
An artificial intelligence framework for vehicle crashworthiness

design

by

Timofei Liusko

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master Of Applied Science

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2021

©Timofei Liusko 2021



AUTHOR’S DECLARATION

This thesis consists of material all of which I authored or co-authored: see Statement of

Contributions included in the thesis. This is a true copy of the thesis, including any required

final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



STATEMENT OF CONTRIBUTIONS

This work was a part of research, conducted in the Computational Mechanics Research Group.

Initial idea of the AI framework, as well as inspiration of it’s basic architecture comes from

that work, co-authored by my supervisor Professor Kaan Inal, Dr. Christopher Kohar – a

post-doctoral fellow, Daniel Connolly - a PhD researcher, and myself. Part of this work was

published as "Using Artificial Intelligence to Aid Vehicle Lightweighting in Crashworthiness

with Aluminum" on 5 November of 2020 at the 17th International Conference on Aluminium

Alloys 2020 (ICAA17). After that, I worked on training optimization mostly alone. Professor

Inal supervised all of this work, provided necessary resources, contributed to the review and

editing of the manuscript, and handled the project administration and funding acquisition. Dr.

Kohar closely guided this project, provided invaluable advice, provided guidance in the original

drafting of the manuscript, reviewed and edited the manuscripts to prepare it for publication,

guided the conceptualization, aided in the development of the methodology and analysis, cre-

ated some of the data visualizations, and provided the LS-Dyna simulations material which

were used as dataset in this research.

iii



ABSTRACT

Numerical crash test simulations are crucial for vehicle safety design. In the automotive

industry, frameworks based on finite element methods are most common as they are precise

and reliable. A few of the setbacks are simulation time and computation resources required

for simulation. This thesis presents an artificial intelligence framework that utilizes recurrent

neural networks to reduce the time and computational resources required to predict axial crash

tests on the LS-DYNA models of thin-walled UWR4-like aluminum extrusion profiles. In addi-

tion, the work provides an overview of several data preprocessing techniques aiming to improve

framework training time; ensembling of neural networks for the framework is explored as an ad-

dition to data preprocessing to improve framework performance. The thesis includes a detailed

description of the data used and the machine learning models utilized in the framework. Three

different sampling techniques are compared to reduce the time required to train the framework

– two variants of random sampling and importance sampling; model ensembling is explored to

improve accuracy on framework trained on data samples. Experiments show that the artificial

intelligence framework reduces the time required to obtain one simulation of an axial crash test

by the factor of 270, with a tradeoff of accuracy. Additional experiments on data preprocessing

and model ensembling show that the training time of the framework could be reduced from 111

hours to 37 minutes for a single sample or 3 hours for a models ensemble with an additional

cost of accuracy.

iv



ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Kaan Inal for giving me the opportunity to be

part of the Computational Mechanics Research Group (CMRG) at the University of Waterloo

and for his leadership and support.

This work was a part of a wider research, conducted at the CMRG. I would like to thank

Dr. Christopher Kohar and Daniel Connolly for their help and sharing knowledge during this

project. Special thanks to Dr. Kohar for his guidance in this project and for asking tricky

questions, pushing project quality. Without his help, this project wouldn’t be possible.

Thank you to all of the members of the CMRG, especially Olga Ibragimova for recommend-

ing and introducing me to the group and endless support she gave.

v



Contents

List of Figures ix

List of Tables xii

1 Introduction 1

2 Background 4

2.1 Experimental Crashworthiness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Component Experimental Crashworthinness . . . . . . . . . . . . . . . . . . . . 5

2.3 Numerical simulation of crashworthiness . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.4 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.9 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.10 Model Ensembling and Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



2.13 Machine Learning in numerical modeling . . . . . . . . . . . . . . . . . . . . . . 29

2.14 Machine learning in crashworthiness . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.15 Deficiency in literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Scope and research objectives 33

3.1 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Limitations of the current work . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 AI framework for prediction of deformation shifts in crash experiments 35

4.1 Training dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Neural network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Training optimization 44

5.1 Node sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Random sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Modelwise random sampling . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.2 Datawide random sampling . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Model ensembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Comparison of sampling strategies and scalability . . . . . . . . . . . . . . . . . 56

6 Conclusions 61

7 Recommendations for the future work 63

vii



References 65

viii



List of Figures

2.1 A possible setup for the NCAP frontal crash test - real-life vehicle (left), and the

CAE model(right). Illustration taken from [23] . . . . . . . . . . . . . . . . . . . 4

2.2 IIHS crashworthiness expreriments . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Extrusion profile obtained from AA6063 aluminum alloy billet - cross-section (a)

and isometric view (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 a) Hydraulic Press [30] facility for quasi-static and Drop Tower [31] facility for

dynamic component crashworthiness testing . . . . . . . . . . . . . . . . . . . . 7

2.5 (a) Schematic of the sled-track testing apparatus, (b) experimental setup and

(c) tube crashing during impact [15] . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Concepts of (a) underfitting, (b) overfitting, (c) statistical fit in application to

polynomial regression [58] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 An example of feedforward ANN architecture with a single hidden layer . . . . . 15

2.8 Sigmoidal activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 ReLU activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 RNN schematic - circut diagram and unfolded graph [74]. . . . . . . . . . . . . . 21

2.11 The computational graph to calculate the loss function for RNN training [74]. . 22

2.12 A flowchart of the LSTM neural network architecture. . . . . . . . . . . . . . . . 23

2.13 Flowchart of autoencoder architecture. . . . . . . . . . . . . . . . . . . . . . . . 24

2.14 The framework for ensemble models [97]. . . . . . . . . . . . . . . . . . . . . . . 25

4.1 UW-R4 profile - cross-section and isometric view [15]. . . . . . . . . . . . . . . . 35

4.2 Experimentally crashed profiles [15] . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Simulated crash tube effective strain contours [15]. . . . . . . . . . . . . . . . . . 37

ix



4.4 Flowchart of the autoencoder used for compressing LS-DYNA data representations. 38

4.5 Convergence plots for deep autoencoder, trained on LS-DYNA data. . . . . . . . 38

4.6 Block scheme of the baseline neural network architecture . . . . . . . . . . . . . 39

4.7 (a) MAE and (b) MSE convergence plots for AI framework final model. . . . . . 40

4.8 Predictions of framework painted over the LS-DYNA models from training subset

with higher values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 Predictions of framework painted over the LS-DYNA models from training subset

with average values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10 Predictions of framework painted over the LS-DYNA models from training subset

with low values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.11 Predictions of framework painted over the LS-DYNA models from test subset

with higher values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.12 Predictions of framework painted over the LS-DYNA models from test subset

with average values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.13 Predictions of framework painted over the LS-DYNA models from test subset

with low values of MAE error. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 MAE and MSE history for training the neural network with dataset, obtained

with sampling 32 random nodes from each LS-DYNA model. . . . . . . . . . . . 46

5.2 MAE evolution in time during the training over different subsets, obtained with

sampling 32 random nodes from each LS-DYNA model. . . . . . . . . . . . . . . 46

5.3 MAE and MSE history for training the neural network with dataset, obtained

with sampling 32 random nodes from each LS-DYNA model. . . . . . . . . . . . 47

5.4 MAE evolution in time during the training over different subsets, obtained with

sampling 9600 nodes from the dataset as a whole. . . . . . . . . . . . . . . . . . 48

5.5 An example of sampling-based division of LS-DYNA model nodes. . . . . . . . . 49

x



5.6 Heatmap sample over the LS-DYNA model. . . . . . . . . . . . . . . . . . . . . 50

5.7 Top a) 25, b) 100, c) 500, d) 2000 nodes sorted by their importance in accordance

to the designed sampling policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.8 MAE and SE history for training the neural network with dataset, obtained with

sampling 32 nodes from each LS-DYNA model according to the sampling policy,

introduced in 5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.9 MAE evolution in time during the training over different subsets, obtained with

sampling 32 random nodes from each LS-DYNA model. . . . . . . . . . . . . . . 52

5.10 Summary scheme, comparing a)MAE and b) MSE errors for separate model

instances and model ensembles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.11 MAE values for model instances, trained with different sampling strategies on

different subsets of fixed size (9600 samples). . . . . . . . . . . . . . . . . . . . . 56

5.12 Metrics evolution for model instances trained on the subsets made with different

sampling strategies by picking top 64 samples. . . . . . . . . . . . . . . . . . . . 57

5.13 Summary on estimated MAE error values on the test dataset for the model in-

stances trained on the subsets made with different sampling strategies by picking

top 64 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.14 Metrics evolution for model instances trained on the subsets made with different

sampling strategies by picking top 128 samples. . . . . . . . . . . . . . . . . . . 58

5.15 Summary on estimated MAE error values on the test dataset for the model in-

stances trained on the subsets made with different sampling strategies by picking

top 128 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16 Summary on estimated MAE error values on the test dataset for model instances,

trained on the subsets made with different sampling strategies by picking top 256

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.17 Summary on estimated MAE error values on the test dataset for model instances,

trained on the subsets made with different sampling strategies by picking top n

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xi



List of Tables

1 Summary on layer parameters for baseline neural network architecture . . . . . . 39

2 Final metrics for AI Framework trained on full data. . . . . . . . . . . . . . . . 40

3 Final metrics value on test data for individual models, trained on subsets ob-

tained with randomly sampling 32 nodes from each LS-DYNA model. . . . . . . 46

4 Final metrics value on test data for individual models, trained on subsets ob-

tained with sampling 9600 nodes in total from the whole dataset. . . . . . . . . 48

5 Final metrics value on test data for individual models, trained on subsets ob-

tained with sampling 32 nodes from each model using heatmap strategy. . . . . 53

6 Final metrics value on test data for model ensembles, trained on subsets obtained

with sampling 32 nodes from each LS-DYNA model using heatmap strategy. . . 54

xii



1 Introduction

By the beginning of the 21st century, the problems of irreversible climatic changes caused

by human activities have riveted the close attention of the entire world community. One of

the points of concern of the ecologists is the ever-increasing emission of greenhouse gas (GHG),

which, according to several studies, may destructively impact the world economics and climate

[1, 2]. Thus, various government policies have aimed to reduce the amount of GHG produced by

different economic sectors. In particular, such mandate exists towards the automotive industry,

as, according to the Intergovernmental Panel on Climate Change (IPCC) report [3], dated by

2014, the automotive industry overall contributes about 14.6% to the total GHG emission. A

common practice among car manufacturers is structural vehicle lightweighting, which betters

the fuel economy and diminishes the operation cost, thereby reducing the amount of GHG

produced by the vehicle [4]. However, vehicle lightweighting is always coupled with passenger

safety issues, which significantly complicates the task from an engineering point of view, and

forces vehicle manufacturers to invest money into the research in vehicle design optimization.

From the point of view of consumer safety, optimal vehicle design should be targeted to

mitigate a crash pulse, which emerges in the event of a vehicle collision and propagates through

the vehicle. Characteristics of the crash pulse transferred to the passenger during the crash

event directly impact the chance to get a severe injury [5]. The modern vehicle possesses

complex structurу with thousands of structural constituents, so the mitigation of crash pulse

should be a result of the interaction of the parts as a whole, aimed to either dissipate the

energy of the pulse with its deformation or to divert the energy away from the passenger [6].

Therefore, automakers need to investigate how these innovative lightweight designs will affect

the complete vehicle response during a collision.

The whole process of designing the structure of a vehicle component may somewhat be

considered as an optimization problem of discovering the best set of options in the design

parameter space, delivering a maximum to the objective function, which states the way to

estimate the quality of a design. In some cases, the process of structural optimization may be

reduced directly to the constrained optimization problem [7, 8]. In general, it is not possible

neither to express the design space as a cartesian product of vector spaces nor to formulate

the optimization problem, which delivers the best design to the vehicle. Therefore the only

plausible algorithm for finding the best design is the iterative-based or "trial and error" design

1



loop. The iterative design process can be considered a robust optimization algorithm, similar to

the random walk in design parameter space. Although researchers have attempted to construct

a quantitative analysis of some aspects of the iterative design process [9, 10] based on Markov

chains, concepts suggested in the scope of these works are not flexible enough to account for

peculiarities of a process in the field of vehicle design.

To estimate the quality of a chosen vehicle design in real life, engineers study various quanti-

tative characteristics of several crash tests, suggested by various standard-making organizations,

such as The United States National Highway Traffic Safety Administration (NHTSA). In prac-

tice, designers also carry out tests for individual vehicle components, subjecting them to load

conditions similar to real-world situations. However, building prototypes for each alternative

design of a single member to run them into the crash test procedure cannot be viewed as

an excellent industrial practice. Those tests, being destructive by nature, suffer both from

high development costs and high time costs. Thus, at the moment, engineers rely on various

computer-aided engineering (CAE) tools to run experiments virtually, modelling different crash

scenarios before using vehicle prototypes in the actual experimental crashworthiness setups.

The widespread instrument for conducting virtual experiments is the finite-element (FE) sim-

ulation, based on industrial numerical solvers, such as LS-DYNA [11]. FE analysis possesses a

lower cost than conducting crashworthiness tests and gives the ability to explore various param-

eter configurations before assembling the actual prototype. However, mathematical problems

being solved to run such simulations still require significant computational resources, which are

highly non-linear.

Inspired by the recent advancements in machine learning (ML) applications to numerical

methods, researchers have suggested a computationally practical approach allowing to run

approximations FE simulations in mere seconds. As numerical experiments are usually aimed

to discover particular characteristics of the processes under investigation, scientists came up

with the idea to predict these characteristics directly from the parameters, describing the process

[12, 13, 14]; thus, reducing the problems to the statement, typical for supervised learning. As

supervised ML algorithms require training datasets to operate, researchers constructed them by

running FE simulations, varying the parameters mentioned above. Pioneering work in applying

this approach to numerical simulations of crash tests is authored by Kohar et al. [6]. In the

scope of that work, data generated by numerical simulation of the frontal crash test of a pickup

truck is used to train a neural network to predict the time-series response of the occupant crash-

2



pulse. However, the studies mentioned above only consider the possibility of solving similar

problems using machine learning algorithms, omitting their computational cost, which is the

defining parameter of the industrial applicability of an algorithm.

The purpose of this work is to investigate the applicability of a similar framework for pre-

dicting the time-series data of shift of the node in the numerical simulation of the axial crash

of the thin-walled pipes obtained by extrusion of various aluminum profiles. Such problem

statement arises from the series of works authored by Kohar et al., devoted to the development

of the UWR-4 extrusion profile [16, 17, 18]. The work, similarly to [6], proposes the baseline,

neural network model, employing the LSTM architectural pattern [19] to predict the shift evo-

lution. Such a model is built using the Keras [20] deep learning framework and trained on

the whole available data up to convergence. The study additionally suggests a methodology to

improve the computational effectiveness of the framework, employing various sampling tech-

niques. Further numerical experiments are represented with training instances of the suggested

model on various subsets of the default dataset, obtained with varying the number of nodes

sampled according to the designed sampling strategies. The study assesses both the change

in the quality of solutions appearing due to applying these sampling methods and the com-

putational effectivity of such procedures; comparison is made for all variations of the training

process, using baseline experiment as a benchmark.

The thesis is structured in the following manner: Chapter 2 gives a literature review on the

theme, the background information on FE simulations in crashworthiness, machine learning

algorithms, and sampling techniques used in work, and outline existing deficiencies in literature.

Chapter 3 serves as an outline of the scope and objectives of the work, identifying the gap in

the literature it intends to close. Chapter 4 contains a detailed description of the AI framework

suggested to solve the stated problem and provides the resulting quality metrics and convergence

times. Chapter 5 summarizes sampling techniques applied to the framework for the sake of

improving its computational efficiency. Finally, the critical discoveries of this research are

presented in Chapter 6, and Chapter 7 gives recommendations on the further and adjacent

research directions.

3



2 Background

2.1 Experimental Crashworthiness

New Car Assessment Program is a United States government-mandated program conducted

by National Highway Traffic Safety Administration (NHTSA). This program is designed to

provide safety information to the public and to improve occupant safety by providing market

incentives for vehicle manufacturers to voluntarily design better crashworthiness into their vehi-

cles [21]. The safety rating of a vehicle prototype is aggregated through a series of experiments,

modelling the impact of the different types of collisions on the structure of an automobile - the

experimental crashworthiness testing.

The benchmark of tests for vehicle crashworthiness is the frontal barrier crash test. This

test can be considered a simulation of either a head-on vehicle collision or a vehicle’s collision

with a stationary wall, with varying angles of crashes, obstacle positions, and the velocities of

the collision. The original version of the frontal barrier crash test was designed by NTHSA

in 1978 [21]. In this version, vehicles were crashed into a fixed barrier at the speed of 56.3

kilometres per hour(km/h) (35 miles per hour (mph)) while being equipped with Hybrid II

adult male dummies [22], situated in driver and front passenger seats. An illustration of the

possible setup of this experiment is provided by figure 2.1

Figure 2.1: A possible setup for the NCAP frontal crash test - real-life vehicle (left), and the

CAE model(right). Illustration taken from [23]

At the moment, several organizations are simultaneously developing various standards for

assessing the quality of automotive products through impact tests. For example, the crash-

worthiness testing in Europe is governed by local lateral of NCAP, known as Euro-NCAP.

Complementary to the federal NCAP program in the USA, vehicle safety assessment through

impact experiments are held by the Insurance Institue for Highway Safety (IIHS). In addition

to the frontal barrier crash test, each organization provides its reference experiments for vehicle

4



safety assessment. E.g., two tests conducted in the scope of IIHS policy are depicted by the

figure 2.2

Figure 2.2: IIHS crashworthiness expreriments

Data obtained with crashworthiness tests is invaluable, as the structure of a modern vehicle

is becoming more and more complex. However, at the moment, it cannot be said that such

experiments are included in the standard pipeline for the design of new vehicles. The primary

issue about using a full-scale series of experiments is cost. Crashworthiness testing requires

conducting experiments on several prototype vehicles, and it can radically increase the total

production cost of vehicles.

2.2 Component Experimental Crashworthinness

Since full-vehicle crash testing is a high-cost procedure, automotive designers additionally

employ preliminary evaluation of crashworthiness of individual components included in the

vehicle structure. Tubular multi-cell structures with thin walls are of particular interest for

such testing due to their wide range of applications in the automotive and aerospace industry

as lightweight energy-absorbing structures in crash environments. The energy absorption is the

property of a structure or material to reduce the impact force by absorbing it or spreading it

over a larger area. A typical example of such structure - an extrusion profile obtained from

AA6063 aluminum alloy billet - can be seen in the figure 2.3. Over the past years, energy

absorption has been thoroughly studied both theoretically, numerically, and experimentally

[24, 25, 26, 27, 28]. Currently, thin-walled tubular structures are widely employed as major

energy absorption structures of vehicles, such as front rails, rockets, and pillars.

The setup for such experiments is usually configured to subject the specimen to the loading

conditions, akin to that which occurs during the full-scale crashworthiness testing. A summary

5



Figure 2.3: Extrusion profile obtained from AA6063 aluminum alloy billet - cross-section (a)

and isometric view (b)

of possible loading conditions can be found in [29]. Concerning the tubular structures, setups

encountered in the literature include, for example, quasi-static setup with a hydraulic press

(see fig.2.4a), where a tube is attached to an immobile stiff plate from the bottom, and the

second plate is compressing the tube with a prolonged speed in order to crash it [30]. For

dynamic crash testing, a drop tower facility may be used [31]. Such setup suggests raising an

impact mass of 80-100 kilograms above the specimen and releasing it to reproduce the velocity

of impact similar to real-world collisions. (fig.2.4b). The crashworthiness data used in this

work was obtained by modelling experiments in the linear crash sled apparatus located at the

University of Waterloo (fig. 2.5). In this setup, instrumented aluminum extrusions were fixated

between steel boss structured, and an impact mass of 855 kg was fired along the set of rails

using compressed air, reaching the speed of 8 m/s (28 km/h) [15].

2.3 Numerical simulation of crashworthiness

Both full-scale and component-wise crashworthiness test suffers from the destructive na-

ture of the procedure. It makes them poorly applicable for exploring design parameter space,

as building new prototypes for minor design variations is unacceptably expensive and time-

consuming. Over the past decades, vehicle design has been researched for the cheaper way

to perform crashworthiness tests. It eventually resulted in the wide use of CAE techniques,

such as numerical modelling, to run virtual crashworthiness experiments. Numerical modelling

essentially limits the development cost for the design process only within the maintenance of

6



(a) (b)

Figure 2.4: a) Hydraulic Press [30] facility for quasi-static and Drop Tower [31] facility for

dynamic component crashworthiness testing

computational hardware and software while generally being faster than real-life experiments,

thus enabling much faster design space exploration.

The majority of experiments for engineering system design can be reduced to the initial-

boundary value problem for a system of partial differential equations (PDEs), serving as a

mathematical model for member properties in a fixed finite domain. In particular, FE simula-

tions of crashworthiness usually employ the Cauchy momentum equation as a governing system

of PDEs:

ü =
1

ρ
∇σ + fbody (2.1)

Here ü is the acceleration vector, σ is the Cauchy stress tensor, f is the external body force, and

ρ is the density of the medium. In the general case, there is no guarantee that an analytical

solution for a given system of PDEs supplemented with initial-boundary conditions exists; thus,

formulated problems are usually solved numerically.

The history of modern numerical crashworthiness simulation traces back to the works dedi-

cated to studying energy absorption mechanisms of thin-walled tubular structures. The model

of axial collapse of the thin-wall structure was developed by Wierzbicki and Abramowicz in [32,

7



Figure 2.5: (a) Schematic of the sled-track testing apparatus, (b) experimental setup and (c)

tube crashing during impact [15]

33, 34]; in the scope of these works a rigid-perfectly plastic material behaviour models were used

to comprehend the fundamental mechanics behind the crashing of thin-wall structures. This

model was later verified for the application to the quasi-static and dynamic crash experiments

for tubes of various shapes by Abramowicz and Jones [35, 36, 37, 38]. Later, Abramowicz

replaced the collapse mechanics from rigid-perfectly plastic to rigid-plastic, which resulted in

improved accuracy of energy absorption prediction [39]. Following milestones were achieved by

Yamashita, Gotoh, and Sawairi [40], and Najafi and Rais-Rohani [41], analytically relating the

crashing strength response to the tensile strength of the material and incorporating advanced

deformation mechanisms to improve analytical axial crash predictions, respectively.

After the emergence of commercial non-linear FE computational program complexes (LS-

DYNA [11], PAM-CRASH [42], and ABAQUS [43]), various simulations researchers were able

to account for the non-linear influences of contact and elastic-plastic constitutive models, novel

to the previous works of axial crash [44, 45, 46]. The conventional definitions of such terms, as

crash efficiency and energy absorption, for crashworthiness analysis of axial crash tubes were

8



introduced by Langseth, Hopperstad, and Hanssen while studying the axial crash of aluminum

and steel thin-walled structures using LS-DYNA code [47, 48]. Williams et al. [49] applied

similar principles to perform a numerical and experimental analysis of the effects of material

anisotropy.

The work [50] by Fyllingena et al. revealed that using more elaborate element formulations,

such as solid elements and shell elements, including a linear through-thickness strain distri-

bution, resulted in increasing quality of predicting the force-displacement response, compared

to the plane stress shell elements. Kohar et al. [16] studied the effects of elastic-plastic be-

haviour on the axial crash response of square tubes, varying such statement parameters as

yield strength, ultimate tensile strength, hardening rate, and failure strain. This work high-

lighted that if materials exhibit low hardening capability, there is a tradeoff between the crash

efficiency and the energy absorption; however, increasing the material’s yield stress boosts its

crash efficiency in the alternative case. In [51] Kohar et al. investigated the effects of yield func-

tion curvature and anisotropy on the crash response of circular aluminum tubes. The study

shows that the prediction of axial crash response is strongly affected by the shape of the yield

surface, as altering it has a significant effect on the stress and strain states of the material.

Thus, accurate axial crash predictions cannot be carried out by providing only the material

anisotropy information. In addition, it was discovered that biaxial balance tension is the most

crucial anisotropy parameter for accurate first-order predictions of energy absorption.

As mentioned above, such numerical simulations are often carried out to discover character-

istic values describing the behaviour of parts of the vehicle subjected to corresponding loads.

For example, Kohar et al. used the following set of metrics to estimate the quality of aluminum

rail profile - energy absorption, mean crash force, peak crash force, and crash efficiency. The

crash force appears in the collision, the deceleration of colliding structure multiplied by its mass.

Crash efficiency is the ratio of stresses that measure how much force travels through an impact

protecting material. Further, these metrics may be used to optimize profile geometry directly,

using, for example, topology optimization [52], or response surface methodology [53]. This

work, in particular, employs curves of node shift evolution in time as characteristics, describing

the crash; further, these curves are utilized as target variables to construct a supervised learning

algorithm, predicting them directly from the node description (see 4.1). The simulations are

held with the LS-DYNA [11] package. LS-DYNA is a nonlinear multi-physics finite element

package for evaluating the significant deformation response of structures. The package design

9



allows a researcher to incorporate various physical details into the crash calculations, e.g., large

deformation and rotation, contact with multiple bodies and self-contact, and nonlinear consti-

tutive response. However, the precise crashworthiness evaluation with finite element methods

is still challenging, requiring significant computational resources.

2.4 Machine learning

Machine learning is a field of applied mathematics at the intersection of artificial intelligence,

mathematical statistics, and optimization, which studies methods for constructing algorithms

that can learn from empirical (or precedent) data. In that context, the term ”learning” means

discovering how a machine executor can perform tasks without being explicitly programmed to

do so. Machine learning approaches are viable when finding the entirely determined sequence of

steps to solve the problem is more challenging than helping the machine develop its algorithm.

The traditional subfield division of the machine learning approaches is based on the type of

"feedback" response available to the machine learning model during the training stage. The

three major machine learning subfields are:

• Supervised learning: model is provided with pairs ”example input - desired output”,

marked by the ”teacher”, and the goal of the process is to discover the mapping between

inputs and outputs.

• Unsupervised learning is then the model has only training inputs, and its goal is to

discover the underlying structure of a data. The goal is to either gain a more informative

view of data or to discover a representation of data with desired properties (such as lower

dimensionality or sparsity) [54]. Representations learned that way are often utilized to

improve the performance of models for supervised tasks.

• Reinforcement learning: during the learning process, the model interacts with a dynamic

environment, which rewards the model when it performs a specific action in the given

state of the environment (such as braking in front of the red traffic lights while simulating

the movement of the environment a vehicle on the highway). The objective of the model

is to maximize obtained reward during the session of an environment [55]

A core objective of a machine learning model is to generalize from its experience [56]. The

machine learning algorithm is considered to generalize well when it accurately performs on

10



unseen examples after having experienced learning data. The quality of the model is deter-

mined by its ability to simultaneously minimize the error on the training data and guarantee

the insignificant difference between the training and testing error. From a statistical machine

learning perspective, the task of a learner is to create a model of the generally unknown prob-

ability distribution over a finite set of samples that enables producing accurate predictions on

the new samples [57].

On the way to achieving that goal, one usually faces two central challenges: underfitting

and overfitting. Overfitting happens then machine learning model trained for too long on

the training data or model is too complex for the problem. Any training set is a part of

more extensive data distribution; overfitting means that model is adjusted to the details of the

training set and its noise to the extent that leads to incapability to generalize to other examples.

Underfitting happens when machine learning cannot detect dependencies in the training data,

which can happen due to insufficient training time, poor choice of error function or model

architecture. One way of balancing that is to monitor when error on validation data ceases to

improve while still improving on training data. A simple example illustrating underfitting and

overfitting for polynomial regression is given by the figure 2.6. It can be seen that first-degree

(a) (b) (c)

Figure 2.6: Concepts of (a) underfitting, (b) overfitting, (c) statistical fit in application to

polynomial regression [58]

polynomial does not have enough statistical capacity to describe the distribution of points. In

contrast, a polynomial of degree 15 deviates from the original curve while perfectly matching

11



training points. At the same time, the fourth-order polynomial approximates the original curve

with high precision. The underfitting issue in many cases can be solved by simply increasing

the statistical capacity of the model. Overfitting is a complicated problem usually addressed

with such methods as cross-validation and regularization.

This work, in particular, solves regression tasks in the scope of the supervised learning

approach, as we are aiming to explicitly predict the curves, describing the node shift evolution

for the given finite element model of the thin-walled extrusion profile. There exists a multitude

of machine learning algorithms capable of working in such paradigm; among them are linear

models [59], decision trees [60], AdaBoost [61], and artificial neural networks [62] - superposition

of multitude linear models with nonlinear activation functions. We utilize the latter, as neural

networks have proved themselves to show good performance even for noisy and highly correlated

data [63].

2.5 Supervised learning

The purpose of supervised machine learning algorithms is to discover a particular pattern

in the given data via inferring function f , which maps a feature representation of a training

sample X into a target variable y. This problem is incorrect from the mathematical point of

view, as there are many possible solutions to it. For this reason, the standard approach to

obtain a numerical solution to such a problem is to reduce it to the optimization of a chosen

loss function (the choice of the latter largely depends on the type of the problem being solved

and the target variable type). In addition, to evaluate the performance of a machine learning

algorithm, one usually chooses specific metrics, estimating the quality of the solution. In some

cases, algorithms can directly optimize the metric, but this statement does not generally hold, as

the metric functions may have mathematical properties that are less suitable for optimization.

Supervised machine learning problems with real-valued target variables are called regression

problems. Such a statement implicitly assumes that target variables lie in the continuous vector

space with a defined metrics function. That being said, loss functions for regression tasks

measure the distance between the predictions of the model f̂(xi) on the sample xi and the

target. Probably the most popular loss function for regression problems is the mean squared

12



error (MSE) loss, given by the formula:

MSE ((X,Y)) =
1

N

N∑
i=1

(
f̂(xi)− yi

)2
(2.2)

Here D = (X,Y) is the training dataset, where X = {x1, x2, . . . , xn} stands for set of

feature descriptions of the data, and Y = {y1, y2, . . . , yn} is the set of target variables. Another

widespread loss function is the mean average error (MAE), stated by:

MAE ((X,Y)) =
1

N

N∑
i=1

∣∣∣f̂(xi)− yi

∣∣∣ (2.3)

Let us suppose we want to approximate the function f(x) using a regression algorithm,

minimizing the expectation over MSE loss on the noisy data D:

D = {(x1, t1), (x2, t2), . . . (xn, tn)} ti = f(xi) + ε, E[ε] = 0 (2.4)

E [MSE(D)] =
1

N

N∑
i=1

E
[(

f̂(xi)− ti

)2]
(2.5)

For each term under the symbol of summation we perform the following transform:

E
[(

f̂(xi)− ti

)2]
= E

[(
f̂(xi)− f(xi) + f(xi)− ti

)2]
=

E
[(

f̂(xi)− f(xi)
)2]

+ E
[
(f(xi)− ti)

2]+ 2E
[(

f̂(xi)− f(xi)
)
(f(xi)− ti)

]
=

E
[
ε2
]
+ E

[(
f̂(xi)− f(xi)

)2]
+ 2

(
E
[
f̂(xi)f(xi)

]
− E

[
f(xi)

2
]
− E

[
f̂(xi)ti

]
+ E [f(xi)ti]

)
=

E
[
ε2
]
+ E

[
(f(xi)− ti)

2]+ 2
(
E
[
f̂(xi)f(xi)

]
− E

[
f 2(xi)

]
− E

[
f̂(xi)ti

]
+ E [f(xi)ti]

)
(2.6)

Further we have
E
[
f̂(xi)t

]
= E

[
f̂(xi)(f(xi) + ε)

]
= E

[
f̂(xi)f(xi)

]
E [f(xi)t] = E [f(xi)(f(xi) + ε)] = E

[
f 2(xi)

] (2.7)

and

E
[(

f̂(xi)− ti

)2]
= E

[
ε2
]
+ E

[(
f̂(xi)− f(xi)

)2]
(2.8)

Hence, MSE loss can be represented as the sum of the noise variance and the expectation of

MSE between the model predictions and the true function. Now we perform the similar trick

13



with ”smart zero”, adding E
[
f̂(xi)

]
into the second term of (1).

E
[(

f̂(xi)− f(xi)
)2]

= E
[(

f̂(xi)− E
[
f̂(xi)

]
+ E

[
f̂(xi)

]
− f(xi)

)2]
=

E
[(

f̂(xi)− E
[
f̂(xi)

])2]
+ E

[(
E
[
f̂(xi)

]
− f(xi)

)2]
+ 2E

[(
f̂(xi)− E

[
f̂(xi)

])(
E
[
f̂(xi)

]
− f(xi)

)]
(2.9)

The third term can be reduced the following way

2E
[(

f̂(xi)− E
[
f̂(xi)

])(
E
[
f̂(xi)

]
− f(xi)

)]
= 2E

[
f̂(xi)E

[
f̂(xi)

]]
−

E2
[
f̂(xi)

]
− E

[
f̂(xi)f(xi)

]
+ E

[
f(xi)E

[
f̂(xi)

]]
= 0

(2.10)

Finally, we get

E
[(

f̂(xi)− ti

)2]
= Biasi + Variancei + E

[
ε2
]

(2.11)

Biasi = E
[(

E
[
f̂(xi)

]
− f(xi)

)2]
(2.12)

Variancei = E
[(

f̂(xi)− E
[
f̂(xi)

])2]
(2.13)

The equality obtained above is called bias-variance decomposition. According to it, the expec-

tation over the MSE loss for a regression model f̂(·) consists of three terms:

• Bias, demonstrating whether the model approximates the original function f(·)

• Variance, yielding the deviations from the mean prediction value

• Noise, which cannot be altered by algorithm due to the stochastic nature of the dataset

Thus, in order to minimize MSE loss, we need to minimize both variance and bias of the model,

which is a non-trivial problem, as the majority of datasets exhibit a bias-variance tradeoff while

varying the parameters of regression algorithms [64]. High bias corresponds to the underfitted

model, as its prediction is far from the mapping being reconstructed. In contrast, high variance

means that the model is overfitted, as the predictions are far from the expectation over them.

2.6 Artificial Neural Network

An artificial neural network (ANN) is a machine learning algorithm partially inspired by

synapses in biological brains. The computation process in this algorithm can be presented

14



with a directed graph with so-called artificial neurons as its nodes. Neurons in the graph are

connected in the manner shown in fig.2.7; to simplify the visualization, they are aggregated into

layers of neurons. Artificial neurons produce a real-valued number as an output, passing the

inputs through a non-linear transformation known as the ”activation function”. Each connection

Figure 2.7: An example of feedforward ANN architecture with a single hidden layer

in the neural network has its associated weight. Weights, bound to connections between the

two layers, can be naturally represented as a weight matrix Wi. In addition, neurons are

usually provided with their bias weights bi. The following formula describes the calculation of

the output of the layer i:
−−−−→outputi = σ

(
Wi · −−−→inputi +

−→
bi

)
(2.14)

Here σ(·) is the activation function of choice. In other words, a single layer of the network

subjects its input to the superposition of the linear transformation and non-linear activation.

ANNs are quintessential machine learning models that may reconstruct even discontinuous de-

pendencies given sufficient data. This statement is a corollary of the universal approximation theorem,

proved in the scope of [65]. Consider IN = [0, 1]N – an N-dimensional real-valued cube, and a

parametric family of functions

G(Y ) =

{
g : In × In → R; g(x, y) =

M∑
j=1

αjσ
(
yTj x+ θj

)}
, (2.15)

Here yj is the j-th weight vector; θj, αj - weight scalars, and σ(x) - is a continuous function

with following properties

σ(x) =

1, x → +∞

0, x → −∞
(2.16)

Then, for arbitrary continuous f : C(IN) → R exists a two-layered ANN, approximating

f with arbitrary precision. High statistical capacity and flexibility are why neural networks

15



Figure 2.8: Sigmoidal activation function

have found their applications in a huge variety of tasks. One of the major upsides of neural

network algorithms is their ability to work with complex, strongly correlated data with little

to no preprocessing. Thus, they may be considered a default pick for tasks of natural language

processing [66], computer vision [67, 68], and generative modelling [69, 70, 71].

2.6.1 Activation functions

As mentioned before, ”activation functions” is the common name for a family of nonlinear

functions applied to the outputs of neurons within neural network algorithms. Initially, neural

network studies were using functions that satisfy the conditions of the approximation theorem

[65], such as sigmoidal unit or hyperbolic tangent. However, later studies showed that this

condition is unnecessary for practical applications of neural networks to converge up to good

solutions. A classical logistic sigmoid (fig.2.8) is given by the formula:

σ(x) =
1

1 + e−x
(2.17)

Sigmoidal function is a strictly increasing function with two horizontal asymptotes: y = 1 at

x = +∞, and y = 0 at x = −∞. A derivative of the sigmoid unit can be rewritten as:

σ′(x) =
e−x

(1 + e−x)2
= σ(x)(1− σ(x)) (2.18)

Therefore, if the value of x is close to the region of sigmoid saturation, the gradient is almost

zero-valued. These saturation properties are causing the central problem of sigmoid units -

gradient fading. Another problem of training ANNs with sigmoid activations arises from the

fact that this function is not zero-centred, leading to oscillations in gradient updates [72].

16



Figure 2.9: ReLU activation function

This work in particular employs a rectified linear unit (ReLU), suggested by Nair et al. in

[73], as the activation function for the hidden layers of neural network. ReLU is described by

the formula (see fig.2.9):

f(x) = max(0, x) (2.19)

Because rectified linear units are nearly linear, they preserve many of the properties that

make linear models easy to optimize with gradient-based methods [74], and eliminate the van-

ishing gradient problem observed for sigmoidal functions. Another advantage of rectified units

is their faster computation time, as it does not require computing exponents. However, neural

networks with ReLU activations tend to be more prone to overfitting and require additional

regularization techniques, which will be discussed further.

2.6.2 Training algorithm

The standard approach to train neural networks with gradient-based optimization is to abuse

the chain rule for the computation of derivatives with the so-called backpropagation algorithm

[75]. Suppose wk
ij are the weights of the kth layer of the neural network. The execution of the

backpropagation algorithm begins from the forward pass, within which the input vector x is

fed into the network and propagated through it. During the forward pass, the network stores

activations akj (matrix product + bias) for each neuron of each layer during the computations.

As a result, we get the value of a loss function E on the vector x. To train the network, we are

17



required to calculate the following derivative:

∂E

∂wk
ij

(2.20)

By using the chain rule w.r.t the activations akj , we obtain

∂E

∂wk
ij

=
∂E

∂akj

∂akj
∂wk

ij

(2.21)

The second multiplier can be simplified as follows:

∂akj
∂wk

ij

=
∂

∂wk
ij

(
rk−1∑
i=1

wljo
k−1
j

)
= ok−1

i (2.22)

Here rk−1 is the number of neurons for previous layer, ok−1
j = σ(ak−1

j ) - sigmoidal function

applied to activations from previous layer. Thus, we get

∂E

∂wk
ij

=
∂E

∂akj
ok−1
i (2.23)

To calculate ∂E
∂akj

for hidden layers, we utilize the chain rule

∂E

∂akj
=

rk+1∑
l=1

∂E

∂ak+1
l

∂ak+1
l

∂akj
(2.24)

By definition,

ak+1
l =

rk+1∑
j=1

wk+1
lj σ(akj ) (2.25)

∂ak+1
l

∂akj
= wljσ

′(akj ) (2.26)

Finally, the rule for gradient computation is given by

∂E

∂wk
ij

= ok−1
i ·

rk+1∑
l=1

∂E

∂ak+1
l

wljσ
′(akj ) (2.27)

The rule for computation of
∂E

∂akj
is recursive: to calculate gradient at layer k − 1, it is

required to calculate gradient at layer k. To implement the backpropagation algorithm for

neural networks, most popular deep learning programming frameworks such as Tensorflow

[76] by Google or PyTorch [77] by Facebook store information about the order of operations

conducted over the neural network input as a directed computational graph. Backpropagation

utilizes automatic differentiation packages.

18



2.6.3 Optimization

Since the backpropagation algorithm allows us to compute the gradient of loss function

w.r.t the parameters of ANN, one commonly employs a gradient-based optimization scheme

for ANN training. The correct choice of the optimization scheme dramatically depends on the

properties of the loss function. As neural networks with ReLU activations are non-convex and

almost everywhere differentiable, the use of gradient descent (GD) is optimal [78] in the sense

of asymptotic upper bound estimates. For the sake of computational efficiency, its stochastic

modification (SGD), which performs gradient steps on the mini-batches, is usually implemented.

However, optimization via SGD often requires precise hyperparameters, such as learning rate,

as they significantly impact the optimization process. In practice, people often utilize various

modifications of SGD, capable of performing at the same level of quality but more robust in

the sense of hyperparameter tuning. This work, in particular, employs the Adam (derived

from adaptive moment estimation) [79] algorithm, which evaluates the learning rate for each

weight individually per the evaluation of first- and second-order moments of the gradient. The

following set of equations gives parameter updates for the Adam optimizer:

θt+1 = θt −
α√
v̂t + ϵ

m̂t (2.28)

mt = β1mt−1 + (1− β1)gt (2.29)

vt = β2vt−1 + (1− β2)g
2
t (2.30)

m̂t =
mt

1− βt
1

(2.31)

v̂t =
vt

1− βt
2

(2.32)

Here mt is the estimate of the mean of the gradient; vt is the estimate of its uncentered

variance; β1 and β2 are the rates of exponential decay for the mt, vt respectively; α is the

learning rate hyperparameter and ϵ is the small constant for numerical stability.

2.6.4 Regularization

ANNs with multiple hidden layers are capable of learning very complicated relationships

between inputs and outputs. However, while being trained on small amounts of data, neural

networks may consider these complicated relationships as a sampling noise within the training

dataset, non-existent in the test data, even if the test samples were drawn from the same

19



distribution. This problem eventually leads to overfitting, and in order for neural networks

to learn the actual structure of the data, they need to be properly regularized. The term

regularization in this context means any a priori assumptions about the properties of the

function we are reconstructing, thus constraining the set of possible solutions to the given

problem [80]. Let us suppose that D =
{
(xi, yi); i ∈ 0, N

}
is the training dataset, and we are

trying to reconstruct the mapping f via minimizing the MSE loss. Then, one of the possible

ways to regularize the problem is to minimize the loss with the addition of the regularizing term

G(f):

L(D) =
N∑
i=0

(f(xi)− yi)
2 + λG(f) (2.33)

Here, λ is the hyperparameter, limiting the scale of regularization. Commonly used regular-

izations include either limiting the norm of the model weights (ridge [81] and LASSO [82]),

or limiting the smoothness of the function f (Duchon multidimensional splines [83], gaussian

stabilizer [84]). Another popular technique for neural network regularization is dropout, which

assumes temporal removal of some neurons from the computational graph of the network, along

with all its incoming and outgoing connections [85]. The choice of which units to drop is ran-

dom and is usually specified as a hyperparameter for a given group of neurons. Application of

dropout to the neural network essentially means sampling a smaller network from it, consisting

only of units that remained untouched during the procedure.

2.7 Recurrent Neural Networks

A recurrent Neural Network (RNN) is an architectural pattern capable of handling sequential

data [75]. Neural networks based on this architecture have found application in many subject

areas - language modelling [86], speech recognition [87], audio generation [88] and etc. The

whole concept behind the vanilla RNNs comes from the equation, describing the state s(t) of a

parameterized dynamical system evolving in time.

s(t) = f(s(t−1); θ) (2.34)

Here θ is the vector of system parameters. Let us suppose that we are working with a discrete-

time system, evolving during T timesteps in total. In this case, such equation describes a

computational graph, which can be unfolded by applying the definition T times:

s(T ) = f(s(T−1); θ) = f(f(s(T−2); θ); θ) = . . . (2.35)

20



A classical RNN is defined by an equation of a dynamical system, describing the evolution

of its state h(t) driven by an external time-dependent signal x(t) (see fig. 2.10):

h(t) = f(h(t−1);x(t); θ) (2.36)

Figure 2.10: RNN schematic - circut diagram and unfolded graph [74].

RNNs are usually trained to predict the next sequence element, given the sequence as a

whole. In that case the hidden state of neural network may be considered as a lossy summary

[74] of a sequence, mapping the whole sequence x = (x(1), x(2), . . . , x(T )) into a single vector

of a constant length h(t). A computational graph for calculating the loss of a simple neural

network is yielded by the figure 2.11. The following set of update equations describes forward

propagation through this graph for a problem with discrete target variables:

a(t) = b+Wh(t−1) + Ux(t)

h(t) = tanh(a(t)

o(t) = c+ V h(t)

ŷ(t) = softmax(o(t))

(2.37)

Here, the network parameters are weight matrices W, U, V and the corresponding biases b, c.

The total loss for a given sequence x will be a sum for losses for each element of the sequence.

It should be noted that the complexity for both the forward and the backward pass of the

algorithm by the length of the sequence is O(T ), and the computation of this graph principally

cannot be parallelized.

RNNs may be trained with backpropagation-through-time algorithm (BPTT) [89], which

is essentially an application of classical backpropagation algorithm to the unfolded graph of

the RNN. Training neural networks with BPTT may be difficult due to exploding or fading

21



Figure 2.11: The computational graph to calculate the loss function for RNN training [74].

gradients [90]; common approaches to overcome these difficulties is to either clip the norm of

the gradient [91] or to employ the truncated version of BPTT [92]. In the work [93], authors

proposed a way to regularize RNN with the dropout technique mentioned above.

2.8 LSTM

In comparison to vanilla RNN, data flow through long short term memory (LSTM) [19]

neural networks is controlled by two ’gates’ - input gate it and forget gate f t. This gate aims

to determine how much information about the current element of the sequence can be used to

update the hidden states. Moreover, LSTM utilizes a second hidden state - a memory cell vector

ct. These modifications allow LSTM to more efficiently capture long-term dependencies in the

sequence-like data [94]. In the runtime, hidden state and cell vectors are updated according to

22



the following set of equations.

it = σ
(
W ixt + V iht−1 + bi

)
f t = σ

(
W fxt + V fht−1 + bf

)
ot = σ

(
W oxt + V oht−1 + bo

)
C̃t = tanh

(
W C̃xt + V C̃ht−1 + bC̃

)
ct = f t ⊙ ct−1 + it ⊙ C̃t−1

ht = ot ⊙ tanh
(
ct
)

(2.38)

Here W i,W f ,W o,WC and V i, V f , V o, V C are weight matrices, corresponding to sequence el-

ements and hidden states respectively, bi, bf , bo, bC are bias weights, and ⊙ is the elementwise

product. A flowchart illustrating these update rules is provided by the figure 2.12.

Figure 2.12: A flowchart of the LSTM neural network architecture.

2.9 Autoencoders

The concept of autoencoders emerged as a tool for unsupervised data dimensionality re-

duction. It was introduced in 1987 by Yann LeCun in his Master Of Science thesis [95].

Autoencoders are usually trained to reconstruct their input by solving the optimization prob-

lem of minimizing the MSE loss between input and output tensors of the neural network. An

autoencoder-like network architecture consists of 2 parts (see fig. 2.13) - encoder f mapping

input data x to the inner feature representation z, and decoder g, which maps z into the

reconstruction of input r.

23



Figure 2.13: Flowchart of autoencoder architecture.

Of practical interest are those data representations z that have some particular properties,

e.g., z having lower dimensionality than x or being sparse. To obtain this, one should somehow

restrict the autoencoder. That being said, the problem of autoencoder training may be rewritten

as a following set of formulas:

L(Wf ,Wg) =
1

n

n∑
i=1

||xi − ri||2 → min

s.t ri = g(zi,Wg)

zi = f(xi,Wf )

ck(zi) = 0, k = 1,M

(2.39)

Here Wf ,Wg - parameters of encoder and decoder, ck(zi) = 0 - constraints, providing the

structure of representation z (for example, to build a compression autoencoder, we may simply

require z to have lesser dimensionality than x). Once trained, the representation zi may be

used as a feature description of a sample xi. Traditional usage of autoencoders includes such

unsupervised machine learning problems as data compression [74] and feature extraction [96].

2.10 Model Ensembling and Bagging

An ensemble is a finite set of machine learning models, which combines predictive results

gained from models individually and fuses them with various voting mechanisms in order to

enhance the performance of any constituent model. During the past decade, ensemble learning

was one of the most important centers of attention of the machine learning community. Cur-

rently, the field is supplemented with a variety of conducted research and plenty of examples

of its successful applications in diverse engineering tasks and ML competitions.

Ensemble learning aims to integrate various machine learning models into a unified frame-

work so that the complementary information of its parts is utilized to get better final perfor-

mance. The whole working pipeline of an ensemble may be decomposed into two consecutive

24



steps (see fig. 2.14):

1. Obtaining prediction from weak models, constituting the ensemble.

2. Combining them with a voting scheme to get the final prediction.

Figure 2.14: The framework for ensemble models [97].

Combining different models may be helpful only when they produce different outputs, as the

composition of identical algorithms obviously cannot benefit from each other. There are many

ways to obtain the output of ensemble given the prediction of its participants; a comprehensive

review on the common ensembling approaches can be found in [98]. In the same work, the

author states that there are at least three reasons why model ensembling may yield better

results in comparison to a single model:

• In application to the classification problems, the ensemble error can be divided into two

terms (see 2.5): bias, describing the average generalization error of each classifier in

the ensemble, and variance, describing the disagreement among the classifiers. Let us

suppose that we have managed to separate our training dataset D into m independent

subsets and train m different models fi to predict the target variable y given the sample

x. If we combine these models into the ensemble, which returns the average prediction of

constituent models,

f̂(x) =
1

m

M∑
i=1

fi(x) (2.40)

then

1. The noise component of the error will remain unchanged.

2. For bias we have the following upper bound:

E
[
f̂(x)

]
=

1

m

M∑
i=1

E [fi(x)] ⩽ max
i

E [fi(x)] (2.41)

25



3. For variance we have the following upper bound:

D
[
f̂(x)

]
=

1

m2

M∑
i=1

D [fi(x)] ⩽
1

m
max

i
D [fi(x)] (2.42)

Hence, averaging outputs of the ensemble may reduce the total variance of predictions

while maintaining the same bias, affecting overall performance positively.

• Many training algorithms for machine learning only guarantee convergence to the local

optima of the loss function. Such a problem, for example, is featured by greedy splitting

algorithms, used for training decision trees [99] and first-order stochastic gradient methods

[78]. An ensemble constructed by running the local search from many different starting

points may provide a better approximation to the actual unknown function than any of

the individual classifiers [98].

• Representational: there might not be a true hypothesis in the hypothesis space. By

combining several models from the hypothesis space, the true hypothesis may get a better

approximation. For example, a non-linear curve may be approximated with piecewise

linear functions.

Most popular ensembling methods revolve around alternating the training process, hoping

different algorithms will provide different results. Among the various approaches of diversify-

ing the outputs of the participants of the ensemble, bagging [100] stands out due to the ease

of its implementation and applicability to almost every type of machine learning algorithm.

This ensembling approach relies on training new members of the ensemble on random subsets

of a training dataset. The latter are usually constructed with a procedure called "bootstrap

sampling" - drawing samples uniformly from the training set with replacements. As a conse-

quence, new subsets may contain duplicated samples, and the share of unique samples in them

is
(
1− 1

e

)
≃ 63%. Both sample drawing and training of such ensemble may run in parallel,

allowing composing ensembles from many algorithms quickly. Work [101] proves that bagging

algorithms reach good performance in the case when learning algorithms are "unstable" in the

sense that small dataset changes greatly impact the algorithm structure. Examples of such al-

gorithms are neural networks or decision trees; in particular, a popular random forest algorithm

may be described as bagging of decision trees over random subspaces [102].

26



2.11 Sampling

In most cases, the procedure of fitting a supervised machine learning algorithm is the bot-

tleneck of their computational efficiency. Modern machine learning applications often operate

on significant amounts of data; thus, the brute-force exploration of the dataset as a whole is

too computationally expensive [103]. This problem is especially relevant for neural networks

since they are usually intended to process complex high-dimensional data. A possible approach

to overcome this problem is to shrink or condense the training dataset, exploiting the tradeoff

between shorter training time and the diminishing quality of the solution due to learning from

only a part of the data. Plenty of the known strategies for dataset shrinkage rely on hybrid

approaches, combining data clusterization with heuristic methods. However, the task of metric-

based clustering in high-dimensional data spaces with mixed discrete/real-valued data is prone

to failure due to increasing correlation between the samples and the curse of dimensionality

[104].

Another well-established strategy to reduce the computational cost for training is to perform

gradient descent on small chunks of data instead. This approach, also known as mini-batch

training, remains state-of-the-art in almost all current machine learning applications, provided

with considerable evidence of its effectiveness in practice and theoretical justification. However,

mini-batching in stochastic optimization inevitably leads to the increased gradient variance,

which eventually halts the progress of the gradient methods, sometimes rendering it unable to

push the target loss value to the desired values.

While training complex models, it often appears to the practitioner that not all training

set elements are equally important. A significant amount of them might already be adequately

handled after a couple of epochs. Thus, they may be removed from the training dataset to

reduce the computational cost of training without declining final quality. The process of picking

examples from a fixed set is called sampling. The word ”sampling” may be formalized in the

following way. Consider the finite set:

S = {a1, a2, . . . , an} (2.43)

We will call sampling a set-valued stochastic mapping

Ŝ : S → 2S (2.44)

which maps the set S into its subset with a given probability. A sampling is uniquely charac-

27



terized with its probability mass function

P(A) = P (Ŝ = A) (2.45)

assigning probabilities to all elements A ∈ 2S. E.g., we may consider a uniform sampling

procedure:

p
(
Ŝ(S) = {ai}

)
=

1

n
(2.46)

In the scope of this work, numerical experiments were conducted with two different sampling

techniques - random sampling, and importance sampling. The term ”random sampling” here

means uniform sampling over the set without repetitions; the idea behind importance sampling

will be clarified in the following subsection.

2.12 Importance Sampling

Consider a distribution D, and a weight function w(i), assigning non-negative weight, or

importance to each number i. The weighted distribution D(w) is defined by

PD(w)(I) ∝ Ei∼D [1I(i)w(i)] (2.47)

where I is the subset of indices, and 1I(·) is the indicator function. I.e., in the discrete case,

this is equivalent to following transformation of probability mass function

p(w)(i) ∝ p(i)w(i) (2.48)

whereas in continuous case this corresponds to multiplying density function by w(i) and renor-

malizing. In practice D(w) may be constructed through procedure, known as rejection sampling :

sample i ∼ D, and accept it with probability
w(i)

W
, where W ⩾ sup

i
wi.

The classical field of application of importance sampling is Monte-Carlo methods [105]: it

often allows to reduce the variance of estimated integral. In addition, there exists a set of

works devoted to applications of importance sampling in statistical ML. For instance, authors

of [106] show that correct design of weights may improve the current upper bound estimate of

the number of steps required for SGD to converge to the minimum of strongly convex function

in terms of dependence on its average conditioning number from sublinear [107] to linear. Even

though for some optimization problems there are analytical methods for constructing optimal

sampling, supported with convergence rate estimates [108, 109], many works in the field of deep

learning focus on sampling procedures, built heuristically [110, 111, 112], employing either loss

values or gradient norm to choose the most relevant sample.

28



2.13 Machine Learning in numerical modeling

At the moment ML approaches are at the prominent place in different fields of scientific

research, previously dominated by first-principle models - geosciences [113], astronomy [114],

environmental sciences [115], fluid dynamics [116] and many others. The use of ML models

attracts the community due to their ability to discover relations within data, describing poorly

understood processes, or processes, which are difficult to model due to the impractical space-

time resolution required to get a satisfactory numerical solution. Such models seem especially

attractive when applied to real-world engineering problems. The forward-pass time of even the

most complicated neural network is generally much less than the time required to conduct a

numerical simulation of the same process. For example, high-accurate simulations of non-linear

processes with finite elements are still considered computationally expensive procedures, despite

the proliferation of computers in modernity. For that reason, the scientific community suggested

direct substitution of virtual experiments, which aim to measure some characteristics of the real-

world behaviour of solid media, with the ML model directly predicting the same characteristics

from the ”description” of the media. A natural way to obtain datasets in such work is to fix all

the parameters of a numerical experiment, except for the description of the environment, and

run the simulation through environments obtained by varying these descriptions, recording the

required characteristics as target variables. A pleiad of similar works can be found in the field of

biomedical research with finite element simulations. For example, Mart́ınez-Mart́ınez et al. [12]

were predicting the biomechanical behaviour of the breast tissues in image-guided interventions

such as biopsies or radiotherapy with random forests [102] and extremely randomized trees

[117]; datasets for these experiments were obtained with FE simulations. Work [13] is devoted

to predicting the stress distribution over the aortic based on the parameterized description

of its geometry with the neural network, using the dataset of 729 thoracic aorta shapes and

corresponding wall stress distributions, constructed in the scope of work [118]. Another research

field that employs the same concept of using numerical methods as a dataset creation tool for

ML algorithms is the ML-based solution of inverse problems. For instance, Yang and Ma

[14] were solving seismic inversion problems, discovering the structure of artificially generated

velocity distribution over the media from seismograms, obtained with modelling of the media

with a finite difference scheme.

Unfortunately, the application of novel ML models as black boxes to real-world data has

limited success in scientific domains. The data volume requirements for learning from com-

29



plex physical processes are not satisfied in the majority of cases; moreover, such models often

demonstrate poor generalization for out-of-sample scenarios [119]. Thus, recently the research

community has started to explore the verge between mechanistic and ML models, integrating

both domains in various ways [120, 121]. At the moment, the taxonomy of different method-

ologies to merge both principles include five classes [122]:

• Physics-guided loss functions

• Physics-guided initialization

• Physics-guided design of architecture

• Residual modeling

• Hybrid physics-ML models

Hybrid physics-ML models assume simultaneous operation of both the numerical method and

the ML model. The natural way to combine them is to use outputs of the physics-based model

either as the additional input to the ML model. E.g., Karpatne et al. [123] demonstrated that

adding the output of a physics-based model into the set of features describing the training data

may enhance the quality of predictions of lake temperature.

2.14 Machine learning in crashworthiness

The problem of discovering the optimal design of vehicle parts in some cases can be refor-

mulated as a task of optimization with constraints [124]. One of the possible ways to solve

such a problem is to employ the response surface methodology [125], which is ideally suited

for solving problems with noisy responses, where gradient-based algorithms would end up in

a nearby local optimum. In application to crashworthiness, this approach was implemented,

for example, by Liu, Detwiler, and Tovar [126] for mechanical compliance problems under the

static load. Another work [127] uses Response surface methodology (RSM) to optimize the

cylindrical tube impacting a rigid wall with the initial velocity of 10 m/s.

Response surface methodology within the design of experiment (DOE) approach requires a

regression metamodel to relate the crashing and energy absorption responses to various design

variables for analysis and optimization. Machine learning algorithms solving regression tasks

30



can act as such metamodels [128]; one can discover the use of radial basis functions (RBF)

[129], support vector regression [130] and ANNs [131, 132, 133] as proper metamodels for

RSM. Unsupervised learning paradigms are also applicable to RSM. For instance, Liu et al.

suggested unsupervised design parameter clustering to reduce the time required to research

the parameter space with RSM [134]. The research [135] applies the same intuition directly to

crashworthiness optimization of the beam-like structure. In the work [136], authored by Acar

and Solanki, metamodel ensembling was proposed to improve the quality of solutions obtained

with RSM.

Another possible approach to ML-based crashworthiness optimization lies within the field of

topological optimization. For example, in the work [137], authored by Liu et al., ML algorithms

are used metamodelling in order to simplify the direct formulation of the problem for discovering

an optimal design for thin wallet tubes; for that purpose, they used RBF algorithms, and

Kriging [138]. Acar, Altin, and Güler [139] used gaussian joint probability models [140] to

investigate the optimal design of the multi-cell profile for cylindrical aluminium tubes; work

[141] for the same purposes employs least-square support vector regression [142].

A relatively new concept of applying machine learning algorithms to the crashworthiness

simulations is suggested by Kohar et al. in [6]. In that work, the accent is shifted towards

replacing FE modelling entirely through training the AI-based framework in a supervised way

to predict the time-series response of the occupant crash-pulse. The value of such an algorithm

lies in the fact that the time required to predict the new set of parameters is inferior compared

to FE modelling; thus, design parameter space with the assistance of such a framework may be

explored with much greater speed.

2.15 Deficiency in literature

As the verge of numerical modelling and machine learning is becoming the center of attention

of the scientific community, many recent works are dedicated to replacing the finite element

solvers with neural networks. Examples of such works exist in application to the numerical

simulation of different physical processes, and media [143] - biological tissues [144], chemical

kinetics [145], Hamiltonian dynamics [146]. However, the critical point of these researches

is mostly the ’proof of the concept’ style, elaborating only on the possibility to substitute

numerical solvers with AI algorithms but omitting the investigation over the training data on

31



the subject of redundancy and representativeness.

Next, existing literature devoted to machine-learning approaches in crashworthiness is fo-

cused on discovering the optimal design of engineering systems and topology optimization ([126,

127, 136, 134, 135]). Most of these works use machine learning algorithms as metamodels for

solving the regression tasks within the scope of the response surface methodology (RSM). RSM

usually employs relatively simple algorithms to get coverage of design space parameters in a

reasonable time. Due to the difficulties of training complicated ML models on big datasets,

there were no attempts to use a sophisticated neural network as part of either RSM or topology

optimization pipeline. The closest current work in terms of neural network usage is authored

by Kohar et al. [6] and is devoted to the improvement of the iterative design for lightweighting

in the automotive industries. The method proposed in that work suggests training the LSTM-

based neural network to predict the crash-pulse response. However, research by [6] is unique in

the field, and it still suffers from the same issues as [144, 145, 146]. – no attempts were made

to improve neither the convergence time of the neural network nor to compare the resulting

architecture with other algorithms. Together, these deficiencies demonstrate the actual need

to investigate the possibility of replacing numerical simulations in crash tests with neural net-

works, especially from the point of view of improving the computational efficiency of similar

solutions.

32



3 Scope and research objectives

3.1 Problem Statement and Objectives

The principal goal of this work is to design an efficient machine learning solution to the

problem of predicting the evolution of shift of the nodes, belonging to the LS-DYNA model of

the thin-walled aluminum extrusion profiles that were studied with axial crash simulations by

Kohar et al. [16, 17, 18], during the process of designing UWR4 extruded profile. Since the

dataset under investigation exhibits a pronounced sequence-like structure, the principal hypoth-

esis of the research is that a neural network architecture specially designed for working with

sequences would discover a solution of desirable quality much faster than LS-Dyna counterpart,

which was taking 23 minutes 54 seconds per one simulation on system with 4 processors. Addi-

tionally, the research aims to test a particular set of assumptions about the general structure of

data obtained during such numerical simulation procedures. Second hypothesis was that using

a fraction of original train data randomly sampled may significantly reduce the required time to

train the AI framework while saving accuracy. Another hypothesis is that original data contain

redundancies, so it is possible to use training set data to figure an effective way to sample more

information from the same or smaller fraction of original training data. The last hypothesis is

that training a few smaller networks on different original data samples and combining them into

ensembles inside the framework can increase the accuracy while still having lesser training time

than the baseline AI framework. In order to prove these statements, the study will estimate

the benefits of modifying the training procedure of the neural network model with ensembling

techniques and sampling procedures from the points of view of computational effectiveness and

the resulting performance on the test subset.

The main objectives of this research are:

• Provide faster solution to the problem of predicting the shift of the node of LS-DYNA

model of the thin-walled aluminum extrusion profile during the axial crash of the profile

using artificial neural networks framework

• Explore ways to increase the computational time and memory effectiveness of the sug-

gested framework training process using data sampling:

– 2 approaches of random sampling with a roulette algorithm

33



– Heatmap-based sampling, built on the information from crash tests in the train data

set

• Explore ensembling approach to the framework trained on samples and its impact on the

accuracy of predictions

3.2 Limitations of the current work

The following set of assumptions is limiters of the scope of the current study:

• We have a dataset consisting of pairs (xi, yi), where xi is the feature description of the

node, and yi is the evolution of shift of that node over time, obtained with numerical

simulation of axial crash experiment. The size of the dataset is fixed, and it is principally

prohibited to somehow expand the dataset by constructing another training sample. Such

assumption sets the upper bound for the amount of information available, thus, allowing

us to compare different sampling approaches.

• The trained ML framework provides the numerical solution to the problem under con-

sideration if it reaches the local minima of an MSE loss function over its predictions and

target variables. We assume that the lower value of loss function on the test subset means

the better overall quality of numerical solutions, as there is no other comprehensible way

to assess the accuracy of obtained predictions.

• All weights of all the models described in this work may be tuned with gradient-based

optimization.

• The training process may be alternated by composing various subsets of a given dataset.

To summarize, it is assumed that we are allowed to alter the training process of a model only

with the tweaks of data and techniques like sampling and bagging. Similar problem limitations

may be found in the field of large-scale optimization [108, 109], where one usually focuses on

designing a sampling strategy to obtain a better asymptotic estimate of convergence speed.

However, in this work, we are prioritizing training time of the network as the main criterion of

the efficiency of sampling strategy, as the background of the original framework originates from

purely engineering problems, requiring rapid development to aid the workflow of car design.

34



4 AI framework for prediction of deformation shifts in crash

experiments

This section describes the AI framework trained to predict node shift in time in the model

of thin-walled UWR4-like [18] aluminum extrusion profile. The framework shares a similar

design to that described in [6], employing the LSTM architecture to capitalize on the temporal

structure of output data. The framework is trained on preprocessed data from FE simulations

of axial crash experiments conducted by LS-DYNA package [11]; this section provides a detailed

description of the dataset and feature representation of the given node. The section also includes

information about two ML models, comprising the framework - deep autoencoder, used to

compress the representation of 3D LS-DYNA model, obtained by preprocessing, into the low-

dimensional vector, and the LSTM-based ANN, mapping node features into the target variable.

Summary of the architecture of these models and their convergence plots are also presented in

the section. Finally, the section provides a reference table with the training and test subsets’

resulting metrics.

4.1 Training dataset

Data used in this work is obtained from numerical simulations of the axial crash of thin-

walled aluminum rails with different profiles. A named example of such rail with good energy

absorption properties, known as UWR4 extrusion profile, was discovered by Kohar et al. [15]

(see fig. 4.1): Variety in profiles is provided by low-dimensional parameterization of their cross-

Figure 4.1: UW-R4 profile - cross-section and isometric view [15].

section. The upper-left part of the cross-section is described using six geometric points, and

the complete rail profile is obtained with its quarter-symmetrization.

35



Numerical simulations with LS-DYNA assume having a separate model for each unique

profile. These models consist of a finite amount of nodes connected with edges. Current work

assumes using information about such nodes to predict their behaviour during the axial crash

of the profile. Precisely, the used dataset consists of pairs ’feature representation of node

- the evolution of its shift in time’. A canonical machine learning approach to tackle such

complex data represents many features, each corresponding to a particular bit of information,

complemented with a thorough analysis of chosen features. However, deep learning approaches

often allow us to avoid manual feature design and more freedom to select the set of features to

describe the given sample. This work constructs a feature representation of nodes from data

extracted from the internal LS-DYNA format describing finite element models of such aluminum

profiles. After subjecting these data structures to the preprocessing pipeline, a feasible data

format for machine learning applications was constructed. It consists of the following fields:

• Node initial coordinates - a tuple (x, y, z), containing spatial coordinates of a given node

in the global coordinate system, assigned to a model.

• Voxel map - a representation of 3d model as a whole, capturing the relation between nodes

and the global geometrical features of the member. For the sake of computation efficiency,

the field is represented with a 100-dimensional vector, acquired from deep autoencoder

pretrained on voxel maps obtained from original data.

• Timestep indices - a field, required in order to keep the sequential structure of an input.

• Local geometry features - information about the local geometry given by connectivity

between the neighbouring nodes. Connectivity information may be considered an unori-

ented 1-connected weighted graph, with weights corresponding to the distance from the

selected node to the neighbouring nodes. The amount of information about node spa-

tial location in relativity to its neighbours may be fine-tuned with the maximum order

of neighbour to include into the graph. The given dataset includes coordinates of the

nearest neighbours up to the fifth-order, resulting in a 105-dimensional vector.

Corresponding target variables for such feature maps were obtained by running a numerical

simulation of axial crashes for these rails. Illustrative examples of real-life profiles after crash

tests and their numerical simulations may be seen in figures 4.2, 4.3 respectively. The shift

history for each node while running 160 timesteps of direct simulation of the problem with

defined geometry was captured and coupled with corresponding nodes to form the dataset.

36



Figure 4.2: Experimentally crashed profiles [15]

Figure 4.3: Simulated crash tube effective strain contours [15].

The flowchart of the autoencoder used to compress the representation of the 3D model

is shown in the figure 4.4; its code implementation was written with Keras deep learning

framework. The model was trained with Adam optimization algorithm with following set of

hyperparameters: lr = 1e-3, β1 = 0.9, β2 = 0.99, eps = 1e-8. Additionally, the norm of model’s

gradient was clipped up to the value of 0.01. Convergence plots of autoencoder are yielded by

figure 4.5.

37



Figure 4.4: Flowchart of the autoencoder used for compressing LS-DYNA data representations.

Figure 4.5: Convergence plots for deep autoencoder, trained on LS-DYNA data.

4.2 Neural network architecture

A flowchart of an architecture of a neural network used for shift prediction is shown in

figure 4.6. In order to get a prediction, all node features except the time step indices are

concatenated into a single vector. Further, the vector is copied 160 times; copies are stacked

and concatenated with time step indices along the second axis. The resulting tensor is passed

through a dense input layer, a stack of LSTM layers, and finally through a dense output layer.

Weights of almost all layers are additionally subjected to regularization, limiting their norm.

The first dense layer also applies dropout to its neurons with the probability of 0.25.

38



Figure 4.6: Block scheme of the baseline neural network architecture

Layer № Type Output shape Regularization Dropout

1 Dense (160,200) l1_l2 0.25

2 CuDNN_LSTM1 (160, 500) l1_l2 0.0

3 CuDNN_LSTM2 (160, 400) l1_l2 0.0

4 CuDNN_LSTM3 (160, 300) l1_l2 0.0

5 CuDNN_LSTM4 (160, 200) l1_l2 0.0

6 CuDNN_LSTM5 (160, 100) l1_l2 0.0

7 Dense (160, 3) No –

Table 1: Summary on layer parameters for baseline neural network architecture

Described architecture can be trained end-to-end with a backpropagation algorithm. Imple-

mentation of it was made within the scope of Keras [20] deep learning framework; a summary

of hyperparameters used in architecture is presented by table 1. The model was trained to

minimize MSE loss with Adam optimization algorithm; the set of hyperparameters used was

lr = 1e-3, β1 = 0.9, β2 = 0.99, eps = 1e-8. Model gradient norm was subjected to clipping,

setting its highest possible value as 1 to prevent gradient exploding.

4.3 Results

Convergence plots after 50 epochs of training are provided with figure 4.7, and the final loss

values are summarized in the table 2

39



(a) (b)

Figure 4.7: (a) MAE and (b) MSE convergence plots for AI framework final model.

Dataset Mean Squared Error Mean Average Error

Train 4.085 0.128

Test 4.325 0.285

Table 2: Final metrics for AI Framework trained on full data.

Figures 4.8 - 4.13 demonstrate the 3d heatmaps, built with LS-DYNA over the last timestep

predictions, obtained with a neural network for various LD-DYNA models, included in training

and test data.

40



Figure 4.8: Predictions of framework painted over the LS-DYNA models from training subset

with higher values of MAE error.

Figure 4.9: Predictions of framework painted over the LS-DYNA models from training subset

with average values of MAE error.

41



Figure 4.10: Predictions of framework painted over the LS-DYNA models from training subset

with low values of MAE error.

Figure 4.11: Predictions of framework painted over the LS-DYNA models from test subset with

higher values of MAE error.

42



Figure 4.12: Predictions of framework painted over the LS-DYNA models from test subset with

average values of MAE error.

Figure 4.13: Predictions of framework painted over the LS-DYNA models from test subset with

low values of MAE error.

43



5 Training optimization

The current chapter contains a detailed description of techniques used to improve the per-

formance of the machine learning framework described in the previous chapters. The chapter

elaborates on the motivation of their usage and technical details of the exact implementation

of the techniques. Section 5.1 describes general intuition behind the employment of sampling

methods and formulates the criteria of sampling strategy appropriate for the problem. Section

5.2 defines two different ways in which the random sampling approach can be applied to the

current problem statement. A review of the heatmap-based sampling technique used further in

work is given by the section 5.3. Finally, section 5.4 states how exactly the bagging technique

is used in the scope of the work.

5.1 Node sampling

Direct numerical simulation results show that the complexity of a node trajectory heavily

depends on the node’s position. E.g., fixed nodes do not move at all, so the displacement value

is always zero, and nodes on the top of the LS-DYNA model tend to move straightforwardly. In

comparison, nodes belonging to the parts of the LS-DYNA model under strain move much more

elaborately. It is natural to assume that such nodes generally carry more information about

the crash process. As the benchmark dataset contains many non-informative nodes, we may

suggest constructing a subset of significantly lesser volume without losing much information

about the underlying process. If we have a machine learning model, potent to fit into the

original data, training this model on such a subset may significantly reduce the required time

for the convergence up to the excellent value of target metrics.

In order to assemble an informative subset from the original data, we propose data sampling.

A suitable sampling strategy should match the following criteria:

• It should be generalizable and should utilize exclusively information obtained from the

model to make decisions; ideally with no ad-hoc or human adjustment.

• It should be computationally efficient and should be able to process a piece of single model

information in a matter of seconds.

• It should assume the exact representation of data for each new sample.

44



We employ two different sampling strategies, matching the criteria listed above - random

sampling, and importance sampling.

5.2 Random sampling

Constructing the training subset with a random sampling strategy assumes drawing samples

from the training set uniformly without repetitions. The most straightforward implementation

of random sampling in application to the given dataset assumes merging nodes belonging to

different models before the selecting procedure, thus, treating the aggregate of nodes as a

single bucket of samples. Even though such an approach meets all the criteria mentioned in

5.1, it omits the inherent cluster-like structure of the nodes, emerging from being a part of

the aluminum rail. This fact may eventually lead to the lesser informativity of the constructed

subset than the original data, as nodes from a specific model may not enter the collected subset.

We suggest composing the training subset by taking the constant number of nodes from each

LS-DYNA model to address this issue. This work explores both of these approaches, training

the baseline model with a total of 12 different sampling strategies. These strategies combine

the datawide/modelwise sampling with the different nodes taken from each LS-DYNA model -

32, 64, 128, 256, 1024, or 2048, respectively (in case of datawide sampling, it means selecting

n ∗ 300 samples from the whole dataset). In order to verify model stability for training on the

part of the data, the neural network’s performance was cross-validated on the subsets obtained

with suggested strategies while varying the seed of the random number generator.

5.2.1 Modelwise random sampling

Figure 5.1 provides convergence plots for MAE and MSE loss functions respectively for a

neural network trained with random sampling strategy, sampling 32 nodes from each LS-DYNA

model. Graph demonstrating the alternations in the convergence plots with resampled subsets

is given by the figure 5.2.

45



Figure 5.1: MAE and MSE history for training the neural network with dataset, obtained with

sampling 32 random nodes from each LS-DYNA model.

Figure 5.2: MAE evolution in time during the training over different subsets, obtained with

sampling 32 random nodes from each LS-DYNA model.

Sample Mean Squared Error Mean Average Error

1 6.523 1.042

2 6.773 1.036

3 6.881 1.052

4 6.946 1.053

5 6.766 1.030

Table 3: Final metrics value on test data for individual models, trained on subsets obtained

with randomly sampling 32 nodes from each LS-DYNA model.

Table 3 summarizes the metrics values obtained while training different model instances

with such approach. It can be seen that the final value of the loss function is one order of

magnitude more significant in comparison to the baseline model, and the MAE error is two

46



times bigger. However, sampling 32 nodes out of 8600 means that the training subset is 269

times smaller than the original data, resulting in 15s average epoch processing time. That being

said, 500 training epochs yields a total training time of 2.08 hours, while the estimated time

for the baseline experiment is 111 hours. On average, the evolution of loss function stagnates

after approximately 150 training epochs, which means that the actual time required for a model

to converge is even lower. Moreover, according to figure 5.2, the stochastic nature of subset

selection does not affect the model performance, as the differences between trials are minor,

further confirming the robustness of the process.

Figure 5.3: MAE and MSE history for training the neural network with dataset, obtained with

sampling 32 random nodes from each LS-DYNA model.

5.2.2 Datawide random sampling

Figure 5.3 gives convergence plots for MAE and MSE loss functions respectively for a neural

network trained with random sampling strategy, sampling 32 ∗ 300 = 9600 nodes in total from

the training dataset. An illustration of how convergence plots change depending on the subsets

obtained with such procedure is provided by figure 5.4. Final metrics values for the datawide

random sampling are provided by table 4. The study shows no noticeable differences between

applying random sampling to the existing data, which points out the uniformity of its structure.

The efficiency of the suggested approach in reducing the time required to train the model up

to the sub-optimal value of target metrics opens up new possibilities for ML algorithms; e.g.,

learned weights may serve as an initial point for the fine-tuning the model on the whole dataset.

47



Figure 5.4: MAE evolution in time during the training over different subsets, obtained with

sampling 9600 nodes from the dataset as a whole.

Sample Mean Squared Error Mean Average Error

1 6.452 1.024

2 6.584 1.077

3 6.683 1.052

4 7.299 1.070

5 7.102 1.064

Table 4: Final metrics value on test data for individual models, trained on subsets obtained

with sampling 9600 nodes in total from the whole dataset.

5.3 Importance sampling

Following the general intuition of importance sampling, we may construct a sampling algo-

rithm that can separate highly informative nodes from the others. One possible way to do that

is to avail ourselves of a node’s connectivity and geometry information. Uninformative nodes

may be filtered by several criteria, such as the total number of neighbours of a given order or

estimates based on the quantity of output deformation, e.g., total absolute shift value or total

absolute shift value along the chosen axis. Figure 5.5 demonstrates the separation of nodes of a

given model by evaluating the sum of relative displacements of neighbouring nodes. Specifically,

we relate a node into the first group if it has a zero-valued sum of direct neighbours normalized

relative coordinates and into the second group otherwise. It can be seen that such criterion

48



yields node separation based on the uniformity of node clusters - the nodes on the model edges

are in group one, while those on the borderlines are assigned to the second group. An approach

(a) Group 1.

(b) Group 2.

Figure 5.5: An example of sampling-based division of LS-DYNA model nodes.

suggested in this work uses the metrics evaluates the importance of a single sample, consisting

of multiple terms, 6 of them being

• Neighbour count qn

• Total neighbour distance qd

• Absolute shift - the norm of the total shift of node from initial qst

• Shift along each of the axes qsx, qsy, qsz

In addition, we assume that each of the mentioned terms is normalized, i.e., taken as the

ratio between the value of given metrics on a given sample and the global maximum of the

same metrics over the whole dataset. The final estimate of importance for sample i has the

49



following form:

pi =
p̂i

max
i

p̂i
· I

(
p̂i

max
i

p̂i
>= 0.25

)
+ 0.25 · I

(
p̂i

max
i

p̂i
<= 0.25

)
(5.1)

p̂i = qin + qid + qist +
1

3

(
qisx + qisy + qisz

)
+ 3qir (5.2)

, where the quantity qir is defined as

qir = q̃ir

(
q̃ir

max
i

q̃ir
− 1

)
(5.3)

q̃ir =
160∑

t=1, j∈x,y,z

|sij(t)| (5.4)

Here sij(t) is the shift of the node i at the time step t along the axis j. Figure 5.6 shows the

sample of a heatmap, built over the geometry of the LS-DYNA model according to the designed

importance policy. It can be seen that the chosen sampling strategy prioritizes nodes situated

near the edges and concavities of the model, which yields a higher shift in the crash experiment.

Figure 5.7 exposes the n top nodes of the fixed LS-DYNA model, filtered by their importance,

n ∈ 50, 100, 500, 2000.

To evaluate how the quality of obtained solution depends on the number of nodes drawn

from each model, we construct different subsets, extracting 32, 64, 128, 256, 1024, or 2048 node

instances from each LS-DYNA model. To verify the stability of the selected sampling strategy,

we cross-validate the neural network, resampling such subsets repeating the corresponding

experiments.

Figure 5.6: Heatmap sample over the LS-DYNA model.

50



(a) n = 25.

(b) n = 100.

(c) n = 500.

(d) n = 2000.

Figure 5.7: Top a) 25, b) 100, c) 500, d) 2000 nodes sorted by their importance in accordance

to the designed sampling policy.

51



Convergence plots for MAE and MSE for a neural network trained with importance sampling

strategy are given by the figure 5.8. Figure 5.9 gives an insight on how the training process

changes depending on different subsets acquired with the sampling strategy.

Figure 5.8: MAE and SE history for training the neural network with dataset, obtained with

sampling 32 nodes from each LS-DYNA model according to the sampling policy, introduced in

5.3.

Figure 5.9: MAE evolution in time during the training over different subsets, obtained with

sampling 32 random nodes from each LS-DYNA model.

52



Sample Mean Squared Error Mean Average Error

1 6.299 1.030

2 6.403 1.033

3 6.606 1.216

4 6.512 1.041

5 6.140 1.023

Table 5: Final metrics value on test data for individual models, trained on subsets obtained

with sampling 32 nodes from each model using heatmap strategy.

Table 5 summarizes the metrics values observed during the training process for different

model instances. The resulting metrics values for the designed sampling approach are of the

same magnitude as for the random sampling and differ from that of the baseline approach in

the same way. The figures above show that there is little to no gain from using importance

sampling over the random in the case of the considered dataset. Creating the prior over the

data yields a small overhead in total training time. However, the proposed importance formula

does not depend on the model output; thus, the prior estimation can be done at the data

preprocessing stage. For that reason, the estimated total training time remains the same as

in 5.2. Figure 5.9 shows that the proposed sampling design is also stable in the sense of the

subset variation, and the procedure of training the neural network with such sampling strategy

is robust.

5.4 Model ensembling

As mentioned in 2.6.4, overfitting is one of the most common problems emerging in the

practice of neural networks usage. This issue is especially relevant in the case when complex

neural networks are trained on small datasets. As current work explicitly suggests sampling

subsets of the original data to improve the computational effectiveness of the framework. Pre-

dictions of models trained in such a way are more unstable than the baseline, despite low bias

due to the high statistical capacity of the used neural network architecture. The possible way

to address this issue is to combine models into an ensemble, averaging their predictions.

In the scope of this work, we are following the bagging ensembling technique. Our bagging

implementation assumes training several baseline-like neural networks on the different subsets

53



of the original training dataset due to the different realization of the chosen sampling function.

This procedure is repeated for each sampling algorithm. We consider the average value of the

predictions of these neural networks as the prediction of the whole ensemble.

Table 6 represents final metrics values for the ensembles, assembled from the models, trained

with modelwise random sampling, datawide random sampling, and modelwise heatmap sam-

pling strategies, respectively. Conducted experiments show that combining models into an

ensemble by averaging their outputs impacts the quality of predictions positively: the value of

MAE on the test subset is 1.26/1.28/1.32 times lesser in average compared to the models in-

cluded in the ensemble for employed sampling strategies. As for MSE values on test subset, the

respective fractions are 1.76/1.81/1.81. Scatterplot, comparing ensembles with its constituents

by metrics values, is given by the figure 5.10

Sampling Strategy Mean Squared Error Mean Average Error

Random modelwise 3.855 0.825

Random datawide 3.767 0.824

Heatmap-based 3.523 0.811

Table 6: Final metrics value on test data for model ensembles, trained on subsets obtained with

sampling 32 nodes from each LS-DYNA model using heatmap strategy.

As mentioned before, creating a new subset for training each model sample results in an

additional computational overhead; however, both the additional expenses and the training time

for an ensemble scale linearly with the number of models. Experiments show that combining

only five models with the trivial voting mechanism results in a noticeable quality jump. Model

ensembles still have higher MAE compared to the baseline, but all of them notably overperform

the baseline on MSE while being much easier to train. Thus, building an ensemble of models

trained on tiny fractions of the data may be viewed as an appropriate technique to enhance the

framework’s performance as a whole.

54



(a) Mean Average Error

(b) Mean Squared Error

Figure 5.10: Summary scheme, comparing a)MAE and b) MSE errors for separate model

instances and model ensembles.

55



5.5 Comparison of sampling strategies and scalability

Figure 5.11 demonstrates a bar chart, showing the dependency of final value of MAE on

the test set on the sampling strategy used for training model instances for exact-sized training

subsets of 9600 samples in total. According to it, in general, model instances trained on datasets

Figure 5.11: MAE values for model instances, trained with different sampling strategies on

different subsets of fixed size (9600 samples).

created with heatmap sampling achieve better performance than other strategies. However, the

actual difference between the metrics values does not allow us to state that discrepancies are

caused precisely by using a different sampling strategy.

To investigate the issue, non-systematic research was conducted to discover how the quality

of the solution depends on the size of subsets used to train model instances. Figures 5.12, 5.14

provides convergence plots for model instances, trained with the employed sampling strate-

gies while picking 64 / 128 nodes from each LS-DYNA model. The comparative bar charts,

demonstrating final MAE values for such model instances are given by figures 5.13, 5.15. As

expected, predictions quality non-linearly scales depending on the size of the subset for the

model instances to be trained. When 128 nodes are taken from each model, heatmap-based

sampling demonstrates top performance in terms of final metrics value. However, this is not

the case for 64 samples being picked from the models.

56



Figure 5.12: Metrics evolution for model instances trained on the subsets made with different

sampling strategies by picking top 64 samples.

Figure 5.13: Summary on estimated MAE error values on the test dataset for the model

instances trained on the subsets made with different sampling strategies by picking top 64

samples.

57



Figure 5.14: Metrics evolution for model instances trained on the subsets made with different

sampling strategies by picking top 128 samples.

Figure 5.15: Summary on estimated MAE error values on the test dataset for the model

instances trained on the subsets made with different sampling strategies by picking top 128

samples.

58



Figures 5.16, 5.17 yield bar charts with final MAE values for neural network instances

trained on datasets, obtained with sampling 256, 1024 and 2048 nodes from each LS-DYNA

model. It can be seen that expanding the training subsets leads to substantially better values of

MAE on the test subset. However, detailed research on the scalability of the obtained numerical

solution is out of the scope of the thesis.

Figure 5.16: Summary on estimated MAE error values on the test dataset for model instances,

trained on the subsets made with different sampling strategies by picking top 256 samples

59



(a) n = 1024

(b) n = 2048

Figure 5.17: Summary on estimated MAE error values on the test dataset for model instances,

trained on the subsets made with different sampling strategies by picking top n samples

60



6 Conclusions

This work presented a faster AI-based solution for the problem of predicting the behaviour of

thin-walled aluminum crash components during the simulation of an axial crash with numerical

analysis on the subject of diminishing the computational expenses of framework training. The

solution extends the ideas suggested by Kohar et al. in [6] as a potential replacement of FE

simulations in application to crashworthiness testing. The framework was trained and tested on

a dataset obtained via numerical modelling of the axial crash of the UWR4-like [18] extrusion

profiles. The critical component of the described framework is the LSTM neural networks, used

to predict the sequence of nodal coordinates during the test. The time required to obtain one

simulation achieved roughly 5 seconds which is 286.8 times faster than the original 23 minutes

54 seconds required for LS-Dyna simulation. Considering that LS-Dyna simulation required 4

processors to run the simulation and one required for the AI framework, an actual factor of time

reduction is 1,147.2. The time required for the neural networks to process a learning epoch was

roughly 67 minutes, resulting in a total training time of approximately 110 hours. The error in

predicted coordinates of nodes compared to the LS-Dyna simulation was 0.285 millimetres on

average, which is 0.07 percent of the extrusion profile scale.

The approach for data processing for the framework was modified to reduce the compu-

tational time required to train the neural network and propose combining data sampling and

models ensembling. As a baseline, the original framework’s neural networks were trained to

predict the evolution of the shift of the node during the experiment based on the feature rep-

resentation of a node belonging to the LS-DYNA model of the profile using the whole training

set of data consisting of 300 extrusion profiles. The network’s performance was assessed by

calculating MSE and MAE over the test subset, consisting of 60 extrusion profiles, reaching

the values of 4.325 and 0.285 respectively after 100 training epochs.

Current work studied how the different sampling strategies affected the final metric values for

the exact subset sizes and training time for the framework. Different subsets were constructed

by: 1) randomly sampling 9600 nodes from the whole dataset; 2) randomly sampling 32 nodes

from each LS-DYNA model; 3) employing the particular heatmap-based sampling procedure

to select 32 nodes from each LS-DYNA model. The work reveals that training model instances

on subsets of the same size result in the metrics values of the same order of magnitude –

approximately two times higher than the baseline MSE and 5 times higher than the baseline

61



MAE – or 1.05 mm on average. However, the time required to process a single epoch was reduced

to 15 seconds, with 150 epochs required for the framework to achieve optimal performance total

training time was approximately 37.5 minutes, which is 175 times lower than for full data.

Further, the impact of combining five models trained on different subsets obtained with sug-

gested sampling strategies into an ensemble was measured. The research showed that bagging

allows reducing the value of the target metrics, reaching an average error of 0.825 / 0.824 /

0.811 millimetres on the test subset for random datawide / random modelwise / heatmap-based

sampling, respectively. As the total time required to train the ensemble was 37.5 hours, which

is significantly lower than the training time for the baseline model, the effectiveness of model

ensembling for obtaining better results faster was confirmed. Using more subsets or more data

for subsets could potentially increase the ensemble’s performance, but that was out of the scope

of this research.

To summarize, the AI framework was able to speed up simulation significantly. Additional

research on speeding up the training process demonstrated a possible tradeoff between the drop

in the accuracy of predictions and the speedup in the time required to train the framework.

Thus, this research encourages the usage of preprocessing techniques in application to substi-

tuting numerical modelling with machine learning models since their reasonable use makes it

possible to improve the numerical efficiency of algorithms used to solve such problems.

62



7 Recommendations for the future work

Current work demonstrates plenty of room for optimization of the performance of the ML-

based method in the numerical simulation of crashworthiness. However, the current study

still cannot be called exhaustive since the whole diversity of existing techniques to improve

the performance of a given ML model cannot be encompassed in the scope of a single work.

Possible directions for further research in the field of aiding the vehicle development process

with AI may include

• Implementation of more complex neural network types, capable of working with long-term

time dependencies in data. Although LSTM models show good performance on the se-

quential data, at the moment, their results in the field are far from the state-of-the-art.

Replacing the essential part of the framework with the model more suitable for such a

task may significantly increase the observed performance. E.g., transformer-based mod-

els [147], which predominate the field of natural language processing, may outperform

LSTM-models due to their higher statistical capacity and the ability to consider correla-

tions between the sequence elements directly.

• Physics-based models. As stated in [119], it is not always possible to brute-force the

ML tasks in application to real-world physical processes by applying elaborate models to

them, as such models often generalize poorly. The framework used in this work shows

a similar behaviour, as its performance decreases on the test subset. A possible way to

overcome this hardship is to use models directly incorporating the physics of the problem.

Work [148] shows that physics-informed neural networks can reconstruct complicated de-

pendencies within the data while having relatively simple architecture, thus, diminishing

the chance for the model to overfit the training data.

• Research on the effectivity of the other sampling techniques, which incorporate model

response on the sample explicitly. Heatmap sampling strategy, presented in the current

work, estimates the importance of the nodes only using information obtained directly from

data, following the general intuition on selecting nodes, useful for training. A heatmap,

considering model outputs in the ways described in [110, 111, 112], may improve the

procedure, shifting the training process to the samples, challenging from the point of

view of the model, despite giving a computational overhead due to runtime importance

reevaluation.

63



• Synthesis of the RSM methodology with the suggested approach to run virtual experiments

Despite that RSM arguably allows for faster design space exploration compared to the

presented approach, surrogate models used in it may not be complicated enough to build

a good approximation of mapping between the parameter values and the target variables

of interest. A combination of discovering the good initial point with RSM and fine-tuning

the resulting design with the current approach may be promising for the efficient discovery

of optimal design.

64



References

[1] Daniel A Lashof and Dilip R Ahuja. “Relative contributions of greenhouse gas emissions

to global warming”. In: Nature 344.6266 (1990), pp. 529–531.

[2] David L Greene, Howard H Baker Jr, and Steven E Plotkin. “Reducing greenhouse gas

emissions from US transportation”. In: (2010).

[3] Rajendra K Pachauri et al. Climate change 2014: synthesis report. Contribution of Work-

ing Groups I, II and III to the fifth assessment report of the Intergovernmental Panel

on Climate Change. Ipcc, 2014.

[4] Hyung-Ju Kim, Gregory A Keoleian, and Steven J Skerlos. “Economic assessment of

greenhouse gas emissions reduction by vehicle lightweighting using aluminum and high-

strength steel”. In: Journal of Industrial Ecology 15.1 (2011), pp. 64–80.

[5] Anders Kullgren et al. “Neck injuries in frontal impacts: influence of crash pulse char-

acteristics on injury risk”. In: Accident Analysis & Prevention 32.2 (2000), pp. 197–205.

[6] Christopher P Kohar et al. “Using Artificial Intelligence to Aid Vehicle Lightweighting

in Crashworthiness with Aluminum”. In: MATEC Web of Conferences. Vol. 326. EDP

Sciences. 2020, p. 01006.

[7] Ping Zhu et al. “Use of support vector regression in structural optimization: Application

to vehicle crashworthiness design”. In: Mathematics and Computers in Simulation 86

(2012). The Seventh International Symposium on Neural Networks + The Conference

on Modelling and Optimization of Structures, Processes and Systems, pp. 21–31. issn:

0378-4754.

[8] Neal Patel et al. “Crashworthiness Design Using Topology Optimization”. In: Journal of

Mechanical Design - J MECH DESIGN 131 (June 2009).

[9] Eric W Johnson, Jay B Brockman, and Rik Vigeland. “Sensitivity analysis of itera-

tive design processes”. In: Proceedings of International Conference on Computer Aided

Design. IEEE. 1996, pp. 142–145.

[10] E.W. Johnson, L.A. Castillo, and J.B. Brockman. “Application of a Markov model to the

measurement, simulation, and diagnosis of an iterative design process”. In: 33rd Design

Automation Conference Proceedings, 1996. 1996, pp. 185–188.

[11] L. S. T. Coporation. LS-DYNA Theory Manual. Livermore, California: Livermore Soft-

ware Technology Corporation, 2017.

65



[12] F. Mart́ınez-Mart́ınez et al. “A finite element-based machine learning approach for mod-

eling the mechanical behavior of the breast tissues under compression in real-time”. In:

Computers in Biology and Medicine 90 (2017), pp. 116–124. issn: 0010-4825.

[13] Liang Liang et al. “A deep learning approach to estimate stress distribution: a fast and

accurate surrogate of finite-element analysis”. In: Journal of The Royal Society Interface

15.138 (2018), p. 20170844.

[14] Fangshu Yang and Jianwei Ma. “Deep-learning inversion: A next-generation seismic ve-

locity model building method”. In: Geophysics 84.4 (2019), R583–R599.

[15] Christopher P. Kohar et al. “Development of high crush efficient, extrudable aluminium

front rails for vehicle lightweighting”. In: International Journal of Impact Engineering

95 (2016), pp. 17–34. issn: 0734-743X.

[16] Christopher P Kohar et al. “Effects of elastic–plastic behaviour on the axial crush re-

sponse of square tubes”. In: Thin-Walled Structures 93 (2015), pp. 64–87.

[17] Christopher P Kohar et al. “Effects of coupling anisotropic yield functions with the

optimization process of extruded aluminum front rail geometries in crashworthiness”. In:

International Journal of Solids and Structures 128 (2017), pp. 174–198.

[18] Christopher Kohar. “Multi-scale Modeling and Optimization of Energy Absorption and

Anisotropy in Aluminum Alloys”. In: (2017).

[19] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-

put. 9.8 (Nov. 1997), 1735–1780. issn: 0899-7667.

[20] François Chollet et al. Keras. 2015.

[21] Lawrence L Hershman. “The US new car assessment program (NCAP): Past, present

and future”. In: (2001).

[22] Roger P Daniel, Kenneth R Trosien, and Burgess O Young. The Impact Behavior of the

Hybrid II Dummy. Tech. rep. SAE Technical Paper, 1975.

[23] Harry Singh et al. Vehicle interior and restraints modeling development of full vehi-

cle finite element model including vehicle interior and occupant restraints systems for

occupant safety analysis using THOR dummies. Tech. rep. 2018.

66



[24] J. M. Alexander. “An approximate analysis on the collapse of thin cylindrical shells

under axial loading”. In: The Quarterly Journal of Mechanics and Applied Mathematics

13.1 (Jan. 1960), pp. 10–15. issn: 0033-5614. eprint: https://academic.oup.com/

qjmam/article-pdf/13/1/10/5413837/13-1-10.pdf.

[25] T. Wierzbicki and W. Abramowicz. “On the Crushing Mechanics of Thin-Walled Struc-

tures”. In: Journal of Applied Mechanics 50 (1983), pp. 727–734.

[26] Shujuan Hou et al. “Design optimization of regular hexagonal thin-walled columns

with crashworthiness criteria”. In: Finite Elements in Analysis and Design 43.6 (2007),

pp. 555–565. issn: 0168-874X.

[27] Wlodzimierz Abramowicz and Norman Jones. “Dynamic axial crushing of square tubes”.

In: International Journal of Impact Engineering 2.2 (1984), pp. 179–208. issn: 0734-

743X.

[28] W. Abramowicz. “Thin-walled structures as impact energy absorbers”. In: Thin-Walled

Structures 41.2 (2003). Buckling strength and Failure Mechanics of Thin walled struc-

tures, pp. 91–107. issn: 0263-8231.

[29] Ahmad Baroutaji, Mustafa Sajjia, and Abdul-Ghani Olabi. “On the crashworthiness

performance of thin-walled energy absorbers: recent advances and future developments”.

In: Thin-Walled Structures 118 (2017), pp. 137–163.

[30] Amir Zhumagulov. “Crashworthiness and Material Characterization of Multi-Cellular

AA6063 Extrusions”. MA thesis. University of Waterloo, 2017.

[31] Alan L Browne and Nancy L Johnson. “DYNAMIC CRUSH TESTS USING A “FREE-

FLIGHT” DROP TOWER: THEORY”. In: Experimental Techniques 26.5 (2002), pp. 43–

46.

[32] Tomasz Wierzbicki. “Crushing analysis of metal honeycombs”. In: International Journal

of Impact Engineering 1.2 (1983), pp. 157–174.

[33] Wlodzimierz Abramowicz. “The effective crushing distance in axially compressed thin-

walled metal columns”. In: International Journal of Impact Engineering 1.3 (1983),

pp. 309–317.

[34] Tomasz Wierzbicki and Wlodzimierz Abramowicz. “On the crushing mechanics of thin-

walled structures”. In: (1983).

[35] Wlodzimierz Abramowicz and Norman Jones. “Dynamic axial crushing of circular tubes”.

In: International Journal of Impact Engineering 2.3 (1984), pp. 263–281.

67



[36] Wlodzimierz Abramowicz and Norman Jones. “Dynamic axial crushing of square tubes”.

In: International Journal of Impact Engineering 2.2 (1984), pp. 179–208.

[37] Wlodzimierz Abramowicz and Norman Jones. “Dynamic progressive buckling of circular

and square tubes”. In: International Journal of Impact Engineering 4.4 (1986), pp. 243–

270.

[38] Norman Jones and Tomasz Wierzbicki. Structural crashworthiness. Tech. rep. Butter-

worths London, 1983.

[39] Wlodek Abramowicz. “The macro element approach in crash calculations”. In: Crashwor-

thiness of transportation systems: structural impact and occupant protection. Springer,

1997, pp. 291–320.

[40] Minoru Yamashita, Manabu Gotoh, and Yasuhiko Sawairi. “A numerical simulation of

axial crushing of tubular strengthening structures with various hat-shaped cross-sections

of various materials”. In: Key Engineering Materials. Vol. 233. Trans Tech Publ. 2003,

pp. 193–198.

[41] Ali Najafi and Masoud Rais-Rohani. “Mechanics of axial plastic collapse in multi-cell,

multi-corner crush tubes”. In: Thin-Walled Structures 49.1 (2011), pp. 1–12.

[42] P. Angeleri et al. “PAM-CRASH on the IBM 3090/VF: An integrated environment for

crash analysis”. In: IBM Systems Journal 27.4 (1988), pp. 541–560.

[43] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. English. United States:

Dassault Systèmes Simulia Corp, 2009.

[44] T Wierzbicki et al. “Stress profiles in thin-walled prismatic columns subjected to crush

loading-II. Bending”. In: Computers and structures 51.6 (1994), pp. 625–641.

[45] T Wierzbicki et al. “Stress profiles in thin-walled prismatic columns subjected to crush

loading—I. Compression”. In: Computers & Structures 51.6 (1994), pp. 611–623.

[46] A Otubushin. “Detailed validation of a non-linear finite element code using dynamic

axial crushing of a square tube”. In: International Journal of Impact Engineering 21.5

(1998), pp. 349–368.

[47] M. Langseth, O.S. Hopperstad, and A.G. Hanssen. “Crash behaviour of thin-walled

aluminium members”. In: Thin-Walled Structures 32.1 (1998), pp. 127–150. issn: 0263-

8231.

68



[48] M. Langseth, O.S. Hopperstad, and T. Berstad. “Crashworthiness of aluminium extru-

sions: validation of numerical simulation, effect of mass ratio and impact velocity”. In:

International Journal of Impact Engineering 22.9 (1999), pp. 829–854. issn: 0734-743X.

[49] BW Williams et al. “Effect of anisotropy, kinematic hardening, and strain-rate sensitiv-

ity on the predicted axial crush response of hydroformed aluminium alloy tubes”. In:

International Journal of Impact Engineering 37.6 (2010), pp. 652–661.

[50] Ø Fyllingena et al. “Brick versus shell elements in simulations of aluminium extrusions

subjected to axial crushing”. In: 7th European LS-DYNA conference, Salzburg. 2009.

[51] Christopher P Kohar et al. “The effects of the yield surface curvature and anisotropy

constants on the axial crush response of circular crush tubes”. In: Thin-Walled Structures

106 (2016), pp. 28–50.

[52] Neal M Patel et al. “Crashworthiness design using topology optimization”. In: Journal

of mechanical design 131.6 (2009).

[53] Hongbing Fang et al. “A comparative study of metamodeling methods for multiobjective

crashworthiness optimization”. In: Computers & structures 83.25-26 (2005), pp. 2121–

2136.

[54] Horace B Barlow. “Unsupervised learning”. In: Neural computation 1.3 (1989), pp. 295–

311.

[55] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[56] Christopher M Bishop. “Pattern recognition”. In: Machine learning 128.9 (2006).

[57] Vladimir N Vapnik. “An overview of statistical learning theory”. In: IEEE transactions

on neural networks 10.5 (1999), pp. 988–999.

[58] Emin Elmar oglu Mammadov. “Predictive Maintenance of Wind Generators based on

AI Techniques”. MA thesis. University of Waterloo, 2019.

[59] Tong Zhang. “Solving large scale linear prediction problems using stochastic gradient

descent algorithms”. In: Proceedings of the twenty-first international conference on Ma-

chine learning. 2004, p. 116.

[60] S Rasoul Safavian and David Landgrebe. “A survey of decision tree classifier method-

ology”. In: IEEE transactions on systems, man, and cybernetics 21.3 (1991), pp. 660–

674.

69



[61] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting algorithm”.

In: icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[62] John J Hopfield. “Neural networks and physical systems with emergent collective com-

putational abilities”. In: Proceedings of the national academy of sciences 79.8 (1982),

pp. 2554–2558.

[63] David J Livingstone, David T Manallack, and Igor V Tetko. “Data modelling with neural

networks: advantages and limitations”. In: Journal of computer-aided molecular design

11.2 (1997), pp. 135–142.

[64] Ron Kohavi and David Wolpert. “Bias Plus Variance Decomposition for Zero-One Loss

Functions”. In: (Sept. 1997).

[65] G. Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In: Mathe-

matics of Control, Signals, and Systems 2 (1989).

[66] Daniel W Otter, Julian R Medina, and Jugal K Kalita. “A survey of the usages of deep

learning for natural language processing”. In: IEEE Transactions on Neural Networks

and Learning Systems (2020).

[67] Martin Thoma. “A survey of semantic segmentation”. In: arXiv preprint arXiv:1602.06541

(2016).

[68] Licheng Jiao et al. “A survey of deep learning-based object detection”. In: IEEE Access

7 (2019), pp. 128837–128868.

[69] Ian J Goodfellow et al. “Generative adversarial networks”. In: arXiv preprint arXiv:1406.2661

(2014).

[70] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv

preprint arXiv:1609.03499 (2016).

[71] Rewon Child et al. “Generating long sequences with sparse transformers”. In: arXiv

preprint arXiv:1904.10509 (2019).

[72] Chigozie Nwankpa et al. “Activation functions: Comparison of trends in practice and

research for deep learning”. In: arXiv preprint arXiv:1811.03378 (2018).

[73] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann

machines”. In: Icml. 2010.

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

70



[75] D. Rumelhart, Geoffrey E. Hinton, and R. J. Williams. “Learning internal representa-

tions by error propagation”. In: 1986.

[76] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-

tems. Software available from tensorflow.org. 2015.

[77] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach

et al. Curran Associates, Inc., 2019, pp. 8024–8035.

[78] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87.

Springer Science & Business Media, 2003.

[79] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.

arXiv: 1412.6980 [cs.LG].

[80] Federico Girosi, Michael Jones, and Tomaso Poggio. “Regularization theory and neural

networks architectures”. In: Neural computation 7.2 (1995), pp. 219–269.

[81] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation for nonorthog-

onal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[82] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the

Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288.

[83] Jean Duchon. “Splines minimizing rotation-invariant semi-norms in Sobolev spaces”. In:

Constructive theory of functions of several variables. Springer, 1977, pp. 85–100.

[84] Tomaso Poggio and Federico Girosi. “Networks for approximation and learning”. In:

Proceedings of the IEEE 78.9 (1990), pp. 1481–1497.

[85] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfit-

ting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[86] Martin Sundermeyer, R. Schlüter, and H. Ney. “LSTM Neural Networks for Language

Modeling”. In: INTERSPEECH. 2012.

[87] Mike Schuster and Kuldip Paliwal. “Bidirectional recurrent neural networks”. In: Signal

Processing, IEEE Transactions on 45 (Dec. 1997), pp. 2673 –2681.

[88] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling Tem-

poral Dependencies in High-Dimensional Sequences: Application to Polyphonic Music

Generation and Transcription. 2012. arXiv: 1206.6392 [cs.LG].

71



[89] Paul J Werbos. “Backpropagation through time: what it does and how to do it”. In:

Proceedings of the IEEE 78.10 (1990), pp. 1550–1560.

[90] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training

recurrent neural networks”. In: International conference on machine learning. PMLR.

2013, pp. 1310–1318.

[91] Jingzhao Zhang et al. “Why gradient clipping accelerates training: A theoretical justifi-

cation for adaptivity”. In: arXiv preprint arXiv:1905.11881 (2019).

[92] Corentin Tallec and Yann Ollivier. “Unbiasing truncated backpropagation through time”.

In: arXiv preprint arXiv:1705.08209 (2017).

[93] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent neural network regu-

larization”. In: arXiv preprint arXiv:1409.2329 (2014).

[94] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-

putation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. eprint: https://direct.mit.

edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

[95] Yann Lecun. PhD thesis: Modeles connexionnistes de l’apprentissage (connectionist learn-

ing models). English (US). Universite P. et M. Curie (Paris 6), June 1987.

[96] Jonathan Masci et al. “Stacked Convolutional Auto-Encoders for Hierarchical Feature

Extraction”. In: ICANN. 2011.

[97] Xibin DONG et al. “A survey on ensemble learning”. English. In: Frontiers of Computer

Science 14.2 (Apr. 2020), 241–258. issn: 2095-2228.

[98] Thomas G. Dietterich. “Ensemble Methods in Machine Learning”. In: Multiple Classifier

Systems. 2000.

[99] S Rasoul Safavian and David Landgrebe. “A survey of decision tree classifier method-

ology”. In: IEEE transactions on systems, man, and cybernetics 21.3 (1991), pp. 660–

674.

[100] L. Breiman. “Bagging predictors”. In: Machine Learning 24 (1996), pp. 123–140.

[101] Peter Bühlmann, Bin Yu, et al. “Analyzing bagging”. In: The Annals of Statistics 30.4

(2002), pp. 927–961.

[102] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[103] Meng Wang et al. “A Survey on Large-scale Machine Learning”. In: CoRR abs/2008.03911

(2020). arXiv: 2008.03911.

72



[104] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. “Clustering High-Dimensional Data:

A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Cluster-

ing”. In: ACM Trans. Knowl. Discov. Data 3.1 (Mar. 2009). issn: 1556-4681.

[105] Benyamin Ghojogh et al. Sampling Algorithms, from Survey Sampling to Monte Carlo

Methods: Tutorial and Literature Review. 2020. arXiv: 2011.00901 [stat.ME].

[106] Deanna Needell, Rachel Ward, and Nati Srebro. “Stochastic Gradient Descent, Weighted

Sampling, and the Randomized Kaczmarz algorithm”. In: Advances in Neural Informa-

tion Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc.,

2014.

[107] Eric Moulines and Francis Bach. “Non-Asymptotic Analysis of Stochastic Approxima-

tion Algorithms for Machine Learning”. In: Advances in Neural Information Processing

Systems. Ed. by J. Shawe-Taylor et al. Vol. 24. Curran Associates, Inc., 2011.

[108] Peter Richtárik and Martin Takáč. On Optimal Probabilities in Stochastic Coordinate

Descent Methods. 2013. arXiv: 1310.3438 [stat.ML].

[109] Dominik Csiba and Peter Richtárik. “Importance Sampling for Minibatches”. In: Journal

of Machine Learning Research 19.27 (2018), pp. 1–21.

[110] Angelos Katharopoulos and François Fleuret. “Not All Samples Are Created Equal:

Deep Learning with Importance Sampling”. In: CoRR abs/1803.00942 (2018). arXiv:

1803.00942.

[111] Guillaume Alain et al. Variance Reduction in SGD by Distributed Importance Sampling.

2016. arXiv: 1511.06481 [stat.ML].

[112] Ilya Loshchilov and Frank Hutter. Online Batch Selection for Faster Training of Neural

Networks. 2016. arXiv: 1511.06343 [cs.LG].

[113] Karianne J Bergen et al. “Machine learning for data-driven discovery in solid Earth

geoscience”. In: Science 363.6433 (2019).

[114] Željko Ivezić et al. Statistics, data mining, and machine learning in astronomy: a prac-

tical Python guide for the analysis of survey data. Vol. 1. Princeton University Press,

2014.

[115] William W Hsieh. Machine learning methods in the environmental sciences: Neural net-

works and kernels. Cambridge university press, 2009.

73



[116] J Nathan Kutz. “Deep learning in fluid dynamics”. In: Journal of Fluid Mechanics 814

(2017), pp. 1–4.

[117] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized trees”. In:

Machine learning 63.1 (2006), pp. 3–42.

[118] Liang Liang et al. “A machine learning approach to investigate the relationship be-

tween shape features and numerically predicted risk of ascending aortic aneurysm”. In:

Biomechanics and modeling in mechanobiology 16.5 (2017), pp. 1519–1533.

[119] Anuj Karpatne et al. “Theory-guided data science: A new paradigm for scientific discov-

ery from data”. In: IEEE Transactions on knowledge and data engineering 29.10 (2017),

pp. 2318–2331.

[120] Mark Alber et al. “Integrating machine learning and multiscale modeling—perspectives,

challenges, and opportunities in the biological, biomedical, and behavioral sciences”. In:

NPJ digital medicine 2.1 (2019), pp. 1–11.

[121] Nathan Baker et al. Workshop report on basic research needs for scientific machine

learning: Core technologies for artificial intelligence. Tech. rep. USDOE Office of Science

(SC), Washington, DC (United States), 2019.

[122] Jared Willard et al. “Integrating physics-based modeling with machine learning: A sur-

vey”. In: arXiv preprint arXiv:2003.04919 (2020).

[123] Anuj Karpatne et al. “Physics-guided neural networks (pgnn): An application in lake

temperature modeling”. In: arXiv preprint arXiv:1710.11431 (2017).

[124] Jimmy Forsberg and Larsgunnar Nilsson. “On polynomial response surfaces and Kriging

for use in structural optimization of crashworthiness”. In: Structural and multidisci-

plinary optimization 29.3 (2005), pp. 232–243.

[125] WJ Roux, Nielen Stander, and Raphael T Haftka. “Response surface approximations for

structural optimization”. In: International journal for numerical methods in engineering

42.3 (1998), pp. 517–534.

[126] Kai Liu, Duane Detwiler, and Andres Tovar. “Optimal design of nonlinear multimaterial

structures for crashworthiness using cluster analysis”. In: Journal of Mechanical Design

139.10 (2017).

[127] Hu Wang, GY Li, and Enying Li. “Time-based metamodeling technique for vehicle crash-

worthiness optimization”. In: Computer Methods in Applied Mechanics and Engineering

199.37-40 (2010), pp. 2497–2509.

74



[128] H. Fang et al. “A comparative study of metamodeling methods for multiobjective crash-

worthiness optimization”. In: Computers & Structures 83.25 (2005), pp. 2121–2136. issn:

0045-7949.

[129] Shahabedin Salehghaffari, Masoud Rais-Rohani, and Ali Najafi. “Analysis and optimiza-

tion of externally stiffened crush tubes”. In: Thin-walled structures 49.3 (2011), pp. 397–

408.

[130] Hanfeng Yin et al. “Multiobjective crashworthiness optimization design of functionally

graded foam-filled tapered tube based on dynamic ensemble metamodel”. In: Materials

& Design 55 (2014), pp. 747–757.

[131] Javad Marzbanrad and Mohammad Reza Ebrahimi. “Multi-objective optimization of

aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm

and neural networks”. In: Thin-Walled Structures 49.12 (2011), pp. 1605–1615.

[132] M Shakeri, R Mirzaeifar, and S Salehghaffari. “New insights into the collapsing of cylin-

drical thin-walled tubes under axial impact load”. In: Proceedings of the Institution of

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221.8 (2007),

pp. 869–885.

[133] Milad Abbasi et al. “A new approach for optimizing automotive crashworthiness: con-

current usage of ANFIS and Taguchi method”. In: Structural and Multidisciplinary Op-

timization 49.3 (2014), pp. 485–499.

[134] Kai Liu et al. “Towards nonlinear multimaterial topology optimization using unsuper-

vised machine learning and metamodel-based optimization”. In: ASME 2015 Interna-

tional Design Engineering Technical Conferences and Computers and Information in

Engineering Conference. American Society of Mechanical Engineers Digital Collection.

2015.

[135] Kai Liu et al. “Optimal design of cellular material systems for crashworthiness”. In: SAE

World Congress and Exhibition (2016). issn: 0148-7191.

[136] Erdem Acar and Kiran Solanki. “Improving the accuracy of vehicle crashworthiness

response predictions using an ensemble of metamodels”. In: International Journal of

Crashworthiness 14.1 (2009), pp. 49–61.

[137] Kai Liu et al. “Thin-walled compliant mechanism component design assisted by machine

learning and multiple surrogates”. In: SAE World Congress and Exhibition (2015). issn:

0148-7191.

75



[138] Jack PC Kleijnen. “Kriging metamodeling in simulation: A review”. In: European journal

of operational research 192.3 (2009), pp. 707–716.

[139] Erdem Acar, MURAT Altin, and Mehmet Ali Güler. “Evaluation of various multi-cell

design concepts for crashworthiness design of thin-walled aluminum tubes”. In: Thin-

Walled Structures 142 (2019), pp. 227–235.

[140] Carl Edward Rasmussen and CK Williams. Gaussian processes for machine learning,

vol. 1. 2006.

[141] Hu Wang, GY Li, and Enying Li. “Time-based metamodeling technique for vehicle crash-

worthiness optimization”. In: Computer Methods in Applied Mechanics and Engineering

199.37-40 (2010), pp. 2497–2509.

[142] Johan AK Suykens and Joos Vandewalle. “Least squares support vector machine classi-

fiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[143] Genki Yagawa and H Okuda. “Neural networks in computational mechanics”. In: Archives

of Computational Methods in Engineering 3.4 (1996), pp. 435–512.

[144] Felix Meister et al. “Towards Fast Biomechanical Modeling of Soft Tissue Using Neural

Networks”. In: (2018). arXiv: 1812.06186 [q-bio.QM].

[145] Cheng Chi, Gábor Janiga, and Dominique Thévenin. “On-the-fly artificial neural net-

work for chemical kinetics in direct numerical simulations of premixed combustion”. In:

Combustion and Flame 226 (2021), pp. 467–477. issn: 0010-2180.

[146] Sam Greydanus, Misko Dzamba, and Jason Yosinski. “Hamiltonian Neural Networks”.

In: CoRR abs/1906.01563 (2019). arXiv: 1906.01563.

[147] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems. 2017, pp. 5998–6008.

[148] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural

networks: A deep learning framework for solving forward and inverse problems involv-

ing nonlinear partial differential equations”. In: Journal of Computational Physics 378

(2019), pp. 686–707.

76


