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Abstract 

While smart cities are viewed as the way of the future, the infrastructure assets expected to support the 

different smart services are currently managed using frameworks that are outdated, subjective, and 

inefficient. Such inefficiencies have led to huge maintenance and rehabilitation backlogs that are far 

beyond the financial capabilities of cities, municipalities and large asset owners like school boards. For 

example, the cost to bring Ontario schools facilities to an acceptable level of service is estimated to be 

as high as $16 billion. Currently, most “smart asset initiatives” are geared towards building new assets 

and using sensors to get periodic info about their condition, with little thought given regarding the 

condition of existing assets. As such, there is a need to introduce a “smart rehabilitation” framework 

that answers the question “how to bring the current infrastructure assets up to speed to satisfy the needs 

of current and future generations?”. 

 To contribute to the overall vision of smart cities (data-driven interconnected services), the 

introduced framework uses machine learning and smart analytics to tackle three main functions of 

smart asset rehabilitation frameworks: (1) it automates the inspection and condition assessment 

processes by using convolutional neural networks (CNNs) to develop a machine learning system where 

defects can be automatically detected, classified, and quantified from images; (2) it uses data mining 

and clustering techniques to classify the assets according to their condition and need for repairs, and 

then uses optimization to select which assets are most worthy of immediate repairs subject to the 

existing funding constraints, thus enhancing the fund allocation phase by reducing its subjectivity; and 

(3) it uses novel computations, visualizations, and algorithms to facilitate cost-effective and fast-

tracked delivery of the required rehabilitation works by considering them as units of a large repetitive 

project. 

To verify the strengths and versatility of the model, the proposed framework is applied to built-

up roofs of educational buildings such as schools and university campuses. First, images were collected 

from the University of Waterloo campus buildings to develop the image-based analysis module; a two-

step CNN framework that can detect damages and classify them according to their type. Information 

from the image-based analysis were then combined with textual information related to building age 

and description and unsupervised learning was applied to develop the prioritization and fund allocation 

module. Results from this module are used as the inputs to an optimization procedure where the overall 

performance of the entire asset portfolio is maximized by selecting which buildings should undergo 
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immediate repairs, given strict budgetary constraints. Finally, the selected rehabilitation works were 

scheduled as units in a large repetitive project for delivery planning. Accordingly, novel computations 

and algorithms were developed to create compact schedules with minimal gaps that comply with 

deadline constraints, and novel visualizations were introduced to showcase the crews movements and 

the timing of all tasks required in each unit. 

The proposed framework offers powerful decision support features for a proposed smart 

rehabilitation layer to be included into the overall smart city vision. This framework deals with existing 

assets and provides objective assessments, cost-effective prioritization, and time-effective delivery 

plans. While this study used the case of built-up roofs as an example application, the framework is 

scalable towards other asset components as well as other assets in general. For example, components 

such as parking lots and concrete elements would rely heavily on the image-based inspection module, 

while other components such as HVAC systems would place more emphasis on the data analytics 

component, including more parameters related to different performance metrics as part of the analysis. 

Overall, this framework has the potential to revolutionize the multi-billion-dollar business of 

infrastructure renewal and provide cost effective decisions that save taxpayers’ money on the long run. 
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Chapter 1: Introduction 

 General 

Smart cities are on the rise as an answer to challenges of limited resources, increasing population, and 

the need for technology-driven efficiency. It is estimated that the market size for smart cities will grow 

up to $820 billion by 2025 (Vuppuluri 2020) and generate up to $20 trillion in economic benefit 

worldwide (Challawalla et al. 2020). As shown in the typical illustration in Fig. 1.1, a smart city links 

a variety of individual smart services, including smart education, smart buildings, smart waste 

management, smart energy, and smart environment, (SmartCitiesWorld 2017; Patel 2019). Bawany 

and Shamsi (2015) provide a layered description of the various categories of services such as smart 

physical infrastructure; and smart governance (Fig. 1.1b). These services are interconnected through a 

core communication technology based on the Internet of Things (IoT). 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 1.1b, the physical infrastructure (roads, bridges, pipelines, schools, hospitals, 

etc.) is the core foundation layer. As such, maintaining the city's physical assets is the key to sustain 

the city’s smart services (Smart Brantford 2019). To achieve that, Governance should be able to 

develop the necessary strategic and operational tools and procedures to automate and decide cost-

effective intervention methods of rehabilitation. 

(b) Layered smart city services (Adapted from 

Bawany and Shamsi 2015) 
(a) Individual smart components (Smart cities world 2017) 

Fig. 1.1: Components of a Smart City 
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 Research Motivation 

This research aims to develop a comprehensive smart rehabilitation framework, integrating modern 

technologies for building inspection, smart analytics of inspection data, and efficient scheduling of 

rehabilitation works to be delivered most efficiently. The research has been motivated by the following: 

1.2.1 Smart City Requires Smart Rehabilitation for Existing Assets 

The typical vision of a smart city (e.g., Fig. 1.1) focuses on building new infrastructure assets as smart 

assets (e.g., equipping them with sensors to periodically communicate their conditions). However, it 

overlooks the requirements of the large portion of existing assets that are old and require extensive 

rehabilitation work. Fig. 1.1a, for example, shows the physical assets (smart buildings, smart 

transportation, water quality, etc.) as isolated islands within the typical vision. As the world is 

becoming more and more digitally connected due to the increasing rate of technological advances and 

breakthroughs, municipal governments strive to accommodate those innovations and the accompanied 

clients’ demands of higher levels of services from their cities. As mentioned earlier, current research 

work related to smart cities tends to overlook the maintenance and rehabilitation aspects. As such, there 

is a need to define the term “smart rehabilitation” as part of the greater term “smart asset management”. 

Smart asset rehabilitation is aligned with the current vision of municipalities and governments in terms 

of creating a digital service strategy through data analytics, responsive operations, and intelligent 

infrastructure (City of Ottawa 2017). 

1.2.2 Challenges in Condition Assessment of Existing Assets 

Assessing the condition of existing assets serves as the background data repository based on which all 

asset rehabilitation decisions are made. Currently, however, most inspections to determine the 

conditions of assets are done manually. Such methods suffer from low productivity, subjectivity, and 

inconsistency as two inspectors might provide different reports for the same asset (Hoang et al. 2018). 

Inspection quality is also limited by the training and experience of the inspector. For each hour spent 

in the field for inspection, additional three hours are spent in the office to generate the reports (Abou 

Shaar 2012). As an example of how time-consuming inspection is (using current methods), in 2010 

Ontario ministry of education issued a bid seeking a company to inspect a total of 4800 schools over a 

five-year period (MERX 2011). Because inspection is time-consuming, inspections tend to take place 

less frequently than desired. For example, schools in Ontario are typically inspected once every 3-5 

years (Abou Shaar 2012). As such, the data based on which rehabilitation decisions are made are often 
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outdated. Furthermore, smarter data collection allows for smarter analysis. For example, Ahluwalia 

and Hegazy (2010) used surveys to analyze roof defects and reported that less frequent and subjective 

inspection data puts many assets in the same condition category, which makes the prioritization and 

fund allocation processes harder than it would have been if such categorizations were based on timely 

and unbiased data. Hence, there is a need for automating the inspection process to save time and cost, 

be able to have more timely data, and make the process less subjective. 

1.2.3 Potential of Machine Learning for Analytics and Asset Prioritization 

A smart inspection and asset management system should be able to automatically analyze the data 

collected and come up with its own conclusion regarding the asset condition and the amount of 

rehabilitation needed. Such analysis can use methods such as deterioration modeling, deep learning 

networks, or others. Such smart analytics and data-driven based methodology aimed to digitize current 

inspection and performance reports may reveal more information that would change the way assets are 

valued. In addition to the economic benefits, this has social benefits as well in terms of bridging the 

social and political divide since automating the damage assessment provides for a “fairer” decision-

making process because it eliminates the human bias when it comes to selecting which assets to receive 

the rehabilitation funds. 

One way to make asset management and rehabilitation more automated and “smarter” is 

through the use of computer vision and image analysis techniques, as a cost-effective approach, to 

extract information from recorded images and videos. The most evident applications of computer 

vision can be seen in drones and autonomous vehicles. In essence, the same way unmanned vehicles 

use computer vision technologies to automatically detect pedestrians and other objects to avoid 

collisions, the proposed inspection framework should be able to use the same technology to 

automatically detect cracks and other defects and use this information for damage assessment in terms 

of severity and size.  

1.2.4 Challenges in Developing Efficient Delivery Plans for Rehabilitation Works 

Municipalities and governments are faced with various constraints when it comes to authorizing 

rehabilitation work. For example, there is an annual shortfall of $1 billion in order to keep schools of 

Ontario in good repair (Sachgau 2016). Furthermore, these repairs have to take place only during the 

summer vacation because of operational and weather constraints. Currently, Facility Management 

(FM) professionals treat rehabilitation work on a case-by-case basis assuming they happen in isolation. 
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Efficient delivery should be able to capitalize on similarities between tasks and aggregating them in a 

bigger work package with repetitive tasks to minimize costs. Thus, using repetitive scheduling 

techniques (Hegazy 2002) for the delivery of rehabilitation works provides opportunities for increased 

efficiency in terms of allowing crews to move uninterrupted to save time and cost. Hence, the need for 

utilizing repetitive scheduling techniques for the delivery of rehabilitation work becomes eminent, 

which is one of the components of the proposed research.  

 Research Objectives and Scope 

The primary goal of this research is to establish “smart rehabilitation” as a major component of the 

smart asset management layer of smart cities. Specifically, this research utilizes machine learning tools, 

such as computer vision and data mining, and repetitive scheduling techniques to develop an automated 

framework for smart city rehabilitation. The framework includes different functions that perform 

efficient condition assessment, prioritization and fund allocation, and delivery planning of time-critical 

and cost-critical rehabilitation works. With a focus on rehabilitation management of built-up roofs as 

a case study, detailed objectives are as follows: 

1. Clarify the challenges of asset rehabilitation by investigating the current practice of the 

different asset management phases (Inspection, prioritization, and delivery); 

2. Based on data collected from the University of Waterloo buildings, use deep learning and 

computer vision techniques to detect damages, classify them according to their type, and 

quantify their sizes directly from roofing images, and develop an automated system to perform 

this function;  

3. Combine the image assessment data with text-mining information to classify assets into 

categories according to their condition and need for rehabilitation, and develop an optimization 

model that assists asset management professionals in prioritizing the required rehabilitation 

events while satisfying budgetary constraints; and 

4. Develop a scheduling framework that uses the defined rehabilitation work packages generated 

by the system in 3 above, treat them as a case of scattered repetitive works, and accordingly 

develop an efficient schedule that considers available resources and meets delivery constraints 

with least cost; 

This research supports cities, municipalities, and other facility management departments such as school 

boards that are required to monitor the conditions of multiple buildings and perform the necessary 
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rehabilitation works using limited budgets and/or within a limited timeframe. While the current 

research relied on data from TDSB, the proposed framework can be adapted to suit the needs of other 

infrastructure assets. 

 Research Methodology  

The proposed research methodology to achieve the above research objectives are as follows: 

1. Literature Review: Conduct an extensive review of existing asset management literature as 

well as current systems used in the industry. Special care will be given to areas related to 

inspection and damage assessment. In addition, conduct a review of computer vision and data 

mining techniques to identify which one is most suitable for developing the inspection and 

prioritization modules; 

2. Data Collection and Analysis: Study past inspection reports from the Toronto District School 

Board (TDSB) to define key textual information that best describes building conditions (e.g., 

building age, description, etc.) and collect roofing images from the University of Waterloo 

buildings; 

3. Image-Based Deep-Learning System: based on the results obtained from analyzing the pictorial 

data, a model will be built using python, a programming language, to automate the damage 

detection, classification, and quantification; 

4. Automated Work Packaging: Working in tandem with the quantification submodule in item 3 

above, RS means data, a database for cost estimation of construction and rehabilitation works, 

is used to create automated rehabilitation work packages that address all the poor and critical 

assets; 

5. Text-mining system: Based on the results obtained from analyzing the textual data, as well as 

the results of the image-based system in item 3 above, a model is built to categorize the assets 

and rehabilitation events according to their criticality 

6. Asset Portfolio Rehabilitation Optimization: Based on the criticality and work packaging 

information obtained from items 3-5, a simple optimization model is developed to prioritize 

the requested rehabilitation works to maximize the overall performance improvement of the 

asset portfolio while abiding by budgetary constraints; 

7. Scattered Repetitive Scheduling: A system for efficient delivery planning of scattered 

repetitive work packages will be developed with streamlined computations and visualization; 
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8. Prototype Testing, and Validation: A prototype decision support system will then be 

developed. The prototype shall be tested using data from TDSB and University of Waterloo; 

and 

9. Discuss the integration of the developed smart rehabilitation framework within the overall 

vision of smart cities that is adopted by municipalities. 

 Thesis Organization 

The remainder of the thesis is organized as follows: 

Chapter 2 presents a detailed literature review to highlight the drawbacks of existing inspection and 

condition assessment frameworks and the need for automation, as well as recent trends in machine 

learning and the different applications in analyzing textual and pictorial data. Unique characteristics of 

repetitive projects and drawbacks of current scheduling techniques are also discussed. 

Chapter 3 holistically analyzes the key building component information existing in TDSB inspection 

reports and accordingly selects built-up roofs as the main building component to focus on for detailed 

study and analysis, before introducing the proposed roofing rehabilitation framework. Also, the data 

collection processes for the different data types (Textual: TDSB, Pictorial: University of Waterloo) are 

briefly introduced. 

Chapter 4 studies the first component of the proposed framework, the image-based analysis model, in 

more detail. It goes through the different CNN model frameworks and architectures and discusses their 

capabilities in detecting, classifying, and quantifying the different roofing defects. The chapter also 

presents the real-life application and validation results of the image-based analysis module on 

University of Waterloo data. 

Chapter 5 studies the second component of the proposed framework, the text mining framework, in 

more detail. It goes through the different algorithms adopted and the final model where the different 

algorithms are aggregated. The chapter also presents the real-life application and validation results of 

the text mining model using TDSB data 

Chapter 6 presents the novel contributions towards scheduling scattered repetitive projects, which 

constitutes the final component of the proposed rehabilitation framework. The chapter describes the 

novel computations (designed interruptions and preventing schedule delays), heuristic algorithms 

(First-Come-First-Serve), and visualizations (duration-distance chart). The chapter highlights the 



7 

 

advantages of the novel scheduling contribution in terms of robustness, explainability, and time and 

cost savings. 

Chapter 7 summarizes the presented research works, highlights its contributions, and provides 

recommendations for future research 
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Chapter 2: Literature Review 

 General 

This chapter first addresses the current state of building infrastructure as well as the introduction of 

smart cities, then provides a comprehensive overview of current inspection methodologies and asset 

management software packages. This is followed by an introduction of repetitive scheduling 

techniques and how they are more suitable for scheduling rehabilitation work than conventional 

scheduling methods such as the critical path method (CPM). Finally, a review of computer vision and 

deep learning techniques is presented, along with their current applications and research potential. The 

chapter concludes with a summary of the research gaps in the fields aforementioned, to be addressed 

in the proposed research (Chapter 3). 

 Smart and Sustainable cities 

The concept of smart cities first emerged in the 1990s calling for utilizing new technologies to solve 

urban problems that are unsolvable using traditional planning approaches (Alawadhi et al. 2012). It 

then received a major boost when IBM proposed in 2009 their vision of smarter cities as a gateway for 

a sustainable future (Dirks and Keeling 2009). A smart city is a city that functions in an intelligent and 

sustainable way by integrating all its elements using modern technology to serve as one cohesive unit 

and effectively monitor its integrity.  

Various researchers have taken interest in the term “smart cities” pursuing various objectives. 

In fact, the number of publications and projects related to smart cities has grown exponentially over 

the past decade since the term has been established (Camboim et al. 2019, Anand and Navio-Marco 

2018). Literature focusing on smart cities concepts and frameworks depart from the notion that the 

people are the main driver of development rather than the mere technological advances (Albino et al., 

2015; Hollands, 2008). Giffinger and Gudrun (2010) identified six main components for a smart city: 

smart governance, smart economy, smart mobility, smart people, smart environment, and smart living. 

Nam and Pardo (2011) categorized the main elements that comprise a smart city into three main 

categories: technology (hardware and software infrastructure), human (education, creativity, and 

diversity), and institution (policy and governance). Mohanty et al. (2016) provided an overview of the 

main components of a smart city highlighting that the city can still be considered “smart” even if it 

chose not to adopt all components and the choice regarding which components to adopt depends on 

multiple factors such as costs and available technology.  
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Literature highlighting technological advances focuses on developing new technology to 

enhance the urban environment (Meijer and Bolivar 2015). Allam and Dhuny (2019) analyzed the 

popularity of Artificial Intelligence (AI) and Big Data using Google trends and concluded that the 

interest in Big Data has grown significantly since 2011. Silva et al. (2018) proposed a layered 

framework of smart cities: A sensing layer for data collection, a data transmission layer (e.g. 3G, Wi-

Fi, etc.), a data management layer that is concerned with data analysis and decision support, and an 

application layer that directly interacts with citizens. Examples include the “Big Data-enabled Smart 

Healthcare System Framework (BDHSF)” developed by Pramanik et al. (2017) where big data 

analytics, logistic support, and smart service-based architecture were utilized to achieve better quality 

and less costs of healthcare services. Oralhan et al. (2017) designed a waste container that can measure 

its capacity, temperature, and levels of carbon dioxide accumulated inside and utilize the Internet of 

Things (IoT) technologies to help calculate an effective waste collection route. Raja and Pang (2016) 

have developed robots that are capable of performing indoor inspections. While their works were aimed 

at proving that robots can perform this level of fine-grained inspection rather than performing a specific 

type of inspection, this can be considered a step towards fully automating indoor inspections in general, 

and maintenance inspections in specific.  

In typical smart governance, smart rehabilitation could be viewed as inherently embedded 

within each asset type, e.g., within smart buildings, smart roads, etc. However, because rehabilitation 

cutting across mixed assets (e.g., roads and underlying pipes), it is mandated that smart rehabilitation 

is treated as a separate layer of governance. To emphasize this point of view, the vision for smart 

buildings and smart facility management (Fig. 2.1), for example, ignores (or at best hides) 

rehabilitation services and focuses on security, energy efficiency, etc. As such, smart rehabilitation 

should become an extra layer that connects the various city components: management of the 

performance level and longevity of the physical assets through legislation and governance. Yet this is 

also not expressed in any of the discussions related to smart city layers, neither introduced as a new 

layer nor incorporated into existing ones. 

Examples of government-led examples of high-profile smart cities include Masdar in 

Abudhabi, Cyberjaya in Malaysia, and PlanIT Valley in Portugal. More exhaustive lists of smart city 

initiatives (especially within the European Union) can be found in the report issued by the European 

Parliament (Manville et al. 2014) as well as Collins et al. (2017). In Canada, Ottawa (2017) is taking 

the lead in spearheading detailed action plans for Smart Governance to include planning and 
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maintaining physical infrastructure elements such as roads and bridges or underground systems. Such 

vision, however, lacks explicit or dedicated care for the largest portion of the assets which is old and 

requires special care for their continuous rehabilitation, capital renewal, and asset management. 

Similarly, Infrastructure Canada has organized a competition inviting all Canadian municipalities, 

governments, and indigenous communities to submit proposals that would leverage data and smart 

cities components to address current challenges (Infrastructure Canada 2019). None of the 20 proposals 

that qualified to the final round addressed the problem of innovative or smart asset rehabilitation. 

Hence, there is a need not only to define the term “smart rehabilitation and maintenance” and draw 

attention to it as one of the main components of smart cities, but also to develop techniques to improve 

rehabilitation decision making to save time and money and sustain the infrastructure services to the 

public. 

 

Fig. 2.1: Key Components of Smart Facility Management (Advancer Global n.d) 

The rise of various technological innovations such as big data analytics, the Internet of Things 

(IoT), and mobile internet access can foster collaboration among citizens. Cities will become “smarter” 

only with the right combination of technology, policy innovation, and civic engagement and 

collaboration (Anand and Navio-Marco 2018). Researchers are undertaking enormous efforts trying to 

investigate how smart city components can interact with one another (e.g. Ben Letaifa, 2015; Colldahl 

et al. 2013; Meijer and Bolivar 2015) but introducing smart asset management as one of the overarching 

smart concepts that can act as a connecting layer between smart assets and other smart city components 

(e.g. smart citizens as users of said assets) has not been addressed. Also, none of the global initiatives 

investigated and presented earlier aimed to tackle asset management issues. Hence, the proposed 

https://www.infrastructure.gc.ca/cities-villes/comp-one-prem-comp-eng.html
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research aims to address both the conceptual and the technological gap related to smart asset 

management and smart rehabilitation and maintenance.  

 Asset Management for Civil Infrastructure 

Major components of a well-functioning city are the civil infrastructure assets as they impact every 

aspect of the residents’ lives and the health and integrity of said assets greatly affect the city’s potential 

for economic and social growth. Factors such as age, harsh environmental conditions, and consistent 

intensive usage put them under duress which leads to their deterioration. Typically, these factors are 

counteracted by regular inspection and maintenance, but this is not always the case due to limited 

funding. Accumulation of shortfalls produced by consistent funding limitations creates a backlog of 

needed repairs. Such backlogs can be as big as $17.2 billion as in the case of Canadian universities 

(Johnson 2020) or even $16.3 billion as in the case of Ontario schools (Rushowy 2019). According to 

the Toronto District School Board (TDSB), over 20,000 repairs for 583 schools are required with a 

total value of $3.7 billion as of July 2021 (TDSB 2021). However, provincial funding is only $300 

million per year. Similarly, in the USA, the most recent ASCE infrastructure report (Fig. 2.2) gave 

schools a grade of D+. Furthermore, the report states that extra $380 billion are needed between now 

and 2029 to keep schools at an acceptable working condition (ASCE 2021) as more than half of the 

schools need to update and/or replace their building systems (ASCE 2021).  

To reduce the backlog, effective management of assets is essential to ensure adequate and long-

term serviceability. However, this is not always an easy task due to budget limitations and operational 

limitations in terms of minimizing downtime due to maintenance and repairs. Hence, asset 

management systems were introduced to help managers find the optimal timing and methodology for 

repairs to maximize the value of the allocated budgets (Elhakeem and Hegazy 2010). Asset 

management systems involve both strategic and operational functions to help organizations perform 

capital renewal, rehabilitation, and upgrades for their inventory. Ideally, asset management systems 

incorporate the following functions: (1) performance assessment through inspection, identification of 

defects, and evaluation of the level of service; (2) deterioration modeling to predict the changes in asset 

performance over time; (3) analyzing and selecting the most appropriate renewal type (e.g., minor, 

major, or full replacement); (4) studying the life cycle cost of the asset to enhance the decision making 

process and extend the asset’s lifespan; (5) ranking the assets according to performance priorities (e.g., 

condition, importance, etc.) and allocating rehabilitation funds based on such ranking; and (6) 
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implementing the decision taken by the previous steps and assessing the condition of the asset post-

rehabilitation. Those six functions are displayed in Fig. 2.3.  

 

Fig. 2.2: ASCE 2021 Infrastructure Report 

 

Fig. 2.3: Main Asset Management Functions (Adapted from Abdel-Monem and Ali 2010) 

This research aims to enhance asset management frameworks by addressing three main phases of 

smart city asset management (highlighted in Fig. 2.3): performance assessment through implementing 

computer vision and Artificial intelligence techniques to enhance and automate the inspection process, 

prioritization and fund allocation through the use of novel data mining and optimization techniques, 

and the delivery phase by utilizing scheduling techniques that are better suited to these type of works 

(repetitive scheduling techniques). 

Performance 
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2.3.1 Inspection Research 

Currently, most inspections are done visually using semi-automated methods that are time-consuming. 

The Facility Management department (FM) sends inspectors to assess the building conditions and file 

reports estimating any required maintenance work. Visual inspections are widely used for preliminary 

and regular inspections because of their effectiveness in detecting external defects such as cracks and 

spalling (Omar et al. 2017). This is of extreme benefit as many degradation conditions often exhibit 

visual symptoms. Visual inspections aim to ensure the integrity of a structure by looking at its critical 

components and note any visual damages or changes that warrant further attention (Sweeny and 

Unsworth 2010). However, subjectivity is inevitable in visual inspections as different inspectors may 

evaluate the same structure differently (Dawood et al. 2018). Furthermore, some parts of the structure 

are not accessible for inspectors, making an overall assessment sometimes impractical (Dawood et al. 

2018). Once the reports are submitted, the FM has to manually price, prioritize, schedule, and allocate 

resources to act on the reports received. This process is lengthy, subjective, and error-prone. Therefore, 

manually administering hundreds of these reports proves to be resource-consuming, if not problematic, 

for FMs given the tight budgets and time frames. An inspection site visit typically takes 4 hours to be 

completed and for each hour spent in the field for inspection, additional three hours are spent in the 

office to generate the reports (Abou Shaar 2012). As an example of how time-consuming inspection is 

(using current methods) Ontario ministry of education has issued a bid in 2010 seeking a company to 

inspect a total of 4800 schools over a five-year period (MERX 2011). In addition, the inspection results 

are not always consistent and depend on the inspectors’ training and experience levels. Despite those 

shortcomings, manual visual inspection still proves to be to most suitable inspection approach for most 

building components (Elhakeem and Hegazy 2010).  

Errors and gaps produced by manual assessments not only waste time and money, but can also 

lead to catastrophic events, such as the collapse of the I-35W highway bridge in Minneapolis, MN 

which caused 13 deaths and 145 injuries (Koch et al. 2015). One of the most recent events is the failure 

of Oroville dam spillways which took place in February 2017, forcing more than 188,000 Californians 

to evacuate and creating a 45-foot deep, 300-foot wide, and 500-foot long hole in the ground (Graham 

2017). The dam was not on the California governor’s “wish list”; a list of $100 billion worth of key 

assets targeted for investment for rehabilitation or construction purposes (CNBC 2017). The forensic 

report mentioned that the main cause of failure, vulnerabilities in the chute slab, was not identified in 

any of the inspections despite their frequency, rigorousness, and the fact that they are undertaken by 
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different investigators representing different parties and following different guidelines (France et al. 

2018). In Italy, while inspections were done properly and the Italian government was aware of the fact 

that the metal cables of a highway bridge in Genoa were corroded which reduced the bridge’s strength 

by 20%, no action was taken to reduce the loads on the bridge (e.g. limit traffic, ban heavy trucks, etc.) 

which has led to its collapse killing 43 people and forcing 600 others to evacuate (Associated Press 

2018).  

Based on the discussion above, asset management, in its current form, has its huge challenges. 

Acquiring the condition of assets using traditional inspection means is time-consuming, less accurate, 

and subjective. As such, many assets end up in the same category in terms of condition, and this creates 

a large problem in allocating rehabilitation funds to the most deserving assets. Rehabilitation funds, 

therefore, are often spent by doing “some for all” (doing minor work for multiple assets) or “all for 

some” (doing all the work required for a single or a small number of assets) (Anand and Navio-Marco 

2018). The first approach spreads the available resources too thinly to the point that it might create an 

illusion of slow progress (Anand and Navio-Marco 2018). On the other hand, the second approach can 

create a sense of inequality (Anand and Navio-Marco 2018). For this reason, Smart Asset Management 

Systems that focus on rehabilitation, which is missing in existing smart governance frameworks, 

become an essential component of smart cities and need to include: smart data collection and smart 

delivery of rehabilitation work to avoid service disruption to the public.  

In general, existing inspection and asset management systems have little capabilities regarding 

how to deal with images. As seen in Table 2.1, typical inspection software focuses on report creation 

more than analysis, with none of the software packages can automatically detect or quantify defects. 

Images are merely included within the automated report with no semantic information automatically 

extracted. At best, some software packages allow for manually adding markups and annotations on the 

provided images (Table 2.1). Some asset management software can offer more services related to 

extracting information from images. They can store it as part of the asset data portfolio (VFA 2021), 

time and location stamp it (EZMaxMobile 2021), allow for manual highlighting and markups (Home 

Inspector Pro 2021), or even integrate it with a BIM model (ARCHIBUS 2021), but the building 

condition will have to be inputted by the user to be later on extrapolated using other information such 

as building age and undertaken repair works, which are also user inputs. In addition, only one software 

among the ones featured in Table 2.1 tries to address the delivery phase of the required rehabilitation 
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work. Therefore, the proposed research deals with these two areas in particular: image-based analysis 

for automated inspection; and smart delivery of rehabilitation work.  

Section 2.4 provides an overview of the state-of-the-art in the areas of the latest technologies 

in image analysis that can revolutionize the detection and classification of defects in different domains 

(which can be utilized to improve inspection); and data mining which can upgrade the prioritization 

and fund allocation decision-making process. 

Table 2.1: Inspection Applications Feature Comparison 
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Visual Tools 
Mark on Pictures √ √  √  √ √ √ √ √ √ √ 
Take Pictures  √ √ √  √ √ √ √ √ √ √ 

Interface 

Assign Jobs to Inspectors  √  √ √ √    √ √  

Hierarchy & Reporting Levels    √      √ √ √ 

Condition Assessment   √ √  √       
Condition Prediction      √       

Custom Report Generation √ √  √   √  √ √ √ √ 
Per-Component Condition History           √  

Deep learning & 

Automation 

Automated Defect recognition             
Automated Quantity takeoff             

Automated Prioritization & estimation       √      

Automated scheduling     √        

 

2.3.2 Decision Making for Fund Allocation 

Efficient asset management requires frequent monitoring and inspection of all assets and individual 

components to ensure their physical and functional fitness and to identify the items that are most 

worthy of the limited funds for capital renewal. However, the data in inspection reports often lack 

granularity and end up assigning critical priority to many more assets than can be funded (Ahluwalia 

and Hegazy 2010). This forces asset managers to rely on their subjective judgment for asset 

prioritization and limited-fund allocation. Capital renewal challenges are exacerbated for organizations 
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that administer a large number of facilities, such as the Toronto District School Board (TDSB) in 

Canada, which owns nearly 600 schools, a sizable portion of which are older than 40 years old. To 

upgrade school conditions and reduce the growing renewal backlog ($4.2 billion in 2021), the 

provincial government provides yearly capital renewal funds to school boards. In the 2020-2021 

budget, the TDSB was allocated $312 million for school renewals (TDSB 2021). However, it remains 

a challenge every year on how to allocate the available budget to the most deserving assets. Therefore, 

it has become even more critical for upper management to appropriately and objectively allocate 

limited funds to address the most pressing needs.  

Current fund allocation decisions are typically analyzed using spreadsheets. A multi-year capital 

plan is then put into place where management decides which assets to repair immediately and which 

to push back for future years (Mostafa et al. 2021). Thus, this process would benefit greatly from an 

objective tool that would make use of the available optimization techniques to facilitate a simpler and 

faster fund allocation method with a good level of accuracy.  

The low level of granularity and the inability to efficiently utilize inspection data has led to 

catastrophic events in some situations. Examples include the failure of the Oroville dam spillways 

explained in 2.3.1, as well as the failure of the Morandi bridge in 2018 that claimed the lives of 43 

people in Italy (Piangiani 2020). As such, there is a need to develop a smart data-driven system that 

can provide timely, detailed, and unbiased insights on how different assets should be assessed and 

ranked in terms of rehabilitation/renewal needs. With limited funds, there have been calls that 

governments should adopt a “Moneyball” approach: a data-driven investment approach similar to what 

Oakland A’s manager Billy Beane used to build a top baseball team on a limited budget (Adriaens 

2019). Finally, there is a need to find an objective way to answer the question “Among the many assets 

of similar inspection results, which ones are most deserving of renewal funds?”.  

 

2.3.3 Repetitive Scheduling: Delivery of Asset Rehabilitation Works  

Repetitive projects, by definition, consist of a group of activities that are repeated over multiple units. 

Repetitive projects can be linear, such as pipelines and roads, vertical, such as high-rise buildings, or 

scattered, such as multiple housing projects (Fig. 2.4). One key aspect for efficient scheduling of 

repetitive projects is allowing crews to perform their works and move from one unit to the other with 

minimal interference so that the crews develop a learning momentum, saving time and cost and 
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benefiting from the economy of scale. As such, rehabilitation work can be considered under the 

umbrella of scattered repetitive projects. Scheduling those projects is a challenging task because the 

works are repetitive in nature but take place in diverse locations. 

 

 

Fig. 2.4: Types of Repetitive Projects 

2.3.3.1 Scheduling for Repetitive Projects 

Scheduling repetitive projects is a challenging process and commonly used techniques, such as CPM, 

are inadequate for multiple reasons. In the case of repetitive projects, CPM networks become more 

complicated as they include copies of the same activities but assigned to different units. This makes 

the schedule difficult to understand or visualize (Su and Lucko, 2016). For repetitive projects, CPM 

plans each activity directly after the conclusion of its predecessor overlooking the importance of having 

the crews maintain work continuity while moving from one unit to another. For example, faster crews 

would be idle for a period of time till all predecessor activities that employ slower crews are complete.  

To address the CPM drawbacks, techniques have been developed in an attempt to synchronize 

resources, maintain work continuity, incorporate non-repetitive tasks within repetitive projects, respect 

project deadlines, and account for learning curve effects. Examples of the developed techniques 

include the Line Of Balance (LOB) (Arditi and Albulak 1986); the Linear Scheduling Model 

(Harmelink and Rowings 1998); and the Repetitive Scheduling Method (Harris and Ioannou 1998). 

Most repetitive scheduling methods incorporate the CPM network analysis to consider the logical 

relationship within each repetitive unit, and among the repetitive units as well (Hegazy 2002; Suhail 

and Neale 1994). 

One of the key advantages of repetitive scheduling methods is their ability to show the large 

information about a repetitive schedule in a legible manner. The Line of balance (LOB), for example, 

plots the activities on a time vs. units axes as opposed to the time vs. activities axes used in bar charts 

(Fig. 2.5). In the figure, a total of 15 activities (3 activities repeated over 5 units) are shown in a 

relatively small chart area. Furthermore, LOB charts provide information about crew assignments and 

 Repetitive Projects 

   Linear Vertical Scattered 

e.g., Highways, Pipelines High-rise Buildings e.g., Multi-Bridge Rehabilitation 
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delivery rates, a feature that is not available in CPM. For example, Fig. 2.20 shows that activities A 

and B are each performed by one crew that moves from one unit to another at a certain rate (slope of 

the line). Activity C, on the other hand, is performed by three crews; the first crew moves from unit 1 

to unit 4, the second crew moves from unit 2 to unit 5, and the third crew is only assigned to unit 3.   

 
Fig. 2.5: LOB Schedule Representation of Three Activities along 5 Units 

 The first step in existing CPM/LOB calculations is to use conventional CPM formulae to 

calculate the time needed to finish one unit (T1). Then, since all the units (N) need to be completed 

before the deadline (DL), the rate of delivery of the units (R) is calculated using Equation 2.1. Equation 

2.1 incorporates the total float of the activity (TF) as an adjustment factor that reduces the delivery rate 

of non-critical activities and thus requires fewer crews. Accordingly, the number of required crews is 

calculated based on the required rate (R) and the duration of the activity (D) using Equation 2.2, and 

then the rate of delivery is adjusted based on the new number of crews after rounding (because having 

fractions of a crew is impractical) through Equation 2.3. An example can be seen in Fig. 2.6. 

[2.1]    Task i desired rate (Ri) =   
𝑁−1

(𝐷𝐿 – 𝑇1 + 𝑇𝐹𝑖)
 

[2.2]    Task necessary crews (Ci) = Roundup (Di x Ri) 

[2.3]    Task actual rate (Ri) = Ci / Di 

In an effort to provide a more practical crew assignment, a new derivation of the needed crews 

has been developed for the more practical case of using parallel crews. The crews are arranged into S 

cycles of C crews to achieve the required delivery rate using equations 2.4-2.6. These equations can 

be seen in action in the example provided in Fig. 2.7, where the final arrangement of this task is 3 

crews engaged in 4 cycles to complete all units. 
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[2.4]          Initial cycles Si  of Ci crews =   
(𝐷𝐿 –  𝑇1)

𝐷𝑖
 + 1                                                                                

[2.5]          No. of Crews Ci = Roundup (N / Si);   1 ≤ Ci ≤ N   &  Ci ≤ Crew-Limiti                

[2.6]          Actual Cycles Si = Roundup (N / Ci)                                                                     

 

 

Fig. 2.6: CPM/LOB Analysis of the Tasks’ Required Shifted Crews to Meet the Deadline 

 

 

Fig. 2.7: Modified CPM-LOB analysis of the required parallel crews. 
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To schedule a successor task that may have different crews/durations from its predecessor, 

researchers (e.g., Hegazy and Kamarah 2008; Laramee 1983) use a unique process of initially drawing 

the successor task starting at some time in the future. Afterward, a proper shift time is calculated to 

bring the task back to immediately follow the predecessor (Fig. 2.8). This approach is referred to as 

the “Delta-Shift” approach. As seen in Fig. 2.8, the delta-shift approach is effective in the case of 

scheduling tasks with non-identical units.  

 

Fig. 2.8: Using the Delta-Shift Approach to Schedule non-Identical Units 

Further research and development in repetitive scheduling have been taking place since the late 

1990s with a particular focus on schedule optimization. Hegazy and Wasef (2001) developed a model 

that would integrate CPM and LOB techniques and use genetic algorithms to determine the optimum 

combination of construction methods, number of crews, and interruptions for each repetitive activity 

that would minimize the total project cost (direct and indirect costs, interruption costs, liquidated 

damages). Hyari and Elrayes (2006) developed a multi-objective optimization model to minimize 

project duration while maximizing work continuity. Derham (2008) developed a multi-objective 

genetic algorithm-based model to minimize both project cost and duration. Long and Ohsato (2009) 

developed a multi-objective model for minimizing project cost and/or duration for repetitive schedules. 

Ali and Elazouni (2009) integrated a CPM/LOB model with a cash flow model to optimize the project 

cash flow and generate financially feasible schedules. Agrama (2012) presented a multi-objective 

genetic optimization model able to minimize the project duration, work interruption, and the number 

of crews. Aziz (2013) developed a model that would optimize the tender offer for a repetitive project, 

taking into account schedule objectives (minimizing cost and duration) while maximizing the project’s 

net present value. Dolabi (2014) presented two heuristic algorithms to achieve optimal crew formations 

so the project would meet a certain deadline, but those algorithms are only valid if the activities are 

serial (finish to start relationships with only one predecessor per activity). Huang et al. (2016) used 
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genetic algorithms to solve multimode time-cost-tradeoff problems considering soft logic. Zou et al. 

(2017) presented a mixed-integer linear programming model for solving deadline satisfaction problems 

in LOB scheduling. Altuwaim and Elrayes (2018) used a two-step approach to develop an optimization 

model that would minimize project duration as well as interruptions.  

Despite all those efforts, repetitive schedules still exhibit deadline violations even when the 

necessary computations are applied. This is because of multiple reasons such as rounding of crews, 

rounding of start times, crew availability limitations, or other reasons that change the geometry of the 

activity/crew assignment and thus introduces schedule gaps that lead to project duration extensions. 

2.3.3.2 Scheduling for Scattered Repetitive Projects 

Scattered projects are projects whose units are not in a single location. Hence, rehabilitation work can 

fall under this category as the assets where the rehabilitation work is taking place are present in multiple 

locations. Scattered projects are the most challenging to schedule due to a variety of reasons. First of 

all, not being bound by a single geographical location means that the work in each site is independently 

affected by its local conditions such as weather and traffic. Therefore, work at a given site should be 

scheduled when the site conditions allow for maximum productivity. Furthermore, project managers 

needed to have the flexibility in changing the sequence of assigned sites and not being tied to a single 

sequence that has to govern all activities, allowing to take into consideration multiple factors such as 

transportation costs and interruption to facilities operations. For example, the electrical crew may 

proceed in a different sequence than the HVAC crew. Having different working sequences makes 

plotting a scattered repetitive schedule problematic as can be seen in Fig. 2.9. Activity A is using one 

crew that moves in the order 2-6-7-1-3-5-4 (map on the left-hand side) while activity B uses two crews 

that move in the sequences 2-6-7-1, and 2-5-4, respectively (map on the right-hand side).  With a 

schedule with many activities, it may not be possible to define the correct order of units on the vertical 

axis that makes the schedule readable.  

To resolve this issue, Kamarah (2019) proposed a generic schedule representation where the 

site index is demonstrated on the activity bars instead of on a fixed axis (Fig. 2.10). Among the attempt 

to address the challenges of scattered repetitive scheduling, Hegazy et al. (2004) presented a genetic-

algorithm-based scheduling model for efficient scheduling and resource optimization of scattered 

repetitive projects. That model was further developed by Kamarah (2019) into a computer prototype 

that automates the scheduling, control, and cost optimization of scattered repetitive projects. 
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Fig. 2.9: Traditional LOB for a Scattered Repetitive Project (Kamarah 2019) 

 

 

Fig. 2.10: Scattered Repetitive Schedule with Variable Site Index (Kamarah 2019) 

Repetitive scheduling calculations require prior knowledge of the number of units, maximum 

available crews, as well as the project deadline. This poses a challenge when it is applied to 

rehabilitation work because the number of units is sometimes not known. As mentioned in chapter 1, 

22,000 repairs are required in over 500 schools in Toronto and these repairs can only take place in the 

summer period when the schools are not active. Hence, there is a “packaging” problem in terms of how 

many, and which, schools can be fixed in this limited period of time, before solving the conventional 

scattered repetitive scheduling problem in terms of determining the optimal ordering and crew 

assignments. If we assumed that the scattered repetitive scheduling is a traveling salesman problem, 

where the objective is finding the least expensive routes to visit all states, then applying scattered 

repetitive scheduling to rehabilitation work imposes another problem of which states to visit in the first 
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place. Furthermore, in municipalities, the resource limit for this type of work might not necessarily be 

limited to the number of maintenance crews doing the work (because the works can be subcontracted), 

but rather the number of in-house inspectors that oversee and inspect the work. 

 Advanced Analytics 

The recent advances in artificial intelligence, computer vision, deep learning, and other data analysis 

technologies have allowed to automate many engineering tasks. This has allowed engineering 

professionals to acquire and analyze more up-to-date data to make decisions more accurately, which 

has led to cost and time reductions. Such advances allowed not only to analyze numerical data but also 

extract meaningful information directly from text and photos. However, the construction industry has 

been deemed to be relatively conservative in terms of adopting data-driven technology innovations to 

improve safety and productivity (Busta 2016). The construction industry is currently one of the least 

digitized industries in the world according to MGI’s digitization index (Manyika et al. 2016). For 

example, it is estimated that current site managers consume almost half their time manually collecting 

and processing progress monitoring data before making a decision (Deng et al. 2020). Hence there is 

a clear need for the use of artificial intelligence and advanced analytics to achieve maximum efficiency. 

2.4.1 Computer Vision and Image Analysis Techniques 

Computer vision and image-based learning techniques allow for computers to automatically analyze 

visual data such as images. The reason why computer vision has attracted various researchers in 

multiple other fields is primarily because images are easy to collect in a non-intrusive manner and they 

are often readily available (e.g. security CCTV cameras). The benefits of using image-based learning 

techniques are that they reduce the human subjectivity and time for manual inspections, and being able 

to inspect locations that are inaccessible by human inspectors. For those reasons, many state highway 

agencies are replacing manual surveys with automated systems that can collect high-resolution images 

and are able to detect cracks as small as 1-mm long (Wang et al. 2015). 

2.4.1.1 Edge Detection 

Edge detection refers to the use of special filters for the purpose of detecting edges in an image (such 

as a crack) so they can be easily identified and located. Edges are detected based on discontinuities in 

image color and/or brightness. Points where such discontinuities occur are identified as edges. Cracks 

in a 2-dimensional image are classified as edges, and therefore existing edge detection algorithms can 



24 

 

be used for crack detection purposes (Dorafshan et al. 2018). Further techniques can combine those 

points to form straight lines as well as identify corners based on the intersections of the lines detected 

earlier. Examples of common edge detection filters are in Table 2.2. 

Table 2.2: Commonly Used Edge Detection Filters 

Filter name Composition 

Sobel [
1 2 1
0 0 0

−1 −2 −1
] = 𝐶𝑥;        [

−1 0 1
−2 0 2
−1 0 1

] = 𝐶𝑦 

Prewitt [
1 0 −1
1 0 −1
1 0 −1

] = 𝐺𝑥        ; [
1 1 1
0 0 0

−1 −1 −1
] = 𝐺𝑦 

Roberts [
0 0 0
0 0 1
0 −1 0

] = 𝑅𝑥;            [
0 0 0
0 1 0
0 0 −1

] = 𝑅𝑦 

Laplacian of Gaussian 
(LoG) 

[
0 −1 0

−1 4 −1
0 −1 0

] 

 

One of the most commonly used edge detectors is the Canny edge detector (Fig 2.11). It starts 

by convolving the original image (Fig. 2.11a) with a spatial mask (the Sobel mask is the one most 

commonly used) producing a first-order partial derivative for the pixel at the center of the mask in both 

the x (Cx) and the y (Cy) directions (Abdel-Qader et al. 2003). Two thresholds, a minimum and a 

maximum, are then set. If the pixel value is above the maximum threshold, it is considered a “strong 

edge”. If it is below the minimum threshold, it is not an edge. If it is between the two thresholds, it is 

considered an edge only if it was connected to a strong edge. The end result is a binary image that 

includes edges only (Fig. 2.11b). 

 

Fig. 2.11: Canny Edge Detection (Abdelqader et al. 2003) 

a) Original Image b) Canny Image 
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Dorafshan et al. (2018) compared the performance of six different edge detection filters 

(Roberts, Prewitt, Sobel, Laplacian of Gaussian (LOG), Butterworth, and Gaussian filter) and an 

AlexNet-based Deep Convolutional Neural Network (DCNN) by applying them to a 100-image (3402 

sub-images) dataset of concrete panels for crack detection purposes. An example comparing the 

performance of the edge detection filters is shown in Fig. 2.12 where the filters (Fig. 2.12c-h) are trying 

to detect the crack present in Fig. 2.12a, Fig. 2.12b represents the ground truth (i.e. perfect detection). 

The experiments have shown that the LoG filter was the most efficient in terms of both accuracy and 

computation time. However, using DCNNs is more optimal, detecting finer cracks with higher 

accuracy. 

 

Fig. 2.12: Various Edge Detectors Performance on a Sample 0.02mm crack (Dorafshan et al. 2018) 

2.4.1.2 Object Detection and Classification 

As the name suggests, these techniques aim to detect objects of interest from images and videos as well 

as classify them into predefined categories (e.g., detecting a crack). Intuitively, to be able to classify 

objects through images, first, there is a need to detect or identify them. Such identification typically 

takes place by recognizing the objects’ distinctive features (e.g. all circles are round). From those facts, 

there are many techniques used to achieve object detection and classification and often it requires 

combining them for improved results. Some of the common techniques are: 

Feature Extraction Algorithms: a feature is defined as a function of one or more measurements that 

quantifies some significant characteristics of the object (Choras 2007). Feature extraction algorithms 

aim to use such descriptive features to detect objects of interest inside more cluttered scenes. An 

example is in Fig. 2.13 where an object (a Tim Hortons Gift Card) is being detected inside a larger 
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scene. Available feature extraction and template matching algorithms include Scale Invariant Feature 

Transform (SIFT), Speeded Up Robust Features (SURF, used in Fig. 2.13), and others.  

 

Fig. 2.13: Example of the Use of Speeded Up Robust Features (SURF) Feature Detection Algorithm 

Histogram of Oriented Gradients (HOG): A feature descriptor of images by a set of local 

histograms. The idea is that local object appearance and shape can often be characterized rather well 

by the distribution of local intensity gradients or edge directions, even without precise knowledge of 

the corresponding gradient or edge positions (Dalal and Triggs 2005). Hence, the image is divided into 

cells of a predefined size, then the occurrences of gradient orientation in each cell are counted to build 

the descriptor vector. Finally, normalization is performed to regulate the variability in the image (Suard 

et al. 2006). HOG pays huge attention to the shape of the detected object. Hence, Azhar et al. (2016) 

considered the use of HOG for pothole detection as potholes have no fixed shapes. They developed an 

automated pothole detection system that combined HOG with a Naïve-Bayes classifier achieving 90% 

accuracy on a 120-image dataset.   

Support Vector Machines (SVM): While not used exclusively for computer vision purposes, SVM 

is one of the most powerful binary classification techniques (Seong et al. 2017). The SVM classifier 

aims to find an optimal hyperplane that separates samples into two classes (Aylien 2016, example in 

Fig. 2.14). In essence, SVM can be thought of as a high-dimension discriminant analysis, where the 

objective is finding the thresholding function that achieves the best binary classification of data based 

on their parameters.  
Hyperplane 

Object Scene 
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Fig. 2.14: Support Vector Machine (Aylien 2016) 

Convolutional Neural Networks (CNNs): CNN is a type of artificial neural network (based on the 

human brain structure) that is inspired by the visual cortex of animals. An example is shown in Fig. 

2.15 where a handwritten text is classified into the correct digit through layers of convolutional and 

pooling operators. The challenge in creating a neural network lies in the choice of the layers type, 

numbers, operators, and order. CNNs are a type of deep learning methods because they are 

characterized by having multiple hidden neuron layers where each of the layers focuses on extracting 

a specific feature(s) (Aloysius and Geetha 2017). Among the most famous CNN-based object detection 

algorithms, primarily for its speed, is the YOLO (You-Only-Look-Once) algorithm (Redmon et al. 

2016). Girshick et al.  (2014) added region proposals as an attempt to reduce the computational time 

by suggesting regions to investigate instead of analyzing the entire image. Examples of publicly 

available CNN building platforms include PyTorch and Tensorflow. 

 

Fig. 2.15: Example of Convolutional Neural Network Architecture 

2.4.1.3 Object Measurement 

In the literature, two main methods are used to obtain real-life measurements from mages: 

homography, and photogrammetry. These are explained as follows: 

Homography: The homography matrix (H) maps two different images of the same scene to one 

another (Bovik 2005). That is, every point on the first image corresponds to a point on the second 
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image. If x maps to x’, then x’=Hx. Homography is a 3x3 matrix (h11, h12, h13, ….., h33) yet it has 

only eight degrees of freedom because it is set to a scale (h33=1). Hence, a four-point correspondence 

is required to obtain the homography matrix. Fig. 2.16 shows a real-life object being recorded by 

images from two different viewpoints creating two different images. While the four points on the 

original object form orthogonal lines, this is not the case in either image due to the distortion caused 

by the camera lens. Such distortion can be rectified as there exists a homography that relates the image 

to the real-world scene (Bovik 2005). Consequently, homography can be used to directly obtain real-

life measurements from captured images as the homography matrix can find the correlation between 

the coordinates of a certain point(s) within the image and its corresponding coordinates in the real 

scene. Fig. 2.17 shows the equation to calculate the homography matrix. In case of having more than 

four correspondences, a process called RANSAC (RANdom SAmple Consensus) is used to reduce 

correspondence errors (Dubrofsky 2007). RANSAC can be best explained as solving an optimization 

problem, choosing the four-point correspondences that create a homography matrix which yields the 

minimum distance between the real location of features on the original image and the locations 

projected from their corresponding feature locations on the second image. 

 

Fig. 2.16: Similar Scene Captured from Multiple Angles Produce Images that can be Mapped to one 

another (and to the Original Scene) 
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Fig. 2.17: Equation for Calculating the Homography Matrix 

Photogrammetry: Using feature detection and homography techniques illustrated earlier, 

photogrammetry, often referred to as Structure from Motion (SfM), aims to reconstruct a 3D model of 

a scene from its projections captured in 2D images (Schonberger and Frahm 2016, Moulon et al. 2012). 

It is widely used in mapping, surveying, and historical preservation applications (e.g., Hidayat and 

Cahyono 2016, Jalandoni et al. 2018, Wang et al. 2019b, Shretha et al. 2017). It relies on a simple 

principle based on similarity of triangles. An example is shown in Fig. 2.18 where a 3D object is 

projected on the 2D image. 

 
Fig. 2.18: Relationship between Object Plane and Image Plane 

SfM algorithm (e.g., Zhang and Xie 2018, Yang et al. 2013) relies on feature matching between 

images to estimate the camera positions and consequently generate the point cloud. Hence, it is 

recommended that a minimum overlap of 60% must be present between images to achieve good results 

(Mikhail et al. 2001). With the proper scale, real measurements can be obtained either directly from 

the point cloud or by using triangulation to refer to the point cloud through multiple images that show 

the same feature being measured.  

2.4.2 Unsupervised Clustering 

Data clustering is a technique that aims to classify the data into “clusters” of similar attributes 

(Aggrawal and Zhai 2012). This is considered to be an unsupervised technique as it does not require 
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the algorithm to be previously introduced to the data. According to Jain (2010), clustering can help 

understand the underlying data structure, identify significant features, and organize the data into 

understandable groups. In the literature, different clustering procedures have been developed, each 

with its own assumptions regarding the nature of a “cluster” (Jordan and Mitchell 2015). 

2.4.2.1 Common Clustering Techniques 

The four clustering techniques used in roofing analysis fall under the partitioning category. That is, 

the clusters are created based on the proximity (i.e., similarity) of the data points to one another. 

Partitioning clustering is robust, efficient with large datasets, and can be optimized to find the best 

clusters if the number of clusters is predetermined (Shah and Jivani 2013). 

Canopy Clustering: Canopy clustering is simple, fast, yet highly accurate (Sharma et al. 2014). The 

first stage is to divide the data into overlapping subsets (i.e., canopies) based on distance thresholds 

T1>T2 as shown in Fig. 2.19 (based on McCallum et al. 2000). These thresholds can be set manually 

or obtained through cross-validation. For each point, the distance between the point and the centers of 

clusters is examined. If the distance is smaller than T1, then this point is added to the cluster (otherwise 

the point is considered to be the center of a new cluster). If the distance is smaller than T2, then the 

point is removed from the set (McCallum et al. 2000). This way, points that are very close to one 

another are removed to avoid redundant processing in the subsequent stage. The next step is centroid 

calculation using a more rigorous distance metric (McCallum et al. 2000; Sharma et al. 2014). 

 

 

Fig. 2.19: Relationship between Object Plane and Image Plane 

K-Means Algorithm: Developed by Hartigan and Wong (1979), K-Means is a well-known 

partitioning-based algorithm for grouping objects into clusters such that the within-cluster sum of 

squares is minimized. After specifying the number of required clusters (k), the algorithm randomly 
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chooses k points to serve as the initial centroids of the clusters, and all other points are then assigned 

to the centroid they are closest to. Afterward, for each cluster, a new centroid is computed by averaging 

the feature vectors of all data points inside that cluster (Hartigan and Wong 1979). The data points are 

reassigned to the clusters, based on the new centroids, and then new centroids are calculated. This 

process is repeated until convergence.  

Farthest First (FF) Clustering: In essence, the Farthest-First (FF) clustering algorithm operates in a 

similar way to the K-Means algorithm in terms of centroid selection and cluster assignment. However, 

FF chooses the point “farthest away from other cluster centers” as the new cluster center (Sharma et 

al. 2012). Thus, unlike K-Means, FF does not need a second pass to revise the cluster centroids, which 

reduces the processing time. Therefore, cluster centroids created by FF are real data points as opposed 

to geometric centers created by averaging the data points’ attributes (Devi et al. 2020).  

Expectation-Maximization (EM) Clustering: The EM algorithm is an iterative method that assumes 

the dataset can be modeled as a linear combination of multiple Gaussian distributions (Abu Abbas 

2008). As such, EM aims to find the parameters of the probability distribution best describing the shape 

of the cluster where the probability (i.e., log-likelihood) that each data point belongs to a certain cluster 

is highest (Devi and Gandhi 2015). After randomly initializing the cluster shape parameters, the 

algorithm iterates between estimating the log-likelihood using the current cluster shape parameters, 

and recomputing those parameters to “maximize” the expected log-likelihood from the previous 

estimation step (Sharma et al. 2012). As such, the algorithm assigns each data point a probability 

distribution belonging to a certain cluster (Seghal and Garg 2014). 

2.4.3 Applications in the Construction Domain 

Data mining utilizes sensory, image, and textual data to support decision-making. As such, data mining 

and image analysis techniques have been utilized in many engineering and construction applications, 

including condition assessment and asset management applications. Examples of these applications are 

presented and discussed in the following subsections. 

2.4.3.1 Image Analysis Research in Construction 

Research in the field of computer vision has produced valuable numerous benefits in various industries 

and applications, where the most evident those applications can be seen in drones and autonomous 

vehicles (e.g. Mobileye 2019). The construction industry has also benefited from computer vision 

techniques in terms of improving workers’ safety and productivity on construction sites. For example, 
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Son et al. (2019) were able to use convolutional neural networks to detect workers within the 

construction site under varying poses and backgrounds (Fig. 2.20), achieving a 94.1% accuracy rate 

with an average processing speed of 5 frames per second.  

 
Fig. 2.20: Using CNNs to Detect Workers on Site (Son et al. 2019) 

Seong et al. (2017) compared the performance of three types of classifiers (support vector 

machines, artificial neural networks, and logistic regression) and two different color spaces (Lab and 

HSV) regarding their suitability for a safety-vest detection system and found that using Support Vector 

Machines had the most desirable accuracy. To mitigate the likelihood of falls from height, Fang et al. 

(2018) developed an image-based system to detect if the workers are wearing safety harnesses (Fig. 

2.21). The system relies on two CNNs; one detects the workers while the other detects the safety 

harness.  

 

Fig. 2.21: Detecting workers and safety harnesses using CNNs (Fang et al. 2018) 

Using a video sequence, Roberts and Golparvar-Fard (2019) were able to develop a model capable 

of detecting which activity a piece of equipment is performed by utilizing convolutional neural 

networks, hidden Markov models, Gaussian mixture models, and support vector machine classifiers. 

One of the benefits is being able to determine how much time a piece of equipment is being in use 
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(Fig. 2.22). The only sort of quantification that exists was along the time domain, where the time the 

equipment spends doing a certain activity is being quantified. 

 

Fig. 2.22: Equipment Activity Classification (Roberts and Golparvar-Fard 2019) 

Yang et al. (2013) have used SfM among other stereo-imaging-based techniques to reconstruct 3D 

models that can be used for Augmented Reality (AR) purposes by project managers and stakeholders. 

Golparvar-Fard et al. (2009) created an as-built model from recorded images of the construction site, 

comparing it with a 4D-BIM model for progress monitoring purposes (Fig 2.23). 

 

Fig. 2.23: Superimposing 4D-BIM on Time Lapse Images (Golparvar-Fard et al. 2009) 

2.4.3.2 Image Analysis in the Inspection Domain 

Research works implementing image analysis techniques for structural health monitoring purposes are 

featured in Table 2.3. As seen in Table 2.3, neural networks is the most common technique utilized for 

defect detection. It is possible to categorize literature efforts in the application of image analysis in the 

inspection domain into two categories: efforts for detection of defects; and efforts for quantification of 

defect size. These are discussed as follows. 
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Table 2.3: Summary of Image-Based Analysis Applications in Inspection 

   Objective Tool 
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No. Reference Subject 

1 Yudin et al. (2021) Roofing Defect Detection Y Y Y Y  Y   

2 Perez and Tah (2021) Interior Building Defect Detection Y Y  Y     

3 Perez et al. (2019) Interior Building Defect Detection Y Y  Y     

4 Napolitano and Glisic (2019) Masonry Crack Inspection Y Y Y       Y   

5 Cabo et al. (2019) Local Structural Displacement Y   Y     Y     

6 Wang et al. (2019b) Masonry Damage Detection Y     Y         

7 Liang (2019) Post-Disaster Inspection Of Columns Y     Y         

8 Luo et al. (2019) Concrete Crack Detection Y             Y 

9 Wang et al. (2019a) Concrete Crack Detection Y             Y 

10 Dung and Anh (2019) Concrete Crack Detection Y     Y         

11 Liu et al. (2019) Concrete Crack Detection Y     Y         

12 Kim and Cho (2019) Crack Detection In Concrete Walls Y   Y Y         

13 Choi et al. (2018) Façade Inspections             Y   

14 Dawood et al. (2018) Moisture Marks Detection Y   Y Y Y       

15 Kumar et al. (2018) Sewer Defect Detection Y     Y         

16 Cheng and Wang (2018) Sewer Defects Detection Y     Y         

17 Dorafshan et al. (2018) Concrete Crack Detection Y     Y Y       

18 Hoang and Nnguyen (2018) Crack Detection Of Concrete Walls Y       Y       

19 Makantasis et al. (2018) Tunnel Defect Detection Y     Y       Y 

20 Yousaf et al. (2018) Pavement Potholes Detection Y         Y   Y 

21 Chen and Jahanshani (2018) Crack Detection In Concrete Bridges Y     Y         

22 Doulamis et al. (2018) Crack Detection In Tunnels Y     Y         

23 Cha et al. (2017a) Concrete Crack Detection Y     Y         

24 Hezaveh et al. (2017) Roofing Defect Detection Y   Y     

25 Chen et al. (2017) Bridge Crack Inspection Y   Y     

26 Zhang et al. (2017) Pavement Crack Detection Y     Y         

27 Cha et al. (2017b) Concrete Cracks, Steel Corrosion Y     Y         

28 Azhar et al. (2016) Pavement Potholes Detection Y             Y 

29 Zhang et al. (2016) Pavement Crack Detection Y       Y       

30 Yeum and Dyke (2015) Bridge Crack Detection Y       Y       

 

Detection Applications: Most of the ongoing research in the field of utilizing image analysis 

techniques for inspections and structural health monitoring purposes is geared toward crack detection. 

For example, Luo et al. (2019) develop a crack detection algorithm that is six times faster than its 

conventional counterparts without sacrificing accuracy (Fig. 2.24). Their interesting approach 
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processes the image to extract vertical and horizontal cracks separately then fuses them to produce a 

final image where the cracks are highlighted. Wang et al. (2019a) developed a learning model for 

concrete crack detection that achieved 97% while maintaining efficient training and testing speeds 

(0.76s for an image with a resolution of 4608 x 3456 pixels). Such an approach, however, requires a 

lot of training data. To utilize a small data set, Liu et al. (2019) developed a U-net fully convolutional 

network to detect concrete cracks (Fig. 2.25) that reached higher accuracy with smaller datasets 

compared to the fully convolutional network approach used by other researchers such as Dung and 

Anh (2019). To do that, they first extracted the features using conventional CNN, then used feature 

fusion to obtain higher precision. Kim and Cho (2019) used region-based CNN to detect and quantify 

concrete cracks based on their width. The method was able to successfully detect cracks that are wider 

than 0.3 mm while finer cracks exhibited larger errors due to image accuracy issues (1 image pixel = 

0.224mm). Chen et al. (2017) combined image processing techniques (image filtering, background 

subtraction, and neural networks) with self-organizing map optimization (SOMO) technique to develop 

a bridge crack inspection model with 90% accuracy. Cha et al. (2017a) used CNNs to detect concrete 

cracks that achieved 98% accuracy for both training and testing sets, before expanding his detection 

objectives to include steel corrosion, bolt corrosion, and steel delamination (Cha et al. 2017b). Despite 

the impressive accuracy of the model, such accuracy was obtained using a training dataset of 40,000 

different crack patches, a luxury that may not be afforded by other researchers.  

Another prominent area of research is pavement defect detection. Yousaf et al. (2018) proposed 

a pothole detection and localization scheme relying on the SIFT feature extraction algorithm and 

support vector machine. Testing said scheme has shown its capability of pothole identification with 

95% accuracy. Zhang et al. (2017) proposed a novel CNN architecture, CrackNet, for automated pixel-

level crack detection on asphalt surfaces. An experiment using a 200-image testing dataset showed that 

CrackNet can achieve high Precision (90.13%) and Recall (87.63%) simultaneously. Furthermore, 

CrackNet can be used in conjunction with the data collection software because of its capability to 

utilize parallel computing techniques. 
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Fig. 2.24: Detection by fusing detected horizontal and vertical cracks (Luo et al. 2019) 

 

Fig. 2.25: U-net CNNs for Crack Detection (Liu et al. 2019) 

Works in other inspection “subdomains” include the CNN-based model developed by Makantasis et 

al. (2018) for tunnel inspections, using the SURF feature detection algorithm to estimate structural 

displacements (Cabo et al. 2019), the ANN-based model developed by Dawood et al. (2017) for 

detection of moisture marks in subway networks, the CNN-based model developed by Wang et al. 

(2019b) able to automatically detect efflorescence and spalling damages in historic masonry buildings, 

and the CNN-based schemes developed by Cheng and Wang (2018) and Kumar et al. (2018) to 

automatically detect cracks, deposits, and root intrusions in sewers from CCTV inspection videos.  

In terms of recent efforts aimed at inspecting “non-structural” elements such as roofing, Perez 

et al. (2019) used VGG-16 CNN architecture to develop a model capable of detecting interior building 

defects such as mould growth and paint deterioration and reached an average accuracy of 89.25%. In 

a more recent effort (Perez and Tah 2021) this CNN architecture was then replaced with a MobileNet 

CNN with the aim of developing a smartphone application capable of real-time detections, but the 

model accuracy dropped to 80%. In both cases, roofing inspections were not addressed. Hezaveh et al. 

(2017) developed a CNN model with three convolutional layers and two fully connected layers to 

detect hail effects in roof shingles. The model achieved 83.4% accuracy and the use of deeper CNN 

architectures was proposed as a solution to further increase accuracy. Yudin et al. (2021) targeted the 

development of a comprehensive automated roof detection framework, using image segmentation to 
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identify multiple defects within the same image as well as quantify their sizes. However, the proposed 

model has low accuracy (mean accuracy < 65%) and long processing time (> 2.5 sec/image).  

Quantification Applications: Compared to their detection/classification counterparts, 

photogrammetry-based techniques for defect measurements and quantification are yet to gain the same 

popularity. Napolitano and Glisic (2019) attempted to used photogrammetry to inspect cracks in 

masonry structures. Their system did not directly measure the crack width, but it was calculated as the 

distance between the bricks where the crack is detected, and did not attempt to measure the crack length 

at all. A model that was tested using a real-life experiment (a steel frame building in West Lafayette, 

IN) is the one developed by Choi et al. (2018) to inspect building facades. The developed model uses 

a drone for automated image collection, then utilizes SfM techniques to generate a rectified photo 

(orthophoto) of the entire building façade under inspection. Inspectors can then manually select regions 

of interest for further inspection. A diagram outlining the full model framework is in Fig. 2.26. While 

the developed model intended to save the inspectors the time, effort, and safety hazards related to 

physically inspecting the building façade by recreating a scaled orthophoto of it, the damage 

assessment and quantification phase remains a source for errors and inconsistencies as it is still 

conducted manually, Hence, it can be concluded that applying photogrammetry for inspection purposes 

has not been fully capitalized on. Furthermore, since the objective of the inspection is to detect and 

measure crack dimensions, then just using the homography calculations (a subset from the SfM 

algorithm featured in Fig. 2.26) might be able to achieve reasonable results without the need for 

extensive computations required for the entire algorithm.  

 

Fig. 2.26: Automated SfM Façade Inspection Model (Choi et al. 2018) 

Multiple observations can be drawn based on the previous discussion as well as the works 

presented in Table 2.3. First, it can be noticed that most researchers have focused on detecting the 

cracks, a handful of researchers have attempted to estimate the crack width, yet none have considered 
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trying to calculate the length of the crack or quantify the size of the damaged area for quantity take-off 

purposes. Second, in terms of areas of application, relatively little work has attempted to address “non-

structural” elements such as building interiors and roofs, despite their importance towards upholding 

the functional integrity of the asset. Third, present works only adopt a binary detection approach (defect 

vs. no defect) without investigating the level of severity of the defect detected, which is the main 

information needed from inspection to facilitate decision making for repair prioritization, which will 

be the target of this study. Hence, an analysis component of the overall original image to help draw 

more useful information by looking at the bigger picture is currently missing. 

2.4.3.3 Data Mining and Clustering Applications in Construction and Asset Rehabilitation 

Typically, data mining applications involve the use of clustering techniques to identify which part of 

the data belongs to a certain category of information. Similarly, text mining aims to analyze data from 

textual reports to retrieve information that supports the decision-making process. This technique was 

used in various engineering applications and produced beneficial results. For example, Al Hattab 

(2021) combined text mining with social network analysis to examine the performance of BIM and its 

relation to sustainability over a 15-year period, by analyzing 523 journal articles. Williams and Betak 

(2016), used text mining to analyze equipment accident reports from the American Federal Railroad 

Association, a publicly available database, and identify major themes in railroad equipment accidents. 

A similar approach was used by Lv and El-Gohary (2016) to extract the key phrases describing project 

stakeholders’ concerns received in emails and public hearings, before classifying them into groups 

based on topic, to help practitioners detect key concerns at the initial stages of highway projects. Zhao 

et al. (2016) analyzed occupational safety reports and investigations pertaining to electrocution events 

and was able to identify activities and decision mistakes that increase the worker’s safety risk, thus 

developing a set of decision-making chains to improve workplace safety.  

Some recent efforts exist in applying data mining in the maintenance, inspection, and condition 

assessment domains, which involve large data sets such as inspection data for bridges, buildings, and 

other infrastructure systems. Liu and El-Gohary (2017) developed an ontology-based semi-supervised 

model for information extraction from bridge inspection reports. The model was applied to 11 reports 

and was able to identify deficiency type, severity, as well as required maintenance actions. Martinez 

et al. (2020) used predictive modeling to forecast the condition of bridges from bridge characteristics 

(e.g., size, structural type, etc.) and historical conditions. Gunay et al. (2019) used text-mining to detect 

failure patterns in building components from textual data in the facility management database. The 
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model uses clustering to filter out the work orders that address failures using rule-mining to identify 

the coexistence tendencies of certain keywords. Using a similar concept, Mo et al. (2017) analyzed 

more than 80,000 maintenance requests to properly detect the urgency of a maintenance request based 

on its textual description and assign the required maintenance crews. Several other studies “mined” 

different sources of data to support efficient maintenance and optimum operation of building systems. 

These include the works of Wang et al (2021) to facilitate efficient optimal control strategy for HVAC 

systems; Zhou et al. (2019) to optimize the operational parameters for chiller plants; and Zhou et al. 

(2021) of detecting anomalies of daily energy consumption patterns. Few efforts also focused on 

building renovations and retrofitting. Ren et al. (2019) used actual smart meter data of 666 households 

and used clustering techniques to identify the groups of households to retrofit their heating systems to 

cost-effectively maximize energy savings. Kamari et al. (2021) also developed a BIM-based decision 

support system to generate and evaluates various dwelling renovation scenarios in a Danish context. 

The study clusters the generated renovation scenarios using sustainability Key Performance Indicators 

(e.g., energy consumption, investment cost, indoor thermal comfort, etc.). 

Based on the above literature review, clustering and text mining techniques can be applied 

most effectively to large inspection datasets using the most relevant attributes. Various studies have 

looked into investigating asset failures and supporting maintenance activities. To the author's 

knowledge, no study exists on using data mining to analyze the inspection reports of buildings and 

their many systems and sub-systems, for the purpose of identifying the most critical items and 

supporting fund-allocation decisions. These decisions are most challenging for the owners of many 

buildings, such as TDSB, particularly since the school inventory involves a large age range; the 

inspection is done subjectively and often inconsistently by a large number of inspectors; and inspection 

is done at a high level that leaves many assets at the same criticality level. These factors require careful 

design of a data mining system in order to be useful and practical. Among the many building 

components, the paper focuses on roofing as a major component that requires frequent inspections and 

extensive capital renewal activities. 

 Summary of Research Gaps 

Currently, most inspections for buildings take place in a manual fashion, either visually or with 

simplistic hand-held devices, with the inspection process being largely subjective and dependent on 

the experience of the inspectors. Also, current asset management software act mainly as repositories 

of the manually collected data, and lack smart decision support for defect quantification, work 
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packaging, and efficient delivery planning for scattered rehabilitation tasks. Image-based analysis 

techniques have diverse abilities to extract information directly from collected images and videos, thus 

having good potential to automate the inspection process. However, the literature review revealed that 

most research is geared towards the detection of defects without classification or quantification. 

Classifying the defects based on severity is a challenging problem because the different classification 

categories (e.g., high damage, medium damage, or low damage) tend to overlap and even trained 

professionals produce inconsistent classifications. Even with proper inspection frameworks, existing 

inspection reports offer the data without enough granularity to facilitate the prioritization and fund 

allocation processes, forcing the decision-maker to perform these decisions manually. This is 

challenging, especially if the asset portfolio is large, and is highly sensitive to the decision maker’s 

biases. Scattered repetitive scheduling seems to be the best way to tackle the delivery of rehabilitation 

work, but there is little work regards improving the scheduling, optimization, and visualization aspects. 

Furthermore, applying repetitive scheduling to rehabilitation work poses a new challenge in terms of 

proper packaging and determining the number of units on which repetitive scheduling calculations will 

be applied. 
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Chapter 3: Data Collection and Proposed Framework  

for Smart Asset Rehabilitation 

 Introduction 

This chapter introduces the components of the proposed smart asset rehabilitation framework, 

addressing the inspection, prioritization, and fund allocation, and delivery phases. Key building 

components are presented and roofing is selected as a key asset that requires detailed asset 

management. For the criticality assessment, the framework uses Image analysis (Convolutional Neural 

Networks) to detect and quantify damages and then integrates image analysis with text mining of 

inspection reports to classify roofs according to their condition and identify the roofs that are most 

worthy of the limited rehabilitation funds. The short-listed roofs are then passed to the work packaging 

and project delivery phase. For this purpose, the proposed framework treats roof repairs as scattered 

repetitive units, thus saving time and cost of the economy of scale. New CPM-LOB formulations and 

visualization have been developed to address the practical challenges that are commonly encountered 

in delivering scattered projects and violate meeting deadlines. In addition to explaining the different 

components of the framework, the process of acquiring the necessary data used in developing and 

validating the model is also presented. 

 Data Collection and Analysis of Key Building Assets 

This research has been conducted in collaboration with the Toronto District School Board (TDSB), 

which is the largest school board in Canada, owning more than 550 schools and other buildings in the 

GTA area. For TDSB and other large owner organizations whose buildings exhibit a large range of 

age, inspection plays an important role as a first step in sustaining the healthy performance of those 

buildings while abiding by the tight budgetary constraints. Typically, external inspection consultants 

are hired to inspect the schools, over a five-year period, and submit individual school reports that 

provide data about the condition of all school systems and subsystems, as defined in the standard 

hierarchy of Fig. 3.1, and suggest rehabilitation strategies (called events) for selected components. The 

inspection process follows the ASTM E2018-15 (ANSI 2021) condition assessment standard and 

includes visual analysis, interviews with school representatives, and reviews of building documents. 

Representative photos of asset conditions are also documented and included in the reports. For each 

component in the hierarchy of Fig. 3.1, TDSB has historical data about its typical life span, unit cost, 

and possible defects, which are useful for the analysis. 
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Fig. 3.1: TDSB Building Hierarchy 

Among the large number of schools owned by TDSB, inspection reports of 400 schools were 

obtained as a sample to conduct this study. Each report (pdf file with 20 to 40 pages) starts with the 

overall assessment of the school systems, followed by a list of the recommended repair/replacement 

events. Using a custom Macro program, Information related to more than 15,000 unique rehabilitation 

events was obtained as a result of the data extraction process. The schools under investigation were 

constructed between 1887 and 1999, with sizes ranging from 500 to nearly 70,000 square meters. The 

combined cost of all rehabilitation events required for all schools is over $1.1 billion. High-priority 

events (35% of the total events) account for half of the total required rehabilitation costs. And those 

high priority events need to be accomplished within five years only (2003-2007), which is problematic 

to TDSB, given the financial and time constraints (e.g., much of the rehabilitation work can only take 

place over the summer when schools are closed). In the absence of a more granular classification, the 

prioritization and fund allocation efforts become very challenging. 

Among all the events, the building components that take the largest share of rehabilitation costs 

are shown in Fig. 3.2. As shown in the figure, Roofing represents the costliest component with the 

majority of its events being labeled as high priority (550 or 71% of all roofing events) and thus has 

been focused upon in this paper. The total rehabilitation cost required to fix all roofing elements is 

approximately $140 million, about 14% of all rehabilitation needs of TDSB schools. High-priority 

roofing events require over $120 million, making it the component in direst need of rehabilitation work. 

These numbers, therefore, highlight the research problem indicated earlier, i.e., the daunting task of 
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identifying the roofs that are most eligible for rehabilitation, given the many roofs in high priority and 

the very limited funds available.  

 

Fig. 3.2: Components with the Highest Total Event Cost 

In addition to being a costly component, roofing was selected as the main focus for this study 

because it gets frequently damaged as it is exposed to the environment, its repairs can either be done 

using in-house staff and resources or subcontracted to external professionals, and require repetitive 

scheduling to manage the delivery of scattered roof locations. 

 Components of Proposed Framework 

With roofing as an example asset, the proposed framework for smart rehabilitation is presented in Fig. 

3.3. The model incorporates three main components as follows: 

 

Fig. 3.3: Components of Proposed Smart Asset Rehabilitation Framework 
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3.3.1 Inspection 

This part is done by expert inspectors and it includes multiple phases. Inspectors perform manual 

inspections of the roof to assess its current conditions. These inspections are mostly visual (looking for 

visual defects such as cracks), but sometimes include the use of simple semi-automated tools. Other 

phases of the inspection process include interviewing building representatives to gain insights about 

the building performance, as well as reviewing old documents to understand the building history 

(Mostafa et al. 2021). The results of these inspection activities are combined in a report that highlights 

the current condition of the asset and suggests future rehabilitation actions if needed. 

3.3.2 Prioritization and short listing 

a. Utilizing Inspection Images  

Because the images in the TDSB inspection reports were of low resolution, other roof images were 

taken from the University of Waterloo campus buildings for the purpose of the image analysis 

development. The University of Waterloo is one of the largest universities in Canada and its campus 

includes more than 40 buildings. After meeting with representatives of plant operations, access to the 

roofs was granted and images of 21 buildings were collected. The process of the image collection and 

labeling is discussed in detail in section 4.2, while the visited buildings are highlighted on the campus 

map in Fig. 3.4.  
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Fig. 3.4: Locations of the University of Waterloo buildings where roof images were taken 

The first module developed as part of the proposed asset rehabilitation framework aims to 

efficiently analyze the inspection images. It is composed of two CNN models; one for defect detection, 

and the other for defect type classification and size quantification. In its current form, an inspector can 

collect images of the roof or record a video and then feed the collected images to the model, where 

classifications are obtained automatically. Consequently, after successful defect quantification, linking 

the model to a work packaging and estimation database (e.g., RS means) can produce an automated 

estimate for the required rehabilitation work.  

b. Data Mining of Textual Reports 

The second module incorporates additional building information such as age and damage description 

information obtained by textual data mining of the inspection reports, in addition to the results of image 

analysis, and categorizes the building into one of four categories according to its current condition and 

its need for repairs. Then, the fund allocation system can now perform an optimization procedure based 

on the building condition and required rehabilitation costs to better utilize the available funds. 
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The inspection reports of 400 the schools used in this study are pdf files with 20 to 40 pages 

each. Extracting useful information from the inspection reports, however, was very challenging as the 

inspection is conducted at a high level, with details about the specific defects and extent of damage 

embedded in the “Event justification” textual description, and the text descriptions of related photos. 

The specified “Event Priority” subjectively classifies the event into three main categories (High, 

Medium, and Low), thus the chance of having many events in the same category is very high, without 

further granularity to help guide the fund allocation process. The sample event in Fig. 3.5 shows the 

following information that was entered during inspection, and extracted in this study from inspection 

reports using a VBA macro code developed by the authors to automate the extraction of PDF data: 

 

Fig. 3.5: Example of TDSB Event Documentation 

• Event Type: Specifies one of three possible suggestions: (1) Replace the component; (2) 

Repair the component, or (3) Conduct Further Study to evaluate the component’s 

condition; 

• Event Year: Suggested rehabilitation year by the inspector, and is typically within five 

years from the date of inspection; 
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• Event Cost: The event costs were computer-generated, based on a template created by the 

inspector using various construction cost estimation reference databases such as RS Means, 

Whitestone, and Hanscomb pricing guides, as well as the TDSB’s own database; 

• Event priority: The inspector’s assessment of the event’s urgency: High, Medium, or Low; 

• Event Description: A brief description of the event nature;  

• Event Justification: A detailed explanation of the component’s current condition and 

defects (if any) as well as any implications that may result from delaying the rehabilitation 

event; 

• Photos with defect samples. 

Following the data extraction process, a database of all extracted events was compiled, as 

shown in Fig. 3.6, with information added about each school (age and size), and component 

information from TDSB databases (importance, theoretical life, and unit cost). A sample of the textual 

information for a roofing event is shown in Fig. 3.7, describing the various defects noticed during 

inspection. 

 

Fig. 3.6: Database of Suggested Rehabilitation Events 
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Fig. 3.7: Sample of Textual Description for a Roofing Event 

3.3.3 Delivery planning 

Once the most critical rehabilitation events are identified through the first two modules, the third and 

final module aims to develop an efficient delivery plan. But, instead of treating every rehabilitation 

event as a separate project, this module treats them as units of a repetitive project. Such treatment 

allows for the use of repetitive scheduling techniques such as LOB calculations which saves time and 

cost by applying economies of scale and capitalizing on worker’s momentum and learning curve. In 

reality, current LOB calculations fail to account for practical constraints such as unidentical unit sizes, 

non-integer start and finish times, and varying delivery rates which lead to project overruns. This 

module incorporates novel computations, visualizations, and algorithms to remedy these shortfalls. 

 Summary 

This chapter has introduced the components of the proposed roof rehabilitation framework. The 

framework consists of three main components; a) Image-based analysis; b) Text-based analysis; and 

c) Repetitive Scheduling. First, the framework determines the size and type of defects that the roof 

exhibits based on analyzing photos of the roof. Then, the results of the analysis are combined with text-

based analysis that investigates other features of the roof such as age to assign the roof to one of four 

criticality levels based on how imminent the rehabilitation work has to be, before an optimization 

model selects the roofs that are most worthy of repair based on the limited budget. Finally, the final 

model addresses the selected roofs and produces an optimized delivery schedule for the required 

rehabilitation work. To account for the scattered and complex nature of the infrastructure renewal 

projects, new computations, visualizations, and algorithms are presented to overcome the shortcomings 

of conventional LOB calculations. Each of the three modules shall be discussed in more detail in the 

coming chapters. 
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Chapter 4: Convolutional Neural Network for  

Defect Detection and Classification 

 Introduction 

As highlighted in Fig. 4.1, this chapter introduces the first module of the roofing rehabilitation 

framework; an image analysis model that uses Convolutional Neural Networks (CNNs) for defect 

detection and type classification directly from roofing images. As seen in Fig. 4.2, the proposed model 

is a two-phased model, with the first phase responsible for damage detection while the second phase 

analyzes the defected images to determine the damage type. The chapter starts with the experimental 

setup implemented for data collection and preprocessing, before discussing the proposed architecture 

for the different phases of the model. Finally, the results of the model validation are presented.  

 

Fig. 4.1: First Module of the Proposed Framework 

 

Fig. 4.2: Proposed CNN-based Module 

 

 Experimental Setup 

A 16-megapixel phone camera with a field of view (FOV) of 78 degrees was used for the image 

collection process. Image resolution was set to 1,920x1,080 pixels. To eliminate distortion, the camera 

was mounted on a selfie stick and maintained parallel to the ground surface at all times. The camera 

was also kept at a constant height (waist level). This meant that all the photos taken correspond to areas 
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of the same size. As shown in Fig. 4.3, the size of the area captured in the photo frame was calibrated 

using an object of known size (black folder, 30X22.5cm). It was found that the total area captured in 

the photo is 1.5X1.12m. 

 

Fig. 4.3: Reference Image used for Calibration 

To capture a large number of images, the camera was set to “video mode” and a video 

traversing the roof surface was recorded. Then, image frames were extracted from the recorded video. 

The videos were recorded at a speed of 30 frames per second, and 1 in 10 frames was extracted. This 

corresponds to an image capturing speed of 3 images per second. This resulted in over 11,000 images 

in total. The retrieved images were then manually labeled according to the defect type they exhibit. 

The most prevalent damage types were vegetation (183 images) and water ponding (254 images). 

Examples of the labelled images showing the three categories (no defect, vegetation, and ponding) are 

in Fig. 4.4 as well as Appendix A. Images were labelled as “defected” if the defect covers 20% or more 

of the overall image. 

       

(a) No Defect                          (b) Vegetation                              (c) Ponding 

Fig. 4.4: Example of Labelled Images 

30 cm 

22.5 cm 
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4.2.1 Dataset Augmentation and Splitting 

Due to the relatively small number of images showing the different defects (496 images out of more 

than 11,000), data augmentation techniques were used. The images were rotated to the left by 90 

degrees, to the right by 90 degrees, flipped horizontally, and flipped vertically. An example of the data 

augmentation process is in Fig. 4.5. This has increased the size of the image dataset to 2480 images. 

In addition to increasing the size of the dataset, models trained with a dataset that has undergone data 

augmentation exhibit better generalization and more adaptability to different architectures as opposed 

to parameter fine-tuning (Hernandez-Garcia and Konig 2019). To ensure that the dataset used for 

training has an equal representation of both categories (defects and no defects), 2608 images that show 

no defects were randomly selected to be part of the training dataset, bringing the total size of the dataset 

to 5088 images.  

`  

Fig. 4.5: Example of Image Augmentation 

 

 Proposed CNN Architecture 

Despite the presence of many powerful networks such as ResNet, AlexNet, VGG, GoogleNet, and 

others, the original Zeiler-Fergus network architecture (Zeiler and Fergus 2014) which won the Large-

Scale Visual Recognition Challenge 2013 is still being used by many researchers today to perform 

their classification tasks (e.g., Cha et al. 2017b, Deng et al. 2019). This study uses a simpler version of 

the Zeiler-Fergus network whose architecture can be seen in Fig. 4.6. The parameters of the 

convolutional and maxpooling layers are denoted as (number of kernels@length and width of each 

kernel). For example, in the first convolution layer, the input image is convolved with 24 different 

kernels, each having a length and width of 10 pixels. The third dimension of the kernel is always equal 

to the third dimension of the input (i.e., the number of channels). Hence, the third dimension of the 

convolutional kernels in the first layer is equal to three. The output of the first convolutional procedure 
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will have 24 channels (one channel for each convolution kernel). As such, the maxpooling operation 

is performed at the first phase using 24 kernels whose dimensions are 4x4x24. This is because the 

objective of maxpooling is to perform down sampling takes place along the length and width of each 

channel. 

 

Fig. 4.6: Overall Architecture of the Proposed CNN 

The rectified linear unit (ReLu) function is used as the activation function. To save computing 

time and to accommodate the different image orientations, all images are resized into 256x256 before 

the start of the training, validation, or prediction phases. The same architecture is used for both 

networks: type classification, and severity classification. As such, the output categories 1,2 refer to no 

defect, and defect in the case of CNN1, but refer to vegetation, and Ponding in the case of CNN2. The 

final output is calculated using a softmax function, which calculates the probability of the input 

belonging to each output class before announcing the output as the class with the highest probability. 

To write the goal of CNN (minimize the difference between predicted classification and correct 

classification) in a mathematical form, then the objective is to minimize the loss function E=D-f(W). 

Where D is the “correct output” while f(W) is the predicted output as a function of the input parameters 

W. The loss function is minimized by estimating the impact of changing the parameter values on the 

loss function (i.e., the derivative of the loss function with respect to the parameter values). To solve 

this minimization problem, this network relies on the Adaptive Moment Estimation (ADAM) optimizer 

(Kingma and Ba 2015). ADAM is an algorithm for first-order gradient-based optimization that applies 

conventional stochastic gradient descent principles but adds a factor (γ) depending on the direction of 

the gradients (higher values for gradients that point in the same direction) to prevent oscillation and 

reach convergence faster (Kingma and Ba 2015). Finally, this operation is performed after a batch of 

inputs is fed to the model (64 images in the case of the model used in this paper). This serves two 

purposes; it reduces the overall computation time since the process is done once after each batch as 
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opposed to once after each image, and prevents the model from overfitting based on the parameters of 

one image only. 

4.3.1 Advantages of the Two Step Approach 

Multiple experiments were conducted to reach the most efficient model. For example, the proposed 

two-step approach was compared to a multi-classifier CNN that aims to detect and classify the defects 

in one step (i.e., the CNN outputs are: no defect, vegetation, or ponding). Although it had a comparable 

accuracy level to the two-step approach when it operated on the training and testing datasets, 

performing the campus-wide deployment has highlighted various issues with the single-step multi-

classifier. First, the performance of the defect detection (vegetation vs. ponding) phase has 

deteriorated. Second, and most important, a large number of images that originally showed defects 

(26%) were classified as no defects, which leads to an underestimation of the roof condition. This is 

because minimizing the number of class labels increases the accuracy of the model, as images can be 

misclassified in the case of having too many labels compiled into the same classifier. This has been 

verified by a case study, which will be explained in more detail later in this chapter. 

 Code Development 

The network was developed and compiled using the Scientific Python Development Environment 

(Spyder®), part of the Anaconda® scientific programming distribution (Individual Edition).  

Anaconda was chosen as it already contains and/or easily supports the installation of many python 

packages that are essential to this work such as PyTorch, NumPy, and Pandas. The developed code is 

composed of five different modules as follows (Full code in Appendix B): 

1. Model: includes the model architecture in terms of the layer composition and activation 

functions. 

2. Dataset: responsible for retrieving the image dataset, augmenting the images to fit the network 

requirements, translating the textual labels to numerical values for training, and calculating the 

weighted sampling ratios in case of training with unbalanced data. 

3. Myutils: includes necessary functions for interpreting the network results, such as calculating 

the network accuracy in the training phase, and producing the output labels in the prediction 

phase (Screenshot in Fig. 4.7) 

4. Train: responsible for executing the entire training phase. This includes: 
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a. Calling the Dataset module to retrieve the training and validation datasets and feed 

them to the CNN; 

b. Set the different hyperparameters such as the seed value (for experimentation purposes, 

number of training epochs (and loop through them), the batch size, and the learning 

rate; 

c. Report the training results (training and validation accuracy for each training epoch); 

and  

d. Save the model parameters to be used for the prediction phase 

5. Predict: responsible for executing the entire prediction phase. Including loading the model and 

the prediction dataset, and reporting the prediction results. 

 

Fig. 4.7: Screenshot of Myutils Module in the Developed Code 

 Implementation Details and Results 

All experiments were performed using the python programming language (CUDA 7.5) on a personal 

laptop with Core i7-10750H@2.6GHz CPU, 16GB RAM, and 4GB NVIDIA GeForce GTX 1650 

Graphical Processing Unit (GPU). The learning rate was set to be 0.0001 while the batch size was set 

to 64 images. All datasets have undergone a 75/25 split where 25% of the images were set aside to test 

the model’s predictive ability, while the remaining 75% went through another 75/25 split for training 

and validation purposes, respectively. 



55 

 

4.5.1 Detection Phase (Defect Vs. No Defect) 

The first developed CNN was to classify the image as defect or no defect. It was trained for 1000 

epochs with an average processing time of 3 minutes per epoch (2862 images). The classification 

accuracy (i.e., percentage of correct classifications) was used as the evaluation metric of the CNN 

performance. The model accuracy for the training and validation datasets, per epoch, are presented in 

Fig. 4.8. The graph shows that the model exhibits satisfying performance, achieving close to 95% 

accuracy on both datasets.  

 

 

Fig. 4.8: Model Accuracy for Training and Validation Datasets 

To further validate the performance of the model, it was tested on the prediction dataset, a 

portion of the images that the model did not see during the training phase. Table 4.1 shows the model 

prediction results. It can be seen that the model exhibits good prediction results overall, achieving 

94.9% accuracy. Furthermore, the amount of false negatives (i.e., images with defects that were 

misclassified) is less than 3%, which means that asset management personnel can trust the model’s 

outputs. 

Table 4.1: Confusion Matrix for the Model Prediction Results 

  True Label 

  No Defect Defect 

Predicted  
Label 

No Defect 605 46 

Defect 19 594 
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With the limited availability of image classification models related to roofing defects in the 

literature, it was challenging to compare the performance of the proposed model to the state of the art. 

Table 4.2 compares the model to existing roofing defect detection models in terms of accuracy and 

speed. In addition, to gain a better sense of the model performance, Table 4.3 compares the proposed 

model to similar models created for different purposes such as pavement (e.g., Li et al. 2020; Mei and 

Gul 2020), and Concrete (Cha et al. 2018) defect detection. The objective of these comparisons is to 

show where the proposed model stands in terms of its effectiveness for its intended purpose, compared 

to the stat of the art models used in different fields such as concrete or pavement inspections.  

 

Table 4.2: Comparing the Proposed Model to Existing Roofing Detection Models 

 

Model Accuracy Processing Time per Image 

Proposed Model 94.9% < 0.01 sec 

Hezaveh et al. 2017 83.4% N/A 

Yudin et al. 2021 65% > 2.5 sec 

 

Table 4.3: Comparing between the Proposed Model and Others in the Literature 

 

Model Purpose Accuracy 

Li et al. 2020 Pavement Crack Detection 94% 

Mei and Gul 2020 Pavement Crack Detection 92% 

Perez et al. 2019 Building Defect Detection 89.1% 

Cha et al. 2017b Concrete Defect Detection 89.7% 

Proposed Model Roofing Defect Detection 94.9% 

4.5.2 Classification Phase 

A second CNN model was developed with the purpose of classifying the defects according to their 

type. For this experiment, only the images that include vegetation and ponding defects (2185 images) 

were used. The model was trained for 1000 epochs and had a faster training time (approx. 1 minute per 

epoch) because the dataset was smaller (1230 images). The model accuracy for the training and 

validation datasets, per epoch, are presented in Fig. 4.9. It can be seen that not only the classification 

model was able to achieve higher accuracy for both training and testing datasets, but it was done at a 

smaller number of epochs. This was further clarified when the model performance was tested against 

the prediction dataset, yielding 97% accuracy (compared to 94.5% accuracy of the detection model). 
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Fig. 4.9: Model Accuracy for Training and Validation Datasets 

 Model Validation 

Based on the promising results shown by the model on the training, testing, and prediction datasets. 

The next step was to validate the model’s performance in real-life scenarios. This will be explained in 

this subsection in two phases. First, a detailed analysis of the results of two buildings will be presented 

as validation case studies. Next, the results of large-scale deployment over 21 buildings in the 

University of Waterloo are presented. 

4.6.1 Experiments on Individual Buildings 

To show the potential of the proposed method, two buildings (Chemistry 2 and Douglas Wright 

Engineering) were used as case studies. The locations of the selected buildings are highlighted in Fig. 

4.10 (a zoomed-in version of the map previously shown in Fig. 3.4). Photos were collected in a manner 

similar to the one explained earlier as part of this study’s experimental setup.  

 

Fig. 4.10: Case Study Buildings 
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Example 1: Douglas Wright Engineering (DWE) Building 

To further show the potential of the proposed method, the Douglas Wright Engineering (DWE) 

building was selected as a case study and investigated in more detail. A total of 494 images were 

collected to be used in this case study. First, the images were manually examined to determine whether 

they include a defect. Then, all 494 images were used as inputs for CNN1 responsible for defect 

detection. Detection Results of CNN1 are in Table 4.4. 

Table 4.4: Detection Results of CNN1 

  True Label 

  No Defect Defect 

Predicted  
Label 

No Defect 383 -- 

Defect 9 102 

    
As seen in Table 4.4, no defects were missed by the CNN1, but there are 9 images (3.6%) that 

were misclassified as defects even though they were not. Next, the 111 images that were initially 

classified as “defects” were used as input for the second CNN responsible for defect type classification. 

Results are shown in Table 4.5.  

Table 4.5: Detection Results of CNN2 

  True Label 

  Ponding Vegetation No defect (misclassification) 

Predicted  
Label 

Vegetation 8 56 9 

Ponding 38 -- -- 

 

Example 2: Chemistry 2 (C2) building 

The Chemistry 2 building (C2) was then selected as a second case study. A total of 490 images were 

collected. First, the images were manually examined to determine whether they include a defect. Then, 

all 490 images were used as inputs for the first CNN (CNN1) responsible for defect detection. 

Detection Results of CNN1 are in Table 4.6.  
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Table 4.6: Detection Results of CNN1 

  True Label 

  No Defect Defect 

Predicted  
Label 

No  
Defect 

327 -- 

Defect 48 116 

    

As seen in Table 4.6, 48 images were misclassified as defects even though they were not 

(Examples in Fig. 4.11). Reasons for that include shadows (Fig. 4.6a) and areas where there is a change 

in the surface texture (Fig. 4.11b). It is important to mention that no defects were missed by CNN1. 

Next, the 164 images that were initially classified as “defects” were used as input for the second CNN 

responsible for defect type classification. Results are shown in Table 4.7. 

Table 4.7: Detection Results of CNN2 

  True Label 

  Ponding Vegetation Flashing No defect (misclassification) 

Predicted  
Label 

Vegetation -- 97 -- 8 

Ponding -- -- 17 40 

 

          
        (a) Shadows                                         (b) Change in Surface Texture 

Fig. 4.11: Examples of misclassifications 

An important observation is that all the images that were misclassified as “defects” because 

shadows were present were eventually classified as a ponding defect, while the ones that had a change 

in the surface texture were classified as a Vegetation defect. There were images that showed flashing 

defects (example in Fig. 4.12). Since there was no specific category for flashing defects due to the 

absence of sufficient images to properly train the model, these images were eventually classified as 

ponding defects. Finally, it was noticed that the lower the severity of the vegetation, the higher the 

probability of it being misclassified. 
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Fig. 4.12: Example of a Flashing Defect 

Table 4.8 compares the classification results of the proposed two-phased system to that of a 

single-phase multiclassifier. As expected, it can be seen in Table 4.8 that the accuracy of the proposed 

model is superior to that of the single-phase model. Also, the number of false negatives (i.e., images 

with defects that were misclassified to include no defects) has increased in the case of the single-phase 

model. This is problematic to asset management personnel as underestimating the severity of the asset 

would delay the delivery of the necessary repairs, which increases the risk of the asset failure. 

Table 4.8: Comparison of Results between Two-Step and Single-Step Classifiers 

 Two-Step Classifier Single-Step Multiclassifier 

No. of Images 490 490 

Correct Classifications 442 403 

Accuracy 90% 82% 

False Negatives (i.e., Missed Defects) -- 36 

 

4.6.2 Campus-Wide Deployment 

The model was applied to inspect the roofs of the 21 buildings highlighted in Fig. 3.4. Table 4.9 shows 

the full results of the two-phase model. For each roof, the total number of images collected and the 

number of images detected as defects (results of CNN1) are shown in columns 2 and 3, respectively. 

Column 4 shows, as a percentage, how much of the collected images have been classified as non-

defective. This can be used as an indicator for the overall roof integrity as shown in the heat map in 

Fig. 4.13. The results of the second phase are shown in columns 5-8. The number of images that exhibit 

each defect type are in columns 5 and 6. As the size of each picture frame is known (1.5X1.12m), the 

number of images (columns 5 and 6) are then used to calculate the total defect area, listed in columns 

7 and 8. 
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According to the inspected defects, there are two possible ways to repair a roof. First, a full 

replacement for the defective area. Such replacement is supposed to restore the roof to its original 

condition (i.e., 100%) and clear all defects, regardless of type. The second method is to simply clean 

up the vegetation accumulation. This method is less costly, but it only removes vegetation defects and 

leaves the ponded areas in their existing condition. As such, the improvement obtained from cleaning 

up vegetation can be calculated as improvement due to replacement * (area of vegetation defect / total 

defected area).  

 

 

Fig. 4.13: A heat Map of University of Waterloo Campus Buildings According to the Integrity of 

their Roofs (based on data from Table 4.9: Column 4) 
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Table 4.9: Results of the Proposed Two-Phase Model, Applied to Roofs of 21 Buildings 

(1) (2) (3) (4) (5) (6) (7) (8) 

Building 
Total 
No. of 
Images 

No. of 
images 

with 
defect 

% of no 
defect 
images 

No. of 
Ponding 
Images 

No. of 
Vegetation 

Images 

Ponding 
Area (m2) 

Vegetation 
Area (m2) 

BMH 507 23 95% 23 0 38.64 0 

C2 490 164 67% 58 106 97.44 178.08 

CPH 436 9 98% 7 1 11.76 1.68 

DC 816 108 87% 62 44 104.16 73.92 

DWE 494 111 78% 38 73 63.84 122.64 

E2 542 31 95% 13 15 21.84 25.2 

E3 316 35 89% 2 22 3.36 36.96 

E5 727 10 99% 3 3 5.04 5.04 

E7 646 51 92% 20 17 33.6 28.56 

EC1 646 84 87% 55 29 92.4 48.72 

EC2 748 53 93% 16 33 26.88 55.44 

EC3* 822 204 75% 102 58 171.36 97.44 

EC4 673 74 89% 52 20 87.36 33.6 

EC5 490 41 92% 22 15 36.96 25.2 

EIT 245 35 86% 22 13 36.96 21.84 

GSC 178 95 47% 89 6 149.52 10.08 

HH 243 22 91% 19 3 31.92 5.04 

MC* 932 298 68% 246 52 413.28 87.36 

NH 401 35 91% 15 10 25.2 16.8 

QNC 404 19 95% 15 2 25.2 3.36 

TC* 626 274 56% 151 123 253.68 206.64 
*: Snow buildup and defrosting have led to an increased no. of defected images 

 

It is assumed that the cost for replacing the defected area of the roof is $300 per square meter 

of defected area, while the vegetation cleanup cost is $100 per square meter of vegetation defect. As 

such, the cost for fixing each roof can be calculated based on the size of the defected area calculated 

in columns 7 and 8 in Table 4.9. With the data in column 4 in Table 4.9 being used to indicate the 

existing roof condition, a simple optimization problem was then developed to maximize the value of 

the rehabilitation efforts (difference between existing and post-repair roof conditions) while abiding 

by budgetary constraints (budget limit = $400,000). The formulation of this problem can be seen in 

Figs. 4.14 and 4.15. Fig. 4.15 shows that, according to the existing budget limits, all buildings can 
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undergo rehabilitation. However, the method of rehabilitation will differ depending on the building 

condition and the type of existing defects. Only 13 buildings will undergo full replacement, while 

vegetation cleanup is sufficient for the other 8 buildings. The total cost of the rehabilitation efforts is 

$391,608 (less than the $400,000 budget limit) and improves the overall condition of the buildings by 

an average of 12%. 

 

Fig. 4.14: Mathematical Formulation of Solver Setup 

 

Fig. 4.15: Screen Capture of the Solver Setup 

 Potential Improvements 

One of the potential improvements is collecting images that cover larger areas to reduce the data 

collection burden. In that case, simply measuring the area of defect as the total area that the image 

covers will significantly overestimate the defect size and, consequently, the criticality of the building 

condition. To that end, homography can be used to extract the area of defect from the captured image. 

Experiments to inspect the effectiveness of homography have been conducted on images of pavements 
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that show cracks. In this experiment, a Tim Hortons gift card of known dimensions was used to 

calibrate the image. Then, the start and end points of the individual cracks were manually selected, and 

the lengths were automatically calculated. Fig. 4.16 shows the true (Fig. 4.16a) and calculated (Fig. 

4.16b) crack lengths, highlighted on the individual cracks, while Table 4.10 shows the calculation 

results and errors. Table 4.10 shows that the average error between the ground truth and the image-

based measurements is 4.23%, thus demonstrating its potential for future study and development.  

 

Fig. 4.16: Ground Truth (a) and Homography-Calculated (b) Crack Lengths 

Table 4.10: Comparison Between Image-Based Crack Measurements (Fig. 4.16b) And Their Ground 

Truth Counterparts (Fig. 4.16a). 

# Image-Based (cm) Actual (cm) Error (%) 

1 37 40 7.5 

2 47 48 2.1 

3 26 28 7.1 

4 15 15 0 

5 47 45 4.44 

  

The same technique was used to calculate the area of cracks. A polygon surrounding the cracks 

was created whose points were manually picked from the image (Fig. 4.17). Then the shoelace 

algorithm (Equation 4.1) was used to calculate the area of the polygon where homography was used to 

translate the picked points from the image plane coordinates to the real-world plane coordinates. The 

overall area came out to be 4652 cm2, representing approximately 75% of the overall area. It is noted 

for these preliminary experiments, the points marking the boundaries of the cracked area were picked 

manually. This will be automated in the remaining part of the work. 

[4.1]   𝐴 = |𝑥1𝑦2 + 𝑥2𝑦3+. . . . . +𝑥𝑛−1𝑦𝑛 − 𝑥2𝑦1 − 𝑥3𝑦2−. . . . . −𝑥𝑛𝑦𝑛−1 − 𝑥1𝑦𝑛|  
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Fig. 4.17: Polygon used to Calculate the Overall Area of Cracks 

 Other potential improvements include the use of infrared imaging to detect hidden defects, 

using image registration information to pinpoint the defect location within the structure, and connecting 

the defect information obtained from the image analysis to a BIM model. 

 Conclusion 

This chapter has presented the first module of the roof rehabilitation framework; a two-step CNN 

model is proposed to detect roofing defects based on 2D images, as well as classify them according to 

their type. More than 5,500 images from different roofs across the University of Waterloo campus were 

used to train and test the model’s classification power. The model has shown promising results, 

achieving approximately 95% accuracy level during the detection phase, 97% accuracy during the 

classification phase, and exhibiting no major biases. The images used for the model are of constant 

real-life dimensions (1.5x1.12 m) which helps decision-makers classify the roofs according to the 

extent of the defects (the more the images of the defects, the bigger the size of the damage and the 

more critical the roofing condition) as well as quantify the damage size for appropriate rehabilitation 

work packaging and estimating. The images are originally obtained from video recordings which 

means that the model, if given the proper computational resources, is capable of performing real-time 

detections. This is further proven by the model performance speed (0.08 sec/image for both phases). 

The proposed model has surpassed other models existing in the literature and it is expected that the 

model would remain on par with, if not surpass, existing notable CNN architectures used in the industry 

such as ResNet and VGG. For example, VGG system architecture includes 12 layers while the 

proposed model has only 9. Hence, it is expected that the proposed model would be the faster 

performer, with little to no accuracy drawbacks. 
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The model, in its current form, is faster and more efficient than manual inspections. The total 

length of videos captured for all buildings is about 90 minutes. As mentioned earlier, the CNN takes 

around 0.08 seconds per frame to complete its analysis. This means that all 11,000 images can be 

analyzed in around 15 minutes. Assuming an extra minute is needed to adjust the camera for each 

building, and an extra minute is needed to extract the frames from each video. Then the total time 

needed to complete the entire roof inspection process for all 21 buildings is less than three hours. 

Inspecting a building using the conventional methods typically takes around 3 hours (Kamarah 

2019) and for every hour of on-site inspection, 3 hours are spent in the office to analyze and document 

the inspection observations (Abou Shaar 2012). Assuming the onsite visits will remain the same, each 

building will require nine hours of office work to analyze and document the collected data to provide 

the final assessment. Assuming that one of the nine hours are dedicated for analysis of roofing 

inspection data, analyzing the data for the 21 buildings would take a total of 21 hours. As such, the 

proposed method saves more than 18 hours of work (over 85%). Faster inspections mean that they can 

be performed more frequently which makes the inspection data more updated and relevant to the 

decision-making process. Finally, the assessments performed by the proposed model are consistent, 

objective, and truly reflect the condition of the asset. 

Part of the inspection process, currently, includes interviews with building representatives and 

reviewing old documents to gain insights about the current state of the building (Mostafa et al. 2021). 

Analyzing this information is discussed in chapter 5 and added to the outcome of the CNN analysis for 

a more accurate assessment and fund allocation data mining framework. 
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Chapter 5: Data Mining for Prioritization and Fund Allocation 

 Introduction 

As shown in Fig. 5.1, this chapter introduces the second module of the roofing rehabilitation 

framework; a data-mining model that relies on textual data describing different building parameters 

such as age and description to prioritize the different buildings according to their need of the 

rehabilitation work. To reduce the effect of human bias, the proposed model uses unsupervised 

clustering to group the buildings into four categories according to their condition and need for repairs. 

Since the data acquisition process has previously been explained in section 3.4, this chapter starts by 

discussing the different processes implemented to extract useful information from the acquired reports. 

Then, the different clustering approaches are then explained along with the author’s conclusions and 

recommendations. Finally, the impact of integrating defect information from images (Chapter 4) is 

introduced and an optimization framework is implemented accordingly. 

 

Fig. 5.1: Second Module of the Proposed Framework 

 Keyword Selection for Defect Categorization 

The first step was examining the list of potential defects originally developed by TDSB and samples 

of the inspection reports. For roofs, TDSB has a list of eight possible defects, stated as a general guide 

for inspectors, as shown on the top part of Fig. 5.2. Some of these defects overlap, for example, “Water 

penetration” and “Leaks at penetrations”. Furthermore, after examining samples of the inspection 

reports, it was found that the descriptions do not refer to the original defect list, rather, the inspector’s 

own explanation of the various defects. An example of the nature of the information provided by TDSB 

inspectors can be found in Fig. 3.5. To help with text mining for matching statements in the inspector’s 

descriptions to a particular damage category, roof defects have been summarized into four generic 

defect categories: Damage, Leak, Drainage, and Obsolete, as shown at the bottom of Fig. 5.2. The 
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category “Damage” includes all damaged roofing elements. Thus, the more the “Damage” text appears 

in the event descriptions, the higher the extent of roof damage. It was also found that some 

rehabilitation events were scheduled not because of a specific defect, but because the roof has exceeded 

its service life. These were accounted for by including them under the “Obsolete” category. Once the 

generic defect categories were defined, the sample of the roof event descriptions was further examined 

to find unique keywords that, when seen in the text, could indicate the type of damage associated with 

the roof under inspection. A sample of the developed keywords is shown below each defect category 

in Fig. 5.2.  

 

 
Fig. 5.2: Generic Defect Categories and Related Keywords 

Once the keywords were defined for the 4 categories of defects, a VBA macro was developed to 

search the “Event Justification”, “Event Description” and “Image Comment” text fields of every 

rehabilitation event with all the keywords in Fig. 5.2. The macro sums the number of times the 

keywords of each Defect category are used (referred to as Defect_Count) in each event, as an indication 

of the severity of the defect. In addition, the overall sum is also tallied (referred to as “Total_Count”). 

As such, the higher the Total_Count, the worse the condition of the roof.  The pseudocode for 

calculating the Total Count for each building roof is shown in Fig. 5.3. 
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Fig. 5.3: Pseudocode for Text Mining 

Based on the results of the text mining analysis, 73% of all roofing events indicate roofing 

damage and over 98% of those events are deemed to be of high priority and require a total cost of $87.3 

million. Since this amount of required funds is much higher than the budget limit, it is necessary to go 

deeper and identify the top critical roofs and their rehabilitation funding needs.  

 Principal Component Analysis (PCA) 

Before attempting data clustering, Principal Component Analysis (PCA) was performed to reduce the 

dimensionality of the dataset. PCA is a data reduction technique that produces a new set of variables 

(principal components) that better capture the variations in the data (Wilks 2011). It was noticed that 

there is a high correlation between the “Event Type” and “Event Priority” categorical variables. For 

example, all events of the type Major Repair had the priority of High. As such, PCA was performed 

in an attempt to replace these two variables with a single representative attribute. Prior to conducting 

PCA, the variables had to be binarized, as shown in Table 5.1.  

Table 5.1: Binarization of Event-Type and Event-Priority Values 

EVENT TYPE EVENT PRIORITY 

REPLACE Major Repair High Medium 

1 0 1 0 

1 0 0 1 

0 1 1 0 

0 1 0 1 
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The binary values in Table 5.1 were then used for PCA using the scikit-learn package present 

in the python programming environment, which has a built-in module for PCA. The analysis resulted 

in identifying a single attribute (Principal Component), called T&P in this paper, that represents both 

the event type and event priority attributes. Based on the PCA analysis results, the T&P value 

associated with each roof rehabilitation event was calculated and used as a parameter to facilitate 

efficient clustering of the data. 

 

 Implementation and Results of Clustering 

To implement the various clustering methods, the well-known WEKA (2020) software was used. 

WEKA is a java-based open-source software developed by the University of Waikato in New Zealand, 

and has an extensive collection of unsupervised and supervised data mining and machine learning 

algorithms (data preprocessing, classification, clustering, regression, etc.). The three clustering 

methods (Canopy, K-Means, and Farthest-First) were then applied to the data of the roofing 

rehabilitation events, and the performance of the three methods were compared to one another.  

To apply the three clustering techniques, three important parameters were used: the 

Total_Count of defects for each event; the Event Age; and the T&P parameter determined by the 

Principal Component Analysis (PCA) discussed earlier. Based on the results of the different clustering 

methods, the number of roofing rehabilitation events assigned to each cluster by the various clustering 

methods is shown in Table 5.2. It is important to mention that, to ensure consistency among the 

different algorithms, the cluster order has been presented such that the higher the cluster number, the 

more critical the asset condition (e.g., Cluster2 has more critical assets than Cluster1). This was done 

manually after examining the cluster information produced as part of the output of each clustering 

algorithm. Other clustering algorithms (e.g., decision trees, expectation maximization) were inspected, 

but their performance and explainability were found to be inferior to the three algorithms studied here. 

Table 5.2: Number of Events in each Cluster based on Different Clustering Methods 

 Canopy FF Kmeans 

Cluster1 2% 2% 53% 

Cluster2 4% 4% 24% 

Cluster3 6% 20% 10% 

Cluster4 88% 74% 13% 
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Looking at Table 5.2, it is possible to see that the algorithms assign most of the data to one or 

two clusters. For example, the EM algorithm assigned almost all the data to clusters 3 and 4, while the 

Kmeans assigned more than half the data points to Cluster1. With Cluster4 representing the most 

critical events that are in most need of rehabilitation funds, the Kmeans clustering algorithm proves to 

be the most useful in terms of aiding the decision-maker to abide by the smallest budget limit. It was 

also noticed that the events that were classified by the Kmeans algorithm to be of highest priority (i.e., 

Cluster4), received the same classification from the other algorithms. To examine the results of the 

Kmeans algorithm more closely, a 3D visual representation of the datapoint assigned to each cluster is 

shown in Fig. 5.4, with the data of Cluster 4 highlighted. From this figure, it seems that the Kmeans 

algorithm assigns the data points to their respective clusters mainly based on Event_Age and 

Total_Count parameters while allocating little weight to the effect of the third parameter (T&P).  

 

Fig. 5.4: Clustering Results of the Kmeans Algorithm 

 Incorporating Image-based Defect Information 

First of all, the textual analysis presented earlier was done on an event-by-event basis. However, the 

image-based analysis conducted in Chapter 4 was done on a building-by-building basis. Hence, to 

combine the two approaches, the event information obtained from the TDSB data was aggregated to 

represent the condition of every school. Next, damage information as a percentage of the total roofing 

area was obtained from the analysis conducted on the University of Waterloo buildings and used as an 

assumption for the range of defect size the different TDSB buildings would experience. Finally, the 
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Kmeans clustering technique was reapplied on the new dataset (school-based, including visual defect 

information) using three parameters; School age, Total Count of defect keywords, and visual defect 

information represented as a percentage of the total roof area. For notational convenience, the three 

parameters are referred to as Age, T_C, and % of defects. The T&P parameter used in previous 

clustering attempts (section 5.4) was disregarded for two reasons; first, to reduce the model bias as the 

components of the T&P parameters are based on the inspector’s personal judgment, and second, 

because the conducted analysis showed that the T&P parameter plays a little role in the clustering 

process (refer to Fig. 5.4 and the supporting narrative). The total number of rehabilitation events 

required for each school was not included in the clustering analysis because this piece of information 

will not be available for the model in the future as the inputs will become age and damage description 

information (per building). 

 Two different approaches were implemented regarding aggregating the different rehabilitation 

events. The first approach was to sum the Defect Count values for all the events for a given school and 

present that as the new T_C value of the school (referred to as Sum of T_C). The second approach was 

to set the new T_C value of the school to be equal to the average Defect Count values for the events 

concerning that school (referred to as Average of T_C). The results for the clustering attempts using 

the two approaches can be visualized in Figs. 5.5 and 5.6, respectively.  

 

Fig. 5.5: Clustering Results using Sum of T_C Values 



73 

 

   

Fig. 5.6: Clustering Results using Average of T_C Values 

Figs. 5.5a and 5.6a show a 3D visualization of the clustering results using both approaches. It 

can be seen that both approaches agree on separating the old buildings (Age > 50) into a separate 

cluster, then used the % of defects and T_C data to create the other two clusters. As such, Figs. 5.5b 

and 5.6b show a 2D visualization of the clustering results based on the % of defects and T_C data. It 

can be seen that in the case of using the Sum of T_C parameter for clustering (Fig. 5.5b), the clustering 

occurs primarily based on the % of defects parameter and the T_C parameter is almost ignored. 

However, when Average of T_C is used (Fig. 5.6b), the clustering takes into account both parameters. 

This may be attributed to the relatively uniform spread of the datapoint along the Average of T_C axis 

as opposed to their spread along the Sum of T_C axis. The number of schools and total rehabilitation 

costs required based on both clustering attempts are in Table 5.3. Although the cost required to repair 

all schools in cluster 4 (most critical) is 16% more when Average of T_C is used as the clustering 

parameter, the total cost to repair the schools in the highest two categories (cluster4 and cluster3) is 

30% less, and the number of schools that need to undergo immediate rehabilitation is almost 50% less. 

As such, clustering results based on Average of T_C are used for testing the optimization model in the 

later stages of this work. 

Table 5.3: No. of Schools and Total Rehabilitation Cost Required for Each Cluster based on 

Different Clustering Parameters 

 Clustering using Sum of T_C Clustering using Average of T_C 

Cluster No. of Schools Total Cost No. of Schools Total Cost 

1 82 $30,044,784 125 $41,903,994 

2 89 $32,210,200 101 $35,802,763 

3 127 $51,436,568 67 $34,944,195 

4 18 $6,054,644 23 $7,095,244 

Grand Total 316 $119,746,196 316 $119,746,196 
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 Fund Allocation Optimization 

According to the latest operating budget for The Toronto District School Board (TDSB), $31.4 million 

are being allocated for renewal events for all 550 schools under their jurisdiction (TDSB 2020). 

Assuming that 10% of the aforementioned budget is dedicated to roofing work, and the fact that only 

400 schools were analyzed as part of the work presented in this chapter, the budget limit was set to be 

$2.3 million. As such, an optimization problem was structured using the schools categorized in clusters 

3 and 4 (mathematical formulation in Fig. 5.7, screenshot in Fig. 5.8). The objective is to improve the 

condition of the entire asset portfolio by selecting which schools to repair, without going over budget. 

The condition improvement gained from repairing each school corresponds to the cluster to which the 

school was assigned. For example, repairing a school from cluster4 yields 4 points, while repairing a 

school from cluster3 yields 3 points. Out of the 90 schools in clusters 3 and 4 combined (Table 5.3), 

the solver results recommended repairing only 20 schools to achieve the maximum improvement with 

the given budget. 12 schools from cluster 4 (out of 23) and 8 schools from cluster 3 (out of 67) were 

deemed most worthy of immediate repair to maximize the use of the current rehabilitation budget. 

 

Fig. 5.7: Mathematical Formulation of the Solver Setup 

 

Fig. 5.8: Screen Capture of the Solver Setup 
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5.6.1 Sensitivity Analysis 

The sensitivity of the fund allocation model to changes in the estimated repair cost for each school as 

well as the allowed budget are investigated and will be discussed in this subsection. 

5.6.1.1 Sensitivity to Changes in Estimated Costs 

Monte Carlo Simulation was used to investigate the impact of changes in the estimated repair costs on 

the funding decisions obtained by the model. To simulate the worst-case scenario, only cost increases 

were investigated in these simulations. A total of 50 iterations were conducted and in each iteration the 

cost of each school took a random value between 100% and 115% of the original estimated cost. 

Histograms showing the number of schools selected for repairs as well as the overall improvement are 

show in Figs. 5.9 and 5.10, respectively. Figs. 5.9 and 5.10 show that the same results obtained from 

the deterministic model discussed earlier (i.e., repairing 20 schools with total improvement = 72) is 

achieved approximately 85% of the time. This shows the resilience of the proposed model considering 

the studied variations (cost increase up to 15%). 

 

Fig. 5.9: Histogram for the Number of Schools Selected for Repairs 
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Fig. 5.10: Histogram for the Total Improvement Achieved by the Monte Carlo Simulations 

To further Illustrate the resilience of the model, the individual results of the Monte Carlo 

simulations were investigated. Fig. 5.11 shows how many times each school was selected by the model 

through the different iterations. It can be seen from the Fig. that 15 schools were selected 100% of the 

time (50 out of 50 trials), five schools were selected more than 80% of the time, and only three schools 

(IDs: 349_, 295_, and 236_) were selected less than five times.  

 

Fig. 5.11: Number of Times Each School was Selected for Repair (Out of 50 Iterations) 

5.6.1.2 Sensitivity to Changes in the Allocated Budget 

To study the sensitivity of the model to changes in the allocated budget, four different budget values 

were used as the financial constraint for the optimization model. The four values selected were in 

$100,00 decrements from one another. The results of the different optimization attempts are shown in 

Table 5.4. Table 5.4 shows the resilience of the model against changes in budget and the effectiveness 
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of the optimization efforts, as 15% decrease in the budget only lead to a 5% decrease in the overall 

improvement of the asset portfolio, with only one school being left out compared to the results obtained 

using the original budget. 

Table 5.4: Results of Sensitivity Analysis with Respect to the Allocated Budget 

Budget 
Total 

Improvement 
No. of Schools 

 $ 2,300,000  72 20 

 $ 2,200,000  71 20 

 $ 2,100,000  69 19 

 $ 2,000,000  68 19 

 Conclusion 

This chapter has presented the second module of the roofing rehabilitation framework; a data-mining 

model that relies on textual data describing different building parameters such as age and description 

to prioritize the different buildings according to their need of the rehabilitation work. In addition, the 

analysis technique adopted in this chapter has been combined with the pictorial data analysis presented 

in Chapter 4 to provide a comprehensive assessment. Accordingly, a linear optimization problem was 

formulated to select which schools should be repaired immediately to maximize the improvement of 

the entire asset portfolio while abiding by budgetary constraints.  

 Given the number of schools in need of rehabilitation, proper repetitive scheduling techniques 

will be implemented and novel scheduling computations and visualizations will be developed to assist 

with developing an efficient plan to execute the required rehabilitation tasks within the constraints of 

time and budget (e.g., Hegazy et al. 2020, 2021). Such implementation is discussed in more detail in 

Chapter 6. 
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Chapter 6: Delivery Planning and Scheduling 

 Introduction 

As seen in Fig. 6.1, this chapter introduces the third and final module of the roofing rehabilitation 

framework; a repetitive scheduling-based approach to optimize the delivery planning and scheduling 

for the required rehabilitation works. This chapter starts by introducing the novel contributions in terms 

of repetitive scheduling visualizations, computations, and algorithms. These developments are then 

applied to a case study of a 20-unit rehabilitation project, based on the data analyzed in Chapter 5.  

 

Fig. 6.1: Third and Final Module of the Proposed Framework 

 Novel Visualizations (Duration-Distance Chart) 

Typically, all repetitive scheduling methods present the schedule in one of two ways (Fig. 6.1): (1) the 

line of balance (LOB) visual, showing the activities of each unit on a separate horizontal line (i.e., the 

vertical axis is the unit index, i.e., unit 1, 2, or 3, etc.), similar to a bar chart; and (2) the flowline visual 

showing time versus the distance (on the vertical axis) that mark the start (ST) and finish (FN) locations 

of each unit (Fig. 6.1b).  

 

 

Fig. 6.2: Differences between LOB and Flowline visuals  

LOB: Each Unit as a horizontal Line  Flowlines: Each Unit as a horizontal range 
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Fig. 6.2 shows a schedule of 3 sequential activities (A-B-C), each employing a single crew that 

moves along 3 non-identical units. Flowlines make use of the vertical axis to show the progress rate 

(slope) within each repetitive unit, as a function of both unit size (vertical projection) as well as 

required duration (horizontal projection). For example, looking at the LOB diagram (Fig. 6.2a) would 

give the false impression that the amount of work required for activity C in each unit is the same. 

However, looking at the flowline diagram (Fig. 6.2b) actually shows that while unit 2 requires a smaller 

amount of work, the work is advancing at a slower rate leading to a duration equal to that required by 

the larger units. On the other hand, The LOB visual is closer to a bar chart visual that clearly shows 

durations and crew movements. In addition, LOB visuals clearly show the task envelop and thus allows 

effortless visual ability to check if any task violates the precedence relations by intersecting with its 

predecessor. In the flowline chart, on the other hand, where the activity envelops is not shown, care 

has to be taken in this regard. For example, task B in unit 1 (i.e., B1 in Fig. 6.2b) has to start on or after 

time (a) which is the finish of its A1 predecessor of task A in unit 1. Similarly, task C3 in unit 3 can 

only start after time (b) which is the finish of its B3 predecessor. 

 Because LOB and Flowline representations have their unique advantages, using either one 

means missing the advantages of the other visual. To combine the benefits of LOB and Flowline 

visuals, a new visual called Duration-Distance (DD) chart has been proposed, as shown in Fig. 6.3. In 

this new visual, the distance (on the vertical axis) is shown with the flowlines in the foreground. 

Background bars are also included, similar to LOB to define task durations and task envelops. As such, 

the DD chart combines the benefits of LOB and Flowline. It gives a visual envelope for each task to 

help in checking for interferences in the duration-distance zones of tasks. This chart, as such, suits all 

types of repetitive projects. Computerizing this chart, it is possible to set the viewing preferences to 

on/off for the flowlines, the background bars, or both, to suit different users. 



80 

 

 

Fig. 6.3: Duration-Distance (DD) chart combines the benefits of LOB and Flowline visuals. 

 Novel Computations 

This section discusses the novel computations developed to enhance the scheduling of repetitive 

projects. In this section, two formulae are presented. First, a formula to avoid deadline violations in 

the case of relaxed deadlines. Second, a formula to calculate designed interruptions. 

6.3.1  Preventing Schedule Delays in the case of Relaxed Deadlines 

As a small example, consider the small 3-activity project shown in Fig. 6.4, with a deadline of 20 days 

and 5 repetitive units. The standard LOB calculations using equations 2.1-2.3 are shown in the figure. 

Similar calculations for the parallel crew arrangement using equations 2.4-2.6 are shown in Fig. 6.5. 
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 Duration 

(D) 

Desired Rate, 
𝑵−𝟏

(𝑫𝑳 – 𝑻𝟏 + 𝑻𝑭𝒊)
 

Necessary 

Crews,  

(C) = Roundup 

(Di x Ri) 

Actual 

Rate 

(R) = C/D 

 

1/R 

A 

B 

C 

3 

2 

3 

4/(20-8) = 0.33 

1 

1 

1 

0.33 

0.50 

0.33 

3 days 

2 days 

3 days 

 

                            
Fig. 6.4: CPM/LOB Schedule for Shifted Crews exceeds the Deadline 

 

 
 

 Duration 

D 

No. of Cycles (S) 

(TDL-T1) / Di  + 1                                                                             

Necessary crews  

C = Roundup (N/S) 

Actual Cycles 

S = Roundup (N/C) 

A 

B 

C 

3 

2 

3 

(20-8)/3 + 1= 5 

(20-8)/2 + 1= 7 

(20-8)/3 + 1= 5 

Roundup (5/5) = 1 

Roundup (5/7) = 1 

Roundup (5/5) = 1 

5/1 = 5 

5/1 = 5 

5/1 = 5 

 

                          

 

A (3) B (2) C (3) 
Deadline (TDL) = 20 days 

CPM (T
1
) = 8 days   Units (N) = 5 

A        B                 C  

Unit  

Time 

A (3) B (2) C (3) 

Deadline (DL) = 20 days,  CPM (T
1
) = 8 days, Units (N) = 5  

Notes:  

1. The relaxed deadline led to the 

use of only one crew in each task. 

2. Initially, the CPM duration of first 

unit = 8 days, however, with one 

crew, time gap is introduced, 

making first unit  12 days.  .   Time 

gap   

Time gap   

Notes:  

1. The relaxed deadline led to the 

use of only one crew in each task. 

2. Initially, the CPM duration of first 

unit = 8 days, however, with one 

crew, time gap is introduced, 

making first unit  12 days.  

Fig. 6.5: CPM/LOB schedule for Parallel Crews exceeds the Deadline 
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As seen in the example presented in Figs. 6.4, 6.5. Using LOB formulae resulted in a schedule 

that is 24 days long. This violates the original deadline constraint of 20 days. The first unit alone is 

completed in 12 days as opposed to the original CPM duration of 8 days. This implies that using a 

larger CPM duration in the LOB calculation would ultimately create a schedule that satisfies the 

deadline constraints. However, using an excessively large duration would require the use of more 

resources (i.e., extra crews) which corresponds to higher costs. Hence, there needs to be a balance 

between resource usage and achieving early completion.  

Computationally, calculating the number of needed crews can be seen as a function of (DL – 

T1), which is the difference between the deadline (DL) and the CPM duration (T1) for one unit. As 

such, the smaller the (DL – T1) value, the more crews to use. Therefore, reducing the (DL - T1) value 

can be achieved by either reducing the deadline duration or increasing the CPM’s T1 duration to 

account for the expected schedule gaps. As such, the proposed computation in Fig. 6.6 checks if the 

project deadline is so relaxed that it may lead to violations. It does so by dividing the gap between 

the duration of one unit (T1) and the deadline into five segments of length G. Then, if the produced 

LOB schedule using the original deadline resulted in a deadline violation (i.e., the original deadline 

is too relaxed), it adds G days to T1 and re-performs the LOB calculations using the new deadline. 

This loop terminates once a schedule is reached that satisfies the original deadline constraint to 

avoid overusing resources. 
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Fig. 6.6: Flowchart of the Improved CPM/LOB Computation 

The developed computation in Fig. 6.6 is applied on the schedule originally introduced in Fig. 

6.4. Since the original deadline was 20 days and the CPM duration was 8, the difference between the 

two values will be divided into four segments of equal length (G = (20 – 8) /5 = 2.4 days). As shown 

before in Fig. 6.4, when the deadline was set to 20 days, the resulting CPM/LOB schedule ended up as 

24 days, which is unacceptably beyond the deadline long. Hence, the introduced computation loop 

introduced in its first cycle a longer T1 of 10.4 days was used (T1 + G = 8 + 2.4). The calculations and 

the resulting schedules using this deadline can be seen in Fig. 6.6, for shifted and parallel crews, 

respectively. Since the durations of the improved schedules are less than the project's original deadline 
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of 20 days, the process terminates after one cycle of the loop. If that was not the case, a new T1 of 12.8 

days (10.4 + 2.4) would have been proposed and a new schedule would have been developed using the 

revised deadline. The parallel-crews schedule of Fig. 6.7b maintains crew continuity while putting all 

crews with integer start times. 

 

 

 

                 
 
      (a) Improved schedule of shifted crews                                       (b) Improved schedule of parallel crews 

 

Fig. 6.7: Schedules developed using the Proposed Computation meet the Original Deadline 

6.3.2 Calculating Designed Interruptions 

To present a formulation for the start-time offset, let’s consider activities B and C in Fig. 6.8. As 

schematically shown in Fig. 6.8a, the start-time offset for activity C is the amount of delay time from 

the end of the predecessor’s unit 1 to the start of activity C in unit 1, which depends on the difference 

in rates of progress between the two activities. To facilitate the calculation, Fig. 6.8b highlights two 

right-angle triangles: a-b-c (related to activity B) with a base of TB and height of N-1; and d-b-c (related 

to activity C) with a base of TC and height of N-1. From these two triangles, the Start-Time Offset 

(STOC) for activity C can be formulated as follows: 

A               B        C  

Unit  

Time 

Meets the original 

20-day deadline Meets the original 

20-day deadline  



85 

 

           

 

Fig. 6.8: Formulating the Start-Time Offset 

 

[6.1] Start-Time Offset from task B to task C =  TB  –  TC   

                                                                                     =    
𝑁−1

𝑅𝐵
 −  

𝑁−1

𝑅𝐶
   = (𝑁 − 1)  ( 

1

𝑅𝐵
 −  

1

𝑅𝐶
 ) 

Applying Equation 6.1 to the case in Fig. 6.8, STOC = 4 (3 – 1) = 8 days, as shown in the figure. The 

equation applies to the situation when task (C) has a higher rate than the predecessor (B), otherwise, it 

produces a negative value in the opposite case. To generalize this equation for all cases (including 

cases of parallel rates or when the successor is slower than the predecessor), it is possible to re-write 

equation 6.1, avoiding negative values, as follows:  

[6.2]        Start-Time Offset of any task i (STOi) =    Max [ 0  ,   (𝑁 − 1)  ( 
1

𝑅𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟
 −  

1

𝑅𝑖
 )] 

Equation 6.2, as such, does not take any negative value, rather, only positive or zero. The equation, 

therefore, is generic and can apply to all tasks during the forward-pass scheduling process. As such, 

using Equation 6.2 during the forward-pass of repetitive scheduling, all tasks are scheduled bottom-

up, thus having a more systematic and easy-to-follow process.  

For the purpose of plotting the LOB chart, only the lower-left corner of the activity diagram which 

represents the start date of that activity at unit 1 is required. This is calculated in Equation 6.3, while 

the start of any unit j of activity i is calculated in Equation 6.4: 

 

[6.3]    Start of activity i at unit 1 = Finish Time of unit 1 of Predecessor + STOi 

(a) Start-Time Offset for activity C. 1. (b) Offset = TB - 

TC 
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[6.4]    Start of activity i at unit j =   Start of activity i at unit 1 (Equation 6) +  
𝑗−1

𝑅𝑖
 

It is noted that in the case activity i has multiple predecessors, Equations 6.2-6.4 are calculated for each 

predecessor and the highest value is used. 

To present a formulation for achieving better synchronization among the activities’ delivery rates 

through designed interruption, the case in Fig. 6.9 is used, where a faster activity (B) follows a slow 

one (A). As schematically shown in Fig. 6.9a, the start-time offset for activity B is shown, and can be 

formulated using Equation 6.3. Assuming one interruption at N/2 is sufficient, the interruption time 

that allows the bottom half of activity B to start earlier is shown in the figure. As shown, the Offset 

time of B = Y + Duration of B + Interruption time; where Y can be calculated using Equation 6.3, 

taking into account the only first half of activity B units, therefore: 

 

 

Fig. 6.9: Formulating Task Interruption Time 

 

[6.5]      Interruption Time =      STO of B  –  Y (STO of B for N/2 units)   –  Duration of B  = 

                  =    (𝑁 − 1)  ( 
1

𝑅𝐴
 −  

1

𝑅𝐵
 )  -  ((𝑁 − 1)/2)  ( 

1

𝑅𝐴
 −  

1

𝑅𝐵
 )  -  DB  

Thus, applying the interruption, the bottom part activity B (with N/2 units) starts with an offset of Y: 

[6.6]      Start-Time Offset of B with interruption = Y = ((𝑁 − 1)/2)  ( 
1

𝑅𝐴
 −  

1

𝑅𝐵
 )   

 

(a) Interruption time for activity B (b) Average revised rate 

for B 
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Using this formulation, it can be seen that the lower part of activity B started early, thus, changing the 

average delivery rate of B (dashed line in Fig. 6.9b) to a lower rate than the original rate of B, and 

becoming more closer in its rate to its predecessor (A). This average modified rate of B can also be 

formulated, based on the presentation in Fig. 6.8b, as follows:  

[6.7]      Average rate of B with interruption =  ( 
𝑁− 1

𝑇𝐴 − 𝑌
 )  =  ( 

𝑁− 1
𝑁− 1

𝑅𝐴
  − 𝑌

 )   

As a demonstration of the calculations for interruption time, the previous example of activities B and 

C in Fig. 6.8 is continued. Interruption time is calculated using Equation 6.5 as 1 day, as shown in Fig. 

6.10. Also, the revised rate of activity C after interruption is calculated using Equation 6.7 as 0.5 units 

per day. 

 

Fig. 6.10: Interruption Time for Example Activities 

 Novel Algorithm (First-Come-First-Serve) 

Typically, crews are assigned to units in sequential order. For example, if an activity has 3 crews, 

they are assigned to units 1, 2, and 3. These crews will then move to units 4, 5, and 6 in the same 

order, etc. While this sets which crew will work in which unit, this often creates unnecessary time 

gaps and possible project delays, especially in the case of non-identical units.  

Knowing that the rehabilitation work required is different from one unit to another, a 

generalized crew assignment framework was developed that facilitates task synchronization and 

maintains crew continuities while not being tied to a rigid crew assignment strategy or needs to 

calculate interruption times beforehand. Fig. 6.11 illustrates our newly proposed, First-Come-First-

Serve (FCFS), method. This method deals with each crew at a time following the flowchart in Fig. 

6.11(a) and can be seen in action in Fig. 6.11(b). A detailed explanation is as follows: 
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1.  In the first step, all crews are available (Fcr=0). Hence, crew 1 is assigned to the first unit 

and its finish time is updated to reflect the finish time of activity B in the first unit. 

2. In step 2, the finish time of the predecessor to activity B in the second unit (FTp) is greater 

than the updated finish time of crew 1. Hence, crew 1 is assigned to the second unit. To 

maintain work continuity, the start of crew 1 at the first unit is delayed by the difference 

between FTp of the second unit and the scheduled finish of the first unit. Finally, the 

scheduled finish of crew 1 (Fcr) is updated to reflect the finish of activity B in the second 

unit 

3. In step 3, FTp of the third unit is smaller than the scheduled finish of crew 1. Crew 2 is 

assigned to that unit and its Fcr is updated accordingly. FTp of the fourth unit was less than 

Fcr of crew 1 but equals to that of crew 2. Therefore, crew 2 was assigned to the fourth 

unit. 

4. Similarly, in step 4, crew 1 is assigned to unit 5, the start dates of its previous units (units 

1 and 2) are delayed to remove work interruption, and its Fcr is updated to reflect the finish 

of the activity in unit 5. 

5. The same procedure explained in the previous step is followed for the rest of the units, and 

the final schedule is featured in Fig. 6.11(c). 
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Fig. 6.11: Flowchart and Steps of the Proposed FCFS Crew Assignment Process 
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 Validation Example 

To demonstrate the effectiveness of the proposed enhancement to repetitive scheduling visualizations 

and computations, the example of Dolabi et al. (2014) was solved using the proposed method and its 

results were compared to Dolabi et al.’s solutions. The example is a 10-unit highway project where 

each unit contains 24 sequential activities, with a project deadline of 240 days. Table 6.1 shows the 

data for the validation example (e.g., task durations) as well as the results obtained by Dolabi et al. 

(2014) and the proposed model.  

Table 6.1: Validation Example Data and Comparison of Results 

 

 

 

 

 

 

 

 

 

 

 

 

In table 6.1, it can be seen that the conventional CPM/LOB calculations without the use of the 

deadline validation loop produces a schedule of 405.5 days (column 3 in Table 6.1). This is 

unacceptable as it violates the project’s 240-day deadline. To resolve this issue, Dolabi et al. (2014) 

used complex heuristics to reach a project duration of 233 and 239 days. In this model, however, the 

deadline validation loop (subsection 6.3.1) was used to change the value of T1 till a satisfactory project 

duration was met. Furthermore, using the FCFS crew assignment algorithm produced a schedule with 

Task 
ID 

Task 
Duration 

Crews of Dolabi et al.’s 
Solutions Crews of 

Proposed 
Solutions 

CPM/ 
LOB 

Heuristic 
(HLOB) 

Heuristic 
(SHLOB) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

6 
4 

12 
9 

13 
10 
2 
4 
9 
5 
8 
7 
9 
8 

20 
7 
9 
7 
6 
8 
1 
3 
5 
4 

1 
1 
2 
2 
2 
2 
1 
1 
2 
1 
2 
1 
2 
2 
3 
1 
2 
1 
1 
2 
1 
1 
1 
1 

3 
2 
4 
3 
4 
3 
1 
1 
2 
1 
2 
2 
3 
3 
8 
3 
4 
4 
4 
6 
1 
3 
5 
4 

3 
2 
4 
3 
4 
3 
1 
2 
4 
2 
3 
2 
2 
2 
5 
2 
3 
2 
2 
3 
1 
2 
3 
3 

3 
2 
5 
4 
5 
4 
1 
2 
4 
2 
3 
3 
4 
3 
8 
3 
4 
3 
3 
3 
1 
2 
2 
2 

Total crews 36 76 63 76 
Project duration  405.5 233 239 226 
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smaller gaps which translated to a smaller duration even through the same number of crews, 76, was 

used (column 6 in Table 6.1). Fig. 6.12 shows the schedule developed by the proposed algorithms. 

 

Fig. 6.12: Developed Schedule for the Validation Example Using the Proposed Model 

 It can be noticed in Fig. 6.12 that there is a relatively huge schedule gap between 

activities 20 and 21 because of the relatively fast delivery rate of activity 21. Hence, introducing a 

designed interruption to activity 21 could produce a schedule with an even shorter duration. To test 

this hypothesis, a four-day interruption was introduced after the fourth unit. The new schedule can be 

seen in Fig. 6.13. As expected, the introduced interruption reduced the schedule gap which in turn 

reduced the overall project duration, bringing it down to 224 days. In future developments, the selection 

of the interruption duration and location (i.e., after which unit) will be automated and be part of the 

scheduling automation procedure. 

 

Fig. 6.13: Developed Schedule for the Validation Example After Introducing Interruption 

 Application Case Study 

Based on the analysis conducted in Chapter 5, 20 units were deemed most worthy of immediate repairs 

given the budgetary limitations. As such, the novel formulations and visualizations presented earlier 

in this chapter will be used here to develop an optimized schedule for the delivery of the necessary 

rehabilitation activities. 



92 

 

6.6.1 Activity Parameters and Order of Execution 

Table 6.2 shows the data concerning the units to be repaired. For each school (1-20), the total cost is 

presented in the second column. The area of the roof to be repaired, presented in the third column, is 

estimated by dividing the total cost of repair by $300. This value for repairs was obtained by consulting 

with members of the University of Waterloo Plant Operations. Based on the estimated area, the 

estimated duration based on R.S. Means data for each activity is presented in columns 4-7. 

Transportation duration to move from one unit to the other is ignored, and it is assumed that these 

activities will follow a finish-to-start relationship.  

As seen in Table 6.2, the schools are arranged in descending order based on their size. This is 

because executing the works in that order is more efficient than going from the smallest school to the 

largest. A proof using a simple example (two activities conducted over three units using two crews) 

can be seen in Fig. 6.14. 

 

Fig. 6.14: Choosing the most Efficient Order of Execution 
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Table 6.2: Activity Information for Schools Undergoing Roof Rehabilitation 

  Activity Duration (Days) 

School 
ID 

Cost Size 
(m2) 

removal & 
cleanup 

asphalt 
base sheet 

fiber 
felt 

flood coat with 
gravel surfacing 

1 242000 807 3 4 5 4 

2 175450 585 2 3 4 3 

3 159115 530 2 3 3 3 

4 151250 504 2 3 3 3 

5 127050 424 2 2 3 2 

6 121000 403 2 2 3 2 

7 121000 403 2 2 3 2 

8 119790 399 1 2 3 2 

9 118989 397 1 2 3 2 

10 114950 383 1 2 3 2 

11 96800 323 1 2 2 2 

12 96800 323 1 2 2 2 

13 96800 323 1 2 2 2 

14 93170 311 1 2 2 2 

15 93170 311 1 2 2 2 

16 90750 303 1 2 2 2 

17 60500 202 1 1 2 1 

18 60500 202 1 1 2 1 

19 48400 161 1 1 1 1 

20 24200 81 1 1 1 1 

 

6.6.2 Rehabilitation Schedule using FCFS  

45 days were selected as the deadline to finish all the required rehabilitation works. While typically 

repairs take place within the two-month summer vacation period (July and August), the 45-day 

deadline was selected to allow for contingencies. Based on the duration information presented in Table 

6.2, it was assumed that the typical unit will have a duration of two days per activity. As such, according 

to the basic CPM/LOB calculations, the duration of one unit (T1) is eight days and the rate of delivery 

is therefore 19/(45-8) = 0.51. This means that each activity will require 2 crews to deliver the project 

within the allotted duration. The developed schedule is shown in Fig. 6.15. The developed schedule is 

33 days long which satisfies the deadline constraint. It can be seen that the developed schedule has 

minimal gaps while maintaining work continuity, thus validating the efficiency of the proposed FCFS 

approach. 
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Fig. 6.15: FCFS Schedule to meet a 45-day Deadline 

A different scenario was examined where the rehabilitation works for all units need to be 

performed within 30 days only. In that case, the rate of delivery becomes 19/(30-8) = 0.86 and the 

required number of crews remains two. However, using only two crews per activity produces the same 

schedule in Fig. 6.15 which has a duration of 33 days. This is unacceptable as it violates the now stricter 

30-day deadline. Therefore, the deadline checking loop presented in Fig. 6.6 comes into effect. First, 

G is calculated to be (30-8)/5 = 4.4 days. Hence, the CPM calculations are redone for the first loop 

with a new value for T1 which equals 8+4.4 = 12.4 days. Accordingly, a new rate of delivery is 

calculated to be 1.08 which means that 3 crews will be required for each activity (roundup(3*1.08)). 

The developed schedule using the new crew information is in Fig. 6.16. It can be seen that the new 

schedule has a duration of 26 days which complies with the 30-day deadline. This proves the versatility 

and the effectiveness of the proposed approach. 

 

Fig. 6.16: FCFS Schedule to meet a 30-day Deadline 
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 Conclusion 

This chapter has presented the third and final module of the proposed roofing rehabilitation framework; 

the use of novel repetitive scheduling techniques to facilitate the delivery of the required rehabilitation 

work. Novel computations, visualizations, and scheduling algorithms were proposed and applied to a 

case study based on the data analyzed by the previous modules (Chapters 4 and 5). Computationally, 

schedules developed using the FCFS algorithm exhibit minimum gaps while maintaining work 

continuity and abiding by the deadline constraints. The deadline checking loop allows for adjusting the 

project schedule by manipulating one parameter only (T1) as opposed to tweaking every activity 

manually. Visually, the novel duration-distance charts now have extra information regarding the size 

of each unit, represented by the height of each activity block. The presented case study demonstrates 

the proposed scheduling developments and proves their effectiveness compared to traditional methods 

as well as the generic applicability to all types of repetitive projects. 
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Chapter 7: Conclusion and Future Research 

 Introduction 

The typical vision of a smart city focuses on building new smart assets. This vision, however,  

overlooks the need for a “smart rehabilitation” framework that addresses the conditions of the existing 

infrastructure assets and preserves their condition and acceptable level of service. Currently, public 

organizations and managers of large asset portfolios have significant challenges keeping up with the 

multibillion-dollar maintenance backlogs of their assets, especially when many assets are old and 

funding is inadequate. As such, improving the existing asset management frameworks and streamlining 

its processes is a must. 

 The current asset management practices regarding asset inspections, prioritization and fund 

allocation, and rehabilitation delivery have been investigated. These processes are done manually and 

often consider each asset separately. This deprives these organizations of the benefits of applying data-

driven inspection and decision support systems. Such benefits include faster and more objective 

decisions, as well as the ability to analyze all assets in unison which helps enhance the overall service 

level of the entire portfolio. Creating a rehabilitation delivery schedule that considers the repetitiveness 

of the tasks across multiple units allows for cost and time savings by reaping the benefits of repetitive 

schedules such as momentum, learning curve, and economy of scale. Having an effective data-driven 

asset management framework would optimize the use of the limited rehabilitation funds to improve 

the conditions of the different assets and reduce the repair backlog. 

 Research Summary 

The primary goal of this research is to establish “smart rehabilitation” as a major component of the 

smart asset management layer of smart cities. Specifically, this research utilizes machine learning tools, 

such as computer vision and data mining, and repetitive scheduling techniques to develop an automated 

framework for smart city rehabilitation. The framework includes different functions that perform 

efficient condition assessment, prioritization and fund allocation, and delivery planning of time-critical 

and cost-critical rehabilitation works. 

Regarding the condition assessment phase, the manual nature of conducting inspections was 

seen as the main issue to address. To that end, computer vision was used to develop an automated 

system to inspect roofing elements. The system would detect and classify defects according to their 
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type directly from collected images. The proposed system is composed of two CNN models; one for 

detection, and the other for classification. Each individual CNN is composed of five convolutional and 

pooling layers (3+2), an activation layer, a dropout layer, a fully connected layer, and a final output 

layer. The model performance speed is, on average, 0.08 sec/image for both phases. This means that 

the model is faster than manual inspections. Faster inspections mean that they can be performed more 

frequently which makes the inspection data more updated and relevant to the decision-making process. 

Regarding the prioritization and fund allocation processes, a comprehensive study was 

conducted on the inspection reports produced by Toronto District School Board (TDSB) inspectors. It 

was found that the reports do not offer the level of detail necessary to perform such prioritization 

activities, which requires the asset manager to manually discern the contents of the reports and rely on 

their own personal experience and biases to reach a decision. To address this issue, data mining and 

unsupervised clustering were used to create a model capable of analyzing the textual information 

available in different reports and categorizing the schools into one of four categories (1-4, 4 being the 

neediest for repair). The model incorporates multiple parameters such as the building age and 

description, as well as the damage description provided by the inspectors. A second version of the 

clustering model was then developed which includes the data collected from the automated image-

based inspection module, represented as the percentage of the roof being damaged. 

The delivery phase was tackled with the aim of incorporating repetitive scheduling techniques 

into asset rehabilitation delivery projects as opposed to treating each asset separately. To that end, 

current drawbacks within the existing repetitive scheduling computations were highlighted and 

remedies were introduced. This study introduced novel visualizations (duration-distance chart), 

computations (scheduled interruptions, and preventing deadline violations), and algorithms (first-

come-first-serve) to develop repetitive schedules with minimum duration and maximum continuity. 

 Research Contributions 

Based on the above summary, the research contributions of this research can be encapsulated in the 

following points: 

• Better understanding of challenges in managing large asset portfolios with huge backlogs and 

limited budgets; 

• Development of an automated image-based system capable of detecting, classifying, and 

quantifying defects directly from collected images; 
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• Development of a data-mining-based system for prioritization and fund allocation maximizing the 

gained benefits from performed rehabilitation works while meeting budgetary constraints; 

• Development of new representation of repetitive schedules that incorporates more information 

related to the size of the work in each unit; 

• Development of new repetitive scheduling computations to avoid deadline violations and reduce 

schedule gaps; and 

• Development of a novel crew assignment algorithm for repetitive schedules to reduce the project 

duration by developing more cost-effective and compact schedules. 

 Future Research 

7.4.1 Potential Research Related to Inspection and Condition Assessment: 

• The performance speed of the image-based inspection model has shown its potential for 

performing real-time analysis. This means the inspection process can be automated using 

drones where, in addition to identifying the damage type, the damage location can be 

pinpointed using image registration or GIS techniques. This would help better identify the 

repair strategy (e.g., an overall replacement vs. a localized repair). 

• Faster inspections allow for more frequent inspections, this would help develop models that 

better track and forecast the damage progression, improving the effectiveness of future 

preventative maintenance frameworks. Incorporation with BIM can enable the development of 

“as-damaged” models where different what-if scenarios for building rehabilitation strategies 

can effectively tested and analyzed 

• Some roofing defect types (e.g., cracks, blisters, flashing) almost did not appear in the collected 

images, and therefore were not extensively experienced by the model, this should be 

investigated and be part of future model improvements.  

• Image analysis is incapable of analyzing internal roofing defects (e.g., internal cracks, 

saturation of the roof insulation) and can be obscured by the roof coverings and other 

appliances. The use of infrared imagery should be investigated to overcome these challenges. 

• The images were collected in a specific way such that they represent constant real-life 

dimensions (1.5x1.12 m) which allows to automatically quantify the damage size. As such, full 
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automation of defect sizing and quantification to reduce the data collection burden by 

collecting images that represent larger roof areas as well as reduce the constraints on the data 

collection methods.  

• Collecting images that represent larger roof areas require the use of homography to identify 

the size of the damage within the image, as opposed to estimating the size of the damage to be 

equivalent to the total area covered by the image. 

• While the developed model is only applicable to roofing, the same underlying technology (i.e., 

CNN) can be utilized to develop similar models that tackle different building assets such as 

structural elements, doors, and windows to name a few. These models could be then aggregated 

to develop a comprehensive building assessment model that considers all building elements.  

• Applying feature extraction techniques to resolve issues such as shadows and markings, 

especially when the model is applied to building elements where this is a prevalent issue (e.g., 

parking lots). 

• Using feedback loops as part of the model architecture to enhance its accuracy by retraining 

the model against datapoints that were misclassified to examine the source of misclassifications 

and avoid them in future iterations. 

7.4.2 Future Research Related to Prioritization and Fund Allocation: 

• Development of a more comprehensive optimization framework that accounts for multi-year 

investments and different delivery methods and/or rehabilitation strategies (e.g., different 

repair methods).  

• Including probabilistic analyses that study the reliability of the funding decisions against 

changes to the rehabilitation costs and/or budgets. 

• Collaborating with the school of social work and/or school of public health, incorporating 

social parameters into the optimization framework (e.g., the demographics of the community 

served by the asset) 

• Investigating how the different assets interact with one another. For example, an inoperable 

school means that another school will be overloaded because of the increased size of the student 

population, which would affect its structural integrity. 
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7.4.3 Future Research Related to Scheduling and Delivery 

• Although the simple scheduling example provided in Chapter 6 showed that it was faster to 

execute the units in descending order according to their size, there is a possibility to have 

different arrangements that provide a shorter project duration. This is better examined by 

treating repetitive scheduling as a traveling salesman/vehicle routing problem. 

• Including interruption calculations as well as duration and location (i.e., after which unit) 

selection into the automated optimization procedure 

• Consideration of interruption-related impacts in terms of demobilization and re-mobilization, 

and how that affects the momentum and productivity of the crews. 

• Study the effect of changing the activity delivery rate midway through the project and its effects 

on the project duration and resources. 

• Development of repetitive scheduling visuals and computations that consider project progress. 

• Examining the applicability of the proposed repetitive scheduling algorithm on real-world 

megaprojects both in terms of practicality and abiding by the project’s requirements and 

complex constraints, as well as the algorithm’s computational requirements. 

7.4.4 Future Integration with Smart City Initiatives 

• Reach out to different cities to develop long-term strategic simulations using tools such as 

system dynamics to investigate policy issues related to the budgeting of new versus 

rehabilitation projects and the impact on backlog. 

•  Extend the smart rehabilitation work to other infrastructure domains such as the transportation 

network (roads and bridges), water/sewer, etc.  
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Appendix A: Sample of Collected Images 

Vegetation Images 
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Ponding Images 
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No Defect Image
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Appendix B: Python Code for Convolutional Neural Network 

Model.py Module 

# import pytorch CNN libraries 
import torch 
import torch.nn as nn 
 
#Define the CNN architecture 
class CnnPHD(nn.Module): 
    def __init__(self): 
        super(CnnPHD, self).__init__() 
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=24, kernel_size=20, stride=2) 
        self.pool1 = nn.MaxPool2d(kernel_size=7, stride=2) 
        self.conv2 = nn.Conv2d(24, 48, 15, stride=2) 
        self.pool2 = nn.MaxPool2d(kernel_size=4,stride=2) 
        self.conv3 = nn.Conv2d(48,96,10,stride=2) 
        self.conv4 = nn.Conv2d(96,2,1,stride=1) 
    def forward(self,x): 
        L1 = self.conv1(x) 
        L2 = self.pool2(L1) 
        L3 = self.conv2(L2) 
        L4 = self.pool2(L3) 
        L5 = self.conv3(L4) 
        L6 = nn.ReLU(inplace=True)(L5) 
        L6 = nn.Dropout2d(p=0.5)(L6) 
        L7 = self.conv4(L6) 
        L8 = nn.Softmax(dim=1)(L7) 
        L8 = L8.reshape(-1,2) 
        return L8 
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Dataset.py Module 

# importing necessary libraries: 
import os 
import torch 
from PIL import Image 
from torch.utils.data import Dataset 
 
 
class slicesDataset(Dataset): 
 
   # Going to image directory and collecting all JPG images 
 
    def __init__(self, root ,train=True, transform = None): 
        Dataset.__init__(self) 
        images_dir = os.path.join(root,'') 
        images = os.listdir(images_dir) 
        self.images = [os.path.join(images_dir, k) for k in images if 'jpg' in k] 
        self.images.sort() 
        
        self.transform = transform 
        self.train = train 
 
    #Image labelling: image label=1 if it has the letters 'CLR' in its name indicating no defects 
    #For Image Classification CNN, image label=1 if it has the letters ‘VEG’ in its name indicating a 
vegetation defect 
 
    def __getitem__(self, index): 
        img_dir = self.images[index] 
        img = Image.open(img_dir).resize([256,256]) 
        img = self.transform(img) 
        if self.train: 
            lbe = 1 if 'CLR' in img_dir else 0 
            return img, lbe 
        return img 
     
    def __len__(self): 
        return len(self.images) 
 
   #Weighted sampling for the batches, depending on the ratio between the images carrying different 
labels 
 
    def __weight__(self): 
        pos = sum(1 for x in self.images if 'CLR' in x) 
        neg = len(self.images) - pos 
        weights = [1/neg, 1/pos] 
        class_weights = torch.FloatTensor(weights) 
        return class_weights   
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Myutils.py Module 

#Import necessary libraries 
import os 
import torch 
import torch.nn as nn 
from torch.utils.data import Dataset, DataLoader 
from torchvision import transforms 
from PIL import Image 
import numpy as np 
import pandas as pd 
 
#Calculating Accuracy: Number of correct predictions/total number of datapoints 
def Acc(model, loader): 
    with torch.no_grad(): 
        acc = total = 0 
        for images, labels in loader: 
            images = images.cuda() 
            labels = labels.cuda() 
            outputs = model(images) 
            acc += (outputs.argmax(1)==labels).sum().item() 
            total += labels.size(0) 
        return acc/total*100 
 
#Function to return predicted labels vs. actual labels as a dataframe 
def lbls(model, loader): 
    with torch.no_grad(): 
        results=[] 
        for images, labels in loader: 
            images = images.cuda() 
            labels = labels.cuda() 
            outputs = model(images) 
            results.append([labels.cpu().numpy(),outputs.cpu().detach().numpy()]) 
        results_df=pd.DataFrame(results[0][1],results[0][0]).reset_index().rename(columns={"index":"true 
label"}) 
 
        return results_df 
 
#Transforming the images to a format that the CNN can read 
transform=transforms.Compose([ 
    transforms.ToTensor(),  
    transforms.Normalize(mean=[.5,.5,0.5],std=[.5,.5,0.5])  
]) 
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Train.py Module 

#Import necessary libraries 
import os 
import torch 
import torch.nn as nn 
from torch.utils.data import Dataset, DataLoader 
from torchvision import transforms 
from PIL import Image 
import numpy as np 
from dataset import slicesDataset 
from model import CnnPHD 
import logging 
import copy 
import pandas as pd 
from myutils import Acc, transform, lbls 
from datetime import datetime 
 
#Hyperparameters 
batch_size = 64 
num_epochs = 1000 
num_workers = 0 #means use all GPU power 
lr = 0.0001 # learning rate 
torch.cuda.manual_seed(7)  
torch.manual_seed(7) 
 
torch.backends.cudnn.enabled = False  #avoid CUDA OUT OF MEMORY error 
 
#Loading the images for training and validation datasets, refer to the "dataset.py" functions for more 
detail 
train_dataset = slicesDataset('../train_images', transform=transform) 
val_dataset = slicesDataset('../val_images', transform=transform) 
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, 
                        shuffle=True,num_workers=num_workers, pin_memory=True) 
val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size,  
                        shuffle=True, num_workers=num_workers, pin_memory=True) 
 
 
#Calling the CNN model 
init_cnn = CnnPHD().cuda() 
print(Acc(init_cnn, val_loader)) 
 
history = [] 
cnn = copy.deepcopy(init_cnn) 
 
#Loss function and optimizer 
criterion = nn.CrossEntropyLoss(weight=train_dataset.__weight__().cuda()) 
optimizer = torch.optim.Adam(cnn.parameters(), lr=lr) 
logging.basicConfig(filename='../logs/logger_cnn_adam.log', level=logging.INFO) 
total_step = len(train_loader)  
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Train.py Module (Cont.) 

start_time=datetime.now()  
print("TRAINING START at: ",start_time) 
 
#The Training Loop 
for epoch in range(num_epochs): 
    totalloss = 0 
    for i, (images, labels) in enumerate(train_loader): 
         
        #Forward pass 
        images = images.cuda() 
        labels = labels.cuda()        
        outputs = cnn(images) 
        loss = criterion(outputs, labels) 
        totalloss += loss*images.size(0) 
         
       #Backward pass 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        
        #Store Model Accuracy 
        if i==total_step-1: 
            valacc =  Acc(cnn,val_loader)  #refer to "myutils" functions for more detail 
            trainacc = Acc(cnn,train_loader) 
            history.append([totalloss.item()/len(train_dataset),trainacc,valacc]) 
 

#Saving and Timestamping the model parameters 
            torch.save(cnn.state_dict(),\ 
             '../trained_models/cnn_adam_'+datetime.now().strftime('%Y-%m-
%d_%H%M_')+str(epoch+1)+'.pkl') 
 
#Display function, so we know how much work is left 
    if epoch%100==0: 
        print('Epoch [{}/{}], Time is: ' 
                  .format(epoch + 1, num_epochs, i + 1), datetime.now()) 
 
#Report total training time for all epochs 
finish_time=datetime.now()  
print("total Training time=",finish_time-start_time) 
 
#Save the accuracy results for training and validation (create Figs. 4.8, 4.9) 
history_df=pd.DataFrame(history,columns=['loss','Training accuracy(%)','Validation accuracy(%)']) 
history_df.to_csv('../History.csv',index=True) 
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Predict.py Module 

#Import Necessary Libraries 
import os 
import torch 
from PIL import Image 
import numpy as np 
from model import CnnPHD 
from myutils import transform, Acc, lbls 
import pandas as pd 
from dataset import slicesDataset 
from torch.utils.data import Dataset, DataLoader 
 
torch.backends.cudnn.enabled = False 
 
#Loading image folders (one folder per school) 
# ‘../’ refers to the folder above the working directory (i.e., folder above the folder containing the code 
files) 
big_folder = '../FreeVideoToJPGConverter/' 
big_dir = os.listdir(big_folder) 
big_dir.sort() 
big_list = [big_folder+k+'/' for k in big_dir if '.' not in k] 
big_list.sort() 
i=0 
#Preparing images from within the folder to be loaded by the dataset.py module (folder-by-folder) 
for folder in big_list: 
    img_folder = folder 
    img_dir = os.listdir(img_folder) 
    img_dir.sort() 
    img_list = [img_folder+k for k in img_dir] 
    img_list.sort() 
    
#Loading model parameters 
    cnn = CnnPHD().cuda() 
    cnn.load_state_dict(torch.load('../trained_models/cnn_adam_163.pkl')) 
 
    #Loading image dataset 
    pred_dataset = slicesDataset(img_folder, transform=transform) 
    pred_loader = DataLoader(dataset=pred_dataset, batch_size=len(img_dir),  
                            shuffle=False, num_workers=0, pin_memory=True) 
 
    #performing prediction and saving results 
    pred_df=lbls(cnn,pred_loader) 
    #print(Acc(cnn,pred_loader)) 
    pred_df.index=img_dir 
    pred_filename=big_folder+big_dir[i]+'.csv' 
    i=i+1 
    pred_df.to_csv(pred_filename,index=True) 
 
   

  


