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Abstract 

Computational models have been used to examine and estimate various motions and 

loading conditions of the human body that are otherwise difficult to examine experimentally. To 

study human musculoskeletal dynamics, biomechanical multibody models can be utilized with 

inverse or forward dynamics. To study the stress and strain response of complicated geometries, 

such as bones, finite element models can be utilized under specific loads and boundary conditions. 

When examining an injury mechanism or studying a specific motion, tackling both areas of 

computational modeling can provide insightful information (e.g.  reaction forces or stress 

distribution. This thesis presents the work of combining a musculoskeletal dynamic model and a 

finite element model to examine the dynamics of countermovement jumping and the resulting 

stress on the human tibia.  

The objectives of this thesis were to study the impact dynamics and investigate the stresses 

and strains of the human tibia during countermovement jumping. This work utilized multibody 

dynamic modeling and finite element modeling to investigate the risk of injuries in a jumping-

landing motion. Initially, experimental data of position and ground reaction forces were obtained 

from a subject during countermovement jumping. This data is utilized in an inverse kinematics 

analysis to obtain joint angles of the lower extremity. A multibody model was constructed with 

segment lengths and parameters that are specific to the subject. The human was represented as four 

rigid links in the sagittal plane connected with revolute joints. Inverse dynamics was applied on 

the model with inputs of angles and positions of countermovement jumping to provide joint 

torques. Following that, a static optimization was performed to obtain muscle forces,  while 

tackling the problem of redundancy. A total of 9 muscles were defined in the model and included 

in the static optimization problem under the objective function of minimizing muscle stress . With 

obtaining muscle forces, joint contact forces were also computed. Finally, a finite element model 

of the tibia was used to examine the stresses and strain under calculated loads of countermovement 

jumping. With a countermovement jump, the flexion/extension torques about the hip, knee, and 

ankle were slightly higher during the jumping phase than the landing phase. However, the stresses 

and strains were higher in the medial shaft of the tibia during landing phase than during jumping. 

This suggests that an injury to the tibia (i.e. stress fracture) is possible at locations of lower cross-

sectional area under repetitive impact loads and elevated stresses of countermovement jumps. 
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This framework provided a potential of examining motion dynamics and structural bone 

response of the human body under loadings specific to the motion studied. It can be utilized as a 

tool for training in sports, or as a tool in prevention of injury in specific motions. This work also 

provides the first documented investigation that compares a finite element analysis of jumping and 

landing. 
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Chapter 1 

1 Introduction 

Jumping is a common movement performed by humans. People tend to jump while playing 

several sports, exercising, dancing, or simply while running around. Jumps can be differentiated 

by many factors that include frequency, height of the jump, or the type of jump itself  (vertical 

jumps, slackline jumps, skip jumps, etc.) [1]. Jumps require the body to exert some force to achieve 

a certain height, and similarly, landing after jumps imposes impact forces on the body. These 

impact forces resulting from jumping and landing can affect the condition of bones, ligaments, and 

tendons of the body [1]. This thesis covers a study of computationally combining a multibody 

musculoskeletal dynamic model of a human during a jumping-landing motion with a finite element 

analysis of the tibia. Specifically, countermovement jumping is the motion analyzed for this work. 

It involves a squatting motion, followed by a vertical jump to a maximum height.        

1.1 Problem Description  

Several sports are associated with lower-extremity injuries that vary in severity and can 

have a detrimental effect on athletes [2]. These injuries are usually associated with power 

movements, such as jumping, landing, running, twisting or other sudden motions [2]. 

Understanding injury mechanisms gained interest in the research community, mainly aiming to 

derive a pathway to reduce the risk of injuries [2]. However, each sport is unique and imposes a 

different risk of injuries to different parts of the lower extremity. Many common injuries during 

sports have been studied superficially, but few studies have gone in-depth to analyze various 

factors that can potentially cause these injuries [2-5]. 

Stress fractures in bones of the lower extremity account for about 20% of all sports-related 

injuries [3]. Each sport is generally correlated to stress fractures of specific bones, at specific 

locations [3]. For example, running is associated with a higher prevalence of stress fractures in the 

shaft of the tibia and fibula [3]. There are many factors that can lead to stress fractures in bone, 

and biomechanical analysis has been used previously to provide some insight [2]. In sports, the 

frequency, the type of motion, and the sudden changes to the motion could be some of the factors 

that lead to injuries in the lower extremity [4].  
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Jumping and landing are two common movements that take place in many sports, such as 

basketball and volleyball [2]. Impact forces are associated with such movements and thus higher 

risk of injuries is usually expected [5]. However, many variations of jumping and landing exist in 

sports [2]. Countermovement jumping (CMJ), also referred to as squat jumping from a standing 

position and hand placed still on waist, can impose high loads on the body at very high speeds [5]. 

CMJ is used to evaluate the capabilities of athletes, while reducing the effects of several variables 

such as arm swings and athlete’s intent [6]. 

Musculoskeletal modeling has been used frequently for many biomechanical applications, 

primarily due to ethical and invasive barriers to directly measure joint contact forces, muscle 

forces, and muscle length changes [2]. It provides a dynamic analysis of motions that can cause 

musculoskeletal sports injuries, as it allows estimating muscle forces and joint loads [2]. It has 

been mainly used for activities of daily living, and less frequently for activities of faster execution 

or higher loading (requires higher complexity in modeling) [5]. Several studies have conducted 

multibody modeling during jumping or landing; however, they were mostly focusing on the 

dynamics of the motion and its correlation to some injuries (ACL injury) [7-11]. 

Finite element analysis has been used in biomechanical research to simulate the 

stress/strain distribution in bone [4]. The accuracy of these models has been often compromised 

due to inaccurate/ nonspecific input data to the model, along with extremely simplified geometry 

[4]. For example, a bone model can be loaded at simplified locations by a ratio of the bodyweight 

[12]. This can provide some insight into the motion; however, it cannot lead to realistic 

observations that can be used to prevent injuries. Thus, it is important to have realistic loadings 

that correlate to the motion studied and incorporate bone adequate bone properties (geometry, 

material strength and boundary conditions) to have greater confidence in the finite element analysis 

[4]. 

 

 

 

 



3 

 

1.2 Research Goals and Contributions 

This research had two main goals. The first goal of this work was to study the impact 

dynamics of a countermovement jump. The second goal of this work was to analyze the stresses 

and strains in the human tibia during a countermovement jump. Musculoskeletal modeling can 

provide important information about factors that affect the motion, which include joint torques, 

joint contact forces, and muscle forces. Finite element modeling can examine the response of a 

specific bone under the loads occurring during the motion studied. Overall, this work aims to 

combine two important simulation techniques, multibody dynamic modeling and finite element 

modeling, towards investigating the risk of injuries during a jumping-landing motion. 

To tackle this research problem, the project was subdivided into 6 phases. Phase I of the 

work was the collection of experimental data of countermovement jumping, which included 

capturing data of position and ground reaction forces of a subject. Phase II of this work involved 

inverse kinematics, which utilized experimental data to obtain joint angles of the lower extremity 

of the body. Phase III of this work was the construction of a biomechanical model, which is a 2D 

skeletal sagittal model with 4 rigid bodies and three revolute joints. Phase IV of this work was an 

inverse dynamic analysis using the multibody model, with experimental joint angles, ground 

reaction forces, and position of the pelvis, to obtain joint moments and moment arms of seve ral 

major muscles. Phase V of this work was a static optimization analysis to compute muscle forces 

acting on the tibia. Phase VI of this work was a finite element analysis of the tibia under loads 

obtained in phase IV and phase V, to examine stress, strain, and deformation of the bone during 

jumping and landing. A flowchart of this work is provided in Figure 1. 

This work aims to contribute to the fields of multibody biomechanical modeling and finite 

element modeling of bone. The main contribution is providing a framework to obtain motion-

specific and meaningful loads for the stress analysis of bone, rather than the current approach of 

using approximate loads that are relevant to bodyweight [12]. This framework can be used to give 

a greater insight into risk injuries in sport-related motions, specifically the jumping-landing 

motion. A reverse of this framework can also be used in the future to obtain optimal motions, while 

ensuring better stress distribution in bones and lower risk of injuries. Moreover, this work may be 

used as a potential tool for training athletes to enhance performance, while reducing the risk of 

injuries. 
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To the best of the author’s knowledge, there have been no previous finite element analyses 

that examined both jumping and landing. This work introduces the ability to analyze the full 

motion and allows a realistic comparison between jumping and landing and its effects on the 

human tibia. 

  

Figure 1: Flow chart of the method process utilized for this thesis 

 

 

 



5 

 

1.3 Thesis Structure  

This thesis consists of seven main chapters. Chapter 1 is the introduction of this thesis, 

which consists of the objectives and contributions of the work presented in this thesis. Chapter 2 

is a literature review, which includes information about previous research on countermovement 

jumps, dynamic modeling, stress fracture in bones, and the merge of multibody dynamic modeling 

with finite element modeling. Chapter 3 reports on the construction of a multibody biomechanical 

model, which includes collecting and analyzing experimental data,  along with the design of the 

biomechanical model. Chapter 4 reports on the dynamic simulations, which are the result of an 

inverse dynamic analysis of the multibody model. Chapter 5 concerns the muscle forces, which 

includes the use of static optimization and the application of a numerical and an analytical 

approach to obtain muscle forces from joint torques. Chapter 6 reports on the finite element model 

of the tibia, which includes the various steps and results of a finite element analysis of the tibia 

during a countermovement jump. Chapter 7 is the conclusion of the thesis, including a limitations 

section and recommendations for future work that can be applied to this framework. 
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Chapter 2 

2 Literature Review  

This chapter is a review of existing research that has inspired the work of this thesis, along 

with background knowledge for different aspects of this project. The literature review is divided 

into 4 sections, which tackle theoretical explanation and previous research in various fields of this 

work. Section 1 describes countermovement jumping, the different phases of the jump, and the use 

of the jump to evaluate the performance of athletes. Section 2 describes the difference between 

inverse dynamics and forward dynamics in simulated models. Section 3 examines stress fractures 

and their prevalence in sports. Lastly, section 4 investigates previous literature that tackled the 

method of combining multibody dynamic modeling to finite element modeling. 

2.1 Countermovement Jumps 

Countermovement jump (CMJ) is a type of vertical jumping that is used to monitor athlete 

performance, as it is consistent and non-fatiguing [13-14]. Primarily, CMJ is a tool to assess the 

power of the lower extremity of athletes in many sports, such as basketball and volleyball [6]. It 

can assess the jumping height of athletes, along with providing insight about velocity, power, and 

forces attainable [13]. The study of the force-time curve of the CMJ motion has gained attention 

in the research of sports biomechanics [13]. Previous research investigated different factors that 

can influence the force-time curve of CMJ in athletes, such as effort exerted, depth of jumping, or 

neuromuscular training [13, 15-17].  

CMJ is defined as a jump that initiates with a countermovement motion, as the body goes 

into a squatting position, to be followed by a jump to the maximum height possible [18-19]. In 

CMJ, the hand is usually placed still on the hips to eliminate possible momentum generated by 

arm swings that could affect jumping height and the motion itself [6]. Biomechanically 

investigating the different stages of the jump can provide a qualitative measure of assessing the 

effectiveness and effort of the individual, mostly through examining peak forces [6]. To increase 

the height of CMJ, it is recommended to increase the depth of squatting, have larger 

countermovement, and larger inclination of the trunk [19-20]. To measure the performance of 

CMJ, force plates are usually used to quantify vertical forces throughout the motion [18].  
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Overall, the motion can be broken down into 5 different stages. Figure 2 depicts a simplistic 

representation of these different stages. Stage 1 is the standing stage, which indicates the beginning 

of the motion by quite standing [21]. The vertical force that is usually measured during this stage 

corresponds to the weight of the individual [21]. Stage 2 is the unweighting stage, which 

corresponds to a downward squatting motion to lower the center of mass [18]. This takes place 

when the individual flexes the hip and knees with a downward acceleration, while it ends when 

the center of mass reach its lowest height prior to attempting the jump [21]. The vertical force that 

is usually measured during this stage is lower than the weight of the individual [21]. The 

unweighting stage is also referred to as the eccentric phase when examining muscles [22]. This is 

when the subject stores elastic energy in muscles and tendons to provide enough energy for the 

jump [6]. The subject does not hold the squatting position, but rather variable speeds can be 

attainable during the unweighting stage that can affect the performance [21]. Stage 3 is the 

propulsion stage, which corresponds to an upward motion from the lowest position of stage 2 and 

until take-off [6]. A peak vertical force is usually measured that is larger than the bodyweight of 

the individual, where a higher force could correspond to a larger jumping height [21]. The 

propulsion phase is also referred to as the concentric phase when examining muscles [22]. The 

elastic energy that is stored is utilized in this stage for muscles to exert enough force for the jump 

against the force of gravity [6]. Take-off point is an important term when describing the CMJ 

motion, which indicates that the jumper’s feet are off the ground completely [21]. It is the point 

that separates stages 3 and 4, the propulsion stage and the jumping stage. Stage 4 is the jumping 

stage, which corresponds to an upward motion with feet being completely off the ground and the 

center of mass being higher than that of the standing stage [21]. Athletes are usually instructed to 

provide maximal effort during the jump phase to achieve a higher jump, while ensuring that the 

legs are extended [18]. Stage 5 is the landing stage, which indicates a balancing motion from the 

point that feet touch the ground and until a standing stance is achieved [21]. Two peak vertical 

forces are usually measured during this stage [21]. The first peak force is higher in magnitude than 

the second, which is an indication of an impactful force due to landing [21]. This peak force is 

usually the highest vertical force to be measured during a CMJ [21]. The second peak measured is 

due to attempts of balancing, which is usually due to slight squatting and propulsion [21]. This 

peak force is typically variable between different jumps and different individuals [21]. 
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Figure 2: Simple illustration of the different stages of a countermovement jump 

In previous CMJ research, the individual is instructed during the unweighting stage to reach 

a specific depth, such as a 90-degrees of depth, subject-specific depth, or largest possible depth 

[19]. In addition, a lot of research targets the eccentric and concentric stages of CMJ for further 

analysis [20-22]. This type of CMJ research provided an analysis of critical information that could 

be used by scientists and trainers to evaluate capabilities and expertise [22]. Athletes usually 

undergo neuromuscular training to achieve higher jumps and better physical conditioning, through 

strengthening the muscles and increasing the force applied during the propulsion phase [19, 22].  

To enhance jump performance, athletes tend to apply a larger force, alter the duration of 

the force application, or squat at different depths [19]. Squatting at a specific depth during a CMJ 

can affect the duration of the jump and the peak forces in the propulsion phase, thus affecting the 

height of the jump [19]. With a longer depth in squatting, higher jumps are achievable at a shorter 

duration of time [19]. It has been shown previously, both in an experiment and in simulation, that 

increasing the countermovement depth can lead to better jump performance [19]. On the other 

hand, decreasing the depth does not allow enough energy to be stored in the muscles for the jump, 

and thus the jumping performance is compromised [19].  

Overall, CMJ is a great tool to assess athletes’ lower extremities, the power that can be 

applied, and to track capabilities. It has the potential of being used to evaluate injuries in the lower 

extremity, without the burden of intent to jump or the effect of arm swings.  



9 

 

2.2 Inverse Dynamics vs. Forward Dynamics  

Human movements can be described as the motion of a system of rigid linked segments. 

This system is usually driven by internal or external forces that affect the dynamics. Simulations 

of this system are usually constructed in two directions, inverse dynamics or forward dynamics. 

Inverse dynamics is the process of obtaining internal forces and moments from kinematics and 

external forces [23]. Forward dynamics is the process of obtaining the movement and external 

reaction forces from known internal forces and moments [23]. Figure 3 shows an overflow of the 

inverse dynamics problem, where motion and external forces are the inputs, and the outputs are 

the internal forces and moments. Figure 4 shows an overflow of the forward dynamics problem, 

where joint torques and internal forces are the inputs, and the outputs are an estimation of the 

motion and external forces. 

 

Figure 3: Flow chart of the inverse dynamics problem 

 

Figure 4: Flow chart of the forward dynamics problem 
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A typical inverse dynamics problem tackles the need of solving for joint torques. By using 

a simulated model, position data and ground reaction forces can be captured directly with motion 

capture systems and force plates, respectively. This method allows the calculation of internal 

forces and moments without invasive procedures, such as using pressure plates and dynamometry 

[23]. However, errors in capturing data and uncertainty in simulated model parameters can affect 

the consistency and accuracy of joint torques and forces obtained [24]. Inverse dynamics utilizes 

Newton-Euler equations of motion to obtain internal forces and moments about joints, through 

utilizing inertial properties of the rigid bodies, the kinematics of the motion , and external forces 

(ground reaction forces) [23]. A typical forward dynamics problem tackles the need of estimating 

the motion, through utilizing joint torques and internal forces (muscle forces) as inputs. This 

method allows computational prediction of motion under various conditions, without the need for 

an extensive amount of experimental data or experimental data of dangerous motions [25]. 

In sports, simulated models are utilized to give insight regarding the techniques used and 

to provide mechanics for better performance [26]. Analyzing the biomechanics of sports through 

the kinematics can provide an understanding of the techniques used. However, utilizing a 

simulated model can test several factors that affect the mechanics of the sport and can quantifiably 

provide information to improve the techniques to be used [26]. In addition, it can analyze the 

dynamics that can lead to a higher risk of injuries in sports, along with the possibility of studying 

subject-specific simulated models with unique factors that result in a specific motion [26]. 
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2.3 Stress Fractures in Sports 

Under repetitive impact loading of a bone, simple or complete fractures can take place [27]. 

Particularly, stress fractures are common with damage that takes place with high stresses that are 

constantly induced to the bone [27]. A stress fracture is also considered an overuse injury. As the 

bone is repeatedly loaded with high impactful forces, the bone experiences microdamage that 

increases in severity with a higher frequency or magnitude of loading [12]. Under repetitive high 

loads, the bone has the capability of remodeling [27]. This is that the bone can accommodate to 

the high frequency of larger loads by creating more bone cells and increasing the strength of the 

bone [12]. In addition, the bone is capable of regenerating bone cells to replace damaged cells prior 

to it escalating to a bone fracture [12]. However, enough time is required for the bone to remodel 

and accommodate to these high loads [27]. With stress fractures, each loading cycle induces 

microdamage in the bone [27]. With a high frequency of loading, bone damage can take place 

faster than bone remodeling, and thus stress fractures can occur [27]. In some cases, stress fractures 

are very hard to diagnose, even with well-developed imaging techniques [12]. In other cases, stress 

fractures can be severe and may require surgical intervention [12]. 

Several sports impose high impactful loads on the bones, such as basketball, volleyball, 

football, dancing, hockey, etc. Stress fractures can be detrimental to athletes as they can lead to 

weeks without strenuous activities until recovery is ensured [27]. In addition, athletes usually 

require rehabilitation to increase the strength of the bone after recovery to avoid the occurrence of 

a subsequent stress fracture [27].  

Stress fractures account for up to 20% of all sports-related injures [27]. Stress fractures are 

more common in the bones of the lower extremity, such as the tibia and metatarsal, and less 

common in bones of the upper extremity [27]. In a study that examined stress fractures in 320 

athletes of different sports, about 49.1% of all cases occurred in the tibia [28]. In addition, the site 

of fracture is possibly correlated to age, such that older individuals are more likely to experience 

stress fractures in the femur or the metatarsal, while younger individuals are more likely to 

experience stress fractures in the tibia or the fibula [28].  Due to the high prevalence of stress 

fractures in sports, a motivation existed to provide a better framework to understand stress 

fractures. 
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2.4 Merging of Multibody Dynamic Modeling and Finite Element Modeling 

This section summarizes several research studies that tackled multibody biomechanical 

modeling and finite element modeling for the same problem. Computational modeling has been 

used vastly in the area of human biomechanics. Multibody modeling has been used when physical 

motion and dynamics are of interest. On the other hand, finite element modeling has been used 

when tissue response is of interest. Sometimes, analyzing both areas of biomechanics can provide 

important insight into a problem. Thus, research is slowly gearing towards the  use of both a 

multibody dynamic model of the body and a finite element model of a tissue to tackle some 

problems in the field of biomechanics. 

One study that tackled combining both computational models was the work of Alti et al. 

[29]. This work investigated the possibility of predicting the femoral neck strain during walking 

by utilizing multibody dynamic modeling and finite element modeling [29]. The goal of the work 

was similar to the goal of this thesis, which was to study the motion itself and study its effects 

directly on the femur [29]. It consisted of obtaining CT and MRI scans of the lower limb, along 

with data collection of the normal gait from five female participants [29]. These were used to create 

subject-specific multibody musculoskeletal models and subject-specific finite element models to 

investigate femoral neck strain values during gait [29]. Muscle forces that were obtained from the 

multibody model and optimization were used for boundary and loading conditions in the finite 

element model [29]. This work was able to provide multiple subject-specific models, along with 

comparing the sensitivity of the model to different inputs [29]. 

Another study by Xu et al. examined the effects of load carriage on the tibia by utilizing 

both a multibody model and a finite element model [4]. The goal of this work was to add to 

previous studies of motion by examining the stress and strain distribution of the tibia [4]. To add 

to that, a primary goal was to conduct finite element modeling under meaningful and accurate 

loading conditions [4]. This work consisted of obtaining motion data and ground reaction forces 

during walking with four conditions of carrying loads [4]. This data was utilized in a multibody 

dynamic model to obtain joint and muscle forces, which were applied as inputs for the finite 

element model of the tibial bone [4]. Overall, this work provided a framework that connects load 

carriage and biomechanics of bone [4]. 
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Mo et al. also contributed to this framework by combining multibody modeling and finite 

element modeling simultaneously, through the use of controlling strategies [30]. This work 

incorporated “a unique feedback control strategy that couples together a basic Proportional-

Integration-Differentiation (PID) controller and generic active signals from computed muscle 

control (CMC) method of the musculoskeletal model” [30]. It is considered the first step towards 

the possibility of simultaneously simulating dynamics of the motion and stress analysis of tissue 

[30]. 

 Lastly, Shu et al. attempted to utilize a multibody dynamic model and a finite element 

model to tackle the full response of the body after a total knee replacement surgery [31]. The aim 

of this work was to examine the dynamics of the motion after the surgery and the prosthetic 

mechanics and structure, along with the interaction between them [31]. The multibody model 

incorporated a subject-specific knee model, ligaments, muscles, and a deformable prosthetic model 

[30]. This method allowed a more realistic analysis of the prosthesis model, by providing subject-

specific boundary and loading conditions [31]. 

 All this previous work helped shape the work presented in this thesis. This body of research 

allowed the development of a framework that fully captures the dynamics and tissue response of 

the human body during a full CMJ. This project aims to provide better insight towards examining 

impactful motions that are correlated to a higher risk of injuries.  
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Chapter 3 

3 Construction of a Multibody Biomechanical Model 

A multibpody biomechanical model of a human body during countermovement jumping 

was constructed in MapleSim (MapleSoft, Canada). The model is a two-dimensional 

representation that focuses on the motion of the lower extremity of the body. Experimental data 

were obtained for the motion of CMJ, followed by kinematic and kinetic analysis of this data to 

be used in creating the model. All the steps are explained in this chapter.  

3.1 Experimental Data Collection  

The experimental data consisted of tracking position data and gathering ground reaction 

forces during the motion of a CMJ. A healthy participant, male (23 years, 1.788 m, 80.5 kg), 

performed a set of required motions to obtain the experimental data.  

To prepare the participant for the experiment, four marker clusters were attached as 

following: one cluster of four markers on the right thigh, a cluster of four markers on the right 

shank, a cluster of four markers on the right foot, and a cluster of five markers affixed over the 

sacrum of the pelvis.  In addition, digitized points were selected to calibrate the system and obtain 

anatomically relevant position data as virtual markers. Digitized points included: left & right 

anterior superior iliac spines, left & right posterior superior iliac spines, left & right iliac crests of 

the pelvis, the sacrum, the right greater trochanter, the right medial and lateral femoral condyles 

and tibial condyles, the right medial and lateral malleolus, and the right heel, toe, first and fifth 

metatarsal of the foot.  

The position of the markers was captured using six Optotrak Certus cameras (Northern 

Digital Inc., Canada), set at a capture frequency of 100 Hz. To capture ground reaction forces, 2 

AMTI OR6-7 force plates were utilized at a capture frequency of 2000 Hz. Overall, the 

experimental procedure consisted of a static standing trial and 3 CMJ trials. The data collection 

started after attaching and digitizing markers, along with giving instructions and obtaining consent 

from the participant. At first, the participant was asked to stand still on the force plate for a duration 

of 3 seconds. This is the static standing trial, required for calibration and to help in defining the 
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weight of the subject. The participant is then asked to perform a CMJ, with hands still on the waist, 

to reach the maximum height attainable. The duration of the trial was set to 30 seconds to allow 

the participant to prepare for the second trial and to reduce the effect of fatigue or rapidness of 

continuous jumping. The two remaining trails followed similarly to trial 1. Upon completing the 

three trials of CMJ, the markers were removed, and the experimental procedure was concluded.  

The Office of Research Ethics at the University of Waterloo approved the experimental 

procedure (ORE #31448) and consent to the study was provided by the participant. This 

experiment was performed by Natasha Ivanochko at the University of Waterloo.  

3.2 Analysis of Experimental Kinematics 

Upon gathering the position data of CMJ, an inverse kinematic analysis was conducted in 

MATLAB. At first, the data was filtered to remove noise and gap filled to estimate the position of 

missing markers at a specific frame. Joint centers (hip, knee, and ankle) were specified based on 

ISB recommendations of the lower extremity [32-33]. Then, a rotation matrix and local coordinates 

of the lower extremity segments were utilized to obtain joint angles.  

To explain the motion in an anatomically relative aspect, intersegmental angles were 

computed and Figure 5 shows the convention of joint angles utilized. Figure 6 depicts the plot of 

intersegmental angles of the thigh relative to the pelvis versus time. Figure 7 depicts the plot of 

intersegmental angles of the shank relative to the thigh versus time.  Figure 8 depicts the plot of 

intersegmental angles of the foot relative to the shank versus time.  

Intersegmental angles of the thigh relative to the pelvis corresponds to the angles of the hip 

joint, shank relative to the thigh corresponds to the angles of the knee joint, and foot relative to the 

shank corresponds to the angles of the ankle joint. Based on the rotation matrix selected for this 

motion, alpha (α) angles correspond to the abduction-adduction motion of joints. Beta (β) angles 

correspond to the internal-external rotation of joints. Moreover, gamma (γ) angles correspond to 

the flexion-extension motion of joints.  
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By examining the intersegmental angles, majority of the motion takes place in flexion and 

extension of the joints of the lower extremity, which corresponds to most of the motion being in 

the sagittal plane. Flexion-extension angles of the ankle joint reach a maximum of -35° for both 

jumping and landing. Flexion-extension angles of the knee joint reach a maximum of 84° for 

jumping and around 59° for landing. Moreover, flexion-extension angles of the hip joint reach a 

maximum of -105° for jumping and about -44° for landing.  

 

Figure 5: Convention of the angles obtained from experimental data of countermovement jumping 

 

Figure 6: Intersegmental angle of the thigh relative to the pelvis (hip joint) during a CMJ task 
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Figure 7: Intersegmental angle of the shank relative to the thigh (knee joint) during a CMJ task 

 

Figure 8: Intersegmental angle of the foot relative to the shank (ankle joint) during a CMJ task 
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3.3 Analysis of Ground Reaction Forces  

For the task studied, 2 force plates were active to fully capture the ground reaction forces 

during the entire motion. The force plate data obtained was calibrated in MATLAB to convert 

voltage data to ground reaction forces in Newtons. As recommended for impact loading tasks, the 

force plate data were filtered using the same cut-off frequency as the position data [34]. In addition, 

the data was utilized to obtain the center of pressure of contact throughout the motion, to be used 

phase IV of this work. Figure 9 shows a plot of the ground reaction forces in the vertical direction 

versus time for the three trials conducted, where ground reaction forces are normalized to the body 

weight of the participant. 

 

Figure 9: Vertical ground reaction force versus time for the three trials of CMJ task 

Upon obtaining the ground reaction forces for the task of countermovement jumping, a 

comparison was made to understand the different stages of the task and how that correlates to the 

force. All three trials resulted in very similar patterns of ground reaction forces during a CMJ. The 

maximum GRF obtained during jumping was 2.4 ± 0.15 BW, while the maximum GRF obtained 

during landing was 5.60 ± 0.61 BW. 

For further analysis, trial 1 was examined further. Figure 10 illustrates the different stages 

of the CMJ motion of trial 1. From 0 to 1 second, the subject is in a quiet stance, and the force 

plate measures the weight of the subject. This is referred to as the standing stage [21]. From 1 to 

1.5 seconds, flexion of the hip and the knee takes place to reach the squatting position . This is 

referred to as the unweighting stage, where the ground reaction force drops below bodyweight 

[21]. Due to squatting, muscles store the energy required to attain the jump. From 1.5 to 2 seconds, 

the subject depicts the highest ground reaction force prior to flight. This is referred to as the 
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propulsion phase [21]. At 2 seconds, the subject’s feet are off the ground and the force plate does 

not measure any force until around 2.4 seconds. The subject reaches a maximum height and drops 

back to touch the ground, and this is referred to as the flight stage [21]. At approximately 2.4 

seconds, the feet touch the ground and force is detected again on the force plate. Just as the subject 

landed, a spike in the ground reaction force is observed. The GRF during landing is higher than 

that of propulsion. The subject then tries to reach a balance of standing upright, usually through 

squatting. The stage from 2.4 to 3.2 seconds is referred to as the landing phase [21]. This is then 

followed again by a standing phase, where balance is achieved. Similar patterns and ranges of 

GRFs are observed in previous literature [20, 22]. All the stages are explained further in section 

2.2. 

 

Figure 10: Illustration of the different stages of CMJ with respect to the vertical ground reaction forces of 

trial 1 
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3.4 Design of Biomechanical Model 

The purpose of this step was to design a biomechanical computational model with all the 

body segments that are critical for the motion studied. In other words, it is a simplified 

mathematical model of the body that can capture the motion of interest. In this study, it has been 

assumed that a sagittal plane analysis is adequate, rather than a 3D analysis. The motion mainly 

involves flexion and extension of joints, with minimal motion in internal/external rotation and 

abduction/adduction of joint (change of <15°). In addition, the model is assumed to be 

symmetrical. This assumption is made due to very similar motions depicted for both the right side 

and left side of the body. It must be noted that the body dominance of one side of the body was 

not investigated in this project. Moreover, the biomechanics of the lower extremity is of interest 

and arm motion is restricted, thus the upper extremity was lumped to one segment. 

A skeletal linked model was constructed in MapleSim to contain 4 rigid bodies and 3 

revolute joints. The four rigid bodies consist of the foot, shank, thigh, and head-arm-trunk (HAT). 

For a 2D model, left and right bodies are lumped into a single segment (i.e. left and right thighs 

are lumped into one thigh segment). A simple schematic is shown in Figure 11. Revolute joints 

were used for the hip, knee, and ankle joint to drive the model. Based on the subject’s height and 

weight, important properties and parameters required for the model were obtained by 

anthropometric scaling factors found in the literature [35]. This includes segmental length, mass, 

center of mass location and moment of inertia for HAT, thigh, shank, and foot segments. 

 

Figure 11: Illustration depicting the segments and joints of the dynamic multibody model 
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Chapter 4 

4 Dynamic Simulations 

This chapter covers phase IV, tackling the implementation of an inverse dynamic analysis 

for countermovement jumping. For this study, a biomechanical model was constructed (section 

3.4), and was utilized with kinematic and kinetic data to obtain joint torques and reaction forces. 

4.1 Dynamics of a Countermovement Jump 

Inverse dynamic analysis was conducted using the skeletal model generated in MapleSim. 

The model was employed to obtain internal joint forces and joint moments of the lower extremity. 

The model was constructed with subject-specific weights and lengths for each segment, moment 

of inertia for each segment, and the center of mass of each segment. As inputs to the model for the 

inverse dynamic analysis, intersegmental angles of the hip, knee, and ankle were added to the 

model. In addition, ground reaction forces were applied to the foot segment at the average center 

of pressure for every stage of the countermovement jump. In addition, horizontal and vertical 

position data of the hip joint (pelvis) were applied to the model. These inputs provided enough 

information to conduct an inverse dynamic analysis. The desired output of this analysis was the 

sagittal joint moments of the hip, knee, and ankle joints, along with knee and ankle joint contact 

forces. In MapleSim, the multibody analysis tool was utilized to obtain the motion dynamics, based 

on the Newton-Euler equations of motions.  

4.2 Simulations of Inverse Dynamics 

By conducting an inverse dynamic simulation, Figure 12 shows the resultant hip, knee, and 

ankle joint moments obtained during the task of countermovement jumping. During the propulsion 

phase, peak moments obtained were -300 N.m for the hip joint moment, 222 N.m for the knee joint 

moment, and -87 N.m for the ankle joint moment. During the landing phase, the highest moments 

obtained were -329 N.m for the hip joint moment, 271 N.m for the knee joint moment, and -169 

N.m for the ankle joint moment. The peak joint moments obtained in this analysis correlated with 

previously reported joint moments during the task of vertical jumping (-350 N.m for the hip joint 

moment, 188 N.m for the knee joint moment, and -110 N.m for the ankle joint moment) [36]. 
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Figure 12: Flexion/extension joint torques of the hip, knee, and ankle joint during a CMJ 

Other outputs that were achieved from the biomechanical model are the joint contact forces 

of the knee and the ankle joint. Figure 13 shows a simplified free body diagram of the reaction 

forces. Figure 14 shows the horizontal and vertical joint contact forces of the knee during the motion 

of CMJ. Figure 15 shows the horizontal and vertical joint contact forces of the ankle during the 

motion of CMJ. Vertical forces were normalized to the bodyweight of the subject to be easily 

correlated to GRFs.  The maximum vertical knee joint contact force was achieved during the 

landing stage of the motion, with a maximum force of approximately -1797 N. During jumping, 

the maximum knee joint contact force was approximately -878 N. To add to that, the maximum 

vertical ankle joint contact force was achieved during the landing stage of the motion, with a 

maximum force of approximately 1850 N. During jumping, the maximum ankle joint contact force 

was approximately 813 N. The peak vertical reaction forces of the ankle closely match to half of 

the peak ground reaction forces measured experimentally. The vertical reaction forces correlated 

closely to literature during countermovement jumping, which showed maximum knee and ankle 

joint contact forces of -1622 N and 1699 N, respectively [5]. In addition, the overall response and 

pattern of the joint contact forces during the full motion closely resembles that of previous 

literature [7]. To verify of the results, the equations of motion of the model were extracted from 

MapleSim and verified the solver in MATLAB with the same inputs. 

(+) Flexion  

(-) Extension 
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Figure 13: A simplified free body diagram of the lower extremity to depict the reaction forces 

 

Figure 14: Horizontal and vertical joint contact forces of a knee during CMJ 
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Figure 15: Horizontal and vertical joint contact forces of an ankle during CMJ 
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Chapter 5 

5 Muscle Forces 

This chapter covers phase V of this project, tackling the problem of obtaining muscle forces 

during a CMJ from joint torques obtained in phase IV of this work. For this study, muscles that 

are attached to the tibia are of main interest, as these muscle forces will be needed as inputs to the 

finite element model. Static optimization was used to solve for muscle forces through minimizing 

a specified objective function. A numerical and an analytical approach were used for static 

optimization, described respectively in sections 5.2 and 5.3.  

5.1 Static Optimization Solution for Redundant Muscle Forces 

 By utilizing the output of the MapleSim model in phase IV, the next aim of this project 

was to find the forces generated by several muscles in the lower extremity. In  the attempt of solving 

for the muscle forces, the problem of redundancy was faced. This occurs when the number of 

unknowns in the problem is larger than the number of equations generated from the model.  With 

the muscles recruited in this model and the associated degrees of freedom, muscle forces can not 

be obtained directly [35]. To tackle this, an optimization problem can be used. Static optimization 

in inverse dynamics is an approach to estimate the muscle forces for every time instant in the 

motion [37]. This is one of the most used methods in inverse dynamics to solve the problem of 

redundancy of muscle forces [37]. The static optimization utilizes an objective function that is 

minimized while depicting some physiological characteristics [38].  

 To conduct a static optimization, additional inputs are required. Thus, the multibody 

dynamic model is upgraded from a skeletal model to a musculoskeletal model. Several muscles 

were added to the model, with a focus on muscles that are attached to the tibia. For this project, a 

total of 9 muscle bundles were examined. This includes the gluteus maximus muscle, iliacus 

muscle, rectus femoris muscle, hamstring muscle (which is composed of bicep femoris long head, 

semimembranosus, and semitendinosus), vasti muscle, biceps femoris short head muscle, 

gastrocnemius muscle, soleus muscle, and tibialis anterior muscle.  
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Musculoskeletal geometry was incorporated in this model by obtaining the site of muscle 

attachments, via points of muscles, moment arms, and muscle lines of action. Location of muscle 

insertion, muscle origin, and via points around joints were obtained using the Klein Horsman’s 

database [39]. In addition, optimal moment arms and muscle lines of action were obtained using 

data from Yamaguchi [40]. A scale factor of 1.076 was used to match the positions and lengths of 

the subject in this study to that in the databases. 

 It is first assumed that the moments about the joints are only due to muscle forces [41]. In 

addition, muscle dynamics were not incorporated and thus it is assumed that muscles can produce 

force instantly. A variety of objective functions have been utilized in obtaining muscle forces, but 

the focus was mainly towards polynomial functions [41]. A commonly used objective function of 

muscle stresses is based on the work of Crowninshield, giving the following criterion [38]: 

                                                            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑ (
𝐹𝑖

𝑃𝐶𝑆𝐴𝑖
)
𝑝

𝑛
𝑖=1                                                     (1) 

where n is the number of muscles about the joint studied, Fi is the ith muscle force, PCSAi 

is the physiological cross-sectional area of the ith muscle and p is the power of the criterion. The 

power of the criterion is greatly variable in the literature, where some are random to better fit the 

experimental results, while others aim for physiologically meaningful criteria [41, 42]. Several 

pieces of research conducted analysis for the effects of changing the power of the criterion in static 

optimization [43, 44]. For this project, the power was varied, with emphasis on the power of 3, 

which resembles maximizing of energy expenditure and is very widely used in li terature [42]. 

Another commonly used objective function is based on relative muscle forces [45]. It is based on 

the following criterion: 

                                                            𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑ (
𝐹𝑖

𝐹𝑖_𝑚𝑎𝑥
)
𝑝

𝑛
𝑖=1                                                    (2) 

where Fi_max is the maximum isometric force of the ith muscle. Both objective functions 

incorporate physiological criteria of the muscles, but the muscle forces are usually different [45]. 

For this project, the objective function of relative muscle forces (equation 2) was used with varying 

powers, to be compared to the objective function of muscle stresses (equation 1).  
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A flow chart of the static optimization problem is illustrated in Figure 16. It shows that joint 

moments and muscle moment arms from the musculoskeletal model can be used with maximum 

isometric muscle forces and physiological cross-sectional area of muscle to run a static 

optimization problem. The aim of this optimization is to obtain optimal muscle forces for a CMJ 

motion. 

 

Figure 16: Flowchart of the static optimization problem to solve for muscle redundancy 

The problem of static optimization was solved for each joint, where the input is the total 

moment of the joint. This means that the summation of muscle moments should be equal to the 

total moment. The values of maximum force and physiological cross-sectional area were obtained 

from literature [46-48]. An analytical approach and a numerical approach were used to obtain 

muscle forces. In the static optimization problem, equality and inequality constraints were set to 

bound the muscle forces and obtain meaningful results. For all static optimization problems in this 

project, the same set of constraints were utilized as follows:  

                                           𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡     𝐹𝑖  ≤ 𝐹𝑖_𝑚𝑎𝑥                                              (3) 

                                              𝐼𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡     𝐹𝑖  ≥ 0                                                    (4) 

                                           𝐸𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝐶𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡     𝜏𝑗𝑜𝑖𝑛𝑡 −∑ 𝑟𝑖
𝑛
𝑖=1 𝐹𝑖 = 0                                  (5) 

 where ri is the moment arm of the ith muscle, and τjoint is the total joint moment. The 

inequality constraints bound the problem to ensure all muscle forces are positive and are lower 

than their maximum isometric forces. The equality constraint in this problem is to ensure that the 

joint moment obtained from the musculoskeletal model is equal to the net muscle moments 

obtained from the results of the static optimization.  

 

Joint moments 
and muscle 

moment arms 
from 

musculoskeletal 
model 

Maximum 
isometric muscle 

forces and 
physiological 

cross-sectional 
area of muscles 
from literature

Static 
optimization of 

constrained 
minimization 

algorithm

Optimal muscle 
forces for the 

motion studied  



28 

 

5.2 Numerical Approach  

 To solve the problem of static optimization, the fmincon function in the optimization 

toolbox of MATLAB was used. A code was generated in MATLAB to tackle the problem of 

muscle redundancy for a CMJ. The algorithm solves a constrained minimization problem to 

compute optimal muscle forces. The fmincon function requires the inputs of the static optimization 

to be applied in a specified format as following: 

                                       𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏
                                           (6) 

                                𝑊ℎ𝑒𝑟𝑒  

{
 
 

 
 𝑓(𝑥) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ (

𝐹𝑖

𝑃𝐶𝑆𝐴𝑖
)
𝑝

𝑛
𝑖=1

𝐴𝑒𝑞 = 𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑟𝑚𝑠 𝑜𝑓 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 

𝑏𝑒𝑞 = 𝐽𝑜𝑖𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 (𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠
𝑙𝑏 = 𝐹𝑖_𝑚𝑖𝑛 = 0

𝑢𝑏 = 𝐹𝑖_𝑚𝑎𝑥

                                (7) 

Where f(x) is the objective function of the static optimization to obtain muscle forces, Aeq 

are the moment arms of muscles, beq is the joint moment, and lb and ub are the bounds of the 

muscle forces to meet inequality constraints. Overall, the function follows the representation of an 

optimization problem with equality and inequality constraints. All the inputs required for the 

objective functions and constraints were added to the code to generate a solution for the 

redundancy problem of muscle forces. For the initial guess of this optimization, the muscle forces 

at t=0 seconds obtained in the analytical approach of p=2 was used (to be explained in section 5.3). 

For this approach, the power of the objective function was varied to examine the effect of 

increasing the power. Thus, optimization was conducted for the power of 2, 3, 5, 10, and 20. Based 

on previous literature, increasing the power depicted higher synergy of muscles, i.e. more muscles 

contributing to net moment [41, 49].  

The static optimization was conducted for the hip, knee, and ankle joint moments, along 

with muscles that cause the moments of each joint. It must be noted that only the main muscles 

were added to the analysis of this project.  

For the ankle joint, Figure 17 to Figure 21 show the results of static optimization under 

different powers of the objective function. In addition, Table 1 shows the peak forces of muscles 

during the jumping and landing phase of the countermovement jump.  
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Figure 17: Numerical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=2 

 

Figure 18: Numerical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=3 

 

Figure 19: Numerical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=5 
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Figure 20: Numerical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=10 

 

Figure 21: Numerical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=20 
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Table 1: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - numerical 

approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20   

Muscles 

Examined 

Peak 

Jumping 

Force 

(p=3) 

Peak 

Landing 

Force 

(p=3) 

Peak 

Jumping 

Force 

(p=10) 

Peak 

Landing 

Force 

(p=10) 

Peak 

Jumping 

Force 

(p=20) 

Peak 

Landing 

Force 

(p=20) 

Soleus 
1.447 BW 2.795 BW 1.279 BW 2.488 BW 1.258 BW 2.423 BW 

Lateral Head 

of 

Gastrocnemius  

0.051 BW 0.098 BW 0.106 BW 0.203 BW 0.117 BW 0.227 BW 

Medial Head 

of 

Gastrocnemius 

0.243 BW 0.466 BW 0.334 BW 0.644 BW 0.351 BW 0.676 BW 

 

For the knee joint, Figure 22 to Figure 26 show the result of static optimization under 

different powers of the objective function of muscle stresses. In addition, Table 2 shows the peak 

forces of muscles during the jumping and landing phase of the countermovement jump. 

 

Figure 22: Numerical solution of muscle forces about the knee joint with objective function of muscle 

stresses, p=2 
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Figure 23: Numerical solution of muscle forces about the knee joint with objective function of muscle 

stresses, p=3 

 

Figure 24: Numerical solution of muscle forces about the knee joint with objective function of muscle 

stresses, p=5 

 

Figure 25: Numerical solution of muscle forces about the knee joint with objective function of muscle 

stresses, p=10 
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Figure 26: Numerical solution of muscle forces about the knee joint with objective function of muscle 

stresses, p=20 

Table 2: Peak forces of muscles about the knee joint during jumping and landing of CMJ - numerical 

approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20   

Muscles 

Examined 

Peak 

Jumping 

Force 

(p=3) 

Peak 

Landing 

Force 

(p=3) 

Peak 

Jumping 

Force 

(p=10) 

Peak 

Landing 

Force 

(p=10) 

Peak 

Jumping 

Force 

(p=20) 

Peak 

Landing 

Force 

(p=20) 

Vasti 3.349 BW 4.045 BW 3.277 BW 4.047 BW 3.271 BW 4.045 BW 

Rectus 

Femoris 

1.435 BW 1.49 BW 1.502 BW 1.506 BW 1.508 BW 1.508 BW 

 

For the hip joint, Figure 27 to Figure 31 show the result of static optimization under different 

powers of the objective function of muscle stresses. In addition, Table 3 shows the peak forces of 

muscles during the jumping and landing phase of the countermovement jump. 
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Figure 27: Numerical solution of muscle forces about the hip joint with objective function of muscle 

stresses, p=2 

 

Figure 28: Numerical solution of muscle forces about the hip joint with objective function of muscle 

stresses, p=3 

 

Figure 29: Numerical solution of muscle forces about the hip joint with objective function of muscle 

stresses, p=5 
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Figure 30: Numerical solution of muscle forces about the hip joint with objective function of muscle 

stresses, p=10 

 

Figure 31: Numerical solution of muscle forces about the hip joint with objective function of muscle 

stresses, p=20 
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Table 3: Peak forces of muscles about the hip joint during jumping and landing of CMJ - numerical 

approach with objective function of minimizing muscle stresses to the power of 3, 10, and 20   

Muscles Examined Peak 

Jumping 

Force 

(p=3) 

Peak 

Landing 

Force 

(p=3) 

Peak 

Jumping 

Force 

(p=10) 

Peak 

Landing 

Force 

(p=10) 

Peak 

Jumping 

Force 

(p=20) 

Peak 

Landing 

Force 

(p=20) 

Gluteus Maximum 1.405 BW 1.249 BW 1.405 BW 1.405 BW 1.405 BW 1.405 BW 

Bicep Femoris 

Long Head 

1.156 BW 1.156 BW 1.156 BW 1.084 BW 1.156 BW 1.069 BW 

Semimembranosus 1.622 BW 1.622 BW 1.622 BW 1.622 BW 1.622 BW 1.622 BW 

Semitendinosus 0.498 BW 0.386 BW 0.516 BW 0.459 BW 0.516 BW 0.473 BW 

 

With the numerical approach, it was of interest to investigate the effect of using a different 

objective function. Thus, the objective function of relative muscle forces was applied to compare 

the two objective functions. Similarly, the fmincon function requires the inputs of the static 

optimization to be applied in a specified format as following: 

                                           𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏
                                       (8) 

                                          𝑊ℎ𝑒𝑟𝑒  

{
 
 

 
 𝑓(𝑥) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ (

𝐹𝑖

𝐹𝑖_𝑚𝑎𝑥
)
𝑝

𝑛
𝑖=1

𝐴𝑒𝑞 = 𝑀𝑜𝑚𝑒𝑛𝑡 𝑎𝑟𝑚𝑠 𝑜𝑓 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 
𝑏𝑒𝑞 = 𝐽𝑜𝑖𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡

𝑙𝑏 = 𝐹𝑖_𝑚𝑖𝑛 = 0

𝑢𝑏 = 𝐹𝑖_𝑚𝑎𝑥

                                  (9) 

where f(x) is the objective function of the static optimization. For this optimization, only 

the muscles about the ankle joint were analyzed. For the initial guess of this optimization, the 

muscle forces at t=0 seconds obtained in the analytical approach of p=2 was used (to be explained 

in section 5.3).  Figure 32 to Figure 36 show the result of static optimization under different powers 

of the objective function of muscle stresses. In addition, Table 4 shows the peak forces of muscles 

during the jumping and landing phase of the countermovement jump. 
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Figure 32: Numerical solution of muscle forces about the ankle joint with objective function of relative 

muscle forces, p=2 

 

Figure 33: Numerical solution of muscle forces about the ankle joint with objective function of relative 

muscle forces, p=3 

 

Figure 34: Numerical solution of muscle forces about the ankle joint with objective function of relative 

muscle forces, p=5 
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Figure 35: Numerical solution of muscle forces about the ankle joint with objective function of relative 

muscle forces, p=10 

 

Figure 36: Numerical solution of muscle forces about the ankle joint with objective function of relative 

muscle forces, p=20 
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Table 4: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - numerical 

approach with objective function of minimizing relative muscle forces to the power of 3, 10, and 20   

Muscles 

Examined 

Peak 

Jumping 

Force 

(p=3) 

Peak 

Landing 

Force 

(p=3) 

Peak 

Jumping 

Force 

(p=10) 

Peak 

Landing 

Force 

(p=10) 

Peak 

Jumping 

Force 

(p=20) 

Peak 

Landing 

Force 

(p=20) 

Soleus 
1.240 BW 2.398 BW 1.094 BW 2.107 BW 0.687 BW 2.066 BW 

Lateral Head 

of 

Gastrocnemius  

0.051 BW 0.098 BW 0.106 BW 0.203 BW 0.117 BW 0.227 BW 

Medial Head 

of 

Gastrocnemius 

0.376 BW 0.727 BW 0.443 BW 0.855 BW 0.691 BW 0.949 BW 
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5.3 Analytical Approach 

 An analytical approach with Lagrangian multipliers was used to obtain muscle forces 

during a CMJ motion in a static optimization problem. In MATLAB, a code was generated to run 

this optimization. The analytical approach serves as a method of obtaining muscle forces in the 

form of a closed-form exact solution [49]. However, as the power of the criterion increases, the 

number of possible solutions increase significantly, and a unique solution does not exist. This 

method was shown to provide good results with a power of 2 or 3 for the criterion [50]. Thus, this 

approach was used to validate the numerical approach. To examine higher powers, a power of 10 

was used under the same formulation to examine the results. To apply varying power of the 

criterion, a Lagrangian multiplier is incorporated for the non-linear optimization problem, to obtain 

the following expression for muscle forces [49]:  

                                             𝐹𝑗 = 𝜏𝑗𝑜𝑖𝑛𝑡  . [ 𝑟𝑗 .  ∑ {
𝑟𝑖  .  𝑎𝑖

𝑟𝑗 .  𝑎𝑗
}
( 𝑃

𝑃−1
)

𝑛
𝑖=1 ]

−1

≥ 0                                                  (10) 

where i≠j for a unique solution using Lagrangian multiplier, rj is the moment arm of the jth 

muscle, aj is the physiological cross-sectional area of the jth muscle, p is the power of the criterion 

and τjoint is the total joint moment. To bound the problem, the equality and inequality constraints 

in equations 3-5 were used. This formulation leads to muscles of larger moment arms and 

physiological cross-sectional areas to be recruited first for muscle forces. For the analytical 

approach, the muscles about the ankle joint were of interest and were investigated with a power of 

2, 3, and 10. Power of 3 was used to create a comparison between the analytical and numerical 

approaches of static optimization. A power of 10 was used to show the eff ect of high powers on 

the analytical approach. 

The inputs of this problem are the joint moments and muscle moment arms from the 

musculoskeletal model, along with maximum isometric force and physiological cross-sectional 

area of all muscles recruited. The objective function of muscle stresses (equation 1) was the 

primary objective function of this approach. For the ankle joint, Figure 37 to Figure 39 show the 

result of static optimization under different powers of the objective function of relative muscle 

forces. In addition, Table 5 shows the peak forces of muscles during the jumping and landing phase 

of the countermovement jump. 
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Figure 37: Analytical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=2 

           

 

Figure 38: Analytical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=3 

     

 

Figure 39: Analytical solution of muscle forces about the ankle joint with objective function of muscle 

stresses, p=10 
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Table 5: Peak forces of muscles about the ankle joint during jumping and landing of CMJ - analytical 

approach with objective function of minimizing muscle stresses to the power of 2, 3, and 10   

Muscles 

Examined 

Peak 

Jumping 

Force 

(p=2) 

Peak 

Landing 

Force 

(p=2) 

Peak 

Jumping 

Force 

(p=3) 

Peak 

Landing 

Force 

(p=3) 

Peak 

Jumping 

Force 

(p=10) 

Peak 

Landing 

Force 

(p=10) 

Soleus 
1.544 BW 2.982 BW 1.443 BW 2.791 BW 1.419 BW 2.734 BW 

Lateral Head 

of 

Gastrocnemius 

0.019 BW 0.037 BW 0.053 BW 0.090 BW 0.123 BW 0.242 BW 

Medial Head 

of 

Gastrocnemius 

0.143 BW 0.278 BW 0.239 BW 0.460 BW 0.367 BW 0.706 BW 
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5.4 Discussion  

Overall, static optimization is a fast and simple pathway to tackle the problem of muscle 

redundancy. However, it does not fully capture the physiological nature of muscles. In this phase 

of the project, multiple investigations were conducted. This includes: (1) the use of numerical 

approach (fmincon function) of static optimization for muscle forces that actuate the hip, knee and, 

ankle joints, (2) the effect of varying the power of the objective function in the numerical approach 

of static optimization, (3) the effect of changing the objective function for the same motion in the 

numerical approach of static optimization, and (4) the use of analytical approach (Lagrangian 

multiplier) to conduct static optimization and its use for validating the numerical approach. The 

focus was mainly directed towards peak forces during the propulsion/jumping stage and the 

landing stage. These stages contributed to the highest forces during the motion and thus were 

analyzed in this section and used as inputs in the finite element modeling phase of this project. 

  For the first analysis, Table 1, Table 2, and Table 3 show the results of numerical static 

optimization obtained for muscle forces about the ankle, knee, and hip joints, respectively, during 

peak jumping and landing. These results are for the objective function of minimizing muscle 

stresses. Since a power of 3 for the criterion holds a physiological meaning of maximizing energy 

expenditure, it was used as the primary solution for this project [42]. To add to that, this project 

tackles the risk of injuries due to these forces. Thus, utilizing muscle forces with this power can 

give greater insight as it can give insight about energy expenditure and fatigue in muscles [43, 50]. 

Figures 16, 21 and 26 show the results of muscle forces using the objective function of minimizing 

muscle stresses with a power of 3 for the ankle, knee, and hip joint. For the motion studied, muscle 

forces were highest during peak jumping and landing for the soleus muscle, vasti m uscle, and 

semimembranosus muscle. The soleus resulted in peak forces of 1.45 BW during jumping and 2.80 

BW during landing. The vasti muscle resulted in peak forces of 2.35 BW during jumping and 4.05 

BW during landing. To add to that, the semimembranosus muscle resulted in peak forces of 1.62 

BW during jumping and landing. Other muscles also contributed high forces during the two force 

peaks of the motion. Overall, muscle forces were larger during the peak point of the landing stage 

than the propulsion phase for all the muscles examined in the static optimization problem. 
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Some muscles about the hip joint resulted in forces that reached their maximum isometric 

forces. This was not regarded as an issue in the results, as other muscles about the hip joint did not 

reach their maximum isometric force (Figure 26) and an impactful load of jumping and landing 

can impose high loads. The static optimization provided a solution to compute for the muscles 

investigated, taking into account their cross-sectional area and moment arms. In addition, injury 

of bone is of interest in this project and thus possible higher forces of muscles can provide better 

insight. 

Previous research on peak muscle forces during vertical jumps showed similar ranges to 

results obtained in this thesis [49]. For example, vasti muscle resulted in a peak force of 3.27 BW 

during vertical jumps, reasonably comparable to the 3 BW obtained previously [49]. In addition, 

the bicep femoris muscle resulted in similar force values in this work (1.16 BW) and in previous 

research (1.1 BW) [49]. Overall, the muscle forces obtained in this work can be partially validated 

using previous research [49]. It must be noted that this previous research was conducted with the 

same objective function (muscle stresses) but at a power of 30. Thus, the values are comparable 

but not exact. 

The second analysis investigated the effect of changing the power of the criterion in the 

numerical approach of static optimization. The powers used were 2, 3, 5, 10, and 20. Section 5.2 

depicts all the different results obtained for the objective function of muscle stress under specified 

powers in figures 15 to 29. Through examining peak forces during jumping and landing stages in 

tables 1-3, consistent observation was present in all the results obtained. It is that by increasing the 

power of the criterion, better muscle synergy is observed. With a power of 2, one or two muscles 

seem to dominate the total force that actuate the joint. Larger powers lead to a better force 

distribution between muscles examined for each joint. For example, the soleus muscle has a peak 

force of 1.447 BW and the medial head of gastrocnemius has a peak force of 0.243 BW during 

jumping at a power of 3. With increasing the power to 10, the soleus muscle has a peak force of 

1.279 BW and the medial head of gastrocnemius has a peak force of 0.334 BW during jumping. 

This observation was the same for all 3 joints analyzed in this static optimization problem. This 

analysis suggests that with increasing power of objective function, better synergy is observed 

between the muscle. Better synergy between muscles is desirable to avoid muscle fatigue and 

lower the risk of injury [45]. Higher powers of the objective function were also tested (p=30, 
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p=40), but the results did not vary in comparison to the power of 20 presented in this work. This 

suggests that the results tend to converge with increasing the power. The results of higher powers 

were utilized to examine the effect of having a better balance of forces applied to the tibia. 

However, a power of 3 was the focus of this work to examine the risk of injury of the tibial bone.  

The third analysis investigated the effect of using a different objective function, 

minimizing relative muscle forces, in the numerical approach of static optimization. The same 

muscles and inputs were used; however, the physiological cross-sectional area was replaced with 

the maximum isometric forces of muscles. Table 6 below shows a comparison between the peak 

forces of jumping and landing of the two objective functions at powers of 3 and 10 to examine the 

difference. Overall, the pattern of results obtained was similar for lower powers, power of 2 or 3, 

between the two objective functions, as shown between figures 15-16 and figures 30-31. However, 

the difference in peak forces was respectively significant at the power of 3 and the power of 10.  

As the power increases for the objective function of relative muscle forces, larger muscle synergy 

was observed. However, at higher powers, the objective function of relative muscle forces does 

not provide smooth results for muscle forces as expected. A possible reason is that the inputs to 

the static optimization problem are inadequate in determining an optimal synergy between muscles 

at higher power of objective function. This can suggest that the objective function of relative 

muscle forces is inadequate for the motion studied, in comparison to the objective function of 

muscle stresses. Despite that, the objective function of relative muscle forces could be helpful for 

other motions, or it could be adequate for CMJ under a lower power of criterion. Nevertheless, this 

analysis directed the focus of the static optimization problem toward the use of the objective 

function of muscle stresses.  
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Table 6: Comparison of peak forces of muscles about the ankle joint during jumping of CMJ - numerical 

approach with objective functions of muscle stresses and relative muscle forces 

Muscles 

Examined 

Peak 

Jumping 

Force 

(p=3) 

Muscle stress 

Peak 

Jumping 

Force 

(p=3) 

Relative 

muscle force 

% 

Difference 

Peak 

Jumping 

Force 

(p=10) 

Muscle stress 

Peak 

Jumping 

Force 

(p=10) 

Relative 

muscle force 

% 

Difference 

Soleus 1.447 BW 1.240 BW 14 1.279 BW 1.094 BW 14 

Lateral Head 

of 

Gastrocnemius  

0.051 BW 0.051 BW 0 0.106 BW 0.106 BW 0 

Medial Head 

of 

Gastrocnemius 

0.243 BW 0.376 BW 35 0.334 BW 0.443 BW 24 

 

The fourth and final analysis investigated the analytical approach of static optimization 

to obtain muscle forces during a CMJ. This method was explored as a closed-form solution and a 

mathematical alternative to using the fmincon function in the numerical approach. Moreover, this 

method can be used as a method of validating the muscle forces obtained during the numerical 

approach with lower power of criterion (power of 2 or 3) [50]. Table 7 below shows a comparison 

between the numerical and analytical approaches of static optimization with the objective function 

of muscle stresses and power of 3. The percentage difference in muscle forces obtained ranges 

between 0% to 4%. This is considered to be relatively small and thus validates the results obtained 

from the numerical approach of static optimization.  

The analytical approach was also investigated using the objective function with a power of 

10. For a power of 2 or 3, the analytical approach can obtain good results through the use of 

Lagrangian multipliers. However, as the power increases, the optimization constraints are no 

longer met, and the results of muscle forces are greatly affected [50]. As shown in figure 39, tibialis 

anterior muscle was activated during the peak forces of jumping and landing, where extension of 
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the ankle takes place, despite it being a flexor muscle. In addition, the results obtained for a power 

of 10 in the analytical approach are significantly different in comparison to the results obtained for 

a power of 10 in the numerical approach. This supports the limitation of using the analytical 

approach at higher powers of criterion [50]. Thus, the analytical approach should only be used 

with power of 2 or 3 to provide a closed-form solution to the problem of static optimization.  

Table 7: Comparison of peak forces of muscles about the ankle joint during jumping of CMJ - numerical 

approach and analytical with objective function of muscle stresses 

Muscles Examined 

Peak Jumping 

Force (p=3) 

Numerical 

Peak Jumping 

Force (p=3) 

Analytical 

% 

Difference 

Soleus 1.447 BW 1.443 BW 0.28% 

Lateral Head of 

Gastrocnemius 
0.051 BW 0.053 BW 3.77% 

Medial Head of 

Gastrocnemius 
0.243 BW 0.239 BW 1.67% 
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Chapter 6 

6 Finite Element Model of the Tibia 

This chapter covers phase VI of the project, tackling the objective of obtaining tibial 

stresses, strains, and deformations during countermovement jumping. This chapter utilizes several 

components at different phases of this work to obtain realistic and meaningful finite element 

analysis of the tibia. For the finite element analysis, 3 simulations were conducted. This includes 

a standing state simulation, a peak jumping/propulsion simulation, and a peak landing simulation. 

6.1 Material Properties and Constitutive Laws  

To conduct the finite element (FE) analysis, a tibia model was obtained and adapted from 

previous research [51]. The model was obtained from a subject’s CT scan of the left leg, and the 

images were analyzed to form a bone model. The model was meshed with quadratic tetrahedral 

elements to approximately 220,000 elements. A convergence test was conducted to ensure that the 

meshing is adequate for the motion studied. The FE analysis was conducted in ABAQUS 2017 

(Abaqus inc., USA). 

 Bone was modeled as an inhomogeneous isotropic material. This was done by correlating 

an elastic constant of one direction to the apparent bone density obtained from imaging. This elastic 

modulus was then used to obtain other elastic properties, similar to previous literature [51-52]. 

Figure 40 shows an illustration of the meshed model of the tibia. 

 

Figure 40: Meshed model of the human tibia 
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6.2 Loading and Boundary Conditions 

Two different loading and boundary conditions were utilized for analysis. The first set of 

conditions and constraints were based off previous literature [51, 53].  

For the first scenario, the boundary condition was a pinned constraint at the distal tibia, at 

the midpoint of the left and right malleoli, to only allow rotation about the ankle center. In addition, 

a point on the tibial plateau (proximal end) was fixed in the anterior-posterior and medial-lateral 

directions for the application of knee joint contact forces. This point is located at the center of 

pressure of the tibia [54]. For this scenario, the loading condition of this model included the knee 

joint contact force and the muscle forces obtained in phase V of this project. Muscle points of 

insertions and line of actions were used and scaled for this model [39, 40]. It must be noted that 

the subject of the CMJ data collection is not the same subject of the tibia model. Thus, minor 

scaling (×1.05) took place to match the parameters, such as the points of  insertion of muscles. Each 

muscle force was applied to approximately the nearest node on the tibia model. All the muscles 

incorporated in the static optimization problem were added to this model. All forces were added 

as concentrated forces. Overall, the analysis was conducted for a standing stage, peak forces during 

the propulsion stage, and peak forces during the landing stage.  

For the second scenario, more realistic loading and boundary conditions were desired. The 

tibia bone is expected to be loaded at both the proximal and distal ends of the tibia. Thus, the ankle 

joint contact forces were added to the model at the distal end at the midpoint of the left and right 

malleoli. Otherwise, all other parameters and conditions were kept unchanged, in comparison to 

the first scenario. An illustration of the loads applied in scenario 2 is depicted in Figure 41. 

 The finite element analysis was composed of investigating stresses, strains and deformation 

of the tibia during standing, propulsion, and landing. This was to provide insight over the 

mechanical behavior of bone under loading of CMJ. With muscle contractions, impact loading, 

and gravitational force, the bone experiences applied stress (load per unit area) [55]. This stress 

leads to strain in the bone, which is deformation of the bone relative to original dimensions [55]. 

In locations of smaller cross-sectional area, localized stresses/strains are expected to be higher 

[55]. This analysis of the tibia provides insight about localized higher stresses-strains and 

maximum stress/strain. Magnitude of deformation provides a metric measurement of strain. 
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Figure 41: Illustration of the loads applied to the model, including muscle forces (yellow vectors), knee joint contact forces 

(purple vectors), and ankle joint contact force (red vectors) - Scenario 2 
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6.3 FEM Results of Standing State 

For the standing state, joint contact forces were obtained from the dynamics simulation and 

muscle forces were obtained from the static optimization results. Scenario 1 only included knee 

joint contact forces, while the distal end is pinned. Figure 42 shows the results for the maximum 

principal strain in the tibia model. Figure 43 shows the results for the maximum principal stress in 

the tibia model. Figure 44 shows the results for the magnitude of translation deformation in the tibia 

model. 

 

Figure 42: Maximum principal strain of the tibia under knee joint contact force (scenario 1) – Standing 

 

Figure 43: Maximum principal stress of the tibia under knee joint contact force (scenario 1) – Standing 
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Figure 44: Magnitude of translational of the tibia under knee joint contact force (scenario 1) – Standing 

Scenario 2 included knee and ankle joint contact forces to the model.  Figure 45 shows the 

results for the maximum principal strain in the tibia model. Figure 46 shows the results for the 

maximum principal stress in the tibia model. Figure 47 shows the results for the magnitude of 

translation deformation in the tibia model. 

 

Figure 45: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) – 

Standing 
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Figure 46: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) – 

Standing 

 

Figure 47: Magnitude of translational deformation of the tibia under knee and ankle joint contact forces 

(scenario 2) – Standing 
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6.4 FEM Results of CMJ Jumping  

For the jumping/propulsion phase, joint contact forces were obtained from the dynamics 

simulation and muscle forces were obtained from the static optimization results (similar to the 

standing state). Scenario 1 only included knee joint contact forces, while the distal end was pinned. 

Figure 48 shows the results for the maximum principal strain in the tibia model. Figure 49 shows 

the results for the maximum principal stress in the tibia model. Figure 50 shows the results for the 

magnitude of translation deformation in the tibia model. 

 

Figure 48: Maximum principal strain of the tibia under knee joint contact force (scenario 1) – Jumping 
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Figure 49: Maximum principal stress of the tibia under knee joint contact force (scenario 1) – Jumping 

 

Figure 50: Magnitude of translation deformation of the tibia under knee joint contact force (scenario 1) – 

Jumping 
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Scenario 2 included knee and ankle joint contact forces to the model.  Figure 51 shows the 

results for the maximum principal strain in the tibia model. Figure 52 shows the results for the 

maximum principal stress in the tibia model. Figure 53 shows the results for the magnitude of 

translation deformation in the tibia model. 

 

 

Figure 51: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) – 

Jumping 
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Figure 52: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) – 

Jumping 

 

Figure 53: Magnitude of translational magnitude of the tibia under knee and ankle joint contact forces 

(scenario 2) – Jumping 
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In addition, results of the directional translational deformation of scenario 2 for the jumping 

state was obtained, as shown in Figure 54 to Figure 56. 

 

Figure 54: Horizontal translational magnitude of the tibia under knee and ankle joint contact forces 

(scenario 2) – Jumping 

 

Figure 55: Vertical translational magnitude of the tibia under knee and ankle joint contact forces 

(scenario 2) – Jumping 
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Figure 56: Axial translational magnitude of the tibia under knee and ankle joint contact forces (scenario 

2) – Jumping 
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6.5 FEM Results of CMJ Landing  

For the jumping/propulsion phase, joint contact forces were obtained from the dynamics 

simulation and muscle forces were obtained from the static optimization results (similar to the 

standing state). Scenario 1 only included knee joint contact forces, while the distal end is pinned. 

Figure 57 shows the results for the maximum principal strain in the tibia model. Figure 58 shows 

the results for the maximum principal stress in the tibia model. Figure 59 shows the results for the 

magnitude of translation deformation in the tibia model. 

 

Figure 57: Maximum principal strain of the tibia under knee joint contact force (scenario 1) – Landing 
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Figure 58: Maximum principal stress of the tibia under knee joint contact force (scenario 1) – Landing 

 

Figure 59: Magnitude of translational deformation of the tibia under knee joint contact force (scenario 1) 

– Landing 
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Scenario 2 included knee and ankle joint contact forces to the model. Figure 60 shows the 

results for the maximum principal strain in the tibia model. Figure 61 shows the results for the 

maximum principal stress in the tibia model. Figure 62 shows the results for the magnitude of 

translation deformation in the tibia model. 

 

Figure 60: Maximum principal strain of the tibia under knee and ankle joint contact forces (scenario 2) – 

Landing 

 

Figure 61: Maximum principal stress of the tibia under knee and ankle joint contact forces (scenario 2) – 

Landing 
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Figure 62: Magnitude of translational magnitude of the tibia under knee and ankle joint contact forces 

(scenario 2) – Landing 

In addition, results of the directional translational deformation of scenario 2 for the jumping 

state was obtained, as shown in Figure 63 to Figure 65. 

 

Figure 63: Horizontal translational magnitude of the tibia under knee and ankle joint contact forces (scenario 2) – Landing 
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Figure 64: Vertical translational magnitude of the tibia under knee and ankle joint contact forces 

(scenario 2) – Landing 

 

Figure 65: Axial translational magnitude of the tibia under knee and ankle joint contact forces (scenario 

2) – Landing 
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6.6 Discussion of FEM Results 

Finite element modeling is a numerical approximation method to analyze the structural 

behavior of complex components. It utilizes partial differential equations for the structural 

description of the continua [56]. This computational method breaks down a geometric model into 

a finite number of elements and performs many numerical operations for every element in the 

model [56]. A graphical representation of the full model is the output of this simulation, where a 

continuum result is obtained [56]. In this work, a stress analysis was conducted on the complex 

geometry of the tibia. With impact loads are exerted on the bone during CMJ, mechanical stress is 

applied. This causes a localized strain at a certain location on the bone, which leads to deformation 

of the bone that can be either temporary or permanent. For this project, the medial shaft of the tibia 

is of greater interest as a tool to understand stress fractures and risk of injuries (due to higher stress 

concentration).  

Various results are presented in sections 6.3 to 6.5. Finite element analysis of the tibia 

during CMJ includes: (1) Analysis of stress, strain, and magnitude of translational deformation of 

the tibial bone during standing, (2) Analysis of stress, strain, and magnitude of translational 

deformation of the tibial bone during jumping, (3) Analysis of orthogonal translational 

deformations of the tibial bone during jumping, (4) Analysis of stress, strain and magnitude of 

translational deformation of the tibial bone during landing, and (5) Analysis of orthogonal 

translational deformations of the tibial bone during landing. In addition, this section covers a 

comparison between jumping and landing, along with highlighting the significance of these results 

to stress fractures. Each analysis was performed under two scenarios, scenario 1 of pinning the 

distal end of the tibia and loading the proximal end with knee joint contact force, and scenario 2 

of loading the proximal end and the distal end of the tibia with knee and ankle joint contact forces, 

respectively. Overall, results for strain values were compared to previous literature, particularly 

compared to in-vivo measurements of strain in the tibial shaft. To add to that, stress results were 

incorporated to investigate regions with risk of injuries, along with examining the deformation that 

takes place in the bone. Note that the tibia is modeled as a cortical bone, and its yield properties 

include tensile yield stress of 71 MPa and compressive yield stress of 135 MPa [57].  
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Section 6.3 includes the results obtained for a quasi-static analysis of the tibia under 

loading conditions of the standing phase of a countermovement jump. For scenario 1, the 

maximum principal strain was approximately +360 µstrains (min: +225 µstrains and max: +495 

µstrains) along the tibial shaft. For scenario 2, the maximum principal strain was approximately 

+360 µstrains (min: +273 µstrains and max: +584 µstrains) along the tibial shaft. Various in-vivo 

measurements reported values of strain that range from +381 to +646 µstrains [58]. Overall, the 

strain values fall in the range of in-vivo strain values reported in literature.  

For scenario 1, the maximum principal stress was averaging at approximately 5.92 MPa 

along the tibial shaft. For scenario 2, the maximum principal stress was averaging at approximately 

6.03 MPa along the tibial shaft. No localized stress concentration was present in both simulations 

of the standing phase. In addition, the stresses obtained during this stage are very low in 

comparison to the yield stress of cortical bone. Moreover, very small translational deformation 

(max: 0.8 mm) was observed for the standing phase, with the highest deformation at the mid-shaft 

of the tibia.  

Section 6.4 includes the results obtained for a quasi-static analysis of the tibia under 

loading conditions of the jumping/propulsion phase of a countermovement jump. For scenario 1, 

the maximum principal strain was approximately +1745 µstrains (max: +2656 µstrains) along the 

tibial shaft. For scenario 2, the maximum principal strain was approximately +2056 µstrains (min: 

max: +2939 µstrains) along the tibial shaft. Overall, a higher localized strain was observed along 

the anterior crust of the tibial shaft. For in-vivo measurements, values reported in the literature of 

strain range from +1858 to +2180 µstrains in the midshaft during vertical jumps [58]. Overall, the 

strain values fall in the range of in-vivo strain values reported in literature. However, the strain 

values in the localized region of the anterior crust of the tibial shaft were higher than the values 

obtained experimentally. This is possibly due to higher jumping associated with the CMJ motion 

studied (28 cm), in comparison to previous literature (10-15 cm) [58].  

For scenario 1, the maximum principal stress was averaging at approximately 16.4 MPa 

(max: 24.3 MPa) along the tibial shaft. For scenario 2, the maximum principal stress was averaging 

at approximately 17.2 MPa (max: 26.2 MPa) along the tibial shaft. The stresses obtained during 

this stage are significantly higher under loads of the jumping phase. Previous research showed that 

fractures can take place in the cortical bone of a male at maximum principal stress of 42.77 MPa 
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[59]. This suggests that under repetitive high loads of jumping, the possibility of an injury or a 

stress fracture in the bone is higher at stresses lower than the yield stress. To add to that, this 

amplifies the need of analyzing the bone with a longer duration of stress exposures (i.e. fatigue) in 

the future, to closely examine the possibility of stress fractures in the tibial shaft. Significant 

translational deformation (max: 2.37 mm in scenario 1 and max: 2.88 mm in scenario 2) was 

observed for the jumping phase, with the highest deformation at the mid-shaft of the tibia. Most 

of the translational deformation took place in the vertical direction (along the axis of the bone), as 

shown in Figure 55.  

Section 6.5 includes the results obtained for a quasi-static analysis of the tibial bone under 

loading conditions of the landing phase of a countermovement jump. For scenario 1, the maximum 

principal strain was approximately +1666 µstrains (max: +2512 µstrains) along the tibial shaft. 

For scenario 2, the maximum principal strain was approximately +2017 µstrains (max: +2885 

µstrains) along the tibial shaft. Overall, a higher localized strain was observed along the anterior 

crust of the tibial shaft. For in-vivo measurements, reported values in the literature of strain range 

from +1420 to +2300 µstrains in the midshaft during drop landing [58]. Similarly, the strain values 

are in good correlation to in-vivo strain values. However, the strain values in the localized region 

of the anterior crust of the tibial shaft were higher than the values obtained experimentally. This 

was also observed in jumping simulation and is possibly due to the different landing techniques 

conducted in this study and the height to land.  

For scenario 1, the maximum principal stress was averaging at approximately 16.2 MPa 

(max: 24.0 MPa) along the tibial shaft. For scenario 2, the maximum principal stress was averaging 

at approximately 16.9 MPa (max: 26.2 MPa) along the tibial shaft. The stresses obtained during 

this stage are significantly higher under loads of the landing phase. Significant translational 

deformation (max: 2.28 mm in scenario 1 and max: 2.63 mm in scenario 2) was observed for the 

landing phase, with the highest deformation at the mid-shaft of the tibia. Most of the translational 

deformation took place in the vertical direction (along the axis of the bone), as shown in  Figure 64. 
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Overall, the stress distribution under loads of the landing phase is very similar to that of 

the jumping phase. However, the jumping phase resulted in slightly higher stress and strain values 

surrounding the anterior crust of the tibial shaft. This was unexpected as the loads of the landing 

phase are larger than the loads of the jumping phase. A possible reason for this observation could 

be due to the muscles recruited in this model. The same muscles were recruited for both the 

jumping and landing phase, and the line of action of each muscle determines the direction of the 

force application. Under these conditions, the bone can experience some loads that can counteract 

other loads, and thus lead to the results obtained (i.e. muscle extensors and flexors, magnitude of 

joint contact forces). With lower cross-sectional area along the anterior crust, higher stress, strain 

and deformation was expected and justifiable. To provide another source of comparison to the 

finite element model of this work, Von Mises stresses were examined during peak jumping and 

landing points of the countermovement jump. Along the tibial shaft, peak Von Mises stress during 

jumping was 41.027 MPa and peak Von Mises stress during landing was 41.9151 MPa. Based on 

the knowledge of the author, no finite element model exists for the tibia during jumping/landing 

motions. Thus, this model was compared to the finite element model of the tibia during walking 

[4]. In this work, peak Von Mises stress during walking was predicted to be 24.1 MPa [4]. Future 

work that tackles stresses and strain of the tibia is essential to fully validate the stresses obtained 

in this model.  

The finite element analysis provided an investigation of the bone response under high 

impact loads that lead to injuries, such as stress fractures. The stresses in the bone were 

significantly higher during jumping and landing, in comparison to the results obtained in the 

standing phase, as expected. Repetitive jumping and landing that take place in many sports can 

impose repetitive impact loads on the bone [12]. This can lead to significant microdamage in the 

bone and ultimately lead to a stress fracture [12, 27].  

 

 

 

 

 



69 

 

Chapter 7 

7 Conclusions  

This thesis provided a framework for utilizing a musculoskeletal biomechanical model and 

a finite element model to investigate the motion of countermovement jumps. The presented work 

allows analyzing the dynamics of the body and the stress response of the bone (tibia) under the 

impact loading of jumping and landing. The results presented in this thesis signifies as an advanced 

tool in the training of athletes and in providing greater insight into bone response under meaningful 

loading conditions. 

7.1 Thesis Summary  

The purpose of this thesis was to utilize musculoskeletal multibody modeling and finite 

element modeling to examine impact dynamics and stresses/strains in the human tibia, 

respectively, of a countermovement jump. In completing this work: Chapter 2 included a literature 

review of previous research that covered different aspects of this work, Chapter 3 included the 

construction of a biomechanical model, Chapter 4 included the inverse dynamic analysis of the 

CMJ, Chapter 5 included the use of static optimization to obtain muscle forces, and chapter 6 

included the finite element analysis of the human tibia under loads of CMJ. 

In Chapter 3, experimental data collection of countermovement jumping of a subject was 

explained. This included the used of motion capture and force plates to obtain position and ground 

reaction forces of the subject during trials of countermovement jumping to a maximum height. 

This experimental data was then analyzed in MATLAB, and an inverse kinematics approach was 

utilized to obtain joint angles of the hip, knee, and ankle. The ground reaction forces were also 

analyzed to examine the different stages of a countermovement jump. During jumping, maximum 

flexion/extension angles of the hip knee and ankle were approximately -105°, 84°, and -35°, 

respectively. The maximum GRF during jumping was approximately 2.5 BW. During landing, 

maximum flexion/extension angles of the hip knee and ankle were approximately -44°, 59°, and -

35°, respectively. The maximum GRF during jumping was approximately 2.5 BW. All this data 

was utilized to create a multibody model in MapleSim. 
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In Chapter 4, inverse dynamics was applied to the multibody model of the subject in 

MapleSim. Inputs to the model included hip, knee, and ankle joint angles, along with the position 

data of the pelvis. The main output of this model was the torques about the hip, knee, and ankle. 

Overall, the torques were larger during landing than during jumping, as expected, given that GRFs 

are larger during landing. In addition, knee and ankle joint contact forces were computed from the 

model. 

In Chapter 5, static optimization was utilized to solve the problem of redundancy in muscle 

forces. An analytical and a numerical approach were followed to generate a static optimization to 

estimate the forces of major muscles in the lower extremity. The objective function of this 

optimization was to minimize muscle stress, with a power of 3 that correspond to maximum energy 

expenditure. The optimization problem provided muscle forces for the entire CMJ motion, where 

muscles with larger moment arms are recruited first. This chapter also included comparisons of 

using different powers for the objective function and using a different objective function for the 

motion of countermovement jumping. 

In Chapter 6, a human tibia model was utilized in ABAQUS to run a finite element analysis 

under loads of countermovement jumping. The tibia was modeled as an inhomogeneous isotropic 

cortical bone. The boundary condition was pinning the distal end of the tibia to only allow axial 

rotation. The model was loaded with knee and ankle joint contact forces, along with muscle forces 

of several major muscles with points of insertion/origin on the tibia. Finite element analysis was 

conducted at three instances of CMJ, which are standing, peak jumping, and peak landing. Stress, 

strain, and deformation results of the human tibia were obtained and examined. Overall, maximum 

principal strain was approximately +2056 µstrains during propulsion and approximately +2017 

µstrains during landing. A higher localized strain was observed along the anterior crust of the tibial 

shaft, likely due to lower cross-sectional area and large loads applied during jumping/landing. 

With elevated stresses/strains along the tibial shaft during countermovement jumping, risk 

of injury to the tibia is possible with repetitive jumping that correspond to repetitive impact loads 

on the bone. The bone is capable of remodeling and adapting to these high impact loads, however, 

the frequency and magnitude of these forces should be studied further to understand and prevent 

injury of bones. This work provides a scheme and a step forward into a larger understanding of 

human motion and how injury takes place with a larger biomechanical insight.  
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7.2 Limitations 

The results of this work show great potential in the field of investigating injury mechanisms 

and impact loading. However, there are some limitations in the work presented in this thesis.   

This work incorporated experimental data of one healthy subject. This caused a limitation 

in providing substantial observations regarding the motion and its correlation to risk of injury. Due 

to restrictions in obtaining experimental data, the work was limited to incorporating only one 

subject.  Adding more subjects to the analysis can increase the confidence in the methodology and 

the results obtained. It can also provide emphasis on the use of subject-specific multibody models 

and finite element models. To add to that, having more subjects in the study can allow providing 

further analysis, such as providing insight to specific kinematics or dynamics that lead to higher 

stress/strain in the bone.  

Another limitation was that multibody model constructed in this thesis is a simple 2D 

model of the subject. This simplification took place as majority of the motion of interest took place 

in the sagittal plane. This limited the analysis as all muscle forces and joint torques obtained were 

due to the flexion/extension motions of CMJ, while excluding the effects of abduction/adduction 

motions and internal/external rotations. To increase the fidelity, multiple enhancements can take 

place. First, a 3D model of the subject can be constructed. Second, joints (hip, knee, and ankle) 

were modeled as simple revolute joints. These joints can be modeled as spheres and higher 

accuracy of joint contact forces can be achieved. In addition, better parameters can be obtained 

and used for better subject-specific models. This can include the possibility of using imaging 

techniques (DEXA, CT, or MRI scans) for higher accuracy of parameters such as length, mass, 

and inertia.  

While using a 2D model for the biomechanical multibody model, a 3D model was used for 

the finite element model of the tibia. Muscle forces were obtained from joint moments of the 

flexion/extension motion of CMJ. When added as loads in the finite element analysis, the total 

muscle force was distributed to a 3D component force along the line of action of each muscle. This 

shift from a 2D multibody model to a 3D finite element model imposed a limitation to the analysis 

conducted and can be tackled upon incorporating a 3D multibody model. 
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Validation of joint contact forces from the multibody model and muscle forces from the 

static optimization were limited in this work. In literature, limited sources document the joint 

contact forces during jumping, landing, or both. The joint contact forces were closely comparable 

to previous research and thus were validated to some extent. However, a future work that can be 

tackled is the possibility of obtaining accurate experimental joint contact forces, during CMJ or 

vertical jumps, to validate joint contact forces in computational models.  Moreover, measuring a 

muscle force in-vivo is invasive, while measuring muscle activation does not quantify muscle 

forces. Thus, future work that can be tackled is the possibility of obtaining accurate experimental 

muscle forces to validate muscle forces obtained. Overall, enhancements are needed in the field of 

biomechanics to better validate computational models, specifically considering joint contact forces 

and muscle forces. 

Another source of limitation exists from the use of static optimization to obtain muscle 

forces. In this method, several parameters (maximum isometric forces and physiological cross -

sectional areas) of muscles are obtained from literature and thus are not subject-specific. This does 

not take into account how different individuals have different recruitments of muscles due to 

different capabilities. For example, an athlete is more likely to have muscles with h igher maximum 

isometric forces than an individual with minimal physical activity. Thus, the problem of static 

optimization requires parameters and inputs that are more representative of the subject’s potential, 

however, this was limited to available resources and difficulty in measuring these parameters.  

Lastly, a limitation to this work was that the tibia model utilized was obtained from a 

subject that is different from the subject of experimental data collection. Both participants were of 

similar age, height, and weight. However, for a better analysis of CMJ, it is of interest to have the 

same subject for both the experimental data collection and the finite element model. This can 

provide a more meaningful analysis of the motion studied and associated risk of injury.  
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7.3 Future Work  

With the results presented in this work, the methodology could be improved in the future 

to better analyze the biomechanics of various motions, specifically jumping and landing motions.  

1) Experimental data can be collected from athletes of different sports. For example, jumping 

and landing motions are common in many sports (basketball, volleyball, etc.). These jumps 

are greatly variable and are completed with different intents, not necessarily reaching a 

maximum height. The framework in this thesis provides the potential of studying several 

sports and different types of jumps in each sport. With greater number of subjects and 

different jumps being analyzed, results of inverse kinematics can provide insight regarding 

the motion and variability in performance.  

2) EMG signals can be collected from subjects during the motion of interest. This can be used 

to compare muscle activations to muscle forces during the motion. In addition, it can 

potentially allow investigating the reverse of this framework (forward dynamics).  

3) A possible future work can incorporate the reverse of the framework of this thesis, which 

is through the use of forward dynamics or a hybrid approach of using both inverse and 

forward dynamics. This method can utilize torques and muscle activation to obtain the 

optimal countermovement jumps. A reverse of this framework can provide an analysis of 

different factors that affect the jump and can compare the effects of each loading on the 

tibial stress and strain. In addition, it can be used as a tool to prevent injury in bone.  

4) This work followed a sequential framework of combining multibody dynamic modeling 

and finite element modeling. A possible future work can enhance this framework into an 

integrated simultaneous modeling technique for multibody dynamics and finite element 

analysis. It could provide a better biomechanical analysis of the tibia, directly including 

dynamic and structural response. This can be possibly achieved by incorporating a flexible 

tibia with finite element analysis into the multibody model. Currently, computational time 

and resources (software) do not allow for simultaneous real-time studies and thus 

development in the field is still required. 
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