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ABSTRACT 

Transport in engineered materials such as electrodes, membranes, filters, and natural 

materials such as rock, sand, soil can be modelled as transport in porous media. Direct 

Numerical Simulations (DNS) on volumetric images of porous media are commonly done 

using the Lattice Boltzmann Method (LBM), but this presents various challenges such as long 

computational time required to reach steady state, fixed grid coarseness, and limited 

availability of reliable LBM software, commercial or otherwise. Traditional finite element-

based methods require conformal meshes of porous domains that are able to accurately 

capture fluid/solid interfaces, but at the cost of significant computational complexity and 

user-interaction in order to create the mesh. 

To address these challenges, this work presents the application of a diffuse-interface finite 

element method that approximates a phase-field from volumetric images of porous media 

without user interaction and enables the use of a simple structured grid/mesh for traditional 

finite element-based fluid mechanics methods. The presented diffuse interface method 

(DIM) is automated and non-iterative, enabling the direct calculation of three characteristic 

coefficients from an input images: tortuosity, permeability, and inertial constant by 

simulating Fickian mass diffusion and single component incompressible Navier Stokes 

equation from low to high range of inlet velocity. Three different 2D test images with varying 

porosities are used to demonstrate the use of DIM. The method is compared to traditional 

FEM implementation using conformal meshes with respect to the agreement with 

determination of the characteristic coefficients, numerical accuracy, and computational 

requirements (time). Different parameters affecting accuracy of DIM were identified and 

ideal parameters were determined. At ideal parameters, relative error in tortuosity less than 

0.75%, relative error in permeability less than 1% and relative error in inertial constant less 

than 3% was achieved for all three images. Though, DIM was found to be slower than 

traditional FEM implementation calling for optimized solvers for fluid flow on structured 

meshes to speed up the DIM simulations. The developed method provides an automated 

approach for computing effective transport properties from volumetric images of porous 

media. 
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1 INTRODUCTION 

1.1 Research Motivation 

A porous material or porous medium is essentially a solid matrix containing voids usually 

called pores [1]. Fluid flow through porous medium is important to many fields such as 

purification, filtration, engineering (chemical engineering, petroleum engineering, 

bioremediation, construction engineering), geosciences (hydrogeology, petroleum 

geology, geophysics), biology, material science. Applications include estimates of 

subsurface contamination, geological CO2 storage, explosivity of volcanic eruptions [2]–

[4], energy conversion and energy storage devices, where porous electrode materials are 

essential for supercapacitors, fuel cells, and batteries [5].  

Porosity, tortuosity, and permeability are central parameters for describing and 

understanding transport through the porous media. Porosity describes the volume 

fraction of voids in the medium. Tortuosity is a measure of effective transport length of 

particles transporting through the medium[6]. Permeability describes the ability of the 

medium to transport fluid due to a pressure gradient[7]. To determine these properties, 

experimentation needs to be done on each individual material under varying conditions 

which can be expensive and/or time consuming. Experiments involve applying boundary 

conditions that match the physical law being used and determining the fitting parameters 

for empirical relations. It can be difficult to determine the parameters accurately and 

experiments also require costly sensors. Experiments also involve physical activities 

which may be hazardous, risky and generate waste, especially when the experiment fails 

or if the assumptions are wrong. Hence, computational simulations become important to 

determine properties of porous media. They provide fast and inexpensive alternative to 

physical experiments. In addition, simulations help to assess and analyse pore scale 

phenomenon information as well which is often not observable by physical experiments 

such as pore size distribution and local transport phenomenon fields (concentration, 

velocity, pressure, temperature, etc.) [8].  
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Multiphysics simulations on images of porous media can be rather challenging due to 

unstructured, complex geometry and sharp interfaces. Complexity originates from 

meshing the geometry conformally meaning that the mesh must conform to cubic facets 

of porous media voxel image which often do not create smooth mesh surfaces since the 

actual surface of solid matrix in porous media is irregular. Apart from accurately 

conforming to solid boundaries of porous media, mesh should also be numerically stable 

and accurate. Methods have been published to automate the conformal mesh generation 

accurately for two- or three- dimensional domains [9] but the resulting numerical 

stability and accuracy of the simulation typically involves user-input, and generating 

conformal mesh is computationally expensive too.   

To address the issues caused by meshing porous media geometry conformally, this work 

is based on implementing diffuse interface method (DIM) on images of porous media to 

simulate mass diffusion and fluid flow on a structured mesh over whole domain of 

interest. The diffuse interface method is a variation of immersed boundary method with 

a scalar phase field marking the different phases in domain[10], [11]. The phase field 

varies smoothly at the solid-fluid interface which is the key using non-conformal meshes. 

Diffuse interface methods with both uniform structured and adaptively refined meshes 

have been reported in the literature to mesh complex domains from volumetric images 

and  perform fluid simulations [10]–[14]. This method allows a reduction in complexity 

associated with conformally meshing porous domains and to considerably reduce the 

number of mesh elements required to estimate pore space mass transport and fluid flow 

properties. 

Past works from Nguyen et al, Stoter et al and Aland et al [10], [13], [15] demonstrated 

application of diffuse interface method on volumetric images using adaptively refined 

mesh for the phase-field on the solid-fluid interface region and a uniform mesh for the 

representation of the physics-based solution fields. Adaptively refining the mesh at solid-

fluid interface adds extra complexity to the method and increases number of mesh 

elements. Porous media geometries have high surface area and irregulars features at 

interface which makes adaptive mesh refining unsuitable. This work implements a 
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uniform structured meshing for diffuse interface method and to generate the scalar phase 

field. Different parameters are identified and analysed which affect the accuracy of diffuse 

interface method and optimised to reach acceptable accuracy. The simulations are run 

using OpenCMP– an open source computational Multiphysics package [16] to determine 

characteristic properties of mass transport and fluid flow in porous media- tortuosity, 

permeability and inertial constant. The results from uniformly meshed diffuse interface 

method are then compared to results from traditional finite element method on 

conformal mesh to determine accuracy.  

In summary, the diffuse interface method was analysed, and ideal parameters are 

predicted for structured uniform mesh of porous media domain to determine 

characteristic properties of fluid flow in porous media while reducing meshing 

complexity and reaching acceptable accuracy as compared to conformal meshing. 

1.2 Objectives 

The overall objective of this work was to implement the diffuse interface method on 

uniform structured meshes generated from volumetric images of porous media and 

determine characteristic coefficients from mass diffusion and incompressible Navier 

Stokes simulations. The specific steps taken are stated as follows- 

▪ Generate uniform structured mesh of phase field from binary images of porous 

media.  

▪ Determine suitable initial and boundary conditions for Poisson and 

incompressible Navier Stokes equations.  

▪ Take existing implementation of diffuse interface method for Poisson equation 

and incompressible Navier Stokes equation, analyse and determine the ideal 

parameters that affect accuracy. 

▪ Apply isomorphic transformation for Dirichlet boundary conditions at solid-fluid 

interface to prevent ‘swelling’ of solids. 

▪ Constraint the diffuse interface width parameter to reduce degrees of freedom. 
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▪ Determine characteristic coefficients from diffuse interface method and measure 

accuracy as compared to finite element method simulations on conformal mesh. 

1.3 Structure of Thesis 

The thesis is distributed into following chapters: Chapter 1- Introduction, Chapter 2- 

Background and Literature Review, Chapter 3- Methodology, Chapter 0- Results and 

Discussions and Chapter 5- Conclusions and Recommendations. 

Chapter 2  contains background on transport phenomenon in porous media and 

important properties, background and literature review on DNS methods used to 

determine properties, the finite element method with mathematics of weak formulation 

of relevant equations and lastly background and literature review on diffuse interface 

method and weak formulation of same relevant equations. 

Chapter 3 discusses the methodology starting with obtaining the image, meshing- 

conformal and structured phase field, diffuse interface method parameters, formulation 

of the necessary equations with boundary conditions, solver settings and lastly 

generation of reference results for the same geometry on conformal meshes. 

Chapter 4 presents the results and discussion starting with determination of tortuosity 

by diffuse interface method. Then a comprehensive comparison of tortuosity by two 

methods at varying DIM parameters is presented. Similar section follows on the 

determination of permeability and inertial constant by diffuse interface method, 

introducing isomorphic transformation to mitigate spheres swelling, optimising DI width 

based on isomorphic transformation and mesh coarseness. Then a comprehensive 

comparison of permeability and Forchheimer constant by two methods at varying DIM 

parameters is presented.  

Chapter 5 summarizes conclusions from the work and recommend possible future work 

to improve the performance.  
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2 BACKGROUND AND LITERATURE REVIEW 

 

2.1 Transport Phenomenon in Porous Media 

Porous media can be defined as any material that contains a solid structure or matrix and 

open void spaces. The solid matrix can be deformable like a sponge or immobile solid like 

a piece of rock. There is no distinct degree of deformability of the solid matrix but the 

velocity of the solid phase with respect to the boundary of the system should be much 

less than the velocity of the fluid that can flow within the porous medium[17]. One 

additional requirement for a system to be considered as a porous medium would be 

accessibility of interconnected void spaces inside of solid matrix for fluid to flow. These 

void spaces are termed as pores. This work focuses entirely on single component mass 

and fluid flow through rigid solid matrix. 

Porous media can be classified based on occurrence- natural versus artificial (example- 

Berea sandstone is naturally occurring, and ceramic material is man-made), on basis of 

permeability, on basis of consolidation (example- unconsolidated loose solid grains 

under gravity or pressure versus consolidated solid grains) and on basis of size range of 

pores. The size ranges can vary anywhere between 1 𝑛𝑚 to 1 𝑚𝑚. The International 

Union of Pure and Applied Chemistry (IUPAC) classified porous media for chemists based 

on pore sizes, 𝑅𝑝 as follows- 

• Macroporous: 𝑅𝑝 > 150 𝑛𝑚 

• Mesoporous: 5 𝑛𝑚 < 𝑅𝑝 < 150 𝑛𝑚 

• Microporous: 𝑅𝑝 < 5 𝑛𝑚 

Since IUPAC classifies a relatively short range of 𝑅𝑝 sizes, engineers generally use the 

term nano porous for pore sizes 𝑅𝑝 < 1000 𝑛𝑚.  

To overcome difficulty posed by physical experiments, volumetric images of porous 

media are used by researchers to conduct image analysis[18], [19] and determine 
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properties by numerical simulations [20]. These images are basically two- or three-

dimensional arrays and can be either greyscale or binary. Grayscale images are arrays 

with values between 0 and 2𝑛𝑏𝑖𝑡𝑠 − 1 where 𝑛𝑏𝑖𝑡𝑠 is the number of bits in a byte or, more 

simply put, it is the numerical accuracy of the image. The typical digitization process of 

an image, stores images with 8 bits per byte. Thus, giving a range of values from 0 to 255 

where 0 is black, 255 is white and intermediate values are Gray with increasing 

brightness from 0 to 255. Binary images have elements with values of either 0 or 1. The 

value of each element in a binary array indicates the phase. There are number of ways to 

experimentally obtain volumetric images of porous media such as-  

• Serial Sectioning  

• Tomography 

• Magnetic Resonance Imaging (MRI) 

Though, these methods give exact images of geometrical and mineralogical morphology 

of the pore space, only a single image of the investigated porous material sample is 

typically acquired. Due to variability associated with the morphology of porous material, 

often numerous images of the same porous material type are required to obtain a 

distribution over larger volume. Experimental acquisition of these high-resolution 

images by above mentioned methods is time consuming and expensive. Artificial 

generation of images enable customization and save resources used on actual imaging 

without having a real sample image. Figure 1 presents an example of artificial 2D image 

with colour ‘black’ representing solid domain and ‘white’ representing pore space. This 

work artificially generates and uses 2D binary images as a representation of porous 

media with 1 representing pore space and 0 representing solid domain. 
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Figure 1: Artificial 2D binary image representing microscopic cross section of a Porous 
Material 

The following sections give a background and literature review on the characteristic 

properties of porous media- 

2.1.1 Porosity 

One of the most important parameters to determine fluid flow properties through porous 

media is the measure of open space inside solid matrix that facilitate transport of mass 

and fluid across the medium [21]. The open space inside solid matrix is known as pores 

and this property is termed as porosity (𝜀). Porosity is the ratio of the pore volume to the 

total volume (bulk volume) given by equation (2.1): 

 𝜀 =
𝑉𝑝

𝑉𝑝 + 𝑉𝑠
= 1 −

𝑉𝑠
𝑉𝑏

 (2.1) 

 

where, 𝑉𝑝 is volume occupied by pores, 𝑉𝑠 is volume occupied by pores and 𝑉𝑏 is the bulk 

volume. 𝑉𝑏 = 𝑉𝑠 + 𝑉𝑝 

It is commonly observable for some pores to get trapped inside solid matrix and become 

isolated from other pores. A porous material sample might have large porosity but no 

conductivity of fluid because of no interconnection. Transportation of fluids through 

porous medium is thus controlled by connected pores. These trapped pores reduce the 

overall effective porosity. Hence, two different types of porosities are defined- 
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• Absolute Porosity (𝜀𝑎)- The ratio of the total pore space in the porous medium to 

that of the bulk volume. 

 𝜀𝑎 =
𝑉𝑝𝑇𝑜𝑡𝑎𝑙

𝑉𝑝𝑇𝑜𝑡𝑎𝑙 + 𝑉𝑠
= 1 −

𝑉𝑠
𝑉𝑏

 (2.2) 

 

• Effective Porosity (𝜀𝑒𝑓𝑓)- The ratio of the interconnected pore space in the porous 

medium to that of the bulk volume. For most practical and engineering purposes, 

effective porosity is used. 

 𝜀𝑒𝑓𝑓 =
𝑉𝑝𝑒𝑓𝑓
𝑉𝑏

 (2.3) 

 

2.1.2 Tortuosity 

In addition to the amount of void space available for transport, other important factor is 

the connectivity of pores inside solid matrix. The disordered nature of the pore structures 

result in a “tortuous” internal flow path for fluid permeation, molecular diffusion, 

electrical conduction, and heat transfer [22]–[30]. In geology, tortuosity affects 

parameters such as permeability, effective diffusivity, formation resistivity factor, and 

thermal conductivity [6], [28]–[31]. Tortuosity is a significant component in the design of 

electrodes for energy storage and conversion to increase battery capacity [32]–[34], in 

chemical catalysis for reaction efficiency [35], in water treatment for distillation 

performance [36] and in bone tissue engineering by affecting cell migration [37].  Due to 

variety of applications in various fields, tortuosity, unlike other standard pore structure 

properties, is vaguely defined with several definitions and evaluation methods used in 

different models and situations. Geometrical tortuosity can be used to characterize the 

morphological property of pore structures, while physical tortuosities - hydraulic, 

electrical, diffusional, and thermal tortuosities can be defined to describe different 

transport processes in porous media [28]. Geometrical and physical tortuosities are 

described in detail as follows- 
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GEOMETRICAL TORTUOSITY 

The ratio of effective flow path length (𝐿𝐻) to straight line distance 𝐿 in the macroscopic 

flow direction is defined as geometrical tortuosity (𝜏𝑔) [27], [38]. Geometrical tortuosity 

is a pore structure property that is solely determined by the geometrical and 

morphological characteristics of porous media. There are many image analysis-based 

algorithms which can be used to determine the shortest connected path between two 

opposite surface pixels/voxels on one side of the digital pore structure and another 

surface pixel/voxel on the other. Some of these methods are the direct shortest-path 

search method (DSPSM), the skeleton shortest path search method (SSPSM), the fast 

marching method (FMM), the pore centroid method (PCM), etc. [28]. These image-based 

algorithms work directly with pixel/voxel data, and they're usually simple to build and 

fast to compute. It's worth noting, however, that geometrical tortuosity does not account 

for pore radius change along pore channels, even though the narrowing and hindrance of 

pore structures play an important role in transport qualities. 

 𝜏𝑔 =
𝐿𝐻
𝐿
  (2.4) 

 

 

Figure 2: Effective flow-path length 𝑳𝒉 and straight-line distance L in a 2D digital 
microstructure 
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PHYSICAL TORTUOSITY 

The estimation of tortuosity from pore scale transport phenomenon is termed as physical 

tortuosity. These transport phenomena can be fluid flow, electric conduction, molecular 

diffusion, and heat transfer and are governed by two principles at steady state [39]- (1) 

the conservation law which governs the conservation of physical quantity  of transport 

matter (mass, charge, energy, momentum) and (2) the behaviour of transport matter 

within a control volume.  The steady-state flux of different transport matter driven by an 

applied force can be used to determine physical tortuosities. Assuming the density of 

transport matter is constant and independent of space and time, the continuity equation 

can be stated as: 

 𝛁. 𝑱 = 0 (2.5) 

 

where 𝑱 is the steady-state flux of transport matter. Various transport processes are 

governed by similar macroscopic laws (e.g., Darcy's, Fick's, Ohm's, Fourier's, and 

Newton's law), which have the following general expression [39]:  

 𝑱 = −𝛿𝛁𝐹𝑑𝑟𝑖𝑣𝑒 (2.6) 

 

where the steady-state flux 𝑱 of transport matter is proportional to the applied driving 

force ∇𝐹𝑑𝑟𝑖𝑣𝑒, and the proportionality constant 𝛿 is the phenomenological coefficient 

corresponding to transport property (i.e., intrinsic permeability, diffusion coefficient, 

electrical conductivity, thermal conductance, or dynamic viscosity). 

The different transport phenomena that can be analysed based on equations (2.5) and  

(2.6) are presented in Table 1 as following –  
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Table 1: Different transport phenomena in porous media 

Transport 

Phenomena 

Driving Force Governing 

relationship 

Proportionality 

constant 

Definitive 

Law 

Molecular 

diffusion 

Concentration 

gradient 

𝑱𝒅 = −𝐷𝛁𝐶 Diffusion 

coefficient 𝐷 

Fick’s law 

Electric 

conduction 

Voltage 

gradient 

𝑱𝒆 = −𝜎𝛁V Electric 

conductivity 𝜎 

Ohm’s law 

Heat transfer Temperature 

gradient 

𝑱𝒉 = −𝜆𝛁T Thermal 

conductance 𝜆 

Fourier law 

Fluid flow Pressure 

Gradient 

𝑱𝒗 = −𝐾𝛁P Intrinsic 

permeability 𝐾 

Darcy’s law 

 

where 𝑱𝒅, 𝑱𝒆, 𝑱𝒉, 𝑱𝒗 represent diffusion flux, electric charge flux, heat flux and volumetric 

fluid flux respectively. 

The tortuosity of a porous medium determined by concentration flux within porous 

media of diffusing gases is known as diffusional tortuosity. This work focuses on 

determination of diffusional tortuosity. The effective diffusivity of a gas within porous 

media 𝐷𝑒𝑓𝑓 is observed to be lower than the diffusing gas's bulk diffusivity 𝐷0. Diffusional 

tortuosity explains the lower diffusivity by relating the effect of morphology on diffusive 

flux and is given by [40], [41]: 

 𝜏 =
𝐷0
𝐷𝑒𝑓𝑓

𝜀  (2.7) 

   

The steady state diffusive flux passing through porous media is compared against steady 

state diffusive flux of similar gas through a homogenous open space with similar 

dimensions. The ratio of both fluxes gives diffusional tortuosity. Fick's law can be used to 

calculate the diffusional flux travelling through porous media and the homogeneous open 

space: 
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 𝐽𝑑
𝑝𝑜𝑟𝑒 = −𝐴𝐷𝑒𝑓𝑓∇𝐶 (2.8) 

 

 𝐽𝑑
𝑓𝑟𝑒𝑒

= −𝐴𝐷0∇𝐶 (2.9) 

 

where 𝐽𝑑
𝑝𝑜𝑟𝑒 and 𝐽𝑑

𝑓𝑟𝑒𝑒
 are diffusional fluxes travelling through porous media and the 

homogeneous open space respectively. By substituting equation (2.8) and (2.9) into 

equation (2.7), diffusional tortuosity 𝜏𝑑  is given as: 

 𝜏𝑑 =
𝐷0
𝐷𝑒𝑓𝑓

𝜀 =  
𝐽𝑑
𝑓𝑟𝑒𝑒

𝐽𝑑
𝑝𝑜𝑟𝑒 𝜀 (2.10) 

 

2.1.3 Permeability and Forchheimer Constant 

The early research to model fluid flow through porous media started with observations 

and experiments to describe the bulk behaviour of porous media [42]. Because the 

system's fundamental equation, the Navier-Stokes equation, and the physical structure of 

porous media were too complex for researchers to derive a mathematical model, many 

researchers relied on experiment and observation to comprehend porous media[43]. The 

Darcy model is one of the most widely used models for estimating flow across porous 

media. Henry Darcy was the first to develop the model in 1856 [42]. Darcy undertook a 

series of tests on subsurface fluid flow and water supply using water flowing down a 

column of packed sand. Darcy was able to deduce from this experiment that the pressure 

differential in the column was linearly related to velocity. 

 − ∇𝑝 = 𝒂 ⋅ 𝑽 (2.11) 

 

where 𝑝 represents pressure, 𝒂 represents Darcy coefficient and 𝑽 represents velocity. 

The Darcy coefficient is a vector for any porous media since it depends on the direction 

of fluid flow. It can be defined for a single direction as: 
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 𝑎 =
𝜇

𝐾
 (2.12) 

 

where 𝜇 is fluid viscosity and 𝐾 is the porous media permeability.  

 

Figure 3: Representation of flow through porous media with cross-section area 𝑨, length 
𝑳 and flowrate 𝑸. The flux of fluid flow is 𝑸/𝑨 with pressure gradient applied between 

inlet and outlet.  

 

Henry Darcy was only able to examine low flow rates in his tests due to the technological 

limitations at the time. Forchheimer in 1901 repeated Darcy’s experiments and 

determined that the equation (2.11) only holds true for low flow rates (Re < 10) [44]. It 

was observed that at higher flowrates, the inertial forces arising from variations in flow 

velocity or direction along the flow paths due to constrictions or obstructions had 

significant effects on pressure drop resulting in an additional quadratic term between the 

pressure gradient and the velocity. Thus, Forchheimer added a second term to Darcy’s 

model [45], which changes equation (2.11) to: 

 − ∇𝑝 = 𝒂 ⋅ 𝑽 + 𝒃 ⋅ 𝑽𝟐 (2.13) 

 

where 𝒃 represents Forchheimer coefficient. Forchheimer coefficient is a vector for any 

porous media since it depends on the direction of fluid flow. It can be defined for a single 

direction as: 
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 𝑏 = 𝛽𝜌 (2.14) 

 

where 𝜌 is fluid density and 𝛽 is non-Darcy coefficient or the inertial resistance. It is also 

established that coefficient 𝑎 represents the intrinsic permeability of the porous media 

because of inverse relationship to permeability [46]–[48] whereas, coefficient 𝑏 depends 

on the geometrical properties of porous media and needs to be determined by 

experiments or simulations [49], [50]. 

The observed pressure drop due to inertial forces can also be described by an analogous 

example of flow in a straight tube versus in a bent elbow. The presence of a radial 

pressure differential caused by the centrifugal force acting on the fluid is the most 

distinguishing feature of flow through a bend. As a result, the fluid in the pipe's centre 

flows to the outer edge and then back along the wall to the inner side. This results in a 

double spiral flow field, as shown in Figure 4. If the bent elbow curvature is strong 

enough, the pressure gradient at the outer wall in the bend and near the inner wall just 

after the bend may cause flow separation at these spots, resulting in a considerable 

increase in pressure losses. Friction and momentum exchanges generated by a change in 

flow direction are both responsible for pressure losses in a bend. Both of these variables 

are influenced by the bend angle, curvature ratio, and Reynolds number. The overall 

pressure drop can be expressed as the sum of two components: 1) friction in a straight 

pipe of equivalent length, which is primarily determined by the Reynolds number (and 

pipe roughness); and 2) losses due to direction change, which are typically expressed in 

terms of a bend-loss coefficient and are primarily determined by the curvature ratio and 

bend angle. 
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Figure 4: Schematic diagram of flow in an elbow; (a) longitudinal section; (b) rectangular 
cross-section; (c) circular cross-section [51] 

 

Now, based on the Darcy and Forchheimer model, the flow in porous media can be 

categorised into two regimes- Darcy flow and non-Darcy flow as shown in Figure 5. Darcy 

flow is defined as a flow region in which the change in pressure is proportional to velocity, 

or a flow region in which Darcy's law, equation (2.11), applies to a porous material. The 

viscous stress in the fluid as it flows through the pore spaces controls Darcy flow. The 

zone in which fluid velocity is high for Darcy’s law to apply is referred to as non-Darcy 

flow. In this region, in addition to the viscous forces that govern Darcy's law, the inertial 

effects of the flow through porous media become significant. When Reynolds number of 

fluid flow through porous domain is greater than 10, non-Darcy flow is said to exist, 

though this may vary system to system.  
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Figure 5: Representation of different flow regimes based on flow rate. Also called Darcy-
Forchheimer Curve  
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2.2 Numerical methods for Pore Scale Resolution of Porous Media 

Numerical methods for pore scale resolution of porous media refer to the use of the voxel 

image as the grid for computing fluid flow and mass transfer. This approach allows for 

the inclusion of pore structure directly in simulations, thereby accounting for the impact 

of the porous material. Numerical methods for pore scale simulations can be categorised 

on basis of spatial discretization techniques i.e., structured, and unstructured grid 

models. The structured method is used in the majority of grid-based pore-scale 

simulations. This popularity stems from the Lattice-Boltzmann method's success in 

simulating flows for complex geometries. The method also enables for the mesh 

generation stage to be bypassed by considering the volumetric image as a structured grid, 

which is significant.  

 

Traditional numerical techniques such as finite difference, finite volume and finite 

element methods are also applicable to use on structured grids. However, structured 

grids are unsuitable for complex geometries such as porous media since the curved 

surfaces become stepped and jagged, which causes problems especially for higher 

velocity flow. Unstructured grids on the other hand are based on a connected collection 

of polyhedral, tetrahedral, hexahedral, or prism shaped grids to describe an unstructured 

representation of a particular computational domain. Despite widespread recognition 

that unstructured grids are well adapted to geometrically complex domains, only few 

investigations of flow in porous media have employed this method [52], [53] because of 

the complexity associated with generating unstructured meshes for porous media. Even 

with recent advancement in mesh generation techniques and improving high 

performance computing resources, unstructured grids are difficult to generate, time 

consuming and require advanced meshing tools such as GMSH [54], Avizo [55]and 

commercial Multiphysics modelling and simulation software such as COMSOL 

Multiphysics [56], ANSYS Fluent[57].   
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2.2.1 Lattice Boltzmann Method (LBM) 

The Lattice Boltzmann Method (LBM) has been a popular method for simulating fluid 

flows in porous media. Unlike traditional approaches that explicitly discretize the 

continuum equations of transport when studying fluid flow, LBM uses kinetic theory to 

derive a discrete approximation to the incompressible Navier-Stokes equations. There 

are some advantages of using Lattice Boltzmann approach for pore-scale modelling [58]. 

A voxel or pixel image can be directly used as a structured grid for LBM. Due to the explicit 

character of the method, the use of local pointers/vectors, and a lattice-based distribution 

of particle sites well suited to domain decomposition, Lattice Boltzmann systems are by 

nature well adapted to parallelization. Furthermore, pressure is determined using an 

equation of state, eliminating the necessity to solve a pressure Poisson equation to 

resolve the incompressibility restriction. 

However, Lattice Boltzmann Method comes with limitations as well. M. Goodarzi, M. R. 

Safaei et al. conducted a comprehensive comparison of the Lattice Boltzmann and finite 

volume methods for solving natural convection heat transfer problems inside cavities 

and enclosures using various discretization schemes and pressure-velocity linking 

algorithms [59]. The finite volume method results were found to be more accurate 

compared to those of LBM, especially at the corners and LBM required 4-5 times the CPU 

time and 8-9 times the iteration to solve the considered testcase. LBM is found to have 

problems with fluid flows with Mach numbers greater than 0.1 even at the expense of a 

compressibility error [60], [61]. Flows with pressure variations or density variations 

greater than 0.01 also show significant deviations from incompressible Navier-Stokes 

flows. Although, the Mach numbers and density fluctuations in pore scale flows are often 

minimal, the Mach numbers and density fluctuations in the lattice Boltzmann models 

used to mimic similar processes can be significantly greater.  

  



 

 

 

 

19 

 

2.2.2 Conventional Numerical Methods  

Navier-Stokes equations are solved in conventional numerical methods by discretizing 

the spatial differential operators on a Eulerian grid using techniques like the finite 

difference method (FDM), finite volume method (FVM), or finite element method (FEM). 

If the computational grid is fine enough, all three approaches should produce the same 

result. In general, the rate of convergence of these numerical methods depend on the 

complexity and heterogeneity of the porous medium [62]. The finite difference approach 

approximates the derivatives of the differential equation in terms of solution values at 

neighbouring mesh nodes using a Taylor series expansion. On Euclidean grids, it is simple 

to apply and quite successful. When dealing with complex geometries, however, FDM can 

be challenging to apply [63]. The finite volume technique uses a zeroth-order 

approximation of the solution within each mesh element, which can vary discontinuously 

between mesh elements, making the method relatively stable. Flux balances over each 

mesh element and the continuity of fluxes between neighbouring mesh elements are used 

to determine the specific value of the approximate solution within each mesh element. 

This also makes the finite volume technique conservative locally. Though, the application 

of FVM to scenarios with complex changing boundaries is difficult and sophisticated [64]. 

The finite element approach uses higher-order polynomial interpolants within mesh 

elements to ensure that the approximate solution remains consistent across mesh 

element nodes without imposing flow constraints. In comparison to the finite volume 

method, this enhances accuracy at the expense of stability and local conservation 

[65],[66]. Though, many new advances made to the finite element method address the 

main issues. This work is focused on using FEM for porous media on an unstructured 

conformal and a structured grid separately. FEM is discussed in more detail in section 2.3 

and mathematical weak forms for the concerned equations are formulated for the model. 
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2.3 Finite Element Method 

The finite element method (FEM) has been a popular method for solving differential 

equations. FEM allows a wide range of differential equations from many scientific 

applications to be analysed and solved within a similar framework. This is owing to the 

fact that it is derived in a very general way using a weak formulation of a physical 

problem. Furthermore, improving the numerical method's order simply by changing the 

basis functions is quite useful. The FEM can be derived from method of weighted 

residuals [67]. The space is partitioned into connected elements for the finite element 

method. Piecewise polynomial functions are used to approximate the solution in each of 

these elements. For each nodal point, a collection of basis functions is defined. After that, 

they can be used to estimate derivatives. For example, piecewise linear basis functions 

are presented in Figure 6. Higher-order basis functions can also be generated. These can 

be used to improve the solution's accuracy. Each element, however, will require the 

addition of another node. 

 

Figure 6: Example of finite element method's piecewise linear basis functions. 

 

While the finite element method has been widely utilised to solve fluid flow issues, it has 

only been applied to flow in porous medium in a limited number of cases. The finite 

element method works well with unstructured tetrahedral grids. Simple 2D geometries 
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or simple 3D arrangements of spherical particles have been studied in certain significant 

research [68], [69]. These findings, on the other hand, have not been applied in a broad 

sense to challenges involving image-based pore-scale modelling. Section 2.3.1 and 2.3.2 

present derivation of weak forms for Poisson and incompressible Navier Stokes equation 

respectively as needed for the project: 

2.3.1 Poisson Equation 

The following Poisson equation is presented, and weak form is derived: 

 − ∇2𝑢 = 𝑓  in  Ω (2.15) 

 

where 𝑢 is an unknown function, f is a forcing function and Ω is the domain. 

The following boundary conditions are applied: 

 𝑢 = 𝑔  on 𝜕Ω𝐷 (2.16) 

 −𝒏.𝛁 𝑢 = ℎ  𝑜𝑛 𝜕Ω𝑁 (2.17) 

 −𝒏.𝛁 𝑢 = 𝑟(𝑢 − 𝑞)  𝑜n 𝜕Ω𝑅 (2.18) 

  

where 𝜕Ω𝐷 , 𝜕Ω𝑁 and 𝜕Ω𝑅 are Dirichlet, Neumann and Robin conditions respectively.  

For weak formulation, the Poisson equation (2.15) is multiplied with a test function 𝑣 and 

integrated: 

 − ∫ (∇2𝑢)𝑣
Ω

= ∫𝑓𝑣
Ω

  in  Ω (2.19) 

 

Now, we can expand the left-hand side of (2.19) by either product rule of differentiation 

or Divergence Theorem. Using product rule of differentiation on 𝛁. 𝑣 : 

 𝛁. (𝛁uv) = (∇2𝑢)𝑣 + (𝛁𝑢). (𝛁𝑣) (2.20) 



 

 

 

 

22 

 

 − ∫ (∇2𝑢)𝑣
Ω

= ∫(𝛁𝑢). (𝛁𝑣)
Ω

−∫𝛁. (𝛁𝑢𝑣)
Ω

 (2.21) 

 

Now, we can write ∫ 𝛁. (𝛁𝑢𝑣)
Ω

 as:  

 ∫𝛁. (𝛁𝑢𝑣)
Ω

= ∫ (
𝜕𝑢

𝜕𝑛
)

𝜕Ω

𝑣 (2.22) 

Substituting (2.22) back in (2.19): 

 ∫(𝛁𝑢). (𝛁𝑣)
Ω

−∫ (
𝜕𝑢

𝜕𝑛
)

𝜕Ω

𝑣 = ∫𝑓𝑣
Ω

 (2.23) 

  

A different space is defined for test function v such that 𝑣 = 0 on 𝜕Ω𝐷  

Now, the Neumann and Robin boundary conditions can be substituted directly into (2.23) 

and considering test function 𝑣 vanishes on Dirichlet boundary. We get a simplified weak 

form with all the boundary conditions inserted: 

 ∫(𝛁𝑢). (𝛁𝑣)
Ω

−∫ 𝑣ℎ
𝜕ΩN

− ∫ 𝑣𝑟(𝑢 − 𝑞)
𝜕Ω𝑅

= ∫𝑓𝑣
Ω

 (2.24) 

 

2.3.2 Incompressible Navier Stokes Equation 

In order to find a weak form of the Navier-Stokes equations, firstly, we start with the 

momentum equation: 

 
∂𝒖

∂𝑡
− ν∇2𝒖 + (𝒖 ⋅ 𝛁)𝒖 + 𝛁𝑝 = 𝒇 in Ω (2.25) 

 

where 𝜈 is kinematic viscosity and 𝒇 is some body force. 

The following boundary conditions are considered: 

 𝒖 = 𝒈  on 𝜕Ω𝐷 (2.26) 
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 −𝒏. (ν𝛁 𝒖 − 𝑝) = 𝒉  𝑜𝑛 𝜕Ω𝑁 (2.27) 

 −𝒏. (ν𝛁 𝒖 − 𝑝) = 𝒓(𝒖 − 𝑞)  𝑜n 𝜕Ω𝑅 (2.28) 

 

The, multiply it with a test function 𝑣, defined in a suitable space 𝑉, and integrate both 

members with respect to the domain Ω : 

 ∫  
Ω

∂𝒖

∂𝑡
⋅ 𝒗 − ∫  

Ω

𝜈∇2𝒖 ⋅ 𝒗 + ∫  
Ω

(𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗 + ∫  
Ω

𝛁𝑝 ⋅ 𝒗 = ∫  
Ω

𝒇 ⋅ 𝒗 (2.29) 

 

Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' 

theorem: 

 −∫  
Ω

 ν∇2𝒖 ⋅ 𝒗 = ∫  
Ω

 ν𝛁𝒖 ⋅ 𝛁𝒗 − ∫  
∂Ω

 ν
∂𝒖

∂𝐧
⋅ 𝒗 (2.30) 

 

 ∫  
Ω

 𝛁𝑝 ⋅ 𝒗 = −∫  
Ω

 𝑝𝛁 ⋅ 𝒗 + ∫  
∂Ω

 𝑝𝒗 ⋅ 𝒏 (2.31) 

 

Using these relations, 

 

∫  
Ω

∂𝒖

∂𝑡
⋅ 𝒗 + ∫  

Ω

ν𝛁𝒖 ⋅ 𝛁𝒗 + ∫  
Ω

(𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗 − ∫  
Ω

𝑝𝛁 ⋅ 𝒗

= ∫  
Ω

𝒇 ⋅ 𝒗 + ∫  
∂Ω

(𝜈
∂𝒖

∂𝒏
− 𝑝𝐧) ⋅ 𝒗 

(2.32) 

 

Similarly, the continuity equation is multiplied by a test function 𝑞 belonging to a test 

space 𝑄 and integrated in the domain Ω: 

 ∫𝑞𝛁. 𝒖
Ω

= 0 (2.33) 
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Considering that the test function 𝑣 vanishes on the Dirichlet boundary 𝜕Ω𝐷 and 

considering Neumann boundary condition on 𝜕Ω𝑁, the integral on boundary can be 

rearranged as: 

 

∫  
∂Ω

(𝜈
∂𝒖

∂𝐧
− 𝑝𝐧) ⋅ 𝒗 = ∫  

∂ΩD

(𝜈
∂𝒖

𝜕𝒏
− 𝑝𝐧) ⋅ 𝒗

⏟            
𝒗=0 on ∂Ω𝐷

+∫  
∂ΩN

(𝜈
∂𝒖

∂𝐧
− 𝑝𝐧)

⏟        
=𝒉 on ∂ΩN

⋅ 𝒗 

+ ∫  
∂ΩR

(𝜈
∂𝒖

∂𝐧
− 𝑝𝐧)

⏟        
=𝒓(𝒖−𝑞) on ∂ΩR

⋅ 𝒗 =  ∫  
𝜕Ω𝑁

𝒉 ⋅ 𝒗 + ∫  
𝜕Ω𝑅

𝒓(𝒖 − 𝑞) ⋅ 𝒗 

(2.34) 

 

Having this in mind, the weak formulation of the Navier-Stokes equations is expressed 

as: 

 

∫  
Ω

 
∂𝒖

∂𝑡
⋅ 𝒗 + ∫  

Ω

 ν𝛁𝒖 ⋅ 𝛁𝒗 + ∫  
Ω

  (𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗 − ∫  
Ω

 𝑝𝛁 ⋅ 𝒗

= ∫  
Ω

 𝒇 ⋅ 𝒗 + ∫  
𝜕Ω𝑁

 𝒉 ⋅ 𝒗 + ∫  
𝜕Ω𝑅

𝒓(𝒖 − 𝑞) ⋅ 𝒗 𝑓𝑜𝑟  𝒗 ∈ 𝑉 

(2.35) 

 

 ∫  
Ω

 𝑞𝛁 ⋅ 𝒖 = 0  𝑓𝑜𝑟 𝑞 ∈ 𝑄 (2.36) 
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2.4 Diffuse Interface Method 

Traditional finite element method implementation is based on a simulation domain 

represented by a mesh conforming to the shape of the domain. The mesh nodes lie on the 

domain boundary, but the mesh edges do not. Sufficient mesh refinement is needed to 

correctly approximate the surface boundary. Figure 7 shows increasing levels of mesh 

refinement to accurately conform to the simulation domain. The mesh refinement can get 

increasingly tedious for geometries with irregular features and high curvatures such as 

porous media. 

 

Figure 7: Example of complex geometry meshed conformally with increasing refinement 
level with unstructured triangular mesh. This figure was taken from Monte et al  [11]. 

Since porous media geometries are difficult to conformally mesh with structured and/or 

quadrilateral/hexahedral meshes, unstructured triangular or tetrahedral meshes are 

often utilised [70]. This, however, ignores the several advantages of structured 

quadrilateral/hexahedral meshes. Structured meshes are easier and less memory 

intensive to store than unstructured meshes since they have simple connectivity 

architectures. Because organised meshes provide easy-to-solve sparse matrices with 

non-zero entries confined to the main diagonal or more diagonals on either side, 

simulations are less computationally intensive. Furthermore, structured meshes are 

well-suited to GPU acceleration [71]. When aligned with the dynamics of the solution 

field, such as the direction of flow in fluid dynamics simulations, 

quadrilateral/hexahedral mesh elements improve simulation stability and numerical 

accuracy. They can also be extended in this direction without losing their shape, allowing 
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for coarser meshes without reducing mesh quality [72]. Additionally, building 

unstructured conformal meshes for complex geometry such as porous media is difficult 

and time consuming. Typical approach of the meshing process involves CAD-based 

(Computer Aided Design) meshing. Any given domain must first be characterised by a 

surface in the CAD-based meshing approach. This equates to detecting the iso-surface of 

a segmented 3D image in the context of image-based pore-scale modelling. The job of 

extracting an iso-surface from a regular grid is a significant challenge with numerous 

applications in visualisation, graphics, and vision [73]. CAD based meshing approach is 

also attributed to poor triangle quality, likelihood to overestimate surface area and to 

over triangulate based on a sample density equal to voxel size [74]. 

Instead of conformally meshing complex shapes, the novel diffuse interface approach can 

be used. It's a type of immersed boundary method in which the complicated geometry is 

surrounded in a structured non-conforming mesh and a phase field is mapped to the 

mesh's nodes as shown in Figure 8. The phase field 𝜙 is a scalar field that varies smoothly 

from zero to one at the complex geometry's border and is equal to one on mesh elements 

inside the simulation domain and zero on mesh elements outside the concerned 

geometry. For porous domain, that would be one in the pore space and zero inside solid 

matrix. The region where magnitude of gradient of the phase field,  |∇𝜙| > 0 is the diffuse 

boundary region and the original sharp boundary of geometry is found at scalar value of 

phase field 𝜙 = 0.5. 

Using a finite element method with weakly defined governing equations like volume and 

surface integrals, diffuse interface boundary value problems on exceedingly complex 

domains can be solved without explicitly parameterizing boundary and interface 

surfaces. From Nguyen et al’s work [10], following identities are used to convert volume 

integrals on Ω and surface integrals on 𝜕Ω to volume integrals on 𝜅: 

 ∫  
Ω

 𝐴𝑑Ω = ∫ 
𝜅

 𝐴𝐻𝑑Ω ≈ ∫ 
𝜅

 𝐴𝜙𝑑Ω (2.37) 
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 ∫  
𝜕Ω

 𝐵𝑑𝜕Ω = ∫ 
𝜅

 𝛿𝜕Ω 𝐵𝑑Ω ≈ ∫ 
𝜅

 𝐵|𝛁𝜙|𝑑Ω (2.38) 

 

 𝒏 ≈  −
𝛁𝜙

|𝛁𝜙|
 (2.39) 

 

where Ω is the complex geometry with boundary 𝜕Ω, 𝜅 is the structured surrounding 

domain, 𝐻 is a Heaviside function, 𝛿𝜕Ω is a Dirac delta function and 𝑛 is the outward facing 

normal. 𝐻 and 𝛿𝜕Ω are approximated by 𝜙 and |∇𝜙| respectively.  

 

 

Figure 8: Domain 𝛀 surrounded with larger structured mesh 𝜿 in (a), binary phase field 
representation of geometry in (b), phase field with a diffuse interface in (c), gradient of 

diffuse interface approximated by |𝛁𝛟| in (d), different phase fields 𝝓 and |𝛁𝝓| variation 
with distance from boundary in (e) and (f). This figure was taken from Monte et al [11]. 
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The ability to employ structured quadrilateral/hexahedral meshes for any complicated 

geometry is the fundamental benefit of an immersed boundary approach such as diffuse 

interface method, as opposed to unstructured meshes generated from CAD files, which 

have stability difficulties and require a lot of time and effort. The absence of mesh 

conformance to the complex geometry boundary, on the other hand, has a detrimental 

impact on simulation accuracy. Boundary conditions are spread across numerous mesh 

components, curving boundaries take on a step-like appearance, and the apparent scale 

of complex geometry changes. Previous work by Nguyen et al. has addressed this issue 

by altering the integration schemes within mesh elements including the complex 

geometry boundary, as with cut cell approaches [14], or by greatly refining the mesh near 

the complex geometry boundary [10]. Though, adaptive mesh refining technique adds up 

to the computational complexity and time of the simulation process. Additionally, porous 

media geometries have high surface area and irregulars features at interface which 

makes adaptive mesh refining unsuitable for diffuse interface method. This work focuses 

on using diffuse interface method on complex pore structures of porous media using 

OpenCMP’s implementation [16] without adaptive mesh refining at interfaces and 

reaching acceptable accuracy by optimising the various parameters as explained in 

Methodology section of the work. Section 2.4.1 and 2.4.2 present derivation of weak 

forms for Poisson and incompressible Navier Stokes equation for diffuse interface 

method respectively as needed for the project. 

2.4.1 Poisson Equation  

Starting with the Poisson equation: 

 − ∇2𝑢 = 𝑓  in  Ω (2.40) 

 

where 𝑢 is an unknown function, 𝑓 is a forcing function and Ω is the domain. Considering 

the following boundary conditions: 

 𝑢 = 𝑔  on 𝜕Ω𝐷 (2.41) 



 

 

 

 

29 

 

 −𝒏.𝛁 𝑢 = ℎ  𝑜𝑛 𝜕Ω𝑁 (2.42) 

 −𝒏.𝛁 𝑢 = 𝑟(𝑢 − 𝑞)  𝑜n 𝜕Ω𝑅 (2.43) 

  

where 𝜕Ω𝐷 , 𝜕Ω𝑁 and 𝜕Ω𝑅 are Dirichlet, Neumann and Robin conditions respectively.  

Continuing from the weak form derived in section 2.3.1, the equation (2.24): 

 ∫(𝛁𝑢). (𝛁𝑣)
Ω

−∫ 𝑣ℎ
𝜕ΩN

− ∫ 𝑣𝑟(𝑢 − 𝑞)
𝜕Ω𝑅

= ∫𝑓𝑣
Ω

 (2.44) 

 

Now to move from conformal domain Ω to structured grid domain 𝜅, a phase field 𝜙 is 

defined with value of one on the mesh elements inside Ω and zero outside Ω. There is a 

smooth transition of 𝜙 from zero to one across the boundary 𝜕Ω. From Nguyen et al’s 

work [10], following identities are used to convert volume integrals on Ω and surface 

integrals on 𝜕Ω to volume integrals on 𝜅: 

 ∫  
Ω

 𝐴𝑑Ω = ∫ 
𝜅

 𝐴𝐻𝑑Ω ≈ ∫ 
𝜅

 𝐴𝜙𝑑Ω (2.45) 

 

 ∫  
𝜕Ω

 𝐵𝑑𝜕Ω = ∫ 
𝜅

 𝛿𝜕Ω 𝐵𝑑Ω ≈ ∫ 
𝜅

 𝐵|𝛁𝜙|𝑑Ω (2.46) 

 

 𝒏 ≈  −
𝛁𝜙

|𝛁𝜙|
 (2.47) 

 

where 𝐻 is a Heaviside function, 𝛿𝜕Ω is a Dirac delta function and 𝑛 is the outward facing 

normal. They are approximated by 𝜙 and |𝛁𝜙| respectively.  

Substituting these identities into (2.44): 
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 ∫ 
𝜅

𝛁𝑢 ⋅ 𝛁𝑣𝜙 +∫ 
𝜅

𝑣ℎ|𝛁𝜙|𝜙𝑁 −∫ 
𝜅

𝑣𝑟(𝑢 − 𝑞)|𝛁𝜙|𝜙𝑅 = ∫ 
𝜅

𝑓𝑣𝜙 (2.48) 

 

where 𝜙𝑁 and 𝜙𝑅 correspond to portions of phase field with Neumann and Robin 

boundary conditions respectively [11]. 

Since, the 𝜅 mesh does not conform to the edge of interface, Dirichlet boundaries can not 

be applied by setting value of trial function 𝑣 at the interface. To apply the Dirichlet 

boundary conditions, the Nitsche Method [10] is used to weakly impose in the 𝜕ΩD region 

of the interface. The Poisson equation weak form after adding Nitsche terms becomes: 

 

∫ 
𝜅

 𝛁𝑢 ⋅ 𝛁𝑣𝜙 + ∫ 
𝜅

 𝑣ℎ|𝛁𝜙|𝜙𝑁 −∫ 
𝜅

 𝑣𝑟(𝑢 − 𝑞)|𝛁𝜙|𝜙𝑅 −∫ 
𝜅

 𝑣𝑓𝜙 + 

∫ 
𝜅

  (𝑢 − 𝑔)𝛁ϕ ⋅ 𝛁𝑣𝜙𝐷 +∫ 
𝜅

 𝑣𝛁𝜙 ⋅ 𝛁u𝜙𝐷 +  𝛽 ∫ 
𝜅

 𝑣(𝑢 − 𝑔)|𝛁𝜙|𝜙𝐷 = 0 

(2.49) 

 

where 𝛽 is the penalty parameter, 𝛽 =
10𝑛2

ℎ
 , 𝑛 is the polynomial interpolant order and ℎ 

is the mesh element size.  

2.4.2 Incompressible Navier Stokes Equation 

Starting with momentum equation on a domain Ω: 

 
∂𝒖

∂𝑡
− ν∇2𝒖 + (𝒖 ⋅ 𝛁)𝒖 + 𝛁𝑝 = 𝒇  in Ω (2.50) 

 

where 𝜈 is kinematic viscosity and 𝒇 is some body force.  

The following boundary conditions are considered: 

 𝒖 = 𝒈  on 𝜕Ω𝐷 (2.51) 

 −𝒏. (ν𝛁 𝒖 − 𝑝) = 𝒉  𝑜𝑛 𝜕Ω𝑁 (2.52) 

 −𝒏. (ν𝛁 𝒖 −  𝑝) = 𝒓(𝒖 − 𝑞)  𝑜n 𝜕Ω𝑅 (2.53) 



 

 

 

 

31 

 

 

Continuing from the weak form derived in section2.3.2, the equation (2.35) and equation 

(2.36): 

 

∫  
Ω

 
∂𝒖

∂𝑡
⋅ 𝒗 + ∫  

Ω

 ν𝛁𝒖 ⋅ 𝛁𝒗 + ∫  
Ω

  (𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗 − ∫  
Ω

 𝑝𝛁 ⋅ 𝒗 − ∫  
Ω

 𝑞𝛁 ⋅ 𝒖 = 

 

∫  𝒇 ⋅ 𝒗
Ω

+ ∫  
𝜕Ω𝑁

 𝒉 ⋅ 𝒗 + ∫  
𝜕Ω𝑅

𝒓(𝒖 − 𝑞) ⋅ 𝒗       for       𝒗 ∈ 𝑉 𝑎𝑛𝑑 𝑞 ∈ 𝑄 

(2.54) 

 

Now to move from conformal domain Ω to structured grid domain 𝜅, a phase field 𝜙 is 

defined with value of one on the mesh elements inside Ω and zero outside Ω. There is a 

smooth transition of 𝜙 from zero to one across the boundary 𝜕Ω. From Nguyen et al’s 

work, following identities are used to convert volume integrals on Ω and surface integrals 

on 𝜕Ω to volume integrals on 𝜅: 

 ∫  
Ω

 𝐴𝑑Ω = ∫ 
𝜅

 𝐴𝐻𝑑Ω ≈ ∫ 
𝜅

 𝐴𝜙𝑑Ω (2.55) 

 

 ∫  
𝜕Ω

 𝐵𝑑𝜕Ω = ∫ 
𝜅

 𝛿𝜕Ω 𝐵𝑑Ω ≈ ∫ 
𝜅

 𝐵|𝛁𝜙|𝑑Ω (2.56) 

 

 𝒏 ≈  −
𝛁𝜙

|𝛁𝜙|
 (2.57) 

 

where 𝐻 is a Heaviside function, 𝛿𝜕Ω is a Dirac delta function and n is the outward facing 

normal. They are approximated by 𝜙 and |𝛁𝜙| respectively. Substituting these identities 

into (2.54): 

 ∫ 
𝜅

 
∂𝒖

∂𝑡
⋅ 𝒗𝜙 + ∫ 

𝜅

 ν𝛁𝒖 ⋅ 𝛁𝒗𝜙 +∫ 
𝜅

  (𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗𝜙 − ∫ 
𝜅

 𝑝𝛁 ⋅ 𝒗𝜙 − ∫ 
𝜅

 𝑞𝛁 ⋅ 𝒖ϕ (2.58) 
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= ∫ 𝒇 ⋅ 𝒗𝜙
𝜅

+∫ 
𝜅

𝒉 ⋅ 𝒗|𝛁𝜙|𝜙𝑁 + ∫ 
κ

𝒓(𝒖 − 𝑞) ⋅ 𝒗|𝛁𝜙|𝜙𝑅 

   

where 𝜙𝑁 and 𝜙𝑅 correspond to portions of phase field with Neumann and Robin 

boundary conditions respectively [11]. 

Since, the 𝜅 mesh does not conform to the edge of interface, Dirichlet boundaries can not 

be applied by setting value of trial function 𝑣 at the interface. To apply the Dirichlet 

boundary conditions, the Nitsche Method is used to weakly impose in the 𝜕ΩD region of 

the interface. The Incompressible Navier Stokes equation weak form after adding Nitsche 

terms becomes: 

 

∫ 
𝜅

 
∂𝒖

∂𝑡
⋅ 𝒗𝜙 + ∫ 

𝜅

 ν𝛁𝒖 ⋅ 𝛁𝒗𝜙 +∫ 
𝜅

  (𝒖 ⋅ 𝛁)𝒖 ⋅ 𝒗𝜙 − ∫ 
𝜅

 𝑝𝛁 ⋅ 𝒗𝜙 − ∫ 
𝜅

 𝑞𝛁 ⋅ 𝒖ϕ 

= ∫ 𝒇 ⋅ 𝒗𝜙
𝜅

+∫ 
𝜅

𝒉 ⋅ 𝒗|𝛁𝜙|𝜙𝑁 + ∫ 
κ

𝒓(𝒖 − 𝑞) ⋅ 𝒗|𝛁𝜙|𝜙𝑅 

+∫ 
𝜅

  (𝒖 − 𝒈)𝛁ϕ ⋅ 𝛁𝒗𝜙𝐷 +∫ 
𝜅

 𝒗𝛁𝜙 ⋅ 𝛁𝐮𝜙𝐷 +  𝛽∫ 
𝜅

 𝒗(𝒖 − 𝑔)|𝛁𝜙|𝜙𝐷 

(2.59) 

 

where 𝛽 is the penalty parameter, 𝛽 =
10𝑛2

ℎ
 , 𝑛 is the polynomial interpolant order and ℎ 

is the mesh element size.  



 

 

 

 

33 

 

3 METHODOLOGY 

This chapter starts with the procedure to artificially generate two dimensional binary 

images of porous media. This is followed by the two meshing methods – conformal and 

phase field on structured quadrilateral mesh and their description. The meshing methods 

are followed by formulation of the partial differential equations used to model mass 

diffusion and incompressible steady state fluid flow. Then, the initial and boundary 

conditions are formulated to best simulate the physical experiments, consistent solver 

settings are used throughout the simulations. Finally, reference solutions are simulated 

for all the images of different porosities on a conformal mesh for comparison to 

simulation results from diffuse interface method in Chapter 4. 

3.1 Image generation 

Since the work in the present thesis represents a first proof-of-concept, the images used 

were simple sphere packings artificially generated as follows. Following similar 

methodology, two additional images with different porosities are generated to 

demonstrate the numerical models and determine properties. The image is two 

dimensional, generated via open-source python package Porespy [75].  To generate the 

image, solid spheres are inserted in an empty NumPy array of size 1000 ×  1000. The 

image resolution is hence 1000 ×  1000. Six solid spheres of radius 100 pixels and two 

solid spheres of radius 150 pixels are inserted. Each pixel in the pore space is assigned 

the binary value of ‘1’ and each pixel in solid space is assigned a value of ‘0’. The image is 

a square lattice of spacing 1 𝜇𝑚 in each pixel. Hence, 1000 𝜇𝑚 or 1𝑚𝑚 in each direction 

which matches the dimensions of typical tomography images of porous media. Porosity 

of the image is determined by taking a sum of NumPy array divided by the size of array 

106. 

 𝜀 =
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑟𝑟𝑎𝑦

𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒
 (3.1) 
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The porosity of Figure 9 is determined to be 0.6703. Two additional images with porosity 

0.60 and 0.49 are generated similarly as shown in Figure 10. 

 

Figure 9: A 2D binary image representing porous medium 

 

 

(a) Porosity = 0.67 

 

(b) Porosity = 0.60 

 

(c) Porosity = 0.49 

Figure 10: Three different porous media images with varying porosities 
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3.2 Meshing 

This section discusses the two meshing methods used to determine transport properties- 

tortuosity, permeability, and inertial constant. An unstructured conformal mesh is 

generated with all the models applied to act as reference solutions to diffuse interface 

method solutions followed by generation of structured quadrilateral mesh with mapped 

phase field.  

3.2.1 Conformal Triangular Mesh 

As discussed in the background section of the thesis work, an unstructured conformal 

mesh is traditionally used with porous media geometries for solving with numerical 

scheme like finite element method. Unstructured conformal meshes with varying mesh 

densities – coarse to fine are generated using 𝐺𝑀𝑆𝐻 [54] – a meshing software as shown 

in Figure 11. 𝐺𝑀𝑆𝐻 generates a triangular mesh compatible with 𝑁𝐺𝑆𝑜𝑙𝑣𝑒 [76] and 

𝑂𝑝𝑒𝑛𝐶𝑀𝑃 [16]. GMSH is also used to label the physical boundaries, namely- ‘inlet’, ‘outlet’ 

and ‘walls’ as shown in Figure 12 which define the inlet boundary, outlet boundary and 

the solid matrix, isolated parallel boundaries of the pore structure respectively. 

 

Figure 11: 2D conformal mesh representing porous medium generated using 𝑮𝑴𝑺𝑯 



 

 

 

 

36 

 

 

Figure 12: Boundary labels applied on the conformal mesh using 𝑮𝑴𝑺𝑯 

  

3.2.2 Phase field mapped on a Structured Quadrilateral Mesh 

Phase field (𝜙) is a scalar field equal to zero on the mesh elements inside the solid domain 

and one in the pore space with smooth transition from zero to one at interface depending 

upon the chosen width of diffuse interface. Starting with original 2-dimensional binary 

NumPy image as shown in Figure 9, the border of the solid objects is extracted by 

subtracting original image from an image eroded by a single pixel. Then, a Euclidean 

distance transform of the solid border is taken using python package 𝑒𝑑𝑡 [77] Finally, an 

error function is used on the distance transform of the border from python package SciPy 

[78] to generate smooth transition of phase field from zero inside the solids to one in void 

space at the interface.  The width of diffuse interface is controlled by a parameter – 

lambda. The phase field is then projected on a structured quadrilateral mesh for 𝑁𝐺𝑆𝑜𝑙𝑣𝑒. 
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The different parameters affecting the phase field mapped on quadrilateral mesh are 

discussed in detail in section 3.3.  

 

 

 

Figure 13: 2D NumPy array representing phase field 
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3.3 Diffuse Interface Method Parameters  

The following parameters are defined to construct the structured quadrilateral mesh and 

phase field grid function with NumPy array interpolated onto it. The phase fields are 

demonstrated by an example image of a circle with binary value of one outside circle 

domain and zero inside. 

3.3.1 Lambda (𝝀) 

To generate a smooth transition of phase field from zero inside solids to one outside, an 

error function from the SciPy python package [78] is used: 

 erf (𝑧) =
2

√𝜋
 ∫ 𝑒−𝑡

2
 , 𝑡 = 0. . 𝑧   (3.2) 

 

where z in erf(𝑧) is the NumPy array of ratio of distance transform and lambda (𝜆). 

Lambda (𝜆) is used to vary the extent of phase field transition smoothening at the 

interface. Two times lambda (𝜆) corresponds to the number of pixels taken by width of 

diffuse interface in the original image resolution i.e., 1000 x 1000. 

3.3.2 Coarseness Ratio 

Coarseness Ratio is defined as the ratio between image resolution and the structured 

quadrilateral mesh scale.  

 𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜 =
𝐼𝑚𝑎𝑔𝑒 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 𝑀𝑒𝑠ℎ 𝑆𝑐𝑎𝑙𝑒
 (3.3) 

 

Coarseness ratio can be related to the coarseness of the structured mesh. Higher ratio 

indicates coarser mesh and vice versa. The image resolution is chosen to be 1000 x 1000 

and mesh scale is varied. A high image resolution gives the best approximation of curved 

boundaries. Coarseness ratio directly affects the number of elements in the mesh, the 

accuracy of the simulation compared to conformal mesh solutions and most importantly 
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the stability of the simulation. For example, Figure 14 shows a structured mesh with 

coarseness ratio of ten i.e., mesh scale of 100 × 100. 

 

Figure 14: Diffuse Interface Phase Field with 𝒄𝒐𝒂𝒓𝒔𝒆𝒏𝒆𝒔𝒔 𝒓𝒂𝒕𝒊𝒐 =  𝟏𝟎 

3.3.3 Diffuse Interface Width 

The number of structured mesh elements of the phase field (𝜙) grid function where the 

value of phase field is varying between zero inside the solids to one in the void/pore space 

is termed as diffuse interface width. Magnitude of gradient of phase field, |∇𝜙| is greater 

than zero in the region of diffuse interface boundary. Diffuse interface width of the 

structured mesh can be calculated as: 

 𝐷𝑖𝑓𝑓𝑢𝑠𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑊𝑖𝑑𝑡ℎ =
2𝜆

𝐶𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 𝑅𝑎𝑡𝑖𝑜
 (3.4) 
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Figure 15 demonstrates gradient of phase field on structured mesh with coarseness ratio 

of ten i.e., mesh scale of 100 × 100 with varying diffuse interface width from four to half 

mesh elements. Large values of DI width extend the boundary condition constraints into 

the interior of the complex geometry or into the void space depending on the type of 

boundary condition- Neumann or Dirichlet respectively. DI width smaller than one mesh 

elements does not present a smooth gradient of phase field 𝜙 at the boundaries leading 

to numerical approximation errors. 

 

 

Figure 15: Gradient of phase field on structured mesh with varying DI width 
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3.4 Model Formulation 

3.4.1 Tortuosity 

Diffusional tortuosity is determined by comparing the steady-state diffusive fluxes 

passing through the porous media space and the free homogeneous space with the same 

dimensions. A constant concentration difference is applied between 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 

boundary faces, while the other two faces parallel to the diffusional flow direction are set 

as solid walls for purpose of isolation. 

Driven by the constant concentration gradient, the diffusive specie moves from the inlet 

face to the outlet face. At steady state, the diffusional mass flux passing through the 

porous media space and the free homogeneous space can be obtained from Fick’s law: 

Fick’s first law for flux in single direction can be stated as: 

 Jd
(Pore) = −𝐴𝐷𝑒𝑓𝑓∇𝐶 (3.5) 

 

 Jd
(Free) = −𝐴𝐷𝑏𝑢𝑙𝑘∇𝐶 (3.6) 

 

where Jd
(Pore) and Jd

(Free) are the diffusion fluxes passing through the porous media space 

and free homogenous space respectively. 

Fick’s second law: 

 
∂C

∂t
= ∇·(𝐷𝑏𝑢𝑙𝑘∇𝐶) (3.7) 

 

The Dirichlet boundary conditions are: 

C = 1 𝑚𝑜𝑙/𝑚3  at 𝑖𝑛𝑙𝑒𝑡 

C = 0 𝑚𝑜𝑙/𝑚3  at 𝑜𝑢𝑡𝑙𝑒𝑡 
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Now, the steady state Fick’s first Law can be compared to a steady state Poisson equation 

with source term 𝑓=0. 

 ∇2𝐶 = 0 (3.8) 

 

Neumann no flux boundary condition at pore-solid interface 𝑤𝑎𝑙𝑙𝑠 is set as: 

 ∇𝐶 ⋅ n = 0 (3.9) 

 

From equation (2.10), taking the ratio of Jd
(Pore)

 and Jd
(Free)

, Tortuosity 𝜏 can be expressed 

as: 

 𝜏 =
Jd
(Free)

Jd
(Pore) 

𝜀 =
𝐷𝑏𝑢𝑙𝑘
𝐷𝑒𝑓𝑓

𝜀 (3.10) 

 

Table 2 summarises the list of parameters with numerical values where applicable and 

consistent units. 

Table 2: List of parameters used in determination of tortuosity with constant values and 
units 

Parameter Variable Value Units 

Length 𝐿 1000 𝜇𝑚 

Concentration 𝐶 −  𝑚𝑜𝑙/𝑚3 

Bulk Diffusivity 𝐷𝑏𝑢𝑙𝑘 1 𝑚𝑚2/𝑠 

Effective Diffusivity 𝐷𝑒𝑓𝑓 −  𝑚𝑚2/𝑠 

Concentration flux 𝐽𝑑  −  (𝑚𝑜𝑙/𝑚2𝑠) 

Porosity 𝜀 −  −  
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3.4.2 Permeability and Inertial Constant 

Permeability and initial constant of a porous medium image is determined by conducting 

many incompressible fluid flow simulations at varying inlet velocities and measuring the 

pressure drop for each specific inlet velocity between 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundary faces. 

The quadratic relationship between pressure gradient and inlet velocities as shown in 

equation (3.11) is plotted and coefficients determined from the plot are used to 

determine permeability and inertial constant. The coefficient of the linear velocity term 

called Darcy coefficient is used to determine permeability as shown in equation (3.12) 

and the coefficient of quadratic velocity term called Forchheimer coefficient is used to 

determine inertial constant as shown in equation (3.13).  

Darcy-Forchheimer relationship: 

 − ∇𝑝 = 𝒂 ⋅ 𝐯 + 𝒃 ⋅ 𝐯𝟐 (3.11) 

 

where 𝒂 represents Darcy coefficient and 𝒃 represents Forchheimer coefficient. Darcy 

and Forchheimer coefficients are vector quantities for any porous media since they 

depend on the direction of fluid flow. They can be defined for a single direction as: 

 𝑎 =
𝜇

𝐾
 (3.12) 

 

 𝑏 = 𝛽𝜌 (3.13) 

 

where 𝜇 is fluid dynamic viscosity, 𝐾 is the porous media permeability, 𝜌 is fluid density 

and 𝛽 is inertial constant. It is also established that coefficient 𝑎 represents the intrinsic 

permeability of the porous media because of inverse relationship to permeability [46]–

[48] whereas, coefficient 𝑏 depends on the geometrical properties of porous media and 

needs to be determined by experiments or simulations. 
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The steady state incompressible Navier—Stokes equations is modelled as follows: 

 𝛁. 𝐯 = 0 (3.14) 

 

 𝛁. (𝐯𝐯) − 𝜈∇2𝐯 + 𝛁𝑝 = 0 (3.15) 

 

where 𝐯 represents velocity vector, 𝜈 represents kinematic viscosity and 𝑝 represents 

scalar pressure field. 

The Dirichlet boundary conditions are: 

v = 0.05 − 0.15 𝑚/𝑠 at 𝑖𝑛𝑙𝑒𝑡  

Inlet velocities are selected from the Forchheimer regime. 

v = 0 𝑚/𝑠 at 𝑤𝑎𝑙𝑙𝑠 that is no slip condition on solid interface  

No stress outlet boundary condition is set at the 𝑜𝑢𝑡𝑙𝑒𝑡: 

 𝒏 ⋅ (𝐯𝐯 −  𝜈𝛁𝐯 +  𝑝𝐼) − max(𝐯 ⋅ 𝒏, 0) 𝐯 = 𝟎 (3.16) 

 

To handle the non-linear convection term in equation (3.15), Oseen style linearization is 

done: 

 𝛁 ⋅ (𝐯𝐯) → 𝛁 ⋅ (𝐯𝒘) (3.17) 

  

where 𝒘 is a known velocity field which is taken as the solution of the previous iteration. 

The relative non-linear tolerance for Oseen linearization is set as 1 × 10−4 or after four 

iterations. 

Table 3 summarises the list of parameters with numerical values where applicable and 

consistent units. 
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Table 3: List of parameters used in determination of permeability and inertial constant 
with constant values and units 

Parameter Variable Value Units 

Length 𝐿 1000 𝜇𝑚 

Velocity v 0.05 –  0.15 𝑚/𝑠 

Kinematic viscosity 𝜈 1 𝑚𝑚2/𝑠 

Dynamic viscosity 𝜇 10−3 𝑃𝑎 𝑠 

Density 𝜌 1000 𝐾𝑔/𝑚3 

Pressure 𝑝 −  𝑃𝑎 

Permeability 𝐾 −  𝑚2 

Inertial constant 𝛽 −  𝑚−1 

 

3.5 Using Finite Element Method on conformal mesh 

This section will discuss results on a conformal mesh based on simulations conditions 

described in section 3.4. Models as are implemented on three geometries with varying 

porosities as shown in Figure 10 to determine the properties from mass diffusion and 

incompressible Navier Stokes fluid flow. 

Conformal meshes are generated with similar mesh density for the three images using 

𝐺𝑀𝑆𝐻 as presented in Figure 16: 

 

(a) Porosity = 0.67 

 

(b) Porosity = 0.60 

 

(c) Porosity = 0.49 

Figure 16: Conformal meshes of three different porous media geometries with varying 
porosity and same mesh density 



 

 

 

 

46 

 

3.5.1 Tortuosity of Porous Media 

For conducting the finite element simulation for Poisson equation (3.8) with Dirichlet 

boundaries at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 and Neumann boundaries at 𝑤𝑎𝑙𝑙𝑠, OpenCMP was used. 

Starting with types of finite element spaces, Poisson simulation uses standard H1 finite 

element space for scalar variable with polynomial order equal to three. Choice of solver 

and preconditioner are set as 𝑑𝑖𝑟𝑒𝑐𝑡. The output simulation result file is saved in .vtu 

format for visualization in 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 – an open-source, multi-platform data analysis and 

visualization application [79]. Number of subdivisions in the .vtu file is set to be equal to 

polynomial order of the H1 space that is, three. Simulation settings are summarised in 

Table 4. 

Table 4: Simulation settings for Poisson equation to determine Tortuosity  

Finite element space H1 

interpolant order 3 

solver direct 

preconditioner direct 

.vtu subdivisions 3 

 

Mass flux is measured at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries from the simulations using 

𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. The mass flux determined from simulations is then substituted into equation 

(3.10) to determine tortuosity. The simulation settings are kept same for simulation on a 

conformal mesh and a structured quadrilateral mesh with phase field for diffuse interface 

method. Results from a conformal mesh are presented as follows for reference 

comparison to diffuse interface method results in chapter 4.  Figure 17 and Figure 18 

show the 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 visualization of concentration fields with above mentioned 

conditions for the geometries with different porosities. Concentration field can be seen 

varying from 1 to 0 from 𝑖𝑛𝑙𝑒𝑡 to 𝑜𝑢𝑡𝑙𝑒𝑡 across the domain. 
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Figure 17: Concentration field visual from simulation on conformal mesh 

 

 

 

Figure 18: Concentration field for images with varying porosities on conformal mesh 
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Figure 19 and Figure 20 show the 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 visualization of magnitude of concentration 

gradient fields with above mentioned conditions for the geometries with different 

porosities. Concentration gradient field can be seen varying from 1 × 10−3 to 0 across the 

domain. Concentration gradient is determined to measure the total concentration flux by 

integrating the gradient across boundaries. It is observed that the concentration flux is 

same at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries which is true for conservation of mass across 

simulation domain.  

 

Figure 19: Concentration gradient field visual from simulation on conformal mesh 

 

 

Figure 20: Concentration gradient field visual for images with varying porosities on 
conformal mesh 
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The solution was also made to be mesh independent by determining tortuosity on 

conformal meshes at varying mesh density- from coarse to fine. The relative error is 

defined as- 

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝜏 − 𝜏𝑟𝑒𝑓

𝜏𝑟𝑒𝑓
 (3.18) 

 

where, 𝜏 is the tortuosity at present mesh and 𝜏𝑟𝑒𝑓 is the tortuosity at finest mesh.  

Relative error in tortuosity is allowed to reach tolerance of 1 × 10−3 as shown in Table 5 

and Figure 21. The mesh density at this tolerance is used for conformal meshes for porous 

media geometries with porosities equal to 0.60 and 0.49 as well.  

 

Table 5: Reaching mesh independence for mass diffusion on conformal mesh with 
porosity = 0.67    

Number of 

elements 

Conc. flux 

at inlet 

Conc. flux 

at outlet 

Tortuosity Absolute 

error 

Relative 

error 

2.70E+02 0.515619 0.518655 1.2918 0.16086 0.11073 

2.90E+02 0.50814 0.511943 1.3087 0.14392 0.09908 

5.84E+02 0.482519 0.482914 1.3874 0.06525 0.04492 

8.00E+02 0.475373 0.475344 1.4095 0.04316 0.02971 

1.67E+03 0.467330 0.467329 1.4337 0.01898 0.01307 

4.24E+03 0.463295 0.463297 1.4462 0.00651 0.00448 

9.09E+03 0.461981 0.461982 1.4503 0.00239 0.00165 

1.54E+04 0.461553 0.461553 1.4516 0.00104 0.00072 

3.34E+04 0.461222 0.461222 1.4527 0.00000 0.00000 
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Figure 21: Reaching mesh independent reference conformal solution for porosity = 0.67 

 

Repeating the process for geometries with porosity equal to 0.60 and 0.49 give the 

following values of tortuosity. Table 6 summarises the determination of tortuosity from 

simulation data for all images. These values are used against tortuosities from diffuse 

interface method to determine the method’s accuracy Table 7 presents the simulation 

run times for mesh independent solutions with the number of mesh elements. 

Table 6: Summary of tortuosity values for all three images on conformal mesh 

Porosity 0.67 0.6036 0.493846 

Flux (𝑚𝑜𝑙/𝑚2𝑠) 0.46122 0.39119 0.29440 

Concentration inlet (𝑚𝑜𝑙/𝑚3) 1 1 1 

Concentration outlet (𝑚𝑜𝑙/𝑚3) 0 0 0 

D_bulk (𝑚𝑚2/𝑠) 1 1 1 

Length (𝜇𝑚) 1000 1000 1000 

D_eff (𝑚𝑚2/𝑠) 0.461222 0.391192 0.294403 

Tortuosity 1.45266 1.54297 1.67744 
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Table 7: Simulation run times for tortuosity model at converged conformal meshes 

Porosity Number of mesh elements Simulation run time (s) 

0.67 15392 1.7747 

0.6 14178 1.6358 

0.493 12332 1.2935 
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3.5.2 Permeability and Inertial Constant of Porous Media 

For setting up the finite element simulation for continuity equation (3.14) and Navier 

Stokes equation (3.15) with Dirichlet boundary conditions at 𝑖𝑛𝑙𝑒𝑡, 𝑤𝑎𝑙𝑙𝑠 and no stress 

outlet boundary condition at 𝑜𝑢𝑡𝑙𝑒𝑡, OpenCMP is used. Starting with types of finite 

element spaces, incompressible Navier Stokes simulation uses the standard Taylor-Hood 

finite element pair-  VectorH1 finite element space for velocity field and H1 finite element 

space for pressure field. The polynomial order is set as three for velocity field and two for 

pressure field. Choice of solver and preconditioner are set as 𝑑𝑖𝑟𝑒𝑐𝑡. The output 

simulation result file is saved in .vtu file format for visualization in 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 – an open-

source, multi-platform data analysis and visualization application [79]. Number of 

subdivisions in the .vtu file is set to be equal to polynomial order of the VectorH1 space 

that is, three. Table 8 summarises the simulation settings. 

Table 8: Simulation conditions for incompressible Navier Stokes equation to determine 
permeability and inertial constant 

Finite element space (u) VectorH1 

Finite element space (p) H1 

kinematic viscosity (mm2/s) 1 

interpolant order 3 

solver direct 

preconditioner direct 

linearization method Oseen 

non-linear tolerance 1 × 10−4 

Non-linear max iterations 4 

.vtu subdivisions 3 

 

Averaged velocity magnitude and averaged pressure are measured at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 

boundaries from the simulations using 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. Varying averaged velocity and 

pressure magnitudes are then plotted and resulting quadratic relationship is used to 
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determine permeability and inertial constant. The simulation settings are kept same for 

simulation on a conformal mesh and a structured quadrilateral mesh with phase field for 

diffuse interface method. For simulations on conformal mesh, it is verified that the mesh 

density which gave a converged mesh independent solution for tortuosity calculation 

give converged mesh independent solution for pressure gradient too across domain. 

Results from a conformal mesh are presented as follows for reference comparison to 

diffuse interface method results in chapter 4. 

Figure 22 shows the 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 visualization of velocity magntude field for 

incompressible Navier Stokes model with above mentioned simulation conditions and 

boundary conditions on a conformal mesh as mentioned in section 3.4.2. The averaged 

𝑖𝑛𝑙𝑒𝑡 boundary velocity for the specific simulation is set at 0.1. As expected, the velocity 

magnitude can be seen rising in the areas of constriction between solids and close to zero 

near the solid interfaces due to no slip velocity condition at the 𝑤𝑎𝑙𝑙𝑠. Figure 23  shows 

the variation of velocity magnitude with increasing inlet velocity. The flow becomes more 

convection dominated and inertial forces become more prominent than viscous forces at 

higher velocities.  

 

Figure 22: Velocity field visual from INS simulation on conformal mesh at inlet v =0.1 
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Figure 23: Velocity field visuals from INS simulation on conformal mesh at increasing 
inlet velocities from v = 0.1 to 10 

Figure 24 and Figure 25 show the 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 visualization of magnitude of velocity field 

at inlet velocity 0.01 and 0.1 for all the image geometries with different porosities. Due to 

higher constrictions and narrower pores, it can be observed that the areas of higher 

velocities are more prominent in image with higher porosity. It was also observed that 

the averaged velocity is same at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries which is true for 

conservation of momentum across simulation domain. 

 

(a) Porosity = 0.67 

 

(b) Porosity = 0.6 

 

(c) Porosity = 0.49 

Figure 24: Reference conformal mesh velocity field visuals for three different geometries 
with varying porosities at inlet v = 0.01 

 

 

(a) Porosity = 0.67 

 

(b) Porosity = 0.6 

 

(c) Porosity = 0.49 
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Figure 25: Reference conformal mesh velocity field visuals for three different geometries 
with varying porosities at inlet v = 0.1 

Simulations are conducted on the conformal meshes of three images with varying inlet 

velocities.  The pressure gradient is measured for each simulation and plotted against 

each averaged inlet velocity. Figure 26 shows the three Forchheimer plots for all three 

images. The quadratic correlation between pressure gradient and velocity determined 

from the plots can be then compared with Forchheimer equation (3.11) to obtain the 

coefficients. It can also be observed that permeability decreases and inertial constant 

increases with decreasing porosity which holds true for experimental observations [80]. 

Table 9 presents the simulation run times for mesh independent solutions at inlet 

velocity of 0.1 with the number of mesh elements. The simulation run times are similar 

in the velocity bracket of 0.5 − 0.15 for which permeability and inertial constant are 

determined for a given porosity. 

Table 9: Simulation run times for incompressible Navier Stokes model at converged 
conformal meshes 

Porosity Number of mesh elements Simulation run time (s) 

0.67 15392 16.9248 

0.6 14178 14.5709 

0.493 12332 11.5104 
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(c) 

Figure 26: Reference conformal mesh Forchheimer curves for three different porous 
media geometries with varying porosities 

 

The following values of permeability and inertial constant presented in Table 10 are 

determined from the plots in Figure 26 and are used in section 4.2 for comparison to 

simulation results from diffuse interface method. 

Table 10: Summary of fluid flow properties for all three images on conformal mesh 

Porosity Permeability ( 𝟏𝟎−𝟔 ×𝒎𝟐) Inertial constant (𝒎−𝟏) 

0.67 324.8335 0.0100495 

0.6 169.6669 0.0156207 

0.493 45.7411 0.0311932 
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4 RESULTS AND DISCUSSION 

This chapter discusses the determination of tortuosity, permeability, and inertial 

constant from mass diffusion and incompressible Navier Stokes models implemented 

using diffuse interface method. The chapter is divided into two sections, one for 

determination of tortuosity and other for determination of permeability and inertial 

constant using diffuse interface method. Figure 27 and Figure 28 show examples of phase 

field and gradient of phase field projected onto a structured quadrilateral mesh with 

coarseness ratio ten and DI width one. Simulations were run on these phase fields and 

structured mesh with varying parameters as identified in section 3.3. These diffuse 

interface parameters are analysed, and simulations are run with varying parameters to 

reach ideal combinations with reasonable accuracy compared to conformal mesh results 

and low simulation run time. 

 

 

Figure 27: Example of phase field projected onto a structured quadrilateral mesh with 
coarseness ratio = 10 and DI width = 1 
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Figure 28: Example of gradient of phase field projected onto a structured quadrilateral 
mesh with coarseness ratio = 10 and DI width = 1 

 

4.1 Tortuosity of Porous Media using DI Method and comparison 

For modelling mass diffusion to determine tortuosity using diffuse interface method, 

firstly the phase field representing porous media is generated with varying diffuse 

interface width. Then, the phase field 𝜙 and gradient of phase field |𝜙| is projected onto 

a structured quadrilateral mesh with varying mesh scale hence varying coarseness ratio. 

The coarseness ratio is varied from one to ten. Since the image resolution is 1000 × 1000 

as described in section 3.1, the structured quadrilateral mesh scale varies from 

1000 × 1000 to 100 × 100. The diffuse interface width has been set to vary from ten 

mesh elements to one mesh element of the structured mesh. The tortuosity model as 

formulated in section 3.4.1 is simulated in this section.  
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For conducting the diffuse interface finite element simulation for Poisson equation (3.8) 

with Dirichlet boundaries at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 and Neumann boundaries at 𝑤𝑎𝑙𝑙𝑠, 

OpenCMP is used. Similarly as finite element method on conformal mesh, Poisson 

simulation uses standard H1 finite element space for scalar variable with polynomial 

order equal to three. Choice of solver and preconditioner are set as 𝑑𝑖𝑟𝑒𝑐𝑡. The output 

simulation result file is saved in .vtu format for visualization in 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. Number of 

subdivisions in the .vtu file is set to be equal to polynomial order of the H1 space that is, 

three. 

Table 11: Simulation conditions for Poisson equation to determine Tortuosity  

Finite element space H1 

interpolant order 3 

DIM penalty coefficient 10 

solver direct 

preconditioner direct 

.vtu subdivisions 3 

 

Mass flux is measured at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries from the simulations using 

𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. The mass flux determined from simulations is then substituted into equation 

(3.10) to determine tortuosity. Results from a structured quadrilateral mesh with diffuse 

interface method are presented as follows. Figure 29 and Figure 30 show example of 

simulation results for concentration field and magnitude of concentration gradient field 

for coarseness ratio of one and diffuse interface width of one mesh element for image 

with porosity 0.67. It can be observed that in the areas of simulation domain where phase 

field is zero (inside solid domain), the concentration and concentration gradient fields 

are zero. 
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Figure 29: Concentration field visual from simulation using diffuse interface method 

 

 

 

Figure 30: Concentration gradient field visual from simulation using diffuse interface 
method 
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For comparison to conformal mesh results, the numerical values of tortuosity (𝜏) 

obtained from varying parameters are compared to converged conformal mesh solution. 

The relative error is defined in equation (4.1).  

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝜏𝐷𝐼𝑀 − 𝜏𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑚𝑒𝑠ℎ

𝜏𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑙 𝑚𝑒𝑠ℎ
 (4.1) 

  

Simulations with varying parameters are done on image with porosity 0.67 and ideal 

parameters are determined. Then, tortuosity at ideal parameters is determined for other 

images with different porosities. Figure 31 shows the variation of relative error with 

different parameters. First observation can be made that the relative error decreases 

with diffuse interface (DI) width. Large values of DI width extend the Neumann boundary 

condition constraints into the interior of the solid boundary thereby reducing accuracy. 

Secondly, it can be observed that the error is significantly more for higher coarseness 

ratio or more coarse mesh at high DI width. Decreasing coarseness ratio increases the 

accuracy of the solution by increasing the order of the spatial approximation. At 

coarseness ratio of ten, the error reduces by two orders of magnitude from diffuse 

interface width of ten to one whereas the drop in error for coarseness ratio of one is not 

so drastic. Most importantly, it is observed that at DI width of one, the relative error is 

lowest for all coarseness ratios and determined to be 2.52 × 10−3 for coarseness ratio of 

ten. In the work by Monte et al. [11] where Poisson equation was simulated using diffuse 

interface method it was also presented that the highest accuracy was observed when DI 

width was equal to one mesh element. Table 12 shows the time taken for different mesh 

coarseness ratios. The time taken is lowest for highest coarseness ratio which is obvious 

because of lower number of elements. Low run time makes the simulation feasible for 

determining property of porous media image, in this case tortuosity. It is also observed 

that the simulation run time for DIM is more compared to FEM on conformal meshes at 

similar number of mesh elements. 
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Figure 31: Comprehensive error comparison in tortuosity for varying DIM parameters 

 

Table 12: Simulation run times for tortuosity model at varying coarseness ratios using 
DIM at DI width = 1 

Coarseness Ratio Number of mesh elements Run time (s) 

10 10000 3.578058 

5 40000 12.28338 

2 250000 86.43931 

1 1000000 2601.533 
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On basis of these findings, tortuosity is determined for images with porosity 0.60 and 0.49 

at DI width of one and coarseness ratio of ten. The tortuosity values are compared to that 

from conformal mesh and presented as follows in Table 13. In conclusion, relative error 

in tortuosity less than 0.75% is achieved for all three images. 

 

Table 13: Summary of tortuosity results from DIM and relative error compared to 
conformal mesh results 

Porosity Tortuosity Relative error 

0.67 1.448999542 0.002519831 

0.6 1.550100926 0.004621558 

0.493 1.689870277 0.007410266 
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4.2 Permeability and Inertial Constant of Porous Media using DI 

Method 

For modelling incompressible Navier Stokes fluid flow to determine permeability and 

inertial constant using diffuse interface method, firstly the phase field representing 

porous media is generated with varying diffuse interface width. Then, the phase field 𝜙 

and gradient of phase field |𝜙| is projected onto a structured quadrilateral mesh with 

varying mesh scale hence varying coarseness ratio. The coarseness ratio is varied from 

five to twenty. Since the image resolution is 1000 × 1000 as described in section 3.1, the 

structured quadrilateral mesh scale varies from 200 × 200 to 50 × 50. The diffuse 

interface width has been set to vary from three mesh elements to one mesh element of 

the structured mesh. The fluid flow model as formulated in section 3.4.2 is simulated in 

this section.  

OpenCMP is used to set up the finite element simulation for continuity equation (3.14) 

and Navier Stokes equation (3.15) with Dirichlet boundary conditions at 𝑖𝑛𝑙𝑒𝑡, 𝑤𝑎𝑙𝑙𝑠 and 

no stress outlet boundary condition at 𝑜𝑢𝑡𝑙𝑒𝑡. The simulations settings are similar to 

those applied with conformal mesh. Incompressible Navier Stokes simulation uses the 

standard Taylor-Hood finite element pair-  VectorH1 finite element space for velocity 

field and H1 finite element space for pressure field. The polynomial order is set as three 

for velocity field and two for pressure field. Choice of solver and preconditioner are set 

as 𝑑𝑖𝑟𝑒𝑐𝑡. The output simulation result file is saved in .vtu file format for visualization in 

𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. Number of subdivisions in the .vtu file is set to be equal to polynomial order 

of the VectorH1 space that is, three. Averaged velocity magnitude and averaged pressure 

are measured at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries from the simulations using 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤. 

Varying averaged velocity and pressure gradient magnitudes are then plotted and 

resulting quadratic relationship is used to determine permeability and inertial constant. 
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Table 14: Simulation conditions for incompressible Navier Stokes equation to determine 
permeability and inertial constant 

Finite element space (u) VectorH1 

Finite element space (p) H1 

kinematic viscosity (mm2/s) 1 

interpolant order 3 

DIM penalty coefficient 10 

solver direct 

preconditioner direct 

linearization method Oseen 

non-linear tolerance 1 × 10−4 

Non-linear max iterations 4 

.vtu subdivisions 3 

 

4.2.1 Isomorphic Transformation 

Since it was observed in section 4.1 that the relative error was minimum at diffuse 

interface width of one mesh element, the incompressible Navier Stokes equation at inlet 

velocity of 0.01 was firstly simulated at DI width of one and presure gradient determined 

from simulation was compared to results from conformal mesh. As shown in Figure 32, 

the pressure gradient observed from simulation is very different compared to that from 

conformal mesh. On closer observation, it can be seen that the spacing between solids is 

reduced leading to more constricted pore spaces. It was then hypothesized that there is 

a ‘swelling’ phenomenon on the solid bodies because of adding diffuse interface width 

with Dirichlet boundary condition on interface which is leading to higher pressure 

gradients. No slip boundary condition i.e., zero velocity at solid interface imposes zero 

velocity on the entirety of diffuse interface. This error in velocity field at the solid 

interface was also observed in the work of Stoter et al. where diffuse interface method 

was applied on Navier Stokes equations for perfusion profile of a human liver MRI scan 

[13].  Discrepancy in pressure drop can also be explained by Hagen Poisseuille equation 
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(4.2) where pressure drop is inversely proportional to the fourth power of fluid flow path 

radius and constricted pores means lower radius and higher pressure drop. 

  ∇𝑝 =
8𝜇𝑄

𝜋𝑅4
 (4.2) 

 

where 𝑄 is volumetric flow rate and 𝑅 is radius of flow path.  

  

Pressure Gradient = 3.46 × 10−5 

(a) Conformal mesh simulation at inlet 

v=0.01 

Pressure Gradient = 8.58 × 10−5 

(b) DIM simulation at inlet v=0.01, 

coarseness ratio=10 and DI width=1 

Figure 32: Comparison of INS simulation pressure gradient results using diffuse interface 
method with conformal mesh results at inlet velocity = 0.01 

To obtain reasonable accuracy in pressure gradient, it’s important to perform simulations 

on phase fields of porous media with correct approximation of expanse of solid domain. 

To mitigate this ‘swelling’ effect due to added diffuse interface, isomorphic 

transformation is performed on the phase field and expanse of solid domain is corrected 

to match original size. Isomorphic transformation means changing the size of solid bodies 

within NumPy array of phase field while preserving the shape of the solids. Since porous 

media solid geometries are very irregular with varying features, a simple image erosion 

can not be performed on the solid interface. Image erosion can change the image 

morphology. Isomorphic transformation is demonstrated in Figure 33 by an example of 

an image of square. Image geometry is chosen as square to make sure that the image 
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features like sharp corners are not lost after the transformation. The size of the solids at 

the interface is reduced by the number of pixels equal to added diffuse interface width. 

This is done by taking a Euclidean distance transform on NumPy image array using 

python 𝑒𝑑𝑡 package [77]. Then, the part of the image where value of distance transform 

is less than 𝜆 is set to binary value of zero. Since, in the image shown in Figure 33 (a) 

binary value of one indicates solid and zero indicates pore space. Now that the image is 

obtained with reduced solid size, same procedure is followed as discussed in section 3.2.2 

to get a phase field 𝜙. Images in Figure 33(d) and  Figure 33 (a) are compared and it’s 

verified that the expanse of phase field with diffuse interface is same as the original size 

of solid square. 

 

Figure 33: Isomorphic Transformation demonstrated through (a) original image (b) 
image with reduced size of solids (c) solid border extracted by image erosion and (d) 

final phase field with solid expanse matching original image 
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Now that expanse of solids is corrected by isomorphic transformation, incompressible 

Navier- Stokes simulations can be performed on this image and pressure gradient can be 

determined. Section 4.2.2 discusses these simulations and the ideal diffuse interface 

method parameters obtained from simulations. 

4.2.2 Ideal Diffuse Interface Method Parameters 

For comparison to conformal mesh results, the magnitude of pressure gradient obtained 

from varying parameters is compared to converged conformal mesh solution. The 

relative error is defined in equation (4.1).  

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
∇𝑝𝐷𝐼𝑀 − ∇𝑝𝑟𝑒𝑓

∇𝑝𝑟𝑒𝑓
 (4.3) 

 where ∇𝑝𝐷𝐼𝑀 is the magnitude of pressure gradient determined from diffuse interface 

method and ∇𝑝𝑟𝑒𝑓 is the reference magnitude of pressure gradient determined from 

simulation on conformal mesh.  

Incompressible Navier Stokes model as formulated in section 3.4.2 with varying DIM 

parameters is simulated on the three images and ideal parameters are determined. Figure 

34 presents comprehensive summary of variation of relative error with different 

coarseness ratios, porosities, and diffuse interface (DI) width. The parametric analysis is 

done on three separate images to make sure that the ideal parameters determined are 

consistent with multiple images. The coarseness ratio is varied from twenty to five i.e., 

the mesh scale varies from 50 × 50 to 200 × 200. The DI width varies from three mesh 

elements to one mesh element of the structured mesh. The parametric analysis is done at 

two different inlet velocities to ensure that determined ideal parameters are consistent 

with changing velocities. 

Many key conclusions have been drawn out from Figure 34. Firstly, and most importantly, 

the ideal DI width is determined from the plots for each coarseness ratio where relative 

error in pressure gradient is minimum. For all set of simulations at each porosity, it is 

observed that the ideal DI width lies in the bracket of 1 − 2 mesh elements where relative 

error drops at least below 1%. Though, the relative error is sensitive around this bracket, 
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it varies between 1% to 10%. It is also observed that at coarseness ratio of 5 when the 

mesh density is finest, the minimum relative error is found at DI width of 1. Secondly, at 

any given DI width for all the plots, relative error is higher at higher porosity. This is 

because of the higher surface area of solid interface leading to more mesh elements with 

diffuse interface. As found in the work of Stoter et al [13], the increase in relative error 

can largely be attributed to a localized increase in error at the interface. This localized 

error does not visibly affect the velocity and pressure field solution away from the 

interface. It’s also observed that there is some correlation between ideal DI width and 

porosity. Ideal DI width for each coarseness ratio and velocity is shifted to the right by a 

small margin for decreasing porosity or increasing diffuse interface mesh elements. 

Lastly, it is observed that at higher coarseness ratio the relative error at ideal DI width is 

comparable to lower coarseness ratios. Hence, simulations can be done at very coarse 

meshes (50 × 50) to determine pressure gradient across the domain from simulations 

and macroscale properties- permeability and inertial constant can be calculated 

accurately.  
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Figure 34: Comprehensive Coarseness Ratio vs DI width comparison for varying porosity, 
coarseness ratio, DI width and velocities 
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4.2.3 Comparison of Results between DI Method and Conformal Meshing 

Figure 35 and Figure 36 show the 𝑃𝑎𝑟𝑎𝑣𝑖𝑒𝑤 visualization of magnitude of velocity field 

at inlet velocity 0.01 and 0.1 for incompressible Navier Stokes model with isomorphic 

transformation on phase field, mentioned simulation and boundary conditions for all the 

porous media images with different porosities. The velocity field visuals and the spacing 

between solids is similar to those presented in section 3.4.2 It was also verified that the 

averaged velocity is same at 𝑖𝑛𝑙𝑒𝑡 and 𝑜𝑢𝑡𝑙𝑒𝑡 boundaries which is true for conservation 

of momentum across simulation domain. 

 

 

(a) Porosity =0.67 

 

(b) Porosity =0.60 

 

(c) Porosity =0.49 

Figure 35: DIM simulations velocity field visuals for three different geometries with 
varying porosities at inlet v = 0.01 

 

 

(a) Porosity =0.67 

 

(b) Porosity =0.60 

 

(c) Porosity =0.49 

Figure 36: DIM simulations velocity field visuals for three different geometries with 
varying porosities at inlet v =0.1 
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Simulations are conducted on the structured meshes of three images with varying inlet 

velocities.  The pressure gradient is measured for each simulation and plotted against 

each averaged inlet velocity. The simulations done on conformal mesh were stable and 

converging for increasing velocities but that was not observed with DIM. At inlet 

velocities greater than 0.1, the simulations diverged at coarseness ratio of ten or above 

(mesh scale 100 × 100 and coarser). And at inlet velocities above 0.15, the simulations 

diverged at coarseness ratio of 6.67 or above(mesh scale 150 × 150 and coarser). So, to 

be consistent with mesh scale throughout all velocity simulations, the velocity range is 

determined above which the quadratic behaviour between pressure gradient and 

averaged velocity does not change. The velocity range of 0.05 –  0.15 was determined for 

getting converged quadratic relationship. The mesh scale of 150 × 150 is chosen for all 

simulations since it is the coarsest mesh scale at which simulations with inlet velocity 

0.15 and lower are stable and converging. For coarseness ratio of 6.67 (mesh scale of 

150 × 150), the ideal DI width is taken from Figure 34 for each porosity- 1.5 for image 

porosity 0.67, 1.35 for image porosity 0.60 and 1.27 for image porosity 0.49. Now that 

ideal parameters are found, the simulations are performed at varying inlet velocities and  

pressure gradient versus inlet velocity graphs are plotted.  Figure 37, Figure 38 and 

Figure 39 present the three Forchheimer plots for all three images using (a) conformal 

mesh and (b) diffuse interface method. The quadratic relationship between pressure 

gradient and velocity determined from the plots are then compared with Forchheimer 

equation (3.11) to obtain the coefficients. Table 15 presents the numerical values of 

constants and the relative error compared to those from finite element method on 

conformal meshes. In conclusion, relative error in permeability less than 1% and relative 

error in inertial constant less than 3% is achieved for all three images. 
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(a) Conformal Mesh Forchheimer curve for Porosity = 0.67 

 

(b) Diffuse Interface Method Forchheimer curve for Porosity = 0.67 

Figure 37: Forchheimer regime curve comparison at ideal parameters for Porosity=0.67 
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(a) Conformal Mesh Forchheimer curve for Porosity = 0.60 

 

(b) Diffuse Interface Method Forchheimer curve for Porosity = 0.60 

Figure 38: Forchheimer regime curve comparison at ideal parameters for Porosity=0.60 
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(a) Conformal Mesh Forchheimer curve for Porosity = 0.49 

 

(b) Diffuse Interface Method Forchheimer curve for Porosity = 0.49 

Figure 39: Forchheimer regime curve comparison at ideal parameters for Porosity=0.49 
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Table 15: Summary of fluid flow constants from DIM and relative error compared to 
conformal mesh results 

Porosity Permeability 

(𝟏𝟎−𝟔 ×𝒎𝟐) 

Inertial constant 

(𝒎−𝟏) 

K relative error β relative error 

0.67 328.0732 0.0102751 0.009973426 0.022448878 

0.6 169.8802 0.0160283 0.001257114 0.026093581 

0.493 45.9869 0.0311824 0.005375874 0.000346229 

 

Table 16 and Table 17 present the simulation run times using DIM on the three images at 

coarseness ratio of 10 and 6.67 respectively at inlet velocity of 0.1. The run times are 

similar for a given porosity and coarseness ratio between DI width of 1 to 2. These 

simulation times are considerably more compared to those on conformal meshes as 

shown in Table 9. Thus encouraging the need for optimised fluid flow solvers for DIM on 

structured quadrilateral meshes. It is also observed that the run times decrease with 

decreasing porosity because of the lesser mesh elements of phase field representing the 

pore space area for fluid flow.   

Table 16: Simulation run times for incompressible Navier Stokes model using DIM at 
coarseness ratio of 10 

 

Table 17: Simulation run times for incompressible Navier Stokes model using DIM at 
coarseness ratio of 6.67 

Porosity Number of mesh elements Simulation run time (s) 

0.67 10000 146.8406 

0.6 10000 115.7824 

0.493 10000 76.8592 

Porosity Number of mesh elements Simulation run time (s) 

0.67 22500 498.6665 

0.6 22500 367.8449 

0.493 22500 259.3919 
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5 CONCLUSIONS AND FUTURE WORKS 

In summary, this work implemented diffuse interface method on structured quadrilateral 

meshes generated from volumetric images of porous media and determined 

characteristic coefficients of porous media from mass diffusion and incompressible 

Navier Stokes simulations. Specifically, binary images for three images with different 

porosities were generated to demonstrate the diffuse interface method. Phase fields were 

generated from binary images of porous media and projected onto structured 

quadrilateral meshes. Key parameters affecting the phase field and structured mesh were 

identified. Mass diffusion and incompressible Navier Stokes models were formulated 

with suitable initial and boundary conditions to best determine tortuosity, permeability, 

and inertial constants. Finite element method simulations for the mass diffusion and 

incompressible Navier Stokes models were performed on conformal meshes for the same 

images and provided reference solutions of tortuosity, permeability, and inertial 

constants.  

Then firstly, diffuse interface method was applied for mass diffusion model to determine 

tortuosity and simulations were run at varying parameters identified for analysing 

diffuse interface method. The parameters which gave reasonable accuracy and low run 

time were determined and relative errors were found in tortuosity as compared to that 

from FEM on conformal meshes. Relative error in tortuosity less than 0.75% is achieved 

for all three images. Secondly, DIM was applied for incompressible Navier Stokes model 

to determine permeability and inertial constants. It was identified that Dirichlet 

boundary condition on the solid interface led to swelling of solid domain which severely 

affects the pressure gradient accuracy. To correct the solid domain sizing, isomorphic 

transformation was performed and expanse of solid domains in phase field was made 

equal to original image. Then, simulations were performed with varying parameters - 

porosity, coarseness ratio and DI width. Ideal parameters were found, and diffuse 

interface width was constrained. Finally, DIM INS simulations were performed at varying 
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inlet velocities at identified DI width and coarseness ratio to determine permeability and 

inertial constants from Forchheimer curves. The determined constants are presented 

with relative errors compared to reference converged conformal mesh solutions. Relative 

error in permeability less than 1% and relative error in inertial constant less than 3% is 

achieved for all three images. 

There are some future works that could be done to expand on this work. These future 

works are listed as follows- 

• Current implementation of incompressible Navier Stokes model using DIM is 

unreasonably slow compared to traditional finite element method. Optimized 

solvers for fluid flow need to be investigated and implemented for structured 

meshes to speed up the DIM simulations. 

• Investigate GPU acceleration methods for simulations on structured meshes. 

• This work determines the porous media property constants by simulations using 

FEM and DIM on artificially generated two dimensional binary images. Next step 

would be to conduct simulations on benchmark three dimensional volumetric 

images of porous media obtained from tomography. 

• Tortuosity, permeability, and inertial constants obtained from conducting DIM 

simulations on benchmark three dimensional volumetric images of porous media 

can be compared to the experimental and simulation results existing in the 

literature in terms of accuracy and time performance. 
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