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Abstract

Solving math problems can be challenging. It is so challenging that one might wish to
seek insights from the internet, looking for related references to understand more about
the problems. Even more, one might wish to actually search for the answer, believing that
some wise people have already solved the problem and shared their intelligence selflessly.
However, searching for relevant answers for a math problem effectively from those sites is
itself not trivial.

This thesis details how a math-aware search engine Tangent-L—which adopts a tradi-
tional text retrieval model (Bag-of-Words scored by BM25+) using formulas’ symbol pairs
and other features as “words”—tackles the challenge of finding answers to math ques-
tions. Various adaptations for Tangent-L to this challenge are explored, including query
conversion, weighting scheme of math features, and result re-ranking.

In a recent workshop series named Answer Retrieval for Questions on Math (ARQ-
Math), and with math problems from Math StackExchange, the submissions based on these
adaptations of Tangent-L achieved the best participant run for two consecutive years, per-
forming better than many participating models designed with machine learning and deep
learning models. The major contributions of this thesis are the design and implementation
of the three-stage approach to adapting Tangent-L to the challenge, and the detailed analy-
ses of many variants to understand which aspects are most beneficial. The code repository
is available1, as is a data exploration tool2 built for interested participants to view the math
questions in this ARQMath challenge and check the performance of their answer rankings.

1https://github.com/kiking0501/MathDowsers-ARQMath
2https://cs.uwaterloo.ca/∼yk2ng/MathDowsers-ARQMath
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Chapter 1

Introduction: from MathIR to
MathCQA

Mathematical Information Retrieval (MathIR) is one of the domain-specific applications of
Information Retrieval (IR), the process of retrieving documents relevant to input queries.
The goal of MathIR is to develop “math-aware” search engines capable of searching math
documents — documents characterized by the presence of formulas in additional to natural
language text.

A series of MathIR evaluation workshops were held as part of NTCIR from 2010 to
2012 to encourage the development of math-aware search engines [2, 3, 60]. The NTCIR
MathIR task requires participating systems to retrieve documents from a corpus of arXiv
or Wikipedia articles with respect to queries that consist of one or more formulas with or

Figure 1: MathDowsers : researchers dowsing for math documents.
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without keywords. The most recent task data from NTCIR-12 has served as a benchmark
for researchers in the MathIR research community to improve their math-aware search
engines.

However, the NTCIR MathIR task, which is an ad hoc retrieval task that looks for
related documents from given query terms, is not the only task that can be used to evaluate
the effectiveness of a math-aware search engine. Generically, the effectiveness of a search
engine might be determined by various other tasks, each aiming to satisfy a different
information need. One such task is Question Answering. As a cross-disciplinary task
between IR and Natural Language Processing (NLP), Question Answering might be re-
formulated as a retrieval task where the target information to be retrieved is a ranked list of
answers with respect to a question posed in a natural language. Similarly, a math domain-
specific application of Question Answering can be used as a task that helps evaluate the
effectiveness of a math-aware search engine.

The more recent ARQMath Lab series, whose name stands for “Answer Retrieval for
Questions on Math”, provides such an evaluation platform for math-aware search en-
gines [62, 30]. Running at the Conference and Labs of the Evaluation Forum (CLEF)
in 2020 and 2021, and to be held again in 2022, this Lab provides the first Mathemati-
cal Community Question Answering (MathCQA) task involving real-life math questions
selected from a Community Question Answering (CQA) forum, the Math StackExchange
(MSE) site. The MathCQA task asks participating systems to retrieve answers from previ-
ous questions in the same forum that might be potential answers to given math questions.
The Lab also has an in-context formula retrieval task, in which the participating systems
are asked to retrieve useful formulas in the forum with respect to an identified formula
of the given math questions. Both tasks have served to encourage the MathIR research
community to extend its research together with modern NLP development to design an
effective math-aware search engine suited for the tasks.

Motivated by the Lab series, the goal of this thesis is to study MathCQA:

Given a math question — expressed in mathematical natural language
— how can a math-aware search engine be designed to be effective in
retrieving potential answers from a MathCQA forum?
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This thesis describes the research work developed by the MathDowsers team (Figure 1)
for the ARQMath Lab series in CLEF 2020 and 20211. A system was designed and im-
plemented for the MathCQA challenge, and the submitted runs from this system achieved
the best participant runs in both years. This research work provides the following contri-
butions:

• it proposes an effective three-stage approach which adapts a math-aware search en-
gine to the MathCQA task;

• it details the analysis of many variants of this approach to suggest which aspects are
most beneficial;

• it demonstrates the effectiveness of Tangent-L, a math-aware search engine that was
first proposed by Fraser et al. [14] and continues to be developed by the team;

• it shows that a traditional MathIR system remains a competitive and viable option
for the MathCQA task, even when compared to other systems involving machine
learning techniques and deep learning algorithms.

The outline of this thesis is as follows: Chapter 2 introduces MathIR and CQA, and
provides a background on the ARQMath Lab series; Chapter 3 describes the math-aware
search engine Tangent-L and its variants motivated by the ARQMath Lab challenges;
Chapters 4 examines the ARQMath MathCQA task, followed by Chapter 5 which focuses
instead on the ARQMath In-context Formula Retrieval task. Chapter 6 outlines the design
and implementation of an accompanying user interface for the search engine to address the
problem of data exploration. Chapter 7 closes with a discussion of what conclusions can
be drawn and what future work might be pursued.

1By analogy to water dowsing, MathDowsers refers to a group of researchers from the University of
Water loo looking for math documents

3



Chapter 2

Background

2.1 Mathematical Information Retrieval (MathIR)

Formal mathematics and formulas play a crucial role in scientific and engineering doc-
uments to express concepts or ideas. Searching for these mathematical expressions and
documents with conventional text search engines, however, can be ineffective due to the
inability to capture distinctive characteristics inherent only in formulas. Developing spe-
cialized search engines that are math-aware is thus the research goal of the Mathematical
Information Retrieval (MathIR) community.

The development of math-aware search engines has proceeded ever since the first pro-
posal by Miller and Youssef in 2003 [33]. Survey papers and overviews of the field are
available [16, 47, 1]. The following subsections outline some of the core details of the
research field.

2.1.1 Formula Representations

While formula processing is the key component of math-aware search engines, formulas
in digital documents can be encoded in various ways. Other than the LATEX encoding,
MathML is an encoding from the W3C recommendation [34] for exchanging mathematics
among software tools. It is a markup language cast as an application of XML and encodes
formulas in two tree-like representations (Table 1):
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Presentation MathML Content MathML

<mrow> <apply>

<mrow> <eq/>

<msup> <apply>

<mi>x</mi> <plus/>

<mn>2</mn> <apply>

</msup> <power/>

<mo>+</mo> <ci>x</ci>
<mrow> <cn>2</cn>
<mn>4</mn> </apply>

<mo>&InvisibleTimes;</mo> <apply>

<mi>x</mi> <times/>

</mrow> <cn>4</cn>
<mo>+</mo> <ci>x</ci>
<mn>4</mn> </apply>

</mrow> <cn>4</cn>
<mo>=</mo> </apply>

<mn>0</mn> <cn>0</cn>
</mrow> </apply>

Table 1: Representations for the formula x2 + 4x + 4 = 0. Presentation MathML uses
presentational tags that “... generally start with “m” and then use “o” for operator “i” for
identifier “n” for number, and so on. The “mrow” tags indicate organization into horizontal
groups.” Content MathML uses semantic tags that “... take into account such concepts as
“times”, “power of” and so on”. [34]

Presentation MathML, which captures a Symbol Layout Tree (SLT), is the visual struc-
ture of a mathematical expression with a two-dimensional layout;

Content MathML, which captures an Operator Tree (OPT), captures the hierarchy of
underlying mathematical concepts.

Fundamental differences exist among these formula representations. LATEX is a lin-
earized encoding reflecting a formula’s syntax, while the two forms of MathML are tree-
based encodings. Both LATEX and Presentation MathML encode visual information, while
Content MathML encodes the semantic mathematical meaning of formulas. Common tools
are available for converting LATEX to MathML (such as LaTeXML1), however, conversion
failure might occur, especially for Content MathML, which requires an interpretation of
semantics from visual information.

1https://dlmf.nist.gov/LaTeXML/
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Each of these differences brings pros and cons to math-aware search engines. For
instance, the LATEX encoding is already linearized and thus can be easily incorporated
into existing text search approaches; however its representation only implicitly reflects the
structural information embedded in tree-like encodings. Presentation MathML provides a
richer visual information and has great compatibility with LATEX, but it does not encode the
semantic mathematical meaning of the formula. A single or parallel markup with Content
MathML, however, has to deal with a higher degree of ambiguity encountered during the
conversion for this encoding. The choice of formula representation(s) and the associated
input processing thus dictate the capability of a math-aware search engine.

2.1.2 Retrieval Models

Major approaches to design a retrieval model of math-aware search engines can be broadly
categorized as:

1. structure-based searching via trees (tree search); or

2. reduction to text retrieval model (text search); or

3. a hybrid combination of both (hybrid).

While the actual models vary, the remainder of this section describes some commonly-seen
techniques in the latest math-aware search engines developed for the ARQMath Lab series
(Section 2.5).

Tree Search: Operations on Tree Structures

With tree-like encodings, each complete tree and all partial trees of a formula can be used
for formula matching. Two trees can be compared by:

Tree-Edit Distance: The tree-edit distance refers to the minimal-cost sequence of node
edit operations that transforms one tree to another. Common node edit operations in
consideration are insertion, deletion, and substitution. A tree-edit distance score can
be defined accordingly, with custom weights assigned for each node edit operation.

Alternatively, a tree-like encoding can be linearized by decomposing into a set of leaf-
root paths, or by its traversal path in the infix, prefix, or postfix order.
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Text Search: Bag-of-Words Model

A bag-of-words model represents a textual document by the bag of its words that disregards
the word order but keeps the word counts. Under this model, a document’s score with
respect to a query can be represented by a weighted sum of the scores of the terms making
up the document. Two traditional scoring functions are:

TF-IDF [23, 18]: The Term Frequency-Inverse Document Frequency (TF-IDF) estimates
document relevancy with numerical statistics of the query term. A query term con-
tributes more weight to the document that contains it if either it frequently appears
within the document (a higher Term-Frequency) or if it is rarer in the overall collec-
tion of documents (a lower Document-Frequency). A simple form of TF-IDF for a
collection of documents D, a query q, and a document d ∈ D is given by

TF-IDF(q, d) =
∑
w∈q

tf w,d
|d|

log

(
|D|
|Dw|

)
(2.1)

where tf w,d is the term frequency of w in document d, |d| is the document length, and
|Dw| is the document frequency of w—the number of documents in D containing w.

Okapi BM25 [52]: Introduced in 1994, Okapi BM25 is a scoring function inspired by
the Probability Ranking Principle [51], and it scores documents by a decreasing esti-
mated -probability of document relevancy. Similar to TF-IDF, Okapi BM25 also has
a Term-Frequency component to reward term frequency and an Inverse-Document-
Frequency component to penalize document frequency for each query term in a docu-
ment, but the components are designed to also account for term frequency saturation
and document length normalization. More specifically, it is defined as

BM25(q, d) =
∑
w∈q

(
(k + 1)tf w,d

k
(

1.0− b+ b|d|
d

)
+ tf w,d

)
log

(
|D| −|Dw|+ 0.5

|Dw|+ 0.5

)
(2.2)

where d is the average document length, and k and b are constants that are commonly
set to 1.2 and 0.75, respectively, without specific data training.

Both score functions are “traditional” text ranking functions that have a long history
and have been widely implemented in popular open-source text search platforms such as
Lucene, Solr, and ElasticSearch.2

2Okapi BM25 has replaced TF-IDF to become the default ranking since Lucene version 6.0 in 2016.
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Text Search: Vector Space Model

A vector space model encodes a textual document as a vector, where each dimension
corresponds to a word in the document. For example, a document can be simply encoded
by a one-hot vector of the length of total vocabularies, where each dimension of the one-hot
vector has a value of one if its corresponding word exists in the document, otherwise zero.

With this model, the document relevancy with respect to a query can be represented by
a similarity score between the document vector d and the query vector q, which is usually
measured by:

Cosine Similarity:
d · q
‖d‖‖q‖

(2.3)

A common vector space model encodes a document by a TF-IDF vector. That is, each
dimension of the vector is the TF-IDF score of its corresponding word.

Text Search: Word Embeddings

A document vector in a vector space model can also be computed (say, taking the average)
from a set of vectors where each vector represents a word that makes up the document. The
set of vectors is referred to as word vectors. Word vectors can be learned effectively from
a text corpus, such that words having a similar meaning would have similar vectors [31],
in which case, the word vectors are more often referred to as word embeddings. Common
word embedding algorithms include:

word2Vec [32] (2013): trained with shallow neural networks by either taking the context
of each word as the input and to predict the word corresponding to the context (the
Continuous Bag-of-Word (CBOW) model), or by predicting the context words of an
input word (the Skip Gram model).

GloVe [46] (2014): while word2Vec “sees” only a local context window each time during
training, GloVe first builds a word co-occurrence matrix for the entire corpus, followed
by matrix factorization to yield a lower-dimensional matrix that contains the word
embeddings.

fastText [8] (2016): incorporates n-gram subwords (that is, characters in the original
word with a window size n) when training word2vec, so that rare or unseen words
are represented more appropriately.
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Text Search: Transformers and the BERT Family

One drawback of word embeddings is that each word can only have one fixed meaning (one
vector) across the whole corpus, regardless of its context3. The Transformer architecture
by Vaswani et al. [58] in 2017, on the other hand, is a deep learning model architecture that
handles sequential input of words, with an Encoder component that adopts a self-attention
mechanism to learn the weight of a word considering its surrounding words at input time.

Bidirectional Encoder Representations from Transformers (BERT) proposed by Devlin
et al., [13] in 2018, as its name suggests, is built on top of Transformer Encoders. Given a
large corpus, it trains on the Masked Language Model (MLM) task and the Next Sentence
Prediction (NSP) task with bidirectional layers to learn word representations in context.
The pre-trained neural networks can then be transferred, that is, they can be equipped
with additional layers and fine-tuned to apply to various downstream tasks, such as IR
applications as detailed by Lin et al. [21] in 2020.

Although BERT achieves state-of-the-art performance on many natural language un-
derstanding tasks, it suffers from being heavily compute-intensive. Variants of BERT have
been proposed to improve its efficiency on top of effectiveness. Some of the variants are:

RoBERTa [22] (2019): A Robustly optimized BERT approach that proposes modifica-
tions to the BERT pre-training procedure to improve end-task performance.

ALBERT [20] (2019): A Lite BERT approach with parameter-reduction techniques to
lower memory consumption and to increase the training speed.

SentenceBERT [49] (2020): An approach to optimize the computation overhead specifi-
cally for finding similar sentences in a corpus (or any pair of textual input that wants
to be compared by cosine similarity), by deriving semantically meaningful sentence
embeddings.

ColBERT [19] (2020): The Contextualized Late Interation over BERT approach speeds
up query processing in document retrieval, by first introducing a late interaction
architecture that independently encodes the query and the document using BERT;
followed by an interaction step that can effectively model their fine-grained similarity.

3Think of “Apple”—is it food or a technology company?
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Hybrid: Ensembling Ranked Results

Finally, results from different models can be ensembled to create a single ranked list with:

The Reciprocal Rank Fusion (RRF) [10]:

RRF (d ∈ D) =
∑
m∈M

1

k + rm(d)
(2.4)

where D is the collection of documents, M is the set of models, rm is the rank, and
k is a parameter determined by the dataset.

2.1.3 Effectiveness Measures

The effective measures in MathIR share common measures across the IR community as
follows:

Precision and Recall: Precision is the fraction of relevant documents among all re-
trieved documents, and recall is the fraction of relevant documents that have been
retrieved among all relevant documents. It is, in general, a challenge to get good
performance on both measures, since an increase in recall—usually achieved by re-
trieving more documents to get the relevant documents—lowers the precision when
more irrelevant documents are recovered as well.

Another form of precision is Precision@k (P@k), the calculation of which is based
only on the top-k documents retrieved. P@k is closely related to the user experience
since usually only top-k but not all presented documents might actually be examined
by a user during searching.

MAP: The Mean Average Precision (MAP) is the mean of Average Precision (AP). For
each query with n retrieved documents, AP is defined as:

AP =

∑n
k=1

(
P(k) · rel(k)

)
number of relevant documents

(2.5)

where P(k) is the precision calculated up to the top-k retrieved documents, and
rel(k) is one if a document at rank k is relevant and zero otherwise. MAP is then
computed as the average of AP over all queries. Compared to precision and recall,
MAP considers also the order of the relevant documents in the retrieved list.
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bpref: The binary preference-based measure (bpref) is a measure that takes into account
the existence of unjudged documents in a ranked list. With the previous measures,
the unjudged documents are deemed to be irrelevant and thus the evaluation power
of those measures are sometimes misleading. On the other hand, bpref considers only
judged documents for evaluation. For a given collection of documents R judged as
relevant and a given collection of documents N judged as irrelevant, bpref is defined
as,

bpref =
1

|R|
∑
r∈R

(
1−|n ∈ N that ranked higher than r|

min(|R|, |N |)

)
(2.6)

nDCG: The normalized Discount Cumulative Gain (nDCG) is a measure for graded
relevance judgements. It is computed as follows: each retrieved document first earns
a gain value from the graded relevance judgement, discounted by a decaying function
of the rank position of each document. The summation of the gain values is the
Discount Cumulative Gain (DCG):

DCGp =

p∑
i=1

reli
log2(i+ 1)

(2.7)

where reli is the graded relevance of the result at position i. nDCG is then calculated
by dividing by the ideal Discounted Cumulative Gain:

nDCGp =
DCGp

IDCGp

, where IDCGp =

RELp∑
i=1

reli
log2(i+ 1)

(2.8)

with RELp representing the list of relevant documents (in decreasing order of their
relevance) in the whole collection up to position p.

The nDCG′ [55] (read as “nDCG”-prime) extends the nDCG measure. The only
difference when computing the nDCG′ is that unjudged documents are removed from
the ranked list before performing the computation. It is shown that nDCG′ has
somewhat better discriminating power and a better system ranking stability than
the bpref measure with judgement ablation.

Similar to nDCG′, MAP′ and P′@k are identical to MAP and P@k, respectively, but
with unjudged documents removed from the list of retrieved documents before computing
the score.
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P@k, MAP, and bpref are measures based on binary relevance judgements. If relevance
judgements are instead graded, binarization (in which the relevance levels are collapsed
into binary judgements by considering only one or more of the highest relevance scores as
relevant) must be applied to the relevance judgements before the calculation.

2.2 The NTCIR MathIR benchmark

Evaluation of math-aware search engines requires not only large corpora of mathematical
documents but also sets of real-world, interesting queries with appropriate evaluation of
the results [16]. Such an evaluation benchmark was lacking for the research community
until 2010, when the first MathIR-focused task was created at NTCIR-10 (the 10th NII
Testbeds and Community for Information access Research) [2]. NTCIR MathIR tasks were
held in subsequent years in NTCIR-11 and NTCIR-12 ([3, 60]), serving to introduce an IR
evaluation framework to math-aware search.

Several subtasks were developed in NTCIR, summarized in Tables 2 and 3 according
to the types of queries and the target corpus in search. Each query consists of one or
more formulas with or without keywords, and wildcard operators might occur in the query
formulas. The target corpora to be searched are mathematical documents from arXiv4 and
Wikipedia5: the arXiv corpus contains paragraphs from technical articles with arXiv cat-
egories math, cs, physics:math-ph, stat, physics:hep-th, and physics:nlin; and the
Wikipedia corpus contains complete articles from English Wikipedia that explicitly contain
formulas, plus articles sampled from across the rest of Wikipedia. The two corpora are
chosen to simulate the search needs for two groups of people: technical experts presumed
to have a high level of mathematical sophistication (arXiv) and non-experts (Wikipedia).

Evaluation of the NTCIR MathIR tasks was pooling-based: the top-20 ranked doc-
uments were selected from each run and evaluated by human assessors with a graded
judgment 0 (not-relevant), 1 (partially relevant), or 2 (relevant). In most NTCIR MathIR
tasks, the primary measure was P@k for k = {5, 10, 15, 20} for each of the three types of
relevant hits. The relevance judgements along with the queries provided in the NTCIR
MathIR tasks have supported the development of math-aware search engines over the years
before the availability of the new benchmark in 2020, the ARQMath Lab series (Section
2.4).

4https://kwarc.info/projects/arXMLiv/
5http://www.cs.rit.edu/∼rlaz/NTCIR12 MathIR WikiCorpus v2.1.0.tar.bz2
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NTCIR subtasks NTCIR-10 NTCIR-11 NTCIR-12

MathIR tasks with
ArXiv corpus

Formula Search O

Formula + Keyword Search O O O
(arXiv

Main Task)

Formula + Keyword Search O
with “simto”

Free-form query search O

MathIR tasks with Formula Search O O
Wikipedia corpus (Wikipedia (MathWiki

Open Subtask) Formula)

Formula + Keyword Search O
(MathWiki)

Formula + Keyword Search
with “simto”

Math understanding subtask O

Table 2: Summary of NTCIR tasks by Aizawa and Kohlhase [1].

# of Queries Includes
Task # of Queries with a Wild card Text Keywords

NTCIR-11 Wikipedia Open Subtask 100 43 No
NTCIR-12 MathWiki Task 30 10 Yes
NTCIR-12 arXiv Main Task 29 25 Yes
NTCIR-12 MathWikiFormula Task 40 20 No

Table 3: Summary of NTCIR tasks by Fraser [14].
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2.3 Math Community Question Answering

(MathCQA)

Community Question Answering (CQA) sites, broadly speaking, refer to web-based services
where people can ask questions online or share their knowledge by providing answers to
questions asked by the rest of the community on those sites. The process of people asking
questions on CQA sites might be initiated by unsuccessful keyword searches using web
search engines. They thus seek help from the CQA sites where they might input a more
precise question description that is formulated in a natural language.

As a research field, CQA might refer to a large family of tasks characterized by the
presence of three domain entities: a question, an answer, and a pair of users who act as an
asker and an answerer. For instance, CQA might involve the tasks:

Question Retrieval: retrieving relevant old questions from the sites given a new ques-
tion;

Answer Retrieval: retrieving relevant old answers from the sites given a new question;

User Ranking: estimating user expertise to rank a user;

or tasks such as topic classification, best answer prediction, answer ranking, asker satisfac-
tion prediction, and so on. Srba and Bielikova have written a survey with a comprehensive
classification of the tasks [56]. Usually, a CQA task refers to the process of question an-
swering, that is, as a task of answer retrieval followed by answer ranking—and thus an IR
task essentially that might be accomplished with text retrieval modelling. Additionally,
the sophisticated structure in CQA allows many features to be extracted for modelling the
task, as shown in Figure 2.

More recent CQA challenges were held at SemEval-2015, SemEval-2016, and SemEval-
2017 (Task 3) [36, 37, 35] with data provided from the Qatar Living Forum6 and the Fatwa
site7 (in Arabic). Domain-specific CQA challenges, on the other hand, can be diverse
depending on the availability of such sites in real life. For mathematics—which is the
focus of this research work—MathCQA sites are available, including the popular Math
StackExchange8 and Math Overflow9, and the first MathCQA challenge was held using
data from the former and to be introduced in the next section.

6https://www.qatarliving.com/forum/
7https://www.islamweb.net/ar/fatwa/
8https://math.stackexchange.com
9https://mathoverflow.net
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Figure 2: CQA Features categorized by Srba and Bielikova [56].

It is important to recognize that MathCQA differs from the research field of Math
Question Answering (MathQA). While the former usually focuses on retrieving relevant
answers from an existing dataset (a CQA site), the latter deals with actual problem-
solving, that is, to compute a numeric answer from equations or to parse and solve an
algebra problem with symbolic computing, for example. A recent MathQA task was held
at SemEval-2019 [17], which considered a math question set that was derived from Math
SAT practice exams. That task’s objective is to identify one uniquely correct answer
by multiple-choice selection or by numerical computation, involving no direct retrieval
subtask. These types of MathQA tasks are thus not the focus of this research. More
differences between CQA and QA in a general domain are discussed in a survey paper
by Patra [44]. Olvera-Lobo, Maŕıa Dolores and Gutiérrez-Artacho have prepared a list of
previous QA challenges [42].
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2.4 The ARQMath Lab Series

The ARQMath Lab series [62, 30], whose name stands for Answer Retrieval for Questions
on Math, is the core evaluation platform used in this research work. Running at the
Conference and Labs of the Evaluation Forum (CLEF)10 in 2020 and 2021, and to be held
again in 2022, the ARQMath Lab series provides the first Community Question Answering
(CQA) platform with questions involving math data (and thus the first MathCQA). The
Lab uses a collection of questions and answers from the Math StackExhange (MSE)11 site
and poses two tasks—an answer retrieval task and a formula retrieval task—with an aim to
advance math-aware search and the semantic analysis of mathematical notation and texts.

The following subsections further describe the dataset and the two tasks in this Lab
series. Hereafter, the Lab series in 2020 and 2021 are referred to as ARQMath-1 and
ARQMath-2 respectively, and the two tasks as the MathCQA Task and In-Context Formula
Retrieval, respectively.

10http://www.clef-initiative.eu/
11https://math.stackexchange.com/
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2.4.1 Dataset: The MSE Collection and Formula Files

The Math StackExchange Forum

Math StackExchange (MSE) is a CQA forum specialized in mathematics, where users can
post math questions (thus create a question post) or provide an answer to a math question
(thus an answer post). A question post and its associated answer posts together form a
thread. A question post in the thread consists of a title that summarizes the question,
a body text that includes all necessary information, and up to 5 tags that describe the
question. An answer post contains a proposed answer to its associated question post in the
same thread, and might receive votes—up-votes or down-votes—from other users. Users
might also edit their own posts, leave comments to any posts, or mark an existing question
post as a duplicate post or a related post of other question posts. Badges might be assigned
to users to reflect their reputation according to their activeness in the forum.

The MSE Collection Format

The ARQMath Lab collection is a processed MSE snapshot as of 01-March-2020 from the
Internet Archive12. With respect to the forum activities mentioned above, the collection
is stored as separate XML13 files: Posts, Tags, Votes, PostHistory, Comments, PostLinks
(that records the duplicate posts and related posts), Badges and Users. The final MSE
collection that is provided to the Lab participants accounts for data from 2010 to 2018 and
contains roughly 1.1 million math question posts and 1.4 million answer posts.

Formula Annotations and Representation Files

Formulas present in the MSE collection (specifically, in the Posts file and the Comments
file) are annotated by the Lab organizers. Each identified instance of a formula is assigned
a unique formula ID, and then placed in a <math-container> HTML tag using the form:

<span id=FID class="math-container">... </span>

where FID is the formula id. While the raw formulas in the files are presented as LATEX,
the ARQMath Lab also provides other formula representations—formulas in Presentation

12https://archive.org/download/stackexchange
13https://www.w3.org/TR/1998/REC-xml-19980210.html
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MathML and Content MathML (See Section 2.1.1) generated using LaTeXML14 to facil-
itate participants’ systems development. These formula representation files are stored as
Tab Separated Value (TSV) files, where each line of a TSV file represents a single instance
of a formula that includes a formula id (and a visual id, see below) and its formula repre-
sentation in either LATEX, Presentation MathML, or Content MathML. Roughly 28 million
formulas are annotated accordingly.

Difference between ARQMath-1 and ARQMath-2

ARQMath-1 and ARQMath-2 provide the same MSE collection, but with different versions
of the formula representation files as follows:

• In the ARQMath-1 version, a total of 8% of Presentation MathML and 10% of Con-
tent MathML are missing in the formula representation files due to conversion failures
of some malformed LATEX formulas and the processing limitation of LaTeXML. Im-
provement were made in ARQMath-2 by the Lab organizers so that only 0.14% of
both the Presentation MathML and Content MathML are missing in the files due to
conversion failures.

• ARQMath-2 introduces, the concept of visually distinct formula (see Section 2.4.3).
In ARQMath-2, around 9.3 million visually distinct formulas are recognized by the
Lab organizers, and a visual id is included for each formula instance in the ARQMath-
2 formula representation files. Repeated occurrences of a visually identical formula
would have different formula ids but the same visual id in these formula representation
files.

ARQMath-1 provides only sample data but not any training data for the tasks, due
to it being the first of its series. Starting from ARQMath-2, researchers might use the
relevance assessment released in ARQMath-1, which is referred hereafter as the ARQMath-1
benchmark, as their training data. Similarly, the ARQMath-2 relevance assessment creates
an ARQMath-2 benchmark.

14https://dlmf.nist.gov/LaTeXML/
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Topic-ID: A.75

Title: Prove that for each integer m, limu→∞
um

eu = 0

Body: I’m unsure how to show that for each integer m, limu→∞
um

eu = 0. Looking at the solutions it

starts with eu > um+1

(m+1)! but not sure how this is a logical step.

Tags: real-analysis, calculus, limits

Figure 3: A math question, framed as a topic, with topic-ID, title, body, and tags.

2.4.2 Task 1: The MathCQA Task

Task Definition

Task 1 of the Lab, the MathCQA Task, is defined as follows:

Given a posted question as a query, search all answer posts and return relevant answer
posts.15

The query questions, represented as topics, are selected from question posts from the
part of MSE collection from 2019 (for ARQMath-1) and 2020 (for ARQMath-2), which are
not accessible by participants. Each topic includes a topic-ID, title, body text, and list of
tags, as shown in Figure 3.

Participants need to submit a run which includes a ranked list of at most 1,000 answer
posts—represented by their post ids, referred as answer ids—for each topic retrieved from
the provided MSE collection. Each participant might submit one primary run—the major
run to be assessed—and up to four alternate runs. The participants declare whether
each submitted run is an automatic run, meaning the result is produced without human
intervention, or a manual run, meaning that there is some human involvement during the
generation of the ranked lists.

Relevance Assessment

During the assessment, top-k pooling is performed on all participants’ submitted runs to
create pools of answer posts to be judged for relevance to each topic. For ARQMath-1, the

15https://www.cs.rit.edu/∼dprl/ARQMath/Task1-answers.html
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top-50 results in all primary runs and baseline runs, and the top-20 results for all alternate
runs are judged to be of high (H), medium (M), or low (L) relevance or to be not relevant
(NR). For ARQMath-2, the top-45 results and the top-15 results are selected, respectively.

The primary evaluation metric for the task is nDCG′. The Lab organizers also com-
pute other common IR metrics: P′@10 and MAP′, with H+M binarization, meaning that
all answer posts with H or M judgements are deemed to be relevant and those with L or
NR judgements are deemed to be irrelevant (Section 2.1.3). For ARQMath-2, all submit-
ted runs are run against the ARQMath-1 benchmark as an alternative to compare their
performance.

Baseline Systems

The Lab organizers provide five baselines systems in ARQMath-1 and four baseline systems
in ARQMath-2 for Task 1. One of the baselines, Linked MSE posts, uses privately-held
data, which is not available to Lab participants, as described as follows:

Linked MSE posts: a model “built from duplicate post links from 2019 in the MSE
collection (which were not available to participants). This baseline returns all an-
swer posts from 2018 or earlier that were in threads from 2019 or earlier that MSE
moderators had marked as duplicating the question post in a topic. The posts are
sorted in descending order by their vote scores.” [62]

Other baseline systems are: TF-IDF, Tangent-S, TF-IDF + Tangent-S, and Approach0.
The Approach0 system is a baseline system in ARQMath-1 only; in ARQMath-2 it is one
of the participant systems. These systems are further described in Section 2.5.1 and 2.5.2.

Results and Released Benchmark

A summary of the task participation and task topics for ARQMath-1 and ARQMath-2 can
be found in Table 4, and the official results are attached in Appendix A.1 and A.2.

In ARQMath-1, runs from the MathDowsers team placed in the top three positions
out of all runs (including the baselines) with respect to the primary measure nDCG′. For
P′@10 and MAP′, the top run was achieved by the baseline run Linked MSE posts. In
ARQMath-2, one of the runs from the MathDowsers team placed first out of all runs
(including the baselines) with respect to the primary measure nDCG′ as well as another
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Task 1: The MathCQA Task
Count of ARQMath-1 ARQMath-2

Total Participant Teams 5 9
Total Participant Runs 18 36

Total Runs with Baselines 23 40
MathDowsers’ Runs 5 2

Total Topics 98 100
Assessed Topics 77 71

Extra Assessed Topics 0 18

Table 4: Task summary for the MathCQA task. Extra assessed topics are released after
the Lab period and do not contribute to the performance of the submitted runs.

Task 1: The MathCQA Task
Count of ARQMath-1 ARQMath-2
Topic Labels (77 Topics) (71 topics)

Dependency
Text 13 10
Formula 32 21
Both 32 40

Topic Type
Computation 26 25
Concept 10 19
Proof 41 27

Difficulty
Easy 32 32
Medium 21 20
Hard 24 19

Table 5: Labels for the assessed topics in the MathCQA task.
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measure MAP′. Concerning the remaining measure P′@10, the top run was again achieved
by the baseline run Linked MSE posts.

For both ARQMath-1 and ARQMath-2, assessed topics are further labelled by the Lab
organizers as depicted in Table 5.

2.4.3 Task 2: In-Context Formula Retrieval

Task Definition

Task 2 of the Lab, In-Context Formula Retrieval, is defined as follows:

Given a question post with an identified formula as a query, search all question and
answer posts and return relevant formulas with their posts.16

The topics in this task are identical to the topics defined in Task 1, with the addition
of one identified formula selected from the title or the body text of the topic.

Unlike a regular formula retrieval task, of which the relevance of a retrieved formula is
determined in isolation, in this in-context formula retrieval, the relevance of a formula is
defined by its expected utility given its associated question. More specifically, the relevance
judgement task for the Lab assessors is defined as follows:

For a formula query, if a search engine retrieved one or more instances of this retrieved
formula, would that have been expected to be useful for the task that the searcher
was attempting to accomplish? [30]

Participants need to submit a run which includes a ranked list of at most 1,000 for-
mula instances—represented by formula ids—along with the question or answer post that
they appear in (again, represented by their post ids) from the provided MSE collection.
Similar to Task 1, each participant might submit one primary run—–the major run to
be assessed—–and up to four alternate runs. The participants also declare whether each
submitted run is an automatic run, meaning the result is produced without human in-
tervention, or a manual run, meaning that there is some human involvement during the
generation of the ranked lists.

16https://www.cs.rit.edu/∼dprl/ARQMath/task2-formulas.html
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Visually Distinct Formulas

While retrieved items in the runs are formula instances, visually distinct formulas are
considered during assessment. Visually distinct formulas refer to formulas distinguishable
by their appearance. They are determined by the Lab organizers through clustering formula
instances using their Presentation MathML representations when possible, and otherwise
the LATEX representations. Around 9.3 million visually distinct formulas partition the 28
million formula instances in the MSE collection.

Relevance Assessment

During the assessment, simple top-k pooling is not performed on the retrieved formula
instances, but instead all formula instances in a submitted run are first clustered by visually
distinct formulas. The process is to proceed down each list of formula instances until some
threshold of visually distinct formulas has been seen. In ARQMath-1, the pool depth is
the rank of the first instance of the 25th visually distinct formula for primary runs and for
the baseline run; for alternate runs, the pool depth is the rank of the first instance of the
10th visually distinct formula. In ARQMath-2, it is 20th and 10th, respectively.17

After pooling, assessment is then performed on formula instances: for each visually
distinct formula, at most five instances are judged by the Lab assessors. In ARQMath-1,
the five instances that contribute to the pools by the largest number of runs are selected,
breaking ties randomly. In ARQMath-2, the five instances are chosen by a voting protocol
to prefer highly-ranked instances in addition to instances returned in multiple runs: each
instance vote is weighted by the sum of its reciprocal ranks within each run, breaking ties
randomly.

Assessors are presented with the query formula within its associated question post,
and also the retrieved formula instances in context with its associated post. Each formula
instance is graded according to the relevance judgement task defined previously from 0 (not
expected to be useful) to 3 (just as good as finding an exact match to the query formula
would be).

The evaluation metric for Task 2 follows Task 1, where the primary metric is nDCG′

and the other two metrics, P′@10 and MAP′, are provided as well. All submitted runs for
ARQMath-2 are also run against the ARQMath-1 benchmark as an alternative means to
compare their performance.

17Additionally, a pool depth of up to 1,000 is used in ARQMath-1 for any formula having its associated
answer marked as relevant in Task 1; but this is not used in ARQMath-2.
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Task 2: In-Context Formula Retrieval
Count of ARQMath-1 ARQMath-2

Total Participant Teams 4 6
Total Participant Runs 11 17

Total Runs with Baselines 12 18
MathDowsers’ Runs 0 2

Total Topics 87 100
Accessed Topics 45 58

Extra Accessed Topics 27 12

Table 6: Task summary for In-Context Formula Retrieval. Extra accessed topics are
released after the Lab period and do not contribute to the performance of the submitted
runs.

Baseline Systems

The Lab organizers provide a baseline system, Tangent-S for Task 2. This system is further
described in Section 2.5.1.

Result and Released Benchmark

A summary of the task participation and task topics for ARQMath-1 and ARQMath-2 can
be found in Table 4, and the official results are attached in Appendices A.3.1 and A.4.

In ARQMath-1, no systems had a better result than the baseline system Tangent-S with
respect to the primary measure nDCG′ and also MAP′. Concerning P′@10, a run from
the DPRL team placed first among all teams. The MathDowsers team did not participate
for the task during ARQMath-1. In ARQMath-2, a manual run from the Approach0
team (Section 2.5.2) placed first out of all runs (including the baseline) with respect to
all three measures. In regards to the primary measure nDCG′, an automatic run from
the MathDowsers team achieved an indistinguishable result to the manual run from the
Approach0 team, placing first out of all 13 automatic runs.

For both ARQMath-1 and ARQMath-2, assessed topics are further labelled by the Lab
organizers with formula complexity as low, medium, or high, and in ARQMath-1 the topics
are also labelled with the major math element (such as limit, integral, fraction, etc.).
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Difference in Assessment between ARQMath-1 and ARQMath-2

In ARQMath-2, the formula representation files are updated with a better quality of
formula representations (Section 2.4.1), in particular, the Presentation MathML repre-
sentations that are used to cluster the visually distinct formulas. Also, the pooling for
ARQMath-2 is based on visually distinct formulas clustering from formula instances among
the whole collection, instead of clustering among only the submitted runs as in ARQMath-
1. During ARQMath-2, the Lab organizers re-evaluate—as an unofficial result—those
runs that were submitted back in ARQMath-1, with the retrieved formula instances clus-
tered to visually distinct formulas using the updated formula representation files. This
results in a change of the evaluation measures to most ARQMath-1 participants’ runs
(Appendix A.3.2). In particular, P′@10 changes for several different runs, and the base-
line system Tangent-S gets the best result for P′@10 that was previously reported to be
exceeded by one of the participant runs.

On the other hand, in ARQMath-2, the relevance assessment of the formula instances
must be done based on the context in which they appear, but in ARQMath-1, this is not
strictly enforced. For example, in ARQMath-2, there is one formula query xn + yn + zn

(topic-id B.289) with its associated question post stating that x, y, and z could be any real
numbers. The assessors consider as irrelevant all exact matches in the pooled posts where
x, y, and z are explicitly referred to as integers instead of real numbers. In contrast, in
ARQMath-1, the assessors are instructed that if the query and candidate formulas have
the same appearance, then the candidate is highly relevant.

These differences suggest that while the ARQMath-1 data is available for Task 2, it
should be considered with caution; the ARQMath-2 data might be a better choice as
training data and benchmark data for Task 2.
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2.5 Math-aware Search Engines at ARQMath-2

This section provides a short description of the baselines and participant systems during
ARQMath-2 (except for MathDowsers, which is the subject of Chapter 3). A brief table
outlining each system’s major techniques used (Section 2.1.2), and an annotation of their
use of formula representations (Section 2.1.1) is displayed in Figure 4.

2.5.1 TF-IDF and Tangent-S

These serve as baselines [30], with each system either:

• a Bag-of-Words model built on LATEX and text tokens, scored by TF-IDF (via an IR
platform Terrier [43]);

• a three-stage formula retrieval system (Tangent-S [12]) that first retrieves top formula
candidates using symbol pairs built from SLT and OPT, followed by subtree-structure
matching, and finally ranking of formulas by a linear regression model trained with
internal features;

• or a linear combination of both.

2.5.2 Approach0

This is a combined system [65] consisting of two search engines:

• Approach Zero [64, 63], which is a tree-structure search system built on leaf-to-root
paths extracted from OPT, with a combined subtree similarity and symbol similarity
scoring on formula terms. It also indexes text terms, in which case the scoring
function is BM25+;

• a Bag-of-Words model built on leaf-to-root paths, scored by BM25 (via the IR toolkit
Anserini [59]).

Each submission result is either an interpolated scoring between the two systems, or
a concatenation where the final ranking is first contributed by Approach Zero and then
contributed by Anserini.
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2.5.3 XY-PHOC-DPRL

This system submitted runs for for the in-context formula retrieval task only. It converts
each formula first into its SVG image, then to bounding boxes followed by multiple symbol
location embeddings according to the occurrence of symbols in those bounding boxes;
followed by a scoring function using cosine similarity. [4, 5]

2.5.4 MIRMU and MSM

Several systems were behind a related set of submissions for the MathCQA task only [41]:

• Several simple models built on LATEX and text tokens with BM25-like and TF-IDF-
like scoring functions from student course projects (the MSM-team submissions);

• A soft Vector Space Model that incorporates TF-IDF vectors, with term similarity
adopted from a text-and-math joint embedding trained on MSE and ArXMLiv18 by
fastText. The model considers formulas with a tokenized prefix-notation of OPT (the
SCM submission);

• a SentenceBERT model that trains with the MSE Question-Answer Pairs. The model
considers the LATEX encoding of formulas (the compuBERT submission);

• Ensembles of ten systems including the above systems, using different weighting
schemes (the IBC, WIBC, and RBC submissions);

2.5.5 DPRL

Various systems [27] are submitted for the two tasks. For the MathCQA task, the answer
ranking score is a multiplication of two similarity scores as follows:

• First a Question-Question similarity score, is computed by fine-tuning a pre-trained
SentenceBERT model with MSE Question-Question pairs. The pre-training dataset
is the Quora question pairs dataset19.

• Then a Question-Answer similarity score is computed by three approaches:

18https://sigmathling.kwarc.info/resources/arxmliv-dataset-082019/
19https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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– either fine-tune another pre-trained SentenceBERT model with MSE Question-
Answer pairs, where the pre-training task is the MS Marco Passage Reranking
task [40] (the QASim submission);

– or get the normalized MSE vote score (the MSE submission);

– or compute a combined score of the above by an adjusted Reciprocal Rank
Function (adjusted RRF) as follows:

adjustedRRF (d ∈ D) =
∑
m∈M

sm(d)

k + rm(d)
(2.9)

Compared to the regular Reciprocal Rank Function (Section 2.1.2), this ad-
justed version incorporates also sm which is the score of the document (the
RRF submission).

All SentenceBERT models are applied to the LATEX encoding of formulas.

For the in-context formula retrieval task, the submissions are:

• a Tangent-CFT2 system, which is an improved version of the Tangent-CFT formula
retrieval system [29]. It trains formula embeddings by fastText with symbol pairs
from the SLT and OPT representations, followed by ensembling with other internal
features using the adjusted RRF at Equation 2.9 (the Tangent-CFT2 submission);

• a Tangent-CFT2TED formula retrieval system [28] which extends the above with
tree-edit distance (the Tangent-CFT2-TED submission);

• and a combined result of the above, using Learning-to-Rank with partial or full
ARQMath-1 benchmark data (the ltr29 and ltrall submissions).

2.5.6 TU DBS

The submissions [50] use either:

• a system that first trains an ALBERT model with the MSE dataset, followed by
training a classifier with MSE Question-Answer pairs or in-context MSE Formula-
Answer pairs;

• or a system that trains a ColBERT model with MSE Question-Answer pairs. The
ColBERT model is on top of a pre-trained SciBERT model [6] (the T DBS A4 sub-
mission only).

All systems use the LATEX encoding of formulas.
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2.5.7 NLP NITS

The system [11] is a formula retrieval system and thus applicable for the in-context formula
retrieval task only. It first trains BERT on the MSE dataset, then uses BERT embeddings
to represent formulas and uses cosine similarity for formula matching. The system uses
the LATEX encoding of formulas.

2.5.8 PSU

This system [54] is only for the MathCQA task. It first ensembles two results by the
Reciprocal Rank Function, one from the BM25 scoring and another from the TF-IDF
cosine similarity scoring. The result is then re-ranked by a RoBERTa model that has
been trained on the MSE dataset. Finally, the result is ensembled by the Reciprocal Rank
Function with results from three other optimizations to produce the final ranking. The
system also uses the LATEX encoding of formulas.
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Figure 4: A summary of the baselines and the participant systems at ARQMath-2.
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Chapter 3

Tangent-L: the Math-aware Search
Engine

A math-aware search engine, when compared to a normal text search engine, requires
specialized capabilities to address the following challenges:

1. How to handle input with formulas, in addition to natural language text?

2. How to combine formula retrieval and text retrieval to output a desired ranking
result?

Proposed by Fraser et al., Tangent-L is a math-aware search engine built on the popular
Lucene text search platform [14, 15]. Tangent-L tackles the above challenges by first
adopting methods from its origin Tangent-3 [61] to create math features that represent
input formulas; then combining formula retrieval and text retrieval as a whole with a
traditional text retrieval ranking to achieve results that are comparable to using expensive
math-specific scoring functions [15].

Evaluated using the NTCIR-12 benchmark, Tangent-L is shown to be competitive with
the participating systems in that workshop [15]. Its math-aware capability is further consol-
idated when adapted to be the core component of the MathDowsers’ participating system
for the ARQMath Lab challenges [39, 38].

The remainder of this chapter describes Tangent-L in greater detail. The vanilla version,
which is the initially proposed version in 2017, will be introduced first, followed by some
system variants developed for the ARQMath Lab series in 2020 and 2021.
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Figure 5: Symbol Layout Tree for yji = 1 + x2.

3.1 The Vanilla Version

3.1.1 From Formulas to Math Tokens

Adopted from Tangent-3, a key characteristic of Tangent-L is replacing formulas by a bag
of math tokens in preparation for indexing and searching—just like the replacement of
natural language text by text tokens in a text search engine.

Tangent-L takes as input a formula in Presentation MathML format (Section 2.1.1). At
first, Tangent-L parses an input formula presentation into a Symbol Layout Tree (SLT),
where nodes represent the math symbols, and edges represent the spatial relationship be-
tween these symbols (Figure 5). Thereafter, this tree-like representation is traversed to
extract a set of features, or math tokens, to capture local characteristics of the appear-
ance of a math formula. While Tangent-3 only considers one type of math tokens (symbol
pairs) [61], Tangent-L recommends three additional types of math tokens (terminal sym-
bols, compound symbols and augmented locations) to represent a formula as depicted in
Table 7.

In preparation for indexing (or a search), the math tokens replace the formula itself in
the document (or the query) and then they are considered by Tangent-L as if each were a
keyword term in the text to be matched.
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Feature Type Definition and Extracted Features

Symbol pairs For each edge, start and end symbols and edge label
(y, j,↗) (y,=,→) (y, i,↘)
(=, 1,→) (1,+,→) (+, x,→)
(x, 2,↗)

Terminal symbols List of symbols with no outedges
(j,4) (i,4) (2,4)

Compound symbols List of outedge labels for nodes with more than one
outedge
(y,↗↘→)

Augmented locations For each feature of the first three types, that feature
together with the path to the feature’s (first) symbol
(y, j,↗, ∅) (y,=,→, ∅) (y, i,↘, ∅)
(=, 1,→,→) (1,+,→,→→) (+, x,→,→→→)
(x, 2,↗,→→→→) (j,4,↗) (i,4,↘)
(2,4,→→→→↗) (y,↗↘→, ∅)

Table 7: Extracted features (math tokens) to represent the formula in Figure 5. Each
token is a “tuple” that records local characteristic of a symbol layout tree representation.

3.1.2 Single Retrieval Model with BM25+ Ranking

Another key characteristic of Tangent-L is its ranking methodology: creating a single
retrieval model by indexing text tokens and math tokens altogether, followed by BM25+ [24]
for the final retrieval result.

This ranking methodology tightly follows a traditional text search approach. The origin
of BM25+ is Okapi BM25 [52], a commonly used scoring function in traditional text search
(Section 2.1.2). BM25+ [24], which is used by Tangent-L, further extends Okapi BM25
by setting a proper lower bound in the Term-Frequency component to handle deficiency
in document-length normalization. More specifically, given a collection of documents D
containing |D| documents and a query q consisting of a set of query terms, the BM25+

score for a document d ∈ D is defined as the sum of scores for each query term as follows:

BM25+(q, d) =
∑
w∈q

(
(k + 1)tf w,d

k
(

1.0− b+ b |d|
d

)
+ tf w,d

+ δ

)
log

(
|D|+ 1

|Dw|

)
(3.1)

33



where

log

(
|D|+ 1

|Dw|

)
(3.2)

is the Inverse-Document-Frequency component with |Dw| being the document frequency
for w—the number of documents in D containing term w; and

(k + 1)tf w,d

k
(

1.0− b+ b |d|
d

)
+ tf w,d

+ δ (3.3)

is the Term-Frequency component with tf w,d being the term frequency of w in document

d; |d| being the document length; d being the average document length; and k, b, and δ
are constants detailed below:

• the constant k models term frequency saturation inspired by the function
tf w,d

k + tf w,d
,

such that the reward for term frequency is limited when the term frequency grows
very large;

• the constant b addresses document length normalization by applying the multiplier(
1.0− b+ b |d|

d

)
on k in the denominator of the term frequency saturation function;

and

• the constant δ sets a lower bound for the whole Term-Frequency component, such
that the score between the presence of a query term in a long document against the
absence of a query term in a short document is properly distinguished.

In general, the constants k, b, and δ are chosen to be 1.2, 0.75, and 1, respectively, without
specific data training.

Tangent-L adopts the BM25+ ranking with slight variations. For a bag of query terms
with term repetition, the score for the repeated query term is accumulated multiple times.
Also, Tangent-L allows for math tokens to be given a weight that differs from the keyword
tokens by the following equation:

BM25+
w(qt ∪ qm, d) = BM25+(qt, d) + α · BM25+(qm, d) (3.4)
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where qt is the set of keyword tokens in a query, qm is the set of math tokens in that query,
and α is a parameter to adjust the relative weight applied to math tokens. In the NTCIR-
12 benchmark, a gain in precision is observed as α increases in the range 0.05 ≤ α ≤ 0.50,
followed by a gradual decline for larger values of α [15].

Overall, this vanilla version of Tangent-L—which follows a traditional text retrieval
approach with appropriately chosen math tokens—is simple yet effective enough to have
a comparable performance with other systems in the NTCIR-12 benchmark. Starting
from the next section, variations of Tangent-L developed for the ARQMath Lab series are
introduced.
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Figure 6: Symbol Layout Tree for x2 + 3x + x with repetitions highlighted.

Feature Type Tokens Generated Remark

Repeated symbols {x, →→↗ } {x, →→→→ } The first occurrence of x resides
on the same path as each of the
second and third occurrences.

{+, →→ } Similarly for +.
{x, ↗,→→ } The second and third occurrences

of x lie on difference root-to-leaf
paths and share a closest common
ancestor.

Augmented locations {x, →→↗, ∅} {x, →→→→, ∅} Augmented with the path from
the root to the first occurrence.

{+, →→, → } Similarly for +.
{x, ↗,→→, →→} Augmented with the path from

the root to the closest common
ancestor.

Table 8: Generated repetition tokens for the formula in Figure 6.

3.2 Incorporating Repeated Symbols

3.2.1 From Repeated Symbols to Repetition Tokens

Repetitions of symbols are commonplace in a formula; for instance, x repeats in the formula
x2 + 3x + x, as does the operator + (Figure 6). Ideally, a search for either yx − x or
6x3 − y + x could match that formula because of the pattern of repetitions for x, and a
search for 2y3 + y + 5 could also match because of the repeated symbol +.

With this motivation, a variant of Tangent-L is developed with a new type of math
features—repetition tokens—to capture this characteristic. Repetition tokens are generated
based on the relative positions of the repeated symbols in a formula’s SLT representation.
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For every pair of repeated symbols:

1. if the pair of repeated symbols reside on the same root-to-leaf path of the SLT (that
is, one is an ancestor of the other), then a repetition token {symbol, p} is generated,
where p represents the path between the repeated symbols;

2. otherwise, a repetition token {symbol, p1, p2} is generated where p1 and p2 represent
the paths from the closest common ancestor in the SLT to each repeated symbol.

If a symbol repeats k times where k > 1,
(
k
2

)
repetition tokens are generated for that

symbol following the above procedure. For each of these tokens, an additional location
token is generated with the augmentation of the path traversing from the root to the
closest common ancestor of the pair. As such, a total of 2 ·

(
k
2

)
repetition tokens are

generated and indexed. Table 8 shows the repetition tokens that would be indexed for the
formula x2 + 3x + x in Figure 6.

Notice that this choice of encoding for the repetition tokens contains ambiguity. For
instance, the repetition token {x,↗,→→} might represent either a repeated symbol in
3x + x, or an augmented location tuple in 1 + y + xx. However, in practice this ambiguity
might not have a significant effect on performance.

3.2.2 Revised Ranking Formula

With the introduction of repetition tokens, this variant of Tangent-L generates three token
types: text tokens, regular math tokens, and repetition tokens. Similar to the vanilla
version, this variant also applies BM25+ ranking to the query terms and the document
terms during the search. The revised ranking formula with the repetition tokens is as
follows:

Let qt be the set of text tokens, qm be the set of regular math tokens, and qr be the set
of repetition tokens generated for the query terms. Let d be a document represented by
the set of all its indexed tokens. The score is then defined as

BM25+
w(qt ∪ qm ∪ qr, d) =

α ·
(
γ · BM25+(qr, d) + (1− γ) · BM25+(qm, d)

)
+ (1− α) · BM25+(qt, d)

(3.5)

where the component
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γ · BM25+(qr, d) + (1− γ) · BM25+(qm, d) (3.6)

is the score for math features with the γ parameter being used to balance the weight of
repetition tokens against that of regular math tokens. The weight of math features against
that of keyword features is further balanced by the α parameter.

Unlike the vanilla version of Tangent-L, where the parameter α is unbounded (Equation
3.4), in this variant 0 ≤ α, γ ≤ 1 which makes the ranking function a convex combination.
It is, however, easy to relate previously-studied parameter settings in the vanilla version
to that for this variant: simply put γ to zero, followed by setting α to a proper scaling1 of
the α value from the previous setting. The parameters can be further tuned based on the
target dataset.

1Let x be the value of α in Equation 3.4 of the vanilla version. Then the corresponding value of α to
be set in Equation 3.5 is x

1+x .
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3.3 Formula Normalization

3.3.1 Five Classes of Semantic Matches

Mathematical expressions can be rewritten in numerous ways without altering their mean-
ing. For example, A + B matches B + A semantically because of the commutative law.
To accommodate such variability and increase recall, this variant of Tangent-L is equipped
with formula normalization, that is, the ability to generate similar math features for two
formulas with the same semantics.

The following five classes of semantic matches are considered:

1. Commutativity: A+B should match B + A

2. Symmetry: A = B should match B = A

3. Alternative Notation: A×B should match A B, and A ≯ B should match A ≤ B

4. Operator Unification: A ≺ B should match A < B

5. Inequality Equivalence: A ≥ B should match B ≤ A

and simple adjustments are applied to Tangent L’s regular math tokens to support these
semantic matches.

The adjustment to handle the first two classes, Commutativity and Symmetry, are
similar. In the vanilla version, Tangent-L generates a math token for each pair of adjacent
symbols with their orders preserved (the feature type symbol pairs in Table 7). For example,
two math tokens (A, +,→) and (+, B,→) are generated for the expression A+B, and two
different math tokens (B, +, →) and (+, A, →) are generated for the expression B + A.
In order for an exact match to take place for the two expressions, a simple adjustment to
the math tokens is to ignore the order of a pair of adjacent symbols whenever commutative
operators or symmetric relations are involved. With this approach, both expressions A+B
and B + A generate the same pair of math tokens, (+, A, →) and (+, B, →), so that an
exact match is made possible.

The next two classes, Alternative Notation and Operator Unification, can be easily
accommodated by choosing a canonical symbol for each equivalence class of operators and
consistently using only the canonical symbols in any math tokens generated as features.

The final class, Inequality Equivalence, can be handled by choosing a canonical sym-
bol (for instance, choosing the symbol “≤” in preference to “≥”) and then reversing the
operands whenever necessary during math tokens generation.

39



3.3.2 Limitation

The proposed simple implementation for the three semantic classes Commutativity, Sym-
metry and Inequality Equivalence suffers from the fact that each math token encodes a
local characteristic of the appearance of a formula—which handles only a pair of adjacent
symbols at a time. As such, formula normalization by changing the order of adjacent
symbols might result in a semantically distinct formula.

For example, with a longer expression such as A+B×5, the overly simplistic approach
will generate the same set of math tokens as the expression B +A× 5, failing to consider
the priority of math operators where multiplications should precede addition. The same
drawback can be observed with other commutative operations, symmetric relations, and
inequality equivalence.

Nevertheless, overcoming this difficulty is no easy task since the input of Tangent-L—
Presentation MathML—captures the layout of the symbols only without semantic meaning.
To accommodate the pitfalls, this variant of Tangent-L provides a separate flag to control
whether or not a semantic class is to be supported, so that only those deemed to be
advantageous are applied when math tokens are generated.
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Rank Retrieved Formula Normalized Formula Similarity

1 62(k+1)+1 + 1 1.000
2 72(k+1)+1 + 1 1.000
3 a2(k+1)+1 + b2(k+1)+1 0.967
4 32(k+1)+1 − 3 0.855
5 72(k+1)+1 + 1 = 72(8m) 0.824

Table 9: Top-5 similar formulas for a2(k+1)+1 + 1 using a formula retrieval model built with
ARQMath-2 data (Section 2.4.1).

3.4 Holistic Formula Search

Formula matching within Tangent-L is based on comparing a set of math tokens from the
query to those from each document (Section 3.1.2). If a document has multiple formulas,
math tokens generated from all formulas within the document are then considered as a
single unordered bag of terms without distinction of each separate formula.

This variant of Tangent-L proposes a solution that matches each formula as a whole
within a document, instead of matching math tokens irrespective of formulas that might
scatter across a document. Unlike the vanilla version of Tangent-L, this variant is es-
sentially a two-stage retrieval model: during a search, each formula in the query is first
replaced by the top-κ similar formulas existing in the dataset through the help of a formula
retrieval model; then the new query is executed against the target document corpus where
formulas are indexed holistically. This two-stage retrieval model is explained in greater
detail in the following subsections.

3.4.1 Formula Retrieval with a Formula Corpus

At preparation time, a formula corpus is first pre-built with Tangent-L that indexes all
visually distinct formulas in the target dataset, each as a separate document with a distinct
visual-id serving as a key. In this formula corpus, each formula is indexed with the math
features following the regular practice of Tangent-L, with the only difference being that
each indexed document contains only a bag of math features from one single formula. A
formula retrieval model is then defined as follows:

Let fq be an arbitrary formula used as a query, F be the set of formulas in the formula
corpus, and f ∈ F . Let qm be the set of regular math tokens generated for the query terms
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and let qr be the set of repetition tokens, assuming its presence (adopting the Tangent-L
variant from Section 3.2.1). The ranking function within the formula corpus is

FormulaScore(fq, f) = (1− γ) · BM25+(qm, f) + γ · BM25+(qr, f) (3.7)

where the γ parameter is used to balance the weight of repetition tokens against that of
regular math tokens with 0 ≤ γ ≤ 1 (Equation 3.5). A corresponding formula similar-
ity score, Normalized Formula Similarity, can then be defined as a normalized score of
FormulaScore:

N(f, fq) =
FormulaScore(fq, f)

maxϕ∈F FormulaScore(fq, ϕ)
(3.8)

with 0 ≤ N(f, fq) ≤ 1 representing how well the query formula fq is matched in appearance
by f relative to other formulas within the formula corpus (Table 9).

During a keyword-and-formula search against the target document corpus, each query
formula is first replaced by the top-κ similar formulas retrieved from the formula corpus
through this formula retrieval model. The search is then performed against the target
document corpus as described next.

3.4.2 Retrieval with Holistic Formulas

When indexing the target document corpus, instead of replacing each formula within the
document with the set of math tokens generated for that formula, each formula is rep-
resented by a single holistic formula token. A holistic formula token is a token uniquely
mapped to a visually distinct formula, implemented as a specific string embedded with the
corresponding visual-id. Each formula is thus represented as a whole within a document.

During a keyword-and-formula search and after each query formula has been replaced
by its top-κ retrieved formulas from the formula corpus, those top-κ retrieved formulas in
queries are further replaced by their corresponding holistic formula tokens. The new query
then consists of text tokens and holistic formula tokens which can be matched against
the target document corpus. The final keyword-and-formula retrieval model is defined as
follows:

Let qt be the set of keyword tokens, qf be the set of query formulas and d be a document
represented by the set of all its indexed tokens. The ranking function is

BM25+
w(qt ∪ qf , d) = (1− α) · BM25+(qt, d) + α · BM25+(qf , d) (3.9)
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where the α parameter is again used to balance the weight of formula terms against that
of keyword tokens.

The component BM25+(qf , d) that scores the formula terms takes a variant of the
original BM25+ as follows: let fq ∈ qf be a query formula and let Sκ(fq) be the set
of κ holistic formula tokens that replaces fq in the original query. Let N(f, fq) be the
Normalized Formula Similarity defined in Equation 3.8. Then

BM25+(qf , d) =

∑
fq∈qf

∑
f∈(d ∩ Sκ(fq))

N(f, fq) ·

(
(k + 1)tf f

k
(

1.0− b+ b |d|
d

)
+ tf f

+ δ

)
log

(
|D|+ 1

|Df |

)
(3.10)

This score is a sum of weighted scores for all replacement formulas, with each individual
score having a Term-Frequency component and an Inverse-Term-Frequency component just
like the original BM25+ (Equation 3.1) but further weighted by the Normalized Formula
Similarity.

When compared to the vanilla version of Tangent-L, this retrieval model isolates the
formula retrieval stage to achieve the goal of matching formulas holistically. The drawback,
though, is that it is also computationally more expensive because of this extra retrieval
stage.
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Chapter 4

Addressing the MathCQA Task

Generally, math-aware search engines from the MathIR research community are designed
to serve a generic information need: finding math documents relevant to a given query,
where a query typically consists of a bag of keywords and formulas. In contrast, MathCQA
poses a specific real-life challenge: finding potential answers from a CQA forum to a given
math question, where the math question is expressed in mathematical natural language.
Adaptations optimally tuned for the challenge are necessary for the math-aware search
engine to fulfill its full potential.

As such, the following three-stage methodology is proposed for a math-aware search
engine to adapt to a MathCQA challenge:

Stage 1: Query Conversion: transform a given math question into a well-formulated
query consisting of a bag of keywords and formulas, as an input to the math-aware
search engine.

Stage 2: Math-aware Retrieval: use the math-aware search engine to build an indexed
corpus from the task collection and execute the formal query to find best matches.

Stage 3: Answer Ranking: from the retrieved matches, produce a ranked list of
answers with respect to the original given math question.

This chapter discusses the adaptations of this methodology to the math-aware search
engine Tangent-L (Chapter 3) for the MathCQA task from the ARQMath Lab series (Sec-
tion 2.4.2).
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The outline of this chapter is as follows: Sections 4.1, 4.2, and 4.3 present the method-
ology, Section 4.4 describes the experiments conducted for each adaption proposed in the
methodology, and Section 4.5 discusses the submission runs and results for the team Math-
Dowsers in ARQMath-1 and ARQMath-2.

4.1 Query Conversion: Creating Search Queries from

Math Questions

In the MathCQA task, math questions are real-life questions selected from question posts
of the latest MSE collection that are withheld from the task participants during training.
Each given math question is formatted as a topic (Figure 3). Inside a topic, the title and
body text are raw text, and together they describe the question in mathematical natural
language. The tags indicate the question’s academic areas.

In order to formulate a topic into a query consisting of a bag of keywords and formulas
for input to the math-aware search engine, a rule-based approach is considered, with the
following motivation:

1. filter away unwanted terms: unwanted terms are terms that lack the power to repre-
sent the topic and thus should be safe to remove from the query;

2. extract useful terms for searching: useful terms should capture key ideas of the topic
and thus be helpful in locating relevant matches.

Below is a summary of potential rules that might be adopted to obtain query formulas
and query keywords, respectively.

4.1.1 Basic Formula Extraction

The rules to extract formulas are simple: first, formulas within the topic’s title and body
text are selected into a formula pool. All formulas within the title are selected as query
formulas. Formulas within the body text are selected only if they are not single variables
(e.g., n or i) nor isolated numbers (e.g., 1 or 25), as shown in Figure 7.

As an input for Tangent-L, the extracted formulas are replaced by their Presentation
MathML representations to serve as the query formulas for the topic.
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Topic-ID: A.75

Title: Prove that for each integer m , limu→∞
um

eu = 0

Body: I’m unsure how to show that for each integer m, limu→∞
um

eu = 0 . Looking at the solutions it

starts with eu > um+1

(m+1)! but not sure how this is a logical step.

Tags: real-analysis, calculus, limits

Figure 7: Extracted formulas for a topic.

4.1.2 Keyword Extraction with “Mathy” Words

For a given topic, because both the topic title and the topic body text are raw text, first,
the raw texts are processed with standard English NLP lower-casing and tokenization1 to
become a sequence of tokens. Stopwords among these tokens are unwanted terms and thus
further removed by a standard English stopword list2.

The remaining tokens, together with the topic tags, create a keyword pool. To extract
useful keywords from the pool, a simple rule—without human intervention to actually
understand the topic—is to keep any “mathy” words that are thought to represent a
math concept or a math subject. One naive criterion for mathy words is to keep any
hyphenated words and their subwords since these words are usually useful proper nouns,
for instance, “Euler-Totient” (and “Euler”, “Totient”) or “Cesáro-Stolz” (and “Cesáro”,
“Stolz”). Another way is to pre-build a list of mathy words by considering the following
two resources:

MSE Tags which refer to all available tags provided in the given MSE Collection.
Many tags are multiwords, within which each subword might also represent a math
concept, for instance, tags such as “linear-algebra” or “complex-analysis”3. As such,
each subword of a multiword is also automatically considered.

NTCIR-12 MathIR Wikipedia Article Titles which refers to the title of a set
of Wikipedia Articles used as the dataset in the NTCIR-12 MathIR Task (Sec-
tion 2.2). This set of Wikipedia articles include documents explaining a scientific

1The Treebank tokenizer from the Python NLTK library (https://www.nltk.org/) is used.
2The stopword list is a combination of stopwords provided by the Python NLTK library and Snowball

(https://snowballstem.org/), with punctuations and numerics.
3Each tag is either a single word or a hyphenated multiword.
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Topic-ID: A.75

Title: Prove that for each integer m, limu→∞
um

eu = 0

Body: I’m unsure how to show that for each integer m, limu→∞
um

eu = 0. Looking at the solutions

it starts with eu > um+1

(m+1)! but not sure how this is a logical step .

Tags: real-analysis , calculus , limits

Extra Keywords: real , analysis

From Both From MSE Tags From NTCIR-12 MathIR Wikipedia Article Titles

Figure 8: Extracted keywords for a topic using word lists from different sources.

concept, and thus their titles are also words or short expressions that include “mathy”
words or scientific words. For implementation, the article’s filename, such as ”Alge-
bra (ring theory).html” or ”Algebraic geometry of projective spaces.html”, is used
instead of the actual title to get the words for consideration.

Around 1,500 words and 22,000 words are built from the two resources, respectively,
after text cleaning and stopword removal. Example lists of words are attached in Ap-
pendix C. Tokens from the keyword pool are then compared against the lists of words, and
all words that having a matching stem4 are preserved (Figure 8), and the matches serve
as the query keywords for the topic.

It is, however, worth noting that formulas are part of the raw text within the topic title
and the topic body text. Putting aside operators, variables, and numerics, keywords such
as sin, cos, tan, mod can also be extracted from the formula representations following the
above rule-based approach.

4The Porter stemmer from the Python NLTK library is used.

47



4.2 Math-aware Retrieval: Searching Indexed Corpus

for Best Matches

4.2.1 Different Forms of Retrievals

In this MathCQA challenge, a math-aware search engine serves to narrow the space of
potential answers across the whole MSE collection concerning a specific math question.
Given the CQA structure of the provided MSE collection (Section 2.4.1), various data—
other than answer posts alone—might be composed to form the target corpus that the
math-aware search engine searches. One can consider the following different approaches:

Answer Post Retrieval: The target corpus is formed by all answer posts from the
forum, which is the most straightforward approach for the MathCQA task. Given a
math question as a formal query, the math-aware search engine then retrieves from
the corpus a pool of answer posts that best match the query, followed by a ranking
to submit for the task.

Question-Answer Pair Retrieval: Considering the associated question post of each
answer post as a valuable attribute, the target corpus is formed by answer posts that
are attached to their associated question posts, that is, question-answer pairs. Given
a math question as a formal query, the math-aware search engine then retrieves from
the corpus a pool of question-answer pairs, each of which together 5 matches the query
best. The task is then completed by ranking the answers of those retrieved pairs.

Question Post Retrieval: Instead of answer posts, the math-aware search engine might
focus on retrieving question posts that match the query best, that is, searching for
related questions. With the assumption that related questions share their answers,
the target corpus is then formed by all question posts from the forum, and the task
is completed by ranking the associated answers of the posts.

Thread Retrieval: Similar to a question post retrieval, but considering the associated
answer posts of each question post as valuable attributes, the target corpus is formed
by threads—that is, question posts together with all of their associated answers.
The math-aware search engine then retrieves the best-matched threads, followed by
a ranking on the answer posts among the retrieved threads to submit for the task.

5As our teachers admonished: “Always include the question as part of your answer!”
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The above retrievals might be summarized as answer retrieval (answer post retrieval
and question-answer pair retrieval) or question retrieval (question post retrieval and thread
retrieval) respectively based on the searching target. While Tangent-L’s internal ranking
serves naturally as an answer ranking during an answer retrieval, extra step is necessary
after a question retrieval to produce a ranked list of answers. A simple approach for the
extra step is to order all associated answers by first favoring a larger retrieval score of its
associated question post, breaking ties by a larger answer vote score, which is provided in
the MSE collection (Section 2.4.1).

4.2.2 Parameter Tuning for Tangent-L

When Tangent-L serves as the retrieval system, the following parameters influence its
effectiveness:

The α parameter, which is used to balance the weight of formulas to keywords within a
search query (Equation 3.4, 3.5, 3.9).

The γ parameter, which is used to balance the weight of repeated symbols to other math
features generated for a query formula (Equation 3.5, 3.7).

Flags for semantic classes: which is used to decide which type of semantic class is sup-
ported in formula normalization (Section 3.3), and which math features are created
accordingly during indexing and searching.

and also the following parameter during a Holistic Formula Search (Section 3.4):

The κ parameter: which is used to decide the number of similar formulas being used to
replace the original query formula (Equation 3.10).

Depending on the search queries and the form of corpus, parameter tuning might be ben-
eficial for Tangent-L to adapt to the MathCQA challenge.
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Figure 9: The structure of a corpus unit used in Question-Answer Pair Retrieval.

4.2.3 Creating Indexing Units

Regardless of which discussed retrieval approach in Section 4.2.1 is adopted, answer posts
and question posts from the MSE collection are the core components to compose the target
corpus units. To make use of the rest of the collection, enriched answer posts and enriched
question posts are proposed for composing the corpus units, as follows:

Enriched Answer Post: the actual answer content attached with comments specific to
this answer post.

Enriched Question Post: the actual question content—including the title, the body
text, and tags—attached with comments specific to this question post, and the titles
of all related and duplicated posts for this question post.

An example structure of a corpus unit using the enriched components is depicted in
Figure 9. The corpus is then indexed by Tangent-L (Section 3.1.1) for searching. As
an input for Tangent-L, all formulas existing in the corpus units are replaced by their
Presentation MathML representations before indexing.
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4.2.4 Data Cleansing for Formula Files

While building the corpus, the completeness and correctness of Presentation MathML rep-
resentations in encoding input formulas are crucial to the effectiveness of Tangent-L, since
they affect how well Tangent-L creates the math features during indexing and searching
(Section 3.1.1). However, in the ARQMath corpus, the provided formula representation
files have missing formulas due to conversion failures (Section 2.4.1). Furthermore, other
errors are observed even for the up-to-date ARQMath-2 dataset. The following paragraphs
describe the errors and the adopted remedies for Tangent-L.

Correcting HTML Conversion Errors

The provided Presentation MathML representation files contain conversion errors for for-
mula instances including either less-than “<” or greater-than “>” operators. These orig-
inate from HTML-escaping. For example, when a LATEX formula contains the operator
“<”, the provided formula presentation files give an incorrect encoding in Presentation
MathML as shown in Table 10.

Expected Presentation MathML Erroneous Presentation MathML Provided

<mrow> <mrow>

<mrow> <mrow>

<mn>0.9999</mn> <mn>0.9999</mn>

<mi mathvariant="normal">...</mi> <mo></mo>

<mo>&lt;</mo> <mi mathvariant="normal">...</mi>

<mn>1</mn> <mo></mo>

</mrow> <mi mathvariant="normal">&amp;</mi>

<mrow> <mo></mo>

<mi>l</mi>

<mo></mo>

<mi>t</mi>

</mrow>

<mo>;</mo>

<mn>1</mn>

</mrow>

Table 10: Erroneous Presentation MathML for the LATEX formula “0.999... < 1” (formula
id 382). The left hand side is the expected encoding, which is converted from the LATEX for-
mula first, followed by an HTML escaping from “<” to “&lt;”. The right hand side is
erroneous, and would be generated by first converting from an already HTML-escaped
LATEX formula, which is wrong, followed by a second HTML escaping and thus creates a
broken Presentation MathML that encodes “&amp;lt;”.
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After applying a simple transformation script, during indexing and searching, Tangent-
L uses corrected Presentation MathML (∼ 3% of total formula instances).

Providing Missing Formula Identifiers

Figure 10: Partial text from an answer post (post id 2653) includes “math-container”
blocks but without “id” attributes, even though the corresponding formulas are included
in the formula representation files with formula-ids from 2285 to 2296.

In spite of the fact that formula instances present in the MSE collection files should be
annotated (Section 2.4.1), some of them (∼ 10% of total formula instances) are not cor-
rectly and completely captured and thus cannot be matched against the provided formula
representation files. For example, many are missing their unique formula identifiers in the
annotation, as shown in Figure 10.

To correct this, a modified version of the provided MSE collection files is used when
building the target corpus for Tangent-L. Incomplete formula annotations such as those
from Figure 10 are recognized as much as possible through regular expression matching
for text within the $ and $$ blocks. These are then checked against the provided formula
representation files to reverse-trace their Presentation MathML representations.
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4.3 Answer Ranking: Finalizing the Ranked Answers

While Tangent-L’s retrieval score decides a degree of similarity based on keywords and
formulas, other signals provided from the dataset might be incorporated into the final
answer ranking as well. The following subsections describe a few attempts.

4.3.1 Incorporating CQA Metadata

One of the provided CQA metadata fields is the vote score. The vote score of an answer
post, which is computed from the number of received up-votes and down-votes for the post,
reflects the community’s belief in the answer’s value for its associated question. Naturally,
one might assume that an answer post with a higher vote score should be more valuable.
A linear regression model can be built to make use of this assumption.

Linear Regression Model with CQA Metadata

Assuming that the vote score and potentially other CQA metadata might have a linear
relationship with the answer relevance score, a linear regression model can be built to
predict how variable a potential answer is with respect to any question.

Given an answer a, its associated question q, and an arbitrary question q, the following
CQA metadata are considered to build the model: (1) the vote score of a, (2) the user
reputation of the author of a, and (3) the number of overlapping tags of q with q. Together
with Tangent-L’s retrieval score of a with respect to q, a linear function of the four variables
can be fit with training data to learn its coefficients. The trained linear regression model
can then be used to re-rank any list of answers retrieved by Tangent-L during an answer
retrieval.

Mock Relevance by Vote Score and Question Relatedness

Because manual relevance assessment has been limited (Section 2.4.1) for the mentioned
model, selected CQA metadata might be used to create a pool of mock relevance scores.
The following mock relevance score is proposed, which is a real number with range [0,
3] and takes into account the vote score of an answer and the question relatedness of its
associated question with respect to any question:
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Question Relatedness: A form of question relatedness might be defined using the CQA
metadata duplicate posts, related posts, and tags available for any two questions
existing in the MSE collection. A proposed form of question relatedness for any two
questions q1, q2 is a set of ordinal numbers as:

RelatednessCQAMetaData(q1, q2) =


2 if q1, q2 are identical or duplicate posts

1 if q1, q2 are related posts

0 if q1, q2 have overlapping tags

−1 otherwise

(4.1)

In-thread Vote Score: For every thread with a question q and all associated answers
Aq, let VoteScore(a, q) be the vote score of an answer a ∈ Aq received with respect
to q. Define vote scores for the thread as

ThreadVotes(Aq) = ThreadVotespos(Aq) + ThreadVotesneg(Aq)

ThreadVotespos(Aq) =
∑
a∈Aq

VoteScore(a,q)≥0

VoteScore(a, q)

ThreadVotesneg(Aq) =
∑
a∈Aq

VoteScore(a,q)<0

∣∣VoteScore(a, q)
∣∣ (4.2)

which are the sums of absolute vote scores of all or a subset of its associated answers.
For every associated answer a, an in-thread vote score is then defined to be

VoteScoreInThread(a, q) =



VoteScore(a, q) + ThreadVotesneg(Aq)

ThreadVotes(Aq)
if VoteScore(a, q) ≥ 0

VoteScore(a, q)

ThreadVotes(Aq)
if VoteScore(a, q) < 0

(4.3)
which has a range of [-1, 1]. It reflects the importance of the answer a within the
thread by comparing its vote score with vote scores received by other answers in the
same thread.
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The proposed mock relevance score for any answer a, its associated question q and an
arbitrary question q is then defined as:

MockRelevance(a, q,q)

= max
(
RelatednessCQAMetaData(q,q) + VoteScoreInThread(a, q), 0

) (4.4)

which is a real value having the same range [0, 3] as the ordinal manual relevance assess-
ment.

4.3.2 Ranking by Proximity

Span: length of the shortest document segment that covers
all query term occurrences in a document, including re-
peated occurrences

Normalized-Span: length of the shortest document segment that covers
all query term occurrences in a document, including re-
peated occurrences, divided by the number of matched
instances

Min-Span: length of the shortest document segment that covers
each matched query term at least once in a document

Normalized-Min-Span: length of the shortest document segment that covers
each matched query term at least once in a document,
divided by the number of matched query terms

Min-Distance: smallest distance value of all pairs of unique matched
query terms

Ave-Distance: average distance value of all pairs of unique matched
query terms

Max-Distance: largest value of all pairs of unique matched query terms

Table 11: Various proximity measures [57], each of which can also be normalized by doc-
ument length.

Proximity is a measure of distance between matched query terms as detailed in Table
11. For the vanilla version of Tangent-L, Fraser has shown that [14] proximity might help
improve ranking in the math-aware search engine Tangent-L, if each generated math token
of the same formula is considered as the same position in proximity calculation. Answer
ranking might thus be performed according to the proximity signal of the retrieved answers,
breaking ties by a decreasing retrieval score provided by Tangent-L.
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4.4 Experimental Runs for Best Configuration

This section discusses various experiments conducted for each alternative proposed in the
three-stage methodology for the MathCQA task. Table 12 is a summary of findings for the
best configuration observed from the experiments, which is explained in the subsequent
subsections.

Query Conversion
Search Queries: QueryMSEWikiFF

(Section 4.4.2)
Mathaware Retrieval

Form of Retrieval: CorpusQAPair, (Section 4.4.3)
with Tangent-L’s Internal Ranking

Core Tangent-L
Ranking Formula: (α, γ) pair selected from: (Section 4.4.4)

0.2 ≤ α ≤ 0.3,
0.0 ≤ γ ≤ 0.2

Formula Normalization: Disable FNIE

Tangent-L Variant
Holistic Formula Search: κ = 400, α = 0.47 (Section 4.4.6)

(Observing κ up to 500,
with γ = 0.1)

Answer Ranking
Re-Ranking: No re-ranking by Linear Regression Model (Section 4.4.8)

No re-ranking by Proximity (Section 4.4.7)

Table 12: A summary of findings for the best configuration observed from experiments.
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4.4.1 Setup for Evaluation

Throughout the experiments, the effectiveness for the MathCQA task is decided by the
ARQMath-2 benchmark (Section 2.4.2), with the ARQMath-1 benchmark used for data
study and parameter tuning.

For all retrieval tasks, top-1000 results are evaluated with a primary metric nDCG′

and secondary metrics P′@10 and MAP′, following the convention used in the ARQMath
Lab series (Section 2.4.2). The metric bpref (Section 2.1.3) is also evaluated, which is
a metric previously used for evaluating formula retrieval tasks. In addition, a variant of
nDCG′, which evaluates the potentially-best possible nDCG′ (Equation 2.8) that might be
achieved by the retrieval result if an optimal re-ranking is applied, is also computed with
its definition as follows:

nDCGPB′

p =
DCGPB

p

IDCGp

, where DCGPB′

p =

RELLocal
p∑

i=1

reli
log2(i+ 1)

(4.5)

with RELLocalp represents the list of relevant items in the retrieval result ordered by their
relevance up to position p. This variant gives insight into the retrieval power of the testing
system without being affected by the actual ranking methodology.

While differences exist between the provided datasets for ARQMath-1 and ARQMath-2
(Section 2.4.1), the ARQMath-2 version is adopted when creating the necessary input for
Tangent-L, together with data cleansing as explained in Section 4.2.4.

The core version of Tangent-L used, unless during parameter tuning, is the version
that incorporates repeated symbols (Section 3.2) and supports formula normalization by
the semantic classes Commutativity and Symmetry (Section 3.3).

Exceptions to the above were the runs submitted in 2020 as part of ARQMath-1, when
the benchmark, the latest version of dataset, and different system variants of Tangent-L
were not available yet. These exceptions are addressed accordingly in Section 4.5.
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Baselines
Querymanual A baseline approach, which is to manually select key-

words and formulas from the given topics. A set of such
queries for ARQMath-1 topics is available from the Lab
organizers (Appendix B.1).

Queryplain A baseline approach, in which all formulas and all key-
word terms are extracted exactly as they appear.

Rule-based
QueryrmStopFF

Keyword terms are extracted with proper nouns, fol-
lowed by stopword removal; and formulas in body text
are filtered.

QueryMSEFF
Keyword terms are extracted only if they fall into the
list created from the MSE Tags source.

QueryWikiFF
Keyword terms are extracted only if they fall into the
list created from the Wikipedia source.

QueryMSEWikiFF
Keyword terms are extracted only if they fall into either
the list created from the Wikipedia source, or the list
created from the MSE Tags source.

Table 13: Tested approaches for generating search queries (Section 4.1).

4.4.2 Comparing Generated Search Queries

This subsection examines the effectiveness of search queries generated by the rule-based
approach suggested in Section 4.1, as depicted in Table 13.

For each described approach, the summary statistics of the keyword count and the
formula count of the generated set of ARQMath-1 search queries can be found in Table 14.
Observing from the term counts of Queryplain, it can be deduced that the length of each
given topic varies widely: the keyword count ranges from four to 795, while the formula
count ranges from one to 46 across different topics. Affected by this, all the proposed rule-
based approaches also result in search queries with a relatively large range of term counts.
Only in the approach Querymanual, where terms are manually selected, are the term counts
across topics stable, with each topic having up to five keywords and up to two formulas. It
is also observed that the means of formulas-to-all-terms vary among different approaches:
with the smallest mean-ratio to be 0.048 from Queryplain and the largest means to be 0.282
from QueryMSEFF

.
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Keyword Counts Formula Counts
Approach adopted Mean Std Min Max Mean Std Min Max

Querymanual 3.36 1.29 1 5 1.08 0.310 0 2
Queryplain 207 153 44 795 10.3 8.81 1 46
QueryrmStopFF

48.2 35.0 9 202 8.60 7.10 1 35
QueryMSEFF

22.4 14.4 3 64 8.60 7.10 1 35
QueryWikiFF

35.2 23.9 5 127 8.60 7.10 1 35
QueryMSEWikiFF

36.0 24.4 5 134 8.60 7.10 1 35

Formulas-to-All-Terms Ratio
Approach adopted Mean Std Min Max

Querymanual 0.265 0.103 0.000 0.667
Queryplain 0.048 0.022 0.005 0.108
QueryrmStopFF

0.165 0.103 0.015 0.571
QueryMSEFF

0.282 0.155 0.032 0.714
QueryWikiFF

0.209 0.124 0.021 0.645
QueryMSEWikiFF

0.204 0.122 0.021 0.645

Table 14: The summary statistics of the count of extracted keywords and formulas of
different sets of ARQMath-1 search queries.
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Figure 11: Evaluation of ARQMath-1 search queries, with Tangent-L having a fixed γ = 0.1
and varying α values: 0.00 ≤ α ≤ 0.80 and a step size of 0.05.
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ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

QueryMSEWikiFF
α∗ = 0.27 0.462 0.187 0.241 0.163 0.736

QueryrmStopFF
α∗ = 0.29 0.448 0.185 0.245 0.161 0.712

QueryWikiFF
α∗ = 0.28 0.442 0.180 0.235 0.156 0.708

Queryplain α∗ = 0.50 0.418 0.173 0.240 0.152 0.666
QueryMSEFF

α∗ = 0.20 0.302 0.122 0.170 0.107 0.482

† using H+M binarization

Table 15: Evaluation of different sets of ARQMath-2 search queries, each with a different
optimal α value and a fixed γ = 1. The optimal α value is observed through testing on the
ARQMath-1 benchmark.

Experimental runs for these sets of search queries are executed on the Question-Answer
Pair corpus (Section 4.2.1). To examine the retrieval power of the approaches, nDCGPB′

(Equation 4.5) is also evaluated in addition to nDCG′. Because the means of the ratio
of formulas-to-all-terms across different approaches vary, it can be unfair to compare the
effectiveness of these sets of search queries using a fixed α value, since α determines how
much weight is given to the formula terms during searching. As such, experimental runs
are executed with Tangent-L having a varying α value: 0.00 ≤ α ≤ 0.80 and a step size of
0.05, as shown in Figure 11.

It can be observed that the performance among different sets of search queries has
been consistent regardless of whether nDCG′ or nDCGPB′ is evaluated. This indicates that
Tangent-L’s internal ranking represents its retrieval power well.

It also appears that different sets of search queries have a unique range of optimal α
values that generates the best result for them. In particular, sets of queries with a smaller
mean-ratio of formulas-to-all-terms seem to have a range of larger optimal α values, such
as Queryplain with an optimal range of α value at around 0.50, and vice versa—though an
exception can also be observed from Querymanual, which has a smaller mean-ratio and also
a range of smaller optimal α values when compared with QueryMSEFF

.

If only the peak performance from each set of search queries is considered, the three
approaches: QueryMSEWikiFF

, QueryrmStopFF
, and QueryWikiFF

outperform other approaches
on the ARQMath-1 benchmark, including the two baseline approaches. They have a very
close performance, hinting that when the α value is carefully chosen (such as avoiding
α < 0.15 or α > 0.65), a search result can be improved by simply filtering stopwords and
unwanted formulas among all available tokens extracted from a topic, and by doing so,
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ARQMath-1 (77 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

QueryMSEWikiFF

α = 0.25 0.457 0.207 0.266 0.191 0.710
α = 0.26 0.456 0.206 0.268 0.190 0.710
α = 0.27 0.457 0.207 0.266 0.190 0.711
α = 0.28 0.456 0.206 0.268 0.190 0.711
α = 0.29 0.456 0.207 0.265 0.190 0.710
α = 0.30 0.456 0.207 0.265 0.190 0.712

QueryrmStopFF

α = 0.25 0.454 0.206 0.265 0.192 0.706
α = 0.26 0.456 0.207 0.268 0.193 0.710
α = 0.27 0.457 0.208 0.262 0.193 0.710
α = 0.28 0.457 0.207 0.264 0.192 0.712
α = 0.29 0.458 0.208 0.264 0.193 0.712
α = 0.30 0.457 0.208 0.268 0.193 0.711

QueryWikiFF

α = 0.25 0.456 0.206 0.262 0.190 0.709
α = 0.26 0.455 0.205 0.265 0.189 0.710
α = 0.27 0.456 0.206 0.265 0.189 0.710
α = 0.28 0.456 0.206 0.265 0.188 0.711
α = 0.29 0.456 0.206 0.262 0.189 0.711
α = 0.30 0.455 0.207 0.261 0.189 0.713

† using H+M binarization

Table 16: A closer examination of the three rule-based approaches on ARQMath-1 topics,
with Tangent-L having a fixed γ = 0.1 and varying α values: 0.25 ≤ α ≤ 0.30 and a step
size of 0.01. While most results are indistinguishable from each other, an optimal α is
picked for each run (highlighted in red) based on a larger nDCG′, breaking ties by a larger
nDCGPB′, or otherwise selected randomly.
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the result is already better than searches using manually selected keywords and formulas.
It is, however, unclear whether keywords should be further filtered by external sources of
lists of “mathy” words, since the results from QueryrmStopFF

and the other two approaches
are almost indistinguishable.

The three runs also have a similar range of optimal α values at around 0.25 to 0.30. A
closer examination of this α range with a step size of 0.01 for these three runs is found in
Table 16. Handpicking the optimal α values from both Figure 11 and Table 16, a final eval-
uation against the ARQMath-2 benchmark is shown in Table 15. With ARQMath-2 topics,
QueryMSEWikiFF

has an outstanding performance especially for nDCG′ and nDCGPB′. It
might thus be concluded that, extraction by lists of mathy words generated from the MSE
Tags source and the Wikipedia source helps the retrieval performance overall.
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Baseline
CorpusAnswer A corpus formed by answer posts.

Alternative
CorpusQAPair A corpus formed by question-answer pairs, that is, each

unit is an answer post with its associated question post.
CorpusQuestion A corpus formed by question posts.
CorpusThread A corpus formed by threads, that is, each unit is a ques-

tion post with all its associated answer posts.

Table 17: Corpora for different forms of math-aware retrieval. All answer posts and ques-
tion posts for building the corpus units are enriched posts as explained in Section 4.2.3.

4.4.3 Comparing Corpora

This subsection examines which form of the corpus described in Section 4.2.1 and summa-
rized in Table 17 is the best choice for the current system to adopt. CorpusAnswer serves as
a baseline since it is the naive approach to address the problem of ranking answers from
the MSE collection (containing only answer posts).

Experimental runs using ARQMath-1 search queries from the presumably good ap-
proach QueryMSEWikiFF

(Section 4.4.2) are executed on different corpora. For CorpusAnswer

and CorpusQAPair, nDCG′ is evaluated with the list of ranked answers returned from
Tangent-L directly, while for CorpusQuestion and CorpusThread, nDCG′ is evaluated with
the list of ranked answers ordered first by the retrieval score of the retrieved questions
and then the vote score of the answer, selected up to 1,000. In addition, nDCGPB′ is also
examined for all runs in which the order of answers are optimized. The result is shown in
Figure 12, with Tangent-L having a varying α value: 0.0 ≤ α ≤ 0.8 and a step size of 0.1.

It can be observed that regardless of the choice of the corpus, all runs have an optimal
α range at around 0.2 to 0.3, which is likely a consequence of using QueryMSEWikiFF

as
discussed previously. Considering their peak performance, the baseline CorpusAnswer as
well as CorpusQuestion do not perform as well as the other two corpora for both evaluation
measures, suggesting that it is always better to include the content of both question post
and answer post(s) when composing a corpus unit.

On the other hand, for nDCG′, CorpusQAPair outperforms CorpusThread (0.456 vs 0.390),
while for nDCGPB′ the situation is the opposite: CorpusThread outperforms CorpusQAPair

(0.773 vs 0.712). The good performance of CorpusThread for nDCGPB′ might be explained by
the fact that it has a larger pool of available answer candidates (all associated answers from
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Figure 12: ARQMath-1 evaluation on different corpora, with Tangent-L having a fixed
γ = 0.1 and varying α values: 0.0 ≤ α ≤ 0.8 and a step size of 0.1. nDCGPB′ is reported
together in the same graph (represented by the dashdotted lines).
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Figure 13: Similar to Figure 12, but evaluate CorpusQuestion and CorpusThread with a cutoff
on their pool of answer candidates before an optimal re-ranking.

the retrieved questions) for ranking. However, if such a pool of answer candidates is limited
to 1,000 first before being evaluated for nDCGPB′, its performance drops significantly and
CorpusQAPair still has the best performance among all, as shown in Figure 13. Nonetheless,
the result indicates that, while an answer retrieval among Question-Answer Pairs performs
well enough with Tangent L’s internal ranking, a question retrieval among threads has the
potential to achieve a better result if a proper answer ranking can be applied. Table 18
shows the final evaluation result on the ARQMath-2 benchmark for different corpora, with
Tangent-L having a fixed α = 0.27 (the presumably optimal α value for QueryMSEWikiFF

discussed previously).

ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

CorpusQAPair 0.462 0.187 0.241 0.163 0.736
CorpusThread 0.427 0.119 0.151 0.092 0.787
CorpusQuestion 0.400 0.125 0.180 0.106 0.704
CorpusAnswer 0.278 0.087 0.176 0.096 0.489

† using H+M binarization

Table 18: ARQMath-2 Evaluation on different corpora, with search queries from
QueryMSEWikiFF and Tangent-L set to α = 0.27, γ = 0.1.
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4.4.4 Core Tangent-L: Fine Tuning α, γ and Formula Normaliza-
tion

The previous sections (4.4.2, 4.4.3) have shown that Tangent-L has a range of optimal
α values at around 0.20 to 0.30 when working with QueryMSEWikiFF

, but the experiments
to check this α value have been conducted only with a fixed repeated symbol weight
γ = 0.1 and a support for formula normalization by the semantic classes Commutativity and
Symmetry. This section summarizes the effects of the γ value and formula normalization
respectively.

Effect of the Repeated Symbols Weight γ

To explore the effect of the weight of repeated symbols in Equation 3.6, experimental runs
on the ARQMath-1 benchmark with QueryMSEWikiFF

and CorpusQAPair are repeated with
a varying γ and α value: 0.0 ≤ γ, α ≤ 1.0 and a step size of 0.1, as shown in Figure 14.

Figure 14: ARQMath-1 Evaluation with search queries from QueryMSEWikiFF applied on
CorpusQAPair, and Tangent-L set as: 0.0 ≤ γ, α ≤ 1.0 with a step size of 0.1.
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Figure 15: Similar to Figure 14 but with a closer examination of the γ values at different α
with 0.00 ≤ γ ≤ 0.20 ≤ α ≤ 0.30, and a step size of 0.05 for γ and 0.01 for α respectively.

It can be observed that a unique range of optimal γ values exists for different α values.
Nonetheless, after considering all α, γ pairs, the range of optimal α values remains roughly
at around 0.2 to 0.3, which validates the previous testing. The corresponding range of
optimal γ values is between 0.0 and 0.2. Notice also that an increasing γ gives slight
improvement to some α values at particular ranges—which implies that the existence of
repeated symbols helps improve the retrieval effectiveness to some degree. However, in
general, α plays a larger role than γ in the evaluation measure: nDCG′ changes faster with
a change of α than with a change of γ most of the time (unless with a small α value like
0.1 or a large γ value that is greater than 0.8 when an increasing γ drops the performance
significantly).

A closer examination of finer γ and α values can be found in Figure 15 with 0.00 ≤ γ ≤
0.20 ≤ α ≤ 0.30, and a step size of 0.05 for γ and 0.01 for α respectively. While the peak
nDCG′ is at 0.458 with α = 0.25 and γ = 0.00 or 0.15, such result is not significant since
there are multiple pairs having similar values with a difference smaller than 10−3. As such,
it might be concluded that 0.0 ≤ γ ≤ 0.2 ≤ α ≤ 0.3 is an optimal range for the parameter
pairs at the current experimental setting, and more evidence is necessary to look for their
optimal values with a finer precision.

As a reference, the peak α, γ pairs in Figure 15 are evaluated and compared to the
previously-evaluated pair α = 0.27, γ = 0.10 against the ARQMath-2 benchmark in Ta-
ble 19. The difference between the performance of the pairs is insignificant.
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ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

α = 0.27, γ = 0.10 0.462 0.187 0.241 0.163 0.736
α = 0.25, γ = 0.00 0.461 0.187 0.247 0.164 0.736
α = 0.25, γ = 0.15 0.461 0.186 0.242 0.162 0.736

† using H+M binarization

Table 19: ARQMath-2 Evaluation on different α, γ values of Tangent-L, with search
queries from QueryMSEWikiFF

executed on CorpusQAPair. The α, γ values are selected
among the observed range of optimal values from the ARQMath-1 benchmark.

Effect of Semantic Classes for Formula Normalization

Baseline
No FN Formula normalization is not supported.

Flags for Semantic Classes
FNC+S The semantic class Commutativity and Symmetry are

supported.
FNAN+OU The semantic classes Alternative Notation and Operator

Unification are supported.
FNIE The semantic class Inequality Equivalence is supported.

Table 20: The available flags in Tangent-L to control whether or not to support a semantic
class for formula normalization (Section 3.3).

To explore the effect of normalization, experimental runs on the ARQMath-1 bench-
mark are repeated with QueryMSEWikiFF and CorpusQAPair, each time with a different flag
turned on to support formula normalization (Table 20). Given the previous result of the
range of optimal α and γ values, runs are executed with a fixed γ = 0.1 on a smaller range
of α values: 0.15 ≤ α ≤ 0.35 and a step size of 0.05. The result is shown at Figure 16.

It can be observed that the effect of formula normalization is not significant—except
for FNIE, which produces a noticeable drop in performance. The worse performance by
FNIE might be owing to the implementation limitation (3.3.2), however, such limitation
has not resulted in the same drop in performance for FNC+S. It remains to be investigated
why reversing expressions with inequality operators produces a worse performance. A final
evaluation against the ARQMath-2 benchmark is shown in Table 21.
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Figure 16: ARQMath-1 Evaluation with search queries from QueryMSEWikiFF applied on
CorpusQAPair, and Tangent-L set as γ = 0.1, and 0.15 ≤ α ≤ 0.35 with a step size of 0.5.

4.4.5 Core Tangent-L: Fine Tuning α for Individual Queries

From Table 14, it can be observed that search queries produced by QueryMSEWikiFF have
different formula-to-all-terms ratio across different topics. A hypothesis is that, first, a
fixed α value might hinder the performance for particular topics; and next, this might be
because of this varying formula-to-all-terms ratio. To look at this into more detail, the
performance of individual topics with a varying α value: 0.0 ≤ α ≤ 0.8 and a step size of
0.05 is plotted at Figure 17 (where the search queries are applied on CorpusQAPair with a
fixed γ = 0.1).

It can be observed that the optimal α value (indicated by the red dot on each colored
line) for each individual topic fluctuates from 0.05 to 0.8, while the mean of these α values
(indicated by the red vertical line) is around 0.31— a close approximation to the optimal
range of a fixed α value concluded in the previous section. It thus confirms the first part
of the hypothesis: that a varying α value can help improve the performance of individual
topics.

On the other hand, keyword counts and formula counts (or the counts of regular math
tokens—repetition tokens are omitted due to their insignificance after being scaled by
γ = 0.1), together with the optimal α value for each individual topic, are shown in Figure
18. However, no obvious relationship can be observed between the counts and the optimal
α value, which rejects the second part of the hypothesis. This observation is also in line
with that observed by Fraser in his thesis, in which he found that “there is not a clear
relationship between math to keywords ratio and α” [14].
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Figure 17: ARQMath-1 Evaluation on individual topics with a varying α : 0 ≤ α ≤ 0.8,
with a step size of 0.05
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Figure 18: Keyword counts and formula (or regular math tokens) counts for the search
queries from QueryMSEWikiFF of individual topics, together with their individual optimal α
value from Figure 17.
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ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

No FN 0.463 0.187 0.242 0.163 0.737
FNAN+OU 0.462 0.186 0.247 0.163 0.735
FNC+S 0.462 0.187 0.241 0.163 0.736
FNIE 0.447 0.180 0.237 0.157 0.717

† using H+M binarization

Table 21: ARQMath-2 Evaluation for different semantic classes supported in formula
normalization, with search queries from QueryMSEWikiFF

executed on CorpusQAPair and
Tangent-L set to α = 0.27, γ = 0.1.

Another hypothesis is that the optimal α value for individual topics might also de-
pends on whether the topic is formula-dependent, text-dependent, or both (Table 5). Sub-
plottings of Figure 17 that isolate topics with their dependencies are shown in Appendix D.
Again, no obvious relationship can be observed between the topic dependencies and the as-
sociated range of optimal α values. It might thus be concluded that it remains a challenge
to fine-tune the α value based on individual topics.

4.4.6 Tangent-L Variant: Exploring Holistic Formula Search

This section explores the effectiveness of Holistic Formula Search as proposed in Section
3.4.

As a system variant of the core Tangent-L, Holistic Formula Search also has an α
parameter, a γ parameter, and flags for formula normalization. However, it is different
by being a two-stage retrieval system model, in which γ is involved in the first stage of
formula retrieval model (Equation 3.7), and α and κ are involved in the second stage of
keyword-and-formula retrieval (Equation 3.9, 3.10). Therefore, the effect of α, γ, and κ
parameters are examined together as follows:

With again QueryMSEWikiFF for search queries and CorpusQAPair for the retrieval corpus,
experimental runs on the ARQMath-1 benchmark are executed with γ = 0.1 for formula
retrieval and varying α and κ values for keyword-and-formula retrieval: 0.0 ≤ α ≤ 0.8
with a step size of 0.1, and κ = 1, 5, 10, 20, 50, 100, 200, 300, 400, 500. The result is shown
in Figure 19.
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Figure 19: ARQMath-1 Evaluation using different κ values as the number of replacement
formulas in a Holistic Formula Search. Tangent-L is set to have γ = 0.1 during formula
retrieval, and when in document retrieval, search queries from QueryMSEWikiFF are applied
on CorpusQAPair with a varying α value: 0.0 ≤ α ≤ 0.8 and a step size of 0.1.

It can also be observed that each κ has a unique range of optimal values, and when κ
increases, the corresponding optimal α value tends to shift to a smaller value. This makes
sense since less weight should be given to query formulas to compensate for the potential
“noisy” replacement formulas.

With a fixed query formula weight α, effectiveness generally increases with the increase
of the number of replacement formulas κ (observed up to 500) for each query formula, that
is, the more formulas the better. However, the increase in effectiveness slows down when κ
grows large, and the effectiveness for κ = 400 and κ = 500 becomes similar. On the other
hand, although the change of γ value is not tested, it might be deduced that the value
of γ—excluding huge values—contributes less to the optimal performance when κ is large
because the ranking power of the formula retrieval model becomes less important.
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Figure 20: Similar to Figure 19 but with a closer examination of the result from κ =
400, 500 at 0.30 ≤ α ≤ 0.50 and a step size of 0.01.

ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCGPB′

CoreSearchα=0.27,γ=0.10 0.462 0.187 0.241 0.163 0.736
HolisticFormulaSearchγ=0.10,α=0.47,κ=400 0.413 0.164 0.223 0.149 0.676

† using H+M binarization

Table 22: ARQMath-2 Evaluation for Holistic Formula Search compared to the search
by the core version of Tangent-L, with search queries from QueryMSEWikiFF

applied on
CorpusQAPair.

Considering each κ value with their optimal α value, the range of peak performance
is at around κ = 400 or 500 with α = 0.4. A closer examination of κ = 400, 500 in this
range is shown in Figure 20, with a varying α value: 0.30 ≤ α ≤ 0.50 and a step size of
0.01. It can be observed that the peak is achieved by κ = 400 at α = 0.47. As a final
evaluation, this peak pair is evaluated and compared to the result from the previously
discussed one-stage approach with α = 0.27, γ = 0.1 against the ARQMath-2 benchmark.
It might be concluded that Holistic Formula Search is less effective than regular search (at
least until larger κ values are tested).
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∆(H,M) ∆(M,L) ∆(L,NR) ∆(M,NR) ∆(H,NR)

Span 7% 8% 3% 10% 18%
Span-NormByDocLen 0% 1% 5% 5% 5%
Normalized-Span -5% -6% -62% -67% -72%
Normalized-Span-NormByDocLen -20% -13% -64% -76% -92%
Min-Span 9% 7% 6% 13% 21%
Min-Span-NormByDocLen -1% 2% 8% 11% 10%
Normalized-Min-Span 2% 1% -39% -38% -36%
Normalized-Min-Span-NormByDocLen -11% -3% -40% -43% -53%
Min-Distance 1% -2% -89% -90% -89%
Min-Distance-NormByDocLen -10% -9% -104% -111% -117%
Ave-Distance 4% 3% -16% -14% -10%
Ave-Distance-NormByDocLen -7% -2% -15% -17% -24%
Max-Distance 9% 7% 6% 13% 21%
Max-Distance-NormByDocLen -1% 2% 9% 11% 10%

Table 23: Comparison of proximity measures on the ARQMath-1 benchmark for math
answers of high (H), medium (M), low (L) relevance, and non-relevant (NR) math answers,

where ∆(a, b) = prox(a)−prox(b)
0.5(prox(a)+prox(b))

.

4.4.7 Validating Proximity

The experimental design used by Tao and Zhai [57] can be used to explore the effect of
each proximity signal outlined in Table 11 (Section 4.3.2). With respect to ARQMath-1
search queries created from QueryMSEWikiFF

, the average proximity for documents from
CorpusQAPair that have ARQMath-1 relevance assessment is shown in Table 23. It can be
observed that strong signals from several measures distinguish relevance with the correct
order (marked in gradient orange), particularly for normalized-span, which correctly orders
all four levels of relevancy (a smaller normalized-span indicating a higher level of relevancy)
without the need to be normalized by document length.

As part of the submission to ARQMath-2, a re-ranking is performed on the retrieved
answers by Tangent-L in increasing order of normalized-span, breaking ties by a decreas-
ing retrieval score returned from Tangent-L. However, the result explained in Section
E.2 demonstrates that such re-ranking is unsatisfactory. A closer look at the computed
normalized-span values shows that they have ranges of small magnitude (<0.001 to 0.05),
hinting that the percentage differences between each class of documents might have been
insignificant in their absolute values.

As a follow-up, the effect of proximity on document relevance is further studied as
follows: first, divide a document into p portions of its content; then create d document
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ARQMath-1 (77 Topics) ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCG′ MAP′† P′@10† bpref†

docOnly 0.452 0.207 0.267 0.190 0.462 0.187 0.241 0.163
docWithFrags 0.462 0.212 0.268 0.193 0.458 0.188 0.239 0.159

† using H+M binarization

Table 24: ARQMath-1 and ARQMath-2 Evaluation when including document fragments.

Selected Document ARQMath-1 ARQMath-2

Whole ∼75% ∼75%
Top Fragment ∼11% ∼13%
Middle Fragment ∼6% ∼6%
Bottom Fragment ∼8% ∼7%

Table 25: Percentage of selected document instances when searching a document corpus
with document fragments.

fragments, where each document fragment contains portions of the original document with
a sliding window size of w. The document fragments and the original document are then
indexed together to create a new document corpus. During a search, each returned docu-
ment fragment represents its original document, and the final list of rankings is produced
by eliminating repeated documents that occur later in the ranking.

The motivation behind this approach is that if query terms in a relevant document are
closer to each other (as observed in Table 23), then including the document fragments for
searching might boost those relevant documents towards the top of the ranking. This study
is carried out with p = 4, d = 3, w = 2 (that is, each document is represented by its top-half,
“middle half”, and bottom half, as well as the whole) and the result compared to using a
regular corpus is shown in Table 24. It can be observed that while the studied approach
has a better effectiveness on the ARQMath-1 benchmark, it does not help improve the
performance on the ARQMath-2 benchmark. Table 24 shows that a large portion (∼75%)
of the selected documents are the original documents, hinting again that proximity is
somewhat limited.

Noticeably, holistic formula search (Section 4.4.6) is also an approach motivated by
proximity, with the hypothesis that if math tokens in a query appear closer together in a
document (or are forced to be reduced to a holistic formula token in a document), then
that document is likely to be more relevant. Nonetheless, the approach has not produced
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a promising result as well. Further study is required to incorporate the observed proximity
signals for a better result.

4.4.8 Validating CQA Metadata

Vote Score

A key assumption behind the approach proposed in Section 4.3.1 is that an answer post
with a higher vote score should be more valuable. However, the proposed linear model
and the mock relevance score oversimplifies the relationship between the vote score and
the actual relevance assessment.

As can be seen from Figure 21, most of the vote scores cluster at a small value that
centers around one, and large vote scores are sparse. A similar distribution can be ob-
served from the vote scores of the answer posts that have received ARQMath-1 relevance
assessment. Observing also the average relevance received by ARQMath-1 assessed answer
posts with a particular vote score, the average relevance for large vote scores (say, with
a value larger than 40) fluctuates possibly due to the sparsity of those vote scores. It is,
therefore, inappropriate to assume a linear, or even a monotonic relationship between the
two even though there is a trend that the average relevance increases with the increase of
vote scores when the vote scores are small. A similar conclusion can be deduced for the
in-thread vote score component (Equation 4.3) of the proposed mock relevance score as
well.

Question Relatedness

Another assumption behind the design of the mock relevance score is about question relat-
edness : that an answer post is more valuable if the associated question of the answer post
is linked to the given math question through the attributes duplicated post, related posts,
and their number of overlapping tags. To validate this assumption, the average relevance is
computed for assessed answer posts in ARQMath-1 whose associated question posts have
the mentioned relations with the given math question, as shown in Table 26. Notice that
both duplicate posts and related posts of the given math questions are not available to
the participants before the evaluation. The information of duplicate posts is available only
from the task result of the baseline system Linked MSE posts (Section 2.4.2).

From the computation, it can be observed that the average relevance generally increases
with the number of overlapping tags. Although the average relevance reaches zero when
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Figure 21: Overview for the CQA metadata vote score, displaying vote score from the
minimum score -10 up to 400. Larger vote scores are ignored due to their sparseness. The
ARQMath-1 relevance is denoted by H (a value of 3), M (a value of 2), L (a value of 1)
and Irrelevant (a value of 0) respectively in the middle graph.
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Relation of the Average Number of
Associated Question Post Relevance Answer Posts

Any 0.176 36097
Number of Overlapping Tags: 0 0.091 22303

1 0.253 12718
2 0.315 3531
3 0.447 566
4 0 6

Duplicate Posts 1.56 723

Table 26: The average relevance for ARQMath-1 assessed answer posts, with respect to
the relation between their associated question posts and the given math question.

the number of overlapping tags reaches its highest, the assessed number of answer posts
is relatively small and thus might not be have a great influence. Comparing to the overall
average relevance—whose associated question might have any relationship with the given
math question—all relations, except for the previously mentioned case and the case when
there is no overlapping tags, have a higher average relevance. As such, it might be concluded
that these attributes provide some hint to the value of an answer post regarding the task.

It is, however, worth noting that while the average relevance for duplicate posts is the
highest among all, its value at 1.56 is still fairly low if considering the fact that the asso-
ciated question and the given math question are deemed by the forum users as duplicates,
or in other words, identical. The effectiveness of the question relatedness score component
(Equation 4.1) in the mock relevance score might thus be compromised.

Trained Linear Regression Model

As part of the submission to ARQMath-1—when the above analysis was not possible— a
linear regression model proposed in Section 4.3.1 is trained using training data built by first
picking around 1,300 question posts from the MSE collection, and then for the top 10,000
answers that Tangent-L retrieved using the corresponding search queries, associating those
answers with the proposed mock relevance score and the proposed CQA metadata according
to their search queries. The trained linear regression model is then used to re-rank retrieved
answers by Tangent-L for the ARQMath-1 topics. The ARQMath-1 result explained in
Section E.1 shows that such re-ranking is indeed detrimental to the performance.
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4.5 MathDowsers’ Submission Runs and Results

4.5.1 Submissions Overview

Following the presented methodology in Section 4.1, 4.2, and 4.3, runs were submitted to
ARQMath-1 and ARQMath-2. An overview of all results, including the submission runs
of both years and the experimental runs, can be found in Table 27 with notations of the
configuration defined in Tables 13, 17, 20, and 28.

It can be observed that the presented methodology has been successful, with Math-
Dowsers’ submitted runs achieving the best participant runs for both years in terms of the
primary measure nDCG′ (0.345 by alpha05-noR for the ARQMath-1 benchmark and 0.434
by primary for the ARQMath-2 benchmark), even though the runs did not adopt the best
possible configuration outlined in Section 4.4. With the best possible configuration, exper-
imental runs achieve an even better nDCG′ (for example, 0.458 and 0.463 by No FN for
the two benchmarks, respectively). The success of the presented methodology also proves
the effectiveness of Tangent-L as a math-aware search engine.

Additionally, the performance of the runs on the ARQMath-1 benchmark—despite
adopting the same methodology—has a significant improvement over the years, with the
nDCG′ being increased from an initial 0.345 (by alpha05-noR during ARQMath-1) to
0.433 (by primary during ARQMath-2), followed by a further increase to 0.458 (by No
FN during experiments). Such improvement is reflected on the ARQMath-2 benchmark
as well, demonstrating an overall enhancement of the developing system.

Full details of each year’s runs have been published in CLEF Working Notes [62, 30].
Some of the key discussions from those papers can be found in Appendix E.1 and E.2.
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ARQMath-1 (77 Topics) ARQMath-2 (71 Topics)
nDCG′ MAP′† P′@10† bpref† nDCG′ MAP′† P′@10† bpref†

MathDowsers (ARQMath-1)
(Primary Settings: Datasetoriginal, uniqueQueryMSEWikiFF , CorpusQAPair, vanillaTL-α0.50, reRankLRM)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
alpha05-noR (no reRankLRM) ∗B 0.345 0.139 0.162 0.126 - - - -
alpha02 (α = 0.20) ∗ 0.301 0.069 0.075 0.044 - - - -
alpha05-trans (Querymanual) ∗M 0.298 0.074 0.079 0.050 - - - -
alpha05 ¶ 0.278 0.063 0.073 0.041 - - - -
alpha10 (α = 1.00) ∗ 0.267 0.063 0.079 0.042 - - - -

MathDowsers (ARQMath-2), tuned on ARQMath-1
(Primary Settings: Datasetclean, uniqueQueryMSEWikiFF

, CorpusQAPair, coreTL-α0.27γ0.10, FNC+S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

primary ¶B 0.433 0.191 0.249 0.178 0.434 0.169 0.211 0.145
proximityReRank (reRankprox)∗ 0.373 0.117 0.131 0.095 0.335 0.081 0.049 0.052

Experimental Runs, tuned on ARQMath-1
(Primary Settings: Datasetclean, QueryMSEWikiFF

, CorpusQAPair, coreTL-α0.27γ0.10, FNC+S)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No FN 0.458 0.207 0.261 0.191 0.463 0.187 0.242 0.163
primaryexp 0.457 0.207 0.267 0.190 0.462 0.187 0.241 0.163
FNAN+OU 0.457 0.206 0.262 0.191 0.462 0.186 0.247 0.163
coreTL-α0.25γ0.00 0.458 0.208 0.269 0.190 0.461 0.187 0.247 0.164
coreTL-α0.25γ0.15 0.458 0.207 0.267 0.190 0.461 0.186 0.242 0.162
docWithFrags 0.462 0.212 0.268 0.193 0.458 0.188 0.239 0.159
QueryrmStopFF

, coreTL-α0.29γ0.10 0.458 0.208 0.264 0.193 0.448 0.185 0.245 0.161
FNIE 0.448 0.199 0.260 0.184 0.447 0.180 0.237 0.157
QueryWikiFF , coreTL-α0.28γ0.10 0.456 0.206 0.265 0.188 0.442 0.180 0.235 0.156
CorpusThread 0.386 0.153 0.212 0.138 0.427 0.119 0.151 0.092
Queryplain, coreTL-α0.50γ0.10 0.406 0.188 0.248 0.178 0.418 0.173 0.240 0.152
holisticTL-γ0.10α0.47κ400 0.409 0.193 0.281 0.183 0.413 0.164 0.223 0.149
CorpusQuestion 0.371 0.152 0.234 0.144 0.400 0.125 0.180 0.106
QueryMSEFF , coreTL-α0.20γ0.10 0.295 0.135 0.181 0.127 0.302 0.122 0.170 0.107
CorpusAnswer 0.316 0.114 0.201 0.121 0.278 0.087 0.176 0.096

¶ submitted primary run ∗ submitted alternate run B best partipant run M manual run

† using H+M binarization

Table 27: An overview result for the MathCQA Task in ARQMath-1 and ARQMath-2,
including MathDowsers’ submission runs and experimental runs. The result of the runs
are ordered by their nDCG′ in ARQMath-2 (or otherwise ARQMath-1).
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Data Cleansing
Datasetoriginal The original dataset provided during ARQMath-1.
Datasetclean An improved dataset that is provided during ARQMath-2 (Section

2.4.1), with data cleansing adopted (Section 4.2.4).

Tangent-L Variants
vanillaTL-αx The vanilla version of Tangent-L (Section 3.1), with the math

feature weight α set to a value of x.
coreTL-αxγy The system variant of Tangent-L that incorporates repeated sym-

bols (Section 3.2), with the math feature weight α set to a value
of x, and the repeated symbol weight γ set to a value of y.

holisticTL-γyαxκz The system variant of Tangent-L that conducts Holistic Formula
Search (Section 3.4), with the repeated symbol weight γ set to a
value of y, the math feature weight α set to a value of x, and the
number of replacement formulas κ for a query formula set to a
value of z.

Query Conversion
uniqueQueryMSEWikiFF

Compared to QueryMSEWikiFF
in Table 13, the extracted terms

are de-duplicated without being boosted for TangentL’s internal
ranking according to their frequencies. This algorithm is a result
of oversight in implementation.

Answer Ranking
reRankLRM Re-ranking with a trained linear regression model using CQA

metadata (Section 4.3.1).
reRankProx Re-ranking by proximity signal (Section 4.3.2).

Table 28: Additional notations to describe settings in Table 27. Other notations are defined
in Tables 13, 17, and 20.
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ARQMath-2 (71 Topics)
nDCG′ MAP′ † P′@10† bpref†

Baselines
Linked MSE posts ¶ (0.203) (0.120) (0.282) (0.131)
TF-IDF+Tangent-S ¶ 0.201 0.045 0.086 0.048
TF-IDF * 0.185 0.046 0.063 0.046
Tangent-S * 0.111 0.027 0.052 0.039

Top Experimental Run
primaryexp 0.462 0.187 0.241 0.163

Top Participant Runs
MathDowsersprimary ¶B 0.434 0.163 0.211 0.145
DPRLQASim * 0.388 0.147 0.193 0.135
TU DBSTU DBS P ¶ 0.377 0.158 0.227 0.158

¶ submitted primary run ∗ submitted alternate run

B best partipant run † using H+M binarization

Table 29: Comparison of the top experimental run to the baseline runs and the top three
participant runs on the ARQMath-2 benchmark. Parentheses indicates that the submis-
sionis made with privately-held data which is not available to participants.

4.5.2 Strengths and Weaknesses

This section describes the strengths and weaknesses of the presented methodology com-
pared to the baseline systems and the top participant systems in the task. The benchmark
of focus is the ARQMath-2 benchmark, since from Appendix A it can be observed that
more teams participated in ARQMath-2, and most participant systems have improved ever
since ARQMath-1.

Overall Performance

Table 29 compares the performance of the top experimental run primaryexp with the base-
line runs and the top three participant runs—the submitted primary run, the QASim run
from DPRL that trains a system with SentenceBERT (Section 2.5.5), and the TU DBS P
run from TU DBS that trains a system with ALBERT (Section 2.5.6).

Focusing on the top three participant runs, the submitted primary run, which is the
best participant run, also achieves the best MAP′ in addition to nDCG′. However, it has
a lower P′@10 (0.211 vs 0.227) and bpref (0.145 vs 0.158) than another participant run
TU DBS P. Nonetheless, the top experimental run primaryexp, which corrects an oversight
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primaryexp
Count nDCG′ MAP′ P′@10 bpref

Overall 71 0.462 0.187 0.241 0.163

Dependency
Text 10 0.423 0.158 0.260 0.142
Formula 21 0.516 0.235 0.319 0.204
Both 40 0.443 0.169 0.195 0.146

Topic Type
Computation 25 0.455 0.189 0.200 0.165
Concept 19 0.429 0.160 0.232 0.137
Proof 27 0.492 0.204 0.285 0.178

Difficulty
Easy 32 0.509 0.216 0.300 0.199
Medium 20 0.383 0.116 0.150 0.098
Hard 19 0.466 0.213 0.237 0.169

Table 30: Effectiveness breakdown by topic categories of the top experimental run
primaryexp on the ARQMath-2 benchmark. The better performance measure within each
topic category is highlighted in bold.

in the implementation of the primary run, improves all evaluation measures and achieves
a higher P′@10 and bpref than TU DBS P.

Remarkably, the top experimental run primaryexp also has the best nDCG′, MAP′, and
bpref among all runs, including the baseline Linked MSE posts, which uses privately-held
data that is not available to participants (Section 2.4.2). It might thus be concluded
that the presented methodology with the best possible configuration has been strong in
evaluations measures not limited to nDCG′, while it is still relatively weak in P′@10 overall
when compared to the baseline Linked MSE posts (0.241 vs 0.282).

Topic Category Breakdown

Given the released topic labels by Lab organizers (Table 5), Table 30 shows the effectiveness
breakdown of primaryexp by topic category. It can be observed that the run has a strong
performance for Formula-dependent topics, Proof-like topics, and topics of Easy-difficulty
in all evaluation measures.

Comparing to other systems in nDCG′ as shown in Table 31, a similar category perfor-
mance to primaryexp can be observed not only from the submitted primary run but also
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Experimental Top Participant Runs Baselines
MathDowsers DPRL TU DBS Linked TF-IDF TF-IDF Tangent-S

Count primaryexp primary QASim TU DBS P MSE posts +Tangent-S

. . . . . . . . . . . . . . . . . . . nDCG′ . . . . . . . . . . . . . . . . . . . . .
Overall 71 0.462 0.434 0.388 0.377 (0.203) 0.201 0.185 0.111

Dependency
Text 10 0.423 0.385 0.347 0.360 (0.246) 0.253 0.296 0.042
Formula 21 0.516 0.480 0.443 0.382 (0.184) 0.194 0.128 0.170
Both 40 0.443 0.422 0.369 0.378 (0.207) 0.191 0.187 0.097

Topic Type
Computation 25 0.455 0.441 0.399 0.348 (0.215) 0.211 0.185 0.125
Concept 19 0.429 0.390 0.301 0.294 (0.217) 0.189 0.178 0.083
Proof 27 0.492 0.459 0.438 0.462 (0.189) 0.199 0.190 0.117

Difficulty
Easy 32 0.509 0.472 0.426 0.426 (0.197) 0.236 0.205 0.131
Medium 20 0.383 0.346 0.350 0.353 (0.188) 0.179 0.184 0.096
Hard 19 0.466 0.463 0.362 0.318 (0.243) 0.164 0.152 0.092

Table 31: Category performance in nDCG′ of the top experimental run, the baseline runs,
and the top three participant runs on the ARQMath-2 benchmark. The better performance
measure within each topic category is highlighted in bold. Parentheses indicates that the
submission is made with privately-held data which is not available to participants.

from the other two top participant runs. On the other hand, a different category perfor-
mance can be observed from the baselines. Most baselines have a stronger performance
on Text-dependent topics rather than Formula-dependent topics, while having a relatively
average performance in topics of different types. The baselines only have a similar category
performance to the participant runs in terms of the difficulty level (with the only exception
being Linked MSE posts). It might thus be concluded that, while most systems are good
at topics of Easy-difficulty, the presented methodology—together with other participant
systems—are particularly strong in Formula-dependent topics and Proof-like topics.

nDCG′ vs P′@10

It is worthwhile to study the performance of P′@10, since it stands out from other effective
measure by the fact that it measures only the top ten judged results, instead of the whole
1,000 results. A better nDCG′ score but a poorer P′@10 score might indicate that a system
has retrieved some good results but fail to rank them at early positions.
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Overall Dependency Topic Type Difficulty
Text Formula Both Comp. Concept Proof Easy Medium Hard

Topic Count 77 10 21 40 25 19 27 32 20 19

. . . . . . . . . . . . . . . . . nDCG′ . . . . . . . . . . . . . . . . . . . .
Baselines
Linked MSE posts (0.203) (0.246) (0.184) (0.207) (0.215) (0.217) (0.189) (0.197) (0.188) (0.243)
TF-IDF+Tangent-S 0.201 0.253 0.194 0.191 0.211 0.189 0.199 0.236 0.179 0.164
TF-IDF 0.185 0.296 0.128 0.187 0.185 0.178 0.190 0.205 0.184 0.152
Tangent-S 0.111 0.042 0.170 0.097 0.125 0.083 0.117 0.131 0.096 0.092

Top Experimental Run
primaryexp 0.462 0.423 0.516 0.443 0.455 0.429 0.492 0.509 0.383 0.466

Top Participant Runs
MathDowsersprimary 0.434 0.385 0.480 0.422 0.441 0.390 0.459 0.472 0.346 0.463
DPRLQASim 0.388 0.347 0.443 0.369 0.399 0.301 0.438 0.426 0.350 0.362
TU DBSTU DBS P 0.377 0.360 0.382 0.378 0.348 0.294 0.462 0.426 0.353 0.318

. . . . . . . . . . . . . . . . . P′@10 . . . . . . . . . . . . . . . . . . . .
Baselines
Linked MSE posts (0.282) (0.364) (0.250) (0.285) (0.230) (0.339) (0.301) (0.304) (0.253) (0.250)
TF-IDF+Tangent-S 0.086 0.120 0.086 0.077 0.088 0.100 0.074 0.122 0.055 0.058
TF-IDF 0.063 0.150 0.043 0.053 0.048 0.089 0.059 0.091 0.050 0.032
Tangent-S 0.052 0.000 0.086 0.048 0.064 0.058 0.037 0.062 0.045 0.042

Top Experimental Run
primaryexp 0.241 0.260 0.319 0.195 0.200 0.232 0.285 0.300 0.150 0.237

Top Participant Runs
MathDowsersprimary 0.211 0.190 0.276 0.183 0.188 0.168 0.263 0.256 0.125 0.226
DPRLQASim 0.193 0.130 0.300 0.152 0.204 0.116 0.237 0.247 0.115 0.184
TU DBSTU DBS P 0.227 0.190 0.295 0.200 0.208 0.126 0.315 0.300 0.150 0.184

Table 32: A comparison in nDCG′ and P′@10 on the ARQMath-2 benchmark of different
topic sub-categories. The better performance measure within each topic sub-category is
highlighted in bold for the top experimental run, the baseline runs, and the top three
participant runs.
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As a supplement to Table 31, Table 32 compares the effectiveness in nDCG′ and P′@10
between the runs in different topic sub-categories. It can be observed that the strong
performance of primaryexp in nDCG′ observed from Table 29 is indeed well-rounded in
every topic sub-categories. However, it is noticeable that while primaryexp has a stronger
overall P′@10 than the other two participant runs, it is not well-rounded in all topic sub-
categories. In particular, TU DBS P achieves a better P′@10 for Proof-like topics (0.315
vs 0.285), and the score is the best among all runs, including even the baseline Linked MSE
posts. It might thus be concluded that there is room for re-ranking the retrieved result to
improve P′@10.

Meanwhile, it is noticable that primaryexp also has a higher P′@10 than the baseline
Linked MSE posts specifically for Formula-dependent topics (0.319 vs 0.250) but not for
other topics. This further validates the claim that the presented methodology with the best
possible configuration is particularly strong in Formula-dependent topics, demonstrating
again the math-aware ability of Tangent-L.
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Chapter 5

Addressing In-context Formula
Retrieval

In-context formula retrieval can be viewed as a cross-disciplinary task between a regular
formula retrieval task and the MathCQA Task. Similar to a regular formula retrieval task,
the retrieval targets are relevant formulas with respect to some topic formulas. On top of
that, the relevance of a retrieved formula is defined with respect to its expected utility to
the topic formula, when the context—that is, the associated question post—of both the
retrieved formula and the topic formula is considered (Section 2.4.2). As such, the retrieval
goal is also grounded in math questions, just like the MathCQA Task.

In spite of the complex nature of this task, simple approaches are proposed based on
the developed MathCQA system (Chapter 4) as side experiments. The following sections
(Sections 5.1, 5.2) present the approaches, and Section 5.3 discusses the submitted runs
and results by the team MathDowsers for ARQMath-2 and compares those results to the
baseline and other participants’ submissions.
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5.1 Formula-centric:

Selecting Visually Matching Formulas

One straightforward approach is to handle the task almost like more traditional formula
retrieval. This approach is formula-centric, since its effectiveness relies heavily on Tangent-
L’s internal formula matching capability to find the matching formulas. The details of the
approach are as follows:

First, the formula corpus of visually distinct formulas created in Section 3.4.1 is searched
by Tangent-L with respect to the given topic formula, resulting in a ranking R of visually
distinct formulas.

This ranking R is then used to create a ranked list of formula instances. Each element
of R is first expanded with its set of formula occurrences—formulas that have the same
visual-id but appear in different posts, hereafter referred to as a visual group. Since only
question-posts and answer-posts are of concern in the task, any formula instances from
comment-posts are ignored.

To produce a formula ranking more grounded in the math questions, the formula in-
stances are selected and ranked with respect to how much their associated post is relevant
to the associated question of the topic formula. To accomplish this, the result of the
primary run (Section E.1) from the MathCQA task with up to 10,000 ranked answers is
adopted to decide the ranking. In detail,

1. Formulas within the same visual group are ranked in the same order as the ranking
of their associated posts in the MathCQA task for the corresponding topic. If the
associated posts of formulas are question-posts that are not associated with any an-
swer from the MathCQA task, the formulas are assigned the lowest ranking. Finally,
the lexical order of formula-ids is used to break ties.

2. For each of the top-20 visually distinct formulas in R, the top five formulas from
its visual group (or all formulas in the visual group if there are fewer than five) are
selected; for the remainder, only the top formula instance is selected (if any have
associated question or answer posts).

3. Sequentially considering the formulas in R in order, selected formula instances from
each visual group are appended to the final list of matching formulas until a target
of 1,000 formula instances are selected in total.
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5.2 Document-centric:

Screening Formulas from Matched Documents

Another straightforward approach is to return formulas with respect to a topic formula by
screening formulas from posts that are relevant to the associated post of the topic formula.
This approach is document-centric, since its effectiveness relies more on ranked documents
resulting from the MathCQA task. Given the result of the primary run (Section E.1) from
the MathCQA task with up to 10,000 ranked answers, the final matching formula instances
are selected from the answers as follows:

1. For each matched answer-post for the corresponding topic in the MathCQA task,
the question-answer pair (Section 4.2.3) document is considered. If the document
contains only one formula, that formula is selected. Otherwise, each formula from
the document is mapped to its visual group, and its Normalized Similarity Score
(Equation 3.8) with respect to the topic formula is computed via a formula retrieval
with γ = 0.1 through the formula corpus of visually distinct formulas (Section 3.4.1,
but see below). Formulas having a score less than a threshold of 0.8 are screened
out, and the rest are preserved and ranked accordingly.

2. Following the original answer-ranking, preserved formulas from each document are
appended to the final list until 1,000 formulas are selected in total.

During implementation, it is highly inefficient to compute the Normalized Similarity
Score for every formula that appears in a document, since the computation requires a
formula retrieval of over 8.5 million FormulaScores (Equation 3.7) for each topic formula.
Therefore, for each topic, formulas in documents that are not within the top 10,000 re-
trieved formulas to the topic formula are assigned a score of 0 and therefore screened
out.
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ARQMath-1 (45 Topics) ARQMath-2 (58 Topics)
nDCG′ MAP′† P′@10† bpref† nDCG′ MAP′† P′@10† bpref†

Baselines
Tangent-S 0.691 0.446 0.453 0.412 0.492 0.272 0.419 0.290

MathDowsers
formulaBase ¶ 0.562 0.370 0.447 0.374 0.552 0.333 0.450 0.348
docBase ∗ 0.404 0.251 0.386 0.275 0.433 0.257 0.359 0.291

Best Participant Run (ARQMath-2)
Approach0P300 ∗M 0.507 0.342 0.441 0.343 0.555 0.361 0.488 0.362

Best Participant Run (ARQMath-1)
DPRLTangent-CFTED * 0.563 0.388 0.436 0.372 - - - -

¶ submitted primary run ∗ submitted alternate run
M manual run † using H+M binarization

Table 33: Comparison of the submitted runs to the baseline run and best participant runs.

5.3 MathDowsers’ Submission Runs and Results

As a first attempt at the in-context formula retrieval challenge, a primary run and an
alternative run were submitted to ARQMath-2 as follows:

formulaBase: The primary run, in which formulas are among retrieved formulas from
Tangent-L as described in Section 5.1;

docBase: An alternative run in which formulas are selected from matched documents
from the MathCQA task as described in Section 5.2.

The results of both runs are shown in Table 33, together with the baseline run and
the best participant runs for the ARQMath-1 and ARQMath-2 benchmarks. In terms
of nDCG′, the primary run formulaBase achieves a very close performance to the best
participant run Tangent-CFTED produced from the DPRL team during ARQMath-1 [28]
(0.562 vs 0.563). On the ARQMath-2 benchmark with an unseen set of math topics, the
primary run formulaBase performs approximately as well with an nDCG′ score of 0.552.
While the best participant run is achieved by the P300 run from the Approach0 team [65]
(an nDCG′ score of 0.555), that run is a manual run (with the use of manual mapping
rules to expand math tokens in a query to additional text keywords for search) and thus,
in fact, the primary run formulaBase is the best among all automatic runs as shown in
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Appendix A.4. Its performance in nDCG′ is almost indistinguishable from that of P300
as well, with a difference of less than one-point (0.552 vs 0.555).

On the other hand, the alternative run docBase does not perform well. On the
ARQMath-1 benchmark, this run shows nearly a 16-point loss when compared to the
primary run (0.404 vs 0.562). As a submitted run in ARQMath-2, it also shows a nearly
12-point loss (0.433 vs 0.552) in nDCG′ and achieves lower scores in all other evaluation
measures.

Nonetheless, the success of the primary run formulaBase shows that even if the task
is being handled almost like a regular formula retrieval task, Tangent-L’s internal formula
matching capability already serves as a strong foundation to produce a decent result. This
again gives proof to the effectiveness of Tangent-L as a math-aware search engine.
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Chapter 6

User Interface for Data Exploration

In addition to effectiveness measures, a visual demonstration can be of great help in under-
standing the performance of a system. This chapter describes two implementations that
assist in data exploration.

6.1 The MathDowsers’ Browser

The MathDowsers’ Browser1 is built with an aim to provide a convenient interface for users
to examine the MathCQA task of the ARQMath Lab series (Figure 22). Users might:

View ARQMath Questions: select by topic categories and view the details of an
ARQMath question (Appendix G.1).

View Ranked Answers: after selecting a question, view the ranked list of retrieved
answers by the MathDowsers’ runs (Appendix G.2); or input a custom answer ranking
and view the corresponding list of answers (Appendix G.3).

Check Relevance Judgements: view also the human relevance judgements of the
answers that are used to evaluate the runs (Appendix G.4).

The website provides an interface for reading the performance (as a list of ranked
answers with their details) of a CQA system. It might be most useful for people to inspect
the precision measure (such as P′@10) of a system manually.

1https://cs.uwaterloo.ca/∼yk2ng/MathDowsers-ARQMath
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Figure 22: The MathDowsers’ Browser.

The website is a static site that is written in jQuery and HTML. The displayed data
from this website, including the document corpus, MathDowsers’ submissions, and the
human relevance judgements are stored in the hosting machine locally. Most user actions
are accomplished by triggering AJAX GET requests to store these data at the client side,
followed by jQuery scripts that write the data to the webpages on-the-fly.

A limited data version of the website is also hosted at the MathDowsers’ code reposi-
tory2.

2https://kiking0501.github.io/MathDowsers-ARQMath
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6.2 Highlighting of Matching Terms

To better inspect and understand Tangent-L’s search results, and to provide a rough
overview for users to quickly look for query terms that they search for, a highlighting
feature is implemented in Tangent-L’s BrushSearch3 Web User Interface4.

Upon a user search, the results are displayed with highlighting according to the user’s
input query terms (Figure 23). The highlighting is implemented approximately, that is, it
does not reflect the true reasoning behind Tangent-L’s retrieval logic. Rather, it is an esti-
mation of the retrieval logic that is computed during post-processing. The implementation
is outlined as follows:

For Keyword Terms: For each keyword term in the query, highlight the term whenever
it appears in the document through pattern matching from regular expressions;

For Formula Terms: For a query formula, at first its math tuples are extracted. Then
for each document formula, also extract its math tuples and then compare them
against the math tuples from the query. A matching percentage is computed by
inferring from the math tuples the number of symbols that are matched, divided by
the total number of symbols from the query formula. As an example, a document
formula with ax2 + bx+ c+ d will match a query formula ax2 + bx+ c with a 100%
matching percentage, while a document formula a will match the same query formula
with a 12.5% matching percentage. The matching percentage of the formulas are then
reflected in shades of the highlight color, as shown in Figure 24.

The above descriptions reflects the logic that is implemented at the time of writing.
To provide a better matching percentage for formulas, the Normalized Formula Similarity
(Equation 3.8) can be adopted, in which case, a formula-corpus is pre-indexed and during
a user search, document formulas will be highlighted according to its obtained Normalized
Formula Similarity from the formula-corpus with respect to the query formula.

3https://cs.uwaterloo.ca/brushsearch
4http://mathbrush.cs.uwaterloo.ca/
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Figure 23: An highlighted document with respect to the query terms “quadratic surds”
and “ax2 + bx+ c”.

Figure 24: Showing the matching percentage of a formula with respect to a query formula.
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Chapter 7

Conclusion and Future Work

This research presents a continuation of work on the math-aware search engine Tangent-L,
focusing on the MathCQA application promoted in the ARQMath Lab series using Math
StackExchange data.

A three-stage framework—query conversion, math-aware retrieval, and answer re-ranking—
for the MathCQA application is proposed and set up for Tangent-L. Various experiments
are carried out in each stage to get the best-combined configuration.

With Tangent-L as the cornerstone, the MathCQA task submissions to the ARQMath
Lab series achieved the best participant runs with respect to the measures nDCG′ and
MAP′. Additionally, Tangent-L performs well in getting relevant answers for formula-
dependent questions for all measures, including P′@10.

Simple applications of Tangent-L to the in-context formula-retrieval task are also tested
in the second year of the ARQMath Lab. Without much parameter tuning, one of the
submissions is found to have comparable effectiveness to the best participant run for the
task.

Remarkably, the submissions with Tangent-L have stronger results than many partic-
ipant systems that have made use of modern NLP models such as word embeddings and
BERT-related models. This observation suggests that a traditional MathIR system re-
mains a viable option for the CQA challenges and formula-matching under a real-world
scenario.
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In the future, two directions might be pursued: either to further improve Tangent-L’s
internal math-aware search capability or to build a stronger CQA system as an application
of Tangent-L. Some ideas are discussed below:

Further study of on math tokens:
Experimental study of repetition tokens has shown a weak effect in improving the
search result. In fact, the number of repetitions tokens usually outnumber the number
of regular math tokens, which explains the observed small value of its optimal weight
in parameter tuning. Perhaps the formulation of repetition tokens might be reviewed
to create a smaller number of tokens that capture repeated symbols more effectively.

The number of regular math tokens generated by a single formula is not trivial, al-
though not as much as that of repetition tokens. Perhaps some math tokens can
be deemed “stopword” tokens because of their frequent appearance in most formu-
las. Inspired by the observation from query conversion, maybe a proper removal of
stopword math tokens can bring a significant change to the search result as well. It
is important to realize that the proximity measure is sensitive to the abundance of
math tokens, too, so identifying unnecessary math tokens might bring more insights
into the study of ranking by proximity. Similarly, tuning α—the weight of math
features—for each individual query might become an easier task with an improved
set of math tokens.

A hybrid or integrated CQA system of Tangent-L with other models:
Submissions involving Tangent-L have a stronger performance in formula-dependent
questions than other ARQMath participants’ systems, showing that it is vital to
catch the visual appearance of formulas (with the optional help of keywords match-
ing). Meanwhile, it lacks semantic or even contextualized formula representations to
improve its performance in text-dependent questions further. Perhaps results from
Tangent-L can be ensembled with results from other retrieval models such as for-
mula embedding models or BERT models to create a complete MathCQA system
that performs better for text-dependent questions.

It is also noticeable that the SLT representation is relatively rarely used among AR-
QMath participants (except for Tangent-CFT2 [27] which uses both the SLT and
OPT representation to create formula embeddings), and it is rare to build BERT-
models with the SLT representation as well. The LATEX encoding has been the most
common choice among ARQMath participants, while Peng et al. has proposed Math-
BERT [45] which is a BERT model that takes as input the OPT representation. Such
decisions of representations are intuitively understandable since the SLT representa-
tion is purely capturing visual information just like the LATEX, while SLT has been
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harder to process. Yet with Tangent-L’s good formula-matching performance by
using solely information extracted from the SLT representation, perhaps it is worth-
while to spend some effort to incorporate more of the SLT representation, as an
example, a BERT model based on tree properties extracted from the SLT.

Improvement of other stages of the three-stage MathCQA framework:
As well as improving the core retrieval model, more techniques might be applied
to the overall MathCQA system for further improving the task result, for example,
query expansion. Current experiments on query conversion has hinted that limiting
the number of keywords selected might easily deteriorate the performance. Therefore,
expanding the query with related keywords and formulas might be the direction to
improve the query conversion phrase further. For example, given the demonstrated
strong signal from question tags towards relevancy, related keywords and formulas
from the provided question tags might be added into search queries to improve re-
trieval over documents that have overlapping tags.

Furthermore, given the ARQMath-1, and now ARQMath-2, benchmark includes rel-
evance judgments, learning-to-rank models are more available for exploration now.
Further study might be conducted on the relation between relevance judgments and
the proximity signals as well as the rich CQA metadata to build potential features
for model learning.

Use of pre-trained CQA data:
To build a transformer model or the BERT model—the latest NLP trends—from
scratch that effectively learns the formula language is difficult. Some pre-trained
transformers or BERT models related to the CQA settings are available (for example,
a pre-trained model for Quora Duplicate Questions Detection1) and may be useful as
attempted by the DPRL team in ARQMath-2 [27]. While these pre-trained models
might not have directly addressed the main CQA task, a new framework that builds
on top of these pre-trained models might help save effort in CQA-specific modeling
and addressing more of the core “formula-learning” process of the models.

1Cross-Encoder for Quora Duplicate Questions Detection
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[42] Maŕıa-Dolores Olvera-Lobo and Juncal Gutiérrez-Artacho. Question Answering Track
Evaluation in TREC, CLEF and NTCIR. In WorldCIST 2015, volume 353 of Advances
in Intelligent Systems and Computing, pages 13–22. Springer, 2015.

104



[43] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and Dou-
glas Johnson. Terrier Information Retrieval Platform. In ECIR 2005, volume 3408 of
Lecture Notes in Computer Science, pages 517–519. Springer, 2005.

[44] Barun Patra. A survey of Community Question Answering. CoRR, abs/1705.04009,
2017.

[45] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. MathBERT: A Pre-Trained Model
for Mathematical Formula Understanding. CoRR, abs/2105.00377, 2021.

[46] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
Vectors for Word Representation. In Alessandro Moschitti, Bo Pang, and Walter
Daelemans, editors, EMNLP 2014, pages 1532–1543. ACL, 2014.

[47] Deanna C. Pineau. Math-Aware Search Engines: Physics Applications and Overview.
CoRR, abs/1609.03457, 2016.

[48] Yves Rasolofo and Jacques Savoy. Term Proximity Scoring for Keyword-Based Re-
trieval Systems. In ECIR 2003, volume 2633, pages 207–218. Springer, 2003.

[49] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. In EMNLP-IJCNLP 2019, pages 3980–3990. Association
for Computational Linguistics, 2019.

[50] Anja Reusch, Maik Thiele, and Wolfgang Lehner. TU DBS in the ARQMath Lab
2021, CLEF. In CLEF 2021, volume 2936 of CEUR Workshop Proceedings, pages
107–124.

[51] Stephen Robertson. The Probability Ranking Principle in IR. Journal of Documen-
tation, 33:294–304, 1977.

[52] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu, and
Mike Gatford. Okapi at TREC-3. In TREC 1994, volume 500-225 of NIST Special
Publication, pages 109–126. National Institute of Standards and Technology (NIST),
1994.

[53] Stephen E. Robertson and Hugo Zaragoza. The Probabilistic Relevance Framework:
BM25 and Beyond. Foundations and Trends in Information Retrieval, 3(4):333–389,
2009.

105



[54] Shaurya Rohatgi, Jian Wu, and C Lee Giles. Ranked List Fusion and Re-ranking with
Pre-trained Transformers for ARQMath Lab. In CLEF 2021, volume 2936 of CEUR
Workshop Proceedings, pages 125–132.

[55] Tetsuya Sakai and Noriko Kando. On information retrieval metrics designed for eval-
uation with incomplete relevance assessments. Information Retrieval, 11(5):447–470,
2008.
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Appendix A

The ARQMath Lab Official Results

The official results announced in the worknote papers by the Lab organizers.
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A.1 The MathCQA Task in ARQMath-1
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A.2 The MathCQA Task in ARQMath-2
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A.3 In-Context Formula Retrieval in ARQMath-1

A.3.1 Official Result in ARQMath-1
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A.3.2 Official Result in ARQMath-1
and Re-evaluation during ARQMath-2

ARQMath-1 Official Unofficial Re-evaluation
nDCG′ MAP′† P′@10† nDCG′ MAP′† P′@10†

Baselines
Tangent-S ¶ (0.506) (0.288) (0.478) (0.691) (0.446) (0.453)

DPRL
TangentCFTED ¶ 0.420 0.258 0.502 0.563 0.388 0.436
TangentCFT 0.392 0.219 0.396 0.527 0.334 0.349
TangentCFT+ 0.135 0.047 0.207 0.225 0.106 0.211

MIRMU
SCM 0.119 0.056 0.058 0.132 0.063 0.076
Formula2Vec ¶ 0.108 0.047 0.076 0.126 0.055 0.076
Ensemble 0.100 0.033 0.051 0.118 0.041 0.053
Formula2Vec 0.077 0.028 0.044 0.095 0.034 0.042
SCM ¶ 0.059 0.018 0.049 0.068 0.022 0.049

NLP NITS
formulaembedding ¶ 0.026 0.005 0.042 0.058 0.017 0.040

¶ primary run † using H+M binarization
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A.4 In-Context Formula Retrieval in ARQMath-2
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Appendix B

The ARQMath Lab Resources

The ARQMath Lab resources shared by the Lab organizers in the ARQMath Forum1 for
reference.

1https://groups.google.com/g/arqmath-lab/

115

https://groups.google.com/g/arqmath-lab/


B.1 Manually-selected Keywords and Formulas

for ARQMath-1 Topics

Topic List of formulas and keywords

A.1 [ range, of, rational, function, f(x) = x2+x+c
x2+2x+c ]

A.2 [ differential, equations, f ′(x) = f(x+ 1) ]

A.3 [ bisection, algorithm,
√

5 ]
A.4 [ combinatoric, sum,

∑n
k=0

(
n
k

)
k ]

A.5 [ conditional, probability, formula, P ((2)|(1)) = P ((2)∩(1))
P ((1)) = P ((2))P ((1))

P ((1)) = P ((2)) ]

A.6 [ number, mod, with, big, exponent, 5133 mod 8. ]
A.7 [ remainder, using, modulus, 1110 − 1 = x (mod 100) ]

A.8 [ finding, value, of, limit, limn→∞
n

√
(27)n(n!)3

(3n)! ]

A.9 [ simplifying, series,
∑N
n=0 nx

n ]
A.10 [ integral, converges,

∫∞
0

sin x
xa ]

A.11 [ cross, product, u× v =

∣∣∣∣∣∣∣
î ĵ k̂
a b c
d e f

∣∣∣∣∣∣∣ ]

A.12 [ roots, of, a, complex, number, (1 + i
√

3)1/2 ]

A.13 [ simplify, expression,
∫ b
a
f(x)dx+

∫ f(b)
f(a)

f−1(x)dx ]

A.14 [ first-order, differential, equation, y = xy′ + 1
2 (y′)2 ]

A.15 [ derive, the, sum,
∑n
i=1 ix

i−1 ]

A.16 [ compute, integral,
∫ 1

0
ln(1+x) ln(1−x)

1+x dx ]

A.17 [ calculate, function,
∫∞
x=0

sin(x)
x , eiz

z ]

A.18 [ Cesáro-Stolz, theorem, limn→∞
[(n+1)(n+2)···(n+n)]1/n

n ]
A.19 [ greatest, common, factor, p4 − 1 ]
A.20 [ euler-Totient, Function, φ(n) = 40 ]

A.21 [ finding, the, last, two, digits, 99
9. . .

9

]
A.22 [ find, number, of, d′sd, d+ 1, d+ 2... = N ]
A.23 [ find, the, lcm, 27 · 38 · 52 · 711, 23 · 34 · 5 ]
A.24 [ evaluate,

√
2i− 1 ]

A.25 [ polynomial, P (x2 + 1) = (P (x))2 + 1, P (x2 + 1) = (P (x))2 + 1 ]
A.26 [ ndefinite, integral, using, Taylor, series,

∫∞
0

sin x
x dx. ]

A.27 [ solving, for, the, value, e3iπ/2 ]

A.28 [ right, triangle, sin(18) = a+
√
b

c ]
A.29 [ dividing, Complex, Numbers, by, Infinity, 5i

∞ = 0 ]
A.30 [ binomial, theorem, a3 + b3 + c3 − 3abc ]
A.32 [ are, definitions, axioms, ,Empty(x) ⇐⇒ 6 ∃y(y ∈ x) ]

A.33 [ physical, meaning, of, third, derivative, ∂3f
∂x3 ,∂

3f
∂t3 ]

A.34 [ Knuth, up-arrow, notation,
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a ↑ b = ab

a ↑n b = a ↑n−1 (a ↑n−1 (. . . (a ↑n−1 a) . . . ))︸ ︷︷ ︸
b copies of a

]

A.35 [ function, not, have, an, antiderivative,
∫
ex

2

dx,
∫
e2xdx ]

A.36 [ proof, by, contradiction, ¬P → A1 → ... → An → P ]
A.37 [ real-valued, functions, f ◦ g = g ◦ f ]
A.38 [ the, axiom, of, choice, q, r : a = bq + r ]
A.39 [ which, value, is, bigger, log 2019 log 2018 ]
A.40 [ linear, equation, meaning, a1x1 + a2x2 + a3x3 + ...+ anxn = ]
A.41 [ find, number, of, onto, functions,

∑n
r=1(−1)(n−r)

(
n
r

)
(r)m ]

A.42 [ emergence, of, complex, numbers, x2 + 1 = 0,
√
−1 ]

A.43 [ prove, with, Fourier, series,
∑
n≥1

1
n2+1 = π cothπ−1

2 ]

A.44 [ infinite, order, A,B ∈M2×2(Q) ]
A.45 [ prove, independent, in, R, sin(x), sin(2x), sin(3x), ..., sin(nx) ]
A.46 [ lebesgue, integrable, function,

∫
xkf(x)dx = 0 ]

A.47 [ Wilson’s, Theorem, rq ≡ 1 mod p ]
A.48 [ inequality, proof, (x+ y)k ≥ xk + yk ]

A.49 [ combinatoric, interpretation, identity,
(
2n
n

)
=
∑n
k=0

(
n
k

)2
]

A.50 [ divergent, series,
∑

1
n2+cosn ]

A.51 [ Sum, of, series, binomial, coefficients,

n∑
r=0

(
n+ r

r

)
1

2r
= 2n ]

A.52 [ contradiction, proof, prime, number, ni - n = n1n2...nk + 1 ]
A.53 [ inverse, of, a, square, matrix, AB = 1⇒ BA = 1 ]
A.54 [ diagonal, argument, for, uncountable, powerset, P (N) = (S|SN) ]
A.55 [ mistake, in, calculation, 1√

−1 =
√
−1 ]

A.56 [ logical, formula, involving, prime, numbers, ∃p
(
p is prime → ∀x (x is prime)

)
]

A.57 [ continuous, one-to-one, function, f−1 : f(X) 7→ X ]
A.58 [ trigonometric, functions, proof, 3 arcsin 1

4 + arccos 11
16 = π

2 ]
A.59 [ Euler’s, totient, proof,

∑
d|n φ(d) = n ]

A.60 [ limiting, value, of, a, sequence, an =
(

1− 1√
2

)
...
(

1− 1√
n+1

)
]

A.61 [ equation, proof, n = 3i+ 5j, n ≥ 8 ]
A.62 [ rational, integer, numbers, set, cardinality, |Q| = |Z| ]
A.63 [ gcd, and, lcm, relationship, lcm(n1, n2) = n1n2

gcd(n1,n2)
]

A.64 [ Intermediate, Value, Theorem, f([a, b]) ⊂ [a, b] ]
A.65 [ show, inequality, proof, e−2λtλ2 ≤ 1

e2t2 ]
A.66 [ justify, equation, (xTAh)T = hTATx ]

A.67 [ combination, of, matrixes, det

[
A B
O C

]
= det(A) det(C) ]

A.68 [ prove, divisible, an + 1 ]

A.69 [ induction, with, two, variable, parameters,
(
s
s

)
+
(
s+1
s

)
+ ...+

(
n
s

)
=
(
n+1
s+1

)
]

A.70 [ Euler, formula, and, geometric, serie,
∑N−1
j=0 cos (2j+1)π

2N = 0 ]

A.71 [ proof, with, induction, 12 + 22 + ....+ n2 = n(n+1)(2n+1)
6 ]

A.72 [ set, equality, X = Y, X ∈ Y ]
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A.73 [ binomial, theorem, proof,
(
n
0

)2
+
(
n
1

)2
+ ...+

(
n
n

)2
=
(
2n
n

)
]

A.74 [ image, of, function, interval, f(x) = x+
1

x
, f : (0,∞)→ R ]

A.75 [ limit, proof, limu→∞
um

eu = 0 ]
A.76 [ covering, Z, by, arithmetic, progressions,

⋃
i∈N(ai + biZ) = Z ]

A.77 [ distributive, law, (−1)(−1) = 1 ]

A.79 [ inequality, with, complex, exponential,

∣∣∣∣∣e−ixu − 1

u

∣∣∣∣∣ ≤ |x| ]

A.80 [ set, finite, subsets, is, countable, ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . . ]
A.81 [ infinite, set, contains, countable, subset, {1, · · · , n} ]

A.82 [ definite, integrals, evaluate, to, 0, A =

∫ 2π

0

f(x)dx ]

A.83 [ sequence, sums, inverse, natural, numbers, 1, 1 + 1
2 , 1 + 1

2 + 1
3 , 1 + 1

2 + 1
3 + 1

4 , ... ]
A.84 [ principal, ideals, Z[x] ]
A.85 [ bug, steps, to, reach, Npn = 1

2pn−1 ]

A.86 [ proof,
∑n
k=0 k ·

(
n
k

)
= O

(
2n log3 n

)
]

A.87 [ proof, ∀n ∈ N : (
∑n
i=1 ai)(

∑n
i=1

1
ai

) ≥ n2 ]

A.88 [ reducible, polynomial, x4 + 10x2 + 1 ]
A.89 [ parametrization, of, pythagorean-like, equation, A2 +B2 = C2 +D2]
A.90 [ definition, of, an, Inverse, matrix, A−1A = In ∧ AA−1 = In (1) ]
A.91 [ function, reaches, value, 2timesR→ R ]
A.92 [ principal, maximal, ideal, Fq[X,Y ] ]
A.93 [ characteristic, polynomial, det(xI −AB) = det(xI −BA) ]
A.94 [ natural, numbers, sets, finite, intersection, 2ℵ0 ]
A.95 [ inequality, about, lengths, of, bounds, limx→0

sin x
x = 1 ]

A.96 [ convergent, sum,
∑
i

ai
ai+ai+1+ai+2+··· ]

A.97 [ R, dimension, in, vector, space, R ]
A.98 [ irrational, rotation, and, dense, set, Rn(e2πix) = e2πi(x+nα) ]
A.99 [ set, of, continuities, of, function, f : R→ R ]
A.100 [ closed, set, E = (0, 1] ]
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Appendix C

Word Lists for Search Queries

Example word lists built for keyword extraction during Search Query Conversion (Sec-
tion 4.1).
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C.1 Top-50 Most Common Words from the MSE Tags

The top-50 most common words built from MSE tags. The count of each word is the
count of its tag appearing in the MSE collection, or the sum of counts of tags that contain
this word. For example, the word “theory” is the sum of counts of tags “group-theory”,
“number-theory”, “probability-theory”, etc.

Count Word Stemmed Word

277847 theory theori
212782 analysis analysi
198991 algebra algebra
129851 calculus calculu
116095 probability probabl
99186 geometry geometri
98427 linear linear
96792 real real
65173 number number
58843 differential differenti
58478 series seri
58446 abstract abstract
58185 topology topolog
54582 integration integr
52519 complex complex
47535 equations equat
47494 spaces space
46469 elementary elementari
45891 sequences sequenc
45010 functions function
40864 algebraic algebra
40166 group group
39624 matrices matric
39522 proof proof
39335 combinatorics combinator

Count Word Stemmed Word

38275 general gener
36058 functional function
33771 numbers number
33363 precalculus precalculu
31312 limits limit
30157 ordinary ordinari
29735 measure measur
27506 set set
27140 mathematics mathemat
26158 statistics statist
26033 groups group
25623 integrals integr
24870 logic logic
23214 multivariable multivari
23184 discrete discret
22695 polynomials polynomi
22420 verification verif
21739 inequality inequ
21735 optimization optim
21347 derivatives deriv
20906 trigonometry trigonometri
20616 vector vector
19677 convergence converg
17753 graph graph
17585 distributions distribut
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C.2 Top-50 Most Common Words

from NTCIR MathIR Wikipedia Articles Titles

The top-50 most common words built from around 32,000 of NTCIR MathIR Wikipedia
Article titles. The count of each word is its count appearing as a whole or as part of the
article titles.

Count Word Stemmed Word Count Word Stemmed Word

986 theorem theorem 189 law law
627 theory theori 189 system system
569 function function 188 template templat
501 synthase synthas 188 list list
500 number number 180 analysis analysi
487 dehydrogenase dehydrogenas 176 alpha alpha
431 equation equat 172 index index
425 model model 165 phosphate phosphat
309 method method 158 inequality inequ
300 space space 156 coa coa
296 group group 153 geometry geometri
284 algebra algebra 149 kinase kinas
274 reductase reductas 147 monooxygenase monooxygenas
268 mathematics mathemat 146 file file
266 distribution distribut 145 linear linear
260 algorithm algorithm 142 point point
259 problem problem 141 test test
242 matrix matrix 141 conjecture conjectur
233 graph graph 138 vector vector
219 methyltransferase methyltransferas 137 energy energi
215 beta beta 136 time time
214 set set 130 operator oper
201 quantum quantum 129 surface surfac
197 field field 128 papyrus papyru
193 formula formula 127 ring ring
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Appendix D

Optimal α values for Individual
Topics of Different Dependencies
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Figure 25: ARQMath-1 Evaluation on individual formula-dependent topics with a varying
α : 0 ≤ α ≤ 0.8, with a step size of 0.05.
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Figure 26: ARQMath-1 Evaluation on individual text-dependent topics with a varying
α : 0 ≤ α ≤ 0.8, with a step size of 0.05.
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Figure 27: ARQMath-1 Evaluation on individual both-dependent topics with a varying
α : 0 ≤ α ≤ 0.8, with a step size of 0.05.
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Appendix E

Conclusions from MathDowsers’
Working Notes in the MathCQA
Task

The following sections discuss the performance of the submitted runs for the MathCQA
task in ARQMath-1 and ARQMath-2. Full details can be found in the published CLEF
Working Notes [62] and [30].

E.1 ARQMath-1 Submission Runs

As a first attempt at the MathCQA challenge, the submitted runs for ARQMath-1 were
designed to address the following research objectives:

RQ1 What is an effective way to convert each mathematical question (expressed in math-
ematical natural language) into a formal query consisting of keywords and formulas?

RQ2 Should keywords or math formulas be assigned heavier weights in a query?

RQ3 What is the effect of a re-ranking algorithm that makes use of metadata?

A primary run and four alternate runs were submitted in total. The primary run was
designed as a combination of hypotheses for presumably “best” configuration at that time
for all research objectives. The alternate runs were designed to test these hypotheses: the
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setup for each of them is the same as the primary run, except for a single aspect that is
associated with a testing hypothesis. The runs are as follows:

alpha05: The primary run, with uniqueQueryMSEWikiFF
adopted to create search queries;

the target corpus to be CorpusQAPair ; the math feature weight α during query time
to be 0.5 for the vanilla Tangent-L, that is, math terms were given half the weight of
keywords in a query; followed by a re-ranking using reRankLRM.

alpha05-trans: An alternative run where Querymanual was adopted instead to create
search queries. This is to compare the effectiveness of the query conversion algorithm
from Section 4.1 against human understanding of the questions. It is also the only
manual run submitted among all runs.

alpha02: An alternative run with α set to be 0.2 instead, that is, math terms were only
given one-fifth of the weight of keywords in a query.

alpha10: An alternative run with α set to be 1.0 instead, that is, math terms were given
equal weight with keywords in a query.

alpha05-noR: An alternative run with no re-ranking, that is, answers were ranked by
Tangent-L’s internal ranking only.

Regarding the primary measure nDCG′ in Table 27, the first observation is that the
primary run (alpha05 ) performs better than only one of the alternate runs, which hints
that its setting has not been optimal as assumed. The second observation is that the
alternate run using manually extracted formulas and keywords performs better (0.298 by
alpha05-trans) than the primary run (0.278 by alpha05-trans) when α is set to 0.5. Thirdly,
lowering the weight placed on math terms improves the performance (0.301 when α =
0.2), and using a higher weight hurts the performance (0.267 when α = 1.0). Finally, the
alternative run without re-ranking achieves the best performance (0.345 by alpha05-noR)
and it is also the best participant run in ARQMath-1.

These observations motivate later experiments for the effect of query conversion and
the effect of α (Section 4.4.2), and also for the effect of re-ranking with CQA metadata
(Section 4.4.8 and Table 35). The result of those experiments provide answers to the
original research objectives: that the proposed query conversion approach together with
an optimal α is an effective algorithm (RQ1); and the optimal α is small, which means
keywords should be assigned heavier weights in a query (RQ2); and that the re-ranking
design using the CQA metadata has been detrimental to the performance (RQ3).

127



vanillaTL reRankLRM No reRankLRM

α = 1.0 (alpha10) 0.267 0.327
α = 0.5 (alpha05) 0.278 (alpha05-noR) 0.345
α = 0.2 (alpha02) 0.301 0.368
α = 0.1 0.312 0.388

Table 35: A comparison of the performance of ARQMath-1 submission runs (indicated
inside parenthesises) and experimental runs in nDCG′. The runs have the same primary
setting but with a varying α and with or without a re-ranking using reRankLRM. It can
be observed that the result without a re-ranking is consistently better regardless of the α
value.

E.2 ARQMath-2 Submission Runs

Following the same methodology, the ARQMath-2 submissions are continuations of the
ARQMath-1 submissions. Different from the ARQMath-1 submissions—where alternative
runs serve as a validation for the varying configurations—the ARQMath-2 submissions
already use most of the best possible configurations validated by parameter tuning on
the ARQMath-1 benchmark (Section 4.4). As such, the submissions serve to verify the
authenticity of such parameter tuning, since the result from experimental runs can be
doubtful when the runs are actually evaluated with unjudged answers removed, while
submitted runs can have all of their top answers being fully judged (Section 2.4.2).

A primary run and one alternative run were submitted. The details of the runs are as
follows:

primary: The primary run with most of the best possible configurations tuned on
the ARQMath-1 benchmark. Compared to the previous primary run submitted
in ARQMath-1 (alpha05 ), this primary run was created with Datasetclean and the
Tangent-L variant in use was coreTL-α0.27γ0.10 with FNC+S enabled. The answer
ranking used Tangent-L’s internal ranking without any re-ranking.

proximityReRank: An alternative run that has the same setting as the primary run,
followed by a re-ranking with reRankprox. The proximity measure used was Normalized-
Span as described in Section 4.3.2 and analysed in Section 4.4.7.

From Table 27, it can be observed that the primary run (primary) is the best partic-
ipant run, with indistinguishable difference in nDCG′ (0.433 for ARQMath-1, 0.434 for
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ARQMath-2) on both benchmarks. A similar improvement reflected on the ARQMath-2
benchmark indicates that parameter tuning using the ARQMath-1 benchmark has been
effective. Remarkably, during ARQMath-2—as well as ARQMath-1—when creating search
queries for the submitted runs, duplicate terms were extracted, but their weights were not
boosted accordingly (uniqueQueryMSEWikiFF

) because of an oversight in the implementa-
tion. After the correction (QueryMSEWikiFF

), the experimental run with almost the same
setting (primaryexp

1) as the primary run achieves a further 3-point gain in nDCG′ (0.458 vs
0.433 for ARQMath-1, 0.463 vs 0.434 for ARQMath-2). Such success validates the power
of the presented methodology and the adopted configurations.

On the other hand, the alternative run proximityReRank does not perform well. As an
experimental run applied on the ARQMath-1 benchmark without full judgement, it already
shows a 6-point loss of nDCG′ when compared to the primary run (0.373 vs 0.433). As
a submitted run with its top answers fully judged for the ARQMath-2 benchmark, its
performance loss is further enlarged to nearly 10 points (0.335 vs 0.434), indicating an
unsatisfactory re-ranking.

It remains a challenge to further improve the result. Besides the alternative run prox-
imityReRank, another attempt is the experimental run holisticTL-γ0.10α0.47κ400

2, where
Tangent-L adopts a different retrieval model to search formulas holistically as described in
Section 3.4. The result of this experimental run, however, shows that it is not competitive
yet when compared to primaryexp, with a 5-point loss in nDCG′ on both benchmarks (0.409
vs 0.458 for ARQMath-1, 0.413 vs 0.463 for ARQMath-2).

1reported as the duplicateTerms run in [38].
2reported as the holisticSearch run in [38].
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Appendix F

Machine Specifications and Efficiency

F.1 Machines used for the ARQMath-1 system

Indexing.

Indexing is done on a Ubuntu 16.04.6 LTS server, with two Intel Xeon E5-2699 V4 Pro-
cessors (22 cores 44 threads, 2.20 GHz for each), 1024GB RAM and 8TB disk space (on
an USB3 external hard disk). The size of the document corpus is 24.3GB.

Tangent-L requires 5.0GB of storage on the hard drive and approximately 6 hours to
index all documents with parallel processing.

Searching and Re-ranking.

Training and testing the model for re-ranking is done on a Linux Mint 19.1 machine, with
an Intel Core i5-8250U Processor (4 cores 8 threads, up to 3.40 GHz), 24GB RAM and
512GB disk space.1

Model training using the Python scikit-learn library2 takes less than 30 seconds, and
re-ranking for all 98 topics requires around 3 seconds per run.

Searching is executed on this same Mint machine, and retrieval time statistics for
Tangent-L are reported in Table 36.

1A NVIDIA GeForce MX150 graphics card with 2GB on-card RAM is available on the machine, but it
was not used for the experiments.

2https://scikit-learn.org
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Avg. (sec) Top-2 Min (sec) Top-2 Max (sec)

alpha05 † 13.3 0.669 (A.67) / 0.775 (A.94) 63.4 (A.76) / 48.7 (A.28)
alpha02 13.3 0.661 (A.67) / 0.850 (A.94) 59.1 (A.76) / 49.5 (A.28)
alpha10 13.1 0.616 (A.67) / 0.784 (A.83) 54.0 (A.76) / 48.7 (A.28)
alpha05-translated 5.3 0.247 (A.99) / 0.291 (A.94) 32.8 (A.11) / 25.0 (A.67)
alpha05-noReRank 13.3 0.669 (A.67) / 0.775 (A.94) 63.4 (A.76) / 48.7 (A.28)

† The run alpha05 does not, in fact, take any additional retrieval time, since
it merely re-ranks the retrieved items from the alpha05-noReRank run.

Table 36: Retrieval times per topic, in seconds, using single-threaded processing.

F.2 Machines used for the ARQMath-2 system

The machines used for the experiments have the following specifications:

Machine A A Ubuntu 20.04.1 LTS Server with an AMD EPYC™
7502P Processor (32 Cores 64 Threads, 2.50GHz),
512GB RAM and 3.5TB disk space.

Machine B A Linux Mint 19.1 Server with an Intel Core i5-8250U
Processor (4 Cores 8 Threads, up to 3.40GHz), 24GB
RAM and 512GB disk space.

All indexing was performed on Machine A, yielding the following performance charac-
teristics:

Corpus See Section Data Index Indexing
Size (GB) Size (GB) Speed (sec)

Document Corpus 4.2.3 23 4.1 4394
Formula Corpus 3.4.1 34 4.7 4834

Document Corpus 4.4.6 23 0.6 167
(for holistic search)

Note that data and index sizes show the values reported by the du command on Linux,
which measures disk space usage based on blocks; thus the many small documents in the
formula corpus require much more disk space than might be expected. (In fact, the total
size of the data in the formula corpus is only 9.2 GB.)
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Runs for ARQMath-2 were executed on Machine B with the following average, mini-
mum, and maximum query times per topic as follows:

Run \ Query Time Avg. (sec) Min. (sec) Max. (sec)

Task 1
primary 1.90 0.34 (A.264) 6.39 (A.221)
holisticSearch 7.77 2.37 (A.264) 24.5 (A.221)
duplicate 1.92 0.30 (A.264) 6.04 (A.272)

Task 2
(pre-computing Answer-Ranking) 1.94 0.48 (A.264) 6.03 (A.221)
formulaBase 1.16 0.22 (B.244) 3.79 (B.270)
docBase 56.5 16.5 (B.209) 122 (B.221)

The proximityReRank run uses Machine A to re-rank the output from the primary
run, thus requiring first the time shown for the primary run on Machine B and then an
additional 8 hours to re-rank all topics on Machine A.
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Appendix G

User Interface of the MathDowsers’
Browser
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G.1 The ARQMath Question Panel
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G.2 The Answers Panel.
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G.3 Interface for inputting a custom answer ranking
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G.4 Displaying human relevance judgments
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