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Entropically Driven Formation of Hierarchically Ordered Nanocomposites
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Using theoretical models, we undertake the first investigation into the rich behavior that emerges
when binary particle mixtures are blended with microphase-separating copolymers. We isolate an
example of coupled self-assembly in such materials, where the system undergoes a nanoscale ordering
of the particles along with a phase transformation in the copolymer matrix. Furthermore, the self-
assembly is driven by entropic effects involving all the different components. The results reveal that
entropy can be exploited to create highly ordered nanocomposites with potentially unique electronic

and photonic properties.
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The self-assembly of hard and soft components into
nanostructured composites can facilitate the development
of novel biomimetic [1], photonic [2], and electronic [3,4]
materials. By themselves, binary mixtures of hard par-
ticles that differ in size or shape can self-assemble into
a startling array of ordered structures [5,6]. Soft block
copolymers can ‘‘microphase separate” into spatially
periodic lamellar, cylindrical, spherical, or more compli-
cated mesophases [7]. Using theoretical methods, in
this Letter we conduct the first investigations into the
cooperative behavior and novel structures that can poten-
tially emerge when these two disparate ordering phenom-
ena are coupled. Focusing on a small volume fraction of
bidisperse spheres in AB diblocks, we isolate a system
that simultaneously exhibits a structural change in the
system of particles and a transformation in the micro-
structure of the copolymer matrix, creating in a single
process a nanocomposite that potentially exhibits unique
optoelectronic properties. Furthermore, these morpho-
logical changes are driven entirely by entropic effects
involving all of the species. Our results indicate that the
blending of particle mixtures and block copolymers can

PACS numbers: 81.07.Pr, 61.46.+w, 83.80.Uv

be exploited to create materials with new morphologies
and functions.

To characterize the diblocks in our system, we let f de-
note the fraction of A segments per chain. The enthalpic
interaction between an A segment and a B segment is de-
scribed by the dimensionless Flory-Huggins parameter,
Xap- Both the larger (referred to as p;) and smaller (p,)
spheres are preferentially wetted by the A blocks. That is,
the Flory-Huggins interaction parameter between the par-
ticles and A is taken as x4 = x,24 =0, and the interac-
tion parameter between the different particles and the B
species is set equal to xap (Xap = XpiB = Xp2 = X)- The
radii of the p; and p, particles are denoted by R; and R,,
respectively, and are given in units of R, the root-mean-
square end-to-end distance of the chain. These nanopar-
ticles are comparable in size to the copolymers, and this
correspondence of scales contributes to the unique struc-
tural organization within these nanocomposites.

To determine the structure of the mixture, we now
modify our previous SCF/DFT approach [8-10], which
combines a self-consistent field theory (SCF) for diblocks
with a density functional theory (DFT) for solid particles.
The new free energy functional is

NF/pOkBTV = ((bpl/a/pl)ln(V(bpl/Qplapl) + (¢p2/ap2)1n(v¢p2/Qp2ap2)

(1=, — )V — ¢, — ¢ 2)/ 04l

+(1/V) [dr{XN[soA(r)soB(r) + @p(0)@,1(r) + @)@ ()] = wa(r) @A (r) — wp(r)p(r)

- Wpl(r)ppl(r) - WpZ(r)pPZ(r) + ppl(r)\I’[(Dpl(r)’ X1 x2] + pp2(r)q’[¢p2(r)»xb x2]}’ (1)

where N is the degree of polymerization, p, ' is a segment
volume, V is the volume of the system, and x; and x, are
the mole fractions of the p; and p, particles, respectively.
In (1), a,;, for i = 1,2, is the sphere to diblock volume
ratio. Self-consistent fields given by w,(r), wg(r), w,(r),
and w ,(r) account for interactions in the system, and act
on the A and B blocks of the copolymer and the large and
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small particles, respectively. Q4, O, and Q,,, are parti-
tion functions for single diblocks or particles subject to
appropriate fields [8]. The local volume fractions of the
various species are given by ¢@,(r), ¢g(r), ¢, (r), and
@ 2(r), while p,;(r) and p,(r) are the distributions of
the centers of the spheres. ¢ ,; are total volume fractions
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FIG. 1 (color). SCF/DFT density profiles of a spherical par-
ticle/diblock copolymer system. In (a)—(f), ¢, = 0.2, f = 0.3,
and yN = 20.0. The monodisperse particle case is shown in (a)
and (b) as density and surface plots, respectively, where the
particle radius is R = 0.2R,. A lamellar morphology is seen.
The bidisperse case is shown in (c)—(f), with the large particle
(1 = 0.05, R; = 0.2R) distribution shown in (c) and (d),
while the small particles (¢, = 0.15, R, = 0.1R) are dis-
played in (e) and (f). A graded cylindrical morphology results
from the introduction of the bidispersity.

of the ith particles. The last two terms in (1) are DFT
terms using the expression of Denton and Ashcroft [11].
They account for the steric interactions between the
particles. ¥ is the excess free energy per particle, de-
rived from the Mansoori et al equation of state [12].
“Smoothed” densities @ ,; and @, are introduced in
the last two terms of (1) using the Tarazona weighted
density approximation [13]. Using the SCF method, the
mean field free energy (1) is extremized with respect to
the fields and densities, under the constraint of incom-
pressibility. The resulting equations are solved numeri-
cally and self-consistently to yield the first density pro-
files of the bidisperse particle/diblock mixture (see Fig. 1).

To demonstrate the generality of our predictions, we
herein derive a strong segregation scaling theory (SST)
[14,15] for binary mixtures of particles and diblocks
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FIG. 2 (color). Phase diagram for mixtures of bidisperse
spheres and diblocks calculated using strong segregation theory.
R2/R1 is the ratio of the smaller to the larger particle radii and
f is the fraction of A units in the diblock. Letters L and C
designate lamellar and cylindrical morphologies, respectively.
The narrow black regions at the edges of the plot delineate the
location of the spherical phases, and the area labeled 2F marks
the two-phase coexistence region. The total volume fraction of
particles is fixed at 20%, of which 3% are the larger and 17%
are the smaller spheres. Here, N = 300, x,i4 = X,24 = 0, and

XAB = XpiB = Xp2B = L.

(Figs. 2 and 3). In such calculations, the chains are
assumed to be highly stretched; the melt is divided into
pure-A and pure-B domains, separated by narrowed in-
terfacial regions [14]. The balance between the stretching
free energy of the blocks and the energy of the AB
interfaces determines the equilibrium morphology of
the pure melt. We introduce a volume fraction ¢, of
A-like particles, of which ¢, are larger particles and
¢, are the smaller ones. The total volume fraction of
diblocks is ¢, = (1 — ¢,,), where (f¢,) is the volume
fraction of A monomers and (1 — f)¢, is the volume
fraction of B units. We assume that the smaller particles
can leak into the B domains, with f, denoting the fraction
in A and (1 — f,) in B. For simplicity, the smaller par-
ticles are assumed to be uniformly distributed within the
A and B regions. The larger particles are restricted to the
energetically favorable A domains and the distribution of
larger particles within A is allowed to vary from uniform
to completely segregated [16]. In the latter case, the larger
particles are localized near the center of the A domains.
The free energy of the ordered structures is

Gordered = (Pa/N)Ing; + (b1 /v1) In(h14) + (f2 2/ v2) In(as) + [(1 — f2)d o/ vo]In(hog) + W (14, Poa, N14s N24)
+ nogWes(ap) + niaRT/ANfag + nyuR3 /AN faf + nypR3 /[AN(1 — flagl + x(1 — ¢hop)ihap(0.5/R,)

+ 3¢5/3X1/3(2N)72/3 N33,

2

where v; is the volume of a type i sphere, n,, is the number of species i in the & domain, and a, = 1/+/6. R, is in units of

a, the segment length, which is set to 1.
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FIG. 3 (color). Decomposition of free energy for bidisperse
spheres/diblocks as a function of particle bidispersity calcu-
lated using strong segregation theory. Plot is for the same
system shown in Fig. 2 at f = 0.28. Black curve is the con-
tribution to the free energy from translational entropy, the red
curve from the enthalpic interactions, and the blue curve from
the steric interaction between particles. The inset shows the
fraction of smaller particles in the A phase (¢4 = fr¢,) (red
curve) and the local volume fraction of larger particles in the A
phase (black curve).

The first four terms describe the translational entropy
contributions to the free energy, where ¢;, indicates the
local volume fraction of species i in the & domain [15].
The next two terms describe the steric interactions be-
tween the particles. The first of the two is the Mansoori et
al. [12] free energy expression for a binary hard sphere
mixture, and the latter is the Carnahan-Starling free
energy [17] for the smaller particles in the B phase. For
R, = R,, the Mansoori term ¥ reduces to the Carnahan-
Starling expression for monodisperse spheres. The next
three terms are associated with the free energy loss due to
the stretching of the chains around the particles. The next
term describes the Flory-Huggins interaction between
smaller particles and B monomers; the term reduces to
the expression for diblocks in solvent when R, = 0.5. The
last term is the diblock contribution to the free energy in
the strong segregation limit, where both A and « are
morphology dependent [14,15]. We consider only the
three classical diblock structures: lamellar, cylindrical,
and spherical. For each set of parameters for each possible
morphology, we minimize Eq. (2) to determine the equi-
librium structure. In order to obtain phase diagrams, we
compare the free energies of the ordered structures and
the disordered phase [18].

Figures 1(a) and 1(b) show the density profiles obtained
from the SCF/DFT calculation for f = 0.30 and a 20%
volume fraction of monodisperse particles (¢, = 0.20) of
radius R =0.2R,. The morphology of the system is clearly
lamellar. If we fix f and ¢, but alter the composition of
the particle mixture so that there is a 5% volume fraction
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of larger particles (¢, =0.05), with R; =0.2R,, and a
15% volume fraction of smaller particles (¢ ,, =0.15),
with R, =0.1R,, the system now forms a cylindrical
mesophase, as shown in Figs. 1(c)-1(f). These figures
also reveal a new structural feature: The large and small
A-like particles are not homogeneously distributed. The
large particles are concentrated in the center of the do-
main; in this manner, the A chains do not lose conforma-
tional entropy by having to stretch around these large
obstacles [8,19]. The smaller particles are concentrated
near the edge of the A-B interface and, to a large degree,
in the incompatible B phase. In effect, the particles form a
“graded” or ‘‘gradient” layer, exhibiting a variation in
particle size from the center to the edges of the cylinder.

Thus, replacing the monodisperse spheres with an
equal volume fraction of bidisperse particles has
prompted not only a phase transformation in the polymer
microstructure, but also the creation of an inhomogene-
ous particle distribution within the cylindrical domain.
One might say that the system is ‘‘hierarchically
ordered,” having been formed entirely through self-
assembly. If the particles are semiconductors, the inho-
mogeneous layers could display novel optoelectronic
properties [20], and the filled cylinders could form an
array of nanoelectrodes, which can be utilized to fabri-
cate organized nanodevices [3].

A sufficient disparity in particle size is necessary to
produce a transition from the lamellar to the novel cylin-
drical phase. This can be seen from the phase diagram
shown in Fig. 2, which is calculated using the SST
approach and plotted as a function of R,/R; and f.
Since the SSTis primarily applicable at low temperatures,
we expect only qualitative agreement between the SST
and SCF/DFT calculations. Nevertheless, we can focus
on the case where f = 0.3, as in Fig. 1. At R,/R, =1,
within the SST, the system forms a lamellar structure
similar to the image in Fig. 1(a). However, it is only for
R,/R; = 0.3 that the mixture forms a cylindrical phase;
as shown in Fig. 3, the small particles migrate to the B
phase, much as in Figs. 1(e) and 1(f).

To determine what drives these morphological changes,
we can decompose the different contributions to the total
free energy of the system. Since the SST and SCF/DFT
give qualitatively similar results, we present results from
the SST analysis. Figure 3 shows how the contributions to
the free energy from the particles vary as a function of
R,/R; at f = 0.28. The volume fraction of larger par-
ticles is fixed at 3%, while the volume fraction of smaller
particles is 17%. The inset shows the volume fraction of
smaller particles (¢,4 = f,¢,) in the A phase and the
local volume fraction of larger particles (¢/;4) in the A
phase for various R,/R;. i, is a measure of the segre-
gation of the larger particles within the A region; as ¢4
approaches 1, the particles become highly confined in the
center of this domain [15].

From the inset, we see that, as R,/R; decreases to
approximately 0.3, the smaller particles ‘“delocalize”
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and migrate into the energetically unfavorable B regions.
This results in an increase in the enthalpic contribution
(see Fig. 3); however, this increase in free energy is offset
by the gain in the translational entropy of the smaller
particles and a decrease in the steric contribution, which
is a measure of the crowding of the hard particles.
Apparently, entropy wins, and it is more favorable for
the particles to be distributed in the manner shown in
Figs. 1(c)-1(f) than having the large and small particles
uniformly mixed and confined within the energetically
favored A phase.

We also note an increase in ¢, at the point where the
smaller particles delocalize into B (see inset). In mix-
tures of small and large particles, there is a ‘“‘depletion
attraction” between the larger objects that is due to the
extra volume that is available to the smaller particles
when the larger particles approach one another, thus in-
creasing the entropy of the system [21,22]. Here, we find
similar attractions between the larger spheres; in particu-
lar, the “enhanced localization” of the larger particles to
the central regions of the A blocks coincides with an
increase in the translational entropy of the smaller
spheres.

There is a significant consequence of the smaller par-
ticles migrating to the B phase. In mixtures involving
small monodisperse spheres, the migration of these A-like
particles into B apparently decreases the effective value
of f and thus can drive the system into the cylindrical
phase [23]. It is likely that this mechanism is responsible
for the transition from lamellar to cylindrical at f = 0.28
and R,/R; = 0.3 in Fig. 2.

In summary, a number of entropic effects play a role in
the observed transition from the lamellar to the cylindri-
cal phase containing the inhomogeneous distribution of
particles. Entropic interactions between the A chains and
larger particles, and hard sphere interactions between the
different particles, drive the larger particles to localize
near the center of the A domains. In addition, the smaller
particles gain translational entropy by delocalizing and
migrating into the unfavorable B phase, suggesting a
“microphase separation” in the particle system. Here,
we isolated a special case where the fraction of smaller
particles in the mixture is relatively high and f is suffi-
ciently close to the order-order transition, that the deloc-
alization of these spheres and the lamellar-cylindrical
transition in the matrix structure happen simultaneously.

While our discussion focussed on the structures in
Fig. 1, we also find novel structures by altering the
relative number of smaller and larger particles at fixed
¢, and f. For example, for ¢,,; = 0.15and ¢, = 0.05 at
f =0.30, we obtain a graded layer of nanoparticles
within a lamellar matrix. Thus, the findings point to a
new methodology for tailoring the particle distributions
within the copolymer matrix and thereby controlling the
properties and performance of the nanocomposite. The
results also reveal that, in mixtures of hard and soft
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components, entropy can be exploited to create ordered
materials with potentially useful structures.
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