
Machine-Learning Framework

for Efficient Multi-Asset

Rehabilitation Planning

by

Kareem Mostafa

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Civil Engineering

Waterloo, Ontario, Canada, 2021

©Kareem Mostafa 2021

ii

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

External Examiner NAME: Saiedeh Razavi

Title: Associate Professor, Civil Engineering

McMaster University

Supervisor NAME: Tarek Hegazy

Title: Professor, Civil and Environmental Engineering

University of Waterloo

Internal Member NAME: Chul Min Yeum

Title: Assistant Professor, Civil and Environmental Engineering

University of Waterloo

Internal Member NAME: Mahesh Pandey

Title: Professor, Civil and Environmental Engineering

University of Waterloo

Internal-External Member NAME: Mehrdad Pirnia

Title: Graduate Attributes Lecturer, Management Sciences

University of Waterloo

iii

AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iv

Abstract

While smart cities are viewed as the way of the future, the infrastructure assets expected to support the

different smart services are currently managed using frameworks that are outdated, subjective, and

inefficient. Such inefficiencies have led to huge maintenance and rehabilitation backlogs that are far

beyond the financial capabilities of cities, municipalities and large asset owners like school boards. For

example, the cost to bring Ontario schools facilities to an acceptable level of service is estimated to be

as high as $16 billion. Currently, most “smart asset initiatives” are geared towards building new assets

and using sensors to get periodic info about their condition, with little thought given regarding the

condition of existing assets. As such, there is a need to introduce a “smart rehabilitation” framework

that answers the question “how to bring the current infrastructure assets up to speed to satisfy the needs

of current and future generations?”.

 To contribute to the overall vision of smart cities (data-driven interconnected services), the

introduced framework uses machine learning and smart analytics to tackle three main functions of

smart asset rehabilitation frameworks: (1) it automates the inspection and condition assessment

processes by using convolutional neural networks (CNNs) to develop a machine learning system where

defects can be automatically detected, classified, and quantified from images; (2) it uses data mining

and clustering techniques to classify the assets according to their condition and need for repairs, and

then uses optimization to select which assets are most worthy of immediate repairs subject to the

existing funding constraints, thus enhancing the fund allocation phase by reducing its subjectivity; and

(3) it uses novel computations, visualizations, and algorithms to facilitate cost-effective and fast-

tracked delivery of the required rehabilitation works by considering them as units of a large repetitive

project.

To verify the strengths and versatility of the model, the proposed framework is applied to built-

up roofs of educational buildings such as schools and university campuses. First, images were collected

from the University of Waterloo campus buildings to develop the image-based analysis module; a two-

step CNN framework that can detect damages and classify them according to their type. Information

from the image-based analysis were then combined with textual information related to building age

and description and unsupervised learning was applied to develop the prioritization and fund allocation

module. Results from this module are used as the inputs to an optimization procedure where the overall

performance of the entire asset portfolio is maximized by selecting which buildings should undergo

v

immediate repairs, given strict budgetary constraints. Finally, the selected rehabilitation works were

scheduled as units in a large repetitive project for delivery planning. Accordingly, novel computations

and algorithms were developed to create compact schedules with minimal gaps that comply with

deadline constraints, and novel visualizations were introduced to showcase the crews movements and

the timing of all tasks required in each unit.

The proposed framework offers powerful decision support features for a proposed smart

rehabilitation layer to be included into the overall smart city vision. This framework deals with existing

assets and provides objective assessments, cost-effective prioritization, and time-effective delivery

plans. While this study used the case of built-up roofs as an example application, the framework is

scalable towards other asset components as well as other assets in general. For example, components

such as parking lots and concrete elements would rely heavily on the image-based inspection module,

while other components such as HVAC systems would place more emphasis on the data analytics

component, including more parameters related to different performance metrics as part of the analysis.

Overall, this framework has the potential to revolutionize the multi-billion-dollar business of

infrastructure renewal and provide cost effective decisions that save taxpayers’ money on the long run.

vi

Acknowledgements

First and foremost, I thank ALLAH (SW) our Lord, the most Gracious and the most Merciful, for

giving me the strength, the ability, and the knowledge to complete this work.

I would like to express my appreciation and my gratitude to my supervisor, Dr. Tarek Hegazy, for his

guidance, inspiration, and encouragement over the past several years. His efforts helped me grow not

only as a better scholar but as a better person in general. It has been a great honor to work with him

and to learn from his experience.

I would like to extend my sincere appreciation and gratitude to my committee members Prof. Saiedeh

Razavi, Prof. Chul Min Yeum, Prof. Mehrdad Pirnia, and Prof. Mahesh Pandey for their insightful

comments and their dedicated efforts to this study.

Additional thanks to the facility management team at the Toronto District School Board as well as the

office of Plant operations in the University of Waterloo for their cooperation during the progress of

this research.

Last but not least, I would like to thank my family, my friends, and my fellow colleagues in the

construction research group for their support over the last few years. I would not have done it without

you.

vii

Table of Contents

AUTHOR'S DECLARATION ..iii

Abstract ... iv

Acknowledgements ... vi

List of Figures ... xi

List of Tables .. xiv

Chapter 1 : Introduction ... 1

1.2.1 Smart City Requires Smart Rehabilitation for Existing Assets .. 2

1.2.2 Challenges in Condition Assessment of Existing Assets .. 2

1.2.3 Potential of Machine Learning for Analytics and Asset Prioritization 3

1.2.4 Challenges in Developing Efficient Delivery Plans for Rehabilitation Works 3

Chapter 2 : Literature Review .. 8

2.3.1 Inspection Research .. 13

2.3.2 Decision Making for Fund Allocation .. 15

2.3.3 Repetitive Scheduling: Delivery of Asset Rehabilitation Works .. 16

2.4.1 Computer Vision and Image Analysis Techniques ... 23

2.4.2 Unsupervised Clustering ... 29

2.4.3 Applications in the Construction Domain ... 31

viii

Chapter 3 : Data Collection and Proposed Framework for Smart Asset Rehabilitation 41

3.3.1 Inspection .. 44

3.3.2 Prioritization and short listing ... 44

3.3.3 Delivery planning .. 48

Chapter 4 : Convolutional Neural Network for Defect Detection and Classification 49

4.2.1 Dataset Augmentation and Splitting ... 51

4.3.1 Advantages of the Two Step Approach .. 53

4.5.1 Detection Phase (Defect Vs. No Defect) .. 55

4.5.2 Classification Phase .. 56

4.6.1 Experiments on Individual Buildings ... 57

4.6.2 Campus-Wide Deployment ... 60

Chapter 5 : Data Mining for Prioritization and Fund Allocation ... 67

ix

5.6.1 Sensitivity Analysis .. 75

Chapter 6 : Delivery Planning and Scheduling .. 78

6.3.1 Preventing Schedule Delays in the case of Relaxed Deadlines .. 80

6.3.2 Calculating Designed Interruptions .. 84

6.6.1 Activity Parameters and Order of Execution .. 92

6.6.2 Rehabilitation Schedule using FCFS .. 93

Chapter 7 : Conclusion and Future Research ... 96

7.4.1 Potential Research Related to Inspection and Condition Assessment: 98

7.4.2 Future Research Related to Prioritization and Fund Allocation: .. 99

x

7.4.3 Future Research Related to Scheduling and Delivery .. 100

7.4.4 Future Integration with Smart City Initiatives .. 100

References .. 101

Appendix A: Sample of Collected Images ... 110

Appendix B: Python Code for Convolutional Neural Network ... 113

xi

List of Figures

Fig. 1.1: Components of a Smart City ... 1

Fig. 2.1: Key Components of Smart Facility Management (Advancer Global n.d) 10

Fig. 2.2: ASCE 2021 Infrastructure Report ... 12

Fig. 2.3: Main Asset Management Functions (Adapted from Abdel-Monem and Ali 2010) 12

Fig. 2.4: Types of Repetitive Projects .. 17

Fig. 2.5: LOB Schedule Representation of Three Activities along 5 Units ... 18

Fig. 2.6: CPM/LOB Analysis of the Tasks’ Required Shifted Crews to Meet the Deadline 19

Fig. 2.7: Modified CPM-LOB analysis of the required parallel crews. ... 19

Fig. 2.8: Using the Delta-Shift Approach to Schedule non-Identical Units... 20

Fig. 2.9: Traditional LOB for a Scattered Repetitive Project (Kamarah 2019) 22

Fig. 2.10: Scattered Repetitive Schedule with Variable Site Index (Kamarah 2019) 22

Fig. 2.11: Canny Edge Detection (Abdelqader et al. 2003) ... 24

Fig. 2.12: Various Edge Detectors Performance on a Sample 0.02mm crack (Dorafshan et al. 2018)

.. 25

Fig. 2.13: Example of the Use of Speeded Up Robust Features (SURF) Feature Detection Algorithm

.. 26

Fig. 2.14: Support Vector Machine (Aylien 2016) .. 27

Fig. 2.15: Example of Convolutional Neural Network Architecture ... 27

Fig. 2.16: Similar Scene Captured from Multiple Angles Produce Images that can be Mapped to one

another (and to the Original Scene) ... 28

Fig. 2.17: Equation for Calculating the Homography Matrix .. 29

Fig. 2.18: Relationship between Object Plane and Image Plane ... 29

Fig. 2.19: Relationship between Object Plane and Image Plane ... 30

Fig. 2.20: Using CNNs to Detect Workers on Site (Son et al. 2019) .. 32

Fig. 2.21: Detecting workers and safety harnesses using CNNs (Fang et al. 2018) 32

Fig. 2.22: Equipment Activity Classification (Roberts and Golparvar-Fard 2019) 33

Fig. 2.23: Superimposing 4D-BIM on Time Lapse Images (Golparvar-Fard et al. 2009) 33

Fig. 2.24: Detection by fusing detected horizontal and vertical cracks (Luo et al. 2019) 36

Fig. 2.25: U-net CNNs for Crack Detection (Liu et al. 2019) ... 36

Fig. 2.26: Automated SfM Façade Inspection Model (Choi et al. 2018) ... 37

file:///E:/PhD%20Thesis/Kareem%20Mostafa-Phd%20Dissertation%20GSPA.docx%23_Toc85411726

xii

Fig. 3.1: TDSB Building Hierarchy ... 42

Fig. 3.2: Components with the Highest Total Event Cost ... 43

Fig. 3.3: Components of Proposed Smart Asset Rehabilitation Framework 43

Fig. 3.4: Locations of the University of Waterloo buildings where roof images were taken 45

Fig. 3.5: Example of TDSB Event Documentation ... 46

Fig. 3.6: Database of Suggested Rehabilitation Events ... 47

Fig. 3.7: Sample of Textual Description for a Roofing Event ... 48

Fig. 4.1: First Module of the Proposed Framework ... 49

Fig. 4.2: Proposed CNN-based Module ... 49

Fig. 4.3: Reference Image used for Calibration ... 50

Fig. 4.4: Example of Labelled Images ... 50

Fig. 4.5: Example of Image Augmentation .. 51

Fig. 4.6: Overall Architecture of the Proposed CNN ... 52

Fig. 4.7: Screenshot of Myutils Module in the Developed Code ... 54

Fig. 4.8: Model Accuracy for Training and Validation Datasets ... 55

Fig. 4.9: Model Accuracy for Training and Validation Datasets ... 57

Fig. 4.10: Case Study Buildings .. 57

Fig. 4.11: Examples of misclassifications .. 59

Fig. 4.12: Example of a Flashing Defect ... 60

Fig. 4.13: A heat Map of University of Waterloo Campus Buildings According to the Integrity of their

Roofs (based on data from Table 4.9: Column 4) .. 61

Fig. 4.14: Mathematical Formulation of Solver Setup ... 63

Fig. 4.15: Screen Capture of the Solver Setup ... 63

Fig. 4.16: Ground Truth (a) and Homography-Calculated (b) Crack Lengths 64

Fig. 4.17: Polygon used to Calculate the Overall Area of Cracks ... 65

Fig. 5.1: Second Module of the Proposed Framework .. 67

Fig. 5.2: Generic Defect Categories and Related Keywords ... 68

Fig. 5.3: Pseudocode for Text Mining ... 69

Fig. 5.4: Clustering Results of the Kmeans Algorithm .. 71

Fig. 5.5: Clustering Results using Sum of T_C Values .. 72

Fig. 5.6: Clustering Results using Average of T_C Values .. 73

Fig. 5.7: Mathematical Formulation of the Solver Setup ... 74

xiii

Fig. 5.8: Screen Capture of the Solver Setup ... 74

Fig. 5.9: Histogram for the Number of Schools Selected for Repairs ... 75

Fig. 5.10: Histogram for the Total Improvement Achieved by the Monte Carlo Simulations 76

Fig. 5.11: Number of Times Each School was Selected for Repair (Out of 50 Iterations) 76

Fig. 6.1: Third and Final Module of the Proposed Framework ... 78

Fig. 6.2: Differences between LOB and Flowline visuals ... 78

Fig. 6.3: Duration-Distance (DD) chart combines the benefits of LOB and Flowline visuals. 80

Fig. 6.4: CPM/LOB Schedule for Shifted Crews exceeds the Deadline .. 81

Fig. 6.5: CPM/LOB schedule for Parallel Crews exceeds the Deadline .. 81

Fig. 6.6: Flowchart of the Improved CPM/LOB Computation .. 83

Fig. 6.7: Schedules developed using the Proposed Computation meet the Original Deadline 84

Fig. 6.8: Formulating the Start-Time Offset .. 85

Fig. 6.9: Formulating Task Interruption Time ... 86

Fig. 6.10: Interruption Time for Example Activities ... 87

Fig. 6.11: Flowchart and Steps of the Proposed FCFS Crew Assignment Process 89

Fig. 6.12: Developed Schedule for the Validation Example Using the Proposed Model 91

Fig. 6.13: Developed Schedule for the Validation Example After Introducing Interruption 91

Fig. 6.14: Choosing the most Efficient Order of Execution .. 92

Fig. 6.15: FCFS Schedule to meet a 45-day Deadline ... 94

Fig. 6.16: FCFS Schedule to meet a 30-day Deadline ... 94

file:///E:/PhD%20Thesis/Kareem%20Mostafa-Phd%20Dissertation%20GSPA.docx%23_Toc85411792

xiv

List of Tables

Table 2.1: Inspection Applications Feature Comparison ... 15

Table 2.2: Commonly Used Edge Detection Filters .. 24

Table 2.3: Summary of Image-Based Analysis Applications in Inspection .. 34

Table 4.1: Confusion Matrix for the Model Prediction Results ... 55

Table 4.2: Comparing the Proposed Model to Existing Roofing Detection Models 56

Table 4.3: Comparing between the Proposed Model and Others in the Literature 56

Table 4.4: Detection Results of CNN1 .. 58

Table 4.5: Detection Results of CNN2 .. 58

Table 4.6: Detection Results of CNN1 .. 59

Table 4.7: Detection Results of CNN2 .. 59

Table 4.8: Comparison of Results between Two-Step and Single-Step Classifiers 60

Table 4.9: Results of the Proposed Two-Phase Model, Applied to Roofs of 21 Buildings 62

Table 4.10: Comparison Between Image-Based Crack Measurements (Fig. 4.16b) And Their Ground

Truth Counterparts (Fig. 4.16a). .. 64

Table 5.1: Binarization of Event-Type and Event-Priority Values .. 69

Table 5.2: Number of Events in each Cluster based on Different Clustering Methods 70

Table 5.3: No. of Schools and Total Rehabilitation Cost Required for Each Cluster based on Different

Clustering Parameters .. 73

Table 5.4: Results of Sensitivity Analysis with Respect to the Allocated Budget 77

Table 6.1: Validation Example Data and Comparison of Results ... 90

Table 6.2: Activity Information for Schools Undergoing Roof Rehabilitation 93

1

Chapter 1: Introduction

 General

Smart cities are on the rise as an answer to challenges of limited resources, increasing population, and

the need for technology-driven efficiency. It is estimated that the market size for smart cities will grow

up to $820 billion by 2025 (Vuppuluri 2020) and generate up to $20 trillion in economic benefit

worldwide (Challawalla et al. 2020). As shown in the typical illustration in Fig. 1.1, a smart city links

a variety of individual smart services, including smart education, smart buildings, smart waste

management, smart energy, and smart environment, (SmartCitiesWorld 2017; Patel 2019). Bawany

and Shamsi (2015) provide a layered description of the various categories of services such as smart

physical infrastructure; and smart governance (Fig. 1.1b). These services are interconnected through a

core communication technology based on the Internet of Things (IoT).

As shown in Fig. 1.1b, the physical infrastructure (roads, bridges, pipelines, schools, hospitals,

etc.) is the core foundation layer. As such, maintaining the city's physical assets is the key to sustain

the city’s smart services (Smart Brantford 2019). To achieve that, Governance should be able to

develop the necessary strategic and operational tools and procedures to automate and decide cost-

effective intervention methods of rehabilitation.

(b) Layered smart city services (Adapted from

Bawany and Shamsi 2015)
(a) Individual smart components (Smart cities world 2017)

Fig. 1.1: Components of a Smart City

2

 Research Motivation

This research aims to develop a comprehensive smart rehabilitation framework, integrating modern

technologies for building inspection, smart analytics of inspection data, and efficient scheduling of

rehabilitation works to be delivered most efficiently. The research has been motivated by the following:

1.2.1 Smart City Requires Smart Rehabilitation for Existing Assets

The typical vision of a smart city (e.g., Fig. 1.1) focuses on building new infrastructure assets as smart

assets (e.g., equipping them with sensors to periodically communicate their conditions). However, it

overlooks the requirements of the large portion of existing assets that are old and require extensive

rehabilitation work. Fig. 1.1a, for example, shows the physical assets (smart buildings, smart

transportation, water quality, etc.) as isolated islands within the typical vision. As the world is

becoming more and more digitally connected due to the increasing rate of technological advances and

breakthroughs, municipal governments strive to accommodate those innovations and the accompanied

clients’ demands of higher levels of services from their cities. As mentioned earlier, current research

work related to smart cities tends to overlook the maintenance and rehabilitation aspects. As such, there

is a need to define the term “smart rehabilitation” as part of the greater term “smart asset management”.

Smart asset rehabilitation is aligned with the current vision of municipalities and governments in terms

of creating a digital service strategy through data analytics, responsive operations, and intelligent

infrastructure (City of Ottawa 2017).

1.2.2 Challenges in Condition Assessment of Existing Assets

Assessing the condition of existing assets serves as the background data repository based on which all

asset rehabilitation decisions are made. Currently, however, most inspections to determine the

conditions of assets are done manually. Such methods suffer from low productivity, subjectivity, and

inconsistency as two inspectors might provide different reports for the same asset (Hoang et al. 2018).

Inspection quality is also limited by the training and experience of the inspector. For each hour spent

in the field for inspection, additional three hours are spent in the office to generate the reports (Abou

Shaar 2012). As an example of how time-consuming inspection is (using current methods), in 2010

Ontario ministry of education issued a bid seeking a company to inspect a total of 4800 schools over a

five-year period (MERX 2011). Because inspection is time-consuming, inspections tend to take place

less frequently than desired. For example, schools in Ontario are typically inspected once every 3-5

years (Abou Shaar 2012). As such, the data based on which rehabilitation decisions are made are often

3

outdated. Furthermore, smarter data collection allows for smarter analysis. For example, Ahluwalia

and Hegazy (2010) used surveys to analyze roof defects and reported that less frequent and subjective

inspection data puts many assets in the same condition category, which makes the prioritization and

fund allocation processes harder than it would have been if such categorizations were based on timely

and unbiased data. Hence, there is a need for automating the inspection process to save time and cost,

be able to have more timely data, and make the process less subjective.

1.2.3 Potential of Machine Learning for Analytics and Asset Prioritization

A smart inspection and asset management system should be able to automatically analyze the data

collected and come up with its own conclusion regarding the asset condition and the amount of

rehabilitation needed. Such analysis can use methods such as deterioration modeling, deep learning

networks, or others. Such smart analytics and data-driven based methodology aimed to digitize current

inspection and performance reports may reveal more information that would change the way assets are

valued. In addition to the economic benefits, this has social benefits as well in terms of bridging the

social and political divide since automating the damage assessment provides for a “fairer” decision-

making process because it eliminates the human bias when it comes to selecting which assets to receive

the rehabilitation funds.

One way to make asset management and rehabilitation more automated and “smarter” is

through the use of computer vision and image analysis techniques, as a cost-effective approach, to

extract information from recorded images and videos. The most evident applications of computer

vision can be seen in drones and autonomous vehicles. In essence, the same way unmanned vehicles

use computer vision technologies to automatically detect pedestrians and other objects to avoid

collisions, the proposed inspection framework should be able to use the same technology to

automatically detect cracks and other defects and use this information for damage assessment in terms

of severity and size.

1.2.4 Challenges in Developing Efficient Delivery Plans for Rehabilitation Works

Municipalities and governments are faced with various constraints when it comes to authorizing

rehabilitation work. For example, there is an annual shortfall of $1 billion in order to keep schools of

Ontario in good repair (Sachgau 2016). Furthermore, these repairs have to take place only during the

summer vacation because of operational and weather constraints. Currently, Facility Management

(FM) professionals treat rehabilitation work on a case-by-case basis assuming they happen in isolation.

4

Efficient delivery should be able to capitalize on similarities between tasks and aggregating them in a

bigger work package with repetitive tasks to minimize costs. Thus, using repetitive scheduling

techniques (Hegazy 2002) for the delivery of rehabilitation works provides opportunities for increased

efficiency in terms of allowing crews to move uninterrupted to save time and cost. Hence, the need for

utilizing repetitive scheduling techniques for the delivery of rehabilitation work becomes eminent,

which is one of the components of the proposed research.

 Research Objectives and Scope

The primary goal of this research is to establish “smart rehabilitation” as a major component of the

smart asset management layer of smart cities. Specifically, this research utilizes machine learning tools,

such as computer vision and data mining, and repetitive scheduling techniques to develop an automated

framework for smart city rehabilitation. The framework includes different functions that perform

efficient condition assessment, prioritization and fund allocation, and delivery planning of time-critical

and cost-critical rehabilitation works. With a focus on rehabilitation management of built-up roofs as

a case study, detailed objectives are as follows:

1. Clarify the challenges of asset rehabilitation by investigating the current practice of the

different asset management phases (Inspection, prioritization, and delivery);

2. Based on data collected from the University of Waterloo buildings, use deep learning and

computer vision techniques to detect damages, classify them according to their type, and

quantify their sizes directly from roofing images, and develop an automated system to perform

this function;

3. Combine the image assessment data with text-mining information to classify assets into

categories according to their condition and need for rehabilitation, and develop an optimization

model that assists asset management professionals in prioritizing the required rehabilitation

events while satisfying budgetary constraints; and

4. Develop a scheduling framework that uses the defined rehabilitation work packages generated

by the system in 3 above, treat them as a case of scattered repetitive works, and accordingly

develop an efficient schedule that considers available resources and meets delivery constraints

with least cost;

This research supports cities, municipalities, and other facility management departments such as school

boards that are required to monitor the conditions of multiple buildings and perform the necessary

5

rehabilitation works using limited budgets and/or within a limited timeframe. While the current

research relied on data from TDSB, the proposed framework can be adapted to suit the needs of other

infrastructure assets.

 Research Methodology

The proposed research methodology to achieve the above research objectives are as follows:

1. Literature Review: Conduct an extensive review of existing asset management literature as

well as current systems used in the industry. Special care will be given to areas related to

inspection and damage assessment. In addition, conduct a review of computer vision and data

mining techniques to identify which one is most suitable for developing the inspection and

prioritization modules;

2. Data Collection and Analysis: Study past inspection reports from the Toronto District School

Board (TDSB) to define key textual information that best describes building conditions (e.g.,

building age, description, etc.) and collect roofing images from the University of Waterloo

buildings;

3. Image-Based Deep-Learning System: based on the results obtained from analyzing the pictorial

data, a model will be built using python, a programming language, to automate the damage

detection, classification, and quantification;

4. Automated Work Packaging: Working in tandem with the quantification submodule in item 3

above, RS means data, a database for cost estimation of construction and rehabilitation works,

is used to create automated rehabilitation work packages that address all the poor and critical

assets;

5. Text-mining system: Based on the results obtained from analyzing the textual data, as well as

the results of the image-based system in item 3 above, a model is built to categorize the assets

and rehabilitation events according to their criticality

6. Asset Portfolio Rehabilitation Optimization: Based on the criticality and work packaging

information obtained from items 3-5, a simple optimization model is developed to prioritize

the requested rehabilitation works to maximize the overall performance improvement of the

asset portfolio while abiding by budgetary constraints;

7. Scattered Repetitive Scheduling: A system for efficient delivery planning of scattered

repetitive work packages will be developed with streamlined computations and visualization;

6

8. Prototype Testing, and Validation: A prototype decision support system will then be

developed. The prototype shall be tested using data from TDSB and University of Waterloo;

and

9. Discuss the integration of the developed smart rehabilitation framework within the overall

vision of smart cities that is adopted by municipalities.

 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 presents a detailed literature review to highlight the drawbacks of existing inspection and

condition assessment frameworks and the need for automation, as well as recent trends in machine

learning and the different applications in analyzing textual and pictorial data. Unique characteristics of

repetitive projects and drawbacks of current scheduling techniques are also discussed.

Chapter 3 holistically analyzes the key building component information existing in TDSB inspection

reports and accordingly selects built-up roofs as the main building component to focus on for detailed

study and analysis, before introducing the proposed roofing rehabilitation framework. Also, the data

collection processes for the different data types (Textual: TDSB, Pictorial: University of Waterloo) are

briefly introduced.

Chapter 4 studies the first component of the proposed framework, the image-based analysis model, in

more detail. It goes through the different CNN model frameworks and architectures and discusses their

capabilities in detecting, classifying, and quantifying the different roofing defects. The chapter also

presents the real-life application and validation results of the image-based analysis module on

University of Waterloo data.

Chapter 5 studies the second component of the proposed framework, the text mining framework, in

more detail. It goes through the different algorithms adopted and the final model where the different

algorithms are aggregated. The chapter also presents the real-life application and validation results of

the text mining model using TDSB data

Chapter 6 presents the novel contributions towards scheduling scattered repetitive projects, which

constitutes the final component of the proposed rehabilitation framework. The chapter describes the

novel computations (designed interruptions and preventing schedule delays), heuristic algorithms

(First-Come-First-Serve), and visualizations (duration-distance chart). The chapter highlights the

7

advantages of the novel scheduling contribution in terms of robustness, explainability, and time and

cost savings.

Chapter 7 summarizes the presented research works, highlights its contributions, and provides

recommendations for future research

8

Chapter 2: Literature Review

 General

This chapter first addresses the current state of building infrastructure as well as the introduction of

smart cities, then provides a comprehensive overview of current inspection methodologies and asset

management software packages. This is followed by an introduction of repetitive scheduling

techniques and how they are more suitable for scheduling rehabilitation work than conventional

scheduling methods such as the critical path method (CPM). Finally, a review of computer vision and

deep learning techniques is presented, along with their current applications and research potential. The

chapter concludes with a summary of the research gaps in the fields aforementioned, to be addressed

in the proposed research (Chapter 3).

 Smart and Sustainable cities

The concept of smart cities first emerged in the 1990s calling for utilizing new technologies to solve

urban problems that are unsolvable using traditional planning approaches (Alawadhi et al. 2012). It

then received a major boost when IBM proposed in 2009 their vision of smarter cities as a gateway for

a sustainable future (Dirks and Keeling 2009). A smart city is a city that functions in an intelligent and

sustainable way by integrating all its elements using modern technology to serve as one cohesive unit

and effectively monitor its integrity.

Various researchers have taken interest in the term “smart cities” pursuing various objectives.

In fact, the number of publications and projects related to smart cities has grown exponentially over

the past decade since the term has been established (Camboim et al. 2019, Anand and Navio-Marco

2018). Literature focusing on smart cities concepts and frameworks depart from the notion that the

people are the main driver of development rather than the mere technological advances (Albino et al.,

2015; Hollands, 2008). Giffinger and Gudrun (2010) identified six main components for a smart city:

smart governance, smart economy, smart mobility, smart people, smart environment, and smart living.

Nam and Pardo (2011) categorized the main elements that comprise a smart city into three main

categories: technology (hardware and software infrastructure), human (education, creativity, and

diversity), and institution (policy and governance). Mohanty et al. (2016) provided an overview of the

main components of a smart city highlighting that the city can still be considered “smart” even if it

chose not to adopt all components and the choice regarding which components to adopt depends on

multiple factors such as costs and available technology.

9

Literature highlighting technological advances focuses on developing new technology to

enhance the urban environment (Meijer and Bolivar 2015). Allam and Dhuny (2019) analyzed the

popularity of Artificial Intelligence (AI) and Big Data using Google trends and concluded that the

interest in Big Data has grown significantly since 2011. Silva et al. (2018) proposed a layered

framework of smart cities: A sensing layer for data collection, a data transmission layer (e.g. 3G, Wi-

Fi, etc.), a data management layer that is concerned with data analysis and decision support, and an

application layer that directly interacts with citizens. Examples include the “Big Data-enabled Smart

Healthcare System Framework (BDHSF)” developed by Pramanik et al. (2017) where big data

analytics, logistic support, and smart service-based architecture were utilized to achieve better quality

and less costs of healthcare services. Oralhan et al. (2017) designed a waste container that can measure

its capacity, temperature, and levels of carbon dioxide accumulated inside and utilize the Internet of

Things (IoT) technologies to help calculate an effective waste collection route. Raja and Pang (2016)

have developed robots that are capable of performing indoor inspections. While their works were aimed

at proving that robots can perform this level of fine-grained inspection rather than performing a specific

type of inspection, this can be considered a step towards fully automating indoor inspections in general,

and maintenance inspections in specific.

In typical smart governance, smart rehabilitation could be viewed as inherently embedded

within each asset type, e.g., within smart buildings, smart roads, etc. However, because rehabilitation

cutting across mixed assets (e.g., roads and underlying pipes), it is mandated that smart rehabilitation

is treated as a separate layer of governance. To emphasize this point of view, the vision for smart

buildings and smart facility management (Fig. 2.1), for example, ignores (or at best hides)

rehabilitation services and focuses on security, energy efficiency, etc. As such, smart rehabilitation

should become an extra layer that connects the various city components: management of the

performance level and longevity of the physical assets through legislation and governance. Yet this is

also not expressed in any of the discussions related to smart city layers, neither introduced as a new

layer nor incorporated into existing ones.

Examples of government-led examples of high-profile smart cities include Masdar in

Abudhabi, Cyberjaya in Malaysia, and PlanIT Valley in Portugal. More exhaustive lists of smart city

initiatives (especially within the European Union) can be found in the report issued by the European

Parliament (Manville et al. 2014) as well as Collins et al. (2017). In Canada, Ottawa (2017) is taking

the lead in spearheading detailed action plans for Smart Governance to include planning and

10

maintaining physical infrastructure elements such as roads and bridges or underground systems. Such

vision, however, lacks explicit or dedicated care for the largest portion of the assets which is old and

requires special care for their continuous rehabilitation, capital renewal, and asset management.

Similarly, Infrastructure Canada has organized a competition inviting all Canadian municipalities,

governments, and indigenous communities to submit proposals that would leverage data and smart

cities components to address current challenges (Infrastructure Canada 2019). None of the 20 proposals

that qualified to the final round addressed the problem of innovative or smart asset rehabilitation.

Hence, there is a need not only to define the term “smart rehabilitation and maintenance” and draw

attention to it as one of the main components of smart cities, but also to develop techniques to improve

rehabilitation decision making to save time and money and sustain the infrastructure services to the

public.

Fig. 2.1: Key Components of Smart Facility Management (Advancer Global n.d)

The rise of various technological innovations such as big data analytics, the Internet of Things

(IoT), and mobile internet access can foster collaboration among citizens. Cities will become “smarter”

only with the right combination of technology, policy innovation, and civic engagement and

collaboration (Anand and Navio-Marco 2018). Researchers are undertaking enormous efforts trying to

investigate how smart city components can interact with one another (e.g. Ben Letaifa, 2015; Colldahl

et al. 2013; Meijer and Bolivar 2015) but introducing smart asset management as one of the overarching

smart concepts that can act as a connecting layer between smart assets and other smart city components

(e.g. smart citizens as users of said assets) has not been addressed. Also, none of the global initiatives

investigated and presented earlier aimed to tackle asset management issues. Hence, the proposed

https://www.infrastructure.gc.ca/cities-villes/comp-one-prem-comp-eng.html

11

research aims to address both the conceptual and the technological gap related to smart asset

management and smart rehabilitation and maintenance.

 Asset Management for Civil Infrastructure

Major components of a well-functioning city are the civil infrastructure assets as they impact every

aspect of the residents’ lives and the health and integrity of said assets greatly affect the city’s potential

for economic and social growth. Factors such as age, harsh environmental conditions, and consistent

intensive usage put them under duress which leads to their deterioration. Typically, these factors are

counteracted by regular inspection and maintenance, but this is not always the case due to limited

funding. Accumulation of shortfalls produced by consistent funding limitations creates a backlog of

needed repairs. Such backlogs can be as big as $17.2 billion as in the case of Canadian universities

(Johnson 2020) or even $16.3 billion as in the case of Ontario schools (Rushowy 2019). According to

the Toronto District School Board (TDSB), over 20,000 repairs for 583 schools are required with a

total value of $3.7 billion as of July 2021 (TDSB 2021). However, provincial funding is only $300

million per year. Similarly, in the USA, the most recent ASCE infrastructure report (Fig. 2.2) gave

schools a grade of D+. Furthermore, the report states that extra $380 billion are needed between now

and 2029 to keep schools at an acceptable working condition (ASCE 2021) as more than half of the

schools need to update and/or replace their building systems (ASCE 2021).

To reduce the backlog, effective management of assets is essential to ensure adequate and long-

term serviceability. However, this is not always an easy task due to budget limitations and operational

limitations in terms of minimizing downtime due to maintenance and repairs. Hence, asset

management systems were introduced to help managers find the optimal timing and methodology for

repairs to maximize the value of the allocated budgets (Elhakeem and Hegazy 2010). Asset

management systems involve both strategic and operational functions to help organizations perform

capital renewal, rehabilitation, and upgrades for their inventory. Ideally, asset management systems

incorporate the following functions: (1) performance assessment through inspection, identification of

defects, and evaluation of the level of service; (2) deterioration modeling to predict the changes in asset

performance over time; (3) analyzing and selecting the most appropriate renewal type (e.g., minor,

major, or full replacement); (4) studying the life cycle cost of the asset to enhance the decision making

process and extend the asset’s lifespan; (5) ranking the assets according to performance priorities (e.g.,

condition, importance, etc.) and allocating rehabilitation funds based on such ranking; and (6)

12

implementing the decision taken by the previous steps and assessing the condition of the asset post-

rehabilitation. Those six functions are displayed in Fig. 2.3.

Fig. 2.2: ASCE 2021 Infrastructure Report

Fig. 2.3: Main Asset Management Functions (Adapted from Abdel-Monem and Ali 2010)

This research aims to enhance asset management frameworks by addressing three main phases of

smart city asset management (highlighted in Fig. 2.3): performance assessment through implementing

computer vision and Artificial intelligence techniques to enhance and automate the inspection process,

prioritization and fund allocation through the use of novel data mining and optimization techniques,

and the delivery phase by utilizing scheduling techniques that are better suited to these type of works

(repetitive scheduling techniques).

Performance
Assessment

Deterioration
Modelling

Renewal types
Life Cycle Cost

Analysis

Prioritization
and Fund
allocation

Delivery and
post-

assessment

13

2.3.1 Inspection Research

Currently, most inspections are done visually using semi-automated methods that are time-consuming.

The Facility Management department (FM) sends inspectors to assess the building conditions and file

reports estimating any required maintenance work. Visual inspections are widely used for preliminary

and regular inspections because of their effectiveness in detecting external defects such as cracks and

spalling (Omar et al. 2017). This is of extreme benefit as many degradation conditions often exhibit

visual symptoms. Visual inspections aim to ensure the integrity of a structure by looking at its critical

components and note any visual damages or changes that warrant further attention (Sweeny and

Unsworth 2010). However, subjectivity is inevitable in visual inspections as different inspectors may

evaluate the same structure differently (Dawood et al. 2018). Furthermore, some parts of the structure

are not accessible for inspectors, making an overall assessment sometimes impractical (Dawood et al.

2018). Once the reports are submitted, the FM has to manually price, prioritize, schedule, and allocate

resources to act on the reports received. This process is lengthy, subjective, and error-prone. Therefore,

manually administering hundreds of these reports proves to be resource-consuming, if not problematic,

for FMs given the tight budgets and time frames. An inspection site visit typically takes 4 hours to be

completed and for each hour spent in the field for inspection, additional three hours are spent in the

office to generate the reports (Abou Shaar 2012). As an example of how time-consuming inspection is

(using current methods) Ontario ministry of education has issued a bid in 2010 seeking a company to

inspect a total of 4800 schools over a five-year period (MERX 2011). In addition, the inspection results

are not always consistent and depend on the inspectors’ training and experience levels. Despite those

shortcomings, manual visual inspection still proves to be to most suitable inspection approach for most

building components (Elhakeem and Hegazy 2010).

Errors and gaps produced by manual assessments not only waste time and money, but can also

lead to catastrophic events, such as the collapse of the I-35W highway bridge in Minneapolis, MN

which caused 13 deaths and 145 injuries (Koch et al. 2015). One of the most recent events is the failure

of Oroville dam spillways which took place in February 2017, forcing more than 188,000 Californians

to evacuate and creating a 45-foot deep, 300-foot wide, and 500-foot long hole in the ground (Graham

2017). The dam was not on the California governor’s “wish list”; a list of $100 billion worth of key

assets targeted for investment for rehabilitation or construction purposes (CNBC 2017). The forensic

report mentioned that the main cause of failure, vulnerabilities in the chute slab, was not identified in

any of the inspections despite their frequency, rigorousness, and the fact that they are undertaken by

14

different investigators representing different parties and following different guidelines (France et al.

2018). In Italy, while inspections were done properly and the Italian government was aware of the fact

that the metal cables of a highway bridge in Genoa were corroded which reduced the bridge’s strength

by 20%, no action was taken to reduce the loads on the bridge (e.g. limit traffic, ban heavy trucks, etc.)

which has led to its collapse killing 43 people and forcing 600 others to evacuate (Associated Press

2018).

Based on the discussion above, asset management, in its current form, has its huge challenges.

Acquiring the condition of assets using traditional inspection means is time-consuming, less accurate,

and subjective. As such, many assets end up in the same category in terms of condition, and this creates

a large problem in allocating rehabilitation funds to the most deserving assets. Rehabilitation funds,

therefore, are often spent by doing “some for all” (doing minor work for multiple assets) or “all for

some” (doing all the work required for a single or a small number of assets) (Anand and Navio-Marco

2018). The first approach spreads the available resources too thinly to the point that it might create an

illusion of slow progress (Anand and Navio-Marco 2018). On the other hand, the second approach can

create a sense of inequality (Anand and Navio-Marco 2018). For this reason, Smart Asset Management

Systems that focus on rehabilitation, which is missing in existing smart governance frameworks,

become an essential component of smart cities and need to include: smart data collection and smart

delivery of rehabilitation work to avoid service disruption to the public.

In general, existing inspection and asset management systems have little capabilities regarding

how to deal with images. As seen in Table 2.1, typical inspection software focuses on report creation

more than analysis, with none of the software packages can automatically detect or quantify defects.

Images are merely included within the automated report with no semantic information automatically

extracted. At best, some software packages allow for manually adding markups and annotations on the

provided images (Table 2.1). Some asset management software can offer more services related to

extracting information from images. They can store it as part of the asset data portfolio (VFA 2021),

time and location stamp it (EZMaxMobile 2021), allow for manual highlighting and markups (Home

Inspector Pro 2021), or even integrate it with a BIM model (ARCHIBUS 2021), but the building

condition will have to be inputted by the user to be later on extrapolated using other information such

as building age and undertaken repair works, which are also user inputs. In addition, only one software

among the ones featured in Table 2.1 tries to address the delivery phase of the required rehabilitation

15

work. Therefore, the proposed research deals with these two areas in particular: image-based analysis

for automated inspection; and smart delivery of rehabilitation work.

Section 2.4 provides an overview of the state-of-the-art in the areas of the latest technologies

in image analysis that can revolutionize the detection and classification of defects in different domains

(which can be utilized to improve inspection); and data mining which can upgrade the prioritization

and fund allocation decision-making process.

Table 2.1: Inspection Applications Feature Comparison

H
o

m
e
 I

n
s
p

e
c
to

r
P

ro

H
o

ri
z
o

n

In
s
p

e
c
th

e
c
k

S
p

e
c
to

ra

J
o

b
b

e
r

H
a
p

p
y
C

o

H
o

m
e
G

a
u

g
e

H
o

m
In

s
p

e
c
t

R
e
p

o
rt

H
o

s
t

C
h

a
p

p
s

L
in

k
 I
n

s
p

e
c
t

P
ro

z
In

s
p

e
c
to

r

Visual Tools
Mark on Pictures √ √ √ √ √ √ √ √ √ √
Take Pictures √ √ √ √ √ √ √ √ √ √

Interface

Assign Jobs to Inspectors √ √ √ √ √ √

Hierarchy & Reporting Levels √ √ √ √

Condition Assessment √ √ √
Condition Prediction √

Custom Report Generation √ √ √ √ √ √ √ √
Per-Component Condition History √

Deep learning &

Automation

Automated Defect recognition
Automated Quantity takeoff

Automated Prioritization & estimation √

Automated scheduling √

2.3.2 Decision Making for Fund Allocation

Efficient asset management requires frequent monitoring and inspection of all assets and individual

components to ensure their physical and functional fitness and to identify the items that are most

worthy of the limited funds for capital renewal. However, the data in inspection reports often lack

granularity and end up assigning critical priority to many more assets than can be funded (Ahluwalia

and Hegazy 2010). This forces asset managers to rely on their subjective judgment for asset

prioritization and limited-fund allocation. Capital renewal challenges are exacerbated for organizations

16

that administer a large number of facilities, such as the Toronto District School Board (TDSB) in

Canada, which owns nearly 600 schools, a sizable portion of which are older than 40 years old. To

upgrade school conditions and reduce the growing renewal backlog ($4.2 billion in 2021), the

provincial government provides yearly capital renewal funds to school boards. In the 2020-2021

budget, the TDSB was allocated $312 million for school renewals (TDSB 2021). However, it remains

a challenge every year on how to allocate the available budget to the most deserving assets. Therefore,

it has become even more critical for upper management to appropriately and objectively allocate

limited funds to address the most pressing needs.

Current fund allocation decisions are typically analyzed using spreadsheets. A multi-year capital

plan is then put into place where management decides which assets to repair immediately and which

to push back for future years (Mostafa et al. 2021). Thus, this process would benefit greatly from an

objective tool that would make use of the available optimization techniques to facilitate a simpler and

faster fund allocation method with a good level of accuracy.

The low level of granularity and the inability to efficiently utilize inspection data has led to

catastrophic events in some situations. Examples include the failure of the Oroville dam spillways

explained in 2.3.1, as well as the failure of the Morandi bridge in 2018 that claimed the lives of 43

people in Italy (Piangiani 2020). As such, there is a need to develop a smart data-driven system that

can provide timely, detailed, and unbiased insights on how different assets should be assessed and

ranked in terms of rehabilitation/renewal needs. With limited funds, there have been calls that

governments should adopt a “Moneyball” approach: a data-driven investment approach similar to what

Oakland A’s manager Billy Beane used to build a top baseball team on a limited budget (Adriaens

2019). Finally, there is a need to find an objective way to answer the question “Among the many assets

of similar inspection results, which ones are most deserving of renewal funds?”.

2.3.3 Repetitive Scheduling: Delivery of Asset Rehabilitation Works

Repetitive projects, by definition, consist of a group of activities that are repeated over multiple units.

Repetitive projects can be linear, such as pipelines and roads, vertical, such as high-rise buildings, or

scattered, such as multiple housing projects (Fig. 2.4). One key aspect for efficient scheduling of

repetitive projects is allowing crews to perform their works and move from one unit to the other with

minimal interference so that the crews develop a learning momentum, saving time and cost and

17

benefiting from the economy of scale. As such, rehabilitation work can be considered under the

umbrella of scattered repetitive projects. Scheduling those projects is a challenging task because the

works are repetitive in nature but take place in diverse locations.

Fig. 2.4: Types of Repetitive Projects

2.3.3.1 Scheduling for Repetitive Projects

Scheduling repetitive projects is a challenging process and commonly used techniques, such as CPM,

are inadequate for multiple reasons. In the case of repetitive projects, CPM networks become more

complicated as they include copies of the same activities but assigned to different units. This makes

the schedule difficult to understand or visualize (Su and Lucko, 2016). For repetitive projects, CPM

plans each activity directly after the conclusion of its predecessor overlooking the importance of having

the crews maintain work continuity while moving from one unit to another. For example, faster crews

would be idle for a period of time till all predecessor activities that employ slower crews are complete.

To address the CPM drawbacks, techniques have been developed in an attempt to synchronize

resources, maintain work continuity, incorporate non-repetitive tasks within repetitive projects, respect

project deadlines, and account for learning curve effects. Examples of the developed techniques

include the Line Of Balance (LOB) (Arditi and Albulak 1986); the Linear Scheduling Model

(Harmelink and Rowings 1998); and the Repetitive Scheduling Method (Harris and Ioannou 1998).

Most repetitive scheduling methods incorporate the CPM network analysis to consider the logical

relationship within each repetitive unit, and among the repetitive units as well (Hegazy 2002; Suhail

and Neale 1994).

One of the key advantages of repetitive scheduling methods is their ability to show the large

information about a repetitive schedule in a legible manner. The Line of balance (LOB), for example,

plots the activities on a time vs. units axes as opposed to the time vs. activities axes used in bar charts

(Fig. 2.5). In the figure, a total of 15 activities (3 activities repeated over 5 units) are shown in a

relatively small chart area. Furthermore, LOB charts provide information about crew assignments and

 Repetitive Projects

 Linear Vertical Scattered

e.g., Highways, Pipelines High-rise Buildings e.g., Multi-Bridge Rehabilitation

18

delivery rates, a feature that is not available in CPM. For example, Fig. 2.20 shows that activities A

and B are each performed by one crew that moves from one unit to another at a certain rate (slope of

the line). Activity C, on the other hand, is performed by three crews; the first crew moves from unit 1

to unit 4, the second crew moves from unit 2 to unit 5, and the third crew is only assigned to unit 3.

Fig. 2.5: LOB Schedule Representation of Three Activities along 5 Units

 The first step in existing CPM/LOB calculations is to use conventional CPM formulae to

calculate the time needed to finish one unit (T1). Then, since all the units (N) need to be completed

before the deadline (DL), the rate of delivery of the units (R) is calculated using Equation 2.1. Equation

2.1 incorporates the total float of the activity (TF) as an adjustment factor that reduces the delivery rate

of non-critical activities and thus requires fewer crews. Accordingly, the number of required crews is

calculated based on the required rate (R) and the duration of the activity (D) using Equation 2.2, and

then the rate of delivery is adjusted based on the new number of crews after rounding (because having

fractions of a crew is impractical) through Equation 2.3. An example can be seen in Fig. 2.6.

[2.1] Task i desired rate (Ri) =
𝑁−1

(𝐷𝐿 – 𝑇1 + 𝑇𝐹𝑖)

[2.2] Task necessary crews (Ci) = Roundup (Di x Ri)

[2.3] Task actual rate (Ri) = Ci / Di

In an effort to provide a more practical crew assignment, a new derivation of the needed crews

has been developed for the more practical case of using parallel crews. The crews are arranged into S

cycles of C crews to achieve the required delivery rate using equations 2.4-2.6. These equations can

be seen in action in the example provided in Fig. 2.7, where the final arrangement of this task is 3

crews engaged in 4 cycles to complete all units.

19

[2.4] Initial cycles Si of Ci crews =
(𝐷𝐿 – 𝑇1)

𝐷𝑖
 + 1

[2.5] No. of Crews Ci = Roundup (N / Si); 1 ≤ Ci ≤ N & Ci ≤ Crew-Limiti

[2.6] Actual Cycles Si = Roundup (N / Ci)

Fig. 2.6: CPM/LOB Analysis of the Tasks’ Required Shifted Crews to Meet the Deadline

Fig. 2.7: Modified CPM-LOB analysis of the required parallel crews.

20

To schedule a successor task that may have different crews/durations from its predecessor,

researchers (e.g., Hegazy and Kamarah 2008; Laramee 1983) use a unique process of initially drawing

the successor task starting at some time in the future. Afterward, a proper shift time is calculated to

bring the task back to immediately follow the predecessor (Fig. 2.8). This approach is referred to as

the “Delta-Shift” approach. As seen in Fig. 2.8, the delta-shift approach is effective in the case of

scheduling tasks with non-identical units.

Fig. 2.8: Using the Delta-Shift Approach to Schedule non-Identical Units

Further research and development in repetitive scheduling have been taking place since the late

1990s with a particular focus on schedule optimization. Hegazy and Wasef (2001) developed a model

that would integrate CPM and LOB techniques and use genetic algorithms to determine the optimum

combination of construction methods, number of crews, and interruptions for each repetitive activity

that would minimize the total project cost (direct and indirect costs, interruption costs, liquidated

damages). Hyari and Elrayes (2006) developed a multi-objective optimization model to minimize

project duration while maximizing work continuity. Derham (2008) developed a multi-objective

genetic algorithm-based model to minimize both project cost and duration. Long and Ohsato (2009)

developed a multi-objective model for minimizing project cost and/or duration for repetitive schedules.

Ali and Elazouni (2009) integrated a CPM/LOB model with a cash flow model to optimize the project

cash flow and generate financially feasible schedules. Agrama (2012) presented a multi-objective

genetic optimization model able to minimize the project duration, work interruption, and the number

of crews. Aziz (2013) developed a model that would optimize the tender offer for a repetitive project,

taking into account schedule objectives (minimizing cost and duration) while maximizing the project’s

net present value. Dolabi (2014) presented two heuristic algorithms to achieve optimal crew formations

so the project would meet a certain deadline, but those algorithms are only valid if the activities are

serial (finish to start relationships with only one predecessor per activity). Huang et al. (2016) used

21

genetic algorithms to solve multimode time-cost-tradeoff problems considering soft logic. Zou et al.

(2017) presented a mixed-integer linear programming model for solving deadline satisfaction problems

in LOB scheduling. Altuwaim and Elrayes (2018) used a two-step approach to develop an optimization

model that would minimize project duration as well as interruptions.

Despite all those efforts, repetitive schedules still exhibit deadline violations even when the

necessary computations are applied. This is because of multiple reasons such as rounding of crews,

rounding of start times, crew availability limitations, or other reasons that change the geometry of the

activity/crew assignment and thus introduces schedule gaps that lead to project duration extensions.

2.3.3.2 Scheduling for Scattered Repetitive Projects

Scattered projects are projects whose units are not in a single location. Hence, rehabilitation work can

fall under this category as the assets where the rehabilitation work is taking place are present in multiple

locations. Scattered projects are the most challenging to schedule due to a variety of reasons. First of

all, not being bound by a single geographical location means that the work in each site is independently

affected by its local conditions such as weather and traffic. Therefore, work at a given site should be

scheduled when the site conditions allow for maximum productivity. Furthermore, project managers

needed to have the flexibility in changing the sequence of assigned sites and not being tied to a single

sequence that has to govern all activities, allowing to take into consideration multiple factors such as

transportation costs and interruption to facilities operations. For example, the electrical crew may

proceed in a different sequence than the HVAC crew. Having different working sequences makes

plotting a scattered repetitive schedule problematic as can be seen in Fig. 2.9. Activity A is using one

crew that moves in the order 2-6-7-1-3-5-4 (map on the left-hand side) while activity B uses two crews

that move in the sequences 2-6-7-1, and 2-5-4, respectively (map on the right-hand side). With a

schedule with many activities, it may not be possible to define the correct order of units on the vertical

axis that makes the schedule readable.

To resolve this issue, Kamarah (2019) proposed a generic schedule representation where the

site index is demonstrated on the activity bars instead of on a fixed axis (Fig. 2.10). Among the attempt

to address the challenges of scattered repetitive scheduling, Hegazy et al. (2004) presented a genetic-

algorithm-based scheduling model for efficient scheduling and resource optimization of scattered

repetitive projects. That model was further developed by Kamarah (2019) into a computer prototype

that automates the scheduling, control, and cost optimization of scattered repetitive projects.

22

Fig. 2.9: Traditional LOB for a Scattered Repetitive Project (Kamarah 2019)

Fig. 2.10: Scattered Repetitive Schedule with Variable Site Index (Kamarah 2019)

Repetitive scheduling calculations require prior knowledge of the number of units, maximum

available crews, as well as the project deadline. This poses a challenge when it is applied to

rehabilitation work because the number of units is sometimes not known. As mentioned in chapter 1,

22,000 repairs are required in over 500 schools in Toronto and these repairs can only take place in the

summer period when the schools are not active. Hence, there is a “packaging” problem in terms of how

many, and which, schools can be fixed in this limited period of time, before solving the conventional

scattered repetitive scheduling problem in terms of determining the optimal ordering and crew

assignments. If we assumed that the scattered repetitive scheduling is a traveling salesman problem,

where the objective is finding the least expensive routes to visit all states, then applying scattered

repetitive scheduling to rehabilitation work imposes another problem of which states to visit in the first

23

place. Furthermore, in municipalities, the resource limit for this type of work might not necessarily be

limited to the number of maintenance crews doing the work (because the works can be subcontracted),

but rather the number of in-house inspectors that oversee and inspect the work.

 Advanced Analytics

The recent advances in artificial intelligence, computer vision, deep learning, and other data analysis

technologies have allowed to automate many engineering tasks. This has allowed engineering

professionals to acquire and analyze more up-to-date data to make decisions more accurately, which

has led to cost and time reductions. Such advances allowed not only to analyze numerical data but also

extract meaningful information directly from text and photos. However, the construction industry has

been deemed to be relatively conservative in terms of adopting data-driven technology innovations to

improve safety and productivity (Busta 2016). The construction industry is currently one of the least

digitized industries in the world according to MGI’s digitization index (Manyika et al. 2016). For

example, it is estimated that current site managers consume almost half their time manually collecting

and processing progress monitoring data before making a decision (Deng et al. 2020). Hence there is

a clear need for the use of artificial intelligence and advanced analytics to achieve maximum efficiency.

2.4.1 Computer Vision and Image Analysis Techniques

Computer vision and image-based learning techniques allow for computers to automatically analyze

visual data such as images. The reason why computer vision has attracted various researchers in

multiple other fields is primarily because images are easy to collect in a non-intrusive manner and they

are often readily available (e.g. security CCTV cameras). The benefits of using image-based learning

techniques are that they reduce the human subjectivity and time for manual inspections, and being able

to inspect locations that are inaccessible by human inspectors. For those reasons, many state highway

agencies are replacing manual surveys with automated systems that can collect high-resolution images

and are able to detect cracks as small as 1-mm long (Wang et al. 2015).

2.4.1.1 Edge Detection

Edge detection refers to the use of special filters for the purpose of detecting edges in an image (such

as a crack) so they can be easily identified and located. Edges are detected based on discontinuities in

image color and/or brightness. Points where such discontinuities occur are identified as edges. Cracks

in a 2-dimensional image are classified as edges, and therefore existing edge detection algorithms can

24

be used for crack detection purposes (Dorafshan et al. 2018). Further techniques can combine those

points to form straight lines as well as identify corners based on the intersections of the lines detected

earlier. Examples of common edge detection filters are in Table 2.2.

Table 2.2: Commonly Used Edge Detection Filters

Filter name Composition

Sobel [
1 2 1
0 0 0

−1 −2 −1
] = 𝐶𝑥; [

−1 0 1
−2 0 2
−1 0 1

] = 𝐶𝑦

Prewitt [
1 0 −1
1 0 −1
1 0 −1

] = 𝐺𝑥 ; [
1 1 1
0 0 0

−1 −1 −1
] = 𝐺𝑦

Roberts [
0 0 0
0 0 1
0 −1 0

] = 𝑅𝑥; [
0 0 0
0 1 0
0 0 −1

] = 𝑅𝑦

Laplacian of Gaussian
(LoG)

[
0 −1 0

−1 4 −1
0 −1 0

]

One of the most commonly used edge detectors is the Canny edge detector (Fig 2.11). It starts

by convolving the original image (Fig. 2.11a) with a spatial mask (the Sobel mask is the one most

commonly used) producing a first-order partial derivative for the pixel at the center of the mask in both

the x (Cx) and the y (Cy) directions (Abdel-Qader et al. 2003). Two thresholds, a minimum and a

maximum, are then set. If the pixel value is above the maximum threshold, it is considered a “strong

edge”. If it is below the minimum threshold, it is not an edge. If it is between the two thresholds, it is

considered an edge only if it was connected to a strong edge. The end result is a binary image that

includes edges only (Fig. 2.11b).

Fig. 2.11: Canny Edge Detection (Abdelqader et al. 2003)

a) Original Image b) Canny Image

25

Dorafshan et al. (2018) compared the performance of six different edge detection filters

(Roberts, Prewitt, Sobel, Laplacian of Gaussian (LOG), Butterworth, and Gaussian filter) and an

AlexNet-based Deep Convolutional Neural Network (DCNN) by applying them to a 100-image (3402

sub-images) dataset of concrete panels for crack detection purposes. An example comparing the

performance of the edge detection filters is shown in Fig. 2.12 where the filters (Fig. 2.12c-h) are trying

to detect the crack present in Fig. 2.12a, Fig. 2.12b represents the ground truth (i.e. perfect detection).

The experiments have shown that the LoG filter was the most efficient in terms of both accuracy and

computation time. However, using DCNNs is more optimal, detecting finer cracks with higher

accuracy.

Fig. 2.12: Various Edge Detectors Performance on a Sample 0.02mm crack (Dorafshan et al. 2018)

2.4.1.2 Object Detection and Classification

As the name suggests, these techniques aim to detect objects of interest from images and videos as well

as classify them into predefined categories (e.g., detecting a crack). Intuitively, to be able to classify

objects through images, first, there is a need to detect or identify them. Such identification typically

takes place by recognizing the objects’ distinctive features (e.g. all circles are round). From those facts,

there are many techniques used to achieve object detection and classification and often it requires

combining them for improved results. Some of the common techniques are:

Feature Extraction Algorithms: a feature is defined as a function of one or more measurements that

quantifies some significant characteristics of the object (Choras 2007). Feature extraction algorithms

aim to use such descriptive features to detect objects of interest inside more cluttered scenes. An

example is in Fig. 2.13 where an object (a Tim Hortons Gift Card) is being detected inside a larger

26

scene. Available feature extraction and template matching algorithms include Scale Invariant Feature

Transform (SIFT), Speeded Up Robust Features (SURF, used in Fig. 2.13), and others.

Fig. 2.13: Example of the Use of Speeded Up Robust Features (SURF) Feature Detection Algorithm

Histogram of Oriented Gradients (HOG): A feature descriptor of images by a set of local

histograms. The idea is that local object appearance and shape can often be characterized rather well

by the distribution of local intensity gradients or edge directions, even without precise knowledge of

the corresponding gradient or edge positions (Dalal and Triggs 2005). Hence, the image is divided into

cells of a predefined size, then the occurrences of gradient orientation in each cell are counted to build

the descriptor vector. Finally, normalization is performed to regulate the variability in the image (Suard

et al. 2006). HOG pays huge attention to the shape of the detected object. Hence, Azhar et al. (2016)

considered the use of HOG for pothole detection as potholes have no fixed shapes. They developed an

automated pothole detection system that combined HOG with a Naïve-Bayes classifier achieving 90%

accuracy on a 120-image dataset.

Support Vector Machines (SVM): While not used exclusively for computer vision purposes, SVM

is one of the most powerful binary classification techniques (Seong et al. 2017). The SVM classifier

aims to find an optimal hyperplane that separates samples into two classes (Aylien 2016, example in

Fig. 2.14). In essence, SVM can be thought of as a high-dimension discriminant analysis, where the

objective is finding the thresholding function that achieves the best binary classification of data based

on their parameters.
Hyperplane

Object Scene

27

Fig. 2.14: Support Vector Machine (Aylien 2016)

Convolutional Neural Networks (CNNs): CNN is a type of artificial neural network (based on the

human brain structure) that is inspired by the visual cortex of animals. An example is shown in Fig.

2.15 where a handwritten text is classified into the correct digit through layers of convolutional and

pooling operators. The challenge in creating a neural network lies in the choice of the layers type,

numbers, operators, and order. CNNs are a type of deep learning methods because they are

characterized by having multiple hidden neuron layers where each of the layers focuses on extracting

a specific feature(s) (Aloysius and Geetha 2017). Among the most famous CNN-based object detection

algorithms, primarily for its speed, is the YOLO (You-Only-Look-Once) algorithm (Redmon et al.

2016). Girshick et al. (2014) added region proposals as an attempt to reduce the computational time

by suggesting regions to investigate instead of analyzing the entire image. Examples of publicly

available CNN building platforms include PyTorch and Tensorflow.

Fig. 2.15: Example of Convolutional Neural Network Architecture

2.4.1.3 Object Measurement

In the literature, two main methods are used to obtain real-life measurements from mages:

homography, and photogrammetry. These are explained as follows:

Homography: The homography matrix (H) maps two different images of the same scene to one

another (Bovik 2005). That is, every point on the first image corresponds to a point on the second

28

image. If x maps to x’, then x’=Hx. Homography is a 3x3 matrix (h11, h12, h13, ….., h33) yet it has

only eight degrees of freedom because it is set to a scale (h33=1). Hence, a four-point correspondence

is required to obtain the homography matrix. Fig. 2.16 shows a real-life object being recorded by

images from two different viewpoints creating two different images. While the four points on the

original object form orthogonal lines, this is not the case in either image due to the distortion caused

by the camera lens. Such distortion can be rectified as there exists a homography that relates the image

to the real-world scene (Bovik 2005). Consequently, homography can be used to directly obtain real-

life measurements from captured images as the homography matrix can find the correlation between

the coordinates of a certain point(s) within the image and its corresponding coordinates in the real

scene. Fig. 2.17 shows the equation to calculate the homography matrix. In case of having more than

four correspondences, a process called RANSAC (RANdom SAmple Consensus) is used to reduce

correspondence errors (Dubrofsky 2007). RANSAC can be best explained as solving an optimization

problem, choosing the four-point correspondences that create a homography matrix which yields the

minimum distance between the real location of features on the original image and the locations

projected from their corresponding feature locations on the second image.

Fig. 2.16: Similar Scene Captured from Multiple Angles Produce Images that can be Mapped to one

another (and to the Original Scene)

29

Fig. 2.17: Equation for Calculating the Homography Matrix

Photogrammetry: Using feature detection and homography techniques illustrated earlier,

photogrammetry, often referred to as Structure from Motion (SfM), aims to reconstruct a 3D model of

a scene from its projections captured in 2D images (Schonberger and Frahm 2016, Moulon et al. 2012).

It is widely used in mapping, surveying, and historical preservation applications (e.g., Hidayat and

Cahyono 2016, Jalandoni et al. 2018, Wang et al. 2019b, Shretha et al. 2017). It relies on a simple

principle based on similarity of triangles. An example is shown in Fig. 2.18 where a 3D object is

projected on the 2D image.

Fig. 2.18: Relationship between Object Plane and Image Plane

SfM algorithm (e.g., Zhang and Xie 2018, Yang et al. 2013) relies on feature matching between

images to estimate the camera positions and consequently generate the point cloud. Hence, it is

recommended that a minimum overlap of 60% must be present between images to achieve good results

(Mikhail et al. 2001). With the proper scale, real measurements can be obtained either directly from

the point cloud or by using triangulation to refer to the point cloud through multiple images that show

the same feature being measured.

2.4.2 Unsupervised Clustering

Data clustering is a technique that aims to classify the data into “clusters” of similar attributes

(Aggrawal and Zhai 2012). This is considered to be an unsupervised technique as it does not require

30

the algorithm to be previously introduced to the data. According to Jain (2010), clustering can help

understand the underlying data structure, identify significant features, and organize the data into

understandable groups. In the literature, different clustering procedures have been developed, each

with its own assumptions regarding the nature of a “cluster” (Jordan and Mitchell 2015).

2.4.2.1 Common Clustering Techniques

The four clustering techniques used in roofing analysis fall under the partitioning category. That is,

the clusters are created based on the proximity (i.e., similarity) of the data points to one another.

Partitioning clustering is robust, efficient with large datasets, and can be optimized to find the best

clusters if the number of clusters is predetermined (Shah and Jivani 2013).

Canopy Clustering: Canopy clustering is simple, fast, yet highly accurate (Sharma et al. 2014). The

first stage is to divide the data into overlapping subsets (i.e., canopies) based on distance thresholds

T1>T2 as shown in Fig. 2.19 (based on McCallum et al. 2000). These thresholds can be set manually

or obtained through cross-validation. For each point, the distance between the point and the centers of

clusters is examined. If the distance is smaller than T1, then this point is added to the cluster (otherwise

the point is considered to be the center of a new cluster). If the distance is smaller than T2, then the

point is removed from the set (McCallum et al. 2000). This way, points that are very close to one

another are removed to avoid redundant processing in the subsequent stage. The next step is centroid

calculation using a more rigorous distance metric (McCallum et al. 2000; Sharma et al. 2014).

Fig. 2.19: Relationship between Object Plane and Image Plane

K-Means Algorithm: Developed by Hartigan and Wong (1979), K-Means is a well-known

partitioning-based algorithm for grouping objects into clusters such that the within-cluster sum of

squares is minimized. After specifying the number of required clusters (k), the algorithm randomly

31

chooses k points to serve as the initial centroids of the clusters, and all other points are then assigned

to the centroid they are closest to. Afterward, for each cluster, a new centroid is computed by averaging

the feature vectors of all data points inside that cluster (Hartigan and Wong 1979). The data points are

reassigned to the clusters, based on the new centroids, and then new centroids are calculated. This

process is repeated until convergence.

Farthest First (FF) Clustering: In essence, the Farthest-First (FF) clustering algorithm operates in a

similar way to the K-Means algorithm in terms of centroid selection and cluster assignment. However,

FF chooses the point “farthest away from other cluster centers” as the new cluster center (Sharma et

al. 2012). Thus, unlike K-Means, FF does not need a second pass to revise the cluster centroids, which

reduces the processing time. Therefore, cluster centroids created by FF are real data points as opposed

to geometric centers created by averaging the data points’ attributes (Devi et al. 2020).

Expectation-Maximization (EM) Clustering: The EM algorithm is an iterative method that assumes

the dataset can be modeled as a linear combination of multiple Gaussian distributions (Abu Abbas

2008). As such, EM aims to find the parameters of the probability distribution best describing the shape

of the cluster where the probability (i.e., log-likelihood) that each data point belongs to a certain cluster

is highest (Devi and Gandhi 2015). After randomly initializing the cluster shape parameters, the

algorithm iterates between estimating the log-likelihood using the current cluster shape parameters,

and recomputing those parameters to “maximize” the expected log-likelihood from the previous

estimation step (Sharma et al. 2012). As such, the algorithm assigns each data point a probability

distribution belonging to a certain cluster (Seghal and Garg 2014).

2.4.3 Applications in the Construction Domain

Data mining utilizes sensory, image, and textual data to support decision-making. As such, data mining

and image analysis techniques have been utilized in many engineering and construction applications,

including condition assessment and asset management applications. Examples of these applications are

presented and discussed in the following subsections.

2.4.3.1 Image Analysis Research in Construction

Research in the field of computer vision has produced valuable numerous benefits in various industries

and applications, where the most evident those applications can be seen in drones and autonomous

vehicles (e.g. Mobileye 2019). The construction industry has also benefited from computer vision

techniques in terms of improving workers’ safety and productivity on construction sites. For example,

32

Son et al. (2019) were able to use convolutional neural networks to detect workers within the

construction site under varying poses and backgrounds (Fig. 2.20), achieving a 94.1% accuracy rate

with an average processing speed of 5 frames per second.

Fig. 2.20: Using CNNs to Detect Workers on Site (Son et al. 2019)

Seong et al. (2017) compared the performance of three types of classifiers (support vector

machines, artificial neural networks, and logistic regression) and two different color spaces (Lab and

HSV) regarding their suitability for a safety-vest detection system and found that using Support Vector

Machines had the most desirable accuracy. To mitigate the likelihood of falls from height, Fang et al.

(2018) developed an image-based system to detect if the workers are wearing safety harnesses (Fig.

2.21). The system relies on two CNNs; one detects the workers while the other detects the safety

harness.

Fig. 2.21: Detecting workers and safety harnesses using CNNs (Fang et al. 2018)

Using a video sequence, Roberts and Golparvar-Fard (2019) were able to develop a model capable

of detecting which activity a piece of equipment is performed by utilizing convolutional neural

networks, hidden Markov models, Gaussian mixture models, and support vector machine classifiers.

One of the benefits is being able to determine how much time a piece of equipment is being in use

33

(Fig. 2.22). The only sort of quantification that exists was along the time domain, where the time the

equipment spends doing a certain activity is being quantified.

Fig. 2.22: Equipment Activity Classification (Roberts and Golparvar-Fard 2019)

Yang et al. (2013) have used SfM among other stereo-imaging-based techniques to reconstruct 3D

models that can be used for Augmented Reality (AR) purposes by project managers and stakeholders.

Golparvar-Fard et al. (2009) created an as-built model from recorded images of the construction site,

comparing it with a 4D-BIM model for progress monitoring purposes (Fig 2.23).

Fig. 2.23: Superimposing 4D-BIM on Time Lapse Images (Golparvar-Fard et al. 2009)

2.4.3.2 Image Analysis in the Inspection Domain

Research works implementing image analysis techniques for structural health monitoring purposes are

featured in Table 2.3. As seen in Table 2.3, neural networks is the most common technique utilized for

defect detection. It is possible to categorize literature efforts in the application of image analysis in the

inspection domain into two categories: efforts for detection of defects; and efforts for quantification of

defect size. These are discussed as follows.

34

Table 2.3: Summary of Image-Based Analysis Applications in Inspection

 Objective Tool

D
et

ec
ti

o
n

C
la

ss
if

ic
at

io
n

Q
u

an
ti

fi
ca

ti
o

n

N
eu

ra
l N

et
w

o
rk

s

Ed
ge

 d
et

ec
to

rs

Fe
at

u
re

 M
at

ch
in

g

P
h

to
gr

am
m

et
ry

/S
fM

O
th

er

No. Reference Subject

1 Yudin et al. (2021) Roofing Defect Detection Y Y Y Y Y

2 Perez and Tah (2021) Interior Building Defect Detection Y Y Y

3 Perez et al. (2019) Interior Building Defect Detection Y Y Y

4 Napolitano and Glisic (2019) Masonry Crack Inspection Y Y Y Y

5 Cabo et al. (2019) Local Structural Displacement Y Y Y

6 Wang et al. (2019b) Masonry Damage Detection Y Y

7 Liang (2019) Post-Disaster Inspection Of Columns Y Y

8 Luo et al. (2019) Concrete Crack Detection Y Y

9 Wang et al. (2019a) Concrete Crack Detection Y Y

10 Dung and Anh (2019) Concrete Crack Detection Y Y

11 Liu et al. (2019) Concrete Crack Detection Y Y

12 Kim and Cho (2019) Crack Detection In Concrete Walls Y Y Y

13 Choi et al. (2018) Façade Inspections Y

14 Dawood et al. (2018) Moisture Marks Detection Y Y Y Y

15 Kumar et al. (2018) Sewer Defect Detection Y Y

16 Cheng and Wang (2018) Sewer Defects Detection Y Y

17 Dorafshan et al. (2018) Concrete Crack Detection Y Y Y

18 Hoang and Nnguyen (2018) Crack Detection Of Concrete Walls Y Y

19 Makantasis et al. (2018) Tunnel Defect Detection Y Y Y

20 Yousaf et al. (2018) Pavement Potholes Detection Y Y Y

21 Chen and Jahanshani (2018) Crack Detection In Concrete Bridges Y Y

22 Doulamis et al. (2018) Crack Detection In Tunnels Y Y

23 Cha et al. (2017a) Concrete Crack Detection Y Y

24 Hezaveh et al. (2017) Roofing Defect Detection Y Y

25 Chen et al. (2017) Bridge Crack Inspection Y Y

26 Zhang et al. (2017) Pavement Crack Detection Y Y

27 Cha et al. (2017b) Concrete Cracks, Steel Corrosion Y Y

28 Azhar et al. (2016) Pavement Potholes Detection Y Y

29 Zhang et al. (2016) Pavement Crack Detection Y Y

30 Yeum and Dyke (2015) Bridge Crack Detection Y Y

Detection Applications: Most of the ongoing research in the field of utilizing image analysis

techniques for inspections and structural health monitoring purposes is geared toward crack detection.

For example, Luo et al. (2019) develop a crack detection algorithm that is six times faster than its

conventional counterparts without sacrificing accuracy (Fig. 2.24). Their interesting approach

35

processes the image to extract vertical and horizontal cracks separately then fuses them to produce a

final image where the cracks are highlighted. Wang et al. (2019a) developed a learning model for

concrete crack detection that achieved 97% while maintaining efficient training and testing speeds

(0.76s for an image with a resolution of 4608 x 3456 pixels). Such an approach, however, requires a

lot of training data. To utilize a small data set, Liu et al. (2019) developed a U-net fully convolutional

network to detect concrete cracks (Fig. 2.25) that reached higher accuracy with smaller datasets

compared to the fully convolutional network approach used by other researchers such as Dung and

Anh (2019). To do that, they first extracted the features using conventional CNN, then used feature

fusion to obtain higher precision. Kim and Cho (2019) used region-based CNN to detect and quantify

concrete cracks based on their width. The method was able to successfully detect cracks that are wider

than 0.3 mm while finer cracks exhibited larger errors due to image accuracy issues (1 image pixel =

0.224mm). Chen et al. (2017) combined image processing techniques (image filtering, background

subtraction, and neural networks) with self-organizing map optimization (SOMO) technique to develop

a bridge crack inspection model with 90% accuracy. Cha et al. (2017a) used CNNs to detect concrete

cracks that achieved 98% accuracy for both training and testing sets, before expanding his detection

objectives to include steel corrosion, bolt corrosion, and steel delamination (Cha et al. 2017b). Despite

the impressive accuracy of the model, such accuracy was obtained using a training dataset of 40,000

different crack patches, a luxury that may not be afforded by other researchers.

Another prominent area of research is pavement defect detection. Yousaf et al. (2018) proposed

a pothole detection and localization scheme relying on the SIFT feature extraction algorithm and

support vector machine. Testing said scheme has shown its capability of pothole identification with

95% accuracy. Zhang et al. (2017) proposed a novel CNN architecture, CrackNet, for automated pixel-

level crack detection on asphalt surfaces. An experiment using a 200-image testing dataset showed that

CrackNet can achieve high Precision (90.13%) and Recall (87.63%) simultaneously. Furthermore,

CrackNet can be used in conjunction with the data collection software because of its capability to

utilize parallel computing techniques.

36

Fig. 2.24: Detection by fusing detected horizontal and vertical cracks (Luo et al. 2019)

Fig. 2.25: U-net CNNs for Crack Detection (Liu et al. 2019)

Works in other inspection “subdomains” include the CNN-based model developed by Makantasis et

al. (2018) for tunnel inspections, using the SURF feature detection algorithm to estimate structural

displacements (Cabo et al. 2019), the ANN-based model developed by Dawood et al. (2017) for

detection of moisture marks in subway networks, the CNN-based model developed by Wang et al.

(2019b) able to automatically detect efflorescence and spalling damages in historic masonry buildings,

and the CNN-based schemes developed by Cheng and Wang (2018) and Kumar et al. (2018) to

automatically detect cracks, deposits, and root intrusions in sewers from CCTV inspection videos.

In terms of recent efforts aimed at inspecting “non-structural” elements such as roofing, Perez

et al. (2019) used VGG-16 CNN architecture to develop a model capable of detecting interior building

defects such as mould growth and paint deterioration and reached an average accuracy of 89.25%. In

a more recent effort (Perez and Tah 2021) this CNN architecture was then replaced with a MobileNet

CNN with the aim of developing a smartphone application capable of real-time detections, but the

model accuracy dropped to 80%. In both cases, roofing inspections were not addressed. Hezaveh et al.

(2017) developed a CNN model with three convolutional layers and two fully connected layers to

detect hail effects in roof shingles. The model achieved 83.4% accuracy and the use of deeper CNN

architectures was proposed as a solution to further increase accuracy. Yudin et al. (2021) targeted the

development of a comprehensive automated roof detection framework, using image segmentation to

37

identify multiple defects within the same image as well as quantify their sizes. However, the proposed

model has low accuracy (mean accuracy < 65%) and long processing time (> 2.5 sec/image).

Quantification Applications: Compared to their detection/classification counterparts,

photogrammetry-based techniques for defect measurements and quantification are yet to gain the same

popularity. Napolitano and Glisic (2019) attempted to used photogrammetry to inspect cracks in

masonry structures. Their system did not directly measure the crack width, but it was calculated as the

distance between the bricks where the crack is detected, and did not attempt to measure the crack length

at all. A model that was tested using a real-life experiment (a steel frame building in West Lafayette,

IN) is the one developed by Choi et al. (2018) to inspect building facades. The developed model uses

a drone for automated image collection, then utilizes SfM techniques to generate a rectified photo

(orthophoto) of the entire building façade under inspection. Inspectors can then manually select regions

of interest for further inspection. A diagram outlining the full model framework is in Fig. 2.26. While

the developed model intended to save the inspectors the time, effort, and safety hazards related to

physically inspecting the building façade by recreating a scaled orthophoto of it, the damage

assessment and quantification phase remains a source for errors and inconsistencies as it is still

conducted manually, Hence, it can be concluded that applying photogrammetry for inspection purposes

has not been fully capitalized on. Furthermore, since the objective of the inspection is to detect and

measure crack dimensions, then just using the homography calculations (a subset from the SfM

algorithm featured in Fig. 2.26) might be able to achieve reasonable results without the need for

extensive computations required for the entire algorithm.

Fig. 2.26: Automated SfM Façade Inspection Model (Choi et al. 2018)

Multiple observations can be drawn based on the previous discussion as well as the works

presented in Table 2.3. First, it can be noticed that most researchers have focused on detecting the

cracks, a handful of researchers have attempted to estimate the crack width, yet none have considered

38

trying to calculate the length of the crack or quantify the size of the damaged area for quantity take-off

purposes. Second, in terms of areas of application, relatively little work has attempted to address “non-

structural” elements such as building interiors and roofs, despite their importance towards upholding

the functional integrity of the asset. Third, present works only adopt a binary detection approach (defect

vs. no defect) without investigating the level of severity of the defect detected, which is the main

information needed from inspection to facilitate decision making for repair prioritization, which will

be the target of this study. Hence, an analysis component of the overall original image to help draw

more useful information by looking at the bigger picture is currently missing.

2.4.3.3 Data Mining and Clustering Applications in Construction and Asset Rehabilitation

Typically, data mining applications involve the use of clustering techniques to identify which part of

the data belongs to a certain category of information. Similarly, text mining aims to analyze data from

textual reports to retrieve information that supports the decision-making process. This technique was

used in various engineering applications and produced beneficial results. For example, Al Hattab

(2021) combined text mining with social network analysis to examine the performance of BIM and its

relation to sustainability over a 15-year period, by analyzing 523 journal articles. Williams and Betak

(2016), used text mining to analyze equipment accident reports from the American Federal Railroad

Association, a publicly available database, and identify major themes in railroad equipment accidents.

A similar approach was used by Lv and El-Gohary (2016) to extract the key phrases describing project

stakeholders’ concerns received in emails and public hearings, before classifying them into groups

based on topic, to help practitioners detect key concerns at the initial stages of highway projects. Zhao

et al. (2016) analyzed occupational safety reports and investigations pertaining to electrocution events

and was able to identify activities and decision mistakes that increase the worker’s safety risk, thus

developing a set of decision-making chains to improve workplace safety.

Some recent efforts exist in applying data mining in the maintenance, inspection, and condition

assessment domains, which involve large data sets such as inspection data for bridges, buildings, and

other infrastructure systems. Liu and El-Gohary (2017) developed an ontology-based semi-supervised

model for information extraction from bridge inspection reports. The model was applied to 11 reports

and was able to identify deficiency type, severity, as well as required maintenance actions. Martinez

et al. (2020) used predictive modeling to forecast the condition of bridges from bridge characteristics

(e.g., size, structural type, etc.) and historical conditions. Gunay et al. (2019) used text-mining to detect

failure patterns in building components from textual data in the facility management database. The

39

model uses clustering to filter out the work orders that address failures using rule-mining to identify

the coexistence tendencies of certain keywords. Using a similar concept, Mo et al. (2017) analyzed

more than 80,000 maintenance requests to properly detect the urgency of a maintenance request based

on its textual description and assign the required maintenance crews. Several other studies “mined”

different sources of data to support efficient maintenance and optimum operation of building systems.

These include the works of Wang et al (2021) to facilitate efficient optimal control strategy for HVAC

systems; Zhou et al. (2019) to optimize the operational parameters for chiller plants; and Zhou et al.

(2021) of detecting anomalies of daily energy consumption patterns. Few efforts also focused on

building renovations and retrofitting. Ren et al. (2019) used actual smart meter data of 666 households

and used clustering techniques to identify the groups of households to retrofit their heating systems to

cost-effectively maximize energy savings. Kamari et al. (2021) also developed a BIM-based decision

support system to generate and evaluates various dwelling renovation scenarios in a Danish context.

The study clusters the generated renovation scenarios using sustainability Key Performance Indicators

(e.g., energy consumption, investment cost, indoor thermal comfort, etc.).

Based on the above literature review, clustering and text mining techniques can be applied

most effectively to large inspection datasets using the most relevant attributes. Various studies have

looked into investigating asset failures and supporting maintenance activities. To the author's

knowledge, no study exists on using data mining to analyze the inspection reports of buildings and

their many systems and sub-systems, for the purpose of identifying the most critical items and

supporting fund-allocation decisions. These decisions are most challenging for the owners of many

buildings, such as TDSB, particularly since the school inventory involves a large age range; the

inspection is done subjectively and often inconsistently by a large number of inspectors; and inspection

is done at a high level that leaves many assets at the same criticality level. These factors require careful

design of a data mining system in order to be useful and practical. Among the many building

components, the paper focuses on roofing as a major component that requires frequent inspections and

extensive capital renewal activities.

 Summary of Research Gaps

Currently, most inspections for buildings take place in a manual fashion, either visually or with

simplistic hand-held devices, with the inspection process being largely subjective and dependent on

the experience of the inspectors. Also, current asset management software act mainly as repositories

of the manually collected data, and lack smart decision support for defect quantification, work

40

packaging, and efficient delivery planning for scattered rehabilitation tasks. Image-based analysis

techniques have diverse abilities to extract information directly from collected images and videos, thus

having good potential to automate the inspection process. However, the literature review revealed that

most research is geared towards the detection of defects without classification or quantification.

Classifying the defects based on severity is a challenging problem because the different classification

categories (e.g., high damage, medium damage, or low damage) tend to overlap and even trained

professionals produce inconsistent classifications. Even with proper inspection frameworks, existing

inspection reports offer the data without enough granularity to facilitate the prioritization and fund

allocation processes, forcing the decision-maker to perform these decisions manually. This is

challenging, especially if the asset portfolio is large, and is highly sensitive to the decision maker’s

biases. Scattered repetitive scheduling seems to be the best way to tackle the delivery of rehabilitation

work, but there is little work regards improving the scheduling, optimization, and visualization aspects.

Furthermore, applying repetitive scheduling to rehabilitation work poses a new challenge in terms of

proper packaging and determining the number of units on which repetitive scheduling calculations will

be applied.

41

Chapter 3: Data Collection and Proposed Framework

for Smart Asset Rehabilitation

 Introduction

This chapter introduces the components of the proposed smart asset rehabilitation framework,

addressing the inspection, prioritization, and fund allocation, and delivery phases. Key building

components are presented and roofing is selected as a key asset that requires detailed asset

management. For the criticality assessment, the framework uses Image analysis (Convolutional Neural

Networks) to detect and quantify damages and then integrates image analysis with text mining of

inspection reports to classify roofs according to their condition and identify the roofs that are most

worthy of the limited rehabilitation funds. The short-listed roofs are then passed to the work packaging

and project delivery phase. For this purpose, the proposed framework treats roof repairs as scattered

repetitive units, thus saving time and cost of the economy of scale. New CPM-LOB formulations and

visualization have been developed to address the practical challenges that are commonly encountered

in delivering scattered projects and violate meeting deadlines. In addition to explaining the different

components of the framework, the process of acquiring the necessary data used in developing and

validating the model is also presented.

 Data Collection and Analysis of Key Building Assets

This research has been conducted in collaboration with the Toronto District School Board (TDSB),

which is the largest school board in Canada, owning more than 550 schools and other buildings in the

GTA area. For TDSB and other large owner organizations whose buildings exhibit a large range of

age, inspection plays an important role as a first step in sustaining the healthy performance of those

buildings while abiding by the tight budgetary constraints. Typically, external inspection consultants

are hired to inspect the schools, over a five-year period, and submit individual school reports that

provide data about the condition of all school systems and subsystems, as defined in the standard

hierarchy of Fig. 3.1, and suggest rehabilitation strategies (called events) for selected components. The

inspection process follows the ASTM E2018-15 (ANSI 2021) condition assessment standard and

includes visual analysis, interviews with school representatives, and reviews of building documents.

Representative photos of asset conditions are also documented and included in the reports. For each

component in the hierarchy of Fig. 3.1, TDSB has historical data about its typical life span, unit cost,

and possible defects, which are useful for the analysis.

42

Fig. 3.1: TDSB Building Hierarchy

Among the large number of schools owned by TDSB, inspection reports of 400 schools were

obtained as a sample to conduct this study. Each report (pdf file with 20 to 40 pages) starts with the

overall assessment of the school systems, followed by a list of the recommended repair/replacement

events. Using a custom Macro program, Information related to more than 15,000 unique rehabilitation

events was obtained as a result of the data extraction process. The schools under investigation were

constructed between 1887 and 1999, with sizes ranging from 500 to nearly 70,000 square meters. The

combined cost of all rehabilitation events required for all schools is over $1.1 billion. High-priority

events (35% of the total events) account for half of the total required rehabilitation costs. And those

high priority events need to be accomplished within five years only (2003-2007), which is problematic

to TDSB, given the financial and time constraints (e.g., much of the rehabilitation work can only take

place over the summer when schools are closed). In the absence of a more granular classification, the

prioritization and fund allocation efforts become very challenging.

Among all the events, the building components that take the largest share of rehabilitation costs

are shown in Fig. 3.2. As shown in the figure, Roofing represents the costliest component with the

majority of its events being labeled as high priority (550 or 71% of all roofing events) and thus has

been focused upon in this paper. The total rehabilitation cost required to fix all roofing elements is

approximately $140 million, about 14% of all rehabilitation needs of TDSB schools. High-priority

roofing events require over $120 million, making it the component in direst need of rehabilitation work.

These numbers, therefore, highlight the research problem indicated earlier, i.e., the daunting task of

43

identifying the roofs that are most eligible for rehabilitation, given the many roofs in high priority and

the very limited funds available.

Fig. 3.2: Components with the Highest Total Event Cost

In addition to being a costly component, roofing was selected as the main focus for this study

because it gets frequently damaged as it is exposed to the environment, its repairs can either be done

using in-house staff and resources or subcontracted to external professionals, and require repetitive

scheduling to manage the delivery of scattered roof locations.

 Components of Proposed Framework

With roofing as an example asset, the proposed framework for smart rehabilitation is presented in Fig.

3.3. The model incorporates three main components as follows:

Fig. 3.3: Components of Proposed Smart Asset Rehabilitation Framework

44

3.3.1 Inspection

This part is done by expert inspectors and it includes multiple phases. Inspectors perform manual

inspections of the roof to assess its current conditions. These inspections are mostly visual (looking for

visual defects such as cracks), but sometimes include the use of simple semi-automated tools. Other

phases of the inspection process include interviewing building representatives to gain insights about

the building performance, as well as reviewing old documents to understand the building history

(Mostafa et al. 2021). The results of these inspection activities are combined in a report that highlights

the current condition of the asset and suggests future rehabilitation actions if needed.

3.3.2 Prioritization and short listing

a. Utilizing Inspection Images

Because the images in the TDSB inspection reports were of low resolution, other roof images were

taken from the University of Waterloo campus buildings for the purpose of the image analysis

development. The University of Waterloo is one of the largest universities in Canada and its campus

includes more than 40 buildings. After meeting with representatives of plant operations, access to the

roofs was granted and images of 21 buildings were collected. The process of the image collection and

labeling is discussed in detail in section 4.2, while the visited buildings are highlighted on the campus

map in Fig. 3.4.

45

Fig. 3.4: Locations of the University of Waterloo buildings where roof images were taken

The first module developed as part of the proposed asset rehabilitation framework aims to

efficiently analyze the inspection images. It is composed of two CNN models; one for defect detection,

and the other for defect type classification and size quantification. In its current form, an inspector can

collect images of the roof or record a video and then feed the collected images to the model, where

classifications are obtained automatically. Consequently, after successful defect quantification, linking

the model to a work packaging and estimation database (e.g., RS means) can produce an automated

estimate for the required rehabilitation work.

b. Data Mining of Textual Reports

The second module incorporates additional building information such as age and damage description

information obtained by textual data mining of the inspection reports, in addition to the results of image

analysis, and categorizes the building into one of four categories according to its current condition and

its need for repairs. Then, the fund allocation system can now perform an optimization procedure based

on the building condition and required rehabilitation costs to better utilize the available funds.

46

The inspection reports of 400 the schools used in this study are pdf files with 20 to 40 pages

each. Extracting useful information from the inspection reports, however, was very challenging as the

inspection is conducted at a high level, with details about the specific defects and extent of damage

embedded in the “Event justification” textual description, and the text descriptions of related photos.

The specified “Event Priority” subjectively classifies the event into three main categories (High,

Medium, and Low), thus the chance of having many events in the same category is very high, without

further granularity to help guide the fund allocation process. The sample event in Fig. 3.5 shows the

following information that was entered during inspection, and extracted in this study from inspection

reports using a VBA macro code developed by the authors to automate the extraction of PDF data:

Fig. 3.5: Example of TDSB Event Documentation

• Event Type: Specifies one of three possible suggestions: (1) Replace the component; (2)

Repair the component, or (3) Conduct Further Study to evaluate the component’s

condition;

• Event Year: Suggested rehabilitation year by the inspector, and is typically within five

years from the date of inspection;

47

• Event Cost: The event costs were computer-generated, based on a template created by the

inspector using various construction cost estimation reference databases such as RS Means,

Whitestone, and Hanscomb pricing guides, as well as the TDSB’s own database;

• Event priority: The inspector’s assessment of the event’s urgency: High, Medium, or Low;

• Event Description: A brief description of the event nature;

• Event Justification: A detailed explanation of the component’s current condition and

defects (if any) as well as any implications that may result from delaying the rehabilitation

event;

• Photos with defect samples.

Following the data extraction process, a database of all extracted events was compiled, as

shown in Fig. 3.6, with information added about each school (age and size), and component

information from TDSB databases (importance, theoretical life, and unit cost). A sample of the textual

information for a roofing event is shown in Fig. 3.7, describing the various defects noticed during

inspection.

Fig. 3.6: Database of Suggested Rehabilitation Events

48

Fig. 3.7: Sample of Textual Description for a Roofing Event

3.3.3 Delivery planning

Once the most critical rehabilitation events are identified through the first two modules, the third and

final module aims to develop an efficient delivery plan. But, instead of treating every rehabilitation

event as a separate project, this module treats them as units of a repetitive project. Such treatment

allows for the use of repetitive scheduling techniques such as LOB calculations which saves time and

cost by applying economies of scale and capitalizing on worker’s momentum and learning curve. In

reality, current LOB calculations fail to account for practical constraints such as unidentical unit sizes,

non-integer start and finish times, and varying delivery rates which lead to project overruns. This

module incorporates novel computations, visualizations, and algorithms to remedy these shortfalls.

 Summary

This chapter has introduced the components of the proposed roof rehabilitation framework. The

framework consists of three main components; a) Image-based analysis; b) Text-based analysis; and

c) Repetitive Scheduling. First, the framework determines the size and type of defects that the roof

exhibits based on analyzing photos of the roof. Then, the results of the analysis are combined with text-

based analysis that investigates other features of the roof such as age to assign the roof to one of four

criticality levels based on how imminent the rehabilitation work has to be, before an optimization

model selects the roofs that are most worthy of repair based on the limited budget. Finally, the final

model addresses the selected roofs and produces an optimized delivery schedule for the required

rehabilitation work. To account for the scattered and complex nature of the infrastructure renewal

projects, new computations, visualizations, and algorithms are presented to overcome the shortcomings

of conventional LOB calculations. Each of the three modules shall be discussed in more detail in the

coming chapters.

49

Chapter 4: Convolutional Neural Network for

Defect Detection and Classification

 Introduction

As highlighted in Fig. 4.1, this chapter introduces the first module of the roofing rehabilitation

framework; an image analysis model that uses Convolutional Neural Networks (CNNs) for defect

detection and type classification directly from roofing images. As seen in Fig. 4.2, the proposed model

is a two-phased model, with the first phase responsible for damage detection while the second phase

analyzes the defected images to determine the damage type. The chapter starts with the experimental

setup implemented for data collection and preprocessing, before discussing the proposed architecture

for the different phases of the model. Finally, the results of the model validation are presented.

Fig. 4.1: First Module of the Proposed Framework

Fig. 4.2: Proposed CNN-based Module

 Experimental Setup

A 16-megapixel phone camera with a field of view (FOV) of 78 degrees was used for the image

collection process. Image resolution was set to 1,920x1,080 pixels. To eliminate distortion, the camera

was mounted on a selfie stick and maintained parallel to the ground surface at all times. The camera

was also kept at a constant height (waist level). This meant that all the photos taken correspond to areas

50

of the same size. As shown in Fig. 4.3, the size of the area captured in the photo frame was calibrated

using an object of known size (black folder, 30X22.5cm). It was found that the total area captured in

the photo is 1.5X1.12m.

Fig. 4.3: Reference Image used for Calibration

To capture a large number of images, the camera was set to “video mode” and a video

traversing the roof surface was recorded. Then, image frames were extracted from the recorded video.

The videos were recorded at a speed of 30 frames per second, and 1 in 10 frames was extracted. This

corresponds to an image capturing speed of 3 images per second. This resulted in over 11,000 images

in total. The retrieved images were then manually labeled according to the defect type they exhibit.

The most prevalent damage types were vegetation (183 images) and water ponding (254 images).

Examples of the labelled images showing the three categories (no defect, vegetation, and ponding) are

in Fig. 4.4 as well as Appendix A. Images were labelled as “defected” if the defect covers 20% or more

of the overall image.

(a) No Defect (b) Vegetation (c) Ponding

Fig. 4.4: Example of Labelled Images

30 cm

22.5 cm

51

4.2.1 Dataset Augmentation and Splitting

Due to the relatively small number of images showing the different defects (496 images out of more

than 11,000), data augmentation techniques were used. The images were rotated to the left by 90

degrees, to the right by 90 degrees, flipped horizontally, and flipped vertically. An example of the data

augmentation process is in Fig. 4.5. This has increased the size of the image dataset to 2480 images.

In addition to increasing the size of the dataset, models trained with a dataset that has undergone data

augmentation exhibit better generalization and more adaptability to different architectures as opposed

to parameter fine-tuning (Hernandez-Garcia and Konig 2019). To ensure that the dataset used for

training has an equal representation of both categories (defects and no defects), 2608 images that show

no defects were randomly selected to be part of the training dataset, bringing the total size of the dataset

to 5088 images.

`

Fig. 4.5: Example of Image Augmentation

 Proposed CNN Architecture

Despite the presence of many powerful networks such as ResNet, AlexNet, VGG, GoogleNet, and

others, the original Zeiler-Fergus network architecture (Zeiler and Fergus 2014) which won the Large-

Scale Visual Recognition Challenge 2013 is still being used by many researchers today to perform

their classification tasks (e.g., Cha et al. 2017b, Deng et al. 2019). This study uses a simpler version of

the Zeiler-Fergus network whose architecture can be seen in Fig. 4.6. The parameters of the

convolutional and maxpooling layers are denoted as (number of kernels@length and width of each

kernel). For example, in the first convolution layer, the input image is convolved with 24 different

kernels, each having a length and width of 10 pixels. The third dimension of the kernel is always equal

to the third dimension of the input (i.e., the number of channels). Hence, the third dimension of the

convolutional kernels in the first layer is equal to three. The output of the first convolutional procedure

52

will have 24 channels (one channel for each convolution kernel). As such, the maxpooling operation

is performed at the first phase using 24 kernels whose dimensions are 4x4x24. This is because the

objective of maxpooling is to perform down sampling takes place along the length and width of each

channel.

Fig. 4.6: Overall Architecture of the Proposed CNN

The rectified linear unit (ReLu) function is used as the activation function. To save computing

time and to accommodate the different image orientations, all images are resized into 256x256 before

the start of the training, validation, or prediction phases. The same architecture is used for both

networks: type classification, and severity classification. As such, the output categories 1,2 refer to no

defect, and defect in the case of CNN1, but refer to vegetation, and Ponding in the case of CNN2. The

final output is calculated using a softmax function, which calculates the probability of the input

belonging to each output class before announcing the output as the class with the highest probability.

To write the goal of CNN (minimize the difference between predicted classification and correct

classification) in a mathematical form, then the objective is to minimize the loss function E=D-f(W).

Where D is the “correct output” while f(W) is the predicted output as a function of the input parameters

W. The loss function is minimized by estimating the impact of changing the parameter values on the

loss function (i.e., the derivative of the loss function with respect to the parameter values). To solve

this minimization problem, this network relies on the Adaptive Moment Estimation (ADAM) optimizer

(Kingma and Ba 2015). ADAM is an algorithm for first-order gradient-based optimization that applies

conventional stochastic gradient descent principles but adds a factor (γ) depending on the direction of

the gradients (higher values for gradients that point in the same direction) to prevent oscillation and

reach convergence faster (Kingma and Ba 2015). Finally, this operation is performed after a batch of

inputs is fed to the model (64 images in the case of the model used in this paper). This serves two

purposes; it reduces the overall computation time since the process is done once after each batch as

53

opposed to once after each image, and prevents the model from overfitting based on the parameters of

one image only.

4.3.1 Advantages of the Two Step Approach

Multiple experiments were conducted to reach the most efficient model. For example, the proposed

two-step approach was compared to a multi-classifier CNN that aims to detect and classify the defects

in one step (i.e., the CNN outputs are: no defect, vegetation, or ponding). Although it had a comparable

accuracy level to the two-step approach when it operated on the training and testing datasets,

performing the campus-wide deployment has highlighted various issues with the single-step multi-

classifier. First, the performance of the defect detection (vegetation vs. ponding) phase has

deteriorated. Second, and most important, a large number of images that originally showed defects

(26%) were classified as no defects, which leads to an underestimation of the roof condition. This is

because minimizing the number of class labels increases the accuracy of the model, as images can be

misclassified in the case of having too many labels compiled into the same classifier. This has been

verified by a case study, which will be explained in more detail later in this chapter.

 Code Development

The network was developed and compiled using the Scientific Python Development Environment

(Spyder®), part of the Anaconda® scientific programming distribution (Individual Edition).

Anaconda was chosen as it already contains and/or easily supports the installation of many python

packages that are essential to this work such as PyTorch, NumPy, and Pandas. The developed code is

composed of five different modules as follows (Full code in Appendix B):

1. Model: includes the model architecture in terms of the layer composition and activation

functions.

2. Dataset: responsible for retrieving the image dataset, augmenting the images to fit the network

requirements, translating the textual labels to numerical values for training, and calculating the

weighted sampling ratios in case of training with unbalanced data.

3. Myutils: includes necessary functions for interpreting the network results, such as calculating

the network accuracy in the training phase, and producing the output labels in the prediction

phase (Screenshot in Fig. 4.7)

4. Train: responsible for executing the entire training phase. This includes:

54

a. Calling the Dataset module to retrieve the training and validation datasets and feed

them to the CNN;

b. Set the different hyperparameters such as the seed value (for experimentation purposes,

number of training epochs (and loop through them), the batch size, and the learning

rate;

c. Report the training results (training and validation accuracy for each training epoch);

and

d. Save the model parameters to be used for the prediction phase

5. Predict: responsible for executing the entire prediction phase. Including loading the model and

the prediction dataset, and reporting the prediction results.

Fig. 4.7: Screenshot of Myutils Module in the Developed Code

 Implementation Details and Results

All experiments were performed using the python programming language (CUDA 7.5) on a personal

laptop with Core i7-10750H@2.6GHz CPU, 16GB RAM, and 4GB NVIDIA GeForce GTX 1650

Graphical Processing Unit (GPU). The learning rate was set to be 0.0001 while the batch size was set

to 64 images. All datasets have undergone a 75/25 split where 25% of the images were set aside to test

the model’s predictive ability, while the remaining 75% went through another 75/25 split for training

and validation purposes, respectively.

55

4.5.1 Detection Phase (Defect Vs. No Defect)

The first developed CNN was to classify the image as defect or no defect. It was trained for 1000

epochs with an average processing time of 3 minutes per epoch (2862 images). The classification

accuracy (i.e., percentage of correct classifications) was used as the evaluation metric of the CNN

performance. The model accuracy for the training and validation datasets, per epoch, are presented in

Fig. 4.8. The graph shows that the model exhibits satisfying performance, achieving close to 95%

accuracy on both datasets.

Fig. 4.8: Model Accuracy for Training and Validation Datasets

To further validate the performance of the model, it was tested on the prediction dataset, a

portion of the images that the model did not see during the training phase. Table 4.1 shows the model

prediction results. It can be seen that the model exhibits good prediction results overall, achieving

94.9% accuracy. Furthermore, the amount of false negatives (i.e., images with defects that were

misclassified) is less than 3%, which means that asset management personnel can trust the model’s

outputs.

Table 4.1: Confusion Matrix for the Model Prediction Results

 True Label

 No Defect Defect

Predicted
Label

No Defect 605 46

Defect 19 594

56

With the limited availability of image classification models related to roofing defects in the

literature, it was challenging to compare the performance of the proposed model to the state of the art.

Table 4.2 compares the model to existing roofing defect detection models in terms of accuracy and

speed. In addition, to gain a better sense of the model performance, Table 4.3 compares the proposed

model to similar models created for different purposes such as pavement (e.g., Li et al. 2020; Mei and

Gul 2020), and Concrete (Cha et al. 2018) defect detection. The objective of these comparisons is to

show where the proposed model stands in terms of its effectiveness for its intended purpose, compared

to the stat of the art models used in different fields such as concrete or pavement inspections.

Table 4.2: Comparing the Proposed Model to Existing Roofing Detection Models

Model Accuracy Processing Time per Image

Proposed Model 94.9% < 0.01 sec

Hezaveh et al. 2017 83.4% N/A

Yudin et al. 2021 65% > 2.5 sec

Table 4.3: Comparing between the Proposed Model and Others in the Literature

Model Purpose Accuracy

Li et al. 2020 Pavement Crack Detection 94%

Mei and Gul 2020 Pavement Crack Detection 92%

Perez et al. 2019 Building Defect Detection 89.1%

Cha et al. 2017b Concrete Defect Detection 89.7%

Proposed Model Roofing Defect Detection 94.9%

4.5.2 Classification Phase

A second CNN model was developed with the purpose of classifying the defects according to their

type. For this experiment, only the images that include vegetation and ponding defects (2185 images)

were used. The model was trained for 1000 epochs and had a faster training time (approx. 1 minute per

epoch) because the dataset was smaller (1230 images). The model accuracy for the training and

validation datasets, per epoch, are presented in Fig. 4.9. It can be seen that not only the classification

model was able to achieve higher accuracy for both training and testing datasets, but it was done at a

smaller number of epochs. This was further clarified when the model performance was tested against

the prediction dataset, yielding 97% accuracy (compared to 94.5% accuracy of the detection model).

57

Fig. 4.9: Model Accuracy for Training and Validation Datasets

 Model Validation

Based on the promising results shown by the model on the training, testing, and prediction datasets.

The next step was to validate the model’s performance in real-life scenarios. This will be explained in

this subsection in two phases. First, a detailed analysis of the results of two buildings will be presented

as validation case studies. Next, the results of large-scale deployment over 21 buildings in the

University of Waterloo are presented.

4.6.1 Experiments on Individual Buildings

To show the potential of the proposed method, two buildings (Chemistry 2 and Douglas Wright

Engineering) were used as case studies. The locations of the selected buildings are highlighted in Fig.

4.10 (a zoomed-in version of the map previously shown in Fig. 3.4). Photos were collected in a manner

similar to the one explained earlier as part of this study’s experimental setup.

Fig. 4.10: Case Study Buildings

58

Example 1: Douglas Wright Engineering (DWE) Building

To further show the potential of the proposed method, the Douglas Wright Engineering (DWE)

building was selected as a case study and investigated in more detail. A total of 494 images were

collected to be used in this case study. First, the images were manually examined to determine whether

they include a defect. Then, all 494 images were used as inputs for CNN1 responsible for defect

detection. Detection Results of CNN1 are in Table 4.4.

Table 4.4: Detection Results of CNN1

 True Label

 No Defect Defect

Predicted
Label

No Defect 383 --

Defect 9 102

As seen in Table 4.4, no defects were missed by the CNN1, but there are 9 images (3.6%) that

were misclassified as defects even though they were not. Next, the 111 images that were initially

classified as “defects” were used as input for the second CNN responsible for defect type classification.

Results are shown in Table 4.5.

Table 4.5: Detection Results of CNN2

 True Label

 Ponding Vegetation No defect (misclassification)

Predicted
Label

Vegetation 8 56 9

Ponding 38 -- --

Example 2: Chemistry 2 (C2) building

The Chemistry 2 building (C2) was then selected as a second case study. A total of 490 images were

collected. First, the images were manually examined to determine whether they include a defect. Then,

all 490 images were used as inputs for the first CNN (CNN1) responsible for defect detection.

Detection Results of CNN1 are in Table 4.6.

59

Table 4.6: Detection Results of CNN1

 True Label

 No Defect Defect

Predicted
Label

No
Defect

327 --

Defect 48 116

As seen in Table 4.6, 48 images were misclassified as defects even though they were not

(Examples in Fig. 4.11). Reasons for that include shadows (Fig. 4.6a) and areas where there is a change

in the surface texture (Fig. 4.11b). It is important to mention that no defects were missed by CNN1.

Next, the 164 images that were initially classified as “defects” were used as input for the second CNN

responsible for defect type classification. Results are shown in Table 4.7.

Table 4.7: Detection Results of CNN2

 True Label

 Ponding Vegetation Flashing No defect (misclassification)

Predicted
Label

Vegetation -- 97 -- 8

Ponding -- -- 17 40

 (a) Shadows (b) Change in Surface Texture

Fig. 4.11: Examples of misclassifications

An important observation is that all the images that were misclassified as “defects” because

shadows were present were eventually classified as a ponding defect, while the ones that had a change

in the surface texture were classified as a Vegetation defect. There were images that showed flashing

defects (example in Fig. 4.12). Since there was no specific category for flashing defects due to the

absence of sufficient images to properly train the model, these images were eventually classified as

ponding defects. Finally, it was noticed that the lower the severity of the vegetation, the higher the

probability of it being misclassified.

60

Fig. 4.12: Example of a Flashing Defect

Table 4.8 compares the classification results of the proposed two-phased system to that of a

single-phase multiclassifier. As expected, it can be seen in Table 4.8 that the accuracy of the proposed

model is superior to that of the single-phase model. Also, the number of false negatives (i.e., images

with defects that were misclassified to include no defects) has increased in the case of the single-phase

model. This is problematic to asset management personnel as underestimating the severity of the asset

would delay the delivery of the necessary repairs, which increases the risk of the asset failure.

Table 4.8: Comparison of Results between Two-Step and Single-Step Classifiers

 Two-Step Classifier Single-Step Multiclassifier

No. of Images 490 490

Correct Classifications 442 403

Accuracy 90% 82%

False Negatives (i.e., Missed Defects) -- 36

4.6.2 Campus-Wide Deployment

The model was applied to inspect the roofs of the 21 buildings highlighted in Fig. 3.4. Table 4.9 shows

the full results of the two-phase model. For each roof, the total number of images collected and the

number of images detected as defects (results of CNN1) are shown in columns 2 and 3, respectively.

Column 4 shows, as a percentage, how much of the collected images have been classified as non-

defective. This can be used as an indicator for the overall roof integrity as shown in the heat map in

Fig. 4.13. The results of the second phase are shown in columns 5-8. The number of images that exhibit

each defect type are in columns 5 and 6. As the size of each picture frame is known (1.5X1.12m), the

number of images (columns 5 and 6) are then used to calculate the total defect area, listed in columns

7 and 8.

61

According to the inspected defects, there are two possible ways to repair a roof. First, a full

replacement for the defective area. Such replacement is supposed to restore the roof to its original

condition (i.e., 100%) and clear all defects, regardless of type. The second method is to simply clean

up the vegetation accumulation. This method is less costly, but it only removes vegetation defects and

leaves the ponded areas in their existing condition. As such, the improvement obtained from cleaning

up vegetation can be calculated as improvement due to replacement * (area of vegetation defect / total

defected area).

Fig. 4.13: A heat Map of University of Waterloo Campus Buildings According to the Integrity of

their Roofs (based on data from Table 4.9: Column 4)

62

Table 4.9: Results of the Proposed Two-Phase Model, Applied to Roofs of 21 Buildings

(1) (2) (3) (4) (5) (6) (7) (8)

Building
Total
No. of
Images

No. of
images

with
defect

% of no
defect
images

No. of
Ponding
Images

No. of
Vegetation

Images

Ponding
Area (m2)

Vegetation
Area (m2)

BMH 507 23 95% 23 0 38.64 0

C2 490 164 67% 58 106 97.44 178.08

CPH 436 9 98% 7 1 11.76 1.68

DC 816 108 87% 62 44 104.16 73.92

DWE 494 111 78% 38 73 63.84 122.64

E2 542 31 95% 13 15 21.84 25.2

E3 316 35 89% 2 22 3.36 36.96

E5 727 10 99% 3 3 5.04 5.04

E7 646 51 92% 20 17 33.6 28.56

EC1 646 84 87% 55 29 92.4 48.72

EC2 748 53 93% 16 33 26.88 55.44

EC3* 822 204 75% 102 58 171.36 97.44

EC4 673 74 89% 52 20 87.36 33.6

EC5 490 41 92% 22 15 36.96 25.2

EIT 245 35 86% 22 13 36.96 21.84

GSC 178 95 47% 89 6 149.52 10.08

HH 243 22 91% 19 3 31.92 5.04

MC* 932 298 68% 246 52 413.28 87.36

NH 401 35 91% 15 10 25.2 16.8

QNC 404 19 95% 15 2 25.2 3.36

TC* 626 274 56% 151 123 253.68 206.64
*: Snow buildup and defrosting have led to an increased no. of defected images

It is assumed that the cost for replacing the defected area of the roof is $300 per square meter

of defected area, while the vegetation cleanup cost is $100 per square meter of vegetation defect. As

such, the cost for fixing each roof can be calculated based on the size of the defected area calculated

in columns 7 and 8 in Table 4.9. With the data in column 4 in Table 4.9 being used to indicate the

existing roof condition, a simple optimization problem was then developed to maximize the value of

the rehabilitation efforts (difference between existing and post-repair roof conditions) while abiding

by budgetary constraints (budget limit = $400,000). The formulation of this problem can be seen in

Figs. 4.14 and 4.15. Fig. 4.15 shows that, according to the existing budget limits, all buildings can

63

undergo rehabilitation. However, the method of rehabilitation will differ depending on the building

condition and the type of existing defects. Only 13 buildings will undergo full replacement, while

vegetation cleanup is sufficient for the other 8 buildings. The total cost of the rehabilitation efforts is

$391,608 (less than the $400,000 budget limit) and improves the overall condition of the buildings by

an average of 12%.

Fig. 4.14: Mathematical Formulation of Solver Setup

Fig. 4.15: Screen Capture of the Solver Setup

 Potential Improvements

One of the potential improvements is collecting images that cover larger areas to reduce the data

collection burden. In that case, simply measuring the area of defect as the total area that the image

covers will significantly overestimate the defect size and, consequently, the criticality of the building

condition. To that end, homography can be used to extract the area of defect from the captured image.

Experiments to inspect the effectiveness of homography have been conducted on images of pavements

64

that show cracks. In this experiment, a Tim Hortons gift card of known dimensions was used to

calibrate the image. Then, the start and end points of the individual cracks were manually selected, and

the lengths were automatically calculated. Fig. 4.16 shows the true (Fig. 4.16a) and calculated (Fig.

4.16b) crack lengths, highlighted on the individual cracks, while Table 4.10 shows the calculation

results and errors. Table 4.10 shows that the average error between the ground truth and the image-

based measurements is 4.23%, thus demonstrating its potential for future study and development.

Fig. 4.16: Ground Truth (a) and Homography-Calculated (b) Crack Lengths

Table 4.10: Comparison Between Image-Based Crack Measurements (Fig. 4.16b) And Their Ground

Truth Counterparts (Fig. 4.16a).

Image-Based (cm) Actual (cm) Error (%)

1 37 40 7.5

2 47 48 2.1

3 26 28 7.1

4 15 15 0

5 47 45 4.44

The same technique was used to calculate the area of cracks. A polygon surrounding the cracks

was created whose points were manually picked from the image (Fig. 4.17). Then the shoelace

algorithm (Equation 4.1) was used to calculate the area of the polygon where homography was used to

translate the picked points from the image plane coordinates to the real-world plane coordinates. The

overall area came out to be 4652 cm2, representing approximately 75% of the overall area. It is noted

for these preliminary experiments, the points marking the boundaries of the cracked area were picked

manually. This will be automated in the remaining part of the work.

[4.1] 𝐴 = |𝑥1𝑦2 + 𝑥2𝑦3+. +𝑥𝑛−1𝑦𝑛 − 𝑥2𝑦1 − 𝑥3𝑦2−. −𝑥𝑛𝑦𝑛−1 − 𝑥1𝑦𝑛|

65

Fig. 4.17: Polygon used to Calculate the Overall Area of Cracks

 Other potential improvements include the use of infrared imaging to detect hidden defects,

using image registration information to pinpoint the defect location within the structure, and connecting

the defect information obtained from the image analysis to a BIM model.

 Conclusion

This chapter has presented the first module of the roof rehabilitation framework; a two-step CNN

model is proposed to detect roofing defects based on 2D images, as well as classify them according to

their type. More than 5,500 images from different roofs across the University of Waterloo campus were

used to train and test the model’s classification power. The model has shown promising results,

achieving approximately 95% accuracy level during the detection phase, 97% accuracy during the

classification phase, and exhibiting no major biases. The images used for the model are of constant

real-life dimensions (1.5x1.12 m) which helps decision-makers classify the roofs according to the

extent of the defects (the more the images of the defects, the bigger the size of the damage and the

more critical the roofing condition) as well as quantify the damage size for appropriate rehabilitation

work packaging and estimating. The images are originally obtained from video recordings which

means that the model, if given the proper computational resources, is capable of performing real-time

detections. This is further proven by the model performance speed (0.08 sec/image for both phases).

The proposed model has surpassed other models existing in the literature and it is expected that the

model would remain on par with, if not surpass, existing notable CNN architectures used in the industry

such as ResNet and VGG. For example, VGG system architecture includes 12 layers while the

proposed model has only 9. Hence, it is expected that the proposed model would be the faster

performer, with little to no accuracy drawbacks.

66

The model, in its current form, is faster and more efficient than manual inspections. The total

length of videos captured for all buildings is about 90 minutes. As mentioned earlier, the CNN takes

around 0.08 seconds per frame to complete its analysis. This means that all 11,000 images can be

analyzed in around 15 minutes. Assuming an extra minute is needed to adjust the camera for each

building, and an extra minute is needed to extract the frames from each video. Then the total time

needed to complete the entire roof inspection process for all 21 buildings is less than three hours.

Inspecting a building using the conventional methods typically takes around 3 hours (Kamarah

2019) and for every hour of on-site inspection, 3 hours are spent in the office to analyze and document

the inspection observations (Abou Shaar 2012). Assuming the onsite visits will remain the same, each

building will require nine hours of office work to analyze and document the collected data to provide

the final assessment. Assuming that one of the nine hours are dedicated for analysis of roofing

inspection data, analyzing the data for the 21 buildings would take a total of 21 hours. As such, the

proposed method saves more than 18 hours of work (over 85%). Faster inspections mean that they can

be performed more frequently which makes the inspection data more updated and relevant to the

decision-making process. Finally, the assessments performed by the proposed model are consistent,

objective, and truly reflect the condition of the asset.

Part of the inspection process, currently, includes interviews with building representatives and

reviewing old documents to gain insights about the current state of the building (Mostafa et al. 2021).

Analyzing this information is discussed in chapter 5 and added to the outcome of the CNN analysis for

a more accurate assessment and fund allocation data mining framework.

67

Chapter 5: Data Mining for Prioritization and Fund Allocation

 Introduction

As shown in Fig. 5.1, this chapter introduces the second module of the roofing rehabilitation

framework; a data-mining model that relies on textual data describing different building parameters

such as age and description to prioritize the different buildings according to their need of the

rehabilitation work. To reduce the effect of human bias, the proposed model uses unsupervised

clustering to group the buildings into four categories according to their condition and need for repairs.

Since the data acquisition process has previously been explained in section 3.4, this chapter starts by

discussing the different processes implemented to extract useful information from the acquired reports.

Then, the different clustering approaches are then explained along with the author’s conclusions and

recommendations. Finally, the impact of integrating defect information from images (Chapter 4) is

introduced and an optimization framework is implemented accordingly.

Fig. 5.1: Second Module of the Proposed Framework

 Keyword Selection for Defect Categorization

The first step was examining the list of potential defects originally developed by TDSB and samples

of the inspection reports. For roofs, TDSB has a list of eight possible defects, stated as a general guide

for inspectors, as shown on the top part of Fig. 5.2. Some of these defects overlap, for example, “Water

penetration” and “Leaks at penetrations”. Furthermore, after examining samples of the inspection

reports, it was found that the descriptions do not refer to the original defect list, rather, the inspector’s

own explanation of the various defects. An example of the nature of the information provided by TDSB

inspectors can be found in Fig. 3.5. To help with text mining for matching statements in the inspector’s

descriptions to a particular damage category, roof defects have been summarized into four generic

defect categories: Damage, Leak, Drainage, and Obsolete, as shown at the bottom of Fig. 5.2. The

68

category “Damage” includes all damaged roofing elements. Thus, the more the “Damage” text appears

in the event descriptions, the higher the extent of roof damage. It was also found that some

rehabilitation events were scheduled not because of a specific defect, but because the roof has exceeded

its service life. These were accounted for by including them under the “Obsolete” category. Once the

generic defect categories were defined, the sample of the roof event descriptions was further examined

to find unique keywords that, when seen in the text, could indicate the type of damage associated with

the roof under inspection. A sample of the developed keywords is shown below each defect category

in Fig. 5.2.

Fig. 5.2: Generic Defect Categories and Related Keywords

Once the keywords were defined for the 4 categories of defects, a VBA macro was developed to

search the “Event Justification”, “Event Description” and “Image Comment” text fields of every

rehabilitation event with all the keywords in Fig. 5.2. The macro sums the number of times the

keywords of each Defect category are used (referred to as Defect_Count) in each event, as an indication

of the severity of the defect. In addition, the overall sum is also tallied (referred to as “Total_Count”).

As such, the higher the Total_Count, the worse the condition of the roof. The pseudocode for

calculating the Total Count for each building roof is shown in Fig. 5.3.

69

Fig. 5.3: Pseudocode for Text Mining

Based on the results of the text mining analysis, 73% of all roofing events indicate roofing

damage and over 98% of those events are deemed to be of high priority and require a total cost of $87.3

million. Since this amount of required funds is much higher than the budget limit, it is necessary to go

deeper and identify the top critical roofs and their rehabilitation funding needs.

 Principal Component Analysis (PCA)

Before attempting data clustering, Principal Component Analysis (PCA) was performed to reduce the

dimensionality of the dataset. PCA is a data reduction technique that produces a new set of variables

(principal components) that better capture the variations in the data (Wilks 2011). It was noticed that

there is a high correlation between the “Event Type” and “Event Priority” categorical variables. For

example, all events of the type Major Repair had the priority of High. As such, PCA was performed

in an attempt to replace these two variables with a single representative attribute. Prior to conducting

PCA, the variables had to be binarized, as shown in Table 5.1.

Table 5.1: Binarization of Event-Type and Event-Priority Values

EVENT TYPE EVENT PRIORITY

REPLACE Major Repair High Medium

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

70

The binary values in Table 5.1 were then used for PCA using the scikit-learn package present

in the python programming environment, which has a built-in module for PCA. The analysis resulted

in identifying a single attribute (Principal Component), called T&P in this paper, that represents both

the event type and event priority attributes. Based on the PCA analysis results, the T&P value

associated with each roof rehabilitation event was calculated and used as a parameter to facilitate

efficient clustering of the data.

 Implementation and Results of Clustering

To implement the various clustering methods, the well-known WEKA (2020) software was used.

WEKA is a java-based open-source software developed by the University of Waikato in New Zealand,

and has an extensive collection of unsupervised and supervised data mining and machine learning

algorithms (data preprocessing, classification, clustering, regression, etc.). The three clustering

methods (Canopy, K-Means, and Farthest-First) were then applied to the data of the roofing

rehabilitation events, and the performance of the three methods were compared to one another.

To apply the three clustering techniques, three important parameters were used: the

Total_Count of defects for each event; the Event Age; and the T&P parameter determined by the

Principal Component Analysis (PCA) discussed earlier. Based on the results of the different clustering

methods, the number of roofing rehabilitation events assigned to each cluster by the various clustering

methods is shown in Table 5.2. It is important to mention that, to ensure consistency among the

different algorithms, the cluster order has been presented such that the higher the cluster number, the

more critical the asset condition (e.g., Cluster2 has more critical assets than Cluster1). This was done

manually after examining the cluster information produced as part of the output of each clustering

algorithm. Other clustering algorithms (e.g., decision trees, expectation maximization) were inspected,

but their performance and explainability were found to be inferior to the three algorithms studied here.

Table 5.2: Number of Events in each Cluster based on Different Clustering Methods

 Canopy FF Kmeans

Cluster1 2% 2% 53%

Cluster2 4% 4% 24%

Cluster3 6% 20% 10%

Cluster4 88% 74% 13%

71

Looking at Table 5.2, it is possible to see that the algorithms assign most of the data to one or

two clusters. For example, the EM algorithm assigned almost all the data to clusters 3 and 4, while the

Kmeans assigned more than half the data points to Cluster1. With Cluster4 representing the most

critical events that are in most need of rehabilitation funds, the Kmeans clustering algorithm proves to

be the most useful in terms of aiding the decision-maker to abide by the smallest budget limit. It was

also noticed that the events that were classified by the Kmeans algorithm to be of highest priority (i.e.,

Cluster4), received the same classification from the other algorithms. To examine the results of the

Kmeans algorithm more closely, a 3D visual representation of the datapoint assigned to each cluster is

shown in Fig. 5.4, with the data of Cluster 4 highlighted. From this figure, it seems that the Kmeans

algorithm assigns the data points to their respective clusters mainly based on Event_Age and

Total_Count parameters while allocating little weight to the effect of the third parameter (T&P).

Fig. 5.4: Clustering Results of the Kmeans Algorithm

 Incorporating Image-based Defect Information

First of all, the textual analysis presented earlier was done on an event-by-event basis. However, the

image-based analysis conducted in Chapter 4 was done on a building-by-building basis. Hence, to

combine the two approaches, the event information obtained from the TDSB data was aggregated to

represent the condition of every school. Next, damage information as a percentage of the total roofing

area was obtained from the analysis conducted on the University of Waterloo buildings and used as an

assumption for the range of defect size the different TDSB buildings would experience. Finally, the

72

Kmeans clustering technique was reapplied on the new dataset (school-based, including visual defect

information) using three parameters; School age, Total Count of defect keywords, and visual defect

information represented as a percentage of the total roof area. For notational convenience, the three

parameters are referred to as Age, T_C, and % of defects. The T&P parameter used in previous

clustering attempts (section 5.4) was disregarded for two reasons; first, to reduce the model bias as the

components of the T&P parameters are based on the inspector’s personal judgment, and second,

because the conducted analysis showed that the T&P parameter plays a little role in the clustering

process (refer to Fig. 5.4 and the supporting narrative). The total number of rehabilitation events

required for each school was not included in the clustering analysis because this piece of information

will not be available for the model in the future as the inputs will become age and damage description

information (per building).

 Two different approaches were implemented regarding aggregating the different rehabilitation

events. The first approach was to sum the Defect Count values for all the events for a given school and

present that as the new T_C value of the school (referred to as Sum of T_C). The second approach was

to set the new T_C value of the school to be equal to the average Defect Count values for the events

concerning that school (referred to as Average of T_C). The results for the clustering attempts using

the two approaches can be visualized in Figs. 5.5 and 5.6, respectively.

Fig. 5.5: Clustering Results using Sum of T_C Values

73

Fig. 5.6: Clustering Results using Average of T_C Values

Figs. 5.5a and 5.6a show a 3D visualization of the clustering results using both approaches. It

can be seen that both approaches agree on separating the old buildings (Age > 50) into a separate

cluster, then used the % of defects and T_C data to create the other two clusters. As such, Figs. 5.5b

and 5.6b show a 2D visualization of the clustering results based on the % of defects and T_C data. It

can be seen that in the case of using the Sum of T_C parameter for clustering (Fig. 5.5b), the clustering

occurs primarily based on the % of defects parameter and the T_C parameter is almost ignored.

However, when Average of T_C is used (Fig. 5.6b), the clustering takes into account both parameters.

This may be attributed to the relatively uniform spread of the datapoint along the Average of T_C axis

as opposed to their spread along the Sum of T_C axis. The number of schools and total rehabilitation

costs required based on both clustering attempts are in Table 5.3. Although the cost required to repair

all schools in cluster 4 (most critical) is 16% more when Average of T_C is used as the clustering

parameter, the total cost to repair the schools in the highest two categories (cluster4 and cluster3) is

30% less, and the number of schools that need to undergo immediate rehabilitation is almost 50% less.

As such, clustering results based on Average of T_C are used for testing the optimization model in the

later stages of this work.

Table 5.3: No. of Schools and Total Rehabilitation Cost Required for Each Cluster based on

Different Clustering Parameters

 Clustering using Sum of T_C Clustering using Average of T_C

Cluster No. of Schools Total Cost No. of Schools Total Cost

1 82 $30,044,784 125 $41,903,994

2 89 $32,210,200 101 $35,802,763

3 127 $51,436,568 67 $34,944,195

4 18 $6,054,644 23 $7,095,244

Grand Total 316 $119,746,196 316 $119,746,196

74

 Fund Allocation Optimization

According to the latest operating budget for The Toronto District School Board (TDSB), $31.4 million

are being allocated for renewal events for all 550 schools under their jurisdiction (TDSB 2020).

Assuming that 10% of the aforementioned budget is dedicated to roofing work, and the fact that only

400 schools were analyzed as part of the work presented in this chapter, the budget limit was set to be

$2.3 million. As such, an optimization problem was structured using the schools categorized in clusters

3 and 4 (mathematical formulation in Fig. 5.7, screenshot in Fig. 5.8). The objective is to improve the

condition of the entire asset portfolio by selecting which schools to repair, without going over budget.

The condition improvement gained from repairing each school corresponds to the cluster to which the

school was assigned. For example, repairing a school from cluster4 yields 4 points, while repairing a

school from cluster3 yields 3 points. Out of the 90 schools in clusters 3 and 4 combined (Table 5.3),

the solver results recommended repairing only 20 schools to achieve the maximum improvement with

the given budget. 12 schools from cluster 4 (out of 23) and 8 schools from cluster 3 (out of 67) were

deemed most worthy of immediate repair to maximize the use of the current rehabilitation budget.

Fig. 5.7: Mathematical Formulation of the Solver Setup

Fig. 5.8: Screen Capture of the Solver Setup

75

5.6.1 Sensitivity Analysis

The sensitivity of the fund allocation model to changes in the estimated repair cost for each school as

well as the allowed budget are investigated and will be discussed in this subsection.

5.6.1.1 Sensitivity to Changes in Estimated Costs

Monte Carlo Simulation was used to investigate the impact of changes in the estimated repair costs on

the funding decisions obtained by the model. To simulate the worst-case scenario, only cost increases

were investigated in these simulations. A total of 50 iterations were conducted and in each iteration the

cost of each school took a random value between 100% and 115% of the original estimated cost.

Histograms showing the number of schools selected for repairs as well as the overall improvement are

show in Figs. 5.9 and 5.10, respectively. Figs. 5.9 and 5.10 show that the same results obtained from

the deterministic model discussed earlier (i.e., repairing 20 schools with total improvement = 72) is

achieved approximately 85% of the time. This shows the resilience of the proposed model considering

the studied variations (cost increase up to 15%).

Fig. 5.9: Histogram for the Number of Schools Selected for Repairs

76

Fig. 5.10: Histogram for the Total Improvement Achieved by the Monte Carlo Simulations

To further Illustrate the resilience of the model, the individual results of the Monte Carlo

simulations were investigated. Fig. 5.11 shows how many times each school was selected by the model

through the different iterations. It can be seen from the Fig. that 15 schools were selected 100% of the

time (50 out of 50 trials), five schools were selected more than 80% of the time, and only three schools

(IDs: 349_, 295_, and 236_) were selected less than five times.

Fig. 5.11: Number of Times Each School was Selected for Repair (Out of 50 Iterations)

5.6.1.2 Sensitivity to Changes in the Allocated Budget

To study the sensitivity of the model to changes in the allocated budget, four different budget values

were used as the financial constraint for the optimization model. The four values selected were in

$100,00 decrements from one another. The results of the different optimization attempts are shown in

Table 5.4. Table 5.4 shows the resilience of the model against changes in budget and the effectiveness

77

of the optimization efforts, as 15% decrease in the budget only lead to a 5% decrease in the overall

improvement of the asset portfolio, with only one school being left out compared to the results obtained

using the original budget.

Table 5.4: Results of Sensitivity Analysis with Respect to the Allocated Budget

Budget
Total

Improvement
No. of Schools

 $ 2,300,000 72 20

 $ 2,200,000 71 20

 $ 2,100,000 69 19

 $ 2,000,000 68 19

 Conclusion

This chapter has presented the second module of the roofing rehabilitation framework; a data-mining

model that relies on textual data describing different building parameters such as age and description

to prioritize the different buildings according to their need of the rehabilitation work. In addition, the

analysis technique adopted in this chapter has been combined with the pictorial data analysis presented

in Chapter 4 to provide a comprehensive assessment. Accordingly, a linear optimization problem was

formulated to select which schools should be repaired immediately to maximize the improvement of

the entire asset portfolio while abiding by budgetary constraints.

 Given the number of schools in need of rehabilitation, proper repetitive scheduling techniques

will be implemented and novel scheduling computations and visualizations will be developed to assist

with developing an efficient plan to execute the required rehabilitation tasks within the constraints of

time and budget (e.g., Hegazy et al. 2020, 2021). Such implementation is discussed in more detail in

Chapter 6.

78

Chapter 6: Delivery Planning and Scheduling

 Introduction

As seen in Fig. 6.1, this chapter introduces the third and final module of the roofing rehabilitation

framework; a repetitive scheduling-based approach to optimize the delivery planning and scheduling

for the required rehabilitation works. This chapter starts by introducing the novel contributions in terms

of repetitive scheduling visualizations, computations, and algorithms. These developments are then

applied to a case study of a 20-unit rehabilitation project, based on the data analyzed in Chapter 5.

Fig. 6.1: Third and Final Module of the Proposed Framework

 Novel Visualizations (Duration-Distance Chart)

Typically, all repetitive scheduling methods present the schedule in one of two ways (Fig. 6.1): (1) the

line of balance (LOB) visual, showing the activities of each unit on a separate horizontal line (i.e., the

vertical axis is the unit index, i.e., unit 1, 2, or 3, etc.), similar to a bar chart; and (2) the flowline visual

showing time versus the distance (on the vertical axis) that mark the start (ST) and finish (FN) locations

of each unit (Fig. 6.1b).

Fig. 6.2: Differences between LOB and Flowline visuals

LOB: Each Unit as a horizontal Line Flowlines: Each Unit as a horizontal range

79

Fig. 6.2 shows a schedule of 3 sequential activities (A-B-C), each employing a single crew that

moves along 3 non-identical units. Flowlines make use of the vertical axis to show the progress rate

(slope) within each repetitive unit, as a function of both unit size (vertical projection) as well as

required duration (horizontal projection). For example, looking at the LOB diagram (Fig. 6.2a) would

give the false impression that the amount of work required for activity C in each unit is the same.

However, looking at the flowline diagram (Fig. 6.2b) actually shows that while unit 2 requires a smaller

amount of work, the work is advancing at a slower rate leading to a duration equal to that required by

the larger units. On the other hand, The LOB visual is closer to a bar chart visual that clearly shows

durations and crew movements. In addition, LOB visuals clearly show the task envelop and thus allows

effortless visual ability to check if any task violates the precedence relations by intersecting with its

predecessor. In the flowline chart, on the other hand, where the activity envelops is not shown, care

has to be taken in this regard. For example, task B in unit 1 (i.e., B1 in Fig. 6.2b) has to start on or after

time (a) which is the finish of its A1 predecessor of task A in unit 1. Similarly, task C3 in unit 3 can

only start after time (b) which is the finish of its B3 predecessor.

 Because LOB and Flowline representations have their unique advantages, using either one

means missing the advantages of the other visual. To combine the benefits of LOB and Flowline

visuals, a new visual called Duration-Distance (DD) chart has been proposed, as shown in Fig. 6.3. In

this new visual, the distance (on the vertical axis) is shown with the flowlines in the foreground.

Background bars are also included, similar to LOB to define task durations and task envelops. As such,

the DD chart combines the benefits of LOB and Flowline. It gives a visual envelope for each task to

help in checking for interferences in the duration-distance zones of tasks. This chart, as such, suits all

types of repetitive projects. Computerizing this chart, it is possible to set the viewing preferences to

on/off for the flowlines, the background bars, or both, to suit different users.

80

Fig. 6.3: Duration-Distance (DD) chart combines the benefits of LOB and Flowline visuals.

 Novel Computations

This section discusses the novel computations developed to enhance the scheduling of repetitive

projects. In this section, two formulae are presented. First, a formula to avoid deadline violations in

the case of relaxed deadlines. Second, a formula to calculate designed interruptions.

6.3.1 Preventing Schedule Delays in the case of Relaxed Deadlines

As a small example, consider the small 3-activity project shown in Fig. 6.4, with a deadline of 20 days

and 5 repetitive units. The standard LOB calculations using equations 2.1-2.3 are shown in the figure.

Similar calculations for the parallel crew arrangement using equations 2.4-2.6 are shown in Fig. 6.5.

81

 Duration

(D)

Desired Rate,
𝑵−𝟏

(𝑫𝑳 – 𝑻𝟏 + 𝑻𝑭𝒊)

Necessary

Crews,

(C) = Roundup

(Di x Ri)

Actual

Rate

(R) = C/D

1/R

A

B

C

3

2

3

4/(20-8) = 0.33

1

1

1

0.33

0.50

0.33

3 days

2 days

3 days

Fig. 6.4: CPM/LOB Schedule for Shifted Crews exceeds the Deadline

 Duration

D

No. of Cycles (S)

(TDL-T1) / Di + 1

Necessary crews

C = Roundup (N/S)

Actual Cycles

S = Roundup (N/C)

A

B

C

3

2

3

(20-8)/3 + 1= 5

(20-8)/2 + 1= 7

(20-8)/3 + 1= 5

Roundup (5/5) = 1

Roundup (5/7) = 1

Roundup (5/5) = 1

5/1 = 5

5/1 = 5

5/1 = 5

A (3) B (2) C (3)
Deadline (TDL) = 20 days

CPM (T
1
) = 8 days Units (N) = 5

A B C

Unit

Time

A (3) B (2) C (3)

Deadline (DL) = 20 days, CPM (T
1
) = 8 days, Units (N) = 5

Notes:

1. The relaxed deadline led to the

use of only one crew in each task.

2. Initially, the CPM duration of first

unit = 8 days, however, with one

crew, time gap is introduced,

making first unit 12 days. . Time

gap

Time gap

Notes:

1. The relaxed deadline led to the

use of only one crew in each task.

2. Initially, the CPM duration of first

unit = 8 days, however, with one

crew, time gap is introduced,

making first unit 12 days.

Fig. 6.5: CPM/LOB schedule for Parallel Crews exceeds the Deadline

82

As seen in the example presented in Figs. 6.4, 6.5. Using LOB formulae resulted in a schedule

that is 24 days long. This violates the original deadline constraint of 20 days. The first unit alone is

completed in 12 days as opposed to the original CPM duration of 8 days. This implies that using a

larger CPM duration in the LOB calculation would ultimately create a schedule that satisfies the

deadline constraints. However, using an excessively large duration would require the use of more

resources (i.e., extra crews) which corresponds to higher costs. Hence, there needs to be a balance

between resource usage and achieving early completion.

Computationally, calculating the number of needed crews can be seen as a function of (DL –

T1), which is the difference between the deadline (DL) and the CPM duration (T1) for one unit. As

such, the smaller the (DL – T1) value, the more crews to use. Therefore, reducing the (DL - T1) value

can be achieved by either reducing the deadline duration or increasing the CPM’s T1 duration to

account for the expected schedule gaps. As such, the proposed computation in Fig. 6.6 checks if the

project deadline is so relaxed that it may lead to violations. It does so by dividing the gap between

the duration of one unit (T1) and the deadline into five segments of length G. Then, if the produced

LOB schedule using the original deadline resulted in a deadline violation (i.e., the original deadline

is too relaxed), it adds G days to T1 and re-performs the LOB calculations using the new deadline.

This loop terminates once a schedule is reached that satisfies the original deadline constraint to

avoid overusing resources.

83

Fig. 6.6: Flowchart of the Improved CPM/LOB Computation

The developed computation in Fig. 6.6 is applied on the schedule originally introduced in Fig.

6.4. Since the original deadline was 20 days and the CPM duration was 8, the difference between the

two values will be divided into four segments of equal length (G = (20 – 8) /5 = 2.4 days). As shown

before in Fig. 6.4, when the deadline was set to 20 days, the resulting CPM/LOB schedule ended up as

24 days, which is unacceptably beyond the deadline long. Hence, the introduced computation loop

introduced in its first cycle a longer T1 of 10.4 days was used (T1 + G = 8 + 2.4). The calculations and

the resulting schedules using this deadline can be seen in Fig. 6.6, for shifted and parallel crews,

respectively. Since the durations of the improved schedules are less than the project's original deadline

84

of 20 days, the process terminates after one cycle of the loop. If that was not the case, a new T1 of 12.8

days (10.4 + 2.4) would have been proposed and a new schedule would have been developed using the

revised deadline. The parallel-crews schedule of Fig. 6.7b maintains crew continuity while putting all

crews with integer start times.

 (a) Improved schedule of shifted crews (b) Improved schedule of parallel crews

Fig. 6.7: Schedules developed using the Proposed Computation meet the Original Deadline

6.3.2 Calculating Designed Interruptions

To present a formulation for the start-time offset, let’s consider activities B and C in Fig. 6.8. As

schematically shown in Fig. 6.8a, the start-time offset for activity C is the amount of delay time from

the end of the predecessor’s unit 1 to the start of activity C in unit 1, which depends on the difference

in rates of progress between the two activities. To facilitate the calculation, Fig. 6.8b highlights two

right-angle triangles: a-b-c (related to activity B) with a base of TB and height of N-1; and d-b-c (related

to activity C) with a base of TC and height of N-1. From these two triangles, the Start-Time Offset

(STOC) for activity C can be formulated as follows:

A B C

Unit

Time

Meets the original

20-day deadline Meets the original

20-day deadline

85

Fig. 6.8: Formulating the Start-Time Offset

[6.1] Start-Time Offset from task B to task C = TB – TC

 =
𝑁−1

𝑅𝐵
 −

𝑁−1

𝑅𝐶
 = (𝑁 − 1) (

1

𝑅𝐵
 −

1

𝑅𝐶
)

Applying Equation 6.1 to the case in Fig. 6.8, STOC = 4 (3 – 1) = 8 days, as shown in the figure. The

equation applies to the situation when task (C) has a higher rate than the predecessor (B), otherwise, it

produces a negative value in the opposite case. To generalize this equation for all cases (including

cases of parallel rates or when the successor is slower than the predecessor), it is possible to re-write

equation 6.1, avoiding negative values, as follows:

[6.2] Start-Time Offset of any task i (STOi) = Max [0 , (𝑁 − 1) (
1

𝑅𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟
 −

1

𝑅𝑖
)]

Equation 6.2, as such, does not take any negative value, rather, only positive or zero. The equation,

therefore, is generic and can apply to all tasks during the forward-pass scheduling process. As such,

using Equation 6.2 during the forward-pass of repetitive scheduling, all tasks are scheduled bottom-

up, thus having a more systematic and easy-to-follow process.

For the purpose of plotting the LOB chart, only the lower-left corner of the activity diagram which

represents the start date of that activity at unit 1 is required. This is calculated in Equation 6.3, while

the start of any unit j of activity i is calculated in Equation 6.4:

[6.3] Start of activity i at unit 1 = Finish Time of unit 1 of Predecessor + STOi

(a) Start-Time Offset for activity C. 1. (b) Offset = TB -

TC

86

[6.4] Start of activity i at unit j = Start of activity i at unit 1 (Equation 6) +
𝑗−1

𝑅𝑖

It is noted that in the case activity i has multiple predecessors, Equations 6.2-6.4 are calculated for each

predecessor and the highest value is used.

To present a formulation for achieving better synchronization among the activities’ delivery rates

through designed interruption, the case in Fig. 6.9 is used, where a faster activity (B) follows a slow

one (A). As schematically shown in Fig. 6.9a, the start-time offset for activity B is shown, and can be

formulated using Equation 6.3. Assuming one interruption at N/2 is sufficient, the interruption time

that allows the bottom half of activity B to start earlier is shown in the figure. As shown, the Offset

time of B = Y + Duration of B + Interruption time; where Y can be calculated using Equation 6.3,

taking into account the only first half of activity B units, therefore:

Fig. 6.9: Formulating Task Interruption Time

[6.5] Interruption Time = STO of B – Y (STO of B for N/2 units) – Duration of B =

 = (𝑁 − 1) (
1

𝑅𝐴
 −

1

𝑅𝐵
) - ((𝑁 − 1)/2) (

1

𝑅𝐴
 −

1

𝑅𝐵
) - DB

Thus, applying the interruption, the bottom part activity B (with N/2 units) starts with an offset of Y:

[6.6] Start-Time Offset of B with interruption = Y = ((𝑁 − 1)/2) (
1

𝑅𝐴
 −

1

𝑅𝐵
)

(a) Interruption time for activity B (b) Average revised rate

for B

87

Using this formulation, it can be seen that the lower part of activity B started early, thus, changing the

average delivery rate of B (dashed line in Fig. 6.9b) to a lower rate than the original rate of B, and

becoming more closer in its rate to its predecessor (A). This average modified rate of B can also be

formulated, based on the presentation in Fig. 6.8b, as follows:

[6.7] Average rate of B with interruption = (
𝑁− 1

𝑇𝐴 − 𝑌
) = (

𝑁− 1
𝑁− 1

𝑅𝐴
 − 𝑌

)

As a demonstration of the calculations for interruption time, the previous example of activities B and

C in Fig. 6.8 is continued. Interruption time is calculated using Equation 6.5 as 1 day, as shown in Fig.

6.10. Also, the revised rate of activity C after interruption is calculated using Equation 6.7 as 0.5 units

per day.

Fig. 6.10: Interruption Time for Example Activities

 Novel Algorithm (First-Come-First-Serve)

Typically, crews are assigned to units in sequential order. For example, if an activity has 3 crews,

they are assigned to units 1, 2, and 3. These crews will then move to units 4, 5, and 6 in the same

order, etc. While this sets which crew will work in which unit, this often creates unnecessary time

gaps and possible project delays, especially in the case of non-identical units.

Knowing that the rehabilitation work required is different from one unit to another, a

generalized crew assignment framework was developed that facilitates task synchronization and

maintains crew continuities while not being tied to a rigid crew assignment strategy or needs to

calculate interruption times beforehand. Fig. 6.11 illustrates our newly proposed, First-Come-First-

Serve (FCFS), method. This method deals with each crew at a time following the flowchart in Fig.

6.11(a) and can be seen in action in Fig. 6.11(b). A detailed explanation is as follows:

88

1. In the first step, all crews are available (Fcr=0). Hence, crew 1 is assigned to the first unit

and its finish time is updated to reflect the finish time of activity B in the first unit.

2. In step 2, the finish time of the predecessor to activity B in the second unit (FTp) is greater

than the updated finish time of crew 1. Hence, crew 1 is assigned to the second unit. To

maintain work continuity, the start of crew 1 at the first unit is delayed by the difference

between FTp of the second unit and the scheduled finish of the first unit. Finally, the

scheduled finish of crew 1 (Fcr) is updated to reflect the finish of activity B in the second

unit

3. In step 3, FTp of the third unit is smaller than the scheduled finish of crew 1. Crew 2 is

assigned to that unit and its Fcr is updated accordingly. FTp of the fourth unit was less than

Fcr of crew 1 but equals to that of crew 2. Therefore, crew 2 was assigned to the fourth

unit.

4. Similarly, in step 4, crew 1 is assigned to unit 5, the start dates of its previous units (units

1 and 2) are delayed to remove work interruption, and its Fcr is updated to reflect the finish

of the activity in unit 5.

5. The same procedure explained in the previous step is followed for the rest of the units, and

the final schedule is featured in Fig. 6.11(c).

89

Fig. 6.11: Flowchart and Steps of the Proposed FCFS Crew Assignment Process

90

 Validation Example

To demonstrate the effectiveness of the proposed enhancement to repetitive scheduling visualizations

and computations, the example of Dolabi et al. (2014) was solved using the proposed method and its

results were compared to Dolabi et al.’s solutions. The example is a 10-unit highway project where

each unit contains 24 sequential activities, with a project deadline of 240 days. Table 6.1 shows the

data for the validation example (e.g., task durations) as well as the results obtained by Dolabi et al.

(2014) and the proposed model.

Table 6.1: Validation Example Data and Comparison of Results

In table 6.1, it can be seen that the conventional CPM/LOB calculations without the use of the

deadline validation loop produces a schedule of 405.5 days (column 3 in Table 6.1). This is

unacceptable as it violates the project’s 240-day deadline. To resolve this issue, Dolabi et al. (2014)

used complex heuristics to reach a project duration of 233 and 239 days. In this model, however, the

deadline validation loop (subsection 6.3.1) was used to change the value of T1 till a satisfactory project

duration was met. Furthermore, using the FCFS crew assignment algorithm produced a schedule with

Task
ID

Task
Duration

Crews of Dolabi et al.’s
Solutions Crews of

Proposed
Solutions

CPM/
LOB

Heuristic
(HLOB)

Heuristic
(SHLOB)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

6
4

12
9

13
10
2
4
9
5
8
7
9
8

20
7
9
7
6
8
1
3
5
4

1
1
2
2
2
2
1
1
2
1
2
1
2
2
3
1
2
1
1
2
1
1
1
1

3
2
4
3
4
3
1
1
2
1
2
2
3
3
8
3
4
4
4
6
1
3
5
4

3
2
4
3
4
3
1
2
4
2
3
2
2
2
5
2
3
2
2
3
1
2
3
3

3
2
5
4
5
4
1
2
4
2
3
3
4
3
8
3
4
3
3
3
1
2
2
2

Total crews 36 76 63 76
Project duration 405.5 233 239 226

91

smaller gaps which translated to a smaller duration even through the same number of crews, 76, was

used (column 6 in Table 6.1). Fig. 6.12 shows the schedule developed by the proposed algorithms.

Fig. 6.12: Developed Schedule for the Validation Example Using the Proposed Model

 It can be noticed in Fig. 6.12 that there is a relatively huge schedule gap between

activities 20 and 21 because of the relatively fast delivery rate of activity 21. Hence, introducing a

designed interruption to activity 21 could produce a schedule with an even shorter duration. To test

this hypothesis, a four-day interruption was introduced after the fourth unit. The new schedule can be

seen in Fig. 6.13. As expected, the introduced interruption reduced the schedule gap which in turn

reduced the overall project duration, bringing it down to 224 days. In future developments, the selection

of the interruption duration and location (i.e., after which unit) will be automated and be part of the

scheduling automation procedure.

Fig. 6.13: Developed Schedule for the Validation Example After Introducing Interruption

 Application Case Study

Based on the analysis conducted in Chapter 5, 20 units were deemed most worthy of immediate repairs

given the budgetary limitations. As such, the novel formulations and visualizations presented earlier

in this chapter will be used here to develop an optimized schedule for the delivery of the necessary

rehabilitation activities.

92

6.6.1 Activity Parameters and Order of Execution

Table 6.2 shows the data concerning the units to be repaired. For each school (1-20), the total cost is

presented in the second column. The area of the roof to be repaired, presented in the third column, is

estimated by dividing the total cost of repair by $300. This value for repairs was obtained by consulting

with members of the University of Waterloo Plant Operations. Based on the estimated area, the

estimated duration based on R.S. Means data for each activity is presented in columns 4-7.

Transportation duration to move from one unit to the other is ignored, and it is assumed that these

activities will follow a finish-to-start relationship.

As seen in Table 6.2, the schools are arranged in descending order based on their size. This is

because executing the works in that order is more efficient than going from the smallest school to the

largest. A proof using a simple example (two activities conducted over three units using two crews)

can be seen in Fig. 6.14.

Fig. 6.14: Choosing the most Efficient Order of Execution

93

Table 6.2: Activity Information for Schools Undergoing Roof Rehabilitation

 Activity Duration (Days)

School
ID

Cost Size
(m2)

removal &
cleanup

asphalt
base sheet

fiber
felt

flood coat with
gravel surfacing

1 242000 807 3 4 5 4

2 175450 585 2 3 4 3

3 159115 530 2 3 3 3

4 151250 504 2 3 3 3

5 127050 424 2 2 3 2

6 121000 403 2 2 3 2

7 121000 403 2 2 3 2

8 119790 399 1 2 3 2

9 118989 397 1 2 3 2

10 114950 383 1 2 3 2

11 96800 323 1 2 2 2

12 96800 323 1 2 2 2

13 96800 323 1 2 2 2

14 93170 311 1 2 2 2

15 93170 311 1 2 2 2

16 90750 303 1 2 2 2

17 60500 202 1 1 2 1

18 60500 202 1 1 2 1

19 48400 161 1 1 1 1

20 24200 81 1 1 1 1

6.6.2 Rehabilitation Schedule using FCFS

45 days were selected as the deadline to finish all the required rehabilitation works. While typically

repairs take place within the two-month summer vacation period (July and August), the 45-day

deadline was selected to allow for contingencies. Based on the duration information presented in Table

6.2, it was assumed that the typical unit will have a duration of two days per activity. As such, according

to the basic CPM/LOB calculations, the duration of one unit (T1) is eight days and the rate of delivery

is therefore 19/(45-8) = 0.51. This means that each activity will require 2 crews to deliver the project

within the allotted duration. The developed schedule is shown in Fig. 6.15. The developed schedule is

33 days long which satisfies the deadline constraint. It can be seen that the developed schedule has

minimal gaps while maintaining work continuity, thus validating the efficiency of the proposed FCFS

approach.

94

Fig. 6.15: FCFS Schedule to meet a 45-day Deadline

A different scenario was examined where the rehabilitation works for all units need to be

performed within 30 days only. In that case, the rate of delivery becomes 19/(30-8) = 0.86 and the

required number of crews remains two. However, using only two crews per activity produces the same

schedule in Fig. 6.15 which has a duration of 33 days. This is unacceptable as it violates the now stricter

30-day deadline. Therefore, the deadline checking loop presented in Fig. 6.6 comes into effect. First,

G is calculated to be (30-8)/5 = 4.4 days. Hence, the CPM calculations are redone for the first loop

with a new value for T1 which equals 8+4.4 = 12.4 days. Accordingly, a new rate of delivery is

calculated to be 1.08 which means that 3 crews will be required for each activity (roundup(3*1.08)).

The developed schedule using the new crew information is in Fig. 6.16. It can be seen that the new

schedule has a duration of 26 days which complies with the 30-day deadline. This proves the versatility

and the effectiveness of the proposed approach.

Fig. 6.16: FCFS Schedule to meet a 30-day Deadline

95

 Conclusion

This chapter has presented the third and final module of the proposed roofing rehabilitation framework;

the use of novel repetitive scheduling techniques to facilitate the delivery of the required rehabilitation

work. Novel computations, visualizations, and scheduling algorithms were proposed and applied to a

case study based on the data analyzed by the previous modules (Chapters 4 and 5). Computationally,

schedules developed using the FCFS algorithm exhibit minimum gaps while maintaining work

continuity and abiding by the deadline constraints. The deadline checking loop allows for adjusting the

project schedule by manipulating one parameter only (T1) as opposed to tweaking every activity

manually. Visually, the novel duration-distance charts now have extra information regarding the size

of each unit, represented by the height of each activity block. The presented case study demonstrates

the proposed scheduling developments and proves their effectiveness compared to traditional methods

as well as the generic applicability to all types of repetitive projects.

96

Chapter 7: Conclusion and Future Research

 Introduction

The typical vision of a smart city focuses on building new smart assets. This vision, however,

overlooks the need for a “smart rehabilitation” framework that addresses the conditions of the existing

infrastructure assets and preserves their condition and acceptable level of service. Currently, public

organizations and managers of large asset portfolios have significant challenges keeping up with the

multibillion-dollar maintenance backlogs of their assets, especially when many assets are old and

funding is inadequate. As such, improving the existing asset management frameworks and streamlining

its processes is a must.

 The current asset management practices regarding asset inspections, prioritization and fund

allocation, and rehabilitation delivery have been investigated. These processes are done manually and

often consider each asset separately. This deprives these organizations of the benefits of applying data-

driven inspection and decision support systems. Such benefits include faster and more objective

decisions, as well as the ability to analyze all assets in unison which helps enhance the overall service

level of the entire portfolio. Creating a rehabilitation delivery schedule that considers the repetitiveness

of the tasks across multiple units allows for cost and time savings by reaping the benefits of repetitive

schedules such as momentum, learning curve, and economy of scale. Having an effective data-driven

asset management framework would optimize the use of the limited rehabilitation funds to improve

the conditions of the different assets and reduce the repair backlog.

 Research Summary

The primary goal of this research is to establish “smart rehabilitation” as a major component of the

smart asset management layer of smart cities. Specifically, this research utilizes machine learning tools,

such as computer vision and data mining, and repetitive scheduling techniques to develop an automated

framework for smart city rehabilitation. The framework includes different functions that perform

efficient condition assessment, prioritization and fund allocation, and delivery planning of time-critical

and cost-critical rehabilitation works.

Regarding the condition assessment phase, the manual nature of conducting inspections was

seen as the main issue to address. To that end, computer vision was used to develop an automated

system to inspect roofing elements. The system would detect and classify defects according to their

97

type directly from collected images. The proposed system is composed of two CNN models; one for

detection, and the other for classification. Each individual CNN is composed of five convolutional and

pooling layers (3+2), an activation layer, a dropout layer, a fully connected layer, and a final output

layer. The model performance speed is, on average, 0.08 sec/image for both phases. This means that

the model is faster than manual inspections. Faster inspections mean that they can be performed more

frequently which makes the inspection data more updated and relevant to the decision-making process.

Regarding the prioritization and fund allocation processes, a comprehensive study was

conducted on the inspection reports produced by Toronto District School Board (TDSB) inspectors. It

was found that the reports do not offer the level of detail necessary to perform such prioritization

activities, which requires the asset manager to manually discern the contents of the reports and rely on

their own personal experience and biases to reach a decision. To address this issue, data mining and

unsupervised clustering were used to create a model capable of analyzing the textual information

available in different reports and categorizing the schools into one of four categories (1-4, 4 being the

neediest for repair). The model incorporates multiple parameters such as the building age and

description, as well as the damage description provided by the inspectors. A second version of the

clustering model was then developed which includes the data collected from the automated image-

based inspection module, represented as the percentage of the roof being damaged.

The delivery phase was tackled with the aim of incorporating repetitive scheduling techniques

into asset rehabilitation delivery projects as opposed to treating each asset separately. To that end,

current drawbacks within the existing repetitive scheduling computations were highlighted and

remedies were introduced. This study introduced novel visualizations (duration-distance chart),

computations (scheduled interruptions, and preventing deadline violations), and algorithms (first-

come-first-serve) to develop repetitive schedules with minimum duration and maximum continuity.

 Research Contributions

Based on the above summary, the research contributions of this research can be encapsulated in the

following points:

• Better understanding of challenges in managing large asset portfolios with huge backlogs and

limited budgets;

• Development of an automated image-based system capable of detecting, classifying, and

quantifying defects directly from collected images;

98

• Development of a data-mining-based system for prioritization and fund allocation maximizing the

gained benefits from performed rehabilitation works while meeting budgetary constraints;

• Development of new representation of repetitive schedules that incorporates more information

related to the size of the work in each unit;

• Development of new repetitive scheduling computations to avoid deadline violations and reduce

schedule gaps; and

• Development of a novel crew assignment algorithm for repetitive schedules to reduce the project

duration by developing more cost-effective and compact schedules.

 Future Research

7.4.1 Potential Research Related to Inspection and Condition Assessment:

• The performance speed of the image-based inspection model has shown its potential for

performing real-time analysis. This means the inspection process can be automated using

drones where, in addition to identifying the damage type, the damage location can be

pinpointed using image registration or GIS techniques. This would help better identify the

repair strategy (e.g., an overall replacement vs. a localized repair).

• Faster inspections allow for more frequent inspections, this would help develop models that

better track and forecast the damage progression, improving the effectiveness of future

preventative maintenance frameworks. Incorporation with BIM can enable the development of

“as-damaged” models where different what-if scenarios for building rehabilitation strategies

can effectively tested and analyzed

• Some roofing defect types (e.g., cracks, blisters, flashing) almost did not appear in the collected

images, and therefore were not extensively experienced by the model, this should be

investigated and be part of future model improvements.

• Image analysis is incapable of analyzing internal roofing defects (e.g., internal cracks,

saturation of the roof insulation) and can be obscured by the roof coverings and other

appliances. The use of infrared imagery should be investigated to overcome these challenges.

• The images were collected in a specific way such that they represent constant real-life

dimensions (1.5x1.12 m) which allows to automatically quantify the damage size. As such, full

99

automation of defect sizing and quantification to reduce the data collection burden by

collecting images that represent larger roof areas as well as reduce the constraints on the data

collection methods.

• Collecting images that represent larger roof areas require the use of homography to identify

the size of the damage within the image, as opposed to estimating the size of the damage to be

equivalent to the total area covered by the image.

• While the developed model is only applicable to roofing, the same underlying technology (i.e.,

CNN) can be utilized to develop similar models that tackle different building assets such as

structural elements, doors, and windows to name a few. These models could be then aggregated

to develop a comprehensive building assessment model that considers all building elements.

• Applying feature extraction techniques to resolve issues such as shadows and markings,

especially when the model is applied to building elements where this is a prevalent issue (e.g.,

parking lots).

• Using feedback loops as part of the model architecture to enhance its accuracy by retraining

the model against datapoints that were misclassified to examine the source of misclassifications

and avoid them in future iterations.

7.4.2 Future Research Related to Prioritization and Fund Allocation:

• Development of a more comprehensive optimization framework that accounts for multi-year

investments and different delivery methods and/or rehabilitation strategies (e.g., different

repair methods).

• Including probabilistic analyses that study the reliability of the funding decisions against

changes to the rehabilitation costs and/or budgets.

• Collaborating with the school of social work and/or school of public health, incorporating

social parameters into the optimization framework (e.g., the demographics of the community

served by the asset)

• Investigating how the different assets interact with one another. For example, an inoperable

school means that another school will be overloaded because of the increased size of the student

population, which would affect its structural integrity.

100

7.4.3 Future Research Related to Scheduling and Delivery

• Although the simple scheduling example provided in Chapter 6 showed that it was faster to

execute the units in descending order according to their size, there is a possibility to have

different arrangements that provide a shorter project duration. This is better examined by

treating repetitive scheduling as a traveling salesman/vehicle routing problem.

• Including interruption calculations as well as duration and location (i.e., after which unit)

selection into the automated optimization procedure

• Consideration of interruption-related impacts in terms of demobilization and re-mobilization,

and how that affects the momentum and productivity of the crews.

• Study the effect of changing the activity delivery rate midway through the project and its effects

on the project duration and resources.

• Development of repetitive scheduling visuals and computations that consider project progress.

• Examining the applicability of the proposed repetitive scheduling algorithm on real-world

megaprojects both in terms of practicality and abiding by the project’s requirements and

complex constraints, as well as the algorithm’s computational requirements.

7.4.4 Future Integration with Smart City Initiatives

• Reach out to different cities to develop long-term strategic simulations using tools such as

system dynamics to investigate policy issues related to the budgeting of new versus

rehabilitation projects and the impact on backlog.

• Extend the smart rehabilitation work to other infrastructure domains such as the transportation

network (roads and bridges), water/sewer, etc.

101

References

Abdel-Monem, M. S., and Ali, A. I. (2010). “Spreadsheet-based system for sustainable asset

management.” CSCE 2010 General Conference, Winnipeg, MB.

Abdel-Qader, I., Abudayyeh, O., and Kelly, M. E. (2003). “Analysis of Edge-Detection Techniques

for Crack Identification in Bridges.” Journal of Computing in Civil Engineering, 17(4), 255–

263.

Abou Shaar, B. (2012). Adaptable Three-Dimensional System for Building Inspection

Management. Dissertation. Department of Civil and Environmental Engineering, University of

Waterloo

Abu Abbas, O. M. (2008). “Comparisons Between Data Clustering Algorithms.” International Arab

Journal of Information Technology, 5(3), 320-325.

Advancer Global (n.d.). “Smart FM.” Advancer Global.

Aggarwal, C. C., and Zhai, C. (2012). “A survey of text classification algorithms.” Mining Text

Data, Springer, US, 163-222.

Ahluwalia, S. S., and Hegazy, T. (2010). “Roof deterioration and impact: A questionnaire

survey.” Journal of Retail & Leisure Property, 9(4), 337–348.

Al Hattab, M. (2021). “The dynamic evolution of synergies between BIM and sustainability: A text

mining and network theory approach,” Journal of Building Engineering, 37.

Alawadhi, S., Aldama-Nalda, A., Chourabi, H., Gil-Garcia, J. R., Leung, S., Mellouli, S., Nam,

T., Pardo, T. A., Scholl, H. J., and Walker, S. (2012). “Building understanding of smart city

initiatives.” Lecture Notes in Computer Science, 40–53.

Albino, V., Berardi, U., and Dangelico, R. M. (2015). “Smart cities: Definitions, dimensions,

performance, and initiatives.” Journal of Urban Technology, 22(1), 3–21.

Allam, Z., and Dhunny, Z. A. (2019). “On big data, artificial intelligence and smart cities” Cities,

89, 80-91.

American Society for Civil Engineers (2021), 2021 Report Card for America’s Infrastructure

Anand, P. b, and Navío-Marco, J. (2018). “Governance and economics of smart cities: opportunities

and challenges.” Telecommunications Policy, 42(10), 795–799.

ANSI (2021). “ASTM2018-15 Standard Guide For Property Condition Assessments: Baseline

Property Condition Assessment Process,”

102

https://webstore.ansi.org/Standards/ASTM/ASTME201815?gclid=%20EAIaIQobChMIkZDq-

pP67gIVDUeRBR15_QlmEAAYASAAEgLkzvD_BwE , Accessed Feb. 19, 2021

Archibus Integrated Workplace Management System, (2021) https://archibus.com/

Azhar, K., Murtaza, F., Yousaf, M. H., and Habib, H. A. (2016). “Computer vision based detection

and localization of potholes in asphalt pavement images.” 2016 IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE).

Bawany, N., and Shamsi, J. (2015). “Smart City Architecture: Vision and Challenges.” International

Journal of Advanced Computer Science and Applications, 6(11).

Bovik, A. C. (2005). Handbook of image and video processing. Academic Press, Boston, MA.

Ben Letaifa, S. (2015). “How to strategize smart cities: Revealing the smart model.” Journal of

Business Research, 68(7), 1414–1419.

Cabo, C., Ordóñez, C., Muñiz-Calvente, M., Lozano, M., and Ismael, G. (2019). “A hybrid SURF-

DIC algorithm to estimate local displacements in structures using low-cost conventional

cameras.” Engineering Failure Analysis, 104, 807–815.

Camboim, G. F., Zawislak, P. A., and Pufal, N. A. (2019). “Driving elements to make cities

smarter: Evidences from European projects.” Technological Forecasting and Social Change,

142, 154–167.

Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017a). “Deep Learning-Based Crack Damage Detection

Using Convolutional Neural Networks.” Computer-Aided Civil and Infrastructure Engineering,

32(5), 361–378.

Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2017b). “Autonomous

Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple

Damage Types.” Computer-Aided Civil and Infrastructure Engineering, 33(9), 731–747.

Challawala, A., Ogundiya, K., and Patel, H.(2020). “The Future of Smart Cities.” Barclays.

Chapps: Mobile Property Inspection Apps, (2021) https://www.chapps.com/us/

Cheng, J. C., and Wang, M. (2018). “Automated detection of sewer pipe defects in closed-circuit

television images using deep learning techniques.” Automation in Construction, 95, 155–171.

Choi, J., Yeum, C., M., Dyke, S., J., and Jahanshani, M. R. (2018). “Computer-Aided Approach for

Rapid Post-Event Visual Evaluation of a Building Façade.” Sensors, 18(9), 3017.

Choras, R. S. (2007). “Image Feature Extraction Techniques and Their Applications for CBIR and

Biometrics Systems.” International Journal of Biology and Biomedical Engineering, 1(1), 6-16.

https://webstore.ansi.org/Standards/ASTM/ASTME201815?gclid=%20EAIaIQobChMIkZDq-pP67gIVDUeRBR15_QlmEAAYASAAEgLkzvD_BwE
https://webstore.ansi.org/Standards/ASTM/ASTME201815?gclid=%20EAIaIQobChMIkZDq-pP67gIVDUeRBR15_QlmEAAYASAAEgLkzvD_BwE
https://archibus.com/
https://www.chapps.com/us/

103

City of Ottawa. (2017). Smart City 2.0.

Colldahl, C., Frey, S., & Kelemen, J. (2013). “Smart cities: Strategic sustainable development for an

urban world.” Karlskrona, Sweden: Blekinge Institute of Technology.

Collins, A., Lonard, A., Cox, A., Greco, S., and Gianpiero, T. (2017). “Report on urban policies for

building smart cities” PERCEVIE: Perception and Evaluation of Regional and Cohesion

Policies by Europeans and Identification with the Values of Europe

Dalal, N., and Triggs, B. (2005). “Histograms of Oriented Gradients for Human Detection.” IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR05).

Daniels, J. (2017). “California’s troubled Oroville Dam wasn’t on Gov. Brown’s infrastructure ‘wish

list’.” CNBC.

Deng, H., Hong, H., Luo, D., Deng, Y., and Su, C. (2020). “Automatic Indoor Construction Process

Monitoring for Tiles Based on BIM and Computer Vision.” Journal of Construction

Engineering and Management, 146(1), 04019095.

Deng, J., Lu, Y., and Lee, V. C. S. (2019). “Concrete crack detection with handwriting script

interferences using faster region‐based convolutional neural network.” Computer-Aided Civil

and Infrastructure Engineering, 35(4), 373–388.

Devi, R. D. H., Bai, A., and Nagarajan, N. (2020). “A novel hybrid approach for diagnosing diabetes

mellitus using farthest first and support vector machine algorithms.” Obesity Medicine, 17,

100152.

Dirks, S., and Keeling, M., (2009). “A Vision of Smarter Cities: How Cities Can Lead the Way into a

Prosperous and Sustainable Future”. Retrieved from:

https://www.ibm.com/downloads/cas/2JYLM4ZA

Dorafshan, S., Thomas, R. J., and Maguire, M. (2018). “Comparison of deep convolutional neural

networks and edge detectors for image-based crack detection in concrete.” Construction and

Building Materials, 186, 1031–1045.

Dung, C. V., and Anh, L. D. (2019). “Autonomous concrete crack detection using deep fully

convolutional neural network.” Automation in Construction, 99, 52–58.

EZMaxMobile: Work Synchronization App, (2021) https://interprosoft.com/products-

services/ezmaxmobile/

Fang, W., Ding, L., Luo, H., and Love, P. E. (2018). “Falls from heights: A computer vision-based

approach for safety harness detection.” Automation in Construction, 91, 53–61.

Giffinger, R., and Gudrun, H. (2010). “Smart Cities Ranking: An Effective Instrument for the

Positioning of Cities?” ACE Architecture, City and Environment 4: 12, 7–25.

https://www.ibm.com/downloads/cas/2JYLM4ZA
https://interprosoft.com/products-services/ezmaxmobile/
https://interprosoft.com/products-services/ezmaxmobile/

104

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). “Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation.” 2014 IEEE Conference on Computer Vision and

Pattern Recognition.

Graham, D. A. (2017). “How did the Oroville Dam Crisis get so Dire?” The Atlantic

Gunay, H. B., Shen, W., and Yang, C. (2018). “Text-mining building maintenance work orders for

component fault frequency.” Building Research & Information, 47(5), 518–533.

HappyCo: Real-Time Property Management, (2021) https://happy.co/

Hartigan, J. A., and Wong, M. A. (1979) “A k-means clustering algorithm”, Journal of Applied

Statistics, 28, 100-108.

Hegazy, T. (2002), “Computer-Based Construction Project Management”. Prentice Hall, Upper

Saddle River, NJ, USA.

Hegazy, T., Mostafa, K., and Ojulari, S. (2021). “Tetris-inspired approach for generating tightly-

packed repetitive schedules.” Automation in Construction. 124: 103601.

Hegazy, T., Saad, D. A., and Mostafa, K. (2020). " Enhanced Repetitive-Scheduling Computation

and Visualization." Journal of Construction Engineering and Management, 146(10), 04020118

Hernández-García, A., and König, P. (2018). “Further Advantages of Data Augmentation on

Convolutional Neural Networks.” Artificial Neural Networks and Machine Learning – ICANN

2018 Lecture Notes in Computer Science, 95–103.

Hezaveh, M. M., Kanan, C., Salvaggio, C. (2017). “Roof Damage Assessment using Deep Learning”

2017 Applied Imagery Pattern Recognition Workshop (AIPR).

Hoang, N., Nguyen, Q., and Tran, V. (2018). “Automatic recognition of asphalt pavement cracks

using metaheuristic optimized edge detection algorithms and convolution neural

network.” Automation in Construction, 94, 203–213.

Hoang, N.-D., and Nguyen, Q.-L. (2018). “Metaheuristic Optimized Edge Detection for Recognition

of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt,

Canny, and Sobel Algorithms.” Advances in Civil Engineering, 2018, 1–16.

Hollands, R. G. (2008). “Will the real smart city please stand up? Intelligent, progressive or

entrepreneurial?” City, 12(3), 303–320.

Home Inspector Pro: Professional, Interactive, and Easy to Read Reports, (2021)

https://www.homeinspectorpro.com/

HomeGauge: The future of the inspection industry, (2021) https://www.homegauge.com/

https://happy.co/
https://www.homeinspectorpro.com/
https://www.homegauge.com/

105

HomInspect Inspection Software, (2021) https://hominspect.net/

Horizon Inspection Software by Carson Dunlop, (2021)

https://www.carsondunlop.com/landing/kaplan.html

Infrastructure Canada-Competition One (2019).

InspectCheck: Property Inspection App, (2021) https://www.inspectcheck.com/

Jain, A.K., (2010). “Data clustering: 50 years beyond k-means”. Pattern Recognition Letters, 31(8),

651–666.

Jobber: Site Inspection Checklists and Job Forms, (2021) https://getjobber.com/

Johnson, D., (2020). “Deferred maintenance: Universities can't keep up with expensive upkeep and

repairs.” Maclean’s.

Jordan, M.I., and Mitchell, T.M. (2015). “Machine learning: trends, perspectives, and prospects.”

Science, 349(6245), 255-260.

Kamarah, E. (2019). “Framework for scheduling, controlling, and delivery planning for scattered

repetitive infrastructure rehabilitation projects.” Ph.D. dissertation, Dept. of Civil and

Environmental Engineering, Univ. of Waterloo.

Kamari, A., Kirkegaard, P.K., Schultz, C.P.L. (2021). “PARADIS - A process integrating tool for

rapid generation and evaluation of holistic renovation scenarios,” Journal of Building

Engineering, 34,

Kim, B., and Cho, S. (2019). “Image‐based concrete crack assessment using mask and region‐based

convolutional neural network.” Structural Control and Health Monitoring.

Kingma, D. P., Ba, J. L. (2015). “ADAM: A Method for Stochastic Optimization”. International

Conference for Learning Representations, San Diego.

Kumar, S. S., Abraham, D. M., Jahanshahi, M. R., Iseley, T., and Starr, J. (2018). “Automated defect

classification in sewer closed circuit television inspections using deep convolutional neural

networks.” Automation in Construction, 91, 273–283.

Li, B., Wang, K. C. P, Zhang, A., Yang, E., and Wang, G. (2020). “Automatic classification of

pavement crack using deep convolutional neural network.” International Journal of Pavement

Engineering, 21(4), 457-463.

Link Inspect Pro: Property Inspection Software, (2021) https://linkinspectpro.com/

https://hominspect.net/
https://www.carsondunlop.com/landing/kaplan.html
https://www.inspectcheck.com/
https://getjobber.com/
https://linkinspectpro.com/

106

Liu, K., and El-Gohary, N. (2017). “Ontology-based semi-supervised conditional random fields for

automated information extraction from bridge inspection reports.” Automation in Construction,

81, 313–327.

Liu, Z., Cao, Y., Wang, Y., and Wang, W. (2019). “Computer vision-based concrete crack detection

using U-net fully convolutional networks.” Automation in Construction, 104, 129–139.

Luo, Q., Ge, B., and Tian, Q. (2019). “A fast adaptive crack detection algorithm based on a double-

edge extraction operator of FSM.” Construction and Building Materials, 204, 244–254.

Lv, X., & El-Gohary, N. (2016). “Text Analytics for Supporting Stakeholder Opinion Mining for

Large-scale Highway Projects.” Procedia Engineering, 145, 518-524.

Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N., and Loupos, C. (2015). “Deep

Convolutional Neural Networks for efficient vision based tunnel inspection.” 2015 IEEE

International Conference on Intelligent Computer Communication and Processing (ICCP).

Manville, C., Cochrane, G., Cave, J., Millard, J., Pederson, J. K., Thaarup, R. K., Liebe, A., Wissner,

M., Massink, R., and Kotternik, B. (2014). “Mapping Smart Cities in the EU” European

Parliament’s Directorate General for Internal Policies

Martinez, P., Mohamed, E., Mohsen, O., and Mohamed, Y. (2020). “Comparative Study of Data

Mining Models for Prediction of Bridge Future Conditions.” Journal of Performance of

Constructed Facilities, 34(1), 04019108.

McCallum, A., Nigam, K., and Ungar, L. H. (2000). “Efficient Clustering of High-Dimensional Data

Sets with Application to Reference Matching”, International Conference on Knowledge

Discovery and Data Mining, 169-178.

Meijer, A., and Bolívar, M.P.R., (2016). “Governing the smart city: a review of the literature on

smart urban governance.” International Review of Administrative Sciences, 82 (2), 392–408.

MERX (2011). "RFP: Condition Assessment Program for Education Facilities in Ontario " MERX,

Ministry of Government Services, Ontario Shared Services Supply Chain

Management Procurement Advisory Branch.

Mo, Y., Zhao, D., Syal, M., and Aziz, A. (2017). “Construction Work Plan Prediction for Facility

Management Using Text Mining.” Computing in Civil Engineering 2017.

Mohanty, P. S., Choppali, U., and Kougianos, E. (2016). “Everything You Wanted to Know about

Smart Cities” IEEE Consumer Electronics Magazine

Mostafa, K., Attalla, A., and Hegazy, T. (2021). “Data mining of school inspection reports to identify

the assets with top renewal priority.” Journal of Building Engineering, 41, 102404.

107

Nam, T., and Pardo, T. A. (2011). “Smart city as urban innovation: Focusing on Management,

Policy, and Context.” Proceedings of the 5th International Conference on Theory and Practice

of Electronic Governance - ICEGOV '11.

Oralhan, Z., Oralhan, B., and Yiğit, Y. (2017). “Smart city application: Internet of things (IoT)

technologies based smart waste collection using data mining approach and ant colony

optimization.” International Arab Journal of Information Technology, 14(4), 423–427.

Patel, M. (2019). “Understanding the Role of Smart City & its Components in

the IoT Era.” eInfochips.

Perez, H., and Tah, J. H. (2021). “Deep learning smartphone application for real‐time detection of

defects in buildings.” Structural Control and Health Monitoring, 28(7).

Perez, H., Tah, J. H., and Mosavi, A. (2019). “Deep Learning for Detecting Building Defects Using

Convolutional Neural Networks.” Sensors, 19(16), 3556.

Piangiani, G. (2020). “Poor Maintenance and Construction Flaws Are Cited in Italy Bridge Collapse”

The New York Times.

Pramanik, M. I., Lau, R. Y. K., Demirkan, H., and Azad, M. A. K. (2017). “Smart health: Big data

enabled health paradigm within smart cities.” Expert Systems with Applications, 87, 370–383.

Raja, A. K., and Pang, Z. (2016). “High accuracy indoor localization for robot-based fine-grain

inspection of smart buildings.” IEEE International Conference on Industrial Technology

(ICIT)

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You Only Look Once: Unified, Real-

Time Object Detection.” IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Rena, G., Heob, Y., Sunikka-Blanka, M. (2019). “Investigating an adequate level of modelling for

retrofit decision-making: A case study of a British semi-detached house,” 38.

Reporthost Home Inspection Software, (2021) https://www.reporthost.com/

Roberts, D., and Golparvar-Fard, M. (2019). “End-to-end vision-based detection, tracking and

activity analysis of earthmoving equipment filmed at ground level.” Automation in

Construction, 105, 102811.

Sachgau, O. (2016). “Schools crumbling amid $1B repair shortfall.” thestar.com.

Rushowy, K. (2019). “Repair backlog in Ontario schools hits $16.3 billion.” thestar.com.

Seghal, G., and Garg K. (2014). “Comparison of Various Clustering Algorithms.”, International

Journal of Computer Science and Information Technologies, 5(3), 3074-3076

https://ieeexplore-ieee-org.proxy.lib.uwaterloo.ca/xpl/conhome/7468873/proceeding
https://ieeexplore-ieee-org.proxy.lib.uwaterloo.ca/xpl/conhome/7468873/proceeding
https://www.reporthost.com/

108

Seong, H., Choi, H., Cho, H., Lee, S., Son, H., and Kim, C. (2017). “Vision-Based Safety Vest

Detection in a Construction Scene.” Proceedings of the 34th International Symposium on

Automation and Robotics in Construction (ISARC).

Sharma, N., Bajpai, A., and Litoriya, R. (2012). “Comparison the various clustering algorithms of

weka tools.”, International Journal of Emerging Technology and Advanced Engineering, 2(5),

73-80.

Sharma, S., Tiwari, R., Shukla, A., and Yadav, J. (2014). “Canopy Clustering Based Multi Robot

Area Exploration.”, Third International Conference on Advances in Control and Optimization

of Dynamical Systems, Kanpur, India.

Silva, B. N., Khan, M., and Han, K. (2018). “Towards sustainable smart cities: A review of trends,

architectures, components, and open challenges in smart cities.” Sustainable Cities and

Society, 38, 697–713.

Smart Brantford (n.d.). “Smart Governance: Smart Brantford.”

SmartCitiesWorld (2017). “Smart cities services worth $225bn by 2026.”.

Son, H., Choi, H., Seong, H., and Kim, C. (2019). “Detection of construction workers under varying

poses and changing background in image sequences via very deep residual

networks.” Automation in Construction, 99, 27–38.

Spectora: Top-Rated Home Inspection Software, (2021) https://www.spectora.com/

TDSB (2021). “Toronto District School Board, Renewal Needs Backlog.”

https://www.tdsb.on.ca/About-Us/Accountability/Renewal-Needs-Backlog-and-Facility-

Condition-Index/Renewal-Needs-Backlog, Accessed Aug. 11, 2021.

TDSB (2020). “2020-2021 Operating Budget.” https://www.tdsb.on.ca/Portals/0/docs/5_1.pdf,

Accessed Jul. 7, 2021

VFA capital Planning Software, (2021) https://www.gordian.com/resources/vfa-capital-planning-

software/

Vuppulurri, P. (2020) “Investing In Innovation: The Rise Of The Smart City.” Forbes.

Wang, B., Li, Y., Zhao, W., Zhang, Z., Zhang, Y., and Wang, Z. (2019a). “Effective Crack Damage

Detection Using Multilayer Sparse Feature Representation and Incremental Extreme Learning

Machine.” Applied Sciences, 9(3), 614.

Wang, J., Hou, J., Chen, J., Fu, Q., Huang, G. (2021). “Data mining approach for improving the

optimal control of HVAC systems: An event-driven strategy,” Journal of Building Engineering,

39.

https://www.spectora.com/
https://www.tdsb.on.ca/About-Us/Accountability/Renewal-Needs-Backlog-and-Facility-Condition-Index/Renewal-Needs-Backlog
https://www.tdsb.on.ca/About-Us/Accountability/Renewal-Needs-Backlog-and-Facility-Condition-Index/Renewal-Needs-Backlog
https://www.tdsb.on.ca/Portals/0/docs/5_1.pdf
https://www.gordian.com/resources/vfa-capital-planning-software/
https://www.gordian.com/resources/vfa-capital-planning-software/

109

Wang, K. C., Li, Q. J., Yang, G., Zhan, Y., and Qiu, Y. (2015). “Network level pavement evaluation

with 1 mm 3D survey system.” Journal of Traffic and Transportation Engineering (English

Edition), 2(6), 391–398.

Wang, N., Zhao, X., Zhao, P., Zhang, Y., Zou, Z., and Ou, J. (2019b). “Automatic damage detection

of historic masonry buildings based on mobile deep learning.” Automation in Construction,

103, 53–66.

Weka 3: Data Mining with Open Source Machine Learning in Java, (2020)

https://www.cs.waikato.ac.nz/ml/weka/..

Williams, T. P., and Betak, J. F. (2016). “Identifying Themes in Railroad Equipment Accidents

Using Text Mining and Text Visualization.” International Conference on Transportation and

Development 2016.

Yang, M.-D., Chao, C.-F., Huang, K.-S., Lu, L.-Y., and Chen, Y.-P. (2013). “Image-based 3d scene

reconstruction and exploration in augmented reality.” Automation in Construction, 33, 48–60.

Yousaf, M. H., Azhar, K., Murtaza, F., and Hussain, F. (2018). “Visual analysis of asphalt pavement

for detection and localization of potholes.” Advanced Engineering Informatics, 38, 527–537.

Yudin, D. A., Adeshkin, V., Dolzhenko, A. V., Polyakov, A., and Naumov, A. E. (2021) “Roof

Defect Segmentation on Aerial Images Using Neural Networks” Advances in Neural

Computation, Machine Learning, and Cognitive Research IV, 175-183

Zeiler, M., & Fergus, R. (2013). “Visualizing and understanding convolutional networks.” European

Conference on Computer Vision, 8689, 818-833

Zhang, A., Wang, K. C. P., Li, B., Yang, E., Dai, X., Peng, Y., Fei, Y., Liu, Y., Li, J. Q., and Chen,

C. (2017). “Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a

Deep-Learning Network.” Computer-Aided Civil and Infrastructure Engineering, 32(10), 805–

819.

Zhao, D., McCoy, A. P., Kleiner, B. M., Du, J., and Smith-Jackson, T. L. (2016). "Decision making

chains in electrical safety for construction workers." Journal of Construction Engineering and

Management, 142(1), 04015055.

Zhou, X., Yang, T., Liang, L. Zi, X., Yan, J., Pan, D. (2021). “Anomaly detection method of daily

energy consumption patterns for central air conditioning systems,” Journal of Building

Engineering, 38.

Zhou, X., Wanga, B., Liang, L., Yana, J., Pana, D. (2019). “An operational parameter optimization

method based on association rules mining for chiller plant,” Journal of Building Engineering,

26.

Zinspector: Property Inspection Solution, (2021) https://www.zinspector.com/

https://www.cs.waikato.ac.nz/ml/weka/
https://www.zinspector.com/

110

Appendix A: Sample of Collected Images

Vegetation Images

111

Ponding Images

112

No Defect Image

113

Appendix B: Python Code for Convolutional Neural Network

Model.py Module

import pytorch CNN libraries
import torch
import torch.nn as nn

#Define the CNN architecture
class CnnPHD(nn.Module):
 def __init__(self):
 super(CnnPHD, self).__init__()
 self.conv1 = nn.Conv2d(in_channels=3, out_channels=24, kernel_size=20, stride=2)
 self.pool1 = nn.MaxPool2d(kernel_size=7, stride=2)
 self.conv2 = nn.Conv2d(24, 48, 15, stride=2)
 self.pool2 = nn.MaxPool2d(kernel_size=4,stride=2)
 self.conv3 = nn.Conv2d(48,96,10,stride=2)
 self.conv4 = nn.Conv2d(96,2,1,stride=1)
 def forward(self,x):
 L1 = self.conv1(x)
 L2 = self.pool2(L1)
 L3 = self.conv2(L2)
 L4 = self.pool2(L3)
 L5 = self.conv3(L4)
 L6 = nn.ReLU(inplace=True)(L5)
 L6 = nn.Dropout2d(p=0.5)(L6)
 L7 = self.conv4(L6)
 L8 = nn.Softmax(dim=1)(L7)
 L8 = L8.reshape(-1,2)
 return L8

114

Dataset.py Module

importing necessary libraries:
import os
import torch
from PIL import Image
from torch.utils.data import Dataset

class slicesDataset(Dataset):

 # Going to image directory and collecting all JPG images

 def __init__(self, root ,train=True, transform = None):
 Dataset.__init__(self)
 images_dir = os.path.join(root,'')
 images = os.listdir(images_dir)
 self.images = [os.path.join(images_dir, k) for k in images if 'jpg' in k]
 self.images.sort()

 self.transform = transform
 self.train = train

 #Image labelling: image label=1 if it has the letters 'CLR' in its name indicating no defects
 #For Image Classification CNN, image label=1 if it has the letters ‘VEG’ in its name indicating a
vegetation defect

 def __getitem__(self, index):
 img_dir = self.images[index]
 img = Image.open(img_dir).resize([256,256])
 img = self.transform(img)
 if self.train:
 lbe = 1 if 'CLR' in img_dir else 0
 return img, lbe
 return img

 def __len__(self):
 return len(self.images)

 #Weighted sampling for the batches, depending on the ratio between the images carrying different
labels

 def __weight__(self):
 pos = sum(1 for x in self.images if 'CLR' in x)
 neg = len(self.images) - pos
 weights = [1/neg, 1/pos]
 class_weights = torch.FloatTensor(weights)
 return class_weights

115

Myutils.py Module

#Import necessary libraries
import os
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
import pandas as pd

#Calculating Accuracy: Number of correct predictions/total number of datapoints
def Acc(model, loader):
 with torch.no_grad():
 acc = total = 0
 for images, labels in loader:
 images = images.cuda()
 labels = labels.cuda()
 outputs = model(images)
 acc += (outputs.argmax(1)==labels).sum().item()
 total += labels.size(0)
 return acc/total*100

#Function to return predicted labels vs. actual labels as a dataframe
def lbls(model, loader):
 with torch.no_grad():
 results=[]
 for images, labels in loader:
 images = images.cuda()
 labels = labels.cuda()
 outputs = model(images)
 results.append([labels.cpu().numpy(),outputs.cpu().detach().numpy()])
 results_df=pd.DataFrame(results[0][1],results[0][0]).reset_index().rename(columns={"index":"true
label"})

 return results_df

#Transforming the images to a format that the CNN can read
transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize(mean=[.5,.5,0.5],std=[.5,.5,0.5])
])

116

Train.py Module

#Import necessary libraries
import os
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import numpy as np
from dataset import slicesDataset
from model import CnnPHD
import logging
import copy
import pandas as pd
from myutils import Acc, transform, lbls
from datetime import datetime

#Hyperparameters
batch_size = 64
num_epochs = 1000
num_workers = 0 #means use all GPU power
lr = 0.0001 # learning rate
torch.cuda.manual_seed(7)
torch.manual_seed(7)

torch.backends.cudnn.enabled = False #avoid CUDA OUT OF MEMORY error

#Loading the images for training and validation datasets, refer to the "dataset.py" functions for more
detail
train_dataset = slicesDataset('../train_images', transform=transform)
val_dataset = slicesDataset('../val_images', transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,
 shuffle=True,num_workers=num_workers, pin_memory=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size,
 shuffle=True, num_workers=num_workers, pin_memory=True)

#Calling the CNN model
init_cnn = CnnPHD().cuda()
print(Acc(init_cnn, val_loader))

history = []
cnn = copy.deepcopy(init_cnn)

#Loss function and optimizer
criterion = nn.CrossEntropyLoss(weight=train_dataset.__weight__().cuda())
optimizer = torch.optim.Adam(cnn.parameters(), lr=lr)
logging.basicConfig(filename='../logs/logger_cnn_adam.log', level=logging.INFO)
total_step = len(train_loader)

117

Train.py Module (Cont.)

start_time=datetime.now()
print("TRAINING START at: ",start_time)

#The Training Loop
for epoch in range(num_epochs):
 totalloss = 0
 for i, (images, labels) in enumerate(train_loader):

 #Forward pass
 images = images.cuda()
 labels = labels.cuda()
 outputs = cnn(images)
 loss = criterion(outputs, labels)
 totalloss += loss*images.size(0)

 #Backward pass
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

 #Store Model Accuracy
 if i==total_step-1:
 valacc = Acc(cnn,val_loader) #refer to "myutils" functions for more detail
 trainacc = Acc(cnn,train_loader)
 history.append([totalloss.item()/len(train_dataset),trainacc,valacc])

#Saving and Timestamping the model parameters
 torch.save(cnn.state_dict(),\
 '../trained_models/cnn_adam_'+datetime.now().strftime('%Y-%m-
%d_%H%M_')+str(epoch+1)+'.pkl')

#Display function, so we know how much work is left
 if epoch%100==0:
 print('Epoch [{}/{}], Time is: '
 .format(epoch + 1, num_epochs, i + 1), datetime.now())

#Report total training time for all epochs
finish_time=datetime.now()
print("total Training time=",finish_time-start_time)

#Save the accuracy results for training and validation (create Figs. 4.8, 4.9)
history_df=pd.DataFrame(history,columns=['loss','Training accuracy(%)','Validation accuracy(%)'])
history_df.to_csv('../History.csv',index=True)

118

Predict.py Module

#Import Necessary Libraries
import os
import torch
from PIL import Image
import numpy as np
from model import CnnPHD
from myutils import transform, Acc, lbls
import pandas as pd
from dataset import slicesDataset
from torch.utils.data import Dataset, DataLoader

torch.backends.cudnn.enabled = False

#Loading image folders (one folder per school)
‘../’ refers to the folder above the working directory (i.e., folder above the folder containing the code
files)
big_folder = '../FreeVideoToJPGConverter/'
big_dir = os.listdir(big_folder)
big_dir.sort()
big_list = [big_folder+k+'/' for k in big_dir if '.' not in k]
big_list.sort()
i=0
#Preparing images from within the folder to be loaded by the dataset.py module (folder-by-folder)
for folder in big_list:
 img_folder = folder
 img_dir = os.listdir(img_folder)
 img_dir.sort()
 img_list = [img_folder+k for k in img_dir]
 img_list.sort()

#Loading model parameters
 cnn = CnnPHD().cuda()
 cnn.load_state_dict(torch.load('../trained_models/cnn_adam_163.pkl'))

 #Loading image dataset
 pred_dataset = slicesDataset(img_folder, transform=transform)
 pred_loader = DataLoader(dataset=pred_dataset, batch_size=len(img_dir),
 shuffle=False, num_workers=0, pin_memory=True)

 #performing prediction and saving results
 pred_df=lbls(cnn,pred_loader)
 #print(Acc(cnn,pred_loader))
 pred_df.index=img_dir
 pred_filename=big_folder+big_dir[i]+'.csv'
 i=i+1
 pred_df.to_csv(pred_filename,index=True)

