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Abstract

We study the differentially private (DP) selection problem, where the goal is to select
an item from a set of candidates that approximately maximizes a given objective function.
The most common solution to this problem is to use the exponential mechanism. The issue
with this approach is that the exponential mechanism must compute the objective function
for all possible candidates in the domain. For many real-world problems, the length of the
domain is exponential, making this approach impractical. Genetic algorithms (GAs) use
the principles of evolution in nature to efficiently search through large domains and find
the best candidate. However, current work applying DP to GAs exhibits poor utility and
the results are difficult to reproduce.

This work provides a new DP GA based on the popular simple genetic algorithm from
the non-private literature. The biggest challenge is the number of selections made in the
simple GA, each consuming a part of the privacy budget under DP. Our design reduces
the number of selections and takes advantage of advanced composition techniques to over-
come this challenge without impeding the heuristics that make the simple GA effective.
We evaluate our solution over four different datasets using both convex and non-convex
problems. The results demonstrate that our GA outperforms previous work in DP GAs
as well as DP local search techniques. We further show that our DP GA offers increased
utility across different datasets for efficiently scaling the exponential mechanism to large
domains. Finally, we demonstrate that our general solution is competitive in utility or
efficiency with state-of-the-art problem-specific solutions.
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Chapter 1

Introduction

A fundamental problem in data science is selecting a candidate from a set of items that
maximizes some objective function. For example, one might want to identify the most
frequent conditions, choose the most representative features, or find the best ML model
parameters for a given dataset. However, these datasets often contain sensitive informa-
tion; thus, protecting the participants’ privacy is crucial. An increasingly popular notion for
protecting the privacy of individuals while allowing the computation of aggregate statistics
is differential privacy (DP). Differential privacy guarantees that the output of an algo-
rithm is approximately the same regardless of the participation of any single user. The
intuitive guarantee, along with a tunable privacy parameter, has led to wide adoption of
DP by organizations such as Google [21], Microsoft [11], Apple [10], and the U.S. Census
Bureau [42].

We focus on the problem of differentially private selection, which involves selecting
an item from a set of candidates that approximately maximizes a given objective function,
while preserving differential privacy. The most popular mechanism for solving this problem
is the exponential mechanism [44]. The exponential mechanism can be used as a standalone
algorithm for heavy hitter or median [19, 41] calculations. It can also act as a building
block for much more sophisticated algorithms such as principal component analysis [7],
synthetic data generation [60], and empirical risk minimization [4]. The biggest weakness
of the exponential mechanism is scalability. The exponential mechanism requires that the
utility function is evaluated for all possible candidates in the domain. This results in
exponential runtime for many problems such as ML model fitting or k-medians clustering.
One possible solution is the sub-sampled exponential mechanism; however, this technique
depends heavily on the utility of the sample [38]. Another solution specific to top-k counting
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queries avoids considering the whole domain but assumes the domain has been sorted and
has a non-trivial chance of returning no solution [16].

Genetic algorithms (GAs) use the principles of evolution in nature to search through
large domains and find an optimal candidate efficiently. Like the exponential mechanism,
GAs require minimal assumptions about the objective function and can be applied to a
wide range of problems. GAs also tend to be robust to noisy objective functions [56].
Despite these appealing properties, there have been no promising experimental results ap-
plying GAs to the DP selection problem. The only work in this space is a solution called
PrivGene which presents the first DP GA [61]. In this work, Zhang et al. first introduce
a private GA but move to a private evolutionary strategy (without crossover) as it shows
better performance. All of the experiments were conducted using the evolutionary strat-
egy which we call PrivEEM. Therefore, the performance of the GA was not evaluated.
When evaluating PrivGene, both Su et al.’s [54] work and our own have not been able to
reproduce similar results. Su et al. speculate that the poor performance is due to the de-
structive nature of the crossover operator and the large number of selections needed [54]. A
contributing factor to the reproducibility problems is that the source code published with
PrivGene does not match any of the algorithms in the paper. Instead, Zhang et al. in-
cluded code for an algorithm called PrivLocal that follow-up work mistakenly evaluated
as PrivGene [39]. To summarize, the current literature either does not evaluate a true DP
GA [39,61] or shows very poor performance [54].

In this thesis, we propose a new DP GA based on the classic simple GA as defined
by Mitchell [46]. A naive approach would replace all selections in the simple GA with
calls to the exponential mechanism. However, this would incur a prohibitively high cost
in the privacy budget and reduce the selection pressure to such an extent that it thwarts
the evolution of the population. Instead, we use the less popular truncation selection
operator in conjunction with a DP selection mechanism to reduce the privacy budget
while maintaining both selection pressure and diversity. We experimentally choose the DP
mechanism and composition technique that yields the highest utility when paired with our
simple GA. After designing our GA, we investigate the effect of DP on the hyperparameters
of the simple GA and suggest good default values that generalize across the datasets and
problems we considered.

We empirically evaluate the utility of our solution on two example problems: logistic
regression (convex) and k-medians (non-convex). We conduct an extensive experimental
evaluation against four categories of prior work: genetic algorithms and evolutionary strate-
gies, local search techniques, efficient exponential mechanism alternatives, and problem-
specific solutions. First, for genetic algorithms and evolutionary strategies, our DP simple
GA not only outperforms PrivGene, but PrivEEM as well. For local search approaches,
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we show we can outperform PrivLocal in logistic regression, and the local search of Gupta
et al. [29] for k-medians. We demonstrate that our DP GA offers an efficient exponential
mechanism alternative for large domains providing a much more stable solution than the
subsampled exponential mechanism. Finally, we show that our general-purpose solution
is competitive in utility or efficiency when compared with state-of-the-art problem-specific
solutions.

The remainder of the thesis is organized as follows: In Chapter 2 we introduce ge-
netic algorithms and differential privacy. We define our problem and detail the relevant
literature in Chapters 3 and 4. In Chapter 5 we design a non-private simple GA for our
example problems and then discuss how we add privacy in Chapter 6. Chapter 7 tunes the
hyperparameters and looks into alternate utility functions. Finally, Chapter 8 compares
our solution with four categories of related work.
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Chapter 2

Preliminaries

2.1 Genetic Algorithms

The Genetic Algorithm (GA) is a metaheuristic that mimics the evolutionary concept of
natural selection [25,28]. The idea was first introduced by John Holland in the 1960s and
has since been developed extensively [30]. The foundations of the GA are very simple
operations, that when applied carefully and repeatedly, enable an effective search through
complex solution spaces. These simple operations are often probabilistic in nature but
heavily guided by the utility of the solutions. The key ingredients required to apply a GA
are an encoding of possible solutions, which we call chromosomes, and a utility function.
The encoding is most commonly a binary string but can also be a real or multi-valued vector
depending on what is most natural for the problem at hand. The utility function takes
as input a chromosome (encoded solution vector) and returns a real number representing
the effectiveness of the chromosome at solving the problem. To guide the search, a GA
evaluates this utility function directly and does not require derivatives or any auxiliary
knowledge. As such, there are minimal restrictions on the types of utility functions that
can be considered.

Rather than starting from a single point, a GA begins with a population of randomly
generated chromosomes and continues to modify or evolve this population over time. Upon
this population, a series of simple operations that mimic those seen in evolution are ap-
plied. These operations are very probabilistic in nature to keep the population diversity
and effectively explore the space. These operations simulate the ideas of mating and mu-
tation in the real world. For instance, to mimic mating, the GA will take two high utility
parent chromosomes and combine them to create offspring chromosome(s). For mutation, a
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chromosome undergoes a minor perturbation that may or may not increase its utility. The
population is updated in this manner for multiple generations until some stopping criteria
are met. This could either be that the optimal solution has been found, the population
has converged, or a preset amount of time has passed.

2.1.1 The Simple GA

There are many variants of the GA; we focus on the simple GA as defined by Mitchell [46]
for this work. The simple GA consists of four main operations: initialization, selection,
crossover, and mutation. There are many possible versions of each of these operations.
We will describe the most simple example of each. In Algorithm 1, we lay out the basic
procedure of the simple GA and how each of the four main operations are invoked. As
input, the algorithm takes a utility function and a set of four hyperparameters which we
will describe as they are used.

The first step in the algorithm (line 1) is to initialize the population with Np chromo-
somes. Most commonly, these chromosomes are sampled uniformly at random from the
domain of possible chromosomes. Alternatively, if domain knowledge is available, one can
employ more sophisticated techniques such as sampling from a particular distribution or
inserting baseline solutions. Once the initial population is created, we enter the algorithm’s
main loop (line 2). Each iteration of this loop represents a generation. For simplicity, we
assume a fixed number of generations (Ng). In each generation, the simple GA creates an
entirely new population based on the current population. Once created, this new popu-
lation will completely replace the current population for the next generation. We denote
this new population P ′ and build this population using the while loop in line 4.

To create the new population, we repeatedly use the remaining three main operators:
selection, crossover, and mutation. First, using the selection operator, we select two parent
chromosomes p1 and p2 (line 5). The most common way to do this is Goldberg’s roulette
wheel, or fitness proportionate selection. Simply put, we randomly sample two parents
weighted linearly by their utility. That is, we give each solution a slice of an imaginary
roulette wheel proportionate to its utility. We then spin the wheel twice to choose the
parents.

Next (line 6), we use the pc hyperparameter to decide if we should breed these parents
or simply give them a free ticket to the next generation. More precisely, we sample from a
Bernoulli distribution centered at pc (toss a biased coin) and, based on the outcome, either
invoke the crossover operator (line 7) or simply return the parents themselves (line 9). The
most simple crossover operator is the single-point crossover operator. For this approach,
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we choose a random point in the chromosome and create children by taking everything
before that point from p1 and everything after from p2 and vice versa for the other child.

Once we have the set of children, C, the mutation operator is applied to each child
(line 10). The most basic mutation operator iterates through each dimension of the given
chromosome and, with a very small probability pm, replaces the value with a uniformly
random one. Finally, after mutation, the children are added to the new population (line 11).
This process (selection, crossover, and mutation) repeats until we have a new population
P ′, which is the same size as the old one P . This marks the end of a generation. As the final
step in each generation, we kill off the current generation and replace it with the new one
(line 12). After all Np generations have passed, we are left with a population P containing
some of the best chromosomes we have seen so far. Typically, the last step (line 13) is to
greedily choose the best chromosome from that population to solve the problem.

Algorithm 1 The Simple GA

Inputs: u: Utility function.
pc: Fixed probability we do crossover.
pm: Fixed probability we do mutation.
Ng: Number of generations.
Np: Size of the population.

1: P ← initialize(Np)
2: for generation in range(Ng) do
3: P ′← ∅
4: while |P ′| ≤ Np do
5: p1, p2 ← Select(u(P))
6: if Bernoulli(pc) then
7: C ← Crossover(p1, p2)
8: else
9: C ← p1, p2

10: C ← Mutate(C, pm)
11: P ′ ← C
12: P ← P ′
13: return argmax(u(P))
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2.2 Differential Privacy

An increasingly popular approach to utilizing private data while maintaining the privacy
of individuals is differential privacy (DP) [17]. In recent years, many organizations such as
Google [21], Microsoft [11], Apple [10], and the U.S. Census Bureau [42] have all adopted
differential privacy. The mathematical definition of differential privacy guarantees that
the information learned from a private database would be approximately the same with or
without any single user’s participation. Using this notion, data analysts can perform many
useful queries on the data while giving an intuitive privacy guarantee to participants.

We work in what is called the central model of DP, where a user sends their data to a
trusted curator who collects the data and runs certain private algorithms on the private
data. That is, the curator is assumed to have access to the entire private dataset D
in plaintext. We denote a general private algorithm as M that returns some aggregate
statistic M(D) ∈ R. More formally, differential privacy can be defined as follows.

Definition 2.1 (Differential Privacy). A randomized algorithm M : D 7→ R is (ε, δ)-DP,
if for any pair of neighbouring datasets D,D′ ∈ D, and for any T ⊆ R we have

Pr[M(D) ∈ T ] ≤ eε Pr[M(D′) ∈ T ] + δ. (2.1)

The parameter ε captures how much sensitive information is leaked by the mechanism
M. The lower the value of ε, the better the privacy. Typically, values less than ε = 1
are considered to provide high privacy. The parameter δ makes it easier to satisfy DP
by allowing a small chance of failure in the guarantee. Thus, if δ 6= 0, then we say that
the mechanism provides approximate differential privacy. When δ = 0 it satisfies pure
differential privacy. It is typical to choose δ < 1/n, where n is the number of elements
in the dataset [19]. We say that two datasets are neighbouring if |D| = |D′| = n and
|D ∩D′| = n− 1. That is, we allow the replacement of a single data point. This is known
as the bounded definition of differential privacy.

The most common way to make a function or statistic satisfy differential privacy is
to bound the output of the function and add random noise. Specifically, we bound the
maximum change in a functions output when changing the input from D to D′. More
formally,

Definition 2.2 (Sensitivity). Let f : D 7→ R. If m is a distance metric between elements
of R then the m-sensitivity of f is

∆(f)
m = max

(D,D′)
m(f(D), f(D′)), (2.2)

where (D,D′) are pairs of neighbouring datasets.
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Typical examples of the distance metric m are the `1-norm and `2-norm. For our work,
we assume `1-norm unless otherwise specified. The most common mechanism in differential
privacy adds Laplace noise to a function based on the sensitivity and the privacy parameter
ε. This mechanism is called the Laplace mechanism and is defined as follows.

Definition 2.3 (Laplace Mechanism). Let f : D 7→ R. The Laplace mechanism is defined
as

M(D) = f(D) + Lap(∆(f)/ε), (2.3)

where ∆(f) represents the `1 sensitivity of f .

Lemma 2.4 (Privacy of the Laplace Mechanism [19]). The Laplace mechanism as defined
above satisfies ε-DP

The Laplace mechanism is particularly useful when R is continuous. For discrete spaces,
the exponential mechanism is a more popular choice [44]. We will define this and other
mechanisms in Section 6.2.

Finally, we discuss some useful properties of differential privacy. The first is com-
position. Specifically, if we apply a differentially private mechanism(s) sequentially, the
resulting privacy parameter is simply the sum of the privacy parameter in each step. We
call this the naive composition theorem.

Lemma 2.5 (Naive Composition [19]). Let M = (M1,M2, . . . ,Mn) be a sequence of
ε-DP mechanisms applied sequentially and adaptively. Then M is nε-DP.

This is the most basic of the DP composition theorems. We will discuss more sophis-
ticated compositions in Section 6.3. Another useful property of differential privacy is the
post-processing lemma.

Lemma 2.6 (Post-Processing Lemma [19]). If M : D 7→ R, is a ε-DP mechanism, then
A ◦M is ε-DP where A is an arbitrary function applied on the output of M.

This lemma states that once a DP result has been published, we can apply any addi-
tional processing we wish without affecting the privacy guarantee.
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Chapter 3

Problem Statement

3.1 Defining DP Selection

In a selection problem, an analyst is assumed to have a large number of candidate items
as input, from which they want to select the best (or the top-k). We define this notion
of “best” using a utility function which is also given as an input to the problem. In the
private version of this problem, the utility of the items depends on a dataset of sensitive
information in some way. For instance, an analyst may want to know the most common
level of education among a group of individuals. In this example, the candidate items are
the various levels of education, and the utility function would be the count of individuals
who obtained this level of education. What constitutes a candidate item can vary but is
usually constructed from the sensitive data in some way, such as choosing a row of the
database, training a machine learning model, or creating a synthetic database.

More formally, given a set of candidate items R and corresponding utility function
u : D × R → R, the objective is to return a candidate item r ∈ R that approximately
maximizes u(D, r), whilst satisfying differential privacy. We define the sensitivity of this
utility function as

Definition 3.1. The sensitivity of a utility function u : D ×R → R is defined as

∆(u) = max
r∈R

max
D,D′∈D

|u(D, r)− u(D′, r)| (3.1)

where D,D′ are neighbouring datasets.
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The only assumptions we make about a given utility function are that the sensitivity
in (3.1) is bounded.

The goal of this thesis is to provide a general purpose, optimization algorithm for
solving DP selection problems that have large and complex candidate item spaces. We
will evaluate this goal experimentally in terms of the utility of the solutions obtained on
a variety of problems in Chapter 8. To satisfy our goal of privacy, a complete proof of
privacy is included in Section 6.5.

3.2 Example Problem Definitions

Throughout the thesis, we will focus on two specific instances of DP selection with larger
candidate item spaces. We consider the convex optimization problem of training a logistic
regression model and the more difficult non-convex problem of k-medians.

3.2.1 Logistic Regression

Let D represent the data domain, where each entry x is a tuple of dimension d, with an
integer label y. We consider a dataset D ∼ D. We study the task of creating a classifier
h() that given an input x can accurately predict the true label y. Specifically, we fit a
single logistic regression model with a sigmoid activation function to the dataset D. The
model has the following parameters to be learned: a d-dimensional vector of weights, α,
and a bias β. Using these parameters, for a given tuple x, the model makes a classification
using the following formula

h(x) =
1

1 + e−x·α−β
(3.2)

The goal in this problem is to find a set of parameters, (α, β) such that the following
function is maximized

u(D, (α, β)) = − 1

|D|
∑
x∈D

I(bh(x)e 6= y) (3.3)

where I is an indicator function,bh(x)e represents rounding h(x) to the nearest integer,
and y represents the true label of a point x. This represents the standard zero one loss,
i.e., the fraction of miss-classified instances in the training set.
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3.2.2 k-Median / Facility Location

The k-median problem has many definitions in the literature as is often confused with
the k-medoid and k-means problems. To avoid this confusion, we begin by describing
similar problems. The k-means problem aims to find a set of k cluster centers (real-
valued vectors) that minimize the Euclidean distance from all data points to their closest
center. The k-medoids problem aims to find a set of k data points (from the dataset) or
medoids that minimize the distance from all data points to their nearest medoids. The key
difference between k-medoids and the k-means problem is that in k-medoids, all cluster
centers must be present in the dataset rather than just arbitrary points in Euclidean
space. The k-median problem has multiple definitions, but in general, the problem sits
somewhere between k-medoids and k-means. In the privacy literature [29, 38], k-median
refers to selecting the cluster centers from a finite domain set V . Almost unanimously, the
k-median problem considers the `1 distance metric while the `2 metric is more common for
k-means and k-medoid. Some works consider a variant of k-medians over the reals with
the `1 distance metric. We focus on the former definition where we are given some finite
domain V and a private set of demand points D ⊂ V .

Since we are working in the private setting, we generalize this definition to instead
consider a private set of demand points and a public set of possible cluster centers. We
remark that setting the public set to be the domain V gives the previous definition from
the literature. The goal remains to find a set of k points from the public set such that
the distance for a member of the private set to its nearest cluster in the public set is
minimized. We let V represent the data domain, where each record is a tuple of dimension
d. We consider a private dataset D ⊂ V and a public set of potential medians (facilities)
P ⊂ V such that P ∩D = ∅.1 The goal is to choose M ⊂ P with |M | = k such that the
following function is maximized.

u(D,M) = −
∑
x∈D

min
y∈M

dist(x, y) (3.4)

where we assume dist represents `1 distance.

1This can be relaxed when considering P = V
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Chapter 4

Related Work

4.1 Differentially Private Selection

The most well-known solution for differentially private selection is the exponential mecha-
nism [44]. The exponential mechanism assigns a probability to each candidate item based
on its utility, scaled by the privacy budget and sensitivity. Under this regime, high utility
solutions are exponentially more likely to be chosen, resulting in strong accuracy guaran-
tees. Recently, McKenna and Sheldon introduced an improved version of the exponential
mechanism called the permute and flip mechanism [43]. This algorithm always improves
the utility of the exponential mechanism up to a factor of two. A common alternative to
the exponential mechanism is the report noisy max mechanism by Dwork and Roth [19].
In this mechanism, we add Laplacian noise to the utility of each candidate before choos-
ing the max. Recent work has shown that both the exponential mechanism and permute
and flip are equivalent to the noisy max algorithm with Gumbel and exponential noise
respectively [12,16].

A major limitation of the exponential mechanism and report noisy max is the utility of
every candidate must be computed and considered for selection. If the domain of candidate
items is large, this results in prohibitively high computation complexity. One attempt to
address this issue was the sub-sampled exponential mechanism, which applies the expo-
nential mechanism to a random sample of the domain [38]. The limitation of this work is
that high-quality solutions are often discarded in the sampling. In a similar light, Durfee
and Rogers investigate solving the top-k selection problem for counting queries without
considering the entire domain [16]. They introduce a plethora of novel techniques along
the way, which we take advantage of in our work. The limitations of this work is that they
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assume the domain of candidates is sorted in order of utility, and there is a non-trivial
chance that no solution is returned.

All the above work considers the non-interactive setting of differentially private selec-
tion. That is, we assume all candidates are present at the start of the decision process.
An interesting problem is how to choose the best candidate in an online setting. The
most common solution is to use the spare vector technique (SVT) introduced by Dwork et
al. [18]. In this online setting, it is impossible to know when we have encountered the best
solution. Instead, we assume there exists a publicly known threshold, and SVT returns the
candidate(s) whose utility exceeds said threshold. The novelty of SVT is that the privacy
budget depends only on the number of queries above the threshold. In this work, we focus
solely on the non-interactive setting of differentially private selection.

4.2 Differentially Private Nature-Inspired Algorithms

Very few works have focused on nature-inspired algorithms under the constraints of differ-
ential privacy. Most similar to our work is PrivGene, a work by Zhang et al. [61]. This
work was the first and only work to propose a differentially private genetic algorithm in the
literature. We explain the algorithm in detail and compare our work to PrivGene in Sec-
tion 8.1. Although no other works have studied differentially private genetic algorithms,
others have evaluated PrivGene in follow-up work [39, 54]. Most notably, Su et al. [54]
thoroughly evaluated PrivGene and pointed out several flaws in the algorithm that caused
it to perform poorly. Specifically, they mention how crossover often does not result in
reasonable solutions and that the number of selections requires too much privacy budget.
We address these issues in our work, reducing the amount of crossover and optimizing
the privacy budget consumption. Su et al. [54] were also the first to formalize PrivLocal,
a local search algorithm whose source code was published with the PrivGene paper [61].
While this algorithm is not a genetic algorithm, it does yield impressive performance. We
evaluate the performance of PrivLocal in Section 8.2.1.

While PrivGene has been the only work investigating differentially private genetic al-
gorithms, other works have made use of swarm intelligence and evolutionary computation
alongside differential privacy. Zorarpacı and Özel used the artificial bee colony algorithm
and differential evolution to improve the classification accuracy of differentially private 1R
classification [63]. However, they applied these techniques non-privately as a pre-processing
step and did not attempt to make either of these nature-inspired techniques private. Liu
and Hui study the use of the bat algorithm to provide a differentially private consensus
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protocol for multi-agent systems [40]. We instead focus on the problem of private selection
in the central model of differential privacy.

4.3 Differentially Private Logistic Regression

Logistic regression is arguably one of the most commonly used examples of a convex opti-
mization problem. Most works do not typically aim to solve the problem of differentially
private logistic regression. Instead, they use it as one of the multiple examples to evaluate
the effectiveness of their optimization algorithm. We discuss the three major categories of
techniques in the differentially private optimization space: output, objective, and gradient
perturbation. Chaudhuri et al. [6] first introduced output and objective perturbation as
solutions for differentially private empirical risk minimization. They showed that objective
perturbation was the most effective algorithm that they introduced. Following up on this
work, Kifer et al. [36] provided an approximate-DP algorithm that improves the utility
and applicability of Chaudhuri et al.’s work. While these algorithms are strong theoreti-
cally, they rely on finding the exact minimum to be private, limiting their effectiveness in
practice [31].

A more popular approach is to use a private version of the gradient decent algorithm,
which adds noise to the gradients to preserve privacy. Gradient perturbation was first
suggested by Williams and McSherry [57] and later formally introduced by Song et al. [52].
Bassily et al. significantly developed this algorithm and provided optimal lower bounds for
the problem [4]. Arguably the most significant development in gradient perturbation was
the moments accountant of Abadi et al., which scaled gradient perturbation to practical
deep neural networks [1].

Recent work by Iyengar et al. [31] introduces a new technique for differentially pri-
vate convex optimization, related to objective perturbation, called approximate minima
perturbation. Aside from the novel algorithm, one of the significant contributions of this
work is an extensive performance benchmark of state-of-the-art algorithms from the three
major areas of work in differentially private convex optimization (output, objective, and
gradient perturbation). We use this publicly available benchmarking codebase to evaluate
the performance of our techniques in Section 8.4.1.

In addition to the approaches mentioned above, we discuss some other notable works
that have been used to solve logistic regression. The Frank-Wolfe algorithm [26] is a popular
iterative first-order optimization algorithm that was made private by Talwar et al. in 2016
[55]. The functional mechanism, introduced by Zhang et al. [62], provides a different
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approach to objective perturbation utilizing the Laplace mechanism. This technique is
limited to polynomial objective functions with bounded degree, and thus to solve logistic
regression, they use a Taylor series approximation. Mohan et al. developed GUPT [47],
a general-purpose DP algorithm based on the sample and aggregate framework [51]. The
algorithm breaks a given problem into sub-problems which can be solved non-privately
before taking a differentially private average of the results. We further evaluate the DP
Frank Wolfe algorithm in section 8.4.1 using Iyengar et al.’s benchmark [31]. Zhang et
al. [61] showed that PrivEEM consistently outperforms both GUPT and the functional
mechanism, so we exclude these from our evaluation.

4.4 Differentially Private k-Median

We recall that we focus on the k-median problem over a finite domain as defined in Sec-
tion 3.2. The first work to define the k-median problem in a private setting was Gupta et
al. [29]. Gupta et al. presented a differentially private local search algorithm inspired by
the non-private local search of Arya et al. [2]. To adapt this search to the private setting,
Gupta et al. simply apply the exponential mechanism to decide which is the best swap in
each iteration [29]. Following up on this work, Lantz et al. used the k-median problem
to show the effectiveness of the sub-sampled exponential mechanism [38]. Recall that this
mechanism randomly samples the set of possible solutions before applying the standard
exponential mechanism. Lantz et al. show that their approach outperforms Gupta et al.’s
in both time and utility [38].

Finally, the most recent work in this space is that of Jones et al. [32]. Jones et al. create
a differentially private coreset (a small synthetic dataset optimized for clustering) and then
apply any off-the-shelf non-private algorithm as post-processing [32]. This technique first
uses the unweighted set cover algorithm of Gupta et al. [29] to select candidate cluster
centers whose epsilon balls contain many private data points. They then map the private
data points onto the candidate cluster centers using the Laplace mechanism. We evaluate
all three of these mechanisms (Gupta, Lantz, and Jones) against our work in Chapter 8.
Nguyen et al. [48] take a similar approach to Jones et al. [32] but instead focus on the
k-means objective. The main differences between the two works are how they tailor the
discretization and maximum coverage steps to the euclidean k-means problem.

A closely related problem, and a typical application of the k-median problem, is the
facility location problem. In this problem, there is a set of clients (private data points) and
facilities (candidate cluster centers). The goal is to choose a set of k facilities such that the
distance from clients to their closest facility is minimized. Gupta et al. were once again
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the first to consider this problem in the private setting [29]. They first gave a lower bound
on the approximation ratio of this problem under differential privacy. Motivated by this,
they solve a more general version of the problem that outputs a superset of the facilities to
be opened. Esencayi et al. also considered the more general problem definition of Gupta
et al. and provided improved algorithms to further reduce the approximation ratio under
differential privacy [22]. In this work, we focus exclusively on the vanilla k-median problem.

Multiple works have used the k-medians algorithm of Gupta et al. [29] as a building
block for solving the euclidean k-means problem under differential privacy. For example,
Balcan et al. [3] solves the euclidean k-means (and k-median) problem by first discretizing
the euclidean space, then applying the techniques of Gupta et al. Kaplan and Stemmer [34]
later improved on this work using locality-sensitive hashing to improve the discretization
step. Both works focus on ways to apply Gupta et al.’s local search to the euclidean space,
and thus we exclude them from our evaluation since our space is already discrete.

There are other notable works that solve variants of the k-median problem. For exam-
ple, Cohen et al. study a simplified clustering problem, which they call k-tuples clustering,
where the data is assumed to be distributed in k well separated clusters [8]. Feldman et
al. [23] solves the differentially private corset problem in two-dimensional Euclidean space,
which can be post-processed to get a solution for k-medians clustering. The coreset idea
was later improved and applied to k-means problem [24]. Ghazi et al. [27] focus on the
densest ball problem, which has many applications, including solving the k-means prob-
lem. For our evaluation, we focus on the literature that solves the vanilla k-median problem
over a discrete solution space [29,32,38]. Applying our algorithm to other variations of the
k-median problem mentioned above would be an interesting line of future work.
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Chapter 5

Building a Simple Genetic Algorithm

In this chapter, we first outline how to solve our example problems defined in Section 3.2
using a simple GA. Then, we explain how we will empirically evaluate the effectiveness of
the GA in solving these problems.

5.1 Encodings and Basic GA Operations

Encoding Solutions Recall that to apply a genetic algorithm to a given problem, we
require two main things. First, a utility function, which we have defined in Section 3.2.
Second, an encoding of potential solutions to the problem. For the problem of logistic
regression, recall that a solution to this problem is a set of parameters (α, β). To encode
them, we simply concatenate α and β to obtain a real valued vector θ of length d+ 1. We
restrict each entry θi ∈ [−1, 1]. For the k-median problem, a solution is a representation
of the set M of k unique data points representing the best medians. We encode this as a
vector of length k where each entry is an integer representing the index of a tuple in P .

Initialization Operators Recall that this operator is used to create the initial popu-
lations that the GA will update over time. We mentioned that the most popular method
is to randomly initialize the population unless one has problem-specific background infor-
mation. For logistic regression, starting from a solution of all zero weights is common as
this represents the center of the sigmoid activation function. However, initializing all chro-
mosomes to zero vectors would not allow for much diversity in the early generations. As
such, we generate 95% of the population uniformly at random (such that θi ∈ [−1, 1]) and
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insert zero vectors as the remaining 5%. For the k-median problem, there is no well-known
initialization technique that does not use the private data, and thus we use a uniformly
random initialization.

Crossover Operators The crossover operator is used to combine two parent solutions
into one or two child solutions. We use a standard crossover operator called uniform
crossover (Algorithm 2), where each parameter value is equally likely to come from either
parent. This can be thought of as a generalization of single-point crossover with the
maximum number of crossover points. For the k-median problem, we note that crossover
can introduce repeated entries in the chromosome, which is no longer a valid solution
(|c| 6= k). We use a variant of uniform crossover to address this to ensure that the |c| = k,
i.e., there are no repeated entries. Specifically, we take two parent solutions p1, p2 and
obtain the set union of their entries, then uniformly sample a child c ∼ p1 ∪ p2 without
replacement.

Algorithm 2 Uniform Crossover

1: function uniform crossover(p, q)
2: for i in range(d+ 1) do
3: if Bernoulli(0.5) then
4: c1[i]← p[i], c2[i]← q[i]
5: else
6: c1[i]← q[i], c2[i]← p[i]

7: return c1, c2

Mutation Operators The mutation operator takes as input a single chromosome. It
iterates over each dimension of the chromosome vector and with a certain probability pm
replaces this value. For logistic regression, we add Gaussian noise of scale 0.1 to the current
value and truncate if the new value falls outside of [−1, 1]. For k-median, we replace the
current index with the index of a new uniformly random tuple from P . If the randomly
selected index already exists in the set M , we simply re-sample until |c| = k.

Default Hyperparameters For the initial experiments, we must choose a default set
of hyperparameters. In the following chapters, we will tune these parameters for privacy
and set better defaults. However, the following parameters given in Table 5.1 are a good
starting point.
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Parameter Value
Np 200
Ng 100
Ns 10
pc 0.5
pm

1
|c|+1

Table 5.1: Default hyperparameters where |c| is the length of the chromosome.

5.2 Experiment Details

As is the case with deep neural networks, it is often difficult to prove approximation ratios
for a GA. Thus, our main line of evaluating how well we solved a given problem is the
empirical utility of the solutions. In this section, we lay out the experimental setup that
will be used for the evaluation of various design choices as well as the comparison to related
work in Chapter 8.

Datasets To instantiate our example problems, we use a series of datasets from the
UCI machine learning repository [14]. The properties of these datasets are summarized in
Table 5.2.

Dataset Dimension (after encoding) Number of Records
Adult 104 48842
Credit 24 30000
Spam 57 4601
Mushrooms 107 8214

Table 5.2: Dataset sizes.

We give a brief synopsis of each dataset.

• Adult:1 The Adult dataset is a set of records extracted from the 1994 US Census.
It contains attributes such as age, education, and occupation with the classification
task to predict whether the individual made more or less than $50, 000 in salary.

1https://archive.ics.uci.edu/ml/datasets/adult
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• Credit [59]:2 The Credit dataset contains records of customers from a Taiwanese
credit card company. It contains attributes such as credit limit, education, and
payment history with the classification task to predict if the customer defaulted on
their credit card payment this month.

• Spam:3 The Spambase dataset is a collection of emails from the Hewlett-Packard
company. It contains attributes such as the frequency of certain words and length of
character sequences with the classification task to predict of the email was spam or
not.

• Mushrooms:4 The Mushroom dataset contains hypothetical samples of different
types of mushroom. It contains attributes such as cap shape, odor, and habitat with
the classification problem of predicting if the mushroom is poisonous or not.

We preprocess these datasets by replacing the missing values with the mean or mode
of the column. All data is normalized using min-max scaling such that each column is
in the range [0, 1]. Categorical attributes are converted to numerical ones using a one-
hot or binary encoding. For the logistic regression problem, all datasets have a binary
classification task. We split the datasets uniformly at random into a training and test set
using an 80 : 20 train to test ratio. For all evaluations, we will report the utility on the
testing set. For k-median, we disregard the classification label and use the entire dataset
as the private dataset. To create the public set, we sample additional points uniformly
from the range of the attributes such that we achieve an 80 : 20 private to public data
ratio. We note that if we were to instead split the dataset into a public and private set,
the public set would be similarly distributed, and thus one would not need the private set
to solve the problem.

We consider a baseline and a non-private solution for each evaluation to give reference
minimum and maximum performance. For logistic regression, the baseline is a solution
of all zero vectors. Whereas for k-median, we sample 1000 solutions uniformly at random
and plot the average utility. As non-private algorithms, we use Scikit-learn packages. For
logistic regression, we use the default logistic regression model with the stochastic average
gradient solver.5 Since our definition of k-median is specific to the privacy literature, finding
a non-private baseline is non-trivial. The problem is closer to the k-medoid problem than

2https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
3https://archive.ics.uci.edu/ml/datasets/spambase
4https://archive.ics.uci.edu/ml/datasets/mushroom
5https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html
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the k-means problem as we are presented with a finite list of possible cluster centers.
Hence, algorithms for the k-medoids problem can be most easily adapted to this setting.
As a non-private baseline, we consider the partitioning around medoids (PAM) algorithm
of Kaufman and Rousseeuw [35]. This algorithm is implemented in Scikit-learn.6 We
adapt this implementation so that it considers distances between a private and public set
(rather than distances between points in the same set). The only modifications we made
were to the distance matrix such that it is no longer square and changing the indexing
appropriately. We make all source code, including this modification, publicly available7.

6https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.

KMedoids.html
7https://git.uwaterloo.ca/t3humphr/dp-simple-ga

21

https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
https://git.uwaterloo.ca/t3humphr/dp-simple-ga


Chapter 6

Adding Privacy to the Simple
Genetic Algorithm

In this chapter, we discuss how we modify the simple GA (described in Chapters 2 and 5)
in order to make it private. Recall the simple GA is composed of four major operators:
initialization, selection, crossover, and mutation. Out of all the operators, the only one that
uses the utility of the chromosomes is the selection operator. Thus, the selection operator
will be our main focus when making the GA private. A naive approach to making the
selection operator private would be to simply swap the standard selection techniques (such
as roulette wheel) with a DP alternative (such as the exponential mechanism). We begin
by detailing the pitfalls of this naive approach and then present our solution.

When using roulette wheel, we sample a fresh chromosome every time we call the
select operator. This high number of selections is in part responsible for why roulette
wheel is so effective. A critical issue in genetic algorithms is premature convergence.
This happens when the population is not diverse enough and converges to local optima
before fully exploring the space. Making so many probabilistic selections gives the GA
many opportunities to select a less than optimal chromosome and thus helps maintain
the population’s diversity. On average, the GA will still choose high utility chromosomes,
which tends to increase the utility of the overall population.

Using an off-the-shelf roulette wheel selection leads to two major issues when applying
DP. First, adding DP to this selection, inherently increases the chance of picking lower
utility solutions as we do not want to depend too heavily on the utility function. This can
result in too much exploration or diversity and not enough exploitation of good solutions
to drive the population forwards. Second, when using differential privacy, each selection
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consumes part of the privacy budget. In the non-private setting, the simple GA involves
selecting on the order of the population size multiplied by the number of generations. This
results in a prohibitively high privacy cost which destroys the utility of the final result.

6.1 Proposed Solution

To overcome the drawbacks of a high number of selections (high privacy budget and too
much diversity), we use a less common selection technique, truncation selection [50]. Trun-
cation selection chooses a pool of the top-Ns chromosomes in each generation. To create
the new population, it samples uniformly at random from this pool to obtain the parent
chromosomes for crossover and mutation. Truncation selection is not popular in the non-
private setting as it does not allow for population diversity. However, we have found that
this is not a concern since we introduce additional diversity by using DP. Truncation selec-
tion is known to be a very efficient selection algorithm [9]. This is an appealing property
when considering the composition of DP as we don’t need to make and compose as many
selections.

Starting with the simple GA using truncation selection, we make a few additional
changes to simple GA to make it private. We detail our complete solution in Algorithm 3.
We explain the key differences between our private algorithm and the standard simple
GA (Algorithm 1). The additional inputs over the simple GA are the number of parent
chromosomes for truncation selection Ns and privacy parameters ε, δ. Furthermore, our
algorithm requires a DP selection mechanism DPSelect and a DP composition theorem
DPComp (chosen in Section 6.4). The first difference in the algorithm is lines 2 and 3, where
we compute the privacy budget for each selection using the chosen composition theorem.
We conduct a binary search over εs with n compositions until we reach the desired total
privacy budget ε. We use a binary search as most composition theorems do not have a
closed-form inverse.

With the privacy budget computed, we choose the top Ns solutions, the first part of
truncation selection, in lines 6 and 7. In line 8, we initialize the new population using these
candidates. This technique is known as elitism [46], where we preserve the best candidates
between generations. Elitism is commonly added to simple GAs to increase exploitation,
which helps us offset the effects of DP on the GA. The rest of the algorithm proceeds
exactly the same as the simple GA, until the last step in line 18. In the simple GA, we
would simply return the candidate of maximum utility, whereas in our case, we must use a
DP mechanism to return the noisy max. We note that in line 19 we expand the definition
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of the mutation function for completeness; however, this is the standard definition used in
the non-private simple GA.

Algorithm 3 DPSGA

Inputs: u: Utility Function.
pc: Fixed probability we do crossover.
pm: Fixed probability we do mutation.
Ng: Number of generations.
Np: Size of the population.
Ns: Number of chosen parents.
DPComp, DPSelect: DP composition and selection mechanisms.
(ε, δ): Privacy Parameters.

1: P ← initialize(Np)
2: n← Ng ∗Ns + 1
3: εs ← BinarySearch(DPComp, n, ε, δ)
4: for generation in range(Ng) do
5: B ← ∅
6: for selection in range(Ns) do
7: B ← DPSelect(u(P − B), εs)

8: P ′← B
9: while |P ′| ≤ Np do

10: p1, p2 ← UniformRandomSelect(B)
11: if Bernoulli(pc) then
12: C ← UniformCrossover(p1, p2)
13: else
14: C ← p1, p2

15: C ← MutateAll(C, pm)
16: P ′ ← C
17: P ← P ′
18: return DPSelect(u(P), εs)

19: function MutateAll(C, pm)
20: for c in C do
21: for i in range(|c|) do
22: if Bernoulli(pm) then
23: c[i]← Mutate(c[i])

24: return C
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The remaining sections will investigate the best ways to instantiate our algorithm using
differentially private mechanisms. We will begin by considering the DP mechanisms we
will use as building blocks in Section 6.2, followed by how to compose these mechanisms
in Section 6.3. In Section 6.4 we conduct an empirical evaluation to choose the best
combination of techniques to use for our DP simple GA. Finally, in Section 6.5 we prove
the privacy of our simple GA under the leading composition techniques.

6.2 Different DP Selection Mechanisms

We have argued that truncation selection is a promising solution for making the simple
GA private. In order to make truncation selection private, we need to choose the top-Ns

chromosomes in a privacy-preserving manner. The top-k problem is a common problem in
the DP literature [16], so there are several potential approaches to consider. For simplicity,
we consider popular mechanisms that return a single element of maximal utility. More
formally, each mechanism probabilistically maximizes a utility function, u : D ×R → R,
that indicates how advantageous the pairing of given inputs and outputs (D, r) ∈ D ×R
is for the particular usage scenario. To select multiple elements, we will employ a peeling
version of each mechanism in a similar style to Durfee and Rogers [16]. That is, we select
the best candidate using the chosen mechanism then “peel off” (remove) this candidate
from the pool before selecting again (Algorithm 3 lines 6-7).

We consider three state-of-the-art techniques in non-interactive DP selection: The ex-
ponential mechanism [44], report noisy max [19], and permute and flip [43].1 We begin by
defining each mechanism and the corresponding DP guarantees.

Exponential Mechanism The exponential mechanism, introduced by McSherry and
Talwar, is the most common approach for selecting an outcome of maximal utility [44].
Under the exponential mechanism, the utility function exponentially affects the probability
of selecting a given output; the higher the utility, the larger the chance of selection. More
formally,

1We note that SVT is another common choice for DP selection in the interactive setting that uses a
public threshold. However, it is not a natural choice since we are in the non-interactive setting and do not
have an obvious threshold. Furthermore, Lyu et al. [41] show that the exponential mechanism outperforms
SVT queries for top-k style queries in the non-interactive setting.
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Definition 6.1 (Exponential Mechanism [44]). The exponential mechanism defines a prob-
ability distribution in which each output r, is sampled with the following probability:

Pr[r] =
exp

(
εu(D,r)

2∆(u)

)
∑
i∈R

exp
(
εu(D,i)

2∆(u)

) (6.1)

where ∆(u) is the sensitivity of the utility function and ε is the differential privacy param-
eter.

Lemma 6.2 (Theorem 6 [44]). The exponential mechanism guarantees ε-differential pri-
vacy

Report Noisy Max Report noisy max is a simple algorithm originally proposed to
return the largest counting query from a list [19]. We consider the more general version
given in Algorithm 4 that maximizes a given utility function u. The mechanism simply
computes the utility of each outcome inR and adds Laplace noise, then returns the outcome
with the largest noisy utility.

Algorithm 4 Report Noisy Max [19]

1: for r in R do
2: qr ← u(D, r) + Lap(2∆(u)

ε
)

3: return argmaxrqr

Lemma 6.3 (Claim 3.9 [19]). Report noisy max guarantees ε-differential privacy

Permute and Flip Mechanism McKenna and Sheldon recently introduced a new
mechanism for differentially private selection called the permute and flip mechanism [43].
We describe the algorithm in Algorithm 5. Intuitively, this mechanism is very similar to
the exponential mechanism, with the key difference being the permutation (which mimics
sampling without replacement). McKenna and Sheldon show that this new mechanism
never has a worse utility than the exponential mechanism and can improve upon it by up
to a factor of 2 [43, Theorem 2].
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Algorithm 5 Permute and Flip [43]

1: u∗ ← maxr∈R u(D, r)
2: for r in RandomPermutation(R) do
3: pr ← exp

(
ε

2∆(u) (u(D, r)− u∗)
)

4: if Bernoulli(pr) then
5: return r

Lemma 6.4 (Theorem 1 [43]). The permute and flip mechanism guarantees ε-differential
privacy

Implementation We note that both the exponential mechanism and permute and flip
can be equivalently implemented using a noisy max algorithm. For the exponential mech-
anism, Durfee and Rogers proved that using noisy max with Gumbel noise is equivalent to
the exponential (and peeling exponential) mechanism [16, Lemma 4.2]. Ding et al. recently
proved that the permute and flip mechanism is equivalent to the noisy max with exponen-
tial noise [12, Theorem 5].2 We implement both the exponential mechanism and permute
and flip with their noisy max counterparts to improve efficiency as well as circumvent
precision issues when the loss is very high. That is, we follow Algorithm 4 replacing the
Laplace noise with the following distributions. For the exponential mechanism, we sample
from a Gumbel distribution with the following PDF

pGumbel(z; b) =
1

b
· exp

(
−(z/b+ e−z/b)

)
. (6.2)

We set b = 2∆(u)/ε following Durfee and Rogers [16, Lemma 4.2]. For the permute and
flip mechanism, we sample from an exponential distribution which has the following PDF

pExpo(z; b) = b · exp (−bz) . (6.3)

We set b = ε/2∆(u) following Ding et al. [12, Lemma 2].

6.3 Composition Theorems

Now we have defined the various mechanisms we will consider, we investigate the best
way to compose these mechanisms in order to use them repeatedly. There are many ways

2It is currently an open question whether Gaussian noise could be used in a noisy max algorithm. How-
ever, lower bounds on the DP selection problem suggest the mechanisms we have presented are essentially
optimal [12,53]
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to compose a differentially private mechanism under a variety of definitions of differential
privacy. We recall that all the mechanisms we have considered satisfy the basic definition of
pure differential privacy. Thus, we begin by considering various ways to compose general,
pure, differentially private mechanisms.

In its most simple form, a composition theorem tells us how much privacy budget
we will incur if we run a mechanism n times. The most basic (and an upper bound for
all compositions) is naive composition as defined in Section 2.2. Each theorem below is
significantly tighter than the naive composition theorem. That is, the overall epsilon will
be less than if we were to simply sum the epsilon of each part. We consider the case of
adaptive composition, which allows each run of the mechanism to depend arbitrarily on the
previous run. We let εs denote the privacy budget of a single run of a specific mechanism.
We consider the simplest case where εs is fixed across all n runs of the mechanism. For
each composition theorem, we state the total epsilon ε required for all runs. The cost of
this tighter composition is relaxing the overall privacy guarantee from pure to approximate
DP. Thus, each composition theorem includes a δ which we fix as 1/|D|1.1 to satisfy the
rule of thumb that delta should be less than 1/|D|. We list (ε, δ)-DP guarantees of each
composition technique below.

6.3.1 Composing Differentially Private Mechanisms

We consider two methods of composing an arbitrary DP mechanism, advanced composi-
tion [20,33] and the moments accountant [1, 45].

Advanced Composition We begin with the most well known composition theorem
(aside from naive composition) introduced by Dwork et al. [20].

Lemma 6.5 (Advanced Composition [20]). The adaptive composition of a εs-DP mecha-
nism under n-fold adaptive composition is (ε, δ)-DP with

ε = εs
√

2n ln 1/δ + nεs(e
εs − 1) (6.4)

Kairouz et al. improved this bound and proved the optimal advanced composition
theorem for a general (ε, δ)-DP mechanism [33]. They remark that the optimal bound is
hard to use in practice as it does not have a closed-form expression. Kairouz et al. then give
a simplified theorem that provides a slightly looser bound with a closed-form expression
described below.
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Lemma 6.6 (Theorem 3.4 [33]). The adaptive composition of a εs-DP mechanism under
n-fold adaptive composition is (ε, δ)-DP with

ε = min

{
nεs,

(eεs−1)εsn
(eεs+1)

+ εs

√
2n ln

(
e+

√
nε2s
δ

)
, (eεs−1)εsn

(eεs+1)
+ εs

√
2n ln

(
1
δ

)}
(6.5)

The Moments Accountant Concentrated differential privacy (CDP) and Renyi dif-
ferential privacy (RDP) are popular privacy definitions used for the composition of DP
mechanisms that take advantage of the Renyi divergence to give bounds [5, 45]. The two
definitions are very similar in that they both bound the Renyi divergence; however, CDP
bounds all moments and RDP is defined for a specific alpha. We focus on the RDP as it
tends to give more accurate analysis [45]. Furthermore, composing mechanisms using RDP
is equivalent to the moments’ accountant of Abadi et al. [1]. To use RDP as a composition
theorem, we must first provide a conversion from pure DP to RDP. We can then use the
composition theorems of RDP to compose the mechanisms and finally convert back to
approximate DP.

We begin by defining RDP. To define RDP we must first recall Renyi divergence.

Definition 6.7. Renyi Divergence [49] For two probability distributions P and Q defined
over R, the Renyi divergence of order α > 1 is

D(P‖Q) =
1

1− α
ln E

x∼Q

(
P (x)

Q(x)

)α
(6.6)

where P (x) is the density of P at x.

Definition 6.8. (RDP [45]) An algorithm A is said to be (α, ε)-RDP if for all neighboring
databases D,D′ ∈ D

D(A(D)‖A(D′)) ≤ ε (6.7)

The first step is to convert the arbitrary DP mechanism to the RDP definition. To do
this we take advantage of an intermediary result from Bun and Steinke [5, Proposition 19].
Specifically,

Lemma 6.9 (From DP to RDP [5]). If a mechanism satisfies εs-DP, it also satisfies
(ε(α), α)-RDP with

ε(α) =
1

α− 1
ln

(
sinh (αεs)− sinh ((α− 1)εs)

sinh (εs)

)
(6.8)
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After we have converted to RDP, we can take advantage of the following composition
theorem (similar to naive composition for DP).

Proposition 6.10 (Proposition 1 [45]). Consider two mechanism F and G. If F is (α, ε1)-
RDP and G is (α, ε2)-RDP then F (G(x)) is (α, ε1 + ε2)-RDP

Finally, we need to convert the final result to approximate DP as follows.

Proposition 6.11 (Proposition 3 [45]). If a mechanism satisfies (α, ε)-RDP, then it is also

(ε+ ln 1/δ
α−1

, δ)-DP for any δ ∈ (0, 1).

A natural question to ask is how to set α? The answer is that we consider choosing α
arbitrarily such that the overall ε is minimized. Mirnov showed that in practice, it suffices
to consider a restricted set of alphas and compute an approximate minimum [45]. In our
implementation, we take this approach, brute-forcing over a small set of alphas to find the
empirical minimum. Putting all of these steps together, we obtain the following end-to-end
composition theorem.

Lemma 6.12. The adaptive composition of a εs-DP mechanism under n-fold adaptive
composition is (ε, δ)-DP with

ε = min
α

{
n

α− 1
ln

(
sinh (αεs)− sinh ((α− 1)εs)

sinh (εs)

)
+

ln 1/δ

α− 1

}
(6.9)

Proof. The result follows by first applying Lemma 6.9, then multiplying by n as per Propo-
sition 6.10. Finally, we apply Proposition 6.11 and minimize over α.

6.3.2 Bounded Range Composition

When considering a particular DP mechanism, one can often tighten the composition
even further. This is typically done by creating a tighter privacy proof of a particular
mechanism under an alternate privacy definition such as RDP, then taking advantage of
the composition techniques of that definition. We are not aware of any work proving the
privacy of our mechanisms under RDP or CDP (outside of the general formula stated in
Section 6.3.1). However, the exponential mechanism, in particular, has a tighter analysis
under what is called bounded range DP. Bounded range DP was first introduced by Durfee
and Rogers in their work on top-k queries [16].
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Definition 6.13 (Range-Bounded [16]). Given a mechanismM that takes a collection of
records in D to some outcome set R, we say that M is ε-range-bounded (ε-BR) if for any
y, y′ ∈ R and any neighboring databases D,D′ we have

Pr[M(D) = y]

Pr[M(D′) = y]
≤ eε

Pr[M(D) = y′]

Pr[M(D′) = y′]
. (6.10)

This definition says that in addition to the distribution of outputs being similar across
neighbouring databases, the mechanism must also offer a similar distribution over the
outputs themselves. Bounded Range is a general notion of privacy, but it is particularly
useful for exponential mechanisms. All ε-DP mechanisms satisfy 2ε-BR; however, the
exponential mechanism enjoys a tighter analysis given below.3

Lemma 6.14 (Lemma 4.3 [16]). The exponential mechanism (Definition 6.1) is ε-BR.

Using this more restrictive form of DP allows one to prove tighter composition bounds.
Durfee and Rogers [16] showed this in their initial work, which was later tightened by
Dong et al. [13]. Dong et al. proved an optimal bound for the composition of ε-BR mech-
anisms [13]. However, as was the case with advanced composition, this optimal bound did
not have a closed form expression. We instead use a preliminary result with a closed form
expression that was proven by computing the supremum of the KL divergence.

Lemma 6.15 (Proposition 4 [13]). The adaptive composition of a εs-BR mechanism under
n-fold adaptive composition is (ε, δ)-DP with

ε = min

{
nεs, n

(
εs

1− e−εs
− 1− ln

(
εs

1− e−εs

))
+

√
nε2s
2

ln(1/δ)

}
. (6.11)

6.3.3 Evaluation of Composition Theorems

We have presented several composition theorems. However, it is not apparent which are
best. In this section, we will attempt to narrow down the list of composition theorems.
In Section 6.4 we will perform an empirical evaluation to further narrow down which DP
mechanism and composition theorem is best. To narrow down the composition theorems,
we will plot the per selection privacy budget εs for a given overall privacy budget ε and

3A natural question to ask is if the permute and flip mechanism also enjoys a similar analysis. A recent
blog post by Durfee and Rogers shows that is likely not the case as the permute and flip mechanism has
a lower bound close to 2ε-BR (the value that applies to all ε-DP algorithms) [15].
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Figure 6.1: Comparison of the privacy budget available for each selection under various
composition techniques.

a typical run of our simple GA. That is we let n = 1000 (100 generation each with 10
selections) and fix δ = 10−5. To compute the corresponding εs, we simply binary search,
evaluating the equation given by each lemma and plot the results in Figure 6.1. We remark
that a higher εs means more privacy budget is available at each step and thus a preferable
composition theorem.

We observe BR composition on the exponential mechanism outperforms all other tech-
niques. However, BR composition on a general mechanism (all ε-DP mechanisms are
2ε-BR) is comparable to RDP. In general, we see a lot of similarities between the other
techniques, although the composition from Kairouz et al. offers slight improvement for
smaller values of ε. Thus, we choose Lemma 6.15 for the exponential mechanism and
Lemma 6.6 for all other mechanisms.

6.4 Empirically Choosing the Best Mechanism

In this section, we will evaluate the performance of our simple GA using the various
mechanisms and composition theorems we have introduced. Although it is clear that
bounded range composition is the tightest composition theorem, it is not clear which
combination of composition theorem and DP mechanism will perform best. For example,
the permute and flip mechanism is known to have better utility than the exponential
mechanism but does not benefit from bounded range composition [15, 43]. Thus, we will
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evaluate the exponential, permute and flip, and Laplace noisy max mechanisms using
the composition theorem of Kairouz et al. (Lemma 6.6). Additionally, we will consider
the exponential mechanism under bounded range composition (Lemma 6.15). We study
the performance over all datasets described in Section 5.2 and over both of our example
problems described in Section 3.2. We use the set of default hyperparameters given in
Table 5.1.

Figure 6.2 shows the results. On the y-axis, we have the performance (or utility) of
the candidate returned by the GA (higher is better). We recall that the utility of logistic
regression is measured on the test set. On the x-axis, we evaluate various levels of privacy
ε (lower is better). We repeat each experiment 100 times and plot the mean and 95%
confidence interval as the shaded region. We can see that using the exponential mechanism
with bounded range composition consistently gives the best results. Furthermore, the
composition theorem seems to be the dominating factor in performance. That is, all
three mechanisms perform very similarly under the same composition theorem. However,
when using bounded range composition, the exponential mechanism performs significantly
better. We focus on this combination of the exponential mechanism and bounded range
composition for the remainder of the thesis.

6.5 Proof of Privacy

Using our chosen DP mechanism and composition theorem, we prove the end-to-end privacy
of our algorithm. We will focus on using the exponential mechanism and bounded range
composition, although the proof is similar for different mechanisms. At a high level, proving
the privacy of our simple GA consists of the following four parts.

1. Bound the sensitivity of a given utility function.

2. Prove that each selection (Algorithm 3, line 7) is ε-BR (or ε-DP).

3. Prove that all other components of the simple GA incur no additional privacy cost.

4. Prove that the adaptive composition of all selections is (ε, δ)-DP.

We begin by bounding the sensitivity of our example problem utility functions under
bounded-DP.

Lemma 6.16. The sensitivity, ∆(u) of the zero-one loss for logistic regression (given in
(3.3)) is at most 1

|D|
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(a)

(b)

Figure 6.2: An evaluation of the various selection techniques and composition theorems
discussed in this section.
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Proof. For a given vector θ changing D for D′ changes at most one entry in the summation.
This can change the value of the indicator function by at most one. Thus, the sensitivity
is equivalent to the normalization term 1

|D| .

Lemma 6.17. The sensitivity, ∆(u) of the k-median loss function (given in (3.4)) using
the `1 distance metric is d

Proof. For a given set M changing D for D′ changes at most one entry in the summa-
tion. This can change the minimum of that entry by at most the sensitivity of dist(x, y).
Assuming we use the `1-norm and all records in V are normalized onto the interval [0, 1],
dist(x, y) ≤ d.4

We state and prove the end-to-end privacy of our algorithm, assuming that we use the
exponential mechanism and bounded range composition.

Theorem 6.18. If we set the parameter of the exponential mechanism to εsu(D,r)

2∆(u) as spec-
ified in Definition 6.1, Algorithm 3 is (ε, δ)-DP where

ε = min

{
nεs, n

(
εs

1− e−εs
− 1− ln

(
εs

1− e−εs

))
+

√
nε2s
2

ln(1/δ)

}
. (6.12)

with n = Ng ∗Ns + 1.

Proof. We begin by showing that each selection is εs-BR. This follows from the definition of
the exponential mechanism (Definition 6.1) and Lemma 6.14. Next, we discuss the various
steps of the algorithm to show that the selection step is the only step that requires spending
any privacy budget. We follow Algorithm 3 line by line. First, the random initialization
(line 1) is entirely independent of the database, so it incurs no privacy cost. Then for
a given generation, we first select the best parents (lines 6-7). This incurs a privacy
cost of εs-BR and is performed Ng ∗ Ns times. The remaining steps in each generation
perform post-processing on the output of this step B (Lemma 2.6). Specifically, line 10
uniformly selects from the pool, line 12 randomly combines the chosen solutions, and line 15
randomly changes the solutions created by crossover. None of these steps require the use
of the utility function, and thus the dataset, in any way. Finally, after all generations have
passed, we must choose the best solution from the final population (line 18). For this, we
simply make one more selection, and thus we add this to our count n. Hence, the privacy

4We note that this is a rather pessimistic bound on the sensitivity that can be improved using domain
information. We show one such example in Section 7.1.
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budget consumption of our algorithm consists of n = Ng ∗ Ns + 1 calls to exponential
mechanism. Thus applying the adaptive composition theorem from Lemma 6.15 gives the
desired result.
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Chapter 7

Tuning a Genetic Algorithm for
Privacy

In this chapter, we investigate how privacy affects the learning process of the GA. We begin
by discussing how to reduce the sensitivity of the utility function to improve performance.
Following this, we investigate how to set the various hyperparameters of the simple GA
when using DP.

7.1 Remarks on Sensitivity

The amount of noise added in differential privacy is directly proportional to two parameters.
The first is epsilon and the second is the sensitivity. We recall that the sensitivity of a
function is a bound on how much the output can change when we add or remove a single
record in our dataset. This gives us a measure of the worst possible difference in order to
scale the noise to hide such a change appropriately. Intuitively, it makes sense to try to
reduce the sensitivity of the main objective function as much as possible. For example,
when training a logistic regression model, a possible loss function is cross-entropy loss.
However, the cross-entropy loss has a sensitivity of O(d) as we will see in Section 8.1. We
instead used the zero-one loss as it has sensitivity one and measures the actual classification
accuracy (which we would want to report regardless).

The easiest way to reduce the sensitivity is to find an alternative utility function, as
we did with logistic regression. However, the k-median problem is not so simple. Recall
that the classic k-median utility function has sensitivity d as this is the maximum distance
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between two points in the feature space. We could change the distance metric used;
however, we found that lower sensitivity metrics such as the `∞ norm do not even loosely
represent the actual loss function we are interested in reporting. A common approach in
the private ML literature is to use clipping [1]. Clipping enforces a tighter bound on the
function by truncating any large values to a constant.

When studying the distance matrix of our example datasets, we noticed that a distance
of 0 and a distance of d do not occur. Further, the minimum distance is usually greater
than d/4, and the maximum is less than 3d/4. Therefore, we would not lose any utility
information if we clip all values below d/4 and above 3d/4. Furthermore, we found that
preserving large distance values is much less important than the smaller ones. That is
when a solution is terrible, we don’t really care how terrible. Any poor utility value is
enough for the GA to avoid it. Thus, we experimented with clipping all distances above
the mean distance. For our datasets, we found a good estimator for this was d/2.

In Figure 7.1 we show the results of this experiment. Particularly we clip the data to
be in the range [d/4, d/2]. This allows us to achieve a sensitivity of d/4 (the width of the
new interval). We can see that, in general, this gives us a significant boost in utility across
all datasets and values of epsilon. We note that this interval does not generalize to all
datasets or distributions of public vs. private data. The credit dataset for higher epsilon
values is one such example since the min is slightly higher than d/4. A simple approach
to setting the clipping parameters, in such a case, would be first to compute the DP min
and mean values of the distance matrix and then clip accordingly. However, in our case,
[d/4, d/2] is a reasonable choice without tailoring to each specific dataset. Thus, for the
remainder of our experiments, we will apply this clipping to the distance matrix.

Figure 7.1: Evaluating the performance of distance matrix clipping.

38



7.2 The Curse of Iterations

(a)

(b)

Figure 7.2: The best setting for the number of generations parameter found from a grid
search.

When training a GA with privacy, we have an interesting conflict. The more gener-
ations we conduct, the more likely we are to find a good solution. Conversely, the more
generations, the less privacy budget (less accuracy) we have available for each of our selec-
tions. Thus, the Ng parameter is a highly influential parameter, and it is hard to choose
its value under this trade-off. To better understand how to choose the number of gener-
ations, we conduct a preliminary grid search over different Ng and ε. Additionally, the
results of this preliminary grid search will be used to narrow down the best values to
try in our large grid search in Section 7.3. We consider the following set of 30 possible
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values for Ng ∈ {2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
110, 120, 130, 140, 150, 160, 170}. We run the experiment 30 times for each configuration
and compute the mean utility for each parameter value.

First, we plot the value of Ng that gives the highest utility results in Figure 7.2. Specif-
ically, we sort the results based on utility and plot the average of the top-k Ng values that
gave the result. We see a general trend of a lower number of generations for lower values
of epsilon. This is somewhat to be expected as there is simply not enough privacy budget
to make a large number of non-trivial selections when epsilon is small. The spikes in the
graphs can be explained by different parameters giving a similar utility. Even though a
certain number of generations was best, other numbers of generations were close, so the
randomness in the algorithm plays a large role in which values were chosen, leading to odd
trends in the graphs. However, as we increase the number of results we average, we tend to
see the curves smooth out. This also explains the odd behaviour in the Spam dataset for
the k-median problem. We recall from Figure 7.1 that the utility converges around ε = 0.3.
After this point, the GA seems to converge regardless of the number of generations, leading
to the odd trend we see here.

Figure 7.3: Best values of the number of generations parameter averaged of over all of our
example datasets.

If possible, we would like to choose a good set of default values for Ng per ε across
all problems and datasets. We see a general similarity between the values in Figure 7.2
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suggesting a good set of defaults may exist. To test this, we first average the best gener-
ations across datasets. In Figure 7.3 we plot the average the top-3 line from the previous
plots, across datasets. We see that each of the problems has a similar curve, and thus it
is likely we can find a good default set. We choose a set of values that approximates these
trends. Specifically, we choose Ng ={10, 10, 20, 50, 75, 100, 120, 120} for ε ∈{ 10−2, 10−1.5,
10−1, 10−0.5, 100, 100.5, 101, 101.5} respectively. To evaluate this choice we plot the utility
in Figure 7.4. We compare to the previous default of Ng = 100 and the optimal utility

(a)

(b)

Figure 7.4: Utility of the DP simple GA for various settings of the Ng parameter.

obtained over all generations parameters. We can see that our candidate default values al-
most always improve over 100 generations and are often much closer to the optimal values.
Thus, we will maintain these as our default values for the rest of the experiments.
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7.3 Effects of Hyperparameters

After narrowing down reasonable defaults for the generations parameter, we study the
remaining hyperparameters and their interactions. We would like to see if any patterns
exist with respect to epsilon as we did for the generations parameter. Further, we want
to study the effect of hyperparameter tuning on the overall utility. To do this, we con-
duct a large-scale grid search of 2016 configurations of the 4 most influential parameters:
Ng, Ns, pc, pm. We list the values we considered for each parameter in Table 7.3. The

Parameter Values
Ng {2, 10, 20, 50, 75, 100, 120}
Ns {5, 10, 20}
pc {0.35, 0.5, 0.65}
pm { 2

|c|+1
, 1.5
|c|+1

, 1
|c|+1

, 0.75
|c|+1
}

Table 7.1: Values of each hyperparameter considered in the grid search.

remaining hyperparameter Np is fixed to its default value of 200. Each possible parameter
configuration is run 30 times, and we consider the mean and 95% confidence intervals.

We begin with our first question: Do any patterns exist between the parameters and
epsilon? To study this, we consider the values of each parameter that gave the highest
utility (as we did in the previous section). Due to the low number of values for each
parameter, we only consider the top one and two value averages. To reduce the number of
plots, we consider only the Adult and Mushrooms dataset for each parameter (the results
for the other datasets are similar). The results are given in Figure 7.5. We omit the
generations parameter as we already studied it, and the results here are similar.

We begin with the number of selections. Similar to the generations parameter, we see
an approximate trend of increase with epsilon. Intuitively, this is likely for the same reason
as the generations parameter. There is simply not enough privacy budget at low epsilons
to make more useful selections. We investigated setting default values in a similar fashion
to the generations parameter. However, we found that the increase in performance was
relatively small. Thus, we maintain the default value of 10.

The probability of crossover parameter does not have an obvious trend across datasets
or problems. Thus, we also maintain the default value of 0.5. Finally, the probability of
mutation parameter similarly has no obvious trend with epsilon. However, we generally see
values higher than our default do perform better. We investigated increasing the mutation
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rate but once again found only a slight performance increase, so for simplicity, we maintain
our default value of 1

|c|+1
.

Our second question was in regard to the effect of hyperparameter tuning on overall
performance. To study this, we plot the mean utility for our default parameters vs. the best
results found in the grid search in Figure 7.6. We see that for logistic regression, there is a
slight advantage to hyperparameter tuning, especially for higher values of epsilon. Whereas
for k-median, the effect is more subtle and is most prominent for lower epsilon values. We
conclude that hyperparameter tuning is helpful but not necessary for our algorithm on the
use cases we have considered.
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(a)

(b)

(c)

Figure 7.5: The best settings for the various hyperparameters found from the grid search.
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(a)

(b)

Figure 7.6: Utility of the DP simple GA for our default parameters vs. the optimal value
from the grid search.
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Chapter 8

Performance Evaluation

In this chapter, we compare the performance of our solution against both general and
problem-specific related work.

8.1 PrivGene

As previously mentioned, the first private GA, PrivGene, was introduced by Zhang et
al. [61]. In the paper, Zhang et al. introduce a preliminary private GA that they later
adapt into an evolutionary strategy. We begin with the private GA (which we refer to as
PrivGene) as it is most closely related to our work. We include the algorithm from the
original paper using our notation in Algorithm 6. Line 1 initializes the population with
180 random parameter vectors as well as 20 vectors of all zeroes with a random positive
or negative number in the last position (10 of each). Following this, in each generation,
Ns = 10 of the fittest candidates are chosen using the exponential mechanism in line 3.
This is done using the DP SELECT function, which calls the exponential mechanism in a
peeling manner.

The utility function used for logistic regression was log loss (or cross entropy loss).
Defined as

u(D, (α, β)) = − 1

|D|
∑
x∈D

y log(h(x)) + (1− y) log(1− h(x)) (8.1)

where h(x) is the prediction of the logistic regression model. Zhang et al. showed that when
the dataset was normalized to [−1, 1]d that the following bound hold on the sensitivity.
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Lemma 8.1 (Section 5.1 [61]). The sensitivity of the log loss function is

dR + 1

|D|
(8.2)

The privacy of the algorithm follows from the privacy of the exponential mechanism
(Lemma 6.2) and naive composition (Lemma 2.5).

After the DP selection, the chosen pool of candidates undergoes crossover and muta-
tion (lines 6-8) to create a new population with a few key differences to our algorithm.
First, we note that the crossover and mutation operators are always invoked in PrivGene
(corresponding to pc = 1 and pm being approximately one over the chromosome length).
Second, PrivGene uses a single-point crossover operator, whereas we use uniform crossover.
Finally, they use a very specific mutation operator that first selects a dimension of the par-
ent solution then adds noise with absolute value at most 5% of the domain.1 The amount
of noise is reduced by 5% per generation for the remaining generations. The above process
is repeated for Ng = c · |D|ε

Ns
where c is a constant that was experimentally set to 1.25×10−3

in the paper. We remark that PrivGene also uses truncation selection to make their GA
private. However, our approach is different in almost every part of the algorithm. Specif-
ically, we start from the simple GA [46], use less sensitive utility functions, use better
crossover and mutation, and apply more advanced privacy analysis.

We implement PrivGene from scratch following the description above. Applying Priv-
Gene to logistic regression is straightforward, as Zhang et al. also evaluated this use case.
We assume a domain of [−5, 5] for the model parameters and set the initial mutation noise
to be 0.5 as described above. k-medians is more difficult as PrivGene only considered
problems with real-valued candidate vectors. To run PrivGene on k-medians, we need to
change the candidate representation, mutation, and crossover operations to a discrete ver-
sion. For simplicity, we use our operators (initialization, crossover, and mutation), which
we believe only improves PrivGene (if PrivGene’s operators were converted to their dis-
crete counterparts). We maintain all other hyperparameters of PrivGene for the k-median
problem.

1The distribution of the noise was not specified in the paper, so we assume uniform noise
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Algorithm 6 PrivGene

Input: D, u, ε: Dataset, utility function, and privacy budget.
Ns=10, Np=200, Ng: Size of selected set, population, and number of iterations.
λ = 0.5, β = 0.95: mutation scale and decay rate.
Output: ω: best candidate chosen.

1: P ← initialize random(Np)
2: for i = 1 to Ng − 1 do
3: S ← DP Select(Ns, P , D, u, ε/Ng)
4: P← ∅
5: for j = 1 to Np/2 do
6: x1, x2 ← Random Choice(S)
7: y1, y2 ← Single Point Crossover(x1, x2)
8: z1, z2 ←Mutate(y1, λ),Mutate(y2, λ)
9: P ← z1, z2

10: λ← λ · β
11: {ω} ← DP Select(1,P , D, u, ε/Ng)
12: return ω

13: function DP Select(Ns, P , D, u, εs)
14: S ← ∅
15: for i = 1 to Ns do
16: x← Exponetial Mechanism(u(P − S), εs/Ns)
17: S ← x
18: return S

To address the limitations of their DP GA, Zhang et al. also introduce another variant
of PrivGene that is more of an evolutionary strategy than a GA. The main improvement
comes from using a modified exponential mechanism which they call the enhanced exponen-
tial mechanism (EEM). We shall call this variant of PrivGene that uses EEM, PrivEEM.
Zhang et al. show that EEM has a significant effect on performance outperforming the
standard GA [61][Figure 6, 7]. The only difference between EEM and the standard ex-
ponential mechanism is in the sensitivity analysis. The rest of the mechanism is identical
to Definition 6.1. EEM was designed by Zhang et al. for utility functions of the following
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form2

u(D, r) = h(r) +
∑
x∈D

l(D, r) (8.3)

First we recall the standard definition of sensitivity is

∆(u) = max
r∈R

max
D,D′
|u(D, r)− u(D′, r)|. (8.4)

EEM generalizes this formula to the following

∆(u) = min

{
∆1 = max

r∈R
max
D,D′
|u(D, r)− u(D′, r)|,

∆2 = max
r,r′∈R

max
D
|u(D, r)− u(D, r′)|

}
(8.5)

where ∆1 is the standard definition of sensitivity in (8.4), and thus in the worst case EEM
reduces to the standard exponential mechanism. ∆2 is the novel part that bounds the
distance between candidates r ∈ R. The intuition behind this mechanism is that overtime
as an algorithm starts to converge, solutions will become increasingly similar and thus
∆2 < ∆1.

Lemma 8.2 (Theorem 1 [61]). EEM with sensitivity defined in (8.5) is ε-DP.

To use EEM with PrivGene, a modification must be made in order to reap the ben-
efits of the tighter sensitivity analysis. Specifically, in PrivEEM , the chosen size (Ns) is
reduced to 1. This removes the crossover operator completely and changes Algorithm 6 to
an evolutionary strategy that only uses mutation. However, when the only operation con-
ducted is a mutation on a single candidate, the population becomes bounded by ∆2. For
logistic regression, we use the bound proved by Zhang et al. that ∆2 = 2λ. However, for
k-median, the uniform mutation operator has no such bound, and thus (similar to Zhang
et al. [61][Section 5.3]) we only evaluate PrivEEM on logistic regression.

8.1.1 Comparison

Now we have defined both variants of PrivGene, we perform an empirical evaluation against
our technique. We consider our solution under the default hyperparameters chosen in
Chapter 7 as well as the optimal hyperparameters found from the grid search. We compare
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Figure 8.1: Evaluation of our approach vs. PrivGene and PrivEEM [61].

this to the utility of PrivGene and PrivEEM in Figure 8.1. We repeat the experiment
100 times and plot the 95% confidence intervals as the shaded area. We can see that
we consistently outperform PrivGene for logistic regression. For k-Median, we either tie
or do better when ε > 0.1. We recall that we use our own operators for PrivGene in
the k-median problem, which explains why PrivGene performs better here than logistic
regression. The performance we observe in logistic regression is in line with the results of
Su et al. [54, Figure 6].

For PrivEEM , we either outperform or tie in logistic regression (recall we do not
evaluate k-median). We note how the results of PrivEEM depend largely on the dataset,

2It should be noted that later Dong et al. defined a more general sensitivity analysis for the exponential
mechanism [13], but our goal here is to reproduce the work of Zhang et al. [61].
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Figure 8.2: Comparing the number of generations for PrivGene and our approach.

whereas our solution remains more stable. Furthermore, we always beat PrivEEM in the
most important region of ε ∈ [0.1, 1]

8.1.2 Generations Formula

We noticed while running our experiments that the number of generations in PrivGene is
quite low when following their formula. In Figure 8.2, we plot the value of this formula for
various values of ε and |D|. For this plot, we set Ns = 10 and take the max of the formula
and 1 (as anything below this is meaningless). We observe that for ε < 1, the number of
generations is strictly less than 10, and in fact, it is often 1. We believe these values are
prohibitively low for a GA, especially in the important region of ε ∈ [0.1, 1]. In comparison,
our solution carries out between 20 and 75 generations in this region. We carry out an
additional experiment where we override the number of generations with a constant (10,
50, and 100) to give PrivGene a fair evaluation. The results are given in Figure 8.3.

We can see that, in general, varying this parameter only makes PrivGene perform
worse. We remark that the number of generations is one for low values of ε (approx.
ε < 1 for our datasets). In this case, PrivGene performs no evolutionary operations at all.
Instead, they simply sample the best solution from the initial random population. That is,
PrivGene reduces to the sub-sampled exponential mechanism (which we evaluate further
in Section 8.3).

In conclusion, we see that our approach offers a significant and stable increase in utility
over PrivGene (and PrivEEM ) across all problems and datasets without sacrificing GA
operations.
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Figure 8.3: Evaluating the performance of PrivGene when varying the number of genera-
tions parameter.
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8.2 Local Search Techniques

8.2.1 PrivLocal

Algorithm 7 PrivLocal from the source code of PrivGene [61] as defined by Su et al. [54]

Input: D, d, u, ε: Dataset, dimension, utility function, and privacy budget.
r, ω0 : Number of iterations and initial solution
λ = 0.5, β = 0.95: perturbation scale and decay rate.
Output: ω: best candidate chosen.

1: ω ← ω0

2: for i = 1 to r do
3: P← ∅
4: for j = 1 to d do
5: x+ ← ω
6: x+[j]← x+[j] + λ
7: x− ← ω
8: x−[j]← x−[j]− λ
9: P ← x+, x−

10: F ←evaluate fitness(P , D, u)
11: ω ← Exponetial Mechansim(F, ε/r)
12: λ← λ · β
13: return ω

Su et al. first observed that the source code accompanying PrivGene actually contains code
for another algorithm that did not appear in the PrivGene paper [54]. We confirmed that
the source code publicly available for PrivGene3 actually implements a different algorithm
named PrivLocal (and not PrivGene). Su et al. were the first to publish this algorithm in
their work, and we follow their definition using our notation in Algorithm 7. PrivLocal is
a type of local search technique that uses some of the ideas from the PrivGene algorithm.
The algorithm starts with an initial solution (a vector of zeros) and makes iterative, greedy
improvements to this solution. That is, in lines 4-9 a pool of candidates are created by it-
eratively increasing and decreasing the value of each entry. After all possible perturbations
have been created, the exponential mechanism is used to select the best, which moves on

3https://sourceforge.net/p/privgene/
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to be the seed for the next iteration. The number of iterations parameter follows the same
formula as PrivGene. The values of λ and β are also the same as PrivGene; however, this
value represents a constant search step rather than the mutation scale.

Another paper by Lee and Kifer [39] evaluated PrivGene and showed much better
performance than our results or those of Su et al. [54]. However, upon inspection of their
source code, we found that they actually evaluated PrivLocal. We use Lee and Kifer’s
python implementation 4 which follows the Matlab code of Zhang et al. exactly.

Figure 8.4: Evaluation of the PrivLocal [54,61] algorithm against our approach.

Performance We compare our solution to PrivLocal in Figure 8.4. While PrivLocal gives
much better performance than PrivGene, we once again observe very dataset-dependent
performance. We significantly outperform PrivLocal on our first three test datasets over all
values of ε. PrivLocal performs better on the Mushrooms dataset, slightly outperforming
our default solution when ε > 0.3. However, our optimized solution can consistently
outperform PrivLocal. We conclude that our solution offers a much more stable solution
that is a better choice than PrivLocal.

We note that Figure 8.4 highlights that our optimal hyperparameter solution outper-
forms the non-private baseline in the Credit and Spam datasets. We recall that we measure
test set utility for the logistic regression problem, and thus even though the Scikit-learn
model converged on the training set, our DP GA generalizes better to the test set.

4https://github.com/ppmlguy/DP-AGD
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8.2.2 Gupta et al.’s k-Median

Since the k-median problem is discrete, PrivLocal is not a valid solution. However, the
first work in private k-medians by Gupta et al. is also a local search algorithm [29]. The
algorithm is based on the non-private search of Arya et al. [2], simply replacing each
selection with the exponential mechanism. The complete algorithm is given in Algorithm 8.
We state the algorithm in our more general notation; however, in the original algorithm
P = V .

Algorithm 8 Gupta et al.’s k-median Algorithm [29]

Input:P , D, u, k, ε: Public Set, Private Dataset, utility function, number of medians,
and privacy budget.
Output: M : best set of medians.

1: M1 ← Random Solution(k)
2: εs ← ε

2∆(u)(T+1)

3: for i = 1 to T do
4: Select (x, y) ∈Mi × (P −Mi) with probability proportional to

exp (−εsu(Mi − {x}+ {y}))
5: Mi+1 ←Mi − {x}+ {y}
6: Select j from {1, 2, . . . , T} with probability proportional to exp (−εsu(Mj))
7: return Mj.

Performance We implemented this algorithm from scratch in order to compare it to our
solution. We found that the algorithm is rather inefficient for large public set sizes due to
the large number of swaps considered. Thus, we focus on our two smaller datasets Spam
and Mushrooms for this evaluation. We give the results of our comparison for k = 4 and
k = 16 in Figure 8.5. We can see that our solution drastically outperforms Gupta et al.’s
solution for all datasets and all values of ε. We conclude that in both utility and runtime,
our solution is superior to that of Gupta et al. [29].

8.3 Sub-Sampled Exponential Mechanism

While our evaluation considers two specific example problems, our solution is not problem-
specific. Thus, we wish to evaluate against other general DP selection techniques. Very
little related work solves the general problem of DP selection for such large search spaces
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Figure 8.5: Comparison of our solution vs. the solution of Gupta et al. [29]

as those we consider. The one exception is the sub-sampled exponential mechanism from
Lantz et al. [38]. This technique first takes a random sample from the space of possible
solutions before applying the standard exponential mechanism. This circumvents the need
to compute the utility of all possible solutions in a large space. However, this approach
clearly relies on the random sample being representative of the greater population.

We evaluate the sub-sampled exponential mechanism on both logistic regression and
the k-median problem. The original paper by Lantz et al. also considered the k-median
problem and showed competitive performance compared to the techniques of Gupta et
al. [38] (evaluated in Section 8.2.2). We choose the sample size to be 1000 and run the sub-
sampled exponential mechanism 100 times using the same experimental setup as above.
The results are given in Figure 8.6. We again see that this solution is dataset-dependent,
as we predicted. Furthermore, the utility appears to plateau at a specific value much less
than the non-private baseline (except k-median on Spam). Our default solution almost
always outperforms the sub-sampled exponential mechanism when ε > 0.1 (except Credit
logistic regression). Our optimal parameter solution always outperforms the sub-sampled
exponential mechanism when ε > 0.1. This once again indicates our solution provides a
much more stable solution that offers significantly better utility in the important region of
ε ∈ [0.1, 1]. Furthermore, this means our algorithm gives the most promising alternative
to date for the exponential mechanism on large solution spaces.
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Figure 8.6: Evaluating our solution against the sub-sampled exponential mechanism [38].

8.4 Problem Specific Techniques

In this section, we consider the state-of-the-art solutions specific to each of our example
problems. The goal is to show that our general solution is comparable to these solutions.

8.4.1 Logistic Regression

As mentioned in Chapter 4, most works do not focus on the problem of differentially
private logistic regression directly. Instead, they use it as one of the multiple examples
to evaluate their techniques. As a result, many works consider the performance of DP
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logistic regression. Recent work by Iyengar et al. [31] conducts an extensive performance
benchmark of state-of-the-art algorithms in differentially private convex optimization. We
believe this benchmark well represents some of the best solutions in this field, and thus we
use it for our evaluation. The benchmark includes the following solutions:

• Approximate Minima Perturbation: a new technique introduced by Iyengar et
al. [31] closely related to objective perturbation.

• P-SGD: Private SGD based off of the work by Bassily et al. [4].

• P-PSGD: Private Perturbation-based SGD from the work of Wu et al. [58].

• P-SCPSGD: Private, strongly convex Perturbation-based SGD, another variant
from Wu et al. [58].

• DP Frank-Wolfe: the DP version of the popular optimization algorithm from Tal-
war et al. [55].

The code was made publicly available5, which allows us to simply run their benchmark,
unchanged, on our own datasets. We note that the code performs a grid search over the
hyperparameters of the various algorithms and reports the best in a similar manner to our
optimal hyperparameter solution.

The results are given in Figure 8.7. We adjusted the logs to obtain the 95% confidence
intervals over 100 runs as we have done for all of our previous experiments. The first
plot gives a comparison against all techniques, and the second shows only the best tech-
niques for readability. We can see that our algorithm performs comparably to the other
techniques with a strong performance on the Credit dataset in particular. In general, our
optimal hyperparameter solution is very rarely outperformed, and if so, it is only by a small
amount. We conclude that even against problem-specific solutions in convex optimization,
our general technique provides a viable (and often the best) solution.

8.4.2 k-Median

The most recent work in this space is a solution by Jones et al. [32]. From a theoretical
standpoint, this work is the state-of-the-art for the k-median problem, achieving smaller
additive error than any other work. We conduct the first empirical evaluation of this
technique to compare it with our solution.

5https://github.com/sunblaze-ucb/dpml-benchmark
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(a)

(b)

Figure 8.7: Evaluation our solution using the benchmark of Iyengar et al. [31]

The algorithm first creates a small, weighted, synthetic dataset by choosing points
from the public set that best represents the private set.6 To do this, they first use the DP
unweighted set cover algorithm of Gupta et al. [29] to choose public points in the densest
areas of the private set. They map the private data points onto the candidate cluster
centers using the Laplace mechanism to obtain the weights. The synthetic dataset (or
coreset) is then released, and any off-the-shelf non-private algorithm is applied to obtain
the final result. For specific details on the algorithm, we direct readers to the original
paper [32]. We implement the algorithm from scratch in python and use our non-private

6The original work created the synthetic dataset from the domain. We once again adapt this to our
more general setting and choose points from the public set. However, one could easily make the public set
equal to the domain.
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Scikit-learn baseline for the final step. The implementation can be found along with the
rest of our code7.

The algorithm has a single hyperparameter ε, which we will rename α to avoid confusion.
Since the paper is theoretical, there is no information about how to set this parameter.
This parameter controls the number of iterations and plays a major role in the accuracy
and runtime of the protocol. We found that the lower the value, the better utility but
also, the longer the runtime. We deduced that α ∈ (0, 1) otherwise, we would obtain
invalid parameters (such as negative iterations). Thus, for our experiments we chose α ∈
{0.2, 0.6, 0.99}. We did not choose α < 0.2 as the runtime was too large, and the utility
gains were insignificant.

We repeat the experiment for 30 runs and plot the 95% confidence intervals. The
results are presented in Figure 8.8. We see that the hyperparameter α strongly influences
the performance of Jones et al.’s algorithm. For higher values of α, our algorithm often
outperforms Jones et al. significantly. However, for smaller values, where the runtime of
Jones is significantly higher (approximately ten times our solution on Adult), the solution
of Jones et al. is the best. We note that the computation complexity of Jones et al. is
O(k|P ||D| log1+α(|D|) ln(1/α)) as opposed to our solution that is O(kNpNg|D|) where α
and Np ∗ Ng are technically constants, but, we include them as they have a significant
effect in practice. In particular, as α approaches zero, log1+α(|D|) and ln(1/α) approach
infinity. We observe that our algorithm has no dependence on the size of the public set
and removes this additional log dependence on the private dataset. Since our solution still
offers reasonable utility with a significant improvement in efficiency, we believe it is indeed
competitive with this problem-dependent approach.

We remark that the performance of Jones et al.’s solution is entirely dependent on
this specific problem definition. The solution takes advantage of the public vs. private
data assumption (or the assumption that the domain is known). However, if we were to
consider a variant of this problem where we wish to choose centers from the private set (the
k-medoid problem), this technique would suffer a severe drop in utility. This is because
the approach requires the publishing of the coreset. Satisfying DP when the centers are
not public would require a significant amount of additional privacy budget.

In conclusion, our evaluation chapter has shown that our solution outperforms related
work on DPGAs and related evolutionary and local search techniques. Furthermore, it
offers the most stable and efficient alternative to the exponential mechanism for large
solution spaces without requiring any additional assumptions on the utility function or
problem specification. Our runtime scales polynomially with the size of the private dataset

7https://git.uwaterloo.ca/t3humphr/dp-simple-ga
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(a)

(b)

Figure 8.8: Comparison of our solution to the work of Jones et al. [32]

and does not require iterating over the whole domain of solutions. Finally, our solution of-
fers a general mechanism that is competitive with problem-specific solutions in the example
problems we evaluated.
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Chapter 9

Conclusion

As the public becomes more privacy savvy, we are starting to see an increased effort from
organizations to use privacy-preserving mechanisms. A crucial trade-off in the adoption
of these mechanisms is privacy vs. utility vs. efficiency. Our work provides a better com-
promise in terms of these objectives than both general and problem-specific related work,
offering a solution to the DP selection problem with high utility while scaling efficiently to
large domains. Our solution is not problem-specific and thus can replace existing solutions
such as the sub-sampled exponential mechanism when the domain is large. Furthermore,
our work shows that despite the current literature, GAs are quite robust to the effects of
DP noise and should be considered in future work on DP selection.
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