not need to deal with these mistakes anymore.

Furthermore, based on Table 7.2, before discarding the behavioral cases, we had 480
refactoring cases in total, which decreased to 194 after. However, this decrease was not
uniform for all benchmarks since some of the benchmarks like Joda-time lost more than
half (65% for Joda-time) of their refactoring cases, whereas some like Gson lost fewer than
30% of their cases. Also, 27 cases (not included in the 480) were causing compile errors in
the benchmarks after running the tool without the discard behavioral configuration. After
running the tool with the discard behavioral configuration, this number decreased to 17
cases (not included in 194). This means that 10 of the compile errors in the benchmarks
after running the tool were caused by refactoring nominees with behavioral differences, but
this does not necessarily mean that all ten mistakes leading to these compile errors were
in the behavior parametrization code.

52

B
en

ch
m

ar
k

W
it

h
ou

t
n
ew

co
n
fi
gu

ra
ti

on
W

it
h

n
ew

co
n

fi
gu

ra
ti

on

R
ep

os
it

or
y

V
er

si
on

R
u
n
-t

im
e

C
om

p
il
e-

ti
m

e
R

ef
ac

to
re

d
F

ai
lu

re
s

E
rr

or
s

R
u
n

-t
im

e
C

om
p
il

e-
ti

m
e

R
ef

ac
to

re
d

F
ai

lu
re

s
E

rr
or

s
er

ro
rs

er
ro

rs
er

ro
rs

er
ro

rs

G
so

n
f6

49
e0

5
0

0
17

0
0

0
0

12
0

0

G
so

n
f3

19
c1

b
0

0
18

0
0

0
0

13
0

0

J
im

fs
3c

9d
8b

a
0

1
5

0
0

0
0

4
0

0

B
o
ot

iq
u
e

d
06

48
eb

0
2

10
0

1
0

0
8

0
1

B
o
ot

iq
u
e

99
39

b
c6

0
2

11
0

1
0

0
9

0
1

J
o
d
a-

ti
m

e
0a

e5
31

1
1

1
11

2
5

6
1

0
39

3
4

J
o
d
a-

ti
m

e
27

ed
ff

f
1

1
11

2
5

6
1

0
39

3
4

C
om

m
on

s-
la

n
g

42
5d

80
8

1
8

62
2

4
1

8
13

0
0

C
om

m
on

s-
io

e4
ff

4a
5

0
3

9
0

0
0

1
4

0
0

C
om

m
on

s-
co

ll
ec

ti
on

s
7d

8b
97

9
1

1
4

0
0

1
1

2
1

0

J
fr

ee
ch

ar
t

d
03

e6
8a

0
1

65
2

3
0

1
13

0
0

N
et

ty
/C

o
d
ec

-h
tt

p
e6

91
07

c
0

3
12

-
-

0
3

8
-

-

N
et

ty
/B

u
ff

er
e6

91
07

c
0

3
2

-
-

0
2

1
-

-

C
h
ec

k
st

y
le

6c
b

c1
d
c

0
1

25
0

2
0

1
16

0
1

G
it

-c
om

m
it

-i
d
-m

av
en

-p
lu

gi
n

4a
1a

c8
f

0
0

2
0

0
0

0
1

0
0

D
o
ck

er
-m

av
en

-p
lu

gi
n

84
02

0a
c

0
0

2
0

0
0

0
1

0
0

M
av

en
/M

av
en

-c
or

e
3f

ab
b
63

0
0

12
0

0
0

0
11

0
0

M
y
b
at

is
-3

1d
82

86
5

0
0

0
0

0
0

0
0

0
0

T
ab

le
7.

2:
W

it
h

an
d

W
it

h
ou

t
S
k
ip

B
eh

av
io

ra
l

C
on

fi
gu

ra
ti

on
C

om
p
ar

is
on

53

7.2.5 Manual Quality Evaluation Discussion

To reiterate, we went over all 33 refactoring cases in Gson, Jimfs, and Bootique and
rated each one on a scale of 0 to 10 based on their overall quality. Then we examined the
ratings and realized that the eight behavioral refactoring cases had the lowest ratings. After
examining the behavioral parametrization process, we determined that it has a high chance
of decreasing the overall quality of the code, which led to our decision to add a configuration
to the JTestParametrizer tool that discards the behavioral refactoring nominees.

However, even after removing those eight cases, the average rating of the other 25 cases
was slightly less than five. This means that even if we discard the behavioral cases, a
lot of the refactoring cases will decrease the quality of the code instead of increasing it.
Furthermore, this was all based on the ratings that we came up with, and there was a
possibility that the developers of the projects will be more reluctant to accept some of the
cases that we rated higher than five.

7.3 Selecting Pull Requests

Creating and submitting pull requests is yet another method of getting feedback on the
quality of the refactoring cases or any proposed program transformation in general.

A significant advantage of this method is getting feedback from potential users of the
JTestParametrizer tool, which increases its value since nobody’s opinion about the changes
in a code is as important as the opinion of developers of that code. Unlike manual quality
evaluation, there will not be any unconscious bias helping the cases. If anything, there
might be an unconscious bias against the refactoring cases as developers might be reluctant
to change their code unless the quality of the code after changes is significantly higher.

However, this method of getting feedback has some disadvantages too. Selecting the
right set of changes for an acceptable pull request is a time-consuming process. Some
considerations have to be acknowledged, and ignoring them will lead to consequences. Pull
requests are external feedback, and it will take an unknown amount of time to receive them.
To select the right set of changes for a pull request, we need to have complete knowledge
and understanding of the domain of the changes. Even though the feedback we are getting
using this method is precious, we have no control over the level of detail of the feedback
as it could be just a accept/reject or a more detailed message.

After the discussion in Section 7.2.5, we decided that the best way to determine whether
developers would accept the refactoring cases produced by the JTestParametrizer tool is

54

to seek the developers’ feedback by opening pull requests. Furthermore, by manually
modifying the cases for a pull request and studying the feedback we get for them, we
might receive feedback on what JTestParametrizer should do to be more beneficial for the
developers.

7.3.1 Important Considerations

When we submit a pull request, a developer will spend their time reviewing our pull
request. We must acknowledge some considerations when selecting changes for a pull
request to avoid wasting the reviewers’ time. Here are some of those considerations in the
context of our work:

1. We should ensure that the changes that we submit do not cause any errors or failures.
This includes both semantic and syntactic errors and failures. Also, we need to
manually ensure that the selected modification to the test methods does not change
their behavior.

2. We should only select the modifications that, in our opinion, increase the quality of
the code. Submitting pull requests is a method for helping the developers fix bugs
in their code or increase the quality of their code, and if we send modifications that,
even based on our own opinion, decrease the quality of the code only to see what
their feedback will be, then that would be unethical and unacceptable.

3. We should avoid selecting many changes for one pull request, and instead, we should
select cases that are representative of a group of cases. This is due to two reasons.
First, selecting many changes lowers the chance of a pull request getting accepted.
Second, if many of the changes in a pull request are very similar, we are potentially
wasting the reviewers’ time.

The considerations in items 2 and 3, imply manual quality evaluation. In other words,
to meet the quality considerations, we have to manually evaluate the refactoring cases first.
This is a disadvantage of the pull request method for getting feedback, but it is necessary,
and avoiding it and just selecting cases for a pull request without these considerations is
unethical and can potentially have severe consequences.

55

7.3.2 Process of Selecting Pull Requests

To create a pull request for a benchmark, I followed this procedure:

1. I manually evaluated all the refactoring cases that I got for that benchmark after
running the JTestParametrizer tool.

2. I discarded all the cases that were causing any syntactic or semantic errors or failures.

3. I recorded and then discarded all the refactoring cases that I rated less than 5 in the
manual quality evaluation process, which were the refactoring cases that decreased
the code’s overall quality.

4. I went over the remaining cases, and if two or more refactoring cases were very similar,
I only selected the case with the highest rating and eliminated the other ones.

5. Finally, I went over the remaining cases one more time and recorded and then fixed
existing minor issues. For instance, if JTestParametrizer proposed a method name
that was uninformative or unhelpful, then I would record the problem and then try
to pick a more meaningful name for that template method.

7.3.3 Minor Manual Modifications

The modifications specified in step 5 were truly minor since we wanted to get feedback
on the quality of the refactoring cases that the current version of the JTestParametrizer
tool produced and not on what it could produce. The reasoning behind these changes
was to provide a pull request with slightly better quality since, as we mentioned before,
submitting the raw version of that refactoring case with minor issues would be unethical,
and it would lower the chance of acceptance.

To provide an example of these minor modifications, I used the same refactoring case
that I used in Figure 7.1 and Figure 7.2. As I explained in Section 7.2.2, Figure 7.1 shows
the test methods before running the JTestParametrizer tool, and Figure 7.2 shows the test
methods and the newly created template method after running the JTestParametrizer tool.
In Figure 7.5, we can see the only change I made in the proposed refactoring was to modify
the name of the template method from “throwableFunctionalTestTestWithoutCauseTem-
plate” to “testThrowableWithoutCauseTemplate” which is a better-suited name.

56

1 // ThrowableFunctionalTest.java

2

3 public void testExceptionWithoutCause () throws Exception {

4 this.testThrowableWithoutCauseTemplate(RuntimeException.class);

5 }

6

7 public void testErrorWithoutCause () throws Exception {

8 this.testThrowableWithoutCauseTemplate(OutOfMemoryError.class);

9 }

10

11 public <TThrowable extends Throwable > void

12 testThrowableWithoutCauseTemplate(

13 Class <TThrowable > clazzTThrowable) throws Exception {

14 TThrowable e = clazzTThrowable.getDeclaredConstructor(String.class).

15 newInstance("hello");

16 String json = gson.toJson(e);

17 assertTrue(json.contains("hello"));

18 e = (TThrowable) gson.

19 fromJson("{’detailMessage ’:’hello ’}", clazzTThrowable);

20 assertEquals("hello", e.getMessage ());

21 }

Figure 7.5: Rating example: after minor manual modifications

57

7.3.4 Representative Cases

In step 4, I explained that for the refactoring cases that were very similar, I only selected
the one with the highest rating as the representative and discarded the rest. Here, I will
go over the factors that made the test refactorings similar.

1. Jun Zhao explained in his thesis that the JTestParametrizer tool uses three differ-
ent parametrization techniques: “Type Parameterization”, “Data Parameterization”,
and “Behavior Parameterization”. We saw an example of “Behavior Parameteriza-
tion” in Figure 7.4, an example of “Data Parameterization” in Figure 6.8, and an
example of Type Parameterization in Figure 7.2.

Since we decided to discard the refactoring nominees with behavioral differences, we
will have four options for each refactoring case as it might or might not have either
or both type and data differences. If two of the refactoring cases fall into the same
category regarding having or not having type and data differences, then they will be
considered somewhat similar.

2. The test methods involved in a refactoring case can all be in the same class or different
classes. If the test methods are not all in the same class, then the JTestParametrizer
tool creates a new template class and creates the template method as a public static
method in this new template class. The refactoring case used in Figure 6.3 would be
an example of this situation.

However, when all the test methods are in the same class, the JTestParametrizer tool
creates the template method as a standard public non-static method in the same class.
Every refactoring case example so far, except for the one used in Figure 6.3, is an
example of this situation.

Now, if two refactoring cases both fall into the same category regarding all the in-
volved test methods being or not being in the same class, then we would consider
those two refactoring cases somewhat similar.

If two refactoring cases are somewhat similar based on both of these categories, we would
consider those refactoring cases similar. That is when one could potentially represent both
in the pull request.

7.3.5 Discussion

To reiterate, in this section, I explained the importance of the feedback that we get from
pull requests. I mentioned the three crucial considerations when selecting a pull request:

58

ensuring correctness, ensuring quality, and avoiding repetitive cases. Finally, I went over
the process I used to select a pull request and explained the five steps: manual evalua-
tion, discarding cases with errors and failures, discarding low-rated cases, selecting one
representative for similar cases, and minor manual modification.

Looking forward, when we are trying to get feedback on what JTestParametrizer could
do instead of what it is doing now, there will be a sixth step in the process of selecting
the pull requests. In that sixth step, we will manually implement the feature that we have
in mind on the output of step five, which will be a significant manual modification, unlike
step five. Then based on the feedback that we get for that refactoring, we will decide if
we want to pursue implementing that feature in the JTestParametrizer tool or not. So the
sixth step will be different for every feature since it is directly related to the feature.

7.4 Submitting Pull Requests

In the previous section, I discussed the selection of pull requests. Now, if we submit the
same refactoring cases that we got from the process in Section 7.3.2, though the feedback
will be valuable, it will only help us to evaluate the quality of the current version of the
JTestParametrizer tool.

However, submitting pull requests is a powerful method for getting feedback and can
help to a much higher extent. By manually modifying the output of the process in Sec-
tion 7.3.2, we can implement the effects of a feature that is not currently in the JTest-
Parametrizer tool. Then based on the feedback that we get for that manually modified
pull request, we will determine whether we should pursue that feature in the tool or not.
There is precedent for that in the startup world of a Minimum Viable Product. Different
world, but similar concept.

This can save much time since the other option is implementing the feature in the tool
and evaluating it afterward. Furthermore, the feedback we get from a manually modified
pull request will guide us in creating the subsequent manually modified pull request.

This leads to creating multiple pull requests for different features. However, we should
not use the pull request requests as a black box or an oracle without any considerations.
We must always state our clear intention for each pull request in its description and ensure
that, based on our opinion, each pull request is improving the code’s overall quality. This
is a crucial consideration since a developer will review each pull request and put their time
and effort into examining it.

59

This section will explain each pull request’s idea, how I implemented it, the feedback I
got for that pull request, how I interpreted the feedback, and how I used what I learned
to create the subsequent pull request.

7.4.1 Jimfs Pull Request

For the Jimfs pull request, the idea was to use the raw output of the pull request selection
process in Section 7.3.2. Furthermore, since the template method names that we got for
the remaining cases after step 4 were acceptable, we did not do any minor modifications
either, meaning that step 5 was unnecessary for this pull request.

After finishing the step 4, there remained four refactoring cases modifying three files.
We used all of these cases for this pull request. The goal of this pull request was to get
feedback on the quality of the refactoring cases that the current version of the JTest-
Parametrizer tool produces.

We submitted the Jimfs pull request and the feedback that we got for it stated:

“Thanks for the PR. I’m not going to merge it at the moment because it’s not
clear to me that this is an improvement... reducing duplication is generally
good, but not as much so in tests where some amount of duplication can make
the expected behavior more clear in each test case. But I’ll leave it open for
the moment because it’s possible this could benefit from reducing duplication
to some extent.”

This was valuable feedback regarding the details of the reasoning behind the final
decision. It was not clear to the reviewer that the changes improved the overall quality
of the code, which was not unexpected since we rated the refactoring cases used for this
PR around 6 in the manual evaluation process. This meant that we felt that the PR
somewhat improved the quality of the code. The reviewer stated that they appreciated
the reduction of duplication, but its effect was not enough to compensate for the decrease
in the understandability of the expected behavior of the tests. Nevertheless, they kept the
PR open as it might potentially be beneficial in reducing the duplication to some extent.

The feedback was clear. The reduction of duplication, improvement in extensibility, or
other advantages of our modifications, should clearly compensate for the disadvantages,
such as the decrease in understandability of the expected behavior of the tests, for it to be a
good set of modifications. This could be done either by strengthening the advantages (e.g.,
more duplication reduction) or reducing the disadvantages (e.g., easier to understand).

60

https://github.com/google/jimfs/pull/159

7.4.2 First Gson Pull Request

After the feedback for Jimfs PR, we decided to test two ideas that increase the advantages
of our modifications using manual modification in a new PR.

The first idea was to improve the extensibility of the refactoring cases using further
parametrizations. This includes parameterizing the data values that are the same in all
test methods involved in a refactoring case, but if they were not the same, the refactoring
was still possible with parametrization.

The example that we used for this idea is based on the same refactoring nominee that we
used in Figure 7.1, Figure 7.2, and Figure 7.5. So after step 5 in the pull request selection
process, we noticed that if the values “hello”, and “‘detailMessage’:‘hello’”, were different
between the two test methods involved, this refactoring case would have still worked by
parametrizing two new variables. Figure 7.6 shows the final version that we used for this
pull request after manually parametrizing two new variables in Figure 7.5 which would
achieve the effect of this idea on the code. We also tried to make the exception handling
more straightforward in this final version to maintain understandability.

The second idea was to improve the advantage of reduction of duplication by manually
involving three test methods in a refactoring case instead of two. With this idea, we
can reduce more existing duplications in the code, and the template method created will
potentially be more generalized since it has to be parametrized for all the differences
between the shared part of the three test methods. To implement this idea, we manually
examined the refactoring cases for the Gson benchmark and checked whether another test
method had similar parts to the template methods created for the refactoring cases.

An earlier student had worked on refactoring triplets but found that it was quite hard.
However, it was was worthwhile to try to do it manually to see whether it was worthwhile.

We figured that we could use the refactoring example for “CustomSerializerTest” and
“testSubClassSerializerInvokedForBaseClassFieldsHoldingSubClassInstances”, and manu-
ally change it so we can use the modified template method for reducing the duplica-
tion in the “testBaseClassSerializerInvokedForBaseClassFieldsHoldingSubClassInstances”
method as well. Figure 7.7 shows the raw output of the JTestParametrizer tool for that
refactoring case, and Figure 7.8 shows the final version that we used for this PR after
applying the manual modifications.

We used these two refactoring cases in this pull request. This was the second pull
request that we submitted, and unlike the first one, this one was to get feedback on a
version of the JTestParametrizer tool that we have not implemented yet. Here is the
feedback that we got:

61

https://github.com/google/gson/pull/1915

1 // ThrowableFunctionalTest.java

2

3 public void testExceptionWithoutCause () {

4 this.testThrowableWithoutCauseTemplate(

5 RuntimeException.class , "hello", "{’detailMessage ’:’hello ’}");

6 }

7

8 public void testErrorWithoutCause () {

9 this.testThrowableWithoutCauseTemplate(

10 OutOfMemoryError.class , "hello", "{’detailMessage ’:’hello ’}");

11 }

12

13 public <TThrowable extends Throwable > void

14 testThrowableWithoutCauseTemplate(

15 Class <TThrowable > clazzTThrowable , String msg , String jsonString) {

16 try {

17 TThrowable e = clazzTThrowable.

18 getDeclaredConstructor(String.class).newInstance(msg);

19 String json = gson.toJson(e);

20 assertTrue(json.contains(msg));

21 e = (TThrowable) gson.fromJson(jsonString , clazzTThrowable);

22 assertEquals(msg , e.getMessage ());

23 } catch (Exception e) {

24 e.printStackTrace ();

25 throw new RuntimeException ();

26 }

27 }

Figure 7.6: First idea example: after manual modification

62

1 // CustomSerializerTest.java

2

3 public void testBaseClassSerializerInvokedForBaseClassFields ()

4 throws Exception {

5 this.customSerializerTestTestClassSerializerInvokedForBaseClass -

6 -FieldsSubClassTemplate(TestTypes.Base.class , BaseSerializer.NAME);

7 }

8

9 public void testSubClassSerializerInvokedForBaseClassFieldsHolding -

10 -SubClassInstances () throws Exception {

11 this.customSerializerTestTestClassSerializerInvokedForBaseClass -

12 -FieldsSubClassTemplate(TestTypes.Sub.class , SubSerializer.NAME);

13 }

14

15 public void testBaseClassSerializerInvokedForBaseClassFieldsHolding -

16 -SubClassInstances () {

17 Gson gson = new GsonBuilder ()

18 .registerTypeAdapter(Base.class , new BaseSerializer ()).create ();

19 ClassWithBaseField target = new ClassWithBaseField(new Sub());

20 JsonObject json = (JsonObject) gson.toJsonTree(target);

21 JsonObject base = json.get("base").getAsJsonObject ();

22 assertEquals(BaseSerializer.NAME ,

23 base.get(Base.SERIALIZER_KEY).getAsString ());

24 }

25

26 public <TBase > void customSerializerTestTestClassSerializerInvokedFor -

27 -BaseClassFieldsSubClassTemplate(Class <TBase > clazzTBase ,

28 String string1) throws Exception {

29 Gson gson = new GsonBuilder ()

30 .registerTypeAdapter(Base.class , new BaseSerializer ())

31 .registerTypeAdapter(Sub.class , new SubSerializer ()).create ();

32 ClassWithBaseField target =

33 new ClassWithBaseField ((TestTypes.Base) clazzTBase.newInstance ());

34 JsonObject json = (JsonObject) gson.toJsonTree(target);

35 JsonObject base = json.get("base").getAsJsonObject ();

36 assertEquals(string1 , base.get(Base.SERIALIZER_KEY).getAsString ());

37 }

Figure 7.7: Second idea example: before manual modification

63

1 // CustomSerializerTest.java

2

3 public void testBaseClassSerializerInvokedForBaseClassFields () {

4 Gson gson = new GsonBuilder ()

5 .registerTypeAdapter(Base.class , new BaseSerializer ())

6 .registerTypeAdapter(Sub.class , new SubSerializer ()).create ();

7 this.testSerializerInvokedForBaseClassFieldsTemplate(gson ,

8 TestTypes.Base.class , BaseSerializer.NAME);

9 }

10

11 public void testSubClassSerializerInvokedForBaseClassFieldsHolding -

12 -SubClassInstances () {

13 Gson gson = new GsonBuilder ()

14 .registerTypeAdapter(Base.class , new BaseSerializer ())

15 .registerTypeAdapter(Sub.class , new SubSerializer ()).create ();

16 this.testSerializerInvokedForBaseClassFieldsTemplate(gson ,

17 TestTypes.Sub.class , SubSerializer.NAME);

18 }

19

20 public void testBaseClassSerializerInvokedForBaseClassFieldsHolding -

21 -SubClassInstances () {

22 Gson gson = new GsonBuilder ()

23 .registerTypeAdapter(Base.class , new BaseSerializer ()).create ();

24 this.testSerializerInvokedForBaseClassFieldsTemplate(gson ,

25 TestTypes.Sub.class , BaseSerializer.NAME);

26 }

27

28 public <TBase > void testSerializerInvokedForBaseClassFieldsTemplate(

29 Gson gson , Class <TBase > clazzTBase , String string1) {

30 try {

31 ClassWithBaseField target = new

32 ClassWithBaseField ((TestTypes.Base) clazzTBase.newInstance ());

33 JsonObject json = (JsonObject) gson.toJsonTree(target);

34 JsonObject base = json.get("base").getAsJsonObject ();

35 assertEquals(string1 , base.get(Base.SERIALIZER_KEY).getAsString ());

36 } catch (Exception e) {

37 e.printStackTrace ();

38 throw new RuntimeException ();

39 }

40 }

Figure 7.8: Second idea example: after manual modification — We manually modified the
template method and then updated the first two refactored test methods accordingly and
then manually refactored the third test method using the modified template method.

64

“Thanks for your contribution!

A few remarks.

1. This project is in maintenance mode, and we’re generally going to be
reluctant to accept PRs that are essentially cosmetic, especially if it is not
trivially obvious that they don’t change anything.

2. Anyway, I’m not really convinced that the change would be an improve-
ment. The new helper methods seem more complicated than I would
expect. I don’t see why they catch and rethrow exceptions, for example.
They also have type parameters that don’t seem useful.

3. As a more general remark, refactoring test methods to remove duplication
isn’t as obviously beneficial as with production code. It’s an advantage to
be able to understand a test method in isolation, without having to look
elsewhere in the test class.

So I think we’re not going to accept this one. Thanks for thinking of us, though,
and best wishes for your research!”

Once again, the reviewer is not convinced that the change would be an improvement.
They mention that new helper methods seem more complicated than expected; there is
confusion on the exception handling in the helper method, and they also have type param-
eters that do not seem useful.

We learned from this feedback to consider discarding the refactoring cases where the
template method will need exception handling in its implementation. Also, we might need
to re-evaluate the “type parametrization” and discuss when it could be less beneficial.

Furthermore, the reviewer mentions that the refactoring test methods to remove du-
plication is not as obviously beneficial as with production code since it is an advantage to
understand a test method in isolation without looking elsewhere in the test class. This
was the second time that we were getting this feedback, but it is more apparent this time.
Developers will not accept the refactorings that we rated 6 or 7 because they are way
more reluctant to use a helper function in test methods than using a helper function in the
production code. This means that unless the refactoring case improves the code’s quality
by a lot, it will not be accepted.

After discussing the possible ideas to improve the quality of the code by a lot, we
concluded that it is unlikely to do so when there are only two test methods involved in
a refactoring case and that only cases that have a chance of significant improvements are

65

the ones that involve many test methods. This decreases the potential applicability of
JTestParametrizer’s refactorings because situations where many tests share a similar body
are hard to refactor automatically.

However, those situations are the ones where using a template method can highly
improve the overall quality of the code due to reduction of duplication and even improve
the code’s readability and extensibility.

7.4.3 Second Gson Pull Request

This pull request was also created based on the feedback we got from the Jimfs pull request,
and it is not affected by the feedback that we got from the first Gson pull request: I created
both of these pull requests simultaneously but for testing different ideas.

The idea behind this pull request was to better leverage the extensibility that our refac-
toring cases add to the code. This way, we might be able to present the advantages of our
refactoring cases better. After refactoring a method pair using the JTestParametrizer tool,
we manually create new test cases that use the template method created for that refactor-
ing case. By doing so, not only do we represent the potential increase in extensibility, but
we can also increase the coverage of the tests. This will be easier for refactoring cases that
the arguments of the created template method are of a primitive type like boolean.

We leveraged the refactoring nominee between “testReadArray” and “testBooleans”
test methods in “JsonReaderTest.java” to implement this idea. After running the JTest-
Parametrizer tool, I manually added two new test methods “testBooleansFalseFalse” and
“testBooleansFalseTrue” using the template method that the JTestParametrizer tool cre-
ated. Figure 7.9 shows the code before running the JTestParametrizer tool. Figure 7.10
shows the changes after running the JTestParametrizer tool, and Figure 7.11 shows the
final manually modified version we used in this pull request.

I created this pull request at the same time as I created the first Gson pull request,
and we intended to submit both of them at around the same time. However, when we got
the feedback for the first Gson pull request, we decided not to submit this second Gson
pull request because the feedback clearly stated that the Gson project was in maintenance
mode, and even regardless, based on remarks number 2 and 3 that we got for the first Gson
pull request, they would not accept these changes.

Therefore, unfortunately, we were not able to get any feedback for this pull request.
Nevertheless, the idea behind this pull request can still be considered as a potential feature
for the JTestParametrizer tool.

66

https://github.com/AliIman/gson/tree/refactoring-tests-and-adding-new-ones

1 // JsonReaderTest.java

2

3 public void testReadArray () throws IOException {

4 JsonReader reader = new JsonReader(reader("[true , true]"));

5 reader.beginArray ();

6 assertEquals(true , reader.nextBoolean ());

7 assertEquals(true , reader.nextBoolean ());

8 reader.endArray ();

9 assertEquals(JsonToken.END_DOCUMENT , reader.peek());

10 }

11

12 public void testBooleans () throws IOException {

13 JsonReader reader = new JsonReader(reader("[true ,false]"));

14 reader.beginArray ();

15 assertEquals(true , reader.nextBoolean ());

16 assertEquals(false , reader.nextBoolean ());

17 reader.endArray ();

18 assertEquals(JsonToken.END_DOCUMENT , reader.peek());

19 }

Figure 7.9: Third idea example: before running the JTestParametrizer tool

1 // JsonReaderTest.java

2

3 public void testReadArray () throws Exception {

4 this.jsonReaderTestTestTemplate("[true , true]", true);

5 }

6

7 public void testBooleans () throws Exception {

8 this.jsonReaderTestTestTemplate("[true ,false]", false);

9 }

10

11 public void jsonReaderTestTestTemplate(String string1 , boolean b1)

12 throws Exception {

13 JsonReader reader = new JsonReader(reader(string1));

14 reader.beginArray ();

15 assertEquals(true , reader.nextBoolean ());

16 assertEquals(b1 , reader.nextBoolean ());

17 reader.endArray ();

18 assertEquals(JsonToken.END_DOCUMENT , reader.peek());

19 }

Figure 7.10: Third idea example: before manual modification

67

1 // JsonReaderTest.java

2

3 public void testReadArray () throws IOException {

4 this.testBooleansTemplate("[true , true]", true , true);

5 }

6

7 public void testBooleans () throws IOException {

8 this.testBooleansTemplate("[true ,false]", true , false);

9 }

10

11 public void testBooleansFalseFalse () throws IOException {

12 this.testBooleansTemplate("[false ,false]", false , false);

13 }

14

15 public void testBooleansFalseTrue () throws IOException {

16 this.testBooleansTemplate("[false ,true]", false , true);

17 }

18

19 public void testBooleansTemplate(

20 String string1 , boolean b1 , boolean b2) throws IOException {

21 JsonReader reader = new JsonReader(reader(string1));

22 reader.beginArray ();

23 assertEquals(b1 , reader.nextBoolean ());

24 assertEquals(b2 , reader.nextBoolean ());

25 reader.endArray ();

26 assertEquals(JsonToken.END_DOCUMENT , reader.peek());

27 }

Figure 7.11: Third idea example: after manual modification — We manually further pa-
rameterized the template method adding another boolean argument. Then we updated
the first two refactored test methods accordingly. Finally, we created the third and fourth
test methods that both utilize the updated template method.

68

7.4.4 Joda-time Pull Request

I created the Joda-time pull request in response to the idea from the first Gson pull
request feedback to find refactoring cases involving many test methods. Knowing that
these refactoring cases can be rare, Joda-time seemed like a great candidate since it had
the most refactoring cases out of all the benchmarks.

So the approach for this implementation was to run the JTestParametrizer tool first
and then going over steps 1, 2, and 3 of the process of selection pull request in Section 7.3.2.
Then I would go over every refactoring case in the output of step 3 and for each of the
template methods, look for other test methods in the code that share the same body with
that template method. After finding a case that more than two or more unrefactored
methods shared the same body with a template method, I would manually refactor those
methods and use that example for this pull request.

The reasoning behind the idea was that since this helper function is shared between
at least four methods, it decreases a higher level of duplication. Also, since at least four
test methods were sharing the body of this helper function, this might mean that this
helper function might have been a semantic routine that all of those cases were using, and
extracting it will not the understandability since it was a shared semantic routine that
could have been extracted in the first place.

However, before we submitted this pull request, we figured out that the Joda-time is in
maintenance mode, and they will not be accepting any PRs that are essentially cosmetic.
Unfortunately, we concluded that we would not be able to get any feedback for this pull
request either. We decided not to submit the pull request as it would have been unlikely
to help anyone.

7.4.5 Bootique Pull Request

After failing to submit the Joda-time pull request due to it being in maintenance mode, we
decided to try that idea with another benchmark. We created the Bootique pull request
based on finding refactoring cases involving multiple test methods.

The main reason that this idea would be valuable is that if a part of the code is shared
between multiple test methods, then there is a chance that that part is doing a discrete
task, one that can be given a name, and that makes sense to abstract into a procedure.
This leads to not having a substantial adverse effect on the understandability of the tests
and can potentially even increase the readability of the test.

69

To implement this idea, I did the same work I did to create the Joda-time pull request.
First, I ran the JTestParametrizer tool on the benchmark. Then I went over steps 1, 2,
and 3 of the process of selection pull request in Section 7.3.2, and for every remaining case,
I tried to find unrefactored test methods in the code that share some part of their body
with one of the template methods. After that, when I found such test methods, I would
manually modify those unrefactored tests, that template method, and its two refactored
tests to make it a refactoring case involving all of those test methods. Finally, I studied
the new template method and tried to determine if it is doing a semantic process based on
the context of that benchmark.

One of the examples that I used for implementing this idea in this pull request was
a refactoring nominee between the “testLastPathComponent ArrayRootValue” and “test-
LastPathComponent ArrayValue” test methods. Figure 7.12 shows the test methods before
running the JTestParametrizer tool. Figure 7.13 shows the test methods and the template
method after running the JTestParametrizer tool but before the manual modification. Fi-
nally, Figure 7.14 shows the final version that we used in this pull request after we manually
modified it to implement the effect of our idea in the code.

The extracted template method “assertCanCreateValidPathSegment” in Figure 7.14
checks the possibility of creating a valid path segment for a given JsonNode and path. It
follows a standard procedure that is semantically sound, and it encapsulates that procedure.

By comparing Figure 7.12 and Figure 7.14, we can argue that even the readability and
understandability of the final version is higher since the helper function does a straightfor-
ward semantic procedure that checks the possibility of creating a valid path segment for
a given JsonNode and path. The name of the helper function is appropriate to what it
does, which improves the understandability of the tests. Not only that, these modifications
improve the extensibility and reduce duplication of the code. Overall, in our opinion, this
example was a great response to the feedback that we got for the first Gson pull request.

I submitted this pull request on 22nd of July 2021. The pull request includes four
refactoring cases involving 14 test methods. We checked cases and ensured that all the
tests passed successfully and that, based on our opinion, every refactoring case was consid-
erably increasing the overall quality of the code. Unfortunately, we have not received any
feedback regarding this pull request yet. However, we believe that a reasonable number
of projects could accept refactorings like this one, and that it would be helpful to modify
JTestParametrizer to facilitate such refactorings.

70

https://github.com/bootique/bootique/pull/310

1 // PathSegmentTest.java

2

3 public void testLastPathComponent_ArrayRootValue () {

4 JsonNode node = YamlReader.read("- 1\n- 2");

5

6 Optional <PathSegment <?>> last0 =

7 PathSegment.create(node , "[0]").lastPathComponent ();

8 assertTrue(last0.isPresent (), "Couldn ’t resolve ’[0]’ path");

9 assertNotNull(last0.get().getNode (), "Couldn ’t resolve ’[0]’ path");

10 assertEquals (1, last0.get().getNode ().asInt());

11

12 Optional <PathSegment <?>> last1 =

13 PathSegment.create(node , "[1]").lastPathComponent ();

14 assertTrue(last1.isPresent (), "Couldn ’t resolve ’[1]’ path");

15 assertNotNull(last1.get().getNode (), "Couldn ’t resolve ’[1]’ path");

16 assertEquals (2, last1.get().getNode ().asInt());

17 }

18 public void testLastPathComponent_ArrayValue () {

19 JsonNode node = YamlReader.read("a:\n - 1\n - 2");

20

21 Optional <PathSegment <?>> last0 =

22 PathSegment.create(node , "a[0]").lastPathComponent ();

23 assertTrue(last0.isPresent (), "Couldn ’t resolve ’a[0]’ path");

24 assertNotNull(last0.get().getNode (), "Couldn ’t resolve ’a[0]’ path");

25 assertEquals (1, last0.get().getNode ().asInt());

26

27 Optional <PathSegment <?>> last1 =

28 PathSegment.create(node , "a[1]").lastPathComponent ();

29 assertTrue(last1.isPresent (), "Couldn ’t resolve ’a[1]’ path");

30 assertNotNull(last1.get().getNode (), "Couldn ’t resolve ’a[1]’ path");

31 assertEquals (2, last1.get().getNode ().asInt());

32 }

33 public void testLastPathComponent_ArrayObject () {

34 JsonNode node = YamlReader.read("a:\n - b: 1\n - b: 2");

35

36 Optional <PathSegment <?>> last =

37 PathSegment.create(node , "a[1].b").lastPathComponent ();

38 assertTrue(last.isPresent (), "Couldn ’t resolve ’a[1].b’ path");

39 assertNotNull(last.get().getNode (), "Couldn ’t resolve ’a[1].b’ path");

40 assertEquals (2, last.get().getNode ().asInt());

41 }

Figure 7.12: Fourth idea example: before running the JTestParametrizer tool

71

1 // PathSegmentTest.java

2

3 public void testLastPathComponent_ArrayRootValue () {

4 this.pathSegmentTestTestLastPathComponent_ArrayValueTemplate(

5 "- 1\n- 2", "[0]", "Couldn ’t resolve ’[0]’ path",

6 "Couldn ’t resolve ’[0]’ path", "[1]", "Couldn ’t resolve ’[1]’ path",

7 "Couldn ’t resolve ’[1]’ path");

8 }

9 public void testLastPathComponent_ArrayValue () {

10 this.pathSegmentTestTestLastPathComponent_ArrayValueTemplate(

11 "a:\n - 1\n - 2", "a[0]", "Couldn ’t resolve ’a[0]’ path",

12 "Couldn ’t resolve ’a[0]’ path", "a[1]",

13 "Couldn ’t resolve ’a[1]’ path", "Couldn ’t resolve ’a[1]’ path");

14 }

15 public void testLastPathComponent_ArrayObject () {

16 JsonNode node = YamlReader.read("a:\n - b: 1\n - b: 2");

17

18 Optional <PathSegment <?>> last =

19 PathSegment.create(node , "a[1].b").lastPathComponent ();

20 assertTrue(last.isPresent (), "Couldn ’t resolve ’a[1].b’ path");

21 assertNotNull(last.get().getNode (), "Couldn ’t resolve ’a[1].b’ path");

22 assertEquals (2, last.get().getNode ().asInt());

23 }

24 public void pathSegmentTestTestLastPathComponent_ArrayValueTemplate(

25 String string1 , String string2 , String string3 , String string4 ,

26 String string5 , String string6 , String string7) {

27 JsonNode node = YamlReader.read(string1);

28

29 Optional <PathSegment <?>> last0 =

30 PathSegment.create(node , string2).lastPathComponent ();

31 assertTrue(last0.isPresent (), string3);

32 assertNotNull(last0.get().getNode (), string4);

33 assertEquals (1, last0.get().getNode ().asInt());

34

35 Optional <PathSegment <?>> last1 =

36 PathSegment.create(node , string5).lastPathComponent ();

37 assertTrue(last1.isPresent (), string6);

38 assertNotNull(last1.get().getNode (), string7);

39 assertEquals (2, last1.get().getNode ().asInt());

40 }

Figure 7.13: Fourth idea example: before manual modification

72

1 // PathSegmentTest.java

2

3 public void testLastPathComponent_ArrayRootValue () {

4 JsonNode node = YamlReader.read("- 1\n- 2");

5 this.assertCanCreateValidPathSegment(node , "[0]", 1);

6 this.assertCanCreateValidPathSegment(node , "[1]", 2);

7 }

8

9 public void testLastPathComponent_ArrayValue () {

10 JsonNode node = YamlReader.read("a:\n - 1\n - 2");

11 this.assertCanCreateValidPathSegment(node , "a[0]", 1);

12 this.assertCanCreateValidPathSegment(node , "a[1]", 2);

13 }

14

15 public void testLastPathComponent_ArrayObject () {

16 JsonNode node = YamlReader.read("a:\n - b: 1\n - b: 2");

17 this.assertCanCreateValidPathSegment(node , "a[1].b", 2);

18 }

19

20 public void assertCanCreateValidPathSegment(

21 JsonNode t, String path , int expectedValue) {

22 Optional <PathSegment <?>> last =

23 PathSegment.create(t, path).lastPathComponent ();

24 assertTrue(last.isPresent (), "Couldn ’t resolve ’" + path + "’ path");

25 assertNotNull(

26 last.get().getNode (), "Couldn ’t resolve ’" + path + "’ path");

27 assertEquals(expectedValue , last.get().getNode ().asInt());

28 }

Figure 7.14: Fourth idea example: after manual modification

73

7.5 Learning From our Experience

This chapter used three different processes to get qualitative feedback. This feedback in-
cluded both the feedback on the current version of the JTestParametrizer tool and early
feedback on what the JTestParametrizer tool could do. By studying this feedback, we
realized that developers care about certain critical factors when refactoring test methods.
We tried to address some of these factors by adding new configurations to the JTest-
Parametrizet tool. Finally, we tried manual modification to get feedback on some non-
existent features, which helped us better understand the potential best next step for the
JTestParametrizer tool.

In this section, I will briefly compare the three processes that we used for getting
feedback. Then I will have a quick review of the factors that we learned that are most
important for developers when it comes to refactoring test methods. Then I will quickly
explain the one configuration we added and some configurations that we could add to
address some of the quality shortcomings noted in the feedback from developers. Finally,
considering all manual modifications to pull requests and our feedback, I will explain what
we think the potential best next step is for the JTestParametrizer tool.

7.5.1 Processes for Getting Feedback

Out of the three processes that we used to get qualitative feedback, submitting pull requests
was the one that benefited us the most and provided us with the most helpful feedback.
However, based on our considerations for submitting a pull request, it is impossible to
select pull requests without first practicing manual quality evaluation.

Furthermore, although using a questionnaire is a great way to get feedback, question-
naires do not guarantee quality results. Therefore, we decided that using a questionnaire
would not be as helpful as the other two processes for our research.

7.5.2 Factors Learned

Based on the feedback for the pull requests, I concluded that the understandability and
readability criteria in a test method are much more valuable than the same criteria in the
production code since it is an advantage to understand a test method in isolation without
looking elsewhere in the test class.

74

I also learned that even though reducing duplication is generally good, it is not as
crucial in test methods since duplication in tests can make the expected behavior clearer. A
reduction of duplication in tests is only valuable if it does not damage the understandability
of the tests.

Furthermore, refactorings that add to the complexity of the code by creating a new
exception handling scenario or creating less useful type parameters will not be welcome by
the developer, even if they reduce the code duplication and improve extensibility.

7.5.3 Potential Configurations for the Tool

After manual quality evaluation, we realized that the refactoring cases that use behavioral
parametrization have the lowest rating and damage the code’s overall quality. With that
in mind, we added a new configuration to the JTestParametrizer tool that discards the
behavioral nominees.

Next, we got feedback on the complexity of the refactoring cases due to creating new
exception handlings and less useful type parameters. Now, even though the adverse ef-
fect of these two transformations is not as apparent as the adverse effect of behavioral
parametrization, it might be a good idea to add two new configurations to the JTest-
Parametrizer tool. One configuration would discard the refactoring cases that introduce
new exception handling cases, and the other would discard the refactoring cases with type
parametrization.

7.5.4 Potential Best Next Step for the Tool

Based on the feedback that we got so far, it appears that the best next step would be to
do refactorings for cases that have many test methods involved because there would be a
higher chance that the template method created for that case be an encapsulated semantic
procedure in the domain of that code. If this happens, then using this helper function will
not necessarily decrease the understandability of the test. Also, the amount of reduction
of duplication and increase in extensibility will be higher with this feature, which means
that the advantages of the current version would be more substantial.

We have submitted a pull request to an open-source project based on this idea, and
when we get the feedback for that pull request, we will better understand the value of this
potential feature.

75

Chapter 8

Conclusion

In this work, we did a quantitative and qualitative evaluation of the JTestParametrizer
tool. Furthermore, we modified and extended JTestParametrizer to enhance its overall
quality. Here, I will summarize the work, list the lessons learned, and mention some ideas
about extending the JTestParametrizer tool to be more useful based on the feedback that
we got from the developers.

8.1 Summary of the Work

To reiterate the work, first, we ran the JTestParametrizer tool on the 18 open-source
benchmarks projects that we chose. After studying the quantitative feedback, we found
several conceptual and non-conceptual bugs in the tool. We followed a debugging procedure
to determine the source of those bugs, and we spent a great time fixing a portion of those
bugs. Subsequently, we decided that it would be more logical to put fixing the rest of the
bugs on hold and work on the quantitative side of the tool first. The intuition behind
this decision was that when we are working on the quantitative side of the tool, we might
decide to discard a feature, and then we will not need to deal with the bugs related to that
feature, which can save much time.

Next, we designed a questionnaire to evaluate the quality of the refactoring cases. How-
ever, due to several reasons, such as the difficulty of finding the right engaged participants
for a very technical questionnaire and that we wanted detailed feedback, we did not pursue
this method to the end. We then manually evaluated the quality of all the 33 refactoring
cases in the Gson, Jimfs, and Bootique benchmarks. We rated each case based on qual-
itative factors on a scale of 0 to 10, with 5 representing cases that had the same overall

76

quality before and after refactoring. By investigating these ratings, we determined two
critical learnings. First, the overall average rating was slightly below five, meaning that,
on average and based on our opinion, the tool was not enhancing the overall quality of the
tests. Second, we noticed that the eight refactoring cases with behavioral parameterization
had the lowest ratings out of all the 33 cases. We assessed the quality of the behavioral
parametrization as a technique, and we decided that overall it would decrease the quality
of the tests. Consequently, we added a new configuration to the tool that discards the
behavioral parametrization. Next, we ran the tool with the new configuration on the 18
benchmarks, and we investigated the comparison between the new results and previous
ones. Even after applying the new configuration, there was no significant enhancement in
the overall quality of the refactored tests.

Afterward, we created and submitted proposed refactorings upstream using Pull Re-
quests to get the developers’ feedback on the quality of the tool. We created a Pull Request
for the Jimfs benchmark. For this Pull Request, we selected some representative refactor-
ing cases that we rated higher than five. Based on the feedback, we learned that our earlier
hypothesis was correct and that the current version of the JTestParametrizer tool was not
significantly enhancing the overall quality of the tests. We also learned some critical factors
about developers’ preferences regarding refactoring tests.

Knowing that the current version of the JTestParametrizer is not making significant
enhancements in the overall quality of the tests, we decided that we should extend the
JTestParametrizer tool and add new features. However, the question was which feature
would be a feature that changes the tool to something that developers would want to use.
We employed a technique similar to the Minimum Viable Product technique to conclude
which potential feature of the JTestParametrizer tool will have the best feedback before
implementing that feature. We came up with two ideas (potential features) that might
improve the tool’s overall quality. Then we selected two sets of refactoring cases for two
Pull Requests for the Gson benchmark. Then, we manually implemented the effects of the
first idea on the refactored cases that we selected for the first Pull Request, and similarly,
we manually implemented the effects of the second idea on the refactored cases that we
selected for the second Pull request. Based on the feedback from developers, we learned
some new factors that the developers care about a lot regarding refactoring test methods.
We also learned a heuristic about choosing the benchmarks for this methodology. Overall,
we figured that the ideas that we used for these two Pull Requests were not making a
significant improvement in the quality of the tool.

Based on the factors that we learned from the feedback for the previous Pull Requests,
we came up with a new idea (potential feature) that, in theory, would provide all the
things that the developers wanted from a test refactoring case. The idea was to refactor

77

cases involving multiple test methods (preferably over three) instead of cases with two
test methods. We looked for these cases in the Joda-time and Bootique benchmarks and
manually implemented the effects of this idea on the cases that we found. We quantitatively
evaluated those cases. Based on our opinion, there was a noticeable improvement in the
quality of those cases as they got the highest ratings of all the refactoring cases rated to
that point. Then we created two Pull Requests for the Joda-time and Bootique benchmarks
using the manually modified cases that we had for this idea. In doing so, we learned more
heuristics about choosing the benchmarks for this methodology.

As mentioned, throughout this work, we had several learnings. We learned some heuris-
tics for determining which benchmarks would suit which processes the best. We utilized
three methodologies for quantitative evaluation and found out the strengths and weak-
nesses of each of these processes. We compared the priority of the qualitative evaluation
with quantitative evaluation. We learned critical factors that developers care about a lot
regarding refactoring tests. We determined the ideas (potential features) that will provide
the best overall quality based on our learned factors. I will explain all these learnings in
the subsequent sections of this chapter.

8.2 Heuristics for Selecting Benchmarks

As explained in Section 4.7, we learned some non-trivial heuristics for selecting the bench-
marks for different methodologies throughout the work. Here I will list three of these
critical heuristics.

8.2.1 Familiarity With the Benchmark’s Domain

In both the “Manual Quality Evaluation” and “Submitting Pull Requests” processes we
used for qualitative evaluation, we assessed the refactoring cases based on qualitative fac-
tors such as understandability and readability in the first step of the process. However,
to have a fair assessment of the changes in the overall quality of the refactored tests, we
had to understand the behavior and the purpose of those tests completely. Having this
knowledge also provided us with more detailed feedback for each refactoring case.

The learned heuristic was that when we choose a benchmark for qualitative evaluation
of our tool, it might be better to choose the benchmarks where we are familiar with
their domain. Otherwise, we need to spend some time learning and understanding the
benchmark’s behavior, or our qualitative assessment will not be accurate.

78

8.2.2 Estimated Response Time

For evaluation processes requiring external feedback such as “Questionnaire” and “Sub-
mitting Pull Requests”, considering estimated response time is essential for selecting the
benchmarks. It helps to decide whether using a benchmark would fit our timing schedule.

We put a considerable amount of effort into creating a manually modified Pull Request
for the Bootique benchmark, but after over 80 days, we still have not received any feedback
for that pull request. At the same time, we received feedback in less than an hour for the
Gson Pull Request, and for the Jimfs Pull Request, we got feedback in three days. After
studying the previous Pull Requests sent to these repositories, we determined a pattern,
and we figured that we could have estimated the response time for each repository to a
certain extent.

8.2.3 Maintenance Mode

When selecting benchmarks for the “Submitting Pull Requests” process, determining if
the benchmark is in the maintenance mode or not is extremely important. If a project is
in maintenance mode, the reviewers would generally be reluctant to accept any essentially
cosmetic Pull Requests, especially if they are not trivially obvious.

8.3 Quantitative vs. Qualitative Evaluation

In this work, we started with a quantitative evaluation which led us to discover several
conceptual and non-conceptual bugs in the tool. However, after spending a notable amount
of time on fixing a portion of the discovered bugs, we decided to put the rest of that task on
hold and work on the qualitative evaluation of the tool. Our hypothesis was to ensure that
we had the right tool that developers would want to use first and then worry about the
quantitative side and fixing bugs. Consequently, based on the qualitative evaluation, we
decided to discard the Behavior Parameterization, which meant that we no longer needed
to deal with the errors related to Behavior Parameterization.

Our learning based on this work was that when we are trying to modify and extend our
artifact based on the feedback, it might be better to do the quantitative evaluation prior
to the qualitative evaluation. This is because it would be more logical to use the feedback
from the qualitative evaluation and enhance the overall quality of the artifact first to make
sure that it is desirable for developers, as opposed to fixing quantitative issues of an artifact

79

that might not be desirable to anyone and then trying to make that artifact into something
desirable for developers.

8.4 Processes for Quantitative Evaluation

We used three processes for the qualitative evaluation of this work. Here, I will compare
these three processes and discuss their strengths and weaknesses based on our experience.

8.4.1 Questionnaire

Using a questionnaire is inexpensive, it is easy to analyze the results, and it is scalable.
However, it is hard to find the right participants for a very technical quality assessment,
such as our work.

As we mentioned, to have a fair qualitative assessment of the cases, we need to be fa-
miliar with the domain of the benchmark and have complete understanding of the behavior
of the cases. It is tough to force this constraint on the participants for a questionnaire, and
if we do not force this, the results will not be as accurate. Engagement is another concern
with the questionnaires. A technical qualitative assessment can take a long time, and it
could be hard to keep the general participants engaged when they do not benefit from the
process. Overall, a technical questionnaire does not come with any guarantee of quality
feedback.

A questionnaire would be more scalable, and the results easier to analyze, compared
to the “Manual Quality Evaluation” and “Submitting Pull Request” processes. However,
it would be much harder to find the right participant group, and the overall quality of the
feedback would be lower than the other two processes. Finally, the feedback would not be
as reliable or valuable.

8.4.2 Manual Quality Evaluation

Using the “Manual Quality Evaluation” process for qualitative evaluation has the critical
advantage of not needing any external feedback and can be done without the need for
participants. Hence, it does not have the main problem that the “Questionnaire” process
had. Furthermore, we can have as much detail as we want in the evaluation since we
are in charge of this process’s level of detail. Also, since we are the people doing the

80

evaluation, and because we benefit from the evaluation, we will not be concerned about the
engagement of participants. Besides, we can force the constraints that we could not force on
participants of the “Questionnaire” process, such as the familiarity with the benchmarks’
domain. Consequently, by forcing these constraints and controlling the level of detail, we
can guarantee the high quality of the feedback using this process.

The main weakness of the “Manual Quality Evaluation” process is that it will take
a long time to do it, and it is not scalable since we are the only participants. Also,
even though the quality of the feedback using this process is higher than the quality of
the feedback using the “Questionnaire” process, like any other self-assessment, it still is
vulnerable to unconscious bias. Furthermore, even though we force ourselves to be familiar
with the domain of the benchmarks, we might still not consider some of the non-trivial
factors that the developers of those benchmarks care about a lot. This is why even though
this process’s feedback is valuable, it will still not be as valuable and reliable as the feedback
we get from the “Submitting Pull Requests” process.

8.4.3 Submitting Pull Requests

The main advantage of using the “Submitting Pull Requests” process is that its feedback
has the highest value and reliability. This is because the reviewer who provides the feedback
is one of the repository’s maintainers and has complete familiarity and understandability
over the domain of that repository. The reviewers would know the non-trivial factors related
to that benchmark that we might not consider using the “Manual Quality Evaluation”
process. Furthermore, examining the changes in Pull Request can be beneficial for the
reviewer, so we would not be concerned about the engagement.

The main weakness of this process is that it is even more time-consuming than the
“Manual Quality Evaluation” process. To be ethical, we should only include cases judged
to be a net benefit in our Pull Requests. This means that this process requires the “Manual
Quality Evaluation” as a prerequisite, making it even less scalable. This process also
requires external feedback. The positive thing is that we do not need to look for participants
as opposed to the “Questionnaire” process. However, this process still forces us to consider
factors such as estimated response time.

81

8.5 Deduplication in Tests vs. in Main Code

After investigating the feedback we got for the Pull Requests, we learned some non-trivial
critical factors that the developers cared about regarding refactoring test methods. Re-
viewers believed that reducing duplication is generally good but not as much so in test
methods as some amount of duplication can make the expected behavior of the test more
straightforward, which is valuable. Also, they did not welcome complex helper functions
that introduced new exception handling cases to the code. They believed that it is an
advantage to understand a test method without looking elsewhere.

Overall, we learned that regarding refactoring test methods, readability and under-
standability factors have a higher value than the code repetition factor, which is not nec-
essarily valid for production code. Based on this learning, we concluded that to make the
tool desirable for developers, we should increase the amount of deduplication to compen-
sate for the loss of understandability and, more importantly, try minimizing the loss of
readability and understandability.

8.6 Best Potential Extensions

We concluded that to extend the JTestParametrizer tool to a tool that developers would
want to use, we need to add features to minimize the loss of readability and understand-
ability. Increasing the amount of deduplication would be good too, but not if it harms
the readability and understandability of the refactored cases. Here, we will explain two
potential features that could potentially achieve this goal.

8.6.1 Method Pairs vs. Cases With Multiple Methods

The first idea is to only do the refactoring for the cases that involve multiple (preferably
more than three) test methods.

The primary intuition behind this idea is that if the extracted template method from
the refactored test cases does an encapsulated semantic procedure in the domain of that
benchmark, and if the name of that extracted method accurately represents the encap-
sulated semantic procedure that it is doing, then this refactoring case will not decrease
the readability or understandability of the code. This is because we can understand the
refactored test method without looking elsewhere, since the name of the template method

82

properly represents its behavior, and we do not need to look at the body of the template
method to understand its behavior.

That said, we hypothesized that if a piece of code is repeated in five or six test methods,
there is a higher chance that that piece of code would represent an encapsulated semantic
behavior than when it is repeated only in two test methods. We manually assessed this
idea when creating the Pull Requests for Joda-time and Bootique benchmarks, and in
most cases, our hypothesis was correct. In most cases where the refactoring involved four
or five test methods, the extracted template method was doing an encapsulated semantic
procedure that could be described using a great name. After manual evaluation, the
refactoring cases that we got using this idea had the highest ratings out of all the cases
that we rated. The other minor improvement of this idea is that it also enhances the
amount of deduplication for each refactoring case.

8.6.2 Pairing With Inliner IDE

The second idea is to change the tool’s behavior to provide refactoring suggestions on
specific trigger points instead of its current mechanism.

The problem with code duplication is that when we try to change one of the instances of
the repeated codes, we most probably need to apply that change in all the other instances of
that repeated code as well. This makes it harder to keep all these repeated codes consistent
with each other, which would lead to less maintainability. The primary intuition behind
this idea is to provide the test refactoring suggestion whenever a developer is modifying
one of the test codes with code duplication. This way, the developer will completely
understand that refactoring case and can decide whether to accept it. This idea will not
misuse developers’ time, and they would be in charge of every refactored case, and they
can decide for themselves which refactoring cases would increase the overall quality.

Duala-Ekoko et al. [16] proposed a technique for tracking clones in evolving software.
They described a complete clone tracking system that can produce clone region descriptors
from a clone detection tool’s output and notify developers of modifications to those clone
regions, and support simultaneous editing of clone regions. Although their approach does
not refactor the clones, it could be used in the development of this potential feature because
it describes a suggestion-based system that works with evolving software.

83

References

[1] Standard performance evaluation corporation. SPECjvm98 documentation, August
1998. Online version at https://www.spec.org/jvm98/jvm98/doc/.

[2] Standard performance evaluation corporation. SPECjvm2008, 2008. Online version
at http://www.spec.org/jvm2008/.

[3] David B Allison, Richard M Shiffrin, and Victoria Stodden. Reproducibility of re-
search: Issues and proposed remedies. Proceedings of the National Academy of Sci-
ences, 115(11):2561–2562, 2018.

[4] Vaibhav Bajpai, Mirja Kühlewind, Jörg Ott, Jürgen Schönwälder, Anna Sperotto, and
Brian Trammell. Challenges with reproducibility. In Proceedings of the Reproducibility
Workshop, pages 1–4, 2017.

[5] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy.
A probabilistic software quality model. In 2011 27th IEEE International Conference
on Software Maintenance (ICSM), pages 243–252, 2011.

[6] Stefan Bechtold, Sam Brannen, Johannes Link, Matthias Merdes, Marc Philipp,
Juliette de Rancourt, and Christian Stein. JUnit 5 user guide. https://junit.

org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests

Accessed 6 Oct. 2021.

[7] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. Repro-
ducing “A large-scale study of programming languages and code quality in GitHub:
A reproducibility study”. https://nextjournal.com/PRL-PRG/toplas-analysis/

Accessed 11 Sept. 2021.

[8] Tegawendé F. Bissyandé, Ferdian Thung, Shaowei Wang, David Lo, Lingxiao Jiang,
and Laurent Réveillère. Empirical evaluation of bug linking. In 2013 17th European
Conference on Software Maintenance and Reengineering, pages 89–98, 2013.

84

https://www.spec.org/jvm98/jvm98/doc/
http://www.spec.org/jvm2008/
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests
https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests
https://nextjournal.com/PRL-PRG/toplas-analysis/

[9] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, José Nel-
son Amaral, Tim Brecht, Lubomı́r Bulej, Cliff Click, Lieven Eeckhout, Sebastian Fis-
chmeister, Daniel Frampton, Laurie J. Hendren, Michael Hind, Antony L. Hosking,
Richard E. Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nystrom, and Andreas
Zeller. The truth, the whole truth, and nothing but the truth: A pragmatic guide
to assessing empirical evaluations. ACM Trans. Program. Lang. Syst., 38(4), October
2016.

[10] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.
Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage,
and Ben Wiedermann. The DaCapo benchmarks: Java benchmarking development
and analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA ’06, page
169–190, New York, NY, USA, 2006. Association for Computing Machinery.

[11] Steve Blackburn, Matthias Hauswirth, Emery Berger, Michael Hicks, and Shriram
Krishnamurthi. ACM SIGPLAN: Empirical evaluation guidelines. https://www.

sigplan.org/Resources/EmpiricalEvaluation/ Accessed 7 Oct. 2021.

[12] Carl Boettiger. An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review, 49(1):71–79, 2015.

[13] Monica Chin. How a university got itself banned from the Linux ker-
nel — the University of Minnesota’s path to banishment was long, turbu-
lent, and full of emotion. https://www.theverge.com/2021/4/30/22410164/

linux-kernel-university-of-minnesota-banned-open-source Accessed 12 Sept.
2021.

[14] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. XCorpus – an executable
corpus of Java programs. Journal of Object Technology, 16(4):1:1–24, August 2017.

[15] F.J. Domı́nguez-Mayo, M.J. Escalona, M. Mej́ıas, M. Ross, and G. Staples. Quality
evaluation for model-driven web engineering methodologies. Information and Software
Technology, 54(11):1265–1282, 2012.

[16] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in evolving software.
In 29th International Conference on Software Engineering (ICSE’07), pages 158–167,
2007.

85

https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source
https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source

[17] Anna Maria Eilertsen and Gail C. Murphy. The usability (or not) of refactoring
tools. In 2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 237–248, 2021.

[18] Hugo Estrada, Alicia Mart́ınez Rebollar, Oscar Pastor, and John Mylopoulos. An
empirical evaluation of the i* framework in a model-based software generation en-
vironment. In Eric Dubois and Klaus Pohl, editors, Advanced Information Systems
Engineering, pages 513–527, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[19] Philip J. Guo. CDE: Run any Linux application on-demand without installation. In
Proceedings of the 25th International Conference on Large Installation System Admin-
istration, LISA’11, page 2, USA, 2011. USENIX Association.

[20] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In 29th International Con-
ference on Software Engineering (ICSE’07), pages 96–105, 2007.

[21] Shriram Krishnamurthi and Jan Vitek. The real software crisis: Repeatability as a
core value. Commun. ACM, 58(3):34–36, February 2015.

[22] Bettina Laugwitz, Theo Held, and Martin Schrepp. Construction and evaluation of
a user experience questionnaire. In Symposium of the Austrian HCI and usability
engineering group, pages 63–76. Springer, 2008.

[23] Karine Mordal, Nicolas Anquetil, Jannik Laval, Alexander Serebrenik, Bogdan
Vasilescu, and Stéphane Ducasse. Software quality metrics aggregation in industry.
Journal of Software: Evolution and Process, 25(10):1117–1135, 2013.

[24] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large
scale study of programming languages and code quality in GitHub. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 155–165, 2014.

[25] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at Google. Commun. ACM,
61(4):58–66, March 2018.

[26] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hay-
den Melton, and James Noble. The Qualitas corpus: A curated collection of Java code
for empirical studies. In 2010 Asia Pacific Software Engineering Conference, pages
336–345, 2010.

86

[27] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. ReLink: Recov-
ering links between bugs and changes. In Proceedings of the 19th ACM SIGSOFT Sym-
posium and the 13th European Conference on Foundations of Software Engineering,
ESEC/FSE ’11, page 15–25, New York, NY, USA, 2011. Association for Computing
Machinery.

[28] Chuan Yue. A projection-based approach to software quality evaluation from the users’
perspectives. International Journal of Machine Learning and Cybernetics, 10(9):2341–
2353, 2019.

[29] Zhao, Jun. Automatic refactoring for renamed clones in test code. Master’s thesis,
University of Waterloo, 2018.

87

	List of Figures
	List of Tables
	Introduction
	Reproducible Research
	Reproducibility Challenges Related to This Work

	Evaluating PL/SE Research
	Concrete Examples of Evaluations in PL Research

	Selecting Benchmarks
	Existing Benchmark Collections
	Constraints
	Process of Choosing the Benchmarks
	Benchmark Requirements Checklist

	Deckard and Potential Nominees for Refactoring
	Our Benchmark Suite
	Numeric Facts
	Gson
	Jimfs
	Bootique
	Joda-time
	Commons-lang
	Commons-io
	Commons-collections
	Jfreechart
	Netty/Codec-http
	Netty/Buffer
	Checkstyle
	Git-commit-id-maven-plugin
	Docker-maven-plugin
	Maven/Maven-core
	Mybatis-3

	Benchmarks for Different Types of Feedback
	Factors Learned Throughout
	Maintenance Mode
	Estimated Response Time
	Familiarity with Benchmark's Domain

	JTestParametrizer Tool
	Parameterization Techniques
	Data Parameterization Simplified Example
	Type Parameterization Simplified Example
	Behavior Parameterization Simplified Example

	JUnit 5's Parameterized Tests

	JTestParametrizer Quantitative Results and Discussion
	Quantitative Results
	Potential Errors
	Debugging Procedure
	Protected Method Access Issue Example

	Undetectable Errors
	Undetectable Issue Example

	JTestParametrizer Qualitative Results and Discussion
	The Questionnaire
	Manual Quality Evaluation
	The Process of Manual Quality Evaluation
	Rating Example
	Behavior Parameterization Evaluation
	Discarding Behavioral Effect on Quantitative Results
	Manual Quality Evaluation Discussion

	Selecting Pull Requests
	Important Considerations
	Process of Selecting Pull Requests
	Minor Manual Modifications
	Representative Cases
	Discussion

	Submitting Pull Requests
	Jimfs Pull Request
	First Gson Pull Request
	Second Gson Pull Request
	Joda-time Pull Request
	Bootique Pull Request

	Learning From our Experience
	Processes for Getting Feedback
	Factors Learned
	Potential Configurations for the Tool
	Potential Best Next Step for the Tool

	Conclusion
	Summary of the Work
	Heuristics for Selecting Benchmarks
	Familiarity With the Benchmark's Domain
	Estimated Response Time
	Maintenance Mode

	Quantitative vs. Qualitative Evaluation
	Processes for Quantitative Evaluation
	Questionnaire
	Manual Quality Evaluation
	Submitting Pull Requests

	Deduplication in Tests vs. in Main Code
	Best Potential Extensions
	Method Pairs vs. Cases With Multiple Methods
	Pairing With Inliner IDE

	References

