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Abstract

Computational models have been used to examine and estimate various motions and
loading conditions of the human body that are otherwise difficult to examine experimentally. To
study human musculoskeletal dynamics, biomechanical multibody models can be utilized with
inverse or forward dynamics. To study the stress and strain response of complicated geometries,
such as bones, finite element models can be utilized under specific loads and boundary conditions.
When examining an injury mechanism or studying a specific motion, tackling both areas of
computational modeling can provide insightful information (e.g. reaction forces or stress
distribution. This thesis presents the work of combining a musculoskeletal dynamic model and a
finite element model to examine the dynamics of countermovement jumping and the resulting

stress on the human tibia.

The objectives of this thesis were to study the impact dynamics and investigate the stresses
and strains of the human tibia during countermovement jumping. This work utilized multibody
dynamic modeling and finite element modeling to investigate the risk of injuries in a jumping-
landing motion. Initially, experimental data of position and ground reaction forces were obtained
from a subject during countermovement jumping. This data is utilized in an inverse kinematics
analysis to obtain joint angles of the lower extremity. A multibody model was constructed with
segmentlengths and parametersthatare specific to the subject. The human was representedas four
rigid links in the sagittal plane connected with revolute joints. Inverse dynamics was applied on
the model with inputs of angles and positions of countermovement jumping to provide joint
torques. Following that, a static optimization was performed to obtain muscle forces, while
tackling the problem of redundancy. A total of 9 muscles were defined in the model and included
in the static optimization problem under the objective function of minimizing muscle stress. With
obtaining muscle forces, joint contact forces were also computed. Finally, a finite element model
of the tibia was used to examine the stresses and strain under calculated loads of countermovement
jumping. With a countermovement jump, the flexion/extension torques about the hip, knee, and
ankle were slightly higher during the jumping phase than the landing phase. However, the stresses
and strains were higher in the medial shaft of the tibia during landing phase than during jumping.
This suggests that an injury to the tibia (i.e. stress fracture) is possible at locations of lower cross-

sectional area under repetitive impact loads and elevated stresses of countermovement jumps.



This framework provided a potential of examining motion dynamics and structural bone
response of the human body under loadings specific to the motion studied. It can be utilized as a
tool for training in sports, or as a tool in prevention of injury in specific motions. This work also
providesthe firstdocumented investigation thatcompares a finite elementanalysis of jumpingand

landing.
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Chapter 1

1 Introduction

Jumpingis a common movement performedby humans. People tend to jump while playing
several sports, exercising, dancing, or simply while running around. Jumps can be differentiated
by many factors that include frequency, height of the jump, or the type of jump itself (vertical
jumps, slackline jumps, skip jumps, etc.) [1]. Jumps require the body to exert some force to achieve
a certain height, and similarly, landing after jumps imposes impact forces on the body. These
impactforces resultingfrom jumpingand landing can affectthe condition of bones, ligaments, and
tendons of the body [1]. This thesis covers a study of computationally combining a multibody
musculoskeletal dynamic model ofahuman duringa jumping-landing motion with a finite element
analysis of the tibia. Specifically, countermovement jumping is the motion analyzed for this work.

It involves a squatting motion, followed by a vertical jump to a maximum height.

1.1Problem Description

Several sports are associated with lower-extremity injuries that vary in severity and can
have a detrimental effect on athletes [2]. These injuries are usually associated with power
movements, such as jumping, landing, running, twisting or other sudden motions [2].
Understanding injury mechanisms gained interest in the research community, mainly aiming to
derive a pathway to reduce the risk of injuries [2]. However, each sportis unique and imposes a
differentrisk of injuries to different parts of the lower extremity. Many common injuries during
sports have been studied superficially, but few studies have gone in-depth to analyze various

factors that can potentially cause these injuries [2-5].

Stress fractures in bones of the lower extremity account for about 20% of all sports-related
injuries [3]. Each sport is generally correlated to stress fractures of specific bones, at specific
locations [3]. For example, running is associated with a higher prevalence of stress fractures in the
shaft of the tibia and fibula [3]. There are many factors that can lead to stress fractures in bone,
and biomechanical analysis has been used previously to provide some insight [2]. In sports, the
frequency, the type of motion, and the sudden changes to the motion could be some of the factors

that lead to injuries in the lower extremity [4].



Jumpingand landing are two common movements that take place in many sports, such as
basketball and volleyball [2]. Impact forces are associated with such movements and thus higher
risk of injuries is usually expected [5]. However, many variations of jumping and landing exist in
sports [2]. Countermovement jumping (CMJ), also referred to as squat jumping from a standing
position and hand placed still on waist, can impose high loads on the body at very high speeds [5].
CMJ is used to evaluate the capabilities of athletes, while reducing the effects of several variables

such as arm swings and athlete’s intent [6].

Musculoskeletal modeling has been used frequently for many biomechanical applications,
primarily due to ethical and invasive barriers to directly measure joint contact forces, muscle
forces, and muscle length changes [2]. It provides a dynamic analysis of motions that can cause
musculoskeletal sports injuries, as it allows estimating muscle forces and joint loads [2]. It has
been mainly used for activities of daily living, and less frequently for activities of faster execution
or higher loading (requires higher complexity in modeling) [5]. Several studies have conducted
multibody modeling during jumping or landing; however, they were mostly focusing on the
dynamics of the motion and its correlation to some injuries (ACL injury) [7-11].

Finite element analysis has been used in biomechanical research to simulate the
stress/strain distribution in bone [4]. The accuracy of these models has been often compromised
due to inaccurate/ nonspecific input data to the model, along with extremely simplified geometry
[4]. For example, a bone model can be loaded at simplified locations by a ratio of the bodyweight
[12]. This can provide some insight into the motion; however, it cannot lead to realistic
observations that can be used to preventinjuries. Thus, it is important to have realistic loadings
that correlate to the motion studied and incorporate bone adequate bone properties (geometry,

material strength and boundary conditions) to havegreater confidencein the finite elementanalysis

[4].



1.2Research Goals and Contributions

This research had two main goals. The first goal of this work was to study the impact
dynamics of a countermovement jump. The second goal of this work was to analyze the stresses
and strains in the human tibia during a countermovement jump. Musculoskeletal modeling can
provide important information about factors that affect the motion, which include joint torques,
joint contact forces, and muscle forces. Finite element modeling can examine the response of a
specific bone under the loads occurring during the motion studied. Overall, this work aims to
combine two important simulation techniques, multibody dynamic modelingand finite element

modeling, towards investigating the risk of injuries during a jumping-landing motion.

To tackle this research problem, the project was subdivided into 6 phases. Phase | of the
work was the collection of experimental data of countermovement jumping, which included
capturing data of position and ground reaction forces of a subject. Phase Il of this work involved
inverse kinematics, which utilized experimental data to obtain joint angles of the lower extremity
of the body. Phase Il of this work was the construction of a biomechanical model, whichisa 2D
skeletal sagittal model with 4 rigid bodies and three revolute joints. Phase IV of this work was an
inverse dynamic analysis using the multibody model, with experimental joint angles, ground
reaction forces, and position of the pelvis, to obtain joint moments and moment arms of several
major muscles. Phase V of this work was a static optimization analysis to compute muscle forces
acting on the tibia. Phase VI of this work was a finite element analysis of the tibia under loads
obtained in phase 1V and phase V, to examine stress, strain, and deformation of the bone during

jumpingand landing. A flowchart of this work is provided in Figure 1.

This work aims to contribute to the fields of multibody biomechanical modeling and finite
element modeling of bone. The main contribution is providing a framework to obtain motion-
specific and meaningful loads for the stress analysis of bone, rather than the current approach of
using approximate loads that are relevant to bodyweight [12]. This framework can be used to give
a greater insight into risk injuries in sport-related motions, specifically the jumping-landing
motion. Areverse of this framework can also be used in the future to obtain optimal motions, while
ensuring better stress distribution in bonesand lower risk of injuries. Moreover, this work may be
used as a potential tool for training athletes to enhance performance, while reducing the risk of

injuries.



To the best of the author’s knowledge, there have been no previous finite element analyses

that examined both jumping and landing. This work introduces the ability to analyze the full

motion and allows a realistic comparison between jumping and landing and its effects on the

human tibia.
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Figure 1: Flow chart of the method process utilized for this thesis



1.3Thesis Structure

This thesis consists of seven main chapters. Chapter 1 is the introduction of this thesis,
which consists of the objectives and contributions of the work presented in this thesis. Chapter 2
is a literature review, which includes information about previous research on countermovement
jumps, dynamic modeling, stress fracture in bones, andthe merge of multibody dynamic modeling
with finite element modeling. Chapter 3 reports on the construction of a multibody biomechanical
model, which includes collecting and analyzing experimental data, along with the design of the
biomechanical model. Chapter 4 reports on the dynamic simulations, which are the result of an
inverse dynamic analysis of the multibody model. Chapter 5 concerns the muscle forces, which
includes the use of static optimization and the application of a numerical and an analytical
approach to obtain muscle forces from joint torques. Chapter 6 reports on the finite element model
of the tibia, which includes the various steps and results of a finite element analysis of the tibia
during a countermovement jump. Chapter 7 is the conclusion of the thesis, including a limitations

section and recommendations for future work that can be applied to this framework.



Chapter 2

2 Literature Review

This chapter is a review of existing research that has inspired the work of this thesis, along
with background knowledge for different aspects of this project. The literature review is divided
into 4 sections, which tackle theoretical explanation and previous research in various fields of this
work. Section 1 describes countermovement jumping, the differentphases of the jump, and the use
of the jump to evaluate the performance of athletes. Section 2 describes the difference between
inverse dynamics and forward dynamics in simulated models. Section 3 examines stress fractures
and their prevalence in sports. Lastly, section 4 investigates previous literature that tackled the

method of combining multibody dynamic modeling to finite element modeling.

2.1Countermovement Jumps

Countermovement jump (CMJ) is a type of vertical jumping that is used to monitor athlete
performance, as it is consistent and non-fatiguing [13-14]. Primarily, CMJ is a tool to assess the
power of the lower extremity of athletes in many sports, such as basketball and volleyball [6]. It
can assess the jJumping height of athletes, along with providing insight about velocity, power, and
forces attainable [13]. The study of the force-time curve of the CMJ motion has gained attention
in the research of sports biomechanics [13]. Previous research investigated different factors that
can influence the force-time curve of CMJ in athletes, such as effort exerted, depth of jumping, or

neuromuscular training [13, 15-17].

CMJ is defined as a jump that initiates with a countermovement motion, as the body goes
into a squatting position, to be followed by a jump to the maximum height possible [18-19]. In
CMJ, the hand is usually placed still on the hips to eliminate possible momentum generated by
arm swings that could affect jumping height and the motion itself [6]. Biomechanically
investigating the different stages of the jJump can provide a qualitative measure of assessing the
effectiveness and effort of the individual, mostly through examining peak forces [6]. To increase
the height of CMJ, it is recommended to increase the depth of squatting, have larger
countermovement, and larger inclination of the trunk [19-20]. To measure the performance of

CMJ, force plates are usually used to quantify vertical forces throughout the motion [18].
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Overall, the motion can be broken down into 5 different stages. Figure 2depicts a simplistic
representation of these differentstages. Stage 1 is the standingstage, which indicates the beginning
of the motion by quite standing [21]. The vertical force that is usually measured during this stage
corresponds to the weight of the individual [21]. Stage 2 is the unweighting stage, which
correspondsto a downward squatting motion to lower the center of mass [18]. This takes place
when the individual flexes the hip and knees with a downward acceleration, while it ends when
the center of mass reach its lowest height prior to attempting the jump [21]. The vertical force that
is usually measured during this stage is lower than the weight of the individual [21]. The
unweighting stage is also referred to as the eccentric phase when examining muscles [22]. This is
when the subject stores elastic energy in muscles and tendons to provide enough energy for the
jump [6]. The subject does not hold the squatting position, but rather variable speeds can be
attainable during the unweighting stage that can affect the performance [21]. Stage 3 is the
propulsion stage, which corresponds to an upward motion from the lowest position of stage 2 and
until take-off [6]. A peak vertical force is usually measured that is larger than the bodyweight of
the individual, where a higher force could correspond to a larger jumping height [21]. The
propulsion phase is also referred to as the concentric phase when examining muscles [22]. The
elastic energy that is stored is utilized in this stage for muscles to exert enough force for the jump
against the force of gravity [6]. Take-off point is an important term when describing the CMJ
motion, which indicates that the jumper’s feet are off the ground completely [21]. It is the point
that separates stages 3 and 4, the propulsion stage and the jumping stage. Stage 4 is the jumping
stage, which corresponds to an upward motion with feet being completely off the ground and the
center of mass being higher than that of the standing stage [21]. Athletes are usually instructed to
provide maximal effort during the jump phase to achieve a higher jump, while ensuring that the
legs are extended [18]. Stage 5 is the landing stage, which indicates a balancing motion from the
point that feet touch the ground and until a standing stance is achieved [21]. Two peak vertical
forces are usually measured during this stage [21]. The first peak force is higher in magnitude than
the second, which is an indication of an impactful force due to landing [21]. This peak force is
usually the highest vertical force to be measured duringa CMJ [21]. The second peak measured is
due to attempts of balancing, which is usually due to slight squatting and propulsion [21]. This

peak force is typically variable between different jumpsand different individuals [21].



—
Standing Uriweightsng. Propulsion Jmping Landing
Stage Stage Sage Stage Stage

Figure 2: Simple illustration of the different stages of a countermovement jump

Inprevious CMJresearch, the individual is instructed duringthe unweightingstage to reach
a specific depth, such as a 90-degrees of depth, subject-specific depth, or largest possible depth
[19]. In addition, a lot of research targets the eccentric and concentric stages of CMJ for further
analysis [20-22]. This type of CMJ research provided an analysis of critical information that could
be used by scientists and trainers to evaluate capabilities and expertise [22]. Athletes usually
undergo neuromuscular trainingto achieve higher jumps and better physical conditioning, through

strengthening the muscles and increasing the force applied during the propulsion phase [19, 22].

To enhance jump performance, athletes tend to apply a larger force, alter the duration of
the force application, or squat at different depths [19]. Squatting at a specific depth duringa CMJ
can affect the duration of the jump and the peak forces in the propulsion phase, thus affecting the
height of the jump [19]. With a longer depth in squatting, higher jumps are achievable at a shorter
duration of time [19]. It has been shown previously, both in an experiment and in simulation, that
increasing the countermovement depth can lead to better jump performance [19]. On the other
hand, decreasing the depth does not allow enough energy to be stored in the muscles for the jump,
and thus the jumping performance is compromised [19].

Overall, CMJ is a great tool to assess athletes’ lower extremities, the power that can be
applied, and to track capabilities. It has the potential of being used to evaluate injuries in the lower

extremity, without the burden of intent to jump or the effect of arm swings.
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2.2 Inverse Dynamics vs. Forward Dynamics

Human movements can be described as the motion of a system of rigid linked segments.
This system is usually driven by internal or external forces that affect the dynamics. Simulations
of this system are usually constructed in two directions, inverse dynamics or forward dynamics.
Inverse dynamics is the process of obtaining internal forces and moments from kinematics and
external forces [23]. Forward dynamics is the process of obtaining the movement and external
reaction forces from known internal forces and moments [23]. Figure 3 shows an overflow of the
inverse dynamics problem, where motion and external forces are the inputs, and the outputs are
the internal forces and moments. Figure 4 shows an overflow of the forward dynamics problem,
where joint torques and internal forces are the inputs, and the outputs are an estimation of the

motion and external forces.

Position data
and force plate

[> Equations of [> Musculoskeletal | — Internalforces
data

motion geometry — and moments

Figure 3: Flow chart of the inverse dynamics problem

Muscle
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contraction geometry

Position data
and external
forces
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command
dynamics

Figure 4: Flow chart of the forward dynamics problem



A typical inverse dynamics problem tackles the need of solving for joint torques. By using
a simulated model, position data and ground reaction forces can be captured directly with motion
capture systems and force plates, respectively. This method allows the calculation of internal
forces and moments without invasive procedures, such as using pressure plates and dynamometry
[23]. However, errors in capturing data and uncertainty in simulated model parameters can affect
the consistency and accuracy of joint torques and forces obtained [24]. Inverse dynamics utilizes
Newton-Euler equations of motion to obtain internal forces and moments about joints, through
utilizing inertial properties of the rigid bodies, the kinematics of the motion, and external forces
(ground reaction forces) [23]. A typical forward dynamics problem tackles the need of estimating
the motion, through utilizing joint torques and internal forces (muscle forces) as inputs. This
method allows computational prediction of motion under various conditions, without the need for

an extensive amount of experimental data or experimental data of dangerous motions [25].

In sports, simulated models are utilized to give insight regarding the techniques used and
to provide mechanics for better performance [26]. Analyzing the biomechanics of sports through
the kinematics can provide an understanding of the techniques used. However, utilizing a
simulated model can test several factors that affect the mechanics of the sport and can quantifiably
provide information to improve the techniques to be used [26]. In addition, it can analyze the
dynamics that can lead to a higher risk of injuries in sports, along with the possibility of studying

subject-specific simulated models with unique factors that result in a specific motion [26].
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2.3Stress Fractures in Sports

Underrepetitive impactloadingof abone, simple or completefractures can take place[27].
Particularly, stress fractures are common with damage that takes place with high stresses that are
constantly induced to the bone [27]. A stress fracture is also considered an overuse injury. As the
bone is repeatedly loaded with high impactful forces, the bone experiences microdamage that
increases in severity with a higher frequency or magnitude of loading [12]. Under repetitive high
loads, the bone has the capability of remodeling [27]. This is that the bone can accommodate to
the high frequency of larger loads by creating more bone cells and increasing the strength of the
bone[12]. Inaddition, the bone is capable of regeneratingbone cells to replace damagedcells prior
to it escalating to a bone fracture [12]. However, enough time is required for the bone to remodel
and accommodate to these high loads [27]. With stress fractures, each loading cycle induces
microdamage in the bone [27]. With a high frequency of loading, bone damage can take place
faster than bone remodeling, and thus stress fractures can occur [27]. In some cases, stress fractures
arevery hard to diagnose, even with well-developedimagingtechniques[12]. In other cases, stress

fractures can be severe and may require surgical intervention [12].

Several sports impose high impactful loads on the bones, such as basketball, volleyball,
football, dancing, hockey, etc. Stress fractures can be detrimental to athletes as they can lead to
weeks without strenuous activities until recovery is ensured [27]. In addition, athletes usually
require rehabilitation to increase the strength of the bone after recovery to avoid the occurrence of

a subsequent stress fracture [27].

Stress fractures account for up to 20% of all sports-related injures [27]. Stress fractures are
more common in the bones of the lower extremity, such as the tibia and metatarsal, and less
common in bones of the upper extremity [27]. In a study that examined stress fractures in 320
athletes of different sports, about 49.1% of all cases occurred in the tibia [28]. In addition, the site
of fracture is possibly correlated to age, such that older individuals are more likely to experience
stress fractures in the femur or the metatarsal, while younger individuals are more likely to
experience stress fractures in the tibia or the fibula [28]. Due to the high prevalence of stress
fractures in sports, a motivation existed to provide a better framework to understand stress

fractures.

11



2.4Merging of Multibody Dynamic Modeling and Finite Element Modeling

This section summarizes several research studies that tackled multibody biomechanical
modeling and finite element modeling for the same problem. Computational modeling has been
used vastly in the area of human biomechanics. Multibody modeling has been used when physical
motion and dynamics are of interest. On the other hand, finite element modeling has been used
when tissue response is of interest. Sometimes, analyzing both areas of biomechanics can provide
important insight into a problem. Thus, research is slowly gearing towards the use of both a
multibody dynamic model of the body and a finite element model of a tissue to tackle some

problems in the field of biomechanics.

One study that tackled combining both computational models was the work of Alti et al.
[29]. This work investigated the possibility of predicting the femoral neck strain during walking
by utilizing multibody dynamic modeling and finite element modeling [29]. The goal of the work
was similar to the goal of this thesis, which was to study the motion itself and study its effects
directly on the femur [29]. It consisted of obtaining CT and MRI scans of the lower limb, along
with data collection of the normal gaitfrom five female participants [29]. Thesewere used to create
subject-specific multibody musculoskeletal models and subject-specific finite element models to
investigate femoral neck strain values during gait [29]. Muscle forces that were obtained from the
multibody model and optimization were used for boundary and loading conditions in the finite
element model [29]. This work was able to provide multiple subject-specific models, along with

comparing the sensitivity of the model to different inputs [29].

Another study by Xu et al. examined the effects of load carriage on the tibia by utilizing
both a multibody model and a finite element model [4]. The goal of this work was to add to
previous studies of motion by examining the stress and strain distribution of the tibia [4]. To add
to that, a primary goal was to conduct finite element modeling under meaningful and accurate
loading conditions [4]. This work consisted of obtaining motion data and ground reaction forces
during walking with four conditions of carrying loads [4]. This data was utilized in a multibody
dynamic model to obtain joint and muscle forces, which were applied as inputs for the finite
element model of the tibial bone [4]. Overall, this work provided a framework that connects load

carriage and biomechanics of bone [4].
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Mo et al. also contributed to this framework by combining multibody modeling and finite
element modeling simultaneously, through the use of controlling strategies [30]. This work
incorporated “a unique feedback control strategy that couples together a basic Proportional-
Integration-Differentiation (PID) controller and generic active signals from computed muscle
control (CMC) method of the musculoskeletal model” [30]. It is considered the first step towards
the possibility of simultaneously simulating dynamics of the motion and stress analysis of tissue
[30].

Lastly, Shu et al. attempted to utilize a multibody dynamic model and a finite element
model to tackle the full response of the body after a total knee replacement surgery [31]. The aim
of this work was to examine the dynamics of the motion after the surgery and the prosthetic
mechanics and structure, along with the interaction between them [31]. The multibody model
incorporated a subject-specific kneemodel, ligaments, muscles,and adeformable prosthetic model
[30]. This method allowed a more realistic analysis of the prosthesis model, by providing subject-

specific boundary and loading conditions [31].

All this previous work helpedshape the work presentedin this thesis. This body of research
allowed the development of a framework that fully captures the dynamics and tissue response of
the human body during a full CMJ. This project aims to provide better insight towards examining

impactful motions that are correlated to a higher risk of injuries.
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Chapter 3

3 Construction of a Multibody Biomechanical Model

A multibpody biomechanical model of a human body during countermovement jumping
was constructed in MapleSim (MapleSoft, Canada). The model is a two-dimensional
representation that focuses on the motion of the lower extremity of the body. Experimental data
were obtained for the motion of CMJ, followed by kinematic and kinetic analysis of this data to
be used in creating the model. All the steps are explained in this chapter.

3.1Experimental Data Collection

The experimental data consisted of tracking position data and gathering ground reaction
forces during the motion of a CMJ. A healthy participant, male (23 years, 1.788 m, 80.5 kg),

performed a set of required motionsto obtain the experimental data.

To prepare the participant for the experiment, four marker clusters were attached as
following: one cluster of four markers on the right thigh, a cluster of four markers on the right
shank, a cluster of four markers on the right foot, and a cluster of five markers affixed over the
sacrum of the pelvis. In addition, digitized points were selected to calibrate the system and obtain
anatomically relevant position data as virtual markers. Digitized points included: left & right
anterior superior iliac spines, left & right posterior superior iliac spines, left & right iliac crests of
the pelvis, the sacrum, the right greater trochanter, the right medial and lateral femoral condyles
and tibial condyles, the right medial and lateral malleolus, and the right heel, toe, first and fifth

metatarsal of the foot.

The position of the markers was captured using six Optotrak Certus cameras (Northem
Digital Inc., Canada), setat a capture frequency of 100 Hz. To capture ground reaction forces, 2
AMTI ORG6-7 force plates were utilized at a capture frequency of 2000 Hz. Overall, the
experimental procedure consisted of a static standing trial and 3 CMJ trials. The data collection
started after attachingand digitizing markers, alongwith giving instructions and obtaining consent
fromthe participant. Atfirst, the participant was asked to stand still on the force plate foraduration

of 3 seconds. This is the static standing trial, required for calibration and to help in defining the
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weight of the subject. The participantis then asked to performa CMJ, with hands still on the waist,
to reach the maximum height attainable. The duration of the trial was set to 30 seconds to allow
the participant to prepare for the second trial and to reduce the effect of fatigue or rapidness of
continuous jumping. The two remaining trails followed similarly to trial 1. Upon completing the
three trials of CMJ, the markers were removed, and the experimental procedure was concluded.

The Office of Research Ethics at the University of Waterloo approved the experimental
procedure (ORE #31448) and consent to the study was provided by the participant. This
experiment was performed by Natasha Ivanochko at the University of Waterloo.

3.2 Analysis of Experimental Kinematics

Upon gathering the position data of CMJ, an inverse kinematic analysis was conducted in
MATLAB. At first, the data was filtered to remove noise and gap filled to estimate the position of
missing markers at a specific frame. Joint centers (hip, knee, and ankle) were specified based on
ISB recommendations of the lower extremity [32-33]. Then, arotation matrix andlocal coordinates

of the lower extremity segments were utilized to obtain jointangles.

To explain the motion in an anatomically relative aspect, intersegmental angles were
computed and Figure 5 shows the convention of joint angles utilized. Figure 6 depicts the plot of
intersegmental angles of the thigh relative to the pelvis versus time. Figure 7 depicts the plot of
intersegmental angles of the shank relative to the thigh versus time. Figure 8 depicts the plot of

intersegmental angles of the foot relative to the shank versus time.

Intersegmental angles of the thigh relative to the pelvis corresponds to the angles of the hip
joint, shank relative to the thigh corresponds to the angles of the knee joint, and foot relative to the
shank corresponds to the angles of the ankle joint. Based on the rotation matrix selected for this
motion, alpha (a)) angles correspond to the abduction-adduction motion of joints. Beta () angles
correspond to the internal-external rotation of joints. Moreover, gamma (y) angles correspond to

the flexion-extension motion of joints.
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By examining the intersegmental angles, majority of the motion takes place in flexion and
extension of the joints of the lower extremity, which corresponds to most of the motion being in
the sagittal plane. Flexion-extension angles of the ankle joint reach a maximum of -35° for both
jumping and landing. Flexion-extension angles of the knee joint reach a maximum of 84° for
jumpingand around 59° for landing. Moreover, flexion-extension angles of the hip joint reach a

maximum of -105° for jumping and about -44° for landing.
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Figure 6: Intersegmental angle of the thigh relative to the pelvis (hip joint) during a CMJ task
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Figure 7: Intersegmental angle of the shank relative to the thigh (knee joint) during a CMJ task
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Figure 8: Intersegmental angle of the foot relative to the shank (ankle joint) during a CMJ task
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3.3Analysis of Ground Reaction Forces

For the task studied, 2 force plates were active to fully capture the ground reaction forces
during the entire motion. The force plate data obtained was calibrated in MATLAB to convert
voltage data to ground reaction forces in Newtons. As recommended for impact loading tasks, the
force plate data were filtered using the same cut-off frequency as the position data [34]. In addition,
the data was utilized to obtain the center of pressure of contact throughout the motion, to be used
phase 1V of this work. Figure 9 shows a plot of the ground reaction forces in the vertical direction
versus time for the three trials conducted, where ground reaction forces are normalized to the body
weight of the participant.

Trial 1
Trial 2 |_|
Trial 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

Figure 9: Vertical ground reaction force versus time for the three trials of CMJ task

Upon obtaining the ground reaction forces for the task of countermovement jumping, a
comparison was made to understand the different stages of the task and how that correlates to the
force. All three trials resulted in very similar patterns of ground reaction forcesduringa CMJ. The
maximum GRF obtained during jumping was 2.4 £0.15 BW, while the maximum GRF obtained
during landingwas 5.60 £ 0.61 BW.

For further analysis, trial 1 was examined further. Figure 10 illustrates the different stages
of the CMJ motion of trial 1. From 0 to 1 second, the subjectis in a quiet stance, and the force
plate measures the weight of the subject. This is referred to as the standing stage [21]. From 1 to
1.5 seconds, flexion of the hip and the knee takes place to reach the squatting position. This is
referred to as the unweighting stage, where the ground reaction force drops below bodyweight
[21]. Due to squatting, muscles store the energy required to attain the jump. From 1.5to 2 seconds,

the subject depicts the highest ground reaction force prior to flight. This is referred to as the
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propulsion phase [21]. At 2 seconds, the subject’s feet are off the ground and the force plate does
not measure any force until around 2.4 seconds. The subject reaches a maximum height and drops
back to touch the ground, and this is referred to as the flight stage [21]. At approximately 2.4
seconds, the feet touch the ground and force is detected again on the force plate. Just as the subject
landed, a spike in the ground reaction force is observed. The GRF during landing is higher than
that of propulsion. The subject then tries to reach a balance of standing upright, usually through
squatting. The stage from 2.4 to 3.2 seconds is referred to as the landing phase [21]. This is then
followed again by a standing phase, where balance is achieved. Similar patterns and ranges of
GRFs are observed in previous literature [20, 22]. All the stages are explained further in section
2.2.
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Figure 10: Illustration of the different stages of CMJ with respect to the vertical ground reaction forces of
trial 1
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3.4Design of Biomechanical Model

The purpose of this step was to design a biomechanical computational model with all the
body segments that are critical for the motion studied. In other words, it is a simplified
mathematical model of the body that can capture the motion of interest. In this study, it has been
assumed that a sagittal plane analysis is adequate, rather than a 3D analysis. The motion mainly
involves flexion and extension of joints, with minimal motion in internal/external rotation and
abduction/adduction of joint (change of <15°). In addition, the model is assumed to be
symmetrical. This assumption is made due to very similar motions depicted for both the right side
and left side of the body. It must be noted that the body dominance of one side of the body was
not investigated in this project. Moreover, the biomechanics of the lower extremity is of interest

and arm motion is restricted, thus the upper extremity was lumped to one segment.

A skeletal linked model was constructed in MapleSim to contain 4 rigid bodies and 3
revolute joints. The four rigid bodies consist of the foot, shank, thigh, and head-arm-trunk (HAT).
For a 2D model, leftand right bodies are lumped into a single segment (i.e. leftand right thighs
are lumped into one thigh segment). A simple schematic is shown in Figure 11. Revolute joints
were used for the hip, knee, and ankle joint to drive the model. Based on the subject’s height and
weight, important properties and parameters required for the model were obtained by
anthropometric scaling factors found in the literature [35]. This includes segmental length, mass,

center of mass location and moment of inertia for HAT, thigh, shank, and foot segments.

Head, Arms and
Trunk (HAT)
Segment

Hip
Joint

Segment

Shank
Segment

Ankle
Joint

Foot
Segment

Figure 11: Illustration depicting the segments and joints of the dynamic multibody model
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Chapter 4

4 Dynamic Simulations

This chapter covers phase 1V, tackling the implementation of an inverse dynamic analysis
for countermovement jumping. For this study, a biomechanical model was constructed (section

3.4), and was utilized with kinematic and kinetic data to obtain joint torques and reaction forces.

4.1Dynamics of a Countermovement Jump

Inverse dynamic analysis was conducted using the skeletal model generated in MapleSim.
The model was employed to obtain internal joint forces and joint moments of the lower extremity.
The model was constructed with subject-specific weights and lengths for each segment, moment
of inertia for each segment, and the center of mass of each segment. As inputs to the model for the
inverse dynamic analysis, intersegmental angles of the hip, knee, and ankle were added to the
model. In addition, ground reaction forces were applied to the foot segment at the average center
of pressure for every stage of the countermovement jump. In addition, horizontal and vertical
position data of the hip joint (pelvis) were applied to the model. These inputs provided enough
information to conduct an inverse dynamic analysis. The desired output of this analysis was the
sagittal joint moments of the hip, knee, and ankle joints, along with knee and ankle joint contact
forces. In MapleSim, the multibody analysis tool was utilized to obtain the motion dynamics, based

on the Newton-Euler equations of motions.

4.2 Simulations of Inverse Dynamics

By conducting an inverse dynamic simulation, Figure 12 shows the resultant hip, knee, and
ankle jointmoments obtained duringthe task of countermovement jumping. Duringthe propulsion
phase, peak moments obtainedwere -300 N.m for the hip jointmoment, 222 N.m for the knee joint
moment, and -87 N.m for the ankle joint moment. During the landing phase, the highest moments
obtained were -329 N.m for the hip joint moment, 271 N.m for the knee joint moment, and -169
N.m for the ankle joint moment. The peak joint moments obtained in this analysis correlated with
previously reported joint moments during the task of vertical jumping (-350 N.m for the hip joint

moment, 188 N.m for the knee joint moment, and -110 N.m for the ankle joint moment) [36].
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Figure 12: Flexion/extension joint torques of the hip, knee, and ankle joint during a CMJ

Other outputs thatwere achieved from the biomechanical model are the jointcontact forces
of the knee and the ankle joint. Figure 13 shows a simplified free body diagram of the reaction
forces. Figure 14 shows the horizontal and vertical jointcontact forces of the knee duringthe motion
of CMJ. Figure 15 shows the horizontal and vertical joint contact forces of the ankle during the
motion of CMJ. Vertical forces were normalized to the bodyweight of the subject to be easily
correlated to GRFs. The maximum vertical knee joint contact force was achieved during the
landing stage of the motion, with a maximum force of approximately -1797 N. During jumping,
the maximum knee joint contact force was approximately -878 N. To add to that, the maximum
vertical ankle joint contact force was achieved during the landing stage of the motion, with a
maximum force ofapproximately 1850 N. During jumping, the maximum ankle jointcontact force
was approximately 813 N. The peak vertical reaction forces of the ankle closely match to half of
the peak ground reaction forces measured experimentally. The vertical reaction forces correlated
closely to literature during countermovement jumping, which showed maximum knee and ankle
jointcontact forces of -1622 N and 1699 N, respectively [5]. In addition, the overall response and
pattern of the joint contact forces during the full motion closely resembles that of previous
literature [7]. To verify of the results, the equations of motion of the model were extracted from
MapleSim and verified the solver in MATLAB with the same inputs.
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Figure 15: Horizontal and vertical joint contact forces of an ankle during CMJ
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Chapter 5

5 Muscle Forces

This chapter coversphase V of this project, tacklingthe problem of obtainingmuscle forces
during a CMJ from joint torques obtained in phase IV of this work. For this study, muscles that
are attached to the tibia are of main interest, as these muscle forces will be needed as inputs to the
finite element model. Static optimization was used to solve for muscle forces through minimizing
a specified objective function. A numerical and an analytical approach were used for static

optimization, described respectively in sections 5.2 and 5.3.

5.1Static Optimization Solution for Redundant Muscle Forces

By utilizing the output of the MapleSim model in phase IV, the nextaim of this project
was to find the forces generated by several muscles in the lower extremity. In the attempt of solving
for the muscle forces, the problem of redundancy was faced. This occurs when the number of
unknowns in the problem is larger than the number of equations generated from the model. With
the muscles recruited in this model and the associated degrees of freedom, muscle forces can not
be obtained directly [35]. To tackle this, an optimization problem can be used. Static optimization
in inverse dynamics is an approach to estimate the muscle forces for every time instant in the
motion [37]. This is one of the most used methods in inverse dynamics to solve the problem of
redundancy of muscle forces [37]. The static optimization utilizes an objective function that is

minimized while depicting some physiological characteristics [38].

To conduct a static optimization, additional inputs are required. Thus, the multibody
dynamic model is upgraded from a skeletal model to a musculoskeletal model. Several muscles
were added to the model, with a focus on musclesthat are attached to the tibia. For this project, a
total of 9 muscle bundles were examined. This includes the gluteus maximus muscle, iliacus
muscle, rectus femoris muscle, hamstring muscle (which is composed of bicep femoris long head,
semimembranosus, and semitendinosus), vasti muscle, biceps femoris short head muscle,

gastrocnemius muscle, soleus muscle, and tibialis anterior muscle.
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Musculoskeletal geometry was incorporated in this model by obtaining the site of muscle
attachments, via points of muscles, moment arms, and muscle lines of action. Location of muscle
insertion, muscle origin, and via points around joints were obtained using the Klein Horsman’s
database [39]. In addition, optimal moment arms and muscle lines of action were obtained using
data from Yamaguchi [40]. A scale factor of 1.076 was used to match the positions and lengths of

the subject in this study to that in the databases.

It is firstassumed that the moments about the joints are only due to muscle forces [41]. In
addition, muscle dynamics were not incorporated and thus it is assumed that muscles can produce
force instantly. A variety of objective functions have been utilized in obtaining muscle forces, but
the focus was mainly towards polynomial functions [41]. A commonly used objective function of

muscle stresses is based on the work of Crowninshield, giving the following criterion [38]:

Fo\P
. . . n 4
minimize -_( ) 1
X pesA, 1)

where n is the number of muscles about the joint studied, F; is the it muscle force, PCSA
is the physiological cross-sectional area of the it muscle and p is the power of the criterion. The
power of the criterion is greatly variable in the literature, where some are random to better fit the
experimental results, while others aim for physiologically meaningful criteria [41, 42]. Several
pieces of research conductedanalysis for the effects of changingthe power of the criterion in static
optimization [43, 44]. For this project, the power was varied, with emphasis on the power of 3,
which resembles maximizing of energy expenditure and is very widely used in literature [42].
Another commonly used objective function is based on relative muscle forces [45]. Itis based on

the following criterion:

F; p
minimizeZ{Ll( ! ) )

i_max
where Fi max is the maximum isometric force of the it muscle. Both objective functions
incorporate physiological criteria of the muscles, but the muscle forces are usually different [45].
For this project, the objective function of relative muscle forces (equation 2) was used with varying

powers, to be compared to the objective function of muscle stresses (equation 1).
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A flow chartof the static optimization problem isillustrated in Figure 16. It showsthat joint
moments and muscle moment arms from the musculoskeletal model can be used with maximum
isometric muscle forces and physiological cross-sectional area of muscle to run a static
optimization problem. The aim of this optimization is to obtain optimal muscle forces fora CMJ

motion.

. Maximum
Joint moments . . .
and muscle isometric muscle Static
forces and optimization of Optimal muscle
moment arms . . X
from physiological constrained forces for the
cross-sectional minimization motion studied
musculoskeletal .
area of muscles algorithm
model

from literature

Figure 16: Flowchart of the static optimization problem to solve for muscle redundancy

The problem of static optimization was solved for each joint, where the inputis the total
moment of the joint. This means that the summation of muscle moments should be equal to the
total moment. The values of maximum force and physiological cross-sectional area were obtained
from literature [46-48]. An analytical approach and a numerical approach were used to obtain
muscle forces. In the static optimization problem, equality and inequality constraints were set to
bound the muscle forces and obtain meaningful results. For all static optimization problems in this

project, the same set of constraints were utilized as follows:

Inequality Contraint F; < F; max (3)
Inequality Contraint F, =0 (4)
Equality Contraint  Tjpint — P nFE=0 (5)

where r; is the moment arm of the i"" muscle, and 7o is the total joint moment. The
inequality constraints bound the problem to ensure all muscle forces are positive and are lower
than their maximum isometric forces. The equality constraint in this problem is to ensure that the
joint moment obtained from the musculoskeletal model is equal to the net muscle moments

obtained from the results of the static optimization.
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5.2Numerical Approach

To solve the problem of static optimization, the fmincon function in the optimization
toolbox of MATLAB was used. A code was generated in MATLAB to tackle the problem of
muscle redundancy for a CMJ. The algorithm solves a constrained minimization problem to
compute optimal muscle forces. The fmincon function requiresthe inputs of the static optimization

to be applied in a specified format as following:

Aeq .x = beq

Minimize f(x) such that {lb < x <ub (6)

f(x) = minimize Z?=1( 3 )p

PCSA;
Aeq = Moment arms of muscles
Where 1 peg = Joint moment (inverse dynamics (7)
lb = Fi_min = O
ub = Fi_max

Where f(x) is the objective function of the static optimization to obtain muscle forces, Aeq
are the momentarms of muscles, beq is the joint moment, and Ib and ub are the bounds of the
muscle forces to meet inequality constraints. Overall, the function follows the representation of an
optimization problem with equality and inequality constraints. All the inputs required for the
objective functions and constraints were added to the code to generate a solution for the
redundancy problem of muscle forces. For the initial guess of this optimization, the muscle forces
at t=0 secondsobtained in the analytical approach of p=2 was used (to be explained in section 5.3).
For this approach, the power of the objective function was varied to examine the effect of
increasingthe power. Thus, optimization was conducted for the powerof 2, 3,5, 10, and 20. Based
on previous literature, increasing the power depicted higher synergy of muscles, i.e. more muscles

contributing to net moment [41, 49].

The static optimization was conducted for the hip, knee, and ankle joint moments, along
with muscles that cause the moments of each joint. It must be noted that only the main muscles

were added to the analysis of this project.

For the ankle joint, Figure 17 to Figure 21 show the results of static optimization under
different powers of the objective function. In addition, Table 1 shows the peak forces of muscles
during the jJumping and landing phase of the countermovement jump.
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Figure 17: Numerical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=2
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Figure 18: Numerical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=3
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Figure 19: Numerical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=5
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Figure 20: Numerical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=10
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Figure 21: Numerical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=20
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Table 1: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - numerical
approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20

Muscles Peak Peak Peak Peak Peak Peak
Examined Jumping Landing Jumping Landing Jumping Landing
Force Force Force Force Force Force
(p=3) (p=3) (p=10) (p=10) (p=20) (p=20)
Soleus

1.447BW 2.795BW 1.279BW 2.488BW 1.258BW 2.423 BW

Lateral Head

of 0.051BW  0.098BW 0.106 BW 0.203BW  0.117BW 0.227 BW
Gastrocnemius

Medial Head

of 0.243BW 0.466 BW 0.334BW  0.644BW 0.351BW 0.676 BW

Gastrocnemius

For the knee joint, Figure 22 to Figure 26 show the result of static optimization under
different powers of the objective function of muscle stresses. In addition, Table 2 shows the peak

forces of muscles during the jumping and landing phase of the countermovement jump.
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Figure 22: Numerical solution of muscle forces about the knee joint with objective function of muscle
stresses, p=2
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Figure 23: Numerical solution of muscle forces about the knee joint with objective function of muscle
stresses, p=3
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Figure 24: Numerical solution of muscle forces about the knee joint with objective function of muscle
stresses, p=5
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Figure 25: Numerical solution of muscle forces about the knee joint with objective function of muscle
stresses, p=10
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Figure 26: Numerical solution of muscle forces about the knee joint with objective function of muscle
stresses, p=20

Table 2: Peak forces of muscles about the knee joint during jumping and landing of CMJ - numerical
approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20

Muscles Peak Peak Peak Peak Peak Peak
Examined Jumping Landing = Jumping Landing = Jumping Landing
Force Force Force Force Force Force
(p=3) (pP=3) (p=10) (p=10) (p=20) (p=20)
Vasti 3.349BW 4.045BW 3.277BW 4.047BW 3.271 BW  4.045BW
Rectus 1.435BW | 1.49 BW 1.502BW 1506 BW 1.508BW @ 1.508 BW
Femoris

For the hip joint, Figure 27 to Figure 31 show the result of static optimization under different
powers of the objective function of muscle stresses. In addition, Table 3 shows the peak forces of

muscles during the jumping and landing phase of the countermovement jump.

33



Power 2

GLUTMAX
BFLH
1.5 SM

ST

ILIOP

1 RF

Muscle forces [BW]

Time [S]

Figure 27: Numerical solution of muscle forces about the hip joint with objective function of muscle
stresses, p=2
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Figure 28: Numerical solution of muscle forces about the hip joint with objective function of muscle
stresses, p=3

Power 5
2
GLUTMAX

_ BFLH
% 15 SM —
= ST
3 ILIOP
e
s T RF .
(0]
o
S
= 05 4//d’////

O |

0 1 2 3 4 5

Time [S]

Figure 29: Numerical solution of muscle forces about the hip joint with objective function of muscle
stresses, p=5
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Figure 30: Numerical solution of muscle forces about the hip joint with objective function of muscle
stresses, p=10
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Figure 31: Numerical solution of muscle forces about the hip joint with objective function of muscle
stresses, p=20
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Table 3: Peak forces of muscles about the hip joint during jumping and landing of CMJ - numerical
approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20

Muscles Examined Peak Peak Peak Peak Peak Peak
Jumping = Landing @ Jumping Landing Jumping Landing

Force Force Force Force Force Force

(p=3) (p=3) (p=10) (p=10) (p=20) (p=20)

Gluteus Maximum  1.405BW 1.249BW 1.405BW 1.405BW 1.405BW 1.405BW

Bicep Femoris 1.156 BW 1.156 BW 1.156 BW 1.084BW  1.156 BW 1.069 BW
Long Head
Semimembranosus | 1.622 BW  1.622BW 1.622BW 1.622BW 1.622BW 1.622 BW

Semitendinosus 0.498 BW 0.386 BW 0.516 BW 0.459BW 0.516 BW 0.473 BW

With the numerical approach, it was of interest to investigate the effect of using a different
objective function. Thus, the objective function of relative muscle forces was applied to compare
the two objective functions. Similarly, the fmincon function requires the inputs of the static

optimization to be applied in a specified format as following:

Minimize f(x) suchthat {I?Zq:; fo;f

( f(x) = minimize Z?=1< d )P

i_max
Aeq = Moment arms of muscles
beq = Joint moment
Ilb=F mn=0
ub = Fi max

Where < 9)

where f(x) is the objective function of the static optimization. For this optimization, only
the muscles about the ankle joint were analyzed. For the initial guess of this optimization, the
muscle forces at t=0 seconds obtained in the analytical approach of p=2 was used (to be explained
in section 5.3). Figure 32 to Figure 36 show the result of static optimization under different powers
of the objective function of muscle stresses. In addition, Table 4 shows the peak forces of muscles

during the jJumping and landing phase of the countermovement jump.
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Figure 32: Numerical solution of muscle forces about the ankle joint with objective function of relative
muscle forces, p=2
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Figure 33: Numerical solution of muscle forces about the ankle joint with objective function of relative
muscle forces, p=3
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Figure 34: Numerical solution of muscle forces about the ankle joint with objective function of relative
muscle forces, p=5
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Figure 35: Numerical solution of muscle forces about the ankle joint with objective function of relative
muscle forces, p=10
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Figure 36: Numerical solution of muscle forces about the ankle joint with objective function of relative
muscle forces, p=20
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Table 4: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - numerical
approach with objective function of minimizing relative muscle forces to the power of 3, 10, and 20

Muscles Peak
Examined Jumping
Force
(p=3)
Soleus
1.240 BW

Lateral Head

of 0.051 BW
Gastrocnemius

Medial Head

of 0.376 BW

Gastrocnemius

Peak Peak Peak Peak Peak
Landing Jumping Landing Jumping Landing
Force Force Force Force Force
(p=3) (p=10) (p=10) (p=20) (p=20)

2.398BW 1.094BW 2.107BW  0.687 BW @ 2.066 BW

0.098BW 0.106 BW 0.203BW  0.117BW 0.227 BW

0.727BW 0.443BW 0.855BW 0.691BW 0.949 BW

39



5.3Analytical Approach

An analytical approach with Lagrangian multipliers was used to obtain muscle forces
duringa CMJ motion in a static optimization problem. In MATLAB, a code was generated to run
this optimization. The analytical approach serves as a method of obtaining muscle forces in the
form of a closed-form exact solution [49]. However, as the power of the criterion increases, the
number of possible solutions increase significantly, and a unique solution does not exist. This
method was shown to provide good results with a power of 2 or 3 for the criterion [50]. Thus, this
approach was used to validate the numerical approach. To examine higher powers, a power of 10
was used under the same formulation to examine the results. To apply varying power of the
criterion, a Lagrangian multiplieris incorporated for the non-linear optimization problem, to obtain

the following expression for muscle forces [49]:

)
i-ai| Pt
Fi = Tjoine - [ Ty ?=1{u} ] =0 (10)

rj. a]-

where i#j for a unique solution using Lagrangian multiplier, r; is the moment arm of the j®
muscle, a; is the physiological cross-sectional area of the jt muscle, p is the power of the criterion
and gjoint IS the total joint moment. To bound the problem, the equality and inequality constraints
in equations 3-5 were used. This formulation leads to muscles of larger moment arms and
physiological cross-sectional areas to be recruited first for muscle forces. For the analytical
approach, the muscles about the ankle joint were of interest and were investigated with a power of
2, 3, and 10. Power of 3 was used to create a comparison between the analytical and numerical
approaches of static optimization. A power of 10 was used to show the effect of high powers on

the analytical approach.

The inputs of this problem are the joint moments and muscle moment arms from the
musculoskeletal model, along with maximum isometric force and physiological cross-sectional
area of all muscles recruited. The objective function of muscle stresses (equation 1) was the
primary objective function of this approach. For the ankle joint, Figure 37 to Figure 39 show the
result of static optimization under different powers of the objective function of relative muscle
forces. Inaddition, Table 5shows the peak forces of muscles duringthe jumpingand landingphase

of the countermovement jump.
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Figure 37: Analytical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=2
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Figure 38: Analytical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=3

Power 10

w

N
[
\

N
I

Muscle Forces (BW)
&
T

+ 1 | | . + it
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

Figure 39: Analytical solution of muscle forces about the ankle joint with objective function of muscle
stresses, p=10
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Table 5: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - analytical
approach with objective function of minimizing muscle stresses to the power of 2, 3, and 10

Muscles Peak
Examined Jumping
Force
(p=2)
Soleus
1.544 BW

Lateral Head

of 0.019 BW
Gastrocnemius

Medial Head

of 0.143 BW

Gastrocnemius

Peak
Landing
Force

(p=2)

2.982 BW

0.037 BW

0.278 BW

Peak Peak Peak Peak
Jumping Landing Jumping Landing
Force Force Force Force
(p=3) (p=3) (p=10) (p=10)

1.443BW 2.791BW 1.419BW 2.734 BW

0.053BW | 0.090BW 0.123BW @ 0.242 BW

0.239BW 0.460BW 0.367 BW 0.706 BW
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5.4Discussion

Overall, static optimization is a fastand simple pathway to tackle the problem of muscle
redundancy. However, it does not fully capture the physiological nature of muscles. In this phase
of the project, multiple investigations were conducted. This includes: (1) the use of numerical
approach (fminconfunction) of static optimization for muscle forces thatactuate the hip, kneeand,
ankle joints, (2) the effectof varyingthe power of the objective function in the numerical approach
of static optimization, (3) the effect of changing the objective function for the same motionin the
numerical approach of static optimization, and (4) the use of analytical approach (Lagrangian
multiplier) to conduct static optimization and its use for validating the numerical approach. The
focus was mainly directed towards peak forces during the propulsion/jumping stage and the
landing stage. These stages contributed to the highest forces during the motion and thus were

analyzed in this section and used as inputs in the finite element modeling phase of this project.

For the first analysis, Table 1, Table 2, and Table 3 show the results of numerical static
optimization obtained for muscle forces about the ankle, knee, and hip joints, respectively, during
peak jumping and landing. These results are for the objective function of minimizing muscle
stresses. Since a power of 3 for the criterion holds a physiological meaning of maximizing energy
expenditure, it was used as the primary solution for this project [42]. To add to that, this project
tackles the risk of injuries due to these forces. Thus, utilizing muscle forces with this power can
give greater insight as it can give insight about energy expenditure and fatigue in muscles [43, 50].
Figures 16, 21 and 26 show the results of muscle forces usingthe objective function of minimizing
muscle stresses with a power of 3 forthe ankle, knee, and hip joint. For the motion studied, muscle
forces were highest during peak jumping and landing for the soleus muscle, vasti muscle, and
semimembranosus muscle. The soleus resultedin peak forces of 1.45 BW during jumpingand 2.80
BW during landing. The vasti muscle resulted in peak forces of 2.35 BW during jumping and 4.05
BW during landing. To add to that, the semimembranosus muscle resulted in peak forces of 1.62
BW during jumping and landing. Other muscles also contributed high forces during the two force
peaks of the motion. Overall, muscle forces were larger during the peak point of the landing stage

than the propulsion phase for all the muscles examined in the static optimization problem.
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Some muscles about the hip joint resulted in forces that reached their maximum isometric
forces. This was not regarded as an issue in the results, as other muscles about the hip joint did not
reach their maximum isometric force (Figure 26) and an impactful load of jumping and landing
can impose high loads. The static optimization provided a solution to compute for the muscles
investigated, taking into account their cross-sectional area and momentarms. In addition, injury
of bone is of interest in this project and thus possible higher forces of muscles can provide better

insight.

Previous research on peak muscle forces during vertical jumps showed similar ranges to
results obtained in this thesis [49]. For example, vasti muscle resulted in a peak force of 3.27 BW
during vertical jumps, reasonably comparable to the 3 BW obtained previously [49]. In addition,
the bicep femoris muscle resulted in similar force values in this work (1.16 BW) and in previous
research (1.1 BW) [49]. Overall, the muscle forces obtained in this work can be partially validated
using previous research [49]. It must be noted that this previous research was conducted with the
same objective function (muscle stresses) butata power of 30. Thus, the values are comparable

but not exact.

The second analysis investigated the effect of changing the power of the criterion in the
numerical approach of static optimization. The powers used were 2, 3, 5, 10, and 20. Section 5.2
depicts all the different results obtained for the objective function of muscle stress under specified
powers in figures 15 to 29. Through examining peak forces during jumping and landing stages in
tables 1-3, consistent observation was present in all the results obtained. It is that by increasing the
power of the criterion, better muscle synergy is observed. With a power of 2, one or two muscles
seem to dominate the total force that actuate the joint. Larger powers lead to a better force
distribution between muscles examined for each joint. For example, the soleus muscle has a peak
force of 1.447 BW and the medial head of gastrocnemius has a peak force of 0.243 BW during
jumpingat a power of 3. With increasing the power to 10, the soleus muscle has a peak force of
1.279 BW and the medial head of gastrocnemius has a peak force of 0.334 BW during jumping.
This observation was the same for all 3 joints analyzed in this static optimization problem. This
analysis suggests that with increasing power of objective function, better synergy is observed
between the muscle. Better synergy between muscles is desirable to avoid muscle fatigue and

lower the risk of injury [45]. Higher powers of the objective function were also tested (p=30,
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p=40), but the results did not vary in comparison to the power of 20 presented in this work. This
suggests that the results tend to converge with increasing the power. The results of higher powers
were utilized to examine the effect of having a better balance of forces applied to the tibia.

However, a power of 3 was the focus of this work to examine the risk of injury of the tibial bone.

The third analysis investigated the effect of using a different objective function,
minimizing relative muscle forces, in the numerical approach of static optimization. The same
muscles and inputs were used; however, the physiological cross-sectional area was replaced with
the maximum isometric forces of muscles. Table 6 below shows a comparison between the peak
forces of jumping and landing of the two objective functions at powers of 3 and 10 to examine the
difference. Overall, the pattern of results obtained was similar for lower powers, power of 2 or 3,
between the two objective functions, as shown between figures 15-16 and figures 30-31. However,
the difference in peak forces was respectively significant at the power of 3 and the power of 10.
As the power increases for the objective function of relative muscle forces, larger muscle synergy
was observed. However, at higher powers, the objective function of relative muscle forces does
not provide smooth results for muscle forces as expected. A possible reason is that the inputs to
the static optimization problem are inadequate in determiningan optimal synergy between muscles
at higher power of objective function. This can suggest that the objective function of relative
muscle forces is inadequate for the motion studied, in comparison to the objective function of
muscle stresses. Despite that, the objective function of relative muscle forces could be helpful for
othermotions, or it could be adequate for CMJ under a lower power of criterion. Nevertheless, this
analysis directed the focus of the static optimization problem toward the use of the objective

function of muscle stresses.
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Table 6: Comparison of peak forces of muscles about the ankle joint during jumping of CMJ - numerical
approach with objective functions of muscle stresses and relative muscle forces

Muscles Peak Peak % Peak Peak %
Examined Jumping Jumping Difference = Jumping = Jumping Difference
Force Force Force Force
(p=3) (p=3) (p=10) (p=10)
Muscle stress Relative Muscle stress Relative
muscle force muscle force
Soleus 1.447 BW @ 1.240 BW 14 1.279BW 1.094 BW 14

Lateral Head

of 0.051BW | 0.051BW 0 0.106 BW 0.106 BW 0
Gastrocnemius

Medial Head

of 0.243BW | 0.376 BW 35 0.334BW 0.443 BW 24

Gastrocnemius

The fourth and final analysis investigated the analytical approach of static optimization
to obtain muscle forces duringa CMJ. This method was explored as a closed-form solution and a
mathematical alternative to using the fmincon function in the numerical approach. Moreover, this
method can be used as a method of validating the muscle forces obtained during the numerical
approach with lower power of criterion (power of 2 or 3) [50]. Table 7 below shows a comparison
between the numerical and analytical approaches of static optimization with the objective function
of muscle stresses and power of 3. The percentage difference in muscle forces obtained ranges
between 0% to 4%. This is considered to be relatively small and thus validates the results obtained
from the numerical approach of static optimization.

The analytical approach was also investigated using the objective function with a power of
10. For a power of 2 or 3, the analytical approach can obtain good results through the use of
Lagrangian multipliers. However, as the power increases, the optimization constraints are no
longer met, and the results of muscle forces are greatly affected [50]. Asshownin figure 39, tibialis

anterior muscle was activated during the peak forces of jumping and landing, where exte nsion of
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the ankle takes place, despite it being a flexor muscle. In addition, the results obtained for a power
of 10 in the analytical approach are significantly different in comparison to the results obtained for
a power of 10 in the numerical approach. This supports the limitation of using the analytical
approach at higher powers of criterion [50]. Thus, the analytical approach should only be used
with power of 2 or 3 to provide a closed-form solution to the problem of static optimization.

Table 7: Comparison of peak forces of muscles about the ankle joint during jumping of CMJ - numerical
approach and analytical with objective function of muscle stresses

Peak Jumping Peak Jumping Y
0
Muscles Examined Force (p=3 Force (p=3
(p=3) (p=3) Difference
Numerical Analytical
Soleus 1.447 BW 1.443 BW 0.28%
Lateral Head of
] 0.051 BW 0.053 BW 3.77%
Gastrocnemius
Medial Head of
0.243 BW 0.239 BW 1.67%

Gastrocnemius
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Chapter 6

6 Finite Element Model of the Tibia

This chapter covers phase VI of the project, tackling the objective of obtaining tibial
stresses, strains, and deformations during countermovement jumping. This chapter utilizes several
components at different phases of this work to obtain realistic and meaningful finite element
analysis of the tibia. For the finite element analysis, 3 simulations were conducted. This includes

a standing state simulation, a peak jJumping/propulsion simulation, and a peak landing simulation.

6.1Material Properties and Constitutive Laws

To conduct the finite element (FE) analysis, a tibia model was obtained and adapted from
previous research [51]. The model was obtained from a subject’s CT scan of the left leg, and the
images were analyzed to form a bone model. The model was meshed with quadratic tetrahedral
elements to approximately 220,000 elements. A convergence test was conducted to ensure that the
meshing is adequate for the motion studied. The FE analysis was conducted in ABAQUS 2017
(Abaqusinc., USA).

Bone was modeled as an inhomogeneous isotropic material. This was done by correlating
an elastic constantof one directionto the apparentbone density obtained from imaging. This elastic
modulus was then used to obtain other elastic properties, similar to previous literature [51-52].
Figure 40 shows an illustration of the meshed model of the tibia.

Figure 40: Meshed model of the human tibia
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6.2Loading and Boundary Conditions

Two different loading and boundary conditions were utilized for analysis. The first set of

conditions and constraints were based off previous literature [51, 53].

For the first scenario, the boundary condition was a pinned constraint at the distal tibia, at
the midpointof the leftand right malleoli, to only allow rotation about the ankle center. In addition,
a point on the tibial plateau (proximal end) was fixed in the anterior-posterior and medial-lateral
directions for the application of knee joint contact forces. This point is located at the center of
pressure of the tibia [54]. For this scenario, the loading condition of this model included the knee
joint contact force and the muscle forces obtained in phase V of this project. Muscle points of
insertions and line of actions were used and scaled for this model [39, 40]. It must be noted that
the subject of the CMJ data collection is not the same subject of the tibia model. Thus, minor
scaling (x1.05) took place to match the parameters, such asthe points of insertionof muscles. Each
muscle force was applied to approximately the nearest node on the tibia model. All the muscles
incorporated in the static optimization problem were added to this model. All forces were added
asconcentrated forces. Overall, the analysis was conducted for astandingstage, peak forces during
the propulsion stage, and peak forcesduring the landing stage.

For the second scenario, more realistic loading and boundary conditions were desired. The
tibia bone is expected to be loaded at both the proximal and distal ends of the tibia. Thus, the ankle
joint contact forces were added to the model at the distal end at the midpoint of the left and right
malleoli. Otherwise, all other parameters and conditions were kept unchanged, in comparison to

the first scenario. An illustration of the loads applied in scenario 2 is depicted in Figure 41.

The finite elementanalysis was composed of investigating stresses, strains and deformation
of the tibia during standing, propulsion, and landing. This was to provide insight over the
mechanical behavior of bone under loading of CMJ. With muscle contractions, impact loading,
and gravitational force, the bone experiences applied stress (load per unit area) [55]. This stress
leads to strain in the bone, which is deformation of the bone relative to original dimensions [55].
In locations of smaller cross-sectional area, localized stresses/strains are expected to be higher
[55]. This analysis of the tibia provides insight about localized higher stresses-strains and

maximum stress/strain. Magnitude of deformation provides a metric measurement of strain.
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Knee Joint
Contact Force
Ankle Joint

Contact Force

Figure 41: Illustration of the loads applied to the model, including muscle forces (yellow vectors), knee joint contact forces
(purple vectors), and ankle joint contact force (red vectors) - Scenario 2
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6.3FEM Results of Standing State

For the standingstate, jointcontactforces were obtained from the dynamics simulationand
muscle forces were obtained from the static optimization results. Scenario 1 only included knee
joint contact forces, while the distal end is pinned. Figure 42 shows the results for the maximum
principal strain in the tibia model. Figure 43 shows the results for the maximum principal stress in

the tibia model. Figure 44 shows the results for the magnitude of translation deformation in the tibia

model.
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Figure 42: Maximum principal strain of the tibia under knee joint contact force (scenario 1) — Standing

S, Max, Principal

(Avg: 75%)
+1.010e+03
+7.000e+01
+6,417e+01
+5,833e+01
+5.250e+01
+4.667e+01
+4,083e+01
+3,500e+01
+2.917e+01
+2,333e+01
+1.750e+01
+1.167e+01
+5.833e+00
+0.000e+00
-7.730e+01

]Lx

51

I ., @& .

Figure 43: Maximum principal stress of the tibia under knee joint contact force (scenario 1) — Standing
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Figure 44: Magnitude of translational of the tibia under knee joint contact force (scenario 1) — Standing

Scenario 2 included knee and ankle joint contact forces to the model. Figure 45 shows the

results for the maximum principal strain in the tibia model. Figure 46 shows the results for the

maximum principal stress in the tibia model. Figure 47 shows the results for the magnitude of

translation deformation in the tibia model.
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Figure 45: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) —
Standing
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Figure 46: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) —
Standing
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Figure 47: Magnitude of translational deformation of the tibia under knee and ankle joint contact forces
(scenario 2) — Standing
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6.4FEM Results of CMJ Jumping

For the jumping/propulsion phase, joint contact forces were obtained from the dynamics
simulation and muscle forces were obtained from the static optimization results (similar to the
standingstate). Scenario 1 only included knee jointcontact forces, while the distal end was pinned.
Figure 48 shows the results for the maximum principal strain in the tibia model. Figure 49 shows
the results for the maximum principal stress in the tibia model. Figure 50 shows the results for the
magnitude of translation deformation in the tibia model.
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Figure 48: Maximum principal strain of the tibia under knee joint contact force (scenario 1) — Jumping
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Figure 49: Maximum principal stress of the tibia under knee joint contact force (scenario 1) — Jumping
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Figure 50: Magnitude of translation deformation of the tibia under knee joint contact force (scenario 1) —
Jumping
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Scenario 2 included knee and ankle joint contact forces to the model. Figure 51 shows the
results for the maximum principal strain in the tibia model. Figure 52 shows the results for the
maximum principal stress in the tibia model. Figure 53 shows the results for the magnitude of
translation deformation in the tibia model.
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Figure 51: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) —
Jumping
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Figure 52: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) —
Jumping
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Figure 53: Magnitude of translational magnitude of the tibia under knee and ankle joint contact forces
(scenario 2) — Jumping

57



Inaddition, results of the directional translational deformation of scenario 2 for the jumping

state was obtained, as shown in Figure 54 to Figure 56.
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Figure 54: Horizontal translational magnitude of the tibia under knee and ankle joint contact forces
(scenario 2) — Jumping
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Figure 55: Vertical translational magnitude of the tibia under knee and ankle joint contact forces
(scenario 2) — Jumping
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Figure 56: Axial translational magnitude of the tibia under knee and ankle joint contact forces (scenario
2) —Jumping
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6.5FEM Results of CMJ Landing

For the jumping/propulsion phase, joint contact forces were obtained from the dynamics
simulation and muscle forces were obtained from the static optimization results (similar to the
standing state). Scenario 1 only included knee joint contact forces, while the distal end is pinned.
Figure 57 shows the results for the maximum principal strain in the tibia model. Figure 58 shows
the results for the maximum principal stress in the tibia model. Figure 59 shows the results for the

magnitude of translation deformation in the tibia model.
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Figure 57: Maximum principal strain of the tibia under knee joint contact force (scenario 1) — Landing
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Figure 58: Maximum principal stress of the tibia under knee joint contact force (scenario 1) — Landing
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Figure 59: Magnitude of translational deformation of the tibia under knee joint contact force (scenario 1)
—Landing
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Scenario 2 included knee and ankle joint contact forces to the model. Figure 60 shows the
results for the maximum principal strain in the tibia model. Figure 61 shows the results for the
maximum principal stress in the tibia model. Figure 62 shows the results for the magnitude of
translation deformation in the tibia model.
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Figure 60: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) —
Landing
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Figure 61: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) —
Landing
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Figure 62: Magnitude of translational magnitude of the tibia under knee and ankle joint contact forces
(scenario 2) — Landing

Inaddition, results of the directional translational deformation of scenario 2 for the jumping

state was obtained, as shown in Figure 63 to Figure 65.
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Figure 63: Horizontal translational magnitude of the tibia under knee and ankle joint contact forces (scenario 2) — Landing
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Figure 64: Vertical translational magnitude of the tibia under knee and ankle joint contact forces
(scenario 2) — Landing
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Figure 65: Axial translational magnitude of the tibia under knee and ankle joint contact forces (scenario
2) —Landing
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6.6Discussion of FEM Results

Finite element modeling is a numerical approximation method to analyze the structural
behavior of complex components. It utilizes partial differential equations for the structural
description of the continua [56]. This computational method breaks down a geometric model into
a finite number of elements and performs many numerical operations for every element in the
model [56]. A graphical representation of the full model is the output of this simulation, where a
continuum resultis obtained [56]. In this work, a stress analysis was conducted on the complex
geometry of the tibia. With impact loads are exerted on the bone during CMJ, mechanical stress is
applied. Thiscausesa localized strain at a certain location on the bone, which leads to deformation
of the bone that can be either temporary or permanent. For this project, the medial shaft of the tibia
is of greater interest as a tool to understand stress fractures and risk of injuries (due to higher stress

concentration).

Various results are presented in sections 6.3 to 6.5. Finite element analysis of the tibia
during CMJ includes: (1) Analysis of stress, strain, and magnitude of translational deformation of
the tibial bone during standing, (2) Analysis of stress, strain, and magnitude of translational
deformation of the tibial bone during jumping, (3) Analysis of orthogonal translational
deformations of the tibial bone during jumping, (4) Analysis of stress, strain and magnitude of
translational deformation of the tibial bone during landing, and (5) Analysis of orthogonal
translational deformations of the tibial bone during landing. In addition, this section covers a
comparison betweenjumpingand landing, alongwith highlighting the significance of these results
to stress fractures. Each analysis was performed under two scenarios, scenario 1 of pinning the
distal end of the tibia and loading the proximal end with knee joint contact force, and scenario 2
of loading the proximal end and the distal end of the tibia with knee and ankle joint contact forces,
respectively. Overall, results for strain values were compared to previous literature, particularly
compared to in-vivo measurements of strain in the tibial shaft. To add to that, stress results were
incorporated to investigate regions with risk of injuries, alongwith examiningthe deformation that
takes place in the bone. Note that the tibia is modeled as a cortical bone, and its yield properties

include tensile yield stress of 71 MPa and compressive yield stress of 135 MPa [57].
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Section 6.3 includes the results obtained for a quasi-static analysis of the tibia under
loading conditions of the standing phase of a countermovement jump. For scenario 1, the
maximum principal strain was approximately +360 pstrains (min: +225 pstrains and max: +495
pstrains) along the tibial shaft. For scenario 2, the maximum principal strain was approximately
+360 pstrains (min: +273 pstrains and max: +584 pstrains) along the tibial shaft. Various in-vivo
measurements reported values of strain that range from +381 to +646 pstrains [58]. Overall, the

strain values fall in the range of in-vivo strain values reported in literature.

For scenario 1, the maximum principal stress was averaging at approximately 5.92 MPa
alongthe tibial shaft. Forscenario 2, the maximum principal stress was averagingatapproximately
6.03 MPa along the tibial shaft. No localized stress concentration was present in both simulations
of the standing phase. In addition, the stresses obtained during this stage are very low in
comparison to the yield stress of cortical bone. Moreover, very small translational deformation
(max: 0.8 mm) was observed for the standing phase, with the highest deformation at the mid-shaft
of the tibia.

Section 6.4 includes the results obtained for a quasi-static analysis of the tibia under
loading conditions of the jumping/propulsion phase of a countermovement jump. For scenario 1,
the maximum principal strain was approximately +1745 pstrains (max: +2656 pistrains) along the
tibial shaft. For scenario 2, the maximum principal strain was approximately +2056 pstrains (min:
max: +2939 pstrains) along the tibial shaft. Overall, a higher localized strain was observed along
the anterior crust of the tibial shaft. For in-vivo measurements, values reported in the literature of
strain range from +1858 to +2180 pustrains in the midshaft during vertical jumps [58]. Overall, the
strain values fall in the range of in-vivo strain values reported in literature. However, the strain
values in the localized region of the anterior crust of the tibial shaft were higher than the values
obtained experimentally. This is possibly due to higher jumping associated with the CMJ motion

studied (28 cm), in comparison to previous literature (10-15cm) [58].

For scenario 1, the maximum principal stress was averaging at approximately 16.4 MPa
(max:24.3 MPa) alongthe tibial shaft. For scenario 2, the maximum principal stress was averaging
at approximately 17.2 MPa (max: 26.2 MPa) along the tibial shaft. The stresses obtained during
this stage are significantly higher under loads of the jumping phase. Previous research showed that

fractures can take place in the cortical bone of a male at maximum principal stress of 42.77 MPa
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[59]. This suggests that under repetitive high loads of jumping, the possibility of an injury or a
stress fracture in the bone is higher at stresses lower than the yield stress. To add to that, this
amplifies the need of analyzing the bone with a longer duration of stress exposures (i.e. fatigue) in
the future, to closely examine the possibility of stress fractures in the tibial shaft. Significant
translational deformation (max: 2.37 mm in scenario 1 and max: 2.88 mm in scenario 2) was
observed for the jumping phase, with the highest deformation at the mid-shaft of the tibia. Most
of the translational deformation took place in the vertical direction (along the axis of the bone), as

shown in Figure 55.

Section 6.5 includes the results obtained for a quasi-static analysis of the tibial bone under
loadingconditions of the landingphase of a countermovement jump. For scenario 1, the maximum
principal strain was approximately +1666 pstrains (max: +2512 pstrains) along the tibial shaft.
For scenario 2, the maximum principal strain was approximately +2017 pstrains (max: +2885
pstrains) along the tibial shaft. Overall, a higher localized strain was observed along the anterior
crust of the tibial shaft. For in-vivo measurements, reported values in the literature of strain range
from +1420to +2300 pstrains in the midshaftduringdrop landing [58]. Similarly, the strain values
are in good correlation to in-vivo strain values. However, the strain values in the localized region
of the anterior crust of the tibial shaft were higher than the values obtained experimentally. This
was also observed in jumping simulation and is possibly due to the different landing techniques

conducted in this study and the height to land.

For scenario 1, the maximum principal stress was averaging at approximately 16.2 MPa
(max:24.0 MPa) alongthe tibial shaft. For scenario 2, the maximum principal stress was averaging
at approximately 16.9 MPa (max: 26.2 MPa) along the tibial shaft. The stresses obtained during
this stage are significantly higher under loads of the landing phase. Significant translational
deformation (max: 2.28 mm in scenario 1 and max: 2.63 mm in scenario 2) was observed for the
landing phase, with the highest deformation at the mid-shaft of the tibia. Most of the translational

deformationtook place in the vertical direction (along the axis of the bone), as shown in Figure 64.
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Overall, the stress distribution under loads of the landing phase is very similar to that of
the jJumping phase. However, the jumping phase resulted in slightly higher stress and strain values
surrounding the anterior crust of the tibial shaft. This was unexpected as the loads of the landing
phase are larger than the loads of the jumping phase. A possible reason for this observation could
be due to the muscles recruited in this model. The same muscles were recruited for both the
jumpingand landing phase, and the line of action of each muscle determines the direction of the
force application. Under these conditions, the bone can experience some loads that can counteract
other loads, and thus lead to the results obtained (i.e. muscle extensors and flexors, magnitude of
joint contact forces). With lower cross-sectional area along the anterior crust, higher stress, strain
and deformation was expected and justifiable. To provide another source of comparison to the
finite element model of this work, Von Mises stresses were examined during peak jumping and
landing points of the countermovement jump. Along the tibial shaft, peak VVon Mises stress during
jumpingwas 41.027 MPa and peak VVon Mises stress during landing was 41.9151 MPa. Based on
the knowledge of the author, no finite element model exists for the tibia during jumping/landing
motions. Thus, this model was compared to the finite element model of the tibia during walking
[4]. In this work, peak VVon Mises stress during walking was predicted to be 24.1 MPa [4]. Future
work that tackles stresses and strain of the tibia is essential to fully validate the stresses obtained

in this model.

The finite element analysis provided an investigation of the bone response under high
impact loads that lead to injuries, such as stress fractures. The stresses in the bone were
significantly higher during jumping and landing, in comparison to the results obtained in the
standing phase, as expected. Repetitive jumping and landing that take place in many sports can
impose repetitive impact loads on the bone [12]. This can lead to significant microdamage in the

bone and ultimately lead to a stress fracture [12, 27].
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Chapter 7

7 Conclusions

This thesis provided a framework for utilizing a musculoskeletal biomechanical model and
a finite element model to investigate the motion of countermovement jumps. The presented work
allows analyzing the dynamics of the body and the stress response of the bone (tibia) under the
impactloadingof jumpingand landing. The results presented in this thesis signifies as an advanced
toolin the training of athletesand in providinggreater insight into bone response under meaningful

loading conditions.

7.1Thesis Summary

The purpose of this thesis was to utilize musculoskeletal multibody modeling and finite
element modeling to examine impact dynamics and stresses/strains in the human tibia,
respectively, of a countermovement jump. In completing this work: Chapter 2 included a literature
review of previous research that covered different aspects of this work, Chapter 3 included the
construction of a biomechanical model, Chapter 4 included the inverse dynamic analysis of the
CMJ, Chapter 5 included the use of static optimization to obtain muscle forces, and chapter 6

included the finite element analysis of the human tibia under loads of CMJ.

In Chapter 3, experimental data collection of countermovement jumping of a subject was
explained. This included the used of motion capture and force platesto obtain position and ground
reaction forces of the subject during trials of countermovement jumpingto a maximum height.
This experimental data was then analyzed in MATLAB, and an inverse kinematics approach was
utilized to obtain joint angles of the hip, knee, and ankle. The ground reaction forces were also
analyzed to examine the different stages of a countermovement jump. During jJumping, maximum
flexion/extension angles of the hip knee and ankle were approximately -105°, 84°, and -35°,
respectively. The maximum GRF during jumping was approximately 2.5 BW. During landing,
maximum flexion/extension angles of the hip knee and ankle were approximately -44°,59°, and -
35°, respectively. The maximum GRF during jumping was approximately 2.5 BW. All this data

was utilized to create a multibody model in MapleSim.
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In Chapter 4, inverse dynamics was applied to the multibody model of the subject in
MapleSim. Inputs to the model included hip, knee, and ankle joint angles, along with the position
data of the pelvis. The main output of this model was the torques about the hip, knee, and ankle.
Overall, the torques were larger during landing than during jumping, as expected, given that GRFs
are larger during landing. In addition, knee and ankle joint contact forces were computed from the

model.

In Chapter 5, static optimization was utilized to solve the problem of redundancy in muscle
forces. An analytical and a numerical approach were followed to generate a static optimization to
estimate the forces of major muscles in the lower extremity. The objective function of this
optimization was to minimize muscle stress, with apower of 3 thatcorrespond to maximumenergy
expenditure. The optimization problem provided muscle forces for the entire CMJ motion, where
muscles with larger moment arms are recruited first. This chapter also included comparisons of
using different powers for the objective functionand using a different objective function for the

motion of countermovement jumping.

In Chapter 6, ahuman tibiamodelwas utilized in ABAQUS to run afinite elementanalysis
under loads of countermovement jumping. The tibia was modeled as an inhomogeneous isotropic
cortical bone. The boundary condition was pinning the distal end of the tibia to only allow axial
rotation. The model was loaded with knee and ankle joint contact forces, along with muscle forces
of several major muscles with points of insertion/origin on the tibia. Finite element analysis was
conducted at three instances of CMJ, which are standing, peak jumping, and peak landing. Stress,
strain, and deformation results of the human tibia were obtained and examined. Overall, maximum
principal strain was approximately +2056 pstrains during propulsion and approximately +2017
pstrainsduringlanding. A higher localized strain was observed alongthe anterior crust of the tibial

shaft, likely due to lower cross-sectional area and large loads applied during jumping/landing.

With elevated stresses/strains along the tibial shaft during countermovement jumping, risk
of injury to the tibia is possible with repetitive jumping that correspond to repetitive impact loads
on the bone. The bone is capable of remodeling and adapting to these high impact loads, however,
the frequency and magnitude of these forces should be studied further to understand and prevent
injury of bones. This work provides a scheme and a step forward into a larger understanding of

human motion and how injury takes place with a larger biomechanical insight.
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7.2Limitations

Theresults of thiswork show great potential in the field of investigating injury mechanisms

and impact loading. However, there are some limitations in the work presented in this thesis.

This work incorporated experimental data of one healthy subject. This caused a lim itation
in providingsubstantial observations regardingthe motion and its correlation to risk of injury. Due
to restrictions in obtaining experimental data, the work was limited to incorporating only one
subject. Adding more subjects to the analysis can increase the confidence in the methodology and
the results obtained. It can also provide emphasis on the use of subject-specific multibody models
and finite element models. To add to that, having more subjects in the study can allow providing
further analysis, such as providing insight to specific kinematics or dynamics that lead to higher

stress/strain in the bone.

Another limitation was that multibody model constructed in this thesis is a simple 2D
model of the subject. Thissimplification took place as majority of the motion of interesttook place
in the sagittal plane. This limited the analysis as all muscle forcesand joint torques obtained were
due to the flexion/extension motions of CMJ, while excluding the effects of abduction/adduction
motions and internal/external rotations. To increase the fidelity, multiple enhancements can take
place. First, a 3D model of the subject can be constructed. Second, joints (hip, knee, and ankle)
were modeled as simple revolute joints. These joints can be modeled as spheres and higher
accuracy of joint contact forces can be achieved. In addition, better parameters can be obtained
and used for better subject-specific models. This can include the possibility of using imaging
techniques (DEXA, CT, or MRI scans) for higher accuracy of parameters such as length, mass,

and inertia.

While using a 2D model for the biomechanical multibody model, a 3D model was used for
the finite element model of the tibia. Muscle forces were obtained from joint moments of the
flexion/extension motion of CMJ. When added as loads in the finite element analysis, the total
muscle force was distributed to a3D componentforcealongthe line of action of each muscle. This
shift from a 2D multibody model to a 3D finite element model imposed a limitation to the analysis

conducted and can be tackled upon incorporating a 3D multibody model.
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Validation of joint contact forces from the multibody model and muscle forces from the
static optimization were limited in this work. In literature, limited sources document the joint
contact forces during jumping, landing, or both. The joint contact forces were closely comparable
to previous research and thus were validated to some extent. However, a future work that can be
tackled is the possibility of obtaining accurate experimental joint contact forces, during CMJ or
vertical jumps, to validate joint contact forces in computational models. Moreover, measuring a
muscle force in-vivo is invasive, while measuring muscle activation does not quantify muscle
forces. Thus, future work that can be tackled is the possibility of obtaining accurate experimental
muscle forces to validate muscle forces obtained. Overall, enhancements are needed in the field of
biomechanicsto better validate computational models, specifically consideringjoint contact forces

and muscle forces.

Another source of limitation exists from the use of static optimization to obtain muscle
forces. In this method, several parameters (maximum isometric forces and physiological cross-
sectional areas) of muscles are obtained from literature and thus are not subject-specific. This does
not take into account how different individuals have different recruitments of muscles due to
differentcapabilities. Forexample, an athlete ismore likely to have muscles with higher maximum
isometric forces than an individual with minimal physical activity. Thus, the problem of static
optimization requires parameters and inputs that are more representative of the subject’s potential,

however, this was limited to available resources and difficulty in measuring these parameters.

Lastly, a limitation to this work was that the tibia model utilized was obtained from a
subject that is different from the subject of experimental data collection. Both participants were of
similar age, height, and weight. However, for a better analysis of CMJ, it is of interest to have the
same subject for both the experimental data collection and the finite element model. This can

provide a more meaningful analysis of the motion studied and associated risk of injury.
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7.3Future Work

With the results presented in this work, the methodology could be improved in the future

to better analyze the biomechanics of various motions, specifically jumping and landing motions.

1)

2)

3)

4)

Experimental data can be collected from athletes of different sports. For example, jumping
and landing motionsare common in many sports (basketball, volleyball, etc.). These jumps
are greatly variable and are completed with different intents, not necessarily reaching a
maximum height. The framework in this thesis provides the potential of studying several
sports and different types of jumps in each sport. With greater number of subjects and
different jumps being analyzed, results of inverse kinematics can provide insight regarding
the motion and variability in performance.

EMG signals can be collected from subjects during the motion of interest. This can be used
to compare muscle activations to muscle forces during the motion. In addition, it can
potentially allow investigating the reverse of this framework (forward dynamics).

A possible future work can incorporate the reverse of the framework of this thesis, which
is through the use of forward dynamics or a hybrid approach of using both inverse and
forward dynamics. This method can utilize torques and muscle activation to obtain the
optimal countermovement jJumps. A reverse of this framework can provide an analysis of
different factors that affect the jump and can compare the effects of each loading on the
tibial stress and strain. In addition, it can be used as a tool to prevent injury in bone.

This work followed a sequential framework of combining multibody dynamic modeling
and finite element modeling. A possible future work can enhance this framework into an
integrated simultaneous modeling technique for multibody dynamics and finite element
analysis. It could provide a better biomechanical analysis of the tibia, directly including
dynamic and structural response. This can be possibly achieved by incorporating a flexible
tibia with finite element analysis into the multibody model. Currently, computational time
and resources (software) do not allow for simultaneous real-time studies and thus

development in the field is still required.
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