
Recovery Guarantees for Graph
Clustering Problems

by

Jimit Majmudar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2021

© Jimit Majmudar 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Quentin Berthet
Research Scientist, Google Research
Brain Team, Paris

Supervisor(s): Stephen Vavasis
Professor, Combinatorics and Optimization
University of Waterloo

Internal Member: Chaitanya Swamy
Professor, Combinatorics and Optimization
University of Waterloo

Internal Member: Henry Wolkowicz
Professor, Combinatorics and Optimization
University of Waterloo

Internal-External Member: Gautam Kamath
Assistant Professor, Computer Science
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Graph clustering is widely-studied unsupervised learning problem in which the task
is to group similar entities together based on observed pairwise entity interactions. This
problem has applications in diverse domains such as social network analysis and compu-
tational biology. There are multiple ways to formalize a graph clustering problem. In this
thesis, using tools from convex optimization, we develop algorithms for two specific graph
clustering formulations – Overlapping Community Detection and Correlation Clustering.
We study these formulations using the provable recovery paradigm which requires estab-
lishing theoretical guarantees for recovery of a certain ground truth clustering as posited
by a chosen generative model.

In the Overlapping Community Detection problem, we expect clusters in the input
graph to potentially overlap, i.e. share some common nodes. For this problem, often a
pure nodes assumption is made in literature which requires each cluster to have a node
that belongs exclusively to that cluster. This assumption, however, may not be satis-
fied in practice. We propose a linear-programming-based algorithm to provably recover
overlapping communities in weighted graphs without explicitly making the pure nodes
assumption. We demonstrate the success of our algorithm on synthetic and real-world
datasets. In the Correlation Clustering problem, we wish to determine non-overlapping
clusters in the input graph without any prior knowledge of the number of clusters. We
introduce a new graph generative model based on generating feature vectors/embeddings
for the nodes in the graph which are interpreted as latent variables in the model, and pro-
pose a tuning-parameter-free semidefinite-programming-based algorithm to recover nodes
with sufficiently strong cluster membership. We make progress towards showing that the
proposed algorithm is provably robust.

iv

Acknowledgements

I would like to thank my advisor, Steve Vavasis, for his constant support and guidance.
I am grateful to Steve for always being present to patiently provide advice, especially on
research. I would also like to thank the thesis examining committee members, Quentin
Berthet, Gautam Kamath, Chaitanya Swamy, and Henry Wolkowicz, for their valuable
feedback.

Thanks to my friends, Hemant, Stefan, Anirudh, Sharat, Priya, Abhinav, Cedric, Dhi-
nakaran, Akshay, Retnika, and Archana, for all the laughs and technical discussions.

I am thankful to my parents, Heena Majmudar and Rankesh Majmudar, and my sister,
Chaitasi Majmudar, for their unwavering understanding, patience, support, and encour-
agement throughout all my academic pursuits, especially the PhD.

v

Dedication

Dedicated to my mother, Heena Majmudar.

vi

Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Thesis Outline and Contributions . 2

1.2 Notation . 2

2 Background 4

2.1 Convex Optimization . 4

2.1.1 Linear Programming . 6

2.1.2 Semidefinite Programming . 7

2.2 Dirichlet Distribution . 9

2.3 Concentration Inequalities . 10

3 Clustering 11

3.1 Unsupervised Machine Learning . 11

3.2 Clustering and Some of its Combinatorial Formulations 12

3.3 Average Case Analysis/Provable Recovery 15

3.4 Existing Cluster Recovery Techniques . 18

3.4.1 Spectral Methods . 18

3.4.2 Convex Relaxation Methods . 18

3.4.3 Combinatorial Methods . 20

vii

4 Provable Overlapping Community Detection in Weighted Graphs 21

4.1 Problem Introduction . 21

4.2 Problem Formulation . 23

4.3 SP+LP Recovery Algorithm . 24

4.4 Theoretical Guarantees . 25

4.5 Proofs . 28

4.5.1 LP Analysis . 28

4.5.2 Some Concentration Properties in the MMSB 41

4.5.3 Proof of Main Theorem . 47

4.6 Experiments . 50

4.6.1 Synthetic Graphs . 50

4.6.2 Real-world Graphs . 51

4.7 Conclusions . 54

5 Robust Correlation Clustering with Asymmetric Noise 55

5.1 Problem Introduction . 55

5.2 Problem Formulation . 57

5.2.1 Node Features Model (NFM) . 57

5.2.2 Nature of Noise in the NFM . 58

5.2.3 Feature Space for a Cluster in the NFM 59

5.2.4 Relation to the MMSB . 61

5.3 1-diag Recovery Algorithm . 61

5.3.1 Warmup . 62

5.3.2 Theoretical Guarantees . 64

5.3.3 Proofs . 67

5.3.4 Lack of Robustness . 73

5.4 `2-norm-diag Recovery Algorithm . 74

5.4.1 Theoretical Guarantees . 76

5.4.2 Proofs . 84

5.5 Conclusions . 93

viii

6 Conclusions and Future Work Directions 94

References 96

ix

List of Figures

2.1 The unit simplex in Rk with 60 points sampled according to the Dirichlet
distribution with k = 3 and α = te with increasing t. 10

4.1 Performance of SP+LP on synthetic MMSB weighted graphs compared with
GeoNMF. 52

5.1 Central set C and cluster sets C1, C2, C3 for the unit simplex in R3. 59

5.2 Central set C and the partition of corner sets C1, C2, C3 into strong and
fringe sets, shown using dotted lines, for the unit simplex in R3; for each
corner set, the partition set containing a simplex vertex denotes the strong
set. 60

5.3 Subgraph of G containing negative edge ii′ and m dijsoint two-edge ii′-paths
of positive weights. 70

x

List of Tables

4.1 Comparision of SP+LP with ClusterONE on Krogan core, Krogan extended,
and Gavin datasets using SGD repository as validation set. 54

4.2 Comparision of SP+LP with ClusterONE on Krogan core, Krogan extended,
and Gavin datasets using MIPS repository as validation set. 54

5.1 Verification of positive semidefiniteness of cluster Laplacians. 63

5.2 Verification of sufficient condition (5.1) for Laplacian positive semidefiniteness. 67

5.3 Structure of subgraph induced by strong nodes and some fringe nodes for
each cluster (part 1/3). 79

5.4 Structure of subgraph induced by strong nodes and some fringe nodes for
each cluster (part 2/3). 80

5.5 Structure of subgraph induced by strong nodes and some fringe nodes for
each cluster (part 3/3). 81

5.6 Verification of Assumption 5.1 . 82

5.7 Performance of `2-norm-diag. 84

xi

Chapter 1

Introduction

Suppose we are given a collection of text documents and we wish to categorize the docu-
ments based on the topic(s) they cover. Or suppose we are given a social network com-
prising social agents and their pairwise interaction frequencies, and we wish to determine
social circles within the network. One abstraction to represent the problem data for such
problems is graphs. In particular, we construct a graph in which the nodes represent the
entities, and the edges encode some measure of pairwise relationships. The aforementioned
problems can then be thought of as determining groups of nodes such that the nodes within
the same group are more similar than dissimilar and nodes in different groups are more
dissimilar than similar. Due to their ubiquitous nature, graph problems of this style have
received attention from diverse research communities such as computer science [14, 75],
mathematics [61, 77], statistics [70, 80], physics [63, 73], and biology [58, 66, 67], tradition-
ally, and more contemporary ones such as network science [26, 71] and machine learning
[12, 53]. As a result of this diverse interest, sometimes the same idea or concept may have
different names. For instance, graph is synonymous with network, cluster is synonymous
with community, and graph clustering is often synonymous with community detection or
graph partitioning ; in this thesis, we use the terms cluster and community, and the phrases
graph clustering and community detection interchangeably. Another consequence of this
diverse interest is the variety in the goals achieved by different works. Some works de-
velop heuristic algorithms that are customized for a specific application domain or even a
specific problem. On the other hand, some works propose general-purpose algorithms and
develop theoretical guarantees for their performance. In this thesis, we focus on two types
of clustering problems – one in which we expect the clusters in the graph to have overlaps
in terms of shared nodes, and other in which we do not have a priori knowledge about
the number of clusters in the graph. We consider these problems in their general form,

1

i.e. not restricted to a particular application domain, and we provide theoretical analyses
regarding the performance of our proposed clustering algorithms.

1.1 Thesis Outline and Contributions

Chapter 2 introduces the mathematical tools used in the rest of the thesis. In Chapter 3,
we provide an in-depth discussion on clustering problems which is relevant to this thesis.
Chapter 4 contains our work on overlapping community detection, i.e. a clustering problem
in which we expect clusters in the input graph to potentially overlap in terms of shared
nodes. Our contributions include a simple provable algorithm for recovering the community
memberships of each node in weighted graphs. Unlike most existing provable methods, our
algorithm: (1) does not explicitly require each community to have a node which belongs
exclusively to that community, (2) is relatively easy to implement in practice as it does not
involve multiple tuning parameters, and (3) is rooted in linear programming, on which a rich
body of literature already exists. Chapter 5 contains our work on Correlation Clustering,
i.e. a clustering problem in which we assume no prior knowledge about the number of
clusters in the input graph. Our contributions include a simple algorithm for determining
clusters in weighted graphs. Using a combination of theoretical analyses and computational
experiments, we make progress towards establishing robustness of the proposed algorithm
in the presence of asymmetric noise in the input graph. Our algorithm: (1) is relatively easy
to implement in practice as it is entirely parameter-free, i.e. involves no tuning parameter,
and (2) is rooted in semidefinite programming, on which also a rich body of literature
already exists. Lastly, we finish with some conclusions and directions for future work in
Chapter 6.

1.2 Notation

For any natural number n ∈ N, [n] denotes the set {1, 2, . . . , n}, Rn and Rn
+ denote the vec-

tor spaces of n-dimensional real-valued vectors and n-dimensional real-valued non-negative
vectors respectively, and Sn denotes the vector space of n× n symmetric, real-valued ma-
trices. For any m,n ∈ [n], Rm×n and Rm×n

+ denote the vector spaces of m× n real-valued
matrices and m × n real-valued non-negative matrices. Let M be any matrix. We use
mi and mi to denote its column i and the transpose of its row i respectively, and Mij or
M(i, j) to denote its entry ij; for any set R ⊆ N, M(R, :) (resp. M(:,R)) denotes the
submatrix of M containing all columns (resp. rows) but only the rows (resp. columns)

2

indexed by R. For any two sets R,S ⊆ N, M(R,S) denotes the submatrix of M contain-
ing the rows indexed by R and the columns indexed by S. We use max(M) to denote its
largest value, ‖M‖max to denote its largest absolute value, and M+ and M− to denote the
projections onto the cone of non-negative and non-positive matrices respectively. To show
that M is a symmetric positive semidefinite (resp. positive definite) matrix, we use the
notation M � 0 (resp. M � 0). If M is an n×n square matrix, diag(M) denotes a vector
in Rn whose entry i is Mii for each i ∈ [n], and Diag(M) denotes an n× n matrix whose
diagonal is equal diag(M) and whose each off-diagonal entry is zero. Let v be any vector.
We use vi or v(i) to denote its entry i; for any set R ⊆ N, v(R) denotes the subvector of
v containing entries indexed by R. We use max(v) to denote its largest value, ‖v‖∞ to
denote its largest absolute value, and v+ and v− to denote the projections onto the cone
of non-negative and non-positive vectors respectively. If v ∈ Rn, Diag(v) denotes an n×n
matrix whose diagonal is equal to v and whose each off-diagonal entry is zero. If v is an
entry-wise non-negative vector, then for any p ∈ R, we denote by v◦p the vector obtained
by exponentiating each entry of v with p.

For any two vectors u,v of identical dimensions, 〈u,v〉 denotes the Euclidean inner
product uTv, and for any two matrices X, Y of identical dimensions, 〈X, Y 〉 denotes the
trace inner product trace(XTY). If u,v ∈ Rn such that for each i ∈ [n], ui ≤ vi, then we
use [u,v] to denote the set {x ∈ Rn : ui ≤ xi ≤ vi ∀i ∈ [n]}.

We use ‖ · ‖ to denote the `2-norm for vectors and the spectral norm (largest singular
value) for matrices. We use ‖ · ‖F and ‖ · ‖∞ to denote the Frobenius norm and the largest
row `1-norm of a matrix respectively. I and E denote the identity matrix and the matrix
with each entry set to one respectively whose dimensions will be clear from the context.
For any positive integer i, ei and ei denote row i and column i of the identity matrix
respectively and e denotes the vector with each entry set to one; the dimension of these
vectors will be clear from context.

For any graph G = (V,W), i.e. graph with node set V and weighted adjacency matrix
W , L(G) denotes the graph Laplacian matrix defined to be Diag(We)−W . For any subset
V ′ ⊆ V of nodes, G[V ′] denotes the subgraph of G induced by nodes in V ′.

3

Chapter 2

Background

In this chapter, we discuss the mathematical tools that are relevant to our contributions
discussed in the subsequent chapters.

2.1 Convex Optimization

We begin by defining the notion of convexity for sets and functions. Let V be a Euclidean
vector space of n dimensions.

Definition 2.1 (Convex set). A set C ⊆ V is said to be convex if for any two points
x, y ∈ C and for any λ ∈ [0, 1], we have that λx+ (1− λ)y ∈ C.

Definition 2.2 (Convex function). Let C ⊆ V be a convex set. A function f : C → R
is said to be convex if for any two points x, y ∈ C and for any λ ∈ [0, 1], we have that
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Visually, the line segment connecting any two points in a convex set must lie entirely
within the set, and the line segment connecting any two points on the plot of a convex
function must lie above the plot. Now we define notions of differentiability and gradient.

Definition 2.3 (Differentiability and Gradient). Let f : V → R and let x ∈ V. If there
exists a unique g ∈ V such that

lim
‖h‖→0

f(x+ h)− f(x)− 〈g, h〉
‖h‖

= 0

then f is said to be differentiable at x, and g is called the gradient of f at x.

4

The standard notation to represent the gradient of f at x is ∇f(x). The following fact
provides a representation of gradient for certain cases that is relatively easier to deal with.

Fact 2.1 ([57]). If a function f : Rn → R is differentiable at x, then

∇f(x) =

∂f/∂x1
...

∂f/∂xn

where for each i ∈ [n], ∂f/∂xi is the partial derivative of f with respect to xi.

The domain of convex optimization can be divided into unconstrained convex optimiza-
tion versus constrained convex optimization. In the unconstrained setting, typically we
have a convex function f : V → R and we are interested in solving

min
x∈V

f(x).

That is, we wish to determine the smallest possible value the function f can take, and
also the point(s) in V at which the smallest function value is attained. The convexity of f
establishes the following fact which is beneficial for solving the above unconstrained convex
optimization problem.

Fact 2.2 ([59]). If f : V → R is a differentiable convex function, then

{x ∈ V : ∇f(x) = 0} = arg min
x∈V

f(x).

In the constrained setting, we have a convex function f : V → R and a convex set
C ⊆ V and we are interested in solving

min
x∈C

f(x).

That is, we wish to determine the smallest possible value the function f can take on a
feasible set C, and also the point(s) in C at which the smallest function value is attained.
Note that, conventionally, if a minimization (resp. maximization) problem is infeasible,
then its optimal value is set to +∞ (resp. −∞). The optimality conditions for the
constrained case are not as easily stated, in full generality, as those for the unconstrained
case given in Fact 2.2. In this thesis, we are interested in two special cases of constrained
convex optimization, linear programming and semidefinite programming, which are covered
in Sections 2.1.1 and 2.1.2 respectively.

5

2.1.1 Linear Programming

Let c ∈ Rn, A ∈ Rm×n and b ∈ Rm, then the primal linear program in standard equality
form is defined as the constrained optimization problem

min
x

cTx

s.t. Ax = b

x ≥ 0

(P-LP)

where the last inequality above implies entry-wise non-negativity requirement. Note that
the objective function and the feasible set in the above problem are both convex, and
therefore linear programming is a special case of convex optimization. For (P-LP), we
define the Lagrangian dual program, referred to as just dual program henceforth, as

max
y

bTy

s.t. ATy ≤ c.
(D-LP)

Let p∗ and d∗ be the optimal values for the primal program (P-LP) and the dual
program (D-LP) respectively. The following facts elucidate the relationship between the
two programs.

Fact 2.3 (Weak Duality [59]). d∗ ≤ p∗.

Fact 2.4 (Strong Duality [59]). If p∗ is finite, then p∗ = d∗. Moreover, p∗ is attained at a
primal feasible solution x∗, and d∗ is attained at a dual feasible solution y∗ such that for
each i ∈ [n], x∗i (a

T
i y∗ − ci) = 0.

Fact 2.4 provides a necessary condition for primal and dual optimal solutions. In fact,
thanks to convexity, the same condition also acts as a sufficient condition for optimality,
as shown in the following fact.

Fact 2.5 (Karush-Kuhn-Tucker (KKT) Optimality Conditions [59]). Suppose p∗ is finite.
Then x∗ ∈ Rn and y∗ ∈ Rm are primal and dual optimal solutions respectively if and only
if they satisfy:

• Primal feasibility: Ax∗ = b, x∗ ≥ 0.

• Dual feasibility: ATy∗ ≤ c.

• Complementary slackness: x∗i (a
T
i y∗ − ci) = 0, ∀i ∈ [n].

6

2.1.2 Semidefinite Programming

We first introduce notions of positive semidefiniteness and positive definiteness.

Definition 2.4 (Positive Semidefinite Matrix). A symmetric matrix M ∈ Sn is said to be
positive semidefinite if for any x ∈ Rn, we have xTMx ≥ 0.

Definition 2.5 (Positive Definite Matrix). A symmetric matrix M ∈ Sn is said to be
positive definite if for any x ∈ Rn \ {0}, we have xTMx > 0.

It is standard notation to denote the positive semidefiniteness (resp. positive definite-
ness) of matrix M using M � 0 (resp. M � 0). Now we highlight some sufficient conditions
for positive semidefiniteness that are useful in the context of this thesis.

Definition 2.6 (Schur Complement). Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m,
and

M =

[
A B
C D

]
.

If A is invertible, then the Schur complement of block A of matrix M is the matrix D −
CA−1B. Similarly, if D is invertible, then the Schur complement of block D of matrix M
is the matrix A−BD−1C.

Fact 2.6 (Schur Complement Condition [76]). Let A ∈ Sn, B ∈ Rn×m, C ∈ Sm, and

M =

[
A B
BT C

]
.

If A is positive definite, then M is positive semidefinite if and only if the Schur complement
C−BTA−1B is positive semidefinite. Similarly, if C is positive definite, then M is positive
semidefinite if and only if the Schur complement A−BC−1BT is positive semidefinite.

Fact 2.7 (Diagonally Dominant Condition [76]). If M ∈ Sn such that for each i ∈ [n]

Mii ≥
∑

j∈[n]\{i}

|Mij|

then M is positive semidefinite.

7

Let C,A1, . . . , Am ∈ Sn for some m ∈ N and b ∈ Rm, then the primal semidefinite
program is defined as the constrained optimization problem

min
X
〈C,X〉

s.t. 〈Ai, X〉 = bi ∀i ∈ [m]

X � 0.

(P-SDP)

Note that the objective function and the feasible set in the above problem are both convex,
and therefore semidefinite programming is a special case of convex optimization. For (P-
SDP), we define the Lagrangian dual program, referred to as just dual program henceforth,
as

max
y

bTy

s.t. C −
∑
i∈[m]

yiAi � 0
(D-SDP)

Let p∗ and d∗ be the optimal values for the primal program (P-SDP) and the dual
program (D-SDP) respectively. The following facts elucidate the relationship between the
two programs.

Fact 2.8 (Weak Duality [76]). d∗ ≤ p∗.

Fact 2.9 (Strong Duality [76]). If p∗ is finite and if (P-SDP) has a feasible solution which
is positive definite, then p∗ = d∗ and d∗ is attained at a dual feasible solution y∗. Moreover,
if p∗ is attained at a primal feasible solution X∗, then〈

X∗, C −
∑
i∈[m]

y∗iAi

〉
= 0.

Fact 2.9 provides a necessary condition for primal and dual optimal solutions. In fact,
thanks to convexity, the same condition also acts as a sufficient condition for optimality,
as shown in the following fact.

Fact 2.10 (Karush-Kuhn-Tucker (KKT) Optimality Conditions [76]). Suppose (P-SDP)
has a feasible solution which is positive definite and (D-SDP) has a feasible solution y such
that C −

∑
i∈[m]

yiAi is positive definite. Then X∗ ∈ Sn and y∗ ∈ Rm are primal and dual

optimal solutions respectively if and only if they satisfy:

• Primal feasibility: 〈Ai, X∗〉 = bi ∀i ∈ [m], X∗ � 0.

8

• Dual feasibility: C −
∑
i∈[m]

y∗iAi � 0.

• Complementary slackness:

〈
X∗, C −

∑
i∈[m]

y∗iAi

〉
= 0.

2.2 Dirichlet Distribution

The Dirichlet distribution is a continuous probability distribution over the unit simplex,
because of which it is sometimes used in statistics as a distribution over discrete proba-
bilities. The distribution is parametrized using k ∈ N, the number of categories, and a
positive vector α ∈ Rk which, intuitively, represents the affinity towards each of the k
categories. For any x ∈ Rk in the unit simplex, i.e. eTx = 1 and x ≥ 0, the probability
density function for Dirichlet distribution is defined as

f(x,α, k) =
Γ(eTα)∏
i∈[k]

Γ(αi)

∏
i∈[k]

xαi−1
i

where Γ denotes the gamma function, defined as

Γ(z) =

∫ ∞
0

xz−1e−xdx

for any complex number z with positive real part. The gamma function is an extension
of the factorial function to complex numbers in the sense that for any natural number n,
Γ(n) = (n− 1)!.

Fact 2.11 ([43]). Define α0 :=
∑
i∈[k]

αi. For each i ∈ [k],

E[xi] =
αi
α0

V ar(xi) =
αi(α0 − αi)
α2

0(α0 + 1)
.

Using Fact 2.11, we can intuitively understand the nature of Dirichlet distribution for
some special parameter settings. For instance, if all values in vector α are equal, i.e.
α = te for some scalar t > 0, then the Dirichlet vectors are spread symmetrically around
the simplex center e/k. Moreover the magnitude of t determines the spread around the
simplex center, i.e. as t increases, the points tend to get closer to the simplex center.
Figure 2.1 demonstrates this observation.

9

(a) t = 0.3 (b) t = 5 (c) t = 10

Figure 2.1: The unit simplex in Rk with 60 points sampled according to the Dirichlet
distribution with k = 3 and α = te with increasing t.

2.3 Concentration Inequalities

As the name suggests, concentration inequalities provide information about how a random
variable concentrates around its expected value. Typically, a concentration inequality gives
an upper bound on the probability with which a random variable is sufficiently far from
a fixed value such as its expected value. Such inequalities are useful in non-asymptotic
analysis of random generative models. Note that in asymptotic analysis, we are usually
interested in only the limiting behavior of certain probabilities as some measure of the
size of the problem, called n, tends to infinity, whereas in non-asymptotic analysis we
are interested in those probabilities even for finite values of n. Perhaps the most simple
example of a concentration inequality is Markov’s inequality.

Fact 2.12 (Markov’s Inequality [78]). Let X be a non-negative random variable. For any
scalar t > 0,

Pr(X ≥ t) ≤ E[X]

t
.

The concentration inequality most extensively used in this thesis is Hoeffding’s inequal-
ity.

Fact 2.13 (Hoeffding’s Inequality [78]). Let X1, . . . , Xn be bounded random variables such
that Xi ∈ [li, ui] almost surely for each i ∈ [n]. Define X := X1 + · · ·+Xn. For any scalar
t > 0,

Pr(|X − E[X]| ≥ t) ≤ 2 exp

 −2t2∑
i∈[n]

(ui − li)2

 .

10

Chapter 3

Clustering

3.1 Unsupervised Machine Learning

Broadly speaking, machine learning refers to the task of developing algorithms which learn
to solve the problem at hand by taking, as input, data also relevant to the problem. A
more formal, often-cited definition, due to Tom Mitchell, is

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.”

One way to classify machine learning algorithms is supervised learning versus unsuper-
vised learning. (More recently, semi-supervised learning, which combines elements from
both supervised and unsupervised learning has also been introduced.) In supervised learn-
ing, typically the data available at the learning stage has features and labels using which the
algorithm learns the relationship between the two. Mathematically, the algorithm learns
the parameters of a function which maps the features to their corresponding labels. Sub-
sequently, the learned algorithm is able to determine the labels corresponding to any set
of features. Some canonical examples of supervised learning problems are linear regression
and classification. Unsupervised learning, on the other hand, refers to techniques aimed
at obtaining a concise and interpretable summary of the data at hand. This is beneficial
because a compressed representation of the data may:

• lead to memory savings and make certain downstream operations using the data
possibly more computationally efficient,

11

• provide structural insights into the data which can be leveraged for other downstream
tasks.

The above discussion is better elucidated by the following concrete example.

Example 3.1. Suppose we have a database of n images which is represented by a non-
negative matrix M such that each column contains the pixel values of a distinct image in a
vectorized manner. Suppose each image contains m pixels, i.e. M ∈ Rm×n

+ . Then we may
posit that M is a low-rank matrix and seek matrices X ∈ Rm×k and Y ∈ Rk×n such that
M ≈ XY and k << n. By successfully doing so, firstly we are able to store our original
image database containing mn entries using only (m + n)k entries at the cost of the ap-
proximation error between M and XY . Moreover, we also discover the following structural
insight: the columns of X represent k latent images whose different linear combinations
yield approximations to images in our database. Another contemporary method to summa-
rize our image database would be using parametric density estimation methods. In such
methods, we determine a latent distribution which approximates the distribution underly-
ing our database. Such methods provide knowledge about our data distribution which is
particularly useful if we wish to, for instance, generate new synthetic images belonging to
the same distribution as that of our database.

3.2 Clustering and Some of its Combinatorial Formu-

lations

Clustering is an unsupervised learning technique in which the goal is to determine groups
of objects from a given collection of objects such that objects within the same group are
similar and objects in different groups are dissimilar. The task of clustering, due to its
fundamental nature, arises in more than one domains. Some examples are determining
social circles in a social network [29, 56, 13], identifying functional modules in biological
networks such as protein-protein interaction networks [58], and finding groups of webpages
on the World Wide Web that have content on similar topics [28]. The information about
the objects may be given to us:

• either as embeddings for each object in a Euclidean space,

• or as similarity scores between each pair of objects.

12

While it is possible, in certain cases, to transform one type of information to another,
in this thesis, we restrict our attention specifically to the second scenario. In other words,
we may think of the problem input as a graph such that the nodes of the graph represent
the objects and the edges represent pairwise object relationships. Moreover, the two types
of information are also related in the sense that it is reasonable to posit that the graph
data is induced by some latent structure, one example of which is latent node embeddings.
It is important to note that we have not yet pinned down the definition of a cluster in a
graph and therefore we still do not have a well-defined problem formulation in the name of
clustering. However, there isn’t a universal notion of cluster that works for all application
domains, and this makes it difficult, if not impossible, to consider a single generalized
clustering problem. In the following, we discuss a small subset of the different ways in
which one can possibly formulate a graph clustering problem, and discuss the challenges
within each approach.

Given an unweighted, undirected graph, one way to define a cluster is as a maximal
clique. Then the problem of clustering essentially reduces to the MINIMUM CLIQUE
COVER problem. Note that a clique cover is a partition of the vertex set such that the
subgraph induced by each set in the partition is a clique, and in the MINIMUM CLIQUE
COVER problem, we wish to determine a clique cover containing the smallest number of
sets. This problem is NP-hard.

If we have reasons to believe that the input graph has only two clusters of roughly
equal size, then we may possibly formulate the clustering problem as follows. We seek
a balanced partition of vertices into two sets such that there are least number of edges
between the two sets. In other words, given an unweighted, undirected graph G = (V,E),
the goal is partition V into clusters V1 and V2 such that |V1|, |V2| ≤ d|V |/2e and the number
of the edges between sets V1 and V2 is minimized over all partitions. In fact, this is the
MINIMUM BISECTION problem which is also known to be NP-hard.

We may even generalize the above approach to weighted, undirected graphs containing
any general k number of balanced clusters. That is, we wish to partition V into k sets
V1, . . . , Vk such that the number of edges between Vi and Vj for any distinct i, j ∈ [k] are
small and the sets V1, . . . , Vk are balanced. For this, we define the following two quantities.

RatioCut :=
∑
i∈[k]

cut(Vi, V
c
i)

|Vi|

Ncut :=
∑
i∈[k]

cut(Vi, V
c
i)

|E(G[Vi])|

13

where V c
i denotes the complement set of Vi, cut(Vi, V

c
i) denotes half the sum of edge weights

of the edges between Vi and V c
i , G[Vi] denotes the subgraph induced by vertex set Vi, and

E(G[Vi]) denotes the edges in G[Vi]. Note that RatioCut and Ncut measure the size of
clusters using the number of nodes and the number of edges respectively. Therefore to
determine balanced clusters, we may consider separate optimization problems minimizing
either RatioCut or Ncut. However, these optimization problems are also NP-hard.

Besides the hardness issue, the above combinatorial formulations do not entirely cap-
ture the intuitive idea of clustering. Indeed, in the clique cover approach, there is nothing
preventing a high number of edges between a pair of clusters, and in the remaining ap-
proaches, there is nothing preventing a small number of edges within a cluster. Moreover, to
make some of the above formulations work in practice, we require some a priori knowledge
about the number of clusters in the graph. The following formulation, called Correlation
Clustering, completely avoids this requirement.

Let G = (V,W) denote the input graph which has signed edges such that a positive edge
weight denotes similarity between its adjacent nodes and a negative edge weight denotes
dissimilarity between its adjacent nodes; the magnitude of the edge weight denotes the
strength of similarity/dissimilarity. We define the optimization problem of minimizing
disagreements as:

min
k,V1,...,Vk,X

∑
i,j∈[n]

−Xij ·min(Wij, 0) + (1−Xij) ·max(Wij, 0)

s.t. k ∈ N
V1, . . . , Vk is a partition of V

X is the cluster matrix for V1, . . . , Vk

(MIN-D)

where the cluster matrix for a partition V1, . . . , Vk is defined as

Xij :=

{
1 if i, j belong to the same partition set

0 otherwise.

Each feasible solution in the above problem specifies a partition of the nodes into
clusters, and for a given partition, we consider disagreements to be:

• node pairs whose nodes are placed in the same cluster and which share a negative
edge between them, or

• node pairs whose nodes are placed in different clusters and which share a positive
edge between them.

14

Thus we seek a partition which minimizes the disagreements. Note that the number of
clusters appears as variable k in the optimization problem and is therefore automatically
chosen, i.e. no a priori estimate for the number of clusters is needed. The optimization
problem of minimizing disagreements formulated above is equivalent to the optimization
problem of maximizing agreements, defined as:

max
k,V1,...,Vk,X

∑
i,j∈[n]

Xij ·max(Wij, 0)− (1−Xij) ·min(Wij, 0)

s.t. k ∈ N
V1, . . . , Vk is a partition of V

X is the cluster matrix for V1, . . . , Vk.

(MAX-A)

Here for a given partition, we consider agreements to be:

• node pairs whose nodes are placed in the same cluster and which share a positive
edge between them, or

• node pairs whose nodes are placed in different clusters and which share a negative
edge between them.

The optimization problems (MIN-D) and (MAX-A) are equivalent in the sense that both
problems seek a clustering such that the corresponding cluster matrix, X∗, maximizes
the function X 7→ 〈W,X〉 up to different constant additive terms. Moreover, note that
the optimization problem (MIN-D) (and therefore (MAX-A)) is NP-hard. A critical issue
with all formulations discussed so far is that they implicitly assume that the clusters are
disjoint, i.e do not share any vertices. While this assumption may simplify theoretical
analyses, it is restrictive from an application point of view. There are many real-world
problems where it is more realistic to model the clusters as potentially overlapping. To
our best knowledge, there do not exist standard, well-studied combinatorial optimization
formulations for overlapping clustering.

3.3 Average Case Analysis/Provable Recovery

To circumvent worst-case hardness difficulties in clustering formulations, the classical ap-
proach has been to design approximation algorithms. These are algorithms which return
a feasible solution to the optimization problem of interest whose objective value is prov-
ably close to the optimal value. More recently, a different alternative to approximation

15

algorithms has become popular; there are two ideas that emerged in separate fields but
share similar philosophy: average case analysis in theoretical computer science and prov-
able recovery in statistics/applied mathematics. In these approaches, a precise structure
is imposed over the input instances with the intention of simplifying our search for the op-
timal solution. The imposed structure over the inputs is either in the form of a generative
model (i.e. an exact probability distribution) or deterministic structural assumptions. The
following examples demonstrate applications of these ideas.

Example 3.2. In the MAX CLIQUE problem, the goal is to find the largest clique in a
given unweighted, undirected graph. This problem is known to be NP-hard. This motivates
a shift to average case analysis wherein we consider a planted clique model, i.e. the input
instances in this model are Erdős-Rényi graphs containing a fictitiously planted clique. For
such instances, as shown in [4], we are able to find, with high probability with respect
to randomness in the input graph, the largest clique provided its size is Ω(

√
n), in time

polynomial in n, where n is the number of nodes in the input graph.

Example 3.3. In the sparse regression problem, we are required to solve the linear system
Ax = b where A ∈ Rm×n with m � n and b ∈ Ran(A). Note that this, by itself, is an
ill-posed problem since the system has infinitely many solutions. Therefore we wish to find
the sparsest solution, i.e. the one with the least number of non-zero entries. This problem
is NP-hard. Consequently, we consider the problem through the lens of provable recovery.
It is shown in [21] that if the matrix A satisfies the so-called Restricted Isometry Property
(RIP), then the system Ax = b has a unique sparsest solution which can also be recovered
in time polynomial in the size of the problem data A,b. More interestingly, it is also shown
that random matrices whose entries are independent and identically distributed Gaussian
random variables satisfy RIP with high probability.

To study clustering in the average case analysis/provable recovery paradigm, a widely-
used generative model is the Stochastic Block Model (SBM).

Definition 3.1 (Stochastic Block Model (SBM)). Let n and k be positive integers denoting
the number of nodes and the number of clusters respectively. Let the nodes and the clusters
be labelled using the sets [n] and [k] respectively. Let B be a k × k symmetric matrix with
each entry in [0, 1] representing the cluster-cluster interaction probabilities. For each node
i ∈ [n], draw a vector θi independently and uniformly at random from the standard basis
vectors in Rk representing the membership of node i. Generate a graph G on n nodes such
that for each pair of distinct nodes i, i′ ∈ [n], ii′ ∈ E(G) with probability θi

T
Bθi

′
. That is,

G is a random graph with edge probabilities given by the entries of B.

16

In the special case in which the diagonal and off-diagonal entries of B are all equal to
p and q respectively for some p, q ∈ [0, 1] satisfying p > q, we obtain the planted partition
model. An in-depth survey of SBM can be found in [1]. Typically when working with
SBM, the goal is to recover the true cluster labels for each node in the input instance;
the SBM literature has a vast number of recovery guarantees, for example [46, 47, 70].
The advantage of SBM is that is provides a neat theoretical framework to study clustering
which justifies its popularity. However, an obvious shortcoming of SBM is that it allows
the nodes to belong to exactly one cluster. In practice, such an assumption is not always
satisfied. For example, in social network analysis, it is expected that some agents belong to
multiple social circles or interest groups. Similarly, in the problem of clustering webpages,
it is plausible that some webpages span multiple topics. In [2] an extension of SBM, called
the Mixed Membership Stochastic Blockmodel (MMSB), was proposed in which nodes are
allowed to have memberships in multiple clusters.

Definition 3.2 (Mixed Membership Stochastic Blockmodel (MMSB)). Let n and k be
positive integers denoting the number of nodes and the number of clusters respectively. Let
the nodes and the clusters be labelled using the sets [n] and [k] respectively. Let B be a
k×k symmetric matrix with each entry in [0, 1] representing the cluster-cluster interaction
probabilities. For each node i ∈ [n], draw a vector θi ∈ Rk independently from Dirichlet(α)
(i.e. Dirichlet distribution with parameter α ∈ Rk) representing the fractional memberships
of node i in the k clusters. Generate a graph G on n nodes such that for each pair of distinct
nodes i, i′ ∈ [n], ii′ ∈ E(G) with probability θi

T
Bθi

′
. That is, G is a random graph with

edge probabilities given by the entries of ΘBΘT , where Θ is the n× k matrix whose row i
the transpose of θi for each i ∈ [n].

Note that the MMSB generalizes the SBM in the sense that the set of membership
vectors is generalized from that of the standard basis vectors to the unit simplex. When
working with the MMSB, the goal is to recover the vectors θi capturing the fractional
membership information for each node i ∈ [n]. The research direction on theoretical
analyses of MMSB is relatively new and the literature on this is much sparse compared to
the SBM.

To study Correlation Clustering in the provable recovery paradigm, we require a gen-
erative model for generating signed graph instances in which a positive (resp. negative)
edge weight denotes a similarity (resp. dissimilarity) measure between the adjacent nodes.
However, unlike the SBM, there does not exist a single popular generative model for such
instances, to our best knowledge. In [40] and [50], the authors propose a generalization of
the planted partition model and a semi-random model, i.e. one in which there is a proba-
bilistic component and a deterministic adversarial component, respectively, for generating

17

random graphs with signed edges.

3.4 Existing Cluster Recovery Techniques

There are many algorithms in literature for provably recovering the cluster ground truth
as posited by a generative model. We do not attempt to provide an exhaustive survey of
these methods, and instead discuss prevalent high-level algorithmic techniques. Note that
we exclude heuristic methods, for a comprehensive survey on which the reader may refer
to the survey paper by Fortunato [30].

3.4.1 Spectral Methods

Spectral methods typically make use of either the Laplacian matrix or one of its normalized
variants. Recall that for a weighted graph G = (V,W), the Laplacian matrix is defined
as L(G) := D −W where D := Diag(We), i.e. in the Laplacian, each diagonal entry is
equal to the degree of the corresponding node and each off-diagonal entry is negative of the
corresponding edge weight. One way to normalize the Laplacian is by multiplying L(G) on
left and right with D−1/2, i.e. consider the matrix D−1/2(D−W)D−1/2 = I−D−1/2WD−1/2.
For the purpose of this discussion, we use L(G). Let USUT be the spectral decomposition
of L(G). Note that because L(G) is real and symmetric, each of its eigenvalues is real.
Assume, without loss of generality, that the eigenvalues on the diagonal of S are sorted
in non-increasing order, and let k denote a prior estimate of the number of clusters in the
graph. The ordering of eigenvalues in S implies that the columns of U(:, [k]) contain the
eigenvectors of L(G) corresponding to k largest eigenvalues of L(G). Then interpreting the
rows of U(:, [k]) as points in Rk, we perform k-means or k-medians clustering to obtain a
partition for them. Lastly, the nodes in G are partitioned corresponding to the partition
obtained for the rows of U(:, [k]). In [70], a theoretical analysis of the recovery performance
of a spectral algorithm for the SBM is presented. In [85], the authors analyze a spectral
algorithm in the context of a generative model for overlapping clusters. For a detailed
survey on spectral clustering, the reader may refer to the tutorial paper by Von Luxburg
[79].

3.4.2 Convex Relaxation Methods

In the convex relaxation approach, we seek a convex optimization formulation which cap-
tures the clustering problem we are interested in. We may begin with a certain optimiza-

18

tion formulation for the clustering problem of interest but such formulations are inevitably
combinatorial (as seen in Section 3.2). To circumvent this challenge, we then relax the
intractable components of the optimization problem to obtain a convex optimization for-
mulation which is a good approximation of the original optimization problem. This ap-
proach is beneficial because of the vast body of existing theoretical literature on convex
optimization. For instance, after obtaining a convex optimization formulation, we can use
the Karush-Kuhn-Tucker (KKT) optimality conditions discussed in Section 2.1 of Chapter
2 to determine an optimal solution. There is not a fixed recipe for applying this approach
as there are multiple choices to be made requiring mathematical ingenuity such as how
to relax the original difficult formulation to obtain a convex formulation, and how to con-
struct variables satisfying the KKT conditions. Apart from clustering, convex relaxations
have shown success in other machine learning problems as well such as sparse regression
[21], low-rank matrix completion [20], and dictionary learning [74]. Moreover, for certain
problems, convex relaxation methods are even shown to be optimal. For instance, in [17], a
semidefinite programming (SDP)-relaxation approach is presented for the sparse principal
component analysis problem; additionally, it is shown that the proposed SDP is optimal
in the sense that there does not exist another algorithm with both better statistical and
computational performance guarantees, under the assumption that certain instances of the
planted clique problem cannot be solved in randomized polynomial time. (For a certain
parameter regime for the planted clique problem, it is conjectured that no polynomial time
solution exists.)

In the following, we show one derivation of a convex relaxation for clustering. Let
G = (V,W) be a graph generated using the planted partition model, defined in Section 3.3.
Note that G is an unweighted graph whose adjacency matrix is denoted by W . Determining
a clustering of G which maximizes the log-likelihood of the observed graph G yields the
discrete optimization problem

max
k,V1,...,Vk,X

〈X,W − λE〉

s.t. k ∈ N
V1, . . . , Vk is a partition of V

X is the cluster matrix for V1, . . . , Vk

(MAX-LL)

where

λ :=
log(1− q)− log(1− p)

log p− log q + log(1− q)− log(1− p)
.

19

A convex relaxation of (MAX-LL) is

max
X

〈X,W − λE〉

s.t. Xii = 1 ∀i ∈ [n]

X ≥ 0, X � 0.

(MAX-LL-CONV)

In [47], using a construction of variables satisfying the KKT conditions for (MAX-LL-
CONV), the authors present conditions under which (MAX-LL-CONV) can provably re-
cover the ground truth clustering in the planted partition model. There are multiple
convex relaxations in literature for clustering a graph into disjoint clusters, for example
[22, 23, 24, 39, 42], but that is not the case for overlapping clustering.

3.4.3 Combinatorial Methods

As the name suggests, combinatorial methods typically perform discrete operations directly
on the input graph to recover the clusters. In [8], the authors make both deterministic
and probabilistic structural assumptions on the input graph, and define clusters as dense
subgraphs satisfying a given set of properties. They propose recovery algorithms in which
clusters are built in a bottom-up fashion by first sampling nodes and then determining
cliques in the neighborhoods of the sampled nodes. Similar model and algorithmic ideas
are independently developed in [9]. Alternatively, Ray et al. [68] propose a model in which
first each node is assigned to a subset of k clusters, for some k denoting the total number
of clusters, and then the observed graph is generated by placing, for each pair of nodes i
and i′, edge ii′ with probability proportional to the number of clusters shared by the two
nodes. They develop a three-step recovery algorithm: first determine k node sets, called
pure node sets, such that for each i ∈ [k], the ith set belongs exclusively to the ith cluster.
Then estimate the between- and within-cluster edge density parameters. Lastly, using those
parameters apply degree thresholding to assign clusters to the remaining nodes. This is
mainly a combinatorial algorithm but it uses convex optimization as a subroutine. Indeed
the subroutine to determine clustered pure node sets uses an existent convex relaxation
method to detect non-overlapping clusters; note that the subgraph induced by the k pure
node sets comprises of k non-overlapping clusters.

20

Chapter 4

Provable Overlapping Community
Detection in Weighted Graphs

1

4.1 Problem Introduction

As mentioned in Chapter 1, we use the terms cluster and community, and the phrases graph
clustering and community detection interchangeably. As discussed in Chapter 3, the Mixed
Membership Stochastic Blockmodel (MMSB) generalizes the traditional Stochastic Block
Model (SBM) by positing that each node may have fractional memberships in the different
communities. If n and k denote the number of nodes and the number of communities
respectively, matrix Θ ∈ [0, 1]n×k, called the node-community distribution matrix, is gen-
erated such that each of its rows is drawn from the Dirichlet distribution with parameters
α ∈ Rk. Then the n× n probability matrix is given as

P = ΘBΘT (4.1)

where B is a k × k community interaction matrix. Lastly, a random graph according to
MMSB is generated on n nodes by placing an edge between nodes i and j with proba-
bility Pij, and based on observing this graph, we are interested in recovering the matrix
Θ. MMSB has been shown to be effective in many real-world settings, but the recovery
guarantees regarding it are very limited compared to the SBM. In this chapter, we provide
a provable linear-programming-based algorithm to recover Θ using P that is relatively easy
to implement and that does not require an assumption on the input graph which is made
oftentimes but is not realistic.

1This chapter is based on the work [49] with the same title.

21

For a theoretical analysis of the MMSB, it is usually assumed that the user has access
to only an unweighted random graph generated according to the model. While this as-
sumption may be necessary in some settings, it makes the analysis difficult without much
advantage. Indeed in many settings of practical interest, the user does have access to a
similarity measure between node pairs, and this motivates us to work with weighted graphs
generated according to the MMSB. For example, in the context of social network analysis,
one may define a communication graph as an unweighted graph in which edge ij exists
if and only if agents i and j exchanged messages in a certain fixed time window. Then
the weighted adjacency matrix for the social network may be obtained by averaging the
adjacency matrices of multiple observed communication graphs. On the other hand, we
make the problem difficult in a more realistic manner; we remove a common assumption
in literature which is quite unrealistic if not mathematically problematic. This assumption
requires each community in the input graph to contain a node which belongs exclusively
to that community. Such nodes are called pure nodes in the literature. The notion of pure
nodes in community detection is related to that of separability in nonnegative matrix fac-
torization in the sense that they both induce a simplicial structure on the data. Although
we do not make the pure nodes assumption, the Dirichlet distribution naturally generates
increasingly better approximations to pure nodes as n, the number of nodes, gets large,
and we use this fact in our analysis. As far as we know, this exact setup has not been
studied before.

Among existing provable methods, [85] propose the so-called Overlapping Continuous
Community Assignment Model (OCCAM) which only slightly differs from MMSB; in OC-
CAM each row of Θ has unit `2-norm as opposed to unit `1-norm in MMSB. They provide a
provable algorithm for learning the OCCAM parameters in which one performs k-medians
clustering on the rows of the n × k matrix corresponding to k largest eigenvectors of the
adjacency matrix corresponding to the observed unweighted random graph. However, their
assumptions may be difficult to verify in practice. Indeed for their k-medians clustering
to succeed, they assume that the ground-truth community structure provides the unique
global optimal solution of their chosen k-medians loss function, which is also required to
satisfy a special curvature condition around this minimum.

A moment-based tensor spectral approach to recover the MMSB parameters Θ and B
from an unweighted random graph generated according to the model was shown by [6].
Their approach, however, is not very straightforward to implement and involves multiple
tuning parameters. Indeed one of the tuning parameters must be close to the sum of the
k Dirichlet parameters, which are not known in advance.

In a series of works, [51, 52, 53] have also tackled the problem of learning the parameters
in MMSB from a single random graph generated by the model. However, they require the

22

pure node assumption. Additionally, they cast the MMSB recovery problem as problems
that are nonconvex. Consequently, to get around the nonconvexity, more assumptions on
the model parameters are required. For instance, in [51], the MMSB recovery problem is
formulated as a Symmetric Nonnegative Matrix Factorization (SNMF) problem, which is
both nonconvex and NP-hard. Then to ensure the uniqueness of the global optimal solution
for the SNMF problem, they require B to be a diagonal matrix. In contrast, not only does
our approach directly tackle the factorization in (4.1) to recover Θ, we also do so using
linear programming.

Recently [36] have also proposed a linear-programming-based algorithm for recovery
in MMSB. However, the connection between their proposed linear programs and ours is
unclear, and they require the pure nodes assumption for their method to provably recover
the communities.

4.2 Problem Formulation

Recall the notation that for each i ∈ [n] and j ∈ [k], θi denotes the transpose of row i and
θj denotes column j of matrix Θ. We ask the following question for the MMSB described
by (4.1):

Given P , how can we efficiently obtain a matrix Θ̂ ∈ [0, 1]n×k such that Θ̂ ≈ Θ?

Typically, one imposes the pure nodes assumption on Θ which greatly simplifies the above
posed problem. That is, one assumes that for each j ∈ [k], there exists i ∈ [n] such that
θi = ej, i.e. node i belongs exclusively to community j. In other words, the rows of Θ
contain all corners of unit simplex in Rk. However, such an assumption is mathematically
problematic and/or practically unrealistic. Indeed if the rows of Θ are sampled from
the Dirichlet distribution, then the probability of sampling even one pure node is zero.
Moreover, even from a practical standpoint such an assumption may not always be satisfied
since in real-world networks, such as protein-protein interaction networks, one encounters
communities with no pure nodes. Lastly, note that we are interested in recovering only Θ
and not B since the former contains the community membership information of each node
which is usually what a user of such methods is interested in.

We provide an answer to posed question without making an explicit assumption re-
garding the presence of pure nodes. To that effect, we propose a novel simple and efficient
convex-optimization-based method to approximate Θ entrywise under a very natural con-
dition that just requires n to be sufficiently large. Such a condition is often satisfied in

23

practice since real-world graphs in application settings such as social network analysis are
usually large-scale.

4.3 SP+LP Recovery Algorithm

We may think of our recovery procedure, Successive Projection followed by Linear Program-
ming (SP+LP), as divided into two stages. First, via a preprocessing step, called Successive
Projection, we obtain a set J ⊆ [n] of cardinality k such that Θ(J , :) is entrywise close to I
up to a permutation of the rows. Intuitively, due to a simplicial structure in the columns of
matrix P , such a set J may be determined by (1) extracting a column of P , called v, with
the largest `2-norm, (2) replacing each column of P with its projection on the orthogonal
complement of v, and repeating steps (1) and (2). We may think of the nodes in J as
being almost pure, which we then we use to recover approximations to the k columns of
Θ, the community characteristic vectors, using exactly k linear programs (LPs). The form
of the LP in SP+LP can be motivated as follows. Intuitively, the presence of almost pure
nodes ensures that the column range of Θ coincides with the range of P ; consequently
recovering Θ given P may be interpreted as obtaining a certain basis for the range of P .
These desired basis vectors, i.e. the columns of Θ, are nonnegative and somewhat sparse in
the sense that they contain potentially many entries which are close to zero. Thus we seek
nonnegative vectors in the range of P with the smallest `1-norm (which, for a nonnegative
vector, is equal to the sum of its entries) and introduce a non-homogeneous constraint to
rule out the trivial solution of the zero vector. Similar optimization formulation techniques
have been shown to work for some planted/generative models for the problem for sparse
dictionary learning [65, 74]. Note that SP+LP has no tuning parameters other than the
number of communities, which is also a parameter for most other community detection
algorithms.

Algorithm 1 SP+LP

Input: Matrix P generated according to MMSB, number of communities k
Output: Estimated characteristic vectors θ̂1, . . . , θ̂k ∈ [0, 1]n

1: J = SuccessiveProjection(P)
2: for i ∈ [k] do
3: (x∗,y∗) = arg min

(x,y)
eTx s.t. x ≥ 0, xJ (i) ≥ 1,x = Py

4: θ̂i = x∗/‖x∗‖∞
5: end for

24

Algorithm 2 SuccessiveProjection

Input: Matrix P generated according to MMSB, number of communities k
Output: Estimated set of almost pure nodes J ⊆ [n]

1: J = {}, R = P, j = 1
2: while R 6= 0 and j ∈ [k] do
3: s′ = arg max

s∈[n]
‖rs‖2

4:

5: R =
(
I − rs′r

T
s′

‖rs′‖2

)
R

6: J = J ∪ {s′}
7: j = j + 1
8: end while

4.4 Theoretical Guarantees

Let Z be a k × k submatrix of Θ such that for each j ∈ [k], there exists i ∈ [k] satisfying

‖zi − ej‖∞ ≤ ‖θp − ej‖∞ (4.2)

for any p ∈ [n]. The rows of Z do not exactly correspond to the corners of the unit simplex;
they are, however, the best entrywise approximations of the corners that can be obtained
among the rows of Θ. Note that without loss of generality, through appropriate relabelling
of the nodes, we may assume that indices i and j in (4.2) are identical. Define the k × k
matrix ∆ := Z − I.

Define c := ΘTe, and let cmin and cmax denote the smallest and largest entries in
c respectively. Let κ and κ0 denote the condition numbers of B and ΘB respectively,
associated with the `2-norm. Recall that this condition number is the ratio of the largest
and smallest singular values of the matrix.

Now we state our main result, which provides complete theoretical justification for the
success of SP+LP in approximately recovering the k community vectors.

Theorem 4.4.1. Suppose k ≥ 2, B is full-rank, and all k parameters of the Dirichlet
distribution are equal to α ∈ R. Let w := 8κ

√
αk + 1 and define

ε1 := min

(
1√
k − 1

,
1

2

)
1

2
√

2w(1 + 80w2)

ε2 :=
7

3520
√

2kw2
.

25

If n >
log(p/k)

log I1−ε(α, (k − 1)α)
for some p ∈ (0, 1) and ε ∈ (0,min{ε1, ε2}), then there exists

a permutation π of the set [k] such that vectors θ̂1, . . . , θ̂k returned by SP+LP satisfy

max
j∈[k]
‖θ̂j − θπ(j)‖∞ = O(αk2κ2ε) (4.3)

with probability at least 1 − p − c1e
−c2n where c1, c2 are constants that depend on α, k, κ.

(Here Ix(y, z) denotes the regularized incomplete beta function, defined as

Ix(y, z) =

∫ x
0
ty−1(1− t)z−1dt∫ 1

0
ty−1(1− t)z−1dt

for complex numbers y, z with positive real parts.)

We note that even though our main result is stated for an equal parameter Dirichlet
distribution, our proof techniques extend, in principle, to a setting in which the Dirichlet
parameters are different but not too far from each other. Doing so, however, adds only
incremental value but makes the analysis significantly tedious.

In line with our algorithm description, we divide the theoretical analysis also in two
parts: one for analysis of the preprocessing Successive Projection subroutine, and another
for analysis of the LPs in the main algorithm.

Successive Projection Algorithm was first studied by [32] in far more generality than
what is used here. Adopting their main recovery theorem to our setup yields the following
theorem.

Theorem 4.4.2 ([32]). Suppose that

‖∆‖max < min

(
1√
k − 1

,
1

2

)
1

2
√

2κ0(1 + 80κ2
0)

(4.4)

and let J be the index set of cardinality k extracted by Algorithm 2. Then there exists a
k × k permutation matrix Π such that

‖ΠΘ(J , :)− I‖max ≤ 40
√

2κ2
0‖∆‖max. (4.5)

Theorem 4.4.2 provides theoretical justification for the success of the subroutine high-
lighted in Algorithm 2. To this end, our contribution is to show that the condition in (4.4)
is satisfied in MMSB with high probability provided the number of nodes in the graph is
sufficiently large. This involves deriving concentration bounds for the smallest and largest
singular values of Θ and ΘB. The following result provides theoretical guarantee for the
performance of the LP in Algorithm 1.

26

Theorem 4.4.3. Assume k ≥ 2, B is full-rank, and cmin/cmax > 1/2. Suppose for each
s ∈ [k], there exists p ∈ [n] such that ‖θp−es‖∞ ≤ η for some 0 ≤ η < (cmin/cmax−1/2)/4k.
Let i ∈ [n] such that ‖θi − ej‖∞ ≤ η for some j ∈ [k]. Then the LP

min eTx

s.t. x ≥ 0

xi ≥ 1

x = Py

(P)

has an optimal solution, and if x∗ is an optimal solution then∥∥∥∥ x∗

‖x∗‖∞
− θj

∥∥∥∥
∞
≤ 4η(2

√
2k + 1). (4.6)

Moreover, the time complexity of solving (P) to obtain x∗ is O(n2).

Combining Theorems 4.4.2 and 4.4.3 yields Theorem 4.4.1, which provides entrywise
error bounds for the k community characteristic vectors returned by SP+LP. We also con-
clude that the time complexity of SP+LP is O(n2) since the time complexity of both Suc-
cessiveProjection and solving (P) is O(n2). To our best knowledge, there does not exist a
competing provable algorithm whose time complexity is under O(n2). Note that all time
complexity expressions mentioned in this chapter hide dependence on k, since we assume
k to be fixed with respect to n.

Using Theorem 4.4.3, we also make a note about identifiability. For the MMSB, we say
that the model is identifiable if no two distinct pairs of Θ and B yield the same matrix P .
It is shown in [53] that, unless an assumption about the entries of B is made, the MMSB
is identifiable if and only if each community has a pure node. Since we do not assume
the presence of pure nodes for each community, we present a result regarding the near
identifiability of the MMSB.

Corollary 4.4.4. Let Θ and Θ̄ be n× k node-community distribution matrices satisfying
the conditions of Theorem 4.4.3 for some η and η̄ respectively. Let B and B̄ be k × k
full-rank community interaction matrices such that ΘBΘT = Θ̄B̄Θ̄T . Then there exists a
permutation π of the set [k] such that

max
j∈[k]
‖θ̄j − θπ(j)‖∞ ≤ 4(η̄ + η)(2

√
2k + 1). (4.7)

27

4.5 Proofs

In this section, we build the necessary tools using which we ultimately provide a proof of
Theorem 4.4.1 and Corollary 4.4.4.

4.5.1 LP Analysis

We begin by developing a proof of Theorem 4.4.3. Let η ∈ (0, 1) and assume for now that
for each j ∈ [k], there exists i ∈ [n] such that ‖θi − ej‖∞ ≤ η. Moreover, assume, without
loss of generality, that for each i ∈ [k]

‖θi − ei‖∞ ≤ η. (4.8)

Indeed such a property can always be satisfied with appropriate relabelling of the nodes.
Define I ′ := Θ([k], :).

Lemma 4.5.1. Suppose M is a k × k matrix whose rows belong to the unit simplex. If

‖mi − ei‖∞ ≤ δ (4.9)

for each i ∈ [k] and for some δ ∈
[
0,

1

2
√

2k

]
, then

‖M−T − I‖∞ ≤ 2
√

2δk. (4.10)

Proof. Since each row of M belongs to the unit simplex and satisfies (4.9), we note that
`2-norm of each row of M − I is bounded above by δ

√
2. This implies that

‖M − I‖ ≤ δ
√

2k. (4.11)

Moreover

|‖M−1‖ − 1| ≤ ‖M−1 − I‖ (using reverse triangle inequality)

= ‖(M − I)M−1‖
≤ ‖M − I‖‖M−1‖

which implies that

‖M−1‖ ≤ 1

1− ‖M − I‖
. (4.12)

28

Then, we have

‖M−T − I‖∞ ≤
√
k‖M−T − I‖

=
√
k‖M−1 − I‖

≤
√
k‖M − I‖‖M−1‖

≤
√
k‖M − I‖

1− ‖M − I‖
(using (4.12))

≤
√

2δk

1− δ
√

2k

≤ 2
√

2δk. (by assumption on δ)

For any i ∈ [k], consider the LP

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1.

(Pi)

and its dual
max β

s.t. βθi + ΘTu = c

β,u ≥ 0.

(Di)

Note that both (Pi) and (Di) are feasible optimization problems. Thus let y∗ and (β∗,u∗)
be a (Pi)-(Di) optimal solution pair.

Lemma 4.5.2. Suppose η ≤ 1

2
√

2k

cmin

cmax

.

Then
ci − 2

√
2ηkcmax ≤ β∗ ≤ ci

1− η
. (4.13)

Proof. The upper bound follows from observing that β∗ = cTy∗ due to Strong Duality and
that ei/θii is a feasible solution for (Pi), combined with the fact that θii ≥ 1− η.

29

For the lower bound we construct a feasible solution for (Di). Define z as the solution
of the system I ′Tz = c. Note that the rows of I ′ belong to the unit simplex and for any
i ∈ [k], we have

‖I ′(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma 4.5.1, we conclude that ‖I ′−T − I‖∞ ≤ 2
√

2ηk.

Then for any s ∈ [k], we have

|zs − cs| ≤ ‖z− c‖∞
≤ ‖I ′−T − I‖∞cmax

≤ 2
√

2ηkcmax.

Moreover since η ≤ 1

2
√

2k

cmin

cmax

, we conclude that z ≥ 0. Now define the point (β′,u′) such

that
β′ := zi

and

u′s :=

{
zs, if s ∈ [k] \ {i}
0, otherwise.

Note that (β′,u′) is feasible for (Di) with objective value

β′ ≥ ci − 2
√

2ηkcmax.

Define the vector r := ΘTu∗/2. We shall prove some bounds on the entries of r which
will be used for subsequent proofs.

Lemma 4.5.3. Suppose η ≤ 1

2
√

2k

cmin

cmax

. Then we have the following inequalities.

1. 0 ≤ ri ≤ 2kηcmax.

2. For any s ∈ [k] \ {i},
cmin −

η

1− η
cmax ≤ rs ≤

cmax

2
.

30

Proof. First note that r ≥ 0 by definition and therefore the lower bound on ri follows.
From the feasibility of (β∗,u∗) for (Di), we have for any s ∈ [k]

rs =
cs − β∗θis

2
. (4.14)

The upper bound on ri follows from (4.14), and using the lower bound on β∗ from
Lemma 4.5.2 and the fact that θii ≥ 1− η. Indeed, we have

ri =
ci − β∗θii

2

≤ ci − [(ci − 2
√

2ηkcmax)(1− η)]

2

=
ηci + 2

√
2η(1− η)kcmax

2

≤ ηcmax[1 + 2
√

2(1− η)k]

2

≤ ηcmax

(
1 + 3k

2

)
≤ 2kηcmax. (∵ k ≥ 2)

For any s ∈ [k] \ {i}, the upper bound on rs follows from (4.14), and noting that β∗

and θis are nonnegative and cs ≤ cmax.

For any s ∈ [k] \ {i}, the lower bound on rs follows from (4.14), and using the upper
bound on β∗ from Lemma 4.5.2, the fact that cs ≥ cmin and the fact that θis ≤ η.

Lemma 4.5.4. Suppose η ≤ 1

3k

cmin

cmax

. Then ‖r‖∞ ≤
cmax

2
.

Proof. We prove this statement by proving that ‖r‖∞ is attained at some index in [k]\{i}.
It suffices to show that ri ≤ rs for any s ∈ [k]\{i}. Note that by assumption η ≤ 1

3k

cmin

cmax

≤
1

2
√

2k

cmin

cmax

, the entries of r are bounded according to Lemma 4.5.3.

31

We have

cmin ≥ 2ηcmax
3k

2
(by assumption on η)

≥ 2ηcmax(k + 1) (∵ k ≥ 2)

= 2ηcmax + 2kηcmax

≥ η

1− η
cmax + 2kηcmax (∵ η ≤ 1/2)

which is equivalent to

2kηcmax ≤ cmin −
η

1− η
cmax.

Therefore using Lemma 4.5.3, we conclude that ri ≤ rs for any s ∈ [k] \ {i}.

Lemma 4.5.5. Suppose
cmin

cmax

>
1

2
and η <

1

3k

(
cmin

cmax

− 1

2

)
. Then for any s ∈ [k] \ {i}, if

y∗s is positive, we have
y∗s < 2

√
2ηk. (4.15)

Proof. Pick any s ∈ [k] \ {i} such that y∗s > 0. Consider the auxiliary LP

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1

ys ≥ 2
√

2ηk

(Pi-aux)

and its dual
max β + (2

√
2ηk)γ

s.t. βθi + γes + ΘTu = c

β, γ,u ≥ 0.

(Di-aux)

If we show that y∗ is not an optimal solution to (Pi-aux), then we can conclude that
y∗s < 2

√
2ηk. Therefore our goal is to show that the optimal value of (Pi-aux) is greater

than cTy∗. Equivalently, we may also show that the optimal value of (Di-aux) is greater
than β∗. We do so by constructing a feasible solution for (Di-aux) at which the objective
value is greater than β∗.

Now define Ī to be identical to I ′ except the sth row which is set to be es
T . Let z∗ be

the solution to the system
ĪTz = r (4.16)

32

where recall that r = ΘTu∗/2.

Note that the rows of Ī belong to the unit simplex and for any i ∈ [k], we have

‖Ī(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma 4.5.1, we conclude that

‖Ī−T − I‖∞ ≤ 2
√

2ηk. (4.17)

Define the point β̄γ̄
ū

 :=

 β∗

0
u∗/2

+

β′γ′
u′

 (4.18)

where β′ := z∗i , γ
′ := z∗s and

u′p :=

{
z∗p if p ∈ [k] \ {i, s}
0 otherwise.

First we argue that (β̄, γ̄, ū) is feasible for (Di-aux). From (4.18), we have

β̄θi + γ̄es + ΘT ū = β∗θi + ΘTu∗/2 + β′θi + γ′es + ΘTu′

= c− r + β′θi + γ′es + ΘTu′

(∵ (β∗,u∗) is feasible for (Di))

= c− r + ĪTz∗

(using the definition of (β′, γ′,u′))

= c.

(using (4.16))

To argue about the nonnegativity of (β̄, γ̄, ū), it suffices to argue that

1. z∗i + β∗ ≥ 0

2. z∗([k] \ {i}) ≥ 0.

33

Note that our assumption on η implies η <
1

2
√

2k

cmin

cmax

and therefore Lemmas 4.5.2 and

4.5.3 apply.

We have

z∗i = Ī−T (i, i)ri +
∑

p∈[k]\{i}

Ī−T (i, p)rp

≥ 0 +
∑

p∈[k]\{i}

Ī−T (i, p)rp (∵ Ī−T (i, i) ≥ 0, ri ≥ 0)

≥ −2
√

2ηk
cmax

2
. (using (4.17) and Lemma 4.5.3)

(4.19)

Combining the lower bound on z∗i with the lower bound on β∗ in Lemma 4.5.2 we get

z∗i + β∗ ≥ ci − 3
√

2ηkcmax

≥ cmin − 3
√

2ηkcmax

> 0.

The last inequality above follows from our assumption on η. Indeed, we have

η <
1

3k

(
cmin

cmax

− 1

2

)
<

1

3
√

2k

cmin

cmax

.

(
∵
cmin

cmax

≤ 1

)

Similarly, for any t ∈ [k] \ {i} we have

z∗t ≥ rt − ‖Ī−T − I‖∞‖r‖∞ (using (4.16))

≥ rt − 2
√

2ηk
cmax

2
(using (4.17) and Lemma 4.5.4)

≥ cmin −
η

1− η
cmax − 2

√
2ηk

cmax

2
. (using Lemma 4.5.3)

(4.20)

Our assumption on η yields a positive lower bound on the above expression. Indeed,

34

we have

cmin >
cmax

2
+ 3kηcmax (by assumption on η)

≥ cmax

2
+ 2(k + 1)ηcmax (∵ k ≥ 2)

=
cmax

2
+ 2ηcmax + 2ηkcmax

≥ cmax

2
+

η

1− η
cmax +

√
2ηkcmax (∵ η ≤ 1/2)

Using the above in (4.20), we get
z∗t > cmax/2. (4.21)

Therefore (β̄, γ̄, ū) is feasible for (Di-aux).

Now we argue that the objective value of (Di-aux) at (β̄, γ̄, ū) is greater than β∗. Indeed
note that

β′ + (2
√

2ηk)γ′ = z∗i + (2
√

2ηk)z∗s

> −
√

2ηkcmax + 2
√

2ηk
cmax

2
(using (4.19) and (4.21))

= 0.

That is, β′ + (2
√

2ηk)γ′ > 0 or equivalently, β̄ + (2
√

2ηk)γ̄ > β∗ thereby concluding the
proof.

Lemma 4.5.6. Suppose
cmin

cmax

>
1

2
and η <

1

4k

(
cmin

cmax

− 1

2

)
. Then for any s ∈ [k] \ {i}, if

y∗s is negative, we have
y∗s > −4

√
2ηk. (4.22)

Proof. Pick any s ∈ [k] \ {i} such that y∗s < 0. Consider the auxiliary LP

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1

ys ≤ −4
√

2ηk

(Pi-aux)

35

and its dual
max β + (4

√
2ηk)γ

s.t. βθi − γes + ΘTu = c

β, γ,u ≥ 0.

(Di-aux)

If we show that y∗ is not an optimal solution to (Pi-aux), then we can conclude that
y∗s > −4

√
2ηk. Therefore our goal is to show that the optimal value of (Pi-aux) is greater

than cTy∗. Equivalently, we may also show that the optimal value of (Di-aux) is greater
than β∗. We do so by constructing a feasible solution for (Di-aux) at which the objective
value is greater than β∗.

Let z∗ be the solution to the system

I ′Tz = r +
cmax

2
es (4.23)

where recall that r = ΘTu∗/2.

Note that the rows of I ′ belong to the unit simplex and for any i ∈ [k], we have

‖I ′(i, :)− ei‖∞ ≤ η

≤ 1

2
√

2k
. (by assumption on η)

Therefore using Lemma 4.5.1, we conclude that

‖I ′−T − I‖∞ ≤ 2
√

2ηk. (4.24)

Define the point β̄γ̄
ū

 :=

 β∗

0
u∗/2

+

 β′

cmax/2
u′

 (4.25)

where β′ := z∗i and

u′p :=

{
z∗p if p ∈ [k] \ {i}
0 otherwise.

36

First we argue that (β̄, γ̄, ū) is feasible for (Di-aux). From (4.25), we have

β̄θi − γ̄es + ΘT ū = β∗θi + ΘTu∗/2 + β′θi − cmaxes/2 + ΘTu′

= c− r + β′θi − cmaxes/2 + ΘTu′

(∵ (β∗,u∗) is feasible for (Di))

= c− r + I ′Tz∗ − cmaxes/2

(using the definition of (β′,u′))

= c.

(using (4.23))

To argue about the nonnegativity of (β̄, γ̄, ū), it suffices to argue that

1. z∗i + β∗ ≥ 0

2. z∗([k] \ {i}) ≥ 0.

Note that our assumption on η implies η <
1

2
√

2k

cmin

cmax

and therefore Lemmas 4.5.2 and

4.5.3 apply.

We have

z∗i = I ′−T (i, i)ri + I ′−T (i, s)(rs + cmax/2) +
∑

p∈[k]\{i,s}

I ′−T (i, p)rp

≥ 0 + I ′−T (i, s)(rs + cmax/2) +
∑

p∈[k]\{i,s}

I ′−T (i, p)rp

(∵ I ′−T (i, i) ≥ 0, ri ≥ 0)

≥ −2
√

2ηkcmax.

(using (4.24) and Lemma 4.5.3)

(4.26)

Combining the lower bound on z∗i with the lower bound on β∗ in Lemma 4.5.2 yields

z∗i + β∗ ≥ ci − 4
√

2ηkcmax

≥ cmin − 4
√

2ηkcmax

> 0.

37

The last inequality above follows from our assumption on η. Indeed, we have

η <
1

4k

(
cmin

cmax

− 1

2

)
<

1

4
√

2k

cmin

cmax

.

(
∵
cmin

cmax

≤ 1

)
Similarly, for any t ∈ [k] \ {i} we have

z∗t ≥ rt + cmaxI(s, t)/2− ‖I ′−T − I‖∞‖r + cmaxes/2‖∞ (using (4.23))

≥ rt − ‖I ′−T − I‖∞‖r + cmaxes/2‖∞
≥ rt − 2

√
2ηkcmax (using (4.24) and Lemma 4.5.4)

≥ cmin −
η

1− η
cmax − 2

√
2ηkcmax. (using Lemma 4.5.3)

(4.27)

Our assumption on η yields a positive lower bound on the above expression. Indeed,
we have

cmin >
cmax

2
+ 4kηcmax (by assumption on η)

≥ cmax

2
+ (2 + 3k)ηcmax (∵ k ≥ 2)

=
cmax

2
+ 2ηcmax + 3ηkcmax

≥ cmax

2
+

η

1− η
cmax + 2

√
2ηkcmax (∵ η ≤ 1/2)

Using the above in (4.27), we get
z∗t > cmax/2. (4.28)

Therefore (β̄, γ̄, ū) is feasible for (Di-aux).

Now we argue that the objective value of (Di-aux) at (β̄, γ̄, ū) is greater than β∗. Indeed
note that

β′ + (4
√

2ηk)
cmax

2
= z∗i + (4

√
2ηk)

cmax

2

> −2
√

2ηkcmax + (4
√

2ηk)
cmax

2
(using (4.26))

= 0.

38

That is, β′+ (4
√

2ηk)
cmax

2
> 0 or equivalently, β̄ + (4

√
2ηk)γ̄ > β∗ thereby concluding the

proof.

Lemma 4.5.7. Suppose
cmin

cmax

>
1

2
and η <

1

4k

(
cmin

cmax

− 1

2

)
. Then

1− 4
√

2η2k

θii
≤ y∗i ≤

1 + 4
√

2η2k

θii
. (4.29)

Proof. We note that the constraint yTθi ≥ 1 in (Pi) is tight at optimality. Indeed otherwise
one may scale the optimal solution so as to make that constraint tight and obtain a strictly
smaller objective value, thereby contradicting optimality.

Then we have
1 = y∗Tθi

= y∗i θii +
∑

s∈[k]\{i}

y∗sθis.
(4.30)

Moreover∣∣∣∣∣∣
∑

s∈[k]\{i}

y∗sθis

∣∣∣∣∣∣ ≤ ‖y∗([k] \ {i})‖∞‖θi([k] \ {i})‖1 (using Hölder’s inequality)

≤ η‖y∗([k] \ {i})‖∞ (∵ ‖θi([k] \ {i})‖1 ≤ η)

≤ 4
√

2η2k. (using Lemmas 4.5.5 and 4.5.6)

(4.31)

Using (4.31) in (4.30) yields the desired result.

Proof of Theorem 4.4.3. First note that (P) is both feasible and bounded below, which
implies that it has an optimal solution. By assumption, there exists a k×k submatrix of Θ
whose entrywise distance from I is at most η; this implies that the spectral norm distance of
such a submatrix from I is at most ηk which is, by assumption, at most (cmin/cmax−1/2)/4
which is at most one. This implies that the column rank of Θ is k. Therefore using the
fact that B is full-rank, we conclude that the column range of Θ is equal to the range of
P and consequently the rank of P is k. Therefore (P) may be rewritten as

min cTy

s.t. Θy ≥ 0

yTθi ≥ 1.

(Py)

39

Note that (Py) is both feasible and bounded below, which implies that it has an optimal
solution. Since x∗ is an optimal solution to (P), there exists an optimal solution to (Py),
called y∗, satisfying Θy∗ = x∗. Using Lemmas 4.5.5, 4.5.6, and 4.5.7, we conclude that∥∥∥∥y∗ − ej

θij

∥∥∥∥
∞
≤
√

2ηkmax{2, 4, 4η/θij} = 4
√

2ηk. (4.32)

The last equality above holds because θij ≥ 1− η and η < 1/2. Then we have∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

=

∥∥∥∥Θy∗ −Θ
ej
θij

∥∥∥∥
∞

≤ ‖Θ‖∞
∥∥∥∥y∗ − ej

θij

∥∥∥∥
∞

≤ 4
√

2ηk. (‖Θ‖∞ = 1 and using (4.32))

(4.33)

Lastly, we have∥∥∥∥ x∗

‖x∗‖∞
− θj

∥∥∥∥
∞
≤
∥∥∥∥ x∗

‖x∗‖∞
− x∗

∥∥∥∥
∞

+

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥θjθij − θj

∥∥∥∥
∞

(using triangle inequality)

= |1− ‖x∗‖∞|+
∥∥∥∥x∗ − θj

θij

∥∥∥∥
∞

+

∥∥∥∥θjθij − θj

∥∥∥∥
∞

≤
∣∣∣∣1− ‖θj‖∞θij

∣∣∣∣+

∣∣∣∣‖x∗‖∞ − ‖θj‖∞θij

∣∣∣∣+

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥θjθij − θj

∥∥∥∥
∞

(using triangle inequality)

≤
∣∣∣∣1− ‖θj‖∞θij

∣∣∣∣+ 2

∥∥∥∥x∗ − θj
θij

∥∥∥∥
∞

+

∥∥∥∥θjθij − θj

∥∥∥∥
∞

(using reverse triangle inequality)

≤
(
‖θj‖∞
θij

− 1

)
+ 8
√

2ηk +

(
1

θij
− 1

)
‖θj‖∞

≤ 8
√

2ηk + 2

(
1

θij
− 1

)
≤ 8
√

2ηk +
2η

1− η
< 8
√

2ηk + 4η

= 4η(2
√

2k + 1)

40

where the inequality in the fifth line from bottom follows from using (4.33), the inequality
in the fourth line from bottom follows because ‖θj‖∞ ≤ 1, the inequality in the third line
from bottom follows because θij ≥ 1−η, and the inequality in the second line from bottom
follows because η < 1/2.

Lastly we provide an argument for the time complexity claim. Since the rank of P is
k, the column range of P is same as the column range of V where V is an n × k matrix
whose columns contain the eigenvectors of P corresponding to its k nonzero eigenvalues.
This implies that (P) is equivalent to {min eT (V y) subject to V y ≥ 0, (V y)J (i) ≥ 1} which
contains n + 1 constraints and k variables. Hence the result in [55] implies that (P) can
be solved in O(n) time. Moreover, V can be obtained from P in O(n2) time using, for
instance, randomized SVD techniques [34].

Proof of Corollary 4.4.4. Define P := ΘBΘT = Θ̄B̄Θ̄T , and let x∗ be an optimal solution
to (P). From Theorem 4.4.3, we know that there exists a j ∈ [k] such that the distance
between vector x∗/‖x∗‖∞ and Θj is at most 4η(2

√
2k + 1). Similarly, there also exists a

j̄ ∈ [k] such that the distance between vector x∗/‖x∗‖∞ and Θ̄j̄ is at most 4η̄(2
√

2k + 1).

Combining the above two observations with the triangle inequality yields the desired
result.

4.5.2 Some Concentration Properties in the MMSB

In this section, we show concentration properties of some key random variables associated
with random matrices Θ and ΘB. We shall use these observations for our subsequent
proofs, but they may also be of independent interest. Even though we work the equal
parameter Dirichlet distribution, the proof techniques here easily extend to the case with
different Dirichlet parameters.

Define l := σmin(B) and u := σmax(B). Suppose the k parameters of the Dirichlet
distribution are all equal to α. We repeatedly use the facts that for any i ∈ [n], s ∈ [k],

E[θis] =
1

k
(4.34)

and

E[θ2
is] =

α + 1

k(αk + 1)
. (4.35)

Moreover, if s, t ∈ [k] such that s 6= t then

E[θisθit] =
α

k(αk + 1)
. (4.36)

41

Lemma 4.5.8. For any j ∈ [k], we have
9

10

n

k
≤ cj ≤

11

10

n

k
with probability at least

1− 2 exp

(
−n

50k2

)
.

Proof. For any j ∈ [k], cj is the sum of n independent bounded random variables {θij}ni=1.
Indeed each row of Θ is sampled independently and each entry of Θ lies in [0, 1]. Moreover,
using (4.34) we get that E[cj] = n/k. Thus, using Hoeffding’s inequality, we have that for
any z > 0

Pr(|cj − n/k| ≥ z) ≤ 2 exp

(
−2z2

n

)
. (4.37)

Setting z = n/10k in (4.37) yields the desired result.

Corollary 4.5.9. We have cmin/cmax ≥ 9/11 with probability at least 1 − p1, where p1 :=

2k exp

(
−n

50k2

)
.

Proof. Lemma 4.5.8 implies that with probability at least 1− 2k exp

(
−n

50k2

)
, both cmin ≥

9n/10k and cmax ≤ 11n/10k hold.

Lemma 4.5.10. For any ε > 0, ‖ΘB‖ ≤ u

√
2n

k
+ ε‖Θ‖ with probability at least 1 −(

2u

ε
+ 1

)k
exp

(
−2n

k2

)
.

For proving Lemma 4.5.10, we first prove the following statements for set C := {y ∈
Rk : ∃ x ∈ Rk such that Bx = y, ‖x‖ = 1} defined as the image of the unit sphere under
B.

Lemma 4.5.11. If E is an ε-net of C of smallest possible cardinality, then

|E| ≤
(

2u

ε
+ 1

)k
.

Proof. Let E ′ be a maximal ε-separated subset of C. Note that by definition of an ε-
separated subset, for any distinct x,y ∈ E ′, we have ‖x−y‖ > ε. Moreover, the maximality
of E ′ implies that E ′ is also an ε-net of C. Therefore

|E| ≤ |E ′|. (4.38)

42

We also have that the union of |E ′| disjoint balls
⋃

x∈E ′
B(x, ε/2) ⊆ C + B(0, ε/2) ⊆

B(0, u+ ε/2). Therefore

vol

(⋃
x∈E ′
B(x, ε/2)

)
≤ vol(B(0, u+ ε/2)) (4.39)

which implies that |E ′|(ε/2)k ≤ (u + ε/2)k which yields the desired result when combined
with (4.38).

Lemma 4.5.12. Suppose y ∈ C. For any i ∈ [n]:

1. 0 ≤ 〈θi,y〉2 ≤ u2

2.
l2

k(αk + 1)
≤ E[〈θi,y〉2] ≤ u2

k

Proof. Let y = Bx such that ‖x‖ = 1. Then l ≤ ‖y‖ ≤ u.

1. We have

〈θi,y〉2 ≤ ‖θi‖2‖y‖2 (using Cauchy-Schwarz inequality)

≤ u2 (‖θi‖ ≤ 1).

2. We have

E[〈θi,y〉2] = E[θ2
i1y

2
1 + · · ·+ θ2

iky
2
k] + E

 ∑
s,t∈[k]:
s 6=t

θisθitysyt

=
α + 1

k(αk + 1)
‖y‖2 + E

 ∑
s,t∈[k]:
s 6=t

θisθitysyt

 (using (4.35))

=
α + 1

k(αk + 1)
‖y‖2 +

α

k(αk + 1)

∑
s,t∈[k]:
s 6=t

ysyt (using (4.36))

=
1

k(αk + 1)
‖y‖2 +

α

k(αk + 1)
(eTy)2 (re-arranging terms).

43

Now noting the second term on the right hand side above is nonnegative yields the
desired lower bound.

Similarly noting that eTy ≤ u
√
k (using Cauchy-Schwarz inequality) yields the de-

sired upper bound.

Proof of Lemma 4.5.10. We have

‖ΘB‖ = sup
x∈Sk−1

‖ΘBx‖ = sup
y∈C
‖Θy‖. (4.40)

Let E denote an ε-net of C of smallest possible cardinality. Then we have

‖ΘB‖ ≤ sup
y∈E
‖Θy‖+ ε‖Θ‖. (4.41)

Indeed if the supremum defining ‖ΘB‖ on the RHS in (4.40) is attained at ys, and if ye is
a point in E such that ‖ys − ye‖ ≤ ε, then

‖ΘB‖ = ‖Θys‖
= ‖Θye + Θ(ys − ye)‖
≤ ‖Θye‖+ ‖Θ(ys − ye)‖ (using triangle inequality)

≤ sup
y∈E
‖Θy‖+ ε‖Θ‖.

For any y ∈ E , we have

‖Θy‖2 = 〈θ1,y〉2 + · · ·+ 〈θn,y〉2.

Now note that ‖Θy‖2 is the sum of n independent random variables. Indeed using Lemma
4.5.12 we conclude that each of these random variables is bounded and that E[‖Θy‖2] ≤
nu2

k
. Thus, using Hoeffding’s inequality, we have that for any z > 0,

Pr

(
‖Θy‖2 ≥ nu2

k
+ z

)
≤ Pr(‖Θy‖2 ≥ E[‖Θy‖2] + z)

≤ exp

(
−2z2

nu4

)
.

44

Then using the union bound over the ε-net, we obtain that

Pr

(
sup
y∈E
‖Θy‖ ≥

√
nu2

k
+ z

)
≤ |E| exp

(
−2z2

nu4

)
≤
(

2u

ε
+ 1

)k
exp

(
−2z2

nu4

)
(using Lemma 4.5.11)

Setting z = nu2/k in the above, we note that sup
y∈E
‖Θy‖ ≤ u

√
2n

k
with probability at

least 1−
(

2u

ε
+ 1

)k
exp

(
−2n

k2

)
, combining which with (4.41) yields the desired result.

Corollary 4.5.13. ‖Θ‖ ≤ 2

√
2n

k
with probability at least 1− p2, where

p2 := 5k exp

(
−2n

k2

)
.

Proof. Set B = I and ε = 1/2 in Lemma 4.5.10.

Corollary 4.5.14. ‖ΘB‖ ≤ 2u

√
2n

k
with probability at least 1− p2.

Proof. This follows simply from using the inequality ‖ΘB‖ ≤ ‖Θ‖‖B‖ and the upper
bound obtained in Corollary 4.5.13.

Lemma 4.5.15. σk(ΘB) ≥ 1

4

l√
αk + 1

√
2n

k
with probability at least 1− p3, where

p3 := p2 +

(
16u
√
αk + 1

l
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

Proof. We have
σk(ΘB) = inf

x∈Sk−1
‖ΘBx‖ = inf

y∈C
‖Θy‖. (4.42)

Let E denote an ε-net of C of smallest possible cardinality. Then we have

σk(ΘB) ≥ inf
y∈E
‖Θy‖ − ε‖Θ‖. (4.43)

45

Indeed if the infimum defining σk(ΘB) on the RHS in (4.42) is attained at ys, and if ye is
a point in E such that ‖ys − ye‖ ≤ ε, then

σk(ΘB) = ‖Θys‖
= ‖Θye + Θ(ys − ye)‖
≥ |‖Θye‖ − ‖Θ(ys − ye)‖| (using reverse triangle inequality)

≥ ‖Θye‖ − ‖Θ(ys − ye)‖
≥ inf

y∈E
‖Θy‖ − ε‖Θ‖.

For any y ∈ E , we have

‖Θy‖2 = 〈θ1,y〉2 + · · ·+ 〈θn,y〉2.

Now note that ‖Θy‖2 is the sum of n independent bounded random variables. Indeed
using Lemma 4.5.12 we conclude that each of these random variables is bounded and that

E[‖Θy‖2] ≥ nl2

k(αk + 1)
. Thus, using Hoeffding’s inequality, we have that for any z > 0,

Pr

(
‖Θy‖2 ≤ nl2

k(αk + 1)
− z
)
≤ Pr(‖Θy‖2 ≤ E[‖Θy‖2]− z)

≤ exp

(
−2z2

nu4

)
.

Then using the union bound over the ε-net, we obtain that

Pr

(
inf
y∈E
‖Θy‖ ≤

√
nl2

k(αk + 1)
− z

)
≤ |E| exp

(
−2z2

nu4

)
≤
(

2u

ε
+ 1

)k
exp

(
−2z2

nu4

)
(using Lemma 4.5.11)

Setting z =
1

2

nl2

k(αk + 1)
, we note that inf

y∈E
‖Θy‖ ≥

√
1

2

nl2

k(αk + 1)
with probability at

least 1−
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

46

Using (4.43), we get that

σk(ΘB) ≥

√
1

2

nl2

k(αk + 1)
− ε‖Θ‖ (4.44)

with probability at least 1−
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
.

Lastly, using the upper bound on ‖Θ‖ derived in Corollary 4.5.13 in (4.44), we get that

σk(ΘB) ≥ 1

2

l√
αk + 1

√
2n

k
− 2ε

√
2n

k

with probability at least 1−p2−
(

2u

ε
+ 1

)k
exp

(
−nl4

2k2u4(αk + 1)2

)
. Setting ε =

1

8

l√
αk + 1

yields the desired result.

4.5.3 Proof of Main Theorem

In this section, we build the proof of Theorem 4.4.1.

Lemma 4.5.16. Let p, γ ∈ (0, 1). If n >
log(p/k)

log I1−γ(α, (k − 1)α)
, then with probability at

least 1− p, for each j ∈ [k], there exists a row vector rT in Θ such that

‖r− ej‖∞ < γ. (4.45)

(Here Ix(y, z) denotes the regularized incomplete beta function.)

Proof. For any j ∈ [k], define Ej as the event that there exists a row rT in Θ such that

47

‖r− ej‖∞ < γ. Then for any j ∈ [k], we have

Pr(Ec
j) =

∏
i∈[n]

Pr(‖θi − ej‖∞ ≥ γ)

(∵ rows of Θ are independently sampled)

=
∏
i∈[n]

Pr(θij ≤ 1− γ)

(∵ rows of Θ belong to unit simplex)

= [I1−γ(α, (k − 1)α)]n

(Ix(y, z) is the CDF of marginal of Dirichlet distribution)

< p/k.

(by assumption on n)

(4.46)

Therefore

Pr(E1 ∩ · · · ∩ Ek) = 1− Pr(Ec
1 ∪ · · · ∪ Ec

k)

≥ 1−
∑
j∈[k]

Pr(Ec
j) (using the union bound)

> 1− p. (using (4.46))

Proof of Theorem 4.4.1. Using the lower bound assumption on n and Lemma 4.5.16, we
conclude that with probability at least 1 − p, for each j ∈ [k], there exists a row rT in Θ
such that

‖r− ej‖∞ < ε. (4.47)

Recalling the definition of ∆, we note that (4.47) is equivalent to

‖∆‖max < ε. (4.48)

Using Corollary 4.5.14 and Lemma 4.5.15, we conclude that

κ0 ≤ 8κ
√
αk + 1 (4.49)

with probability at least 1− p2 − p3. Therefore (4.49) implies that

min

(
1√
k − 1

,
1

2

)
1

2
√

2κ0(1 + 80κ2
0)
≥ ε1 (using the definition of ε1)

> ε (using the assumption on ε)

> ‖∆‖max (using (4.48))

(4.50)

48

with probability at least 1− p− p2 − p3.

Using (4.50), we note that the assumption of Theorem 4.4.2 is satisfied with probability
at least 1− p− p2 − p3. Therefore the set J returned by Algorithm 2 satisfies

‖ΠΘ(J , :)− I‖max ≤ 40
√

2κ2
0‖∆‖max

< 40
√

2κ2
0ε

(4.51)

with probability at least 1− p− p2 − p3 for some k × k permutation matrix Π.

Now from Corollary 4.5.9, we know that

1

4k

(
cmin

cmax

− 1

2

)
≥ 7

88k
(4.52)

with probability at least 1− p1.

Thus we have

40
√

2κ2
0ε < 40

√
2κ2

0ε2 (using the assumption on ε)

≤ 40
√

2 · 64κ2(αk + 1)ε2 (using (4.49))

=
7

88k
(using the definition of ε2)

≤ 1

4k

(
cmin

cmax

− 1

2

)
(using (4.52))

(4.53)

with probability at least 1−p−p1−p2−p3. Combining (4.51) and (4.53), we conclude that
the assumption of Theorem 4.4.3 is satisfied with probability at least 1− p− p1 − p2 − p3.
Therefore for any j ∈ [k], the vector θ̂j returned by SP+LP satisfies

‖θ̂j − θj‖∞ ≤ 4 · 40
√

2κ2
0ε · (2

√
2k + 1)

≤ 10240
√

2κ2(αk + 1)(2
√

2k + 1)ε (using (4.49))

= O(αk2κ2ε)

with probability at least 1 − p − p1 − p2 − p3. Substituting the expressions for p1, p2 and
p3, the probability 1− p− p1 − p2 − p3 can be expressed as 1− p− c1e

−c2n such that c1, c2

are constants that depend on α, k, κ.

49

4.6 Experiments

In this section, we compare the performance of SP+LP on both synthetic and real-world
graphs with other popular algorithms. In practice, the user has access to the adjacency
matrix, called A, of the observed weighted graph which is only an approximation of P .
Matrix A may even be full-rank, and so for implementation we have to slightly modify
the constraint x = Py in the LP in SP+LP. (Indeed note that if A is full-rank, then the
optimal solution to the LP is eJ (i).) Specifically, we replace that constraint with x = V y
where V is an n × k matrix whose columns contain the eigenvectors of A corresponding
to either its k largest eigenvalues or singular values. The intuition behind this is that we
expect the range of V to approximate the k-dimensional subspace of Rn which is the range
of P . For efficient computation of V , one may employ, for instance, the Lanczos method
or randomized SVD [34].

4.6.1 Synthetic Graphs

We demonstrate the performance of SP+LP on artificial graphs generated according to the
MMSB. In practice, the weighted adjacency matrix available is only approximately equal to
P . Therefore for our experiments, we compute a weighted adjacency matrix by averaging
s number of 0, 1-adjacency matrices, each of which is sampled according to P . That is,
entry ij of a sampled adjacency matrix is a Bernoulli random variable with parameter Pij.
The diagonal entries in these adjacency matrices are all set to 1.

Evaluation Metrics: We evaluate SP+LP in terms of the entrywise error in the pre-
dicted columns of Θ and the wall-clock running time (Figure 4.1). The entrywise error is de-
fined as min

Π
‖Θ̂−ΘΠ‖max over all k×k permutation matrices Π, where Θ̂ :=

[
θ̂1 . . . θ̂k

]
contains as columns the predicted community characteristic vectors. For each plot, each
point is determined by averaging the results over 10 samples and the error bars represent
one standard deviation.

We compare our results with the GeoNMF algorithm which has been shown in [51]
to computationally outperform popular methods such as Stochastic Variational Inference
(SVI) by [33], a Bayesian variant of SNMF by [64], the OCCAM algorithm by [85], and the
SAAC algorithm by [41]. We use the implementation of GeoNMF that is made available by
the authors without any modification and also the provided default values for the tuning
parameters.

Parameter Settings: Unless otherwise stated, the default parameter settings are
n = 5000, k = 3, α = 0.5, s =

√
n. Figures 4.1(d) and 4.1(f) show the performance of

50

the SP+LP for community interaction matrices B with higher off-diagonal elements. More
specifically, for those plots, we set B = (1 − δ) · I + δ · eeT . For Figures 4.1(a), 4.1(b),
4.1(c), 4.1(e), we set B = 0.5 · I + 0.5 · R where R is a k × k diagonal matrix whose each
diagonal entry is generated from a uniform distribution over [0, 1]. One reason for choosing
these parameter settings is to have a fair comparison. Indeed GeoNMF has already been
shown to perform well over these parameter choices.

Figures 4.1(a), 4.1(b), 4.1(c), 4.1(d) demonstrate that SP+LP outperforms GeoNMF in
terms of the entrywise error in the recovered MMSB communities with increasing n, k, α
and δ. In particular, this implies that, compared to GeoNMF, SP+LP can handle larger
graphs, more number of communities, more overlap among the communities, and a more
general community interaction matrix B, while involving a lesser number of tuning param-
eters. However, Figure 4.1(e) shows that SP+LP is slower compared to GeoNMF and that
opens up possibilities for future work to expedite SP+LP. On the other hand, Figure 4.1(f)
shows that for a more general B, the time performances of GeoNMF and SP+LP are quite
comparable.

4.6.2 Real-world Graphs

For practical application of SP+LP, we consider a well-studied problem in computational
biology: that of clustering functionally similar proteins together based on protein-protein
interaction (PPI) observations (see [58]). In the language of our problem setup, each node
in the weighted graph represents a protein, and the weights represent the reliability with
which any two proteins interact. The communities or clusters of similar proteins are called
protein complexes in biology literature.

It is important to highlight that the PPI networks typically contain a large number of
communities compared to the number of nodes and therefore our theory does not necessarily
guarantee that SP+LP will succeed with high probability. Despite that, we observe that
on some datasets, SP+LP matches or even outperforms commonly-used protein complex
detection heuristics. Additionally, protein complex detection is a very well-studied problem
in biology and there exist a vast number of heuristics which are tailored for this specific
problem. For instance, recent works of [82], [83], and [84] incorporate existing ground
truth knowledge of protein complexes in the algorithm to obtain a supervised-learning-
based approach. Our goal in this paper is not to design a fine-tuned method specifically
for protein complex detection. We are focused on studying the general purpose MMSB
with minimal assumptions and demonstrating its applicability to a real-world problem
of immense consequence. The connection of MMSB with protein complex detection was

51

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Performance of SP+LP on synthetic MMSB weighted graphs compared with
GeoNMF.

52

also made in [3]; however, their theoretical and experimental results are quite preliminary
compared to ours.

Datasets: We consider PPI datasets provided by [45] and [25], which are very popular
among the biological community for the protein complex detection problem. The former
contains two weighted graph datasets, which are referred to as Krogan core (n = 2708)
and Krogan extended (n = 3672). The weighted graph dataset in the latter is referred to
as Collins (n = 1622). The ground truth validation sets used are two standard repositories
of protein complexes, which also appear to be the benchmarks in the biological commu-
nity. These repositories are Munich Information Centre for Protein Sequence (MIPS) and
Saccharomyces Genome Database (SGD). These repositories are manually curated and
therefore are independent of the PPI datasets. We emphasize that protein complex de-
tection is an ongoing research effort and that these repositories may not necessarily be
considered complete as yet. This implies that SP+LP may find candidate complexes that
are not known thus far but nonetheless do exist, thereby acting as a tool for biologists to
make educated guesses.

Evaluation Metrics: The success of a protein complex detection algorithm is typically
measured via a composite score which is the sum of three quantities: maximum match-
ing ratio (MMR), fraction of detected complexes (frac), and geometric accuracy (GA).
Intuitively, MMR captures how well the complexes in the validation set are predicted by
computing a maximum matching in a bipartite graph in which the two vertex sets repre-
sent predicted and true complexes, and the weight of an edge denotes a similarity score
between the predicted complex and the true complex on its endpoints, frac captures the
fraction of true complexes for which a sufficiently good predicted complex exists, and GA is
the geometric mean of clustering-wise sensitivity and positive predictive value. The reader
may refer to [58] for an excellent in-depth discussion about these quantities. A higher score
corresponds to better performance and the highest possible scores for MMR and frac are
one each.

For the parameter k, we try different plausible values. The validation sets have binary
memberships for the protein complexes, i.e. each protein is either present in a complex
or it is not. The memberships determined via SP+LP, on the other hand, are fractional.
However, the former can be easily binarized by rounding all entries that are at least 0.5
to 1 and rounding the remaining entries to 0. Additionally, we have performed another
post-processing step after binarizing the result of SP+LP which appears quite commonly
in the domain literature. Any pair of complexes that overlap significantly (as determined
by a user-defined threshold) are merged. Tables 4.1 and 4.2 show the performance of
SP+LP for protein complex detection, and we compare our results with one of the most
popular problem-specific heuristics called ClusterONE. We highlight that, unlike MMR

53

Table 4.1: Comparision of SP+LP with ClusterONE on Krogan core, Krogan extended, and
Gavin datasets using SGD repository as validation set.

Validation
set

Metric
Krogan core Krogan extended Collins

SP+LP ClusterONE SP+LP ClusterONE SP+LP ClusterONE

SGD

MMR 0.389 0.418 0.428 0.364 0.372 0.532
frac 0.598 0.667 0.632 0.594 0.557 0.828
GA 0.525 0.663 0.542 0.628 0.504 0.731

Score 1.512 1.748 1.602 1.586 1.433 2.091

Table 4.2: Comparision of SP+LP with ClusterONE on Krogan core, Krogan extended, and
Gavin datasets using MIPS repository as validation set.

Validation
set

Metric
Krogan core Krogan extended Collins

SP+LP ClusterONE SP+LP ClusterONE SP+LP ClusterONE

MIPS

MMR 0.285 0.317 0.319 0.282 0.275 0.418
frac 0.537 0.669 0.576 0.573 0.547 0.782
GA 0.331 0.438 0.336 0.422 0.397 0.555

Score 1.153 1.424 1.231 1.277 1.219 1.755

and frac, GA penalizes predictions which contain complexes in addition to the true com-
plexes. Therefore such a metric is not suitable for any algorithm which might predict new
potentially valid complexes that do not yet exist in the validation sets.

4.7 Conclusions

In this chapter, we show how to detect potentially overlapping communities in a setup
that is more plausible in real-world applications, i.e. in weighted graphs without assuming
the presence of pure nodes. Our method uses linear programming, which is a relatively
principled approach since the literature on the theory of convex optimization is quite rich.
We show that our method performs excellently on synthetic datasets. Additionally, we also
show that our method succeeds in solving an important problem in computational biology
without any major domain-specific modifications to the algorithm.

54

Chapter 5

Robust Correlation Clustering with
Asymmetric Noise

5.1 Problem Introduction

Suppose we have n objects and for any two objects i, j, a similarity score pij ∈ [0, 1], and we
wish to determine a clustering of the objects such that objects in the same cluster are sim-
ilar and objects in different clusters are dissimilar. As discussed in Chapter 3, Correlation
Clustering, first introduced by [12], formulates this problem as an optimization problem
which does not require a priori knowledge about the number of clusters in the graph. The
idea in Correlation Clustering is to first form a weighted graph on n nodes where the weight
of edge ij is obtained from the similarity score using the transformation log(pij/(1− pij)),
and then to find a partition of the nodes which maximizes agreements, i.e. the sum of
positive weights whose endpoints are put in the same cluster and the absolute values of
negative weights whose endpoints are put in different clusters, (or, equivalently, minimizes
disagreements, i.e. the sum of positive weights whose endpoints are put in different clusters
and the absolute values of negative weights whose endpoints are put in the same cluster).
In general, the aforementioned optimization problem is NP-hard. Interestingly, the ob-
jective functions for disagreement minimization and agreement maximization differ by a
constant, and as a result, an approximation algorithm provides different approximation
ratio guarantees for the two problems; however, for the work presented in this chapter,
the two problems are equivalent. While there has been considerable interest in designing
approximation algorithms, for example [12, 27, 50, 54, 75], there have been very few works
focusing on average case analysis or recovery of a ground truth clustering, as discussed

55

in the following literature review. This style of analysis has recently gained popularity
in tackling hard machine learning problems such as low-rank matrix completion [20, 69],
dictionary learning [7, 74], and overlapping community detection [5, 49, 51], to name a
few. In this chapter, we introduce a new graph generative model based on generating fea-
ture vectors/embeddings for the nodes in the graph, and propose a tuning-parameter-free
semidefinite-programming (SDP)-based algorithm to recover nodes with sufficiently strong
cluster membership.

Among existing provable methods, [40] propose a fully-random model which generates
signed graphs, and show that the model ground truth clustering is close to the optimal
solution of the combinatorial optimization problem of maximizing agreements. However,
it is not shown how to provably recover the model ground truth efficiently.

In [54], the authors propose fully- and semi-random models, i.e. in which there is a
probabilistic component and a deterministic adversarial component, which generate signed
graphs. Their fully-random model can be interpreted as a special case of the planted
partition model in which the noise probabilities 1− p and q are equal, and the lack of an
edge is treated as an edge with weight −1. For graph instances generated by the fully-
random model, they propose a recovery algorithm which uses a modification of the SDP
formulation proposed in [75] followed by a novel randomized rounding procedure. However,
their proposed SDP formulation suffers from the limitation that it has Θ(n3) (where n is the
number of nodes in the graph) constraints corresponding to triangle inequalities, making
it almost unusable in practice for graphs with as low as 5000 nodes.

In [22], the authors consider the planted partition model with the added difficulty that
some entries of the adjacency matrix are not known. The input graphs are signed as the
lack of an edge is treated as an edge with weight −1, and their algorithm uses a matrix-
splitting SDP, originally introduced to express a given matrix as the sum of a sparse and
a low-rank matrix. They provide conditions under which the SDP solution is integral
and therefore their algorithm requires no rounding. They also argue that the recovered
model ground truth clustering coincides with the optimal solution of the combinatorial
optimization problem of minimizing disagreements.

In [50], the authors propose a semi-random model which generates signed graphs. Their
algorithm also uses the SDP proposed in [75] followed by a novel rounding procedure. Their
recovery result states that if the input graph is generated from their semi-random model
and additionally also satisfies some deterministic structural properties, then with constant
probability at most a fraction of the nodes are mis-clustered.

56

5.2 Problem Formulation

5.2.1 Node Features Model (NFM)

We begin by defining the generative model, called the Node Features Model (NFM), for
which we formulate the Correlation Clustering recovery problem.

Definition 5.1 (Node Features Model (NFM)). Let n and k be positive integers denoting
the number of nodes and the number of clusters respectively. Let the nodes and the clusters
be labelled using the sets [n] and [k] respectively. For each node i ∈ [n], draw independently
a feature vector θi ∈ Rk from a probability distribution on the unit simplex. Generate a
weighted random graph G on the n nodes with weight matrix W defined as

Wii′ =

log

(
θi
T
θi
′

1− θiTθi′

)
if i 6= i′

0 otherwise.

For each j ∈ [k], define cluster Vj as

Vj := {i ∈ [n] : θij > 0.5}

and define the set of stray nodes Vstray as

Vstray := {i ∈ [n] : max(θi) ≤ 0.5}.

The intuition behind NFM is that first we generate a feature vector (or embedding)
for each node in the graph, then for any pair i, i′ ∈ [n] of distinct nodes, we interpret

θi
T
θi
′

as a similarity score, i.e. the probability with which the two nodes belong to the
same cluster, lastly we apply a logarithmic transformation on the similarity score which
produces a positive weight if the score is greater than 0.5 and a negative weight if the
score is less than 0.5. The transformation h(x) = log(x/(1 − x)) which maps the set
(0, 1) to arbitrary real values is called the logit or log-odds function in literature, and
its inverse h−1(x) = 1/(1 + e−x) is the so-called logistic function. These functions are
commonly used in regression problems in which the output variable is interpreted as a
probability and is therefore expected to belong to the set (0, 1). For instance, a multivariate,
vector-valued generalization of the logistic function, called the softmax function, is widely
used in classification problems to transform arbitrary real-valued vectors into probabilities
corresponding to class memberships.

We begin by asking the following question for the NFM described by (5.1):

57

Given W , how can we efficiently recover the sets V1, . . . , Vk using no prior knowledge of
k?

Using a combination of theoretical analyses and computational experiments, we make
progress towards answering the question posed above by proposing two SDP-based recovery
algorithms, called 1-diag and `2-norm-diag. The first recovery algorithm, 1-diag, is
studied in Section 5.3 and is based on the SDP formulation of Swamy [75] whose variants
have also been used in [50, 54]. Then we demonstrate a limitation of the aforementioned
algorithm to handle certain noisy instances. Consequently, we propose and analyze the
novel `2-norm-diag recovery algorithm in Section 5.4. Our theoretical analysis is not
comprehensive and the deficiencies are taken care of using evidence from computational
experiments. Before proceeding to the material on the two recovery algorithms, in the
subsequent sections, we discuss structural properties of the NFM relevant to the recovery
problem we are interested in solving.

5.2.2 Nature of Noise in the NFM

We discuss the nature of noise in our model. Define the cluster set

Cj := {x ∈ ∆k−1 : xj > 0.5}

for each j ∈ [k], and the central set

C := {x ∈ ∆k−1 : max(x) ≤ 0.5}.

Figure 5.1 shows these sets for k = 3.

Note that in the light of the above definitions, we may equivalently redefine the sets
Vj, for each j ∈ [k], and Vstray in Definition 5.1 as

Vj := {i ∈ [n] : θi ∈ Cj}
Vstray := {i ∈ [n] : θi ∈ C}.

Observe that for any x ∈ C and y ∈ ∆k−1, xTy ≤ 0.5. This suggests that in the
weighted graphs generated by the NFM, the stray nodes form negative edges with all other
nodes in the graph, hence justifying their name. Due to this property, such nodes are
quite benign with regards to mathematical analysis as any reasonable clustering algorithm,
including the ones proposed in this chapter, ought to be able to detect them exactly. For any

58

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

C1 C2

C3

C

Figure 5.1: Central set C and cluster sets C1, C2, C3 for the unit simplex in R3.

x ∈ Cj, y ∈ Cj′ , for some distinct j, j′ ∈ [k], we have that xTy < 0.5. This suggests that
in the weighted graphs generated by the NFM, the clusters are well-separated in the sense
that each pair of nodes lying in distinct clusters shares a negative weight edge. However,
if both x,y ∈ Cj, for some j ∈ [k], then xTy may or may not be larger than 0.5 and this
is what introduces noise in our model. In other words, in the graphs generated by the
NFM, it is possible for two nodes lying in the same cluster to share a negative weight edge.
Therefore NFM models only one-sided noise. This behavior is well-motivated as real-world
graphs do not always have a symmetric two-sided noise. For instance, consider a social
network of researchers from the academic communities of mathematics, physics, history,
and biology. Suppose the edge weights represent pair-wise similarities between any two
researchers determined using the number of co-authored research articles. In this setting,
we might have occasional collaborations amongst researchers of different communities;
however, we almost certainly cannot expect all researchers in the same community to have
collaborated with each other. In the language of weighted graphs, if the different academic
communities represent the clusters in the graph, then we should expect a significantly high
number of within-cluster negative edges compared to between-cluster positive edges. Due
to such practical motivation, Correlation Clustering with asymmetric noise has also been
studied in [38, 39].

5.2.3 Feature Space for a Cluster in the NFM

As briefly mentioned in Section 5.2.2, it is possible for two nodes belonging in the same
cluster to share a negative edge. It is instructive to understand further the nature of such
negative edges. For each j ∈ [k], define a partition of the set Cj into strong and fringe sets

59

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

C1 C2

C3

C

Figure 5.2: Central set C and the partition of corner sets C1, C2, C3 into strong and fringe
sets, shown using dotted lines, for the unit simplex in R3; for each corner set, the partition
set containing a simplex vertex denotes the strong set.

as

Cstrong
j := {x ∈ ∆k−1 : xj ≥ 1/

√
2}

Cfringe
j := {x ∈ ∆k−1 : 0.5 ≤ xj < 1/

√
2}.

Figure 5.2 shows these sets for k = 3.

Consequently, for each j ∈ [k], we partition the cluster nodes Vj into strong and fringe
nodes as

V strong
j := {i ∈ [n] : θi ∈ Cstrong

j }
V fringe
j := {i ∈ [n] : θi ∈ Cfringe

j }.

These definitions are motivated by the intuition that the magnitude of the largest entry
in the feature vector of a node quantifies the strength of cluster membership for that node.
Moreover, the cut-off of 1/

√
2 is chosen by noticing that any two points in the strong set

of the same cluster have an inner product of at least 0.5. In other words, any two nodes
which are strong for the same cluster share a non-negative edge. Therefore if the graph
contains only strong nodes for each cluster, then it has no noise in the form of a negative
within-cluster edge. Fringe nodes, however, may potentially share some negative edges
among themselves and with other nodes in the same cluster because the memberships of
such nodes in their respective clusters are not sufficiently strong. Therefore we may think
that it is difficult to cluster all the fringe nodes correctly.

60

5.2.4 Relation to the MMSB

The problem setup developed using the NFM bears some resemblance with the weighted
version of MMSB considered in Chapter 4. In particular, the graphs obtained by the NFM
can be obtained by setting the community interaction matrix B to be the identity matrix
in the weighted MMSB. In terms of recovery, because we are modeling Correlation Clus-
tering using the NFM, our goal is to recover only the cluster labels without using an a
priori estimate of the number of clusters k. The weighted MMSB models the overlapping
community detection problem in which the goal was to recover the fractional member-
ships of each node in the different communities and we were allowed to use a parameter
corresponding to k in the recovery algorithm.

5.3 1-diag Recovery Algorithm

We first present and analyze the 1-diag recovery algorithm which uses the SDP relaxation
(P-1D) first introduced in [75] to perform Correlation Clustering. For any node set V , we
define the cluster matrix for some partition of V to be a |V |× |V |, 0/1 matrix whose entry
ii′ is 1 if and only if nodes i and i′ belong to the same partition set.

Algorithm 3 1-diag

Input: Graph G = (V,W) generated according to NFM
Output: Symmetric matrix Xc of the same dimension as W whose each entry is in {0, 1}
1: X∗ = arg max 〈W,X〉 s.t. X ≥ 0, X � 0, Xii = 1 ∀i ∈ [n]
2: Xc = Round(X∗, 0.5)
3: if Xc is not the cluster matrix for some partition of V then
4: Xc = 0
5: end if

Note that the output of 1-diag can possibly be the zero matrix and therefore does not
define a clustering for the input graph. However, the theory developed in Sections 5.3.1
and 5.3.2 provides conditions on the input graph sufficient for the output of 1-diag to
induce a clustering. We emphasize that since Correlation Clustering formulations do not
require a prior estimate of the number of clusters in the graph, 1-diag is designed to be
free of a tuning parameter dependent on k.

61

Algorithm 4 Round

Input: Matrix X, scalar t
Output: 0/1 matrix Xr of the same dimension as X

1: for i, j ∈ [n] do

2: Xr
ij =

{
1 if Xij > t

0 if Xij ≤ t

3: end for

max
X

〈W,X〉

s.t. X ≥ 0

X � 0

Xii = 1 ∀i ∈ [n].

(P-1D)

5.3.1 Warmup

We begin by analyzing the scenarios in which the the SDP (P-1D) has a 0/1 solution.
The following theorem provides a deterministic sufficient condition on the graph instances
for (P-1D) to have a 0/1 solution. Subsequently, we discuss the deterministic sufficient
condition in the context of the NFM.

Theorem 5.3.1. Let G = (V,W) be a graph generated using the NFM. Suppose that for
each j ∈ [k], L(G[Vj]) � 0. Let X∗ denote the cluster matrix corresponding to the partition
{V1, . . . , Vk, {v}v∈Vstray}. Then X∗ is an optimal solution of (P-1D).

Recall that G[Vj] denotes the subgraph of G induced by the node set Vj and L(G[Vj])
denotes the Laplacian matrix of graph G[Vj]. The above theorem states that exact recov-
ery of true clusters is achievable using (P-1D) provided each cluster Laplacian is positive
semidefinite. To connect this result with the NFM, we may quantify the probability such
that each cluster Laplacian, in a graph instance generated by the NFM, is positive semidef-
inite. Note that if all edges in a cluster are non-negative, then its Laplacian is necessarily
positive semidefinite. However, since the NFM introduces noise in the form of negative
within-cluster edges, the cluster Laplacians may not necessarily be positive semidefinite.
Table 5.1 shows some computational experiments in this regard. Each row in the table
corresponds to 10 cluster instances generated using the NFM in which the simplex distri-
bution is chosen to be the Dirichlet distribution. We fix k = 3 and the Dirichlet parameter

62

Table 5.1: Verification of positive semidefiniteness of cluster Laplacians.

Cluster size range PSD success (/10) Mean smallest Laplacian eigenvalue

6− 10 4 −1.31
11− 15 4 −1.31
16− 20 0 −3.60
21− 25 1 −2.82
26− 30 1 −4.26
31− 35 0 −5.96
36− 40 0 −6.35

α = 0.3e. The first column denotes the range in which the cluster size belongs, and the
second column counts the PSD success, i.e. number of cluster instances, out of 10, which
have a positive semidefinite Laplacian. Moreover, the third column contains the mean
smallest eigenvalue of the Laplacian.

These computational results suggests a weakness of Theorem 5.3.1 in the sense that
the determinstic condition required for exact recovery seems to hold with a probability
converging to 0 for the NFM with the Dirichlet distribution as the size of input graph
grows. Morever, the decreasing smallest eigenvalue of the cluster Laplacians may also be
interpreted as an increasing amount of noise in the clusters which motivates the following
conjecture.

Conjecture 5.3.2. Let G be a graph generated according to NFM in which the simplex
distribution is chosen to be the Dirichlet distribution with constant parameter. No algorithm
can exactly recover the true clusters in G with probability not converging to 0 as n→∞.

Conjecture 5.3.2 highlights information-theoretic limitations for exactly recovering the
ground truth clusters, see [10, 11, 16, 18, 81] for instance, for results on information-
theoretic limits for similar or related problems. The above observations also lead us to
reformulate the central question posed in Section 5.2.1 as follows.

Given W , how can we efficiently recover exactly k disjoint node sets, such that each node
set contains exactly one of V strong

1 , . . . , V strong
k , using no prior knowledge of k?

We may interpret this reformulation as: instead of attempting to exactly recover the
true clusters, we focus on exactly recovering the strong nodes, possibly in the presence

63

of fringe nodes, which introduce noise in the form of negative within-cluster edges. The
usage of the word “contains” in the above question indicates that recovery of any fringe
node for a cluster is not necessarily intended but may happen. This perspective on robust
Correlation Clustering, which involves clustering essentially only a subgraph of the input
graph, is similar to that in [44], which provides an approximation algorithm for a gener-
alized Correlation Clustering problem wherein the input graph is corrupted with a given
number of noisy nodes which must be discarded before performing clustering.

To answer the reformulated question above, we adopt a two-step algorithm analysis
approach described as follows. Let G be a graph generated by the NFM and let A be a
cluster recovery algorithm of interest. For each j ∈ [k], let V ′j be the union of strong nodes
and possibly some fringe nodes for cluster j, such that we expect A to successfully recover
node sets V ′1 , . . . , V

′
k with a non-zero probability as the number of nodes n→∞. In other

words, A is likely to fail on the sets Vj \V ′j for each j ∈ [k]. We may formalize the behavior
of A using the following two steps.

1. For each j ∈ [k], perturb the features of the node set Vj\V ′j to the central set to obtain

the stray node set V stray
j , and call the resulting graph G′. Prescribe deterministic

conditions C ′ on node sets V ′j , for each j ∈ [k], which ensure their exact recoverability
from G′ by A.

2. For each j ∈ [k], re-perturb the features of the node set V stray
j so as to obtain the

node set Vj \ V ′j , which we may interpret as noisy nodes, i.e. we re-obtain graph
G from G′. Prescribe deterministic conditions C under which A is robust to the
presence of node sets Vj \ V ′j , for each j ∈ [k]. The desired robustness properties are
established by applying perturbation arguments to the analysis of A on G′ achieved
in the previous step.

In terms of probability quantification, we must also argue that for a graph G generated
by the NFM, the deterministic conditions required for provably robust recovery hold with
probability not converging to 0 as n→∞.

5.3.2 Theoretical Guarantees

Using Theorem 5.3.1, we conclude that if each cluster Laplacian is positive semidefinite,
then 1-diag achieves exact recovery. Adopting the two-step approach outlined in the
previous section, we are now interested in the following two questions:

64

• What is the probability that, for each cluster, the subgraph induced by the union of
strong nodes and possibly some fringe nodes has a positive semidefinite Laplacian?

• Is the 1-diag recovery algorithm robust to the presence of noisy nodes, i.e. fringe
nodes that are close to being stray nodes?

In this section, we address the first question above, and in Section 5.3.4, we address the
second question. Observe that if we restrict our attention to the cluster subgraph induced
by merely the strong nodes, then with probability 1, the Laplacian is positive semidefinite
because each edge has a non-negative weight. However, we are interested in extending this
observation to a cluster subgraph induced by strong nodes and some fringe nodes which
also possibly contains negative edges. (Based on the results in Table 5.1, we cannot expect
to include all fringe nodes.) For the NFM, directly quantifying the probability of Laplacian
positive semidefiniteness for a cluster subgraph comprised of strong nodes and some fringe
nodes appears a difficult task. Therefore in the following, Theorems 5.3.3 and 5.3.4 provide
combinatorial sufficient conditions for a graph Laplacian to be positive semidefinite.

Theorem 5.3.3. Let G = (V,W) be a signed graph. Suppose for each negative edge ii′

where i, i′ ∈ [n], there exists a set of m disjoint two-edge ii′-paths {P ii′

l }l∈[m] of positive
weights such that

−Wii′ ≤
∑
l∈[m]

1

2
× harmonic mean of the two weights on P ii′

l

and the two-edge paths are disjoint across all negative edges, then L(G) � 0.

The intuition behind the proof of Theorem 5.3.3 is to express the graph Laplacian as
the sum of multiple graph Laplacians (corresponding to subgraphs of G), and then argue
for the positive semidefiniteness of each summand Laplacian. Considering subgraphs in
this way makes it easier to analyze negative edges; in particular a negative edge ii′ is
included in a subgraph which also contains an adequate number of positive ii′-paths so as
to compensate the contribution of the edge ii′ to the Laplacian. This idea is inspired by
the support-graph technique used to design preconditioners for conjugate gradient [15].

Theorem 5.3.3 provides a sufficient condition to ensure Laplacian positive semidefinite-
ness, however, it is seemingly weak as described by the following example.

Example 5.1. Generate a graph on n nodes using the NFM with the probability distri-
bution over the unit simplex fixed as the Dirichlet distribution. Suppose cluster j of the
graph contains fj fringe nodes. Consider a case in which a constant fraction of all pairs

65

of the fj fringe nodes share a negative edge each. Then to use the sufficient condition in
Theorem 5.3.3 to ensure positive semidefiniteness of the Laplacian of cluster j, we require
Ω(f 2

j) strong nodes for that cluster. In other words, if the cluster contains nj nodes, then
Theorem 5.3.3 allows for only O(

√
nj) fringe nodes. However letting p be the probability

of a feature vector lying in the fringe set for cluster j, we note that E[fj] = np. More-
over, using Hoeffding’s inequality, we have that fj ∈ [np/2, 3np/2] with probability at least
1 − 2 exp(−np2/2). That is, fj = Θ(n), and consequently fj = Ω(nj), with probability
converging to 1 as n → ∞. This suggests a potential weakness of the sufficient condition
presented in Theorem 5.3.3 for establishing positive semidefiniteness of cluster Laplacians.

The above shortcoming is addressed in the following theorem which provides a different
combinatorial condition to ensure Laplacian positive semidefiniteness.

Theorem 5.3.4. Let G = (V,W) be a signed graph. Let U ⊆ V contain all nodes of G
adjacent to a negative edge. That is, U := {v ∈ V : Wvw < 0 for some w ∈ V }. If there
exists S ⊆ V \ U such that for each u ∈ U and s ∈ S, we have

|S|Wus ≥ −2

 ∑
u′∈U :
Wuu′<0

Wuu′

 (5.1)

then L(G) � 0.

We revisit Example 5.1 in the light of Theorem 5.3.4. If we assume that all edges
in cluster j other than the ones among the fj fringe nodes have a non-negative weight,
and that the positive and negative weight magnitudes are of the same order, then to
ensure positive semidefiniteness of the Laplacian of cluster j using the sufficient condition
obtained in Theorem 5.3.4, it suffices to have fj = Θ(nj). However, this example should
not be interpreted to imply that Theorem 5.3.4 is a strengthening of Theorem 5.3.3. For
example, if we have a cluster in which each node is adjacent to a negative edge, Theorem
5.3.3 may still be used to ensure positive semidefiniteness of the cluster Laplacian, but
Theorem 5.3.4 does not apply due to the absence of a set S. But for the purpose of
analyzing a generative model such as the NFM, Theorem 5.3.4 appears to be a better tool
because of its tolerance to a number of fringe nodes that is linear in the size of the cluster,
and because of the presence of strong nodes in the NFM. This is further corroborated by
computational results shown in Table 5.2. Each row in the table corresponds to 10 cluster
instances generated using the NFM in which the simplex distribution is chosen to be the
Dirichlet distribution. We fix k = 3 and the Dirichlet parameter α = 0.3e. The first

66

Table 5.2: Verification of sufficient condition (5.1) for Laplacian positive semidefiniteness.

Cluster size range Combinatorial condition success (/10)

6− 10 9
11− 15 9
16− 20 7
21− 25 9
26− 30 9
31− 35 8
36− 40 9

column denotes the range corresponding to the size of the subgraph induced by strong
nodes and fringe nodes whose feature vectors have largest entry at least 0.6; the cut-off
of 0.6 is based on manual parameter search for the given setting of k and α. The second
column counts the combinatorial condition success, i.e. number of instances, out of 10, for
which the subgraph satisfies the combinatorial condition (5.1) in Theorem 5.3.4.

These computational results suggest that the probability with which the cluster sub-
graphs consisting of nodes whose feature vectors have largest entry at least 0.6 have a
positive semidefinite Laplacian does not apparently converge to 0 as n → ∞, and also
motivate the following conjecture.

Conjecture 5.3.5. Let G = (V,W) be a graph generated using the NFM in which the
simplex distribution is chosen to be the Dirichlet distribution with constant parameter α.
Then there exists a scalar t(k,α) ∈ (0.5, 1/

√
2) such that for each j ∈ [k], with probability

not converging to 0 as n→∞, G[V ′j] satisfies the hypothesis of Theorem 5.3.4 where

V ′j := {i ∈ [n] : θij ≥ t(k,α)}.

5.3.3 Proofs

In this section, we include proofs of Theorems 5.3.1, 5.3.3, and 5.3.4 stated in Section 5.3.2.

Proof of Theorem 5.3.1. Our analysis uses SDP duality and therefore note that the dual

67

of (P-1D) is
min

(Y,Z,y)
eTy

s.t. Y ≥ 0

Z � 0

W + Y + Z = Diag(y).

(D-1D)

As mentioned in the theorem statement, X∗ is the cluster matrix corresponding to the
partition {V1, . . . , Vk, {v}v∈Vstray}.

Both optimization problems (P-1D) and (D-1D) have strictly feasible solutions. For
instance, X ′ := 0.5I + 0.5E is a positive, positive definite matrix which is feasible for
(P-1D). Similarly, Y ′ := E, Z ′ := (‖W + E‖ + ε)I − (W + E) and y′ := (‖W + E‖ + ε)e
gives a strictly feasible solution (Y ′, Z ′,y′) for (D-1D) for any ε > 0. Therefore using the
Karush-Kuhn-Tucker (KKT) optimality conditions, we observe that X∗ ∈ Sn is an optimal
solution for (P-1D) if and only if X∗ is feasible for (P-1D) and there exists a feasible
solution of (D-1D), (Y ∗, Z∗,y∗) such that:

• X∗ijY
∗
ij = 0,∀i, j ∈ [n]

• 〈X∗, Z∗〉 = 0.

X∗ has non-negative entries with each diagonal entry being equal to one. Additionally,
up to a permutation of its rows and columns, it is a block diagonal matrix in which each
non-zero diagonal block is the matrix of all ones. Therefore X∗ is feasible for (P-1D), and
in the rest of the proof, we explicitly construct (Y ∗, Z∗,y∗).

For each j ∈ [k], we set

Y ∗(Vj, Vj) = 0

Z∗(Vj, Vj) = L(G[Vj])

y∗(Vj) = W (Vj, Vj)e.

For each distinct j, j′ ∈ [k], we set

Y ∗(Vj, Vj′) = −W (Vj, Vj′)

Z∗(Vj, Vj′) = 0.

68

For each stray node v ∈ Vstray, we set

Y ∗(v, :) = −W (v, :) (and Y ∗(:, v) = −W (:, v))

Z∗(v, :) = 0 (and Z∗(:, v) = 0)

y∗(v) = 0.

Because each pair of nodes lying in distinct clusters shares a negative edge and because
each stray node shares a negative edge with every other node in the graph, we have that
Y ∗ ≥ 0. Similarly, because L(G[Vj]) � 0 for each j ∈ [k], we have that Z∗ � 0.

Matrices X∗ and Y ∗ have disjoint supports by construction, and therefore X∗ijY
∗
ij = 0

for each i, j ∈ [n]. Moreover

〈X∗, Z∗〉 =
∑
j∈[k]

〈X∗(Vj, Vj), Z∗(Vj, Vj)〉

=
∑
j∈[k]

〈L(G[Vj]), E〉

= 0

where the last line uses the fact that each row of a Laplacian matrix sums to zero.

Lastly, we show that the equation W + Y ∗ + Z∗ = Diag(y∗) is satisfied. For each
j ∈ [k], we have

W (Vj, Vj) + Y ∗(Vj, Vj) + Z∗(Vj, Vj) = W (Vj, Vj) + L(G[Vj])

(using the definitions of Y ∗, Z∗)

= Diag(y∗(Vj)).

(using the definition of y∗)

For each distinct j, j′ ∈ [k], we have

W (Vj, Vj′) + Y ∗(Vj, Vj′) + Z∗(Vj, Vj′) = 0

using the definitions of Y ∗, Z∗. Similarly, for each stray node v, we have

W (v, :) + Y ∗(v, :) + Z∗(v, :) = 0

W (:, v) + Y ∗(:, v) + Z∗(:, v) = 0

using the definitions of Y ∗, Z∗.

69

i i′

i1 i2 im

Figure 5.3: Subgraph of G containing negative edge ii′ and m dijsoint two-edge ii′-paths
of positive weights.

Now we provide proofs of Theorems 5.3.3 and 5.3.4 which provide combinatorial suffi-
cient conditions for Laplacian positive semidefiniteness.

Proof of Theorem 5.3.3. Pick any negative edge ii′ in G, and let i− i1 − i′, . . . , i− im − i′
denote m disjoint two-edge ii′-paths of positive weights. Consider the subgraph of G
containing edge ii′ and these m disjoint paths as shown in Figure 5.3.

The contribution of this subgraph to the Laplacian of G is the matrix, padded appro-
priately with zeros,

Wii′ +
∑
l∈[m]

Wiil −Wii′ −Wii1 −Wii2 . . . −Wiim

−Wii′ Wii′ +
∑
l∈[m]

Wi′il −Wi′i1 −Wi′i2 . . . −Wi′im

−Wii1 −Wi′i1 Wii1 +Wi′i1 0 . . . 0
−Wii2 −Wi′i2 0 Wii2 +Wi′i2 . . . 0

...
...

...
...

. . .
...

−Wiim −Wi′im 0 0 . . . Wiim +Wi′im

.

Now since each of Wii1 + Wi′i1 , . . . ,Wiim + Wi′im is positive, using the Schur complement
condition for positive semidefiniteness, the above matrix is positive semidefinite if and only
if the 2× 2 matrixWii′ +

∑
l∈[m]

Wiil −Wii′

−Wii′ Wii′ +
∑
l∈[m]

Wi′il

−∑
l∈[m]

[
Wiil

Wi′il

] [
Wiil Wi′il

]
Wiil +Wi′il

 (5.2)

is positive semidefinite. However, the matrix in (5.2) can be rewritten asWii′ +
∑
l∈[m]

WiilWi′il

Wiil +Wi′il

[1 −1
−1 1

]

70

which is positive semidefinite if and only if

−Wii′ ≤
∑
l∈[m]

WiilWi′il

Wiil +Wi′il

which proves the desired statement.

Proof of Theorem 5.3.4. For notational ease, define L := L(G). Label the nodes of G
using the set [n] and assume, without loss of generality, that U = [m] for some m < n, and
S = {m+ 1, . . . ,m+ |S|}. We define matrix C ∈ Sn as follows. For each u, u′ ∈ U ,

Cuu′ :=

Luu′ if u 6= u′∑
l∈[m]\{u}

|Lul| if u = u′

Moreover C(U, S) :=
−C(U,U)eeT

|S|
and C(S, U) := C(U, S)T . Lastly, we set C(S, S) :=

eTC(U,U)e

|S|
I, and we set all other entries of C to be zeros. That is,

C =

C(U,U) C(U, S) 0
C(S, U) C(S, S) 0

0 0 0

 .
In the rest of the proof, we argue that each of C and L−C is positive semidefinite, thereby
proving the positive semidefiniteness of L.

To show the positive semidefiniteness of C, it suffices to show the positive semidefinite-
ness of C(U ∪S, U ∪S). First note that using the diagonal dominance property in C(U,U),
we conclude that C(U,U) is positive semidefinite. Morever, since each node in U is adja-
cent to at least one edge with a negative weight each entry of C(U,U)e is positive. This
implies that eTC(U,U)e is positive which in turn implies that C(S, S) is invertible. Using
the Schur complement condition for positive semidefiniteness, C is positive semidefinite if

and only if C(U,U)− C(U, S)C(S, U)|S|
eTC(U,U)e

is positive semidefinite. Substituting for C(U, S)

71

and C(S, U), we get

C(U,U)− C(U, S)C(S, U)|S|
eTC(U,U)e

= C(U,U)− C(U,U)eeTeeTC(U,U)

|S|eTC(U,U)e

= C(U,U)− C(U,U)eeTC(U,U)

eTC(U,U)e

= C(U,U)1/2

(
I − C(U,U)1/2eeTC(U,U)1/2

eTC(U,U)e

)
C(U,U)1/2

where the last line from bottom uses eTe = |S| and the last line uses the positive semidefi-
niteness of C(U,U). Therefore to argue for the positive semidefiniteness of the last term in

the above chain, it suffices to show that I − C(U,U)1/2eeTC(U,U)1/2

eTC(U,U)e
is positive semidefi-

nite. This follows from simply noticing that
C(U,U)1/2eeTC(U,U)1/2

eTC(U,U)e
is a rank-one matrix

with eigenvalue 1. Thus C is positive semidefinite.

To show that L− C is also positive semidefinite, we show that it is the Laplacian of a
graph with non-negative weights. First notice that Ce = 0. Indeed, we have

Ce =

C(U,U)e + C(U, S)e
C(S, U)e + C(S, S)e

0

where

C(U,U)e + C(U, S)e = C(U,U)e− C(U,U)e = 0

using the construction of C(U, S), and

C(S, U)e + C(S, S)e =
−eeTC(U,U)e

|S|
+

eTC(U,U)ee

|S|
= 0

using the constructions of C(S, U) and C(S, S). Subsequently, using the fact that Le = 0,
we conclude that (L− C)e = 0.

Defining set R := V \ (U ∪ S), we now show that each off-diagonal entry of

L− C =

L(U,U)− C(U,U) L(U, S)− C(U, S) L(U,R)
L(S, U)− C(S, U) L(S, S)− C(S, S) L(S,R)

L(R,U) L(R, S) L(R,R)

72

is non-positive. For each u, u′ ∈ U , we have Luu′ − Cuu′ = 0 by construction. For each
u ∈ U, s ∈ S, we have

Lus − Cus = Lus +
1

|S|
∑
u′∈U

Cuu′ (by construction of C(U, S))

= Lus +
Cuu
|S|

+
1

|S|
∑

u′∈U\{u}

Cuu′

= Lus +
1

|S|

 ∑
u′∈U\{u}

|Luu′ |+ Luu′

 (by construction of C(U,U))

= Lus +
1

|S|
∑

u′∈U\{u}:
Luu′>0

2Luu′

= −Wus −
1

|S|
∑

u′∈U\{u}:
Wuu′<0

2Wuu′ (∵ L = L(G))

≤ 0. (using (5.1))

Now it remains to consider the signs of the entries of L(V,R) and the off-diagonal entries
of L(S, S)− C(S, S). Observe that each entry of L(V,R) is non-negative since each entry
of W (V,R) is non-positive. Indeed any entry in W (V,R) corresponds to an edge whose
one endpoint lies in R; note that for a negative edge, both endpoints lie in U by definition.
Lastly, every off-diagonal entry of L(S, S)− C(S, S) is non-negative since such entries are
0 in C(S, S), by construction, and non-negative in L(S, S) since they correspond to edges
whose both endpoints lie in S.

Therefore we have shown that L − C is a Laplacian matrix for a graph with non-
negative weights, and is consequently positive semidefinite. Since we have shown the
positive semidefiniteness of both C and L−C, we conclude that L is positive semidefinite.

5.3.4 Lack of Robustness

As discussed in Section 5.3.2, we are interested in understanding the robustness of 1-diag
recovery algorithm in the presence of noisy nodes, i.e. fringe nodes that are close to being
stray nodes. However, through computational experiments, it is observed that 1-diag

73

seems to have undesirable behavior in this setting. In particular, there exist pathological
instances in which the output of 1-diag contains groups of noisy nodes as spurious cluster.
The following example further illustrates this phenomenon.

Example 5.2. Consider a graph G on n = 25 nodes containing k = 3 clusters. Suppose
G has a cluster j containing 6 nodes and the three-dimensional features of these nodes are
as shown in the rows of the 6× 3 matrix below.

1.00 0.00 0.00
0.79 0.00 0.21
1.00 0.00 0.00
0.53 0.47 0.00
0.53 0.47 0.00
0.51 0.49 0.00

The submatrix of the output of 1-diag corresponding to the nodes in cluster j is

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

 .

The above matrix is not the matrix of all ones. In fact, it breaks down the true cluster
into two clusters by creating one cluster each for strong and fringe nodes thereby creating
a spurious cluster made up of the fringe nodes.

This apparent limitation of 1-diag demotivates a theoretical analysis of cluster recovery
using fractional optimal solutions of (P-1D).

5.4 `2-norm-diag Recovery Algorithm

We propose SDP formulation (P-ND) obtained by replacing the n diagonal constraints of
(P-1D) with a single `2-norm constraint. Based on this formulation, we propose a novel
recovery algorithm, called `2-norm-diag, which involves no tuning parameter.

Note that the output of `2-norm-diag can possibly be the zero matrix and therefore
does not define a clustering for the input graph or any of its subgraphs. However, the

74

Algorithm 5 `2-norm-diag

Input: Graph G = (V,W) generated according to NFM
Output: Symmetric matrix Xc of the same dimension as W whose each entry is in {0, 1}
1: X∗ = arg max 〈W,X〉 s.t. X ≥ 0, X � 0, ‖diag(X)‖ ≤ 1
2: for t in entries of X∗ sorted in non-increasing order do
3: Xc

ij = Round(X∗, t)
4: if there exists a non-empty V ′ ⊆ V such that Xc(V ′, V ′) is the cluster matrix for

some partition of V ′ then
5: break
6: else
7: Xc = 0
8: end if
9: end for

theory developed in Section 5.4.1 provides conditions on the input graph sufficient for the
output of `2-norm-diag to induce a clustering for some subgraph of the input graph. We
emphasize that since Correlation Clustering formulations do not require a prior estimate
of the number of clusters in the graph, `2-norm-diag is designed to be free of a tuning
parameter dependent on k.

max
X

〈W,X〉

s.t. X ≥ 0

X � 0

‖diag(X)‖ ≤ 1.

(P-ND)

SDPs (P-1D) and (P-ND) both have the non-negativity and positive semidefiniteness
constraints on the variable matrix. The combination of these constraints, i.e. the set
{X : X ≥ 0, X � 0}, forms the so-called doubly non-negative (DNN) cone. This cone
has been studied in the context of SDP relaxations for other graph problems such as the
minimum cut problem [48] and the quadratic assignment problem [35, 60].

The rounding procedure in `2-norm-diag is based on the observation from computa-
tional experiments that the entries of an optimal solution of (P-ND) corresponding to the
recovered clusters are larger compared to, and therefore well-separated from, the rest of
the entries. This implies the existence of a fixed threshold for rounding; however, compu-
tational experiments also suggest the dependence of this rounding threshold on problem
parameters n, k and α. An algorithmic dependence on k and α is undesirable, especially

75

in Correlation Clustering, since these parameters are latent and encode information about
the number and size of clusters in the graph. It is not clear to us whether a fixed-threshold-
based rounding procedure exists which does not require prior estimate of k and α, and this
motivates the rounding procedure in `2-norm-diag which adapts to matrix being rounded.

5.4.1 Theoretical Guarantees

Similar to our approach for the 1-diag recovery algorithm, we first prove exact cluster
recovery under deterministic conditions on the input graph, followed by understanding the
validity of these deterministic conditions for the NFM, and the robustness properties of
(P-ND).

Assumption 5.1. Suppose G = (V,W) be a graph on n nodes where W = qqT −D +N .
Let U ⊆ V contain all nodes of G adjacent to a negative edge. That is, U := {v ∈ V :
Wvw < 0 for some w ∈ V }. Suppose the following hold.

1. q is a positive n-dimensional vector satisfying

max(q◦4/3) ≤ ‖q
◦2/3‖2

45
.

Intuitively, this condition is likely to hold if the smallest entry in q is not too small.

2. There exists S ⊆ V \ U such that for each u ∈ U and s ∈ S, we have

|S|q1/3
s Wus ≥ −6

 ∑
u′∈U :
Wuu′<0

q
1/3
u′ Wuu′

 .

3. N is a n×n symmetric matrix whose each diagonal entry is zero and, for each i ∈ [n],
satisfies

‖ni‖ ≤ qi‖q◦2/3‖2

45‖q◦1/3‖
.

(Recall the notation that for each i ∈ [n], ni denotes row i of matrix N .)

4. D = Diag(q ◦ q). This is a diagonal correction matrix chosen to ensure that the
diagonal of W is indeed zero, as defined. Unlike (P-1D), the analysis of (P-ND)
depends on the diagonal entries of W , and therefore it is reasonable to assume each
of them to be 0.

76

Theorem 5.4.1. Let G = (V,W) be a graph generated using the NFM, and suppose that
for each j ∈ [k], W (Vj, Vj) satisfies Assumption 5.1. Then (P-ND) has an optimal solution
X∗ satisfying X∗ii′ > 0 if and only if nodes i and i′ belong to the same cluster.

In terms of proof techniques, unlike the SDP (P-1D), (P-ND) does not lend itself to
an explicit construction of primal-dual optimal solutions and requires a more elaborate
argument using Brouwer fixed-point theory.

Adopting the two-step approach outlined in Section 5.3.1, we are now interested in the
following two questions:

• What is the probability that, for each cluster, the subgraph induced by the union of
strong and some fringe nodes satisfies Assumption 5.1?

• Is the `2-norm-diag recovery algorithm robust to the presence of noisy nodes, i.e.
fringe nodes that are close to being stray?

While we do not provide a precise answer to the first question above, we demonstrate,
computationally, the connection between Assumption 5.1 and the NFM in which the dis-
tribution over the unit simplex is chosen to be the Dirichlet distribution. For a graph
G = (V,W) generated according to NFM, for each j ∈ [k], define V ′j to be the union of
strong nodes and some fringe nodes in cluster j such that the cut-off for selecting fringe
nodes depends on problem parameters k and α. Let nj be the cardinality of V ′j , and let Θj

denote the nj×k matrix whose rows contain the feature vectors corresponding to the nodes
in V ′j . Observe that the univariate function g : (0, 1)→ R defined as g(x) := log(x/(1−x))
can be approximated using a linear function l : (0, 1) → R defined as l(x) := c · (2x − 1)
for a suitably chosen positive constant c. Then for each j ∈ [k], we have

W (V ′j , V
′
j) ≈ c · (2ΘjΘ

T
j − E). (5.3)

Now through various computational experiments, we notice that the matrix c·(2ΘjΘ
T
j −E)

is almost a rank-one matrix such that eigenvector corresponding to the largest eigenvalue
is a positive vector. The following example concretely illustrates these observations.

Example 5.3. Consider a graph generated using the NFM with n = 30 and k = 3. The
distribution over the unit simplex is chosen to be the Dirichlet distribution with parameter
α = 0.3e. For some cluster j, let V ′j be the union of strong nodes and fringe nodes whose
feature vectors have largest entry at least 0.6. The three-dimensional features of the nodes

77

in V ′j are shown in the rows of the matrix Θj below.

Θj =

0.05 0.83 0.11
0.04 0.69 0.27
0.03 0.92 0.05
0.02 0.73 0.25
0.11 0.88 0.01
0.25 0.60 0.15
0.00 0.99 0.01
0.12 0.67 0.21
0.01 0.95 0.04

We notice that the matrix c · (2ΘjΘ

T
j − E) with c = 2.2 has exactly three non-zero

eigenvalues given by 8.57, 0.25 and −0.75. Moreover the unit eigenvector, vj, corresponding
to the eigenvalue 8.57 is

vj =

0.33
0.17
0.43
0.22
0.38
0.06
0.51
0.15
0.45

which has all positive entries.

The observations made above regarding the spectral properties of the matrix 2.2 ·
(2ΘjΘ

T
j −E) are further shown to be consistent using the results in Table 5.3, 5.4, and 5.5.

Each row in these tables corresponds to 10 cluster instances generated using the NFM in
which the simplex distribution is chosen to be the Dirichlet distribution. We fix k = 3 and
the Dirichlet parameter α = 0.3e. The first column denotes the range corresponding to the
size of the subgraph induced by strong nodes and fringe nodes whose feature vectors have
largest entry at least 0.6; the cut-off of 0.6 is based on manual parameter search for the
given setting of k and α. The second column counts eigenvector success, i.e. the number
of instances, out of 10, for which the eigenvector of 2.2 · (2ΘjΘ

T
j −E) corresponding to its

largest eigenvalue is positive. For such instances, the third column contains the non-zero
eigenvalues of 2.2 · (2ΘjΘ

T
j − E).

These computational results motivate the following conjecture.

78

Table 5.3: Structure of subgraph induced by strong nodes and some fringe nodes for each
cluster (part 1/3).

Cluster size range Eigenvector success (/10) Non-zero eigenvalues

6− 10 10 7.8, 0.5,−1.1
9.8, 0.4,−0.7
9.2, 0.2,−0.4
10.1, 0.4,−0.3
10.1, 0.9,−0.6
8.5, 0.1,−0.3
12.7, 0.2,−0.6
6.6, 0.5,−0.4
9.8, 0.4,−0.5
7.4, 0.3,−0.4

11− 15 10 16.8, 0.2,−0.5
14.2, 0.4,−0.4
12.9, 0.6,−0.5
16.7, 0.6,−0.7
15.8, 0.3,−0.5
15.9, 0.8,−0.8
16.1, 0.2,−0.4
14.0, 0.9,−0.8
12.8, 0.5,−0.4
14.0, 0.3,−0.5

16− 20 10 16.3, 1.0,−1.3
18.1, 0.7,−0.9
17.0, 0.7,−0.7
21.5, 1.2,−1.9
14.5, 1.2,−1.3
21.2, 0.6,−0.7
19.4, 1.2,−1.0
21.6, 0.3,−0.6
23.5, 1.0,−1.0
20.1, 0.6,−1.0

79

Table 5.4: Structure of subgraph induced by strong nodes and some fringe nodes for each
cluster (part 2/3).

Cluster size range Eigenvector success (/10) Non-zero eigenvalues

21− 25 10 26.2, 1.7,−1.8
21.6, 1.5,−1.4
23.9, 1.1,−1.2
18.3, 1.6,−1.5
26.5, 0.9,−1.2
23.0, 2.5,−3.0
23.8, 1.6,−1.7
25.6, 1.0,−1.0
20.0, 2.0,−2.2
23.2, 1.4,−1.5

26− 30 10 28.6, 1.2,−1.9
34.0, 2.0,−2.0
32.2, 1.3,−1.6
29.0, 2.4,−2.2
30.0, 1.6,−1.9
30.6, 1.7,−1.8
29.9, 1.4,−1.4
35.9, 1.3,−1.3
23.0, 1.7,−1.4
29.1, 1.5,−1.5

31− 35 10 38.8, 1.5,−1.5
33.7, 1.8,−1.8
38.4, 2.3,−2.2
31.9, 1.9,−1.7
38.3, 1.7,−1.9
33.6, 1.9,−2.2
36.3, 2.2,−1.9
43.7, 1.1,−1.2
29.0, 2.8,−3.2
46.7, 0.9,−1.5

80

Table 5.5: Structure of subgraph induced by strong nodes and some fringe nodes for each
cluster (part 3/3).

Cluster size range Eigenvector success (/10) Non-zero eigenvalues

36− 40 10 35.6, 1.8,−2.3
44.1, 2.0,−2.5
40.2, 2.9,−2.8
40.2, 2.5,−2.6
44.5, 1.2,−2.0
49.8, 1.6,−1.5
33.5, 2.2,−2.6
35.1, 2.1,−2.1
46.3, 2.0,−2.1
40.1, 1.8,−1.9

Conjecture 5.4.2. Let G = (V,W) be a graph generated using the NFM in which the
simplex distribution is chosen to be the Dirichlet distribution with constant parameter α.
Then there exists a scalar t(k,α) ∈ (0.5, 1/

√
2) such that for each j ∈ [k], with probability

not converging to 0 as n → ∞, the largest eigenvalue of the matrix 4.4ΘjΘ
T
j − 2.2E is

well-separated from the remaining eigenvalues and the corresponding eigenvector is positive
where

V ′j := {i ∈ [n] : θij ≥ t(k,α)}

and
Θj := Θ(V ′j , :).

Now let qj :=
√
λjvj where λj and vj denote the largest eigenvalue and the corre-

sponding unit eigenvector respectively of c · (2ΘjΘ
T
j − E). We rewrite (5.3) as

W (V ′j , V
′
j) = qjq

T
j −Dj +Nj (5.4)

where Dj is the nj × nj diagonal matrix Diag(qjq
T
j) and Nj is the nj × nj symmetric

matrix whose each diagonal entry is equal to 0 and the off-diagonal entries are chosen to
make so as to make (5.3) hold. That is, matrix Dj applies diagonal correction to ensure
diag(W (Vj, Vj)) = 0 and matrix Nj captures the error in approximating the logarithmic
function g by the linear function l and the error in approximating c · (2ΘjΘ

T
j − E) by

qjq
T
j . We show, using computational results, the validity of Assumption 5.1 for quantities

qj, Nj,W (Vj, Vj) described using (5.4) in Table 5.6. Each row in the table corresponds to

81

Table 5.6: Verification of Assumption 5.1

Cluster size range C1, C2 success (/10) Average C3 upper bound

1201− 1300 4 13.3
1301− 1400 4 14.1
1401− 1500 3 13.2
1501− 1600 4 13.3
1601− 1700 5 13.4
1701− 1800 8 13.5
1801− 1900 3 13.6

10 cluster instances generated using the NFM in which the simplex distribution is chosen
to be the Dirichlet distribution. We fix k = 3 and the Dirichlet parameter α = 0.3e. The
first column denotes the range corresponding to the size of the subgraph induced by strong
nodes and fringe nodes whose feature vectors have largest entry at least 0.6; the cut-off
of 0.6 is based on manual parameter search for the given setting of k and α. The second
column counts C1, C2 success, i.e. the number of instances, out of 10, for which vector qj
and matrix W (V ′j , V

′
j) as highlighted in (5.4) satisfy conditions 1 and 2 in Assumption 5.1.

We notice that condition 3 is not satisfied for most instances; however, the violation is by
a constant factor in the sense that the ratio

45‖ni‖‖q◦1/3‖
qi‖q◦2/3‖2

(5.5)

for each i ∈ [n], is bounded above by a constant, albeit much larger than 1 as desired.
Therefore in the fourth column of Table 5.6, we present average C3 upper bound, i.e. the
quantity (5.5) first averaged over all nodes in the graph, then averaged over the instances
out 10 runs in which both conditions 1 and 2 are satisfied.

These computational results partly justify Assumption 5.1. Now we turn to the robust-
ness aspect, i.e. understanding the robustness of `2-norm-diag to the presence of noisy
nodes. We begin by revisiting Example 5.2 mentioned in Section 5.3.4. In particular, the
submatrix of the output of `2-norm-diag corresponding to the nodes in cluster j is

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

82

This shows that `2-norm-diag is correctly able to cluster the strong nodes, for this example,
despite the presence of fringe nodes without creating spurious clusters using the fringe
nodes. This observation motivates the following results which show the robustness of
the diagonal of an optimal solution of the SDP (P-ND) to perturbations of the weighted
adjacency matrix W .

Theorem 5.4.3. Let X∗ be an optimal solution of the SDP (P-ND). If W contains at least
one positive entry, then diag(X∗) is uniquely determined by W .

Theorem 5.4.4. Let X∗ and X ′ be optimal solutions to the SDP (P-ND) for weighted
adjacency matrices W and W + ∆ respectively. If each of W and W + ∆ contains at least
one positive entry, then

‖diag(X∗)− diag(X ′)‖ ≤ 2 (2n)1/4‖∆‖1/2
F

〈W,X∗〉1/2
.

While Theorem 5.4.4 shows the robustness of the diagonal of an optimal solution of
(P-ND) to only perturbations of the weighted adjacency matrix, it is, in fact, observed
using computational experiments that all entries of an optimal solution are robust to the
presence of fringe nodes whose feature vectors have a relatively smaller largest entry, i.e.
fringe nodes that are close to being stray nodes. In particular, the entries of an optimal
solution corresponding to the cluster subgraphs comprised of strong nodes and fringe nodes
close to the strong set are larger compared to, and therefore well-separated from, the rest
of the entries. This is supported by computational results shown in Table 5.7 which show
the performance of `2-norm-diag. Each row in the table corresponds to 10 graph instances
generated using the NFM in which the simplex distribution is chosen to be the Dirichlet
distribution. We fix k = 3 and the Dirichlet parameter α = 0.3e. The first column denotes
the size of graph, i.e. number of nodes n. The second column counts the `2-norm-diag

success, i.e. the number of instances, out of 10, for which the number of recovered clusters
is equal to the true number of clusters k such that the recovered clusters are disjoint and
each recovered cluster contains all strong nodes (and possibly some fringe nodes) from
exactly one ground-truth cluster.

The theoretical and computational results regarding the performance of `2-norm-diag

presented in this section lead us to make the following conjecture.

Conjecture 5.4.5. Let G be a graph generated according to NFM in which the simplex
distribution is chosen to be the Dirichlet distribution with constant parameter. Then with
probability not converging to 0 as n→∞, `2-norm-diag returns exactly k disjoint clusters
V ′1 , . . . , V

′
k such that, for each j ∈ [k]

V strong
j ⊆ V ′j .

83

Table 5.7: Performance of `2-norm-diag.

Graph size (number of nodes) `2-norm-diag success (/10)

60 9
70 8
80 10
90 9
100 9
110 10
120 9
130 10
140 10

5.4.2 Proofs

In this section we build a proof of Theorem 5.4.1. Our strategy is to demonstrate the
desired structure in each of the submatrices of an optimal solution corresponding to a
cluster. One key ingredient for this approach is to determine a point x such that

(Wx)◦1/3 = x.

However, note that the exact solution to the system

(qqTx)◦1/3 = q

can be shown to be x = (βq)◦1/3 where β = [qT (q◦1/3)]3/2. Moreover, due to Assumption
5.1, W can be interpreted as a perturbation of the matrix qqT by matrices D and N
thereby motivating the following lemma.

Lemma 5.4.6. Let G = (V,W) be a graph on n nodes satisfying conditions 1, 3, 4 in
Assumption 5.4.1. Then the continuous function f : Rn → Rn defined as f(x) := (Wx)◦1/3

maps the set

S :=

[
1

2
(βq)◦1/3,

3

2
(βq)◦1/3

]
, where β = [qT (q◦1/3)]3/2,

to itself.

Proof. We will show that for any x ∈ S, each of f(x) ≥ (βq)◦1/3/2 and f(x) ≤ 3(βq)◦1/3/2

84

holds separately. Pick any x ∈ S. We have

(Wx)◦1/3 = (qqTx−Dx +Nx)◦1/3

≥
[
β1/3qqT (q◦1/3)

2
−Dx +Nx

]◦1/3
(using the lower bound on x)

=

[
βq

2
−Dx +Nx

]◦1/3
(using the definition of β)

≥
[
βq

2
− 3β1/3D(q◦1/3)

2
+Nx

]◦1/3
(using the upper bound on x)

≥
[
βq

2
− 3β1/3q◦7/3

2
+Nx

]◦1/3
. (using the definition of D)

(5.6)

Now we bound each of the second and third terms above separately. Condition 1 in
Assumption 5.1 implies for each i ∈ [n],

q
7/3
i ≤ ‖q

◦2/3‖2qi
45

=

(∑
i∈[n]

q
4/3
i

)
qi

45

=
[qT (q◦1/3)]qi

45

=
β2/3qi

45
. (using the definition of β)

The above chain implies that

q◦7/3 ≤ β2/3q

45

⇐⇒ 3β1/3q◦7/3

2
≤ βq

30
. (multiplying both sides by 3β1/3/2)

(5.7)

85

Moreover, for each i ∈ [n], we have

|(Nx)i| = |nix|
≤ ‖ni‖‖x‖ (using Cauchy-Schwarz inequality)

≤ qi‖q◦2/3‖2

45‖q◦1/3‖
‖x‖ (using condition 3 in Assumption 5.1)

≤ qi‖q◦2/3‖2β1/3

30
(using the upper bound on x)

=
βqi
30
. (using the definition of β)

(5.8)

Then using (5.7) and (5.8) in (5.6), we get

(Wx)◦1/3 ≥
(
βq

2
− βq

15

)◦1/3
=

(
13

30

)1/3

(βq)◦1/3

>
1

2
(βq)◦1/3.

(5.9)

For any x ∈ S, we also have

(Wx)◦1/3 = (qqTx−Dx +Nx)◦1/3

≤
[

3β1/3qqT (q◦1/3)

2
−Dx +Nx

]◦1/3
(using the upper bound on x)

=

[
3βq

2
−Dx +Nx

]◦1/3
(using the definition of β)

≤
[

3βq

2
+Nx

]◦1/3
(∵ Dx > 0)

≤
(

23

15

)1/3

(βq)◦1/3 (using (5.8))

<
3

2
(βq)◦1/3.

(5.10)

Combining (5.9) and (5.10), we conclude that the function f maps S to itself.

86

To proceed with the proof of Theorem 5.4.1, in addition to Lemma 5.4.6, we also make
use of the following Brouwer fixed-point theorem.

Theorem 5.4.7 (Brouwer Fixed-Point Theorem [19]). Let C ⊆ Rn be a non-empty convex
compact set and let f : C → C be a continuous function. Then there exists a point x ∈ C
such that f(x) = x.

Proof of Theorem 5.4.1. For each j ∈ [k], let qj, Dj, Nj, Uj and Sj denote the quantities
mentioned in Assumption 5.1, and define nj as the cardinality of Vj (i.e. the size of cluster
j). Our analysis uses SDP duality and therefore note that the dual of (P-ND) is

min
(X,Y,Z,λ)

λ‖diag(X)‖2 + λ

s.t. Y ≥ 0

Z � 0

λ ≥ 0

W + Y + Z = λ ·Diag(X).

(D-ND)

Both optimization problems (P-ND) and (D-ND) have strictly feasible solutions. For in-
stance, X ′ := (0.5I + 0.5E)/n is a positive, positive definite matrix which is feasible for
(P-ND). Similarly, X ′ := I, Y ′ := E, Z ′ := (‖W+E‖+ε)I−(W+E) and λ′ := (‖W+E‖+ε)
gives a strictly feasible solution (X ′, Y ′, Z ′, λ′) for (D-ND) for any ε > 0. More specifically,
we may express (P-ND) in the standard form as

max
M

〈W SF ,M〉

s.t. M ∈ Sn2+2n+1

M � 0

Mab +Mba = 0 ∀a ∈ [n], b ∈ [n2 + 2n+ 1] \ [n]

Mab +Mba = 0 ∀a ∈ [n2 + n] \ [n], b ∈ {i+ 1, . . . , n2 + 2n+ 1}
Mab +Mba = 2Mss ∀a ∈ [n], b ∈ [n], s = (i− 1)n+ j + n

Maa = 1 ∀a ∈ [n2 + 2n+ 1] \ [n2 + n]

Mab +Mba = 0 ∀a ∈ [n2 + 2n+ 1] \ [n2 + n], b ∈ {i+ 1, . . . , n2 + 2n+ 1}
2Maa = Mst +Mts ∀a ∈ [n], s = n2 + n+ 1, t = n2 + n+ 1 + i

(P-ND-SF)
where W SF is the (n2 + 2n+ 1)× (n2 + 2n+ 1) symmetric matrix defined as

W SF
ij :=

{
Wab a ∈ [n], b ∈ [n]

0 otherwise

87

and construct strictly feasible solutions for (P-ND-SF) and its dual (which is not included
here for brevity). Therefore using the Karush-Kuhn-Tucker (KKT) conditions for optimal-
ity, X∗ is an optimal solution for (P-ND) if and only if X∗ is feasible for (P-ND) and there
exist a non-negative matrix Y ∗ ∈ Sn, a positive semidefinite matrix Z∗, and a non-negative
scalar λ∗ such that:

• X∗ijY
∗
ij = 0,∀i, j ∈ [n]

• 〈X∗, Z∗〉 = 0

• λ∗ · (‖diag(X∗)‖ − 1) = 0

• W + Y ∗ + Z∗ = λ∗ ·Diag(X∗)

In the remainder of the proof, we will explicitly construct all the above mentioned quan-
tities. Now for each j ∈ [k], since W (Vj, Vj) satisfies Assumption 5.1, using Lemma
5.4.6 and Theorem 5.4.7, we conclude that there exists an nj-dimensional vector rj ∈[

1

2
(βjqj)

◦1/3,
3

2
(βjqj)

◦1/3
]
, where βj = [qTj (q

◦1/3
j)]3/2, such that

W (Vj, Vj) · rj = r◦3j . (5.11)

We set

λ∗ =

√∑
j∈[k]

‖rj ◦ rj‖2.

For each j ∈ [k], we set

X∗(Vj, Vj) = rjr
T
j /λ

∗

Y ∗(Vj, Vj) = 0

Z∗(Vj, Vj) = Diag(rj ◦ rj)−W (Vj, Vj).

For each distinct j, j′ ∈ [k], we set

X∗(Vj, Vj′) = 0

Y ∗(Vj, Vj′) = −W (Vj, Vj′)

Z∗(Vj, Vj′) = 0.

88

For each stray node v, we set

X∗(v, :) = 0 (and X∗(:, v) = 0)

Y ∗(v, :) = −W (v, :) (and Y ∗(:, v) = −W (:, v))

Z∗(v, :) = 0. (and Z∗(:, v) = 0)

First we show that the constructed X∗ is feasible for (P-ND). Note that there exists
a permutation of the rows (and columns) of X∗ which yields a block diagonal matrix
in which the non-zero blocks are given by the rank-one positive semidefinite matrices
r1r

T
1 /λ

∗, . . . , rkr
T
k /λ

∗. This shows that X∗ is positive semidefinite. Morever, since vectors
r1, . . . , rk are positive, we conclude that X∗ is non-negative. We also have

‖diag(X∗)‖2 =

∑
j∈[k]

‖rj ◦ rj‖2

λ∗2

= 1. (using the definition of λ∗)

ThereforeX∗ is feasible for (P-ND). Note that this also implies that λ∗(‖diag(X∗)‖−1) = 0.

Now we show that the constructed Y ∗, Z∗, λ∗ satisfy the remaining desired properties.
Because each pair of nodes lying in distinct clusters shares a negative edge and because
each stray node shares a negative edge with every other node in the graph, we have that
Y ∗ ≥ 0. Also note that λ∗ is a positive scalar by construction.

Matrices X∗ and Y ∗ have disjoint supports by construction, and therefore X∗ijY
∗
ij = 0

for each i, j ∈ [n]. Moreover, for each j ∈ [k], using (5.11), we have

W (Vj, Vj) · rj = r◦3j

⇐⇒ W (Vj, Vj) · rj = Diag(rj ◦ rj) · rj
⇐⇒ Z∗(Vj, Vj) · rj = 0 (using the definition of Z∗)

⇐⇒ Z∗(Vj, Vj) · rjrTj /λ∗ = 0 (∵ rj > 0, λ∗ > 0)

⇐⇒ Z∗(Vj, Vj) ·X∗(Vj, Vj) = 0 (using the definition of X∗)

⇐⇒ 〈Z∗(Vj, Vj), X∗(Vj, Vj)〉 = 0 (∵ X∗, Z∗ � 0)

(5.12)

Therefore we have

〈X∗, Z∗〉 =
∑
j∈[k]

〈X∗(Vj, Vj), Z∗(Vj, Vj)〉 (using the definitions of X∗, Z∗)

= 0. (using (5.12))

89

Note that there exists a permutation of the rows (and columns) of Z∗ which yields a
block diagonal matrix in which the non-zero blocks are given by the matrices Diag(r1◦r1)−
W (V1, V1), . . . , Diag(rk◦rk)−W (Vk, Vk). Therefore to show the positive semidefiniteness of
Z∗, it suffices to show that for each j ∈ [k], the matrix Z∗(Vj, Vj) = Diag(rj◦rj)−W (Vj, Vj)
is positive semidefinite. From (5.12), we know that Z∗(Vj, Vj) · rj = 0. This implies that e
belongs to the null space of Diag(rj) ·Z∗(Vj, Vj) ·Diag(rj). Consequently, we observe that

L̄j := Diag(rj) · Z∗(Vj, Vj) ·Diag(rj)

is the Laplacian matrix of a graph, called Ḡj, on nj nodes whose weighted adjacency matrix
is

W̄j := Diag(rj) ·W (Vj, Vj) ·Diag(rj).

Moreover, Z∗ is positive semidefinite if and only if the Laplacian L̄j is positive semidefinite
since each entry of rj is positive. Note that the sign of each edge in Ḡj is identical to that
of the corresponding edge in G[Vj] which implies that the set of all nodes in Ḡj adjacent
to a negative edge is Uj. Now for any u ∈ Uj and s ∈ Sj, we have

|Sj|W̄j(u, s) = |Sj|rj(u)rj(s)W (u, s)

≥ |Sj|rj(u)
[βjqj(s)]

1/3

2
W (u, s)

(using the lower bound on rj)

≥ −3β
1/3
j

 ∑
u′∈Uj :

W (u,u′)<0

rj(u)qj(u
′)1/3W (u, u′)

(using condition 2 in Assumption 5.1)

≥ 2

 ∑
u′∈Uj :

W (u,u′)<0

rj(u)rj(u
′)W (u, u′)

(using the upper bound on rj)

= 2

 ∑
u′∈Uj :

W̄j(u,u′)<0

W̄j(u, u
′)

 .

(using the definition of W̄)

90

Thus we have shown that graph Ḡj satisfies (5.1) stated in Theorem 5.3.4 using which we
conclude that L̄j is positive semidefinite.

Lastly, we show that the equation W + Y ∗ + Z∗ = λ∗ ·Diag(X∗) is satisfied. For each
j ∈ [k], we have

W (Vj, Vj) + Y ∗(Vj, Vj) + Z∗(Vj, Vj) = Diag(rj ◦ rj)

(using the definitions of Y ∗, Z∗)

= λ∗ ·Diag(X∗(Vj, Vj)).

(using the definition of X∗)

For each distinct j, j′ ∈ [k], we have

W (Vj, Vj′) + Y ∗(Vj, Vj′) + Z∗(Vj, Vj′) = 0

using the definitions of Y ∗, Z∗. Similarly, for each stray node v, we have

W (v, :) + Y ∗(v, :) + Z∗(v, :) = 0

W (:, v) + Y ∗(:, v) + Z∗(:, v) = 0

using the definitions of Y ∗, Z∗.

Proof of Theorem 5.4.3. Observe thatX = 0 is a feasible solution for (P-ND) which implies
that the optimal value of (P-ND) is non-negative. This implies that for any optimal
solution, without loss of generality, we may assume that the constraint ‖diag(X)‖ ≤ 1 is
tight. Since X∗ is optimal for (P-ND), and since both (P-ND) and its dual have strictly
feasible solutions, using the Karush-Kuhn-Tucker (KKT) conditions for optimality, there
exist a non-negative matrix Y ∗ ∈ Sn, a positive semidefinite matrix Z∗, and a non-negative
scalar λ∗ such that:

• X∗ijY
∗
ij = 0,∀i, j ∈ [n]

• 〈X∗, Z∗〉 = 0

• λ∗ · (‖diag(X∗)‖ − 1) = 0

• W + Y ∗ + Z∗ = λ∗ ·Diag(X∗)

91

We also note that λ∗ is a positive scalar. Indeed if λ∗ is zero, then the last condition
above implies diag(Z∗) is zero and consequently Z∗ = 0 since Z∗ is positive semidefinite.
This implies that Y ∗ = −W which contradicts the non-negativity of Y ∗ since W contains
a positive entry.

Let X∗∗ be another optimal solution of (P-ND). Then we have

0 = 〈W,X∗ −X∗∗〉
= 〈λ∗ ·Diag(X∗)− Y ∗ − Z∗, X∗ −X∗∗〉 (substituting for W)

= λ∗ − λ∗ · 〈Diag(X∗), X∗∗〉 − 〈Y ∗ + Z∗, X∗ −X∗∗〉 (∵ ‖diag(X∗)‖ = 1)

= λ∗ − λ∗ · 〈Diag(X∗), X∗∗〉+ 〈Y ∗ + Z∗, X∗∗〉 (∵ 〈Y ∗, X∗〉 = 〈Z∗, X∗〉 = 0)

≥ λ∗ − λ∗ · 〈Diag(X∗), X∗∗〉. (∵ 〈Y ∗, X∗∗〉, 〈Z∗, X∗∗〉 ≥ 0)

Using the fact that λ∗ is positive, the above implies that 〈diag(X∗), diag(X∗∗)〉 ≥ 1.
However, since both diag(X∗) and diag(X∗∗) lie on the unit sphere, we conclude that
diag(X∗) = diag(X∗∗).

Proof of Theorem 5.4.4. Note that since W has at least one positive entry, max(W+) is a
positive scalar. If Wii′ > 0 for some i, i′ ∈ [n], then (eie

T
i′ +ei′e

T
i)/
√

2 is feasible for (P-ND)
and we have

〈W,X∗〉 ≥
√

2Wii′ > 0. (5.13)

Using a similar argument, we also conclude that

〈W + ∆, X ′〉 > 0. (5.14)

Moreover since the optimal values of the two programs are positive, we have that

‖diag(X∗)‖ = ‖diag(X ′)‖ = 1.

Observe that

|〈∆, X∗〉| ≤ ‖∆‖F‖X∗‖F (using Cauchy-Schwarz inequality)

≤
√
n‖∆‖F‖diag(X∗)‖ (∵ ‖X∗‖F ≤

√
n‖diag(X∗)‖)

=
√
n‖∆‖F . (∵ ‖diag(X∗)‖ = 1)

(5.15)

Similarly, we also have that
|〈∆, X ′〉| ≤

√
n‖∆‖F . (5.16)

Now define

X ′′ :=
X∗ +X ′

‖diag(X∗) + diag(X ′)‖
.

92

Noting that X ′′ is feasible for (P-ND), and therefore using the fact that 〈W,X∗〉 ≥ 〈W,X ′′〉,
we get

〈W,X∗〉‖diag(X∗) + diag(X ′)‖ ≥ 〈W,X∗〉+ 〈W,X ′〉
= 〈W,X∗〉+ 〈W + ∆, X ′〉 − 〈∆, X ′〉
≥ 〈W,X∗〉+ 〈W + ∆, X∗〉 − 〈∆, X ′〉

(using the optimality of X ′)

= 2〈W,X∗〉+ 〈∆, X∗〉 − 〈∆, X ′〉
≥ 2〈W,X∗〉 − 2

√
n‖∆‖F

(using (5.15) and (5.16))

which is equivalent to

‖diag(X∗) + diag(X ′)‖ ≥ 2− 2
√
n‖∆‖F
〈W,X∗〉

(5.17)

since 〈W,X∗〉 is positive. Now we have

‖diag(X∗)− diag(X ′)‖ =
√

4− ‖diag(X∗) + diag(X ′)‖2

(∵ ‖diag(X∗)‖ = ‖diag(X ′)‖ = 1)

≤ 2
√

2n1/4‖∆‖1/2
F

〈W,X∗〉1/2
.

(using (5.17))

This concludes the proof.

5.5 Conclusions

In this chapter, we propose a novel generative model, NFM, for graphs which, unlike the
SBM, also generates feature vectors for each node in the graph. We analyze, theoretically
and computationally, the performance of two different SDP formulations in recovering the
true clusters in graph instances generated according to the NFM. In particular, we begin
with an algorithm based on the SDP (P-1D), but then demonstrate its lack of robustness to
certain noisy instances generated by the NFM. To overcome this shortcoming, we propose
a new algorithm based on a different SDP (P-ND). We build theory towards showing that
SDP (P-ND) can be used to provably recover, for each true cluster, nodes with sufficiently
strong membership signal in their feature vectors, in the presence of noisy nodes, without
involving any tuning parameters.

93

Chapter 6

Conclusions and Future Work
Directions

In this thesis, we study two graph clustering problems, Overlapping Community Detection
and Correlation Clustering, using the provable recovery framework. That is, for each prob-
lem, we consider a graph generative model, propose clustering algorithm(s), and develop
theoretical guarantees regarding the performance of the proposed algorithm(s) in recover-
ing the ground truth clustering posited by the considered generative model. The proposed
algorithms rely on formulations and techniques from convex optimization.

For the Overlapping Community Detection problem, we consider the Mixed Member-
ship Stochastic Blockmodel (MMSB), which is a generalization of the Stochastic Block
Model (SBM) to allow overlapping communities. We propose a linear-programming-based
algorithm which is relatively easy to implement, in part because it is almost tuning-
parameter-free; indeed the algorithm requires only an a priori estimate of the number
of communities in the input graph, which also appears as a parameter in other competing
algorithms in the literature. We show theoretically that the proposed algorithm recovers an
entrywise close approximation to the true mixed membership of each node. Our analysis
does not explicitly require each community to have a node which belongs exclusively to
that community. Indeed this assumption is often made in literature but is not realistic. We
also show experimental performance of the proposed algorithm on synthetic and real-world
datasets. This work leads to some interesting follow-up questions for future work. Firstly,
it remains an open question to theoretically understand the robustness properties of the
proposed algorithm. Indeed our analysis assumes access to the exact weighted adjacency
matrix containing pairwise similarity scores generated according to the MMSB. However,
in practice, the weighted adjacency matrix generated by the MMSB may be corrupted

94

with noise. We leave it as future work to extend the theoretical guarantees presented
here to a setting in which the weighted adjacency matrix is, for instance, either uniformly
corrupted with noise or available exactly but only partially, i.e. only some entries are
available. Secondly, it is an interesting future work direction to provide a theoretical basis
for the selection of estimated number of communities in the input graph, which appears
as a parameter in the recovery algorithm.

For the Correlation Clustering problem, we introduce a novel graph generative model,
Node Features Model (NFM), to generate signed random graphs in which the edge weights
represent similarity and dissimilarity scores. The graph instances are obtained by gener-
ating random feature vectors for the nodes which can be interpreted as latent variables
in the model. Moreover, the graph instances contain asymmetric noise in the sense that
some pairs of nodes in the same cluster may potentially share a negative edge, but all
pairs of nodes in different clusters share a negative edge. We first consider a semidefinite
programming (SDP)-based algorithm which uses an SDP formulation that gives the best
approximation ratio for the Correlation Clustering problem of maximizing agreements. We
show the success of this algorithm in certain restrictive settings, but also demonstrate its
potential lack of robustness to noisy instances generated by the NFM. Consequently, we
propose a different SDP-based algorithm which appears to computationally address the
robustness shortcoming and is tuning-parameter-free. We make progress towards showing
that the proposed algorithm provably recovers at least the nodes whose feature vectors
represent sufficiently strong cluster membership, in the presence of noisy nodes. In partic-
ular, we show exact recovery by the proposed algorithm if each cluster subgraph satisfies
certain deterministic assumptions. We use computational experiments to show the valid-
ity of the aforementioned deterministic assumptions in the NFM. We also make progress
towards theoretically explaining robustness of the proposed algorithm, as seen in compu-
tational experiments. We also show successful performance of the proposed algorithm on
synthetic datasets. This work naturally poses interesting questions for future work. Firstly,
providing a complete theoretical explanation for the robustness of the proposed algorithm
is left as future work. Secondly, it is also an important open question to bridge the gap
between the recovery guarantees and the NFM, i.e. to show that the deterministic condi-
tions required for provable recovery are indeed satisfied by the NFM graph instances with
probability not converging to zero asymptotically as the graph size grows. Lastly, it is a
useful future exercise to understand, theoretically and computationally, the performance of
the proposed algorithm using more flexible models than the NFM which are not restricted
to asymmetric noise.

95

References

[1] Emmanuel Abbe. Community detection and stochastic block models: Recent devel-
opments. Journal of Machine Learning Research, 18(1):6446–6531, 2017.

[2] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed mem-
bership stochastic blockmodels. Journal of Machine Learning Research, 9(Sep):1981–
2014, 2008.

[3] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, Eric P Xing, and Tommi
Jaakkola. Mixed membership stochastic block models for relational data with appli-
cation to protein-protein interactions. In Proceedings of the International Biometrics
Society Annual Meeting, volume 15, 2006.

[4] Brendan PW Ames and Stephen A Vavasis. Nuclear norm minimization for the planted
clique and biclique problems. Mathematical Programming, 129(1):69–89, 2011.

[5] Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham Kakade. A tensor spec-
tral approach to learning mixed membership community models. In Conference on
Learning Theory, pages 867–881. PMLR, 2013.

[6] Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham M Kakade. A tensor
approach to learning mixed membership community models. Journal of Machine
Learning Research, 15(1):2239–2312, 2014.

[7] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. More algorithms for
provable dictionary learning. arXiv preprint arXiv:1401.0579, 2014.

[8] Sanjeev Arora, Rong Ge, Sushant Sachdeva, and Grant Schoenebeck. Finding over-
lapping communities in social networks: Toward a rigorous approach. In Proceedings
of the 13th ACM Conference on Electronic Commerce, pages 37–54, 2012.

96

[9] Maria-Florina Balcan, Christian Borgs, Mark Braverman, Jennifer Chayes, and Shang-
Hua Teng. Finding endogenously formed communities. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 767–783. SIAM,
2013.

[10] Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-
theoretic thresholds for community detection in sparse networks. In Conference on
Learning Theory, pages 383–416. PMLR, 2016.

[11] Jess Banks, Cristopher Moore, Roman Vershynin, Nicolas Verzelen, and Jiaming Xu.
Information-theoretic bounds and phase transitions in clustering, sparse PCA, and
submatrix localization. IEEE Transactions on Information Theory, 64(7):4872–4894,
2018.

[12] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine
Learning, 56(1-3):89–113, 2004.

[13] Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(3):115–135, 2016.

[14] Shai Ben-David, Ulrike Von Luxburg, and Dávid Pál. A sober look at clustering
stability. In International Conference on Computational Learning Theory, pages 5–
19. Springer, 2006.

[15] Marshall Bern, John R Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan Toledo.
Support-graph preconditioners. SIAM Journal on Matrix Analysis and Applications,
27(4):930–951, 2006.

[16] Quentin Berthet and Nicolai Baldin. Statistical and computational rates in graph
logistic regression. In International Conference on Artificial Intelligence and Statistics,
pages 2719–2730. PMLR, 2020.

[17] Quentin Berthet and Philippe Rigollet. Computational lower bounds for sparse PCA.
arXiv preprint arXiv:1304.0828, 2013.

[18] Quentin Berthet, Philippe Rigollet, and Piyush Srivastava. Exact recovery in the Ising
blockmodel. The Annals of Statistics, 47(4):1805–1834, 2019.

[19] L.E.J. Brouwer. Über abbildung von mannigfaltigkeiten. Mathematische Annalen,
71:97–115, 1912.

97

[20] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex opti-
mization. Foundations of Computational mathematics, 9(6):717, 2009.

[21] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE
Transactions on Information Theory, 51(12):4203–4215, 2005.

[22] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering partially observed
graphs via convex optimization. Journal of Machine Learning Research, 15(1):2213–
2238, 2014.

[23] Yudong Chen, Xiaodong Li, and Jiaming Xu. Convexified modularity maximization
for degree-corrected stochastic block models. The Annals of Statistics, 46(4):1573–
1602, 2018.

[24] Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 25. Curran Associates, Inc., 2012.

[25] Sean R Collins, Kyle M Miller, Nancy L Maas, Assen Roguev, Jeffrey Fillingham,
Clement S Chu, Maya Schuldiner, Marinella Gebbia, Judith Recht, Michael Shales,
et al. Functional dissection of protein complexes involved in yeast chromosome biology
using a genetic interaction map. Nature, 446(7137):806–810, 2007.

[26] Vinh Loc Dao, Cécile Bothorel, and Philippe Lenca. Community structure: A com-
parative evaluation of community detection methods. Network Science, 8(1):1–41,
2020.

[27] Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation
clustering in general weighted graphs. Theoretical Computer Science, 361(2-3):172–
187, 2006.

[28] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. Extraction and classification
of dense implicit communities in the web graph. ACM Transactions on the Web
(TWEB), 3(2):1–36, 2009.

[29] Nan Du, Bin Wu, Xin Pei, Bai Wang, and Liutong Xu. Community detection in
large-scale social networks. In Proceedings of the 9th WebKDD and 1st SNA-KDD
2007 Workshop on Web Mining and Social Network Analysis, pages 16–25, 2007.

[30] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
2010.

98

[31] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus Boesche,
Martina Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bastuck, Birgit
Dümpelfeld, et al. Proteome survey reveals modularity of the yeast cell machinery.
Nature, 440(7084):631, 2006.

[32] Nicolas Gillis and Stephen A Vavasis. Fast and robust recursive algorithmsfor sepa-
rable nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(4):698–714, 2013.

[33] Prem K Gopalan and David M Blei. Efficient discovery of overlapping communities in
massive networks. Proceedings of the National Academy of Sciences, 110(36):14534–
14539, 2013.

[34] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompo-
sitions. SIAM Review, 53(2):217–288, 2011.

[35] Hao Hu, Renata Sotirov, and Henry Wolkowicz. Facial reduction for symmetry reduced
semidefinite doubly nonnegative programs. arXiv preprint arXiv:1912.10245, 2019.

[36] Kejun Huang and Xiao Fu. Detecting overlapping and correlated communities without
pure nodes: Identifiability and algorithm. In International Conference on Machine
Learning, pages 2859–2868, 2019.

[37] Kejun Huang, Xiao Fu, and Nikolaos D Sidiropoulos. Anchor-free correlated topic
modeling: Identifiability and algorithm. In Advances in Neural Information Processing
Systems, pages 1786–1794, 2016.

[38] Jafar Jafarov, Sanchit Kalhan, Konstantin Makarychev, and Yury Makarychev. Cor-
relation clustering with asymmetric classification errors. In International Conference
on Machine Learning, pages 4641–4650. PMLR, 2020.

[39] Jafar Jafarov, Sanchit Kalhan, Konstantin Makarychev, and Yury Makarychev. Local
correlation clustering with asymmetric classification errors. In International Confer-
ence on Machine Learning, pages 4677–4686. PMLR, 2021.

[40] Thorsten Joachims and John Hopcroft. Error bounds for correlation clustering. In
Proceedings of the 22nd International Conference on Machine Learning, pages 385–
392, 2005.

99

[41] Emilie Kaufmann, Thomas Bonald, and Marc Lelarge. A spectral algorithm with
additive clustering for the recovery of overlapping communities in networks. In Inter-
national Conference on Algorithmic Learning Theory, pages 355–370. Springer, 2016.

[42] Ramya Korlakai Vinayak, Samet Oymak, and Babak Hassibi. Graph clustering with
missing data: Convex algorithms and analysis. Advances in Neural Information Pro-
cessing Systems, 27:2996–3004, 2014.

[43] Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Continuous
multivariate distributions, Volume 1: Models and applications. John Wiley & Sons,
2004.

[44] Ravishankar Krishnaswamy, Nived Rajaraman, et al. Robust correlation clustering.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2019.

[45] Nevan J Krogan, Gerard Cagney, Haiyuan Yu, Gouqing Zhong, Xinghua Guo,
Alexandr Ignatchenko, Joyce Li, Shuye Pu, Nira Datta, Aaron P Tikuisis, et al.
Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Na-
ture, 440(7084):637–643, 2006.

[46] Jing Lei, Alessandro Rinaldo, et al. Consistency of spectral clustering in stochastic
block models. The Annals of Statistics, 43(1):215–237, 2015.

[47] Xiaodong Li, Yudong Chen, and Jiaming Xu. Convex relaxation methods for commu-
nity detection. Statistical Science, 36(1):2–15, 2021.

[48] Xinxin Li, Ting Kei Pong, Hao Sun, and Henry Wolkowicz. A strictly contractive
peaceman-rachford splitting method for the doubly nonnegative relaxation of the min-
imum cut problem. Computational Optimization and Applications, 78(3):853–891,
2021.

[49] Jimit Majmudar and Stephen Vavasis. Provable overlapping community detection in
weighted graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 19028–
19038. Curran Associates, Inc., 2020.

[50] Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Corre-
lation clustering with noisy partial information. In Conference on Learning Theory,
pages 1321–1342, 2015.

100

[51] Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. On mixed memberships
and symmetric nonnegative matrix factorizations. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, pages 2324–2333. JMLR. org,
2017.

[52] Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. Overlapping clustering
models, and one (class) SVM to bind them all. In Advances in Neural Information
Processing Systems, pages 2126–2136, 2018.

[53] Xueyu Mao, Purnamrita Sarkar, and Deepayan Chakrabarti. Estimating mixed mem-
berships with sharp eigenvector deviations. Journal of the American Statistical Asso-
ciation, pages 1–13, 2020.

[54] Claire Mathieu and Warren Schudy. Correlation clustering with noisy input. In Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 712–728. SIAM, 2010.

[55] Nimrod Megiddo. Linear programming in linear time when the dimension is fixed.
Journal of the ACM (JACM), 31(1):114–127, 1984.

[56] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E Tarjan. Clustering
social networks. In International Workshop on Algorithms and Models for the Web-
Graph, pages 56–67. Springer, 2007.

[57] James R Munkres. Analysis on manifolds. CRC Press, 2018.

[58] Tamás Nepusz, Haiyuan Yu, and Alberto Paccanaro. Detecting overlapping protein
complexes in protein-protein interaction networks. Nature Methods, 9(5):471, 2012.

[59] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[60] Danilo Elias Oliveira, Henry Wolkowicz, and Yangyang Xu. ADMM for the SDP re-
laxation of the QAP. Mathematical Programming Computation, 10(4):631–658, 2018.

[61] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clus-
tering. In Proceedings of the Twenty-Fifth annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1267–1286. SIAM, 2014.

[62] David Pollard. Strong consistency of k-means clustering. The Annals of Statistics,
pages 135–140, 1981.

101

[63] Mason A Porter, Peter J Mucha, Mark EJ Newman, and Andrew J Friend. Com-
munity structure in the United States house of representatives. Physica A: Statistical
Mechanics and its Applications, 386(1):414–438, 2007.

[64] Ioannis Psorakis, Stephen Roberts, Mark Ebden, and Ben Sheldon. Overlapping com-
munity detection using Bayesian non-negative matrix factorization. Physical Review
E, 83(6):066114, 2011.

[65] Qing Qu, Ju Sun, and John Wright. Finding a sparse vector in a subspace: Linear
sparsity using alternating directions. In Advances in Neural Information Processing
Systems, pages 3401–3409, 2014.

[66] Sara Rahiminejad, Mano R Maurya, and Shankar Subramaniam. Topological and
functional comparison of community detection algorithms in biological networks. BMC
Bioinformatics, 20(1):1–25, 2019.

[67] Ali Rahnavard, Suvo Chatterjee, Bahar Sayoldin, Keith A Crandall, Fasil Tekola-
Ayele, and Himel Mallick. Omics community detection using multi-resolution cluster-
ing. Bioinformatics, 2021.

[68] Avik Ray, Javad Ghaderi, Sujay Sanghavi, and Sanjay Shakkottai. Overlap graph
clustering via successive removal. In 2014 52nd Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton), pages 278–285. IEEE, 2014.

[69] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine
Learning Research, 12(12), 2011.

[70] Karl Rohe, Sourav Chatterjee, Bin Yu, et al. Spectral clustering and the high-
dimensional stochastic blockmodel. The Annals of Statistics, 39(4):1878–1915, 2011.

[71] Michael T Schaub, Jean-Charles Delvenne, Martin Rosvall, and Renaud Lambiotte.
The many facets of community detection in complex networks. Applied Network Sci-
ence, 2(1):4, 2017.

[72] Vatsal Sharan, Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Compressed fac-
torization: Fast and accurate low-rank factorization of compressively-sensed data. In
International Conference on Machine Learning, pages 5690–5700, 2019.

[73] Huawei Shen, Xueqi Cheng, Kai Cai, and Mao-Bin Hu. Detect overlapping and hier-
archical community structure in networks. Physica A: Statistical Mechanics and its
Applications, 388(8):1706–1712, 2009.

102

[74] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used
dictionaries. In Conference on Learning Theory, 2012.

[75] Chaitanya Swamy. Correlation clustering: Maximizing agreements via semidefinite
programming. In SODA, volume 4, pages 526–527. Citeseer, 2004.

[76] Levent Tunçel. Polyhedral and semidefinite programming methods in combinatorial
optimization, volume 27. American Mathematical Soc., 2016.

[77] Stijn Van Dongen. Graph clustering via a discrete uncoupling process. SIAM Journal
on Matrix Analysis and Applications, 30(1):121–141, 2008.

[78] Roman Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge university press, 2018.

[79] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007.

[80] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral
clustering. The Annals of Statistics, pages 555–586, 2008.

[81] Tengyao Wang, Quentin Berthet, and Yaniv Plan. Average-case hardness of RIP
certification. Advances in Neural Information Processing Systems, 29:3819–3827, 2016.

[82] Feng Ying Yu, Zhi Hao Yang, Xiao Hua Hu, Yuan Yuan Sun, Hong Fei Lin, and Jian
Wang. Protein complex detection in PPI networks based on data integration and
supervised learning method. BMC Bioinformatics, 16(12):S3, 2015.

[83] Feng Ying Yu, Zhi Hao Yang, Nan Tang, Hong Fei Lin, Jian Wang, and Zhi Wei Yang.
Predicting protein complex in protein interaction network - a supervised learning based
method. BMC Systems Biology, 8(S3):S4, 2014.

[84] Yang Yu, Xiaolong Wang, Lei Lin, Chengjie Sun, and Xuan Wang. A supervised
approach to detect protein complex by combining biological and topological properties.
International Journal of Data Mining and Bioinformatics, 8(1):105–121, 2013.

[85] Yuan Zhang, Elizaveta Levina, and Ji Zhu. Detecting overlapping communities in
networks using spectral methods. SIAM Journal on Mathematics of Data Science,
2(2):265–283, 2020.

103

	List of Figures
	List of Tables
	Introduction
	Thesis Outline and Contributions
	Notation

	Background
	Convex Optimization
	Linear Programming
	Semidefinite Programming

	Dirichlet Distribution
	Concentration Inequalities

	Clustering
	Unsupervised Machine Learning
	Clustering and Some of its Combinatorial Formulations
	Average Case Analysis/Provable Recovery
	Existing Cluster Recovery Techniques
	Spectral Methods
	Convex Relaxation Methods
	Combinatorial Methods

	Provable Overlapping Community Detection in Weighted Graphs
	Problem Introduction
	Problem Formulation
	SP+LP Recovery Algorithm
	Theoretical Guarantees
	Proofs
	LP Analysis
	Some Concentration Properties in the MMSB
	Proof of Main Theorem

	Experiments
	Synthetic Graphs
	Real-world Graphs

	Conclusions

	Robust Correlation Clustering with Asymmetric Noise
	Problem Introduction
	Problem Formulation
	Node Features Model (NFM)
	Nature of Noise in the NFM
	Feature Space for a Cluster in the NFM
	Relation to the MMSB

	1-diag Recovery Algorithm
	Warmup
	Theoretical Guarantees
	Proofs
	Lack of Robustness

	 Recovery Algorithm
	Theoretical Guarantees
	Proofs

	Conclusions

	Conclusions and Future Work Directions
	References

