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Abstract

Automatic bug fixing has become a promising direction over manual fixing
of bugs. In this work, we focus on a specific bug: Memory Leaks. We propose an
automatic approach to suggest memory leak fixes in C/C++ programs saving
valuable developer time.

AddressWatcher is the first attempt to use Address Sanitizer and LeakSani-
tizer together to suggest fixes for memory leaks. Our dynamic analysis approach
was evaluated on binutils, openssh, tmux. It requires test suite to be run sev-
eral times over different program paths to identify potential fix location. In 10
out of 26 real world bugs AddressWatcher was able to correctly point the free
location to fix the memory leak. AddressWatcher is scalable to multithreaded
applications. AddressWatcher is complementary to existing static analysis tools
that fix memory leaks.
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1 Introduction

A lot of research effort has been put into general automatic bug fixing (GABF)
[14] [15] [16] [17]. In general this is done by modelling bugs as a violation of
some correctness condition and using machine learning to learn from such vio-
lations. Such techniques suffer when the programs are large and the correctness
conditions are not sufficient for detecting all bugs in the program. Often these
techniques see limited deployment in industry and focus on trivial repairs[22].

The other alternative is focusing on fixing specific bugs rather than general
bugs. Specific approaches are used to handle each type of bug. These approaches
can be then bundled together with high effectiveness.

Memory leaks have garnered a lot of attention in the research community
from detection [1] [4] [5] [11] to automatic fixing [18] [19] in recent work.
Memory leaks occur when a chunk of memory is allocated in the heap with
a malloc/calloc but is subsequently not freed. The languages like C/C++ do
not have a custom garbage collector, so if these allocated regions are not freed
they remain in application memory becoming dead weight over time. Memory
leaks also lead to several critical vulnerabilities [23] [24] in software further
underscoring the need to fix these as soon as they are detected.

A lot of effort has gone into detecting memory leaks, which can be broadly
classified as static and dynamic approaches. Static approaches generally tend to
have high false positives which can lead the developer to ignore some potentially
important leaks that need to be fixed. Static approaches include tools like Saber
[1] and Sparrow [4].

On the other side of the spectrum, dynamic analysis tools like LeakSanitizer
(LSAN) [5] and Valgrind [11] find memory leaks with a low false positive rate
but have true negatives. In other words each bug reported is valid, but they
can potentially miss existing bugs because of low test suite coverage.

Other memory errors include heap and stack buffer overflows. A widely used
dynamic analysis tool in industry is AddressSanitizer (ASAN) [2] which uses
shadow memory to encode regions of valid memory and detect buffer overflows.
If a read/write happens to invalid memory, ASAN detects this through compile
time instrumentation, forcing a crash of the application. We intend to use this
instrumentation and shadow memory for our work.

Many existing leak detection approaches only report the stack where the
allocation occurs. To fix the leak, we must add a deallocation statement: a
free statement, but the location of the free is not close to the allocation point.
Realistically, these pointers to allocated memory are passed between functions
and it often becomes difficult for the developer to find the exact point where
the memory is no longer in use. If the developer inserts a wrong free statement
and the memory is used thereafter, it leads to a heap use-after-free which can
lead to several exploits by attackers. Hence it is important to track the use of
allocated memory (read/write) along different program paths for suggesting a
fix.

Other tools have experimented using both static and dynamic approaches to
fix memory leaks including Leakfix [18]and Autofix [19]. Leakfix employs in-
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#1 int main(int argc, char** argv){

#2 char *p = malloc(10);

#3 if (argc == 1) return 1; //memory leak

#4 if (argc == 2) return 1; //memory leak

#5 //use p

#6 return 0; //memory leak

#7 }

Figure 1: A memory leak that requires multiple fixes.
Deallocation statements to be inserted at lines 3,4,6

terprocedural static analysis techniques while Autofix performs value flow slices
on C programs to fix memory leaks. These techniques use the best of both these
approaches with higher bug fixing accuracy at the cost of performance.

In this work we report our attempt to develop an approach for suggesting
memory leak fixes specifically. We show first the complexity of suggesting a
solution for these kinds of bugs. In Figure 1 the memory allocated on Line 2 is
leaked along multiple program paths through lines 3,4 and 6. Lines 3 and 4 are
error paths which do not free memory before return. Line 6 similarly uses the
allocated memory on non-error path but does not free before return. We must
insert deallocation statements for each program path taken by the leaked object.
Additionally we should not deallocate the same object twice because it will lead
to a double free which can lead to undefined behaviour. The dynamic approach
in this work considers how to overcome complexities involving different program
paths for the same leaked object in our tool called AddressWatcher.

AddressWatcher leverages the existing infrastructure of ASAN and LSAN,
with minimal changes to become an effective memory leak Bug Fixer. Our main
contributions in this project include:

1. A novel approach integrating LSAN and ASAN together in AddressWatcher
with minimal changes

2. Using shadow memory to tag and track Memory regions that have been
leaked in previous binary runs.

3. Suggesting memory leak fixes for real world bugs in openssh, tmux and
binutils

2



Figure 2: Address Sanitizer Shadow Memory Mapping

ShadowAddr = (Addr >> 3) + Offset;

k = *ShadowAddr;

if (k != 0 && ((Addr & 7) + AccessSize > k))

ReportAndCrash(Addr);

Figure 3: Binary Instrumention before Reads and Writes from Memory

2 Background

We will be modifying the tools ASAN [2] and LSAN [5] in this paper. A short
explanation on these tools and how they work is provided for the reader. They
are available in both the GCC [20] and LLVM toolchain [21].

ASAN: ASAN detects heap and stack buffer overflows during program ex-
ecution. It is a dynamic analysis tool that has two phases: compile time instru-
mentation and dynamic runs. In dynamic runs, ASAN uses a shadow memory
to encode regions of application memory which can be legally accessed. The
shadow memory is typically one eighth of the application memory, mapping the
state of 8 bytes of application memory in one byte of shadow memory. This
shadow memory is allocated at a special offset within the program as shown in
the Figure 2.

ASAN pads local and global variables with red zone buffers which should
not be accessed by the application. During compile time instrumentation the
reads and writes to memory are instrumented to incorporate additional checks.
The check verifies that the application memory being read/written to is ac-
tually valid, by crosschecking the shadow memory’s encoding. Such a binary
instrumentation check from the ASAN paper [2] is shown in Figure 3

The right shift by 3 essentially implies divide by 8. The offset refers to the
start region of shadow memory. If the shadow value is 0 then all the correspond-
ing 8 bytes of applicaton memory are accessible and there is no memory error.
However if there is a non zero value and the AccessSize for a given read/write
does not match the legal application bytes in shadow memory then a memory
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Figure 4: Redzones guarding heap allocations. These redzones contain alloca-
tion stack traces and allocator thread ID

access overflow has occurred and ReportAndCrash is triggered. Otherwise the
read/write is allowed to occur.

It is worth noting that pointer arithmetic can lead to a wild pointer. But
this will not lead to ReportAndCrash unless a read/write happens to that wild
pointer. This is because only reads and writes are precluded by ASAN instru-
mentation.

LSAN: This is a sanitizer tool for memory leak detection whose leak detec-
tion phase begins after program has finished executing. It ensures that when
allocation happens during a program, it is padded with extra memory called
redzones, allocated for storing metadata. This metadata includes the allocation
thread ID and the allocation stack itself as shown in Figure 4. These redzones
have shadow values that are poisoned preventing them from being overwritten.
When these objects are freed they are overwritten with a magic value. LSAN
detects memory leaks by iterating through the heap to find out such objects
that have not been freed, at the very end of program execution providing their
allocation trace stored in the padded redzones.

4



3 Motivation and Intuition

The motivation of this work is to largely use the existing infrastructure of ASAN
and LSAN with minimal modifications. The shadow memory in ASAN encodes
both legal application memory regions for read/write operations and non legal
regions- which are referred to as poisoned memory regions. We want to augment
the existing encoded shadow memory information to also specify if the corre-
sponding application memory is tagged or not. We tag given bytes of memory
if it can be leaked.

The high level pseudocode of AddressWatcher is shown in Algorithm 1.
AddressWatcher is interested in generating plausible leak fixes over multiple runs
of the same binary, with different inputs to trigger different program execution
paths through a test suite (line 10). The tests in the test suite are manually
run by the developer. Since AddressWatcher collects leak information across
different binary runs, we must create an external leaks database that will always
remain consistent for a given binary. When a recompilation occurs the leaks
database must be flushed as the database is no longer useful. To keep track
of this we use an external file which stores the binary compile time which is
checked against at program startup (lines 11-14). ASAN will then read from
the leaks database (line 15). While running the program, the ASAN allocator
checks if a new allocation matches a leaked allocation from the leaks database
(lines 17-18). If it does then shadow memory of leaked object is tagged (line
19). Once shadow memory of object has been tagged, we record the points at
which reads and writes happen to it through existing ASAN instrumentation
(lines 22-24). At the end of each run, LSAN would store new leaks in this
leaks database in the form of allocation stack traces (lines 26-30). Then we can
perform stack trace comparison to identify the last point the tagged memory is
used over all recorded read/write stacks per leaked object. The last read/write
stack trace of these leaked objects will be updated in the leak database (line
31). We will henceforth refer to this last read/write stack for each leaked object
as a LastUse stack. AddressWatcher prints this cumulative statistic over several
test runs as the fix location in an output file (line 32).

A simple example is shown end to end with the philosophy of Address-
Watcher in Figure 5. Here a buffer of size 10 is allocated to pointer p (line
1). The first character is assigned to ’a’ (line 2) and second character to ’b’
(line 3). When the ASAN compiled binary is run the first time, LSAN detects
a leak of object by pointer p and it’s allocation stacktrace is stored in the leak
database. On the second binary run at line 1, AddressWatcher identifies that
the allocation stacktrace matches the leak database. Hence the shadow mem-
ory of the region p points to, is tagged. Hence line 2 and 3 are tracked as use
points (write stack trace) for this allocated object. At end of second binary run,
AddressWatcher performs stack trace analysis and outputs the LastUse stack
as line 3.
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Algorithm 1 High level overview of AddressWatcher from binary standpoint

1: Bin: an ASAN instrumented binary with ASAN allocator (allocator)
2: Testsuite: a test suite that covers several program paths in Bin
3: Object: A region of memory surrounded by ASAN redzones
4: Objectallocation: Allocation stack of Object stored in reddzone
5: shadowmem(Object): Shadow memory of Object
6: LeakDB: External map from memory leak allocations to use points
7: compiletime: Binary compile time stored externally
8: getCurrentStack(): outputs current program stack

9: procedure AddressWatcher(Bin, Testsuite)
10: for each test in Testsuite run by developer do
11: if Bin compile time > compiletime then
12: LeakDB ← ϕ // Recompilation hence DB flushed
13: Store Bin compile time in compiletime
14: end if

15: Load LeakDB into program memory

16: while Running test on bin do
17: if allocator triggered on Object then
18: if getCurrentStack() in LeakDB then
19: Tag shadowmem(Object)
20: end if
21: end if

22: if ASAN Instrumentation triggers on shadowmem(Object) then
23: LeakDB ← (Objectallocation, getCurrentStack())
24: end if
25: end while

26: if LSAN detects new memory leaks then
27: for each new leaked Object do
28: LeakDB ← (Objectallocation, ϕ)
29: end for
30: end if

31: Analyze recorded use points per leaked object and store fix in LeakDB
32: print detected leaks and potential fixes from LeakDB
33: end for
34: end procedure
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4 Design Details

In this section, we introduce implementation details of AddressWatcher, a dy-
namic approach to suggesting memory leak fixes. The workflow of Address-
Watcher can be split into the following core components:

• Instrumented Binary: ASAN instruments binary during compile time

• The Leaks Database: A database that is consistent across varying bi-
nary runs with different input.

• LSAN: Storing new Memory Leaks to be tracked in the future

• ASAN: Reading from leaks database, and memory leak tagging and track-
ing

The general workflow is shown in Figure 6. Each component is colored
uniquely. We expand on each core component in the workflow below.

4.1 Binary Instrumentation

Our prototype AddressWatcher is built by modifying the GCC compiler in
ASAN and LSAN. Specifically the library libasan.so of gcc is modified to
include extra routines required for AddressWatcher. The programmer source
code is compiled with the -fsanitize=address -g options with our modified
gcc. This allows gcc to compile the source code and insert ASAN instrumenta-
tion before read/writes to memory as shown in Figure 3. We do not modify
the instrumentation that ASAN currently performs. We in fact require this
instrumentation and will also use it to track leaked memory. When we refer to
binary henceforth we are referring to the ASAN instrumented binary.

4.2 Leaks Database

This is a database that will hold fixes to memory leaks and will update these
fixes every time a new program path is found for each leaked object. Hence,
this is a database that should be consistent and robust across different binary
runs with different inputs. This can be achieved by the following two steps:

1. Disable Address Space Layout Randomization (ASLR): This will disable
randomisation of memory regions offset.

2. Use a special directory for AddressWatcher’s Leaks Database that will be
guaranteed to not be used by any other program or user.

In the first point, by disabling ASLR we ensure that a deterministic program
(without any randomized behaviour) will truly behave deterministic even in the
memory addresses it uses. The memory regions used in stack and heap will all
be the same each time it is run. Therefore a code point abstracted as a stack

7



Program start/ASAN initialized

#1 char *p = malloc(10);

#2 *p = ’a’;

#3 *(p+1) = ’b’;

#4 return;

Program End

-> LSAN leak detection starts --> Store #1 as

leak in database

(a) First binary run: LSAN stores leak in
database

-> Program start/ASAN initialized --> Read leak at #1

#1 char *p = malloc(10);

#2 *p = ’a’;

#3 *(p+1) = ’b’;

#4 return;

Program End

LSAN leak detection starts

(b) Second Binary run: Read Leaks
Database at ASAN initialization

Program start/ASAN initialized

-> #1 char *p = malloc(10); --> Tag object in shadow memory

#2 *p = ’a’;

#3 *(p+1) = ’b’;

#4 return;

Program End

LSAN leak detection starts

(c) Second Binary run: Tag memory in
shadow memory for leaked object

Program start/ASAN initialized

#1 char *p = malloc(10);

->#2 *p = ’a’; --> Record current stack #2

as use of tagged memory

#3 *(p+1) = ’b’;

#4 return;

Program End

LSAN leak detection starts

(d) Second Binary run: Track object in
shadow memory

8



Program start/ASAN initialized

#1 char *p = malloc(10);

#2 *p = ’a’;

->#3 *(p+1) = ’b’; --> Record current stack

#3 as use of tagged memory

#4 return;

Program End

LSAN leak detection starts

(e) Second Binary run: Track object in
shadow memory

Program start/ASAN initialized

#1 char *p = malloc(10);

#2 *p = ’a’;

#3 *(p+1) = ’b’;

#4 return;

Program End

-> LSAN leak detection starts --> #3 > #2.

So store #3 as solution for leak at #1

(f) Second Binary run: Store solution in
leak database

Figure 5: Sample example for AddressWatcher on two binary runs of same
program
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Figure 6: Address Watcher Workflow. Each core component is labelled in a
different colour. LSAN related tasks are yellow. ASAN related tasks are green.
User Inputs are red. The Leaks Database is purple. Instrumented binary is
blue. 10



should be valid over several binary runs. This makes stack traces consistent
over any binary run.

Additionally in the second point we are ensuring that a special directory is
available to Address Watcher which cannot be used by any user/program. This
is essential because any corruption in the Leaks Database can render subsequent
tagging and tracking impossible.

ASAN currently generates its logs for memory errors in a path set by the
user in an environment variable ASAN OPTIONS under log path parameter.
In the same directory set by user, AddressWatcher can create a hidden directory
.awlogs which cannot be modified directly by other users and programs. We
can then store the Leaks Database in this special hidden directory. This will
realize the second point for enforcing robustness of the leak database.

It is important to decide the way data is stored in the Leaks Database. It
is worth noting that in the current prototype the entire database is read into
memory during program initialization. A call is made from instrumented binary
at startup to asan_init in ASAN library libasan.so. Here along with ASAN
initialization the entire leaks database is read using C++mmap() routine. The
current database is simply a text file with serial ordering of allocated stacks and
LastUse stacks for leaked objects. This means that we do not essentially query
this database with different constraints. After we have updated the relevant
read/write traces per leaked object in memory we currently overwrite the leak
database with the leaks and fixes in no particular order.

It is also important to realize that we would have a leaks database in this
hidden directory for every distinct binary being tested with AddressWatcher.
Every binary is uniquely determined by it’s name and directory path. Threads
of the same process belong to the same binary and hence update the same leaks
database. Multithreaded processes of same binary must have a lock on writing
to the Leaks Database to ensure its consistency. This infrastructure is already
present within ASAN and can be leveraged easily. AddressWatcher is thread
safe because the underlying ASAN infrastructure is thread safe and interactions
with the leak database are performed using locks.

The data within the leaks database is valid only so long as the binary in
question has not been recompiled. On recompilation the leaks can be fixed or
other major code realignments could have taken place. This renders the data in
the Leaks Database void. For this purpose we also label each Leaks Database
with the compile time of it’s binary. So when ASAN library libasan.so reads
this data it can crosscheck its compile time with the time associated with the
Leaks Database. If there is recompilation the Leaks Database must be flushed
and AddressWatcher will have to accrue data from the beginning (relabeling the
new empty database with the new binary compile time). This is an important
aspect of automating AddressWatcher and ensuring leaks database integrity on
recompilation.
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4.3 LeakSanitizer (LSAN)

This section describes the function of LSAN in AddressWatcher. LSAN per-
forms a leak detection phase at the end of program execution. When objects
are allocated in heap through allocator, extra size is allocated for metadata red-
zone which includes allocation stack trace and allocator thread Id. When an
object is freed it is overwritten with a magic value. Hence LSAN can iterate
over the heap at program end and identify leaked objects and their allocation
stack traces. These are output in the log path directory for the user to view.
We modify the code of LSAN to additionally write these allocation stacks of
these leaked objects to the Leaks Database in the .awlogs directory.

LSAN essentially records new leaks in Leaks Database. AddressWatcher
depends on this to effectively utilize subsequent tests on the binary in the future
for leaks tracking.

A naive way to approach the problem is to treat all allocated objects as
leaked objects and track these for solutions/fixes. AddressWatcher rather seeks
to amortize the cost of finding a solution/fix across several tests in a test suite.
Only when LSAN detects a memory leak does AddressWatcher track that allo-
cated memory region in subsequent tests/runs. This boosts performance com-
pared to the naive solution.

4.4 AddressSanitizer (ASAN)

ASAN is the most important core component of AddressWatcher. It is respon-
sible for:

1. Tagging leaked memory in shadow values

2. Tracking read and write traces of leaked objects

4.4.1 Tagging Leaked Memory

At program initialization, ASAN is initialized through a binary call to asan_init
in ASAN library libasan.so. Here the shadow memory is set up along with a
host of routines that read the ASAN_OPTIONS environment variable to configure
ASAN for that run. At this point AddressWatcher also reads from the Leaks
Database all the leaked allocation stacktraces in all the previous runs. This list
of stacks is read into memory. This list of stacks is then sorted with respect to
stack depth and the values within the stack. This sorted list of allocation stacks
makes it easy for a O(logn) check if an allocation stack trace exists.

The ASAN allocator is modified in AddressWatcher. Whenever an allocation
happens, we compare the stack trace of the application at the given point to the
stack trace in our sorted list. If the stack trace does not exist then we continue
just like vanilla ASAN would.

If there is a match in our sorted list, it implies that there has been a previous
run over the same binary where this program point was passed and this object
was leaked. AddressWatcher hence calculates the shadow addresses for the

12



UpdateTaggedObject(AllocationStack)

{

AVL Tree T

CurrentStack = UnwindProgramStackTrace()

T.InsertorUpdate(AllocationStack,CurrentStack)

}

ReportAndCrash(Addr,MemAccessSize)

{

if (MemCorrupted(Addr,MemAccessSize))

CrashAndPrintReport() //Buffer Overflow -Crash

shadowAddr = MemToShadow(Addr,MemAccessSize)

if (*shadowaddr & 0xf0 == 0xe0)

{

// Tagged Memory

ObjectAllocationStack = MemToObject(Addr)

UpdateTaggedObject(ObjectAllocationStack)

}

return // Continue execution

}

Figure 7: Simplified ReportAndCrash() pseudocode: UnwindProgramTrace re-
trieves current program stack at execution. MemToObject retrieves the object
corresponding to tagged memory. MemCorrupted verifies if memory and access
size cause a buffer overflow

object in this case. The higher order byte of shadow values are set to 0xe in
our prototype. This essentially tags this memory region for subsequent tracking.
The shadow encoding for different types of application memory is shown in
Table 1.

4.4.2 Tracking Leaked Memory

There are two functions critical for tracking tagged objects. The pseudocode
for these routines is in Figure 7. They are explained in depth below:

Invoking ReportAndCrash(): AddressWatcher hinges on the idea of us-
ing ReportAndCrash() in Figure 3 for effective tracking. This function is
invoked only when code passes through the shown binary instrumentation be-
fore a memory read/write. Leaked objects would have their higher order bits
set in the value of ShadowAddr in Figure 3 from the previous subsection. Since

13



k is negative as a signed byte, both the sub expressions in the if condition eval-
uate to false. Hence ReportAndCrash will be called for every tagged
memory object. This implies that ReportAndCrash() in libasan.so will be
called in either of the two scenarios:

• A memory access occurs (Heap/Stack overflow) just like vanilla ASAN
OR

• Tagged memory region is read/written

This routine ReportAndCrash() is modified to check the higher order byte
to differentiate the above two cases. If it is a buffer overflow we crash just like
ASAN normally would.

If it is a tagged memory region, AddressWatcher does not crash. Once we
have identified a read/write to middle of tagged memory chunk, we must iterate
backwards to the beginning of the object, where the metadata redzone exists as
in Figure 4. This metadata includes allocation stack trace and allocator thread
ID which can accurately identify the object the tagged memory corresponds to.
Once the object is identified we call UpdateTaggedObject() with the object
allocation stack as argument. We then return to application code from library
code, to continue execution.

Invoking UpdateTaggedObject(): For efficient stack tracing an AVL
Red Black Tree is created that can be used only by this routine. Every node in
the AVL tree has two data fields:

1. The allocation stack trace of leaked object it refers to.

2. List of read/write stack traces of this object in current execution.

This AVL Red black tree is initialized with no objects at ASAN initialization
(when the leaked objects allocation Stacktraces are read). The primary purpose
of this query optimized tree is fast update of an existing node and fast insertion
of a new node, both in O(logn) time. This optimization is possible because the
height of the tree is always balanced. Without a fast data structure it will be
expensive to track several leaked objects within a given program execution.

If this routine finds a completely new tagged object read/written to, we
insert a new node in the tree. We then initialize the head of the second field-the
list, with the current program stack. If the tagged object exists in the tree,
we append the current program stack to the list in the second data field. The
second data field will be updated as we see more reads and writes for a given
leaked object.

14



0x00100

0x00201 0x00200

0x00300 >s 0x00300

0x00400 0x00400

Stack 1 Stack 2

Figure 8: Example of comparison operator >s for comparing stacks. Here from
bottom up: 0x00400 is equal, so we move one level up. Similarly 0x00300 is
equal. But in the next level 0x00201 > 0x00200. Hence the first stack is greater
than second stack by this operator >s

5 Identifying Fix Location

We introduce a new comparison operator >s for the purpose of finding the last
point at which reads and writes have happened over several runs. We define
A >s B by comparing stack values in a bottom up fashion. When two stack
values are equal we then compare the next higher level of the stacks. A sample
example of the >s operator is shown in Figure 8. The intuition behind such a
comparison operator is that it would identify the code point which occurs the
last in execution, without any loops and goto statements. Figure 9 shows a
loop example where >s produces the wrong LastUse point. Source code without
loops/while/goto will always have execution proceed towards memory addresses
that are larger in value. Hence by comparing stacks in a bottom up fashion we
can arrive at an approximate point in the code which is the last read/write over
all executions.

At the end of the program we must iterate through all leaked objects in
the AVL tree modified by the routine UpdateTaggedObject(). For each leaked
object we must sort through the read/write stacktraces and merge them towards
a point where the developer can insert a free statement using the >s operator.
This fix location in our tool is a cumulative statistic that improves as more tests
are introduced and more program paths are covered. We also compare with the
fix from previous binary runs for each object, from the Leaks database. This
resultant stack is the LastUse stack over all binary runs for that leaked object.
This is stored to the Leaks Database as the fix for the given memory leak.

We only suggest one code point where a deallocation statement must be
added. However there can be cases as in Figure 1 where multiple fixes are
required. In such cases we aim to provide one correct fix.

It is worth noting that the fix that AddressWatcher suggests can potentially
lead to use-after-free if the test suite does not have high code coverage. If the
code coverage is sufficiently large then a use-after-free cannot happen because
we output the last read/write trace of the leaked object. Regardless of the test
suite coverage, we provide the developers with a tool that can significantly speed
bug fixing with precise information on read/write traces of the leaked object.

15



#1 char *p = malloc(10);

#2 int i = 1;

#3 while(i++ < 10){

#4 if (i == 8){

#5 //use p

#6 exit(0); //memory leak

#7 }

#8 //use p

#9 }

Figure 9: Example of comparison operator >s producing wrong Last Read-
/Write code point in program as a solution. A program will run through line 8
several times before exiting abruptly at line 6 after a use at line 5. In such cases
>s will produce line 8 as correct fix, which is wrong. Stronger static analysis is
required to produce line 5 as solution

Table 1: Shadow encoding in ASAN for 8 to 1 shadow mapping

Application bytes ASAN encoding AddressWatcher encoding

1 byte addressable 0x01 0xe1
2 byte addressable 0x02 0xe2
3 byte addressable 0x03 0xe3
4 byte addressable 0x04 0xe4
5 byte addressable 0x05 0xe5
6 byte addressable 0x06 0xe6
7 byte addressable 0x07 0xe7
8 byte addressable 0x00 0xe0

Table 2: Total bugs in each repository

Repository Name Number of memory leak bugs

binutils 8
tmux 9

openssh-portable 10
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Table 3: Benchmark for AddressWatcher. Legend for Bug Classification: Error
Path - fix along error conditions which do not read leaked objects before return-
ing, Loop Path - fix along loop , Code organization - seperate functions used
for deallocations, Weak test suite- low test suite coverage covering all leaked
program paths, Compiler Optimization - Compiler optimizes away certain read-
/writes important to detecting fix

Repository

Buggy
Github
Parent

ID
Github memory leak fix

commit ID

AW
Failure
reason

AW
Fix

(Y/N)

Memfix
Fix

(Y/N)

binutils

a506516 be74fad95edc8827516e144cf38d135b503249cd - Y N
2c244f9 3cfd3dd0956fe854a07795de12c1302ecabbd819 - Y Y
52a93b9 a26a013f22a19e2c16729e64f40ef8a7dfcc086e Loop path N N
e13cb30 7ed1acafa0b5d135342f9dcc0eb0387dff95005a Code Organization N N
2f5404b f978cb06dbfbd93dbd52bd39d992f8644b0c639e Loop Path N N
ad36c6c 3f2a3564b1c3872e4a380f2484d40ce2495a4835 - Y N
c42608e 848ac659685fba46ce8816400db705f60c8040f7 - Y N
9d2cdc8 aba19b625f34fb3d61263fe8044cf0c6d8804570 Error Path N Y

tmux

7ba5ad4 c363c236aaea5b7a879493d8f3c85bead546f063 - Y Y
ae1a6c2 1e0eb914d945e0f287716d56669d0de409e86e59 - Y Y
c8ecbf3 2c9bdd9e326723fb392aed4d8df12cba7ef34f1f Error Path N Y
54bcaab d566c780e54010112d499707cd80a594144d1a89 - Y Y
40fefe2 933929cd622478bb43afe590670613da2e9ff359 Error Path N Y
695a591 7340d5adfdc8cc6d845a373f3e0d59bfd10a45d1 Error Path N N
540f0b3 189017c078b7870c18ced485c1fd99f65fcc4801 Loop Path N N
871b83c 5acee1c04ed38afd6a32da4a66e6855ccdc52af3 Error Path N N
69b7c49 6daf06b1ad61f67e9f7780d787451b9b5f82dd43 Error Path N N

openssh-portable

6d5a41b b2afdaf1b52231aa23d2153f4a8c5a60a694dda Compiler Optimization N N
7d6c036 66d2e229baa9fe57b86 Error Path N N
e6b9503 a63cfa26864b93ab6afefad0b630e5358ed8edfa Error Path N Y
7ad8b28 4f7cc2f8cc861a21e6dbd7f6c25652afb38b9b96 Weak test suite N Y
f948737 64a89ec07660abba4d0da7c0095b7371c98bab62 Error Path N N
b1ba15f 165bc8786299e261706ed60342985f9de93a7461 Error Path N N
a5103f4 aae07e2e2000dd318418fd7fd4597760904cae32 - Y Y
0cca17f e52a260f16888ca75390f97de4606943e61785e8 Weak test suite N Y
534b2cc 393920745fd328d3fe07f739a3cf7e1e6db45b60 - Y N
467b00c 0d6771b4648889ae5bc4235f9e3fc6cd82b710bd - Y Y
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6 Implementation: Compatibility with ASAN
and LSAN

To create AddressWatcher we required to modify certain sections of existing
GCC code in the sanitizer directory used while compiling libasan.so library:

• CrashAndReport function

• Add functionality for initializing AddressWatcher. While initializing we
check for binary recompilation to enforce integrity of leaks database. This
is added at ASAN initialization

• Modify ASAN allocator to tag memory which is identified as a leaked
object

In total 27 files were changed with 2,691 additions and 1,895 line deletions
requiring minimal modifications. We mention the shadow encoding used by
AddressSanitizer for shadow memory in Table 1. The only changes we require
are for the addressable bytes. The modifications in shadow value representations
do not change the behaviour of ASAN in any way, because they are appropriately
handled in ReportAndCrash.
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7 Performance and fix accuracy

Our prototype is constructed so as to optimize performance on every test suite
run. To output plausible fix results the test suite must be run atleast twice to
obtain the best results. This is because one run is required to identify the leak
itself (through LSAN at end of execution), and the second run is required to
track it’s unique code path. We can also consider limiting the number of leaked
objects that AddressWatcher is willing to track for a given binary.

We evaluate AddressWatcher on fixes suggested compared with the devel-
oper’s fix for real world memory leaks. When we evaluate the fixes we assume
that the testsuite has been run twice to provide the most accurate fix that
AddressWatcher can possibly suggest.

We compare our fix results with Memfix [13] which is an open source tool
for fixing Memory Leaks through static analysis. Memfix fixes memory leaks by
identifying leaked objects statically and all the program paths that these leaked
objects need to be alive in. Then the problem of a fix is reduced to a Exact
Cover problem essentially stating that minimum frees must be inserted to cover
all leaked paths. This problem is solved by a SAT solver [10]. Then all frees in
these paths already present in source are removed, and the new free statements
are added. This potentially fixes double-free and heap-use-after free along with
memory leaks itself.

AddressWatcher was tested on the curated benchmark provided by Memfix
especially for testing memory leak fixers. The benchmarks were created using
CIL (C Intermediate Language) [25] which compiles complex source code with
real world memory leak bugs into few core constructs with clean semantics. It
includes memory leak bugs in the open source repositories: openssh, binutils,
tmux. We first check these bugs in the github parent and ensure that the devel-
opers fixing these issues labels them as ’Memory Leaks’. The ground truth for
these bugs are the locations where the programmer inserts a free statement. We
then compare this ground truth with the solutions suggested by AddressWatcher
and Memfix.

The results are shown in Figure 10 over 27 bugs. The distribution of bugs
across repositories are shown in Table 2. Detailed bug information is available
in Table 3.

To better understand the intersection of bugs between AddressWatcher and
Memfix, we show the results in Figure 11. Each bug is counted in the figure
only once. This means that AddressWatcher has fixed 5 bugs independantly that
Memfix could not solve. But AddressWatcher also solves 5 bugs that Memfix can
also solve. Hence AddressWatcher has fixed a total of 10 bugs with an accuracy
of 38%. 10 bugs in the repositories were not fixed by both AddressWatcher and
Memfix.

AddressWatcher fails to provide developer’s solutions on program error paths.
We provide an example in Figure 12. Here an error path is triggered because
the user does not supply the correct arguments to the program. However there
is no read/write to the leaked object in the error handling routine and hence
we cannot suggest the developer’s fix in this case.
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#1 char *p = malloc(10);

#2 if( argv == NULL) goto ERROR; //memory leak

#3 // use p

#4 return 0;

#5 ERROR:

#6 //error handling routine

#7 exit(1);

Figure 12: Example of case where AddressWatcher fails to fix memory leak. The
free statement must be inserted at #6 before the abrupt exit. However even if a
test suite triggers these error paths, the pointer p is not read or written in error
checking. Hence AddressWatcher cannot suggest a fix along these error paths

All of the 17 cases AddressWatcher fails on can be split in the below 4
categories:

• Error paths in the program code or abrupt returns where leaked objects
are not accessed - 10 cases

• Loops in which leaked objects are accessed. Hence >s operator can po-
tentially provide the wrong fix to a memory leak without static analysis -
3 cases

• Code organization: A seperate routine is used by the developer that is
used to free all allocated objects irrespective of where it is last used - 1
case

• Weak test suite with low coverage which does not exercise all code paths
for leaked object -2 cases

• Certain read/ writes are not instrumented by ASAN because they are
statically determined to not cause heap overflows or the read/write is
removed by register optimizations. In these cases AddressWatcher cannot
track the read/write stack trace - 1 case

Another interesting point to consider is that Memfix alone fixes 7 bugs in-
dependantly of AddressWatcher. These fixes largely contribute to several error
path fixes that AddressWatcher cannot find. On the other hand AddressWatcher
finds 5 fixes independently of Memfix, because Memfix suffers from path explo-
sion in these particular cases(timeout). These tools are hence complementary
in nature and can be used together to fix 17 real world Memory Leaks together.

We finally note that the proposed fix from AddressWatcher is just one plausi-
ble fix which may or may not be finally accepted by the developer. For example,
the developer may choose not to adopt the fix at the last use point from a code
design perspective, preferring to have all deallocations in one routine at the end.
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8 Limitations And Future Work

AddressWatcher currently has several limitations which must be addressed in
future work.

Currently, AddressWatcher does not have the capability to detect data cor-
ruption in leaks database. Checksum information or parity bits can be stored
alongwith the Leaks Database to detect corruption. When corruption is con-
firmed the entire Leaks Database can be flushed.

AddressWatcher is incapable of suggesting leak fixes on error paths that do
not use leaked variables or error paths not covered by test suite. For such cases
we can also use light weight static analysis to find out the true last read/write
access. This would also replace the >s operator by matching the collected
read/write traces with the source code and deriving the correct fix. This will
provide correct fixes even in the case of goto/loop statements.

AddressWatcher currently only suggests one fix for a memory leak. However
there can be cases where a single leaked object requires insertion of multiple
frees as in Figure 1. We must handle such cases through static analysis on
read/write traces of leaked objects (mapping to source code). AddressWatcher
can also be combined with Memfix to suggest leak fixes on program error paths
in future.

AddressWatcher is also fundamentally limited by the code coverage of the
test suite. If the test suite does not cover all the paths of a leaked object then
a plausible solution cannot be suggested. In future automatically generated
test suites that execute all paths using leaked objects can be considered. Ad-
dressWatcher cannot function reliably by covering all leaked program paths in
randomized programs.

Another important limitation of AddressWatcher is compiler optimizations.
In certain cases if the program is trivial or the result of a certain chain of mem-
ory access can be statically predicted they can be removed by the compiler,
or transformed to a smaller set of memory access with register optimizations.
In this case, the binary does not exactly reflect the source code behaviour in
terms of memory access and hence AddressWatcher cannot provide an accurate
solution in these cases. This is because AddressSanitizer only instruments read-
/writes from memory but not modifications within registers. However taking
register optimizations into consideration we can say that the suggested fix point
of AddressWatcher will be close to the actual fix that is required. These opti-
mizations were seen to prevent AddressWatcher from providing the best fix in
only one case tested.
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9 Related Work

Static approaches for memory leak detection: Saber [1] employs a full
sparse value flow graph that captures define and use chains and value flow
via assignments for all memory locations. Their static analysis approach has
detected over 83 memory leaks in SPEC 2000 C programs with a False positive
detection rate of 19%. FastCheck [4] is another static analysis tool for memory
leaks which is based on Value flow analysis.

On the other hand, Sparrow [3] converts each procedure’s memory behaviour
into a method summary that is used in analyzing callsites for leaked memory.
Sparrow reports 81 bugs on the SPEC 2000 C benchmark with a 16% false
positive rate.

Most static approaches are neither sound (missing bugs) nor complete (high
false positives). Fastcheck and Saber bounds loops and recursion to atmost one
iteration and path correlations are ignored. These approaches have imprecision
in handling pointer arithmetic as well.

Dynamic approaches for memory leak detection: LeakSanitizer [5]
is an example of a dynamic analysis approach for detecting memory leaks by
replacing the allocator and using magic values for freed memory. The accuracy
of such approaches are dependant on the test coverage of the test suite implying
that it can miss out on several inherent bugs in source program. However these
approaches have generally zero false positives.

AddressWatcher on the other hand suggests memory leak fixes. Perhaps as
future work, the memory leaks detected by all these tools can be transferred
in a common format to the leak database so that AddressWatcher can tag and
track them.

Dynamic approaches for Memory Errors detection including heap
and stack overflows: Valgrind [11] Memcheck keeps track of all heap blocks
allocated and so can directly identify memory leaks. Valgrind also detects sev-
eral other memory errors through synthetic execution and by shadowing memory
and registers. But this approach suffers from significant performance overhead
due to a parallel synthetic execution.

AddressSanitizer (ASAN) [2] detects memory corruption vulnerabilities in-
cluding stack and heap buffer overflows with the help of shadow memory and
compile time instrumentation. However these approaches face several limita-
tions. Firstly it has over 3x memory overhead degrading performance and can-
not detect non contiguous memory violations. Furthermore it cannot detect sub
object buffer overflows. AddressWatcher focuses only on fixing memory leaks
and leverages ASAN infrastructure to achieve it.

Static approaches for memory leak fixing: Memfix[13] is a static
analysis approach to fixing memory leaks, heap use-after-free and double frees
at the same time. All program paths of a leaked object are identified in the first
phase. Then the bugfix is modelled as a Exact Cover problem where minimum
frees must be placed to plug all the leaked paths. A solution is generated using
a SAT solver. Then all generated deallocation statements are inserted along
the program paths. However Memfix suffers from timeouts on program path
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explosion and recursion. We compare AddressWatcher with Memfix because
the artifacts are readily available and easy to use.

Dynamic approaches for memory leak fixing: LeakPoint [12] is the
work closest in approach to AddressWatcher. It is a dynamic analysis frame-
work that provides the location where reference to allocated object is lost or
last used in a dynamic path. It hence suffers from the same limitations as
AddressWatcher. However AddressWatcher is novel in that it leverages exist-
ing performance optimized infrastructure of ASAN and LSAN which is widely
deployed in the industry, with minimal changes.

Garbage Collectors: The most widely used dynamic approaches to mem-
ory leak fixing is garbage collection [6] [7] [8] [9]. However this is very hard in
languages like C/C++ which do not have a clear distinction between pointers
and data. This can lead to hidden pointers through type casting from pointers
to integers, preventing garbage collectors from knowing when an object is truly
not referenced by any pointer. Only when a garbage collector knows an object
is not referenced by all pointers and data can the object be freed. This in prin-
ciple leads to significant performance overhead. AddressWatcher in comparison
does not automatically free leaked memory at run time but only suggests to the
developer possible free locations.
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10 Conclusion

In this work, we presented a new dynamic analysis framework for suggesting
memory leak fixes automatically. AddressWatcher can be easily merged with
AddressSanitizer and LeakSanitizer with minimum modifications. We show that
our novel solution solves 10 out of 26 real world bugs in a host of open source
projects including openssh, binutils and tmux. AddressWatcher is complemen-
tary to existing static analysis memory leak fixers like Memfix.
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11 Artifacts

The artifact is available at: https://github.com/darkforce392/gcc
This artifact is forked from master GCC branch. All the modifications are

made into two directories: gcc/ and libsanitizer/. The following files are modi-
fied:

1. asan allocator.cpp: This modfies the allocator to tag shadow memory
appropriately when leaked object is identified.

2. asan report.cpp: This is the file where ReportAndCrash() is modi-
fied

3. lsan common.cpp: This is the file where leaks and related information
is written to Leaks database.

4. asan rtl.cpp: Initialize AddressWatcher correctly by reading from database.

5. AddressWatcher Results is a pdf file that contains the results in a tabular
form. It is in the main directory of the repository

6. Other files have been added and are used exclusively by AddressWatcher.
These are called from the above modified regions of code.

This modified gcc will have to be built by first building the dependencies
like mpfr, mpc and gmp. Then these locations are specified as options while
building gcc.
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