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Abstract

Speaker diarization is the process of identifying who spoke when in an audio stream, and
it is applied in many fields, such as information retrieval and psychotherapy. Speaker
embeddings extraction is a crucial step in any diarization system, where the goal is to
extract highly discriminative speaker embeddings (d-vectors). Most of the existing methods
are based on deep neural networks (DNNs) and they rely on engineered features, which may
not guarantee optimal performance for all cases. This led to the development of the SincNet
model, which can effectively and efficiently process raw input audio signals. The SincNet
model was successfully used to perform embeddings extraction in a speaker diarization
system, where it resulted in a high diarization performance. Its successor, the AM-SincNet
model, which combines SincNet with an improved loss function, outperformed the standard
SincNet on the speaker diarization task. This shows the importance of enhancing the loss
function of SincNet to achieve better diarization performance.

Thus, the goal of this thesis is to improve the ability of the SincNet model to extract
discriminative embeddings such that it results in a better diarization performance by ex-
perimenting with different architectures and state-of-the-art loss functions. In this thesis,
16 different SincNet based models were proposed as follows: four models that combine the
SincNet architecture with four different loss functions, six models that combine the Res-
SincNet architecture (a recently proposed architecture) with six different loss functions,
and six models that combine the Res-SincNet-FC architecture (proposed in this thesis)
with six different loss functions.

The results show that the proposed MV-AM-SincNet model gives the best diarization
performance compared to all the models discussed in this thesis. This shows the high
capability of the MV-Softmax loss at extracting highly discriminative embeddings com-
pared to the other losses. Additionally, the speaker recognition performance was reported,
since all the models were trained for speaker recognition before being applied in speaker
diarization. It was found that the proposed Res-SincNet-FC architecture resulted in the
lowest frame error rate (FER) when combined with the different loss functions, where the
D-Res-SincNet-FC and Arc-Res-SincNet-FC achieved the lowest FER. The Visualization
of the extracted embeddings and the diarization output of the MV-AM-SincNet model
showed its ability to extract highly discriminative embeddings. However, the visualization
showed that having a large number of overlapping segments and/or small speaker segments
impacts the diarization performance negatively.

In this thesis, significant improvements on the SincNet model were made, which assists
in achieving higher speaker recognition and diarization performance, where the raw audio
signals were processed efficiently and effectively, without the need for feature engineering.
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Chapter 1

Introduction

Speech is the primary method of communication among humans. Thus, it would be highly
beneficial to develop technologies that are capable of processing and analyzing human
speech. One such important technology is automatic speech recognition (ASR) which takes
speech signal as an input and then converts it into text [3]. This speech-to-text conversion
is called transcription and it can be used in a wide range of applications. For example,
in a medical setup, practitioners can save valuable time with patients using automatic
transcription as a substitute for manual note-taking [4]. Additionally, transcription can
be found in finance firms, government institutions, and in the automotive industry [4].
Multiple large companies are involved in advancing speech recognition technology and
distributing it through their products. Major examples include Alexa from Amazon and
Siri from Apple, where both products serve as voice-enabled personal assistants. Moreover,
Google provides voice-enabled commands for mobile phones and internet search. The
speech recognition technology has a huge market size. According to a 2021 report by
IBISWorld, which is a company that provides in-depth research on industries worldwide,
the revenue of the speech and voice recognition industry in the US had an estimated annual
growth of 16.3% over the past five years to reach $4.2 billion in 2021 [4]. Furthermore,
according to Grand View Research, Inc., a company that provides market research and
consulting services, the revenue of the global speech and voice recognition industry is
expected to reach $31.82 billion by 2025 with a compound annual growth rate of 17.2% [5].
Thus, developing highly accurate speech recognition systems is crucial due to their useful
applications and economical value.

While research aiming to improve ASR systems has exploded due to its wide range of
applications, some challenges facing the speech recognition community still persist. For
example, the performance of speech recognition systems can be negatively impacted in the

1



presence of multiple speakers, since the speech from the different speakers may overlap,
causing a confusion with the ASR system. Consequently, this confusion results in erroneous
transcription. This problem can be solved by a process called speaker diarization, which
aims to identify who spoke when in an audio stream. More precisely, speaker diarization
is the process of segmenting an input audio stream according to speaker identities, such
that each segment corresponds to a unique speaker. Therefore, diarization can be used
as a front-end processing step to improve the performance of ASR systems in scenarios
with more than one speaker. Besides improving the performance of ASR systems, speaker
diarization has other applications, including information retrieval from audio data involv-
ing multiple speakers (e.g. conferences). Additionally, diarization has healthcare-related
applications, such as psychotherapy, where it automatically acquires speaker annotations
from therapy sessions between therapists and patients, which can help the therapists per-
form further analysis [6]. Thus, it is important to develop highly accurate and efficient
speaker diarization systems.

Speaker embeddings (d-vectors) extraction is a crucial step in speaker diarization, where
the goal is to extract speaker-related features that facilitate the distinguishing of different
speakers [7]. Currently, deep neural networks (DNNs) achieve better embeddings extrac-
tion compared to older methods, such as i-vectors [8]. Most of these DNN models rely on
engineered features, such as MFCC, to extract speaker embeddings. However, relying on
engineered features may not be appropriate for all applications, and may prevent the net-
work from achieving optimal performance [1]. Thus, SincNet [1] was proposed to efficiently
and effectively process raw input signals, where it outperformed the usage of engineered
features. Then, AM-SincNet [9] and AF-SincNet [10] improved the performance of Sinc-
Net by utilizing more discriminative loss functions. On the other hand, Res-SincNet [2]
enhanced the performance of SincNet by modifying its architecture, where it was combined
with residual layers.

In [8] and [11], the authors used the SincNet model [1] and the AM-SincNet model [9]
as speaker embeddings extractors in speaker diarization systems, respectively. The AM-
SincNet model, which replaces the softmax loss in the original SincNet model with a more
discriminative loss called AM-Softmax, achieved a better diarization performance compared
to the original SincNet model. This indicates the impact of using a more discriminative
loss function on improving the diarization performance.

Therefore, this thesis aims to improve the ability of SincNet based architectures to ex-
tract highly discriminate embeddings by incorporating different state-of-the-art loss func-
tions, which is crucial to achieving an improved diarization performance.

2



1.1 Motivation

Speaker diarization has several important applications, which require high diarization ac-
curacy. Discriminative speaker embeddings extraction plays a crucial role in achieving high
diarization performance. Although there are many speaker embeddings extraction meth-
ods used for speaker diarization, they face some issues that need to be addressed. Most
of the existing speaker embeddings extractors in speaker diarization employ engineered
features, such as MFCC, instead of using the raw input waveform, which do not always
guarantee optimal performance. Additionally, the existing speaker embeddings extractors
which can process raw input audio signals efficiently and effectively, such as the SincNet [1]
and the AM-SincNet [9] models, can be further improved by utilizing more discriminative
loss functions. Moreover, the literature lacks the application of an improved SincNet archi-
tecture, such as Res-SincNet [2], as speaker embeddings extractor in a speaker diarization
system. Thus, there is a significant room to further enhance the SincNet model [1] to
perform better speaker embeddings extraction in order to achieve an improved diarization
performance. This can be achieved by combining the SincNet architecture with a more
discriminative state-of-the-art loss function. Another approach worth investigating would
be to first improve on the existing SincNet architecture, and then combine it with different
loss functions.

1.2 Problem Statement

The main goal of this thesis is to develop a speaker embeddings extractor to be subsequently
used in a speaker diarization system, where the embeddings extractor can process raw
input waveforms efficiently and effectively through the use of the SincNet architecture.
The ability of the SincNet model to extract highly discriminative speaker embeddings will
be enhanced by incorporating different state-of-the-art loss functions and combining them
with different SincNet-based architectures.

1.3 Objectives

The process of improving the performance of the SincNet model by utilizing different state-
of-the-art loss functions and different SincNet-based architectures can be formulated into
the following objectives:
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1. Conduct a literature review on the current state-of-the-art loss functions and identify
multiple potential candidates.

2. Combine the chosen state-of-the-art loss functions with the SincNet architecture [1]
and compare their speaker recognition and diarization performance.

3. Combine the chosen state-of-the-art loss functions with the Res-SincNet architecture
[2] and compare their speaker recognition and diarization performance.

4. Improve the Res-SincNet architecture such that it becomes more suitable to be com-
bined with the chosen state-of-the-art loss functions.

5. Combine the chosen state-of-the-art loss functions with the improved Res-SincNet
architecture and compare their speaker recognition and diarization performance.

6. Analyze the performance of the SincNet-based model that gave the best diarization
performance by visualizing its extracted speaker embeddings.

1.4 Contributions

This thesis contributes to the speaker embeddings extraction step in speaker diarization
systems, where speaker embeddings are extracted from the raw input waveform directly
without the need for a features engineering step. This is achieved by improving on the
SincNet model, which can process raw input signals efficiently and effectively, by utiliz-
ing different state-of-the-art loss functions and different architectures. Additionally, the
speaker recognition performance of the SincNet model was considered and improved on
in this thesis, which is important for speaker diarization, since the speaker embeddings
extractors are first trained to perform speaker recognition.

Firstly, the SincNet architecture [1] was combined with four distinct state-of-the-art
loss functions. Most of the proposed models gave a similar diarization and recognition
performance to the existing SincNet models, but the proposed MV-AM-SincNet model gave
superior diarization performance compared to all of the other SincNet models. Moreover,
experiments on the input shift size showed that it can be increased from 10 ms, which is
the value used in the original SincNet paper [1] and other related papers, to 50 ms such
that the processing time is reduced without negatively impacting the performance.

In addition, the Res-SincNet architecture [2] was combined with six different state-
of-the-art loss functions. However, the Res-SincNet architecture was not suitable to be
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combined with the different losses due to the usage of the global average pooling layer.
Thus, the Res-SincNet-FC architecture was proposed, which is more suitable to be com-
bined with the different losses, since the global average pooling layer was replaced with
a fully connected layer. Finally, the Res-SincNet-FC architecture was combined with six
distinct state-of-the-art loss functions. The proposed models based on the Res-SincNet-FC
architecture gave a significantly improved speaker recognition performance compared to
the models based on the SincNet architecture [1], where the proposed Arc-Res-SincNet-
FC and D-Res-SincNet-FC outperformed all of the other SincNet models on the speaker
recognition task.

1.5 Thesis Outline

Chapter 2 gives a literature review on the existing SincNet based models, loss functions
in general, and the chosen state-of-the-art loss functions that will be combined with the
different SincNet architectures. Chapter 3 presents the proposed models, where different
SincNet based architectures were combined with different state-of-the-art loss functions.
Chapter 4 goes through the experimental setup and the results achieved in this thesis.
Chapter 5 concludes the thesis and suggests future ideas to extend the work presented in
this thesis.
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Chapter 2

Background and Literature Review

In this chapter, I will go through the literature review of this thesis. Firstly, I will talk
about the speaker diarization and recognition. Secondly, I will go over the existing SincNet
models, where I will review: the SincNet model, the existing methods that improved the
speaker recognition performance of SincNet, and the current usage of SincNet to perform
speaker diarization. After that, I will go through an overview of loss functions. Finally,
I will thoroughly discuss the chosen state-of-the-art loss functions that will be combined
with the SincNet model.

2.1 Speaker Diarization and Recognition

The main goal of this thesis is to develop a highly discriminative speaker embeddings
extractor for a speaker diarization system. However, the speaker embeddings extractor
must be first trained to perform speaker recognition, where the extractor will learn how
to extract discriminative features from input data. Thus, this thesis focuses on two tasks,
speaker diarization and speaker recognition, which will be discussed in this section.

2.1.1 Speaker Diarization

Speaker Diarization addresses the question “who spoke when” in an audio file. Speaker
Diarization has several important applications, such as the analysis of conference meet-
ings and phone calls. Generally, speaker diarization systems are comprised of four stages
[12]. The first stage is the speech segmentation, which removes the non-speech parts in
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the input audio signal, and then segments the speech parts into short segments where it
is assumed that each segment has one speaker [12]. The second stage is the speaker em-
beddings extraction, where audio-relevant features, are extracted from the segments [12].
The third stage is clustering, where the extracted embeddings from the previous stage are
clustered for each unique speaker [12]. Finally, a re-segmentation stage, which is optional,
is used sometimes to refine the results from the clustering stage in order to improve the
performance of the system [12].

The most widely used embedding methods are i-vectors, d-vectors, and x-vectors. I-
vectors are based on Gaussian Mixture Models (GMM), and joint factor analysis [7]. On
the other hand, d-vectors and x-vectors are based on deep neural networks (DNNs), where
both methods outperform the i-vectors method, which shows the strength of deep neural
networks for speaker embedding extraction [7]. Speaker embeddings extraction using DNNs
is performed by first training the network to perform speaker recognition in a supervised
manner [7]. Then, the pre-trained network can be used to extract d-vectors, where the d-
vectors will be the output of the second last layer or the bottleneck layer in the pre-trained
model [7]. The goal is to achieve highly separable and discriminative d-vectors between
different speakers, which is achieved by employing discriminative loss functions [7].

2.1.2 Speaker Recognition

Speaker recognition has multiple important applications such as voice authentication and
security [1]. Speaker recognition aims to recognize a speaker from a given set of speakers
based on an input speech signal. Before the huge advancements in DNNs, the i-vector
method, which derives features from audio signals and classifies them using different ap-
proaches, such as probabilistic linear discriminant analysis (PLDA) [13], used to be the
state-of-the-art approach for performing speaker recognition [10]. Most of the current state-
of-the-art DNN based speaker recognition methods employ hand-crafted features, such as
FBANK, in their implementation [1]. However, these hand-crafted features may result in a
sub-optimal performance due to inherited characteristics from the way they are calculated
[1]. Thus, it would be beneficial to use raw speech signals instead of engineered features
as the input to the DNN models. A good candidate to process raw speech signals is the
SincNet model [1], which can perform this task efficiently and effectively.
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2.2 Deep Neural Networks for Speaker Recognition

and Diarization

Deep Neural Networks (DNNs) achieve state-of-the-art performance on both speaker recog-
nition and diarization. Most of the DNNs rely on hand-engineered features, such as MFCC
coefficients, to perform speaker recognition [1]. However, using handcrafted features may
not be suitable for every speech-related problem, and they can negatively affect the learn-
ing of important narrow-band speaker features [1]. To overcome these issues, some authors
proposed directly using raw signals as the input to the network, where Convolutional Neu-
ral Networks (CNNs) are the most commonly used networks to perform such tasks [1].
CNNs are widely used to process raw input waveform due to their useful properties, such
as weight sharing and local filtering, which facilitate the learning of robust and invari-
ant features [1]. Even though CNNs are suitable for processing raw input signals, their
input layer is problematic, since it handles high dimensional data, and it is susceptible
to vanishing gradient issues, particularly in the case of deep networks [1]. Moreover, the
learned filters are noisy, uninterpretable, and do not seem to represent the speech waveform
efficiently [1].

Thus, the SincNet architecture was introduced to efficiently and effectively process raw
input waveform by using a sinc layer as the input layer to the CNN [1]. The sinc layer will
convolve the input with sinc filters, which corresponds to a band-pass filter in the frequency
domain, where the network is trained to learn the lower and upper cutoff frequencies of
the sinc filters [1]. This allows the SincNet model to achieve high speaker recognition
performance, while also facilitating fast convergence.

In this section, I will focus on the SincNet model. Firstly, I will give an overview of
the SincNet model. Secondly, I will discuss how different authors worked on improving
the performance of SincNet on speaker recognition. Finally, I will talk about the usage of
SincNet in speaker diarization.

2.2.1 SincNet for Speaker Recognition

As mentioned previously, the SincNet architecture [1] is simply a Convolutional Neural
Network (CNN), but with an input layer that consists of sinc filters. The sinc layer will
perform a set of convolution operations in the time domain between the input raw speech
signal and a set of sinc filters, which can be represented by the following equation:

y[n] = x[n] ∗ g[n, f1, f2] (2.1)
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where x[n] is the input raw speech signal, g[n, f1, f2] is a sinc filter in the time domain,
which corresponds to a rectangular band-pass filter in the frequency domain, where f1 and
f2 are learnable parameters, and they represent the lower and upper cutoff frequencies,
respectively, and y[n] is the filtered output of the sinc layer. It is worth noting that if a
standard convolutional layer is used as the input, then the network will learn every single
element of the input filters; however, if the sinc layer is used, then the network will only
learn the lower and upper cutoff frequencies of the sinc filters, which results in a significant
reduction in the learnable parameters of the network [1]. The band-pass filter g[n, f1, f2]
in the frequency domain can be designed by subtracting two low-pass filters, as follows:

G[f, f1, f2] = rect(
f

2f2
)− rect( f

2f1
) (2.2)

where rect(.) is the rectangular function in frequency domain. Then, applying inverse
Fourier transform [14] on G[f, f1, f2] results in the time domain representation, which is
given by:

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n) (2.3)

where sinc(x) = sin(x)/x is the sinc function.

The authors of SincNet [1] chose to initialize the cutoff frequencies of the input sinc
filters with mel-scale filter-bank, instead of randomly initializing them, since this facilitates
the allocation of larger number of filters in the lower region of the spectrum, which contains
a lot of important indications regarding the speakers identities. The sinc layer only learns
the bandwidth of the band-pass filters, while further layers in the network learn the filter
gains by assigning different significance to the output of the sinc filters [1].

Additionally, in [1], windowing was applied on the sinc filters to reduce their band-pass
ripples and increase their stop-band attenuation. The SincNet authors used Hamming
window [15], since it encourages strong frequency selectivity. The Hamming window is
defined as:

w[n] = 0.54− 0.46 · cos(
2πn

L
) (2.4)

where L is the filter length. The since filters after the application of the Hamming window
is defined as:

gw[n, f1, f2] = g[n, f1, f2] · w[n] (2.5)

The sinc filters g do not result in phase distortion, since they are symmetric [1]. Ad-
ditionally, the symmetry of the filters can play a huge role in reducing the required com-
putations, because the results can be calculated using a single half of the filter. Then, the
calculated half can be used to derive the other half [1].
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All the computations related to SincNet are differentiable, and all the SincNet pa-
rameters, including the lower and upper frequencies of the sinc filters, can be collectively
optimized using gradient-based optimization methods, such as Stochastic Gradient Decent
(SGD) [1].

The SincNet model [1] has three major properties:

1. SincNet has fast convergence, since it concentrates only on learning filter parameters
that hugely affect the performance of the model, which simplifies the filters learning
process

2. SincNet has significantly fewer parameters in its input layer compared to standard
CNN, since the input layer of SincNet only learns the lower and upper cutoff frequen-
cies, instead of learning every element of the filter as in standard CNNs. This means
that the number of parameters in the sinc layer will not depend on the length of the
filter, which facilitates the learning of highly selective filters without increasing the
number of learnable parameters

3. SincNet learns highly interpretable filters in its input layer compared to other meth-
ods, which allows human inspection in order to understand what the network is
learning

The authors of the SincNet model [1] designed their model to perform speaker recog-
nition. They used two datasets with a different number of speakers in their experiments.
It is worth noting that the authors of [1] used a realistically challenging setup for their
experiments, where they used a relatively small number of training data per speaker, and
they used test sentences with relatively short duration.

The authors of [1], compared the SincNet model with multiple other systems. They
compared the SincNet with a standard CNN that takes raw signal as its input. Moreover,
they compared SincNet with other neural network models that use commonly used hand-
crafted features, in specific, they compared SincNet with both MFCC and FBANK features.
Also, the authors compared the different models on the speaker verification task, where
they extracted the d-vectors using the trained model, and they involved the i-vector method
in their comparison.

The results showed the SincNet model [1] was able to effectively learn highly selective
filters that can detect narrow-band speaker features, such as pitch and formants, which are
important to successfully perform speaker recognition. Furthermore, the SincNet model
[1] gave a superior speaker recognition performance compared to using standard CNN or
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hand-crafted features. The SincNet model [1] also outperformed the other models including
i-vector on the speaker verification task, which indicates its strong ability to learn better
speaker embeddings (d-vectors) compared to the other models.

Other SincNet Applications

The authors of [1], originally proposed the SincNet model to perform speaker recognition.
However, in [16], they used the SincNet model to perform speech recognition, where they
considered two datasets (one with close-speech and the other with distant-speech), and
different conditions (i.e. clean and noisy). The results in [16] showed that the SincNet
model gave a superior performance on the speech recognition task compared to the other
models (a CNN with raw input and another CNN with FBANK features), while also having
a faster convergence and more interpretable filters.

Other audio-related applications of the SincNet model include the following. In [17],
SincNet was used in an emotion recognition system, where it outperformed the other models
that utilize engineered features. Moreover, in [18], SincNet was successfully used to perform
speaker counting in crowded conditions, where it gave better performance compared to
methods that use hand-crafted features. Additionally, in [19], SincNet was effectively
applied to perform acoustic model adaptation from speech of adults to speech of children
under automatic speech recognition setting. Furthermore, in [20], SincNet was used in a
multi-task learning system, where the goal was to jointly estimate the age and cognitive
decline of a person through speech signals.

2.2.2 Improved SincNet Models for Speaker Recognition

In this section, I will discuss how different authors improved on the speaker recognition per-
formance of SincNet, where two methods (AM-SincNet and AF-SincNet) modified the loss
function of the SincNet model, while one method (Res-SincNet) modified the architecture
of the SincNet model.

AM-SincNet

The authors of [9] improved on the SincNet model [1] by replacing the standard softmax
loss with Additive margin softmax (AM-Softmax) loss [21], and they called their proposed
model AM-SincNet. The AM-Softmax loss [21] gives better performance compared to the
standard softmax loss, since it facilitates the learning of more discriminative features by
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imposing an additive margin to increase the angular distance between the different classes,
which reduces intra-class variance and increases inter-class variance. The AM-Softmax loss
[21] is defined as:

LAM = − 1

n

n∑
i=1

log
es·(cos θyi−m)

es·(cos θyi−m) +
∑c

j=1,j 6=yi e
s·cos θj

(2.6)

where s is a scale parameter, m is the margin parameter that is tuned to achieve the desired
performance, n is the number of samples in a given batch, c is the number of classes, j
corresponds to the j-th class, and cos θyi is defined as:

cos θyi =
〈 ~W T

yi
, ~fi〉

‖ ~Wyi‖‖~fi‖
(2.7)

where fi is the input to the classification layer corresponding to the i-th samples, Wyi

represents the weights connected to the ground-truth class yi.

The authors of AM-SincNet [9] considered the same experimental setting used in the
original SincNet paper [1], and they compared the AM-SincNet and SincNet models per-
formance on the speaker recognition task, where they compared the results based on the
Frame Error Rate (FER). Also, they fixed the s parameter in the AM-Softmax loss to
30, while they run different experiments using different m parameter values in the range
[0.35, 0.8] with 0.05 increments, to understand the effect of the m parameter on the model
performance. The AM-SincNet model gave a significantly better performance compared
to the SincNet model, which shows the importance of using a discriminative loss function
to achieve an enhanced performance [9]. Also, they found that most m values gave around
the same improved performance, but for all m values the AM-SincNet outperformed the
SincNet model.

AF-SincNet

Another modification on the SincNet loss function was proposed by [10], where they re-
placed the softmax loss with the additive angular margin (ArcFace) loss [22], and they
called their model AF-SincNet. The ArcFace loss [22] is capable of effectively learn-
ing highly discriminative features due to the imposed angular margin, which encourages
stronger intra-class compactness and inter-class separability. It is worth noting that the
ArcFace loss is numerically similar to the AM-Softmax loss, but the ArcFace loss has a
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better geometrical interpretation and can result in a better performance [22]. The ArcFace
loss [22] is defined as:

LArc = − 1

n

n∑
i=1

log
es·cos(θyi+m)

es·cos(θyi+m) +
∑c

j=1,j 6=yi e
s·cos θj

(2.8)

where the variable names have the same meaning as in Eq. 2.6.It can be seen that the
AM-Softmax loss (defined in Eq. 2.6) and the ArcFace loss (defined in Eq. 2.8) have a
very similar formulation, but the margin parameter m is directly added to the angle θyi
for the case of ArcFace, as opposite to AM-Softmax, which adds the margin parameter m
to the cosine of the angle θyi .

The authors of AF-SincNet [10] performed their experiments under the same settings
of the SincNet paper [1], where they compared the performance of different models on the
speaker recognition task. In [10], the authors based their comparisons on two performance
measures, which are the Frame Error Rate (FER) and the Sentence Error Rate (SER).
For the AF-SincNet model, the authors fixed the s parameter of the ArcFace loss to 30,
while they performed hyper-parameter tuning for the m parameter, where they found that
m = 0.5 results in the best performance. In [10], it was found that the AF-SincNet gives
the best speaker recognition performance compared to the other models.

Res-SincNet

Both of AM-SincNet [9] (discussed in Section 2.2.2) and AF-SincNet [10] (discussed in Sec-
tion 2.2.2) improved the performance of the SincNet model by modifying its loss function.
However, the authors of Res-SincNet [2] improved the performance of the SincNet model
by modifying its architecture. In [2], the authors replaced the fully connected layers that
come after the convolutional layers in the SincNet model with residual layers [23], where
this will improve model stability and performance, while also reducing overfitting and the
number of parameters.

The experimental setup in [2], used the same datasets and the same evaluation metrics
as in [1], but they improved the training optimization in their experiments, where they
used early stopping instead of a fixed number of epochs, and a learning rate scheduler
to reduce the training rate instead of a fixed learning rate. Additionally, the authors
of Res-SincNet [2], tried various combinations of network hyperparameters, such as the
number of filters in the sinc and convolutional layers, using an automatic hyperparameter
optimization method called tree Parzen estimators [24], in order to study the effect of
different parameters on the model performance. They found that some parameters had
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a greater influence on the Res-SincNet performance, for example, the stride and window
size of the sinc layer were more important than that of the convolutional layer. Thus, the
authors of [2] performed a thorough analysis of the window size and stride of the sinc layer
by trying different combinations. They found that using a smaller sinc filter stride results
in better performance, while the sinc window size had less impact on the Res-SincNet
performance. Therefore, the authors suggested reducing the sinc window size which will
decrease the computational requirements without heavily affecting the performance. The
experiment in [2] showed that the Res-SincNet model gives a better FER performance
compared to the SincNet model.

2.2.3 The Application of SincNet in Speaker Diarization

The authors of [8] used the SincNet model to perform speaker embeddings (d-vectors) ex-
traction in a diarization system. They first trained the model to perform speaker recogni-
tion using an out-domain dataset, then they used the trained model as a d-vectors extractor
to perform speaker diarization on an in-domain dataset. The authors of [8] tried extract-
ing the speaker embeddings from different stages in the SincNet model, where they found
that extracting the embeddings from the last hidden layer results in the best performance.
Also, they found that using average pooling to get the segment level embeddings is better
than max pooling. They tried reducing the dimensions of the extracted embeddings using
principal component analysis (PCA), which improved the diarization performance. In [8],
the authors focused on speaker embeddings extraction, hence they used the ground-truth
speaker segments in their experiments. The authors of [8] employed length normalization
before the clustering stage, where they used spherical K-means clustering algorithm [25]
in their implementation. In [8], the SincNet model was compared to the i-vector method,
in which it was found that extracting speaker embeddings using the SincNet model results
in a better diarization performance.

The same authors of [8] extended their work in [11], where they used AM-SincNet
instead of SincNet to extract speaker embeddings. The results in [11] showed that the
AM-SincNet model achieved the best diarization performance compared to SincNet and
i-vector method. The superior diarization performance achieved by the AM-SincNet can
be attributed to its utilization of the AM-Softmax loss, which facilities the learning of
highly discriminative features (embeddings), and hence resulting in a better diarization
performance.
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2.3 An Overview of Loss Functions

Loss functions (also called objective functions) are used to calculate the error between the
predicted and the actual output [7]. Therefore, a neural network will work on minimizing
this error, which is done using the optimizer [7]. To achieve high recognition performance,
it is important to ensure that the learned features are both separable and discriminative,
where this can be achieved through the use of discriminative loss functions [7]. Examples of
discriminative loss functions are the contrastive loss and the triplet loss which gave a high
performance in both face recognition and speaker verification tasks [7]. Both of these loss
functions map the input into a feature space, where they minimize the intra-class variance
and maximize the inter-class variance [7]. It is apparent that a good loss function should
be capable of minimizing the intra-class variance (i.e. forcing the samples of the same class
to be closer to each other) and maximizing the inter-class variance (i.e. pushing different
classes away from each other) [21]. Ensuring both aspects facilitate the extraction of highly
discriminative features [7]. This can have a significant effect on improving the performance
of systems that require embeddings extraction, such as speaker diarization.

The choice of the loss function greatly affects the performance of Deep Neural Net-
works (DNNs) on effectively extracting feature embeddings from input data, where the
extracted embeddings should be discriminative [26]. Discriminative means that the ex-
tracted embeddings corresponding to the same class should be close to each other in the
embeddings space, while embeddings corresponding to different classes should be further
apart from each other. Therefore, a successful loss function should be capable of minimiz-
ing the intra-class variance and maximizing the inter-class variance as much as possible to
achieve discriminative embeddings [26].

During the training process of a CNN, which is a type of DNNs, the model learns to
extract useful features from the training data via the loss function, such that the trained
model can be used afterward as a feature (embeddings) extractor [27]. For example, in
this thesis, the SincNet model [1], which is basically a CNN architecture, is trained using
different state-of-the-art losses to perform speaker recognition, where the trained model will
be used to extract discriminative speaker embeddings (d-vectors) in a speaker diarization
system. The softmax loss is widely used to train CNNs, since it facilities the learning
of separable features [27]. However, in cases where there is a chance that the variations
between samples belonging to the same class can be larger than the variations between
samples belonging to different classes, it is not enough to learn features that are separable,
they must also be discriminative [27]. Therefore, the softmax loss will not be effective
for such cases, which gave the motivation to design new loss functions that can facilitate
the learning of discriminative features [27]. Generally, the losses that can effectively learn
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discriminative features can be categorized into two categories: metric-based losses and
cosine-margin-based losses [27].

2.3.1 Metric-Based Losses

Firstly, the metric-based losses employ Euclidean distance to embed the input data into
Euclidean space, where the intra-class variance is decreased and the inter-class variance is
increased [27]. The contrastive loss [28] and the triplet loss [29] are widely used metric-
based losses.

The contrastive loss takes input samples pairs, where it reduces the euclidean distance
between pairs that belong to the same class, and increases the distance between pairs that
belong to different classes [27]. Moreover, the work in [30], [31], and [32] combined the
contrastive loss and the softmax loss to achieve better features extraction performance [27].
However, the major issue of the contrastive loss is the difficulty of selecting the margin
parameters [27].

The triplet loss uses the relative distance between pairs as opposed to the contrastive
loss which uses the absolute distance between pairs [27]. The triplet loss uses triplets of
input samples, where it reduces the distance between an anchor sample and a sample from
the same class, and it increases the distance between the anchor sample and a sample from
another class [27]. Additionally, the work in [33], [34], [35], [36] uses both the softmax loss
(for training) and the triplet loss (for fine-tuning) in their implementation [27].

However, the contrastive loss and the triplet loss can suffer from training instability
because of the need for an effective sampling strategy [27]. Thus, the center loss [37], and
its other forms [38], [39], [40], and [41] can be used as an alternative to decrease intra-class
variance [27]. The center loss determines the center of every class, and then it reduces the
distance between the learned features of every class and its center [27]. Nevertheless, the
center loss and its other variations have huge GPU memory requirements, and they work
best if the training data is balanced and has an adequate number of samples for each class
[27].

2.3.2 Cosine-Margin-Based Losses

Metric loss functions are computationally expensive, and they require efficient mining
methods, where the performance of the metric loss functions is highly affected by the
mining method [42]. Thus, the majority of loss functions in the literature concentrates on

16



modifying the conventional classification loss functions, which includes the softmax loss
and its variants (mainly margin-based) to achieve high discriminative performance [42].
The network is first trained using the softmax loss, or one of its variants, to perform the
classification task, then the trained network is used for features (embeddings) extraction.

The idea behind cosine (angular) margin-based losses is to ensure that learned features
are strongly separated by imposing a larger cosine distance [27]. It is worth noting that
the margin-based losses use the softmax loss in their implementation, where they modify
it to incorporate stricter margins [27].

The large-margin softmax (L-Softmax) loss [43], introduces an angular margin to the
conventional softmax loss by reformulating the softmax loss and introducing a margin
parameter (m) [27]. The soft-margin softmax (SM-Softmax) loss [44] modified the L-
Softmax loss to improve its ability to learn better discriminative features by replacing the
hard angular margin with a soft distance margin, such that this will increase the intra-
class compactness and the inter-class separability. The A-Softmax loss [45] improved on
the L-Softmax loss by normalizing the weights of the classification layer (i.e. the weights
used in the loss calculation) using L2 norm, where these normalized vectors will lie on
the unit sphere [27]. Thus, an angular margin can be used to facilitate the learning of
discriminative features on the unit sphere [27].

The L-Softmax and the A-Softmax loss functions are difficult to optimize, since they
integrate the cosine margin in a multiplicative way [27]. Therefore, the AM-Softmax [21],
CosFace [46], and ArcFace [22] were proposed to overcome this issue by incorporating the
cosine margin in an additive manner [27]. These three losses have clear interpretation and
easy implementation, while also having a better convergence compared to L-Softmax and
the A-Softmax [27]. Moreover, as opposite to L-Softmax and the A-Softmax, the addi-
tive margin-based losses have a simpler formulation, and they do not have complicated
hyperparameters [27]. Additionally, inspired by the NormFace loss [47], which studied the
importance of normalizing the weights and features of the classification layer, the afore-
mentioned additive margin losses apply the same normalization, since this facilities a better
performance [27]. Some margin-based losses, such as FairLoss [48] and AdaptiveFace [49],
where developed to handle cases of unbalanced data by adaptively changing the margins
for the various classes [27].

Furthermore, due to the promising performance of the margin-based losses (especially
additive margin losses), the literature has several other cases, where authors worked on
modifying the margin-based losses to further enhance their discriminative performance. For
example, multiple authors focused on improving the AM-Softmax loss. The double additive
margin softmax (DAM-Softmax) modified the AM-Softmax loss [21] by incorporating an
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additive margin to both the intra-class similarity and inter-class similarity components of
the loss, as opposite to the AM-Softmax loss, which only incorporate the margin to the
intra-class similarity component of the loss [50]. This will lead to a better discriminative
features extraction compared to the AM-Softmax loss [50]. Other losses that improved on
the AM-Softmax loss are the Dynamic-AM-Softmax loss [51], which dynamically changes
the margin of every sample in the training set to facilitate stronger intra-class compactness.
The ensemble additive margin softmax (EAM-Softmax) loss [52] incorporates the Hilbert-
Schmidt independence criterion (HSIC) [53] with the AM-Softmax loss to achieve better
performance.

In addition, the inter-class angular margin (IAM) loss [54] focuses on increasing the
inter-class separability by increasing the angular margin among different classes, through
dynamically applying stronger penalization on inter-class angles with smaller values, as
opposite to other famous softmax losses that uses fixed inter-class margins [54]. The IAM
loss can be easily combined with the softmax loss and its other variations, such as AM-
Softmax [21], where it will act as a regularization term to improve their performance by
boosting their ability to learn better discriminative features [54].

2.4 The Chosen State-of-the-Art Loss Functions

The main goal of this thesis is to improve the loss function of the SincNet model [1], in order
to improve its ability to extract discriminative embeddings, and then employ the SincNet
with an improved loss in a speaker diarization system. As mentioned before, most of the
literature focuses on improving the Softmax loss and its variants, such as the Additive
Margin Softmax (AM-Softmax) loss [21], in order to achieve high recognition performance
by enhancing the ability to extract discriminative embeddings. This is attributed to the
superior performance of the variants of Softmax loss, and their advantages over metric-
based loss functions, such as contrastive loss and triplet loss [42]. Four potential loss
functions were chosen to be combined with the SincNet architecture [1]. The chosen loss
functions are:

1. AdaCos, which is an adaptive hyperparameter-free cosine-based loss [55]

2. Pairwise Gaussian loss (PGL), which combines Softmax loss and contrastive loss in
an efficient and effective way [56]

3. MV-Softmax, which has the advantages of margin-based Softmax losses and mining-
based Softmax losses [42]
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4. D-Softmax, which disentangles the intra-class objective and inter-class objective and
optimize them independently [57]

These four loss functions were chosen because, in addition to their state-of-the-art
performance, they are novel and innovative in their approach of ensuring a minimal intra-
class variance and a maximal inter-class variance. Additionally, each of the four losses
offers a highly unique solution to improve on the Softmax loss, as opposed to the majority
of the other loss functions, such as [50], [51], [52], and [54], where they concentrate solely on
improving the margin-based Softmax losses by mostly changing their formulation. The fact
that the four chosen loss functions are highly unique from each other will facilitate a better
comparison between them. This will give a better indicator to know which improvement on
the Softmax loss will result in the best recognition performance and the best embeddings
extraction performance.

In the following sections, I will first discuss the existing losses that have already been
used with the SincNet architecture. Then, I will thoroughly overview the chosen state-of-
the-art loss functions that will be combined with the SincNet based architectures.

2.4.1 Currently Combined Loss Functions with SincNet

The original SincNet model [1] employed the widely used softmax loss. The softmax
loss focuses on maximizing the inter-class variance, resulting in separable features [26].
However, the softmax loss does not result in discriminative embeddings, since it does
not try to minimize the intra-class variance [9]. This will deprive the original SincNet
from extracting highly separable and discriminative speaker embeddings. Therefore, some
authors improved the performance of SincNet by employing better loss functions.

For example, as mentioned in Section 2.2.2, the authors of [9] proposed AM-SincNet
that used the Additive Margin Softmax (AM-Softmax) loss, which improves on the con-
ventional Softmax loss by incorporating additive margin in the decision boundary [21],
to train the SincNet model. The AM-SincNet offered a significant speaker recognition
improvement over the conventional SincNet, since the AM-Softmax loss is capable of min-
imizing the distance between samples corresponding to the same class and maximizing the
distance between different classes simultaneously by incorporating additive margin in the
decision boundary [9].

Additionally, as mentioned in Section 2.2.2, the authors of [10] proposed AF-SincNet
which employs Additive Angular Margin Softmax loss (also called ArcFace) [22], to improve
the performance of the SincNet model. Both of AM-SincNet [9] and AF-SincNet [10] gave a
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superior performance over the SincNet model [1], which shows the significance of improving
the loss function of the SincNet model.

2.4.2 The AdaCos Loss

The performance of the conventional Softmax loss was greatly improved by introducing
the cosine-based with margin functions, such as L-Softmax [43], A-Softmax [45], and AM-
Softmax [21], where these methods give a high classification performance [55]. These losses
are especially useful in the cases of open-set problems, where the testing classes are not
part of the training classes [55].

However, even though the cosine-based Softmax losses are successful, their performance
is very sensitive to their hyperparameters settings [55]. Moreover, minor changes of the
hyperparameters may result in the failure of the network’s training [55]. The hyperparame-
ters are chosen experimentally through a large number of trials, which is a time-consuming
process [55]. There are algorithms that can change the hyperparameters of a given model
automatically, such as Random search [58] and sequential model-based optimization [59],
but the operation of these algorithms involve running several trials to find the best hyper-
parameters settings, which is time consuming [55]. Therefore, finding a way to adaptively
tune the hyperparameters in cosine-based Softmax losses without the need for running
numerous trials would be highly useful.

Before proposing the AdaCos loss function with the adaptive hyperparameters, the
authors in [55] studied the effect of the two main hyperparameters of the cosine-based
Softmax losses, which are the scaling (s) and the margin (m) parameters. The s parameter
is responsible for making the different classes more discriminative by up scaling the cosine
distances. However, the m parameter improves the classification performance by increasing
the margin between the various classes. The authors of [55] discussed the effect of these
parameters on the prediction probability, where they found that it is highly affected by
both hyperparameters. Two important properties must be satisfied when choosing the
best hyperparameters for margin-based softmax losses [55]. The first property is to ensure
that the range of predicted probability for a given class covers the values between 0 and 1
[55]. The second property is to ensure that the gradient of the prediction probability of a
given class should be big enough with respect to the angle between the input features to
the classification layer and the weights of that given class, which will facilitate the training
process [55]. Additionally, the authors of [55] found that the effect of both parameters can
be unified, since a large s and a small m reduces the network’s supervision. On the other
hand, a small s and a large m enhances the network’s supervision (i.e. the training becomes
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more strict, which decreases the intra-class variance). Thus, it is possible to focus on one
of these two hyperparameters to control the behavior of the training [55]. The authors
of the AdaCos loss [55] chose to concentrate on auto-tuning the s parameter, because it
greatly affects the range and the shape of the predicted probabilities’ curves, which greatly
influences the training performance of the network, as opposed to the m parameter, which
only shifts the curves of the predicted probabilities left and right.

Therefore, the authors of [55] proposed the AdaCos loss function, where they removed
the m parameter, and they designed an automatically changing scaling parameter s. Thus,
the AdaCos loss overcomes the time-intensive manual hyperparameters tuning. The au-
thors of [55] proposed two ways to automatically choosing the s parameter of the AdaCos
loss: (1) setting the s parameter to a fixed value (2) dynamically changing the s parameter.

In [55], the authors derived a fixed value that can be used to set the s parameter of the
AdaCos loss, where they showed that the s parameter can be set to:

s̃f =
√

2 · log (C − 1) (2.9)

where s̃f is the fixed scale parameter, and C is the number of classes in the training
dataset. This derived fixed s parameter value will be used mainly as a baseline to compare
its performance to the dynamically changing the s parameter [55]. Moreover, s̃f can serve
as good choice for the s parameter for other margin-based losses, instead of manually
changing s parameter for these losses [55].

Additionally, the authors in [55] derived a dynamically changing s parameter for the
AdaCos loss, where as opposite to s̃f , it can facilitate a great supervision during training,
by gradually applying stricter requirements on the angle between the weights of a certain
class and the input features to the classification layer as the training progresses [55]. From
[55], the dynamically changing s parameter (s̃d) is calculated as:

s̃d
(t) =


√

2 · log (C − 1) t = 0,
logB

(t)
avg

cos
(
min(π

4
,θ

(t)
med)
) t ≥ 1,

(2.10)

where s̃d
(t) is the adaptive scale parameter at the tth epoch, θ

(t)
med, which is found during

each mini-batch of size N at epoch t, is the median of all the angles between the feature
vector xi and the weight vector Wyi corresponding to its correct class yi. B

(t)
avg is calculated

as:

B(t)
avg =

1

N

∑
i∈N(t)

∑
k 6=yi

es̃d
(t−1)·cos θi,k (2.11)
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From Eq. 2.10,It can be seen that at t = 0, the value of s̃d is equal to s̃f , after that s̃d
will start dynamically changing. The AdaCos loss using the adaptive s parameter can be
written as:

LAdaCos = − 1

N

N∑
i=1

logPi,yi = − 1

N

N∑
i=1

log
es̃d

(t)·cos θi,yi∑C
k=1 e

s̃d
(t)·cos θi,k

(2.12)

where Pi,yi is the predicted probability of the correct class yi for the input sample i, θi,j is
the angle between the xi feature vector corresponding to input sample i, and the weights
of the jth class Wj, and cos θi,j is:

cos θi,j =
〈~xi, ~Wj〉
‖~xi‖‖ ~Wj‖

(2.13)

In [55], the authors used the AdaCos loss with two different architectures, which are
the ResNet-50 [23] and Inception-ResNet [60] to perform face recognition on several widely
used datasets. They compared the performance of the AdaCos loss with other margin-
based softmax losses, such as ArcFace [22]. Their results showed the effectiveness of the
AdaCos loss, where it gave the best recognition performance compared to the other loss
functions, especially when using the dynamic s parameter. Moreover, the AdaCos had the
best convergence rates compared to the other margin-based softmax losses [55].

2.4.3 The Pairwise Gaussian Loss (PGL)

Loss functions should facilitate the learning of robust features from the input data, which
will help in improving the classification performance of Convolutional Neural Networks
(CNNs) [56]. Strong learned features are characterized by an adequately maximized intra-
class compactness and inter-class separability [56]. The softmax loss, which combines the
softmax activation function with the cross-entropy loss function, is widely used with CNNs
to perform classification tasks [56]. Although the softmax loss is capable of maximizing the
inter-class separability, it lacks the ability to maximize the intra-class compactness, which
will negatively affect the ability of the CNN to learn discriminative features [56].

Thus, several improvements on the softmax loss were proposed, in which stricter con-
straints were imposed on the softmax loss to improve its performance [56], such as the
additive margin softmax (AM-Softmax) [21], and the ArcFace loss [22]. Even though these
losses give an improved classification performance over the conventional softmax loss, a
more desirable option would be to directly maximize the intra-class compactness [56]. To
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illustrate, it is highly useful to employ a loss function that can directly optimize the intra-
class compactness, and then combine that loss with the conventional softmax loss, which is
capable of optimizing the inter-class separability [56]. There are different losses that can di-
rectly optimize the intra-class compactness, such as the contrastive loss [28] and the triplet
loss [29], where the contrastive loss is the best candidate compared to the other methods,
because it overcome the drawbacks of the other options, such as convergence issues and
high time cost [56]. The contrastive loss calculates the euclidean distance between a pair
of feature vectors. However, in order to effectively combine the contrastive loss with the
softmax loss, they should have the same range, which is between 0 and 1, since the output
of the softmax loss is a probability distribution [56]. There are different methods to map
the distance measure of the contrastive loss into a similarity measure, such as Hinge-like
[61] and Sigmoid [62], but these methods have several shortcomings, including the use of
incompatible similarity measures with the softmax loss, and convergence issues [56].

Therefore, the authors of [56] proposed the Pairwise Gaussian Loss (PGL), which di-
rectly optimizes the intra-class compactness by greatly penalizing sample pairs that belong
to the same class but are far away from others, to overcome the previously mentioned short-
comings of the different mapping functions. PGL employs a Gaussian function, which can
result in a fast model convergence, to map the Euclidean distance of the contrastive loss
into a similarity measure that is between 0 and 1, which facilitate the combination of PGL
and softmax loss [56]. The Euclidean distance is calculated using the last hidden fully
connected layer (i.e. the penultimate layer) of a CNN between a pair of samples in a given
batch. PGL employs cross-entropy loss, and it will be combined with the softmax loss to
create the total loss that will be used to train the network.

Additionally, the contrastive loss requires a complex sample organization step, which
is time-consuming [56]. Thus, the authors in [56] overcame this issue by taking advantage
of the fact that the input data to the CNN is random [56]. Given that the number of
randomly chosen samples in a mini-batch during training is even, the authors split the
mini-batch into an odd group and an even group depending on the samples’ indices. Then,
the pairwise distance is calculated using the penultimate layer between each sample from
the odd group with its corresponding sample from the even group, where the label of the
pairwise distance is 1 if the pair samples belong to the same class, and 0 otherwise.

The major part of PGL is the Gaussian function that is used to map the distance
measure of the contrastive loss into a similarity measure [56]. The authors of [56] defined
their Gaussian mapping function as:

g(dij) = e−βd
2
ij (2.14)

where, dij is the Euclidean distance between feature vectors i and j, β is a scale parameter.
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Thus, the probability mapping function is:

p(yij|dij) =

{
g(dij) yij = 1

1− g(dij) yij = 1

= [g(dij)]
yij [1− g(dij)]

1−yij

(2.15)

where yij = 1 means that the feature vectors i and j correspond to the same class, while
yij = 0 means that they are not from the same class. Therefore, the PGL can be written
as follows:

LPGL =
2

N

N∑
i∈odd

N∑
j∈even

− log(p(yij|dij))

=
2

N

N∑
i∈odd

N∑
j∈even

[βd2ij + (yij − 1) log(eβd
2
ij−)]

(2.16)

Finally, the total loss that was used to train the CNNs in [56], would be:

Ltotal = Lsoftmax + LPGL (2.17)

Lsoftmax (the softmax loss) will concentrate on maximizing the inter-class separability,
while LPGL will concentrate on maximizing the intra-class compactness.

The authors of PGL [56], combined their loss with several CNN architectures, mainly
VGG-net [63] and ResNet-50 [23], and they tested there models on multiple famous image
recognition datasets. The authors compared PGL with various other losses, and different
mapping functions for the contrastive loss. Their results showed the high performance of
the PGL, where it gave the best recognition performance. Additionally, the PGL had a
fast convergence rate compared to the other losses it got compared with, and the authors
showed its ability to be effectively combined with different CNN architectures [56].

2.4.4 The MV-Softmax Loss

The existing margin-based softmax losses, such as the AM-Softmax [21], are capable of
achieving high recognition performance, but they do not take advantage of feature mining
techniques, which are useful for learning discriminative features [42]. Moreover, they focus
on increasing the margins with respect to the ground-truth class without considering the
other classes, and they use the same fixed margin between all classes, which may not be
practical [42].
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The existing mining-based softmax losses, such as HM-Softmax [64] and F-Softmax
[65], aims to enhance the capability to learn discriminative features by concentrating on
hard examples (i.e. samples that are hard to classify) [42]. However, these mining-based
softmax methods suffer from multiple drawbacks that can hinder their performance. For
example, the HM-Softmax loss [64], which is a hard mining method that tries to improve
features learning by using samples with high loss to create mini-batches for training, fully
ignores the easy samples, and the number of hard samples is found experimentally [42].
On the other hand, the F-Softmax loss [65] uses a softer mining technique compared to
HM-Softmax [64], where it uses a sparse set of hard samples for its training, but it does
not clearly indicate hard samples [42]. Both HM-Softmax [64] and F-Softmax [65] do not
semantically choose the hard samples [42].

Margin based loss functions aim to increase the margin between different classes,
whereas the goal of mining-based loss functions is to concentrate on the hard examples
(miss-classified samples) [42]. This means that margin-based and mining-based methods
are independent from each others, and can be easily combined [42]. Thus, the authors of [42]
proposed the MV-Softmax loss which is a margin-based softmax loss that can adaptively
focus on the incorrectly classified samples to facilitate the learning of discriminative fea-
tures, which will solve the issues mentioned in the previous paragraphs in order to achieve
high recognition performance. The MV-Softmax loss is the first loss to combine the ben-
efits of margin-based and feature mining methods in a single loss [42]. The MV-Softmax
loss is defined as:

LMV = − log
esf(m,θwy,x)

esf(m,θwy,x) +
∑K

k 6=y h(t, θwk,x, Ik)e
s cos(θwk,x)

(2.18)

To better understand the equation of the MV-Softmax loss [42] (Eq. 2.18), let us discuss
its components separately.

f(m, θwy ,x) is a margin function that can be either A-Softmax loss [45], AM-Softmax
loss [21], or Arc-Softmax loss [22], where the authors of [42] combined the three mentioned
softmax based losses in a single expression that is:

f(m, θwy ,x) = cos(m1θwy ,x +m3)−m2 (2.19)

where θwy ,x is the angle between the weight vector of the ground-truth class y, and vector x,
which is the input vector to the classification layer, m1 ≥ 1 is an integer that corresponds
to the A-Softmax loss [45], m2 is a decimal number that is between 0 and 1, and it
corresponds to the AM-Softmax loss [21], m3 is a decimal number that is between 0 and
1, and it corresponds to the Arc-Softmax loss [22]. To illustrate, if the AM-Softmax loss
[21] is used, the margin function will be f(m2, θwy ,x) = cos(θwy ,x)−m2.
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h(t, θwk,x, Ik) ≥ 1 is a re-weighting function that is used to focus on the miss-classified
samples. In [42], the authors proposed two formulations for their re-weighting function.
The first uses the same fixed weights for all of the wrongly classified classes, and it is
defined as:

h(t, θwk,x, Ik) = estIk (2.20)

The second uses adaptive weights for the wrongly classified classes, and it is defined as:

h(t, θwk,x, Ik) = est(cos(θwk,x)+1)Ik (2.21)

where s is a scale parameter that authors of [42] fixed it to 32, t ≥ 0 is preset hyperpa-
rameter, and Ik is a binary indicator function that can adaptively specify if a sample got
miss-classified by a given classifier wk, where k 6= y, and it is defined as:

Ik =

{
0, f(m, θwy ,x)− cos(θwk,x) ≥ 0

1, f(m, θwy ,x)− cos(θwk,x) < 0
(2.22)

The indicator function Ik will ensure that the MV-Softmax loss [42] can explicitly focus
on hard examples (miss-classified samples) to enhance the ability to learn discriminative
features, since hard samples can play a greater role in improving the ability of loss to learn
discriminative features compared to easily classified samples [42].

The authors of the MV-Softmax loss [42], which inherits the advantages of margin-
based and mining-based methods, used two variations of the MV-Softmax loss in their
experiments. They used the MV-AM-Softmax loss, which uses the AM-Softmax loss [21]
as the margin function in the MV-Softmax loss, and MV-Arc-Softmax loss, which uses the
Arc-Softmax loss [22] as the margin function in the MV-Softmax loss. The authors of [42]
designed a CNN architecture called AttentionNet-IRSE, which merges AttentionNet [66]
with an IRSE module [22], where they combined it with the MV-Softmax loss. In [42], the
authors applied their models on the face recognition task, where they tested their models
using different widely used datasets. The authors of [42] compared their MV-AM-Softmax
and MV-Arc-Softmax losses with several other margin-based losses, such as AM-Softmax
[21], and mining-based losses, such as HM-Softmax [64], where both MV-AM-Softmax and
MV-Arc-Softmax outperformed the other losses. In addition, the authors of [42] found
that using an adaptive re-weighting function instead of a fixed one in Eq. 2.18, results in
a better performance, since the adaptive re-weighting function gives more weight to the
harder samples, which enhances the ability to learn better discriminative features.
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2.4.5 The D-Softmax Loss

The widely used softmax loss has its intra-class objective and inter-class objective en-
tangled, which means that focusing on optimizing one of these objectives, will cause a
relaxation of the other [57].

Many existing methods, such as Cosface loss [46], mainly focused on addressing the
weaknesses of the softmax loss by improving the constraints through introducing large
margins to the softmax loss, and they ignored the fact that lack in performance of the
softmax loss is the byproduct of the interconnected intra-class objective and inter-class
objective [57]. Therefore, the authors of [57], who were the first to address the entanglement
issue of the softmax loss, proposed the D-Softmax loss which disentangles the conventional
softmax loss into two independent objectives, the inter-class objective and the intra-class
objective, where they can be optimized separately. The intra-class objective will focus
on compacting the embedding vectors corresponding to the same class in the embeddings
space until a given condition is met [57]. The inter-class objective will focus on keeping
the embeddings vectors corresponding to different classes far away from each other in the
embedding space [57].

The authors of [57] defined the intra-class objective of the D-Softmax loss as:

LintraD = log
(

1 +
ε

eszy

)
(2.23)

where s is a scale parameter, which was fixed to 32 by the authors of [57], zy is the activation
of the ground-truth class that is defined as zy = cos(θwy ,x), where θwy ,x is the angle between
the weights of the ground-truth class and the input vector to the classification layer. ε is
a constant value that was defined by the authors of [57] as:

ε = es·d (2.24)

where d acts as a termination point to the optimization process to avoid vanishing gradients
[57]. The value of d can be manually adjusted such that it has a large enough value, which
will ensure that the intra-class objective is well optimized [57]. Since, the authors of
[57] found that the softmax loss causes the weights of the different classes to be largely
separated, which causes the early termination of the intra-class objective. This hinders the
ability of the softmax loss to learn compact features that belong to the same class [57].
Also, it was found that the margin-based losses, such as ArcFace [22], has a sufficiently
large optimization termination point compared to the softmax loss, which explains the
superior performance of the margin-based losses [57]. This is what inspired the authors of
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[57] to introduce the previously mentioned d parameter, and setting it to a large enough
value, in order to overcome the early termination problem of the softmax loss.

After defining the intra-class component of the D-Softmax loss (seen in Eq. 2.23), the
authors of [57], defined the inter-class component of the D-Softmax loss, which works as a
regularization tool to prevent the D-Softmax loss from reaching a simple solution, which
maps all the samples to a single point. The authors of [57] defined the inter-class objective
as:

LinterD = log

(
1 +

∑
k 6=y

eszk

)
(2.25)

where s is a scale parameter, k is the k-th class (k ∈ 1, 2, ..., K andK = Number of classes)),
y is the ground-truth class, zk is the k-th class activation, and it is defined as zk = cos(θwk,x),
where θwk,x is the angle between the weights of the k-th class and the input vector to the
classification layer. The formulation of the inter-class objective in Eq. 2.25 ensures strict
regularization on its optimization [57]. Therefore, using Eq. 2.23 and Eq. 2.25, the D-
Softmax loss is defined as:

LD = LintraD + LinterD (2.26)

It is worth noting that the authors of [57] addressed the fact that the softmax loss and
its modified versions suffer from high time and memory requirements, since they involve
the activations of all the classes in their calculation. One of the properties of the D-
Softmax loss is that it splits the computational requirements into two separate part [57].
The intra-class objective is not computationally expensive, since it uses the activation of
the ground-truth class only, but the inter-class objective has a high computational cost
because it uses the activations of all the non-ground-truth classes [57]. The authors of the
D-SincNet loss [57] found that the high computational cost of the inter-class objective is
unnecessary, and it can be greatly reduced by sampling a subset of the non-ground-truth
classes for the calculation of the inter-class objective. Thus, the authors of [57] proposed
two additional D-Softmax based losses, which are the D-Softmax-B and D-Softmax-K,
where they use two distinct sampling techniques. Both D-Softmax-B and D-Softmax-K
were able to largely reduce the time cost of training, while barely reducing the recognition
performance [57]. However, in this thesis, only the normal D-Softmax loss will be used,
since the accelerated versions of it are out of the scope of this thesis.

The authors of the D-Softmax loss [57] used their loss with the ResNet-50 architecture
[23], and they applied their models on the face recognition task. In [57], the authors
used several widely used face recognition datasets to assess their model performance. In
addition, they compared the D-Softmax loss with different margin-based softmax losses,
such as ArcFace [22], where the D-Softmax outperformed the other losses.
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2.4.6 Summary of the Chosen Loss Functions

After reviewing various loss functions, it was found the following four state-of-the-art loss
functions to be the most novel and innovative in their approach to enhance the performance
of the Softmax loss. Therefore, the following loss functions will be considered to enhance the
performance of the SincNet based architectures, and then their performance improvement
will be compared.

The first loss function is the AdaCos, which is an adaptive cosine-based Softmax loss
that does not need manual hyperparameters tuning [55]. Standard cosine-based Softmax
loss functions, such as AM-Softmax [21] and ArcFace [22], are capable of achieving a great
classification performance [55]. However, these loss functions require manual hyperparame-
ters tuning through multiple trails, which is time-consuming and may result in sub-optimal
performance [55]. Thus, the authors of [55] thoroughly analysed two major hyperparame-
ters that affect the performance of cosine-based loss functions, which are the scale and the
angular margin parameters [55]. Then, they used their analysis to come up with the Ada-
Cos loss function, which performs automatic hyperparameters tuning [55]. The AdaCos
loss function was proposed to enhance the performance of the face recognition task, where
it gave a superior performance [55].

The second loss is the pairwise Gaussian loss (PGL), which focuses on minimizing
the intra-class variance by greatly penalizing sample pairs that correspond to the same
class but are far away from each other in the embedding space [56]. The Softmax loss
focuses only on maximizing the inter-class separability. Therefore, combining the Softmax
loss with a loss function that focuses on minimizing the intra-class variance, such as the
contrastive loss [28] , will result in an optimum classification performance [56]. Contrastive
loss is a metric-based loss that can be used to directly optimize the intra-class compactness
by measuring the distance between pairs of samples [56]. However, in order to effectively
combine the Softmax loss and the contrastive loss, a proper mapping must be used to
map the Euclidean distance that is calculated using the contrastive loss into a range that
suits the Softmax loss (i.e. between 0 and 1) [56]. Moreover, the contrastive loss requires
a complex sample mining procedure [56]. Thus, the authors in [56] solved both of the
aforementioned issues by mapping the Euclidean distance between pairs of samples into
the range [0,1] using a Gaussian function [56]. Moreover, they solved the samples mining
problem by exploiting a simple yet effective pairwise feature vectors organization, which is
done at the penultimate layer [56]. The PGL loss ensures great classification performance,
fast convergence, and high generalizability [56]

The third loss is the MV-Softmax loss which concentrates on the miss-classified feature
vectors to guide the learning process in an adaptive manner [42]. The MV-Softmax loss
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[42] came as a solution to tackle the drawbacks of margin-based loss functions, such as
AM-Softmax [21]. For example, the margin-based losses do not take into consideration the
feature mining process, which is important to achieve highly discriminative embeddings
[42]. On the other hand, mining-based softmax losses, such as HM-Softmax [64], also suffer
from some problems that can affect their performance negatively [42]. The MV-Softmax
loss is a novel approach, where it is the first loss function to combine the advantages of
feature mining and feature margin methods [42]. The MV-Softmax loss was tested on the
face recognition task, where it outperformed mining-based Softmax loss functions and the
margin-based Softmax loss functions [42].

Lastly, the fourth loss function is the D-Softmax loss, which split the conventional Soft-
max loss function into an intra-class variance part and an inter-class variance part, where
each part can be optimized independently [57]. Most of the existing methods that improve
on the discriminative ability of conventional Softmax, such as incorporating angular mar-
gin in the Softmax formulation, focus on strengthening the constraints, while ignoring the
fact that the inadequacy of the conventional Softmax is due to the entanglement of the
intra-class objective and the inter-class objective [57]. The authors of [57] were the first
to explicitly address the problem of intra-class objective and intra-class objective entan-
glement present in the conventional Softmax loss. To illustrate, optimizing the inter-class
variance in the Softmax loss will result in relaxing the intra-class variance optimization
requirements [57]. Therefore, the authors of [57] proposed the dissection (or disentangle-
ment) of the Softmax loss into two independent objectives, the intra-class objective and
the inter-class objective, where they can be optimized separately. The D-Softmax loss was
tested on the face recognition task, where it gave a superior recognition performance [57].
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Chapter 3

The Proposed SincNet Models

In this chapter, I will go through the proposed SincNet models, where different SincNet
based architectures are being combined with distinct state-of-the-art loss functions. Firstly,
I will introduce four proposed models that combine the SincNet architecture [1] with four
different loss functions. Secondly, I will go over six proposed models that combine the
Res-SincNet architecture [2] with six different loss functions. Finally, I will go through the
proposed Res-SincNet-FC architecture, where it will be also combined with six different
loss functions.

3.1 Models Based on the SincNet Architecture

In this section, four different models that combine the SincNet architecture [1] with four
different state-of-the-art loss functions will be proposed. The general SincNet architecture
can be seen in Fig. 3.1. It is important to note that all the operations involved in SincNet,
such as convolution and pooling, are 1-Dimensional.

Sinc layer Conv. layers FC layers Output layer Loss

Raw input signal d-vectors Speaker ID Loss output

Figure 3.1: The main components of SincNet architecture [1]

From Fig. 3.1, it can be seen that the SincNet architecture has the following main
components:
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• Sinc layer: This layer consists of parameterized sinc filters, and it acts as the input
to the SincNet model, where it can process raw input waveforms efficiently and effec-
tively. This layer has 80 filters of length 251 samples (unless stated otherwise), and
a stride of one sample. Moreover, after the convolution operation, this layer applies
max-pooling using filters of length three samples, followed by layer normalization [67]
(it was also applied to the input signal), followed by leaky ReLU activation function
[68].

• Conv. layers: The sinc layer is followed by two standard convolutional layers, each
having 60 filters of length five samples and a stride of one sample. Both convolutional
layers employ max-pooling using filters of length three samples, followed by layer
normalization [67], followed by leaky ReLU activation function [68].

• FC layers: The convolutional layers are followed by three fully connected layers, each
having 2048 neurons, and all of them employ batch normalization [69], and leaky
ReLU activation function [68]. The speaker embeddings (d-vectors) are extracted
from the output of the last fully connected layer.

• Output layer: The output layer is the last layer in the network, and it has the same
number of neurons as the number of speakers in the training dataset. The output of
this layer is the predicted speaker ID.

• Loss: The loss function that will be used to train the SincNet model.

All of the aforementioned hyperparameter choices for the SincNet architecture are the
ones used in its original paper [1]. For each of the following models that are based on the
SincNet architecture [1], the same architecture seen in 3.1 is used, but the loss function is
changed.

3.1.1 AdaCos-SincNet

The first proposed model is the AdaCos-SincNet model. The proposed AdaCos-SincNet
model combines the SincNet architecture [1] (depicted in Fig. 3.1) with the AdaCos loss
[55], to benefit from the AdaCos characteristics. The main advantage of the AdaCos loss
[55] is that it does not require manual hyperparameter tuning, which is time consuming and
may not result in an optimum performance, since it uses an adaptively changing parameter.
The use of an adaptive hyperparameter will save the time needed to run many trials, and
it will result in an improved optimization [55]. Moreover, the AdaCos loss will result in
better performance and faster convergence [55].
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3.1.2 PGL-SincNet

The proposed PGL-SincNet combines the SincNet architecture [1] (depicted in Fig. 3.1)
with the Pairwise Gaussian Loss (PGL) [56], to take advantage of the PGL properties.
PGL can effectively maximize intra-class compactness, since it can directly optimize it
[56]. Thus, the weakness of the softmax loss to maximize intra-class compactness can
be overcame by combining it with PGL [56]. PGL has less time cost and computational
requirements compared to other similar methods, and it can achieve high performance with
fast convergence [56].

3.1.3 MV-SincNet

The proposed MV-SincNet combines the SincNet architecture [1] (depicted in Fig. 3.1)
with the MV-Softmax loss [42], to exploit the merits of the MV-Softmax loss. The MV-
Softmax loss was the first to combine the advantages of margin based and mining based
losses into a single loss [42], where it focuses on learning from miss-classified samples,
which are more important to learn better discriminative features [42]. The MV-Softmax
loss clearly indicates the hard samples and adaptively uses them to enhance the ability to
learn highly discriminative features in order to improve the performance [42]. The MV-
Softmax loss [42] has two versions, the MV-AM-Softmax loss, which uses the same margin
of the AM-Softmax loss [21] with the MV-Softmax loss, and MV-Arc-softmax loss, which
uses the same margin of the ArcFace loss [22] with the MV-Softmax loss. Therefore, two
models are proposed, the MV-AM-SincNet and the MV-Arc-SincNet, which combines the
SincNet architecture [1] (depicted in Fig. 3.1) with the MV-AM-Softmax loss and the
MV-Arc-Softmax loss, respectively.

3.1.4 D-SincNet

The proposed D-SincNet combines the SincNet architecture [1] (depicted in Fig. 3.1)
with the D-Softmax loss [57], to utilize the attributes of the D-Softmax loss. The D-
Softmax loss [57] was the first loss to disentangle the softmax loss into intra-class objective
and inter-class objective. The intra-class objective and the inter-class objective can be
optimized independently, which will ensure that the constraints are always strict [57].
This will facilitate the learning of discriminative features, and thus enhancing the model
performance [57].
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3.2 Models Based on the Res-SincNet Architecture

In this section, different models that combine the Res-SincNet architecture [2] with six
different state-of-the-art loss functions will be proposed. The general Res-SincNet archi-
tecture can be seen in Fig. 3.2. It is important to note that all the operations involved in
Res-SincNet, such as convolution and pooling, are 1-Dimensional.

Sinc layer Conv. layer Res. layers Output layer Loss

Raw input signal
d-vectors Speaker ID Loss output

Avg. pool

Figure 3.2: The main components of Res-SincNet architecture [2]

From Fig. 3.2, it can be seen that the Res-SincNet architecture has the following main
components:

• Sinc layer: This layer consists of parameterized sinc filters, and it acts as the input
to the SincNet model, where it can process raw input waveforms efficiently and
effectively. This layer has 122 filters of length 89 samples (unless stated otherwise), a
stride of one sample, and zero-padding of length 44 samples on both sides, which will
maintain the input length. It is worth noting that the input signal is standardized
(rescaling the data such that it has zero mean and unit variance) before passing it
through the sinc layer.

• Conv. layer: The sinc layer is followed by a standard convolutional layer, having 512
filters of length nine samples, a stride of three samples, and zero-padding of length
four samples on both sides. Also, the convolutional layer employs batch normalization
[69], followed by ReLU activation function, followed by max-pooling using filters of
length three samples, a stride of two samples, and zero-padding of size one sample
on both sides.

• Res. layers: The convolutional layer is followed by four residual layers, the first
residual layer consists of three residual blocks with 64 filters, the second residual
layer consists of two residual blocks with 128 filters, the third residual layer consists
of a single residual block with 256 filters, the last residual layer consists of a single
residual layer with 512 filters. All the residual layers, except the first one, use a stride
of 2, which will reduce the dimensionality by half after each residual layer. Also, they
employ batch normalization [69] and ReLU activation.
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• Avg. pool: The residual layers are followed by a global average pooling layer that
will output 512 features. The speaker embeddings (d-vectors) are extracted from the
output of this layer.

• Output layer: The output layer is the last layer in the network, and it has the same
number of neurons as the number of speakers in the training dataset. The output of
this layer is the predicted speaker ID.

• Loss: The loss function that will be used to train the Res-SincNet model.

All of the aforementioned hyperparameter choices for the Res-SincNet architecture are the
optimal choices found in its original paper [2]. For each of the following models that are
based on the Res-SincNet architecture [2], the same architecture seen in 3.2 is used, but
the loss function is changed.

3.2.1 AM-Res-SincNet

The proposed AM-Res-SincNet combines the Res-SincNet architecture [2] (depicted in Fig.
3.2) with the AM-Softmax [21], to benefit from the AM-Softmax loss characteristics. The
AM-Softmax loss [21] facilitates the learning of highly discriminative features by imposing
an additive margin to increase the angular distance between the different classes, which
increases both intra-class compactness and inter-class separability.

3.2.2 Arc-Res-SincNet

The proposed Arc-Res-SincNet combines the Res-SincNet architecture [2] (depicted in
Fig. 3.2) with the ArcFace [22], to take advantage of the ArcFace loss properties. The
ArcFace loss [22] is capable of effectively learning highly discriminative features due to the
imposed angular margin, which encourages stronger intra-class compactness and inter-class
separability.

3.2.3 AdaCos-Res-SincNet

The proposed AdaCos-Res-SincNet model combines the Res-SincNet architecture [2] (de-
picted in Fig. 3.2) with the AdaCos loss [55], to benefit from the AdaCos characteristics,
which were mentioned in Section 3.1.1.
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3.2.4 PGL-Res-SincNet

The proposed PGL-Res-SincNet combines the Res-SincNet architecture [2] (depicted in
Fig. 3.2) with the Pairwise Gaussian Loss (PGL) [56], to take advantage of the PGL
properties, which were mentioned in Section 3.1.2.

3.2.5 MV-Res-SincNet

The proposed MV-Res-SincNet combines the Res-SincNet architecture [2] (depicted in
Fig. 3.2) with the MV-Softmax loss [42], to exploit the merits of the MV-Softmax loss,
which were mentioned in Section 3.1.3. The MV-Softmax loss [42] has two versions, the
MV-AM-Softmax loss, which uses the same margin of the AM-Softmax loss [21] with the
MV-Softmax loss, and MV-Arc-softmax loss, which uses the same margin of the ArcFace
loss [22] with the MV-Softmax loss. Therefore, two models are proposed, the MV-AM-
Res-SincNet and the MV-Arc-Res-SincNet, which combines the Res-SincNet architecture
[2] (depicted in Fig. 3.2) with the MV-AM-Softmax loss and the MV-Arc-Softmax loss,
respectively.

3.2.6 D-Res-SincNet

The proposed D-Res-SincNet combines the Res-SincNet architecture [2] (depicted in Fig.
3.2) with the D-Softmax loss [57], to utilize the attributes of the D-Softmax loss, which
were mentioned in Section 3.1.4.

3.3 Models Based on the Res-SincNet-FC Architec-

ture

In this section, the proposed Res-SincNet-FC architecture will be used. The Res-SincNet-
FC architecture has the same network components as the Res-SincNet architecture [2],
except for the global average pooling layer, which was replaced with a fully connected
layer. The use of a fully connected layer, instead of a global average pooling layer, is
more suitable to be combined with the advanced softmax losses discussed in this thesis
since it offers more flexibility. To elaborate, the fully connected layer will allow the losses
to effectively learn discriminative features, that can be later extracted from its output as
highly discriminative speaker embeddings (d-vectors).
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In this section, different models that combine the Res-SincNet-FC architecture with
six different state-of-the-art loss functions will be proposed. The general Res-SincNet-FC
architecture can be seen in Fig. 3.3. It is important to note that all the operations involved
in Res-SincNet-FC, such as convolution and pooling, are 1-Dimensional.

Sinc layer Conv. layer Res. layers Output layer Loss

Raw input signal
d-vectors Speaker ID Loss output

FC layer

Figure 3.3: The main components of Res-SincNet-FC architecture

From Fig. 3.3, it can be seen that the Res-SincNet-FC architecture has the following
main components:

• Sinc layer: This layer consists of parameterized sinc filters, and it acts as the input
to the SincNet model, where it can process raw input waveforms efficiently and
effectively. This layer has 122 filters of length 89 samples (unless stated otherwise), a
stride of one sample, and zero-padding of length 44 samples on both sides, which will
maintain the input length. It is worth noting that the input signal is standardized
(rescaling the data such that it has zero mean and unit variance) before passing it
through the sinc layer.

• Conv. layer: The sinc layer is followed by a standard convolutional layer, having 512
filters of length nine samples, a stride of three samples, and zero-padding of length
four samples on both sides. Also, the convolutional layer employs batch normalization
[69], followed by ReLU activation function, followed by max-pooling using filters of
length three samples, a stride of two samples, and zero-padding of size one sample
on both sides.

• Res. layers: The convolutional layer is followed by four residual layers, the first
residual layer consists of three residual blocks with 64 filters, the second residual
layer consists of two residual blocks with 128 filters, the third residual layer consists
of a single residual block with 256 filters, the last residual layer consists of a single
residual layer with 512 filters. All the residual layers, except the first one, use a stride
of 2, which will reduce the dimensionality by half after each residual layer. Also, they
employ batch normalization [69] and ReLU activation.

• FC layer: The residual layers are followed by the following sequence of layers: batch
normalization (BN) [69], dropout [70] with a probability of 0.5, fully connected (FC)
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with 512 neurons, batch normalization (BN) [69], and leaky ReLU activation function
[68]. The speaker embeddings (d-vectors) are extracted from the output of this layer.

• Output layer: The output layer is the last layer in the network, and it has the same
number of neurons as the number of speakers in the training dataset. The output of
this layer is the predicted speaker ID.

• Loss: The loss function that will be used to train the Res-SincNet-FC model.

For the mutual components between the Res-SincNet-FC architecture and the Res-SincNet
architecture, the same hyperparameter choices as in the Res-SincNet architecture are used,
which were the optimal choices found in the Res-SincNet architecture paper [2]. For the
FC layer, experiments using different variations and combinations of the FC layer with
other types of layers and activations was conducted, and it was found that the following
combination of layers BN-dropout-FC-BN-leaky ReLU gives the best performance. It is
worth noting that the replacement of the global average pooling layer with BN-dropout-
FC-BN-leaky ReLU layers is inspired by the architecture used in the ArcFace paper [22],
where they replaced the global average pooling layer in the ResNet architecture [23] with
BN-dropout-FC-BN layers. For each of the following models that are based on the Res-
SincNet architecture [2], the same architecture seen in 3.3 is used, but the loss function is
changed.

3.3.1 AM-Res-SincNet-FC

The proposed AM-Res-SincNet-FC combines the Res-SincNet-FC architecture (depicted in
Fig. 3.3) with the AM-Softmax [21], to benefit from the AM-Softmax loss characteristics,
which were mentioned in Section 3.2.1.

3.3.2 Arc-Res-SincNet-FC

The proposed Arc-Res-SincNet-FC combines the Res-SincNet-FC architecture (depicted in
Fig. 3.3) with the ArcFace [22], to take advantage of the ArcFace loss properties, which
were mentioned in Section 3.2.2.
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3.3.3 AdaCos-Res-SincNet-FC

The proposed AdaCos-Res-SincNet-FC model combines the Res-SincNet-FC architecture
(depicted in Fig. 3.3) with the AdaCos loss [55], to benefit from the AdaCos characteristics,
which were mentioned in Section 3.1.1.

3.3.4 PGL-Res-SincNet-FC

The proposed PGL-Res-SincNet-FC combines the Res-SincNet-FC architecture (depicted
in Fig. 3.3) with the Pairwise Gaussian Loss (PGL) [56], to take advantage of the PGL
properties, which were mentioned in Section 3.1.2.

3.3.5 MV-Res-SincNet-FC

The proposed MV-Res-SincNet-FC combines the Res-SincNet-FC architecture (depicted
in Fig. 3.3) with the MV-Softmax loss [42], to exploit the merits of the MV-Softmax loss,
which were mentioned in Section 3.1.3. The MV-Softmax loss [42] has two versions, the
MV-AM-Softmax loss, which uses the same margin of the AM-Softmax loss [21] with the
MV-Softmax loss, and MV-Arc-softmax loss, which uses the same margin of the ArcFace
loss [22] with the MV-Softmax loss. Therefore, two models are proposed, the MV-AM-
Res-SincNet-FC and the MV-Arc-Res-SincNet-FC, which combines the Res-SincNet-FC
architecture [2] (depicted in Fig. 3.2) with the MV-AM-Softmax loss and the MV-Arc-
Softmax loss, respectively.

3.3.6 D-Res-SincNet-FC

The proposed D-Res-SincNet-FC combines the Res-SincNet-FC architecture (depicted in
Fig. 3.3) with the D-Softmax loss [57], to utilize the attributes of the D-Softmax loss,
which were mentioned in Section 3.1.4.
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Chapter 4

Experimentation and Results

In this chapter, I will go through the implementation details of the experiments conducted
in this thesis, and the results achieved by the different models. In the beginning of this
chapter, I will discuss the experimental setup, where I will go over the used datasets, the
evaluation metrics that will be reported, and implementation details regarding the speaker
recognition task and the speaker diarization task.

After that, I will go through the results attained by the models proposed in Chapter 3
and compare their performance to the existing models. Firstly, I will go over the models
that are based on the SincNet architecture [1] followed by the models that are based on the
Res-SincNet architecture [2] followed by the models based on the proposed Res-SincNet-FC
architecture.

Then, I will thoroughly analyze and visualize the diarization results of the model that
achieves the best diarization performance. Finally, I will summarize this chapter.

4.1 Experimental Setup

In this section, I will discuss major experimental details that were used across the experi-
ments in this thesis. Firstly, I will give an overview of the used datasets. Secondly, I will
go through the evaluation metrics used to measure and compare the performance of the
different models. Thirdly, I will discuss the speaker recognition setup and the optimization
settings used. After that, I will explain the speaker diarization setup and the d-vectors
extraction. Finally, I will go through some details regarding the code implementation in
this thesis.
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4.1.1 Datasets

Three datasets were considered in this thesis. The TIMIT [71] and the Librispeech [72]
datasets were used for the speaker recognition task, while the AMI dataset [73] was used
for the speaker diarization task.

TIMIT

The TIMIT dataset [71] has phonetically rich audio samples from 630 American English
speakers of eight main dialects sampled at 16 kHz. The TIMIT dataset was originally
designed for developing and evaluating automatic speech recognition systems. However,
in the SincNet paper [1], the authors used it for the speaker recognition task. This thesis
follows [1] where they used the training chunk from the TIMIT dataset, which contains
462 speakers. Moreover, to facilitate text-independent speaker recognition, all sentences
with the same text across the speakers were removed. Each speaker has eight sentences
five of which were used for training and three for testing. Similar to [1], each audio file was
preprocessed by first removing the silent (non-speech) parts at the start and end of each
sentence. Then, the amplitude of each audio file was normalized.

Librispeech

The Librispeech [72] dataset has 1000 hours of English speech, which was obtained from
audiobooks, spoken by 2484 speakers sampled at 16 kHz. The Librispeech dataset was
originally designed for the speech recognition task. However, the authors of [1] used the
Librispeech dataset for speaker recognition, where they created the training and testing
sets by randomly selecting files such that each speaker has 12-15 seconds of audio for
training, and 2-6 seconds long testing sentences. Moreover, they partitioned sentences
with more than 125 ms intermediate silences into several chunks. The same selection as in
[1] was used in this thesis. The Librispeech dataset was preprocessed similar to the TIMIT
dataset, where the silent sections at the start and end of the sentences were removed, and
the amplitude normalized.

AMI

The Augmented Multi-party Interaction (AMI) [73] is a multi-modal dataset that has 100
hours of recorded meetings in the English language. This thesis uses five meetings from
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the AMI dataset to evaluate the diarization performance of the proposed models, where
the meetings are headset mix audio files. In each meeting there is a team of four speakers
with different roles discussing a design project. The chosen meetings, which are the one
used in [8], and their duration can be seen in Table 4.1.

Table 4.1: The chosen AMI meetings and their duration

Meeting ID Meeting Duration (minutes:seconds)
IS1000a 26:22
IS1001a 15:09
IS1003b 27:26
IS1003d 35:00
IS1008d 24:40

4.1.2 Evaluation Metrics

Two tasks were considered in this thesis speaker recognition and speaker diarization. In
order to evaluate the different models properly, the following evaluation metrics are em-
ployed. The Frame Error Rate (FER) and the Sentence Error Rate (SER) are used to
measure the speaker recognition performance, while the diarization error rate (DER) is
used to measure the speaker diarization performance.

Frame Error Rate (FER)

The Frame Error Rate (FER) measures the ability of a model to correctly classify a given
frame of fixed length (similar to [1], a frame of size 200 ms was used in this thesis). It is
worth noting that all of the SincNet based models [1, 9, 10, 2], and the proposed models
in this thesis are designed to optimize the FER.

Sentence Error Rate (SER)

The Sentence Error Rate (SER) measures the ability of a model to correctly classify a
sentence (utterance) of variable length that typically lasts more than a frame duration,
where the frame duration is 200 ms in this thesis. The predicted speaker for a given
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sentence is found using the same method used by the original SincNet paper [1], and it is
as follows. First, a sliding window (frame) of length 200 ms and a shift of 50 ms is applied
to a given sentence. Then, each frame will be passed through the trained model, and the
predictions across the different speakers are found for each frame. Finally, the predictions
are averaged across all the frames of the given sentence, and the sentence will be assigned
to the speaker with the highest average prediction value.

Diarization Error Rate (DER)

Diarization Error Rate (DER) is widely used for scoring diarization systems. From [74],
the DER is defined as:

DER = MS + FA+ SE (4.1)

where MS is the missed speech, which measures the percentage of speech intervals that
exist in the ground-truth file, but does not exist in the diarization output. FA is the
false alarm, which measures the percentage of speech intervals that exist in the diarization
output, but does not exist in the ground-truth file. SE is the speaker error, which measures
the percentage of speech segments with wrongly assigned speakers. The miss speech and
the false alarm errors are segmentation errors that are mostly caused by the front-end
modules of the diarization system, such as the speech activity detection. Since the main
concern of this thesis is speaker modeling (speaker embeddings extraction) and following
[8], the ground-truth speaker segments were used. Thus, the DER in this thesis will be
equal to the speaker error. Moreover, the DER is usually measure with a 250 ms tolerance
collar at the beginning and end of each segment [74]. However, in the thesis, similar to [8]
the DER was computed without tolerance collars. In addition, the overlapped segments
were included in the calculation of the DER for all the experiments performed in this thesis.

4.1.3 Speaker Recognition Setup and Optimization Settings

First of all, it is important to note that the same settings were used for all the compared
models in this thesis (i.e. the proposed models and the existing models) in order to facilitate
a fair comparison between the different models. Similar to the SincNet paper [1] and all
the other paper based on it, such as [9], frames of length 200 ms are used as the input
to all the models discussed in this thesis. Then, the input frames will be passed through
the network, where the output will be the predicted speaker ID that corresponds to the
input frame. It can be seen that the models are being trained to minimize the classification
error rate of the input frames (i.e. FER). Following [1], the mel-scale cutoff frequencies
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are used to initialize the learnable parameters of the sinc-layer, and the famous Glorot
(also called Xavier) initialization method [75] is used to initialize the remaining network
learnable parameters.

Adam optimizer [76] with a learning rate of 0.001 was used for training all the models.
Moreover, similar to [2], early stopping and learning rate scheduler were used to improve
the training optimization for all the models. When using the TIMIT dataset, a batch size
of 154 was used, and model evaluation was performed every 25 epochs. On the other hand,
when the Librispeech dataset was used, a batch size of 250 was used, and model evaluation
was performed every five epochs. The batch size for the different datasets was chosen such
that the batches have equal (or almost equal) size, since it was found that having a batch
with a small number of samples compared to the other batches hindered the performance.
To facilitate the reproducibility of the results in this thesis, the random seed was set to 42.

4.1.4 Speaker Diarization Setup and d-vectors Extraction

Trained model Avg. pooling PCA Length
normalization

K-means
clustering

Raw input
signal

Frame level
 speaker

embeddings
Diarization

output

Segment level
speaker

embeddings

Figure 4.1: The speaker diarization pipeline

The speaker diarization pipeline can be seen in Fig. 4.1. Similar to [8], the different
SincNet models are first trained to perform speaker recognition using out-domain data,
such as the TIMIT and the Librispeech datasets, then the trained SincNet models are used
for speaker embeddings (d-vectors) extraction in speaker diarization system from in-domain
data, which is the AMI dataset [73] in this thesis.

In [8], the authors extracted the d-vectors from three different stages: the activations
of the last convolutional layer, the activations of the hidden layer, the activations of the
classification layer, where they found that extracting the activations from the last hidden
layer gave the best performance. Moreover, they tried average pooling and max pooling
the frame-level d-vectors, where they found that average pooling yielded better results.
Thus, in this thesis, the d-vectors were extracted from the activations of the last hidden
layers of the trained models. Additionally, the frame-level d-vectors were average pooled
to get the segment-level d-vectors.

Since the goal of this thesis is speaker modeling, and similar to [8], the ground-truth
speaker segmentation was used to avoid segmentation errors. Thus, the diarization pipeline
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is as follows, given a speaker segment, a sliding window (frame) of size 200 ms and a shift
of 50 ms, was applied on that segment. Then, each frame was passed through the trained
SincNet model, and the frame-level d-vector was extracted from the activations of the last
hidden layer. After that, the frame-level d-vectors for that segment were average pooled
to get the segment-level d-vector.

Inspired by the d-vector extraction used in [1], and in order to ensure that the extracted
segment-level d-vectors are robust, the energy of the frames is taken into consideration
before calculating the segment-level d-vectors. The energy of a given frame is found by
squaring the magnitude of samples in that frame, then summing them. The frame-level
d-vectors extracted from frames that have energy that is less than one-tenth of the average
energy of the segment are discarded. In other words, only d-vectors extracted from frames
with adequate energy are used to calculate the segment-level d-vectors. Therefore, to make
sure that enough frame-level d-vectors (at least 10) are used to get the segment-level d-
vector, segments that have a length shorter than two seconds were padded by repeating
the segments until two seconds are reached.

Similar to [8], the DER is reported with and without the application of principle compo-
nent analysis (PCA) [77] on the extracted d-vectors. When PCA is applied, the dimensions
of the d-vectors are reduced to 50 dimensions. This thesis uses k-means clustering, with
K-means++ initialization [78], to cluster the extracted d-vectors. Finally, similar to [8],
length normalization is applied on the embedding vectors before the clustering stage, where
each embedding vector was divided by its magnitude before performing k-means clustering.

4.1.5 Code Implementation

All of the codding in this thesis was done using the python programming language. The
PyTorch python package [79], which facilitates tensor computation with GPU support,
was used extensively in this thesis, such as building and training the models discussed in
this thesis. Furthermore, some tools from the scikit-learn library [80] were used, such as
the dimensionality reduction using PCA. Moreover, the PyAnnote library [81] was used
to calculate the DER performance, and visualize the diarization output. In addition, the
authors of [82] provided RTTM (Rich Transcription Time Marked) files corresponding to
the AMI dataset [73], which contains the speech intervals of the different speakers for a
given meeting in the AMI dataset. In this thesis, the RTTM files provided by [82] were
used to extract the ground-truth speaker segmentation from the AMI dataset audio files.
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4.2 Results of the SincNet Based Architectures

In this section, I will go through the results of the proposed models based on the SincNet ar-
chitecture [1] (seen in Fig 3.1), which are the AdaCos-SincNet, PGL-SincNet, MV-SincNet,
and D-SincNet. Firstly, I will go over different data augmentation methods that were im-
plemented with the SincNet model. Secondly, I will go through some exploratory studies
over the SincNet model, where I will try changing several features of the SincNet model,
such as the input window size, and the window shift. Then, I will go through each of the
proposed models separately, where I will study the effect of the hyperparameters on the
different performance measures. After that, I will compare the performance of the pro-
posed models using the optimum hyperparameters with the existing SincNet based models.
Next, I will discuss the performance of the models based on the SincNet architecture when
using a relatively small sinc filter size, where a sinc filter size that is equal to 31 samples
(1.94 seconds) will be used. Finally, the FER, SER, and DER will be reported using the
Librispeech dataset for the models with the best DER performance. The d-vectors will be
extracted from the last hidden layer in the SincNet model, which has 2048 neurons. Thus,
the d-vectors extracted using the SincNet based models will have 2048 dimensions. These
d-vectors will be first used to calculate the DER without PCA. Then, PCA will be applied
to the extracted d-vectors to reduce their dimensions to 50, which will be used to calculate
the DER with PCA as will be reported in the results tables of this section.

4.2.1 Using Data Augmentation

This section aims to improve the speaker recognition performance of the SincNet model
[1] by experimenting with different data augmentation methods. The dataset used in this
section is the TIMIT dataset [71] and the evaluation metric considered is the FER. The
original authors of SincNet [1] used two augmentation methods, which are:

1. Random framing: Taking a random frame from each sentence

2. Random weighting: Multiplying input frames with a random factor that is between
0.8 and 1.2

Both of these augmentation methods improved the FER performance of the SincNet model.
Therefore, using the following standard signal augmentation methods [83] is worth inves-
tigating:
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1. Additive Gaussian noise: Adding Gaussian noise with 0.004 standard deviation to
input frames.

2. Time shifting: Randomly shifting (left or right) input frames in time.

3. Time stretching: Randomly stretching input frames in time (the speed of the audio)
with a factor that is between 0.8 and 1.2.

4. Pitch shifting: Randomly shifting (rising or lowering) the pitch of input frames by a
semitone that is between -5 and 5 steps.
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Figure 4.2: The Frame Error Rate (FER) of the different augmentation methods

The following variations of data augmentation were used with the SincNet model:

1. Using two data augmentation methods (random framing and random weighting),
which are the two methods used by the original SincNet model [1]. The average
epoch time was around 0.42 minutes.

2. Using three data augmentation methods (the methods above plus additive Gaussian
noise). The average epoch time was around 0.6 minutes.

3. Using four data augmentation methods (the methods above plus time-shifting). The
average epoch time was around 0.7 minutes.
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4. Using five data augmentation methods (the methods above plus time stretching).
The average epoch time was around 5 minutes.

5. Using six data augmentation methods (the methods above plus pitch stretching).
The average epoch time was around 13.6 minutes.

Fig. 4.2 shows the FER achieved by the different data augmentation methods, where it
can be seen that the use of the two augmentation methods (random framing and random
weighting), which are the ones used in [1], gave the best FER, while also having the least
average epoch time. On the other hand, using the additional augmentation methods caused
the FER performance to degrade, and they are time-consuming to perform, especially time
stretching and pitch stretching, where both have a significantly large average epoch time.
Thus, it can be concluded that using further data augmentation methods is bad for the
performance of the SincNet model, and they are computationally expensive. The bad
performance achieved by the additional augmentation methods could be due to the failure
of the model to learn underlying features from the augmented data (i.e. the SincNet model
is overfitting the augmented data). Another reason could be the use of several augmentation
methods at the same time, which could corrupt the original data, or due to the proposed
augmentation methods not being suitable for the speaker recognition task. Thus, the same
data augmentation methods in [1] will be used throughout all the experiments in this thesis.

4.2.2 Exploratory Experiments

In this section, I will experiment with different input window shifts, and different input
window sizes for the SincNet architecture [1], where I will study their effect on speaker
recognition and speaker diarization.

Using different input window shifts

The input window shift is only relevant for the evaluation (testing) phase, since, for the
training phase, data augmentation is used, as mentioned in the previous section, where
random frames with a window size of 200 ms are used. However, when the SER and
the DER are calculated, a sliding window of a specific size and step size (shift) is used
to find the sentence-level classification, and the segment-level d-vectors respectively. In
the SincNet paper [1], the authors used a window shift size equal to 10ms, and in the
other related SincNet papers, such as [9, 2], the authors used the same input shift value.
Therefore, in this section, I will experiment with different shift sizes, and analyse the
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effect of the window step size (shift) on the SER and DER. Table 4.2, shows the speaker
recognition, and speaker diarization performances of the SincNet model [1] using different
input window shifts. The results in Table 4.2 are on the TIMIT dataset [71].

Table 4.2: The results of the SincNet model using different input shifts (all values are in
%)

Input Shift (ms) FER SER DER (w/o PCA) DER (w/o PCA)
10 [1] 45.64 0.79 30.51 28.77

25 45.73 0.79 30.47 28.70
50 45.67 0.87 30.22 28.88
75 46.07 0.79 - -

From Table 4.2, when a window shift size of 75 ms was used, causing fewer frames per
segment because of the large window shift, the DER could not be calculated due to the
lack of enough frame-level d-vectors to calculate the segment-level d-vectors for some of
the segments. Moreover, for the 10 ms, 25 ms, and 50 ms cases, it can be seen that the
performance is almost the same across all the performance measures, except for the SER,
where there is a small difference. Thus, an input window shift size equal to 50 ms will
be used, since it gives almost the same performance as smaller shifts, while also greatly
reducing the required computational cost.

Using different input window sizes

The input window size is relevant to both the training and evaluation stages. In the
SincNet paper [1], and the other related SincNet papers, such as [9, 2], a window size of
200 ms was used. In this section, I run the SincNet model [1] with different input window
sizes, and analyse the effect on the speaker recognition and speaker diarization performance
measures. Table 4.3, shows the FER, SER, and DER performance measures of the SincNet
model [1] with different input window sizes, where the results are reported on the TIMIT
dataset [71].

From Table 4.3, it can be seen that an input window size of 400 ms is a better FER
compared to the other window sizes, but it gave a significantly worse SER and DER per-
formance. However, when the input window size was 100 ms, the FER performance was
significantly worse compared to the other window sizes, but it gave a relatively good perfor-
mance on the other performance measures. On the other hand, an input window size equal
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Table 4.3: The results of the SincNet model using different input window sizes (all values
are in %)

Input size (ms) FER SER DER (w/o PCA) DER (w/o PCA)
100 55.05 0.72 30.08 29.67

200 [1] 45.67 0.87 30.22 28.88
400 41.4 2.89 33.19 33.48

to 200 ms gave the most balanced performance across all the performance measures, where
it gave a relatively good performance on the speaker recognition and speaker diarization
tasks. Thus, it can be seen that using a relatively small or relatively big window size for
the SincNet model [1] can negatively affect different performance measures. Therefore,
as in [1], an input window size of 200 ms will be used, which gives a balanced and good
performance on all the performance measures, throughout all of the following experiments
in this thesis.

Experiments on the Librispeech dataset

In [1], the authors used a sampling frequency (fs) of 8 kHz, and an input window size
of 375 ms when they used the Librispeech dataset for speaker recognition. However, in
[11], the authors used a sampling frequency (fs) of 16 kHz, and a window size of 200
ms, when they used the Librispeech dataset for speaker diarization. In this section, I
will compare the speaker recognition and speaker diarization performance of the SincNet
model with different combinations of sampling frequencies, and input window sizes, when
the Librispeech dataset is used.

From Table 4.4, it can be seen that for a fixed input window size, using a larger sampling
frequency (fs = 16 kHz) mostly results in a significantly improved performance on both the
speaker recognition and the speaker diarization tasks, since using fs = 16 kHz, results in
higher quality audio, which will help the network learn more robust features. Moreover, it
can be seen that for fs = 16 kHz, using an input size of 200 ms gives better SER and DER
performance. Thus, fs = 16 kHz and input window size equal to 200 ms will be used for
all the experiments that involve the Librispeech dataset. Another reason for choosing fs
= 16 kHz and window size = 200 ms, is for the sake of consistency, since both the TIMIT
dataset [71] and the AMI dataset [73] have fs = 16 kHz, and a window size of 200 ms is
used for the experiments that involve the TIMIT dataset.
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Table 4.4: The results of the SincNet model on the Librispeech using different sampling
frequencies and different input sizes (all values are in %)

fs (kHz) Input size (ms) FER SER DER (w/o PCA) DER (w/o PCA)
8 200 37.88 0.67 39.31 28.93
16 200 29.34 0.50 30.00 27.21
8 375 36.00 1.06 35.44 26.46
16 375 28.04 0.81 31.80 28.72

4.2.3 AdaCos-SincNet

As discussed in Section 3.1.1, the AdaCos-SincNet model combines the AdaCos loss [55],
with the SincNet architecture [1]. The key advantage of the AdaCos loss [55] is the ability
to achieve high discriminative performance, without the need for hyperparameter tuning.
The AdaCos loss has an s parameter that can be either fixed or dynamic. Table 4.5 shows
the results of the AdaCos-SincNet model on the TIMIT dataset [71] using fixed s parameter
and dynamic s parameter.

Table 4.5: The results of the AdaCos-SincNet model using different parameters (all values
are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
Fixed s 38.17 0.72 30.65 33.06
Dynamic s 36.58 0.87 31.26 31.56

From Table 4.5, it can be seen that using the AdaCos-SincNet with dynamic s parameter
gave a better FER compared to using a fixed s parameter, since the FER value is being
optimized by the network, and using a dynamic s parameter helps in achieving a more
optimal value compared to fixed s. Also, it can be observed that the SER and the FER are
not correlated, where the AdaCos-SincNet gave a better SER, even though it has a higher
FER. With regard to the diarization performance, it can be seen that AdaCos-SincNet with
fixed s gave a better performance when PCA was not used and applying PCA degraded
its DER performance. However, AdaCos-SincNet with a dynamic s gave a very close DER
performance with and without PCA.
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4.2.4 PGL-SincNet

As discussed in Section 3.1.2, the PGL-SincNet model combines the Pairwise Gaussian
Loss (PGL) [56], with the SincNet architecture [1]. The key advantage of PGL is the
fact that it combines the softmax loss with the contrastive loss, which is a metric-based
loss. PGL has a single hyperparameter that is β, and Table 4.6 shows the results of the
PGL-SincNet model on the TIMIT dataset [71] using three different β values.

Table 4.6: The results of the PGL-SincNet model using different parameters (all values are
in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
β = 0.003 46.70 1.08 29.63 25.06
β = 0.005 45.40 0.94 27.69 24.69
β = 0.009 45.04 1.01 26.33 24.35

From Table 4.6, it can be seen that using β = 0.009 in the PGL-SincNet model gave the
best performance with the respect to the FER and DER for both cases, with and without
PCA. This shows that increasing the value of β facilitates the learning of discriminative
embeddings, which is seen in the improved DER performance. It can be observed that the
SER is not correlated with the FER, where the PGL-SincNet model with β = 0.005, gave
the best SER performance. Also, it can be seen that the DER performance got improved
when using PCA for all the cases.

4.2.5 MV-SincNet

As discussed in Section 3.1.3, since there are two versions of the MV-Softmax loss, the
MV-AM-Softmax and the MV-Arc-Softmax, two models that utilize the MV-Softmax loss
were proposed. The first is the MV-AM-SincNet model, which combines the SincNet
architecture [1] with the MV-AM-Softmax loss [42]. The second one is the MV-Arc-SincNet
model, which combines the SincNet architecture [1] with the MV-Arc-Softmax loss [42].
The key advantage of the MV-AM-Softmax and the MV-Arc-Softmax losses is the fact that
it combines feature mining (i.e. learning more from hard samples) with the feature margin
methods, which are the AM-Softmax [21] and the ArcFace [22] methods, respectively.

The MV-Softmax loss [42] mainly has three hyperparameters, which are the value of the
margin parameter (m), the value of the t parameter, and if the weighting function of the
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miss classified samples is fixed or adaptive. However, the authors of [42] found that using
an adaptive weighting function gives better performance compared to a fixed one; hence
an adaptive weighting function will be used for all the models that use the MV-Softmax
loss. Thus, in this section, I will discuss the results of the MV-AM-SincNet model, then
the MV-Arc-SincNet model on the TIMIT dataset [71] using different variations of the m
and t hyperparameters. It is worth noting that similar to the MV-Softmax paper [42], the
scale parameter is set to 32 throughout the different experimentation. Table 4.7 shows the
results of the MV-AM-SincNet model with different hyperparameters.

Table 4.7: The results of the MV-AM-SincNet model using different parameters (all values
are in %)

Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.35, t = 0.2 36.22 0.58 23.83 21.87
m = 0.35, t = 0.02 38.94 0.79 29.53 24.86
m = 0.5, t = 0.2 35.62 0.65 32.38 26.90

From Table 4.7, it can be seen that the MV-AM-SincNet model with m = 0.5 and
t = 0.2 gave the best FER, but it gave a relatively poor DER performance. Also, it can be
observed that the MV-AM-SincNet model with m = 0.35 and t = 0.2 gave the best DER
performance with and without PCA. Additionally, for all cases, it can be seen that applying
PCA improved the DER performance. Table 4.8 shows the results of the MV-Arc-SincNet
model with different hyperparameters.

Table 4.8: The results of the MV-Arc-SincNet model using different parameters (all values
are in %)

Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.5, t = 0.2 39.26 0.51 23.48 24.80
m = 0.5, t = 0.02 38.57 0.72 31.91 25.47
m = 0.5, t = 0.3 36.50 0.58 31.61 27.23

From Table 4.8, it can be seen that the MV-Arc-SincNet model with m = 0.5 and
t = 0.3 gave FER performance. On the other hand, it can be observed that the MV-
Arc-SincNet model with m = 0.5 and t = 0.2 gave the best performance on the SER and
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DER for both cases, with and without PCA. Also, almost in all cases, it can be seen that
applying PCA improved the DER performance.

4.2.6 D-SincNet

As discussed in Section 3.1.4, the D-SincNet model combines the D-Softmax loss [57]
with the SincNet architecture [1]. The key advantage of the D-Softmax loss is the fact
that it disentangles the conventional softmax loss into inter-class objective and intra-class
objective, where it optimizes both objectives independently which improves the ability to
extract discriminative features. The D-Softmax mainly has a single hyperparameter, which
is the d parameter. It is worth noting that similar to the D-Softmax paper [57], the scaling
parameter (s) is set to 32, throughout all the experiments. Table 4.9 shows the results of
the D-SincNet model with different d values.

Table 4.9: The results of the D-SincNet model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
d = 0.3 35.47 0.72 30.72 27.25
d = 0.5 36.08 0.36 34.65 25.69
d = 0.9 35.76 0.65 29.14 24.36

From Table 4.9, it can be seen that the different D-SincNet models gave almost similar
FER performance. However, the D-SincNet model with d = 0.5 gave significantly good
SER performance. Whereas, the D-SincNet model with d = 0.9 gave the best DER per-
formance for both cases, with and without PCA. This indicates that a large d value can
facilitate better speaker embeddings extraction, since it gave a better DER performance
compared to using a smaller d value.

4.2.7 Comparing the Models with the Best DER

After experimenting on the proposed models based on the SincNet architecture with dif-
ferent hyperparameters, the hyperparameters that gave the best overall DER performance
were selected for each of the proposed models. Then, the selected models and the existing
models were compared with respect to the FER, SER, and DER with and without PCA.
Firstly, the existing SincNet models that are concerned with the speaker recognition task,
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which are the SincNet [1], AM-SincNet [9], and AF-SincNet [10], were trained using the
same optimization settings discussed in Section 4.1.3. This will ensure that the compari-
son is fair between all the models, where the only thing changing is the used loss with the
SincNet architecture while everything else is the same across all the models. The SincNet
model [1] uses the conventional softmax loss which does not have a hyperparameter to
tune. However, for the AM-SincNet model [9] which uses the AM-Softmax loss [21], and
for the AF-SincNet model [10] which used the ArcFace loss [22], the margin parameter m
is set to 0.5 and the scale parameter s to 30 for both models, which are the values chosen
in the respective papers of both models.

Secondly, there are two existing SincNet based models that are concerned with the
speaker diarization task. In [8] the authors used the SincNet model [1] for speaker em-
beddings extraction in a speaker diarization system, while in the [11] authors used the
AM-SincNet model [9] for speaker embeddings extraction in a speaker diarization system.
For both of the previous cases, the same procedure discussed in Section 4.1.4 is used to
ensure a fair comparison across all the models. It is worth noting that even though the
AF-SincNet [10] was used for speaker recognition, no one proposed using it for speaker
diarization. Thus, this thesis proposes using the AF-SincNet model [10] for speaker em-
beddings extraction in a speaker diarization system. Table 4.10 shows the results of the
proposed models compared to the existing models, with their respective chosen hyperpa-
rameters. The results in Table 4.10 are reported on the TIMIT dataset [71].

Table 4.10: Comparing the results of the proposed and existing models that are based on
the SincNet architecture (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
SincNet [1], [8] - 45.67 0.87 30.22 28.88

AM-SincNet [9], [11] m = 0.5 38.69 0.65 29.71 26.24
AF-SincNet [10] m = 0.5 37.57 0.72 25.42 25.52
AdaCos-SincNet Dynamic s 36.58 0.87 31.26 31.56

PGL-SincNet β = 0.009 45.04 1.01 26.33 25.35
MV-AM-SincNet m = 0.35, t = 0.2 36.22 0.58 23.83 21.87
MV-Arc-SincNet m = 0.5, t = 0.2 39.26 0.51 23.48 24.80

D-SincNet d = 0.9 35.76 0.65 29.14 24.36

For each of the evaluation metrics in Table 4.10, the best values are in bold, the second-
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best values are underlined, while the third-best values are in italic. Referring to Table 4.10,
it can be seen that the proposed models achieved the top three performances across the
different evaluation metrics. The MV-AM-SincNet achieved the best DER performance
when PCA was used, and it achieved the second-best performance on FER, SER, and
DER when PCA was not used. In addition, the MV-Arc-SincNet model achieved the
best SER and DER when PCA was not used, and the third-best performance on the
DER when PCA was used. This indicates that the MV-Softmax loss [42] is the best loss
for extracting discriminative embeddings, since the two models based on it, which are the
MV-AM-SincNet and the MV-Arc-SincNet gave significant DER improvement compared to
the other methods, while also giving the best SER performance for the speaker recognition
task. Furthermore, the D-SincNet model gave the third-best SER performance which is
equal to the SER achieved by the AM-SincNet model [9]; however, the D-SincNet achieved
the best FER and the second-best DER when PCA was used.

In general, from Table 4.10, it can be seen a correlation between the SER performance
and the DER performance, where the models that achieved high SER performance also
achieved high DER performance. For example, the MV-Arc-SincNet model achieved the
best SER performance, and it also achieved the best DER performance for the case without
PCA, while also achieving a top three DER performance when PCA was used. Moreover,
referring to Table 4.10, it can be seen that for most cases using PCA improved the DER
performance.

4.2.8 Results Using Sinc Filter Size of 31

In the Res-SincNet paper [2], the authors performed a thorough analysis of the sinc filter’s
window size and stride (step size), where they evaluated the Res-SincNet model using a
wide range of sinc filter’s window sizes and strides. They found that using a stride of one
gives the best performance, which is the same stride used in the original SincNet paper
[1], and it is used for all the models in this thesis. However, the author’s in [2], also found
that the sinc filter window size slightly affects the FER performance of the Res-SincNet
model. Therefore, they proposed reducing the sinc filter window size from 251 samples
(15.69 ms) (which is the value used in the original SincNet paper [1]) to 31 samples (1.94
ms), which will reduce the computational cost without hindering the FER performance.
Thus, inspired by the previously mentioned findings from [2], all the models based on the
SincNet architecture were evaluated using a sinc filter size of 31. For the proposed models,
the chosen hyperparameters are the ones that give the best FER and the ones that give
the best the SER. Then, they were compared with the SincNet model [1], the AM-SincNet
model [9] with m = 0.5, and the AF-SincNet model [10] with m = 0.5, which are the
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optimum m values used in their respective papers. Table 4.11 shows the results of all the
SincNet based models with sinc filter window size equal to 31 samples.

Table 4.11: The results of the models based on the SincNet architecture with sinc filter =
31 (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
SincNet [1] - 41.77 0.87 34.86 35.09

AM-SincNet [9] m = 0.5 32.5 0.58 32.68 33.26
AF-SincNet [10] m = 0.5 32.89 0.65 33.91 36.70
AdaCos-SincNet Fixed s 31.79 0.72 36.35 32.89
AdaCos-SincNet Dynamic s 31.93 0.65 32.05 35.88

PGL-SincNet β = 0.005 42.32 0.79 34.19 31.99
PGL-SincNet β = 0.009 43.02 0.87 33.15 33.29

MV-AM-SincNet m = 0.35, t = 0.2 35.38 0.65 30.73 30.03
MV-AM-SincNet m = 0.5, t = 0.2 31.96 0.65 31.74 32.00
MV-Arc-SincNet m = 0.5, t = 0.2 32.03 0.58 33.01 34.65
MV-Arc-SincNet m = 0.5, t = 0.3 32.93 0.65 35.09 35.43

D-SincNet d = 0.3 31.81 0.43 33.05 35.01
D-SincNet d = 0.5 32.33 0.36 32.28 31.70

From Table 4.11, it can be seen that for all the models the FER performance is better
compared to the results in Table 4.10, where a sinc filter window size of 251 samples
was used. This indicates that reducing the sinc filter size from 251 to 31 improves the
FER performance. However, it can be observed that the DER performance is significantly
worse compared to the results in Table 4.10, which indicates that reducing the sinc filter
size from 251 to 31 impacted the DER performance negatively. On the other hand, the
SER performance somewhat stayed the same compared to using a sinc filter size equal to
251 samples.

Referring to Table 4.11, it can be seen that the AdaCos-SincNet model gave the best
FER performance, but it is very close to the FER performance achieved by most of the
other models, where it can be observed that most of the models achieved a FER that is
almost equal to 32%. This similar performance can be due to the network architecture,
which could be acting as a bottleneck by limiting the classification performance of the
different losses. Furthermore, it can be seen from Table 4.11 that the D-SincNet models
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gave an exceptionally good SER performance, where both D-SincNet models in Table 4.11
achieved the best two SER performances. In addition, it can be seen that the MV-AM-
SincNet model with m = 0.35 and t = 0.2 gave the best DER performance, which is also
the same model that achieved the best DER performance in Table 4.10. This shows the
robustness of the MV-AM-SincNet model, where it still gave the best DER compared to
the other models, even after reducing the sinc filter size to 31.

To sum up, using a small sinc filter size, reduced the computational cost significantly
for both the speaker recognition task and the speaker diarization task, where it gave an
improvement over the FER performance while degrading the DER performance. Moreover,
the SincNet network architecture could be limiting the classification performance of the
improved loss functions.

4.2.9 Results on the Librispeech Dataset

In this section, the Librispeech dataset [72], which is a relatively large dataset, is used to
train and evaluate the models discussed in Section 4.2.7, where the hyperparameters that
gave the best DER performance were chosen. This will help us study the effect of using
a large dataset on the different performance measures across the different models. Table
4.12 shows the results of the different SincNet based models with the same settings as in
Table 4.10, where the Librispeech dataset [72] is used.

Table 4.12: Comparing the results of the proposed and existing models that are based on
the SincNet architecture using the Librispeech dataset (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
SincNet [1], [8] - 29.34 0.50 30.00 27.21

AM-SincNet [9], [11] m = 0.5 17.60 0.39 23.65 23.88
AF-SincNet [10] m = 0.5 18.28 0.44 23.63 23.88
AdaCos-SincNet Dynamic s 19.66 0.48 23.29 27.45

PGL-SincNet β = 0.009 32.00 0.54 30.18 26.44
MV-AM-SincNet m = 0.35, t = 0.2 19.32 0.35 24.36 19.52
MV-Arc-SincNet m = 0.5, t = 0.2 18.17 0.44 23.85 23.32

D-SincNet d = 0.9 21.67 0.43 26.94 26.12
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For each of the evaluation metrics in Table 4.12, the best values are in bold, the second-
best values are underlined, while the third-best values are in italic. From Table 4.12, it
can be seen that there is a significant improvement of the FER and SER for all the mod-
els, compared to the same models in Table 4.10. This shows that using a large dataset
can greatly improve the speaker recognition performance of the SincNet based models.
Moreover, it can be observed that most models in Table 4.12 got an improved DER per-
formance compared to their performance on the TIMIT dataset reported in Table 4.10.
This indicates that models trained on large datasets, such as the Librispeech dataset, are
better when used for embeddings extraction. This can be explained by the fact that,
when a large dataset is used, the SincNet models become more capable of learning more
generalized features. Thus, these trained models can extract more discriminative and ro-
bust embeddings, when used for speaker modeling, and hence resulting in a better speaker
diarization performance.

Referring to Table 4.12, it can be seen that for each performance metric the performance
of the top three models is somewhat close, except for DER with PCA, where it can be
observed that the MV-AM-SincNet model gave a significantly improved performance. This
shows the robustness and superiority of the MV-AM-SincNet on the speaker diarization
task, since it was consistently achieving the best DER compared to the other models under
different conditions.

4.3 Results of the Res-SincNet Based Architectures

As discussed in Section 3.2, various models based on the Res-SincNet architecture [2] (seen
in Fig. 3.2) were proposed, which are:

1. AM-Res-SincNet model, which combines the AM-Softmax loss [21], with the Res-
SincNet architecture [2]

2. Arc-Res-SincNet model, which combines the ArcFace loss [22], with the Res-SincNet
architecture [2]

3. AdaCos-Res-SincNet model, which combines the AdaCos loss [55], with the Res-
SincNet architecture [2]

4. PGL-Res-SincNet model, which combines the Pairwise Gaussian Loss (PGL) [56],
with the Res-SincNet architecture [2]
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5. MV-AM-Res-SincNet model, which combines the MV-AM-Softmax loss [42], with
the Res-SincNet architecture [2]

6. MV-Arc-Res-SincNet model, which combines the MV-Arc-Softmax loss [42], with the
Res-SincNet architecture [2]

7. D-Res-SincNet model, which combines the D-Softmax loss [21], with the Res-SincNet
architecture [2]

Table 4.13 shows the performance of the Res-SincNet model [2], which uses the con-
ventional softmax loss, compared to the aforementioned proposed models based on the
Res-SincNet architecture [2]. Table 4.13 shows the chosen hyperparameters for proposed
models, where all the models are trained on the TIMIT dataset [71]. Also, it is worth
noting that the Res-SincNet model was used for speaker recognition only, but this thesis
proposes using it for speaker diarization. The d-vectors will be extracted from the penul-
timate layer, which is the global average pooling layer in the Res-SincNet architecture.
The global average pooling layer is of size 512, so, the extracted d-vectors will have 512
dimensions. These d-vectors will be first used to calculate the DER without PCA. Then,
PCA will be applied on the extracted d-vectors to reduce their dimensions to 50, which
will be used to calculate the DER with PCA as will be reported in the results tables of
this section.

Table 4.13: The results of the Res-SincNet based models (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet [2] - 28.3 1.15 44.18 46.12
AM-Res-SincNet m = 0.35 30.34 1.08 42.22 43.75
Arc-Res-SincNet m = 0.5 30.22 1.30 49.83 45.86
AdaCos-Res-SincNet fixed s 35.44 2.96 46.86 46.81
PGL-Res-SincNet β = 0.005 28.69 0.58 47.00 45.72
MV-AM-Res-SincNet m = 0.35, t = 0.02 30.04 1.08 45.47 43.38
MV-Arc-Res-SincNet m = 0.5, t = 0.03 31.38 1.73 43.37 44.32
D-Res-SincNet d = 0.5 28.66 1.15 43.44 42.90

Firstly, considering the models’ performance on the speaker recognition task (i.e. FER
and the SER columns) in Table 4.13, where the best values are in bold. It can be seen that
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most of the proposed models gave a bad performance compared to the Res-SincNet model
[2]. This can be explained by the fact that in the original papers of the advanced softmax
based losses, such as the ArcFace loss [22], the authors replaced the global average pooling
layer, which is the penultimate layer, in the ResNet architecture [23] with a fully connected
(FC) layer when they combined it with their losses. Replacing the global average pooling
layer with an FC layer, will allow the advanced losses to learn high-level discriminative
features in the penultimate layer. Since, the Res-SincNet architecture [2] is inspired by
the ResNet architecture [23], the global average pooling layer in the Res-SincNet model
should be replaced with an FC layer, which is why the Res-SincNet-FC model (discussed
in Section 3.3) was proposed. It is worth noting that the PGL-Res-SincNet model gave
an improved SER performance compared to the Res-SincNet model [2], since PGL can
be used with the ResNet architecture without the need for replacing the global average
pooling layer with an FC layer.

Secondly, considering the models’ performance on the speaker diarization task, which
is measure using DER. From Table 4.13, it can be seen that all of the models gave a low
DER performance, which could be caused by the use of a relatively small sinc filter size
(89 samples (5.56 ms)) in the Res-SincNet architecture. However, since the Res-SincNet
architecture [2] is not suitable to be combined with the advanced softmax based losses,
such as AM-Softmax [21], investigating larger sinc filter sizes will be only performed for
the Res-SincNet-FC architecture, which will be discussed in the following section.

4.4 Results of the Res-SincNet-FC Based Architec-

tures

In this section, I will discuss different models based on the proposed Res-SincNet-FC
architecture (seen in Fig. 3.3), which is a modified Res-SincNet architecture [2] that is more
suitable to be combined with advanced softmax losses. The Res-SincNet-FC architecture
has the same architecture as the Res-SincNet architecture [2], but with the global average
pooling layer replaced by the following layers: a batch normalization [69], dropout [70], fully
connected, batch normalization [69], and leaky ReLU [68] activation. Different variations
and combinations of the fully connected layer with other types of layers and activations were
investigated, and it was found that the BN-dropout-FC-BN-leaky ReLU layers gives the
best performance. The replacement of the global average pooling layer with BN-dropout-
FC-BN-leaky ReLU layers is inspired by the architecture used in the ArcFace paper [22],
where they replaced the global average pooling layer in the ResNet architecture [23] with
BN-dropout-FC-BN layers. The d-vectors will be extracted from the activations of the
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last hidden layer, which has a size of 512. Thus, the extracted d-vectors will have 512
dimensions. These d-vectors will be first used to calculate the DER without PCA. Then,
PCA will be applied on the extracted d-vectors to reduce their dimensions to 50, which
will be used to calculate the DER with PCA as will be reported in the results tables of
this section.

4.4.1 Res-SincNet-FC

The Res-SincNet-FC model uses the conventional softmax loss similar to the Res-SincNet
model [2], which will make sure that the different losses are compared using the same
architecture. Thus, the Res-SincNet-FC model can serve as a baseline to compare the
effect of using modified loss, when the Res-SincNet-FC architecture is used. Table 4.14
shows the speaker recognition and speaker diarization performance of the Res-SincNet [2]
and the Res-SincNet-FC models on the TIMIT dataset [71].

Table 4.14: Comparing the Res-SincNet and the Res-SincNet-FC models (all values are in
%)

Model FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet [2] 28.30 1.15 44.18 46.12
Res-SincNet-FC 28.68 1.15 48.33 46.31

From Table 4.14, it can be seen that modifying the architecture of the Res-SincNet
[2] model is not enough to enhance its performance, since both models in Table 4.14 has
the conventional softmax loss, but the Res-SincNet-FC has a modified architecture, and
it did not improve the performance over the Res-SincNet model [2]. Moreover, it can be
observed that both models gave a low diarization performance, which could be due to the
relatively small size of the sinc filter. Therefore, the size of the sinc filter of both models
was increased to 251 samples and analyze the effect on the diarization performance, which
can be seen in Table 4.15.

From Table 4.15, it can be seen that increasing the size of the sinc filter size greatly
improves the diarization performance, especially for the Res-SincNet-FC model. This in-
dicates the importance of using a large sinc filter size to ensure a high Res-SincNet-FC
diarization performance. However, it can be observed that increasing the sinc filter size to
251 samples mildly degrades the speaker recognition performance. Furthermore, it can be

62



Table 4.15: Comparing the Res-SincNet and the Res-SincNet-FC models with sinc filter
size of 251 samples (all values are in %)

Model FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet [2] 32.90 1.59 37.86 40.99
Res-SincNet-FC 32.51 1.52 35.67 34.43

seen that after increasing the since filter size, the Res-SincNet-FC gave a slightly better
FER and SER, but it gave significantly better DER, particularly when PCA was applied,
compared to the Res-SincNet model [2]. This shows the superiority of the Res-SincNet-FC
model to extract better speaker embeddings compared to the Res-SincNet model [2], when
the right settings are used (i.e. a suitable sinc filter size). Thus, it is sensible to concentrate
only on improving the Res-SincNet-FC model by combining it with different advanced loss
functions, which will be discussed in further sections.

4.4.2 AM-Res-SincNet-FC

As discussed in Section 3.3.1, the AM-Res-SincNet-FC model combines the AM-Softmax
loss [21] with the Res-SincNet-FC architecture. Table 4.16 shows the speaker recognition
and speaker diarization performance of the AM-Res-SincNet-FC on the TIMIT dataset
[71], using different hyperparameter m values.

Table 4.16: The results of the AM-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.2 23.67 0.51 48.44 48.17
m = 0.35 23.53 0.58 45.31 43.45
m = 0.5 24.39 1.01 43.32 41.31

From Table 4.16, it can be seen that using m = 0.2 and m = 0.35 gave a comparable
speaker recognition performance, but usingm = 0.35 gave a better diarization performance.
On the other hand, using m = 0.5 gave the best diarization performance.

Table 4.17 shows the speaker recognition and diarization performance of the AM-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.17
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are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.16, where a sinc filter size of 89 samples was used.

Table 4.17: The results of the AM-Res-SincNet-FC model with sinc filter size equal 251
(all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.35 25.85 1.01 39.59 36.62
m = 0.5 28.41 1.66 36.98 34.50

From Table 4.17, it can be seen that using m = 0.5 gives the best diarization perfor-
mance, which is the same hyperparameter setting that gives the best DER when a sinc
filter size of 89 samples was used. This shows that using a relatively small m value for the
AM-Res-SincNet-FC is bad for the diarization performance.

4.4.3 Arc-Res-SincNet-FC

As discussed in Section 3.3.2, the Arc-Res-SincNet-FC model combines the ArcFace loss
[22] with the Res-SincNet-FC architecture. Table 4.18 shows the speaker recognition and
speaker diarization performance of the Arc-Res-SincNet-FC on the TIMIT dataset [71],
using different hyperparameter m values.

Table 4.18: The results of the Arc-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.2 24.98 0.58 49.15 44.49
m = 0.35 24.18 0.72 41.71 42.56
m = 0.5 24.62 1.15 43.18 45.09

From Table 4.18, it can be seen that the three m-values gave a similar FER performance,
but m = 0.2 gave the best SER performance. However, m = 0.35 gave the best DER
performance.

Table 4.19 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.19
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are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.18, where a sinc filter size of 89 samples was used.

Table 4.19: The results of the Arc-Res-SincNet-FC model with sinc filter size equal 251
(all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.35 26.06 0.51 40.24 32.99
m = 0.5 27.17 1.44 35.16 31.97

From Table 4.19, it can be seen that using m = 0.5 gives the best diarization perfor-
mance. This shows that using a relatively small m value for the Arc-Res-SincNet-FC is
bad for the diarization performance.

4.4.4 AdaCos-Res-SincNet-FC

As discussed in Section 3.3.3, the Arc-Res-SincNet-FC model combines the AdaCos loss
[55] with the Res-SincNet-FC architecture. Table 4.20 shows the speaker recognition and
speaker diarization performance of the AdaCos-Res-SincNet-FC on the TIMIT dataset [71],
using fixed s parameter and dynamic s parameter.

Table 4.20: The results of the AdaCos-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
fixed s 25.48 1.37 39.76 35.75

dynamic s 26.34 1.44 41.44 43.16

From Table 4.20, the AdaCos-Res-SincNet-FC model with a fixed s parameter gave a
better performance across all measures.

Table 4.21 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.21
are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.20, where a sinc filter size of 89 samples was used.
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Table 4.21: The results of the AdaCos-Res-SincNet-FC model with sinc filter size equal
251 (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
fixed s 27.83 1.52 36.24 33.18

dynamic s 28.36 1.73 41.04 38.35

From Table 4.21, it can be seen that using fixed s parameter gives the best diarization
performance, which also gave the best DER when sinc filter size equal to 89 samples was
used. This indicates that using a fixed s parameter for the AdaCos-Res-SincNet-FC is
suitable for achieving high DER performance.

4.4.5 PGL-Res-SincNet-FC

As discussed in Section 3.3.4, the PGL-Res-SincNet-FC model combines the Pairwise Gaus-
sian Loss (PGL) [56] with the Res-SincNet-FC architecture. Table 4.22 shows the speaker
recognition and speaker diarization performance of the PGL-Res-SincNet-FC on the TIMIT
dataset [71], using different hyperparameter β values.

Table 4.22: The results of the PGL-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
β = 0.003 30.94 1.59 48.57 44.43
β = 0.005 28.17 1.37 53.51 46.42
β = 0.009 28.02 1.23 45.53 43.94

From Table 4.22, it can be seen that the PGL-Res-SincNet-FC with β = 0.009 per-
formed the best on all the performance measures.

Table 4.23 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.23
are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.22, where a sinc filter size of 89 samples was used.
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Table 4.23: The results of the PGL-Res-SincNet-FC model with sinc filter size equal 251
(all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
β = 0.003 33.65 1.95 34.93 32.20
β = 0.009 31.67 1.44 43.73 38.10

From Table 4.23, it can be seen that using β = 0.003 gives the best diarization per-
formance, which shows that using a relatively small β value is good for the diarization
performance.

4.4.6 MV-Res-SincNet-FC

As discussed in Section 3.3.5, the MV-Softmax loss [42] has two versions, the MV-AM-
Softmax and the MV-Arc-Softmax. Thus, two models based on the MV-Softmax loss
[42] are proposed. The first is the MV-AM-Res-SincNet-FC model, which combines the
Res-SincNet-FC architecture with the MV-AM-Softmax loss [42]. The second one is the
MV-Arc-Res-SincNet-FC model, which combines the Res-SincNet-FC architecture with the
MV-Arc-Softmax loss [42].

As mentioned previously, the MV-Softmax loss has three main hyperparameters, which
are the value of the margin parameter (m), the value of the t parameter, and if the weighting
function of the miss classified samples is fixed or adaptive. In this section, only the m and t
parameters will be tuned. In addition, the dynamic weighting function will be used for all
the models since, according to its original paper, it gives a better performance compared
to using a fixed weighting function. It is worth noting that similar to the MV-Softmax
paper [42], the scale parameter is set to 32 throughout the different experimentation.

Table 4.24 shows the speaker recognition and speaker diarization performance of the
MV-AM-Res-SincNet-FC on the TIMIT dataset [71], using different hyperparameters m
and t values.

From Table 4.24, it can be seen that the best performance was achieved using the
models that use m = 0.35 with t = 0.02 and m = 0.35 with t = 0.03, where they gave a
comparable FER and DER performance, but using m = 0.35 with t = 0.03 gives a better
SER performance.
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Table 4.24: The results of the MV-AM-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.35, t = 0.02 23.31 0.94 43.48 45.80
m = 0.35, t = 0.03 23.65 0.79 46.76 42.62
m = 0.5, t = 0.02 24.22 0.94 51.37 47.59
m = 0.35, t = 0.2 24.93 1.01 49.36 47.95

Table 4.25 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.25
are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.24, where a sinc filter size of 89 samples was used.

Table 4.25: The results of the MV-AM-Res-SincNet-FC model with sinc filter size equal
251 (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.35, t = 0.02 26.14 1.08 39.44 40.42
m = 0.35, t = 0.03 26.49 0.94 39.68 44.35

From Table 4.25, it can be seen that both models gave a similar DER performance
when PCA was not used, but when PCA was used, the DER performance of the model
using m = 0.35 with t = 0.02 was better, which shows that using a relatively small t value
for the same m value (m = 0.35) is good for improving the diarization performance of the
MV-AM-Res-SincNet-FC model.

Table 4.26 shows the speaker recognition and speaker diarization performance of the
MV-Arc-Res-SincNet-FC on the TIMIT dataset [71], using different hyperparameters m
and t values.

From Table 4.26, it can be seen that the best performance was achieved using the
models that use m = 0.5 with t = 0.02 and m = 0.5 with t = 0.03, where they gave a
comparable FER and DER performance, but using m = 0.5 with t = 0.02 gives a better
SER performance.

Table 4.27 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.27
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Table 4.26: The results of the MV-Arc-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.5, t = 0.02 25.15 0.87 46.73 45.47
m = 0.5, t = 0.03 24.71 1.15 46.45 43.98
m = 0.35, t = 0.03 24.02 0.94 51.25 54.21
m = 0.5, t = 0.3 24.47 1.23 48.61 49.93

are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.26, where a sinc filter size of 89 samples was used.

Table 4.27: The results of the MV-Arc-Res-SincNet-FC model with sinc filter size equal
251 (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
m = 0.5, t = 0.02 27.01 1.01 34.44 36.85
m = 0.5, t = 0.03 27.50 1.30 37.75 33.62

From Table 4.27, it can be seen that m = 0.5 with t = 0.02 gave a better DER
compared to m = 0.5 with t = 0.03 when PCA was not used, while m = 0.5 with t = 0.03
gave a better DER when PCA was used. In general, it can be observed that both models
in Table 4.27 gave somewhat a similar overall DER performance, where one gave a good
performance when PCA was not used, while the other performed well when PCA was used.

4.4.7 D-Res-SincNet-FC

As discussed in Section 3.3.6, the D-Res-SincNet-FC model combines the D-Softmax [57]
with the Res-SincNet-FC architecture. Table 4.28 shows the speaker recognition and
speaker diarization performance of the D-Res-SincNet-FC on the TIMIT dataset [71], using
different hyperparameter d values, while using s parameter equal to 32, similar to [57].

From Table 4.28, it can be seen that the best speaker recognition performance was
achieved using d = 0.3 and d = 0.5, where they gave a comparable performance. However,
the best speaker diarization performance was achieved using d = 0.3 and d = 0.9, where
they also gave a comparable performance.
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Table 4.28: The results of the D-Res-SincNet-FC model (all values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
d = 0.3 22.79 0.94 43.06 43.72
d = 0.5 23.13 0.79 47.61 52.81
d = 0.9 26.07 1.30 43.63 42.16

Table 4.29 shows the speaker recognition and diarization performance of the Arc-Res-
SincNet-FC model when a sinc filter size of 251 is used. The reported results in Table 4.29
are on the two models with the hyperparameter choices that give the best DER performance
from Table 4.28, where a sinc filter size of 89 samples was used.

Table 4.29: The results of the D-Res-SincNet-FC model with sinc filter size equal 251 (all
values are in %)

Hyperparameter FER SER DER (w/o PCA) DER (w/ PCA)
d = 0.3 25.44 0.87 43.18 38.74
d = 0.9 29.41 1.52 35.31 37.02

From Table 4.27, it can be seen that d = 0.9 gave the best diarization performance,
which shows that a large d value can facilitate better speaker embeddings extraction, since
it gave a better DER performance compared to using a small d value.

4.4.8 Comparing the Models with the Best FER

As seen from the previous sections, using a sinc filter size of 89 samples gives a better
speaker recognition performance, especially on the frame-level classification task (measure
using the FER), compared to using a size of 251 samples. Thus, this section concentrates
on the Res-SincNet-FC based models that gave the best speaker recognition performance,
where for each Res-SincNet-FC based model, the chosen hyperparameters are the ones
that gave the best FER and SER. It is worth noting that several models have two hyper-
parameter choices, where one gives better FER and the other gives a better SER, while
other models have a hyperparameter setting that performed the best on both FER and
SER. Table 4.30 shows the speaker recognition and speaker diarization performance of the
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different Res-SincNet-FC based models with sinc filter size equal to 89 samples, and the
hyperparameters that give the best speaker recognition performance for each model. The
results in Table 4.30 are on the TIMIT dataset [71].

Table 4.30: The results of the models based on the Res-SincNet-FC architecture with sinc
filter = 89 (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet-FC - 28.68 1.15 48.33 46.31

AM-Res-SincNet-FC m = 0.2 23.67 0.51 48.44 48.17
AM-Res-SincNet-FC m = 0.35 23.53 0.58 45.31 43.45
Arc-Res-SincNet-FC m = 0.2 24.98 0.58 49.15 44.49
Arc-Res-SincNet-FC m = 0.35 24.18 0.72 41.71 42.56

AdaCos-Res-SincNet-FC Fixed s 25.48 1.37 39.76 35.75
PGL-Res-SincNet-FC β = 0.009 28.02 1.23 45.53 43.94

MV-AM-Res-SincNet-FC m = 0.35, t = 0.02 23.31 0.94 43.48 45.80
MV-AM-Res-SincNet-FC m = 0.35, t = 0.03 23.65 0.79 46.76 42.62
MV-Arc-Res-SincNet-FC m = 0.5, t = 0.02 25.15 0.87 46.73 45.47
MV-Arc-Res-SincNet-FC m = 0.35, t = 0.03 24.02 0.94 51.25 54.21

D-Res-SincNet-FC d = 0.3 22.79 0.94 43.06 43.72
D-Res-SincNet-FC d = 0.5 23.13 0.79 47.61 52.81

In Table 4.30, the best value for each performance measure is in bold, while the second-
best is in italic. From Table 4.30, it can be seen that the D-Res-SincNet-FC gives the best
FER performance, since it was able to achieve the best and second-best FER values, using
different d values. However, the AM-Res-SincNet-FC gave the best SER performance,
where it achieved the best SER performance using m = 0.2, and it gave the second-
best SER performance using m = 0.35, along with the Arc-Res-SincNet-FC that has
m = 0.2. Most of the models in Table 4.30 gave a low DER performance, since they
are using a relatively small sinc filter size. However, it can be observed that the AdaCos-
Res-SincNet-FC gave a significantly better DER performance compared to the other models
in Table 4.30. The Arc-Res-SincNet-FC model with m = 0.35 gave the second-best DER
performance.
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4.4.9 Comparing the Models with the Best DER

As seen from the previous sections, using a sinc filter size of 251 samples gives a better
speaker diarization performance compared to using a size of 89 samples, which gives a
relatively better speaker recognition performance. In the previous section (Section 4.4.8)
the Res-SincNet-FC based models with the best speaker recognition performance were
compared, so a sinc filter size of 89 was used. In this section, the performance of the Res-
SincNet-FC based models will be compared on the diarization task, where a sinc filter size
of 251 samples will be used, and for each of the Res-SincNet-FC based models, the hyper-
parameters that gave the best overall DER performance will be chosen. Table 4.31 shows
the speaker recognition and speaker diarization performance of the different Res-SincNet-
FC based models with sinc filter size equal to 251 samples, and the hyperparameters that
give the best diarization performance for each model. The results in Table 4.31 are on the
TIMIT dataset [71].

Table 4.31: The results of the models based on the Res-SincNet-FC architecture with sinc
filter = 251 (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet-FC - 32.51 1.52 35.67 34.43

AM-Res-SincNet-FC m = 0.5 28.41 1.66 36.98 34.50
Arc-Res-SincNet-FC m = 0.5 27.17 1.44 35.16 31.97

AdaCos-Res-SincNet-FC Fixed s 27.83 1.52 36.24 33.18
PGL-Res-SincNet-FC β = 0.003 33.65 1.95 34.93 32.20

MV-AM-Res-SincNet-FC m = 0.35, t = 0.02 26.14 1.08 39.44 40.42
MV-Arc-Res-SincNet-FC m = 0.5, t = 0.02 27.01 1.01 34.44 36.85

D-Res-SincNet-FC d = 0.9 29.41 1.52 35.31 37.02

For each of the evaluation metrics in Table 4.31, the best values are in bold, the second-
best values are underlined, while the third-best values are in italic. From Table 4.31, it can
be seen that applying PCA improves the DER performance for most of the models. Fur-
thermore, it can be observed that the Arc-Res-SincNet-FC gave the best DER performance
compared to the other models, which was achieved when using PCA, also it achieved a
relatively good FER, SER, and DER without PCA. The PGL-Res-SincNet-FC achieved
the second-best DER performance with and without PCA. Additionally, from Table 4.31,
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it can be seen that the models that use the MV-Softmax loss [42], which are MV-AM-
Res-SincNet-FC and MV-Arc-Res-SincNet-FC, gave the top two speaker recognition per-
formance, where also the MV-Arc-Res-SincNet-FC achieved the best DER performance
without PCA.

4.4.10 Results on the Librispeech Dataset

In this section, the Librispeech dataset [72], which is a relatively large dataset, is used to
train and evaluate the models discussed in Section 4.4.9, where the hyperparameters that
gave the best DER performance were chosen. This will help us study the effect of using a
large dataset on the different performance measures across the different models. Table 4.32
shows the results of the different Res-SincNet-FC based models with the same settings as
in Table 4.31, where the Librispeech dataset [72] is used.

Table 4.32: The results of the models based on the Res-SincNet-FC architecture with sinc
filter = 251 on the Librispeech dataset (all values are in %)

Model Hyperparameters FER SER DER (w/o PCA) DER (w/ PCA)
Res-SincNet-FC - 13.64 0.85 26.77 28.27

AM-Res-SincNet-FC m = 0.5 13.00 0.89 29.88 29.35
Arc-Res-SincNet-FC m = 0.5 12.00 0.74 31.38 30.78

AdaCos-Res-SincNet-FC Fixed s 13.47 1.05 30.05 31.32
PGL-Res-SincNet-FC β = 0.003 13.41 0.81 26.35 27.21

MV-AM-Res-SincNet-FC m = 0.35, t = 0.02 12.18 0.68 26.05 25.10
MV-Arc-Res-SincNet-FC m = 0.5, t = 0.02 15.86 0.89 26.13 24.75

D-Res-SincNet-FC d = 0.9 12.00 0.75 28.31 26.14

For each of the evaluation metrics in Table 4.32, the best values are in bold, the second-
best values are underlined, while the third-best values are in italic. From Table 4.32, it can
be seen that the speaker recognition and speaker diarization performance of all of the Res-
SincNet-FC based models improved significantly compared to Table 4.15. This indicates
that using a large dataset, such as the Librispeech dataset [72], with a Res-SincNet-FC
based model will largely improve its performance. Moreover, it can be observed that using
PCA improves the DER performance for several models.
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From Table 4.32, it can be seen that the Arc-Res-SincNet-FC and the D-Res-SincNet-
FC models achieved the best FER, and the second best and the third-best SER performance
respectively. Also, the D-Res-SincNet-FC model achieved the third-best DER when PCA
was applied. The MV-AM-Res-SincNet-FC model gave a particularly good performance,
where it achieved the best SER and DER without PCA and the second-best FER and
DER with PCA. Additionally, the MV-Arc-Res-SincNet-FC model achieved the best DER
with PCA and the second-best DER without PCA.

In general, it can be seen that the models that employ the MV-Softmax loss [42], which
are the MV-AM-Res-SincNet-FC and the MV-Arc-Res-SincNet-FC models, gave a better
diarization performance compared to the other models. This shows that the MV-Softmax
loss [42] is good for speaker embeddings extraction. This coincides with the findings in
Section 4.2, where it was also found that the MV-Softmax loss gave the best DER when
combined with the SincNet [1] architecture.

4.5 Analyzing and Visualizing the Diarization Output

of the Best Model

From all the discussed models, which include the models based on: the SincNet architecture
(discussed in Section 4.2), the Res-SincNet architecture (discussed in Section 4.3), and the
Res-SincNet-FC architecture (discussed in Section 4.4), it can be seen that the proposed
MV-AM-SincNet model gave the best DER performance. The MV-AM-SincNet model
achieved a DER of 19.52%, when the Librispeech dataset [72] was used to train the MV-
AM-SincNet model as speaker embeddings extractor, and when PCA was used. Thus,
in this section, I will further analyze the MV-AM-SincNet diarization performance, by
reporting its performance on the different meetings individually, and reporting its DER
when the overlapped section are ignored (in all of the previously reported results overlapped
speech was considered). Also, I will visualize the extracted d-vectors in the embedding
space for all of the meetings. Finally, I will visualize and analyze the diarization output
for one of the meetings.

Table 4.33 shows the DER performance of the MV-AM-SincNet model for the five meet-
ings separately, where the DER with overlap and the DER without overlap are reported.
It is worth noting that for both cases PCA is applied on the d-vectors.

From Table 4.33, it can be seen the DER without overlap is significantly better com-
pared to the DER with overlap. This indicates that overlapped speech affects the di-
arization performance negatively, since the interfered audio from multiple speakers can
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Table 4.33: The DER performance of the MV-AM-SincNet model on the different meetings
(DER values are in %)

ID Duration (min:sec) Number of segments DER (w/ overlap) DER (w/o overlap)
IS1000a 26:22 389 14.44 9.70
IS1001a 15:09 184 19.87 14.08
IS1003b 27:26 424 9.30 4.43
IS1003d 35:00 783 34.31 26.74
IS1008d 24:40 341 8.12 1.66
Overall - - 19.52 11.66

cause confusion for the models when they are used to extract speaker embeddings from
the overlapped segments.

Next, I will visualize the speaker embeddings extracted using the MV-SincNet model for
the different meetings. T-SNE [84], which is a method used to visualize high-dimensional
data, is used to visualize the extracted speaker embeddings (d-vectors). First, PCA is
applied on the 2048 dimension d-vectors extracted from the last hidden layer to reduce
their dimensions to 50. Then, length normalization is applied, which will give us the
embeddings used to achieve the DER performances seen in Table 4.33.

4.5.1 Meeting IS1000a

This meeting has one female and three males, and it is around 27 minutes long. The meeting
has 389 segments, where a segment is a duration of time spoken by a single speaker, and
segments of different speakers can overlap. The MV-AM-SincNet model gave DER equal
to 14.44% when overlapped segments were considered, and DER equal to 9.70%, when
overlapped segments were ignored.

From Fig. 4.3, it can be seen that most of the speaker embeddings for the different
speakers are nicely clustered. However, it can be seen some embeddings that are located in
the wrong clusters. The embeddings that are in the wrong clusters could be extracted from
short segments spoken by other speakers, where these short segments overlap with larger
segments that correspond to the speaker of that cluster. Moreover, it can be observed that
the speaker in red is the most dominant speaker (146 segments) in this meeting, and it can
be seen that he has the most scattered embeddings, which could indicate that he has the
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Figure 4.3: The TSNE plot of the speaker embeddings for meeting IS1000a

most overlapped speech with other speakers. The speaker in orange is the least dominant
speaker (47 segments), while the speakers in blue (94 segments) and green (82 segments)
contributed almost equally to the meeting.

4.5.2 Meeting IS1001a

This meeting has one female and three males, and it is around 16 minutes long, with
184 segments. The MV-AM-SincNet model gave DER equal to 19.87% when overlapped
segments were considered, and DER equal to 14.08%, when overlapped segments were
ignored.

From Fig. 4.4, it can be seen that there is a huge imbalance in the speakers’ contribution
to this meeting. it can be observed that the female speaker in blue has a significantly small
number of segments (8 segments), and her embeddings overlap with embedding from the
other speakers. Also, it can be seen that some of the embeddings of the speaker in green,
who is the second least dominant speaker (32 segments), are clustered together, while
some of his other embeddings are scattered. However, the speaker in red, who is the most
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Figure 4.4: The TSNE plot of the speaker embeddings for meeting IS1001a

dominant speaker (84 segments), has the best clustered embeddings, followed by the orange
speaker, who is the second most dominant speaker (60 embeddings). In general, it can be
observed that the more dominant a speaker is, the better their embeddings are clustered.

4.5.3 Meeting IS1003b

This meeting has one female and three males, and it is around 27 minutes long, with 424
segments. The MV-AM-SincNet model performed really well on this meeting, where it
gave DER equal to 9.30% when overlapped segments were considered, and DER equal to
4.43%, when overlapped segments were ignored.

From Fig. 4.5, it can be seen that the extracted speaker embeddings are highly dis-
criminative, with very few embeddings scattered around, which can be due to overlapped
speech. Additionally, it can be observed that the female speaker in blue, who is the most
dominant speaker in this meeting (135 segments), is in a different region compared to the
other male speakers, who are the speaker in orange (90 segments), the speaker in green
(93 segments), and speaker in red (106 segments). Thus, it can be concluded that the
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Figure 4.5: The TSNE plot of the speaker embeddings for meeting IS1003b

extracted speaker embeddings from a meeting having a balanced contribution from the
different speakers, such as this meeting, and having a small number of overlapped speech,
can result in discriminative embeddings, while also having the male and female speakers
in different regions on the embeddings space.

4.5.4 Meeting IS1003d

This meeting has one female and three males, and it is around 36 minutes long, with 783
segments. The MV-AM-SincNet model performed the worst on this meeting, where it
gave DER equal to 34.31% when overlapped segments were considered, and DER equal to
26.74%, when overlapped segments were ignored.

From Fig. 4.6, it can be seen that there are a lot of scattered embeddings, especially
the embeddings of the speaker in orange (has 216 segments) and the speaker in red (has
189 segments). However, it can be seen the speaker embeddings corresponding to the
speaker in blue (has 177 segments), and the speaker in green (has 201 segments) are more
nicely clustered. The reason for the degraded performance on this meeting compared to
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Figure 4.6: The TSNE plot of the speaker embeddings for meeting IS1003d

the previous meeting (IS1003b), is due to the fact that in this meeting, the team is having
a discussion, which resulted in a huge number of overlapped segments. Thus, negatively
impacting the diarization performance. Whereas, in meeting IS1003b, the different speak-
ers were mostly presenting their ideas separately depending on their roles. Therefore, there
is less overlapped speech in meeting IS1003b. Another indicator of the huge number of
overlapped speech in meeting IS1003d compared to meeting IS1003b can be found in Table
4.33, where it can be seen that meeting IS1003d is around 7.5 minutes longer than meeting
IS1003b, but it almost has double the number of segments. The relatively huge number of
segments in meeting IS1003d can also indicate the presence of a huge number of quite small
speaker segments. Therefore, it can be observed that even if the speakers have a balanced
involvement in the meeting, having a huge amount of overlapped speech and numerous
extremely small segments is bad for the diarization performance.
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4.5.5 Meeting IS1008d

This meeting has two females and two males, and it is around 25 minutes long, with 341
segments. The MV-AM-SincNet model performed the best on this meeting, where it gave
DER equal to 8.12% when overlapped segments were considered, and DER equal to 1.66%,
when overlapped segments were ignored.
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Figure 4.7: The TSNE plot of the speaker embeddings for meeting IS1008d

From Fig. 4.7, it can be seen that the speaker embeddings are highly discriminative
(embeddings corresponding to the same speaker are close to each other, while speaker
embeddings correspond corresponding to different speakers are far away from each other).
However, there are some embeddings scattered around, which can be caused by overlapped
speech, especially embeddings corresponding to the red speaker, who seems to have the
most overlapped speech with other speakers. Moreover, it can be seen that the embeddings’
clusters corresponding to the female speakers, who are the blue speaker (has 89 segments)
and the orange speaker (has 65 segments), are close to each other in the embedding space,
and they are in a different region compared to the embeddings’ clusters corresponding to
the male speakers, who are the green speaker (has 60 segments), and the red speaker (has
127 segments).
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4.5.6 Visualizing the Diarization Output

To better understand the diarization output, the speaker turns in a random chunk of
length 100 seconds from meeting IS1008d were visualized. The ground-truth chunk and
diarization output of that chunk were visualized and compared. Fig. 4.8 shows the ground
truth chunk, where it can be seen that it has segments corresponding to all the speakers
with several overlaps.

Figure 4.8: The ground-truth chunk from meeting IS1008d

The diarization output is depicted in Fig. 4.9, where it can be seen that it has the same
segmentation as the ground-truth chunk, since the ground-truth segments are used in this
thesis to avoid having segmentation errors as discussed in Section 4.1.4. Additionally, it
can be seen that the diarization output has dummy speaker names.

Figure 4.9: The diarization output of the chunk from meeting IS1008d

To facilitate a better comparison between the ground-truth chunk and the diarization
output, the optimal mapping is found between the dummy speaker names in the diarization
output and the speaker names in the ground-truth chunk. Fig. 4.10 shows the diarization
output with optimal mapping, where it can be seen that the majority of the large segments
got correctly attributed to the correct speakers. However, it can be observed that some
short speaker segments that overlap with large segments of other speakers got incorrectly
clustered. For example, at the begging of the chunk in Fig. 4.8, it can be seen that small
segments of different speakers that overlap with larger segments corresponding to the red
speaker. These small segments that overlap with the large segments got wrongly attributed
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to the speaker in red who spoke the large segments, as seen at the begging of Fig. 4.10.
Furthermore, comparing Fig. 4.8 and Fig. 4.10, it can be observed that some relatively
small segments got wrongly clustered.

Figure 4.10: The diarization output with optimal speaker mapping of the chunk from
meeting IS1008d

4.6 Summary

In this chapter, I concentrated on thoroughly discussing the experiments conducted in this
thesis. Firstly, in Section 4.1 I went through the experimental setup, where I discussed
the used datasets, which are the TIMIT dataset [71], the Librispeech dataset [72], and the
AMI dataset [73]. Moreover, I explained the performance measures used to compare the
different models in this thesis, which are the Frame Error Rate (FER), the Sentence Error
Rate (SER), and the Diarization Error Rate (DER). I also went through the setup for the
speaker recognition task and speaker diarization tasks, and I mentioned some major points
regarding code implementation of the experiments.

Secondly, in Section 4.2 I reported, analyzed, and compared the results of the different
models based on the SincNet architecture [1]. Different data augmentation methods were
investigated, where it was found that using further augmentation methods is bad for the
performance and is computationally expensive. Also, it was found that using a relatively
large input window shift (50 ms) instead of the relatively small input window shift used in
the original SincNet model [1] (10 ms) can reduce the computational requirements without
having a major impact on the performance. Additionally, using a relatively large input
window size gives a good FER performance, but it does not give a good SER and DER
performance. On the other hand, using a relatively small input window size results in a
good SER and DER performance, but with a bad FER performance. However, using a
medium input window size (200 ms) gives good performance across the different perfor-
mance measures.
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After that, I investigated the proposed SincNet based models using different hyperpa-
rameters settings. Then, I compared the performance of the proposed models using the
hyperparameters that gave the best DER performance with the existing SincNet based
models. It was found that for most models there is a positive correlation between the SER
performance and the DER performance, and applying PCA on the extracted d-vectors
can result in a better DER performance. Furthermore, the models based on the MV-
Softmax loss [42] performed the best on the different evaluation metrics compared to the
other models, where the MV-AM-SincNet model achieved the best diarization performance.
The models based on the MV-Softmax loss [42] were followed by the model based on the
D-Softmax loss [57] (the D-SincNet model), which also performed well on the different
performance measures.

Next, the size of the sinc filter was reduced from 251 to 31 samples which improved
the FER performance, while also reducing the computational requirements. Most of the
models gave around the same improved FER performance, which can be explained by a
bottleneck caused by the SincNet architecture. However, reducing the size of the sinc filter
significantly degrading the DER performance. Even after reducing the sinc filter size to
31 samples, the MV-AM-SincNet model gave the best DER performance. Afterward, I
investigated the performance of the SincNet based models with the Librispeech dataset
[72], which is a large dataset, where it helped in improving the speaker recognition and
speaker Diarization of the SincNet based models. Again, the proposed MV-AM-SincNet
gave the best diarization performance compared to the other models.

Thirdly, in Section 4.3 I reported, analyzed, and compared the results of the different
models based on the Res-SincNet architecture [2], where it was found that non of the
models that combine the Res-SincNet architecture [2] with the advanced softmax losses
gave an improved performance compared to the Res-SincNet model [2], which uses the
conventional softmax loss. The Res-SincNet architecture [2] is not suitable to be combined
with the advanced softmax losses, since the global average pooling layer should be replaced
with a fully connected layer to allow for the advanced losses to learn discriminative features
in the penultimate layer.

Fourthly, in Section 4.4, I reported, analyzed, and compared the results of the dif-
ferent models based on the proposed Res-SincNet-FC architecture, which is based in the
Res-SincNet architecture [2], where the global average pooling layer was replaced with
the following layers (in their same mentioned order): batch normalization, dropout, fully
connected, batch normalization, Leakey ReLU. Thus, the Res-SincNet-FC architecture is
more suitable to be combined with the advanced softmax losses discussed in this thesis.

It was found that changing the architecture of the Res-SincNet model to Res-SincNet-
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FC while using the conventional softmax loss is not enough to improve its performance.
However, the models based on the Res-SincNet-FC architecture gave a significantly better
performance when combined with the advanced softmax losses, compared to combining
them with the Res-SincNet architecture [2]. Moreover, similar to the SincNet based models,
increasing the size of the sinc filter for the Res-SincNet and the Res-SincNet-FC models
is important to enhance their diarization performance. Increasing the sinc filter size of
the Res-SincNet-FC resulted in better performance across all the reported performance
measures, especially DER, compared to the Res-SincNet after also increasing its sinc filter
size.

After that, I investigated the models based on the Res-SincNet-FC architecture with
different hyperparameters settings, and using two sinc filter sizes, since it was found that
using a relatively larger sinc filter size is good for speaker diarization, while a smaller sinc
filter size is better for the speaker recognition. Thus, a sinc filter size of 89 samples was
used to find the best performance on the speaker recognition task, and a sinc filter size of
251 samples to find the best performance on the speaker diarization task. It was found
that for most models, reducing the dimensions of the extracted d-vectors using PCA is
good for the diarization performance.

Then, I compared the different Res-SincNet-FC based models on the speaker recognition
task, where a sinc filter size of 89 samples was used for all the models, and for each model,
the hyperparameters that give the best speaker recognition performance were chosen. The
D-Res-SincNet-FC and the AM-Res-SincNet-FC gave the best FER and SER respectively.
It is worth noting that the speaker recognition performance of the Res-SincNet-FC based
models is significantly better compared to the models based on the SincNet model with
a sinc filter size of 31. Thus, the claim that the saturated FER performance achieved by
most SincNet based models was due to the SincNet architecture, is true.

Afterward, I compared the different Res-SincNet-FC based models on the speaker di-
arization task, where a sinc filter size of 251 samples was used for all the models, and for
each model, the hyperparameters that give the best speaker diarization performance were
chosen. The Arc-Res-SincNet-FC gave the best DER performance, which was achieved
after applying PCA. Next, I investigated the performance of the Res-SincNet-FC based
models with the Librispeech dataset [72], which is a large dataset, where its usage greatly
enhanced the speaker recognition and speaker diarization of the Res-SincNet-FC based
models. The models based on the MV-Softmax loss [42] gave the best DER performance,
where the MV-Arc-Res-SincNet-FC model achieved the best DER performance compare
to all the other models. In general, it can be seen that in most cases, the models combined
with the MV-Softmax losses [42] using either the SincNet architecture [1], or the proposed
Res-SincNet-FC architecture, are always giving the best diarization performance. There-
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fore, it can be concluded that the MV-Softmax loss [42] has a superior performance at
extracting discriminative embeddings compared to the other discussed losses. This also
shows the robustness of the MV-Softmax loss [42], since it was mostly giving high diariza-
tion performance under different settings.

Finally, in Section 4.5, I focused on analyzing and visualizing the diarization results of
the proposed MV-AM-SincNet model, which gave the best diarization performance com-
pared to all the models discussed in this thesis. The best DER performance attained by the
MV-AM-SincNet model was achieved when it was trained on the Librispeech dataset [72]
after applying PCA on the extracted embeddings from the penultimate layer. The MV-
AM-SincNet model performed exceptionally well on several meetings. Also, I reported and
compared the DER performance when the overlapped regions are ignored and when they
are included in the calculation of the DER, where the DER without overlap was better.

After visualizing the speaker embeddings extracted using the MV-AM-SincNet model
for the different meetings, it was found that for most meetings the extracted embeddings
were highly discriminative, where embeddings belonging to the same speakers were close to
each other in the embedding space, and the different speaker clusters were far away from
each other in the embedding space. This indicates the high capability of the MV-Softmax
loss [42] at minimizing the inter-class variance and maximizing the inter-class variance.
However, some embeddings were close to the wrong clusters, which can be the embeddings
extracted from overlapped segments.

Moreover, it can be seen that having a huge imbalance in the contribution of the differ-
ent speakers in a given meeting can negatively affect the speaker diarization performance.
However, it can be observed that even if the speakers have a balanced involvement in
the meeting, having a huge amount of overlapped speech and numerous extremely small
segments is bad for the diarization performance. Furthermore, it can be seen that the
MV-AM-SincNet model is somewhat able to distinguish between male speakers and female
speakers, where it can be observed that clusters of the female speakers embeddings are close
to each other in the embedding space, and the clusters of the male speaker embeddings
are close to each other in the embedding space. Lastly, when visualizing the diarization
output of a random chunk from one of the meetings, it was found that large segments
got correctly attributed to their respective speakers. Whereas, relatively small segments,
especially the ones that overlap with larger segments can sometimes be attributed to the
wrong speakers.
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Chapter 5

Conclusion and Future Work

In this chapter, I will conclude this thesis, and I will give some suggestions to further
extend the work presented in this thesis.

5.1 Conclusion

In this thesis, various models that combine different SincNet architectures with distinct
state-of-the-art loss functions were proposed. The proposed models are first trained to
perform speaker recognition, then the trained models are used to extract speaker embed-
dings (d-vectors) in a speaker diarization system. Three architectures were considered,
namely SincNet [1], Res-SincNet [2], and the proposed Res-SincNet-FC, where all three ar-
chitectures are able to efficiently and effectively process raw input waveform, thanks to the
sinc layer employed as the input layer for all three models. The use of raw input waveform
stems from the desire to avoid using hand-crafted features, which may result in sub-optimal
performance. The aforementioned architectures were combined with four state-of-the-art
loss functions, which are AdaCos [55], PGL [56], MV-Softmax [42], and D-Softmax [57],
where each of these losses improves on the softmax loss in a unique manner.

From the results, it was found that, generally, applying PCA on the extracted speaker
embeddings, to reduce their dimensions, improved the diarization performance. Moreover,
reducing the sinc filter size is crucial to obtain a low frame error rate (FER), but it hinders
the diarization performance. However, a large sinc filter size is important to achieve a high
diarization performance, but it causes the FER to increase. Furthermore, using a bigger
dataset for training resulted in better speaker recognition and diarization performance.
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It was found that the proposed MV-AM-SincNet model achieved the best diarization
performance compared to all the models discussed in this thesis, where the MV-AM-
SincNet model gave a significantly improved performance compared to the other models,
while also achieving the best sentence error rate (SER). Also, the MV-AM-SincNet model
consistently gave the best diarization performance across different datasets and different
sinc filter sizes. Additionally, the MV-Arc-Res-SincNet-FC gave the best diarization perfor-
mance compared to the other models that employ the same architecture (Res-SincNet-FC),
but with other losses. Thus, it can be seen that the MV-Softmax loss [42] has a superior
performance at extracting highly discriminative embeddings (d-vectors) compared to the
other discussed losses. Moreover, this shows the robustness of the MV-Softmax loss [42],
since it was mostly giving high diarization performance under different settings.

It was found that The Res-SincNet architecture [2] is not suitable to be combined with
the loss functions discussed in this thesis, since the global average pooling layer does not
offer the losses the flexibility to learn discriminative features in the penultimate layer.
Thus, to solve this issue, the Res-SincNet-FC architecture was proposed, which replaces
the average pooling layer with a fully connected layer, making it more suitable to be
combined with the different losses. Furthermore, changing the architecture from SincNet
[1] to Res-SincNet-FC resulted in a significantly lower FER, where the D-Res-SincNet-FC
and Arc-Res-SincNet-FC gave the lowest FER compared to all the other models.

In addition, the diarization results of the MV-AM-SincNet model, which is the model
that gave the best diarization performance, were analyzed and visualized. The diarization
error rate (DER) with and without overlapped speech were compared, where the DER
was lower when overlapped speech was ignored. The extracted speaker embeddings from
the different meetings were visualized, where it was found that the embeddings are highly
discriminative (i.e. speaker embeddings belonging to the same class are close to each other
in the embeddings space, while embeddings from different classes are far away from each
other). This indicates the high capability of the MV-Softmax loss [42] at maximizing both,
intra-class compactness and inter-class separability. Also, for some meetings, the MV-AM-
Softmax loss was able to differentiate between males and females in the embeddings space.
However, some speaker embeddings were scattered around the embedding space, where
these embeddings can be corresponding to overlapped speech. The diarization performance
can be negatively affected if there is a large disparity in the number of segments spoken by
different speakers. It was found that having a huge amount of overlapped speech and very
small speaker segments can have a large impact on the diarization performance. Finally,
visualizing the diarization output showed that large segments were correctly assigned to
their correct speakers, while some small segments were assigned to the incorrect speakers,
especially if these small segments overlap with large segments from other speakers.
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5.2 Future Work

The work in this thesis can be further extended in several directions. For example, this
thesis concentrated on improving the speaker embeddings extraction performance of the
SincNet based architecture by employing different state-of-the-art loss functions; however,
the performance can be also improved by focusing on changing the architecture.

For instance, in [85], the authors found that the diarization performance can be im-
proved by using a recurrent convolutional neural network (RCNN) to extract embeddings,
instead of a standard CNN, since recurrent layers are highly capable of aggregating and
understanding temporal dependencies present in sequential and time-series data, such as
audio signals. Thus, recurrent layers, such as LSTM [86] and GRU [87], can be incorpo-
rated with the SincNet based models discussed in this thesis to improve their diarization
performance.

A second way to improve the architecture of the models discussed in this thesis is by
replacing the convolutional layers with dilated convolutional layers. Dilated convolution
increases the size of the receptive fields without requiring additional parameters, which will
help reduce the number of layers compared to using standard convolution, hence reducing
the overfitting problem caused by very deep networks [88]. Moreover, dilated convolution
facilitates the learning of a wider temporal context compared to standard convolution [88].

Another suggestion to enhance the diarization performance of SincNet is by incorpo-
rating it with an end-to-end neural speaker diarization system, such as [89] or [90], where
end-to-end systems are better than having separate modules (e.g. speaker modeling and
clustering), since they directly optimize the diarization error rate (DER), resulting in a
better performance. Also, end-to-end diarization systems can directly deal with overlap-
ping speech, and they do not need non-overlapping speech for their training. In [89], the
authors proposed a permutation-free loss function to achieve end-to-end speaker diariza-
tion, and in [90] the same authors improved on their end-to-end diarization system by
introducing self-attention mechanism [91]. In both [89] and [90], the authors used hand-
crafted features (log-Mel-filterbanks). Thus, they can be combined with the SincNet model
[1] to allow them effectively and efficiently process raw input signals, which will enhance
their performance and make them entirely end-to-end diarization systems, since the feature
engineering step will be skipped.

Finally, the work in this thesis can be further extended by training the models discussed
in this thesis using other famous datasets, such as VoxCeleb1 [92] and VoxCeleb2 [93].
Furthermore, the diarization performance of the models can be evaluated on other datasets,
such as CALLHOME [94].
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