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Abstract

Factorized databases utilize factorized data representations during query processing to
obtain more compact final query results and faster runtimes for queries with many-to-many
joins. We revisit this technique in the context of graph database management systems
(GDBMSs) whose common workloads are large joins with many-to-many relationships
on graph-structured data. We first review the theory of factorized databases and classic
flat intermediate tuple structure in traditional pipelined GDBMSs. We then present our
tuple representation which mimics factorized representations and can be easily integrated
into existing query processors. We further describe how to cache sub-query results with
this factorized tuple structure through a static dependency analysis of the query. We
have integrated our factorized query processor into GraphflowDB, an in-memory GDBMS.
Compared to the original version of GraphflowDB, whose processor is not fully factorized,
query plans in our processor can be orders of magnitude faster and produce orders of
magnitude smaller result sizes.
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Chapter 1

Introduction

Graph database management systems (GDBMSs) are systems that use the property graph
data model where entities are stored as nodes and relationships between entities are repre-
sented as edges. The property graph data model is intuitive for applications such as social
networks, fraud detection, and friend recommendation. The typical workloads on these
applications are read-heavy graph pattern matching queries, for example, finding cycles in
a money flow network which could be a potential fraud action [22]. GDBMSs are primarily
designed to power applications whose workloads contain large joins over graph-structured
data, which often contain many-to-many relationships. Similar to traditional relational
database management systems (RDBMSs), query processors of existing GDBMSs repre-
sent and process relations as flat tuples. Such query processing architectures were not
designed to efficiently handle workloads with large many-to-many joins that can lead to
an explosion in the size of intermediate and final relations [5, 14, 19].

The problem of large intermediate results is very common and arises on even very
simple query templates. Consider as examples the two queries in Figure 1.2. The query
in Figure 1.2a is a 2-path query that asks for all money flows that an account represented
by vertex v3 is facilitating. The query in Figure 1.2b asks for all 4-hop money flow paths
from an account with ID v1. Both of these queries have output sizes of k2 on the example
relation TRANSFER shown as a graph in Figure 1.1. One can see however that the answer to
the former query is contained in the subgraph around v3, which only contains 2k edges, and
the answer to the latter is contained in the subgraph between v1 and v5 which only contains
4k edges. Intuitively, if a system could represent intermediate relations as subgraphs and
reuse them, it could process queries without generating large intermediate results.
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v1 ...

v21

v2k

v3 ...

v41

v4k

v5 ......

Figure 1.1: Instance of a TRANSFER relation where each edge represents
a money transfer between two accounts (ACC) entities from vi to vj.

a b c

WHERE b.ID = v3

(a) A 2-path query denoted Q2H .

a b c

WHERE a.ID = v1

d e

(b) A 2-path query denoted Q4H .

Figure 1.2: Two money flow path queries.

Recent theory of factorized databases has laid the foundation for DBMSs to address
the intermediate results and final size explosion problem. Instead of representing relations
as flat tuples and similar to the above intuition, factorized databases represent relations
as tries that are unions of Cartesian products of sub-relations or singleton values [5].
Figure 1.3 shows factorized representations of the outputs of each query from Figure 1.2.
The representation used in Figure 1.3b for the 2-hop query is called an f-representation [5]
which represents the 2-hop path as the Cartesian product of three sets: incoming edges
of v3 (i.e. v21 , ..., v2k), {v3}, and outgoing edges of v3 (i.e. v41 , ..., v4k). This captures
the intuition that once v3 is assigned to variable b, the values of a and c in the output
are independent. The representation used in Figure 1.3d is called a d-representation [19],
which expands f-representations by storing repeated sub-relations once and reusing them.
In Figure 1.3d, the sub-relation of the 2-hop path from v3 to v5 is stored once and reused
k times. All v3 nodes refer to the same node in a dashed box. Figures 1.3a and 1.3c
show the flat representations for 2-hop and 4-hop path queries respectively where the set
of tuples are represented as the union of the Cartesian product of each singleton value for
all variables.

The theory of factorized databases has established that f-representations of relations
can be asymptotically smaller than flat representations and d-representations can further
be asymptotically smaller than f-representations [19]. In addition, when computing re-
lational queries that have conditionally independent variables, it is possible to perform
computations on succinct factorized representations to obtain asymptotically faster run
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(a) Q2H results in a flat representation.
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(b) Q2H results in an f-representation.
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(c) Q4H results in a flat representation.
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(d) Q4H results in a d-representation.

Figure 1.3: Example flat and factorized query results.
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times [5, 19]. However, the only factorized query processor implementation in prior work,
which is described in the reference FDB system [5], has several shortcomings for integrating
into existing GDBMSs.

First, FDB’s query processor is based on operators that perform transformations over
entire tries. In other words, FDB indexes all input relations as tries and its plans consist
of a linear sequence of operators that take as input tries and output tries, starting with
tries that represent the input relations. The sequences of trie transformations are decided
according to join plans called f-trees, which represent the factorization structure of the
output of each operator. One cannot integrate this approach by modifying the traditional
pipelined query processors of existing systems, whose operators operate on a single or a
block of tuples. In addition, this approach is memory intensive as tries that operators
use are full materialization of intermediate results. Such materialization is avoided by
pipelining in traditional processors. Second, FDB’s processor is based on f- instead of d-
representations and can leave important performance behind when queries can benefit from
reusing result of sub-relations. Such queries are common in GDBMS workloads. Finally,
FDB’s processor is designed for an in-memory RDBMS, and does not exploit GDBMS-
specific storage and workload characteristics, such as the list-based data storage layout of
GDBMSs or the integer ID-based joins that are prevalent in graph workloads.

1.1 Contributions

This thesis describes a factorized query processor that addresses these shortcomings. First,
our approach is based on reusing the pipelined operators of existing GDBMSs with minimal
modifications and implements a new operator, specifically, a factorized representation con-
struction operator named FGroup, that performs computation on factorized representation.
Similar to existing query processors, every operator, except FGroup, performs computation
on a block of tuples instead of tries. Second, apart from f-representations, our approach
also utilizes d-representations, so caches and reuses results of sub-queries whenever pos-
sible. We add a d-representations caching layer in FGroup and modify our join operator
to call one of two possible children operators depending on whether the remainder of the
sub-query they are evaluating has been cached or not for a prefix of tuple values. Similar to
the list-based query processor (LBQP) for GDBMSs described in reference [9], our processor
also exploits list-based storage of GDBMSs to do late materialization of adjacency lists
when possible.

We have integrated our query processor into the GraphflowDB in-memory GDBMS [11,
13] and focus on select-join queries. In graph terminology, this corresponds to subgraph
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pattern matching followed by arbitrary predicates on the nodes, edges, or node and edge
properties of the matched pattern. We focus on query processing and rely on Graph-
flowDB’s default optimizer to pick a join order and adopt FDB’s optimization algorithm
to generate an f-tree that describes the factorization structure of the given join order.
We demonstrate that our approach outperforms the previous GraphflowDB with LBQP by
orders of magnitude on many queries in the LDBC benchmark as well as a suite of micro-
benchmark queries. To refer to our processor with a single term throughout the paper, we
call it DPQP, for d-representation-based pipelined query processor.

1.2 Outline

The outline for the rest of this thesis is as follows.

• Chapter 2 reviews the definition of f-/d-representations as well as f-/d-trees which
describe the structure of factorized representations. This chapter also reviews LBQP
upon which DPQP is built.

• Chapter 3 describes a trie-like intermediate tuple structure used in DPQP. The tuple
structure mimics f-representations and, if certain constraints are satisfied, could also
mimic d-representations.

• Chapter 4 describes operators and query plans in DPQP. Specifically, we describe
major operators inherited from LBQP and introduce a new operator named FGroup

that constructs factorized representations. We also present how to use FGroup to
obtain a DPQP plan and how to integrate caching into it.

• Chapter 5 presents experiments evaluating DPQP, including the effectiveness of uti-
lizing d-representations in terms of both runtimes and size of final results.

• Chapters 6 and 7 cover related work and conclude, respectively.
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Chapter 2

Background

We provide background on the foundations of factorized databases, covering factorized
representations of relations and select-join query processing. We also give an overview
of GraphflowDB’s LBQP, which we modified to develop DPQP for select-join queries. We
use the Cypher language [8] developed for the property graph data model. In this model,
entities are represented by vertices, relationships are represented by edges, and attributes
are represented by arbitrary key-value properties on vertices and edges. Both entities and
relationships have unique ID attributes. Queries 2.1 and 2.2 are written in Cypher as
shown below. a and b are aliases for the ACCOUNT relation and represent query vertices.
Each ti is an alias for the TRANSFER relation and represents a query edge. Query vertices
and query edges are referred to as query variables or simply variables for short.

Query 2.1: 2-hop money transfer path query.

MATCH (a:ACC)−[t1:TRANSFER]→(b:ACC)−[t2:TRANSFER]→(c:ACC)

WHERE b.ID = v3
RETURN a.ID, b.ID, c.ID

Query 2.2: 4-hop money transfer path query.

MATCH (a:ACC)−[t1:TRANSFER]→(b:ACC)−[t2:TRANSFER]→(c:ACC),

(c:ACC)−[t3:TRANSFER]→(d:ACC)−[t4:TRANSFER]→(e:ACC)

WHERE a.ID = v1
RETURN a.ID, b.ID, c.ID, d.ID, e.ID

6



2.1 Factorized Representations of Relations

Definition 1 (F-representation [19]) An f-representation of a relation is a relational
algebra expression over a set of attributes S that consists of singleton values, unions, and
Cartesian products. Formally the expression can be one of the following: (i) ∅, representing
the empty relation; (ii) ⟨A : a⟩, a singleton tuple with value a for variable A; (iii) (E),
where E is an f-representation; (iv) E1 ∪ ... ∪ En; or (v) E1 × ... × En, where Ei are
f-representations.

F-representations are a complete representation system, i.e., any relation R has at least one
f-representation. Specifically, the flat representation is a straightforward f-representation
that represents each row as a Cartesian product of each singleton value in each of its
columns and unions each row. However, in some cases relations can have more compact
f-representations. The structure of an f-representation can be represented at variable level
by a trie structure called factorization trees (f-trees).

Definition 2 (F-tree [19]) An f-tree over a set of attributes S is a rooted forest with each
node labeled by a non-empty subset of S such that each attribute of S occurs in exactly one
node. The structure of f-representations E adheres to an f-tree T if it satisfies the following:
(i) If T is empty, then E = ∅; (ii) If T is a single node labelled by S = {A1, A2, ..., Ak},
then E = ∪i(⟨A1 : ai⟩×· · ·×⟨Ak : ai⟩); (iii) if T consists of a root with label Ai and a non-
empty forest U of children, then E = ∪ai⟨Ai : ai⟩ × Eai, where Eai is an f-representation
over U ; and (iv) If T is a forest of trees T1, ..., Tk, then E = E1 × ...Ek, where Ei is an
f-representation over Ti.

Intuitively, an f-representation adheres to an f-tree T if its structure mimics the hierarchical
structure of T . As a shorthand, we label a node with the query variables i.e., query vertices
and edges, to indicate that the node is labelled by the variable’s attributes/properties
mentioned in any of the query clauses. For instance, a node labelled by a.p1 and a.p2
where a is a query vertex and p1 and p2 are properties can be replaced with a if p1 and
p2 are the only attributes of a as part of the query For example, the f-representation for
the output relation of our 2-hop path query adheres to the f-tree in Figure 2.1a. Similarly,
the flat representation of any relation R over S adheres to any f-tree T is a single node
containing all the query attributes. One possible f-tree for flat-representation is shown in
Figure 2.1b. However, an arbitrary relation R over the schema S does not necessarily have
an f-representation that adheres to an arbitrary f-tree T over S. For example, the output

7



b

a c

(a) f-tree T 1

a,b,c

(b) f-tree T 2

a

b c

(c) f-tree T 3

Figure 2.1: Different f-trees for query Q2H in Figure 1.2a.

relation of our 2-path query does not adhere to the f-tree in Figure 2.1c. We will explain
how to determine whether a relation R adheres to an f-tree T momentarily.

When a relation R is the output of a select-join query Q, i.e., R = Q(G), one can find
f-trees that R adheres to by analyzing the conditional independence relationships between
the variables used in Q. We first define the notion of dependence directly quoting the
definition from reference [19].

Definition 3 (Dependence [19]) Two disjoint groups of attributes A and B of a relation
R are called independent conditioned on another group of attributes C, disjoint with A and
B, if R is a natural join RA ▷◁C RB of two relations RA and RB with attributes including
A and B, respectively. A and B are independent if they are independent conditioned on
the empty set. If two attributes are not conditionally independent, they are dependent.

In the queries of GDBMSs, the joins are represented by subgraph queries, e.g., expressed
in the MATCH clause of the Cypher query language [8]) with possibly additional join
predicates across the query vertices and edges or their properties, e.g., expressed in the
WHERE clause of Cypher. It is well known that these queries can equivalently be expressed
as joins over binary relations that contain the edges with a particular edge label as source
and destination ID pairs. Ignoring the additional join predicates, if we focus on a subgraph
query Q, the above definition indicates that in the output relation of Q, a set of query
vertices A and B are independent conditioned on C (disjoint from A and B), if the sub-
queries QA and QB of Q projected onto A and B are sub-queries that do not share a direct
query edge, and C is the remaining set of query vertices in Q. Figure 1.2a gives an example
subgraph query, where a and c are independent conditioned on b. Instead the same set of
variables are not conditionally independent in Figure 2.2, as they share direct edges.

As also described in reference [19], the dependency information can be inferred statically
from Q. In particular: (1) Any pair of variables in a query Q that is part of the same

8



query edge is dependent.1 (2) Any pair of variables in a query Q that is part of the
same predicate is dependent. A third rule, which is omitted exists for queries that contain
projections and can be found in reference [19]. Reference [19] has further shown that one
can determine whether or not the result Q(G) of a query Q adheres to an f-tree T by a
simple rule called the path condition: any set of dependent variables need to be on the
same root-to-leaf path on T . Equivalently, variables that are not on the same root-to-leaf
path must be conditionally independent on their least common ancestor ai and the set of
variables on the path from the root to ai. For example, the f-tree in Figure 2.1a satisfies
the path condition, and so can factorize the output of our 2-path query. Instead, the f-tree
in Figure 2.1c does not satisfy the path condition, because b and c are dependent but are
on different root-to-leaf paths, so Q(G) cannot be factorized to adhere to this f-tree.

a

b

c

Figure 2.2: A triangle query

D-representations generalize f-representations to use named expressions (aka defini-
tions) that allow re-using repeated factorized representations. Formally:

Definition 4 (D-representation [19]) A d-representation is a set of named expressions
{N1 = D1, ..., Nk = Dk}, where each Ni is a unique symbol and each Di is a union of
Cartesian products that can use other named expressions.

For example, in the representations in Figure 1.3d for the output of the 4-hop money
flow query, the sub-relation of the 2-hop path from v3 to v5 would be a named expression
that is reused k times. Similarly, we will be interested in d-representations whose structures
can be expressed at the variable level by an extension of f-trees called d-trees:

Definition 5 (D-tree [19]) A d-tree T ↑ over a set S of variables is an f-tree T where
each node Ai is labeled with the subset of the ancestors of Ai that depend on any of the
descendants of Ai. We refer to these subset of variables as dependency labels.

We will in particular be interested in nodes in T ↑ that have empty dependency labels,
and draw them as dashed nodes. These are the variables whose children have no depen-
dency on their ancestors. When we perform joins starting from the root to the leaves,

1Similarly a query node or query edge variable and any variable that refers to an attribute of these
nodes and edges are dependent.

9



a

b

c

d

e

Figure 2.3: A d-tree T ↑ for Query 1.2b.

these variables and their children form sub-queries whose results we can group and reuse.
For example, the results of our 4-hop query in Figure 1.3d uses the d-tree from Figure 2.3.
Variable c here has an empty dependency label, so for different matches of c we can give a
name, e.g., Dc=v3 to the result of the sub-query for (c)→(d)→(e), and for each prefix tuple
c value matches v3, we can avoid computing this sub-query and reuse Dc=v3 . In this d-tree
in fact all of the variables have empty dependency labels, so we do similar grouping for
b and d as well though these do not result in further compaction in the output size. We
draw the root always as a non-dashed circle because values that match the root variable
will be unique, as the root is the first variable in the d-tree. Therefore, we could not reuse
results grouped by the root variable. We also draw the leaves as non-dashed circles as there
are no further sub-query results to group after a leaf variable. As a result, caching and
reusing with d-representations requires a d-tree of at least a height of 2 such that there are
variables with a depth d that satisfies 0 < d < height.

We end this section with a note on several size bounds for sizes of the f-representation
from reference [19]. Reference [19] has shown that for any select-join query Q over a
database D (so an input graph G in our context), the worst case size of its d- and f-
representations of its output can be tightly characterized by two exponents O(|D|s↑(Q)) and
O(|D|s(Q)), respectively, such that s↑(Q) ≤ s(Q). s(Q) is further at most the fractional edge
cover ρ(Q) of Q, which is known as the AGM bound [3], and represents the worst-case flat
output size. Reference [19] has also shown that there are queries in which s↑(Q) < s(Q) and
s(Q) < ρ(Q), indicating asymptotic size differences between d-, f- and flat representations
of output results of queries.
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2.2 List-based Query Processor

2.2.1 Volcano-style Query Processor

Traditional Volcano-style query processors adopt flat tuple structure and perform tuple-
at-a-time processing. Figure 2.4 shows a query plan, akin to the left-deep plan in RDBMS,
that evaluates Query 2.3 which asks for all posts with length greater than 50 liked by
friends of Alice. Figure 2.5a shows the flat tuple structure adhering to the given plan
where each variable is represented as a flat value. Such flat representation, in the context
of factorization, is a Cartesian product of each singleton value in the tuple. One benefit
of Volcano-style processing is that it is efficient in terms of how much data is copied
to intermediate tuples. Imagine Scan(a) matches a single value a1 which extends to k1
different b values each of which further extends to k2 different c values. Although the final
output contains k1 × k2 tuples, a1 is only copied once during processing. Such saving of
data copying is more significant for longer join paths. On the other hand, it is also well
studied that Volcano-style query processors do not achieve good CPU cache locality since
the processing of two consecutive nodes is interleaved with many other function calls.

Query 2.3: 2-hop path query.

MATCH (a:PERSON)−[:KNOWS]→(b:PERSON),

(b:PERSON)−[:LIKES]→(c:POST)

WHERE a.name = Alice AND c.length > 50

Figure 2.4: Left deep plan for the Query 2.3.

2.2.2 Block-based Query Processor

Block-based query processors aim to improve CPU cache locality by having operators pro-
cess blocks of data at a time. The blocks contain a fixed number of, e.g. 1024, tuples per
block. Figure 2.5b shows the intermediate tuple structure of block-based processor for the
plan in Figure 2.4. One could easily reason that the set of tuples represented by a block is

11



(a) Flat tuple structure (b) Block-based tuple structure

Figure 2.5: Flat and block-based tuple structure examples.

the union of all rows and each row is a Cartesian product of all its singleton values. There-
fore, intermediate tuples in blocked-based processor have the same factorization structure
as in Volcano-style processor.

One shortcoming of block-based processing is that it may perform a lot of data copying
for queries with many-to-many joins. Consider example plan in Figure 2.4 in a block-based
processor. a1 would be copied once for each different (b, c) suffix as shown in Figure 2.5b.
Another drawback is that block-based processors do not exploit data layout that is common
in GDBMSs. Specifically, the materialization of node IDs contained in an adjacency list
can be avoided since it is already stored consecutively in GDBMSs.

2.2.3 List-based Query Processor

Reference [9] introduced LBQP for GDBMSs that extends block-based processors while
addressing the two shortcomings mentioned above. LBQP introduces a new data structure
named list group which consists of a key variable, usually a node ID variable, and other
variables that have one-to-one relationships with the key variable. Values of each variable
is stored in list-like data structure named value vector. Variables in the same list group
have a shared state which contains a currentIdx and a filter mask. If currentIdx is set to
a non-negative integer i, the list group represents the i-th flat tuple in the list group. We
refer to these list groups as flat list groups. Otherwise, list groups represent a list of values
and are referred as unflat list groups. Filter mask is used to identify which values are valid
since predicates might be applied on variables in a list group. Intermediate tuples in LBQP
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Figure 2.6: List-based tuple structure

is a collection of list groups. We will explain momentarily how this representation avoids
the data repetition problem of block-based processors under many-to-many joins.

LBQP also improves on traditional block-based processors by replacing fixed-length
blocks with variable-length adjacency lists. This allows LBQP to avoid materializing neigh-
bor node IDs by simply keeping pointers to adjacency lists storing these node IDs. This
optimization significantly reduces data copying, especially on star queries.

Example 1 Figure 2.6 shows the intermediate tuple with three different list groups that
adheres to the plan in Figure 2.4. Scan(a) first scans a sequence of node IDs for variable a,
i.e. a1, a2, ..., a1024 and their corresponding name attributes. a.ID and a.name is written
in the same list group since a.name has a one-to-one relationship with a.ID and thus can
share the same state. A filter is then applied to each tuple in list group1 whose evaluation
result is written to the filter mask field. A join operator iteratively flattens the list group
it extends from by updating the currentIdx field and writes to a new list group. In our
example, jo1 first sets currentIdx = 1 in list group 1 and extends from a1 to a set of
b neighbors that are stored in list group 2. Similarly, jo2 computes a set of c values,
together with their length attributes, for b3 that is under currentIdx = 2 of list group
2. The sizes of b.id and c.id are determined by the size of forward adjacency lists of a1
and b3 respectively and do not necessarily to be a fixed length. The last list group 3
remains unflat since no further join extends from it. Finally, filter c.length > 50 is applied
on c.length field in unflat list group 3 whose filter mask is updated accordingly.

Recall that both Volcano-style and block-based processors represent tuples as a Carte-
sian product of singleton values. LBQP, however, represents tuples as the Cartesian product
of all list groups, e.g. the tuples in Figure 2.6 can be expressed as a1 × Alice× b3 × (c7 ∪
... ∪ c555).
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Chapter 3

Intermediate Tuple Structure

In this chapter, we establish the set of f-trees that the tuple structure of LBQP adheres
to. As we will show, LBQP’s tuple structure with no notion of reuse adheres to a limited
set of f-trees. Hence, we introduce a trie-like tuple structure made of nodes we refer to as
FNode(s). The tuple structure allows us to pass d-representations between operators.

3.1 LBQP Tuple Structure

Recall from the previous chapter that LBQP is made of a list of groups and each group can
be either flat or unflat. A flat group over a set of attributes S = {A1, A2, ..., Ak} represents
a set with a single tuple (⟨A1 : a1⟩ × · · · × ⟨Ak : ak⟩). An unflat group over S represents a
set of tuples: ∪i{(⟨A1 : a1i⟩×· · ·×⟨Ak : aki⟩)}. The final result set is obtained by applying
a Cartesian product over the set of tuples obtained from each list group.

Next, we consider which f-trees the tuple structure of LBQP adheres to in the plan in
Figure 2.4. The output of the Scan and Filter operators is a single unflat list group
containing the a.ID and a.name attributes shown as list group 1 in Figure 2.6. The
equivalent f-tree and f-representations are shown in Figures 3.1a and 3.1d, respectively.
The join operator jo1 (a→b) flattens the list group 1 and for a fixed a.ID value extends
to the set of b.ID values that are stored in a new list group 2 which are passed to jo2. The
final output tuples of jo1 follow the f-tree and f-representations as shown in Figures 3.1b
and 3.1e, respectively. Similarly, jo2 flattens the list group 2 and for a fixed b.ID value
extends to the set of c.ID and c.length values. The final output tuples of jo2 follow the
f-tree and f-representations as shown in Figures 3.1c and 3.1f, respectively.
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a.ID, a.name

(a) F-tree for Scan-Filter’s
output.

a.ID, a.name

b.ID

(b) F-tree for JOINjo1 ’s output.

a.ID, a.name, b.ID

c.ID, c.length

(c) F-tree for JOINjo2 ’s output.

∪

⟨a.ID:a1⟩

×

⟨a.name:Alice⟩

... ⟨a.ID:a1024⟩

×

⟨a.name:Alice⟩

(d) F-tree for Scan output.

∪

⟨a.ID:a1⟩

×

⟨a.name:Alice⟩

×

∪

⟨b.ID:b1⟩ ... ⟨b.ID:b75⟩

... ⟨a.ID:a1024⟩

×

⟨a.name:Alice⟩

×

∪

⟨b.ID:b3⟩ ... ⟨b.ID:b15⟩

(e) F-representations for JOINjo1 output.

∪

⟨a.ID:a1⟩

×

⟨a.name:Alice⟩

×

⟨b.ID:b1⟩

∪

⟨c.ID:c9⟩ ... ⟨c.ID:c41⟩

... ⟨a.ID:a1⟩

×

⟨a.name:Alice⟩

×

⟨b.ID:b75⟩

∪

⟨c.ID:c19⟩ ... ⟨c.ID:c201⟩

... ⟨a.ID:a1024⟩

×

⟨a.name:Alice⟩

×

⟨b.ID:b3⟩

∪

⟨c.ID:c7⟩ ... ⟨c.ID:c555⟩

... ⟨a.ID:a1024⟩

×

⟨a.name:Alice⟩

×

⟨b.ID:b15⟩

∪

⟨c.ID:c2⟩ ... ⟨c.ID:c35⟩

(f) F-representations for JOINjo2 output.

Figure 3.1: F-trees and f-representations for the plan in Figure 2.4 in LBQP.
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Note that LBQP is a pipelined processor that avoids materialization and passes tuples
between operators a block at a time. jo1 and jo2 pass each time the set of tuples found
under a branch of the root union in the dashed box as shown in Figures 3.1e and 3.1f. For
example, jo1’s first produced block is ⟨a.ID:a1⟩×⟨a.name:Alice⟩ × ∪b.ID{⟨b1, ..., b75⟩} and
its last produced block is ⟨a.ID:a1024⟩×⟨a.name:Alice⟩×∪b.ID{⟨b3, ..., b15⟩}. Similarly, jo2’s
first produced block ⟨a.ID:a1⟩×⟨a.name:Alice⟩× ⟨b.ID:b1⟩ × ∪c.ID{⟨c9, ..., c41⟩} and its last
produced block is ⟨a.ID:a1024⟩×⟨a.name:Alice⟩× ⟨b.ID:b15⟩ × ∪c.ID{⟨c2, ..., c35⟩}.

LBQP’s tuples as f-representations adhere to f-trees with a height h ≤ 1. The f-trees
have a single root node and possibly a set of leaf nodes. This leads to two problems. First,
LBQP cannot represent d-representations which require an f-tree with a height h ≥ 2 in
order to reuse results. Non-leaf and non-root nodes results can be potentially reused and
if h ≤ 1, there are no such nodes and hence no opportunities for reuse. Second, LBQP
is sub-optimal in the size of intermediate results generated even when constrained to f-
representations only. LBQP cannot generate the most compact representations for certain
queries. Consider for instance the 4-hop query a→b→c→d→e where the most compact
f-tree in terms of asymptotic worst-case analysis is shown in Figure 3.2 which LBQP plans
cannot generate. As such, we need a new tuple structure to adhere to all possible d-trees.

c

d

e

b

a

Figure 3.2: An f-tree for a→b→c→d→e

3.2 FNode Tries for Intermediate Results in DPQP

In order to be able to pass tuples with a d-representation adhering to any possible d-tree,
we use a Trie structure to represent intermediate tuples that we call FNode. An FNode

extends a list group with an added FNode children list denoted FNodeChildren. Let c be
the number of children as indicated by the corresponding d-tree and T be the number of
tuples in the list group. FNodeChildren’s size is c × T . The tuple set stored in a trie
rooted by a given FNode is denoted by result(FNode) and is defined as follows:

result(FNode) = ∪T
i=1 ti × (Πc.i−1

j=c.(i−1) result(FNodeChildren[j]))
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Next, we present examples of f- and d-representations using FNode(s).

3.2.1 F-representations using FNode(s)

a

b

c

(a) T 4 (b) F-representations using FNode(s) adhering to T 4

Figure 3.3: An f-tree T 4 and its f-representations using FNode(s).

Figure 3.3 shows the results of Query 2.3 as f-representations using FNodes that adhere
to the f-tree T 4. In the figure, each FNode is denoted by fn(p, V ) e.g., fn(a1b3, {c}). p, for
prefix, represents the tuple that the f-representation rooted in the FNode depends on. V
denotes the set of attributes stored in the FNode. For fn(a1b3, {c}), p =⟨a : a1⟩ × ⟨b : b3⟩
shortened to a1b3 and V = {c} and hence fn(a1b3, {c}) stores the values obtained given p
for attributes c.ID and c.length (i.e., the attributes of c mentioned in Query 2.3). For the
root FNode, p = − and in this case the root is fn(−, {a}). Notice in this f-representations,
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the FNodes fn(a1, {b}) and fn(a1024, {b}) contain ⟨b.ID: a3⟩ value which points to two
different FNode instance children that are identical in the values they store.

3.2.2 D-representations using FNode(s)

a

b

c

(a) T ↑
4 (b) D-representations using FNode(s) adhering to T ↑

4.

Figure 3.4: An d-tree T ↑
4 and its d-representations using FNode(s)

Figure 3.3 shows the results of Query 2.3 as d-representations using FNodes that adheres
to T ↑

4. In this representations, unlike the f-representations in Figure 3.3b, the FNodes
fn(a1, {b}) and fn(a1024, {b}) contain ⟨b.ID: a3⟩ value which point to two same FNode

instance fn(b3, {c}). For fn(b3, {c}), p =⟨b : b3⟩ shortened to b3. As indicated by d-tree
T ↑

4 where b is in a dashed box, all FNodes storing c attributes depend only on the b.ID
attribute enabling reuse.
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Chapter 4

Operators and Plans

This chapter presents DPQP’s major operators inherited from LBQP and introduces a new
operator named FGroup. We also describe how to obtain a DPQP query plan and integrate
caching into it.

4.1 Operators

DPQP is able to reuse existing operators in LBQP such that a list group is an FNode with its
FNodeChildren set to NULL. We first describe the major operators inherited from LBQP.
Note that join operators need to flatten input FNodes as necessary.

• Scan: scans a set of consecutive node IDs and any needed attributes. The output of
the operator is a single unflat FNode which stores: 1) the ID attribute as a pair of start
and end offsets in a value vector; and 2) all needed attributes in their corresponding
value vectors.

• Extend: is an index nested loop join operator that takes a partial match t as input
and extends t by an unmatched query edge using an adjacency list index. Consider
an example of extending a partial match t with query edge vs → vd where vs has
been matched in t. Extend will first flatten the FNode containing vs.ID as necessary
which leads to a flat tuple vsi and then read the forward adjacent list index of vsi
and write neighbor node IDs to a value vector of an unflat FNode to produce a new
partial match t′ with query edge vs → vd matched. Extend also reads all necessary
attributes of the matched query edge and neighbor query node.
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Figure 4.1: Input partial match t to FGroup(c by b).

• Filter: takes as input a predicate and a partial match t which has matched all
variables required to evaluate the predicate. Regardless of the factorized structure of
t, the filter predicate should be evaluated on each flat representation of t. Therefore,
if the predicate includes variables from multiple FNodes, DPQP will ensure at most one
FNode is unflat so that expression evaluators do not need to calculate a Cartesian
product between different FNodes and thus simplify the implementation. Evaluation
result is written to the filter mask of the unflat FNode.

• Intersect: is a multi-way extend operator that uses worst case optimal join algorithm
described in reference [14]. Intersect takes as input a partial match t and extends t
by two or more unmatched query edges using adjacency list index. Similar to Extend
operator, Intersect flattens matched query vertices in t of those unmatched query
edges as necessary. Intersect first sorts node IDs in each adjacency list index and
then performs a merge sort to get a set of neighbor node IDs matching input query
edges. Result node IDs are written to a value vector of an unflat FNode.

4.1.1 FGroup Operator

FGroup(u by v) is a grouping operator that constructs the nested trie structure between
FNodes. FGroup(u by v) takes as input a partial match t with k FNodes that contains a
flat FNode storing attributes of v denoted by fnv and an unflat FNode storing attributes
of u denoted by fnu. It groups fnu as the currentIdx-th child of fnv. FGroup blocks
computation until all children of fnv have been computed, i.e. currentIdx of fnv equals
to vector size of fnv. It then outputs a new partial match t′ with k − 1 FNodes but
matching the same set of variables as t. We demonstrate the computation of FGroup with
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Figure 4.2: State of t after grouping fn(a1b1, {c}).

an example.

Example 2 Imagine we append an FGroup(c by b) operator at the end of the plan shown
in Figure 2.4, a sample input partial match t to FGroup(c by b) is shown in Figure 4.1.
FGroup performs a grouping operation which sets fn(a1b1, {c}) as a child of the first tuple
in fn(a1, {b}), i.e. b1, as shown in Figure 4.2. Readers can verify this grouping does not
change the set of flat tuples represented in Figure 4.1. FGroup blocks further computation
until all children FNodes under b1, b3, ..., b75 are computed as shown in Figure 4.3. In the
output partial match t′, fn(a1, {b}) represents the sub-query result of the sub-tree rooted
at b in T 4 in Figure 3.3a as a factorized structure for its prefix a1.

4.2 Query Plan

This section first studies DPQP query plans without caching which inserts FGroup operators
into LBQP plans to form f-representations. We then describe how to integrate caching. We
consider query plans for select-join queries that only contain Extend operators and other
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Figure 4.3: Output partial match t′ of FGroup(c by b).

operators introduced in Section 4.1. Our plans are linear plans that scan some nodes and
perform a sequence of extends. Bushy plans that join two intermediate non-base relations
are not supported and left for future work.

4.2.1 Plan with Path F-tree

Consider a path f-tree T and an LBQP plan which is a chain of Scan, Extend and Filter

operators whose join order follows a top-down traversal of T . Every node in T , except
the root, leads to the insertion of an FGroup operator done as follows. We traverse T in
bottom-up order and insert FGroup operators with the following rules. Consider a node vc
and its parent vp,

• If vc is the leaf node in T , we insert FGroup(vc by vp) after Extend(vp → vc) (or after
the last Filter follows Extend(vp → vc) if there is any).

• Otherwise, since we perform grouping with bottom-up traversal on T , the child of
vc must have been grouped so there is one and only one FGroup(x by vc) where vc is
the parent. We insert FGroup(vc by vp) after FGroup(x by vc).
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Example 3 Consider the LBQP plan shown in Figure 2.4 whose f-tree T 4 is shown in
Figure 3.3a. We traverse T 4 in bottom-up order and first consider node c and its parent b.
Since c is the leaf node, FGroup(c by b) is inserted after the Filter following Extend(b → c).
For variable b and its parent a, we insert FGroup(b by a) after the FGroup operator where
b is parent i.e. FGroup(c by b). Figure 4.7a shows the final plan. We further illustrate
execution with the following example. Example 2 has demonstrated the execution of
FGroup(c by b) for the batch of tuples under prefix a1 whose output partial match t′ is
shown in Figure 4.3. FGroup(b by a) takes t′ as input and groups fn(a1, {b}) as the first
child FNode of fn(∅, {a}). It then blocks further computation and asks for the next batch
of tuples under a different a prefix whose computation is similar to a1. The output of
FGroup(b by a), i.e. fn(∅, {a}), is shown in Figure 3.3b which is also the final query result.

Note that the join order of a DPQP plan follows the top-down traversal of the f-tree while
grouping order follows the bottom-up traversal of the f-tree. FGroup operators take the
advantage of the fact that grouping is done in the reverse order of extension and avoid full
materialization. Recall that in the description of Extend operator, every set of neighbor
node IDs is obtained from a prefix t and thus can be grouped as the child of t. Consider
the sample input shown in Figure 4.1, the set of c.ID in fn(a1b1, {c}) was computed in
Extend(b → c) for prefix (a1, b1). It is guaranteed that c3, c9, ..., c55 is a complete set of
c.ID for (a1, b1) and there will be no other c.ID under the same prefix. Therefore, we can
safely group c3, c9, ..., c55 as a child of (a1, b1) and continue to process the next batch of
c.ID which will be the child of a different prefix. Imagine we change the FGroup operator
to FGroup(b by c) in the above example which groups in a different order from the reverse
join order. In order to find the set of b.ID for a particular c.ID e.g. c3, we have to
first materialize all tuples since there might be another FNode containing c3 but under a
different prefix.

4.2.2 Plan with Bushy F-tree

We now describe the general case where f-trees can be bushy. Consider a bushy f-tree
T and an LBQP plan whose join order follows the pre-order traversal of T . we perform
a post-order traversal on T and focus on nodes with multiple children. Given a node vp
with multiple children, for each root-to-leaf path in the sub-tree under vp, we consider a
sub-path psub on the root-to-leaf path where all nodes on psub have not yet been grouped.
Since psub is a path f-tree, we could apply the rules described in Section 4.2.1 with a slight
modification to insert FGroup operators for each node on psub. We continue to evaluate
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the next node with multiple children until all nodes, except for the root, are grouped. The
modification is stated as follow

• Recall that vc is a child of vp. If vc is a non-leaf node, since we perform grouping
with post-order traversal on T , each child of vc must have been grouped. Therefore
there is at least one FGroup(x by vc) where vc is the parent. We insert FGroup(vc
by vp) after the last FGroup(x by vc).

This modification captures the case that vp might have multiple children in a bushy f-tree
and vp should be grouped only if all of its children have been grouped.

Query 4.1: Star query

MATCH (a:PERSON)−[:KNOWS]→(b:PERSON),

(b:PERSON)−[:LIKES]→(c:POST)

(b:PERSON)−[:LIKES]→(d:CMT)

WHERE a.name = Alice AND c.length > 50

Figure 4.4: List-based plan for Query 4.1.

a

b

c d

Figure 4.5: F-tree T 5 for the plan in Figure 4.4.

Example 4 Consider Query 4.1 which extends Query 2.3 by adding an extra query edge
b → d whose LBQP plan is shown in Figure 4.4 which follows the join order of the plan
in Figure 2.4 and append an Extend(b → d) at the end. Figure 4.5 shows the f-tree T 5

corresponding to the plan in Figure 4.4. Note that c and d are on different root-to-leaf
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Figure 4.6: DPQP plan with f-representations adhering to f-tree T 5.

paths because, for a fixed value of b, the set of c values and d values can be uniquely
determined. In other words, c and d are conditionally independent for prefix b. Since T 5

is a bushy f-tree, we first group nodes under the sub-tree rooted at b. For root-to-leaf
path b − c where c is a leaf node, we insert FGroup(c by b) after the Filter following
Extend(b → c). Similarly, an FGroup(d by b) is inserted after Extend(b → d). We next
consider the ungrouped sub-path a− b. Since the sub-tree underneath b has been grouped,
we can identify two FGroup operators i.e. FGroup(c by b) and FGroup(d by b) where b is
the parent FNode. FGroup(b by a) is then inserted after the last FGroup, i.e. FGroup(c by
d) since b is grouped only if the sub-tree under b has been grouped. Figure 4.6 shows the
final DPQP plan with f-representations whose execution is similar to the plan in Figure 4.7a.

4.3 D-representation-based Caching

(a) DPQP plan with f-representations adhering to f-tree T 4 in Figure 3.3a.

(b) DPQP plan with d-representations adhering to d-tree T ↑
4 in Figure 3.4a.

Figure 4.7: DPQP plans with f- and d-representations.

In the section above we have demonstrated how to modify an LBQP plan to obtain a
DPQP plan with f-representations. We further show how to integrate caching to obtain a
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plan with d-representations and thus avoid repetition in both data representations and
computation. We first describe on which variables caching can be applied. Given a plan
using f-representations and its corresponding f-tree, we could infer a d-tree by computing
dependency labels for each node in the f-tree using Definition 3

• If v is a leaf node, we don’t apply cache since there is no sub-query result to cache
for a leaf.

• If v is the root node, no cache is applied since root node IDs, are guaranteed to be
unique and thus has no repetition.

• If all nodes in the sub f-tree rooted at v depend only on v, then caching can be
applied and the same children FNodes for v can be reused.

Figure 4.8: Cache of b.

If cache on vp is enabled, for each of vp’s child vc, there must be one and only one
Extend(vp → vc) and FGroup(vc by vp). We integrate a shared cache between these Extend
and FGroup operator pairs. Our cache is a hashmap from node IDs to FNodes where the
hash key is also the prefix of the FNode. Consider an entry (vpi , fn(vpi , Vc)), fn(vpi , Vc)
represents the sub-query result of sub-tree underneath vc for prefix vpi . The cache is
probed by Extend operator and updated by FGroup operator. Consider a value vpi which
Extend(vp → vc) tries to extend from,
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Figure 4.9: Input partial match to Extend(b → c).

• If vpi is not in the cache, we continue to process until FGroup(vc by vp). FGroup

operator will group fn(vpi , Vc) as the child of vpi and insert (vpi , fn(vpi , Vc)) into the
cache.

• Otherwise, a cache hit indicates the sub-query result for prefix vpi has already been
computed. We can safely skip the sequence of operators between Extend(vp → vc)
and FGroup(vc by vp) and directly perform the grouping using the hash value under
vpi from our cache.

We demonstrate with an example of how to integrate caching into the plan shown in
Figure 4.7a which utilizes f-representations.

Example 5 Figure 3.4a shows the d-tree T ↑
4 obtained by analyzing dependence on Query 2.3

against f-tree T 4. We focus on node b whose dependency labels are empty and thus caching
can be enabled. For node b and its child c, we identify Extend(b → c) and FGroup(c by
b) and configure a shared cache for the two operators. We further add a pointer from
Extend(b → c) to FGroup(c by b) so that Extend can directly perform grouping on cache
hit and skip b → c join as well as the filter c.length > 50. Figure 4.7b shows the final
plan integrated with cache. We next demonstrate the execution when there is a cache
hit. Similarly Example 2 as in this example, we have demonstrated the computation in
FGroup(c by b) for the first batch of b values (b1, b3, ..., b75) under prefix a1. When caching
is enabled for variable b, we insert into the cache for each bi and its child FNode fn(bi, {c}).
The state of the cache of b after Example 2 is shown in Figure 4.8. Note that the FNodes in
cache are identified with only b prefix since b has empty dependency labels. Now consider
the next batch of b values for a different prefix a1024 as shown in Figure 4.9 which is the
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input of Extend(b → c). Extend first sets currentIdx = 1 and probes b3 against the cache
which results in a cache hit. It then skips subsequent join and filter operations and directly
jumps to FGroup(c by b). FGroup puts the hash value of b3 which is fn(b3, {c}) as the first
child of fn(a1, {b}). Therefore, in the final d-representations in Figure 3.4b, (a1, b3) and
and (a1024, b3) share the same fn(b3, {c}) as child.

DPQP plans with caching not only enable d-representations which are more compact
representation than f-representations but also avoid repeated computations of possible
large sub-query results. If caching is enabled on a variable v, we guarantee to join only on
unique v.ID since any repeated v.ID will be a cache hit whose result FNode is stored in
cache hash table.
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Chapter 5

Evaluations

We integrated DPQP into GraphflowDB which is an in-memory GDBMS. The version we
used adopts LBQP as we reviewed in Section 2. If not specified, DPQP turns on caching
whenever possible. The goal of our experiments is two-fold. First, we demonstrate DPQP’s f-
representations are more compact than LBQP’s representations and DPQP’s d-representations
can be further compact than DPQP’s f-representations. Second, we report the overheads of
constructing factorized representations and analyze the performance gain of caching.

5.1 Experimental Setup

Hardware

We use a single machine with two Intel E5-2670 @2.6GHz CPUs and 512 GB of RAM. The
machine has 16 physical cores and 32 logical ones. All experiments use a single thread.
The maximum heap size of JVM is set to 200GB.

Datasets

Table 5.1 shows the datasets used in our benchmark. Our datasets include social networks,
web graph and product co-purchasing network, which have a variety of graph topologies
and sizes ranging from several million edges to over a hundred-million edges. We use 3
datasets from SNAP [12] and the LDBC social network dataset [2] generated with scale
factors 10 which we denote by LDBC10.
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Name Num of vertices Num of edges

Epinions 75.9K 508.8K

Amazon 403.4K 3.4M

Google 875.7K 5.1M

LDBC10 8.1M 176.6M

Table 5.1: Datasets used.

5.1.1 Query workload

For micro-benchmarks we generate 1-, 2-, 3-, and 4-hop queries without predicates. These
queries serve as stress tests in order to evaluate how much space and computation can be
saved on DPQP with d-representations. For end-to-end benchmarks, we use LDBC interac-
tive complex (IC) queries which capture the workload characteristic in real-world scenarios.

5.2 Size of Query Results

Datasets Flat LBQP F-representations D-representations

Epinions 119.8M 40.9M 40.5M 1M

Amazon 97.1M 39.1M 36.2M 7.2M

Google 182.1M 70.2M 66.2M 9.8M

Table 5.2: Number of singletons in 2-hop path query results with different
representations.

We first study how much space can be saved when utilizing different factorized repre-
sentations. Instead of measuring memory usage which might be inaccurate for different
languages’ implementations, we directly count the number of singletons (i.e. primitive
data type instances) in the final results. For example, Figure 2.5a has 5 singletons and,
Figure 2.5b contains 5∗1024 singletons. Table 5.2 shows the number of singletons of 2-hop
path query results under different representations for 3 different datasets. As expected,
flat representations have the most number of singletons while d-representations have the
least and can be orders of magnitude smaller than the corresponding flat representations,
e.g. on the Epinions dataset. Compared to flat representations, LBQP’s representations
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contain around 1/3 of singletons because it avoids repeating (a, b) prefix for each c value.
F-representations are slightly more compact than LBQP’s representations while the differ-
ence is small. The intuition behind this is that the last Extend operator usually does the
most amount of work. This can be understood as follows. Let d denote the average degree
of nodes. For each prefix match to a leaf node, the leaf Extend operator creates on average
d outputs. Therefore, the work done by leaf Extend operators dominate the total work.
This behavior is a result of the fact that the extensions in 1-, 2-, 3-hop queries are over
many-to-many relationships. However, in absence of caching, we cannot reduce the work
on leaf Extends in DPQP with f-representations. We can only factor out non-leaf nodes,
which leads to small gains.

5.3 Runtime Analysis of Plans with Full F-representations

and D-representations

b, c, d

a e

(a) LBQP’s f-tree.

c

b

a

d

e

(b) DPQP’s f-tree.

Figure 5.1: Bushy f-trees for the 4-hop query in LBQP and DPQP.

We further study the runtime effects of utilizing full f-representations and d-representations.
Specifically, we report the overheads of FGroup operators without caching and the benefit
of f-representations for bushy f-trees. We also analyze how much benefit we can get from
caching for different queries and database instances.

5.3.1 Runtime Overheads and Benefits of Full F-representations

Although DPQP with full f-representations generates more compact representations com-
pared to LBQP, it also introduces computation overheads which come from FGroup op-
erators. Recall that a DPQP plan with f-representations is obtained by inserting FGroup
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Dataset Query LBQP Full F-representations

Epinoins

1-hop 18.31 24.7

(0.74x)

2-hop 309.3 394.4

(0.78x)

4-hop 31836.8 900.8

(35.35x)

Amazon

1-hop 110.0 136.8

(0.80x)

2-hop 898.0 1684.9

(0.53x)

4-hop 8514.9 3427.9

(2.48x)

Google

1-hop 191.3 253.7

(0.75x)

2-hop 2140.7 3473.9

(0.62x)

4-hop 24947.4 7614.9

(3.28x)

Table 5.3: Runtime (in ms) of DPQP with full f-representations v.s. LBQP on 1-, 2-, and
4-hop queries

operators to a LBQP plan. In other words, a DPQP plan will do all the work in its cor-
responding LBQP plan plus the work in FGroup operators. Table 5.3 shows the runtime
of DPQP plans with full f-representations v.s. LBQP on 1-, 2- and 4-hop queries. We pick
left-deep plans for 1-, and 2-hop path queries and for the 4-hop query, we use the plan with
join order c, b, a, d, e. Figure 5.1 shows f-trees adhering to the join order above for the 4-hop
query in LBQP and DPQP respectively. Note that for DPQP we use full f-representations and
thus no cache can be enabled. We can observe that for 1-, and 2-hop path queries, plans
in DPQP with full f-representations are constantly slower compared to plans in LBQP. These
overheads, as we explained, come from grouping operations whose number equals to the
total number of extensions performed. On the other hand, DPQP with full f-representations
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can be up to 35.35 times faster on the 4-hop query. This is because LBQP can only factor
out leaf nodes and Extend(d → e) has to be executed for each different (b, c, d) prefix.
While in DPQP, we are able to explore the conditional independence between a, b and d, e
for a fixed c value. As a result, Extend(d → e) is only executed for each different (c, d)
which could be a much smaller number compared to the total number of different (b, c, d).

5.3.2 Runtime Benefits of D-representations

Datasets Query LBQP DPQP

Epinoins

2-hop 309.3 68.8

(4.5x)

3-hop 23766.7 105.3

(255.6x)

Amazon

2-hop 898.0 757.6

(1.2x)

3-hop 9121.8 1587.8

(5.8x)

Google

2-hop 2140.7 191.3

(1.3x)

3-hop 25139.6 2140.7

(9.6x)

Table 5.4: Runtime (in ms) of LBQP v.s. DPQP on 2- and 3-hop path queries.

Join Path Length

Table 5.4 shows the runtime of plans in LBQP v.s. DPQP on 2- and 3-hop path queries with
left-deep plans. We omit the 1-hop path query since d-representations based processing
cannot cache and reuse on the 1-hop query. For the 2-hop path query (a → b → c), a cache
is enabled for node b. Similarly, for the 3-hop path query (a → b → c → d), two caches are
enabled on nodes b and c respectively. We first observe plans with d-representations are
constantly faster and the longer the join path is, the more benefit we have. For example,
the DPQP plan with d-representations is 4.6 times faster than LBQP plan on the 2-hop query
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Dataset Query LBQP DPQP

Epinions

1-hop 75.9K 75.9K

(1.0x)

2-hop 584.7K 127.9K

(4.6x)

3-hop 40.5M 177.7K

(227.9x)

Amazon

1-hop 403.4K 403.4K

(1.0x)

2-hop 3.8M 806.7K

(4.7x)

3-hop 36.2M 1.2M

(29.9x)

Google

1-hop 916.4K 916.4K

(1.0x)

2-hop 6.0M 1.6M

(3.7x)

3-hop 66.7M 2.3M

(29.0x)

Table 5.5: Total number of extensions performed in LBQP v.s. DPQP on 1-, 2- and 3-hop
path queries.

on Epinions dataset. While on 3-hop query, the plan with d-representations becomes 227.9
times faster. Consider the cache on node b for 2- and 3-hop queries. Intuitively, a cache
hit of b on the 3-hop query is more beneficial since it skips subsequent extensions on both
c and d while a cache hit on the 2-hop query only saves one following join.

In order to have a more accurate analysis, we count the total number of extensions
performed, i.e., Extend operator calls on some prefix tuple, which is a proxy metric to
measure the cost of a plan since our plans only involve node ID based extensions. Table 5.5
shows the total number of extensions performed in plans in LBQP v.s. DPQP on 1-, 2- and 3-
hop path queries. We include 1-hop queries in the table so that the trend can be more clear.
For LBQP, the total number of extensions increases quadratically as join path gets longer.
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For example on Amazon dataset, 0.4M, 3.8M and 36.2M extensions are performed for 1-
, 2- and 3-hop queries respectively. This is because the leaf Extend operator is executed
repeatedly for different prefixes. On the other hand, the total number of extensions increase
linearly for plans with d-representations. Consider the same Amazon dataset, plan with
d-representations perform 0.4M more extensions for each hop increased in the join path.
Recall that if caching is enabled on node v, then we guarantee to compute extensions only
for unique v.ID.

In a worst-case analysis i.e., given a clique input graph with n vertices and m edges, a
k-hop path query without predicates evaluated with an f-tree as a chain performs n+mk−1

extensions while a d-representation as a chain with caching in every node except the root
and leaf nodes leads to k × n.

Graph Skewness

(a) Amazon out degree distribution (b) Google out degree distribution

(c) Epinions out degree distribution

Figure 5.2: Out degree distributions for Amazon, Google and Epinions datasets.
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Another observation from Table 5.4 is that the gain of utilizing cache varies drastically
for different database instances. For example, for the same 3-hop path query, DPQP plan
with d-representations is only 5.8 times faster compared to LBQP plan on Amazon dataset
while being 255.6 times faster on Epinions dataset. Since our queries do not contain any
predicates and match the full graph, an intuitive answer is to relates the gain difference
to graph degree distributions. Figure 5.2 shows the distribution of out-going degrees for
three different datasets. The degree distribution is uniform on Amazon dataset where
almost all vertices have outgoing degrees less than 10. On the other hand, Google and
Epinions datasets are more skewed where a few vertices have much higher outgoing degrees.
In particular, we can see there are some vertices with more than 1k out-going edges on
Epinions dataset from Figure 5.2c. A cache hit on such highly connected vertices yields
more gains since more subsequent joins can be saved potentially. As a result, when doing
subgraph matching without predicates on highly skewed graphs such as Epinions, we expect
to have more performance gain from caching.

5.4 End-to-End Benchmarks

System Range IC01 IC02 IC03 IC04 IC05 IC06

LBQP
0.1% 1929.3 1552.0 23979.0 81.4 43548.5 7537.1

1% 7111.5 6497.0 80443.9 365.7 188067.8 21074.8

DPQP 0.1%
234.0 1206.0 4494.3 135.6 5676.3 815.7

(8.6x) (1.3x) (5.3x) (0.6x) (7.7x) (9.2x)

1%
237.4 2963.4 5270.6 404.2 5855.0 920.2

(30.0x) (2.2x) (15.3x) (0.9x) (32.1x) (22.9x)

Range IC07 IC08 IC09 IC11 IC12

LBQP
0.1% 49.6 7.3 56284.2 216.3 1022.3

1% 174.5 49.0 181594.8 854.1 5188.0

DPQP 0.1%
34.0 11.2 9322.5 96.4 902.7

(1.5x) (0.7x) (6.0x) (2.2x) (1.1x)

1%
169.7 68.0 9737.5 208.9 2098.3

(1.0x) (0.7x) (18.7x) (4.1x) (2.5x)

Table 5.6: Runtime (in ms) of LBQP v.s. DPQP on LDBC IC queries
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Table 5.6 shows our end-to-end runtime benchmark of LBQP v.s. DPQP on LDBC IC
queries under different selectivity. Original IC queries start from a single point which leads
to small results size and few or even none repeated node ID joins. We modify these queries
to initially scan a range, specifically 0.1% and 1%, of vertices so that queries become big
enough and contain repeated node IDs. We omit IC10 because our system does not support
filtering on DATE type. Every DPQP plan has the same join order as its corresponding LBQP
plan.

We first observe the gains of caching are between 1.1x and 9.2x on 0.1% selectivity and
between 2.2x and 32.1x on 1% selectivity except for IC04, IC07, and IC08. Queries like
IC01, IC03, IC05, IC06, and IC09 benefit significantly from caching since they contain long
join paths with at least 3 hops and cache can be enabled on multiple nodes. For example
IC05, whose improvement is most significant, is a 4-hop path query (a → b → c → d → e)
with a predicate on a and e each. Three caches are enabled on IC05 for nodes b, c, and
d and any cache hit not only saves subsequent joins but also the filter evaluation on e
which is the dominant work. On the other hand, there is no gain or even overheads on
IC04, IC07 and IC08. These queries do not benefit from caching since they only involve
joins with many-to-one relationships and we can not cache any sub-query results while we
still pay the cost of constructing FNodes. Consider query IC07 with is a 2-hop path query
(a → b → c) where a → b is a join on a one-to-many relationship. Every b under different
prefix a is guaranteed to be unique which makes maintaining cache a pure overhead. We
also observe that for queries that benefit from d-representations, larger range scans lead
to more performance gains. The underlying reason is that there is a higher number of
repeated node IDs in subsequent joins for larger ranges.
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Chapter 6

Related Work

We covered the FDB system and literature on the foundations of factorized databases in
prior sections. We first broadly review work on compressed representation systems that are
related to factorization. Then, we review related work on query processing using factorized
representations. There is recent work that uses factorization to perform machine learn-
ing [23, 7] computations using factorized representations of relations and their incremental
maintenance [16], which are less related to our work and not covered in detail.

D-representations, in addition to generalizing f-representations also capture several
other representation systems that have been proposed in prior literature for different
applications, such as world-set decompositions to represent a set of possible worlds in
probabilistic databases [17], lossless fifth normal form decompositions [20], or factorized
provenance polynomials [18]. Importantly, in addition to capturing these representations,
d-representations are designed to be suitable to make query processing efficient by keeping
intermediate results in compressed format.

Further work on the FDB system described query processing techniques for aggrega-
tions and ordering [4]. Similar to the original work on FDB, this work extends FDB
with operators that take as input f-representations and output f-representations. As we
discussed earlier, in addition to using d-representations, our approach instead keeps the
traditional operators as is and uses pipelined operators that take in and output regular
tuples and constructs d-representations at the ends of linear sub-plans. It is an interesting
future work direction to study if our approach can be extended to evaluate all or classes
of queries with aggregations and ordering.

Answer Graph [1] is a recent system for a join-only subset of SPARQL (i.e., without
projections) that performs a two-stage query evaluation for acyclic queries. The first stage
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is a full semi-join reduction, similar to Yannakakis’s algorithm that identifies only and all
of the edges that participate in the final output. This is done by performing a sequence
of forward extensions according to a join order that is picked by a traditional cost-based
optimizer which is followed by cascading deletes in case a particular data node ai, say
matching variable (Ai) does not extend to (Ai+1). After this step, a second stage called
the embedding generation stage generates a set of flat tuples by performing a left-deep join
plan. The result of the first phase of Answer Graph is similar to our d-representations and
keeps the same number of edges as intermediate data. However, the following enumeration
phase does simple flattening. The authors also describe an envisioned but not implemented
version of semi-join reduction for cyclic queries, which is based on a more complex cascading
logic. In contrast to this approach, we do not need to handle cascading deletes as tuples
that are not in the output never arrive at our FGroup operator. We also evaluate a larger
class of queries and produce d-representations as outputs, so do not incur any size explosion.

Query processing on factorized representations of relations is ultimately a technique
for identifying computations that will be repeated when evaluating queries and performing
such computations once and reusing them. Several prior techniques from the literature
on subgraph query evaluation have been designed with the same high-level goal. The
postponing of Cartesian products optimization in the CFL subgraph matching algorithm [6]
is a form of factorized query processing. Although the final results in CFL are flat tuples,
the algorithm detects independent parts of a query and does perform the Cartesian product
of these parts only when a set of partial matches are guaranteed to be in the output. The
Cache Trie Join [10] (CTJ) algorithm extends the worst-case optimal Leapfrog Trie Join
(LTJ) algorithm with caching. CTJ processes join queries one attribute (or query vertex)
at a time using flat tuples. However, similar to d-representation-based processing, CTJ
caches partial results for some prefixes and reuses them. The focus of this work is on
keeping the memory footprint on LTJ low while benefiting from caching. CTJ is limited
to only worst-case optimal join-style processing so does not decompose queries into bushy
plans as our plans do. Reference [14] has introduced a simple caching optimization to
the worst-case optimal Generic Join [15] algorithm, in the context of evaluating subgraph
queries. The amount of caching is limited to only the matches of a single attribute, unlike
CTJ, which caches entire sub-query results.

Another set of techniques are based on symmetry detection in the query. Examples
include TurboISO and reference [21]. For example, given a in a subgraph query, Tur-
boISO puts the query vertices that are guaranteed to match exactly the same data ver-
tices into equivalence classes and only one of them is matched to data vertices. These
matches are cached and re-used for other query vertices. It is possible to compute sym-
metric components once and name them in d-representations, the d-representations based
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query processing technique we described here or described in the original publication on
d-representations and d-trees [19] do not exploit symmetry at the query level. In contrast,
they find repeated computations for a prefix of partial matches of variables on parts of the
query that are not necessarily symmetric. However, symmetry detection techniques are
complementary to factorized query processing and can further result in avoiding further
repeated work.
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Chapter 7

Conclusions

Factorized databases utilize factorized data representations during query processing to ob-
tain more compact final query results and faster runtimes. However, traditional factorized
query processing requires full materialization at each operator and thus cannot be inte-
grated easily into a pipelined query processor. In this thesis, we studied the integration of
factorized query processing into GDBMSs in a pipelined fashion. We first review the tuple
structure and architecture of LBQP on top of which we built our DPQP. The core idea of DPQP
is to define a nested tuple structure, named FNode that mimics factorized representations
and introduces FGroup operator which is responsible to construct nested FNodes. Each
FNode represents a complete query result in factorized structure for a particular prefix.
Once we obtain factorized intermediate tuple, we could further analyze conditional depen-
dence information on the f-tree integrate caching accordingly. We demonstrated that DPQP
plans, if caching can be enabled on some nodes, can significantly improve query runtime
over LBQP plans on various datasets. The final query result is also orders of magnitude
smaller.

We outline two possible directions of future work

• Caching when conditional dependencies are violated by predicates: Two
variables are dependent if they appear in the same query edge or the same predicate.
In many cases, complex predicates might prevent us from caching on very simple
path queries. Consider a simple 2-hop path query (a → b → c) with a predicate
a.ID > c.ID and its left deep plan, no cache can be applied on b since a and c are
dependent due to the given predicate. However, it’s possible to first compute a sub-
query result without predicates using cache and then apply the given predicate on
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the factorized results. Thus, an important line of future work is to study if it worth
to pull up the filter of complex predicates and retain caching on certain variables.

• Grouping in an order different from join order: This thesis describes how
to construct nested FNode with grouping in the reverse order of join order. Such
constraint limits the factorization structure of final query results and could be prob-
lematic when a query contains GROUP BY or ORDER BY clauses whose desired
factorization structure is different. It would be interesting to investigate how to
perform grouping independent from join order and generalize for queries containing
aggregations and ORDER BY clauses.
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