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Abstract

Vortices are ubiquitous in fluid dynamics, and their interactions are critical in various
natural and engineering phenomena, such as the turbulence cascade and unsteady fluid
loading on structures. This thesis focuses on the collision of isolated vortices to gain
insights into the dynamics of vortex-structure and vortex-vortex interactions. Vortex rings
are employed as the canonical vortex element in this study, and three main studies were
conducted to address different aspect of the isolated vortex collision.

First, the dynamics of a vortex ring advecting towards and interacting with a solid wall
with a coaxial aperture is explored. The aperture is an axisymmetric surrogate of a thin
plate tip to investigate the partial vortex-structure interaction. When the aperture radius
is approximately equal to that of the ring, however, an interesting phenomenon is observed,
wherein the hydrodynamic impulse of the vortex ring is enhanced up to an additional 11%
at the highest considered Reynolds number when comparing with a free vortex ring that
experiences no collision (herein termed the “vortex nozzle” effect). Detailed investigation
of the “vortex nozzle” illustrates that the impulse enhancement is a consequence of two
complementary effects: (i) fluid originating along the impact side of the wall is entrained
into the ring, increasing its radius and volume; and (ii) the circulation loss during the in-
teraction with the aperture tip is minimized due to the vortex core enveloping the aperture
tip.

Second, the mechanism of viscous vortex reconnection is revisited by considering the
collision of vortex rings over a range of initial collision angles and Reynolds numbers.
While the overall reconnection process is similar to anti-parallel vortex reconnection, we
find that collision angle exerts significant influence over the process, altering the evolution
of various global and local quantities. The collision angle primarily manipulates the “pyra-
mid” process, but it is short-lived for viscous vortices. The present work shows that the
“pyramid” process is arrested by parallelization of the colliding vortices, wherein contact of
the colliding vortices halts their motion towards each other at the pyramid apex, allowing
the rest of the vortex tube to “catch up”, breaking the pyramid structure. Parallelization
marks the transition to a second phase of stretching, where the colliding vortices remain
parallel. Vorticity amplification from pyramid stretching is significantly stronger than its
parallel counterpart and is thus the dominant factor determining reconnection properties.
Critically, the Reynolds number scaling for the reconnection rate differs depending on the
collision angle, which challenges the conjecture of universal Reynolds number scaling in
the literature.

Lastly, the evolution of a strained dipole is explored to under the deformation of vortex
cores during the collision of anti-parallel vortices, which is a topic of recent debate in litera-
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ture, and contribute to the understand of the turbulent cascade mechanism and possibility
of finite-time singularity during anti-parallel vortex collision in inviscid flow. The results
have shown that under an imposed strain flow, which mimics the strain experiences during
anti-parallel vortex collision, a dipole can not maintain their compactness. Furthermore,
the deformation of the vortex cores actually enhances the attract between the cores, which
is absent in the theoretical modeling of anti-parallel vortex collision (the “pyramid” pro-
cess), and supports the idea that parallelization is the primary mechanism that ends the
‘pyramid” process.
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Chapter 1

Introduction

Vortices, as described by Prof. Küchemann, are the “sinews and muscles of fluid mo-
tion” [50]. Their interactions arise in various fundamental and applied fluid phenomena,
including the turbulent cascade, locomotion of aquatic animals, and unsteady structural
loading to name a few. With the aid of modern investigation techniques such as parti-
cle imaging velocimetry and high performance computing, the field of vortex dynamics is
evolving at a rapid pace. In this thesis, the dynamics of vortex collisions are considered to
gain fundamental insights into the processes involved in vortex-structure and vortex-vortex
interactions.

The interactions of vortices with solid surfaces have been explored extensively using
vortex rings. The collision of a vortex ring with a surface is a dynamically rich canonical
flow that has been used in a variety of vortex dynamics investigations. Walker et al.
[101] examined a vortex ring impinging normally on a flat wall as a controlled laboratory
experiment to investigate the bursting mechanism of turbulent boundary layers, wherein
eruptions transfer near-wall vorticity to the outer layer. They found that the boundary
layer, induced by the approaching ring, separates at the outer extent of the colliding vortex
ring due to the resulting adverse pressure gradient. The separated shear layer rolls into
a secondary ring, which couples with the colliding ring to rebound away from the wall,
moving the boundary layer vorticity into the outer flow. By analogy, Walker et al.[101]
proposed the sequence of unsteady separation and vortex rebound as a plausible physical
mechanism behind turbulent boundary layer bursting phenomena.

Swearingen et al. [95] performed spectral simulations and stability analysis on the
vortex ring-wall interaction. They determined that the secondary vortex ring ejected from
the boundary layer is unstable under the strain field of the primary vortex ring, which
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leads to turbulent transition. Verzicco and Orlandi [99] examined the collision of a vortex
ring with an inclined flat wall to investigate the role of differential stretching, finding
that a high-pressure region forms in the leeward side of the ring due to high strain from
stretching, which creates a pressure gradient that drives vorticity to the windward side.
Recently, New et al. [72] investigated the head-on collision of a vortex ring with a V-wall,
and observed that the additional constraints imposed by the V-wall introduces complex
three-dimensional vortex dynamics in comparison to a single inclined plane. New and
Zhang [73] examined the head-on collision of a vortex ring with a cylinder to elucidate the
vortex dynamics near arbitrarily contoured boundaries, noting that the strong interactions
between the primary and secondary vortex rings due to the curvature lead to the ejection
of smaller ringlets. In addition to the aforementioned studies with solid boundaries, vortex
interactions with other interfaces, including free surfaces [4], granular surfaces [52], porous
surfaces [69, 105], and stratified interfaces [78, 79] have been explored.

The dynamics of a vortex impacting the edge of a finite length plate are further compli-
cated by vorticity generated and shed from the plate tip. Potential flow analysis of point
vortices interacting with a finite length plate predicts very high (singular) bounded vortic-
ity at the plate tip, which sharply influences local vortex trajectories [82, 1, 75]. Peterson
and Porfiri [83] examined a vortex dipole colliding with a thin semi-infinite plate in a vis-
cous fluid, wherein the dipole axis of symmetry aligned directly with the plate tip. They
found in this configuration that the dipole splits in two upon impact with the plate, with
the two dipole halves then coupling with secondary boundary layer vorticity and vorticity
shed from the plate tip to form two new secondary dipoles that followed curved trajectories
away from the plate. Zivkov et al. [112] replaced the semi-infinite plate with a flexible
plate and detailed the resulting changes in shed vorticity, which impacted the secondary
dipole trajectories. In these studies, the vortex cores remained relatively undisturbed dur-
ing the plate interaction by virtue of the initial vortex/plate alignment. The dynamics of a
direct collision of a viscous vortex core with a thin plate edge, however, remains relatively
unexplored.

In the case of vortex-vortex interactions, the collision of vortices in a viscous fluid can
result in vortex reconnection, which is the only known mechanism in incompressible flow
that alters the topology of vortices. It also plays a critical role in turbulence [39], including
the energy cascade [106] and noise generation [21]. Hence, there is vast literature on the
topic of viscous vortex reconnection under various conditions, including anti-parallel vortex
tubes [42, 39, 53], orthogonal vortex tubes [111, 7], vortex rings [47, 46], and anti-parallel
vortex tubes with axial flow [54].

Vortex stretching is part of the vortex reconnection; it amplifies vorticity within the
colliding vortices, resulting in steeper gradients that accelerate viscous cross-diffusion for
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reconnection. Recently, Moffatt and Kimura theoretically predicted a “pyramid” stretch-
ing mechanism for the inviscid interaction of anti-parallel vortices [62, 63] (see Figure 1.1).
Pyramid stretching, as the name implies, is based on the formation of a pyramid structure

Figure 1.1: Summary of the pyramid (top) and parallel (bottom) stretching.

during the interaction, which is well known from vortex filament (Biot-Savart) studies of
vortex collisions in ideal and quantum fluids [22]. Pyramid formation is driven by non-
uniformity in the mutual induction between filaments (proportional to separation distance),
which disproportionately draws together the colliding vortices in the middle, forming the
pyramid shape. Moffatt and Kimura revisited the pyramid process by incorporating vortex
stretching into the Biot-Savart model [62, 63]. They discovered that the pyramid formation
produces localized stretching at the apex, which increases both the curvature and vorticity.
The onset of pyramid stretching in a viscous fluid was subsequently confirmed by numer-
ical simulations [107], where the signatures of pyramid stretching (vorticity amplification
coupled with curvature gain) were clearly observed, but very short-lived.

Both the analytical models [62, 63] and numerical simulations [107] employed slender
vortex cores, where the core radius is orders of magnitude smaller than the local spanwise
curvature, such that vortex motions are governed by the Biot-Savart law. However, for
moderate Reynolds numbers, the slender core assumption becomes strained, as viscous
diffusion will rapidly expand the core radii during their approach. The difference in the
separation scaling during the approach between slender [107, 108] and thick [39] core vortex
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reconnection raises the question of whether the pyramid stretching still exists for thick-core
vortices.

There is also the question of the influence of collision angle on the reconnection process.
Considering the limiting case of zero collision angle where the colliding vortices are parallel
to each other (see Figure 1.1, the uniform mutual induction moves the vortices radially
outward, producing an overall spanwise stretching that decreases the curvature [18]. The
behavior of this “parallel” stretching is in stark contrast with the pyramid stretching (local
vs. overall stretching, increase vs. decrease in curvature). Varying collision angle essen-
tially modifies the uniformity of the mutual induction (proportional to separation distance)
between the vortices (see Figure 1.1), creating a spectrum of vortex stretching conditions.
At high angles, strong pyramid stretching and a weak parallel stretching is expected, and
vise versa for low angles. Hence, a shift in the stretching characteristics is expected as
collision angle varies, which may lead to changes in vorticity amplification, and thus the
reconnection process.

To the best of our knowledge, the only numerical study that examined the role of the
collision angle by means of colliding two vortex rings together at various angles was Kida
et al. [46]. They reported a change in the reconnection completeness, and attributed it to
the influence of secondary motions from the rest of the vortex ring; however, the change
in stretching characteristics was not considered. There is no relevant discussion on the
pyramid stretching, because it was yet to be discovered at the time. The maximum vorticity
evolution from the same study shows no major changes with respect to the collision angle.
However, the computational capabilities at the time (643 collection points) were limited
in comparison with modern computers. The grid size was only about half of the initial
core radius, which is unlikely to resolve the stretched vortices upon collision, and thus
potentially masking the details.

A particular assumption in the analytical model of Moffatt and Kimura [62, 63] has
been a source of controversy recently. The conjecture states that colliding vortex cores
remain compact if the core size is sufficiently small, and this conjecture is based on the
analysis of vortex monopole.

The vortex monopole/column is the fundamental element of vortex dynamics. It has
been studied extensively to elucidate the behaviours of coherent vortices in turbulence,
such as the famous Burgers vortex problem that highlights the underlying mechanism of
vortex stretching in turbulent flows [12]. An extension to Burgers vortex is the deformation
of a vortex core in a non-axisymmetrical strain flow. The problem was first investigated
by Kida [43] with a planar irrotational strain field, where the principal strain axes were
perpendicular to the vortex axis. The vortex motion was found to bifurcate into two
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categories depending on the strain-to-vorticity ratio. Weak strain results in an elliptical
vortex that nutates around its center, while strong strain simply flattens the vortex into a
sheet. A follow up study by Neu [70] incorporated axial stretching into the analytical model.
He found that the added stretching component does not change the general bifurcation
behaviour, but only delays the critical bifurcation point to a higher strain-to-vorticity
ratio. That is, strong axial stretching would prevent flattening of the vortex core in an
irrotational strain field. Subsequently, Moffatt and Kimura [61] generalized the motion of
a vortex column in an uniform non-axisymmetric irrotational strain using large Reynolds
number asymptotic theory. They showed that strained vortices under stretching can survive
for a long time, consistent with the observed persistence of vortex filaments in turbulent
flows.

While the analysis of a single strain vortex column provided compelling theories on the
vortex dynamics of turbulent flows, recent surveys of turbulence have shown the tendency
of forming anti-parallel vortex pairs [32, 68]. McKeown et al. [55] experimentally observed
the iterative process of a colliding anti-parallel vortices, where the vortices are flattened
into thin vortex sheets, then re-rolled into smaller anti-parallel vortices under instability,
which in turn, collide again. Based on their observation, they have proposed that the
turbulent cascade is achieved though such an iterative flattening process between the vortex
pairs. An elemental analysis of the iterative flattening process by Brenner et al. [8]
suggested the possibility of finite-time singularity for inviscid flow. However, a subsequent
theoretical analysis by Moffatt and Kimura [62] have found that the mutually-induced
strain from the pairing vortices is insufficient to flatten the cores. Their model, based on
the vortex monopole model with the strain field from the pairing vortices extracted using
Biot-Savart law, have shown that if the vortex is sufficiently small, the cores will maintain
their compactness. As such, the finite-time singularity can not be achieved by the iterative
flattening process. Rather, they proposed that the pyramid process (see Chapter 5) is the
potential path towards finite-time singularity in inviscid flow, since the cores are able to
maintain compactness at small scales. However, a follow-up numerical simulation by Yao
and Hussain [107], disputed the claim of Moffatt and Kimura [62], as they still observed
core flattening in an analogous collision of anti-parallel vortices within the core size limit
suggested by Moffatt and Kimura [62]. But then, a similar follow-up numerical study by
McKeown et al. [56] found no core flattening between vortex pairs.

Clearly, there is a disconnect between the applied and theoretical understanding of
the core flattening process of an anti-parallel vortex pair, with the experimental [55] and
the numerical [107] studies show a clear sign of core flattening, but the theoretical model
[62] and a different simulation [56] found compact vortex cores. Is there any compelling
theory to explain the flattening process between colliding anti-parallel vortices and bridge
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the gaps between these studies? Herein it is proposed that there are two components that
were overlooked, namely, the curvature induced strain, and the applicability of the strained
vortex monopole model to the anti-parallel vortex pairs.

The curvature-induced strain between a pair of anti-parallel vortices is only briefly
documented once in the literature in the late 80s. Pumir and Kerr [86] found that the
flattening of the vortex cores, which they refereed as ribbons, only occurs if the anti-
parallel vortex tubes are curved. This explains the differences between the two numerical
simulations, where Yao and Hussain [107] employed curved tubes, while McKeown et al.
[56] employed straight tubes. This additional component of strain was neglected in the
theoretical analysis by Brenner et al. [8], and Moffatt and Kimura [62]. While the strain
from the pairing vortex is insufficient to flatten a vortex core at small scales, the effect of
the curvature induced strain have yet to be considered.

With regards to the applicability of the vortex monopole model to the anti-parallel
vortex pairs, the collision of anti-parallel vortices are known to produced the so-called
head-tail structure, which consists of a leading vortex dipole followed by a vorticity tail
[45, 39]. While the tail can be viewed as a partially flattened vortex core, it is actually
the result of the external strain field forcing the leading dipole to eject vorticity into its
wake [46, 98]. That is, the behaviour of a strain vortex dipole does not fall into either
maintain compactness nor flattening category, but somewhere in between. The drastic
differences in the behaviours suggest a fundamental change in the dynamics as a result of
the coupling between the pairing vortices, hence the employment of the vortex monopole
model in the interpolation of the behaviours are questionable. Is the flattening observed in
the experimental study of McKeown et al. [55] merely the formation of head-tail structure?
Could an anti-parallel vortex pair be truly flattened like a monopole?

The evolution of a strained vortex dipole is a relatively unexplored topic in the litera-
ture, with only three relevant articles found during a rigorous literature review. Evidence
of the head-tail formation for a strained dipole is first reported by Buntine and Pullin
[11]. Subsequently, Kida et al. [46] improved the initial conditions of the simulations by
employing a Lamb dipole, and tested a small range of strain-to-vorticity ratios. They ob-
served that the relative size of the head and tail strongly depends on this ratio. [98] is
an experimental study that validated the simulation results. These studies are limited to
low Reynolds numbers, where the dynamics are dominated by viscous effects, which is well
known to produce the same head-tail structure [46, 23]. As such, the present understanding
of the role of strain flow on vortex dipole dynamics is heavily obscured by viscous effects,
and unsuitable for the analysis of high Reynolds number turbulent flows and the finite-time
singularity of Euler’s equation. Furthermore, the range of strain-to-vorticity ratio, as well
as the type of strain (planar only), are limited is these studies, which lack any scenarios
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that includes the axial stretching.

1.1 Objectives

Though isolated vortices are less common in nature than, say, the wide range of coherent
structures evident in turbulent flows, studying such idealized vortex dynamics allows the
systematic probing of phenomenon that can inform the role of a particular vortex motion as
part of a larger and more complex flow evolution. Examples of such investigations include
the recent experimentation with twisted and knotted vortex rings to examine the effects
of vortex reconnection on the conservation of various topological quantities in real fluids
[49]. This approach provides a controlled and simplified way to study vortex dynamics.
Therefore, herein we opt to examine the interaction of isolated vortices to explore relevant
fundamental questions in vortex-vortex and vortex-solid interactions. Particularly, vortex
rings are employed extensively as the idealized medium for our studies.

The objectives of this thesis are:

• Investigate the collision between a vortex ring and co-axial aperture to determine
the optimal placement of the structural tip with respect to the colliding vortices to
maximize the unsteady fluid loading exerted on the structure. The aperture emulates
the tip of flat plate, and the co-axial alignment eliminates any undesirable three-
dimensional effects to examine the fundamental dynamics of the interaction.

• Examine the role of collision angle over the performance vortex reconnection. The
collision angle is hypothesized that the collision angle between vortices is a determin-
ing factor that controls the “pyramid” process, which has the potential to accelerate
the viscous diffusion process during reconnection.

• Test Moffatt and Kimura’s assumption of compact vortex cores during an inviscid
vortex collision by investigating the evolution of a vortex dipole in an inviscid fluid
subject to an independent irrotational strain field.

This thesis comprises three main studies to address the listed objectives. The first study,
associated with Objective 1, explores the interaction of a vortex with the thin plate tip. In
Chapter 3, preliminary experimental results, including flow visualization and particle image
velocimetry, are presented. Chapter 4 explores the problem further via a two-dimensional
numerical study for a greater range of aperture tip positions relative to the vortex core. The
second study, addressing Objective 2, employs a high performance pseudo-spectral code
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to examine the role of collision angle during viscous vortex reconnection in Chapter 5.
The final study, addressing Objective 3, examines the evolution of a strain vortex dipole
analogous to the vortex evolution at the apex of the pyramid during anti-parallel vortex
collision, with contour dynamics.
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Chapter 2

Background

This chapter includes and introduction to vortex dynamics and relevant quantitative as-
sessment metrics, as well as background on the analysis tools employed in the numerical
studies.

2.1 Vorticity transport equation

Vorticity (ω) is the spin vector of the local fluid parcel. Mathematically, vorticity can be
obtained from the curl of the velocity as ω = ∇×u. By taking the curl the incompressible
Navier-Stokes equations

Du

Dt
= −1

ρ
∇p+ ν∇2u (2.1a)

0 = ∇ · u (2.1b)

we obtain the incompressible vorticity transport equation,

Dω

Dt
= (ω · ∇)u + ν∇2ω (2.2)

which governs the motion of vorticity. Note, D/Dt, p, ρ and ν are the material derivative,
density, pressure and viscosity, respectively. The first term on the right side is the vortex
stretching term, and the second term is the diffusion term. The latter is responsible
for vortex reconnection by cross-diffusion, as well as the production of vorticity at the
boundary.
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2.2 Hydrodynamic impulse

The momentum of vortices is difficult to compute direction from a velocity field, because
the induced velocity from the vortices extend to infinity and overlap each other. Hence, an
alternative formulation is required for the estimation of the momentum of vortices. The
alternative formulation can be derived by taking the derivative moment transformation of
the momentum integral [104], which yields

∫

Cv

u dV =
1

2

∫

Cv

x× ω dV − 1

2

∫

∂Cv

x× (n× u) dS (2.3)

where x and n are position and boundary normal unit vectors , and ∂Cv is the boundary of
the control volume Cv. The first term of the right hand side is known as the hydrodynamic
impulse, which is equivalent to the momentum of the vortices, while the second term is
the boundary flux, which also captures the irrotational effect (add mass).

2.3 Vortex rings

Vortex rings are common phenomena where the vortex lines form a circular closed loop. It
is easy to generate and model, and hence is chosen as the primary target of investigation
of this thesis. Its properties can be estimated with the following expressions (first order
accurate, valid for small cores)

I = πρΓR2 (2.4a)

E =
1

2
ρΓ2R

(
ln

8R

Rc

− α
)

(2.4b)

where Γ, R, and Rc are the circulation, ring radius and core radius of the vortex ring.
The core parameter α is determined by the choice of vortex core model (i.e. α = 2.04 for
viscous core and α = 1.615 for quantized core) [94]. The self-induced velocity of the vortex
ring can be obtained by Hamilton’s equation

Us =
∂E

∂I
=

Γ

4πR

(
ln

8R

Rc

− α + 1

)
. (2.4c)

The impulse and energy of the vortex ring is directly associated with the entrained
fluid within the vortex ring, which can be seen in the cross-sectional view in Figure 2.1,

10



Figure 2.1: Cross-sectional flow visualization of a vortex ring.

where dye is collected within the elliptical-like vortex “bubble”. As such, the impulse of
the vortex ring can be rewritten as I = ρ(1+Cam)V Us, where V is the volume of the vortex
“bubble”. Attention is needed for the added mass correction parameter Cam [19, 94, 96].
For a submerged solid structure, the added mass is the added inertia from surrounding
fluid that is displaced by the body motion, and it can be estimated from the second term
of the Equation (2.3). The same applies for fluid vortices, as the entrained fluid within
the vortex “bubble” also displaces ambient fluid as it travels. As such, the added mass
correction must be consider, which for vortex ring, the value is approximately Cam ≈ 0.72.

2.4 Pyramid model of anti-parallel collision

This section briefly reviews the analytical model developed by Moffatt and Kimura [62] for
the collision of anti-parallel vortices in inviscid flow. It has been well-known that colliding
vortex filaments under Biot-Savart induction form a “pyramid” as shown in Figure 2.2
regardless of initial condition [22]. The dynamical model of Moffatt and Kimura [62] is
based on such “pyramid” formation during the collision of two vortex rings.

A plethora of assumptions are made in order to derive the analytical expression. They
assumed that the interaction is predominately local, such that behaviour is primarily dom-
inated by the separation s(t), curvature κ(t), and core size δ(t) at the pyramid apex. They
also assumed that the “circle-of-curvature” applies to both self- and mutually induced ve-
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Figure 2.2: Schematics of the pyramid formation of anti-parallel colliding vortex filaments.

locity. This means that the mutually induced velocity can be approximated by the induced
velocity of a circular vortex ring as the pyramid formation is localized. It also means that
the apex of the pyramid is circular, such that the self-induced velocity can be approxi-
mated by the vortex ring velocity shown in Equation (2.4c) with minor correction (this is
a common approach to desingularize the Biot-Savart integral). Another assumption is the
compactness of the vortex core, where it remains circular at all times (we challenge the
validity of this assumption in Chapter 6 since it is based on vortex monopole analysis).
Then, further asymptotic analysis revealed the following third-order dynamical system to
describe the tip motion of the pyramid

ds

dt
= −κ cos θ

4π

[
ln
(s
δ

)
+ β

]
(2.5a)

dκ

dt
=
κ cos θ sin θ

4πs2
(2.5b)

dδ2

dt
= −κ cos θ

4πs
(2.5c)

where θ = π/4 is the collision angle. The system of equations describe a positive feedback
system, where the curvature-induced self-convective drives the colliding vortices together
(Equation (2.5b)), while the decrease in separation distance amplifies the curvature due to
the upward motion of the pyramid apex (Equation (2.5b)). The last differential equation
captures the core size, which decreases due to stretching, further aiding the self-induced
motion that bring the colliding vortices together.

The analytical model is significant for two reasons. First, the numerical results of the
model exhibits Leray-scaling, hinting the possibility of Biot–Savart finite-time singularity
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of such interaction. Second, the incorporation of the stretching mechanism discovered a
violent localized vorticity amplification, and its impact in viscous fluid for vortex recon-
nection is explored in Chapter 5.

2.5 Vortex identification

Coherent vortices are distinct features in a fluid flow and a major focus of this thesis.
However, the definition of a vortex is not simple nor unique. In this section, we will briefly
discuss how vortices are identified. Specifically, we will discuss the λ2 vortex criterion,
which we employ in Chapter 3 to track the kinematics of vortices.

Loosely speaking, a vortex is a concentrated region of vorticity where the fluid parcels
revolve around a common center. While the definition appears to be similar to vorticity, a
region of vorticity is not necessarily a vortex; for example, a shear layer is a distinct region
of vorticity that is qualitatively different from a vortex. Therefore, the criteria of vorticity
is insufficient for vortex identification.

The λ2 vortex criterion, proposed by Jeong and Hussain [41], is a popular quantitative
vortex identification method. It is based on the assumption that a vortex has a pressure
minimum in its center to maintain the orbits of the fluid parcels. To obtain the information
on the pressure minimum, the pressure Hessian, a square matrix of second-order partial
derivatives of the pressure field, is employed. The pressure Hessian can be directly obtained
by taking the symmetrical component of the gradient of the Naiver-Stokes equations (also
known as the strain-rate transport equation) as follows,

1

ρ

∂2p

∂xi∂xj
=

DS ij
Dt
− ν ∂

2S ij
∂x2

k

+ S ikSkj +AikAkj (2.6)

where S and A are the symmetrical and anti-symmetrical components of the velocity
gradient tensor. Furthermore, the first and second terms in the above strain-rate transport
equation are the effects of the unsteady irrotational strain and viscous diffusion, which
are unrelated to the motion of vortices. Thus, they can be safely removed, resulting in
the simplified pressure Hessian as S2 + A2. The λ2 vortex criterion assumes that the
cross-section of a vortex has a convex pressure field, hence requiring at least two negative
eigenvalues from the Hessian matrix. This is equivalent to requiring the second eigenvalue,
λ2 (λ1 ≥ λ2 ≥ λ3), to be negative, hence the name λ2 vortex criterion.

The λ2 vortex criterion is not perfect, hence the existence of over thirty alternative
methods in the literature [26]. The primary shortcoming is the fundamentally flawed
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assumption of the pressure minimum in the vortex core, which does not consider the
longitudinal pressure variation over a vortex tube. As such, it does not provide much
useful information in some situations, such as homogeneous turbulence [44]. However, for
the its application in Chapter 3, it is more than sufficient due to the near axis-symmetrical
nature of the flow, which lacks pressure variation along the vortices.

2.6 Pseudo-spectral method

In this section, the pseudo-spectral method employed for the direct numerical simulation
of the Navier-Stokes equation is briefly reviewed. Spectral methods [15, 97, 66] are global
methods, wherein computed values at any point in the domain are obtained from informa-
tion from the entire domain; as such, the solution convergence is exponential. Furthermore,
it is free of numerical diffusion and dispersion, making it an attractive numerical method for
vortex dynamics, particularly vortex reconnection studies, which often require long-time
high-resolution simulations.

To obtain the expression of Naiver-Stokes equation employed for the pseudo-spectral
method [66], we first define a smooth velocity vector field in a triple periodic domain as
u(x, t), where x is the physical mesh. The velocity vector fields can be transferred between
the physical and spectral domains via the discrete Fourier transform as uk(t) = F [u(x, t)],
where uk is the Fourier coefficient at wave-number k. The entire Navier-Stokes equations
in Equation (2.1) can be Fourier transformed into the spectral domain as

duk

dt
− (u× ω)k = −ikPk − ν|k|2 (2.7a)

ik · uk = 0 (2.7b)

where P = p/ρ+ u · u/2 is the modified pressure in the physical space, and i =
√
−1.

The pressure term can be eliminated by the pressure Poisson equation, which is ob-
tained by taking the divergence of the Navier-Stokes equation. In spectral space, the
incompressible pressure Poisson equation is

Pk = −ik · (u× ω)k
|k|2 . (2.8)

By substituting the above pressure Poisson equation into the spectral Navier-Stokes equa-
tion, the final expression employed for the pseudo-spectral method is obtained,

duk

dt
= (u× ω)k − ν|k|2uk − k

k · (u× ω)k
|k|2 . (2.9)
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The right hand side of Equation (2.9) is easy to compute as it contains only rudimentary
arithmetics, except for the non-linear term (u × ω)k, which involves a convolution, a
computationally expensive procedure (O(N2), where N is the number of grid points).
Therefore, it is much cheaper to perform an inverse discrete Fourier transform (O(N logN)
with the fast Fourier transform algorithm) and compute the cross product in the physical
space then transfer back to spectral space, hence the label “pseudo”.

Regards to the implementation of the codes, rudimentary arithmetics are optimized
and multi-threaded with the LLVM Just-in-time compiler using the library numba, while
the parallel fast Fourier transform is computed using MPI FFTW. The compact third-order
Runge-Kutta scheme is implemented for time integration due to its efficient memory usage
[102].

2.7 Contour dynamics

Contour dynamics is a Lagrangian computational method for the two-dimensional motion
of vortex boundaries in an incompressible and inviscid fluid, which we employed for the
strain dipole investigation in Chapter 6. In this section, the derivation and implementation
of the contour dynamics [110] is briefly reviewed.

Consider a vortex patch with total area A bounded by contour C, which contains a
collection of discrete vortices at locations (xi, yi) with vorticity ωi, where i is the number
of each discrete vortex, as shown in Figure 2.3. The velocity at any point can be obtained
by summing all contribution of the discrete vortices as

u(x, y) = − 1

2π

N∑

i=1

y − yi
(x− xi)2 + (y − yi)2

ωi δAi (2.10a)

v(x, y) = +
1

2π

N∑

i=1

x− xi
(x− xi)2 + (y − yi)2

ωi δAi (2.10b)

where δAi is the infinitesimal area of vortex i. As the number of parcels, N , tends to infinity,
the sums reduce to area integrals, yielding the integral representation of the velocity as

u(x, y) = − 1

2π

∫∫

A

y − y′
r2

ωz(x
′, y′) dA′ (2.11a)

v(x, y) = +
1

2π

∫∫

A

x− x′
r2

ωz(x
′, y′) dA′ (2.11b)
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Figure 2.3: Schematic of a vortex patch with area A bounded by contour C, which contains
a collection of discrete vortices located at xi, yi with a vorticity of ωi. The unit vector n̂
and t̂ are the boundary normal and tangential vectors, respectively.

where r2 = (x−x′)2 +(y−y′)2. When considering a compact vortex with uniform vorticity
Ω, the above expressions become

u(x, y) = − Ω

2π

∫∫

A

y − y′
r2

dA′ (2.12a)

v(x, y) = +
Ω

2π

∫∫

A

x− x′
r2

dA′ (2.12b)

Additionally, since

−1

2

∂

∂x′
ln
(
r2
)

=
x− x′
r2

(2.13a)

−1

2

∂

∂y′
ln
(
r2
)

=
y − y′
r2

(2.13b)

we can rewrite Equation (2.12) as

u(x, y) = +
Ω

4π

∫∫

A

∂

∂y′
ln
(
r2
)

dA′ (2.14a)

v(x, y) = − Ω

4π

∫∫

A

∂

∂x′
ln
(
r2
)

dA′ (2.14b)

For further simplification, let ~G = [0, 0, ln (r2)] then

∇′ × ~G =

[
∂

∂y′
ln
(
r2
)
,− ∂

∂x′
ln
(
r2
)]

(2.15)
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which allows the rewrite of Equation (2.14) in the vector form as

u(x) =
Ω

4π

∫∫

A
∇′ × ~G dA′ (2.16)

Applying Stokes’ theorem, we arrive at the governing equation of contour dynamics

u(x) = − Ω

4π

∮

C
ln
(
r2
)

dl (2.17)

Note, the negative sign is a result of counter-clockwise integration path and l is infinitesimal
vector element tangent to the patch boundary.

Regards to the implementation, the integral in Equation (2.17) can be solved exactly
as

∫
ln
(
r2
)

= r[ln(r2)− 2]. (2.18)

Hence, the velocity at each boundary point can be easily computed by discritizing the
contour into a collection of linear segments, compute the exact value of the integral over
each linear segment using Equation (2.18), then sum for total contribution.
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Chapter 3

Experimental investigation of a
vortex ring impingement on a wall
with a co-axial aperture1

This chapter presents the results of an experimental investigation of a vortex ring imping-
ing on a wall with a co-axial aperture. It is organized as the following: the experimental
setup is described in Section 3.1; experimental results and discussion are presented in Sec-
tion 3.2; the semi-analytical model is introduced and compared with experimental results
in Section 3.3; and Section 3.4 concludes this chapter.

3.1 Problem definition

Herein, we explore the problem of a vortex ring impinging on a rigid wall with a co-axially
aligned aperture in an otherwise quiescent fluid (see Figure 3.1). In this figure, the vortex
ring on the left is the incoming vortex ring, while the one on the right is the post-impact
vortex, which is generated during the collision. A cylindrical coordinate system (x, r) is
defined at the center of the aperture (see Figure 3.1), wherein r is the radial coordinate and
r is the azimuthal coordinate, which is orthogonal to the aperture plane and pointing away
from the incoming vortex ring. Properties associated with the incoming vortex ring are

1This work has been published on Physical Review Fluids [37] with me and my Ph.D. advisor Sean D.
Peterson as co-authors. I was responsible for performing the experiment, analyzing the results and writing
of the manuscript. Professor Peterson provided guidance for the study and edits for the manuscript.
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Figure 3.1: Schematic of a vortex ring impinging on a rigid with with a co-axially aligned
aperture. The vortex ring on the right is the incoming vortex ring, while the vortex ring
at the left is the post-impact vortex ring.
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indicated with the subscript “1”, while properties of the post-impact vortex ring behind
the aperture are identified with the subscript “2”. Each vortex ring is characterized by its
radius R, core radius Rc, circulation Γ, impulse I, and energy E. The distance of a given
ring from the wall is indicated by ξ. The vortex ring-induced flow across the aperture has
a volumetric flow rate of Q, and the aperture has a radius of Ra.

3.1.1 Experiment setup

The vortex ring/wall interaction is explored experimentally using a custom vortex ring
facility shown in Figure 3.2. The working fluid is water, which is contained in an acrylic

Figure 3.2: Experimental setup.

tank with a wall thickness of 12.7 mm and interior dimensions of 914×610×610 mm3. The
target wall is a 4.5 mm thick Lexan sheet (SABIC Innnovative Plastics) with dimensions
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356×305 mm2. Support bars are located at the top and bottom of the plate along the back
side. The target wall is suspended on a L-bracket bridge that is placed across the width of
the tank and is located at 98.9± 1.0 mm away from the vortex ring generator outlet. The
target wall is removable to accommodate plates with different aperture sizes.

The vortex ring generator is a piston/cylinder configuration with a 25.4 ± 0.05 mm
diameter sharp edged orifice outlet. The piston is located in a primary cylinder that has
a diameter of 101.6± 0.05 mm. The piston is powered by a 1 HP DC motor (Boston Gear
PM9100ATF-1) through a chain drive and a lead screw. The piston is controlled using a
custom National Instrument LabVIEW VI through a NI DAQ PCIe-6323 card and a servo
motor controller (Electro-Craft DC-35L). Image recording is triggered by the software one
second before generator actuation in order to verify the quasi-static fluid assumption.

The fluid velocity field in a vertical plane passing through the vortex ring (and aperture)
axis is measured via a particle image velocimetry (PIV) system (LaVision GmbH). The
water is seeded with silver coated hollow glass particles (Potters Industries) with an average
diameter of 13µm and density 1.6 g/cm3. The light source is a 20 mJ/pulse Nd:YLF laser
(Photonics Industries DM20-527D/R). Images are recorded with a Photron FASTCAM
SA4 (500K-M1) high speed camera at full resolution (1024× 1024 pixels) with frequencies
of 100, 200, and 240 Hz for low Reynolds number PIV, high Reynolds number PIV, and flow
visualization experiments, respectively. The field of view of the camera is 146× 146 mm2.
The PIV recording are post-processed using a multi-pass interrogation scheme in DaVis
8.1.6 with a 32 × 32 pixel final investigation window size with 50% overlap. For the flow
visualization studies, fluorescent dye is formulated by mixing water and fluorescent sodium
salt (Sigma-Aldrich F6377).

3.1.2 PIV vector fields post processing

The azimuthal vorticity field ωθ is computed from the velocity vector field at each time
instant by Equation (3.1) using a fourth order central difference scheme [27, 87], where u
and v denote the x and r velocity components, respectively.

ωθ =
∂v

∂x
− ∂u

∂r
(3.1)

Vortices are identified using the λ2 criterion [100, 87], which is computed using a least
squares differentiation scheme [87] with a threshold of λ2 < −5. The selected threshold
is small in comparison with the maximum value in the vortex ring core, thus enabling
core identification throughout the interaction, but is sufficient to eliminate the background
noise.
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The positions of the vortex ring cores in the measurement plane are identified by the
centers of their vorticity patches, while the core radii are estimated by fitting the vorticity
patches to Gaussian distributions and computing a distances of one standard deviation
from each peak [89, 94]. The circulation, impulse, and energy of each vortex ring, assuming
them to be axisymmetric, are computed as

Γ =

∫

A

ωθ dA (3.2a)

I = πρ

∫

A

ωθ r
2 dA (3.2b)

E = πρ

∫

A

ωθΨ dA (3.2c)

where ρ is the fluid density, dA is a unit area element, and Ψ is Stokes’ stream-function,
which is obtained by multiplying the traditional stream-function ψ by r [71]. The integrals
in Equation (3.2) are numerically approximated using the trapezoid rule. The streamfunc-
tion ψ is acquired by solving Poisson’s equation with ωθ as the source term [87],

∂2ψ

∂x2
+
∂2ψ

∂r2
= ωθ (3.3)

To compute ψ, Equation (3.3) is discretized using a 5 point second order differencing
scheme [5] with ψ = 0 set as the boundary conditions in the far-field and along the wall.
All vortex ring properties are estimated as the average of the values computed for the top
and bottom vortex cores in the planar slice through the ring.

Accurately estimating the volumetric flow rate through the aperture, Q, from the PIV
data is hindered by imprecision in locating the aperture boundaries and the relatively small
number of vectors spanning it. To mitigate these issues, a multi-step process is employed to
estimate Q. First, the center of the aperture is determined by locating its edges in the 2D
PIV images. This provides the location of the coordinate system defined in Figure 3.2 in
the experimental data. The velocity through the aperture is assumed to be axisymmetric.
The radial velocity profile in the aperture is estimated by first averaging the velocity in
two planes on either side of the wall, ũ(r, 0, t) ≈ [u(r, x−, t) + u(r, x+, t)]/2, where x−

and x+ denote planes located immediately upstream and immediately downstream of the
wall, respectively. Lastly, since the PIV measurement plane contains two radial velocity
profiles (one above the hole centerline, one below, see Figure 3.2), these two profiles are
also averaged to give ũ. The volumetric flow rate is finally obtained by integrating ũ from
r = 0 to the end of the field of view

Q(t) ≈ 2π

∫ ∞

0

ũ(r, 0, t)r dr (3.4)
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3.1.3 Experimental parameters

To examine the effects of varying the Reynolds number (defined as Re = Γi1/ν, where ν
is the kinematic viscosity and the superscript “i” denotes vortex ring properties measured
when the ring is approximately 3 ring radii from the wall) and aperture-to-ring-radius ratio
(Ra/R

i
1) on the interaction process, a total of 6 different cases are examined. Specifically,

we consider two Reynolds numbers and three aperture radii, as summarized in Tables 3.1
and 3.2. Each experiment is repeated 5 times, and the results are averaged. The uncer-

Small Aperture Medium Aperture Large Aperture
Ra [mm] 6.26± 0.05 12.78± 0.05 19.35± 0.05
Ri

1 [mm] 14.13± 0.38 14.00± 0.26 14.05± 0.51
Ri
c1 [mm] 2.78± 0.15 2.88± 0.15 2.79± 0.16

Γi1 [mm2/s] 1785.65± 39.96 1854.35± 50.49 1929.77± 61.26
Ei

1 [µNs] 48.85± 2.63 51.24± 2.44 56.34± 4.40
I i1 [µJ] 1126.66± 49.63 1162.13± 41.21 1208.20± 96.97

Table 3.1: Experimental parameter values and uncertainties for the low (Re ≈ 1850)
Reynolds number cases.

Small Aperture Medium Aperture Large Aperture
Ra [mm] 6.26± 0.05 12.78± 0.05 19.35± 0.05
Ri

1 [mm] 16.57± 0.42 16.66± 0.37 16.73± 0.21
Ri
c1 [mm] 2.93± 0.22 2.83± 0.22 2.79± 0.09

Γi1 [mm2/s] 4743.75± 146.51 4432.89± 214.64 4545.33± 128.30
Ei

1 [µNs] 430.37± 24.51 378.38± 19.04 398.01± 23.46
I i1 [µJ] 4152.82± 138.08 3902.71± 147.11 4020.49± 112.63

Table 3.2: Experimental parameter values and uncertainties for the high (Re ≈ 4600)
Reynolds number cases.

tainty in each parameter is estimated as the standard deviation of the measurements across
the 5 repeated trials. The Reynolds number for the low and high Re cases are approxi-
mately 1850 and 4600, respectively, with some variability from experiment to experiment,
as evidenced by the uncertainty in Γ in Tables 3.1 and 3.2. All post-processed data are
filtered using a 10th order low-pass Bessel filter with the cut-off frequency at 10% of the
PIV sampling Nyquist frequency. We note that the low Reynolds number vortex rings
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are generated by applying a shorter stoke length to the piston, which leads to premature
formation, resulting in smaller ring radii [24].

The experimental results are non-dimensionalized using the initial ring radius Ri
1 as

the length scale, (Ri
1)2/Γi1 as the time scale, and ρ(Ri

1)3 as the mass scale, where ρ is the
fluid density and assumed to be 1000kg/m3. For the remainder of the article, all variables
shown are dimensionless unless otherwise noted. Lastly, in the following sections, t = 0
corresponds to one second after the piston actuation begins, which is when data collection
(image capture) commences.

3.2 Results

3.2.1 Flow visualization

Flow visualization results of the interaction of a vortex ring with a planar wall with a coaxial
aperture for the three aperture sizes are presented in Figure 3.3 for the high Reynolds
number case. Three distinctive behaviors are observed between the three aperture sizes.
In Figure 3.3(a), a laminar vortex ring approaches the small aperture. Upon impact in
Figure 3.3(b), the vortex core deforms into an elliptical shape, while a column of fluid
is induced though the aperture. The front of the fluid column diverges outward as the
boundary layer separates from the aperture tip and begins to roll up. This is the same
process as the vortex ring formation out of a piston/cylinder configuration described by
Didden [24]. A short time later in Figure 3.3(c), the incoming vortex ring has merged with
fluid ejected from the induced boundary layer along the wall to form of a pair of conjoined
rings; these appear as two mushroom shaped dipoles in Figure 3.3(c). This ejection and
interaction process is very reminiscent of the interaction of a vortex ring impacting a solid
wall, see for example [101]. Walker et al. [101] observed a tertiary vortex ring at a similar
Reynolds number for a vortex ring/full wall impact, which is not observed here. We note
that the near wall fluid is not marked, so the full picture is not necessarily elucidated. Also
observed in Figure 3.3(c) is a post-impact vortex ring formed from the fluid forced through
the aperture. The presence of a trailing jet in the wake of this new ring indicates that the
pinch off process has already occurred [31].

For the medium aperture case, shown in the second row of Figure 3.3, the core of the
ring is also slightly deformed during impact with the wall, and a much larger column of fluid
is pushed though the aperture. In this case, part of the incoming vortex ring core advects
though the aperture, carrying some vorticity through, that joins with the vorticity rolling
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Figure 3.3: Flow visualization snapshots for the high Reynolds number case. Small,
medium, and large aperture cases are shown in (a)-(c), (d)-(f), and (g)-(i), respectively.
Snapshots at dimensional time t = 3.33s, t = 3.75s, and t = 4.08s are shown in each
column from left to right, respectively.
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up at the aperture edge. In Figure 3.3(f), we note that the interaction of the incoming
vortex ring with the ejected wall boundary fluid (on the left side of the wall in the image) is
similar to the small aperture case. However, the size and trajectory of the conjoined rings
are slightly smaller, implying that more energy is transfered to the post-impact vortex ring.

In the large aperture case, shown in the last row of Figure 3.3, the aperture radius is
greater than the ring radius; thus, the vortex core of the incoming ring does not interact
appreciably with induced vorticity along the wall. In fact, the majority of the advecting
vortex ring fluid appears to pass through the aperture, as shown in Figure 3.3(i), though
the aperture tip does causes significant disturbance to the vortex ring. As such, some
energy is expected to be lost from the vortex ring in comparison with a free vortex ring
traveling the same distance.

3.2.2 Vorticity fields

To gain quantitative insights into the vortex dynamics, we examine the vorticity fields of
the interaction, again using the high Reynolds number case as the exemplar. The vorticity
fields corresponding to approximately the same time points as in Figure 3.3 are presented
in Figure 3.4. We first note that there is a small vortex ring convecting out of the aperture
for the small aperture case (see Figure 3.4(a)). This is produced by a structural vibration
during piston actuation and has very weak circulation in comparison to the pre-impact
vortex ring; as such, we presume its influence to be negligible.

The vorticity field of the small aperture case is shown in the first row of Figure 3.4.
Upon impact (Figure 3.4(b)), the roll up of boundary layer vorticity on the left side of
the wall (facing the incoming vortex ring) can be seen. Furthermore, vorticity associated
with the newly formed post-impact vortex ring is observed to the right of the plate. The
post-impact vortex ring induces weak opposite signed vorticity near the aperture tip. This
is in agreement with the piston/cylinder vortex ring formation reported by Didden [24].
This patch of vorticity leads to post-impact vortex ring circulation loss due to opposite
sign vorticity cancellation [24, 67]. In Figure 3.4(c), the post-impact vortex ring, as well
as the ring pair ejected from the left side of the wall (also seen in Figure 3.3), are clearly
visible. Also visible is the shear layer of the jet exiting the aperture caused by the initial
pre-impact vortex ring. There is a clear separation between the post-impact vortex ring
and the trailing jet shear layer, indicating that the “pinch off” [31] has already occurred.

Upon impact of the incoming vortex ring with the medium aperture (Figure 3.4(e)),
we see that the induced vorticity on the left wall is weaker than in the small aperture case.
In Figure 3.4(f), it is apparent that the ejected vortex ring pair (comprising the initial
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−6 −4 −2 0 2 4 6ωθ

Figure 3.4: Vorticity field snapshots of the high Reynolds number case. Small, medium,
and large aperture cases are shown (a)-(c), (d)-(f), and (g)-(i), respectively. Snapshots of
t = 15, t = 20 and t = 25 are shown in each column from left to right, respectively. Grey
and black areas are masked regions for the aperture and the wall, respectively.
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vortex ring and the induced boundary layer vorticity) have weaker strength and size in
comparison to the small aperture case. This suggests that some of the initial vortex ring’s
core vorticity passes through the hole. The absence of trailing jet vorticity in Figure 3.4(f)
further suggests that the formation of the post-impact vortex ring is not terminated by the
“pinch off” process [31]; rather, formation terminates when the incoming vortex ring ceases
feeding fluid through the aperture, resulting in sub-maximal vorticity in the post-impact
ring.

Lastly, in the large aperture case (third row of Figure 3.4), the approaching vortex ring
simply passes though the aperture, though it does lose significant circulation in the process
due to vorticity cancellation with the induced vorticity on the left side of the wall.

3.2.3 Temporal variation of relevant properties

Time traces of relevant properties, including both the pre- and post-impact vortex ring
properties and the volumetric flow rate though the aperture Q, are presented in Figure 3.5.
Recording of the incoming vortex ring properties commences once it fully enters the field
of view, and ends when the vortex detection algorithm, described in Section 3.1.2, is no
longer able to adequately discern the ring vortices (that is, when the signal-to-noise ratio
in the algorithm gets too low). On the other hand, recording of the post-impact vortex
ring properties begins once it is fully formed, which is identified as the time when it reaches
maximum circulation. We note that the dimensionless recording time is shorter for high
Reynolds number cases since time is scaled by initial vortex ring properties. Also, data
prior to the post-impact vortex ring formation is not computed, in large part, due to data
loss through the PIV masking applied to the wall.

Time-history plots of the small aperture cases are shown in the first column of Fig-
ure 3.5. The incoming vortex ring behaves in a similar manner for both Reynolds numbers,
though the low Reynolds number ring shows more rapid decay of initial circulation, as ex-
pected due to stronger viscous effects, and as such the impulse and energy are lower. From
Figure 3.5(a) and (d) we observed a growth in radius and deceleration of the incoming
ring as it approaches the wall. Circulation and energy drop significantly due to interac-
tion with the aperture, including vorticity cancellation with the induced wall vorticity, as
shown in Figure 3.5(g) and (m). Vortex ring impulse increases (Figure 3.5(j)) as the ring
radius increases. The post-impact vortex ring also has smaller property values for the lower
Reynolds number case, as shown by the dashed lines in Figure 3.5.

Time traces for the medium aperture cases are shown in the second column of Fig-
ure 3.5. The trends are similar to the small aperture cases; however, there are three major
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Figure 3.5: Time series of vortex ring properties during the interactions. Small, medium,
and large aperture cases are presented in columns from left to right, respectively. Mean
vortex ring x position, ring radius, circulation, impulse, energy, and aperture flow rate
are organized into rows from top to bottom, respectively. Red and blue lines represent
high and low Reynolds number cases, respectively, while solid and dashed lines denote
pre-impact and post-impact vortex ring properties.
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differences. Firstly, the incoming vortex is able to get closer to the wall and with less
radial growth due to the larger opening. This results in minimal impulse growth during
impact. Secondly, the post-impact vortex ring has greater circulation and a larger radius
due to the larger aperture. Lastly, the formation times for the post-impact vortex ring,
evidenced by the time point at the start of the dashed lines in the figure, are noticeably
different between the two Reynolds numbers, unlike in the smaller aperture case. This is
an another indication that vortex ring “pinch off” does not occur for the medium aperture
case; that is, the post-impact ring does not attain maximal circulation.

The larger aperture case, shown in the third column of Figure 3.5, tells a relatively
simple story; the incoming vortex ring passes though the aperture and loses some of its
energy in the process to cross-diffusive vorticity annihilation [67], as discussed in reference
to Figure 3.4.

With regards to the volumetric flow rate through the aperture, in all cases it increases
as the pre-impact vortex ring approaches the hole, reaching a maximum value around the
time of impact. The flow rate then decays as the pre-impact ring breaks down (or passes
through the hole, in the case of the largest aperture radius). As expected, the total flow
through the aperture increases with aperture size.

3.2.4 Comparing pre- and post-impact rings

The properties of the post-impact vortex ring with respect to the properties of the incoming
pre-impact ring are compared in Figure 3.6 for all cases considered. We remind the reader
that the low and high Reynolds number cases have slightly different aperture to ring radius
ratios due to differences in the initial pre-imapct ring radii, as discussed in Section 3.1.3.
We further note that pre-impact vortex ring properties are measured when the ring is
approximately 3 radii away from the aperture (equivalent to the “initial” ring properties,
denoted by superscript “i” in Tables 3.1 and 3.2), whereas the post-impact vortex ring
properties are extracted once it has fully exited the masked wall region of the PIV recording
or when it is fully formed, whichever is later.

The variation of R2/R
i
1 with aperture size is shown in Figure 3.6(a). The ratio first

appears to increase linearly with the aperture size, likely due to the restriction on the
post-impact vortex ring radius imposed by the aperture during formation [24]. When
the aperture radius is nearly equal to the incoming ring (the medium aperture case), the
ratio appears to reach a maximum, which is greater than 1; that is, the out-going post-
impact ring is larger than the incoming ring. In this aperture size range, the interaction
is transitioning from the formation of a new vortex ring at the hole to the incoming ring
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Figure 3.6: Ratios of the post- to pre-impact vortex ring properties versus aperture size
for both Reynolds numbers. (a) Ring radius; (b) circulation; (c) impulse; and (d) energy.
High and low Reynolds number cases are shown with red and blue symbols, respectively.
Spline fit trend-lines are also included.
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simply passing through the orifice. For larger aperture sizes, the ratio decreases back
towards 1; obviously as Ra →∞, R2/R

i
1 → 1. Comparing the two Reynolds number cases,

it appears that R2/R
i
1 is relatively insensitive to Reynolds number in the range considered.

Unlike R2/R
i
1, Γ2/Γ

i
1 (Figure 3.6(b)) displays a significant Reynolds number depen-

dence. For both Reynolds numbers, the circulation of the post-impact ring increases with
aperture size; the circulation ratio should asymptote to a value slightly less than 1 as Ra

increases towards infinity. The lower Reynolds number cases show smaller post-impact ring
circulation in comparison with the higher Reynolds number cases, likely due to greater loss
in circulation through viscosity as the incoming ring approaches the wall (that is, Γ1/Γ

i
1

at the point of impact is smaller for the low Reynolds number case).

The ratio of impulses shown in Figure 3.6(c) follows the same general trends as the
radius ratio, while the ring energy ratio in Figure 3.6(d) is similar to the circulation ratio
in behavior. We expect that I2/I1

i and E2/E1
i approach values near (but slightly below)

1 as Ra →∞.

3.2.5 Post-impact vortex ring formation for a small aperture

As we previously established with the experimental observations, the formation of the
post-impact vortex ring is terminated by the “pinch off” process, which was first described
by Gharib et al. [31] for a piston/cylinder vortex generator. Pinch off refers to the sep-
aration of the leading vortex ring from its trailing jet, wherein the fluid ejected from an
aperture is no longer able roll up into the vortex ring, forming instead into a trailing jet
behind the leading vortex ring. Gharib et al. [31] explained this phenomenon using the
Kelvin-Benjamin variational principle [9], which implies that the “pinch off” process occurs
when the jet is unable to sustain the amount of the energy transfer required for a steady
translating vortex ring with respect to its impulse-preserving iso-vortical perturbations
[31, 64, 88, 93, 65, 77].

The energy of a vortex ring can be normalized as

α =
E√
ρIΓ3

(3.5)

which decreases during formation until it reaches a limit, denoted as αlim, then the vortex
ring “pinches off” from the jet and completes its formation. Gharib et al. [31] experimen-
tally discovered that the limiting normalized energy is αlim ≈ 0.33 for a piston/cylinder
configuration. Additionally, the numerical study performed by Mohseni et al. [65] demon-
strated that the normalized energy is invariant if fluid ejection out of a piston/cylinder
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configuration has sufficiently long duration, sufficiently high Reynolds number, as well as
producing adequately thin shear layer [71].

It is unlikely that the above conditions are met for the current study, since the source
of the fluid ejection is itself a vortex ring. Furthermore, Allen and Naitoh [3] were able
to produce a vortex ring with a much lower αlim by using a variable radius orifice during
formation. With the post vortex ring properties computed using Equation (3.2), we find
that for both the Reynolds number cases in this study, the normalized energy is in the
range of αlim ≈ 0.48 ± 0.04, which hints that the pinch-off process occurs much earlier
during the formation in comparison to the piston/cylinder configuration.

3.3 Analytical Model

In this section, we develop an analytical model to predict the post-impact vortex ring
properties based upon information about the incoming vortex ring for small Ri

1/Ra ratios.
We treat the problem as primarily inviscid, neglecting the breakdown of the incoming
vortex as it interacts with the wall. Vorticity production and diffusion from the aperture,
which is the genesis of the post-impact vortex, is captured by adopting a slug model for
vortex ring formation.

We begin with the potential flow model developed by Miloh and Shlien [59] for a vortex
ring approaching a wall with an aperture. It has been recently employed by Hu et al. [36]
to model the pressure loading across an annular smart material energy harvester due to an
approaching vortex ring. The model assumes the ring core radius is small in comparison
with the ring radius. The dimensionless initial core radius of the experimentally generated
ring is in the range of Rc1(0) = 0.17 and 0.20 for the high and low Reynolds number cases,
respectively. Following Miloh and Shlien [59], the potential field in the x < 0 half-space
φ− contains three components

φ−(x, r) = φv(x, r) + φw(x, r) + φa(x, r) (3.6)

where φv is the potential function for the incoming vortex ring, φw is the mirror of the
incoming vortex ring across the x = 0 plane required to model the wall, and φa is a surface
distribution of sinks of varying strength to model the aperture. The velocity field can be
obtained by computing the gradient of the potential function. Full expressions for each
term in Equation (3.6) are presented in Appendix A.

The self-induction speed of a thin core vortex ring in an infinite medium, assuming a
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Gaussian distribution of vorticity in the core, is given by [89, 94]

Us(R1, Rc1) =
Γ1

4πR1

[
ln

(
8R1

Rc1

)
− 0.558

]
(3.7)

For the vortex core to satisfy continuity as the ring radius changes, the core must maintain
a constant volume throughout the interaction. As such, the core radius at any time Rc1(t)
can be computed as

Rc1
2(t)R1(t) = Rc1

2(0)R1(0) (3.8)

The total advection velocity of the incoming vortex ring (U1, V1) due to self-induction, the
wall (image ring), and the aperture is

U1(t) =
dξ

dt
= Ua + Uw + Us (3.9a)

V1(t) =
dR1

dt
= Va + Vw (3.9b)

where (Uw, Vw) and (Ua, Va) are the velocities at the vortex ring core due to the image
ring (wall) and aperture, respectively. Full expressions for these velocity components are
presented in Appendix A.

The volumetric flow rate across the aperture Q, is computed as

Q(ξ, R1) = 2π

∫ Ra

0

∂φ−
∂x

∣∣∣∣
x=0

r dr

= 2Γ1

{
Ra +

[
(R1

2 + ξ2 −Ra
2)2 + 4ξ2Ra

2
]1/4

sin (σ/2)
}

(3.10a)

where

σ(ξ, R1) = tan−1

( −2ξRa

R1
2 + ξ2 −Ra

2

)
(3.10b)

Inspection of Equation (3.10b) reveals that as t→∞, corresponding to ξ → 0 and R1 →
∞, the flow rate converges to a constant value of Q = 2Γ1Ra. This contradicts the
observation in the present experiments, in which the volumetric flow rate initially increases
before reaching a maximum and subsequently decreasing, see the last row of Figure 3.5.
Furthermore, this implies that the vortex ring energy becomes unbounded, as seen from
the equation for the energy of a vortex ring in an infinite medium [94]

E1(R1, Rc1) =
1

2
Γ1

2R1

[
ln

(
8R1

Rc1

)
− 2.05

]
(3.11)
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For fixed Γ1, this expression is unbounded as R1 → ∞ regardless of the change in vortex
ring core radius.

To resolve this issue with non-physical model behavior in Q as t → ∞, we propose a
conservation of energy condition on the incoming vortex ring (assuming the expression for
its energy, Equation (3.11) is not influenced by the wall or aperture). Specifically, the total
energy of the system Es is set to be the initial incoming vortex ring energy, calculated
from Equation (3.11). This value remains invariant for the entire interaction under the
potential flow assumptions, and thus

Es = E1(R1(0), Rc1(0)) = const (3.12)

We estimate the rate of energy advected through the aperture, which forms the post-impact
ring, using a slug flow model [24, 31, 64], to be

dE2(t)

dt
=

Q3(t)

2π2Ra
4

(3.13)

We note that the slug model assumes the radial velocity profile to be uniform. Hence, the
incoming vortex ring energy at any time is

E1 = Es − E2 (3.14)

In order to maintain the constant total energy condition, that is, for the incoming vortex
ring energy to decrease as a result of the interaction, the circulation of the ring must be
allowed to vary in time. This, in turn, means that the advection speed of the vortex ring,
as well as the aperture flow rate, will be time varying.

By combining Equation (3.6) to Equation (3.14), the governing differential equations
in Equations (3.9) and (3.13) can be solved to determine the system dynamics. Equa-
tions (3.9) and (3.13) are solved using the FORTRAN ODEPACK LSODA algorithm. The
low Reynolds number case is simulated with initial conditions ξ(0) = −5.0, Rc1(0) = 0.197,
and Ra = 0.443. The initial conditions of ξ(0) = −5.0, Rc1(0) = 0.177, and Ra = 0.378 are
used for the high Reynolds number case. These values are extracted from the experimental
measurements.

Figure 3.7 compares the model prediction (black lines) with the experimental results,
wherein the 95% confidence intervals for the experiments are shown as grey bands. Fig-
ure 3.7(a) and (b) compare the predicted and measured incoming vortex ring x positions
versus time for the low and high Reynolds number cases, respectively. In both cases, ini-
tial agreement between model and experiment is excellent, with the low Reynolds number
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Figure 3.7: Analytical and experimental results comparison. The analytical results are
displayed as black lines, while the experimental results with their 95% confidence intervals
are represented with grey bands. Low and high Reynolds number cases are shown (a)-
(c) and (d)-(f), respectively. The incoming vortex ring’s x position, its circulation, and
aperture flow rate are shown in each of the columns from left to right, respectively.

results starting to diverge sooner due to viscosity. The model and experimental results for
both the low and high Reynolds number cases begin diverge around the time of the impact
(t ≈ 20). Additionally, the incoming vortex ring in the inviscid model propagates closer
to the wall than in the experiments, likely due to the finite core size of the experimental
ring (in comparison with the infinitesimal vortex core thickness assumed in the model). As
previously stated, vortex ring breakdown is not captured in the model.

The second column of Figure 3.7 features the circulation comparison. Agreement be-
tween the model and the experiment is good until the boundary layer rolls up into the
secondary vortex ring at t ≈ 20; the circulation reduction in the model is a consequence of
the energy conservation model. The aperture flow rate comparisons are shown in the last
column of Figure 3.7. Overall, the analytical model is able to forecast the trend and behav-
ior well, although the model slightly over-predicts the flow magnitude. The over-prediction
is likely due to the lack of a viscous loss mechanism in the analytical model.

With the aperture flow rate prediction ability validated for the analytical model, we
move to employing the Kelvin-Benjamin variational principle [9] to predict the post-impact
vortex ring properties. As explained previously in Section 3.2.5, the post-impact vortex
ring formation is terminated when its normalized energy α reaches the limit αlim ≈ 0.48
via the “pinch off” process. The vortex ring properties will no longer change after pinch
off; thus, the properties at this moment can be taken as the final post-impact vortex ring
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properties.

Again, we employ the slug model to estimate the properties of the flow across the
aperture [31, 64, 93]. Assuming no loss across the aperture, the energy, momentum, and
circulation of the jet are transfered to the post-impact vortex ring. Thus, utilizing the
aperture flow rate Q obtained from the analytical solution, the energy of the post-impact
vortex ring can be obtained using Equation (3.13), while its impulse and circulation can
be estimated with

dI2(t)

dt
=
Q2(t)

πRa
2

(3.15a)

dΓ2(t)

dt
=

Q2(t)

2π2Ra
4

(3.15b)

All three properties at any time instance can be obtained by numerical integration, then
the normalized energy α can be computed using Equation (3.5). Once α reaches αlim, the
vortex ring is considered fully formed and its properties no longer change.

Using the experimentally obtained parametersRa = 0.378±0.009 and αlim = 0.48±0.04,
we obtain a post to pre-impact circulation ratio of Γ2/Γ1 = 0.44±0.1 for the high Reynolds
number case. The experiment circulation ratio is Γ2/Γ1 = 0.64 ± 0.03; we see that the
model under-predicts the ratio, despite the over-prediction of the aperture flow rate Q
shown in Figure 3.7(f). The discrepancy is partially due to the over-prediction of the
flow rate that causes the ring to reach the limiting energy faster, which leads an earlier
separation. The discrepancy is also potentially due to the use of a slug velocity profile;
the numerical study by Rosenfeld et al. [88] demonstrated that the velocity profile has a
significant influence (up to 400%) on the ring formation values. Furthermore, the roll-up
of the incoming vortex ring keeps it near the aperture tip during the interaction, which
could manipulate the formation process; similar to the situation of generating a train of
vortex rings, where the leading vortex ring will alter the subsequent vortex ring formation
[51, 92]. Note, the low Reynolds number case is not compared, since its high viscous effects
further invalidates the slug model assumption for the flow though the aperture.

3.4 Conclusion

This study examined the interaction of a thin core vortex ring impinging on a wall with a
co-axially aligned aperture for two different incoming ring Reynolds numbers. Flow visual-
ization and particle image velocimetry was employed to elucidate the impact mechanics for
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three aperture sizes, one smaller than the incoming ring, one with radius approximately
equal to the ring radius, and one larger than it. In the small aperture to ring radius
case (Ra/R1 ≈ 0.41), the interaction of the ring with the wall is similar to that of a ring
impacting a solid wall. However, flow induced by the incoming ring passes through the
aperture and rolls up in to a second vortex ring, which eventually pinches off and advects
away. The strength of the generated vortex ring scales with the Reynolds number of the
incoming ring, though its radius is only mildly influenced. When the aperture radius is
approximately equal to the ring radius (Ra/R1 ≈ 0.83), the core partially passes through
the aperture and merges with vorticity rolling up due to fluid passing through the hole.
At still larger aperture radius (Ra/R1 ≈ 1.26) the ring passes through the hole, though it
loses 35% of its initial energy in the process.

This chapter further presents a model for predicting the post-impact vortex ring proper-
ties for the small aperture case at high Reynolds numbers. The model combines a modified
version of the potential flow solution introduced by Miloh and Shlien [59] with a slug flow
model for vortex ring formation at a sharp-edged orifice. The original potential flow model
predicts that flow through the aperture reaches and sustains a constant value as time going
to infinity, in contrast to the experimental observation. We overcome this by developing
an energy conservation argument, which results in the incoming vortex ring circulation no
longer being time invariant. The result is a model that reasonably captures the aperture
flow rate and post-impact vortex ring properties observed in the experiments for the high
Reynolds number case.
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Chapter 4

Hydrodynamic impulse enhancement
of a vortex ring interacting with a
co-axial aperture1

Chapter 3 experimentally studied a vortex ring colliding with a co-axial aperture to explore
the dynamics of a viscous vortex core impacting a thin edge. The degree of core impact with
the thin edge was controlled by the aperture-to-ring radius ratio, and the axisymmetry of
the geometry enforced in a largely two-dimensional interaction. The experiments explored
a small range of aperture-to-ring radius ratios and revealed that a vortex ring exited the
aperture regardless of aperture size. For small radius ratios, the wall blocked the majority
of the incoming ring, which subsequently followed the classical vortex rebound trajectory.
The colliding ring did, however, induce flow through the aperture, which created a shear
layer from the tip that formed into a new vortex ring exiting the aperture. For sufficiently
large apertures, vortex rebound no longer occurred and the entire incoming ring passed
through the aperture. Interestingly, the results in Figure 3.6 demonstrated a rise in the
hydrodynamic impulse for radius ratios on the order of one, though the physical mechanism
for this was not investigated.

In this chapter we further elucidate the physical mechanisms associated with the ex-
perimentally observed vortex impulse enhancement detailed in Chapter 3. Additional, the

1This work has been published on Journal of Fluid Mechanism [38] with me and my Ph.D. advisor
Sean D. Peterson as co-authors. I was responsible for performing the simulation, analyzing the results
and writing of the manuscript. Professor Peterson provided guidance for the study and edits for the
manuscript.
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experimental results are limited by the optical access, and the practicality of aperture
manufacturing and alignment. Hence, we seek to improve the documentation of the vortex
interaction by taking advantages of the high resolution data from the numerical results.

This chapter is organized as follows: Section 4.1 outlines the problem formulation and
numerical setup; Section 4.2 provides an overview of the vortex dynamics; Section 4.3 ex-
amines the passive enhancement of hydrodynamic impulse experienced by the incoming
vortex ring; Section 4.4 explains the structural loading experienced from the core interac-
tion; Section 4.5 discusses the circulation changes of the vortex ring after the interaction;
Section 4.6 briefly touches upon the influence of Reynolds number; and Section 4.7 sum-
marizes the major findings of this chapter.

4.1 Problem definition

We numerically explore the problem of an axisymmetric vortex ring colliding with a wall
with a co-axial aperture of radius Ra in an otherwise quiescent viscous fluid, as shown
schematically in Figure 4.1. A cylindrical coordinate system (r, x) with origin at the

Figure 4.1: Schematic of a vortex ring interacting with a rigid wall with a co-axial aperture
in an otherwise quiescent fluid.

center of the aperture is defined such that the x direction aligns with the aperture axis and
is positive in the direction of the incoming vortex ring propagation. The velocity field is
given by u = (u, v), where u and v are the axial and radial components, respectively. The

42



azimuthal vorticity field is obtained from ωθ(x, r, t) = ∂v/∂x − ∂u/∂r, while the vortex
ring circulation is computed as

Γ(t) =

∫∫

Ω

ωθ(x, r, t) dx dr (4.1)

where Ω is the vortex core region, defined herein by the contour of 1% of the initial
maximum vorticity of the ring (0.01 max[ωθ(x, r, 0)]). The vortex ring radius is given by
R(t), which we define as the distance from the x-axis to the location of maximum vorticity
within the vortex core. The vortex ring radius is located with sub-grid scale accuracy by
fitting a Gaussian distribution to the vorticity field in the least squares sense, similar to
sub-pixel interpolation schemes for correlation peak detection in particle image velocimetry
[87]. The volumetric flow rate through the aperture is computed as

Q(t) =

∫ Ra

0

u(r, 0, t) r dr (4.2)

and the pressure difference across the wall is given by ∆p(r, t).

The primary interest of this article is to examine how the momentum of the impinging
ring is altered by its interaction with the aperture. Thus, it is convenient to express
the momentum of the flow field in terms of vorticity. Applying the derivative moment
transformation to the density normalized momentum integral yields

∫

Cv

u dV =
1

2

∫

Cv

x× ω dV − 1

2

∫

∂Cv

x× (n× u) dS (4.3)

where x and n are position and boundary normal unit vectors [104], and ∂Cv is the
boundary of the control volume Cv. The first term on the right-hand side of Equation (4.3)
is the hydrodynamic impulse (or vortex impulse), while the second term accounts for
boundary flux and motions. Assuming the fluid in the far field is quiescent, and no-
slip along the wall, the second term is zero [2, 104]. Further assuming axisymmetry, the
hydrodynamic impulse I(t) simplifies to

I(t) = π

∫∫

Cv

ωθ(x, r, t) r
2 dx dr. (4.4)

By integrating over the vortex core Ω, Equation (4.4) can be used to compute hydrodynamic
impulse of a vortex ring [90, 31]. As note by Cantwell [14] for an unbounded fluid, I(t)
only accounts for 2/3 of the external forcing required to generate the fluid momentum,
with the remainder needed to adjust the far-field pressure to oppose the motion.
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Aperture to initial ring radius ratios (Ra/Ri) spanning from 0 to infinity (Ra/Ri = 0,
0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, and ∞) at three Reynolds numbers
(Re = Γi/ν = 1000, 2000, and 3000) are considered, where ν is the fluid kinematic viscosity.
The subscript i denotes the initial properties of the vortex ring (t = 0), when the vortex
ring is located 4Ri upstream of the aperture. For the purpose of comparison, the final
properties of the vortex ring, denoted by subscript f , are taken when the vortex ring
completely clears the aperture. The final times are tfΓi/Ri

2 = 42.3, 39.1 and 38.0 for
Re = 1000, 2000, and 3000, respectively, where t is time.

4.1.1 Numerical setup

The two-dimensional axisymmetrical simulations were performed using the second order
accurate transient incompressible Naiver-Stokes equations solver icoFoam in OpenFOAM
4.1. The wedge-shaped computational domain, comprising fine and course mesh regions
generated using Gmsh [30], is summarized in Figure 4.2. All vortex interactions occur

Figure 4.2: Schematic of the computational domain. Note: B.C. stands for boundary
condition.

in the 12Ri × 7Ri fine mesh region, which comprises 0.01Ri × 0.01Ri structured cuboid
elements. A course triangular prism mesh pads the fine mesh region, extending the domain
by an additional 5Ri in all directions (except for the axisymmetry boundary) to reduce
the influence of the far-field boundary condition. The employed numerical scheme is not
energy conserving [80, 83], and as such the mesh size used in this study is much smaller
than previous second-order accurate vortex ring-wall interaction simulations (e.g. Chu et
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al. [17]) to minimize numerical diffusion effects [83]. The mesh size is sufficiently small
that the boundary layer near the aperture plate is resolved without mesh inflation layers.
The mesh size was selected based on a grid convergence study of the full wall impact
(Ra/Ri = 0) case, which produces the most vorticity and strongest boundary layer. The
convergence metric was peak enstrophy varying by less than 1%.

The vortex core radius is assumed to be much larger than the plate thickness, and
thus the wall is modeled with a zero thickness no-slip baffle extending to the edge of the
fine mesh region. Note that the wall does not extend to the outer unstructured region to
prevent back pressure across the aperture, similar to the experiments in Chapter 3. The
totalPressure is applied as the far-field boundary condition, which sets the pressure p = 0
for outflow and p = |u|2/2 for inflow to mimic an unbounded fluid domain. The wedge

boundary condition is applied on the faces of the one-element-thick domain to facilitate
the axisymmetrical simulation.

4.1.2 Vortex initialization

The vortex ring was initialized in an open domain (no wall) with a Gaussian (Lamb-Oseen)
vorticity distribution given by

ωθ(x, r, 0)Ro
2

Γo
=

1

π(Rc/Ro)2
exp

[
−(x− xo)2/Ro

2 + (r −Ro)
2/Ro

2

(Rc/Ro)2

]
(4.5)

where Γo, Rc, Ro, and xo are the circulation, core radius, ring radius, and axial position of
the ring, respectively. The simulation was allowed to evolve until the vortex core obtained
a stable vorticity distribution, as shown in Figure 4.3. This vorticity distribution was
then mapped to the actual domain (with wall and aperture) with the ring centered at
x/Ri = −4. The values of Γo, Rc, and Ro were selected such that the vortex ring had the
desired initial attributes Ri and Γi after core transition completed (Figure 4.3(d)).

4.1.3 Validation

We validate the simulations by comparison with published experimental data for two con-
ditions: a vortex ring impacting a solid wall [17]; and the experimental results in Chapter 3.
Figure 4.4 compares the trajectories of a vortex ring impacting a solid wall from the sim-
ulations and experiments for Re = 2000. The simulation accurately predicts the vortex
rebound observed experimentally using flow visualization. This further implies that the
vortex position in simulations can be assessed with reasonable accuracy via the vorticity
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Figure 4.3: Initial transition of the vortex core from a Gaussian distribution to a realistic
elliptical distribution. Vorticity fields are shown at tRi

2/Γi ≈ (a) −8.3, (b) −7.2, (c) −5.9,
and (d) 0 for all Reynolds number.
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Figure 4.4: Trajectory of a vortex ring impacting a wall at Re = 2000. Simulation results
are represented by a line, while the experimental results from Chu et al. [17] are marked
by dots.
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peak location, despite the core deformation during the collision. Qualitative comparison
with flow visualizations in Chapter 3 are shown in Figure 4.5 for Ra/Ri = 0.4 at Re = 4000
(Figure 4.16 in Section 4.3.1 further compares experiment and simulation results for the
Ra/Ri = 1.2 case). The simulations show very good agreement with the experiments, ac-

Figure 4.5: Comparison between (a) flow visualization from Chapter 3 and (b) simulation
of a vortex ring impacting a coaxial aperture with Ra/Ri = 0.4 and Re = 4000.

curately capturing the core deformation and secondary vortex production throughout the
interaction.

Of potential concern is the impact of the employed axisymmetric assumption on the
flow development. Orlandi and Verzicco [81], for example, have shown that the axisym-
metrical condition prevents azimuthal instability development at higher Reynolds numbers.
However, Swearingen et al. [95] revealed that the azimuthal instability develops on the
secondary vortex ring under the strain field of the primary vortex ring. Chapter 3 have
shown the strength of both the primary and secondary vortex rings are reduced due to the
aperture, which damps the azimuthal instability. Furthermore, the azimuthal instability
only reaches a noticeable amplitude at the late stage of the interaction for the classical
vortex ring-wall interaction case [81, 95, 16]. Thus, the occurrence of the azimuthal in-
stability far exceeds the timescale of interest in the present study, and the axisymmetrical
simulations are deemed adequate for the Reynolds numbers investigated. This is corrobo-
rated by the observation that the dye layers in the flow visualization are preserved upon
impact, indicating that the flow remains laminar throughout the interaction.
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4.2 Results overview

We classify the vortex dynamics of the ring-aperture interaction into three regimes depend-
ing on the aperture to initial ring radius ratio Ra/Ri, namely, the impact, “vortex nozzle”,
and slip-through regimes. For the impact regime (Ra/Ri / 0.9), the aperture wall blocks
most of the colliding vortex ring and causes it to rebound, with behavior qualitatively
similar to a vortex ring impacting a solid wall. In the slip-through regime (Ra/Ri ' 1.3)
the majority of the incoming ring passes through the aperture and no rebound is observed.
The “vortex nozzle” regime (0.9 / Ra/Ri / 1.3) exhibits behavior qualitatively similar to
the slip-through regime, however, quantitatively the vortex ring impulse is enhanced dur-
ing the interaction with the aperture. These three regimes are discussed in the following
sub-sections using the Re = 2000 case as an exemplar.

4.2.1 Impact regime

We begin with the special case of a vortex ring impacting a solid wall (Ra/Ri = 0.0) as
a reference baseline; the vorticity evolution is shown in Figure 4.6. This configuration is
well documented, see, for example, Walker et al. [101] and Cheng et al. [16], and as such
we include only a brief description herein. In Figure 4.6(a) and (b), a boundary layer is
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Figure 4.6: Vorticity evolution for Ra/Ri = 0.0 at Re = 2000, with an increase in time
from (a) tΓi/Ri

2 ≈ 13.0 to (f) tΓi/Ri
2 ≈ 25.9 at an interval of tΓi/Ri

2 ≈ 2.6.

induced as the vortex ring approaches the wall. Upon collision in Figure 4.6(c) and (d),
the lower pressure vortex core imposes an adverse pressure gradient that leads to unsteady
boundary layer separation. The separated boundary layer rolls into a secondary ring, which
couples with the impinging ring and rebounds, as shown in Figure 4.6(d)-(f).
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Figure 4.7 displays the evolution of the Ra/Ri = 0.6 case, which exhibits similar fea-
tures to the Ra/Ri = 0 case, including boundary layer formation and separation (Fig-
ure 4.7(a)-(c)) and subsequent coupling with the incoming ring and rebound from the wall
(Figure 4.7(d)-(f)). However, at the aperture, same-sign vorticity forms at the aperture
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Figure 4.7: Vorticity evolution for Ra/Ri = 0.6 at Re = 2000, with an increase in time from
(a) tΓi/Ri

2 ≈ 13.0 to (f) tΓi/Ri
2 ≈ 25.9 at an interval of tΓi/Ri

2 ≈ 2.6. Corresponding
movies are available in the supplementary materials.

edge as fluid is forced through the opening as the approaches, see Figure 4.7(a) and (b).
The vortex-induced shear layer at the aperture tip spirals into a new vortex ring in a man-
ner similar to vortex ring formation by a piston/cylinder generator [31] and discussed in
Chapter 3.

To further explore the rebound dynamics, we consider the evolution of the total positive,
Γp, and negative, Γn, circulations in the x/Ri < 0 half-plane in Figure 4.8. The circulations
Γp and Γn are computed from Equation (4.1) with ωθ filtered to include only positive and
negative signed vorticity in the integration domain, respectively. Figure 4.8(a) shows the
colliding vortex ring during its interaction. With no aperture (solid wall), circulation
reduces through crossing-diffusion with the opposite-signed vorticity generated along the
wall. As the aperture ratio increases, the amount of opposite-signed vorticity generated
along the wall decreases, as shown by the evolution of Γn in Figure 4.8(b). Despite the
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Figure 4.8: Circulation evolution of the (a) colliding, Γp(t), and (b) secondary, Γn(t), vortex
rings for Re = 2000 throughout the interaction for Ra/Ri = 0.0 to 0.8. The dashed line
indicates the time at which a ring would pass the x/Ri = 0 plane in the absence of a wall
(Ra/Ri =∞).

reduction in opposite-signed vorticity generation, the circulation loss of the incoming ring
is more pronounced as the aperture ratio increases due to the direct vorticity transport
though the aperture. The directly transported vorticity joins the new ring formed by the
shear layer emanating from the aperture tip. As a consequence of the reduced circulation
at larger apertures ratios, the vortex rebound is weakened, as shown by the primary vortex
ring trajectories in Figure 4.9.
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Figure 4.9: Trajectory of the primary vortex ring core for radius ratios in the range Ra/Ri =
0.0 to 0.8 at an interval of 0.2 and Re = 2000.

Once the radius ratio reaches Ra/Ri ≈ 0.9, so much of the colliding vortex ring passes
though the aperture that the remaining ring is too weak to rebound, which marks the
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upper limit of the impact regime.

4.2.2 Slip-through regime

When the aperture radius is larger than the incoming vortex ring, the ring will slip though
the aperture instead of rebounding, as shown by the vorticity evolution for Ra/Ri = 1.4
in Figure 4.10. The vortex ring no longer induces an appreciable boundary layer on the
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Figure 4.10: Vorticity evolution for Ra/Ri = 1.4 at Re = 2000, with an increase in time
from (a) tΓi/Ri

2 ≈ 13.0 to (f) tΓi/Ri
2 ≈ 25.9 at an interval of tΓi/Ri

2 ≈ 2.6. Correspond-
ing movies are available in the supplementary materials.

facing plane, as displayed in Figure 4.10(a). The flow in the vicinity of the aperture
edge due to the main ring is now in the retrograde direction, resulting in a shear layer
of opposite signed vorticity moving upstream, see Figure 4.10(b) and (c). This vorticity
rolls up into a new tip vortex of opposite sign to that generated in the impact regime,
see Figure 4.10(c). This newly formed tip ring is drawn downstream by the passing ring,
which is in turn deformed by its presence, as illustrated in Figure 4.10(d). Towards the
end of the interaction, Figure 4.10(e) and (f), the passing vortex ring reorganizes itself and
propagates away from the aperture.
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For cases with even larger aperture ratio, the influence of the aperture continues to
diminish. The opposed-signed tip vortex ring is produced until Ra/Ri ≈ 1.8, but it does
not interact with the passing ring to any meaningful degree for Ra/Ri ' 1.6. Rather, the
tip ring propagates upstream (in the negative x direction), while the primary ring passes
with no major disturbance. For Ra/Ri ' 1.8, the influence of the aperture is essentially
negligible.

4.2.3 Vortex nozzle regime

The vortex nozzle regime (0.9 / Ra/Ri / 1.3) shares qualitative similarity with the slip-
through regime in terms of vortex dynamics, as shown in Figure 4.11. The incoming
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Figure 4.11: Vorticity evolution for Ra/Ri = 1.0 at Re = 2000, with an increase in time
from (a) tΓi/Ri

2 ≈ 13.0 to (f) tΓi/Ri
2 ≈ 25.9 at an interval of tΓi/Ri

2 ≈ 2.6. Correspond-
ing movies are available in the supplementary materials.

vortex ring induces opposite signed boundary layer near the aperture tip (Figure 4.11(a)
and (b)), that eventually separates when the colliding vortex ring is close to the aperture
(Figure 4.11(c)). The secondary vortex ring does not rebound, but is rather pulled towards
the aperture. The wall deforms the primary and secondary rings (Figure 4.11(d)]), both of
which are pulled though the aperture (Figure 4.11(e)). The secondary ring also induces a
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shear layer near the aperture edge that feeds back to the passing vortex ring. At the same
time, the passing ring reorganizes its deformed core, similar to the spiraling of a vortex
sheet during the formation process of a vortex ring [24, 33, 65]. After the interaction,
the passing vortex re-spirals its core into a Gaussian-like distribution and continues to
propagate onward (Figure 4.11(f)). The complex tip vortex dynamics for this aperture-to-
ring size leads to interesting quantitative modifications to the passing ring, as discussed in
the next section.

4.3 Passive enhancement of the hydrodynamic im-

pulse

Figure 4.12 presents the final vortex ring impulse If = I(tΓi/Ri ≈ 39.1) computed from
Equation (4.4) as a function of aperture-to-ring radius ratio for Re = 2000. The results
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Figure 4.12: Final hydrodynamic impulse, If , of the passing vortex ring for various radius
ratios, Ra/Ri, taken at tΓi/Ri

2 ≈ 39.1 for Re = 2000. Radius and circulation are normal-
ized by the baseline case of a freely advecting vortex ring (Ra/Ri =∞) at the same time
point.

are normalized by the baseline impulse, I∞, of a vortex ring advecting through the domain
in absence of a wall (Ra/Ri =∞) at the same time point. In the impact and slip-through
regimes (Ra/Ri / 0.9 and Ra/Ri ' 1.3, respectively), the final ring impulse is lower than
that of a freely advecting ring due to losses associated with interaction with the wall and
aperture tip, respectively. The normalized final impulse tends towards unity as Ra/Ri

becomes large, as expected. Interestingly, when the ring radius is approximately the same
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as the aperture radius, we observe impulse enhancement, which is the defining feature of
the vortex nozzle regime introduced in Section 4.2. As seen in Figure 4.12, the vortex ring
can increase its hydrodynamic impulse by more than 8% compared to a freely convecting
vortex ring through this nozzle effect for Re = 2000, with the largest enhancement observed
for Ra/Ri = 1.1.

To better understand the physics of the impulse enhancement, we consider Fraenkel’s
model of a vortex ring to express the impulse and energy [28, 94] given to second order by

I = πΓR2

[
1 +

3

4

(
Rc

R

)2
]

(4.6a)

E =
1

2
Γ2R

[
ln

8R

Rc

− 7

4
+

3

8

(
Rc

R

)2

ln
8R

Rc

]
. (4.6b)

In the present simulations the final core-to-ring radius ratio (Rc/R) for the impulse en-
hancement cases differs by less than 2% from that of a freely advecting vortex, which
accounts for at most 0.2% of the impulse variation and 1% of the energy variation based
on Equation (4.6). Hence, we neglect the terms in square brackets in Equation (4.6) for the
remainder of this discussion and focus only on the leading order changes due to variations
in the primary variables Γ and R only.

Considering the first order terms of Equation (4.6), we can compare post-impact prop-
erties If and Ef with analogous properties for a free ring, yielding

If
I∞
≈
(

Γf
Γ∞

)(
Rf

R∞

)2

(4.7a)

Ef
E∞
≈
(

Γf
Γ∞

)2(
Rf

R∞

)
, (4.7b)

which can be combined to give

If
I∞
≈
(
Ef
E∞

)1/2(
Rf

R∞

)3/2

. (4.8)

Noting that the rigid wall does no work on the fluid, and the ring losses energy to vorticity
production at the no-slip boundary during the interaction (Figure 4.11), then Ef/E∞ < 1.
Therefore, according to Equation (4.8), the observed impulse enhancement (If/I∞ > 1)
must coincide with an increase in ring radius (Rf/R∞ > 1). Figure 4.13(a) shows that
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Figure 4.13: Final (a) radius, Rf , and (b) circulation, Γf , of the passing vortex ring for
various radius ratios, Ra/Ri, taken at tΓi/Ri

2 ≈ 39.1 for Re = 2000. Impulse is normalized
by the baseline case of a freely advecting vortex ring (Ra/Ri =∞) at the same time point.

indeed the final ring radius, Rf , is larger than that of a freely convecting vortex ring in
the vortex nozzle regime.

Furthermore, rearranging Equation (4.7) yields

If
I∞
≈
(
Ef
E∞

)2(
Γf
Γ∞

)−3

(4.9)

reveals that the impulse enhancement must be accompanied by a decrease in circulation
ratio (Γf/Γ∞ < 1). Figure 4.13(b) shows that the circulation of the vortex ring does
indeed decrease through the interaction with the aperture, though the loss of circulation
is somewhat mitigated in the vortex nozzle regime. The mechanisms behind this will be
discussed in greater detail in Section 4.5.

4.3.1 Fluid entrainment

The volume of a vortex ring can be approximated with an ellipsoid with a semi-major axis
that is proportional to the ring radius [94]. Thus, the radial expansion of the passing vortex
ring observed in Figure 4.12(a) for the vortex nozzle regime implies that fluid entrainment
occurs during the aperture interaction. That is, the mechanism of the impulse enhancement
is the fluid entrainment process. To further explore the role of fluid entrainment in the
impulse enhancement, we express the impulse in terms of ring volume, V , and self-induced
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velocity, Us, as follows
I(t) = (1 + Cam)V(t) Us(t) (4.10)

where Cam ≈ 0.72 is the constant added mass correction [19, 94, 96]. We note that Cam is
purely dependent on the core to ring radius ratio, which is unaffected by the wall interaction
in the vortex nozzle regime. Thus, it is reasonable to assume that Cam remains constant.

The convective velocities of the ring obtained from the simulations are illustrated in
Figure 4.14(a). Except for large radius ratios, Uf/U∞ < 1, indicating that the ring loses
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Figure 4.14: Final (a) velocity and (b) volume of the passing vortex ring, Vf , versus radius
ratio, Ra/Ri, taken at tfΓi/Ri

2 ≈ 39.1 for Re = 2000. Velocity and volume are normalized
by the baseline case of a freely advecting vortex ring (Ra/Ri =∞) at the same time point.
Re = 2000 shown.

velocity during the wall interaction, consistent with the reduction in circulation and the
rise in ring radius observed in Figure 4.13 [28, 94]. Therefore, the only way for the ring
to gain impulse is for its volume to increase. This is supported by Figure 4.14(b), which
shows a substantial increase of the passing vortex ring’s volume in the vortex nozzle regime.
The largest volume gain of 24% occurs at Ra/Ri = 1.1, which is the radius ratio that also
exhibits the largest impulse enhancement.

Entrainment is visualized by seeding fluid along the front and back of the aperture
wall with passive tracers at tΓi/Ri

2 ≈ 0 as shown in Figure 4.15(a) and allowing them to
passively advect until tfΓi/Ri

2 ≈ 39.1, with the final positions displayed in Figure 4.15(b).
Solid black dots mark tracers that are ultimately entrained into the ring. The initial
position of these black tracers indicate that the fluid near the front of the aperture (0.9 <
r/Ri < 1.5) is entrained into the passing vortex ring during the collision. Comparing with
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Figure 4.15: Fluid tracers at their (a) initial seeding position and (b) final locations at
tfΓi/Ri

2 ≈ 39.1 for Ra/Ri = 1.0 and Re = 2000. Black circles indicate the tracers
entrained into the vortex ring during collision.

the vorticity distribution in Figure 4.11, the tip vortex ring occupies the initial black tracer
area during the collision, hinting at the tip vortex ring’s role in the entrainment process.

To further explore the entrainment mechanism in relationship with the tip vortex ring,
we display vorticity field snapshots and their corresponding experimental flow visualizations
for Ra/Ri = 1.2 in Figure 4.16. This initial vortex ring is marked with fluorescent dye in
the experiments (see Chapter 3 for further details) In Figure 4.16(a) and (d), region A
illustrates the formation of the tip vortex ring. The lack of dye within the core of the
tip ring shows that it comprises ambient fluid near the plate. In Figure 4.16(b) and (e),
the tip vortex begins to drawn fluid away from the aperture wall and injects it towards
the aperture, as shown by the arrows labeled B [see also Figure 4.11(e)]. Eventually, the
passing vortex ring entrains the injected fluid, as shown by the fluid circled and labeled
C in Figure 4.16(c) and (f). Such entrainment has previously been described by Dabiri
and Gharib [20] during formation, wherein the vortex ring captures the fluid within the
vortex ring “bubble”. The sequence of events depicted in Figure 4.16 reveals that the
tip vortex ring is the driving agent behind the fluid entrainment that enables the impulse
amplification. The coupling between the tip vortex ring and the aperture wall creates a
jet that feeds ambient fluid into the passing vortex ring.

A freely advecting vortex ring has zero net volumetric flux across a plane perpendicular
to its path since it replaces the displaced volume by sweeping fluid from in front to behind
the ring [19]. In the present case, the physical obstruction of the wall results in net positive
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Figure 4.16: Snapshots of (a)-(c) vorticity field and (d)-(f) flow visualization of Ra/Ri = 1.2
at Re = 4000. Columns correspond to tΓ/R2 ≈ 1.80, 20.2, and 22.5 from left to right.
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mass flux through the aperture as the traveling ring forces fluid through the hole. Mass is
conserved across the plane of the wall by virtue of retrograde flow beyond the extent of the
finite expanse wall. Figure 4.17 presents the peak volumetric flow rate Qm = max[Q(t)]
through the aperture, which shows a net positive volumetric flux rate for all radius ratios.
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Figure 4.17: Peak volumetric flow rate, Qm, for each radius ratio, Ra/Ri. Re = 2000
shown.

As shown in Figure 4.15(b), only the vortex nozzle range of radius ratios results in fluid
entrainment into the passing vortex ring, which consequently exhibits the highest peak
volumetric flow rate.

4.3.2 Source of impulse

Lastly we consider the source of the impulse in the “vortex nozzle”, which is a conserved
quantity. The observed net gain of hydrodynamic impulse in the system requires an exter-
nal source. Consider the control volume shown in Figure 4.1, with its boundary enclosing
the entire infinite fluid domain with a branch cut employed along the wall. The external
source must come from forces imposed on the fluid by the wall. Figures 4.18 and 4.19 show
the temporal evolution of the pressure field and the reaction force Fa(t) in the structure,
respectively for the Ra/Ri = 1.0 case. The pressure initially pulls the structure to the
left as the vortex ring approaches (Figure 4.18(a)), then to the right after the ring passes
through, with the post-interaction pressure field exhibiting less load on the structure due
to the reduced ring circulation (Figure 4.18(c)). The reaction force in the structure (Fig-
ure 4.19), which is equivalent to the force the structure applies on the fluid shows a net
positive force (in the x-direction) applied to the fluid through the interaction. Therefore,
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Figure 4.18: Pressure distribution for Ra/Ri = 1.1, taken at tΓi/Ri
2 ≈ 17.8, 18.8, and 19.9

from left to right. Re = 2000 shown. Re = 2000 shown.
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Figure 4.19: Reaction force histories, Fa(t), for Ra/Ri = 1.0.
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the momentum balance for the control volume can be written as

Ii + Ia = Ii +

∫ tf

ti

Fa dt = Ii − 2π

∫ tf

ti

∫ ∞

Ra

∆p r dr dt = If + Is (4.11)

which includes a net positive average reaction force due to the pressure loading applied
during the interaction for impulse enhancement. Note that Is stands for the total impulse
of secondary vortices, such as shear layers and the tip ring shown in Figure 4.10(f) and Ia
represents the added impulse. The impulse gain for the case shown in Figures 4.18 and 4.19
is Ia/ΓiRi

2 = 2.16.

4.4 Structural loading

In this section, we will further expand the discussion in the last sub-section on the struc-
tural loading to the entire Ra/Ri range. Snapshots of the pressure field for the solid wall
(Ra/Ri = 0.0) and impact regime (Ra/Ri = 0.6) are shown in Figure 4.20. Impact with
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Figure 4.20: Pressure distribution for (a) Ra/Ri = 0.0 at tΓi/Ri
2 ≈ 16.4, and (b)(c)

Ra/Ri = 0.6 at tΓi/Ri
2 ≈ 16.4, 19.0, respectively. Re = 2000 shown.

a solid wall is a limiting case for the structural loading. As the ring collides, the forward
flow at the central axis hits the wall, forming a high pressure stagnation zone at the center,
which balances out the low pressure from the vortex core (Figure 4.20(a)). Thus, almost
no net force is exerted on the structure. On the other hand, the impact regime exhibits a
similar forcing pattern to the vortex nozzle regime discussed in the previous section. The
aperture opening relieves the high stagnation pressure seen in the solid wall case, allowing
the low pressure core to dominate and pull on the plate initially (Figure 4.20(b)). Once the
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new ring formed at the aperture gains sufficient strength, its influence begins to show as
it pulls on the plate in the positive x direction, while the impinging ring influence reduces
as it rebounds away (Figure 4.20(c)). For the vortex nozzle and slip-though regimes, the
low pressure vortex core becomes the only contributor to the structural loading, as shown
in Figure 4.18, where it pulls at first in the negative then positive x direction as it passes
though the aperture. As the aperture becomes larger and larger, the pressure loading from
the passing vortex ring diminishes.

As such, the structural loading, Fa(t), exhibits the same pattern regardless of the
regime, excepting the case of a solid wall with no aperture (Ra/Ri = 0.0), as shown in
Figure 4.21(a). The related added impulse, Ia, is shown in Figure 4.21(b) for all cases.
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Figure 4.21: Typical (a) pressure force histories, Fa(t), and (b) added impulse Ia as a
function of radius ratio, Ra/Ri. Re = 2000 shown.

The figure shows that the added impulse is positive in every cases, albeit small for Ra/Ri

approaching zero, consistent with the small net force on the wall suggested by due Fig-
ure 4.21(a). This is not to say, however, that the colliding vortex ring does not experience
significant impulse gain. As shown by the trajectories of the colliding vortex ring (Fig-
ure 4.4), the colliding ring undergoes a noticeable radial expansion, which corresponds to
an increases of impulse (I ∝ ΓR2, see the beginning of Section 4.3). However, this impulse
gain is balanced out by the production of secondary vortices, which have opposing impulse.

As Ra/Ri increases, so too does the added impulse due to the mitigation of the sec-
ondary vorticity production. In the vortex nozzle region there is a sudden drop in the
added impulse, which then rises again outside of this region. We see that Ia continues to
rise after Ra/Ri = 1.2, but the impulse gain for the passing ring begins to diminish (see
Figure 4.12). This is a result of the aperture tip vortex ring being unable to feed into the
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passing ring; instead, it creates secondary shear layers. For the large Ra/Ri, the influence
of the aperture begins to drop off, and hence a decrease in the added impulse is observed.

Lastly, to compare the unsteady loading between cases, we plot the peak-to-peak force,
Fptp = max[Fa(t)] −min[Fa(t)], against the radius ratio in Figure 4.22. As expected, the
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Figure 4.22: The peak-to-peak force, Fptp as a function of radius ratio, Ra/Ri. Re = 2000
shown.

unsteady loading maximizes in the vortex nozzle regime. This leads to an unsteady force
amplitude that is orders of magnitude higher than for the solid wall and four times larger
than the slip through regime with Ra/Ri = 1.8. This highlights the criticality of vortex
positioning for applications such as sensing/energy harvesting with smart materials, where
unsteady loading needs to be maximized [36].

4.5 Vorticity production

The final circulation of the vortex ring, Γf , is plotted against the radius ratio in Fig-
ure 4.13(b), normalized by the Ra/Ri = ∞ case to eliminate circulation changes from
diffusion over time. The circulation rises to a local maximum at Ra/Ri = 1.0 then dips to
a local minimum at Ra/Ri = 1.2, marking the approximate boundary of the vortex nozzle
regime. At higher aperture radius ratios the circulation tends towards the freely advecting
vortex case as the influence of the aperture diminishes.

The circulation of the passing vortex ring at Ra/Ri = 1.0 has approximately the same
value as that of the Ra/Ri = 1.6 case, where the influence of the aperture is almost
negligible. The passing vortex ring in the Ra/Ri = 1.0 case maintains its circulation despite
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significant transformation and interaction, as illustrated in Figure 4.11. The energy of a
vortex ring is proportional to the square of the circulation, see Equation (4.6b), and thus
the minimal loss of circulation for Ra/Ri = 1.0 also implies that direct collision with the
aperture tip does not consume as much energy. This begs the question, why does the
passing vortex ring in the Ra/Ri = 1.0 case lose so little circulation despite significant
disruption during impact with the aperture?

To address this question, we investigate vorticity production. As discussed by Morton
[67], the passing ring can only lose circulation via cross-diffusion with opposite-signed
vorticity, which in this case, must be induced at the wall. Following Chu et al. [17], the
vorticity production can be quantified by the enstrophy history E(t) in the fluid domain
S, which is computed as

E(t) = π

∫

S

ωθ
2(x, r, t) r dx dr. (4.12)

Examples of the enstrophy history for the case of Ra/Ri = 0.8, 1.0 and 1.2 are shown in
Figure 4.23(a). Enstrophy generally decreases in time due to diffusion, but at the moment
of collision, it spikes to a peak due to vorticity production. To compare between cases, the
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Figure 4.23: Examples of (a) enstrophy history and (b) peak enstrophy during collision,
Ep, for each radius ratio, Ra/Ri. Re = 2000 shown.

peak enstrophy (Ep) reached during collision for each case is presented in Figure 4.23(b).
The plot shows that vorticity production is the highest at the lower ranges of Ra/Ri due
to the large amount of induced vorticity and vortex stretching generated during collision
of the vortex ring with the wall [18]. At high radius ratios, the peak enstrophy tapers off
because of the diminishing induced vorticity on the wall and at the aperture tip.

Local extrema are observed for Ra/Ri = 1.0 and Ra/Ri = 1.2 that correlate well
with the local extrema in the final vortex ring circulation in Figure 4.13(b), showing that
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the circulation variation of the passing vortex ring is linked to vorticity production, and
the subsequent cross-diffusion. The drop in vorticity production at Ra/Ri = 1.0 and the
subsequent peak at Ra/Ri = 1.2 results from regions of the vortex core colliding with the
aperture tip. Unlike in collision with a solid wall where the vortex core remains relatively
“protected” and intact, the inner region of the passing vortex ring directly interacts with
the aperture tip in this range of radius ratios. The center of a viscous vortex core has the
lowest velocity and is surrounded by a high-velocity bell. For a ring with a similar radius
as the aperture, the low-velocity region envelops the aperture tip as it slips by, while the
fluid in the high-velocity bell simply flows around, thus minimizing opposite-sign vorticity
production. If the aperture is slightly bigger than the ring radius, such as the Ra/Ri = 1.2
case, the high-velocity bell interacts with the aperture tip directly and creates a strong
shear layer resulting in increased opposite-sign vorticity production. This is visualized
in Figure 4.24 where both the induced vorticity at the surface and the tip are lower for
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Figure 4.24: Zoomed view of the vorticity field near the aperture tip for the cases of (a)
Ra/Ri = 0.8, (b) 1.0 and (c) 1.2 at tΓi/Ri

2 ≈ 18.5. Re = 2000 is shown.

Ra/Ri = 1.0 than Ra/Ri = 0.8 and 1.2.

In summary, the velocity distribution of a viscous vortex core plays a critical role during
collision with a sharp structural tip, because the partial collision exposes the inner core
to the solid boundary. This differs from the classical vortex-wall interaction, wherein the
vortex rebound protects the vortex core from interacting with the wall.
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4.6 Influence of Reynolds number

Lastly, we touch upon is the influence of the Reynolds number. Figure 4.25 compares the
vorticity snapshots at the moment of impact (tΓ/R2 = 19.2 and 17.7 for Re = 1000 and
2000, respectively). Despite considerable differences in vortex ring strength due to viscous
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Figure 4.25: Vorticity fields for Re = 1000 at tΓ/R2 = 19.2 and 3000 at tΓ/R2 = 17.7 are
shown on the first and second rows, respectively. Radius ratio Ra/Ri = 0.6, 1.0, and 1.4
are displayed in the columns from left to right, respectively.

diffusion during approach towards the wall, the features remain near identical. The weak
Reynolds number dependence agrees with the literature on the classical vortex ring/dipole
- wall interactions [80, 81].

The impulse enhancement follows the same trend as shown in Figure 4.25(a), which
presents the final vortex ring impulse as a function of radius ratio for Re = 1000, 2000, and
3000. However, the impulse enhancement is observed for a broader range of radius ratios
for higher Reynolds numbers, likely a result of the reduced losses during the collision as
the viscous effect weakens. In addition, the impulse enhancement increases with increasing
Reynolds numbers, with 4% enhancement observed for Re = 1000 and 11% for Re =
3000. To further examine the Reynolds number influence on the vortex nozzle effect, we
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Figure 4.26: Reynolds number comparisons of the final vortex ring (a) impulse If at all
radius ratio, and (b) radius Rf and circulation Γf at Ra/Ri = 1.1. Values of Re = 1000,
2000, and 3000 are taken at tΓ/R2 = 42.3, 39.1 and 38.0, respectively.

compare the primary vortex ring properties (ring radius and circulation) at Ra/Ri = 1.1 in
Figure 4.26(b). To no surprise, the final ring radius is higher due to the improved vortex
nozzle effect, which entrains extra fluid to expand the ring radius. On the other hand,
the drop in circulation appears to be counter-intuitive, since the lower circulation suggests
higher losses despite the reduced effect viscosity. However, our analysis in Section 4.3
shows that for the energy to be at best conserved, the circulation must drop in order for
the impulse to increase (see Equation (4.9)). Hence, the circulation loss is a trade-off of
the improved vortex nozzle at higher Reynolds numbers. Hence, the vortex nozzle is a
robust feature during the collision of a vortex ring with an aperture of a similar size over
the Reynolds numbers investigated herein.

4.7 Conclusion

The problem of a viscous vortex ring colliding with a co-axial aperture was explored nu-
merically over a range of aperture-to-ring radius ratios. The vortex dynamics are classified
into three regimes: impact, vortex nozzle, and slip-through, based upon the primary event
experienced by the vortex ring. When the aperture is smaller than the ring radius, the
portion of the vortex ring that impacts the wall exhibits the classical vortex rebound ac-
tion. When the aperture is larger than the ring it slips though the aperture, potentially
undergoing some core deformation due to the influence of the tip. The most interesting
phenomenon occurs when the ring radius is approximately the same as that of the aper-

67



ture. In this case, the passing vortex ring experiences hydrodynamic impulse enhancement
of up to 4%, 8% and 11% respectively for Re = 1000, 2000 and 3000 when compared to a
freely advecting ring. The impulse enhancement is the result of fluid entrainment during
the collision, wherein the passing vortex ring gains considerable volume (mass). Whereas
a traditional jet nozzle gains momentum through fluid acceleration, the vortex nozzle in-
creases momentum through mass accumulation from fluid entrainment. Because of the
fluid entrainment, the geometric constraint actually enhances the fluid transport across
the aperture. The source of the impulse is the structural reaction force, which counters the
pressure loading bias created by the passing vortex ring. The impulse enhancement is also
attributed to the relatively smaller reduction in circulation that arises due to the details
of the interaction of the vortex core with the aperture edge. Upon collision, the slow mov-
ing fluid at the centre of the vortex core envelops the aperture tip, allowing high velocity
fluid to move around the structure without generating significant opposite-sign vorticity.
Reduced production of opposing vorticity weakens the cross-diffusion during the collision,
thus allowing the passing vortex ring to maintain nearly all of its circulation. Reduced
vorticity production also results in low enstrophy which correlates with low energy loss.
Thus, the collision consumes little energy from the passing vortex ring.

The reported results in this article highlight the basic behaviour of vortices colliding
with a thin plate tip, which could aid the understanding in engineering applications that
employ thin plates, such as smart material sensing/energy harvesting [36, 85]. More im-
portantly, the current interpretation of structural loading from vortex motions are based
on the hydrodynamic impulse term in Equation (4.3), which on the surface, breaks down
two mechanisms, namely circulation and trajectory modifications during active vortex cre-
ation and destruction [103, 2, 48]. Outside of the formation phase, fluid entrainment was
thought to be only a consequence of diffusion, which brings no gain in impulse [20]. How-
ever, our curated scenario exposes the hidden mechanism of passive (without energy input)
fluid entrainment in sacrifice of circulation, which introduces noticeable impulse gains for
vortices, similar to a jet nozzle.
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Chapter 5

The influence of collision angle for
viscous vortex reconnection1

To address the proposed questions regarding the role of pyramid stretching and collision
angle for viscous vortex reconnection, we seek to re-evaluate the process by considering
the collision of thick core vortex rings at various collision angles. The chapter is organized
as follows: Section 5.1 outlines the problem formulation and numerical setup; Section 5.2
provides an overview of the influence of collision angle on vortex reconnection; Section 5.3
explores the details of the vortex threads during reconnection; and Section 5.5 summarizes
the major findings of this chapter.

5.1 Problem statement

Herein, we numerically explore the influence of collision angle on the viscous reconnection
process. There are three primary initial condition configurations in the studies of the
fundamental vortex reconnection process: orthogonal [111, 7]; anti-parallel [42, 39, 53]; and
two-ring configurations [47, 46]. It is well known that vortex reconnection is a universal
phenomenon, with a similar process occurring regardless of initial condition [111, 57, 109,
46, 7, 45, 6]. However, for the goal of investigating collision angle effects, the choice of initial
condition can greatly simplify the analysis. Hence, deliberate consideration regarding the
initial condition are required to isolate the influence of the collision angle.

1This work has been accepted for Physics of Fluids with me and my Ph.D. advisor Sean D. Peterson
as co-authors. I was responsible for performing the simulation, analyzing the results and writing of the
manuscript. Professor Peterson provided guidance for the study and edits for the manuscript.
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First, the orthogonal vortex tube configurations are commonly employed to examine
the impact of asymmetry on vortex reconnection [111, 7]. Studies have shown that a pair
of orthogonal vortex tubes undergo re-orientation that locally aligns the colliding vortices
into an anti-parallel configuration prior to collision. The re-orientation process precludes
control of the collision angle and is hence rejected from this study.

The anti-parallel configuration provides indirect control over the collision angle by
adjusting the ratio between the perturbation amplitude and the separation distance (see
Figure 5.1). However, there are two major shortcomings that render it unsuitable for

Figure 5.1: Anti-parallel and two rings initial conditions for the numerical investigation of
the vortex reconnection.

this study. First, the perturbation rotates around the axis of the unperturbed vortex
tubes, which alters the collision angle continuously during its approach, making it difficult
to define an exact angle at the moment of collision. Second, the curvature at the peak
of the perturbation will also be altered by the change in amplitude (smaller amplitude
corresponds to a flatter peak). From the thin filament model of the pyramid process
[62, 63], the local curvature plays a critical role in the kinematics during pyramid formation.
Hence, the influence of collision angle can not be isolated from the curvature effect for this
configuration.

The two ring configuration, shown in Figure 5.1, provides direct control over the collision
angle without affecting spanwise curvature. However, it is not without shortcomings. As
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mentioned previously, a change in reconnection completeness with respect to collision angle
was observed, which Kida et al. attributed to the secondary motion induced by the rest
of the vortex ring [46]. They reported that the remainder of the vortex ring undergoes
a major distortion upon collision, which come in contact with the reconnection threads
and enhances the reconnection completeness. However, the reported secondary motion is
unique to the two ring configuration and does not apply to other scenarios. Furthermore,
the distorted vortex rings undergo their own vortex tilting and stretching which contribute
to the evolution of various global quantities critical to the analysis of vortex reconnection,
making it difficult to isolate the effect of reconnection alone from the quantitative data.

Herein we opt to employ the vortex ring configuration because of its ease in defining and
adjusting the collision angle. We impose an additional symmetry condition by employing
a circular array of vortex rings to prevent secondary flow interactions in the reconnection
region [34]. Global quantities are computed over the sub-divided symmetrical domain only,
reducing ambiguity over changes from secondary motions unrelated to the reconnection
process. We stress that the goal of our investigation is to examine the fundamental process
of vortex reconnection with a focus on the role of collision angle, not the interaction of
symmetrically aligned vortex rings. The additional imposed symmetry is to eliminate the
secondary motions that are specific to the two ring configuration. By eliminating the
two-ring specific secondary motion, the results can be more universally referenced as a
fundamental behaviour of viscous vortex reconnection.

5.1.1 Simulation setup

In this sub-section, we details the setup of the symmetrical collisions between thick core
vortex rings. Figure 5.2 presents a schematic of the collision angle θ = 90◦ case as an
exemplar. The collision angle (θ) can be altered by changing the number of rings (Nr).
The origin of the domain is defined as the intersection of the initial axes of propagation of
all the rings; the xy plane contains the initial propagation axes and thus bisects all of the
vortex rings, with the z-axis forming a right-handed coordinate system (out of the page in
Figure 5.2).

The initial vortex rings have equal circulation Γ, ring radius R, core radius Rc, and
Reynolds number Re = Γ/ν, where ν is the kinematic viscosity. For the remainder of the
article, the length scale R and time scale R2/Γ are employed for non-dimensionalization,
unless otherwise noted. The vorticity within the vortex core is initialized with a circular
Gaussian distribution, consistent with the recent studies of similar topics [62, 63, 107, 108].
However, the circular Gaussian distribution is not a steady solution for thick core vortex
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Figure 5.2: Top view schematic of the collision angle θ = 90◦ configuration.

rings, for which a realistic core has a more elliptical shape [28, 76]. Therefore, the initial
circular core requires a transition phase in order to reach steady state. To ensure that the
core transition does not interfere with the reconnection process, the simulations for each
collision angle case were initialized with a Gaussian core distribution and allowed to evolve
until the cores reached a steady state and then mapped to the actual simulation domain.

The separation distance s(t) is defined as the shortest distance between the cores of
the colliding vortices as shown in Figure 5.2. We define the position of a vortex core as
the location of the peak vorticity within it. To further improve the precision of the vortex
position (limited by grid size), we performed sub-grid interpolation by locally fitting a bi-
variable Gaussian distribution around the 5× 5 local grid points around the peak vorticity
within the vortex core then used the peak of the fit to locate the vortex position.

Regarding the initial positioning of the vortex rings, we employ a different strategy
from the study of Kida et al. [46]. In their study, the vortex rings are placed at a constant
initial separation distance s(t = 0) regardless of collision angle. However, the vortex rings
are converging towards each other at different rates depending on their collision angle
(∝ cos(θ/2)). To address this difference in the approach time scale, we instead use an
initial separation distance that varies based on the collision angle such that the collision
initiation time is the same for all cases. For a thin vortex core this would simply require
scaling the initial separation distance by cos(θ/2). It is further complicated, however, by the
thick elliptical vortex core, which adds an angle-dependent offset, since vortex reconnection
initiates upon core perimeter contact, not the center. Since there is no clear definition for
the moment of contact due to the continuous vorticity distribution, we instead fine-tuned
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the initial position such that each collision angle case has the same reconnection initiation
time, such that the colliding vortices retain their initial circulation until t ≈ 5 (to be
discussed in Section 5.2.3, see Figure 5.8). The initial separation distance s(t = 0) selected
for our simulations is plotted in Figure 5.3. As expected, the initial separation distance
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Figure 5.3: Initial separation distance s(t = 0) (blue dots) with respect to the collision
angle θ. Orange dashed line represents the trend of cos(θ)/2.

follows the trend of cos(θ)/2 at low collision angle, but deviates at high angles because of
the vortex core offset.

For the parametric study, we employed vortex rings with core-to-ring radius ratio of
Rc/R = 0.25 at Re = 500, 1000, 2000, and 3000. For each Reynolds number, simulations
with Nr = 2, 3, 4, 5, and 6 were performed, corresponding to θ = 0◦, 60◦, 90◦, 108◦, and
120◦, respectively (see Figure 5.4). As previously mentioned, we restrict our analysis to

Figure 5.4: Vorticity isosurfaces of |ω| = 1 for the initial conditions. Collision angles of
θ = 0◦, 60◦, 90◦, 108◦ and 120◦ shown from (a) to (e), respectively. Regions of interest are
highlighted in blue.

one of the collision zones by exploiting the symmetry of the problem, as highlighted by
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the blue isosurfaces in Figure 5.4. Following Hussain and Duraisamy [39], the mechanisms
of viscous vortex reconnection are explored primarily via two key planes: the cutting (xy)
plane and the reconnection (xz) plane, shown schematically in Figure 5.5.

Figure 5.5: Schematics of the cutting (xy) and reconnecting (xz) planes.

5.1.2 Numerical Scheme

The Navier-Stokes equation in the form

duk

dt
= (u× ω)k − ν|k|2uk − k

k · (u× ω)k
|k|2 (5.1)

are solved with an in-house pseudo-spectral code in a triple periodic domain. Herein, u, ω,
k, and subscript k are the velocity vector, vorticity vector, spectral space vectors, and the
Fourier coefficients of a vector field, respectively. Time-stepping is implemented with the
low-storage third-order Runge-Kutta scheme. The standard 2/3-rule is applied to prevent
aliasing error.

The domain sizes (x, y, z) are (16R, 8R, 16R) for θ = 0◦, and (12R, 12R, 16R) for
all other collision angles. The mesh size and time step used for each Reynolds number
are listed in Table 5.1, which are based upon a grid convergence study for θ = 120◦ (as
it exhibits the highest vorticity amplification). The mesh was considered to be converged
when all global and local quantities of interest (e.g., maximum vorticity) varied by less
than 1% compared to the next lower resolution simulation. For further validation, we
compared our results with the experimental study of three colliding rings [34], as shown in
the Appendix B.
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Reynolds number Mesh size Time step
500 1/20 1/16
1000 2/55 1/32
2000 1/45 1/64
3000 1/70 1/128

Table 5.1: Mesh size and time step employed for each Reynolds number normalized by the
length (R) and time (R2/Γ) scales, respectively.

5.2 Results overview

In this section, we provide an overview of the results for Re = 2000 to highlight the effects
of collision angle on the reconnection process (Reynolds number effects are considered in
the final subsection herein). Snapshots of vorticity isosurfaces in their symmetrical sub-
domain for all collision angles are shown in Figure 5.6. Note, for ease of reference in the
discussion, we use letter sub-plot labels to refer to each collision angle in Figure 5.6. The
roman numeral sub-plot labels (i)-(v) in Figure 5.6 refer to time steps from t = 0 to 20 at
an interval of ∆t = 5. Snapshots at t = 0 shown in Figure 5.6(i) are the same as the blue
regions in Figure 5.1, but with their x-axes orientated vertically.

At t = 5 in Figure 5.6(ii), the colliding vortices initiate core contact, but no obvious
qualitative differences are observed other than the collision angles. At t = 10 in Fig-
ure 5.6(iii), the colliding vortex tubes are now parallel with each other. Note, the colliding
portion of the vortex tubes is commonly refereed as the reconnection threads in the litera-
ture. Major differences can be observed at this stage, where the reconnection threads are
shorter but the tails of the threads (blue flat region extending downward from the lead-
ing threads) are larger for high collision angle cases. As the interactions progresses, the
differences between the reconnection threads become increasingly prominent as shown in
Figure 5.6(iv) and (v). For the θ = 60◦ case in Figure 5.6(b-v), the vortex threads remain
strong and continue to stretch radially outward. On the other hand, at large angles, such
as the θ = 120◦ case in Figure 5.6(e-v), the reconnection threads have already receded
away. The reconnection bridges, which are newly formed vortex tubes that connect the
colliding vortices, are also noticeable at either end of the reconnection threads starting at
t = 15 (see Figure 5.6(iv)). Overall, we observed the same reconnection process across
all non-zero collision angles, where the keys features, such as the reconnection threads
and bridges, are clearly present. This agrees with the literature that similar reconnection
process occurs regardless of the initial condition [111, 57, 109, 46, 7, 45, 6].

We note that there is no reconnection for the limiting case of θ = 0◦ due to the colliding
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Figure 5.6: Vorticity isosurfaces of |ω| = 1 (transparent blue) and 2 (solid red) for collision
angles (a) θ = 0◦, (b) 60◦, (c) 90◦, (d) 108◦, and (e) 120◦ at Re = 2000. Snapshots at t = 0
to 20 with an interval of ∆t = 5 are shown in (i) to (v), respectively.
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vortices remaining perfectly parallel to one another throughout their interaction. Entire
vortex lines are annihilated completely because of the uniform cross-diffusion, hence no
reconnection. However, the circulation reduction for the colliding vortex tubes is caused by
the same mechanism as in the rest of the vortex reconnection cases, wherein the circulation
is reduced by viscous cross-diffusion between the colliding vortices, and its rate is amplified
by vortex stretching. The results from the case of θ = 0◦ provide an important baseline
where the pyramid stretching is absent (parallel stretching only, see Figure 1.1), hence the
inclusion in this study.

5.2.1 Enstrophy evolution

The vorticity evolution in Figure 5.6 demonstrates a strengthening of parallel stretching
with respect to decreasing initial collision angle as a result of the improved uniformity in
mutual induction between the colliding vortices, in agreement with our discussion around
Figure 1.1. However, there are no obvious signs of the pyramid stretching.

To verify the qualitative observations in Figure 5.6, we quantify the level of vortex
stretching using enstrophy evolution, which is defined as Ω(x, t) = ω(x, t) · ω(x, t). Its
evolution is governed by the following enstrophy transport equation

DΩ

Dt
= ωiωj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ ν∇2Ω + 2ν||∇ω||2 (5.2)

where the subscripts i, j indicate the vector components in Einstein notation. The first term
in the right-hand side of Equation (5.2) is the vortex stretching term that determines the
level of enstrophy production, while the last two terms are the diffusion and dissipation
terms from viscous effects [10]. Thus, enstrophy intensification during the reconnection
process is an excellent indicator for level of vortex stretching.

Since pyramid stretching produces localized stretching at the pyramid apex (see Fig-
ure 1.1), we can quantify it from the peak enstrophy at the cutting plane Ωp(t) = max[Ω(x, y, z =
0, t)]. Note, we verified through inspection that the peak enstrophy remains within the
vortex core throughout the entire simulation. On the other hand, parallel stretching pro-
duces overall stretching due to the uniformity in the mutual induction, and thus we employ
total enstrophy Ωp(t) =

∫
Ω(x, t) dV for the entire symmetrical sub-domain to measure

it. We note that the undesired vortex stretching from the rest of the vortex ring reported
by Kida et al. [46] is eliminated by the symmetrical condition. Thus, it is safe to assume
that the intensification of the total enstrophy Ωp(t) is a good approximation for the overall
stretching experienced during the reconnection process.
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The evolution of the total and the peak cutting plane enstrophy are illustrated in Fig-
ure 5.7(a) and (b), respectively. As expected, a high level of total enstrophy amplification
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Figure 5.7: Temporal evolution of (b) total enstrophy (Ωp) and (a) cutting plane peak
enstrophy (Ωp) for each collision angle (θ) at Re = 2000.

is observed for small angle cases in Figure 5.7(a), in agreement with the qualitative obser-
vations from Figure 5.6, where the reconnection threads are more stretched out at small
angles. However, the large angles produce the most enstrophy amplification locally at the
cutting plane, as shown in Figure 5.7(b). Combining with their minimal total enstrophy
amplifications in Figure 5.7(a), the data reveal a highly localized stretching and vortic-
ity amplification for large angles, aligned with pyramid stretching [62, 63]. This localized
stretching results in double the local enstrophy intensity between the θ = 0◦ and 120◦ cases.
The lack of evidences for such extreme amplification from the vorticity visualizations in
Figure 5.6 is likely a result of the low value iso-surfaces masking the highly localized event,
which may also explain the lack of reports of such localized stretching in the literature of
viscous vortex reconnection.

Lastly, in agreement with the discussion in Figure 1.1, the collision angle controls the
uniformity of mutual induction between the colliding vortices. For large angles, strong non-
uniformity produces localized stretching through the pyramid process. On the other hand,
at small angles, the uniformity weakens the pyramid stretching while strengthening the
parallel stretching. The inverse trend between the local and total enstrophy with respect
to collision angle illustrated in Figure 5.7 agrees with our hypothesis regarding the role
of the collision angle in vortex reconnection, as it controls the vorticity amplification by
adjusting the relative contributions of pyramid and parallel stretching.
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5.2.2 Reconnection rate

The rate of reconnection is enhanced by vortex stretching, where the steeper gradient of
a concentrated vortex core causes stronger cross-diffusion (higher ∇2ω) for the colliding
vortices. As such, we would expect faster reconnection at larger angles because of the
localized vorticity amplification.

To verify our speculation, we turn our attention to the cutting plane circulation evo-
lution, Γxy(t), and its rate, |Γ̇xy|(t), as presented in Figure 5.8. We note that the loss of
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Figure 5.8: Temporal evolution of (a) the cutting plane circulation, and (b) its rate for
each collision angle (θ) at Re = 2000.

cutting plane circulation directly corresponds to a gain in the circulation for the reconnec-
tion bridges on the reconnection plane (Γzy) for non-zero angles. Thus, it is an effective
measure of the reconnection rate and completeness. Figure 5.8 demonstrates that both
the rate and completeness (indicated by the circulation value at large times) are greatly
improved (faster and more complete) for large angles, in agreement with the conclusion of
strong vorticity amplification at large angles from Figure 5.7(b). That is, pyramid stretch-
ing is able to produce effective vorticity amplification localized at the cutting plane to
accelerate cross-diffusion for viscous vortex reconnection. Interestingly, the appearance of
intense parallel stretching of the reconnection threads observed in Figure 5.6 is not an
indication of performance of the viscous vortex reconnection, which can be easily misin-
terpreted when investigating vortex dynamics from flow visualization alone.

5.2.3 Reynolds number effects

In this sub-section, we report the impact of the Reynolds number. An overview of the
vorticity iso-surfaces at t = 15 for all Reynolds number examined is illustrated in Figure 5.9.
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In general,the reconnection threads are more stretched out at high Reynolds numbers,
indicating a strengthening of parallel stretching for the reconnection threads.

Quantitatively, it has been argued that the Reynolds number scaling of viscous vortex
reconnection is universal [39, 74, 6], with reconnection time ∝ Re−3/4, where reconnection
time is defined as the time for the cutting plane circulation (Γzy) to drop from 95% to 50%
of its initial value. However, the reconnection time criteria is problematic for this study
as it cannot account for the change in reconnection completeness, which also varies with
the collision angle. Instead, we opt to employ the maximum rate of circulation loss on the
cutting plane Γ̇m = max|Γ̇xz(t)| (see peak values in Figure 5.8(b)) to characterize the rate
of reconnection, a parameter that is also reported in Hussain and Duraisamy [39].

Figure 5.10(a) compares the trends of Γ̇m for Re = 500 and 3000. Both Reynolds
numbers exhibit increasing trends regarding the collision angle, indicating that the localized
vorticity amplification from the pyramid stretching is stronger at larger angles regardless of
the Reynolds number. Interestingly, the reconnection rate is faster at Re = 3000 at large
angles, but the trend reverses for small angles, which implies a change in the Reynolds
number scaling with respect to the collision angle.

To confirm our observation, we explore the trend of the Reynolds number scaling in
Figure 5.10(b), which reveals a wide range of scalings with opposing trends between high
and low collision angles in the Reynolds number range examined. High Reynolds number
vortices lead to faster mutual induction, resulting in stronger vortex stretching. For the
pure parallel stretching of the θ = 0◦ case, the peak reconnection rate scaling trends down-
ward with increasing Reynolds number, indicating that the gain in vorticity amplification
from vortex stretching is not sufficient to compensate for the loss of vorticity through
viscous cross-diffusion. If the observed strengthening of the reconnection thread parallel
stretching in Figure 5.9 is the primary mechanism for the viscous reconnection process,
then we would expect a similar Reynolds number scaling to the θ = 0◦ case for the rest
of the collision angle scenarios. However, as the initial collision angle increases and offsets
the balance of the stretching types, we see a gradual reversal of the Reynolds number
scaling. That is, a sufficient strength of the pyramid stretching can produce a level of
vorticity amplification that further increases the rate of cross-diffusion for reconnection at
high Reynolds numbers.

Again, the observed strengthening of parallel stretching in Figure 5.9 is deceptive for
judging the level of vorticity amplification through stretching for viscous vortex reconnec-
tion, as it can not explain the shift of Reynolds number scaling in Figure 5.10. The change
in Reynolds number scaling solidifies the impact of the pyramid stretching and challenges
the presumption of a universal Reynolds number scaling for viscous vortex reconnection
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Figure 5.9: Vorticity isosurfaces of |ω| = 1 (transparent blue) and 2 (solid red) for Reynolds
numbers (a) Re = 500, (b) 1000, (c) 2000, and (d) 3000 at t = 15. Collision angles of
θ = 0◦, 60◦, 90◦, 108◦, and 120◦ are shown in (i) to (v), respectively.
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Figure 5.10: Comparison of the maximum rate of cutting plane circulation loss Γ̇m with
respect to (a) collision angle, and (b) Reynolds number normalized by values at Re = 500.

[39, 74, 6].

Last, we observe a ceiling for the max rate of circulation loss with respect to the
Reynolds number in Figure 5.10(b). This is caused by the ephemeral nature of pyramid
stretching, which will be further elaborated as a part of the discussion for the reconnection
thread evolution in the Section 5.3.4.

5.3 Evolution of reconnection threads

In the last section, we reported a correlation between the localized vorticity amplification
and the initial collision angle (see Figure 5.7(b)), which is in agreement with the expected
behaviour of pyramid stretching. The localized vorticity intensification greatly increases
the reconnection rate (see Figure 5.8) and Reynolds number scaling (see Figure 5.10), im-
plying that pyramid stretching is the primary vortex stretching mechanism that determines
the performance of viscous vortex reconnection. To further understanding the observed
correlation, we examine the kinematics of the colliding vortices in detail.

To confirm the presence of pyramid stretching, we consider curvature evolution of the
reconnection threads. Though there is no unique descriptor of the central axis for such
deformed vortex tubes during the interaction, herein, we consider the vortex line connecting
the peak vorticity within the vortex core at the cutting plane (xy plane) as the vortex
center, which we refer to as the ‘peak vorticity line’. The curvature evolution of the peak
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vorticity line with respect to its arc length l is computed as

k(l, t) =
|γ′(l)× γ′′(l)|2
|γ′(l)|3 (5.3)

where γ(l) is the position along the vortex line and the prime symbol indicates a derivative
with respect to l. We note that the peak vorticity line is obtained from the vorticity
vector field using a fourth-order Runge-Kutta scheme with sub-pixel interpolation. As
previously noted, we have confirmed though inspection that the peak vorticity on the
cutting plane remains within the vortex core of the reconnection threads throughout the
entire interaction.

The curvature evolution at the middle of the reconnection thread (where the vortex line
intersects with the cutting plane), k(0, t), is shown in Figure 5.11. Overall, a wide range of
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Figure 5.11: Curvature evolution at the middle (l = 0) of the reconnection thread.
Reynolds number of Re = 2000 shown. Dash-lines mark time points associated with
the end of pyramid stretching (t ≈ 5.6), start of parallelization (t ≈ 7.4), and the start of
parallel stretching (t ≈ 9.3).

behaviors ranging from a monotonic loss of curvature for θ = 0◦ (pure parallel stretching)
to a rapid growth then decline of curvature for high angles is observed over the range of
collision angles. The following sub-sections explore the curvature evolution in Figure 5.11
at the various stages (marked by dashed-lines) in detail.

5.3.1 Initial stretching (t < 5.6)

A key characteristic of pyramid stretching is the increase in curvature [62, 63], in contrast
to the curvature loss from the parallel stretching (see Figure 1.1). For the case of θ = 0◦
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with pure parallel stretching, the curvature monotonically decreases (see Figure 5.11) and
the length-wise curvature distribution at t = 5.6 is flat (see Figure 5.12) as expected. This
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Figure 5.12: Curvature distribution at t = 5.6 and Re = 2000 for all collision angles θ.

flat curvature distribution is an indication of the absence of a pyramid structure and non-
uniformity in mutual induction. A vortex line in pyramid form would have a hyperbolic
shape with a curvature peak in the middle [62, 63].

For θ = 60◦, pyramid stretching is introduced by the non-uniform mutual induction
between the colliding vortices. At this angle pyramid stretching is still weak, and the
curvature remains roughly constant prior to t < 5.6 as a result of the parallel stretching
balancing out the pyramid stretching in the middle of the threads. However, the vortex line
still develops into a pyramid form as illustrated by the curvature distribution in Figure 5.12,
where the curvature is the highest in the middle (l = 0) and tapers off to either side. This
indicates that pyramid stretching contributed to the increased local vorticity amplification
we see from Equation (5.2)(b) in comparison to the θ = 0◦ case.

For θ = 90◦ and above, increased non-uniformity in mutual induction further promotes
pyramid stretching while impeding parallel stretching. As such, the curvature growth
(see Figure 5.11) and the pyramid form of the vortex lines (see Figure 5.12) are increas-
ingly prominent, solidifying the link between the initial collision angle and the strength
of pyramid stretching. The larger separation at the base of the pyramid at high angles
creates a strong mutual induction differential along the thread, which promotes greater
pyramid stretching, increasing the curvature and, thus, the level of vorticity intensifica-
tion (see Equation (5.2)(b)). The extreme vorticity amplification creates a steep vorticity
gradient that accelerates viscous cross-diffusion, and ultimately determines the rate and
completeness of vortex reconnection. The vorticity isosurfaces presented in Figure 5.13
show that the pyramid apex becomes increasingly obvious from θ = 60◦ to 120◦ at t = 5.5,
demonstrating the formation of the pyramid stretching and its link to collision angle.
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Figure 5.13: Vorticity isosurfaces of |ω| = 1 (transparent blue) and 2.5 (solid green) at (i)
t = 0 and (ii) t = 5.5. Collision angles of θ = 60◦, 90◦, 108◦, and 120◦ are shown in (a) to
(d), respectively.

5.3.2 Thread parallelization (5.6 < t < 9.4)

Between 5.6 < t < 7.4 in Figure 5.11(a), the curvature evolution deviates noticeably from
the increasing trend of pyramid stretching (t < 5.6). To determine the cause of such change
in behavior, we first project the thread onto the reconnection (xz) and top (yz) planes and
then consider the mid-point curvature in those planes, kxz(0, t) and kyz(0, t), respectively.
The evolution of these projected curvatures are illustrated in Figure 5.14. We note that
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Figure 5.14: Curvature evolution of the key vortex line projected onto (a) the top (xz) and
(b) the reconnection (yz) planes at Re = 2000. Dash-lines marks t = 5.6, 7.4 and 9.3.

the differences in the initial values with θ are the result of the respective orientations due
to the varying initial collision angles.

Figure 5.14(a) shows an increase in kxz prior to t = 5.6 due to pyramid stretching,

85



which corresponds to the rapid curvature increase observed for t < 5.6 in Figure 5.11. From
5.6 < t < 7.4, kxz continues to increase for θ = 108◦ and 120◦ due to a strong pyramid
stretching, albeit at a slower rate, whereas the growth of kxz for θ = 60◦ and 90◦ halts and
reverses. On the other hand, there is considerable loss of kyz, shown in Figure 5.14(b), over
the same period; that is, the colliding threads are becoming increasingly parallel to one
another. A direct consequence of the increased parallelism is the improved uniformity in
the mutual induction, which diminishes the effectiveness of the ongoing pyramid stretching
and mitigates the growth of kxz between 5.6 < t < 7.4. For t > 7.4, kyz(0, t) reaches near
zero, indicating that threads are no longer on the route to form a pyramid; instead, the
colliding threads are now fully parallel. This is clearly shown in Figure 5.15, which presents
the top view of the peak vortex lines. As a result, the curvature can not grow further due
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Figure 5.15: Top view of the peak vorticity line for each collision angle (θ) at t = 9.3 with
Re = 2000.

to the termination of the pyramid stretching, and the proceeding parallel stretching causes
a rapid loss in kxz.

Again, the peak vorticity line analysis can be corroborated by the vorticity isosur-
faces shown in Figure 5.16. The snapshots prior to the rapid loss of kyz (t = 4.5, see
Figure 5.14(b)) are shown in Figure 5.16, where the colliding vortex tubes retain their
curvature as expected. Subsequently at t = 8 when kyz reaches zero, the vortex tubes are
now full parallel with each other, indicating termination of the pyramid process.

Parallelization of the vortex tubes is triggered once the colliding vortex cores ‘touch’.
The colliding vortices can not penetrate the symmetrical plane, as demonstrated by the
vortex core deformations shown in the cross-sectional vorticity distribution in Figure 5.17
at t = 4.5 during pyramid stretching. Note, the core distortions at this time are not a
result of any vorticity cancellation, since they have yet to lose any of their circulation (see
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Figure 5.16: Vorticity isosurfaces of |ω| = 1 (transparent blue) and 2.5 (solid green) at (i)
t = 4.5 and (ii) t = 8. Collision angles of θ = 60◦, 90◦, 108◦, and 120◦ are shown in (a) to
(d), respectively.
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Figure 5.17: Vorticity distribution of the colliding vortex cores on the cutting plane (xy)
at t = 4.5 and Re = 2000. Collision angles of θ = 60◦, 90◦, 108◦, and 120◦ are shown in
(a) to (d), respectively. The vortex cores are aligned at peak vorticity position xp for ease
of comparison.
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Figure 5.8(a)). Thus, the colliding portion of the vortex tubes must have experienced a
deceleration towards the symmetrical plane.

Based on these observations, we propose that the transition to parallel stretching is
the primary mechanism that ends the pyramid process. As illustrated by the schematics
in Figure 5.18, parallelization is initiated upon contact of the colliding vortex cores, which
stalls their motion toward the reconnection plane. The regions of the vortex tubes away

Figure 5.18: Schematic of the parallelization process.

from the core touching zone are still able to travel toward the reconnection plane under
their own curvature-induced motion, which reverses the pyramid stretching progress and
forces the colliding vortices to become parallel.

In other words, the assumption of the pyramid form of the vortices breaks down upon
contact between the colliding vortex cores. Parallelization is not a process unique to viscous
reconnection of thick core vortices. The pattern can also be found in previous viscous
(Figure 2 from Ref. [39]), inviscid (Figure 6 from Ref. [13]), and thin core (Figure 2 from
Ref. [107]) simulations. That is, the parallelization process appears to be an universal
feature for vortex collision governed by both the Euler and Navier-Stokes equations.

5.3.3 Stages of stretching

Our results suggest that the stretching process consists of two distinct stages. The first
stage mainly occurs during the approach, wherein vorticity amplification is dominated by
pyramid stretching. While it only occurs for a very brief period, this stage determines
the rate of reconnection by establishing the strength of the local vorticity field. The
effectiveness of the pyramid stretching can be altered through the initial collision angle to
greatly improves the rate of cross-diffusion across the reconnection plane. Subsequently,
the collision of the vortex cores trigger the parallelization process. After the parallelization
process, pure parallel stretching takes place, which continues indefinitely since reconnection
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never completes [39]. Even though most of the reconnection occurs in the stage, it does
not play a major role in determining the rate of reconnection due to its weak vorticity
amplification.

Though the evolution of the reconnection threads in the parallel stretching stage are well
documented in the literature, the later stages of reconnection thread separation warrant
comment. The threads begin to separate from each other after t ≈ 10, as shown in
Figure 5.19. Here s(t) is defined as the shortest distance between the peaks of vorticity
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Figure 5.19: Time series of the normalized separation distance s(t)/s(0) for (a) all collision
angles at Re = 2000 and (b) all Reynolds numbers at θ = 90◦.

within the vortex core (see Figure 5.2). This is also reported by Yao and Hussain [107],
wherein they attribute the separation to the outward mutual induced velocity overcoming
the inward self-induced velocity. However, by normalizing the separation history with
the initial value, we can collapse the data from the various collision angles, as seen in
Figure 5.19(a), demonstrating that the separation occurs over the same time scale. Note,
the initial position in our simulation is fine tuned, such that the reconnection of different
angles occur at the same time. The similarity in time scale reveals that the separation
mechanism is the same regardless of collision angle, including for the special case of θ = 0◦

[18, 23]. That is, the separation is actually a result of the vortex core enlargement from
diffusion, which pushes them apart. This can be further validated by Figure 3 from Ref.
[107] and our vorticity contours of the cutting plane vortex cores at t = 30 in Figure 5.20,
where the cores are actually not separating from each other as they remain in contact. Our
data with respect to Reynolds number also shows a slower time scale for higher Reynolds
number, see Figure 5.19(b), in agreement with our conclusion that lower viscosity (for fixed
circulation) reduces the rate of core diffusion and enlargement [18, 23].
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Figure 5.20: Vorticity distribution, normalized by the peak magnitude value |ω|, of the
colliding vortex cores on the cutting plane (xy) at t = 30 and Re = 2000. Collision angles
of θ = 0, 60◦, 90◦, and 108◦ are shown in (a) to (d), respectively. The vortex cores are
aligned at the peak vorticity position xp for ease of comparison.

5.3.4 Reynolds number effect

The Reynolds number scaling of viscous vortex reconnection can be altered though the
collision angle as discussed in Section 5.2.3. To further investigate the the Reynolds num-
ber effect, we consider the the mid-point curvature evolution of the threads in Figure 5.21,
analogous to Figure 5.11(a), at different Reynolds numbers for θ = 60◦ and θ = 120◦.
The thread curvature evolution of these two cases exhibit the same trend regardless of
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Figure 5.21: Comparison of mid-thread curvature evolution k(l = 0, t) at various Reynolds
number for θ = (a) 60◦ and (b) 120◦.

Reynolds number, with an initial increase due to pyramid stretching followed by a de-
creases after parallelization. At low Reynolds number, the energy loss to viscous diffusion
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results in both weaker self- and mutually-induced velocities, leading to weakened pyramid
stretching. Additionally, the enlarged vortex cores due to strong diffusion at low Reynolds
number also cause the parallelization process to occur earlier since the cores can touch
each other sooner. Therefore, we see a stronger curvature gain from pyramid stretching as
the Reynolds number increases in Figure 5.21.

The opposing trends in Reynolds number scaling in Figure 5.10(b) between the θ = 60◦

and θ = 120◦ can be attributed to the difference in the strength of the pyramid stretching
with respect to the collision angle. Pyramid stretching is stronger at large angles and,
therefore, when the Reynolds number increases, the improvement in vorticity amplification
from pyramid stretching is able to overcome the loss of viscosity for cross-diffusion, resulting
in a net gain in the reconnection rate with respect to Reynolds number. On the other hand,
pyramid stretching is weak at smaller angles and, as a result, the improvement in vorticity
amplification at higher Reynolds number is insufficient for cross-diffusion, resulting in a
net loss in the reconnection rate with respect to the Reynolds number. That is, there is
no universal scaling for viscous vortex reconnection, because the collision angle is a major
control parameter.

5.4 Comments on other proposed mechanisms of ar-

resting the pyramid process

Termination of pyramid stretching is the subject of a recent debate with regards to the
possibility of finite-time singularity for the Euler and Navier-Stokes equations through
the pyramid process [62, 63, 107]. Moffatt and Kimura analytically modeled the pyramid
process with the Biot-Savart law for a pair of vortex rings, and provided an exemplar
solution for a Gaussian vortex core with a initial size of Rc = 10−5 in an inviscid flow
(see Figure 23 from Ref. [62]). While the initial core size of this example is magnitudes
lower than our simulation, they have shown that the core size to separation distance ratio
reaches a limiting value of s/Rc = 0.943367 at the time of the Biot-Savart singularity. A
value of s/Rc near unity is similar to our results shown in Figure 5.17, which permits us
to speculate the behaviour at the extreme limit based on the evidence from this study.

The vorticity distribution of the Gaussian vortex core is defined as

ωθ(r) = ωp exp
(
−r2/Rc

2
)

(5.4)

where ωp is the peak vorticity value at the center of the vortex core, and the total circulation
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is

Γ = 2π

∫ ∞

0

ωθ(r) rdr = πωpRc
2. (5.5)

Using the same integral in Equation (5.5) but instead with upper limits of Rc and 2Rc,
we find the circulations of the areas covered by one, and two core radii to be 62.21%, and
98.17% of the total circulation, respectively. That is, for the limiting value of s/Rc =
0.943367 in the example provided by Moffatt and Kimura [62], there is already significant
overlap between the colliding vortex regions (see Figure 5.22), suggesting that core touching
has already commenced prior to the occurrence of the finite time singularity. Therefore, we
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Figure 5.22: Illustration of the overlapping regions of Gaussian vortex cores with a core
radius to separation distance ratio of s/Rc = 0.943367. Solid and dashed lines circle the
areas of 1Rc, and 2Rc, respectively.

conjecture that the finite-time singularity through the pyramid process for the Gaussian
core example from Moffatt and Kimura [62] can not be achieved due to the breakdown of
the pyramid assumption from parallelization, unless there is a set of initial conditions for
a Gaussian vortex core where the resulting limiting value of s/Rc is sufficiently large such
that the contact between the colliding cores can be prevented.

5.4.1 Core flattening

Core flattening has long suspected to be a key contributor to the prevention of a finite-
time singularity [35, 8, 63, 107]. We also observed noticeable core deformation post contact
as shown in Figure 5.23, which reduces the mutual induction between the colliding vor-
tices (x-axis). The weakened mutual induction contributes to the termination of pyramid
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Figure 5.23: Vorticity distribution of the colliding vortex cores on the cutting plane (xy)
at t = 7.4 and Re = 2000. Collision angles of θ = 60◦, 90◦, 108◦, and 120◦ are shown in
(a) to (d), respectively. The vortex cores are aligned at the peak vorticity position xp for
ease of comparison.

stretching. Figure 5.23 also demonstrates a dependency of core flattening on collision an-
gle, which can be attributed to increased strain on the vortex core due to the increased
pyramid stretching at high angles.

By comparing our data with the slender core (Rc = 0.01) results from Yao and Hussain
[107] (Figure 3 in Ref. [107]), we see a significant reduction in the core deformation with
a decrease in core size. Their post-collision vortex cores maintained the shape of a Lamb
dipole with only minor stripping of vorticity, a major deviation from the flattened cores
in Figure 5.23. The Lamb dipole is the limiting case (in term of separation) for a vortex
pair without any external strain [23]. As such, it is tenable that core flattening will not
be a major factor for slender core vortices, in agreement with the analysis of Moffatt and
Kimura [62].

5.4.2 Reconnection bridges

Yao and Hussain [107] proposed the bridge to be another contributor to the termination of
the pyramid process. However, the bridge formed out of reconnection is in its early stage,
as evident from Figure 6(a) in Yao and Hussain [107], where the colliding vortex cores
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retain more than 90% of their circulation at the inflection point of the temporal curvature
evolution (τ ≈ 0.3 from Figure 5(b) in Ref. [107]), which indicates the end of the pyramid
process.

In the present study the threads lost less than 2% of their circulation to the bridge
at the start of the parallelization process (see Figure 5.8(a) at t = 5.6). Furthermore,
the bridges are still in the form of thin sheets at the end of the rapid curvature reversal
(t = 9.3) as shown in Figure 5.24, implying that the bridges are likely incapable of inducing
sufficient flow at the apex of the threads to substantially decrease the curvature. The thin
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Figure 5.24: Vorticity distribution on the reconnection plane for θ = (a) 60◦, (b) 90◦, (c)
108◦, and (d) 120◦ at t = 9.3 and Re = 2000. The bridges are aligned at the peak vorticity
position xp on the cutting plane for ease of comparison.

core simulations also support this observation, where the curvature growth halts at τ ≈ 0.3
(see Figure 5(b) in Ref. [107]), but the bridges remain as sheets at τ = 0.35 (see Ref. [107]
Figure 4). Note, Yao and Hussain [107] use τ as their temporal variable, equivalent to t in
the present manuscript.

Even if the bridges have sufficient strength to influence the motion of the thread, for
example, at t = 15 as shown in Figure 5.25 (note this is after the termination of the
pyramid process), where the bridges are the bulges at ends of the reconnection threads, it
is unlikely that they will significantly decrease the curvature of the threads due the inverse
relationship of induced velocity with respect to the distance from the vortex core as shown
in Figure 5.26. Therefore, we conclude that the bridges do not play a significant role in
the termination of the pyramid process.
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Figure 5.25: Vorticity isosurfaces of |ω| = 1 at t = 15 and Re = 2000. Collision angles of
θ = 60◦, 90◦, 108◦, and 120◦ are shown in (a) to (d), respectively.

Figure 5.26: Schematic of the bridges’ influence on the threads.
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5.5 Conclusion

We revisit nuances of viscous vortex reconnection by colliding vortex rings at different
initial collision angles. The change in collision angle allowed us to alter the balance of
various mechanisms involved in the reconnection process independent of Reynolds number,
and access the inner workings of viscous vortex reconnection. The main findings from our
numerical experiments are summarized below.

Collision angle influences the viscous vortex reconnection process. While the reconnec-
tion process remains similar, an increase in the collision angle increases the rate and com-
pleteness of the reconnection. Moreover, changing the initial angle modifies the Reynolds
number scaling of the reconnection, which challenges the presumption of an universal scal-
ing for viscous vortex reconnection [39].

The collision angle exerts its influence through the manipulation of the pyramid stretch-
ing process during the approach of the colliding vortices, which we have found to be the
primary mechanism of vorticity amplification for the viscous reconnection. The pyramid
process is capable of extreme vorticity intensification that establishes the strength and gra-
dient of the local vorticity field for vortex reconnection via viscous diffusion upon collision.
A large initial collision angle promotes pyramid stretching, hence improving reconnection
performance.

The pyramid stretching process was originally theorized with vortex filaments under
Biot-Savat induction for quantum vortex reconnection. We have shown that the pyramid
process also exists for the viscous reconnection of thick core vortices for the first time, thus
supporting it as a universal route to vortex reconnection. However, the pyramid stretching
phase ends quickly because of the parallelization process. Touching of the vortex cores
upon collision prevents further motion towards the collision plane, allowing the portions
of the vortex tubes away from the initial contact point to ‘catch up’ and parallelize with
each other, which ends the pyramid process and initiates the parallel stretching phase.

The parallel stretching phase never completes for the vortex ring connection, and most
of the reconnection occurs within this phase. However, parallel stretching exhibits weak
vorticity amplification, and thus it does not play a significant role in determining the rate
and completeness of the reconnection. A small initial collision angle improves the parallel
stretching at this stage, but it does not correlate with the improvement of the vortex
reconnection, which is deceptive for the analysis of vortex interaction and reconnection
because of its high visibility in flow visualization.

Identification of the role of the parallelization process in vortex reconnection provides
an alternative resolution to a recent dispute regarding the finite-time singularity though the
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pyramid process, where the analytical model [62] claims the possibility, but the subsequent
numerical simulations [107] did not find any evidence of finite-time singularity under a
similar scenario. We conjecture that the parallelization process breaks the assumption of
the pyramid structure upon core touching, which prevents the development of a finite-time
singularity for Gaussian cores though the pyramid process regardless of the vortex core
deformation and viscosity.

We also revisited other claims of regularization for the pyramid process by Yao and
Hussain [107], namely core flattening and bridge vortices. By contrasting our thick core
simulation with past slender core simulations, we found the smaller core significantly re-
duces the core deformation, in agreement with the analysis of Moffatt and Kimura [62]
that core flattening is negligible at the lower limits of the core size. With regards to the
bridge vortices, they are formed out of the reconnected vorticity via viscous diffusion long
after parallelization and at a much slower time scale. Therefore, we conjecture that bridges
do not play a significant role in terminating the pyramid process, even for low Reynolds
number thick core vortex reconnection.
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Chapter 6

Evolution of an uniform vortex
dipole in a strain field

Herein, we examine the motion of a strained vortex dipole in an inviscid flow using contour
dynamics. The paper is organized as follows: Section 6.1 outlines the problem formulation
and numerical setup; Section 6.2 briefly discusses the strain monopole evolution; Section 6.3
explores the evolution of strained vortex dipoles; Section 6.4 discuss the enhanced mutual
attraction due to core deformation; and Section 6.5 summarizes the major findings of the
work. Lastly, the validation of our numerical scheme for the contour dynamics is displayed
in Appendix C.

6.1 Problem statement

We consider a vortex dipole in an unbounded ideal fluid. A Cartesian coordinate system
x = (x, y, z) is defined such that the x-axis is aligned with the convective direction of
the vortex dipole, and the z-axis is parallel to the vortex lines, as shown in Figure 6.1.
The vortex dipole consists of two uniform vorticity patches bounded by contours Cj. The
vortex patches have opposing circulation of Γj = Aj(t)Ωj(t), where Aj(t), and Ωi(t) are the
patch area and uniform vorticity value, respectively. The subscript j indicates the patch
number (i.e. 1 and 2 for top and bottom patches, respectively).
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Figure 6.1: Schematic of a vortex dipole in a strain field with relevant variables indicated.

Sx/W0 Sy/W0 Sz/W0

Planar Er −Er 0
Bi-axial 0 −Er Er

Pure −Er −Er 2Er
Table 6.1: Types of irrotational strain employed based on the axial stretching strength
(along the z-axis).

6.1.1 Strain field

A three-dimensional irrotational uniform strain flow of us(x) = (Sxx, Syy, Szz) is im-
posed, where Sx, Sy and Sz are the strain rates along each coordinate axis. The strain field
is constrained by the continuity condition Sx + Sy + Sz = 0. This strain flow has its prin-
ciple axes aligned with the vortex dipole. Misalignment essentially introduces a rotational
component to the stain field, which is not a concern of the present study, and is hence not
considered herein. We further restrict Sy to be negative such that the y-component of the
strain flow acts to push the two vortices together. S > 0 would split the dipole into two
monopoles that would then evolve separately with minimal coupled dynamics [98]. Hence,
their behaviours could be readily predicted via vortex monopole models.

Herein four types of strain fields are considered, as listed in Table 6.1. The initial
uniform vorticity magnitude of each patch is given by W0 = W(t = 0), and the initial
strain-to-vorticity ratio is Er.

The first type is the planar strain field, which has equal but opposite strain rates in
the x-y plane, and no axial stretching (along the z-axis). This is the only type of strain
field investigated in previous strained vortex dipole studies [11, 46, 98]. The second type
is the bi-axial strain field. This is achieved by decreasing the expansion rate in x-axis to
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compensate for the increase in z-axis stretching. The third type is the pure axial strain
field with equal magnitudes of compression both along x- and y-axes to compensate for
the strong axial stretching in z-axis.

For each strain type, the strain-to-vorticity ratio is systematically varied between 0 ≤
Er ≤ 1. The ratio is bounded from above by unity to examine vortex dominated flow.

6.1.2 Contour dynamics

The induced velocity at any point uω(x) by the uniform vortex patches is computed from

uω(x) = − 1

2π

N∑

j=1

Wj(t)

∫

Ci

ln |x− x′| dl′ (6.1)

where N is the number of vortex patches, and dl′ is the infinitesimal boundary segment at
x′ [110].

Contour dynamics is a purely two-dimensional method, but the effect of axial stretching
can be captured analytically as [70, 40]

W(t) =W0 exp(Szt). (6.2)

That is, axial stretching essentially acts to dynamically decrease the strain-to-vorticity
ratio Er throughout the interaction when Sz > 0.

6.1.3 Numerical scheme

The total velocity at any point is

u(x) = uω(x) + us(x). (6.3)

which is a combination of both the background strain flow us(x) and the vortex induced
flow uω(x). To compute the evolution of the vortex motion, we discretize the vortex
contours into a collection of linear segments. The integral in Equation (6.1) is evaluated
in closed form along each linear segment, then summed, along with the strain flow, to
compute the total induced velocity at each of the end points of the line segments. The line
segments are then advected in time using an adaptive eighth-order explicit Runge-Kutta
method. For all simulations in this study, the contours are discretized into 1024 segments.
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A symmetry condition between the two halves of the dipole is implemented to improve
computational efficiency, as past studies of strained vortex dipoles have found them to
maintain their top-bottom symmetry [11, 46, 98].

The numerical scheme is validated in two ways, by checking that circulation in con-
served, and via comparison with classical examples in contour dynamics. Regarding circu-
lation, since the vortex patches have uniformly distributed vorticity, conservation of circu-
lation is equivalent to conservation of area, such that (6.2) becomes A(t) = A(0) exp(Szt).
The deviation in vortex patch area for all results presented herein is less than 0.1%. In
addition, several classical examples of contour dynamics were solved using the present nu-
merical scheme, including a strained vortex monopole [43, 70], the Kirchhoff elliptic vortex
[25, 60], and coalescence of two equal same-signed vortices [110, 40]. Samples of the solu-
tions of these classical problems are presented in Appendix C, which agree very well with
the vortex dynamics documented in the literature.

6.1.4 Initial conditions

Special considerations for the initial condition are required, because circular cores for the
vortex dipole produce unrealistic deformations [46]. An inviscid strain-free vortex dipole
(the limiting case of Er = 0, also known as a Lamb–Chaplygin dipole [58]) travels steadily
with no self-induced deformation, and maintains its two-fold symmetry (front-back and
top-bottom). To find such an initial condition for our simulations, we employ the method
developed by Pierrehumbert [84]. In short, the method relies on the fact that a steady
vortex dipole has a constant stream function value along its bounding contour. Hence,
the shape of a steady uniform vorticity vortex dipole can found by adjusting its contour
until the stream function value becomes constant at the vortex boundary using an iterative
optimization algorithm.

The shape of the vortex core can be controlled through the gap ratio G/(G + 2T ),
where G is the gap length, and T is the thickness of the vortex patch in the y-direction
(see Figure 6.1). A gap ratio of 0.1 is employed herein, which produces the vortex dipole
shown in Figure 6.2 Note, Req =

√
A(t = 0)/π is the equivalent radius of the vortex core.

A non-zero gap ratio is employed for two reasons. First, it is unreasonable to assume that
only axial touching vortex pairs exist in turbulent flow, and we wish to examine the non-
linear collision dynamics driven by an external/curvature-induced strain field. Second, [63]
have shown that colliding vortices (with their pyramid model) reach an asymptotic value
yc/Req = 0.7788, where yc is the core centroid position, at the time of the Biot-Savart
singularity. Our initial condition has a value of yc/Req = 0.8736 (slightly bigger gap),
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Figure 6.2: Initial condition of a vortex dipole with a gap ratio of G/(G+ 2T ) = 0.1.

which permits us to evaluate the vortex core behaviour prior to the singularity under the
influence of curvature-induced strain.

For the remainder of the article, we will employ the equivalent radius of the vortex core
as length scale and the magnitude of the strain rate in y-axis |Sy| as the time scale unless
otherwise stated.

6.2 Strained monopole review

In this section, we review the results for an initially circular vortex monopole in the same
external strain flow in Table 6.1 to provide a baseline for the dipole study. Particularly,
the principal axes length ratio (Ra/Rb, see Figure 6.3) is the primary quantitative results
reported in the literature [43, 70], which does not apply to the dipole study. Instead, we
employ the thickness parameter T = 2min(Ra, Rb) as the measurement of the compactness
for the vortex core to facilitate comparisons with the dipole results.

The vortex monopole remains elliptical at all times in the strain flow, and its motion
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Figure 6.3: Schematic of a vortex monopole in an irrotational strain flow.

is governed by the following set of ordinary differential equations

dRa

dt
= Ra

(
α cos2 θ + β sin2 θ

)
(6.4a)

dRb

dt
= Rb

(
β cos2 θ + α sin2 θ

)
(6.4b)

dθ

dt
= Ω(t)

RaRb

(Ra +Rb)2
− α− β

2

R2
a +R2

b

R2
a −R2

b

sin 2θ (6.4c)

where θ is the orientation of the vortex monopole [70]. The results reported here are
obtained with the Equation (6.4), though it was confirmed that the contour dynamics
method described in Section 6.1 yielded identical results (see Appendix C for a comparison
sample).

The equations of motion for the monopole can be decomposed into two major effects.
First, the self-rotation of an elliptical vortex captured by the first term in Equation (6.4c),
which states that a higher ellipticity of the vortex monopole corresponds with a lower
self-rotation rate. Second, the irrotational strain field can be decomposed into a linear
(symmetric) and a rotational (antisymmetric) component depending on the bearing (θ) of
the principal axes. As the monopole reorients under its self-induced rotation, the linear
component of the strain flow can either flatten or compact the vortex core, which in turn
influences the rotation rate along with the rotational component of the strain field.

For the planar strain listed in Table 6.1, the vortex motion bifurcates into either averag-
ing or flattening regimes, as shown in Figure 6.4. For the averaging regime in Figure 6.4(a),
the strain flow elongates the monopole into an ellipse. Once the major axis passes θ = 45◦,
where the max aspect ratio occurs, the strain flow compresses the boundary back to a
circular shape. For the flattening regime in Figure 6.4(b), the major axis never rotates
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Figure 6.4: Snapshots of a vortex monopole in a planar strain flow with a strain-to-vorticity
ratio of (a) Er = 0.1, and (b) Er = 0.6 at a time interval of t = 0.426.

past θ = 45◦ because the counter-clockwise self-rotation halts, and the strain flow flattens
the monopole indefinitely into a sheet.

The quantitative results for the averaging regime for the planar strain flow are shown in
Figure 6.5. Prior to the major axis reaching θ = 45◦, the rotation rate θ̇ decelerates under
the influence of both the counter-rotating strain component and the increased monopole
ellipticity, as shown in Figure 6.5(a). Therefore, a stronger strain field results in a slower
rotation rate, which corresponds to a longer period of thickness oscillation in Figure 6.5(b).
However, the deceleration is insufficient to prevent the monopole from moving past θ = 45◦,
after which the strain flow compacts the vortex back to the circular shape; hence the
oscillation of the vortex increases, but it never flattens.

For E ≥ 0.123, the strain flow prevents the major axis of the elliptical vortex monopole
from passing θ = 45◦, and reverses the monopole self-rotation as shown in Figure 6.6(a).
As such, the principal axes of the vortex are orientated with the flattening strain field
indefinitely, hence compressing the monopole into a vortex sheet. A transient period can
be seen from the normalized thickness evolution in Figure 6.6(b) because of the initial
misalignment, but as time progress, the counter-rotating component of the strain flow
re-aligns the principal axes between the strain flow and the vortex. Thus, the vortex
flattens at the same rate as a simple material surface, as shown by the levelled normalized
thickness at large times in Figure 6.6(b). Note, the normalized thickness is defined as

T̃ = T1(t)/ exp(Syt), which highlights the role of vorticity on the thickness evolution in
contrast to a vorticity free material contour under the same compression. The exponential
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Figure 6.5: Evolution of the (a) rotation rate θ̇(t), and (b) thickness T (t) of a vortex
monopole in a planar strain field with a strain-to-vorticity ratio of Er = 0.02 to 0.12 at an
interval of 0.02. Only one period of oscillation shown for clarity.
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Figure 6.6: Evolution of the (a) rotation rate θ̇(t), and (b) normalized thickness T̃ (t) for
a vortex monopole in a planar strain field with a strain-to-vorticity ratio of E = 0.2 to 1.0
at an interval of 0.2.
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term is the thickness of the a vorticity free material contour obtained by solving equation
dT1/dt = SyT1/2.

The introduction of the bi-axial stretching (see Table 6.1) has two effects, since the axial
stretching effectively lowers the strain-to-vorticity ratio Er dynamically. First, the bifurca-
tion limit pushed to a much higher limit (above strain-to-vorticity ratio of 3). Second, for
the averaging regime, the initially circular vortex patch will be elongated permanently due
the hysteresis introduced at the begin, where the effect of the strain flow is relatively strong.
As time proceeds, the stretching effectively drops Er to zero, and the vortex becomes an
stable ellipse that rotates under its self-induction. That is, the indefinite flattening occurs
for the bi-axial stretching cases. The pure stretching case is trivial, where the circular
vortex reduces its area due to stretching but maintains the shape.

6.3 Strained dipole

6.3.1 Planar strain field

Three strain-to-vorticity ratios, Er = 0.05, 0.2, and 0.4, are considered to highlight vortex
dipole behaviours under the applied planar strain field introduced in Table 6.1.

The evolution of the dipole contours for Er = 0.05 is shown in Figure 6.7, which il-
lustrates a typical formation of the head-tail structure of a strained vortex dipole. In
Figure 6.7(b), the dipole halves are being squeezed together under the converging strain
flow, which deforms it into a heart-like shape. Subsequently, the classical head-tail struc-
ture is formed upon core touching in Figure 6.7(c). The back end of the heart-like shape is
compressed into the tail, while the leading dipole has shape similar to a strain-free axially
touching vortex dipole [84, 91]. As time progresses in Figure 6.7(d-f), the dipole continues
to shrink as vorticity is ejected into the tail.

The dipole behaviour begins to change with a further increase in the vorticity to Er =
0.2, as shown in Figure 6.8. The vortex cores are far more stretched out horizontally, to a
point where the leading edges have no visible bulges, as seen in Figure 6.8(d). However,
the profile of the vortex patches are still thickest near the leading edges, which then taper
off in a tail. At t = 1.5, the bulges near the leading edge are finally visible, indicating
that there is still a structure that resembles a head-tail arrangement, but with much of the
circulation allocated to the tail.

With a sufficiently large strain-to-vorticity ratio the dipole can be flattened into vor-
tex sheets completely, as shown in Figure 6.9 for Er = 0.4. At the early stages of the
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Figure 6.7: Contour evolution of a vortex dipole in a planar strain field with Er = 0.05.
Snapshots from t = 0 to 1.5 at an interval of 0.3 are shown from (a) to (f), respectively.
The contours at each time step are aligned at their leading edge xl for ease of comparison.
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Figure 6.8: Contour evolution of a vortex dipole in a planar strain field with Er = 0.2.
Snapshots from t = 0 to t = 1.5 at an interval of 0.3 are shown from (a) to (f), respectively.
The contours at each time step are aligned at their leading edge xl for ease of comparison.
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Figure 6.9: Contour evolution of a vortex dipole in a planar strain field with Er = 0.4.
Snapshots from t = 0 to t = 1.5 at an interval of 0.3 are shown from (a) to (f), respectively.
The contours at each time step are aligned at their leading edge xl for ease of comparison.
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interaction, the vortex patches are mostly symmetrical, as seen in Figure 6.9(b,c), which
is an early indication of a change in the flow regime. Later, in Figure 6.9(d-f), the patches
are completely flattened into sheets. At t = 1.5 in Figure 6.9(f), the vortex patches have
near uniform thickness, with the leading edges forming a nozzle-like shape. The pairing of
vortex sheets induces a planar jet that shoot out into the ambient environment instead of
recirculating around the leading edge.

Recent surveys have shown that turbulent flows are composed of a self-similar hierarchy
of anti-parallel pairs of vortex tubes [32, 68], for which the vortex dipole model can be
considered a fundamental element. [8, 55] introduced a turbulent cascade model wherein
vortices iteratively flattened into a vortex sheet then re-roll into smaller vortices. The
present work has demonstrated that anti-parallel vortex pairs offer little resistance to the
flattening efforts of a background strain flow, supporting the feasibility of the proposed
vortex sheet turbulent cascade model.

6.3.2 Thickness

The compactness of monopoles can be easily quantified with the ratio between the principle
axes of their elliptical form [43, 70], but there is no predetermined form for dipole defor-
mation; hence, a new descriptor is required to measure the compactness of the deformed
vortex dipole patches. Observing from, for example, Figure 6.8, that the deformations are
always aligned with the axes of the strain field, we employ the maximum thickness T (t) of
the vortex patch (see Figure 6.1 to measure the compactness of the dipole patches, as a
decrease in the thickness corresponds with the flattening of the vortex patches.

The temporal evolution of the maximum thickness T (t) for all the planar strain field
cases is illustrated in Figure 6.10(a), normalized by the initial thickness T (0). Overall, there
is a decreasing trend regardless of the strength of the strain field. That is, unlike the vortex
monopole, the cores of the vortex dipole are not capable of retaining their compactness,
even for the head-tail regime. As discussed in Section 6.2, a vortex monopole combats the
strain field by a self-induced rotation that causes the principal axes alternately flatten and
contract in a periodic manner. But for the vortex dipole, the pairing essentially create a
slip wall that prevents each vortex patches’ principal axes from rotating. As such, the axes
of deformation are always aligned with the strain field, and thus the patches continually
and increasingly flatten. Over at large times, we found the head-tail structure still exists
since the critical parameter Er remains the same for the leading dipole. That is, there
is a fundamental differences in the behaviour between the two regimes. However, for the
flattening regime, the leading edge eventually begins to lift up, likely an attempt to roll
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Figure 6.10: Temporal evolution of the vortex patch (a) thickness T (t) and (b) normalized

thickness T̃ (t) for the planar strain field cases.

up, since vortex sheets are unstable. Then the problem becomes a strained vortex sheet
problem, which is not a concern for this chapter.

To further isolate the effect of vorticity, we employ the normalized thickness T̃ (t) (for
more detail, see Figure 6.6 for the monopole case.). A value greater than one for the
normalized thickness means the vorticity decelerates the strain field-induced flattening.
The normalized thickness presented in Figure 6.10(b) clearly shows two trends. First, for
cases E = 0.05, 0.1, 0.15, 0.2, there is continuous growth of the normalized thickness.
That is, the dipole thickness becomes increasingly bulkier than a simple material surface,
indicating that vorticity is capable of some resistance to the strain flow. Interestingly, these
cases corresponds with the head-tail regime from the contour evolution discussion in the
previous sub-section. That is, the flattening resistance originates from the flow expansion
at the front of the leading dipole, a unique mechanism that is absent from the monopole.
We note that for the case of E = 0.05, the rate of vortex patch flattening is faster than all
other cases between 0.6 < t < 1. This is likely due to the small tail for the dipole initially,
which provides more room in the wake initially for the vorticity ejection.

For cases E = 0.4, 0.6, 0.8, 1.0, the patches are flattened without any noticeable
resistance to flattening. That is, the its thickness does not differ significantly to the a
material surface without vorticity, as the normalized thickness flattens out with only a
slight transition in the beginning, much like the monopoles cases shown in Figure 6.6.
These cases correspond with the planar jet regime, where the head-tail formation is arrested
by the strain flow, preventing any vorticity from collecting at the leading edges. Vorticity
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Figure 6.11: Contour snapshots of (a) Er = 0.2 and (b) Er = 0.6 at t = 2 for the weak axial
stretching cases.

for these cases does not do anything as it flattens by the strain flow like a material surface.
The rate of flattening for the planar jet regime is much faster than the monopoles under the
same strain flow, since monopole self-rotation changes the relative angle of the principal
axes with respect to the strain field.

6.3.3 Bi-axial strain field

Under the bi-axial stretching, which induced axial stretching by eliminating the expansion
in y-axis to satisfy the continuity condition, the typical head-tail structure is observed for
low values of strain-to-vorticity ratio, as shown in Figure 6.11(a). However, for a stronger
bi-axial strain flow, the increased axial stretching enhances the leading dipole strength
causing it to travel faster than its tail, resulting in separation between the head and tail,
as shown in Figure 6.11(b). This is a key signature that can be observed during the
reconnection of vortices [39, 107], which can be used to identify the type of strain flow
experienced by the vortices.

The dipole will no longer be flattened post-separation, because the stretching effectively
lowers the key parameter Er exponentially. This is in agreement with the snapshots dur-
ing vortex reconnection reported by Yao and Hussain [107], where the dipole maintained
their post collision. While Yao and Hussain [107] claimed that the core flattening prevent
the finite-time singularity during vortex connection, our results have shown that lost of
circulation from the leading dipole is merely a transitional event upon the collision. The
separation between the tail and head is an indication that Er is becoming sufficiently low
to prevent further flattening. Then, the lost of circulation to the tail can be accounted by
a simple scalar correction at the time of collision, especially considering that the tails in
their simulation are much smaller in comparison to the head. Therefore, it is questionable
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Figure 6.12: Contour snapshots of a vortex dipole in a pure axial stretching strain flow
with E = 1.0 at t = 0 and t = 2.

whether the core flattening play an actual role in the prevention of finite-time singularity
considering the separation of the head-tail.

6.3.4 Pure axial strain field

Further increasing the strain flow such that the axial stretching is the only expanding
strain. For this case, the dipole cores are finally able to maintain their compactness and
remain as vortices, as shown by the contour snapshots in Figure 6.12.

The shape of the contours at t = 2 is exactly the same as the initial condition, but at
an significantly reduced area due to vortex stretching. The centroid to equivalent radius
remains the same as well the entire time. That is, only axial stretching flow is capable
of maintaining the integrity of a vortex pair. Relating back to the discussion of finite-
time singularity, the validity of the “pyramid” model by Moffatt and Kimura [62] depends
on their conjecture that the vortex dipole maintains their asymptote compactness. Such
condition can only be possible under the pure axial strain field as shown above, which is true
for their assumptions. However, with the inclusion of the curvature induced strain, which
mimics a planar type of strain field, the combined strain field (with axial stretching from
the pyramid process) is likely something that resembles the bi-axial strain field. Hence, for
the “pyramid” model by Moffatt and Kimura [62] to be valid, the Er need to be sufficiently
high such that stretching can overcomes the flattening to maintain the compactness, which
the head-tail separation revealed by Yao and Hussain’s simulation [107] is hinting (see our
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Figure 6.13: Temporal evolution of the (a) gap length G(t) and (b) normalized gap length

G̃(t) between the vortex patches. The head-tail regimes between E = 0.05 to 0.2 are shown
in blue, while the plane jet regimes between E = 0.4 to 1 are shown in orange.

discussion in last sub-section). That is, the Yao and Hussain’s results [107] actually aids
the model of Moffatt and Kimura [62] instead of disproving it.

6.4 Enhanced mutual attraction

Contrasting the cases of E = 0.05 and E = 0.4 in Figures 6.7 and 6.9 suggests an interesting
and counter-intuitive aspect of dipoles in a strain field, namely that a weak strain flow can
force the two comprising patches together at a faster rate than can a strong strain field.
For the head-tail regime in Figure 6.7(a-c), the gap between the patches closes off from
tail to head, whereas the gap for the planar jet regime in Figure 6.9(b) is smaller but still
noticeable.

To quantify the patch separation distance we introduce the gap length G(t), defined as
the minimum distance between the patches (Figure 6.1), and present it in Figure 6.13(a)
for all cases. The cases with E between 0.05 and 0.2 exhibit a rapid decreases in gap spacing
with the smallest values of the strain-to-vorticity ratio showing the most rapid approach
of the vortex patches towards one another. On the other hand, the cases between E = 0.4
to 1 still show a decrease in the gap between the patches, but at a slower rate and without
any strong dependency on the strain-to-vorticity ratio.

This effect can be isolated from the influence of the strain flow, which also squeezes

115



Figure 6.14: Schematic for the explanation of the enhanced mutual attraction between the
cores of a strained vortex dipole.

the patches together, again by employing the normalized gap length G̃, similar to the nor-
malized thickness T̃ , presented in Figure 6.13(b). Under this criterion, a leveled curvature
indicates that the gaps are closed under the strain flow exclusively, while any deviation is
a sign of other effects at play.

The time series in Figure 6.13(b) for the cases of E = 0.05 to E = 0.2 deviate noticeably
from one to zero, indicating that the gap is closed under the added effect of the vorticity.
While for cases between E = 0.4 to E = 1, the curves only slightly deviate from unity,
demonstrating that the patches are primarily closed under the influence of the strain flow.

As for the vorticity effect that drives the patches together, it is convenient to conclude
that the leading dipole induces flow over the extended trailing edge that pushes themselves
together. However, the dipole induced pinching flow behind it is a localized effect. Thus,
it is difficult to explain the case of E = 0.2 shown in Figure 6.8, which also experiences the
added effect of vorticity that pushes the patches together, but without a strong leading
dipole. Furthermore, the gap shown in Figure 6.8 decreases relatively uniformly in space,
without any localized throat area between the patches that would hint at the role of the
leading dipole.

However, we can generalized the leading dipole hypothesis to explain the added vorticity
effect that pushes the patches together even without a strong leading dipole, such as the
case of the E = 0.2 shown in Figure 6.8. As illustrated by the schematic, the unevenly
distributed vorticity (represented by the recirculating symbol) creates an net inward flow
to compensate for the accelerating centerline velocity. The net inward flow is the cause of
the self-induced motion that pushes the patches together.

In the past section, we have shown that the separation of between the dipole and
its tail is an indication that the stretching have overcame the flattening for the leading
vortex cores. However, the simulation results of vortex collision from Yao and Hussain
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still shows no evidence of finite-time singularity. In Chapter 5, we proposed an alternative
mechanism of the parallelization between the colliding vortex tubes as means of pyramid
process termination, hence preventing the occurrence of finite-time singularity. The newly
discovered mechanism of enhanced mutual attraction between the cores of strain dipole
further strengthens our augments for the parallelization as the primary mechanism of
finite-time singularity avoidance during vortex collisions.

6.5 Conclusion

In this study, we survey the evolution of a vortex dipole in an external strain flow, which
behaves qualitatively and quantitatively different from the well-studied vortex monopole.
Under an imposed strain flow, vortex dipoles do not maintain their compactness as a result
of each vortex patch preventing the self-rotation of the other. Hence, the deformation is
always aligned with the strain flow, resulting in the dipole flattening out indefinitely. By
introducing axial stretching, we observed the separation of between leading dipole and
its tail; a feature that can be used to identify the type of strain experienced during the
collision of vortices.
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Chapter 7

Closing Remarks

This thesis has explored some aspects of the vortex-structure and vortex-vortex interactions
in idealized scenarios. These scenarios are created by putting vortex rings/dipoles in a
control interaction to observe their evolution. A summary and future work suggestions for
these topics are listed below.

• In Chapters 3 and 4, the interaction of a vortex with a sharp plate tip was investi-
gation by meanings of collision a vortex ring with an aperture in a wall. A major
finding of this work is the direct interaction of a vortex rings with a thin structure
tip forces a re-spiraling of the vortex that is reminiscent of the vortex formation. As
a result, the colliding vortex ring is able to entrain additional fluid from the aperture
surroundings, resulting in a gain of hydrodynamic impulse. Such behaviour appears
to be analogous to the jet nozzle, where the exiting jet follows experiences a gain in
momentum due to reduction in jet cross-sectional area. But in the case of vortices,
the gain in impulse is due to the additional mass captured by the passing vortices.

• In Chapter 5, the stretching mechanism during vortex reconnection was revisited.
The results demonstrated that the collision angle between colliding anti-parallel vor-
tices plays a critical role in determining the vortex reconnection properties though
vortex stretching manipulation. The result challenges the common belief in the liter-
ature that vortex reconnection is only Reynolds number dependent with a constant
scaling. Vortex reconnection is known to produce a sharp drop of the near-field
pressure and a primary source of noise production [21]. Our results here open the
door to mitigate some of the negatives of vortex reconnection by means of geometry
manipulation of large scale vortical structures, which should be the next step of this
investigation.
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• In Chapter 6, the evolution of a strained dipole is examined. It was found that the
pair of two vortex cores prevent the realignment of vortex cores with respect to the
background strain field. As a result, the vortex cores are incapable of maintaining
their compactness. For a low strength strain field relative to vorticity density, the
cores are “flattened” by means of vorticity ejection to its wake (head-tail regime),
while a strong strain flow can flatten a dipole like a simple material contour. Lastly, it
was discovered that the core deformation creates a mutual attraction that closes the
gap between an initial separated dipole cores. It is possible that the “parallelization”
mechanism discussed in Chapter 5 is a result of such mutual attraction, and should
be validation through numerical simulation next.

7.1 Future work suggestions

• An extension to the aperture-ring interaction study is to generalize the fluid en-
trainment phenomenon of passing vortices in a realistic flow condition, where the
axisymmetrical condition no longer holds. Particularly, a deformable plate interact-
ing with a vortex with a core size on the same order of the plate width, such that
strong edge effects might disrupt the “vortex nozzle” effect. If “vortex nozzle” is ro-
bust to such three-dimensional disturbance, fluid entrainment from ambient vortices
as a means of impulse gain could be an energy saving strategy for aquatic animals.

• A variation of the aperture-ring interaction study is the collision of a vortex ring
with a disk instead of an aperture, where the structural tip is aligned in the opposite
direction with respect to the vortex induced flow in comparison with the aperture
counter-part. Such configuration is yet to be examined in this thesis or literature.
A key area of interest is to find the critical radius ratio where the colliding vortex
ring transitions from blockage (because of vortex rebound) to escape (pass around a
small disk). This information could provide valuable insights into a jellyfish’s ability
to capture its own vortex ring to enhance its propulsion efficiency [29].

• For the angle of vortex collision, the next step is to increase the Reynolds number
such that instability takes place. As demonstrated by the results in Chapter 5,
the collision angle determines the degrees of parallel stretching and core flattening.
At a low angle, the prominence of parallel stretching produces strong reconnection
threads that are sensitive to elliptical wave instabilities [56]; while at high angles,
strong core flattening was observed, which is sensitive to the development of Kelvin
Helmholtz instability [55]. Therefore, I hypothesize that collision angle will also alter
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the Reynolds number scaling at high Reynolds numbers because of the differences in
instability mechanisms.

• For the flattening of vortex cores during vortex collision, the contour dynamics study
has demonstrated that the pairing of colliding vortices results in the formation of the
head-tail structure. As such, the rate of vorticity ejection in the wake depends on the
strain-to-vorticity ratio. To prove definitively that core flattening plays a role in the
regularization of finite-time singularity during vortex collision, a model that predicts
the applied strain from local curvature needs to be developed.
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Appendix A

Full expressions for the analytical
model of the ring-aperture
interaction

The full expressions of the terms in Equation (3.6) in Chapter 3 are

φv(x, r) = −Γ1R1

2

∫ ∞

0

ek(ξ−x)J0(kr)J1(kR1) dk (A.1a)

φw(x, r) = −Γ1R1

2

∫ ∞

0

ek(ξ+x)J0(kr)J1(kR1) dk (A.1b)

φa(x, r) =
Γ1R1

π

∫ ∞

0

∫ ∞

0

∫ Ra

0

ekξ+λxJ0(kr)J1(kR1) (A.1c)

cos(ks) cos(λs) ds dλ dk

where Jm(·) denotes the Bessel function of order m. The closed form expressions for the
wall induced velocity component Uw and Vw are

Uw(ξ, R1) =
Γ1η

4πR1

[K(η2)− I(η2)] (A.2a)

Vw(ξ, R1) =
Γ1ηξ

4πR1
2

[
2K(η2)−

(
2 +R1

2/ξ2
)
K(η2)

]
(A.2b)
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where K(·) and I(·) are the complete elliptic integral of the first and second kind, and η
is

η(ξ, R1) =
R1√

R1
2 + ξ2

(A.2c)

The aperture induced velocity component Ua and Va for the incoming vortex ring are

Ua(ξ, R1) =
Γ1

8π

{
8 sin
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2

) [
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2 + ξ2 −Ra
2) + 4ξ2Ra
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Va(ξ, R1) = − Γ1
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where F(·, ·) and H(·, ·) are the incomplete elliptic integral of the first and second kind,
and µ is

µ(ξ, R1) =
ξ√

R1
2 + ξ2

. (A.3c)
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Appendix B

Experiment comparison for the
collision of three vortex rings

Figure B.1 illustrates the vorticity isosurfaces for the three ring case for comparison with
the experimental flow visualizations in Ref. [34]. From the top view in Figure B.1(a), the
vortex rings deform into a triangle shape upon contact. Subsequently, the reconnection
threads expand outward due to mutual induction, forming a three-pointed star-like shape
in Figure B.1(b). Eventually, the reconnection threads dissipate, leaving behind two highly
distorted vortex rings. Our simulations did not capture any asymmetry disturbances that
can be seen from the experimental results. However, we do not enforce any actual symmetry
between the colliding vortex rings (just a set of symmetrically aligned identical vortex rings
for the initial condition), thus we believe that the asymmetrical disturbances observed
in experiments is a result of slight experimental imperfections. Overall, our simulation
results captured all stages of the interaction observed in the experiment with excellent
resemblance.
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Figure B.1: Vorticity isosurfaces of |ω| = 0.5 at (a,d) t = 6.25, (b,e) 18.75, and (c,f) 31.25
for three vortex ring collision at Re = 500. Top and side views are shown in (a,b,c) and
(d,e,f), respectively.
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Appendix C

Validation of the contour dynamics
algorithm

We compare our numerical contour dynamics results with three classical problems in the
literature. We first compare our strain monopole numerical results with the analytical
solutions from Equation (6.4) to check the accuracy of axial stretching implementation. A
sample comparison with the initial conditions of Rb/Ra = 0.5 and θ = 0◦ in a weak axial
strain field (see Table 6.1) of E = 0.1 is shown in Figure C.1. The time series of the aspect

0 1 2 3 4
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0.4
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Figure C.1: Aspect ratio Rb/Ra comparison between the analytical and numerical results
for a vortex monopole in a weak axial strain field of E = 0.1.

ratio are identical between the analytical and our numerical results.

Then, we simulate the evolution of a perturbed Kirchhoff elliptical vortex [25, 60].
Particularly, a Kirchhoff vortex under an m = 4 perturbation generates a tail-like feature
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that somewhat resembles to a dipole tail, and we wish to check if our code can produce
the phenomenon accurately. The numerical results of a Kirchhoff vortex with an aspect
ratio of 6 : 1, a vorticity density of Ω = 1, and a m = 4 perturbation magnitude of 0.02
are shown in Figure C.2, which captures the double spiraling tails as expected.
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Figure C.2: Evolution of a Kirchhoff elliptical vortex with an aspect ratio of 6 : 1 and m = 4
perturbation. Snapshots from t = 0, 15, and 30 are shown from (a) to (c), respectively.

Lastly, we simulate the coalescence of two same-signed vortices to check if our codes can
capture the interaction between two separated vortex patches in close proximity. Figure C.3
illustrates the results of two equal vortices with radius of R = 1, vorticity density of Ω = 1,
and separated by 3.5R between their centers. Our code captures the documented behaviour
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Figure C.3: Coalescence of same signed circular vortices with radius of R = 1 and separated
by 3.5R. Snapshots from t = 0, 10, and 20 are shown from (a) to (c), respectively.

in the literature, where the circular vortices are deformed into comma-like shapes as they
merge in Figure C.3(c).
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