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Abstract 

Hydrologic models are essential tools for hydrologists and water resources engineers. 

However, there is a critical gap between our knowledge of the appropriate model representation of 

physical processes at the point scale and at the watershed scale. Due to the ubiquitous presence of 

heterogeneity, this scale disconnect can have significant implications for practical watershed 

modelling. Closing this gap requires the identification and implementation of appropriate upscaling 

approaches. Upscaling refers to the derivation of relationships which translate small scale process 

descriptions into constitutive relationships that are applicable at larger scales. While several approaches 

in the literature have been successful in generating such relations for vertical flow (i.e., laterally 

independent) processes, such as infiltration or evapotranspiration, attempts to address lateral flow 

processes have been limited.  

 

This work establishes upscaling relationships and identifies critical watershed-scale landform 

controls for lateral subsurface stormflow, being the lateral transfer of water through the saturated 

subsurface of a hillslope into a surface water network during a recharge event. This work also 

establishes a novel and comprehensive literature review synthesizing decades of applied upscaling 

work in the hydrology literature. This review is intended to provide a practical starting point for future 

research into upscaling approaches in computational hydrology. 

 

Subsurface stormflow is here characterized by the hillslope-storage Boussinesq (hsB) equation 

at the hillslope scale, and manifests as an aggregate recession curve at the basin sale. A surrogate model 

developed herein, the hsB Proxy, rapidly provides high-quality approximate solutions to this non-

linear governing equation, and thus enables the application of the equation across 50 basins composed 

of hundreds of hillslopes. Upscaling relationships are generated from the aggregate recession 

behaviour in these basins in response to a recharge time series. This work describes the development 

of the hsB proxy, and the associated development of novel upscaling relationships that capably 

reproduce the aggregate recession behaviour of a basin in response to a recharge time series, using 

only the distribution of hillslope-scale properties as input. The insights thus generated provide a new, 

explicit connection between the topographic characteristics of a basin, the history and magnitude of 

recharge, and the large-scale recession response. These relationships allow hydrologic models to 

include the insights of detailed hillslope drainage physics without the associated computational cost. 

 

 

 

 

 

 

 



vi 
 

Acknowledgements 

I would like to thank Professor James Craig for his supervision and support over the last four and a 

half years. Professor Craig is, simply, a legend, and I join the humble trail of graduate students who 

affirm it to the world: your guidance, insight, humour, and critical thought has made me a deeper 

thinker and a sharper mind, and made this Ph. D. a joy. It was an absolute honour. 

I would like to thank my thesis committee, Professor Nandita Basu, Professor Dave Rudolph, 

Professor Bryan Tolson, and Professor Peter Troch for their insights and comments on this work. 

I would like to thank the Hydrology Research Group in the Civil and Environmental Engineering 

department at the University of Waterloo for their support and comradery. I would especially like to 

thank Hannah Burdett, Leland Scantlebury, and Mahkameh Taheri for their gracious contributions to 

the upscaling review paper. 

The financial support of NSERC and the University of Waterloo is gratefully acknowledged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

Dedication 

This thesis is dedicated to Rachele, who’s grace and love has been my baseline for seven years. Here’s 

to the four-hour bus rides, the three-hour commutes, the home we finally got to make together, and 

the home we are going to make together. It’s been a wild four years and you’ve been my anchor 

through it all. I couldn’t ask for a better partner. You deserve an emotional co-authorship on 

everything in this work.   

 

This thesis is dedicated to Maman Joon, who faced a new world with dignity and grit, and gave her 

twin boys a perfect childhood. Who kicked cancer’s *** and worked two jobs to put rent in the bank 

and food on the table. Thank you for all you’ve done. 

 

This thesis is dedicated to Laleh Joon, who’s worked through tougher problems than any you’ll find 

in this work, and who taught me the value of laughter and joy. You deserve a thousand degrees for all 

the **** you’ve been through.  

 

This thesis is dedicated to Hazhir, who paved the way forward, and taught me how to raise my head 

and live with fierce pride and confidence. Hazhir, with every year that passes, I check in on the 

responsibilities you were carrying when you were that age, and it boggles my mind. Any achievements 

I’ve had are nothing compared to the challenges you’ve taken on. I wouldn’t be who I am without 

you. 

 

This thesis is dedicated to Kavian, who reflects the best in all of us, and makes us shine so bright. 

There is literally no better recipe for a companion in this world than spending every waking hour 

together from -0.75 to 18 years, and then embarking on the exact same professional pathway. It makes 

me smile so big that you made it, Professor.  

 

And finally, this thesis is dedicated to Reza, who never knew he raised two doctors. 

 

 

 

 

 

 

 

 

 

 



viii 
 

Table of contents 

List of figures ...................................................................................................................................................... x 

List of tables  ................................................................................................................................................... xiii 

 

1.0  Introduction ................................................................................................................................................ 1 

1.1 Objectives ................................................................................................................................................. 2 

 

2.0  A review of computational upscaling approaches in surface water hydrology ................................. 3 

2.1 Introduction ............................................................................................................................................. 3 

2.1.1 Definitions ........................................................................................................................................ 4 

2.1.2 Bottom-up approaches .................................................................................................................... 6 

2.1.3 Top-down approaches ..................................................................................................................... 7 

2.1.4 Naïve upscaling ................................................................................................................................ 8 

2.2 Mathematical Treatment ........................................................................................................................ 8 

2.2.1 Exact averaging ................................................................................................................................ 9 

2.2.2 Naïve upscaling .............................................................................................................................. 10 

2.2.3 Inverse modelling and effective parameterization .................................................................... 11 

2.2.4 Distribution-based upscaling ........................................................................................................ 11 

2.2.5 Stochastic Differential Equations ................................................................................................ 12 

2.2.6 Empiricism ...................................................................................................................................... 13 

2.2.7 Discretization .................................................................................................................................. 13 

2.3 Upscaling hydrologic processes ........................................................................................................... 14 

2.3.1 Runoff magnitude and timing ...................................................................................................... 14 

2.3.2 Infiltration ....................................................................................................................................... 23 

2.3.3 Evapotranspiration ........................................................................................................................ 28 

2.3.4 Snow ................................................................................................................................................. 30 

2.3.5 Computational upscaling approaches in modelling tools ......................................................... 34 

2.4 Challenges and open questions ........................................................................................................... 37 

2.4.1 The limits of observation .............................................................................................................. 36 

2.4.2 Numerical modelling and point-scale physics ............................................................................ 37 

2.4.3 Assumed heterogeneity, dominant heterogeneity ..................................................................... 38 

2.5 Conclusion .............................................................................................................................................. 39 



ix 
 

2.6 References .............................................................................................................................................. 40 

 

3.0  Use of an efficient proxy solution for the hillslope-storage Boussinesq problem in upscaling of 

subsurface stormflow ...................................................................................................................................... 54 

3.1 Introduction ........................................................................................................................................... 54 

3.2 Methodology .......................................................................................................................................... 56 

3.2.1 The hillslope-storage Boussinesq equation ................................................................................ 56 

3.2.2 The hsB Proxy ................................................................................................................................ 57 

3.3 Results ..................................................................................................................................................... 63 

3.3.1 Application of hsB Proxy to derived hillslopes ......................................................................... 64 

3.4 Application to upscaling problems ..................................................................................................... 67 

3.4.1 Upscaling problem 1: Application to PMRW ............................................................................ 67 

3.4.2 Upscaling problem 2: calibrating a single effective hillslope ................................................... 70 

3.5 Conclusion .............................................................................................................................................. 71 

3.6 References .............................................................................................................................................. 72 

 

4.0  Upscaling hillslope-scale subsurface flow to inform catchment-scale recession behaviour .......... 75 

4.1 Introduction ........................................................................................................................................... 75 

4.2 Methodology .......................................................................................................................................... 77 

4.2.1 The basin signature ........................................................................................................................ 78 

4.3 Results ..................................................................................................................................................... 81 

4.3.1 Upscaling relationships .................................................................................................................. 82 

4.3.2 Effective conductivity scaling....................................................................................................... 87 

4.3.3 Comparison to observed behaviour ............................................................................................ 88 

4.4 Conclusion .............................................................................................................................................. 92 

4.5 References .............................................................................................................................................. 93 

 

5.0  Conclusions ............................................................................................................................................... 95 

 

References ......................................................................................................................................................... 98 

 

 

 

 



x 
 

List of figures 

Figure 2.1. Hierarchy of process upscaling. ................................................................................................... 6 

Figure 3.1. Generation of the Proxy. For a given plan hillslope shape (L,X) and six bedrock slope 

values (θ), 6 numerical Q(𝒕) solutions are derived. Each solution is then converted into 27 proxy 

points, and each proxy point across the 6 solutions is described by 2 power-law equations relating 

time and flow to bedrock slope at the given plan shape. The six coloured lines in inset figure (a) 

illustrate hypothetical Q(𝒕) solutions for six hillslopes, each with identical plan shapes (L,X) but 

different bedrock slopes (θ). Inset figure (b) illustrates the conversion of one of the Q(𝒕) solutions 

(blue line) from inset (a) to 27 proxy points (red circles). Each of the Q(𝒕) solutions in (a) is 

transformed, however only one Q(𝒕) function is illustrated for visual clarity. As such, there are 6 

Q(𝒕) values associated with each proxy point. Inset figure (c) illustrates the two power law 

relationships for a single proxy point (the p = 5% proxy point in this example) across all six 

solutions. These power laws characterize the increase in flow at the p = 5% proxy point as 

bedrock slope increases, and the decrease in time to the p = 5% proxy point as bedrock slope 

increases. Overall, there are 390 plan shapes and 6 bed slopes in the Proxy, which combine to 

create 2,340 hillslopes and associated numerical solutions. Each of these solutions is translated 

into 27 proxy points, creating 63,180 total proxy points. For each set of 6 proxy points, there 

exists two power-law relationships, creating 21,060 power law relationships. ............................... 58 

Figure 3.2. Application of the Proxy. Given inputs (ovals), the Proxy interpolates power-law 

coefficients to generate 27 proxy points representing the flow response to a 1 mm initial 

condition. These proxy points are then connected with straight lines, scaled, and superposed to 

generate a facsimile of the drainage response to the input recharge rate. Inset figure (a) illustrates 

an extracted set of proxy points (red points) and the interpolated Q(𝒕) drainage response through 

these points (blue line). Inset figure (b) illustrates the rescaling of the drainage response according 

to the input K,f, and wb values. Note that when the solution is rescaled according to K and f, the 

solution is transformed out of dimensionless time. Inset figure (c) illustrates the rescaling of the 

Q(t) drainage response from a 1 mm initial condition to the magnitude specified by the recharge 

rate and time step. Inset figure (d) illustrates the superposition of the Q(t) response at every 

timestep of the recharge period: the Q(t) response (blue line) is applied  at each timestep and then 

a superposed solution (green line) is generated describing the drainage response to the recharge 

rate over the recharge period. ................................................................................................................ 59 

Figure 3.3. The hsB Proxy. (top) Example drainage profiles for (a) divergent and (b) convergent slopes 

as simulated by the numerical solver and the Proxy. Closed circles indicate proxy points. Squares 

indicate the initial flow value, which can be solved directly, and the assumption of flow = 0 after 

the final proxy point. (bottom) Distribution of mean flow error for the 2,340 hillslopes in the 

Proxy. ......................................................................................................................................................... 60 

Figure 3.4. A real precipitation (recharge) daily time series (top) and the hillslope subsurface flow 

response (bottom, NSE = 0.999) for a hypothetical hillslope solved using the numerical solver 

and the Proxy. .......................................................................................................................................... 63 

Figure 3.5. (a) The Dennis Creek watershed and stream network. (b) fourteen derived hillslopes in the 

upstream subset highlighted in (a); each shaded area represents a hillslope. Three wedge-shaped 

hillslopes derived from these areas are shown. (c) Each of the 867 derived hillslopes in the 

watershed is converted to a representative planar wedge-shape. ..................................................... 64 



xi 
 

Figure 3.6. Distributions of the hillslope shape properties of the 867 hillslopes derived from the 

Dennis Creek watershed. Grey vertical lines indicate mean values of L= 110 m, Wb = 36 m, X = 

0.85, θ = 9.8°. Black vertical lines indicate single effective slope values (Figure 3.7b) of L = 1180 

m, X = 0.01, θ = 63°. The effective single slope value for Wb (= 4430 m) is excluded for visual 

clarity. ........................................................................................................................................................ 66 

Figure 3.7. Aggregate hillslope subsurface flow results in the Dennis Creek watershed example. (a) 

The aggregate response as solved by the numerical solver and the Proxy (NSE = 0.999). (b) The 

aggregate response as solved by the numerical solver compared to the best-fitting single effective 

hillslope response derived from the Proxy via a Monte Carlo exercise (NSE = 0.956) ............... 67 

Figure 3.8. Panola Mountain Research Watershed upscaling problem. (a) Observed recession 

behaviour from Clark et al. (2009), compared to: the Clark et al. (2009) three reservoir model and 

the Proxy under steady-state recharge. The Proxy results are presented with a single homogenous 

conductivity (“Homogeneous”) and a heterogenous conductivity distribution (“Ens.”) – 

ensemble mean demonstrates the mean response of 1000 samples of the heterogenous 

conductivity distribution, while ensemble best reflects the single best comparison to the Clark et 

al. model. (b) Associated conductivity distribution and histogram of sampled conductivity 

associated with the ensemble best. (c) Comparison between observed behaviour, Clark et al. 

(2009) model, and Proxy solved under transient recharge conditions. (d) Associated conductivity 

distribution and ensemble best histogram. .......................................................................................... 70 

Figure 4.1. The signature response. Blue dashed lines indicate numerically-derived signature response. 

Red line indicates the signature response as represented by power-law functions. (a) An example 

of the signature response and its representation using a two-phase response, with the 50% flow 

value marked. (b) An example of the signature response and its representation using a single 

power-law.................................................................................................................................................. 79 

Figure 4.2. Variation of Qo and the coefficients of the two power-law responses with recharge for a 

single basin with homogenous subsurface properties. Each point represents the coefficient 

derived from the signature response produced by the associated daily recharge rate applied over 

a single day. ............................................................................................................................................... 80 

Figure 4.3. Signature performance as compared to numerical solutions. x symbols indicate the NSE 

value comparing the signature response generated by numerical simulation against the signature 

response generated by the five signature values. Box-and-whisker plots indicate the distribution 

of 30 NSE values comparing the numerical solution to the signature-derived hydrograph for 30 

individual recharge time series ............................................................................................................... 82 

Figure 4.4. The challenge of characterizing fast-phase power laws. These curves illustrate the signature 

response of (a) Basin 11 and (b) Basin 12, using the fast-phase coefficients derived from the 

numerical solution (blue) and the fast-phase coefficients derived from the upscaling models (red). 

Basins 11 and 12 have the largest discrepancy between solved and predicted coefficients. Black 

lines illustrate the fast-phase response using the coefficients derived from numerical solutions.

 .................................................................................................................................................................... 85 

Figure 4.5. Predictive performance of the upscaling relationships in thirty basins used to generate the 

relationships. (a) the distribution of NSE values comparing the numerical solution to the 

signature-derived hydrograph with parameters obtained from the upscaling relationships in 

Equations 4.4-4.8, for thirty individual recharge time series. (b) The same plot extended to the 

poorer predictive extents of Basin 3, 7, and 22. .................................................................................. 86 



xii 
 

Figure 4.6. Predictive performance of the upscaling relationships in twenty validation basins. (a) Box-

and-whisker plots indicate the distribution of NSE values measuring the quality of agreement 

between numerically simulated and predicted hydrographs resulting from thirty individual 

recharge time series inputs, in a set of twenty validation CAMELS basins (labelled basins 31-50, 

to distinguish from Basins 1-30 used to generate the upscaling relationships). The collective NSE 

distribution across basins 31-50 is also illustrated for reference. (b) The hydrograph associated 

with the lowest NSE value (Basin 42, NSE = 0.924). ........................................................................ 86 

Figure 4.7. Efficacy of scaling rules (Equations 4.9 and 4.10). NSE values compare the simulated basin 

signature response and the predicted signature response using the scaling rules for a single 

recharge event (10 mm/d). The box-and-whisker plots summarize the distribution of NSE values 

across 47 basins at various effective conductivity values. .................................................................. 88 

Figure 4.8. Thirty years of observed recession behaviour in the Sevenmile Run basin. Individual 

observed recession pairs illustrated in black. The single recession power-law (Equation 4.1) 

derived through the entire observed data set is illustrated in green. Individual transient recession 

power-laws illustrated in red .................................................................................................................. 89 

Figure 4.9. Transient recession coefficients in the Sevenmile Run basin. Black points indicate observed 

transient recession coefficients, derived according to the threshold established by Karlsen et al. 

(2019) and Shaw and Riha (2012). The single recession function derived through all thirty years 

of recession data is illustrated in green. The red and blue points illustrate the transient recession 

coefficients extracted by the upscaling relationships, using the signature default (1 m/hr) and 

manually calibrated (0.5 m/hr) hydraulic conductivity, respectively. ............................................... 90 

Figure 4.10. Observed and upscaled transient recession coefficients in sixteen verification basins. 

Black points indicate observed recession coefficients. Blue points indicate upscaled, calibrated 

recession coefficients. Green points indicate the single recession fit through entire data set. Basin 

number labels are indicated above each plot. ...................................................................................... 91 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of tables 

 

Table 3.1  Hillslope parameter values in the proxy. .................................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1 Chapter 1 

 

Introduction 
 

Scale issues are inherent in many aspects of hydrology, arising from a simple constraint: 

humanity can only observe the environment over a fixed range of spatial extent. In the field, 

hydrologists can obtain detailed characterizations of dozens of square metres, but to extend that 

characterization to a regional or watershed scale requires assumptions about how the small-scale 

behaviour applies beyond the scale of observation. In the office, hydrologists are tasked with building, 

calibrating, and utilizing hydrological models to answer critical water management questions at the 

watershed scale, making use of governing constitutive relations for the suite of relevant hydrological 

processes in their model that were derived at, or informed by, the observation scale. In both cases, the 

hydrologist has small-scale understanding in hand and must translate that understanding to a larger 

scale. This is the essence of upscaling. Unfortunately, upscaling is not trivial: it requires a 

comprehensive understanding of small-scale heterogeneity, and/or defensible simplifications of this 

heterogeneity. And yet, upscaling has been successfully applied throughout the hydrological literature 

to generate large-scale descriptions of small-scale processes. This notion of upscaling small-scale 

governing constitutive relationships is the focus of this thesis. Although several landmark publications 

exist cataloguing scale issues in hydrology generally (e.g., Klemeš, 1983; Blöschl and Sivapalan, 1995); 

and several publications exist cataloguing scale issues as an aspect of an in-depth review of specific 

processes (e.g., Vereecken et al., 2007, 2019); this thesis contains a novel, comprehensive literature 

review combining these two approaches, providing a detailed assessment of upscaling strategies and 

conclusions across a suite of hydrological processes, including runoff, infiltration, evapotranspiration, 

and snow processes. In lieu of a classical literature review providing background on the specific lateral 

groundwater flow problem considered in the title of this work, the second chapter of this thesis 

presents a larger-scope review of computational upscaling methods in hydrology in which the relevant 

runoff upscaling literature is a subset (Section 2.3.1) 

 

The question of upscaling is investigated more directly in the third and fourth chapters of this 

thesis, which explore the link between the recession behaviour of a basin and the lateral subsurface 

flow through hillslopes in response to recharge events (i.e., subsurface stormflow). That there is a 

connection between the recession of the hydrograph and subsurface flow has long been accepted, but 

more and more complexity has been considered in this problem over time. The original works in this 

field, looking to parameterize a single subsurface reservoir using observed recession behaviour, have 

been extended to interpret the influence of a network of independent, heterogeneous subsurface 

reservoirs on the recession rather than a single reservoir. Independent of the complexity of the 

conceptualization, the translation of small-scale subsurface flow mechanics into a large-scale recession 

relationship is of clear utility in hydrology, where, for computational and conceptual reasons, it is 

difficult to include detailed solutions to groundwater flow equations. Together, the third and fourth 

chapters of this thesis demonstrate that the classical approach of conceptualizing the subsurface as an 
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abstracted single reservoir releasing water according to a power-law recession relationship can be 

justified by aggregating physically-based descriptions of subsurface stormflow. That is, rather than a 

single reservoir (e.g., Brutsaert and Nieber, 1977), these works utilize hundreds of independent 

heterogeneous hillslopes and that are derived directly from topography and characterized by equations 

of groundwater flow as opposed to conceptual storage-outflow relationships (e.g., Clark et al., 2009; 

Harman et al., 2009). In this way, these works serve both to upscale as well as to translate expertise 

across hydrological silos: by minimizing the computational expense of a robust groundwater flow 

equation (Chapter 3), the results of detailed numerical modelling of hundreds of hillslopes can be 

rapidly aggregated to provide a physically-based understanding of the power-law recession behaviour 

at the basin scale. Then, by applying this groundwater flow equation to hundreds of hillslopes across 

dozens of basins, generalized upscaling relationships can be extracted (Chapter 4). 

In this way, this thesis intends to provide a baseline for future upscaling research in hydrology, 

while also presenting a novel upscaling analysis.  

 

1.1 Objectives 

This thesis can thus be categorized as having three objectives, as follows: 

1. Provide an in-depth review of computational upscaling approaches in hydrology. This critical 

review provides a synthesis of the methods and insights of upscaling analyses across a suite of 

hydrological processes, organizes these methods into a consistent ontology, and provides 

generalized conclusions about the challenges and successes of upscaling methods across these 

processes (Chapter 2).  

2. Demonstrate the efficacy of a physically-based conceptualization of subsurface flow 

mechanics through hillslopes in generating the convenient power-law recession behaviour at 

the basin scale, and create a tool that allows these mechanics to be rapidly applied to thousands 

of hillslopes, removing the burden of computational cost from the upscaling exercise (Chapter 

3).  

3. Utilize this proof-of-concept to analyze the aggregate hillslope subsurface stormflow 

behaviour across dozens of basins, to generate upscaling relationships that can directly 

estimate the recession behaviour of a basin from topographic characteristics which inform the 

subsurface flow equations. In this way, the hillslope-scale understanding of the subsurface 

physics is upscaled directly to the basin scale (Chapter 4).
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2 Chapter 2 

 

A review of computational upscaling approaches in 

surface water hydrology 

 

2.1 Introduction 

Water moves through the environment by several distinct flow pathways. Understanding these 

fluxes of water, including lateral overland flow, shallow subsurface runoff, vertical infiltration, 

evapotranspiration, and various snow processes such as melt, blowing snow transport, and 

interception, is essential to the science of hydrology. Through rigorous observations of nature, 

hydrologists have developed governing constitutive relationships which, embedded within 

computational algorithms, enable practical estimation of water fluxes at the scale of observation: given 

the state of the system (e.g., soil saturation) we may calculate fluxes (e.g., percolation) using 

constitutive relations (e.g., Darcy’s law). Hydrologic models combine and apply these algorithms in an 

attempt to comprehensively describe the movement of water through a catchment. However, 

fundamental to the application of these algorithms is a question of scale: if a flux is approximated by 

a relationship derived from observations at a local scale in a homogeneous system (over several 

metres), application of that same relationship at much larger scales in an inevitably heterogenous 

catchment requires care. In hydrologic modelling, this problem is partially alleviated by the utility of 

distributed and semi-distributed discretization schemes, which (ideally) subdivide the landscape into 

scale-appropriate, relatively homogeneous units. When the governing constitutive relationships are 

applied at a scale larger than the scale at which they were derived, or when a new relationship is derived 

to express the net impact of heterogeneous small-scale fluxes at a larger scale, upscaling strategies 

must be used. In this review paper, the term “upscaling” describes this act of generating a large-scale 

representation of a hydrologic process that accounts for small-scale heterogeneity. A computational 

upscaling method is thus a set of rules that performs a many-to-one conversion: the many 

heterogeneous fluxes within a domain (resulting from heterogeneity in parameters and states) are 

converted into a single homogeneous flux that adequately represents the small-scale heterogeneity. In 

this way, we make a distinction with alternative definitions of “upscaling” in the hydrological literature 

which relate to the translation of small-scale data to larger scales, such as aggregating rasterized data 

or interpolating point data for large-scale applications. 

 

This review presents an historical overview and ontology of computational upscaling strategies 

in the watershed modelling literature. Specifically, this work catalogues various methods used to 

upscale governing constitutive relationships which characterize hydrologic fluxes at the local scale into 

constitutive relationships applied in hydrologic models at the Hydrologic Response Unit (HRU) scale 

or catchment scale. The local scale is here typically confined to be on the order of 1-10 m², representing 

typical scales of observation, while the HRU or catchment scale is on the order of 0.1-100 km²; we do 
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not discuss upscaling from the microscale (<1 m²) to the local scale. This work does not aim to 

catalogue scale issues, which are observations of the occurrence of scaling or observations of 

correlations between hydrologic variables with increasing observation scale (e.g., Blöschl and 

Sivapalan, 1995; Blöschl, 2001), but rather focuses on the computational treatment of these scale 

issues. Additionally, the focus of this work is on surface and shallow subsurface water fluxes, and so 

we exclude any review of transport phenomena upscaling or upscaling in aquifer subsurface flow (for 

rigorous discussions of these, see e.g., Cushman et al., 2002; Rubin, 2003; Frippiat and Holeyman, 

2008; Yang et al., 2021). Finally, this work does not include temporal upscaling approaches: the focus 

is exclusively on spatial upscaling.  

 

To provide necessary context for and organization of the computational upscaling approaches 

catalogued in this work, shared definitions and an accompanying mathematical treatment of upscaling 

are first provided in Sections 2.1.1 and 2.2. Section 2.3 presents a catalogue of key computational 

upscaling approaches historically used in surface water hydrology, categorized by process: runoff, 

infiltration, evapotranspiration, and snow-related processes. Section 2.3 also describes how these 

methods have been integrated into hydrological modelling platforms and land surface schemes, and 

the issues arising when doing so. Finally, Section 2.4 provides a discussion of current challenges in 

computational upscaling which hopefully serves as a useful reference point for future research into 

upscaling problems. 

 

Please note that the “power-law recession of the hydrograph” subsection of the runoff section 

(Section 2.3.1) is quite detailed compared to all other processes catalogued. When this manuscript is 

submitted for publication, an alternative, condensed version of this subsection will be substituted. The 

expanded version of this subsection is included in this thesis to support Chapters 3 and 4, and serves 

as the distilled literature review relevant to these chapters, reflecting the lack of a traditional literature 

review chapter in this thesis.  

 

2.1.1 Definitions 

Upscaling generally refers to the translation of small-scale information to a representative form 

at a larger scale (Blöschl and Sivapalan, 1995). Here, we focus solely on spatial upscaling and refine 

this definition to focus specifically on the upscaling of hydrological processes; that is, the conversion 

of a spatially heterogeneous flux response across an HRU or catchment (where that heterogeneity 

arises due to heterogeneity in parameters and states) into a single equivalent homogenous form at the 

HRU or catchment scale. This is inherently a simplifying exercise, requiring some loss of information 

about small-scale heterogeneity. This conversion can be achieved by several different techniques. It is 

worthwhile to provide definitions of three critical terms in these techniques: states, parameters, and 

fluxes. States are typically the quantification of the storage elements of a mass balance, which in the 

context of hydrological processes are measures of water quantity (the depth of a snowbank or the 

hydraulic head in an aquifer are examples of states, though other intensive properties such as density 

or temperature may represent system state). Parameters are the environmental controls of the rate of 
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change of a mass balance, and may be physically based or abstracted (hydraulic conductivity and the 

power-law coefficients of baseflow recession are examples of physically based and abstracted 

parameters, respectively). Fluxes are the rates of change of a mass balance, representing the movement 

of mass into and out of storage elements (snowmelt and runoff are examples of fluxes). Additionally, 

we use the term “constitutive relationship” to describe the mathematical equations which relate 

hydrologic fluxes as a function of parameters and states.  

 

In this refined definition, “process upscaling” represents the highest tier of a hierarchical 

classification of upscaling methodologies (depicted in Figure 2.1). First, we define all “process 

upscaling” as the act of deriving a functional relationship for a large-scale constitutive relationship 

from information about the process and the heterogeneity in the process at the small scale. For 

illustration, a simple form of upscaling is spatial averaging, in which a distribution of fluxes is 

represented by a mean value and other local spatial information is discarded. Each new functional 

relationship can be derived from an analysis of smaller-scale information (the “bottom-up” approach), 

or it can be derived from an analysis of large-scale information (the “top-down” approach) (Klemeš, 

1983). In the bottom-up approach, process upscaling is achieved by explicitly translating some 

knowledge of small-scale heterogeneity into a useful large-scale constitutive relation. Bottom-up 

approaches include: Exact averaging (B-1); Effective parameterization (B-2); Distribution-based 

upscaling (B-3); and Stochastic differential equation approaches (SDEs, B-4). In the top-down 

approach, process upscaling is achieved by inferring constitutive relations from observed aggregate 

system behaviour, e.g., by backing out apparent relations from spatially integrated observations such 

as streamflow. In top-down approaches, a consideration of large-scale information produces insight 

into how the smaller-scale components can generate observed emergent behaviour. Top-down 

approaches include Empiricism (T-1) and Inverse modelling (T-2). A third approach, here termed 

“naïve upscaling,” does not technically qualify as a process upscaling methodology in that it uses small-

scale constitutive relations at the larger scale with no acknowledgement of important heterogeneity 

below the computational scale. It is included visually as a component of the hierarchy (Figure 2.1), but 

this approach is not catalogued in this review. Several of these classifications, including exact 

averaging, effective parameterization, distribution-based modelling, and inverse modelling roughly 

map upon those previously proposed by Bierkens et al. (2000). However, whereas Bierkens et al. 

(2000) considers the classification of upscaling methodologies from a perspective of specifying when 

certain methods should be applied to a problem based on the information available to the investigator, 

here we use such classifications to establish a historical accounting of the manner in which 

hydrological processes have been upscaled. That is, Bierkins et al. (2000) provides a detailed catalogue 

of various algorithmic approaches, whereas this review provides a more general treatment of the 

algorithmic approaches with a focus on cataloguing the context in which the upscaling methodologies 

have been historically applied in hydrology. 



6 
 

 
Figure 2.1. Hierarchy of process upscaling. 

2.1.2 Bottom-up approaches 

Here, we classify bottom-up process upscaling approaches into four distinct categories: Exact 

averaging; Effective parameterization; Distribution-based techniques; and Stochastic Differential 

Equations (SDEs). 

 

1. B-1. Exact averaging. Exact averaging is the integration of exhaustively known small-scale 

model fluxes (and/or the states and parameters that inform the constitutive relationship 

producing such fluxes) over a larger domain. This approach is fundamental to the notion of 

bottom-up upscaling: the large-scale flux is inherently known if all small-scale fluxes are 

known. As such, exact averaging can provide a useful benchmark for other upscaling 

approaches which attempt to simplify local heterogeneity. Exact averaging is a mathematically 

trivial (but computationally expensive and parameter-intensive) form of upscaling, requiring 

no assumptions. The large-scale information is simply an aggregation of small-scale 

information in hand. 
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2. B-2. Effective parameterization. Effective parameterization is the act of applying known 

small-scale constitutive relations at the large scale with modified (‘effective’) parameter values 

that have been altered to allow the scale-inappropriate constitutive relationship to reasonably 

reproduce the expected large-scale flux. Although small-scale constitutive relationships are not 

necessarily valid at the large scale, effective parameterization approaches assume that the bulk 

parameterization of small-scale variability can reasonably replicate the large-scale flux that 

would be derived by exact averaging. Strategies for determining effective parameters at a given 

scale of interest vary widely. Effective parameters can also be derived by the inverse modelling 

top-down upscaling approach (T-2), and, as such, is likely the most common form of upscaling 

used in practice. 

3. B-3. Distribution-based upscaling. Distribution-based upscaling is the generation of a 

large-scale constitutive relationship which uses closed-form probability distributions (PDFs) 

of small-scale states and/or parameters as inputs. This approach is distinct from exact 

averaging in that the small-scale fluxes are not exhaustively known: the spatial distribution of 

small-scale fluxes is not explicitly characterized, but rather prescribed. The form of the PDF 

is often selected by mathematical convenience and/or justified by field observations. In either 

case, the assumed PDF is making a strong assumption of the heterogeneity in the domain of 

interest and so it must be defensible to ensure relevant upscaling results. As in effective 

parameterization, the resultant large-scale constitutive relationship can simply be the small-

scale constitutive relationship, assumed to be valid at the larger scale.  

4. B-4. Stochastic Differential Equations (SDEs). SDEs attempt to simulate small-scale 

hydrologic fluxes and/or states as transient PDFs. As with distribution-based upscaling 

approaches, SDEs do not account for the spatial distribution of fluxes and presume that the 

small-scale constitutive laws are known. Once solved, SDEs may be used to produce ensemble 

mean fluxes and states by integrating the solved PDFs (e.g., Kavvas, 2003). The required 

simplifications in these methods are primarily in how the (potentially very complicated) 

covariance structure between states, parameters, and fluxes is characterised; typically, only key 

lower-order correlations are retained.   

 

2.1.3 Top-down approaches 

Two subsets of top-down process upscaling approaches are identified: Empiricism and Inverse 

modelling. 

 

1. T-1. Empiricism. Empiricism refers to the act of directly assigning a large-scale conceptual 

model that describes the aggregate behaviour of the small-scale process of interest. This large-

scale model is usually inferred by experiment and an analysis of observed behaviour. The key 

feature of this approach is the generation of new differential equations and/or constitutive 

relations. A popular example is the use of simple non-linear storage reservoirs to represent 

baseflow or interflow: the constitutive relation determining baseflow from storage is inferred 
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from the observed recession characteristics of the hydrograph, and represents a simplified 

conceptualization of a much more complex set of processes in a heterogeneous system.  

2. T-2. Inverse modelling. Inverse modelling refers to the act of deriving effective parameters 

(B-2) via calibration for a process description at larger scales. As a calibration exercise, this 

approach requires numerical modelling results generated from point-scale inputs and process 

descriptions. As in exact averaging (B-1), the numerical model produces a large-scale flux or 

state by explicitly resolving small-scale heterogeneity as defined by the model user. In inverse 

modelling, this aggregate result is used to back-calculate an effective parameterization that 

optimally reproduces the large-scale flux (e.g., as known from the hydrograph) when 

substituted into the point-scale relationship. In this case, the upscaling is typically implicit. 

 

2.1.4 Naïve upscaling 

Naïve upscaling refers to the use of a small-scale process description and small-scale 

parameters at larger scales without recognition of scaling effects. This approach implicitly assumes 

homogeneity of processes and parameters at the computational scale, and sees use, for example, in 

many land surface schemes which use pedotransfer functions. Given the definition above, this is not 

an upscaling approach at all, and is included in Sections 2.1 and 2.2 to highlight by contrast what this 

review considers process upscaling. 

 

2.2 Mathematical Treatment 

In this section, a more rigorous mathematical treatment is provided to reinforce the upscaling 

definitions of Section 2.1. Here we start with a general expression for an instantaneous flux of water 

[L/T] at an arbitrary location 𝑥 in 3D space,  

 

 𝑞(𝑥) = 𝑓(𝑥, 𝜃(𝑥), 𝜃𝑥(𝑥), 𝑃(𝑥)) (2.1) 

 

where 𝜃(𝑥) is the spatially distributed state variable vector, 𝑃(𝑥) is the spatially distributed parameter 

vector, and 𝜃𝑥(𝑥) denotes the spatial derivatives (of any order) of the state variables. The function 𝑓 

is a point-scale relation that is often assumed to be known. It is important to note that these point-

scale relations are not necessarily describing detailed point-scale physics; rather, they are an accepted 

form used to characterize the process at the point-scale. For example, the Green-Ampt 

characterization of infiltration is a simplification of the more detailed physics of the Richards’ 

equation, but may still act as an appropriate point-scale description. 

 

As an example, the instantaneous flux of water in partially saturated porous media according 

to Darcy-Buckingham law can be given as: 

 

 
𝑞(𝑥) = −𝑘(𝜓(𝑥), 𝑘𝑠(𝑥)) ⋅ (

𝜕𝜓(𝑥) + 𝑧

𝜕𝑥
) 

(2.2) 
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where 𝑘𝑠  ∈  𝑃 , 𝜓 ∈ 𝜃 , 
𝜕𝜓

𝜕𝑥
∈ 𝜃𝑥 , 𝑧 ∈ 𝜃, and 𝑘 is a fixed characteristic relationship. The entire 

functional form of this constitutive law defines the function 𝑓. With this general expression for 𝑞(𝑥) 

and a general expression for the total volume of water 𝑉 of fixed density in a control volume, we 

obtain via mass balance 

 

 𝑑

𝑑𝑡
𝑉(𝜃, 𝑃) = − ∫ 𝑞(𝑥) ⋅ 𝜂 𝑑𝛤

𝛤

 
(2.3) 

 

where 𝜂 is the outward normal vector along the control volume surface 𝛤. The estimation of the total 

water volume (i.e., calculation of 𝑉) in a control volume is usually straightforward. However, the 

potentially complex and non-linear dependency of the function 𝑓 upon heterogeneous parameters and 

states means that calculation of the integral on the right for simulating this mass balance can become 

problematic, particularly when we have insufficient information about the heterogeneity of both 

parameters and states along 𝛤.  

 

While this overview can readily be extended to three dimensions, we are going to present the 

mathematical explanation of the various upscaling approaches in terms of a vertical flux in a two-

dimensional plane, as this readily applies to how we often conceptualize infiltration, evaporation, 

snowmelt, and other hydrological processes on the land surface, and should help to simplify the 

discussion somewhat. We will also assume for simplicity that all parameters are temporally invariant.   

 

2.2.1 Exact averaging 

Spatial upscaling algorithms are essentially strategies for spatial averaging with limited 

knowledge about subscale states and parameters, and different strategies can be evaluated with relation 

to exact averaging (B-1) when all microstates are known. For instance, to exactly calculate the mean 

instantaneous flux over an arbitrary area 𝐴, we can integrate the vertical flux 𝑞𝑧 over the area: 

 

 
𝑞𝑧̅̅̅ =

1

𝐴
∫ 𝑞𝑧(𝑥, 𝑦; 𝜃(𝑥, 𝑦), 𝑃(𝑥, 𝑦))𝑑𝐴

𝐴

 
(2.4) 

 

This is our upscaling process: converting a heterogeneous distributed flux - 𝑞𝑧(𝑥, 𝑦) - into a 

homogeneous equivalent - 𝑞𝑧̅̅̅ - over some domain 𝐴. This integration incurs no errors on its own: if 

we explicitly know our detailed states 𝜃 and parameters 𝑃 and the constitutive relation 𝑓 everywhere 

in the domain, we can readily perform this integration numerically. However, lack of knowledge 

regarding the spatial distribution of states, parameters, the flux relation, or all three (not to mention 

computational costs) often precludes using this operation, and we must make assumptions about these 

distributions. First, with a few exceptions, it is typical in hydrological models to only store information 

about mean state variables in an HRU, e.g., mean water content of a soil layer or mean snow water 
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equivalent on the land surface. Therefore, we need to be able to approximate this integral knowing 

only the mean state vector 𝜃, and (perhaps) limited information 𝑚𝜃 regarding the distribution of states 

such as the standard deviation or probability that a state exceeds a given value (e.g., percent snow 

covered area tells us the percentage of land covered with non-zero snow). Thus, the upscaling problem 

amounts to finding the function 𝑈 which approximates this (exact) average with imperfect knowledge 

of 𝜃(𝑥, 𝑦) and 𝑃(𝑥, 𝑦): 

 

 
𝑞𝑧̅̅̅ =

1

𝐴
∫ 𝑞𝑧(𝑥, 𝑦; 𝜃(𝑥, 𝑦), 𝑃(𝑥, 𝑦))𝑑𝐴

𝐴

≅ 𝑈(𝜃, 𝑚𝜃, 𝑃′) 
(2.5) 

 

where 𝑃′ is a vector of scale-appropriate parameters that may be tightly/explicitly or loosely/implicitly 

related to the original distributed parameter vector. Bottom-up approaches generate our 

approximating function 𝑈 by making simplifying assumptions about the distribution of inputs, 

whereas top-down approaches estimate 𝑈 via observation of relations between bulk fluxes and states. 

A third approach, naïve upscaling, assumes that the small-scale values are identical to the large-scale 

values. 

 

2.2.2 Naïve upscaling 

The most straightforward approach for approximating the large-scale form is just to assume 

the parameter, spatial field, and relevant constitutive relation are uniform, i.e., 𝑃 ≅ 𝑃, 𝜃 ≅ 𝜃 , and 

𝑓(𝑥, 𝑦, 𝜃, 𝑃) ≅ 𝑓(𝜃, 𝑃): 

 

 
𝑞𝑧̅̅̅ ≅

1

𝐴
∫ 𝑞𝑧(𝑥, 𝑦; 𝜃, 𝑃)𝑑𝐴

𝐴

≅ 𝑈(𝜃, 𝑃) = 𝑞𝑧(𝜃, 𝑃) 
(2.6) 

 

This is the standard assumption used by most land surface schemes parameterized using 

pedotransfer functions or other relationships derived from point-scale physical observations. The 

equivalency is now an approximation, reflecting the inevitable error in the assumption that the 

heterogeneous domain may be treated as homogeneous. Equation 2.6 is only mathematically an 

equivalency in the case where (1) the domain states and parameters are completely uniform or (2) the 

constitutive law is a linear function of one state 𝜃𝑗  and 𝑃 is uniform or (3) the constitutive law is a 

linear function of one parameter 𝑃𝑗 and the state is uniform. These latter two cases are rare. Minor 

violations of uniformity may lead to inconsequential errors in this equivalency – indeed, much of 

computational hydrology is predicated on the assumption that this is the case. However, even simple 

correlations between 𝑃 and 𝜃 or between individual states 𝜃𝑗  can cause problems. For instance, high 

conductivity soils tend to be dryer than low conductivity soils, leading to a local dependency of 

moisture state (𝜃𝑗) upon local soil parameter (𝑃𝑗). Direct use of mean properties and mean states for 

simulating this variably wet landscape – the most rudimentary process upscaling approach - will lead 

to error. In addition, even the proper averaging operation used to determine 𝜃 or 𝑃 may be 
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questionable – for instance, proper averaging of hydraulic conductivity may entail using either the 

geometric mean, arithmetic mean, or something in-between (Journel, 1986) depending upon the (often 

unknown) direction of flow.  

 

2.2.3 Inverse modelling and effective parameterization 

In practice, we often calibrate our large-scale models to observations, modifying the mean 

domain parameters in such a way that may compensate for the scaling issues inherent in the naïve 

upscaling approach: 

 

 𝑞𝑧̅̅̅ ≅ 𝑞𝑧(𝜃, 𝑃∗) (2.7) 

 

where 𝑃∗ is the vector of “effective parameters” (B-2). Notably, use of effective parameterization 

implicitly assumes that the constitutive law 𝑓 is unchanged at larger scales and that either (1) the state 

vector is uniform in space or (2) that the constitutive law f is unchanged when using the spatial mean 

state. In many cases, this assumption is warranted, and has repeatedly been shown to be successful 

(e.g., Brutsaert and Nieber, 1977; Binley et al., 1989a; Feddes et al., 1993b; Kirchner, 2009; Deng et 

al., 2021). However, there is ample literature to suggest that this approximation can be very 

problematic in cases where the constitutive law is non-linearly or otherwise variably dependent upon 

state (e.g., Zhu and Sun, 2009), includes thresholds (e.g., Craig et al., 2010), or when the parameters 

and states are uncorrelated (e.g., Zhu and Mohanty, 2002, 2003). Despite this, a great deal of the spatial 

upscaling literature in hydrology has focused upon general approaches for effective parameterization 

of models (e.g., Feddes et al., 1993a; Samaniego et al., 2010). Similarly, a great deal of effort has been 

expended to calibrate models predicated on point-scale physical constitutive relationships. This 

calibration is a watershed-specific attempt at upscaling via effective parameterization. When effective 

parameters are informed by large-scale fluxes or states, as in a calibration exercise, the upscaling 

processes is inherently top-down, and is given the label “inverse modelling” in this review (T-2). This 

is to distinguish calibration-type exercises from bottom-up approaches which generate effective 

parameters from a simplification of known or assumed small-scale heterogeneity. 

 

2.2.4 Distribution-based upscaling 

The next level of complexity in upscaling approaches explicitly recognizes the sub-HRU-scale 

heterogeneity in parameters and states, and tries to characterize some information about this 

heterogeneity, often in the form of a probability distribution of parameters, states, or both (B-3). In 

general, this uses a different averaging identity: 

 

 
𝑞𝑧̅̅̅ ≅ ∫ ∫ 𝑓𝜃𝑃(𝜃, 𝑃)𝑞𝑧(𝜃, 𝑃)𝑑𝜃𝑑𝑃

∞

−∞

∞

−∞

 
(2.8) 
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where 𝑓𝜃𝑃(𝜃, 𝑃) is the joint probability distribution of parameter and state in the domain of interest. 

Note with comparison to Equation 2.4 that the explicit representation of space is removed. The 

approximate nature of this expression is due to this loss of spatial dependence – it assumes that each 

differential element is independent, i.e., two individual locations in space with identical state and 

parameter vectors will respond identically regardless of the state of adjacent parcels. Such an 

assumption impedes simulation of processes where spatial adjacency is critical such as infiltration run-

on (e.g., Corradini et al., 1998), blowing snow (e.g., Essery et al., 1999) or shallow lateral groundwater 

flow. In general, this joint probability distribution will be rather complex to estimate and is often 

approximated using one or more critical distributions of state or parameter or both, with the remaining 

parameters and states treated as uniform. For instance, if we consider that only the heterogeneity of 

one parameter 𝑃𝑗 is important, this expression may be simplified to   

 

 
𝑞𝑧̅̅̅ ≅ ∫ 𝑓𝑃𝑗

(𝑃𝑗) ⋅ 𝑞𝑧(𝜃, 𝑃≠𝑗, 𝑃𝑗)𝑑𝑃𝑗

∞

−∞

 
(2.9) 

 

i.e., the mean flux may be realized by convolving the flux over the distribution of all parameter values 

𝑃𝑗 . This approach has been utilized extensively in runoff algorithms predicated on fill-and-spill of soil 

or wetland stores (e.g., Moore, 1985, 2007; Mekonnen et al., 2014, 2016, 2017; Ahmed et al., 2020). 

When the expression cannot be simplified, or when the integral of the probability distribution is 

difficult to solve, Monte Carlo approaches may be employed. Alternatively, when the expression is 

simple enough to have an analytical solution that is readily inverted, a derived distribution approach 

may be used. In the derived distribution approach, the probability distribution of fluxes may be directly 

solved from the probability distribution of parameters or states (Zhao et al., 1980; e.g., Wood et al., 

1986; Zhao, 1992) 

 

2.2.5 Stochastic Differential Equations 

The final, and generally most complicated means of upscaling hydrologic phenomena is via 

solution of stochastic differential equations (SDEs, B-4). In these approaches, instead of tracking just 

the mean fluxes and states within a landscape the evolving PDF of states (e.g., soil moisture) within a 

computational element is explicitly simulated, subject to simplifying assumptions about the parameter 

distribution and covariance structure defining the relation between states and parameters.  As with 

distribution-based upscaling, these approaches generally must assume spatial independence and 

statistical homogeneity in space. In surface water hydrology, the work of M. Levent Kavvas and 

collaborators has dominated the literature in this area (e.g., Kavvas, 2003; Yoon and Kavvas, 2003; 

Ohara et al., 2008, 2014). Many of these approaches are predicated on the use of constructs similar to 

the ‘master key conservation equation’ of Kavvas (2003), a restatement of the ensemble conservation 

equations in a computational element. Using this approach, a simple form of the resultant SDE for 

the case of a single state variable 𝜃 (a Fokker-Planck equation) is generated:  
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 𝜕𝑓𝜃(𝜃, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝜃
[𝑓𝜃(𝜃, 𝑡) ⋅ 𝐺(𝜃, 𝑃)] +

𝜕2

𝜕𝜃2
[𝑓𝜃(𝜃, 𝑡) ⋅ 𝐻(𝜃, 𝑃)] 

(2.10) 

 

where 𝐺(𝜃, 𝑃) and 𝐻(𝜃, 𝑃) are non-trivial terms which include time integrals of covariance functions 

(and their derivatives) determined from the form of the point-scale constitutive equation 𝑞𝑧(𝜃, 𝑃). 

The solution to this equation, subject to appropriate initial conditions, is the transient probability 

distribution of changing states within the computational element, 𝑓𝜃(𝜃, 𝑡). Note that here, the 

constitutive relationships defining the state-flux relation are built into the SDE, and that this equation 

is an implicit integro-differential nonlinear equation; such equations are not trivial to solve without 

making simplifying assumptions about the correlations between states and parameters. These 

necessarily lead to additional approximations beyond that of statistical homogeneity. Alternative 

mathematical approaches are available to generate SDEs from point-scale constitutive relations, but 

they still typically yield partial differential equations for PDFs of system states over time. 

 

As most applications of SDEs yield a time-varying PDF of states and not fluxes, it may not 

necessarily be straightforward to generate the upscaled fluxes 𝑞𝑧̅̅̅ without (typically numerical) 

integration of an expression similar to Equation 2.8. While the mathematical challenges associated 

with this class of methods are significant, the application of SDEs has provided much insight into the 

scaling behaviour of hydrological processes (Haltas and Kavvas, 2011; He and Ohara, 2019) and has 

been used within some practical modelling frameworks (Kavvas et al., 2004, 2013). 

 

2.2.6 Empiricism 

Empirical approaches (T-1) are not conveniently summarized by mathematical 

representations, as the upscaling function 𝑈 in Equation 2.5 is directly assumed by an assigned 

conceptual model. That is, the large-scale process representation is not derived by an aggregation of 

the small-scale heterogeneity, but from a careful analysis of experimental and/or observed aggregate 

behaviour that suggests a constitutive relationship. For example, many subsurface runoff upscaling 

studies connect the small-scale drainage of the shallow subsurface to the recession of the hydrograph, 

such that this power-law relationship may be used as an upscaled, emergent representation of 

aggregate small-scale runoff processes. As a general example, high resolution numerical simulations 

produce large-scale results that may be summarized by a new conceptual model, as opposed to 

effective parameters assigned to smaller-scale process descriptions. Many popular conceptual 

hydrological models (e.g., GR4J (Perrin et al., 2003) or HBV (Bergstrom, 1995)) may implicitly treat 

scale issues via empirical upscaling, even if not intentionally doing so, as development of such models 

is in part informed by their performance in simulating hydrographs from heterogeneous basins.   

 

2.2.7 Discretization 

It is relevant to distinguish discretization approaches from upscaling approaches as defined in 

this work. Spatial discretization partitions a watershed into 𝑀 HRUs (or equivalently, gridded response 
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units (GRUs) or representative elementary watersheds (REWs)), each intended to divide the landscape 

into a number of hydrologically homogeneous (or sufficiently homogeneous) regions, i.e., supporting 

a higher fidelity averaging: 

 

 

𝑞𝑧̅̅̅ ≅
1

𝐴
∑ q̅𝑧

𝑘(𝜃𝑘, 𝑃𝑘) ⋅ 𝐴𝑘

𝑀

𝑘=1

 

(2.11) 

 

where the index 𝑘 denotes belonging in a given quasi-homogeneous element of area 𝐴𝑘. In the 

extreme case, as 𝑀 gets very large, we again approach the limiting case of Equation 2.4. This limit may 

be considered analogous to the Freeze-Harlan blueprint for hydrological modelling (Freeze and 

Harlan, 1969), the basis of many integrated watershed models which represent the world as a finely 

discretized grid or mesh at which the constitutive laws, parameters, and instantaneous states are 

assumed correctly known and scale-appropriate. The success of these ostensibly upscaling-free models 

is constrained by our ability to parameterize both state and parameters, and in the integrity of our 

constitutive laws at these scales. In this paper, since no attempt is made to directly address the likely 

disconnect between scales of simulation and the scales of the physical processes, discretization alone 

is not considered upscaling, though it helps models to respect the presence of heterogeneity and may 

be used in conjunction with upscaling at the HRU scale. 

 

2.3 Upscaling hydrologic processes 

With definitions and mathematical context in hand, we now have a fixed ontological 

framework through which we can view how different computational upscaling approaches have been 

applied in hydrology. Here, we review these applications in the context of four distinct components 

of the water cycle: runoff (2.3.1), infiltration (2.3.2), evapotranspiration (2.3.3), and snow-related 

processes (2.3.4). In each section, we highlight key upscaling advances and insights, while also 

providing insight into missing or under-investigated areas of upscaling research. We argue that several 

popular hydrological simulation strategies and algorithms are, in fact, upscaling approaches, even 

though they have typically not been classified as such. A final section (2.3.5) discusses the practical 

application of upscaling in hydrological modelling platforms. 

 

2.3.1 Runoff magnitude and timing 

This section catalogues upscaling methodologies applied to runoff processes, including: using 

a large-scale power-law relationship to upscale shallow subsurface flow (2.3.1.1); relating the 

geomorphological structure of the basin to its large-scale runoff characteristics (2.3.1.2); the 

topographic index approach for upscaling variable contributing area from an irregular terrain (2.3.1.3); 

approaches for handling landscapes characterized by filling-and-spilling soil or wetland elements 

(2.3.1.4); and the stochastic treatment of the kinematic wave equation (2.3.1.5). 
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2.3.1.1 Power-law recession of the hydrograph 

There is a rich history of upscaling literature attempting to connect the recessional limb of the 

hydrograph to subsurface flow processes. These studies utilize the observed behaviour of recession 

to inform a power-law conceptual model of aggregate subsurface flow at the basin scale. In this top-

down empirical approach (T-1), the basin subsurface is conceptualized as a reservoir that reproduces 

the observed recessional limb of the hydrograph. In the seminal work of this approach, Brutsaert and 

Nieber (1977) made two foundational contributions. First, they found that the recession behaviour of 

streamflow can be characterized as independent of time by plotting flow versus its derivative in time, 

resulting in a power-law representation of recession response: 

 

 
−

𝑑𝑄

𝑑𝑡
= 𝑐1𝑄𝑐2 

(2.12) 

 

where 𝑄 represents flow [L³/T], 𝑡 represents time [T], and 𝑐1 [1/T] and 𝑐2 [-] are coefficients of the 

straight-line fit between flow and its derivative in log-log space. Second, they found that the 

coefficients of this power-law are controlled by subsurface flow. Specifically, the authors utilized 

analytical solutions of the Boussinesq equation (i.e., one-dimensional, unconfined, homogeneous, 

saturated flow, draining into a surface network from a specified initial condition) that take on a power-

law form to replicate the observed recession behaviour in six real-world basins. In their analysis, they 

found that the observed long-term and short-term recession behaviour could be replicated using a 

single power-law reservoir, and thus were able to use observed recession behaviour to derive effective 

subsurface parameters (T-2) in each basin.  

 

Thus, Brutsaert and Nieber (1977) made an important upscaling insight: that the observed 

recession behaviour of a heterogeneous basin can be replicated by a single effective subsurface 

reservoir. A large number of studies iterated on these ideas by considering various degrees of 

subsurface complexity, and the efficacy of the approach was underscored by numerous successful 

comparisons to real-world basin behaviour (e.g., Zecharias and Brutsaert, 1988; Vogel and Kroll, 1992; 

Troch et al., 1993; Brutsaert and Lopez, 1998; Szilagyi et al., 1998; Huyck et al., 2005). A flat, linear 

reservoir conceptualization was applied to twenty-three basins (4.4-388 km²) in Massachusetts (Vogel 

and Kroll, 1992) and twenty-two basins (1-533 km²) in Oklahoma (Brutsaert and Lopez, 1998). A 

linear reservoir with a sloping bed was applied to nineteen basins (~200 km²) in the Allegheny 

mountains and Appalachian plateau (Vogel and Kroll, 1992), and a basin in East Flanders, Belgium 

(144 km²) (Troch et al., 1993). Huyck et al. (2005) applied a non-linear sloping reservoir with 

exponentially-varying planar width to the Zwalm catchment, Belgium (114 km²). Szilagyi et al.  (1998) 

tested the approach of Brutsaert and Nieber (1977) via numerical modelling of synthetic catchments 

(0.04 and 0.06 km²) with varying degrees of areal heterogeneity in conductivity and depth, and found 

that single effective parameters of Brutsaert and Nieber (1977) provided acceptable estimates under 

the specified heterogeneity. In a general assessment of simple hydrological modelling approaches, 

Kirchner (2009) reinforced the feasibility of representing the storage-discharge response of certain 

catchments using reservoir relationships derived from streamflow recession behaviour. 
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Although the single reservoir approach was successfully applied in real-world basins, the use 

of a single effective subsurface parametrization, solved under specific boundary and initial conditions 

enabling analytical solutions, was found to be restrictive (Tallaksen, 1995). Indeed, Rupp et al. (2006) 

demonstrated that analytical solutions derived from a linearization of the Boussinesq equation are a 

poor facsimile of the expected non-linear Boussinesq behaviour when the reservoir is sloped, or when 

vertical heterogeneity in conductivity exists. Bogaart et al. (2013) further challenged the validity of 

results derived from analytical solutions to the linearized Boussinesq equation. 

 

In their original work, Brutsaert and Nieber (1977) suggested that the superposition of many 

parallel linear reservoirs can replicate the observed recession behaviour. Moore (1997) independently 

expanded on this notion through an investigation of five conceptual reservoir models applied to a 

catchment in British Columbia, Canada (0.17 km²), concluding that a model of two parallel reservoirs 

was able to best replicate observed recession behaviour. Clark et al. (2009) demonstrated that the 

superposition of the drainage response of three hypothetical linear reservoirs, parameterized by an 

abstracted characteristic timescale representing the speed at which the reservoirs release water, was 

able to successfully emulate the observed non-linear recession response in the Panola Mountain 

Research Watershed, Georgia (0.41 km²). Harman et al. (2009) provided added insight in this basin by 

investigating the aggregate behaviour of many linear reservoirs, parameterized by hypothetical 

distributions of characteristic timescales, and demonstrated that many sub-watershed units shedding 

water at different rates can replicate observed recession behaviour. Similarly, Gao et al. (2017) was 

able to replicate the behaviour of thirty individual recession events in the Lantang Watershed, China 

(1080 km²) using two parallel linear reservoirs. Significantly, these studies demonstrate that the 

upscaled recession behaviour of a basin can be produced by heterogeneity in sub-watershed response, 

independent of the subsurface flow mechanics. Thus, the utility of single effective parameters derived 

from empirical single-reservoir analysis is brought into doubt.    

 

Adding complexity to the physically-based approach, Harman and Sivapalan (2009) 

investigated the controls of periodic recharge and areal heterogeneity in conductivity on one-

dimensional linearized Boussinesq flow through many reservoirs, now characterized as hillslopes and 

handled via numerical grid cells with unique slope and subsurface parameters. Their analysis 

demonstrated that the recession power-law coefficients derived under varying recharge conditions are 

distinct (as opposed to the previously documented studies, which exclusively evaluate the drainage 

response from some fixed initial condition). This insight is reinforced by studies which suggest that 

recession coefficients may vary with event and season (Shaw and Riha, 2012; Thomas et al., 2015; 

Chen and Krajewski, 2016; Karlsen et al., 2019). Ali et al. (2014) investigated the non-linear reservoir 

response of hillslopes characterized via Richards’ equation for steady-state variably-saturated 

subsurface flow and accounting for vertical heterogeneity in conductivity, although the aggregation of 

such hillslopes in fifty US catchments (66.6-9062 km²) was unable to replicate observed recession 

behaviour. Ranjram and Craig (2021) (Chapter 3 of this thesis) demonstrated the efficacy of 

reproducing the observed aggregate recession response in the Panola Mountain Research Watershed 
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by simulating a network of physically-based hillslopes characterized by the non-linear hillslope-storage 

Boussinesq equation for saturated, unconfined subsurface flow through sloping hillslopes with wedge-

shaped areas, both using transient and steady-state recharge inputs. More generally, Snowdon and 

Craig (2016) used saturated and variably-saturated groundwater flow simulations to derive upscaling 

relationships capable of predicting mean surface discharge from mean subsurface head across a basin. 

 

Three techniques of evolving complexity have thus been applied in the literature to upscale 

subsurface flow through the landscape into the power-law recession of the hydrograph at the 

watershed-scale. In the first approach, the functional power-law form of the analytical solution for 

flow through a single subsurface reservoir justifies an equivalency to the power-law recession 

behaviour of the hydrograph (T-1) (Brutsaert and Nieber, 1977; Zecharias and Brutsaert, 1988; Vogel 

and Kroll, 1992; Troch et al., 1993; Brutsaert and Lopez, 1998; Szilagyi et al., 1998; Huyck et al., 2005; 

Kirchner, 2009). The subsurface parameters of the analytical solution are then back-calculated to 

produce power-law coefficients that match the observed recession behaviour (T-2). In the second 

approach, the physical justification for the power-law behaviour of subsurface reservoirs is set aside, 

and abstracted reservoirs, explicitly characterized as linear reservoirs with varying timescales of 

response, are aggregated to reproduce large-scale behaviour (Moore, 1997; Clark et al., 2009; Harman 

et al., 2009; Gao et al., 2017). These studies demonstrated that the observed power-law behaviour of 

recessions at the watershed scale can arise from the heterogeneity of sub-watershed units, irrespective 

of the subsurface flow mechanics used to justify the power-law solution of a single reservoir. In the 

final approach, the aggregate behaviour of many parallel subsurface reservoirs (now more directly 

conceptualized as hillslopes) is considered (Harman and Sivapalan, 2009; Ali et al., 2013; Snowdon 

and Craig, 2016; Ranjram and Craig, 2021). These reservoirs are characterized by physical descriptions 

of subsurface flow, and each reservoir is assigned unique subsurface parameters, thus enabling a 

physically-based description of heterogeneity in the basin, as well as accounting for transience in 

recharge input for the first time. These techniques utilize bottom-up exact averaging (B-1) to develop 

an aggregate flow response from explicitly simulated sub-basin-scale elements. 

 

2.3.1.2 Geomorphology 

The aggregate flow response of a basin has been linked directly to geomorphology. In this 

approach, the properties of the overland flow network are used to produce a simplified basin-scale 

description of the distributed, heterogeneous small-scale rainfall-runoff response. The insight of 

generalizing the runoff response of a basin according to its drainage network is first credited to 

Rodríguez-Iturbe and Valdés (1979). In their work, an instantaneous unit hydrograph (IUH) was 

analytically derived by the convolution of two matrices, one characterizing overland flow pathways 

and the other characterizing the amount of time a parcel of water will spend in different portions of 

the landscape. Thus, the small-scale production and routing of surface runoff is substituted by these 

larger-scale matrices, providing a direct physical basis for the often-used unit hydrograph regularly 

employed by engineering hydrologists. A simplified mathematical description of this relationship is 

provided by (Rigon et al., 2016) as, 
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𝐼𝑈𝐻(𝑡) = ∑ 𝑝𝛾(𝑝𝛾1 ∙ 𝑝𝛾𝛺)

𝛾∈𝛤

 (2.13) 

 

where 𝛾 represents a portion of the landscape; 𝛤 represents all portions of the landscape; 𝑝𝛾 represents 

the probability of rainfall entering 𝛾; and (𝑝𝛾1 ∙ 𝑝𝛾𝛺) represents the convolution of the pathways 

between each 𝛾 and the time spent in each 𝛾. More directly accounting for geomorphology, Rodríguez-

Iturbe and Valdés (1979) derived functions relating the peak and timing of the IUH to five flow 

network parameters, although contemporary literature finds these relationships unfavourable (Rigon 

et al., 2016). Nonetheless, this geomorphological IUH approach has proved popular, with subsequent 

developments authoritatively reviewed by Rigon et al. (2016). These developments include a more 

flexible definition of the overland routing pathways given advances in digital elevation data (e.g., 

Rinaldo et al., 1991; Naden, 1992; Snell and Sivapalan, 1994) as well as an allowance for fast and slow 

runoff routing from channels and hillslopes, respectively (e.g., van der Tak and Bras, 1990). 

 

Combining the insights of the power-law recession approach and the IUH approach, Biswal 

and Marani (2010) considered the hypothesis that the recession behaviour of a basin is controlled by 

its geomorphological characteristics, rather than the response of subsurface reservoirs. That is, Biswal 

and Marani (2010) conceptualized a time-varying Active Drainage Network (ADN) that drains the 

subsurface at a constant rate and thus controls the recession response. The ADN is characterized by 

two geomorphological parameters, which are related by a power-law function, as follows, 

 

 𝑁(𝑡) = 𝑐𝑔1𝐺(𝑡)𝑐𝑔2 (2.14) 

 

where 𝑁(𝑡) represents the time-varying number of upstream sources (the first geomorphological 

parameter); 𝐺(𝑡) represents the time-varying length of the network [L] (the second parameter), and 

𝑐𝑔1 [1/L] and 𝑐𝑔2 [-] are the coefficients of this relationship derived from observation. Using observed 

data, Biswal and Kumar (2013) demonstrated that this “geomorphic recession curve” is directly related 

to the power-law form of observed recessions (Equation 2.12) when basins are steep (in terms of 

topographic relief). A subsequent study of thirty-four steep basins reinforced that the ADN approach 

is an appropriate representation of observed recession behaviour (Biswal and Kumar, 2014). Biswal 

and Kumar (2013) and Mutzner et al. (2013) independently relaxed the assumptions of the ADN 

approach to account for variable drainage of the subsurface across the basin. Biswal and Kumar (2013) 

also derived a relationship generalizing the 𝑐𝑔2 coefficient of the geomorphic recession curve as a 

function of the structure of the overland flow network. Additional studies have generalized the two 

coefficients of the geomorphic recession curve as functions of initial subsurface storage (Biswal and 

Marani, 2014) and recharge and past streamflow (Biswal and Kumar, 2014). 

 

In the geomorphological IUH approach, the small-scale release of runoff across different 

landscape units is generalized as a travel time distribution, representing in a bulk sense how long it 

takes for a parcel of water to move through the overland flow network before reaching the basin outlet 
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(Rodríguez‐Iturbe and Valdés, 1979; Rigon et al., 2016). The resultant unit hydrograph, produced by 

a convolution of probability distributions, thus represents a distributed upscaling approach (B-3), 

wherein the basin-scale runoff is characterized using the small-scale variability of runoff travel times 

(although this distribution takes on an assumed distribution and so small-scale physics are not utilized). 

In the ADN approach, the small-scale release of runoff is treated as a subsurface discharge that drains 

into every channel of the overland flow network, with the numbers and lengths of these channels 

changing over the course of a rainfall-runoff event (Biswal and Marani, 2010). The basin-scale 

recession of runoff is then characterized as a function of the numbers and lengths of the channels 

making up this evolving overland flow network. The resultant geomorphic recession curve thus 

represents an empirical approach (T-1), wherein a new power-law relationship governing basin-scale 

runoff has been derived by substituting the aggregate subsurface release across the overland flow 

network with a description of the time-varying evolution of the ADN. The shared utility of both 

approaches is the relative ease of acquiring and analyzing overland flow pathways from topographic 

data. However, in both cases the small-scale physics are substituted for assumed forms, either an 

assigned distribution or an assigned rate of subsurface runoff release over time. 

 

2.3.1.3 Topographic index approaches 

A popular treatment of subsurface runoff was first introduced by Beven and Kirkby (1979), 

which conceptualized subsurface flow as follows (e.g., Beven et al., 2021) 

 

 𝑞 = 𝑇𝑜 tan(𝛽) 𝑒−𝐷/𝑚 (2.15) 

 

where 𝑞 is flow through the subsurface [L²/T], 𝑇𝑜 is transmissivity when the subsurface is saturated 

[L²/T], tan(𝛽) is the hydraulic gradient equivalent to the topographic slope [-], 𝐷 is the depth of water 

in the subsurface [L], and 𝑚 is a parameter controlling the exponential decrease in transmissivity as 

saturation decreases [L]. This conceptualization is a reconfiguration of Darcy flow in an unconfined 

saturated medium driven solely by topography, and was used by Beven and Kirkby (1979) to derive 

the “topographic index,” a metric which indicates when a portion of the landscape will be saturated 

in response to steady rainfall, 

 

 
𝜆 = ln (

𝛼

tan(𝛽)
) 

(2.16) 

 

where 𝜆 is the topographic index at any location where 𝛼, the upslope contributing area [L²], and 

𝑡𝑎𝑛(𝛽) are known. The topographic index is a reconceptualization of point-scale topography-driven 

Darcy flow that can be applied at any scale at which gridded (originally contoured) terrain elevation 

data is available. In application, the index serves to highlight regions of a basin that will reach similar 

levels of high or low surface saturation in response to a steady rainfall rate (Ambroise et al., 1996; 

Beven, 1997). The topographic index is an upscaled representation of point-scale subsurface flow 

derived by top-down empiricism (T-1): the results of point-scale subsurface flow modelling were 
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compared against known topographic information to generate a new, larger-scale conceptual model 

summarizing the effects of rainfall-induced, topography-driven subsurface flow and contributing area 

over a landscape. 

 

The topographic index is limited by the assumptions of the point-scale subsurface flow model, 

specifically those of a steady subsurface response to a steady rainfall event; the equivalence of water 

table gradients to topographic gradients; and the exponential behaviour of subsurface conductivity 

(Beven, 1997; Beven et al., 2021). However, the subsurface flow mechanics have been relaxed or 

improved to allow for transience (Beven and Freer, 2001); water table gradients (Quinn et al., 1991); 

additional conductivity-depth relationships (Ambroise et al., 1996); and heterogeneous transmissivity 

(Beven, 1986; Woods et al., 1997). The topographic index has seen wide use through its inclusion in 

the TOPMODEL hydrologic modelling platform and its variants (as discussed in Section 2.3.5). 

 

2.3.1.4 Filling surface depressions/heterogenous soil storage 

In some landscapes, runoff to the outlet is intercepted by surface depressions. These systems 

exhibit unique “fill-and-spill” behaviour, wherein water is stored on the landscape until a storage 

threshold is reached, triggering the overflow (or spilling) of these depressions and a subsequent 

hydrologic connection to the outlet (Spence and Woo, 2003). As such, the generation of runoff in 

these landscapes is dependent on whether the volume of precipitation satisfies a known deficit 

representing this overflow threshold. Fill-and-spill systems are composed of dozens or hundreds of 

depressions (Spence and Woo, 2006; Shaw et al., 2012, 2013; McDonnell et al., 2021), making them 

computationally inefficient modelling problems (Shook and Pomeroy, 2011; Shook et al., 2013). This 

fill-and-spill conceptual model has also been widely applied to represent runoff from heterogeneously 

saturated soils (Zhao et al., 1980; Moore, 1985). Translating the heterogeneity of small-scale storage 

deficits and the associated variability of surface runoff fluxes across a landscape into a representative 

large-scale flux is fundamentally an upscaling problem. 

 

The algorithmic treatment of runoff generation across a landscape resulting from the 

exceedance of a storage threshold is first credited to the Xinanjiang model (Zhao et al., 1980; Zhao, 

1992). The Xinanjiang model is a conceptual semi-distributed framework of runoff simulation that 

calculates overland flow based on saturation excess runoff, using a soil moisture storage parameter as 

the spill threshold. To account for landscape heterogeneity, this model utilizes the nonuniform 

distribution of soil storage capacity to calculate the proportion of the landscape that will shed water 

as follows, 

 𝑓

𝐹
= 1 − (1 −

𝑊′𝑀

𝑊′𝑀𝑀
)

𝐵

 
(2.17) 

 

where 𝑓/𝐹 is the fractional pervious area [-], 𝑊′𝑀 is the variable soil moisture capacity [L], 𝑊′𝑀𝑀 is 

the maximum soil moisture capacity [L], and 𝐵 is a shape factor [-]. In this conceptualization, 

saturation-excess runoff is generated when precipitation (less evaporation) exceeds the water storage 
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capacity of the catchment as characterized by the heterogenous soil moisture capacity. This 

heterogeneity is defined by a probability distribution, and so this technique utilizes a bottom-up 

distribution-based approach (B-3), and more specifically, a derived distribution approach, in which 

the PDF of soil heterogeneity is explicitly translated into a PDF of the saturated area. Several 

extensions have been made to the Xinanjiang approach, including a more realistic handling of soil 

capacity-saturation relationships in storage units (Jayawardena and Zhou, 2000). The Variable 

Infiltration Capacity (VIC) model (Wood et al., 1992) is a well-known extension which incorporates 

infiltration-excess runoff. The VIC model itself has seen several extensions, allowing for more soil 

layers (Liang et al., 1994); frozen soils (Liang and Xie, 2001, 2003); and subsurface percolation losses 

(Todini, 1996). 

 

The Xinanjiang approach of analytically characterizing the heterogeneity of storage units was 

further refined by the Probability Distributed Model (PDM) (Moore, 1985, 2007), which utilizes a 

PDF of storage capacity to characterize the landscape. In the PDM conceptualization, storage units 

are spatially heterogenous and the entire system exhibits a transient critical storage capacity, such that 

the total runoff generated from a rainfall event is determined as, 

 

 
𝑉(𝑡 + 𝛥𝑡) =  ∫ 𝐹(𝑐) 𝑑𝑐

𝐶∗(𝑡+𝛥𝑡)

𝐶∗(𝑡)

 
(2.18) 

 

where 𝑉 is the generated runoff [L], 𝑡 is time [T], 𝛥𝑡 is the rainfall interval [T], 𝑐∗ is a critical storage 

capacity which evolves over time [L], and 𝐹(𝑐) is the cumulative distribution function (CDF) of the 

storage capacity of soil elements. The PDM approach represents a bottom-up distribution-based 

upscaling approach (B-3) which converts the unknown exact heterogeneity of storage units into an 

assumed closed-form distribution. The approach is inherently flexible, in that the form of 𝐹(𝑐) and 

𝑐∗ can be modified to suit the unique fill-and-spill properties of different landscapes. For example, the 

PDM Runoff generation model (PDMROF) is a modification applied to wetland-dominated 

landscapes, which exhibit a unique behaviour wherein the contributing area of the storage unit is 

dynamically linked to its level of saturation (Mekonnen et al., 2014). In PDMROF, the heterogeneity 

of wetland capacity is defined by a Pareto distribution function, and this assumption has been 

successful in application to basins in the Canadian Prairies (Mekonnen et al., 2014; Ahmed et al., 2020). 

Mekonnen et al. (2016) conducted an analysis of fine-scale topographic information and demonstrated 

that an exponential distribution and pareto distribution were both able to replicate the observed 

distribution of storage capacity, with the exponential distribution being a parsimonious choice due to 

its single distribution parameter. The exponential distribution was also employed by (Zeng et al., 2020) 

in their puddle-based unit model (PBU-PDM), an extension of PDM that can account for the dynamic 

behaviour of surface depressions with variable contributing area by a discretization of the landscape 

into ponding units and channel-based units with distinct runoff behaviour. 

 

Accurately characterizing the location, volume, contributing area, and dynamic fill behaviour 

of surface depressions is not trivial (Spence and Woo, 2003; Hayashi et al., 2016). The use of assumed 
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PDF descriptions of these storage units is thus popular, and once characterized in this way, the fill-

and-spill problem is naturally suited to bottom-up distribution-based upscaling approaches. The 

validity of assumed distributions is demonstrated by experimental application in several basins 

(Mekonnen et al., 2014, 2016, 2017; Ahmed et al., 2020), although distribution-based approaches are 

inherently lacking in their inability to account for spatial structure, such as cascading surface 

depression features (Shook and Pomeroy, 2011; Shaw et al., 2013; Connon et al., 2015) or dominant 

“gatekeeper” storage units which may be disproportionately responsible for the spill behaviour of a 

basin (Phillips et al., 2011). 

 

2.3.1.5 Kinematic Wave Equation  

In hydrologic applications, the small-scale physics of overland flow are often characterized 

using the kinematic wave equation (KWE), an approximation of the Saint Venant equations governing 

the change in overland flow depth in time and space via conservation relationships of momentum and 

mass (Kavvas and Govindaraju, 1991). The KWE thus represents an explicit accounting of overland 

flow as follows, 

 

 𝜕𝑦(𝑥, 𝑡)

𝜕𝑡
=  −

𝜕

𝜕𝑥
[𝛼(𝑥)𝑦(𝑥, 𝑡)𝑚] + 𝑞(𝑥, 𝑡) 

(2.19) 

 

where 𝑦 represents flow depth [L]; 𝛼 represents properties of the overland flow surface (e.g., bed 

slope and surface roughness) [-]; 𝑚 is a coefficient dependent on flow state (laminar or turbulent) [-]; 

and q represents the lateral inflow of water [L/T] (Yoon and Kavvas, 2003). 

 

To apply the KWE at larger (hillslope) scales, (Kavvas and Govindaraju, 1991) mathematically 

converted the deterministic differential equation into a Fokker-Plank equation characterizing the 

evolution of the probability distribution of flow depths across a hillslope with stochastic inflows and 

surface roughness. Solutions to this stochastic differential equation are obtained by mathematical 

remapping of the SDEs as Partial DEs using cumulant expansion theory, and by specifying the time-

dependent mean, covariance, and cross-covariance of the uncertain input variables. A special case, 

considering deterministic surface roughness, leads to a solution dependent only on the mean and 

covariance of the stochastic inflows. Kavvas (2003) provided a general framework for the conversion 

of the KWE into its stochastic form, as well as general solutions for the mean overland flow depth 

when both inflows and overland flow properties are heterogeneous. In an accompanying work, Yoon 

and Kavvas (2003) evaluated the simplifications required to utilize the stochastic form of the KWE at 

the hillslope scale to produce an average overland flow depth. These simplifications assume a 

deterministic surface roughness and focus on the efficacy of approximating the diffusive term of the 

SDE by making assumptions about the autocovariance of stochastic rainfall input. The authors 

successfully replicated the evolution of the PDF of overland flow depth by assuming that overland 

flow depths reach an immediate steady-state after the application of rainfall, which simplifies the 

autocovariance function. In a related set of studies, the stochastic KWE equation was reformulated in 
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application to rills (overland channels across hillslopes) and inter-rill areas (overland surfaces that drain 

downslope and into rills) (Tayfur and Kavvas, 1994, 1998). 

 

The stochastic overland flow approach is a stochastic differential equations upscaling 

approach (B-4) that substitutes the known small-scale physics of overland flow with a mean response 

at larger scales. The approach respects the known distribution of water inputs and surface properties, 

and is mathematically rigorous, explicitly tracking the evolution of the resultant probability density 

function of overland flow depths. However, the numerical and analytical solutions of the stochastic 

overland flow description are not trivial: especially challenging is the need to account for input and 

parameter covariances which are difficult to assign and often require simplifying assumptions (e.g., 

Yoon and Kavvas, 2003). In general, applications of stochastic KWE approaches are limited by the 

necessity of simplifying assumptions, although the underlying mathematics are robust. 

 

Harman et al. (2010) introduced a “subordinated” KWE which utilizes stochastic 

subordination techniques to transform the KWE into a form suitable for hillslopes with moderate 

subsurface heterogeneity in conductivity and hence variable subsurface velocities. Zhang et al. (2017) 

extended this approach to allow for preferential flow paths, although this extension is difficult to 

parameterize. The subordinated KWE approach is a distribution-based upscaling approach (B-3) 

wherein the heterogeneity in conductivity is mapped directly to the flow response in steep, straight 

hillslopes which produce piston-type flow responses under homogeneous or mildly heterogeneous 

conditions.  

 

2.3.2 Infiltration 

Spatial variability in infiltration across a basin occurs primarily due to the spatial heterogeneity 

of soil hydraulic properties (SHPs) and precipitation (Vereecken et al., 2019). These heterogeneous 

controls, and a desire to evaluate infiltration at the basin scale, have resulted in a rich history of 

infiltration upscaling literature. Although there are seminal works handling the spatial heterogeneity 

of SHPs and their control on the groundwater flow equation (Yeh et al., 1985a, 1985b, 1985c; Binley 

et al., 1989a, 1989b; Yeh, 1989), the focus here is on the influence of such heterogeneity on infiltration 

processes specifically (i.e., vertical shallow subsurface flow). Further, the focus of this work is spatial 

upscaling, and so studies that have investigated the effects of the temporal heterogeneity of rainfall 

inputs on infiltration are not included (Eagleson, 1978a, 1978b; Cordova and Bras, 1981; Russo and 

Bresler, 1982). Similarly, studies of subsurface similarity or regionalization are not included, although 

a substantial discussion of these topics is provided by Vereecken et al. (2019). Although infiltration 

and runoff processes are inherently linked, infiltration processes in this section are distinct from the 

runoff processes catalogued in Section 2.3.1 with regards to the level of detail considered in the 

associated studies. In Section 2.3.1, runoff processes are characterized explicitly from the perspective 

of hillslope drainage, fill-and-spill behaviour, and variable contributing areas, and infiltration is 

generalized either as a prescribed boundary condition or a fixed sink. Conversely, in this section 
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infiltration is explicitly resolved by governing constitutive relationships applied over heterogeneous 

soils and runoff results are generalized as the rate of water that fails to infiltrate. 

 

The influence of spatial heterogeneity in SHPs on large-scale infiltration has been 

demonstrated in several studies focused on characterizing the influence of assumed heterogeneity on 

upscaled infiltration. In a foundational study, Smith and Hebbert (1979) used a Monte Carlo analysis 

to demonstrate that changing the empirical SHP properties across a basin changed the upscaled 

infiltration rate derived by an analytical solution to Richards’ equation (Smith and Parlange, 1978). 

Andersson and Shapiro (1983) and Ünlü et al (1990) conducted similar analyses demonstrating the 

influence of heterogeneity on upscaled behaviour. Although these bottom-up exact averaging 

approaches illustrate the value of accounting for heterogeneity, they make no attempt to generate 

upscaling relationships or conclusions that can be used to simplify the heterogeneity of SHPs at the 

larger scale. However, many studies have attempted to translate the point-scale heterogeneity of SHPs 

and infiltration fluxes to the basin scale via upscaling techniques. The infiltration upscaling literature 

is distinguished by the choice of infiltration model (i.e., the full Richards equation or the Green-Ampt 

approximation (GA)) and variably-saturated SHP model (e.g., Gardner, 1958; Brooks and Corey, 1964; 

Clapp and Hornberger, 1978; van Genuchten, 1980). Here, the upscaling approaches applied to the 

infiltration process are distinguished by their use of Richards’ equation or the Green-Ampt 

approximation. 

 

2.3.2.1 Richards’ equation  

Richards’ equation characterizes the vertical movement of water across a porous medium with 

variable saturation as follows, 

 

 𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾 (

𝜕ℎ

𝜕𝑧
+ 1)] 

(2.20) 

 

where 𝜃 is water content [-], 𝑡 is time [T], 𝜕 𝜕𝑧⁄  is the vertical gradient [1/L], 𝐾 is the water-content-

dependent hydraulic conductivity [L/T], and ℎ is hydraulic head [L].  

 

The efficacy of inverse modeling (T-2) for deriving effective SHP parameters for Richards’ 

infiltration was demonstrated generally by Feddes et al. (1993a, 1993b) in a series of proof-of-concept 

exercises using remote sensing and finely discretized field data. Kabat et al. (1997) identified inverse 

modelling as the most promising technique for incorporating transient van Genuchten and Clapp-

Hornberger SHP models into large-scale applications of Richards’ equation. However, Smith and 

Diekkrüger (1996), in an analysis of field data, concluded that large-scale SHP functions for 

unsaturated Richards’s flow could not be verified by observation. As such, these insights suggest that 

although effective parameterizations have been derived in the literature and proven valuable for large 

scale modelling, they are theoretical conveniences that cannot be directly verified. This limitation 

notwithstanding, several studies provide useful conclusions about the utility and validity of effective 

parameters (B-2) for Richards’ equation, as follows. 
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Smith and Diekkrüger (1996) conducted a Monte Carlo analysis of a combined van 

Genuchten-Brooks-Corey SHP model coupled to an algebraic solution of the transient Richards 

equation to a ponded boundary condition (Smith and Parlange, 1978). The SHPs were fit to lognormal 

and normal distributions based on observed data. The authors determined that effective values of 

saturated conductivity (lognormal), residual soil moisture (normal), and saturated soil moisture 

(normal) were successful in replicating expected upscaled flux behaviour. However, no effective value 

existed for the shape parameter controlling the change in conductivity with saturation.  

 

 Considering the Brooks-Corey model in isolation, Zhu and Mohanty (2003) determined that 

its piecewise description of the conductivity-saturation function was inappropriate for effective 

parameterization approaches. However, all other studies utilizing Brooks-Corey in this review ignore 

this piecewise discontinuity in conductivity. Zhu and Mohanty (2002) conducted an in-depth analysis 

of the suitability of upscaled Brooks-Corey and Gardner models for steady Richards’ modelling under 

varying degrees of parameter covariance in a bottom-up effective parameterization analysis 

considering arithmetic and geometric means. The authors identified the arithmetic mean for saturated 

conductivity and the geometric mean for pore size distribution (α) as the most suitable averaging 

methods when these parameters are assumed to follow lognormal distributions. The authors 

demonstrated that the correlation between these SHPs directly impacted the success of the effective 

parameterization, and that effective parameters were most successful when these SHPs were perfectly 

correlated. The correlation between these parameters, now including their use in the van Genuchten 

SHP model, was further investigated by Zhu and Mohanty (2003) which applied an inverse modelling 

approach (T-2) and concluded that an increased correlation between conductivity and α lead to larger 

effective conductivities but had no effect on the effective α parameter (again classifying the 

heterogeneity in these parameters via lognormal distributions). Liu et al. (2016b) used stochastic theory 

to define an effective Brooks-Corey saturated conductivity that respected known parameter 

covariances and mean soil moisture. Due to the complexity of this approach, the authors evaluated 

whether this effective value could be replaced by a mean value, concluding that this was only tenable 

when the variance of the lognormally distributed saturated conductivity was low. 

 

Zhu et al. (2007) evaluated a novel power averaging approach to generate effective Gardner 

and van Genuchten SHPs for steady Richards’ infiltration. The authors applied this approach to field 

data to demonstrate that the SHPs may have characteristic power averaging coefficients, although they 

were careful to state that this may be a bias of the potentially limited heterogeneity of their data sets. 

Jana and Mohanty (2012) used bottom-up effective parameterization (specifically, a novel averaging 

approach that accounts for spatial correlation in its weighting) to demonstrate that effective van 

Genuchten SHP parameters are dependent on subgrid topography when these parameters are applied 

to regions larger than several hundred metres. Liu and Bodvarsson (2003) derived upscaled 

unsaturated conductivity curves for porous media domains with large air entry values. These upscaled 

curves were produced by exact averaging of small-scale curves, requiring the assumption that the 
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suction head was spatially uniform at the larger scale. The utility of these curves was demonstrated via 

numerical modelling under various degrees of heterogeneity.  

 

These studies allow us to make several generalizations about effective SHP parameters applied 

to Richards’ equation. First, effective parameters derived via inverse modelling (T-2) are generally 

successful, whereas bottom-up averaging approaches (B-2) are appropriate under specific conditions 

of (1) low variance and (2) high spatial correlation. Further, bottom-up approaches aggregating to 

regions larger than several hundred metres may be sensitive to the distribution of subgrid topography. 

Strictly, the Brooks-Corey conductivity must be handled piecewise and so should not be tenable to 

effective parameterization, although this restriction is only considered in one study. Although each 

SHP model handles saturation differently, the work of Zhu and Mohanty (2003), which provides 

general conclusions applicable to the van Genuchten, Brooks-Corey, and Gardner models, suggests 

that the effective behaviour of the SHPs in each model may be similar.  

 

Several studies have produced upscaled constitutive relationships capable of characterizing the 

mean Richards infiltration response to prescribed heterogeneity. Yeh et al. (1985a) transformed the 

point-scale Richards equation for 3D flow into a large-scale equation solving for the mean steady-state 

infiltration rate given an effective unsaturated conductivity relationship, a distribution-based approach 

(B-3). Although this conceptualization included lateral flow, the authors demonstrated solutions for 

one-dimensional infiltration. Chen et al. (1994) transformed the Richards’ equation into a stochastic 

differential equation (B-4) characterizing the ensemble average soil moisture across the domain in 

response to the moments and covariance of three spatially variable SHPs (saturated conductivity, water 

content, and matric potential). This upscaled equation accounts for spatial dependence in SHPs, but 

a simplification of the covariance is required, such that the equation was only successfully able to 

reproduce ensemble mean results when variance in saturated conductivity was small.  Liu et al. (2016b) 

also derived an upscaled Richards equation using stochastic theory (B-3), but utilized a unique 

approach that solves for small-scale SHP relationships at a mean soil moisture value and then 

aggregates and offsets these values by correction terms controlled by the covariance and means of the 

SHPs. The authors used this model to demonstrate that representative effective SHP parameters were 

only tenable when variance in saturated conductivity was small. 

 

2.3.2.2 Green-Ampt approximation 

The GA approximation simplifies the Richards equation into two analytical solutions, 

distinguished based on the occurrence of ponding at the surface as follows (e.g., Dingman, 2002), 

 

 

𝐹(𝑡) = {

𝑤𝑡, 𝑡 ≤ 𝑡𝑝

𝑤𝑡𝑝 + |𝜓|(𝜃𝑠 − 𝜃0) ln (
𝐹(𝑡) + |𝜓|(𝜃𝑠 − 𝜃0)

𝑤𝑡𝑝 + |𝜓|(𝜃𝑠 − 𝜃0)
) + 𝑘𝑠(𝑡 − 𝑡𝑝), 𝑡 > 𝑡𝑝

 (2.21) 
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where 𝐹(𝑡) is the cumulative infiltration volume [L] at time 𝑡 [T], 𝑤 is the rainfall rate [L/T], 𝑡𝑝 is the 

time to ponding [T], 𝜓 is suction head at the wetting front [L], 𝜃𝑠 is porosity [-], 𝜃0 is initial soil 

moisture [-], and 𝑘𝑠 is the saturated hydraulic conductivity [L/T].  

 

The efficacy of effective SHP parameters (B-2) for the GA infiltration model is dependent on 

the degree of assumed homogeneity and in the handling of the top boundary condition. In the simplest 

case, Bresler and Dagan (1983) demonstrated that an effective saturated conductivity for the GA 

model satisfied the results of the full Richards equation when a steady-state rainfall condition existed 

and when all other SHPs were homogeneous. Several additional studies reinforced this conclusion by 

successfully defining an effective saturated conductivity for the GA model under steady rainfall 

conditions and with no variation in other soil parameters (Corradini et al., 2002; Kim et al., 2005; Ojha 

et al., 2017). Corradini et al. (2002) further derived a semi-empirical saturated conductivity function 

that could reproduce the infiltration response to both steady and variable rainfall inputs when the top 

boundary condition was tied to a run-on process (being the saturation excess transfer of water across 

the landscape to unsaturated downslope regions which then infiltrate this runoff). Kim et al. (2005) 

demonstrated that when rainfall rates are large, the spatial variability in conductivity dominates the 

upscaled response, whereas when rainfall rates are low, it is the rainfall magnitude that dominates. 

Ojha et al. (2017) formalized the connection between effective saturated conductivity and 

heterogeneity by generating closed-form analytical expressions relating effective conductivity to the 

lognormal moments of the distribution of conductivity and the given rainfall rate.  

 

A key assumption in these studies is that saturated conductivity is the only heterogeneous 

property of the soil – all other SHPs are specified as effectively constant, or an implied assumption is 

made that the variability of saturated conductivity is much larger than the variation in any other SHPs. 

In contrast, Craig et al. (2010) analyzed the upscaled GA response to a steady input under 

heterogeneity in both conductivity as well as initial soil moisture, porosity, and suction head, and 

concluded that no effective parameterization was able to successfully replicate analytically-derived 

upscaled behaviour when all parameters were heterogeneous. Thus, effective parameters applied to 

the GA problem require an essential assumption of homogeneity in SHPs, and the resultant infiltration 

must be produced in response to a steady input when run-on is not considered.  Sivapalan and Wood 

(1986) and Wood et al. (1986), using the Philips infiltration equation, another approximation of the 

full Richards infiltration response, reached a similar conclusion that an average conductivity biased 

the expected mean infiltration rate produced by accounting for the heterogeneity across the basin. 

 

The mathematical tractability of the GA approach has resulted in several closed-form 

descriptions of upscaled infiltration using distribution-based approaches (B-3). Chen et al. (1994) 

derived an analytical solution to the upscaled GA problem investigated by Dagan and Bresler (1983) 

by using a spatially independent distribution of saturated conductivity. Govindaraju et al. (2001) 

derived an analytical solution informed by a spatially correlated lognormal distribution in saturated 

conductivity. The authors used this solution to demonstrate that the ensemble mean infiltration rate 

was independent of the covariance of saturated conductivity, rather than demonstrating the 
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dependence on the mean and variance. Craig et al. (2010) reconsidered the GA problem to derive a 

novel approximate upscaled analytical solution in response to spatially independent heterogeneity in 

saturated conductivity and an aggregate SHP accounting for initial moisture content, porosity, and 

suction head. 

 

 Kim et al. (2005) derived a stochastic differential equation form (B-4) of the GA 

approximation, accounting for spatial variability in both saturated conductivity and rainfall intensity. 

However, to produce solutions of the derived stochastic differential equation, the distribution of 

lognormal conductivity could not include spatial correlation, thus eliminating any accounting of 

covariance. Ojha et al. (2014) utilized a top-down direct substitution approach (T-1) to develop four 

dimensionless Green-Ampt solutions in response to a single rainfall event under various rainfall and 

saturation conditions. These upscaled solutions depend on a spatially independent, lognormally 

distributed conductivity field, and successfully reproduced the soil moisture observed at an 

experimental field site. 

 

The literature thus contains many variations of upscaled relationships and effective parameters 

for infiltration processes utilizing the Green-Ampt approximation. Notably, many studies draw 

upscaling conclusions by focusing on the variability in saturated conductivity alone. Such an agreement 

on a dominant aspect of SHP heterogeneity simplifies the upscaling process while still enabling 

relevant conclusions. Second, accounting for the covariance of SHPs can be considered an 

unnecessary complication when considering GA solutions (and covariance has been noted as 

negligible in Richards’ equation applications where saturated conductivity exhibits small variance). 

Critically, a fundamental assumption regarding saturated conductivity, that this parameter exhibits a 

lognormal distribution of heterogeneity in space, is applied in nearly every GA and Richards’ 

application in this section. The validity of this assumption is ultimately traced to studies in the literature 

examining field data (e.g., Nielsen et al., 1973), and it is evident that the convenience of this accepted 

heterogeneity has engendered a variety of upscaling conclusions. 

 

2.3.3 Evapotranspiration 

Evapotranspiration (ET) is unique in the library of hydrologic processes in that it is inherently 

coupled to the physics of plant physiology and respiration. In hydrological modelling, ET is 

represented by historically accepted empirical equations which translate the complex mechanisms of 

water vapour exchange from plant stomata into a useful flux (Dingman, 2002). However, the broader 

literature discussing ET upscaling accounts for more fundamental relationships which consider the 

inherent coupling between plant respiration and gas exchange fluxes including both water vapour and 

carbon dioxide (e.g., Jarvis and Mcnaughton, 1986; McNaughton and Spriggs, 1986; McNaughton and 

Jarvis, 1991; Ding et al., 2014; De Kauwe et al., 2017; Luo et al., 2018). Such studies utilize the leaf as 

the fundamental scale, and are focused on translating exchange fluxes to the canopy scale or regional 

(climate modelling) scale. The result of this dichotomy of approaches, with the coupling of leaf 

physiology and carbon-water exchange processes on the one hand and the hydrological empiricism in 
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modelling on the other, means that the handling of ET as an upscaled process in hydrological 

applications is limited. 

 

The Penman-Monteith (PM) equation (Monteith, 1965) is widely used to produce ET fluxes 

in hydrological applications (e.g., Dingman, 2002; Schymanski and Or, 2017). The PM equation is an 

empirical approximation of ET (T-1) over a vegetated surface, and is effectively an upscaled 

representation of the exchange of water vapour across plant stomata, as follows (e.g., Dingman, 2002) 

 

 
𝐸𝑇 =

Δ(𝐾 + 𝐿) + 𝜌𝑎𝑐𝑎𝐶𝑎𝑡𝑒𝑎
∗(1 − 𝑊𝑎)

ρw𝜆𝑣(Δ + 𝛾(1 + 𝐶𝑎𝑡/𝐶𝑐𝑎𝑛))
 

(2.22) 

   

where Δ is the slope of the saturation vapour pressure-temperature curve , 𝐾 is net shortwave radiation 

input, 𝐿 is net longwave radiation input , 𝜌𝑎 is the density of air, 𝑐𝑎 is the heat capacity of air, 𝐶𝑎𝑡 is 

the atmospheric conductance as a function of wind speed and height, 𝑒𝑎
∗  is the saturation vapour 

pressure, 𝑊𝑎 is the relative humidity, ρw is the density of water, 𝜆𝑣 is the latent heat of vapourization, 

𝛾 is the psychrometric constant, and Ccan is the canopy conductance. In the PM conceptualization, the 

mechanics of ET are analogized to the behaviour of electric circuits (Monteith, 1965; Dingman, 2002) 

and the influence of the plant is summarized by the conductance parameter. This conductance can be 

related to a single leaf (“leaf conductance”) or an entire canopy (“canopy conductance”) (Dingman, 

2002; Schymanski and Or, 2017). However, in practice conductance is empirically derived at the 

canopy scale (e.g., Lindroth, 1985; Stewart, 1988; Komatsu et al., 2012; Song et al., 2020; Deng et al., 

2021). The assumption that Penman-Monteith can be applied at the canopy-scale using an effective 

canopy conductance is known as the “big leaf” scheme, and this assumption is common in 

hydrological applications (Dingman, 2002; Schymanski and Or, 2017; Luo et al., 2018). In the plant 

physiology literature, additional “dual leaf” and “dual source leaf” schemes are used, although these 

effective parameterization approaches are directly coupled with carbon exchange metrics (Ding et al., 

2014). 

 

The lack of ET upscaling procedures in the hydrology literature beyond the specification of 

an effective canopy conductance (strictly this conductance is not aggregated (B-2) or inferred (T-2), 

but directly measured) highlights some significant gaps in the handling of ET in hydrological 

applications. First, as previously discussed, hydrological models do not invoke the fundamental 

physics of plant vapour exchange but rather empirical approximations of these physics that depend 

on difficult to measure parameters. Indeed, there are a variety of ET approximations that are best 

suited to different environment and climate settings and the language of hydrology is not in 

understanding which of these approximations best replicates the fundamental physics, but rather, 

which is suitable for the practical question at hand (Allen, 1986; Federer et al., 1996). The interest in 

hydrology for an ET relationship that suitably estimates water fluxes without a deep concern for the 

physics of leaf vapour exchange is underlined by Schymanski and Or (2017), which repeated Penman’s 

fundamental experiment with modern methodologies and demonstrated that the Penman relationship, 

foundational to the application of ET processes in hydrology, is missing critical terms for two-sided 
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leaf vapour exchange and leaves with distinct stomatal behaviour.  Without explicitly accounting for 

the fundamental physics, upscaling investigations are inherently limited. The empirically derived 

approximations of ET (T-1) are parameterized with scale-specific effective parameters, and thus the 

point scale of ET in hydrology is the scale at which the empirical parameters are derived. This contrasts 

with the plant physiology literature which explicitly treats the leaf as the point scale. In general, ET 

upscaling efforts in hydrology are made redundant due to the convenient overlap between the canopy 

scale and the basin scale. Because the canopy scale is large relative to the basin scale, the heterogeneity 

of canopy types in a basin is appropriately characterized as discrete lumps rather than continuous 

distributions (i.e., if there are four types of vegetation in a basin, there will be four canopy conductance 

values, and explicitly accounting for this heterogeneity will not incur a significant computational 

expense). 

 

The difficulty in assessing the fundamental heterogeneity of ET fluxes at the sub-canopy scale 

is connected to the scales at which ET processes are observed (further explored in Section 2.4). Eddy-

covariance towers, for example, provide an estimate of ET not over a single leaf but rather over a, 

“spatially homogeneous and structurally uniform vegetative canopy” (Munger et al., 2012), while sap 

flow techniques provide an estimate at a single tree (e.g., Mackay et al., 2010; Song et al., 2020; Deng 

et al., 2021). At the other end of the scale spectrum, empirical ET relationships have been derived to 

estimate ET from satellite imagery via energy balance models (e.g., Raupach and Finnigan, 1995; Allen 

et al., 2005; Liu et al., 2016a; Singh and Senay, 2016). However, with observations limited to the remote 

sensing pixel scale, these ET relationships are unable to invoke sub-pixel heterogeneity and thus are 

more tenable to global circulation models than catchment-scale hydrological models. The lack of 

available point-scale observation data in determining large scale ET behaviour is reflected in the use 

of the term “upscaling” in some ET literature to mean the interpolation of point scale data to produce 

a heterogeneous grid at the large scale (e.g., Xu et al., 2018), rather than the generation of large-scale 

fluxes. 

 

2.3.4 Snow 

Characterizing the melt, blowing transport, and interception of snow is essential for 

hydrological investigations of basins at high latitude and/or high altitude. Remote sensing tools allow 

hydrologists to readily classify the snow cover across a basin, but understanding how snow cover 

evolves requires an upscaled understanding of point-scale processes and related heterogeneity.  

 

2.3.4.1 Snowmelt 

Snowmelt occurs when atmospheric and radiative forcings trigger a melt threshold which 

converts snow cover into liquid water. In hydrological applications, snow cover is represented using 

a snow-covered area (SCA) metric, indicating the fraction of the landscape covered by the snow pack. 

The liquid water produced by melt is represented by a snow water equivalence (SWE), which accounts 

for the lack of one-to-one correlation between snow depth and water depth due to the porosity of the 

snowpack.  
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Snow depletion curves (SCDs) characterize the melt relationship between SCA and SWE, and 

are useful for understanding the impact of landscape heterogeneity on melt. SCDs are dependent on 

physiographic basin properties (e.g., land cover, topography) and prevailing local weather conditions. 

As such, these curves are upscaled descriptions of snowmelt developed from field data (T-1). Due to 

the variability of field conditions, many SCDs have been reported in the literature. Each curve relates 

the SCA to a model-simulated variable, such as the cumulative production of snowmelt (Luce et al., 

1999) or the current state of the SWE in the snowpack (e.g., Dunne and Leopold, 1978). In practice, 

the conceptual form of the SCD is assumed correct and upscaling insights are generated by explicit 

consideration of the statistical heterogeneity of SWE, a distribution-based upscaling exercise (B-3). 

Under homogeneous melting conditions, the SCD is simplified by relating the SCA directly to a shift 

in the PDF of accumulated SWE at a known initial state (Donald et al., 1995; Pomeroy et al., 1998; 

Liston, 1999; Luce et al., 1999; Essery and Pomeroy, 2004; Luce and Tarboton, 2004), as follows (Luce 

et al., 1999) 

 

 
𝑆𝐶𝐴 =  ∫ 𝑓𝑆𝑊𝐸(𝑆𝑊𝐸)

∞

𝑆𝑊𝐸𝑎𝑐𝑐

 
(2.23) 

 

where 𝑆𝑊𝐸𝑎𝑐𝑐 is the accumulated initial SWE, and 𝑓𝑠𝑤𝑒 is the known PDF of SWE that does not 

change throughout the melt period. The PDF of initial SWE thus dominates the handling of the melt 

process. A number of PDFs have been assigned to this initial state, including the lognormal 

distribution (Donald et al., 1995; Liston, 2004), gamma distribution (Godio and Rege, 2016), and the 

normal distribution (Marchand and Killingtveit, 2005). Helbig et al. (2015) determined that the gamma 

distribution appropriately characterized melt for a small area (less than 500 square meters), whereas 

normal distributions were appropriate when considering a larger area in the same domain. Liston 

(2004) found success characterizing initial SWE as a lognormal distribution at regional and global 

scales. When the landscape is entirely covered in snow (SCA equals landscape area), a Gaussian 

distribution has been successfully applied to the initial distribution of SWE (Dunne and Leopold, 

1978; Ferguson, 1984; Buttle and Mcdonnell, 1987; Luce et al., 1999; He et al., 2019). However, melt 

rates are frequently variable across a landscape due to terrain and vegetation effects, as well as 

differences in energy state for different depths across the SWE distribution (Donald et al., 1995; 

DeBeer, 2012). The spatial distributions skew to a non-Gaussian distribution when portions of the 

underlying ground surface begin to appear (He et al., 2019). To capture non-homogeneous snowmelt 

conditions, Liston (1999) applied the SCD to subregions of a model domain over which melt can be 

assumed to be uniform. Many studies have used the approach of dividing a basin into elevation zones; 

however, if there are very fine scale variations in melt the approach may fail (DeBeer, 2012). For 

distributed modelling applications, Luce et al. (1999) uniquely characterized the snow distribution in 

each grid cell using a cell-specific empirical SCD. Despite the fact that this technique appears to be 

quite effective (Luce and Tarboton, 2004), defining the form of the empirical SCD relationship is not 

trivial (Ohara et al., 2008). 
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Snow melt is thus upscaled by top-down empiricism (T-1), wherein the complex physics of 

melt are converted into a simple emergent large-scale relationship (the SCD) which converts bulk 

snow cover to bulk snow water equivalent. The form of the SCD is controlled by an initial distribution 

of SWE across the basin approximated from observed data or fit to an assumed distribution, which 

are variably successful depending on the size and homogeneity of the domain. In this way, bottom-up 

distribution-based approaches are also utilized (B-3). The SCD approach has been successfully applied 

at the sub-basin and distributed modelling grid scale to account for the heterogeneity in the melt 

process resulting from unique local climate and topography.  

 

An alternative approach for upscaling snowmelt explicitly incorporates the stochasticity 

affecting snow distribution in a finite area due to uneven snowmelt and redistribution (Ohara et al., 

2008; He and Ohara, 2019). This is a stochastic differential equations-based approach (B-4) that 

requires the parameterization of input PDFs and covariances. The approach was shown to be useful 

for describing snowpack dynamics in terms of evolving PDFs, but the conclusions were not validated 

with field data (Ohara et al., 2008; He and Ohara, 2019). He et al. (2019) further suggested that study 

with field data is necessary for better understanding the evolution of snow spatial distribution at the 

sub-grid scale. Alternatively, Beaton et al. (2019) evaluated the efficacy of applying a single effective 

snow depth at numerical grid scales produced via aggregation of point-scale snow depth data, 

concluding that the upscaled mean value was tenable at reproducing mean SWE except during spring 

freshet. 

 

2.3.4.2 Blowing snow transport and interception 

The physics of point-scale blowing snow transport and interception have been upscaled to 

larger, sub-basin scales through rigorous field experiments and related empiricism (e.g., Hedstrom and 

Pomeroy, 1998; Pomeroy and Li, 2000). These processes are grouped together because of the similar 

approaches use to derive the constitutive relationships and the more restrictive penalties of their 

empiricism. 

   

The snow pack is constantly evolving due to blowing snow transport, which redistributes snow 

and so produces a spatially evolving distribution of depth across a basin. Observations of intermittent 

and spatially variable snow transport have suggested that transport is controlled by small-scale 

variations in snow cover properties and boundary-layer flow; however, blowing snow models often 

do not capture small-scale variations due to fixed assumptions of constant wind direction and speed 

(Pomeroy and Li, 2000). As such, blowing snow is characterized as a top-down empirical upscaled 

relationship (T-1) describing the aggregate point-scale transport of snow across an area [L/T] with 

uniform wind direction and speed as follows (e.g., Pomeroy and Li, 2000), 

 

 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =  𝑝[−∇𝐹 − 𝐸𝐵] (2.24) 
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where 𝑝 is the probability that blowing snow occurs across this domain, 𝐹 is the downwind transport 

rate [L/T] resulting from empirical descriptions of erosional processes related to wind speed (Pomeroy 

et al., 1993), and 𝐸𝐵 is the sublimation flux [L/T] of the blowing snow (representing a sink on the 

subsequent volume of redistributed snow). Basin-scale transport may then be realized using an area-

weighted sum of fluxes from each portion of the landscape. The probability of occurrence of blowing 

snow in a given sub-domain has been characterized by a Gaussian CDF of wind speeds, with mean 

and variance controlled by empirical functions related to temperature and snow age (Li and Pomeroy, 

1997; Pomeroy and Li, 2000). This conceptualization of upscaled blowing snow was successfully 

incorporated into snow mass balance models in the Canadian Prairies and arctic (Pomeroy and Li, 

2000); however, the empirical nature of the CDF of wind speed occurrence limits the application of 

the model to areas where relevant observation data has been collected. 

  

The interception of snow by vegetation canopy results in a critical store of water in cold 

regions that is difficult to model (Mazzotti et al., 2021). The heterogeneity of the canopy controls the 

distribution of interception across a basin, and so characterizing the large-scale interception storage is 

an upscaling exercise in which the interception of snow at the branch scale is translated to the canopy 

scale. Numerous studies have catalogued observed interception at the branch and stand scale (e.g., 

Satterlund and Haupt, 1967; Schmidt and Gluns, 1991; Hedstrom and Pomeroy, 1998). Satterlund and 

Haupt (1967) introduced a top-down empirical upscaled snowfall interception model (T-1) at the 

canopy scale, informed by observations at the branch and stand scale, as follows (modified from 

Moeser et al., 2015), 

 𝐼 = 𝐼𝑚𝑎𝑥(1 + 𝑒−𝑘𝑃)−1 (2.25) 

 

where 𝐼 is canopy interception [L], 𝐼𝑚𝑎𝑥 is the maximum interception storage [L], 𝑃 is the snowfall 

measured in an open clearing (with no canopy interception) [L], and k is a proportionality constant 

controlled by species-specific canopy metrics including Leaf Area Index, canopy coverage, canopy 

height, and mean forested fetch length (Hedstrom and Pomeroy, 1998) [1/L]. Hedstrom and Pomeroy 

(1998) extended this model by developing an empirical relationship for 𝐼𝑚𝑎𝑥 as a function of snow 

density, and parameterized the interception relationship for two canopy species (black spruce and jack 

pine) with good comparison to observed data. However, the authors noted that specific observations 

of varied canopy species are required to apply the model generally and suggested that further validation 

and model improvement may be necessary. Moeser et al. (2015) reinforced the difficulty of improving 

and parameterizing this model by cataloguing the various methods available to collect interception 

data, including the standard direct method (i.e., cutting and hanging a tree on a tower scale as in 

Hedstrom and Pomeroy (1998)); time lapse photography; and gamma ray instrumentation. The 

authors explicitly noted that the expense and difficulty of these observation techniques limited the 

collection of large-scale canopy data. Moeser et al. (2015) also conducted a statistical analysis of highly 

resolved LIDAR measurements of a forest canopy and developed regression models to more 

accurately predict 𝐼𝑚𝑎𝑥 by accounting for the greater canopy topography (the proportion of the 

canopy open to the sky, controlled by stand height and the width of the canopy) and the spatial 

heterogeneity of the canopy structure. This LIDAR-derived 𝐼𝑚𝑎𝑥 produced improved estimates of 
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interception using Equation 2.25 than the empirical relationship of Hedstrom and Pomeroy (1998). 

Mazzotti et al. (2021) further demonstrated the benefit of finely resolved remote sensing data in 

producing a more detailed accounting of canopy and snowpack variability across a domain, although 

like Moeser et al. (2015) the analysis was based on finely-resolved gridded data as opposed to a new 

constitutive relationship for canopy interception. 

 

Blowing snow transport and interception are thus similarly characterized by top-down 

empirical upscaling relationships (T-1) which require detailed site-specific information. However, this 

dependence on rigorously assigned empirical parameters limits their application in general hydrological 

modelling. Further, these processes are constrained by the scale at which observations are tenable and 

hence the scale at which the governing constitutive relationship is defined, which in both cases is not 

the fundamental point scale. That is, blowing snow transport is characterized at the scale at which a 

portion of the landscape exhibits uniform wind and transport characteristics, as opposed to the snow 

particle scale; while interception is characterized at the canopy scale as opposed to the branch scale. 

As such, although the governing constitutive relationships are themselves upscaled forms of point-

scale physics, the relationships are not tenable to further upscaling analysis, in a manner identical to 

the limitations of upscaling ET processes (Section 2.3.3). As an added complicating factor, the relevant 

large-scale information parameterizing blowing snow and interception equations is difficult to collect, 

for example, requiring the identification of a uniform parcel of land and the measurement of transport 

gradients in blowing snow transport (Hedstrom and Pomeroy, 1998), or more severely, the destructive 

requirement of cutting a tree and attaching it to a built tower scale for interception measurements 

(Moeser et al., 2015). These processes are contrasted with melt, which is similarly defined by an 

empirical relationship, but one that is parameterized by a single distribution, the spatial heterogeneity 

of initial melt, and hence more generally applicable. 

 

2.3.5 Computational upscaling approaches in modelling tools 

Upscaling insights are inherently useful for applied hydrologic modelling: if basin-scale fluxes 

and states can be determined from small-scale variability without the computational burden of solving 

a finely discretized system of small-scale inputs (or collecting such input data), valid hydrological 

conclusions can be created at a fraction of the computational cost. In this section, we highlight two 

modelling platforms in which the application of upscaling ideas is essential to their novelty: the 

Watershed Environment Hydrology Model (WEHY; Kavvas et al., 2004) and the mesoscale 

Hydrological Model (mHM; Samaniego et al., 2010). We single out these two platforms because they 

focus on a large suite of hydrological processes, and so attempt to comprehensively apply upscaling 

ideas across a number of hydrologic fluxes. However, upscaling methods for a single hydrologic flux 

have been incorporated into specific hydrological modelling platforms, and we here include a 

discussion of two relevant examples: the handling of fill-and-spill runoff in the Xinanjiang model 

(Zhao et al., 1980; Zhao, 1992) and its extensions VIC and PDMROF; as well as the handling of 

subsurface runoff in the popular TOPMODEL platform (Beven and Kirkby, 1979). 
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The Watershed Environmental Hydrology Model (WEHY) (Kavvas et al., 2004) is a 

physically-based hydrological model built to accommodate spatial heterogeneity through ensemble-

averaged conservation equations (B-4) (Gelhar and Axness, 1983; Kavvas and Karakas, 1996; Kavvas, 

2003). The hydrologic module includes stochastic differential equation-based upscaled representations 

of: vertical unsaturated flow (Section 2.3.2.2), subsurface flow, overland flow (Section 2.3.1.5), and 

snow accumulation (Section 2.3.3.1). Watersheds are discretized into model computational units 

(MCUs), which are rectangular hillslopes or first-order watersheds containing interrill areas and rills. 

Delineation of MCUs and their estimated geomorphologic and soil statistical moment parameters is 

covered in Chen et al. (2004b). Discharges calculated from MCUs are routed into a stream network, 

represented using a 1D diffusive wave approximation, and a regional groundwater flow component, 

represented using an upscaled version of the 2D Boussinesq equation. Additional 

sediment/contaminant transport processes are included in an environmental module. The inputs to 

the model are atmospheric forcings (e.g., precipitation, temperature) and the distribution parameters 

of the point-scale processes, limiting the complexity of the parameter estimation processes (Kavvas et 

al., 2004). The WEHY model has also been extended to include atmospheric processes through 

coupling to an atmospheric circulation model (WEHY-HCM; Kavvas et al., 2013). The WEHY and 

WEHY-CHM models have been deployed on a mountainous, forest-covered watershed in Japan 

(Chen et al., 2004a), various watersheds in California (e.g., Kure et al., 2013; Ohara et al., 2014; Jang 

et al., 2017; Trinh et al., 2017), and monsoon-influenced watersheds in Peninsular Malaysia (Amin et 

al., 2017). 

 

The mesoscale Hydrologic Model (mHM) is a spatially distributed conceptual model that 

incorporates upscaling through multiscale parameter regionalization (MPR) (Samaniego et al., 2010). 

Rather than incorporating parameter heterogeneity with non-physical or lumped input parameters, 

MPR represents a robust and effective procedure for estimating these values from measured data. 

Linear and non-linear transfer functions map relationships between model parameters and basin data 

at the measurement scale. These relationships are controlled by global parameters that parsimoniously 

adjust these transfer functions. Upscaling to the model (meso) scale is achieved through effective 

parameters (B-2) calculated from the measurement-scale parameters using various upscaling operators 

(e.g., arithmetic mean, geometric mean, maximum difference). The mHM model, combined with the 

MPR technique, has been tested on various watersheds in Germany (Samaniego et al., 2010), the U.S. 

(Kumar et al., 2013), the greater Pan-European region (Samaniego et al., 2017), and numerous other 

European watersheds (Rakovec et al., 2016a, 2016b). The ability of MPR to transfer global parameters 

between watersheds across different climates with minimal or no additional calibration (Kumar et al., 

2013) is a powerful element of mHM. 

 

The TOPMODEL hydrologic modelling platform is a popular modelling tool (Beven et al., 

2021), that utilizes the topographic index (Section 2.3.1.3) in its algorithmic handling of subsurface 

runoff. The model, first introduced by Beven and Kirkby (1979), provided immediate computational 

benefit in its ability to convert contoured topographic information from physical maps into useful 

hydrologic insight, providing an understanding of what portions of the landscape would be similarly 
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saturated by a rainfall event. A robust contemporary review of TOPMODEL, including its history 

and its evolution, is available in Beven et al. (2021). TOPMODEL is unique in its flexible definition 

of the “large scale”, which is an arbitrary grid cell size at which the modeller is comfortable assuming 

homogeneity of the topographic index. TOPMODEL has been successfully applied throughout its 

history to a large number of diverse basins (e.g., Beven, 1997; Beven et al., 2021). 

 

The Xinanjiang model (Zhao et al., 1980; Zhao, 1992) and its extensions (including VIC, PDM, 

and others, Section 2.3.1.4) are modelling tools for solving runoff in landscapes with threshold-based, 

fill-and-spill runoff behaviour. Traditional rainfall-runoff approaches are not applicable in such 

systems, which require an explicit handling of the disconnect between precipitation inputs and runoff 

outputs. These models were designed to rapidly handle the heterogeneity of storage components 

across these landscapes using probability distributions, and so are examples of distribution-based 

upscaling approaches (B-3). The rapid handling of heterogeneity stands in contrast to resolving each 

storage unit explicitly in a distributed modelling approach, which has been shown to be 

computationally impractical (Shook et al., 2013). Pareto or exponential distributions are accepted 

representations of the distribution of storage capacities throughout the landscape in these models 

(Mekonnen et al., 2014, 2016; Ahmed et al., 2020; Zeng et al., 2020) 

 

2.4 Challenges and open questions 

2.4.1 The limits of observation 

The challenges of computational upscaling in hydrology have been directly linked to the scale 

at which we observe hydrological processes: the inconsistent overlap between the scale of these 

processes and the scale of convenient observation creates difficulty in our ability to fully characterize 

hydrological processes at the basin scale (Klemeš, 1983; Blöschl and Sivapalan, 1995). Because 

hydrological processes can occur at the edges of convenient observation scales, it is difficult to obtain 

complete large-scale descriptions of hydrological physics. For example, we can observe an infiltration 

flux over a few square metres using a ring infiltrometer, but it is infeasible to observe a mean 

infiltration flux over an entire basin using current technology. Small-scale constitutive relationships 

are thus often limited to the scale of lab or field measurements, where we can observe parameters, 

states, and fluxes at the same scale, thus providing a spatial boundary to these relationships that enables 

closure. At catchment or even HRU scales, we may be able to resolve bulk parameters and states to 

some degree, but apart from streamflow, are nearly always lacking observations of bulk fluxes.  

 

This mismatch between observation scale and process scale is a fundamental limitation. 

Advances in remote sensing have provided access to hydrological information beyond small-scale 

observation scales, but converting satellite data to useful hydrological information is not trivial (e.g., 

Bahrami et al., 2021), and what information is available is often too coarsely resolved to minimize the 

discrepancy between process and observation scales (i.e., the observation scales are often much larger 

than the hillslope or catchment scales). The paucity of upscaling algorithms in the evapotranspiration 

section of this review (Section 2.3.3) provides a valuable example of this mismatch: the physics of ET 
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are resolved at the leaf scale, and the literature has introduced an upscaled representation utilizing 

effective parameters to convert these physics to the canopy or basin scale. However, remote sensing 

of ET-related parameters is resolved at scales much larger than a canopy or a leaf (e.g., Wang and 

Liang, 2008). Without scale-appropriate observation data, top-down upscaling investigations are 

inherently limited, and bottom-up approaches lose valuable validation information. Thus, progress in 

upscaling ET algorithms to the basin scale has been fundamentally limited. These conclusions are also 

applicable to interception and blowing snow transport algorithms (Section 2.3.4.2), which similarly are 

represented by empirical approximations of the fundamental physics at convenient observation scales. 

As a contrasting example, we can consider the great diversity of upscaling approaches in runoff 

processes (Section 2.3.1), which benefit significantly from the information provided by the basin 

hydrograph. The hydrograph is an integration of the spatially variable runoff processes across a basin 

and so represents an upscaled observation that can be obtained at the point scale. This unique 

configuration allows for the validation of bottom-up upscaling approaches and has informed top-

down approaches, enabling robust investigations into the upscaling of runoff processes.  

 

It is important to recognize the role technology has played in providing information beyond 

convenient observation scales. As the satellite, microscope, and telescope have provided access to new 

frontiers of information, future hydrologists may have access to tools which enable rapid, simple 

basin-scale assessment of heterogeneity and fluxes (McCabe et al., 2017). Once the spatial extents of 

convenient observation scales have been extended, new insights into the connection between sub-

basin heterogeneity and basin-scale conclusions can be generated, pushing the science of hydrology 

onward. 

 

2.4.2 Numerical modelling and point-scale physics 

Bottom-up upscaling approaches attempt to derive upscaled process descriptions by 

aggregating the point-scale physics of a process. The aggregation of point-scale physics is a 

fundamental aspect of hydrological modelling and is explicit in every distributed model. Advances in 

computational processing power may thus suggest that distributed modelling should replace the need 

to produce upscaling relationships, as the point-scale physics can be immediately resolved within a 

finely discretized distributed model grid cell. Although this approach may be tenable for some 

applications, short-circuiting the conclusions of a distributed model with a fully resolved upscaling 

relationship provides both computational advantages as well as a deeper understanding of the 

aggregate process. By upscaling hydrological processes, we attempt to deal with the fundamental issue 

of closure (Beven, 2006), to generate descriptions of processes that are valid within identifiable large-

scale boundaries. The notion of a Representative Elementary Watershed (Reggiani et al., 1998) arises 

out of this idea and reflects an understanding that a system is relatively well behaved at a certain scale 

(the scale at which there is an identifiable boundary to the process and at which the heterogeneity in 

the basin is ergodic). Even if computational power achieved a potency such that any researcher could 

comprehensively simulate all processes in any basin, upscaling investigations would still produce 

necessary contributions to the science of hydrology, moving the science forward and ensuring that 
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our models produce results that we can understand. As modelling gets cheaper and easier, the 

intersection between bottom-up and top-down approaches should grow fuzzy: instead of developing 

conceptual models that justify observed aggregate behaviour (in the top-down approach), the small-

scale physics should be directly aggregated to understand what aspects of the basin (measurable at our 

convenient observation scales) control the aggregate behaviour of a basin. Increased computational 

faculties should inform upscaling studies, rather than ignore them. 

 

A related question about the utility of upscaling investigations is the relative convenience of 

calibration in producing effective basin-scale parameters. Model calibration has proven itself to be 

useful as both a project-specific top-down upscaling approach as well as a traditional and historically 

accepted tool to ensure our models produce useful results. Calibration is practical, but it should be the 

objective of hydrologic research to understand what controls the calibrated coefficients and 

parameters in a basin, succinctly described by Kirchner (2006) as, “getting the right answers for the 

right reasons.” As computational efficiency increases, there is more room to understand what aspects 

of a basin are responsible for calibrated effective parameters. 

 

It is important to acknowledge that the point-scale process descriptions available in hydrology 

may be imperfect. Ultimately, point-scale physics reflect an upscaling of molecular-scale physics, and 

although the desire to close the link between the laws of thermodynamics and basin scale physics is 

intriguing, it may be beyond practical reason to produce upscaling relationships from the very-small 

scale to the point scale. As such, the library of extant and traditionally applied point-scale hydrological 

relationships, often empirically derived as opposed to representing an exact averaging of sub-point-

scale information, may be a fundamental lower-bound on the physics of hydrology. 

 

2.4.3 Assumed heterogeneity, dominant heterogeneity 

If we accept that we have a reliable understanding of the physics at the point scale, and that 

these physics can be aggregated to produce an appropriate description at the large scale, we are faced 

with the difficult task of understanding the distribution of heterogeneity across our scale of interest. 

Correctly characterizing the heterogeneity across a basin is not trivial. However, repeated observation 

of a property may indicate that the property exhibits a convenient statistical structure that can be 

characterized by a known probability distribution function. The catalogue of infiltration studies in this 

review (Section 2.3.2) demonstrates the utility of a widely accepted statistical distribution in an 

upscaling investigation. The understanding that hydraulic conductivity follows a lognormal 

distribution in space means that infiltration studies can specify a reasonable approximation of 

observed heterogeneity using only a mean and variance, as opposed to the more difficult task of 

specifying individual values across a basin. In contrast, the lack of accepted statistical distributions for 

key parameters in the snow literature (Section 2.3.4) is a clear limitation on upscaling efforts. Indeed, 

efforts in the snow literature to demonstrate and justify the efficacy of gamma, normal, or lognormal 

distributions of snow depth across a domain provide an example of how the science must first be 

familiar with convenient statistical distributions of a parameter before any reasonable upscaling efforts 
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can take place. However, it is important to distinguish between the utility of convenient statistical 

distributions for upscaling studies, and the utility of these distributions generally. Fogg and Zhang 

(2016) considered the application of conductivity distributions in stochastic subsurface hydrology and 

suggested that an over-dependence on these assumed distributions has resulted in analyses that utilize 

biased estimates of conductivity when the given domains exhibit structure untenable to description by 

a distribution function. That is, assumed distributions of a parameter may not be fully representative 

in all cases, and indeed, the structure of heterogeneity rather than the distribution alone may be 

required to upscale properly. In the context of upscaling studies, experimental control should dictate 

that an assumed parameter distribution is justified, such that the upscaling conclusions are defensible.  

 

The challenge of characterizing basin heterogeneity is complicated by the challenge of 

understanding the dominant heterogeneity in a basin. Dominant heterogeneity may be classified into 

two aspects. First, in the context of the infiltration example above, we note that most infiltration 

upscaling studies ignore the spatial variability of other soil parameters because they are accepted to be 

much less variable than hydraulic conductivity. As such, an assumption of homogeneity is defended 

and these parameters may be assigned a single representative value while still enabling rich upscaling 

conclusions. Certainly, these studies would be improved by evaluating the variability of all parameters, 

but such an expectation is impractical given the difficulty of collecting information at the appropriate 

scale. The first aspect of dominant heterogeneity simplifies upscaling analyses: if a parameter exhibits 

a much larger degree of heterogeneity and influence relative to other parameters, these other 

parameters may be defensibly classified as homogenous.  

 

The second aspect of dominant heterogeneity involves problems that are significantly 

controlled by a single element that dictates the upscaled response. For example, in cascading fill-and-

spill systems, a single storage element may be responsible for triggering a connection between the 

landscape and the surface water network (e.g., Phillips et al., 2011). Similarly, in shallow subsurface 

flow, the existence of a preferential flow pathway may produce a distinct conductivity which does not 

respect the conductivity of the bulk porous medium (e.g., Nimmo et al., 2021). Failing to characterize 

such “gatekeeper” elements would result in a dramatic misinterpretation of the behaviour of the 

landscape. These gatekeeper elements may require detailed observation data that can be physically 

unrealistic to collect, as is the case with the delineation of macropores in the subsurface (e.g., Rinaldo 

et al., 2011). However, systems dominated by a few elements may be a boon to upscaling studies, as 

the identification of a dominant heterogeneity implies that all other elements can be ignored in favour 

of a detailed characterization of a few elements. 

 

2.5 Conclusion  

Computational upscaling approaches allow hydrologists to account for the small-scale 

heterogeneity of parameters, fluxes, and states at basin scales. Investigations into upscaling approaches 

provide two critical benefits. First, the derivation of an upscaled constitutive relationship provides a 

fundamental scientific insight into the emergent behaviour of hydrologic processes at larger scales. 
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Second, because upscaled relationships provide basin-scale insights without explicitly simulating small-

scale heterogeneity, upscaled constitutive relationships can provide computational benefits to 

hydrologic modelling. In this review, we have generated a formal classification of the methodologies 

that have been used to generate upscaling insights in hydrology, providing a concise set of definitions 

(Section 2.1) and a rigorous mathematical treatment of these ideas (Section 2.2). The utility and 

challenges of these approaches is entrenched in the numerous studies that have generated upscaling 

insights in the literature for runoff, infiltration, evapotranspiration, and snow-related fluxes, and these 

studies are comprehensively documented in this review for the first time (Section 2.3). The insights of 

these studies were then synthesized to produce a distilled summary of the gaps in upscaling approaches 

and the associated open questions for research into computational upscaling approaches (Section 2.4).  
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3 Chapter 3 

 

Use of an efficient proxy solution for the hillslope-storage 

Boussinesq problem in upscaling of subsurface stormflow 
 

3.1 Introduction 

It is common in watershed modelling to characterize subsurface storage as a reservoir in which 

the release of water from the subsurface is determined by a simple, minimally parameterized function 

such as a power law function (e.g., Brutsaert & Nieber, 1977; Kirchner, 2009). The practical efficacy 

of this approach for simulating baseflow and subsurface stormflow has been demonstrated repeatedly 

(e.g., Ali et al., 2014; Harman et al., 2009; Kirchner, 2009); the power law relationship has also been 

observed via analysis of hydrograph recession curves (e.g., Patnaik et al., 2018; Ye et al., 2014). In 

examining the power-law form of this relationship, it is natural to ask: what enables the simplification 

of complex groundwater mechanics into a reservoir formulation with only one dependent variable 

and two coefficients? Previous studies have demonstrated that breaking down the basin into individual 

hillslopes and evaluating the aggregate behaviour of subsurface flow mechanics at those hillslopes is a 

valuable place to start (Ali et al., 2014; Harman et al., 2009).  

 

A common choice for describing subsurface flow at the hillslope scale is the Boussinesq 

equation, which describes one-dimensional subsurface flow through a cross-section. Troch et al.  

(2003), following the work of Fan and Bras (1998) and Childs (1971), developed the Hillslope-Storage 

Boussinesq Equation (hsB), a modification of the Boussinesq formulation to describe the saturated, 

one-dimensional flow through hillslopes with known planar shape characteristics, captured through a 

hillslope width function describing the change in width as a function of distance from the downslope 

stream boundary. Thus, the unique planar shape of hillslopes in a watershed can be respected without 

resorting to simulating two-dimensional flow. The hsB has been linearized and solved analytically for 

specific cases of hillslope shape in which the width profile varies according to an exponential function 

(Dralle et al., 2014; Troch et al., 2003, 2004). The hsB can also be solved numerically to satisfy any 

hillslope shape (e.g., Hazenberg et al., 2015). The hsB has been a valuable tool for exploring questions 

of hillslope subsurface flow. As such there have been several developments and applications of the 

hsB since Troch et al. (2003). Matonse and Kroll (2009) applied the non-linear hsB (now with a 

variable conductivity as a function of saturation) to investigate the recession behaviour of the Maimai 

catchment represented using 1, 3, and 10 hillslopes. Carrillo et al. (2011) built a hydrologic model 

around the hsB and applied this model in a Prediction in Ungauged Basins exercise evaluating 

hydrologic similarity between 12 MOPEX catchments. Troch et al. (2013) applied the model of 

Carrillo et al. (2011) to investigate of the controls of landscape and climate on long-term water 

balances in these basins. Broda et al. (2012) developed a coupling between the hsB and an Analytical 

Element Method model of regional groundwater flow. Sahoo et al. (2018) altered the hsB to account 
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for surface ponding, unsaturated zone processes, bedrock leakage, and root-zone water balance for 

improved prediction of subsurface flow in a real-world catchment. In this work, we present a 

methodology, the hsB Proxy, that interrogates the results of high-quality numerical solutions of the 

full, non-linear hsB for wedge-shaped hillslopes with homogenous conductivity (having no analytical 

solution) and exploits patterns in these results to replicate the results of the hsB at dramatically reduced 

computational times (Note: herein, the use of “hsB” refers to this specific wedge-shaped, 

homogeneous conductivity configuration of the hsB). In this way, the conceptual and physical basis 

of the hsB can be applied to upscaling problems requiring solutions for thousands of hillslopes without 

resorting to computationally costly numerical methods. Insights of the interrogation of the hsB 

simulations and the generation of the hsB Proxy include the realization that the results of the hsB 

under a single recharge event can be linearly scaled by superposition to handle a range of recharge 

events. Further, a non-dimensionalization exercise demonstrates that results of the hsB can be scaled 

directly to handle a range of porosity, conductivity, and downstream hillslope width parameters. 

Finally, the interrogation reveals that the drainage response of a hillslope can be related via a power-

law relationship to the bedrock slope of the hillslope. The ability of the Proxy to replicate the numerical 

solutions of the hsB under a range of hillslope shapes and recharge values is demonstrated. Then, the 

efficacy of the hsB in evaluating upscaling problems is demonstrated through two applications. First, 

the Proxy is compared against the upscaled recession behaviour in the Panola Mountain Research 

Watershed (Clark et al., 2009). These experiments demonstrate the utility of the Proxy and the non-

linear hsB in accounting for topographic and transient recharge information in such upscaling 

problems. Then, the Proxy is used to derive a single effective hillslope representation of a basin 

composed of 867 individual hillslopes. The hsB Proxy is thus presented as a useful modelling tool that 

enables the simulation of: (1) the hillslope-scale subsurface flow response to a transient recharge 

forcing, given (2) hillslopes with unique planar shapes and bedrock slopes, such that (3) a network of 

heterogeneous hillslopes can be rapidly solved and analyzed. The Proxy therein enables the application 

of the physical insights of the full non-linear hsB for wedge-shaped hillslopes with transient recharge 

to problems of hillslope subsurface flow upscaling at significantly reduced computational costs. This 

work will explore and resolve three specific objectives: 

 

1. Build a Proxy model that rapidly emulates the full non-linear hsB solution for wedge-shaped 

hillslopes under quite general conditions. The quality of the Proxy model is tested by an error 

metric indicating the discrepancy between the Proxy and numerical solutions. 

2. Demonstrate the computational and conceptual efficacy of the Proxy by comparison to a 

numerical solver applied to a basin composed of hundreds of hillslopes. The efficacy of the 

Proxy is tested by evaluating the goodness-of-fit of the aggregate hillslope flow response 

generated by the Proxy and a numerical solver, and a comparison of the computation time 

required for each. 

3. Utilize the Proxy model to apply the non-linear hsB for wedge-shaped hillslopes to two 

upscaling problems: (1) the derivation of a basin scale recession response from sub-basin scale 

reservoirs; and (2) the derivation of a single effective hillslope that best captures the aggregate 

flow response of a basin. The utility of the Proxy in the first application is demonstrated by 
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recreating the observed basin scale recession response as the aggregate response from dozens 

of DEM-derived hillslopes. The approach is compared to a previous conceptual reservoir 

steady-state analysis of the Panola experimental basin recession response (that of Clark et al. 

(2009)) and extended to a fully transient analysis enabled by the non-linear hsB. The utility of 

the Proxy in the second application is demonstrated through the rapid calibration of a single 

hillslope that reasonably reproduces the aggregate flow behaviour of a numerical solver applied 

to a basin, as characterized by a goodness-of-fit metric. 

3.2 Methodology 

 The hsB Proxy is derived from the results of thousands of numerical simulations of the hsB. 

Here, the connection between the Proxy and the hsB is introduced. First, the hsB is defined and non-

dimensionalized. Simplifications from this non-dimensionalization are carried into the development 

of the hsB Proxy, and the procedure and assumptions used to create the Proxy are presented. 

 

3.2.1 The hillslope-storage Boussinesq equation 

The hsB is an extension of the Boussinesq equation applied to hillslopes with known planar 

shape and bedrock slope (Troch et al., 2003). Application of a mass balance along a slice of the 

hillslope yields, 

 
𝑓

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
= −

1

𝑤(𝑥)
 
𝜕𝑄(𝑥, 𝑡)

𝜕𝑥
+ 𝑁 (3.1) 

 

where f is porosity [-], ℎ is groundwater head relative to bedrock [L], 𝑡 is time [T], 𝑥 is the distance 

from the downslope end of the hillslope [L], 𝑤(𝑥) is the width function which describes the width of 

the hillslope at location 𝑥 [L], 𝑄 represents volumetric flow rate [L3/T], and 𝑁 represents uniform 

recharge [L/T] applied to the top of the hillslope. The flow rate may be calculated using a modified 

version of Darcy’s law, 

 
𝑄(𝑥, 𝑡) = −𝑤(𝑥)ℎ(𝑥, 𝑡)𝑘 (𝑐𝑜𝑠𝜃

𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
+ 𝑠𝑖𝑛𝜃) (3.2) 

 

where 𝑘 is hydraulic conductivity (L/T) and 𝜃 is bedrock slope. In this work, the hsB is solved 

numerically using the discretization scheme of Hazenberg et al. (2015), which replaces the explicit 

variable accounting of 𝑤(𝑥) in Equations 3.1 and 3.2 with a constant representative width at each 

numerical grid cell, recognizing that a grid cell must be assigned a constant width (at fine discretization 

levels the numerical discretization respects the smoothly changing 𝑤(𝑥) function). To solve Equation 

3.1, hillslopes are assigned a no-flow boundary at the upslope interface and the downslope condition 

is modified to enforce a specified zero-head boundary, consistent with the approach of Troch et al. 

(2003) and related studies utilizing the hsB (e.g., Broda et al., 2012; Dralle et al., 2014; Matonse & 

Kroll, 2009; Sahoo et al., 2018). It is significant to note that as an extension of the Boussinesq equation, 

the hsB will be sensitive to a non-zero boundary condition (Chor and Dias, 2015). As such, the 

application of the hsB Proxy developed here is currently only applicable to problems which assume a 
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zero-head downslope boundary condition. To remove the dependency of the Proxy solutions upon 

hydraulic conductivity and porosity, the non-linear problem is re-cast in terms of dimensionless time, 

 

 𝜕ℎ(𝑥, 𝑡̂)

𝜕𝑡̂ 
= −

1

𝑤(𝑥)
 

𝜕

𝜕𝑥
[𝑤(𝑥)ℎ(𝑥, 𝑡̂) (𝑐𝑜𝑠𝜃

𝜕ℎ(𝑥, 𝑡̂)

𝜕𝑥
+ 𝑠𝑖𝑛𝜃) ]  +  𝑁̂ 

 

(3.3) 

where dimensionless time and recharge are defined as 𝑡̂ = 𝑓/𝐾 ⋅ 𝑡 and 𝑁̂ = 𝑁/𝑘, respectively. In the 

case of a constant width function, an exact analytical solution is available (Bartlett and Porporato, 

2018). However, we here limit the analysis to a more general linear width function, 

 

 𝑤(𝑥) = 𝑤𝑚𝑥 + 𝑤𝑏 (3.4) 

 

where 𝑤𝑚 represents the change in width per unit length (this can be positive or negative) and 𝑤𝑏 

represents the width at the 𝑥 = 0 downslope interface. To more succinctly include the 𝑤𝑚  and 𝑤𝑏  

parameters in the Proxy, a non-dimensional parameter 𝑋 (upslope width fraction) is introduced, which 

characterizes the upslope width as some fraction of the downslope width, 

 

 𝑤(𝐿) = 𝑋 ∙ 𝑤𝑏 (3.5) 

 
𝑋 =

𝑤𝑚𝐿

𝑤𝑏
+ 1 (3.6) 

 

where 𝐿 is the hillslope length and 𝑤(𝐿) is the upslope width. In hsB terminology, hillslopes are 

convergent when 𝑋 > 1 (upslope width greater than downslope width) and divergent when 𝑋 < 1 

(upslope width less than downslope width). Substituting Equation 3.6 into Equations 3.4, 3.3, and 3.2 

reveals that the governing equation is not dependent on the wb parameter, and that the flow exiting 

the hillslope is linearly scaled by 𝑤𝑏. Thus, solutions to Equation 3.3 for a fixed value of 𝑤𝑏 and any 

given combination of  𝑁̂ , 𝜃, 𝑋, 𝐿, and initial condition ℎ(𝑥, 0) may be re-scaled for any arbitrary 

porosity, hydraulic conductivity, and 𝑤𝑏 value. 

 

3.2.2 The hsB Proxy 

The general strategy for generating the hsB Proxy is to first generate thousands of numerical 

solutions of the hsB for a wide range of 𝑋, 𝐿, and 𝜃, with a fixed ℎ(𝑥, 0) value and 𝑁̂ fixed at zero. 

We then identify regression relationships between the 𝜃 parameter and a finite set of fully explanatory 

solution characteristics which describe the hillslope drainage 𝑄(0, 𝑡̂) from the fixed ℎ(𝑥, 0)  initial 

condition over a range of 𝑋 and 𝐿 values. The Proxy support for the wide range of 𝑋, 𝐿, and 𝜃 

characteristics is handled via the descriptive power of the regression relationships. The support for 

variation in conductivity and porosity are handled via scaling of the time parameter in Equation 3.3; 

support for variation in 𝑤𝑏 and the recharge rate/initial condition is handled through linear scaling of 

the flow solution. With all of these in hand, the hsB Proxy will be able to act as a replacement for 
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numerical simulations of the hsB with a significant reduction in computational cost. The details of the 

numerical solutions used to create the Proxy and the efficacy of the regression relations and recharge 

rate scaling are evaluated below. A flow chart summarizing the generation of the Proxy is available in 

Figure 3.1. A flow chart summarizing how the Proxy is applied is available in Figure 3.2. 

 

 

 
Figure 3.1. Generation of the Proxy. For a given plan hillslope shape (L,X) and six bedrock slope values (θ), 6 numerical 

Q(𝑡̂) solutions are derived. Each solution is then converted into 27 proxy points, and each proxy point across the 6 
solutions is described by 2 power-law equations relating time and flow to bedrock slope at the given plan shape. The six 

coloured lines in inset figure (a) illustrate hypothetical Q(𝑡̂) solutions for six hillslopes, each with identical plan shapes 

(L,X) but different bedrock slopes (θ). Inset figure (b) illustrates the conversion of one of the Q(𝑡̂) solutions (blue line) 

from inset (a) to 27 proxy points (red circles). Each of the Q(𝑡̂) solutions in (a) is transformed, however only one Q(𝑡̂) 

function is illustrated for visual clarity. As such, there are 6 Q(𝑡̂) values associated with each proxy point. Inset figure (c) 
illustrates the two power law relationships for a single proxy point (the p = 5% proxy point in this example) across all six 
solutions. These power laws characterize the increase in flow at the p = 5% proxy point as bedrock slope increases, and 
the decrease in time to the p = 5% proxy point as bedrock slope increases. Overall, there are 390 plan shapes and 6 bed 
slopes in the Proxy, which combine to create 2,340 hillslopes and associated numerical solutions. Each of these solutions 
is translated into 27 proxy points, creating 63,180 total proxy points. For each set of 6 proxy points, there exists two 
power-law relationships, creating 21,060 power law relationships.  

 



 

59 
 

 
Figure 3.2. Application of the Proxy. Given inputs (ovals), the Proxy interpolates power-law coefficients to generate 27 
proxy points representing the flow response to a 1 mm initial condition. These proxy points are then connected with 
straight lines, scaled, and superposed to generate a facsimile of the drainage response to the input recharge rate. Inset 

figure (a) illustrates an extracted set of proxy points (red points) and the interpolated Q(𝑡̂) drainage response through these 
points (blue line). Inset figure (b) illustrates the rescaling of the drainage response according to the input K,f, and wb 
values. Note that when the solution is rescaled according to K and f, the solution is transformed out of dimensionless 
time. Inset figure (c) illustrates the rescaling of the Q(t) drainage response from a 1 mm initial condition to the magnitude 
specified by the recharge rate and time step. Inset figure (d) illustrates the superposition of the Q(t) response at every 
timestep of the recharge period: the Q(t) response (blue line) is applied  at each timestep and then a superposed solution 
(green line) is generated describing the drainage response to the recharge rate over the recharge period.  

 

3.2.2.1 Simplified drainage response 

A key component of the Proxy is determining how to represent the continuous outflow 

response from each simulated hillslope in terms of a set of discrete data amenable to regression. This 

is simplified by taking advantage of the similar structure of outflow solutions for diverging and 

converging hillslopes. For diverging hillslopes, the outflow solution is generally characterized by a 

rapid, nearly instantaneous, increase in outflow which peaks and diminishes nearly linearly to almost 

zero at some time after the peak (Figure 3.3). For converging hillslopes, the outflow slowly increases 

(again, nearly linearly) to a peak flow rate after which the outflow quickly declines to zero. Because 

this continuous outflow hydrograph is nearly triangular, it may be described with relatively few degrees 

of freedom. Here, the continuous drainage response 𝑄(0, 𝑡̂) of each numerically simulated hillslope 

is simplified into a finite set of individual (𝑄𝑝, 𝑡̂𝑝) pairs, where the subscript p indicates an individual 
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pair. These points are associated with a percentage of the initial recharge volume remaining in the 

hillslope by splitting the drainage response (i.e., the outflow hydrograph) into nineteen pairs associated 

with 5% changes in storage (p = 95%, 90%, …, 10%,5%), and eight additional points providing added 

fidelity at the edges of the response (p = 97%, 96%, 4%, 3%, 2%, 1%, 0.5%, 0.1%), when the drainage 

response changes rapidly. That is, the Proxy represents the continuous hsB drainage response as 

twenty-seven individual pairs of flow magnitudes and times that are can then be linearly interpolated 

to emulate (“proxy”) the continuous outflow. Note that the initial flow value (associated with p = 

100%) can be directly calculated, and so is not included as a Proxy point. After the p = 0.1% Proxy 

point, flow is assumed to be zero. 

 
Figure 3.3. The hsB Proxy. (top) Example drainage profiles for (a) divergent and (b) convergent slopes as simulated by the 
numerical solver and the Proxy. Closed circles indicate proxy points. Squares indicate the initial flow value, which can be 
solved directly, and the assumption of flow = 0 after the final proxy point. (bottom) Distribution of mean flow error for 
the 2,340 hillslopes in the Proxy.  

3.2.2.2 Numerical solutions 

The Proxy is generated from high quality numerical solutions of the hsB. For each of the 

numerical simulations, all hillslopes are assigned identical boundary conditions and the hsB is 

initialized at a uniform 1 mm head. That is, the hsB Proxy describes the drainage of a hillslope in 

response to a recharge event that instantaneously applies 1 mm of head everywhere along the hillslope. 

The hsB is solved at a fine 0.05 m spatial discretization and 0.25 hr temporal discretization via the 

discretization scheme of Hazenberg et al. (2015), which generates numerical solutions much more 
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rapidly than other tested PDE solvers. The scheme is an implicit finite difference formulation that 

includes a flexible internal time step – this flexible internal time step allows for the generation of 

solutions at a specified time step while ensuring that numerical tolerance criteria are met when a finer 

temporal resolution is required. These discretization parameters are selected to ensure stability and to 

produce a Proxy that benefits from the accuracy derived from such a detailed discretization scheme.  

The final hsB Proxy developed here is informed by the numerical solutions of 2,340 hillslopes 

representing unique combinations of the three hillslope shape parameters: Length (𝐿); upslope width 

fraction (𝑋); and bedrock slope (𝜃), solved at a fixed downslope width (𝑤𝑏) equal to 20 m. The specific 

hillslope shape parameters used in the development of the proxy are available in Table 3.1. 1,404 of 

the hillslopes are convergent (𝑋 >1) and 936 are divergent (𝑋<1). It is important to note that there 

are maximum values of hillslope shape parameters that limit the application of the Proxy generated 

here (Table 3.1). However, there is no reason the regression relationships here cannot be extended in 

range by further model sampling.  

Table 3.1 – Hillslope parameter values in the proxy. 

Hillslope 

Class 
L (m) θ (°) X 

Convergent 
20, 44, 69, 93, 118, 142, 

167, 191, 216, 240, 265, 

290, 315, 340, 365, 390, 

415, 440, 465, 490, 515, 

540, 565, 775, 1000, 1500 

2 

5.6 

9.6 

12.8 

16.4 

20 

1.05, 2.84, 4.63, 6.42, 

8.21, 10, 15, 20, 30 

Divergent 
0.01, 0.198, 0.386, 

0.574, 0.762, 0.95 

3.2.2.3 Regression relationships 

The Proxy simplifies the results of the twenty-seven pairs of discharge-time values derived for 

each of the 2,340 numerical solutions by exploiting a valuable underlying structure exhibited by the 

results of the hsB: each of the twenty-seven individual Proxy points exhibit a power-law relationship 

to the bedrock slope of the hillslope when all other parameters are held constant. That is, for a unique 

combination of 𝐿 and 𝑋, two power-law relationships exist for each Proxy point, describing how the 

Proxy point flow and timing varies with bedrock slope (Figure 3.1). The functional form of these 

regressions are, 

 𝑡̂𝑝(𝐿, 𝑋) = 𝑐𝑝,𝑡̂(𝐿, 𝑋)𝜃𝑑𝑝,𝑡̂(𝐿,𝑋) 

 
(3.7) 

 𝑄𝑝(𝐿, 𝑋) = 𝑐𝑝,𝑄(𝐿, 𝑋)𝜃𝑑𝑝,𝑄(𝐿,𝑋) (3.8) 

 

where 𝑝 indicates one of the twenty-seven Proxy points; and 𝑐 and 𝑑 represent the coefficient and 

exponent of the power-law relationship, which are unique to each Proxy point and combination of 𝐿 

and 𝑋. The Proxy then behaves as a lookup table wherein the two coefficients (𝑐 and 𝑑) of these 

power-law relationships are interpolated between known 𝐿 and 𝑋 values. Although an underlying 
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solution structure is being exploited here, any attempts to fit a closed-form relationship through these 

coefficients was unsuccessful. The validity of this lookup table interpolation approach will be 

examined in a following section. The lack of an explicit function characterizing the relationship 

between the coefficients and the remaining hillslope shape parameters is the reason for the maximum 

values specified in Table 3.1 – beyond these values there is no way to interpolate an appropriate value, 

and extrapolation is not justified.  

 

3.2.2.4 Linear scaling of recharge event responses  

Testing of the Proxy revealed that, despite the non-linearity of the hsB equation, the response 

of a hillslope is adequately handled via linear scaling of the instantaneous 1 mm recharge event 

response. Thus, the hsB solution from a 1 mm initial condition can be applied over a range of recharge 

inputs. The key to this simplification lies in recognizing that a recharge rate at a given timescale is 

easily scaled to a more tenable magnitude at a finer timescale. For example, a 12 mm/d recharge event 

applies 0.5 mm of water over a single hour. Converting this to a head via porosity, we can recognize 

that the 1 mm Proxy initial condition is close enough to this hourly recharge magnitude that the non-

linearity of the hsB will not produce a significantly different response when all other equation 

parameters are held constant (indeed, this is what testing reveals). Critically, testing also reveals that 

superposing these hourly drainage responses produces an aggregate drainage response that matches 

numerical results. That is, the drainage response of a hillslope to a 12 mm/d recharge event over a 

single day can be successfully replicated by superposition of twenty-four 0.5 mm drainage responses. 

This linear scaling approach thus enables the handling of transient recharge inputs by superposition. 

 

The validity of this linear scaling approach is demonstrated by example. Figure 3.4 illustrates 

a daily rainfall time series from the Naramata climate station, a daily Environment Canada climate 

station in British Columbia, Canada (Environment Canada, 2020), with precipitation values ranging 

from 0.2 to 11.4 mm/d. For the sake of example, this rainfall time series is treated as a recharge time 

series (if overestimating magnitude, it provides a realistic temporal distribution of daily recharge 

events). Figure 3.4 also presents the hsB solution of a single hillslope (L = 100 m, Wb = 60 m, X = 

0.1, θ = 10°) with this transient recharge input as well as the accompanying results based upon linear 

scaling of the 1 mm Proxy solution (NSE = 0.999). The good agreement between the scaled Proxy 

and the numerical solution demonstrates the validity of the linear scaling approach under these real-

world recharge rates. The upper limit of acceptable daily recharge rates is evaluated below. 
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Figure 3.4. A real precipitation (recharge) daily time series (top) and the hillslope subsurface flow response (bottom, NSE 
= 0.999) for a hypothetical hillslope solved using the numerical solver and the Proxy. 

3.3 Results 

Example results produced by the Proxy are presented in Figure 3.3 for a convergent and a 

divergent hillslope, with each exhibiting unique drainage patterns (convergent slopes generally display 

an increase to a maximum value while divergent slopes consistently decrease). These examples 

illustrate the excellent handling of most of the drainage profile, with only slight discrepancies at the 

initial and final periods, when the response of the profile changes rapidly. To characterize the error in 

the Proxy, a mean flow error metric is calculated for each hillslope as follows, 

 

 

𝑄𝑒𝑟𝑟 =
1

𝑛𝑡
∑

|𝑄𝑠𝑖𝑚
𝑛 − 𝑄𝑝𝑟𝑜𝑥

𝑛 |

max(𝑄𝑠𝑖𝑚)

𝑛𝑡

𝑛=1

× 100% (3.9) 

 

where 𝑄𝑒𝑟𝑟 represents the mean flow error associated with a hillslope, 𝑛 is the time index, 𝑄𝑠𝑖𝑚
𝑛  

represents the flow produced by the numerical solver at time index 𝑛, 𝑄𝑝𝑟𝑜𝑥
𝑛  represents the flow 

produced by the Proxy at time index 𝑛, max(𝑄𝑠𝑖𝑚) represents the maximum simulated flow value 

associated with the hillslope, and 𝑛𝑡 represents the final time index when the hillslope flow ends. The 

simulated flow and Proxy flow values are compared at each time step (𝛥𝑡 = 0.25 hours). This error 

metric indicates the mean distance between the numerical solution which produced the Proxy and the 
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Proxy itself, normalized into a percentage with respect to the largest simulated flow value. The 

distribution of mean flow error in the Proxy is presented in Figure 3.3. This error distribution 

demonstrates that the Proxy is not a perfect facsimile of the results of the hsB but is on average correct 

within 2.5% of the maximum flow value for a single hillslope. The Proxy performs well under tested 

recharge rates up to 50 mm/d over a single day, with 96% of the Proxy hillslopes exhibiting less than 

10% error and 50% of hillslopes exhibiting less than 2.5% error. In general, this error decreases as 

recharge rate decreases, and longer, steeper hillslopes exhibit smaller errors than shorter, flatter 

hillslopes as recharge rates increase. However, the efficacy of the Proxy is more appropriately 

demonstrated in application to a landscape composed of hundreds of hillslopes, where the 

computational benefits of the Proxy are evident.  

 

3.3.1 Application of hsB Proxy to derived hillslopes 

The practical efficacy of the Proxy approach is demonstrated by comparing the results of the 

Proxy to the numerical solutions of hundreds of hillslopes derived from a real basin. The comparison 

is evaluated with respect to (a) computational cost and (b) the difference between the discharge 

hydrographs of the computationally expensive numerical simulations and the Proxy. The selected 

basin is upstream of Dennis Creek in British Columbia, Canada, illustrated in Figure 3.5a. The basin 

is a forested catchment (AAFC, 2020) with a subsurface composition of sandy loam soils (MECSS, 

2021) over a bedrock of granite and granodiorite (MEM, 2020), receiving an average of 220 mm of 

rainfall per year (Environment Canada, 2020). The previously illustrated rainfall time series (Figure 

3.4) is again applied as a recharge time series. A hydraulic conductivity of 1 m/hr and a porosity equal 

to 0.3 are assumed. 

 

 
Figure 3.5. (a) The Dennis Creek watershed and stream network. (b) fourteen derived hillslopes in the upstream subset 
highlighted in (a); each shaded area represents a hillslope. Three wedge-shaped hillslopes derived from these areas are 
shown. (c) Each of the 867 derived hillslopes in the watershed is converted to a representative planar wedge-shape. 
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Hillslopes are derived from a 20 m resolution DEM of the watershed (CDEM, 2019) using a 

modification of the approach of Liu et al. (2012), itself a modification of the approach of Fan and 

Bras (1998). In this approach, stream network tributaries are assigned a left bank and right bank 

hillslope, and the most upstream raster cells are assigned a single hillslope (these upstream hillslopes 

represent headwater hillslopes). The algorithm identifies the contributing DEM cells to each stream 

bank/upstream cell and traces the surface flow pathways between the cells. The cells are then sorted 

by flow distance to determine a 𝑤(𝑥) profile (related to the number of cells existing at a specified 

flow distance), as well as the maximum flow distance, which defines the hillslope length. In our 

modified algorithm, this length (𝐿), the total stream bank cell length (𝑤𝑏), and the derived contributing 

area are used to calculate the 𝑋 parameter of the linear width function (Equation 3.5). The bedrock 

slope is derived using the tangent of the change in elevation along the longest flowpath divided by the 

length of this flowpath (𝐿). The assumption that bedrock slope is identical to topographic gradient is 

made to produce some estimate of bedrock gradient with readily available data.  

 

It is known that the choice of derived stream network has a direct impact on the shape and 

size of derived hillslopes, and past research efforts have explored the feasibility of various derived 

networks (Montgomery and Dietrich, 1992; Lin et al., 2006) as well as the more fundamental difficulty 

of specifying precisely where a channel begins (Wohl, 2018). In this work, we select a stream network 

associated with a Strahler stream ordering number greater than one, which results in a dense network. 

The justification is that, given the uncertainty of actual flow pathways, we err on the side of producing 

as many flow pathways as is tenable. Conceptually, this suggests that the subsurface discharge from 

hillslopes behaves as an ephemeral stream network that can extend beyond the perennial network. 

Note that surface routing considerations are ignored as, given the timescale of subsurface flows, 

surface flow pathways are relatively instantaneous (experiments, conducted but not shown, 

demonstrated that the discrepancy was negligible).  

 

Figure 3.5a illustrates the derived stream network in the Dennis Creek watershed. As an 

example of the application of the hillslope derivation algorithm, Figure 3.5b illustrates fourteen 

derived hillslopes in an upstream subset of the network. The wedge-shaped conceptualization of each 

hillslope is presented in Figure 3.5c. In this basin, 867 hillslopes are derived (Figure 3.5b depicts only 

fourteen for the sake of visual clarity). Histograms of the derived hillslope shape properties (𝐿, 𝑋, 𝑤𝑏, 

and 𝜃) are presented in Figure 3.6. These histograms illustrate the mean shape properties (L = 110 m, 

𝑤𝑏 = 36 m, 𝑋 = 0.85, 𝜃 = 9.8°) and provide a visual representation of the structure of hillslopes within 

the basin. The distributions of these physically-based hillslope shape parameters will control the 

aggregate hillslope subsurface flow response. 
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Figure 3.6. Distributions of the hillslope shape properties of the 867 hillslopes derived from the Dennis Creek watershed. 
Grey vertical lines indicate mean values of L= 110 m, Wb = 36 m, X = 0.85, θ = 9.8°. Black vertical lines indicate single 
effective slope values (Figure 3.7b) of L = 1180 m, X = 0.01, θ = 63°. The effective single slope value for Wb (= 4430 m) 
is excluded for visual clarity. 

Each of the 867 hillslopes is solved using a numerical solver (i.e., the scheme of Hazenberg et 

al. (2015)) as well as the Proxy. Figure 3.7a illustrates the aggregate response of all hillslopes (i.e., the 

sum of each hillslope’s subsurface flow contribution at each time step) as calculated by the solver and 

the Proxy. As a comparison of two hydrographs, the quarter-hourly NSE value of 0.999 indicates that 

the Proxy is exceedingly successful in emulating the results from the numerical solver. The key 

distinction, however, lies in the comparison of computational time: 55 hours 32 minutes and 25 

seconds for the numerical solution, versus just 7 seconds for the Proxy on the same machine (Intel 

Core i5-6300 CPU @ 2.3 GHz, 8GB RAM). The significant reduction in computational cost enables 

support for calibration, uncertainty analysis, sensitivity analysis, ensemble simulation or any other 

computationally intensive modelling exercise.  
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Figure 3.7. Aggregate hillslope subsurface flow results in the Dennis Creek watershed example. (a) The aggregate response 
as solved by the numerical solver and the Proxy (NSE = 0.999). (b) The aggregate response as solved by the numerical 
solver compared to the best-fitting single effective hillslope response derived from the Proxy via a Monte Carlo exercise 
(NSE = 0.956) 

 

3.4 Application to upscaling problems 

With the computational benefits of the Proxy approach demonstrated, it is necessary to 

demonstrate the utility of the hsB and its wedge-shaped hillslopes in the context of known upscaling 

behaviour. The work of Clark et al. (2009) in the Panola Mountain Research Watershed (PMRW) 

provides a valuable case study in this regard. Then, the application of the hsB Proxy to an upscaling 

problem asking whether a network of hillslopes can be replicated by a single effective hillslope is 

demonstrated. 

 

3.4.1 Upscaling Problem 1: Application to PMRW  

 Clark et al. (2009) used observed data from the PMRW to evaluate the unique recession 

behaviour of flow (−𝑑𝑄 ⁄ 𝑑𝑡 = 𝑓(𝑄)) from a single hillslope and from the entire basin. They then 

developed a modelling framework wherein three linear reservoirs, representing portions of the 

landscape with similar timescales of response, were aggregated to successfully simulate the overall 

basin response. The efficacy of this approach – breaking down the basin-scale response into the 

aggregate response of smaller-scale reservoirs – was also demonstrated in this basin by Harman et al. 

(2009), which used a more theoretical approach wherein the distribution of timescales across the basin 

is explicitly characterized by a probability density function. Thus, we can compare how the hsB Proxy 
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and its network of physically-based wedge-shaped hillslopes compares against these hypothetical linear 

reservoirs in simulating basin-scale recession behaviour. Field estimates of porosity (=0.5) and 

hydraulic conductivity (=0.64 m/hr) required by the Proxy are obtained from McIntosh et al. (1999), 

and 117 hillslopes were derived from a DEM of the basin (U.S. Geological Survey, 2018). Following 

the methodology of Clark et al. (2009), the hillslopes are first brought to a steady-state in response to 

the constant application of a 25 mm/d recharge rate, and then the following recession behaviour is 

analyzed. Figure 3.8a demonstrates the basin-scale recession data in Clark et al. (2009) as well as the 

Proxy response assuming a homogenous distribution of subsurface properties. The lack of fit between 

these responses suggests that the conductivity estimate is too low (the estimate of McIntosh et al. 

(1999) is from a core sample) and that known heterogeneity in the timescales of the reservoirs 

(hillslopes) is unaccounted. While a range of homogeneous conductivity values were tested, it was only 

by introducing variability in conductivity that we were able to adequately replicate the observed 

response. To resolve these limitations, the Proxy is applied to this problem a second time, now 

allowing for heterogeneity in hillslope conductivity by sampling a normal distribution of log 

conductivity with mean 10 m/hr and standard deviation 0.7 in log space (allowing for sampling within 

two orders of magnitude from the mean). These mean and standard deviation values were selected 

from a manual calibration, with this mean value being an order of magnitude larger than the reported 

core sample, an implicit reflection of the changing preferential flow pathways at scales larger than a 

core sample. Taking advantage of the computational speed of the Proxy, this distribution is sampled 

1000 times to produce unique distributions of hillslope conductivity across the 117 basin hillslopes, 

therein ensuring appropriate characterization of the heterogeneity introduced by this distribution. To 

reinforce the necessity of the Proxy in this experiment, note that the 117,000 hillslope solutions 

required here would be computationally untenable with a numerical solver. The mean response of the 

ensemble of 1000 samples is presented in Figure 3.8a. The single best member of the ensemble is also 

presented in Figure 3.8a, and the associated conductivity distribution is presented in Figure 3.8b. The 

agreement between this response and the Clark model demonstrates that the hsB Proxy and its 117 

physically-based hillslope reservoirs are a viable hypothesis for simulating the aggregate subsurface 

stormflow behaviour in a basin. This analysis underlines the critical role of heterogeneity in governing 

subsurface stormflow response and reflects the motivating justification for the creation of the Proxy, 

which here enabled the rapid analysis of a thousand basin configurations using the hsB and its 

physically-based reservoir and subsurface characteristics, as opposed to the more abstract linear 

reservoir conceptualization. It is important to note that although the hsB approach is superior in its 

physical conceptualization, linear reservoir models are conceptually simpler, and so may be preferred 

depending on the specific modelling question at hand. For example, in this example 117 physically-

based hillslopes are generated, whereas the linear reservoir approach only utilizes three hillslopes. 

Although the Proxy enables the rapid generation of solutions for these 117 hillslopes, three hillslopes 

are inherently simpler than 117 hillslopes. In contrast, the hsB approach is more physically justified as 

well as more parsimonious, requiring only two parameters (mean conductivity and variance) to be 

calibrated across the entire basin while all other properties (including the number of hillslopes) are 

automatically derived from topography. This is contrasted to the reservoir approach, which requires 

the specification of two abstracted parameters per reservoir to control the hillslope flow response. 
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However, the hsB approach is inherently superior to the linear reservoirs approach when the 

modelling question at hand depends on transient recharge conditions. 

 

It is worthwhile now to consider whether the observed recession behaviour and associated 

upscaled model of Clark et al. (2009) can be replicated under transient conditions, which can be 

handled efficiently by the Proxy. To evaluate this, a daily time series of precipitation from August 1995 

to December 1996 in the PMRW (Aulenbach, 2017), matching the observed recession time period in 

Clark et al. (2009), is obtained and fed into the Proxy as a recharge time series. In light of the significant 

reduction in recharge pulse magnitudes associated with a precipitation time series, as compared to the 

unrealistic constant value of 25 mm/d used to produce the steady-state results, a new normal 

distribution of log conductivity with a manually calibrated mean of 0.5 m/hr and standard deviation 

of 0.5 in log space (allowing for sampling over 1.5 orders of magnitude from the mean) is sampled. 

The change in the conductivity distribution between the previous steady-state experiment and this 

transient experiment occurs because the conductivity distribution calibrated from the steady input 

does not respect the transient application of water in the basin. As such, the steady-state analysis 

requires a conductivity distribution that is compensating for the unrealistic constant 25 mm/d input 

in order to produce recession curves that match the observed recession response. The transient 

recharge investigated in this experiment is more realistic, and this updated conductivity distribution is 

now accounting for both the observed recession response as well as this more realistic recharge input. 

In contrast to the steady-state case, the transient recharge pulses produce more than one recession 

event. Following Clark et al. (2009), a minimum recession volume of 400 m³ is required for a recession 

to be valid for analysis. Once a recession meets this requirement, a unique recession function (-

𝑑𝑄 𝑑𝑡⁄ = 𝑓(𝑄)) is derived via linear regression. The analysis of Clark et al. (2009) demonstrates a 

multi-phase response of the recession function, wherein the slope of the recession function changes 

as different parts of the landscape contribute flow. To capture this multi-phase behaviour, each 

derived recession function is allowed to have two phases, such that the recession can be characterized 

by a piece-wise function allowing for a change in 𝑑𝑄/𝑑𝑡 as 𝑄 values decrease. Once all recession 

events have been converted into a representative piece-wise recession function, a single representative 

function is derived as the mean of these responses. Sampling the conductivity distribution 1000 times 

produces the ensemble mean and single best member of the ensemble presented in Figure 3.8c. The 

conductivity distribution associated with the single best member is presented in Figure 3.8d. The 

transient response compares well again to the steady-state models, but is superior in comparison to 

the observed data, especially in its handling of the apparent concave form of the observed data. As in 

the steady-state experiment, this experiment demonstrates that observed recession behaviour can be 

captured by a physically-based discretization of the landscape, as well as with realistic transient 

recharge impulses as opposed to an idealized steady-state recharge. This reinforces the utility of the 

Proxy as a tool for exploring subsurface stormflow upscaling problems with minimal conceptual 

abstraction and improved physical basis.  
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Figure 3.8. Panola Mountain Research Watershed upscaling problem. (a) Observed recession behaviour from Clark et al. 
(2009), compared to: the Clark et al. (2009) three reservoir model and the Proxy under steady-state recharge. The Proxy 
results are presented with a single homogenous conductivity (“Homogeneous”) and a heterogenous conductivity 
distribution (“Ens.”) – ensemble mean demonstrates the mean response of 1000 samples of the heterogenous conductivity 
distribution, while ensemble best reflects the single best comparison to the Clark et al. model. (b) Associated conductivity 
distribution and histogram of sampled conductivity associated with the ensemble best. (c) Comparison between observed 
behaviour, Clark et al. (2009) model, and Proxy solved under transient recharge conditions. (d) Associated conductivity 
distribution and ensemble best histogram. 

3.4.2 Upscaling Problem 2: calibrating a single effective hillslope 

An additional upscaling question that is enabled by the Proxy but untenable with the numerical 

solver is whether it is possible to derive a single effective hsB hillslope representation of the aggregate 

flow behaviour in the Dennis Creek Watershed illustrated in Figure 3.7a via calibration. Such a 

calibration exercise requires solving the hsB hundreds of times for various hillslope characteristics, 

meaning tens of hours of computational time. However, the Proxy can handle this question directly 

in minutes, even taking on a more exhaustive Monte Carlo approach where a large, structured 

parameter space is meticulously sampled. Undertaking such an exercise, using the same recharge time 

series, conductivity, and porosity utilized to produce the hydrograph in Figure 3.7a, reveals that the 

most effective single slope representation (NSE = 0.956, Figure 3.7b) of this system is a hillslope with 

a shape approximate to 𝐿 = 1180 m, 𝑤𝑏 = 4430 m, 𝜃 = 63 degrees, and 𝑋 = 0.01. A comparison of 

these parameter values with respect to the means and histograms of derived hillslopes in this basin are 
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presented in Figure 3.6. This analysis presents several interesting discussion items. First, it 

demonstrates that, while not an obvious facsimile, a single hillslope can be reasonably descriptive of 

the aggregate response. Second, that the obvious discrepancy is in the ability of a single hillslope to 

capture the recession behaviour of the aggregate response, which is a consequence of ignoring the 

variability of drainage response timescales across the basin. As a complement to the previous upscaling 

experiments reinforcing the influence of heterogeneity in conductivity, this experiment demonstrates 

that the heterogeneity in hillslope shape and slope is necessary to produce the variable timescales of 

flow response that result in a smoothly receding recession response given a homogenous conductivity 

across the basin. Third, this analysis demonstrates that the ability to quantify the conditions in which 

the basin-scale heterogeneity is reasonably captured by a single effective hillslope would be a valuable 

upscaling exercise, in that it would set out rules under which hillslope heterogeneity can be folded into 

a single quantifiable response. The investigation of the relationship between the bulk characteristics 

of the watershed (e.g., distributions of hillslope shape) and a single effective hillslope response is a key 

component of future work using the Proxy. 

 

3.5 Conclusion 

The hsB Proxy is a tool for the modeller interested in utilizing the hillslope-storage Boussinesq 

equation (hsB) describing hillslopes with wedge-shaped planar shape and homogenous conductivity 

under transient recharge. The hsB Proxy reproduces the results of the hsB with minimal loss of fidelity 

and a significant reduction in computational time, and is useful in its ability to handle a wide range of 

hillslope shapes as well as its demonstrated efficacy in superposing individual recharge events. The 

hsB Proxy is simple to use, only requiring the modeller to interpolate a lookup table of power-law 

coefficients for twenty-seven individual time and flow points which are then linked together to 

produce a facsimile of the drainage response. Further, the philosophy behind the Proxy is such that 

the lookup table is highly extendable. That is, the current number of 2,340 hillslopes (and the 

associated maximum values of hillslope shape parameters) is not static: any modeller solving hillslopes 

with parameters beyond the current range of Proxy parameters can produce numerical results that can 

be analyzed and plugged into the Proxy.  

 

 The application of the Proxy to two upscaling problems has been demonstrated. In the first 

problem, the Proxy was used to rapidly generate alternative hypotheses of hillslope-scale flow response 

to generate a set of hillslopes that produced a viable, physically-based description of observed basin-

scale recession response. Then, the Proxy was used to generate an alternative hypothesis of hillslope-

scale flow response under non-steady state conditions, using a recharge time series derived from real 

world precipitation magnitudes.  In the second upscaling problem, the Proxy was used to test 

thousands of single hillslope responses to select the single best effective hillslope to represent the 

aggregate flow response of a basin. The following objectives have thus been achieved: 

 

1. A Proxy model has been developed that emulates the full non-linear hsB solution for wedge 

shaped hillslopes within 2.5% error and with minimal computational cost. 
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2. The efficacy of the Proxy has been demonstrated in application to a basin composed of 

hundreds of hillslopes. The Proxy is able to reproduce the aggregate flow response of the basin 

as derived from a numerical solver (NSE = 0.999) at a fraction of the computational cost (over 

10,000 times more computationally efficient). 

3. The non-linear hsB for wedge-shaped hillslopes has been applied via the Proxy to two 

computationally demanding upscaling problems. In the first, the Proxy was able to generate a 

viable hypothesis of the distribution of hillslopes and their properties (size, shape, and 

hydraulic conductivity) which justified the recession behaviour at the PMRW as compared to 

a recession model from the literature parameterized at steady-state. Then, transient 

precipitation data was used to generate an alternate hypothesis justifying the observed 

recession behaviour without requiring the steady depletion curve assumption. In the second 

problem, the Proxy enabled the rapid calibration of a single effective hsB hillslope that 

reasonably reproduces the aggregate behaviour of the Dennis Creek basin. The successful 

application to these problems demonstrates the utility of the Proxy and the non-linear hsB in 

investigating such upscaling problems, both from a computational savings perspective by 

supporting more physically-based conceptualizations in the analysis.  

 

In the future, we intend to apply the Proxy to a large number of basins to identify scale-appropriate 

relationships between distributed basin characteristics and emergent runoff response at the basin scale. 

In addition, future work will include the generation of updates to the Proxy, including solutions 

utilizing alternative downstream boundary conditions and new limits of hillslopes shapes properties. 

 

3.6 References 

AAFC. (2020). Agriculture and Agri-Food Canada - Land Use 2010 - Open Government Licence - 
Canada. Retrieved 13 February 2021, from https://open.canada.ca/data/en/dataset/9e1efe92-
e5a3-4f70-b313-68fb1283eadf#wb-auto-6 

Ali, M., Ye, S., Li, H. yi, Huang, M., Leung, L. R., Fiori, A., & Sivapalan, M. (2014). Regionalization 
of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based 
numerical simulations at hillslope scale. Journal of Hydrology, 519(PA), 683–698. 
https://doi.org/10.1016/j.jhydrol.2014.07.018 

Aulenbach, B. T. (2017). Data for estimating monthly water budgets at Panola Mountain Research 
Watershed, Stockbridge, Ga., water years 1986–2015. Retrieved 31 August 2020, from 
https://doi.org/10.5066/F7XS5SNV 

Bartlett, M. S., & Porporato, A. (2018). A Class of Exact Solutions of the Boussinesq Equation for 
Horizontal and Sloping Aquifers. Water Resources Research, 54(2), 767–778. 
https://doi.org/10.1002/2017WR022056 

Broda, S., Larocque, M., Paniconi, C., & Haitjema, H. (2012). A low-dimensional hillslope-based 
catchment model for layered groundwater flow. Hydrological Processes, 26(18), 2814–2826. 
https://doi.org/10.1002/hyp.8319 

Brutsaert, W., & Nieber, J. (1977). Regionalized drought flow hydrographs from a mature glaciated 
plateau. Water Resources Research 13 (3): 637-643 DOI: 10.1029/WR013i003p00637 

Carrillo, G., Troch, P. A., Sivapalan, M., Wagener, T., Harman, C., & Sawicz, K. (2011). Catchment 
classification: hydrological analysis of catchment behavior through process-based modeling 



 

73 
 

along a climate gradient. Hydrology and Earth System Sciences, 15(11), 3411–3430. 
https://doi.org/10.5194/hess-15-3411-2011 

CDEM. (2019). Canadian Digital Elevation Model, 1945-2011 - Open Government Portal. Retrieved 
21 April 2020, from https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-
45d1d2051333 

Childs, E. C. (1971). Drainage of Groundwater Resting on a Sloping Bed. Water Resources Research, 7(5), 
1256–1263. https://doi.org/10.1029/WR007i005p01256 

Chor, T. L., & Dias, N. L. (2015). Technical Note: A simple generalization of the Brutsaert and Nieber 
analysis. Hydrology and Earth System Sciences, 19(6), 2755–2761. https://doi.org/10.5194/hess-19-
2755-2015 

Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H. J., Peters, N. E., & Freer, J. E. 
(2009). Consistency between hydrological models and field observations: linking processes at 
the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 23(2), 
311–319. https://doi.org/10.1002/hyp.7154 

Dralle, D. N., Boisramé, G. F. S., & Thompson, S. E. (2014). Spatially variable water table recharge 
and the hillslope hydrologic response: Analytical solutions to the linearized hillslope Boussinesq 
equation. Water Resources Research, 50(11), 8515–8530. https://doi.org/10.1002/2013WR015144 

Environment Canada. (2020, September 17). Daily Data Report for September 1986 - Climate - 
Environment and Climate Change Canada. Retrieved 29 October 2020, from 
https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=% 
7C&dlyRange=1971-04-01%7C2004-02-29&mlyRange=1971-01-01%7C2004-02 
01&StationID=1026&Prov=BC&url 
Extension=_e.html&searchType=stnProv&optLimit=yearRange&StartYear=1990&EndYear
=2016&selRowPerPage=100&Line=515&lstProvince=BC&timeframe=2&Day=16&Year=1
986&Month=9# 

Fan, Y., & Bras, R. L. (1998). Analytical solutions to hillslope subsurface storm flow and saturation 
overland flow. Water Resources Research, 34(4), 921–927. https://doi.org/10.1029/97WR03516 

Harman, C. J., Sivapalan, M., & Kumar, P. (2009). Power law catchment-scale recessions arising from 
heterogeneous linear small-scale dynamics. Water Resources Research, 45(9). 
https://doi.org/10.1029/2008WR007392 

Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G. ‐Y., Pelletier, J. D., et al. (2015). A hybrid‐
3D hillslope hydrological model for use in <scp>E</scp> arth system models. Water Resources 
Research, 51(10), 8218–8239. https://doi.org/10.1002/2014WR016842 

Kirchner, J. W. (2009). Catchments as simple dynamical systems: Catchment characterization, rainfall-
runoff modeling, and doing hydrology backward. Water Resources Research, 45(2). 
https://doi.org/10.1029/2008WR006912 

Lin, W.-T., Chou, W.-C., Lin, C.-Y., Huang, P.-H., & Tsai, J.-S. (2006). Automated suitable drainage 
network extraction from digital elevation models in Taiwan’s upstream watersheds. Hydrological 
Processes, 20(2), 289–306. https://doi.org/10.1002/hyp.5911 

Liu, J., Chen, X., Zhang, X., & Hoagland, K. D. (2012). Grid digital elevation model based algorithms 
for determination of hillslope width functions through flow distance transforms. Water Resources 
Research, 48(4). https://doi.org/10.1029/2011WR011395 

Matonse, A. H., & Kroll, C. (2009). Simulating low streamflows with hillslope storage models. Water 
Resources Research, 45(1). https://doi.org/10.1029/2007WR006529 

McIntosh, J., McDonnell, J. J., & Peters, N. E. (1999). Tracer and hydrometric study of preferential 
flow in large undisturbed soil cores from the Georgia Piedmont, USA. Hydrological Processes, 

https://climate.weather.gc.ca/climate_data/daily_data_e.html?hlyRange=%25


 

74 
 

13(2), 139–155. https://doi.org/10.1002/(SICI)1099-1085(19990215)13:2<139::AID-
HYP703>3.0.CO;2-E 

MECSS. (2021). Ministry of Environment and Climate Change Strategy - Soil Survey Spatial View - 
Licensed under Open Government Licence - British Columbia. Retrieved 13 February 2021, 
from https://catalogue.data.gov.bc.ca/dataset/soil-survey-spatial-view 

MEM. (2020). Ministry of Energy, Mines and Low Carbon Innovation - Bedrock Geology - Licensed 
under Open Government Licence - British Columbia. Retrieved 13 February 2021, from 
https://catalogue.data.gov.bc.ca/dataset/bedrock-geology 

Montgomery, D. R., & Dietrich, W. E. (1992). Channel initiation and the problem of landscape scale. 
Science, 255(5046), 826–830. https://doi.org/10.1126/science.255.5046.826 

Patnaik, S., Biswal, B., Nagesh Kumar, D., & Sivakumar, B. (2018). Regional variation of recession 
flow power-law exponent. Hydrological Processes, 32(7), 866–872. 
https://doi.org/10.1002/hyp.11441 

Sahoo, S., Sahoo, B., & Panda, S. N. (2018). Hillslope-storage Boussinesq model for simulating 
subsurface water storage dynamics in scantily-gauged catchments. Advances in Water Resources, 
121, 219–234. https://doi.org/10.1016/j.advwatres.2018.08.016 

Troch, P. A., Paniconi, C., & Emiel van Loon, E. (2003). Hillslope-storage Boussinesq model for 
subsurface flow and variable source areas along complex hillslopes: 1. Formulation and 
characteristic response. Water Resources Research, 39(11). DOI: 10.1029/2002WR001728 

Troch, P. A., van Loon, A. H., & Hilberts, A. G. J. (2004). Analytical solution of the linearized 
hillslope-storage Boussinesq equation for exponential hillslope width functions. Water Resources 
Research, 40(8). DOI: 10.1029/2003WR002850 

Troch, P. A., Berne, A., Bogaart, P., Harman, C., Hilberts, A. G. J., Lyon, S. W., et al. (2013). The 
importance of hydraulic groundwater theory in catchment hydrology: The legacy of Wilfried 
Brutsaert and Jean-Yves Parlange. Water Resources Research, 49(9), 5099–5116. 
https://doi.org/10.1002/wrcr.20407 

U.S. Geological Survey. (2018). USGS NED 1/3 arc-second n34w085 1 x 1 degree ArcGrid 2018. 
Reston, VA: U.S. Geological Survey. Retrieved from http://nationalmap.gov/viewer.html %0D 

Wohl, E. (2018, October 1). The challenges of channel heads. Earth-Science Reviews. Elsevier B.V. 
https://doi.org/10.1016/j.earscirev.2018.07.008 

Ye, S., Li, H. Y., Huang, M., Ali, M., Leng, G., Leung, L. R., et al. (2014). Regionalization of subsurface 
stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow 
recession curves. Journal of Hydrology, 519(PA), 670–682. 
https://doi.org/10.1016/j.jhydrol.2014.07.017 



 

75 
 

4 Chapter 4 

 

Upscaling hillslope-scale subsurface flow to inform 

catchment-scale recession behaviour 
 

4.1 Introduction 

Hydrologic models are vital tools for understanding the complex interaction of water fluxes 

throughout a basin. In a hydrologic model, each hydrologic process must be characterized at a level 

of detail that makes it part of a holistic whole, with the objective of generating a cohesive 

understanding of the sources, sinks, fluxes, and stores of water within the basin. In this work, we focus 

on the characterization of subsurface flow in hydrologic models. The fundamental mass balance 

algorithms of subsurface flow depend strongly on the heterogeneity of the subsurface, and yet, 

integrated at the basin-scale, the subsurface has been successfully characterized as a lumped reservoir 

that releases water according to an abstracted, prescribed relationship, such as a power-law relationship 

(Tallaksen, 1995). This simplification of complex, heterogeneous subsurface physics into a convenient 

abstracted lumped reservoir deserves an investigation: Can the physics of subsurface flow be used to 

inform the simplified subsurface flow description in a hydrological model with minimal computational 

cost? In contrast to the robust (but computationally expensive) practice of coupling hydrologic and 

hydrogeologic algorithms, this work is motivated to close the gap between subsurface physics and 

semi-distributed hydrological models by other means. That is, we conceptualize this problem as an 

upscaling problem, in which careful consideration of the aggregate behaviour of finely resolved 

hillslope physics can be used to inform the basin-scale power-law representation of hillslope drainage. 

Here, we use the term ‘upscaling’ to refer to the translation of the hillslope-scale physics of subsurface 

flow to an aggregate basin-scale relationship. The end result of such an upscaling exercise is a set of 

relationships that can predict the coefficients of the basin-scale power-law relationship directly from 

the parameters controlling hillslope-scale physics, which in this work are readily derived from 

topographic information. As such, the upscaling exercise provides value to hydrologic models by 

providing an estimate of the coefficients of the subsurface power-law reservoir without calibration, 

while also providing a capacity to estimate recession characteristics in ungauged basins where 

topographic metrics are the few readily available parameters. 

 

The treatment of subsurface flow as a reservoir parameterized by a few coefficients is well-

justified in the literature. Brutsaert and Nieber (1977) were the first to demonstrate that the observed 

recession behaviour in a hydrograph could be reasonably approximated by a power-law relationship: 

 

 
−

𝑑𝑄

𝑑𝑡
= 𝑐1𝑄𝑐2 (4.1) 
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where 𝑄 represents flow [L/T], 𝑡 represents time [T], and 𝑐1 [1/T] and 𝑐2 [-] represent the power-law 

coefficients. Critically, Brutsaert and Nieber (1977) linked this large-scale reservoir to analytical 

solutions of the Boussinesq equation for one-dimensional, unconfined, saturated groundwater flow 

through a homogenous medium. In this foundational approach, the conductivity of the single 

subsurface reservoir could be derived by calibrating the power-law solution of this equation to the 

observed power-law coefficients derived from the basin hydrograph. Many studies demonstrated the 

value of this single-reservoir approach by repeated application in real-world basins (Zecharias and 

Brutsaert, 1988; Vogel and Kroll, 1992; Brutsaert and Lopez, 1998; Huyck et al., 2005). However, 

several studies raised concerns with the simplified mathematics used in this approach (Tallaksen, 1995; 

Rupp et al., 2006; Bogaart et al., 2013). Others demonstrated that the large-scale response of a basin 

can be reproduced by the aggregate response of a number of independent conceptual subsurface 

reservoirs acting in parallel (Moore, 1997; Clark et al., 2009; Harman et al., 2009; Gao et al., 2017). 

More recent studies have attempted to synthesize these two ideas by analyzing the response of a larger 

number of independent subsurface reservoirs utilizing more robust subsurface physics (Ali et al., 2013; 

Ranjram and Craig, 2021). This work follows Ranjram and Craig (2021), which demonstrated that the 

hillslope-storage Boussinesq (hsB) equation (Troch et al., 2003), characterizing the unconfined, 

saturated flow through a hillslope with variable width, could be applied to a basin discretized into 

individual hillslope reservoirs, and these responses could be aggregated to successfully replicate the 

observed recession behaviour in a basin. Critically, the authors demonstrated that the observed 

behaviour could be reproduced from a time series of recharge, as opposed to assuming that the 

recession behaviour of subsurface units was consistent with the steady-state response, a common 

assumption in previous approaches. The flexibility of generating subsurface flow responses to a 

recharge time series reflects the relatively recent insights in the literature that a single-recession 

response derived through the entire time history of the basin may ignore critical transience in recession 

behaviour (Shaw and Riha, 2012; Thomas et al., 2015; Chen and Krajewski, 2016; Karlsen et al., 2019). 

However, the notion of recharge-dependent recession events is a significant departure from the 

original conceptualization of basin-scale recession that is difficult to incorporate into a predictive 

modelling framework: individual recession events can be extracted from a time series of streamflow, 

but predicting recession behaviour generated from a time series of recharge is a more challenging 

problem.   

 

In this work, we provide a novel bottom-up upscaling justification for the transient power-law 

recession behaviour of basins. Basins are conceptualized as a network of independent hillslope units 

producing saturated, unconfined subsurface flow according to the hsB equation. Thirty CAMELS 

basins (Addor et al., 2017) are used to inform upscaling relationships which enable the prediction of 

the aggregate recession response of a basin as a function of distributed hillslope metrics. The efficacy 

of these predictive relationships in representing the transient recession response of a basin is then 

demonstrated. Twenty additional CAMELS basins are used to verify the utility of the upscaling 

relationships. A single basin is examined in more detail to demonstrate the efficacy of these 

conclusions. This work thus considers three specific objectives: 
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1. Derive upscaling relationships that can estimate transient subsurface-flow-induced recession 

behaviour using only topographic characteristics of a basin and information about the time 

series of recharge.  

2. Generate rules for scaling the aggregate power-law response of a basin under different 

homogeneous, effective basin-scale conductivity values. 

3. Demonstrate the efficacy of the upscaled recession model via comparison to observed 

transient recession behaviour in a single basin. 

 

The utility of these upscaling relationships is in their capacity to estimate the transient recession 

behaviour without requiring an analysis of streamflow data. Rather, a reasonable estimate of aggregate 

recession behaviour can be extracted with readily derived topographic metrics and an estimate of the 

time history of recharge and subsurface properties. 

 

4.2 Methodology 

In this work, we attempt to bridge the gap between the physics-based response of an array of 

hillslopes and the classical power-law recession curve at the basin scale by treating the subsurface as a 

physically-informed space and using simulation results from such a framework to inform the large-

scale lumped reservoir concept. Here, the subsurface is conceptualized according to the hillslope-

storage Boussinesq (hsB) equation (Troch et al., 2003) which assumes saturated, unconfined flow 

through hillslopes of variable width. The hsB characterizes the complex three-dimensional converging 

or diverging flow nets within a variable width hillslope (either pinching off downslope to a smaller 

width, or expanding downslope to a larger width) using a one-dimensional partial differential equation: 

 

 
𝑓

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
=  −

1

𝑤(𝑥)

𝜕𝑄(𝑥, 𝑡)

𝜕𝑥
+ 𝑁 (4.2) 

 
𝑄(𝑥, 𝑡) =  −𝑤(𝑥)ℎ(𝑥, 𝑡)𝐾 (cos 𝜃

𝜕ℎ(𝑥, 𝑡)

𝜕𝑥
+ 𝑠𝑖𝑛𝜃) 

(4.3) 

 

where 𝑥 is the distance from the downslope (streamside) end of the hillslope [L], 𝑡 is time [T], 𝜃 is the 

hillslope bedrock slope angle [°], ℎ is groundwater head relative to bedrock [L], 𝐾 is hydraulic 

conductivity [L/T], 𝑤(𝑥) is the hillslope width function characterizing the variation of width along 

the hillslope [L], 𝑄  is the flow through the hillslope [L³/T], 𝑁 is the uniform recharge rate [L/T], and 

𝑓 is porosity [-]. This work uses the computationally efficient hsB Proxy (Ranjram and Craig, 2021) to 

produce solutions to the hsB for wedge-shapes hillslopes (i.e., those with linear width functions). The 

hsB applies to individual hillslope elements, and so we conceptualize the subsurface as a collection of 

independent, parallel reservoirs releasing water to the basin outlet. The hillslope elements are derived 

directly from topography, as detailed in Ranjram and Craig (2021). Extracting hillslopes from a basin 

results in distributions of four hillslope properties: the length (𝐿) along the primary axis; the constant 

bed slope of the hillslope (𝜃); the width at the downslope end of the hillslope (𝑊𝑏); and a non-

dimensional parameter representing the upslope width of the hillslope as a fraction of the downslope 
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width (𝑋), which can also be considered a measure of the degree of hillslope convergence (upslope 

width greater than downslope width, 𝑋 > 1) or divergence (upslope width smaller than downslope 

width, 𝑋 < 1). Solving the hsB at all hillslopes produces individual flow profiles that can be aggregated 

to produce a basin-scale subsurface flow response. In this way, we can upscale the smaller (hillslope) 

scale subsurface flow response into a larger (basin) scale recession response.  

 

Thus, there are three general controls on the basin-scale subsurface-induced recession 

response in this conceptualization: (1) the topography of the basin, which informs the distribution of 

hillslope properties; (2) the recharge time series applied in the basin, which provides the boundary 

condition inducing subsurface flow; and (3) the subsurface properties, specifically the porosity and 

hydraulic conductivity of hillslopes. To generate an upscaling relationship, we require an 

understanding of the influence of each of these components on aggregate recession response. 

 

4.2.1 The basin signature  

The problem is first simplified by evaluating the topographic controls of the basin in isolation; 

this is achieved by an experimental set up in which a single recharge event (a daily rate applied over a 

single day) is applied to a basin with homogenous subsurface properties (hydraulic conductivity = 1 

m/hr, porosity = 0.3) and the aggregate response derived. To produce a robust experiment, thirty 

basins from the CAMELS database are evaluated; benefiting from the detailed compilation of forcing 

data, streamflow data, and basin boundary shapefiles within this database. These thirty basins 

represent the smallest basins in the database by area (4.1-19.6 km²), which provides two benefits: first, 

as a potentially useful statistical control in case basin area is a powerful distinguishing feature of 

aggregate response between basins; and second, to maximize the appropriateness of spatially 

homogenous precipitation data.  

 

The behaviour of a basin is summarized by the aggregate recession response of the basin to a 

single recharge event, determined by solving the hsB at all hillslopes in the basin extracted from digital 

elevation data. This response is divided into three components: the initial flow value, a fast-phase 

power-law recession response, and a slower-phase power-law recession response, with the transition 

between the two phases chosen as when the fast-phase flow response reaches 50% of the initial value 

(Figure 4.1a). The slow-phase is assumed to end when the flow reaches 1% of the initial flow value. 

In this work, we herein refer to this response as the ‘signature’ response, as it is unique to each basin 

and so is a useful metric for distinguishing basin behaviour. We here chose to use two phases for the 

signature response as a single power law fit consistently led to discrepancy with the derived basin-scale 

signature (e.g., Figure 4.1b). The signature response is thus summarized by five coefficients: the initial 

flow value and the two coefficients each for the fast- and slow-phase recession power laws. 
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Figure 4.1. The signature response. Blue dashed lines indicate numerically-derived signature response. Red line indicates 
the signature response as represented by power-law functions. (a) An example of the signature response and its 
representation using a two-phase response, with the 50% flow value marked. (b) An example of the signature response 
and its representation using a single power-law. 

Solving for the signature response in a basin across a large number of recharge events reveals 

a clear structure between the five signature coefficients and recharge magnitude, as follows: the initial 

flow value is a fixed fraction of the recharge magnitude; the exponential (𝑐2) coefficients of the two 

power-law responses are insensitive to recharge magnitude and hence are controlled solely by basin 

topography; and the multiplier coefficients (𝑐1) of the two power-law responses exhibit a log-linear 

variation with recharge magnitude. An example of this variation is presented in Figure 4.2. 
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Figure 4.2. Variation of Qo and the coefficients of the two power-law responses with recharge for a single basin with 
homogenous subsurface properties. Each point represents the coefficient derived from the signature response produced 
by the associated daily recharge rate applied over a single day. 

The log-linear 𝑐1-recharge responses (𝑐1 = 𝑐1,𝑚 log 𝑅 + 𝑐1,𝑏, Figure 4.2d and 4.2e) exhibit a 

useful secondary structure: the slope of these log-linear relationships is a fixed function of the 

associated fast- and slow-phase  𝑐2 value (𝑐1,𝑚 = 1 − 𝑐2). As such, the unique 𝑐1 value at a given 

recharge magnitude can be derived using two recharge-independent parameters: 𝑐1,𝑏 and the 

associated 𝑐2 value. Thus, the five coefficients of the signature response can be derived for any single-

day recharge event using five recharge-independent parameters: (1) the slope of the 𝑄𝑜-recharge 

relationship (Figure 4.2a), herein referred to as the 𝑄𝑅 parameter; (2, 3) the two fixed 𝑐2 values unique 

to the fast-phase and slow-phase power-law responses (Figure 4.2b,c); and (4,5) the two fixed 𝑐1,𝑏 

values unique to the fast-phase and slow-phase power-law responses. Because these five parameters 

are independent of recharge, and because this experimental set up uses identical, homogeneous 

subsurface parameters for all hillslopes in the basin, these five signature parameters are a valuable set 

of independent variates to test predictive relationships that can translate topographic properties of a 

basin to recession behaviour. That is, this converts the problem of mapping basin properties to 

recession properties into one of mapping basin properties to signature parameters. Herein, the use of 

‘signature parameters’ refers to this set of five topography-dependent, recharge-independent variates. 

 

The efficacy of the signature approach is tested as follows. First, the facsimile of the signature 

response generated by the derived signature parameters is compared to the numerical-modelling-



 

81 
 

derived signature response (i.e, the comparison in Figure 4.1a, now quantified across thirty basins and 

hundreds of recharge events). This simple test of the single recession response to a single recharge 

event evaluated for two-hundred individual recharge events (1 – 200 mm/d) across the thirty test 

basins is used to demonstrate that the treatment of the signature response by the five signature 

parameters is appropriate. Second, the efficacy of the signature parameters in producing reasonable 

facsimiles of the transient subsurface stormflow response induced by a time series of recharge inputs 

to a basin is tested. To ensure a reasonable time series of recharge, thirty independent synthetic 

recharge time series are tested, each extracted from a single year of precipitation input from each of 

the thirty CAMELS basins, filtered to extract only warm-weather precipitation (temperatures greater 

than 0°C), with the assumption that the precipitation and recharge rates are identical. Although this 

one-to-one equivalency will lead to an exaggeration of recharge magnitudes, the timing of recharge 

events will be appropriately correlated to the timing of precipitation events. The expected transient 

response is derived by numerical modelling, and the signature-derived response is constructed by 

superposition of individual signature responses to the time series of recharge events.  

 

High quality agreement between numerical modelling results and the responses generated by 

the five basin-specific signature parameters will indicate that the signature parameters can reasonably 

replicate the expected transient subsurface stormflow response in a basin. With this baseline 

established, upscaling relationships can be derived by mapping basin properties to signature 

parameters. The upscaling relationships are conceptualized as linear models of aggregate hillslope 

parameters, and the quality of these models is defined by their ability to produce high quality 

agreement (NSE>0.9) to the numerically-derived aggregate transient subsurface stormflow response 

in a basin. More robustly, the efficacy of these upscaling relationships is evaluated in a test of twenty 

validation basins which did not inform the derivation of the upscaling relationships.  

 

With upscaling relationships in hand reasonably capable of replicating the expected transient 

subsurface stormflow response, a simple scaling behaviour is evaluated. This scaling behaviour enables 

the signature response associated with the reference conductivity (1 m/hr) used to derive the upscaling 

relationships to be scaled to any other homogeneous conductivity value.  

 

4.3 Results 

The efficacy of the signature approach is first demonstrated by simply comparing the signature 

response to a single recharge event derived by numerical modelling to the signature response produced 

by the extracted signature parameters, as illustrated by the x markers in Figure 4.3. In such a 

comparison, the derived signature parameters produce a signature that replicates the simulated 

signature responses at very high NSE values (> 0.97) across two-hundred simulated recharge events 

(1 – 200 mm/d). Note that the NSE value comparing the two signature values are insensitive to the 

recharge magnitude, and hence only a single NSE value is reported for each of the two-hundred 

simulated signature responses. Two outlier basins, Basin 7 and 22, exhibit lower NSE values than the 

rest of the basin (<0.99). These basins also exhibit the ‘slowest’ signature behaviour, with two of the 
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lowest 𝑄𝑅 values (<0.03) and with slow-phase 𝑐2 coefficients less than one, indicating a much lower 

rate of recession at a given flow rate as compared to other basins in the data set. 

 

 
Figure 4.3. Signature performance as compared to numerical solutions. x symbols indicate the NSE value comparing the 
signature response generated by numerical simulation against the signature response generated by the five signature values. 
Box-and-whisker plots indicate the distribution of 30 NSE values comparing the numerical solution to the signature-
derived hydrograph for 30 individual recharge time series 

The second, more robust evaluation of the signature approach is to test the efficacy of the 

signature parameters in predicting the hydrograph generated in response to a time series of recharge 

inputs. Such a test evaluates the quality of a superposition of transient signature responses. Thirty time 

series of recharge are independently applied to each CAMELS basin, with recharge inputs derived 

from CAMELS precipitation data, as described previously. The metrics of this comparison are the 

distribution of thirty NSE values in each basin comparing the numerically-derived transient response 

and the signature-derived transient response generated in response to each of the thirty recharge time 

series. The distributions of these NSE values in each basin are presented in Figure 4.3. The high quality 

of NSE values (>0.98 in all basins except the previously highlighted basins 7 and 22, which are >0.94) 

across 30 unique time series of recharge verify that the signature response can reasonably approximate 

the numerically simulated response, even for a continuous time series of recharge. Thus, the ability to 

predict the five signature parameters using information about topography alone would allow for the 

generation of high-quality facsimiles of numerically-derived recession responses without solving the 

groundwater flow equation: such predictive relationships are therefore capable of translating 

topographic metrics into an upscaled, aggregate basin-scale subsurface stormflow response. 

 

4.3.1 Upscaling relationships 

To understand the relationship between the signature parameters and basin topography, the 

correlation between each of the five signature parameters and aggregate descriptions (e.g., mean, sum, 

and cumulative probability values) of the four hillslope parameters controlling hillslope-scale 

subsurface flow (e.g., length, bed slope, downslope width, and convergence-divergence parameter) 

was evaluated. This analysis was completed by deriving linear regression models capable of predicting 

signature parameters which produce high quality NSE values (>0.9) across the thirty time series of 

recharge inputs, as compared to the numerically-derived hydrograph. That is, the basin recession is 
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now compared against upscaling models driven solely by topographic characteristics of the basins, but 

using the same basins the regressions were trained upon, akin to calibration.  

 

The derivation of upscaling relationships originates from the very strong log-log linear 

correlation (𝑅2 = 0.993, p << 0.05) between the 𝑄𝑅 parameter and mean bed slope in each basin: 

 

                                          log10 𝑄𝑅 = −2.01 + 0.845 ∙ log10 𝐸[𝜃] (4.4) 

 

where 𝐸[𝜃] is the mean hillslope angle in degrees. Using this simple relationship to predict the 𝑄𝑅 

parameter in each of the thirty basins results in a high quality of agreement between the thirty predicted 

and simulated recession hydrographs produced from the thirty time series of recharge inputs. The 

efficacy of this simple univariate regression model led to a structured evaluation of a large number of 

regression models, each relating the remaining four signature parameters to a single descriptor of the 

aggregate hillslope response (specifically, the mean parameter values and the cumulative distribution 

function (CDF) probabilities of thirteen to twenty-four threshold values for each of the four hillslope 

parameters, with the threshold values determined by considering the range of derived values in each 

percentile of the basin CDFs). However, none of the derived linear models could adequately predict 

signature parameters to the necessary quality. Rather than blindly regressing a large number of 

multivariate linear models to attempt to extract a high-quality response, the analysis instead 

transitioned to capturing the recession behaviour of the slow-phase response, which is inherently 

responsible for a longer portion of the recession time series and hence contributes more information 

to the agreement measured by the NSE. 

 

 To conceptualize the behaviour of basins in a more tangible manner, a new metric, ‘hillslope 

speed’ was derived. Hillslope speed is a second-order topographic metric (informed by topography 

but not directly extractable from digital elevation data), defined as the time it takes each hillslope in a 

basin to drain to 1% initial flow following a 10 mm/d recharge event over a single day at the reference 

basin conductivity of 1 m/hr (such that basins which skew to earlier time release water faster and thus 

have a higher “speed”). Characterizing hillslope speed requires a single preparatory numerical 

simulation, but the computational cost is comparable to the cost of deriving hillslopes from elevation 

data. An additional metric, Σ𝑊𝑏 was also introduced, being the sum of the downslope widths of all 

hillslopes, itself then equivalent to twice the distance of the overland flow network plus the width of 

any upstream headwater hillslopes. Careful analysis of the slow-phase coefficients and the associated 

characteristics of the hillslope distributions, including the new hillslope speed distribution and the 

Σ𝑊𝑏 parameter, led to the derivation of two useful linear models: 

 

 𝑐1,𝑏
𝑃𝑆 = −6.69 + 0.602 ∙ 𝑃[𝑆𝑝 ≤ 5𝑑] + 1.23 × 10−6 ∙ Σ𝑊𝑏 + 6.05 ∙ 𝑃[𝑋 ≤ 4] (4.5) 

 𝑐2
𝑃𝑆 = −1.50 − 0.246 ∙ 𝑃[𝑆𝑝 ≤ 5𝑑] + 4.35 × 10−7 ∙ Σ𝑊𝑏 + 2.83 ∙ 𝑃[𝑋 ≤ 4] (4.6) 

 

where the superposed label 𝑃𝑆 indicates slow-phase;  𝑃[𝑋 ≤ 4] is the probability of hillslope 𝑋 values 

less than or equal to four; and 𝑃[𝑆𝑝 ≤ 5𝑑] is the probability of hillslope speed values less than or 
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equal to five days. These regression models work in conjunction with the 𝑄𝑅 model to produce high 

quality comparisons in all basins except for Basins 3, 7 and 22. These three basins are outliers in terms 

of hillslope speed, with 𝑃[𝑆𝑝 ≤ 5𝑑] of 3%, 0.9%, and 1.4%, respectively, compared to the fourth 

slowest basin which has 𝑃[𝑆𝑝 ≤ 5𝑑] > 20%. Noticeably, these three basins also exhibit the smallest 

mean slopes in the experimental set of basins, both in terms of the derived hillslope properties (<2°) 

and the CAMELS metric for catchment mean slope (< 2.6 m/km). Thus, although a useful slow-

phase predictive model could not be produced which accounts for these basins, these basins provide 

an obvious exclusion rule for the predictive model: any basin with mean hillslope angle less than two 

degrees cannot be simulated with these upscaling relationships. Further, because these basins are so 

shallow in terms of topographic gradient, there is useful conceptual context for the difficulty of the 

upscaling relationships to account for their behaviours: with a subtle topographic gradient, a driving 

head gradient may not occur, and the mechanism of subsurface stormflow may be unimportant in 

such basins.  

 

The derivation of a fast-phase upscaling relationship proved most challenging. In evaluating 

the fast-phase coefficients, no regression model was able to predict these values at high quality: where 

linear model quality was sufficient, the prediction produced by these models in conjunction with the 

previous models (Equations 4.4-4.6) was not. However, the failure of linear regression in producing 

viable coefficients was related to a more over-arching difficulty: the challenge of assigning a unique 

set of power-law coefficients to a response than can be almost linear. Figure 4.4 illustrates the 

simulated and predicted behaviour of two basins with the worst agreement between solved fast-phased 

coefficients and the coefficients predicted by a set of simple linear regression models: 

 

                                                 𝑐1,𝑏
𝑃𝐹 = −0.225 + 0.0103 ∙ 𝐸[𝜃] (4.7) 

 𝑐2
𝑃𝐹 = 1.42 − 0.0103 ∙ 𝐸[𝜃] (4.8) 

 

where the superposed label 𝑃𝐹 indicates fast-phase. These images demonstrate that even a major 

disagreement between fast-phase coefficients can have a minor impact on overall fit. Note that 

attempts to simulate the fast-phase as a linear response were untenable, as some basins require a 

concave response shape to ensure appropriate selection of the 50% flow value transition to the slow-

phase. Indeed, these simple predictive models (Equations 4.7 and 4.8) were found to produce very 

high-quality predictions of simulated recession behaviour when combined with Equations 4.4-4.6, 

demonstrating that a simple power-law response centred at 𝑐1,𝑏
𝑃𝐹 =  −0.225, 𝑐2

𝑃𝐹 = 1.42 and varying 

according to a fixed fraction of mean slope can produce coefficients which suitably represent the fast-

phase response. That is, these models represent a compromise between the regression approach which 

provides estimates of these coefficients as informed by the last-squares methodology of the regression 

process, and the practical desire to produce a predictive model capable of generating a good match to 

the numerically-derived hydrographs. Because derived power-law coefficients can deviate largely but 

still produce a similar fast-phase response, the fast-phase coefficients are predicted by simple linear 

models as a function of mean basin slope that exhibit unsatisfactory regression characteristics, but 
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produce a signature response that can be used to approximate the derived hydrograph at a high quality 

when combined with the previous regression models. 

 
Figure 4.4. The challenge of characterizing fast-phase power laws. These curves illustrate the signature response of (a) 
Basin 11 and (b) Basin 12, using the fast-phase coefficients derived from the numerical solution (blue) and the fast-phase 
coefficients derived from the upscaling models (red). Basins 11 and 12 have the largest discrepancy between solved and 
predicted coefficients. Black lines illustrate the fast-phase response using the coefficients derived from numerical solutions.  

The efficacy of the upscaling relationships (Equations 4.4-4.8) is first evaluated by their 

capacity to predict the numerically simulated transient hydrograph behaviour, illustrated in Figure 4.5 

Here, twenty-seven basins exhibit NSE values > 0.96 across the thirty recharge time series, and the 

three outlier basins, based on their exceptionally shallow topographic gradient, are illustrated for 

context. However, the validity of these models is more robustly evaluated by their capacity to 

approximate the behaviour of a set of basins that did not inform these predictive models. Figure 4.6 

demonstrates the predictive capacity of Equations 4.4-4.8 in twenty additional CAMELS basins (areas 

19.7-28 km²) not used for training the upscaling models. The high quality of agreement between the 

predicted and simulated hydrographs (NSE > 0.92; hydrograph of lowest NSE value illustrated in 

Figure 4.6b) demonstrates the utility of the topography-predicted signature coefficients and is a 

powerful indicator of the validity of these models in approximating derived behaviours.  
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Figure 4.5. Predictive performance of the upscaling relationships in thirty basins used to generate the relationships. (a) the 
distribution of NSE values comparing the numerical solution to the signature-derived hydrograph with parameters 
obtained from the upscaling relationships in Equations 4.4-4.8, for thirty individual recharge time series. (b) The same plot 
extended to the poorer predictive extents of Basin 3, 7, and 22. 

 
Figure 4.6. Predictive performance of the upscaling relationships in twenty validation basins. (a) Box-and-whisker plots 
indicate the distribution of NSE values measuring the quality of agreement between numerically simulated and predicted 
hydrographs resulting from thirty individual recharge time series inputs, in a set of twenty validation CAMELS basins 
(labelled basins 31-50, to distinguish from Basins 1-30 used to generate the upscaling relationships). The collective NSE 
distribution across basins 31-50 is also illustrated for reference. (b) The hydrograph associated with the lowest NSE value 
(Basin 42, NSE = 0.924). 
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4.3.2 Effective conductivity scaling 

The recharge-independence of the signature coefficients and appropriateness of superposition 

of the hsB response (Ranjram and Craig, 2021) enables the application of the upscaling relationships 

to any recharge time series in a basin with mean slope greater than two degrees. The final control on 

the recession response, the subsurface conductivity, is thus left to be evaluated. To simplify the 

analysis, the control of hydraulic conductivity alone is considered, as opposed to a more complex 

accounting of the combined control of conductivity and porosity. In addition, we focus on basin-scale 

effective conductivity, implying a single homogeneous conductivity value at all hillslopes. Although 

the heterogeneity of conductivity is a powerful control on large-scale recession behaviour (e.g., 

Harman et al., 2009), the added complexity of accounting for such heterogeneity is considered beyond 

the scope of this work.  

 

When the basin subsurface is homogeneous, the signature response exhibits a well-behaved 

scaling behaviour relative to the behaviour at the reference conductivity of 1 m/hr, as follows, 

 

 𝑄𝐾 = 𝑄𝑠𝑖𝑔(𝐾1−0.0053∙𝐸[𝜃]) (4.9) 

                                                 𝑡𝐾 = 𝑡𝑠𝑖𝑔(𝐾−1) (4.10) 

 

where 𝐾 is the new effective hydraulic conductivity (m/hr); 𝑄𝐾 and 𝑡𝐾 are the new scaled flow and 

time values; 𝑄𝑠𝑖𝑔 is the default signature response at 𝐾 = 1 m/hr; and 𝑡𝑠𝑖𝑔 is the associated time series 

of the default signature response. These relationships demonstrate a simple vertical and horizontal 

scaling proportional to the new conductivity, where the magnitude of vertical scaling is also dependent 

on the mean slope of the basin. The efficacy of this scaling function is demonstrated by comparing 

the simulated signature response to a single recharge event (10 mm/d) at various homogenous 

conductivity values with the signature predicted by the scaling rules across the set of forty-seven basins 

with mean slope greater than two degrees (Figure 4.7, NSE > 0.965). Note that the tested homogenous 

conductivity values range from 0.05-0.75 m/hr. Although this is a limited subset of conductivity 

values, the resultant NSE distributions in Figure 4.7 do not exhibit a trend with conductivity, 

suggesting that the scaling rules hold across conductivity values. Additionally, at 𝐾 = 0.05 m/hr the 

timelines of the signature response suggest a significant disconnect between applied recharge and the 

signature response as indicated by the time to 1% initial flow drainage ranging from 90-1800 days 

(median of 218 days) across the 47 basins. The linear scaling in Equation 4.10 makes it clear that lower 

homogeneous conductivity estimates would result in even longer recession timelines, implying that 

basin recession response is not controlled by the saturated, homogenous subsurface flow mechanics 

utilized in this work when conductivity values are low. 
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Figure 4.7. Efficacy of scaling rules (Equations 4.9 and 4.10). NSE values compare the simulated basin signature response 
and the predicted signature response using the scaling rules for a single recharge event (10 mm/d). The box-and-whisker 
plots summarize the distribution of NSE values across 47 basins at various effective conductivity values. 

The validity of the upscaling relationships and the effective conductivity scaling rules have 

thus far been demonstrated in the context of numerical simulation. In what follows, these models are 

compared against observed recession behaviour. 

 

4.3.3 Comparison to observed behaviour 

To more robustly analyze the quality of the derived upscaling relationships, the observed 

recession behaviour of a single CAMELS basin is evaluated. The Sevenmile Run basin near Rasellas, 

Pennsylvania (labelled ‘Basin 33’ in the pool of experimental basins) is a forested catchment with a 

catchment mean slope of 15.8 m/km receiving an average of 849 mm of precipitation per year (Addor 

et al., 2017), and has the following derived signature topographic metrics: 𝑃[𝑋 ≤ 4] = 0.986, 

𝑃[𝑆𝑝 ≤ 5]= 0.395; Σ𝑊𝑏= 318,450 m; and 𝐸[𝜃] = 6.53°. Thirty years of observed streamflow 

recessions in this basin are illustrated as black points on a log-log plot of flow (Q) and the first 

derivative of flow in time (-dQ/dt, the rate of recession) in Figure 4.8. Figure 4.8 also depicts the 

single recession function regressed through the entire data set (in green; Equation 1), representing the 

classical approach (Brutsaert and Nieber, 1977) to extracting subsurface-induced recession 

coefficients, as well as 1,788 transient recession events (in red), extracted according to the threshold 

used by Karlsen et al. (2019), itself a modification of the recession criterion in Shaw and Riha (2012). 

This threshold only considers recession events lasting greater than seven days, and excludes the first 

two days and last day of data when regressing power-law coefficients. 
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Figure 4.8. Thirty years of observed recession behaviour in the Sevenmile Run basin. Individual observed recession pairs 
illustrated in black. The single recession power-law (Equation 4.1) derived through the entire observed data set is illustrated 
in green. Individual transient recession power-laws illustrated in red 

The efficacy of the upscaling relationships is here evaluated by their capacity to produce 

recession coefficients that respect the observed recession behaviour. To remove any bias towards our 

signature conceptualization, we extract single-phase recession responses, as opposed to extracting a 

fast- and slow-phase response. Thirty years of warm-weather precipitation data (i.e., precipitation data 

associated with atmospheric temperatures greater than 0°C) are used as an input recharge time series, 

and the upscaling relationships are used to produce recessions with the filtering rule of Karlsen et al. 

(2019) applied to ensure consistency. The efficacy of these predicted recessions is demonstrated by 

the quality of agreement between transient recession coefficients, presented in Figure 4.9. The 

signature-assumed conductivity (1 m/hr) produces minimal agreement between observed and 

predicted recession behaviour, but the agreement can be improved by a manual calibration of the 

effective conductivity to 0.5 m/hr, also illustrated in Figure 4.9. 
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Figure 4.9. Transient recession coefficients in the Sevenmile Run basin. Black points indicate observed transient recession 
coefficients, derived according to the threshold established by Karlsen et al. (2019) and Shaw and Riha (2012). The single 
recession function derived through all thirty years of recession data is illustrated in green. The red and blue points illustrate 
the transient recession coefficients extracted by the upscaling relationships, using the signature default (1 m/hr) and 
manually calibrated (0.5 m/hr) hydraulic conductivity, respectively. 

 

Figure 4.9 demonstrates that the manually calibrated upscaled recessions respect the observed 

recession behaviour, as evidenced by the agreement between upscaled and observed transient 

recession coefficients, although the upscaling relationships do not capture the full range of observed 

transient recession coefficients. This deficit is consistent across other tested basins, with calibrated 

recession coefficients consistently unable to simulate the wider range of observed recession 

characteristics, as summarized by the transient 𝑐1 and 𝑐2 coefficients (Figure 4.10; note that three 

basins with less than ten recessions lasting longer than seven days are excluded from this analysis). 

However, the utility of the upscaling relationships is clearly apparent: the upscaled transient recession 

behaviour is produced using only information about topography, recharge, and conductivity, and 

hence, have particular value in predicting recession behaviour in ungauged basins (Hrachowitz et al., 

2013) where it would be impossible to characterize observed behaviour. The inability of the upscaling 

relationships to generate recession coefficients that capture the full extent of observed recession 

coefficients is in part due to the limitations of Boussinesq-based reservoirs, which have previously 

been shown to produce 𝑐2 coefficients between 0 and 2 (Harman et al., 2009). Conceptually, this 

suggests that the larger variability in observed transient recession behaviour may require reservoirs 

that are not limited to the homogenous, saturated subsurface flow mechanics utilized in the derivation 
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of the upscaling relationships. That is, other controls, including unsaturated mechanics, saturation-

excess and infiltration-excess limits on recharge, and subsurface heterogeneity may thus be 

fundamental to characterizing this full range of variability, and such mechanics should be integrated 

into future upscaling exercises. 

 

 
Figure 4.10. Observed and upscaled transient recession coefficients in sixteen verification basins. Black points indicate 
observed recession coefficients. Blue points indicate upscaled, calibrated recession coefficients. Green points indicate the 
single recession fit through entire data set. Basin number labels are indicated above each plot. 

Although the upscaling relationships introduced here are unable to fully capture the range of 

transient recession coefficients observed in the tested basins, their capacity to produce coefficients 

that respect observed values represents a step forward in linking the small-scale heterogeneous 

response of subsurface reservoirs to the basin-scale aggregate recession response. Unlike earlier 

approaches, the upscaling relationships account for a diversity of reservoir shapes and sizes, and the 

resultant responses are based on subsurface physics, as opposed to abstracted lumped representations 

with no direct connection to landscape characteristics. These upscaling relationships enable the 

prediction of recession coefficients using only information about basin topography and an estimate 
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of recharge time history, as opposed to previous investigations into transient behaviour which must 

extract the non-unique recession responses from flow data. This makes the upscaling relationships 

particularly relevant in ungauged basins, where such flow information is unavailable. The relationships 

demonstrate a quantifiable correlation between mean basin slope, the distribution of converging-

diverging hillslopes, the length of the surface drainage network, and the second-order hillslope speed 

metric, which are all straightforward to derive from topographic data.   

 

4.4 Conclusion 

A novel set of upscaling relationships have been developed that are capable of transforming 

simple metrics of basin topography, determined from the distribution of small-scale hillslope units, 

into a basin-scale description of subsurface-flow-induced recession behaviour. Critically, these 

upscaling relationships are independent of recharge magnitude, and so any time series of daily recharge 

can be converted into a set of transient recession coefficients. Additionally, simple scaling rules have 

been developed to handle changes in basin-scale effective conductivity. The following objectives have 

thus been achieved: 

 

1. Upscaling relationships capable of producing subsurface-flow-induced recession behaviour in 

basins using only four topographic metrics (mean hillslope angle; the probability of hillslopes 

with divergence/convergence metric less than or equal to four; the probability of ‘hillslope 

speed’ less than or equal to five days; and the sum of all downslope hillslope widths) and a 

time series of recharge have been developed (Equations 4.4-4.8). These upscaling relationships 

successfully replicate numerical simulations when mean hillslope angle is greater than two 

degrees. 

2. Simple scaling rules have been developed to handle the change in the upscaled behaviour as 

the homogeneous basin-scale conductivity is changed (Equations 4.9-4.10) 

3. The efficacy of these predictive relationships has been demonstrated with respect to numerical 

simulations in twenty basins not used to train the upscaling relationships. The practical efficacy 

has been evaluated by comparing predicted transient recession behaviour to observed 

behaviour in seventeen basins within the CAMELS data set. Although predicted recession 

coefficients are within the range of observed coefficients, the full extent of observed recession 

coefficients are consistently not captured. This suggests that the mechanics of saturated 

subsurface flow through hillslopes with homogeneous subsurface properties used in this work 

are but a subset of the mechanics which generate transient variability in recession behaviour. 

 

The upscaling relationships presented here may be potentially augmented to respect a variety of 

subsurface flow and lateral runoff mechanisms, and to attempt to account for heterogeneity in 

subsurface properties between hillslopes. These relationships will be ported into a hydrological 

modelling framework, to support a physical justification for the power-law coefficients used to 

simulate the subsurface-flow-induced recession behaviour at the basin scale. 
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5 Chapter 5 

 

Conclusions 
 

Understanding how small-scale governing constitutive relationships and distributed small-

scale heterogeneity aggregate to produce large-scale hydrological effects is foundational to the exercise 

of watershed modelling. Upscaling, the conversion of small-scale hydrological relationships to large-

scale hydrological descriptions, is thus an essential component of modelling, even when done 

implicitly. In some distributed modelling applications, the governing constitutive relationships are 

resolved at a fine scale and the relevant landscape heterogeneity is explicitly represented, implying that 

the bulk basin response generated by the model directly accounts for the small-scale behaviour of a 

basin (an exact averaging approach). In other applications, the small-scale behaviour is assumed to 

apply at the basin-scale with no alterations (the naïve approach). In between these conceptual extremes 

lies a suite of upscaling approaches that are incorporated into many modern hydrological and land 

surface models, and are robustly classified and catalogued in Chapter 2 of this thesis. Upscaling 

relationships are plentiful where small-scale governing constitutive relationships exist and are 

parameterized by readily measurable parameters, where large-scale aggregate information (e.g., 

streamflow) can be collected at the point scale, and/or where the science has come to an agreement 

over the expected spatial distribution of the most relevant parameters. In other cases, the lack of 

readily observable hydrologic behaviour at convenient scales of human observation, and the difficulty 

of prescribing and understanding system heterogeneity, hamper the generation of upscaling insights 

and algorithms. Although advancements in computational processing power may suggest that all 

upscaling exercises be eventually resolved by finely-discretized distributed models, upscaling 

investigations provide an opportunity to directly assess the controls and closure relationships of 

hydrological process, enabling a deeper understanding of the fundamental scaling relationships of 

hydrologic systems. In this way, upscaling should continue to be an important component of 

hydrological research.  

 

Extending on the ontological and historical classification of upscaling in watershed modelling 

presented in Chapter 2, the upscaling behaviour of recharge-induced subsurface flow (i.e., subsurface 

stormflow) through hillslopes, resulting in a simple large-scale characterization of the recession 

behaviour of a basin, was explored in Chapters 3 and 4. By explicitly resolving and aggregating the 

subsurface physics of hillslopes (a bottom-up exact averaging approach), experimentally-derived large-

scale basin behaviour was extracted, and connections between this behaviour and aggregate metrics 

of basin topography (a top-down empirical approach) were derived. However, the computational 

expense of resolving hillslopes with physically-based descriptions of subsurface flow is not trivial. 

Chapter 3 presented a novel modelling tool, the hsB Proxy, which produces rapid solutions to the 

hillslope-storage Boussinesq (hsB) equation describing saturated unconfined subsurface flow through 

wedge-shaped hillslopes with linear width functions. The computational efficiency of this tool was 

demonstrated, as was its utility in upscaling problems, where it was used to produce large-scale 
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recession behaviour informed by hillslopes with physical dimensions derived from topography, as well 

as in calibrating a single effective hillslope that could reasonably reproduce numerically-simulated 

behaviour. In Chapter 4, the hsB Proxy was used to produce large-scale results that enabled the 

derivation of upscaling relationships connecting basin topography to the large-scale recession 

behaviour. The resultant upscaling relationships, simple linear functions relating signature basin 

recession characteristics to the mean hillslope angle, the probability of hillslope 

convergence/divergence, the probability of hillslope speed, and the sum of hillslope downslope 

widths, were able to replicate numerical simulations at high quality and were used to produce transient 

recession coefficients which respected observed behaviour. 

 

The expansive synthesis and classification of computational upscaling approaches in 

hydrology in Chapter 2 and the two-step generation of a new set of upscaling relationships in Chapters 

3 and 4 are significant contributions of this work. In particular, 

 

1. The review of computational upscaling approaches in hydrology (Chapter 2) provides a formal 

classification scheme for upscaling methodologies in hydrology and demonstrates how these 

methodologies have been specifically applied to generate upscaling insights. This new 

classification scheme includes a formal set of definitions and a robust mathematical treatment, 

and serves as a streamlined ontological framework for upscaling studies in hydrology. 

2. This review provides a novel summary of the upscaling approaches that have been applied to 

critical hydrological processes, and in evaluating the common challenges and successes 

amongst hydrological processes, provides a valuable starting point for researchers interested 

in assessing and closing the gaps in upscaling approaches. 

3. The hsB Proxy introduced in this work uniquely approximates the computationally expensive 

results of numerical hillslope drainage models and enables the types of studies presented in 

Chapters 3 and 4, where hundreds or thousands of hillslope simulations are required. Critically, 

these hillslopes need not be defined abstractly by the modeller, but rather can be directly 

derived from digital elevation data. These derived hillslopes, and the physics of subsurface 

flow expressed by the hillslope-storage Boussinesq equation (hsB), were combined to produce 

upscaling experiments with minimal conceptual abstraction. 

4. The computationally efficient hsB Proxy allows for empirically-derived (rather than 

theoretically-assigned) transient recharge inputs to be considered in the problem of upscaling 

hillslope subsurface flow to the aggregate recession behaviour of a basin. Thus, the hsB Proxy 

further minimizes conceptual abstraction in this upscaling problem by eliminating the often-

used simplifying assumption of a steady depletion curve in hillslopes, therein enabling insight 

into the impact of transience in recession behaviour.  

5. This work was thus the first to directly connect the bulk transient recession response of a basin 

to distributed hillslope properties. This connection is formalized by new upscaling 

relationships capable of predicting the aggregate recession response as a function of readily-

derived terrain metrics.  
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However, the results presented in this thesis are not without limitations. The treatment of 

hillslopes as the small-scale dimension of the upscaling problem explored in Chapter 3 and 4 is well 

justified by the literature, and the characterization of these hillslopes as variable-width areas derived 

directly from topography, solved with a physically-based treatment of subsurface flow and able to 

handle transient recharge inputs, is a novel configuration, representing am appropriately advanced 

level of complexity in these studies. However, despite these complexities, the governing constitutive 

relationship is limited to a characterization of saturated subsurface flow, and so cannot reflect the 

more realistic (but much more computationally expensive) understanding of unsaturated mechanics, 

which may be a significant control on flow behaviour. Further, the upscaling relationships generated 

in Chapter 4 are confined to applications in basins considered effectively homogenous, such that 

critical controls of subsurface heterogeneity were not accounted for (although the timescales of 

hillslopes are heterogeneous, as a function of their shape and slope).  

 

In the future, the upscaling relationships introduced in Chapter 4 may be improved by 

additional testing investigating the effect of hillslope-scale heterogeneity in conductivity and porosity 

on large-scale recession behaviour. This is not a computationally trivial exercise, but the known role 

of heterogeneity means that such investigations are likely to lead to useful conclusions. Further, the 

upscaling relationships may be improved by repeating the experiment in Chapter 4 with a variably 

saturated subsurface flow model, although this is also not computationally trivial (indeed, the 

application of a computationally simpler saturated flow model required the generation of a completely 

novel tool in Chapter 3 to produce the thousands of simulation results required to generalize the 

upscaling behaviour of basins). Finally, the upscaling relationships in Chapter 4 and the hsB Proxy in 

Chapter 3 should be ported into a hydrological modelling platform to ensure that the upscaling 

conclusions developed in this thesis find a practical realization in watershed models. Once these tools 

are readily available in hydrological models, a more robust accounting of the physics of subsurface 

flow can be readily included in hydrological modelling problems without the associated computational 

burden, and the clear utility of upscaling exercises can be further reinforced.  

 

With time, patience, and increased computational faculties, it is the ambition of this thesis that 

the conceptual framework utilized here for upscaling hillslope subsurface flow (that is, using numerical 

models to produce bottom-up aggregated large-scale results which are then top-down reconsidered to 

produce new upscaling models) is applied to a number of hydrological processes, and that a new 

generation of researchers can build off the work conducted here to close the gaps between our small-

scale understanding of hydrological processes and the large-scale application of relevant algorithms in 

our hydrological models. It is the second ambition of this thesis that these researchers need not dive 

into the fractured and disconnected upscaling literature to navigate their starting point, but rather can 

begin their study much more accelerated by digesting the catalogue and ontology of upscaling 

processes in the review paper resulting from this thesis work. 
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