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Abstract

The ability to create pairs of entangled photons is a requirement for many near-future

quantum technologies. Despite this, the current state-of-the-art entangled photon sources

are fundamentally limited in their performance by their probabilistic nature. Recently,

semiconductor quantum dots have gained a great deal of interest as candidates for next-

generation entangled photon sources. Quantum dots can produce photon pairs determinis-

tically, and therefore do not suffer from the same limitation. In addition, certain emission

properties such as the emission direction, lifetime and spectral linewidth can be greatly

improved by embedding the quantum dot within a nanostructure.

The results in this thesis are from two separate, but related, techniques relating to

the performance of an InAsP quantum dot embedded in an InP photonic nanowire. The

first technique is resonant two-photon excitation of the quantum dot, a scheme of optically

exciting the quantum dot which is expected to outperform all other optical excitation

methods. Quantum dots use the biexciton-exciton cascade to generate entanglement, and

the performance of the source depends on how the biexciton is generated within the dot. By

directly populating the biexciton state of the quantum dot through two-photon excitation,

the charge noise is decreased, which reduces both re-excitation of the dot and dephasing

over the lifetime of the excited state. Using this method of excitation, we measure single

photon purities of 0.9979(3) and 0.9985(2) for the emitted biexciton and exciton photons,

respectively. Furthermore, quantum state tomography of the emitted pairs reveals a peak

concurrence of 0.87(4), with a count-averaged concurrence of 0.52(3). This represents the

first ever quantum state tomography measurement of a nanowire quantum dot excited with

this excitation scheme.

One downside of quantum dot-based photon sources is there tends to be some asymme-

try introduced unintentionally in the fabrication process. This leads to an energy difference

between the intermediate states of the biexciton-exciton cascade, called the fine structure

splitting. The fine structure splitting causes the state to precess, so that the state emitted

depends on the time between the first and second exciton recombinations. The second

technique investigated in this thesis is an all-optical method of eliminating the fine struc-

ture splitting. This proposed method uses a pair of electro-optic modulators to shift the
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energy of the emitted photons and recover the state emitted by a quantum dot without

any fine structure splitting. In this thesis, we demonstrate a lithium niobate electro-optic

modulator capable of both increasing and decreasing the energy of photons, depending on

their polarization. We show up-conversion of right circularly polarized light with 83.7%

efficiency and down-conversion of left circularly polarized light with 80.7% efficiency. This

demonstration shows that an all-optical fine structure eraser is feasible, and leaves us

well-positioned for an experimental demonstration in the near future.
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Chapter 1

Introduction

Quantum information processing is a rapidly developing field that promises to revolution-

ize computing in the coming years. Already, there exist quantum algorithms that can

efficiently solve problems that are intractable for classical computers. However, these al-

gorithms currently only exist in theory and cannot be implemented until a large-scale

quantum computer is built. Building a quantum computer capable of performing mean-

ingful calculations is extremely difficult, since even tiny amounts of noise can introduce

errors to the system and error correction is much more difficult compared to the classical

case.

Currently, there exist many candidates for implementing quantum computing, including

superconducting qubits [1], trapped ions [2], nitrogen-vacancy centres in diamond [3] and

NMR-based quantum computing [4]. Different implementations have benefits and draw-

backs, and it is currently unclear which implementation will become the industry standard

in the future. One commonality between these implementations is that they have a larger

spatial footprint than classical information processing devices. Classical computers operate

at room temperature, and nanofabrication has improved to the point where tens of billions

of transistors can be fabricated per square centimetre. In contrast, quantum informa-

tion processing devices tend to require bulky supporting infrastructure such as cryostats,

large magnets and driving electronics. For this reason, it is not currently feasible to build

arbitrarily large quantum computers, and instead it is more practical to build quantum
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networks where large problems can be split between smaller quantum computers.

Quantum computing networks work by breaking a large computation problem into

smaller pieces and distributing these pieces to smaller, remote quantum computers called

nodes that each perform a part of the total calculation [5]. The outputs of the nodes can

then be sent elsewhere for further processing or measured to give an output. The nodes of

a distributed quantum computing network need to be able to communicate with each other

in order to share results from their calculations. This necessitates a way of communicating

quantum information quickly and with low loss. Photons have many properties that make

them ideal for quantum communication, including their high velocity and low interaction

with the environment. While the debate over which implementation is the best for quantum

computation is still ongoing, it is clear that photons are the implementation of choice for

quantum communication.

In order to produce photons for quantum information processing applications, we need a

source capable of generating entanglement, a quantum mechanical property we will discuss

later. Entangled photon sources are fundamentally different from light sources most people

are familiar with, such as light bulbs. We want our quantum light source to produce

exactly two strongly correlated photons in the time it would take a regular light bulb to

emit trillions of photons. It is not enough to simply turn the power down to reduce the

number of photons; these light source must make use of some quantum mechanical process

to produce photon pairs in order for them to be entangled.

This thesis presents results from two techniques that can be used to improve the per-

formance of a quantum light source. The first is a method of triggering our source to

emit photons called resonant two-photon excitation (TPE). This method of exciting the

source is expected to yield improved performance when compared to other optical ex-

citation schemes. While the method has been implemented on other, similar photon

sources [6, 7, 8, 9], this thesis represents the first quantification of entanglement for an

InP nanowire/InAsP quantum dot entangled photon source being excited with resonant

TPE. The second technique is an electro-optic modulator (EOM) capable of shifting the

frequency of photons either up or down, depending on their polarization. The need for this

EOM is motivated by a proposal to improve the performance of our photon source even

further by tuning the energies of the emitted photons.
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This thesis will be organized as follows. In Chapter 1, we will start by discussing

the theory of quantum information and how it differs from classical information. We will

also discuss how photons are an excellent candidate to implement qubits for quantum

communication applications, and define some figures of merit we will use later. In Chapter

2, we will discuss the ideal properties of an entangled photon source, as well as some specific

implementations of entangled photon sources. We will introduce the specific device used in

this thesis and explain the process by which it generates entanglement. In Chapter 3, we

will compare different methods of exciting the photon source and argue why resonant TPE

is the superior method. To support this argument, we will then present experimental results

showing that resonant TPE improves the performance of the entangled photon source. In

Chapter 4, we will shift our focus to discuss the theory of electro-optic frequency shifting,

as well as the motivation for doing so. Finally, in Chapter 5, we will present experimental

results of an electro-optic frequency shifter, and show that it is suitable to improve the

performance of our photon source.

1.1 Quantum Information

Quantum information processing refers to making use of quantum mechanical properties

in order to process data and perform computations. In order to understand quantum

information and how it is encoded, we will first discuss how information is represented

and processed classically. In classical computation theory, the basic unit of information is

the binary digit, or bit, which can take on one of two values: either 0 or 1. In classical

computation, bits are often encoded using voltages: a low voltage (e.g. 0 V) is considered

a 0 and a high voltage (e.g. 5 V) is considered a 1. Classical information is processed by

comparing the values of input bits using logic gates, which produce an output bit based

on the values of the input bits. At the end of the calculation, the output of the calculation

is measured to determine the output state. A measurement of a 0 bit will always give

the value 0, and the measurement of a 1 bit will always give the value 1. The output

can consist of many bits, which, when all considered together, represent the result of the

computation.
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In quantum information theory, the basic unit of information is the quantum bit, or

‘qubit’. Like a classical bit, a qubit can be in two different states which we call |0〉 and |1〉,
analogous to the 0 and 1 values of a classical bit. The notation |x〉 is called a ‘ket’, and

represents a vector with the label x. The two kets |0〉 and |1〉 represent a pair of orthogonal

eigenvectors, called state vectors:

|0〉 =

[
1

0

]
|1〉 =

[
0

1

]
. (1.1)

.

The corresponding eigenvalues of the eigenvectors are the possible outcomes when the state

is measured. Like a classical bit, a measurement of a qubit in the |0〉 (|1〉) state will always

yield an output value of 0 (1). In this way, qubits can be used to encode and read out

classical data.

In contrast with a classical bit, a qubit can also exist in a linear combination or su-

perposition of the two basis vectors. Such a state |ψ〉 is written as |ψ〉 = α |0〉 + β |1〉 for

some values α and β, which are called the probability amplitudes. The ability to be in

a superposition of states is a quantum mechanical property, and is part of what differen-

tiates quantum information processing from classical. Like classical computation, we get

the result of a calculation by measuring the value of qubits at the output. However, unlike

classical computation, the qubit does not have to be in one of the two basis states; it can be

in a superposition of them. The probability amplitudes tell us the probability of measuring

the corresponding output when the state is measured. α and β, when squared, give the

probability of measuring that the state is in state |0〉 and |1〉, respectively. Furthermore,

since the probability that the qubit is in some state must be unity, we require that the

state is normalized such that |α|2 + |β|2 = 1. For example,

|ψ〉 = 0.6 |0〉+ 0.8 |1〉 =

[
0.6

0.8

]
(1.2)

is a valid qubit, but not a valid classical bit.
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A measurement of a qubit does not give full information about the original state of

the qubit, it only gives a single bit of information about the probability amplitudes of the

state. In addition, after the measurement of a quantum system yields an eigenvalue of

the measured property, the system collapses into the corresponding eigenvector. This is

what is known as wave function collapse, and makes it impossible to extract any further

information about the original state the qubit was in. If we were to measure the qubit in

Eq. 1.2, we would measure

0 with probability 0.36, state collapses to |0〉

1 with probability 0.64, state collapses to |1〉 .
(1.3)

After the measurement, the state is longer in a superposition of |0〉 and |1〉, so we

cannot gather any further information about the original state. However, if given many

identical copies of the state, we can measure each of them and make an estimate about the

original probability amplitudes. For example, if we measure a single qubit in state |ψ〉 and

get an output of 1, our best guess would have to be that the original state was |ψ〉 = |1〉.
However, if we measure 10 qubits in state |ψ〉, on average we will measure 0 four times and

1 six times, so our guess for the original state is |ψ〉 =
√

0.4 |0〉+
√

0.6 |1〉, which is closer

to the actual state. With more identical copies of |ψ〉, our estimate will narrow in on the

original state even further.

In general, probability amplitudes can be complex numbers, so there can exist a phase

difference between the |0〉 and |1〉 components of a qubit. For example

|χ〉 = 0.6 |0〉+ i0.8 |1〉 =

[
0.6

i0.8

]
(1.4)

is also a valid qubit and its output when measured would be the same as Eq. 1.3. Quantum

states are only defined up to a global phase, so that |ψ〉 = eiφ |ψ〉 for any φ. The global phase

cannot be measured in any way, nor does it have any effect on calculations involving the

qubit. Because of this, the global phase is non-physical, and it can be discarded without

changing anything about the state. The ability for qubits to encode a phase difference
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between the two basis vectors is part of what confers an advantage to quantum computers.

It allows algorithm designers to organize input states and quantum logic gates such that the

phases of the correct output constructively interfere, while the other outputs destructively

interfere. This means that the correct output has a higher probability amplitude and is

therefore more likely to be measured.

Single qubits differ from classical bits since they can exist in a superposition of states,

and there can exist a phase between the states of the superposition. These differences

between quantum and classical information processing seem simple, but have far-reaching

consequences. In order to perform quantum information processing, we need something

physical that displays both of these phenomena. As mentioned before, photons are an ideal

candidate for communicating quantum information. We will now discuss how photons can

be used as qubits to store and send quantum information.

1.2 Photons as Information Carriers

Light is already widely used to encode classical bits and send information through fibre-

optic cables. Classically, light can be used to communicate information by modulating the

phase or amplitude of a stream of photons in order to transfer information. This is the

concept behind fibre-optic internet, a technology that has already had a huge impact on

classical information transfer speeds. Light is an excellent information carrier for classical

communication, since, compared to electrons in copper wire, photons travel very quickly

and have much lower signal loss. For the same reasons, single photons are excellent candi-

dates for carriers of quantum information over long distances, such as between nodes in a

distributed quantum computing network.

While classical communication uses modulated pulses of light to encode information,

quantum communication makes use of single photons to encode quantum information.

Information can be encoded in a number of degrees of freedom, including the spatial mode

[10], frequency [11], polarization [12] and time of arrival [13]. In this thesis, we will focus

on using the polarization degree of freedom of photons for encoding information.
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1.2.1 Polarization

Polarization is a quantum mechanical property that describes the orientation of the electric

field of a single photon. A single photon is the smallest possible excitation of the electro-

magnetic field, and consists of oscillating electric and magnetic fields. If the electric field

is oscillating in a plane parallel to the floor in the lab frame (which we will define as the x

direction), we say it is horizontally polarized, which we label as the |H〉 state. Conversely,

if the electric field is oscillating in a plane perpendicular to the floor (defined as the y

direction), we say it is vertically polarized and in the |V 〉 state. As these two polarization

states are orthogonal, we can define them as the |0〉 and |1〉 states of our qubit:

|H〉 = |0〉 =

[
1

0

]
|V 〉 = |1〉 =

[
0

1

]
. (1.5)

.

Since the electric field is oscillating in one plane, if we were able to look at the electric field

vector as the photon is travelling directly towards us, we would see it oscillating along a

line. For this reason, the |H〉 and |V 〉 states are said to be linearly polarized.

It is also possible for a photon to have components of its electric field split between

the |H〉 and |V 〉 states. If a photon has equal parts of its electric field in these two states

and they are in phase, the polarization is linear and points in a direction 45◦ relative to

the x and y directions. There are two orthogonal states that satisfy this and we call them

diagonal and anti-diagonal polarized photons, defined by:

|D〉 =
|H〉+ |V 〉√

2
=

1√
2

[
1

1

]
|A〉 =

|H〉 − |V 〉√
2

=
1√
2

[
1

−1

]
. (1.6)

|D〉 and |A〉 are also linearly polarized states. Looking at a |D〉 or |A〉 photon travelling

towards us, we would see the electric field vector oscillating in a line, 45◦ offset from the

|H〉 and |V 〉 states.
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Figure 1.1: Polarization ellipse of the state |H〉+e
i π4 |V 〉√
2

.

There is another type of polarization, in which a photon has equal components of its

polarization in the x and y directions, but not in phase with each other. This phase

difference means that we will no longer see the electric field vector trace out a line as

we watch the photon travelling towards us. If the |H〉 and |V 〉 components are 90◦ out

of phase, we will see the electric field vector rotate in the plane perpendicular to the

photon’s direction of travel with a constant magnitude. For this reason, we call these

states circularly polarized light. By convention, we define right circularly polarized (RCP)

and left circularly polarized (LCP) light from the point of view of the receiver. If the

photon is travelling directly towards us and the electric field is rotating counterclockwise,

it is RCP, and if it is rotating clockwise it is LCP. Mathematically, these are defined as:

|R〉 =
1√
2

(|H〉 − i |V 〉) =
1√
2

[
1

−i

]
|L〉 =

1√
2

(|H〉+ i |V 〉) =
1√
2

[
1

i

]
. (1.7)

The three pairs of orthogonal vectors we have discussed can each be used to completely

describe the polarization state of a photon, since they each span the polarization space.
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Any polarization that is not linear or circular is called elliptically polarized, as the electric

field traces out an ellipse rather than a line or circle. For example, the state |H〉+e
iπ/4|V 〉√
2

will trace out the polarization ellipse shown in Fig. 1.1.

The polarization ellipse can be described by a pair of parameters called the ellipticity

angle χ and orientation angle ψ, shown in Fig. 1.2. These are related to the probability

amplitudes of a state α |H〉+ β |V 〉 by:

tan(2ψ) =
2|α||β|
|α|2 − |β|2

cos(δ) tan(2ψ) =
2|α||β|
|α|2 + |β|2

sin(δ) (1.8)

where δ is the phase between α and β (i.e. δ = φb − φb for α = |α|eiφa and β = |β|eiφb).

Figure 1.2: Ellipticity angle χ and orientation angle ψ of a polarization ellipse.

The polarization ellipse is a useful tool for visualizing the polarization when it is not

in a state easily described in the vector notation. We will use it later when describing how

the polarization of a beam of light changes through a device with a continually changing

birefringence. However, for most of the discussion in this thesis, it is more natural to use

the vector notation.
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1.2.2 Measurement

Thus far, we have only discussed the measurement of a quantum state very vaguely. We

know that the probability amplitudes give the probability of measuring a certain value,

and that the state collapses into the corresponding eigenvector. Chapter 3 uses repeated

measurement of a two-photon state to determine the probability amplitudes of the state

as a function of time. We will now discuss the measurement process mathematically, in

order to understand how this process works.

In quantum mechanics, we extract information about a quantum state through mea-

surement. Any quantity we can measure from a state is called an ‘observable’, including

those used to encode quantum information, such as spatial mode, frequency and polar-

ization. As stated before, it is impossible to extract all the information encoded in a

qubit through a single measurement. Instead, we measure a state and get a single bit of

information according to its probability amplitudes. After the measurement, the wave-

function collapses into the eigenvector corresponding to the measured eigenvalue. Since

the state changes, no more information about the original state can be extracted. This

makes quantum measurement fundamentally different from classical measurement, where

we can repeatedly measure a state without having any effect on it.

In quantum mechanics, every observable is an operator with a set of eigenvectors and

corresponding eigenvalues. The eigenvalues correspond to the possible outcome measure-

ments and therefore must be real numbers. Any arbitrary pure state in the space can be

written as a linear superposition of the eigenvectors of the operator. The possible mea-

surement outcomes correspond to eigenvalues of the observable, and the wavefunction will

collapse into the corresponding eigenvector upon measurement. This type of measurement

is called a projective measurement, since it projects the original qubit onto the state that

is measured.

In this thesis, we will measure the projection of a photon in a certain basis vector,

ignoring it if we measure the orthogonal vector instead. Most single photon detectors can

only measure the presence of a single photon, and not its polarization. Therefore, in order

to measure the polarization of a photon, we use a combination of a polarizing filter and a

detector. The polarizing filter allows photons in one polarization state (say |H〉) to pass
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through, and absorbs the orthogonal polarization. By placing a single photon detector after

the polarizer, we know that the presence of a photon indicates a projective measurement

in |H〉, but the lack of a photon does not indicate a photon in |V 〉.

For example, if we wish to measure the projection in the |H〉 basis, we use the projection

operator defined as PH = |H〉 〈H|, where 〈ψ| is called a “bra” and represents the transpose

of the state vector |ψ〉. This bra-ket notation makes it easy to write the inner product

between two states |x〉 and |y〉 as simply 〈x|y〉. If we measure the projection of the state

defined in Eq. 1.2 in |H〉, we find:

P (H) = 〈ψ|PH |ψ〉 = (0.6 〈H|+ 0.8 〈V |)(|H〉 〈H|)(0.6 |H〉+ 0.8 |V 〉) = 0.62 (1.9)

= 0.36. (1.10)

This result agrees with our definition of the probability amplitudes: we have a 36% chance

of measuring the qubit in the |H〉 state. The other 64% of the photons are discarded, since

they will be measured to be in the |V 〉 state and absorbed by the polarizing filter.

Importantly, we are not restricted to only measuring a state in the |H〉 / |V 〉 basis. It

is equally valid to measure the projection of the state in any other basis vector, or any

other state in the space. For example, the projection of |ψ〉 along the |D〉 basis vector is

〈ψ|PD |ψ〉 = 0.98, and the projection along the |R〉 vector is 〈ψ|PR |ψ〉 = 0.5. Measuring

in different bases allows us to gain more information about the state than repeatedly

measuring in the same basis. As mentioned earlier, the states |ψ〉 = 0.6 |H〉+ 0.8 |V 〉 and

|χ〉 = 0.6 |H〉+ i0.8 |V 〉 will both yield a zero 36% of the time and a one 64% of the time. If

measuring just in the |H〉 / |V 〉 basis, we could measure as many copies of these two states

as we want and never be able to differentiate between them. The ability to differentiate

between these states comes from also measuring in a different basis, for example |R〉 / |L〉.
〈ψ|PR |ψ〉 = 0.5 and 〈χ|PR |χ〉 = 0.98, so if we find 98% of our measurements in |R〉 result

in the photon passing through the polarizer, we know the state is |χ〉 and not |ψ〉. This

process of measuring in a number of bases to re-create the original state is called quantum

state tomography, and plays a major role in the results of Chapter 3.
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1.3 Bipartite States and Entanglement

Thus far, we have limited our discussion of quantum states to single qubits. We have

discussed a few interesting properties of qubits, including superposition, phase and state

collapse. However, the true power of quantum mechanics reveals itself when looking at

states consisting of two or more qubits. Similar to single qubit states, two-qubit states

can exist in a linear superposition of their basis states. Interestingly, it is also possible for

two qubits to exist in a superposition of basis states such that it is impossible to write the

state of one qubit without also considering the other qubit. The property of two or more

qubits having non-separable states is called entanglement, and is a quantum phenomenon

with many interesting implications.

First, we will consider two-qubit states with no entanglement present, called separable

states. Single qubits occupy a two-dimensional, complex Hilbert space that is spanned by

their basis vectors. For photons, this is the space of all possible polarizations. If we have

two unentangled qubits that exist in separate Hilbert spaces, we can write their joint state

as

|ψ0〉 ⊗ |ψ1〉 = |ψ0ψ1〉 (1.11)

where ⊗ indicates the tensor product. For a set of two classical bits, there are four possible

states the bits can be in: 00, 01, 10 and 11. Similarly, the space of a pair of qubits can is

spanned by four states: |00〉 , |01〉 , |10〉 and |11〉. These four basis vectors span the space

of all two-qubit states, which is a four-dimensional complex Hilbert space, and qubits can

also exist in a linear superposition of these basis vectors. The combined state |ψ0ψ1〉 is a

four-dimensional vector describing the combined state of the two qubits. For example:

|0〉 ⊗ |0〉+ |1〉√
2

=
|00〉+ |01〉√

2
=

1√
2


1

1

0

0

 (1.12)
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is one possible state vector in the new four-dimensional Hilbert space. Since the vector

above can be split into a tensor product of two, two-dimensional Hilbert spaces, it is called a

separable state. Separable states are multi-qubit states without any degree of entanglement

present, and can always be written as a tensor product of qubits. Additionally, since |ψ0〉
and |ψ1〉 are both normalized, the product state |ψ0ψ1〉 is as well.

However, there also exist states in the four-dimensional Hilbert space that satisfy the

normalization condition but cannot be written as a product of two qubits. For example

|ψ+〉 =
|01〉+ |10〉√

2
=

1√
2


0

1

1

0

 (1.13)

is also a valid state vector in our four-dimensional Hilbert space. However, if one tries to

find a pair of qubits whose tensor product is |ψ+〉, they will find that no such states exist.

This state is therefore said to be entangled, since the state of each constituent qubit cannot

be written independently of the other. In fact, |ψ+〉 is one of the four maximally-entangled

basis vectors that span the two-qubit Hilbert space. This set of four basis vectors is called

the Bell states and are:

|φ+〉 =
|00〉+ |11〉√

2
(1.14)

|φ−〉 =
|00〉 − |11〉√

2
(1.15)

|ψ+〉 =
|01〉+ |10〉√

2
(1.16)

|ψ−〉 =
|01〉 − |10〉√

2
(1.17)

.

The Bell states are important states in quantum information processing. For a pair of

qubits, the Bell states possess the maximum amount of entanglement. We will cover how

13



we quantify entanglement in 1.3.2, but for now it can be thought of as how dissimilar a state

is from any separable state in the Hilbert space. Two-photon entanglement is an important

resource in quantum communication applications, such as superdense coding and quantum

teleportation [14, 15]. These schemes both use Bell states to send information in a way

that would be impossible with two separable qubits. Therefore, in order to implement

either of these schemes experimentally, we want some source that can produce photons in

one of the four Bell states.

An interesting implication of entanglement is that a projective measurement of one

qubit affects the state of the other qubit, even if they are separated by a great distance.

For example, if two people (Alice and Bob) separated by some distance each have one qubit

of the |φ+〉 state and Alice measures a 0, the wavefunction will immediately collapse to

|00〉, so Bob will now measure a zero 100% of the time. The value of the measurement will

always be perfectly correlated, despite being separated by a large distance. However, since

the result of Alice’s measurement will always be random, the result of Bob’s measurement

will also be random, although correlated with Alice’s. Although the wavefunction collapse

is instantaneous, no information is transferred and so the theory of relativity is not violated.

In contrast to a pair of entangled qubits, consider the same situation with the separable

state |00〉+|01〉√
2

. Alice is given the first qubit, and when she measures a 0, Bob still has a 50/50

chance of measuring 0 or 1. Alice’s measurement had no effect on what Bob measured, since

the qubits are separable and a measurement of one qubit does not collapse the wavefunction

of the other. In this case, the two measurements will only display classical correlations due

to the lack of entanglement.

1.3.1 The Density Matrix

Thus far, we have only discussed quantum states that exist in a single, well-defined state.

These are called pure states, since the there is only one possible state and no probability

is involved in the initial state. However, it is sometimes the case that the initial state we

get is selected from a statistical distribution of possibilities. It is still possible to describe

a state like this mathematically, but we need a more general data structure than state

vectors: the density matrix.
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The density matrix of an n-dimensional pure state |ψ〉 is an n × n matrix which we

usually represent as ρ, defined as:

ρ = |ψ〉 〈ψ| . (1.18)

For example, for a qubit with state vector |0〉, the density matrix is

ρ =
[
1 0

] [1

0

]
=

[
1 0

0 0

]
. (1.19)

A mixed state is a probabilistic mixture of pure states. This often arises when a qubit

preparation scheme does not always produce the exact same state, but produces states

following some probability distribution. For a mixed state consisting of m possible states,

where state |ψi〉 has probability of Pi, the density matrix is

ρ =
m∑
i=1

Pi |ψi〉 〈ψi| . (1.20)

This is just the sum of the possible density matrices, weighted by their probability. The

density matrix is important, as it contains all possible information about a quantum state.

To see why the density matrix is important, we will compare two states, one mixed and

one pure:

|ψ0〉 =

|00〉 P = 0.5

|11〉 P = 0.5
(1.21)

|ψ1〉 =
|00〉+ |11〉√

2
(1.22)

.

The state |ψ0〉 is a mixed state consisting of two completely separable states and there-

fore has no entanglement present. On the other hand, |ψ1〉 is one of the Bell states and

has the maximum amount of entanglement present. Simply measuring both these states
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in the |0〉 / |1〉 basis would yield 00 half the time and 11 the other half; the results would

be identical. However, looking at their density matrices, we find:

ρ0 =
1

2


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 (1.23)

ρ1 =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 . (1.24)

These two density matrices differ in their anti-diagonal elements. Just measuring in the

|0〉 / |1〉 basis would not provide enough information to determine what state is present. By

reconstructing the density matrix, we are able to differentiate between states that give the

same outcomes in a certain measurement basis. As discussed before, this is done through

quantum state tomography, which involves repeated measurement in different bases [16].

This is an important process, as the density matrix contains full information about a state,

including whether the state is pure or mixed, and the degree of entanglement present.

1.3.2 Quantifying Entanglement

So far, we have only mentioned two specific cases of entanglement between photons: un-

entangled, separable states and maximally entangled Bell states. These two special cases

represent the two extremes of entanglement in a system. It is also possible to lie somewhere

between these two extremes, with some amount of entanglement present, but not maxi-

mally entangled. We therefore want some way to quantify the ‘amount’ of entanglement

present. For a two-qubit system, we can quantify the entanglement using a value called

the entanglement of formation (EF) [17]. This is calculated by finding the Von Neumann

entropy of the reduced density matrix of one of the qubits. Essentially, this is telling us

how far the reduced density matrix is from being a pure state. By definition, a separable
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pure state is a tensor product of two pure states, so the reduced density matrix of either

qubit in the separable state will be pure. In contrast, the qubits in an entangled pair

cannot be written as a product of pure states and their reduced density matrices will be

mixed states. This gives us a way to numerically express how separable or entangled a

quantum state is.

Without loss of generality, we will consider the reduced density matrix of qubit A, ρA.

For a pure state, the entanglement of formation is defined as:

EF = −Tr[ρA log(ρA)]. (1.25)

The EF takes a value in the range [0, 1], with 0 corresponding to a completely separable

state and 1 corresponding to a maximally entangled state. For a pure state, the EF can

be rewritten as a binary entropy function [18]:

EF = −x log(x)− (1− x) log(1− x) (1.26)

x =
1 +

√
1− C(ρ)2

2
(1.27)

where C(ρ) is a value called the concurrence of the bipartite state [19]. Concurrence is a

function of the density matrix of a state and is an example of an entanglement monotone.

An entanglement monotone is any function that quantifies the entanglement present be-

tween a pair of qubits and is a monotonically increasing function of entanglement. Since

concurrence is a monotonically increasing function of entanglement and is often easier to

calculate than the entanglement of formation, we can use concurrence to quantify the

degree of entanglement present in a system instead.

As discussed before, the Bell states form a basis spanning the space of two-qubit pure

states, so any bipartite pure state can be written as a linear combination of the Bell states.

We can write a bipartite state as |ψ〉 =
∑3

i=0 αi |vi〉 where the |vi〉 are the Bell states and

αi are the probability amplitudes. For a pure state, the concurrence is defined as
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C(ρ) = |
3∑
i=0

α2
i |. (1.28)

For mixed states, the entanglement of formation is more complex. However, there exists

a method for calculating the concurrence directly from the density matrix of a bipartite

system. For a two-qubit state, that can in general be mixed, the concurrence is calculated

as

C(ρ) = max(λ3 − λ2 − λ1 − λ0, 0) (1.29)

where λ0-λ3 are the sorted eigenvalues of the matrix
√√

ρρ̃
√
ρ where ρ̃ = (σy⊗σy)ρ∗(σy⊗

σy) and ρ∗ is the complex conjugate of ρ [17].

For a mixed state, this method of calculating the concurrence is simpler than calculat-

ing the entanglement of formation, hence why we will use concurrence as our entanglement

monotone instead of the EF. Experimentally, our goal is then to find the density matrix

of our state through quantum state tomography of the two-photon states emitted by our

source. This allows us to calculate the concurrence of the state and quantify the entangle-

ment present in our system. This gives us a way to compare the performance of different

entangled photon sources in terms of the entanglement of the photons emitted.

Another common measure of the entanglement between two photons is the fidelity to

a maximally entangled state, often just called the fidelity. In general, the fidelity is a

measure of how similar a state is to a known reference state. We choose the reference state

to be the nearest maximally entangled state. The fidelity of a state is defined as:

F (ρ) = Tr[ρρ0] (1.30)

where ρ0 is the density matrix of the maximally entangled reference state. Both concurrence

and fidelity are commonly used as entanglement monotones, and we will use both when

quantifying entanglement throughout this thesis. Given a state ρ with concurrence C(ρ),

the fidelity to a maximally entangled state is bounded by [20]
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max

(
1 + C

4
, C

)
≤ F ≤ 1 + C

2
. (1.31)

Therefore, the fidelity of a two-qubit state will lie in the range [0.25, 1], and will always

be greater than or equal to the concurrence.
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Chapter 2

Entangled Photon Sources

2.1 Photon Source Properties

Thus far, we have discussed using individual photons as qubits by encoding information in

their polarization degree of freedom. We have also discussed qubit entanglement theoret-

ically without mentioning how it arises physically. In this section, we will discuss devices

that can generate pairs of entangled photons and the physical processes behind them.

Entangled photon generation can occur in a number of different ways, such as optical

processes in a non-linear crystal or radiative recombination of excited charges. Specific

examples of these sources are covered later in the chapter. Every device has advantages

and drawbacks, and in order to compare their overall performance, we will first discuss the

properties we want in an ideal photon source. An ideal entangled photon source has the

following five properties:

1. On-demand: photons are produced if and only if the source is triggered by some

triggering system.

2. Bright: the source produces photon pairs at a high rate.

3. Photon pair purity: each time the source is triggered, one and only one pair of

photons is emitted by the source.
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4. Entangled: the emitted pair of photons possess the maximum amount of entangle-

ment.

5. Indistinguishable: photons emitted in subsequent excitations have identical prop-

erties, such as frequency and spatial mode.

A photon source that satisfies all five of these properties is what we will call an ideal

photon pair source. Depending on the application, only some of these properties may be

important and others not mentioned here may be relevant as well, but we will focus only

on these five. In reality, no photon source meets all the requirements, but this gives us

something to strive for. We will now discuss these requirements in more detail and why

they are important.

2.1.1 On-Demand

For an entangled photon source to be considered on-demand, it must produce a pair of

entangled photons whenever it is triggered. A ‘triggering event’ is any physical process

that can cause the photon source to emit a pair of photons. For example, the trigger can

be electrical like a single electron transistor that injects charges into the device or optical

like a pulse from a laser. After the photon source is triggered, it must then emit a pair of

entangled photons within a short time frame in order to be considered on-demand.

A photon source that operates completely on demand is required for a number of appli-

cations, mainly when interference between photons is required. For example, entanglement

swapping is a process that exchanges entanglement between two pairs of photons so that

two photons that have never interacted with each other are entangled [21]. Entanglement

swapping is a requirement for building large-scale quantum networks, and requires pho-

tons interfering with each other on a beam splitter. An on-demand source is necessary for

deterministic entanglement swapping, since the photons must arrive at the beam splitter

at the same time for the entanglement swapping protocol to succeed [22].

There are a few considerations that go into determining if a source is considered on-

demand. The first is the source pair efficiency, which is the likelihood that a source will
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produce a pair of photons for a single triggering event. Ideally, this value is unity so

that we receive a pair of photons every time we trigger the device. However, this is not

always the case, since the photon source might be probabilistic or have some mechanism of

losing energy without emitting photons. Another important measure is the pair extraction

efficiency, which is the percentage of photon pairs produced that are collected by the first

lens. This is an important property experimentally, as only photons that are collected

can be used in an experiment. If photons are produced but cannot be collected by the

optics, the photons are lost and the device cannot be considered truly on-demand. If we

multiply the source pair efficiency and the pair extraction efficiency, we get the first lens

pair efficiency, which is the fraction of triggering events that lead to a pair of photons being

collected by the first lens. For an ideal, on-demand source, the first lens pair efficiency will

be unity so that every triggering event leads to a pair of photons being collected by the

optics.

2.1.2 Bright

The brightness of a photon source refers to how many pairs of photons the device is capable

of producing per second. Since only a single qubit can be encoded in each photon, the rate

of communication directly scales with the rate at which we can produce photons. Therefore,

we want our entangled photon source to be as bright as possible. The brightness of a source

has no upper limit, so there is no ideal brightness for a source, however, we will consider

a source operating in the 107 − 109 Hz range to be ‘bright’.

Classically, light is used to communicate data through fibre optic cables. Although

the wavelength and fibre materials are selected to minimize absorption, attenuation still

becomes a problem over long distances. Classically, loss is compensated for with repeaters,

which amplify the input signal and eliminate the effects of fibre absorption. In quantum

communication, if a single photon is absorbed in the fibre, that information is lost entirely

and cannot be amplified. Furthermore, the no-cloning theorem states that quantum states

cannot be copied [23], which means that a quantum signal cannot be amplified the same way

that classical information is. Therefore, attenuation is a major problem for long-distance

quantum communication, and classical repeaters cannot solve this problem.
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For photons in a fibre, attenuation causes the number of photons to decay exponen-

tially with the length of the fibre, meaning that the distance over which quantum com-

munication is possible is currently limited by the brightness of the source. Entanglement

distribution has been demonstrated experimentally through 300 km of optical fibre using

time-bin encoded qubits [24], and 144 km in free space using polarization-entangled qubits

[25], placing an upper limit on the distance over which quantum information can be sent.

These demonstrations had very low photon counts due to attenuation and loss in their

respective systems. To overcome this, a technology known as quantum repeaters promises

to solve the exponential loss in the communication channels by using entanglement swap-

ping between many nodes [26]. While there exist demonstrations of functioning quantum

repeaters, currently no quantum repeater has outperformed direct transmission of photons

[27]. Therefore, both the rate of communication and distance to the receiver are currently

limited by the brightness of the photon pair source.

For a photon pair source, the important measure of brightness is the photon pair flux,

which is the total rate that photon pairs are produced and collected by the optics. This is

different from the first lens pair efficiency, as a source may have high efficiency but only

support a low repetition rate, leading to a low overall photon flux. While high efficiency

(on-demand operation) is desirable, if the overall photon flux is low, the source will be

limited in its applications. Therefore, a combination of on-demand operation and high

overall brightness is required in an ideal entangled photon source.

2.1.3 Photon Pair Purity

High photon pair purity refers to the fact that the source emits only one pair of entan-

gled photons. An ideal source has zero probability of emitting any photons other than

the entangled pair. In practice, however, this is not typically the case. Sources based

on electron recombination may get re-excited, leading to multiple pairs of photons being

emitted. Sources based on probabilistic, non-linear optical interactions emit a number of

photon pairs that follow a Poissonian distribution and therefore have non-zero multi-pair

emission.

Photon purity is important for a few reasons. If two pairs of entangled photons are

23



emitted, the two receivers may receive photons from different pairs. Since photons from

different pairs are not entangled, this reduces the overall entanglement of the mixed state.

Additionally, an important application of entangled photons sources is quantum key dis-

tribution (QKD), which relies on single photon purity to guarantee their security [28]. If

an entangled photon source produces two identical copies of a state, an eavesdropper can

steal information without being detected, compromising the security of the communication

channel.

The single photon purity of a source can be evaluated using the degree of second order

coherence g(2)(τ) [29]. For single photons, g(2)(τ) is a measure of the probability of detecting

a second photon at a time τ , given that the first photon was detected at time 0. g(2)(τ) is

defined as

g(2)(τ) =
〈n(t)n(t+ τ)〉
〈n(t)〉2

, (2.1)

where n(t) is the number of photons detected at a time t, and angled brackets denote the

expectation value. An important case is that of τ = 0, for which g(2) is the probability

that more than one photon is detected at the same time. A source of classical light cannot

produce pure single photon states, leading to 1 ≤ g(2)(τ) <∞, but for a non-classical state

0 ≤ g(2)(τ) <∞, so 0 ≤ g(2)(τ) < 1 is an entirely non-classical zone [29].

For number states, it is convenient to re-write g(2)(0) as

g(2)(0) =
〈n2〉 − 〈n〉
〈n〉2

. (2.2)

Therefore, if we treat each photon from the entangled pair separately, g(2)(0) = 0 corre-

sponds to perfect single photon purity, since it indicates zero probability of detecting two

photons at the same time. The g(2)(τ) function can be measured experimentally using the

Hanbury-Brown-Twiss setup [30]. This gives us a way to test the single photon purity of

both photons emitted from a photon pair source. An ideal source has g(2)(0) = 0 for both

of the photons it emits, indicating a lack of multi-photon emission in a given triggering

event.
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2.1.4 Entangled

Obviously, a source of entangled photons should emit photon pairs with the highest possible

degree of entanglement. The states that satisfy this property are the Bell states, which

are the two-qubit states with maximal entanglement and have a concurrence of C = 1.

In order for our photon pair source to be considered ideal in terms of entanglement, the

measured concurrence of the emitted photon pairs should be unity.

There are a number of factors that affect the entanglement of photons emitted by an

entangled photon source, some of which are related to other photon source properties. The

first lens pair efficiency and photon pair flux are related to the on-demand and brightness

properties of the dot, but also influence the measured entanglement of a source. We

need to collect both emitted photons in order to measure entanglement between them.

If only a single photon is collected, at best no coincidence count will be measured. In

reality, photon detectors have dark counts and can detect background light, so single

photons from a source can be correlated with background photons with which they share

no entanglement. This reduces the overall measured concurrence as the entanglement is

drowned out by background. It is therefore important to have a bright source with a high

collection efficiency and two-photon flux to overcome any background and measure a high

degree of entanglement.

Additionally, the single photon purity affects the measured entanglement of photons

from a pair source. If two pairs of entangled photons are generated by the source, it is

possible to detect one photon from each pair, which will not be entangled and therefore

have no quantum correlations. Again, measuring non-entangled photons reduces the overall

measured entanglement and will lead to a reduced concurrence.

One class of entangled photon sources depend on radiative recombination of charges to

produce photons. However, photon sources based on radiative decay in a semiconductor

environment can have their entanglement reduced through dephasing [31]. These sources

are triggered by exciting charge carriers to an higher energy state, which then decay and

emit polarization-entangled photons based on conservation of the angular momentum of

the charge carriers. However, this decay process is not instantaneous, and the carriers may

sit at an intermediate state for some time. During this time, any process that causes the
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charges to lose their angular momentum information will lead to dephasing and loss of

coherence between the photons [32]. Spin information can be destroyed by the presence

of a magnetic field, such as that produced by the movement of nearby free charges [33].

Therefore, to maximize the entanglement present in photons emitted from a semiconductor

source, we want to minimize the dephasing over the lifetime of the excited state.

2.1.5 Indistinguishable

Indistinguishability refers to the properties of the photons emitted from subsequent trigger-

ing events. As we have discussed before, photons have many degrees of freedom, including

polarization, frequency and spatial mode, which can all be used to encode information. In

this thesis, we are interested in using the polarization degree of freedom to encode qubits.

However, important effects such as quantum interference require photons that are identical

in all aspects, not just polarization. Indistinguishability means that all degrees of freedom

of emitted photons are the same in subsequent excitations.

Indistinguishability is important for observing quantum interference effects. For exam-

ple, the Hong-Ou-Mandel (HOM) effect is a non-classical interference effect that occurs

when two identical photons enter the two input ports of a 50/50 beam splitter. The two

identical photons will always exit the beam splitter together through one of the exit ports,

and will never leave different ports. However, if the photons are not identical in all aspects,

this effect will not be observed. This is important, as the HOM effect is the physical phe-

nomenon behind many proposals for quantum repeaters [34]. We want our ideal photon

pair source to be capable of being part of a quantum repeater, so we want the emitted

photons to be identical in all degrees of freedom in subsequent excitations.

2.2 Atomic Cascades

The first sources of entangled photon pairs were based on electrons decaying from excited

states in single atoms. The first entangled photon pair source involved heating a sample of

calcium to produce a low density gas, then illuminating it with a lamp to excite electrons
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in single atoms [35]. The subsequent decay from the excited state emits a photon of energy

equal to the difference in the two levels: ∆E = ~ω. If the electron decays from the excited

state to the ground state by first decaying to an intermediate state, a pair of photons are

emitted.

In 1967, Kocher and Commins demonstrated a photon pair source using the 61S0 −→
41P1 −→ 41S0 cascade in calcium, emitting photons of wavelength 551.3 nm in the first

step and 422.7 nm in the second [35]. Both the initial and final states have total angular

momentum j = 0, but the intermediate state has j = 1. Therefore, the first decay will

emit either a |R〉 or |L〉 photon, which have an angular momentum projection in the z-

direction of jz = ±1. However, in order to satisfy j = 0 at the final state, the second

decay must produce a photon of the opposite handed polarization. Furthermore, since the

jz value of the electron in the intermediate state is unknown, the recombination occurs in

a superposition of the two possible pathways, emitting a photon pair in the state:

|Ψ〉 =
|RL〉+ |LR〉√

2
=
|HH〉+ |V V 〉√

2
. (2.3)

In the |H〉 / |V 〉 basis, this state is the Bell state |φ+〉, and therefore has the maxi-

mum amount of entanglement possible. The two photons emitted were predicted to be

polarization-entangled, but due to their low count rate, Kocher and Commins could not

test this experimentally. However, they were able to measure correlations between the

photon polarizations and found the emitted photons were linearly polarized in the same

direction. While this does provide evidence that the photon source was working as in-

tended, the correlations observed were not strong enough to rule out classical correlations

without entanglement.

Later, in 1972, Freedman and Clauser performed a measurement of photon entangle-

ment using a similar source based on the same cascade in calcium [36]. The innovation of

Freedman and Clauser was to measure the polarization correlations in a number of bases,

not just parallel and perpendicular. From this, they were able to show the state emitted

displayed correlations that could not be explained classically and must be attributed to

entanglement.
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Unfortunately, sources based on atomic cascades in rarefied gases have many problems.

The low density required to isolate single atoms reduces the probability of exciting an atom,

limiting the brightness of the source. Additionally, since atoms emit photons isotropically,

only a small fraction of emitted photons can be collected by the optics and the probability

of detecting both of the emitted photons from the cascade is even smaller. These com-

pounding factors lead to very low brightnesses of atomic cascade photon sources. Kocher

and Commins required 21 hours of data collection just to show some degree of polarization

correlation, and Freedman and Clauser’s experiment required an integration time of 200

hours to show a violation of the classical limit. Clearly, atomic cascades in rarefied gases

are not bright enough to use in quantum information processing applications, excluding

them from the discussion of an ideal photon source.

2.3 Spontaneous Parametric Down Conversion

Around the same time that atomic cascade sources were being used in quantum optics

experiments, another class of entangled photon sources was being developed. These sources

are based on spontaneous parametric down conversion (SPDC), a non-linear optical process

observed in certain crystals. First predicted in 1961 [37], SPDC uses a pump laser and a

non-linear crystal to produce a pair of photons, called the signal and the idler photons.

While the full theory of SPDC is outside the scope of this thesis, we will briefly discuss

how these sources are used to generate entanglement.

In a linear crystal, the only possible output frequency is that of the input beam, cor-

responding to regular transmission of light through a medium. However, some crystals

exhibit non-linearity in their electric susceptibility χ, which allows solutions to the wave

equation with different frequencies than the input. This means that an incident photon at

one frequency may be converted into a pair of photons with lower frequencies. However,

SPDC cannot create photons of arbitrary frequencies and the photons must satisfy two

conditions:
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~ωpump = ~ωsignal + ~ωidler (2.4)
#»

k pump =
#»

k signal +
#»

k idler. (2.5)

These two equations are called the phase matching conditions and arise from conservation

of energy and momentum [38]. To conserve momentum, the output photons will emerge at

an angle, such that the vector sum of their momenta is equal to that of the input photon.

This leads to the two photons emerging from the crystal along the surfaces of a pair of cones

called emission cones. For a certain class of non-linear crystals, called type-II, the cones

consist of photons of opposite polarization [39]. Interestingly, at the intersection of these

cones, the individual photon polarizations are in a superposition of the two possibilities.

This corresponds to the Bell state |ψ+〉, which is a maximally entangled state.

Unfortunately, SPDC is a probabilistic process, and down-conversion of a single photon

into an entangled pair occurs with a low probability. Strong laser pulses are required in

order to observe the non-linearity required for SPDC and unfortunately, there is a trade-

off. Too strong a pulse and there is a non-negligible chance of down-converting more than

one photon, leading to multi-pair emission. Too weak a pulse and the probability of SPDC

occurring is low, leading to low brightness. This trade-off is characteristic of probabilistic

sources; the number of photon pairs produced follows a Poissonian distribution, and we can

never simultaneously maximize the brightness and photon pair purity. Fig. 2.1 shows the

maximum measured fidelity of a photon pair as a function of the pair production efficiency

[40]. The upper right corner represents an ideal photon source with unity pair production

efficiency and fidelity, but is mathematically forbidden for probabilistic sources.

SPDC-based entangled photon sources are currently the state of the art, and satisfy

some of our requirements for an ideal single photon source. SPDC sources are capable

of producing photons pairs with high concurrence [41] and high indistinguishability [42].

Unfortunately, SPDC source are not on-demand and suffer from a trade-off between their

pair production efficiency and photon pair purity. While both of these properties can be

optimized individually, an ideal source is capable of optimizing them simultaneously.
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Figure 2.1: Fidelity vs. pair production probability for a probabilistic source.

2.4 Quantum Dots

Clearly, in order to make an ideal source of entangled photons, we need to use a determin-

istic process, rather than a probabilistic one. Inspired by early sources based on atomic

cascades, quantum dots use a radiative cascade to produce entanglement between pho-

tons. However, in contrast to single atoms, quantum dots can be grown deterministically

and integrated into photonic nanostructures to improve the low excitation probability and

out-coupling issues faced by atomic gasses.

Quantum dots are small clusters of a semiconductor with a lower bandgap than the

surrounding material. The bandgap difference forms a confining potential for both elec-

trons and holes, creating a spectrum of bound states for both charge carriers. Radiative

recombination of charges in these bound states produces single photons, with a polariza-

tion depending on the angular momentum difference between the initial and final energy

state. Like in an atomic cascade, if the decay occurs through an intermediate state, a pair

of photons are emitted. We select the initial, intermediate and final states such that the

photons emitted are in one of the four Bell states and are therefore fully entangled.

Early quantum dot sources were based on self-assembled quantum dots, which form
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due to a lattice mismatch during molecular beam epitaxy [43]. The lattice mismatch

leads to strain, which builds as more epitaxial layers are deposited. Eventually, the strain

causes the material to stop being deposited epitaxially, and instead bunch up, forming

quantum dots. Quantum dots formed this way are called self-assembled quantum dots,

and their distribution is random on the surface of the material. They are then covered

by a semiconductor with a larger bandgap to protect the dot and form the potential well.

Unfortunately, embedding the QDs in a material with a higher refractive index than air

leads to total internal reflection of emitted photons, reducing the pair extraction efficiency.

This, coupled with the isotropic emission from bare self-assembled QDs, means that only

a small fraction of emitted photons can be collected by the first lens, leading to very low

overall brightness [44]. Despite this, polarization correlations were still observed in the

photons emitted from these types of sources [45, 46]. The main challenge then became

improving the brightness of QD-based sources by improving the directionality of photon

emission and reducing internal reflections. It was soon realized that this could be achieved

by integrating quantum dots into nanostructures.

There exist a wide variety of nanostructures that improve the brightness and collec-

tion efficiency of quantum dots. These structures include photonic structures such as

microlenses [8] and nanowires [47], which improve the directionality of the emission, as

well as many types of cavities [48, 49, 50] which can both enhance the rate of emission and

improve the directionality of emission. These nanostructures have been extremely success-

ful at improving the brightness of quantum dot photons. The use of a photonic structure

to enhance the brightness of a quantum dot source was first demonstrated by Dousse et

al. in 2010 [50]. They used a pair of photonic microcavities, called a ‘photonic molecule’

to achieve a first lens pair efficiency of 0.12. Within a few years, Müller et al. demon-

strated a quantum dot embedded in a planar cavity with a photon pair generation rate of

0.86(8) [48]. In 2018, Wang et al. demonstrated a bullseye cavity with a pair generation

rate of 0.59(1), along with a pair extraction efficiency of 0.62(6) for a first lens efficiency

of 0.36 [51]. This is orders of magnitude larger than the efficiencies achieved with bare,

self-assembled quantum dots. Additionally, Wang et al. measured g2(0) values of 0.014(1)

and 0.013(1) for the two emitted photons. This combination of pair extraction efficiency

and single photon purity can only be achieved by a deterministic photon source.
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The improvement in photon pair extraction efficiency and therefore brightness has

enabled the measurement of other important photon source performance metrics. Photon

indistinguishabilities greater than 95% are routinely measured from quantum dots in a

variety of different nanostructures [8, 49, 52, 53], with the connected pillar QD source of

Somaschi et al. achieving an indistinguishability of 0.9956(45) [54]. This device acted only

as a single photon source and not as a source of entangled photons, but quantum dot sources

have also been shown to be excellent sources of entangled photons, as demonstrated by

their high entanglement fidelities. A fidelity of 0.9369(4) has been achieved with an optical

antenna [55] and a value of 0.95(1) was reached using a microlens structure [8]. In 2021,

Schimpf et al. demonstrated a quantum dot embedded in a planar cavity with a fidelity

as high as 0.987(8), and a concurrence of 0.95(2) [56]. Additionally, quantum dot-based

sources have been shown to have excellent single photon purity, with g2(0) values less

than 1% being reported for a wide variety of nanostructures [9, 49, 54, 52, 57]. In 2018,

a raw g2(0) value of 7.5 × 10−5 was reported by Schweickert et al. using a quantum dot

embedded in a planar cavity [58]. In an ideal setup without dark counts or background, a

probabilistic source would have to operate at a pair production efficiency of on the order

of 10−4 to achieve the same value of g2(0).

While there exist many nanostructures that improve the brightness and collection ef-

ficiency of quantum dots, in this thesis we will focus on quantum dots embedded in

nanowires. A photonic nanowire is a thin protrusion of a semiconductor with an index

of refraction greater than that of the surrounding material. Nanowires are grown using the

vapour-liquid-solid (VLS) method, in which the semiconductor constituents dissolve from

the gaseous form into a catalyst and subsequently crystallize to form a one dimensional

nanowire [59]. By briefly varying the vapours present in the chamber during growth, a

different material can be integrated part way along the nanowire. If this semiconductor

has a lower bandgap than the bulk nanowire material, it will act as a three-dimensional

confining potential: a quantum dot. For example, by adding arsenic vapour briefly during

the growth of an InP nanowire, an InAsP quantum dot will be embedded into the nanowire.

This is the structure we will consider in this thesis.
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Figure 2.2: SEM image of a

tapered InP nanowire waveg-

uide. The quantum dot is

embedded 200 nm from the

base. Image from [60] li-

censed under CC BY 4.0.

The nanowire acts as a waveguide, so photons emitted

from the quantum dot are coupled into a narrow spatial

mode, improving collection efficiency and therefore bright-

ness. Furthermore, by modifying the growth conditions for

the last portion of nanowire growth, a taper can be intro-

duced to the end of the nanowire [61]. The gradual tapering

of the nanowire allows the waveguide mode to expand adi-

abatically into free space. This minimizes reflections at the

end of the nanowire, improving the outcoupling efficiency of

the nanowire [47, 62].

2.4.1 Confinement

The discrete bound states of the quantum dot enable single

photon production. Quantum dots provide a confining po-

tential for both electrons in the conduction band and holes

in the valence band, leading to discrete allowed states for

both these charge carriers. Radiative decay from bound ex-

cited states to the ground state is the process behind photon

production in a quantum dot based source. Both electrons

and holes are confined to a small region of space since they

are of opposite charge, they form a bound state called an

exciton, consisting of a single electron and a single hole. Upon recombination of an exciton,

a single photon is emitted. Therefore, in order to emit a pair of photons, we will populate

a state of the dot with two excitons: a biexciton.

In an atom, the nucleus produces a potential well, which allows discrete energy solu-

tions for electrons. Quantum dots are sometimes referred to as artificial atoms, since the

confining potential from the bandgap difference also allows a spectrum of bound states.

For photon generation using a quantum dot, we are interested in the lowest energy bound

state for both electrons and holes, which is analogous to the s-shell of an atom. Like an

atomic s-shell, this state is non-degenerate except for spin degeneracy and can therefore
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fit only two electrons and two holes. Additionally, since it is the lowest energy state in

the quantum dot, carriers cannot decay to lower energy states except through radiative

recombination.

Since our quantum dot is formed as a section of a nanowire, it can be modelled as a

short cylinder, or ‘hockey puck’. In the direction of growth of the nanowire, the potential

has the form of a 1D finite square well of width L and well depth ∆E = Eg,InP −Eg,InAsP ,

where Eg is the bandgap of the material. In the radial direction, the confining potential is

of the form of a circular finite square well of radius R. The ground state energies of these

potentials can be solved by finding the wavefunction and applying boundary conditions.

In the axial direction, the ground state wavefuction is

ψ(z) =

A cos(k0z/2) |z| ≤ L/2

Be−α0(|z|−L/2) |z| > L/2

k0 =

√
2mqdE0

~

α0 =

√
2mnw(∆E − E0)

~
,

(2.6)

where mqd is the effective mass of the carrier in the dot, mnw is the effective mass of

the charge carrier in the nanowire, E0 is the ground state energy in the axial direction

and A and B are normalization constants. Applying boundary conditions gives rise to

eigenenergies that are solutions to

α0 =
mnw

mqd

k0 tan

(
k0L

2

)
. (2.7)

Similarly, in the radial direction, our wavefunction solutions for the ground state are of

the form

ψ(r, φ) =

CJ0(k0r) r ≤ R

DK0(α0r) r > R
(2.8)
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where J0 is a Bessel function of the first kind and K0 is a modified Bessel function of the

second kind, and 0 is the order of the Bessel function, since we are interested in the ground

state, and C and D are normalization constants. Continuity of the wavefunction and its

first derivative gives us a transcendental equation which can be solved for the eigenenergy

of the ground state:

k0
J ′0(k0r)

J0(k0r)
= α

K ′0(α0r)

K0(α0r)
. (2.9)

The energy of the photon emitted upon recombination from the ground states then has

energy

∆E = Eg,InAsP + E0,e,axial + ∆E0,h,axial + E0,e,radial + ∆E0,h,radial, (2.10)

where the e and h subscripts refer to electrons and holes, respectively. Using bandgap and

effective mass values from Faria et al. [63], we can numerically find the ground state energy

of a single exciton in the quantum dot. This gives us an idea of what wavelength we expect

our quantum dots to emit at: the ground state energy of a single exciton is 1.30 eV, which

corresponds to a wavelength of 950 nm. This broadly agrees with the nanowire/quantum

dot system studied in this thesis, which emits around 893 nm. The discrepancy can be

explained by differences in material properties and quantum dot dimensions. The emission

wavelength as a function of dot dimensions is shown in Fig. 2.3.

This analysis holds for a single exciton in a quantum dot. However, when a second

exciton is formed in the quantum dot, the potential it sees is modified by the presence

of the first exciton. This leads to a slight shift in the energy of the biexciton, by a value

called the biexciton binding energy ∆Eb. The biexciton binding energy can be positive or

negative, and is usually on the order of a few meV [64]. The total energy of the biexciton

state can therefore be written as EXX = 2EX + ∆Eb. The biexciton binding energy

is extremely useful, as it allows us to separate exciton photons (with energy EX) from

biexciton photons (with energy EXX = EX + ∆Eb) spectrally.
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2.4.2 Photon Generation

Quantum dots produce photons through radiative recombination of electrons and holes

from excited states to the ground state. Photons carry spin angular momentum and have

two possible values: +1 and −1, working in units of ~. The angular momenta of +1 and

−1 correspond to left circularly polarized (LCP) photons and right circularly polarized

(RCP) photons, respectively. Angular momentum must be conserved during radiative

recombination, so we will now look at the angular momentum of electrons and holes in the

lowest energy excited state in an InAsP/InP quantum well.
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Figure 2.3: Emission wavelength of a single exciton populating the lowest energy excited

state of the quantum dot. The black star represents the approximate height and radius of

the quantum dot discussed throughout this thesis.

The total angular momentum operator of a charge carrier (either electron or hole) in a

semiconductor is:

J = Ls +Lb + S (2.11)
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where S is the spin angular momentum operator, Ls is the operator for the orbital angular

momentum of the shell, and Lb is the operator for the intrinsic angular momentum of the

band. We are interested in the allowed values of jz for electrons and holes in the lowest

energy excited states of the quantum dot. Electrons and holes are both spin-1
2

particles,

and since we are interested in the lowest energy excited state, ls = 0. Furthermore, the

states at the bottom of the conduction band form s-like states and the states at the top of

the valence band are p-like [65], so lb,e = 0 and lb,h = 1. Therefore, for electrons, the total

angular momentum quantum number is je = {1
2
} and for holes the angular momentum

quantum number is jh = {1
2
, 3

2
}. So, we find that the projection of the total angular

momentum in the z-direction is jz,e = {−1
2
, 1

2
} for electrons and jz,h = {−3

2
,−1

2
, 1

2
, 3

2
} for

holes.

The j = 1
2

holes correspond to the spin-orbit split-off band, the j = 3
2
, jz = ±1

2
holes

correspond to the light hole band and the j = 3
2
, jz = ±3

2
correspond to the heavy hole

band [65]. The heavy hole subband has the lowest ground state energy in the valence band.

Therefore, for the quantum dot’s lowest energy excited state, we are interested in electrons

with j = 1
2
, jz = ±1

2
and holes with j = 3

2
, jz = ±3

2
.

Electrons and holes confined in the quantum dot form bound excitons. Due to the Pauli

exclusion principle, two electrons and two holes can populate the lowest energy states in

the conduction band and valence band, respectively. An exciton can recombine and emit

a photon, so long as the optical selection rule:

∆jz = ±1 (2.12)

is satisfied. ∆jz = +1 corresponds to emitting a LCP photon and ∆jz = −1 corresponds

to emitting a RCP photon. There are two combinations of electrons and holes that satisfy

Eq. 2.12: jz,e = 1
2
, jz,hh = −3

2
and jz,e = −1

2
, jz,hh = 3

2
. Therefore, a fully populated lowest

energy state of the quantum dot consists of two bright excitons. Additionally, for a fully

populated lowest energy state, jz = 0. Note that this decay process is similar to the atomic

cascade discussed in Section 2.2: the initial state has jz = 0, the intermediate state has

jz = ±1 and the final state has jz = 0.
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Figure 2.4: The biexciton-exciton cascade. Electron-hole pairs recombine to emit left and

right circularly polarized photons. After two subsequent recombinations, an entangled

two-photon state is created.

Quantum dots produce entangled photon pairs through what is known as the biexciton-

exciton cascade, shown in Fig. 2.4. The biexciton-exciton cascade consists of two consecu-

tive exciton recombinations within the quantum dot. There are two possible pathways that

the electrons and holes can recombine: ∆jz = +1 first (emitting a LPC photon), followed

by ∆jz = −1 (emitting a RPC photon), or ∆jz = −1 first, followed by ∆jz = +1. In the

absence of which-path information, the intermediate state of the exciton is unknown, and

recombination occurs in a superposition of these two pathways [45]. This leads to the same

polarization-entangled state as that emitted from an atomic cascade: in the |H〉 / |V 〉 basis,

the quantum dot emits the Bell state |φ+〉 which has the maximum degree of entanglement

for a two photon state.

2.4.3 Fine Structure Splitting

Thus far, the discussion has assumed an ideal, perfectly circular quantum dot confining

potential. In reality, the potential of the quantum dot will not be perfectly circular. Asym-

metries such as an elliptical nanowire cross-section, strain in the dot, and a non-uniform

arsenic distribution all lead to an asymmetric confining potential for both electrons and
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holes [66, 67, 68]. In this case, the circular symmetry of the system is broken and the

eigenstates of the quantum dot system are no longer |R〉 and |L〉, but |H〉 and |V 〉. Addi-

tionally, because the confining potential is asymmetric, we no longer expect the energies of

these states to be the same. The two intermediate exciton states are split in energy by an

amount δ, called the fine structure splitting. This energy difference results in a phase ac-

cumulation between the two pathways, depending on the time τ between the biexciton and

exciton recombinations. The two-photon state emitted by a quantum dot with non-zero

fine structure splitting becomes:

|Ψ〉 =
|HH〉+ ei

δτ
~ |V V 〉√

2
. (2.13)

Expanding this in the |R〉 / |L〉 basis, the state becomes:

|Ψ〉 =
|RL〉+ |LR〉√

2
cos

(
δτ

2~

)
− |RR〉+ |LL〉√

2
i sin

(
δτ

2~

)
. (2.14)

Therefore, in the presence of fine structure splitting, the emitted state oscillates between

two Bell states: |ψ+〉 and |φ+〉 [69]. Fig. 2.5 shows the fine structure splitting in the H/V

basis and how it leads to precession between two Bell states in the R/L basis.

The fine structure splitting is an unwanted property of semiconductor quantum dots

associated with the fabrication process. Often, we want to send a known state with an

entangled photon source. The precession caused by the FSS means the state emitted by

the source depends on the time between recombinations. In order to send a known state,

we would have to time-gate the emitted photons, leading to a reduction in counts, and

removing the on-demand property of quantum dots.

To get information from a photon and make use of its entanglement, it must be detected

by a photodetector. Photodetectors have some time resolution, and thus the state detected

in each time bin are actually from a range of times depending on the response function

of the detector. Slower detectors have a large time uncertainty and can therefore have a

small energy uncertainty by the energy-time uncertainty principle. With a high energy

precision, the detectors can resolve the energy difference between the two paths, meaning
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Figure 2.5: The biexciton-exciton cascade in the presence of non-zero fine structure split-

ting. The system is no longer circularly symmetric and the eigenstates become |H〉 and

|V 〉, with an energy difference between them. When expressed in the |R〉 / |L〉 basis, the

state precesses as a function of time between the biexciton and exciton recombinations.

the measured entanglement of the source is reduced [33]. Detectors with low timing jitter

have high energy uncertainty, and therefore the degeneracy of the exciton state is recovered.

Therefore, either reducing the FSS or using detectors with low timing jitter is expected to

fix the issue of reduced entanglement in the presence of non-zero FSS.

It is of great interest to minimize or eliminate the fine structure splitting to solve the

problems of time-dependent states and reduced entanglement. We will come back to this in

Chapter 4, where we will discuss an all-optical method of reducing or eliminating the fine

structure splitting. We will now move on to experimental results of the nanowire/quantum

dot-based source, discussed theoretically in this section.
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Chapter 3

Two Photon Resonant Excitation

In order for a quantum dot to act as a source of entangled photon pairs, we need to populate

the lowest energy state with a pair of excitons. There are two general ways this can be

done: optically or electrically. Optical excitation uses the electro-optic properties of the

dot and surrounding environment to excite electrons to the conduction band and holes to

the valence band in order to populate the quantum dot. Optical excitation is relatively

easy to implement, as it only requires an external light source; no additional fabrication

is required near the source. However, this increases the overall footprint of the source, as

tunable excitation lasers tend to be bulky. In contrast, electrical excitation involves using

some sort of electrical gate, such single electron transistors or diodes, to inject charge

carriers into the dot [70]. This reduces the overall footprint, since no excitation laser is

needed, but requires additional fabrication near the dot. The source we are discussing in

this thesis has no such electrical gates, and therefore must be excited optically.

3.1 Excitation Schemes

Even within the broad category of optical excitation, there are a variety of excitation

schemes with different benefits and drawbacks. The performance of our quantum dot

source depends not only on its design and fabrication, but also on how it is excited.
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The biexciton state of the quantum dot can be populated optically with a few different

schemes. Each excitation scheme uses a different optical transition within the quantum dot

or nanowire to excite charge carriers. Fig. 3.1 shows the emission of the quantum dot and

nanowire when illuminated by a Coherent Mira 900 Ti:Sapphire laser operating with an

energy greater than the bandgap of the nanowire. The emission shows a number of peaks,

corresponding to radiative recombination of charges at different energy levels within the

nanowire or quantum dot. Each excitation scheme will use one of the spectral features in

Fig. 3.1 to generate charge carriers in or near the quantum dot. We will briefly discuss

three excitation schemes and compare emission properties of the dot when they are used.
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Figure 3.1: Broadband emission spectrum of the quantum dot and nanowire when excited

above bandgap with a laser at 780 nm. The quantum dot s-shell is visible as the three

rightmost peaks. The relatively small double-peaked feature at 870 nm is associated with

acceptor/donor states and is used to populate the quantum dot in quasi-resonant excitation.

The peak around 830 nm corresponds to recombinations in the bulk nanowire and tells us

the bandgap of the InP.
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3.1.1 Above-Bandgap Excitation

The first biexciton excitation scheme is above-bandgap excitation (ABE). In this scheme,

the nanowire is illuminated by photons with an energy higher than the bandgap of the InP

nanowire. Absorption of a photon excites an electron (hole) from the valence (conduction)

band to the conduction (valence) band. Through interactions with lattice phonons, these

charge carriers lose energy and decay into the lower energy s-shell of the quantum dot.

By exciting an abundance of electrons and holes, we ensure that the biexciton state is

populated with near certainty.

Experimentally, this scheme is the simplest to implement, since the only constraint

on the excitation laser wavelength is that the photon energies must be larger than the

bandgap of InP. Relaxation from the conduction to valence band of InP is the highest

energy transition within our nanowire/quantum dot system. From Fig. 3.1, we see that this

transition is around 830 nm, indicating that the InP has a bandgap of 1.49 eV. Therefore,

when the nanowire is illuminated with a wavelength less than 830 nm, an abundance

of charge carriers are produced in the bulk nanowire and may become trapped in the

quantum dot potential well through phonon interactions. Due to the abundance of carriers

produced, even a relatively low excitation laser power will populate the biexciton state

with near certainty.

Although much simpler than other schemes, above-bandgap excitation has a few major

drawbacks. The excess free charges produced in the nanowire lead to a fluctuating electric

field in the vicinity of the quantum dot. This changing electric field is a source of de-

phasing, which reduces the degree of entanglement between the two emitted photons [31].

The fluctuating electric field also leads to broadening of the emission lines of the exciton,

decreasing the indistinguishability of the emitted photons [71]. Furthermore, the excess

of charge carriers means that additional carriers can relax into the dot after the biexciton

has recombined but before the exciton has recombined. This can lead to the formation of

charged exciton complexes (called trions, either X− or X+) or the formation of a second

biexciton. The excess of free charges is undesirable in an entangled photon source as it

decreases the single photon purity, entanglement fidelity and indistinguishability of the

photons emitted. Additionally, the biexciton state is not populated directly and relies on
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phonon interactions for charges to decay into the potential well. Since it takes time for the

carriers to become trapped in the quantum dot, this increases the total lifetime between

laser excitation and emission of both photons. A long lifetime is undesirable, as we must

wait for the dot to emit both photons before we can excite it again. This means that a

longer lifetime limits the repetition rate of the excitation laser, decreasing the maximum

overall brightness of the source.

Fig. 3.2 a) shows the emission of the quantum dot when excited above bandgap.

The brightest, rightmost line has previously been identified as emission from the charged

exciton X−. Since an abundance of electrons and holes are created near the quantum

dot, there is a high probability of capturing free electrons before the exciton has a chance

to decay, leading to trion emission. Additionally, the small, leftmost line is attributed to

recombination of the other trion X+, formed similarly. The peak at 894.108 nm is emission

from the biexciton and the peak at 892.667 nm is emission from the exciton. Note that

the height of the exciton and biexciton lines are not the same, indicating that each exciton

photon emitted does not necessarily have a corresponding biexciton photon.

Above-bandgap excitation does not satisfy all the properties of an ideal quantum dot

source. QDs excited above bandgap tend to have high brightness but low single photon

purity, entanglement fidelity and indistinguishability. Therefore, this excitation scheme is

suitable for identifying bright dots on a sample and aligning optics, but not for applications

requiring highly entangled or indistinguishable photons.

3.1.2 Quasi-Resonant Excitation

The second excitation scheme is the quasi-resonant excitation (QRE) of the quantum dot.

This scheme uses donor/acceptor states in the nanowire to populate the biexciton state.

As shown in Fig. 3.1, the quantum dot has an optical transition around 870 nm that is

attributed to the recombination of donor or acceptor-bound excitons within the nanowire

[33]. Therefore, by tuning the excitation laser to this energy, these bound exciton states

can be directly populated. The bound charges can then decay into the quantum dot and

populate the biexciton state without producing an excess of free charges near the quantum

dot.
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Figure 3.2: Spectra of the quantum dot s-shell under the three excitation schemes. From

left to right, the four peaks correspond to X+ trion, exciton, biexciton and X− trion emis-

sion. a) Above-bandgap excitation. There is significant emission from the X− trion, due

to the abundance of free electrons produced by this scheme. The free electrons can decay

into the dot, forming an X− trion. b) Quasi-resonant excitation. This excitation scheme

shows a reduction in X− emission, due to the reduced number of free charges produced

with quasi-resonant excitation. c) Resonant two-photon excitation. This excitation scheme

shows minimal trion emission, compared to the other two schemes. The peak at 893.4 nm

is residual from the laser that was not fully eliminated by the notch filters. Note that the

height of the exciton and biexciton lines are nearly the same, since each biexciton photon

has a corresponding exciton photon.
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Like above-bandgap excitation, quasi-resonant excitation is not a coherent process and

also depends on charge carriers decaying into the ground state of the quantum dot. The

benefit of quasi-resonant excitation is the number of free charges is greatly reduced com-

pared to above-bandgap excitation. Since the energy of the excitation laser is less than the

bandgap of the nanowire, no free electrons or holes will be excited above the bandgap of the

InP. The absence of free charges means there will not be a fluctuating electric field in the

local environment of the quantum dot, and therefore less dephasing and spectral broad-

ening. Additionally, the re-excitation probability is lower for quasi-resonant excitation,

meaning multi-photon emission is suppressed.

Fig. 3.2 b) shows the quantum dot emission spectrum when excited quasi-resonantly.

Again, the four emission lines are observed, attributed to recombination of the biexciton,

exciton and both trions. However, in this case, the X− trion emission is greatly suppressed

compared to ABE, and the emission is dominated by the exciton and biexciton recombina-

tion. In addition, more emission from the X+ trion is observed compared to above-bandgap

excitation.

Despite the improvement conferred by quasi-resonant excitation of the biexciton state, it

is still a suboptimal excitation scheme. Multi-photon emission of the exciton and biexciton

transitions are still non-zero, leading to a decreased concurrence of the measured photon

pairs. Additionally, the timing jitter of photon emission is still large, since populating the

biexciton state still depends on higher-energy states decaying into the QD. Quasi-resonant

excitation reduces the dephasing and multi-photon emission issues introduced by ABE [33].

However, there is still room for improvement, especially in regard to the lifetime of the

excited state.

3.1.3 Two-Photon Resonant Excitation

The final excitation scheme we will discuss is resonant two photon excitation (TPE) of

the biexciton state. In this excitation scheme, the biexciton state of the quantum dot

is populated directly through the absorption of a pair of photons, without the need for

charge carriers to decay into the dot [72]. Conservation of angular momentum dictates

that no single photon process can directly populate the biexciton state, since the biexciton
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state has jz = 0 and photons have jz = ±1. Therefore, we need a two-photon process

to directly populate the QD biexciton state. As discussed previously, the total energy of

the biexciton state is EXX = 2EX + ∆Eb. Because of the biexciton binding energy ∆Eb,

the excitation laser energy can be tuned to Ex + ∆Eb
2

, and not be resonant with either the

g → X (E = Ex) or X → XX (E = Ex+∆Eb) single photon transitions. This means that

g → X or X → XX re-excitation is unlikely, resulting in very low multi-photon emission

for both exciton and biexciton transitions. Instead, this excitation scheme uses a virtual

state at E = Ex + ∆Eb
2

to mediate the transition from the ground state to the biexciton

state [73].

Tw
o photon

excitation

 |L⟩  |R⟩

 |R⟩  |L⟩

X

XX

Electron (jz=1/2):

Heavy hole (jz=3/2):

Figure 3.3: Resonant two photon excitation of the quantum dot biexciton state. Simultane-

ous absorption of a pair of photons directly populates the biexciton state without creating

any additional charge carriers.

Additionally, since we are using the lowest energy state in both the quantum dot and

nanowire, the excitation laser has too little energy to excite any charges other than those

forming the biexciton. Therefore, no photons are absorbed in the nanowire and no free or

bound charge carriers are produced in the bulk material. Like the quasi-resonant scheme,

this means that charge noise and therefore dephasing in the quantum dot is greatly re-

duced. Furthermore, since the biexciton is directly excited and does not depend on phonon

interactions, the total lifetime of the excited state is reduced compared to the two other
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excitation schemes mentioned.

In addition to resonant TPE, there exists a non-resonant variation of two photon excita-

tion. If the laser is slightly blue-detuned from resonance, the dot can be still be populated

through phonon-assisted TPE, in which a phonon absorbs the excess energy when the

biexciton state is populated [74, 75, 76, 77]. This variation of TPE occurs over a broader

range of energies compared to resonant TPE. Additionally, it is less sensitive to power fluc-

tuations, since the population of the biexciton state is a monotonically increasing function

of power [76] under phonon-assisted TPE. However, since our dot has a negative exciton

binding energy, blue-detuning the laser from resonance brings the excitation pulse closer

in energy to the exciton photon. This is undesirable, as it makes off-resonant excitation

of a single exciton more likely, reducing the single-photon purity of the emitted exciton

photons.

Fig. 3.2 c) shows the dot emission when excited with resonant two-photon excitation.

The line around 893.4 nm is residual light from the excitation laser that was not fully

suppressed by our experimental setup. Here, the X− trion emission is suppressed even

further, since there is no longer an abundance of free electrons nearby to form an X−

trion. Additionally, the height of the exciton and biexciton lines are nearly identical, since

resonant TPE directly populates the biexciton state of the quantum dot, so the dot will

emit an exciton photon if and only if it also emits a biexciton photon.

Resonant TPE directly excites the biexciton state of the quantum dot without the

need to create additional charge carriers in the QD or nanowire. It is therefore expected to

have superior single photon purity and minimal dephasing due to free charges compared

to either of the other excitation schemes we have discussed. Furthermore, since it does

not depend on charges decaying into the dot, TPE has the smallest lifetime between laser

excitation and the second exciton recombining. This shortened lifetime means the dot can

be excited more frequently, and therefore has a higher maximum brightness compared to

ABE and QRE. We therefore expect resonant TPE to be the optimal scheme for exciting

semiconductor quantum dots. Resonant TPE is expected to outperform the other two

excitation schemes in terms of single photon purity and entanglement fidelity. To test this,

we will compare two figures of merit: g2(0) and concurrence.
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3.2 Experimental Setup

We now move on to the experimental setup used to compare the performance of the quan-

tum dot under different excitation schemes. Specifically, we will focus on the setup for

implementing TPE, as it is the most difficult to implement experimentally. The wave-

length of the excitation laser must be tuned very precisely to the average energy of the

exciton and biexciton. For our experiment, we used a Coherent Mira 900 Ti:Sapphire laser,

which is tunable over a wide frequency range and can be operated in both continuous wave

and pulsed modes.

3.2.1 Pulse Shaping

To implement TPE, the linewidth of the laser must be much less than the biexciton binding

energy ∆Eb to avoid direct excitation of a single exciton in the QD. When the laser was

tuned to the average wavelength of the exciton and biexciton photons, the linewidth was

found to have a full width at half max (FWHM) of 0.41 nm. This is too broad to use for

TPE, as the spectral distribution overlaps significantly with both the exciton and biexciton

lines.

To decrease the linewidth of the laser and fine-tune its central wavelength, we designed

and built a 4f pulse shaper, shown in Fig. 3.4. The pulse shaper was originally designed

and built by Jeff Salvail, and used a pair of reflection gratings, one to split the frequencies

of the pulse and the other to recombine them after shaping. However, based on advice

from Arash Ahmadi, the design was modified to use a single grating to both spatially split

and recombine the frequency components of the pulse. The reasoning is that the single

grating setup is expected to minimize the amount of chirp present in the pulse. This is

desirable, as the presence of chirp in the excitation pulse is expected to prevent optimal

excitation of the biexciton state at finite temperatures [78].

In the new design, the pulse shaper first uses a Newport 10HG1200-800-1 reflection

grating to split the incident light based on its wavelength. A Thorlabs LA1417-B lens

is placed one focal length of 15 cm from the reflection grating, as is standard for 4f

pulse shapers. The lens focuses the split light on Newport SV-0.5 adjustable width slit
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Figure 3.4: The pulse shaper used to decrease the linewidth of the excitation laser. The

incoming pulse is split spectrally by a reflection grating and filtered spatially, before being

recombined on the same grating.

placed near the focal point. Light of different wavelengths will focus in slightly different

positions, so the narrow slit cuts off the edges of the original spectral line. Both the

width and horizontal position of the slit can be controlled in order to adjust the width

and centre location of the laser spectral distribution. Light that passes through the slit

is reflected by a mirror placed just behind the slit and recombined on the same reflection

grating, before going to excite the quantum dot. Using the same diffraction grating to

both split and recombine the beam is expected to minimize the frequency dispersion of

the pulse. Dispersion leads to chirp in the pulse, which reduces the population efficiency

of the biexciton state [78].

Using this pulse shaper, we can make the laser linewidth narrow enough that it fits

between the exciton and biexciton spectral lines, minimizing off-resonant excitation of

either transition. Fig. 3.5 shows the effect of our pulse shaper on the laser spectral

distribution. Our pulse shaper setup decreased the spectral FWHM from 0.41 nm to 0.18

nm. Even at low power, the original spectral distribution can be seen overlapping with the

exciton line, and would also overlap with the biexciton line at the higher powers required

for excitation. This would lead to single-photon excitation of both exciton and biexciton
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states, as well as detection of reflected laser light at the same wavelength as the dot is

emitting at. Since the laser is much brighter than the dot, this would completely drown

out the signal from the dot. However, after pulse shaping, the spectral line is narrow

enough that it has negligible overlap with either the exciton or biexciton lines, shown for

reference in Fig. 3.5.

Furthermore, our pulse shaper also allows us to fine-tune the centre of the spectral

distribution, so it lies exactly on the two-photon resonance of the quantum dot. The pulse

shaper moved the centre of our excitation pulse from 893.393 nm to 893.379 nm, closer

to the exact resonant wavelength of 893.371 nm. This shift corresponds to a difference of

only 0.02 meV, but even this small a change is expected to affect the population efficiency

of the biexciton state [76], so the ability to fine-tune the centre wavelength is useful.
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Figure 3.5: Laser linewidth before and after the pulse shaper. The spectral FWHM is

decreased from 0.41 nm to 0.18 nm, and the pulse will now fit between the exciton and

biexciton lines. The location of the exciton and biexciton lines are shown for reference.
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3.2.2 Tomography

After the excitation pulse has passed through the pulse shaper, it is sent through a beam

splitter to the quantum dot. The quantum dot is located within an Attocube attoDRY 800

cryostat, and is cooled to approximately 4 K. After excitation, the emitted photons and

reflected laser pulse are collected and pass back through the beam splitter and through a

series of three OptiGrate BNF-894-OD4 notch filters. These notch filters have a narrow

rejection band with a FWHM of 0.4 nm, which can be tuned by adjusting the angle of

incidence by rotating the filters. The rejection band is aligned with the excitation laser

so that only the photons emitted by the quantum dot continue on to the rest of the

tomography setup, shown in Fig. 3.6.

The purpose of the tomography setup is twofold: determine the time between exciton

recombination and find the two-photon state of the photons emitted at that time delay.

First, both exciton and biexciton photons pass through a Casix WPA1215-λ/4 quarter-

waveplate (QWP) followed by a Casix WPA1215-λ/2 half-waveplate (HWP) and are then

split on a 50/50 beam splitter. One output from the beam splitter goes directly through

a Thorlabs LPNIRE100-B polarizer set to allow H polarized light through, which is then

coupled into a single-mode optical fibre with a Thorlabs CFC-8X-B lens. Once in the

fibre, the photons pass through a WL Photonics WLTF-NM-P tunable optical bandpass

filter, which has a transmission FWHM of 0.07 nm. The transmission band of the filter

is set to allow transmission of either exciton or biexciton photons. At the output of the

bandpass filter, the photons are detected by an Excilitas SPCM-AQRH-16-FC avalanche

photodiode. The second output from the beam splitter is sent through a second pair of

identical quarter and half-waveplates before encountering an identical polarizer, bandpass

filter and detector. Both detectors send their output signals to a PicoHarp 300 time tagger,

which builds a histogram of counts as a function of time delay between photon detections.

The two quarter-waveplate/half-waveplate pairs, along with the polarizers and detec-

tors, perform a projective measurement of the polarizations of the two photon state. The

first two waveplates take the polarization we want to measure for the exciton photon and

transform it into |H〉. When a |H〉 photon passes through the polarizer, it will be trans-

mitted 100% of the time, and enter the detector where it will register as a count. As an
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Figure 3.6: Setup for the tomography experiment. The notch filters eliminate light from

the excitation laser, so only the exciton and biexciton photons reach the rest of the setup.

The two pairs of QWPs and HWPs, along with the polarizers, can perform a projective

measurement in any polarization basis, depending on the orientation of the waveplates.

The bandpass filters ensure we only collect exciton photons on one path and biexciton

photons on the other. From these measurements, the density matrix of the two-photon

state can be reconstructed.

example, imagine we are interested in a photon in state 0.6 |R〉+ 0.8 |L〉, and want to mea-

sure its projection in |R〉. To do so, we set QWP1 to −45◦ and HWP1 to 0◦, to transform

the R polarized light into H. After the waveplates, the photon state is 0.6 |H〉 + 0.8 |V 〉,
and will pass through the polarizer with probability 0.62 = 36%. This process of setting

the waveplates to measure in a certain polarization basis is then repeated along the second

path to perform a measurement of the correlation counts between two polarization states.

The tunable bandpass filters are set such that only biexciton photons are detected on one

path from the beam splitter and exciton photons are detected on the other.

A two-photon density matrix can be fully specified by 15 values. Therefore, a mea-

surement of 15 two-photon polarization states, plus one for normalization, is sufficient to

reconstruct the density matrix. However, we will measure correlations in all 36 possible

two-photon combinations of {H,V,D,A,R, L} and reconstruct our density matrix from

that, as it has been shown to yield better results [79]. Since our state is time-dependant,

we group our measurements into time bins based on the time between photon detections.

From the correlation counts, the density matrix of the two photon state can be recon-
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structed at each time step during the lifetime of the excited state. This is achieved with a

maximum likelihood algorithm that finds the physical state most likely to have given rise

to the measured data [80]. The development and implementation of this algorithm is out

of the scope of this thesis, but the interested reader can find more information in Ref. [16].

With the time-dependent density matrix reconstructed, we can calculate the concurrence

of the emitted photons over the lifetime of the excited state.

In order to perform a projective measurement of the two-photon state, we need only

set the waveplates to transform the polarization we want to measure into |HH〉, so that

it is transmitted by the polarizing filters. The waveplate angles corresponding to the

36 measurements can be found in the Supporting Information of Ref. [33]. In order

to automate the process of setting the angles, the four waveplates were each mounted

on a Zaber X-RSW60A rotary stage. The angles of the waveplates could then be set

programmatically, allowing the entire data collection process of the tomography experiment

to be automated.

3.3 Results

3.3.1 Rabi Oscillations

With the laser tuned to the two photon resonance of the dot, the first step is to confirm

that the dot is being excited resonantly, without phonon interactions. This is done by

looking at the biexciton population as a function of the pump laser energy. In a coherent

process, we expect to see Rabi oscillations as the excitation pulse area (proportional to the

square root of the excitation laser power) is increased [81, 82, 83]. The Rabi oscillations are

fit following the discussion in Ref. [81], modulated by an exponential term as discussed in

Ref. [84]. Rabi oscillations are only present when the QD is populated coherently [76, 85],

so observation of Rabi oscillations confirms resonant two photon excitation of the biexciton

state.

Fig. 3.7 shows the measured biexciton and exciton photon fluxes as a function of pump

laser power. Rabi oscillations are clearly visible, indicating that we are resonantly pop-
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ulating the biexciton state of the quantum dot, and not relying on phonon interactions

(i.e. phonon-assisted TPE). Additionally, Fig. 3.7 reveals the optimal power for achieving

population inversion in the quantum dot; the power corresponding to a π-pulse is approx-

imately 1 µW. To maximize counts, we will set the excitation power to this value for all

subsequent experiments.
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Figure 3.7: Population of the biexciton state as measured by biexciton and exciton photon

flux. Rabi oscillations as a function of pulse area indicate coherent two photon excitation

of the quantum dot.

3.3.2 Single Photon Purity

One of the major advantages of resonant TPE is the low multi-photon emission probabil-

ity. This is critical in applications such as quantum key distribution, where multi-photon

emission can lead to an eavesdropper stealing information without being detected. In TPE,

no extraneous charge carriers are created in the nanowire or higher energy quantum dot

states, so the biexciton or exciton states will not be re-populated after recombination. In

order to quantify this, the degree of second order coherence (g(2)(τ)) of the exciton and

biexciton photons was found experimentally.
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Figure 3.8: Measured exciton and biexciton autocorrelation as a function of time delay.

Peaks at 13 ns intervals are from correlating a single photon with one from a subsequent

excitation. The features at zero time delay correspond to photons produced from the same

pulse. a) Quasi-resonant excitation. The peak at τ = 0 indicates re-excitation of the

quantum dot. b) Resonant two-photon excitation. The lack of a peak at τ = 0 indicates a

low re-excitation probability and excellent single photon purity. c) Phonon-assisted two-

photon excitation. The small peak at τ = 0 is likely reflected laser light at the same

frequency the exciton emits at.
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The degree of second order coherence is found by correlating the counts of either the

exciton or biexciton photons with themselves under pulsed excitation. Each excitation

pulse should result in the emission of a single pair of biexciton and exciton photons. Ex-

perimentally, this uses the tomography setup discussed before, but modified to operate as

a Hanbury-Brown-Twiss setup [30] by removing the polarizers and setting both bandpass

filters to pass the same wavelength. This measures the correlations between emitted ex-

citon photons or biexciton photons, regardless of polarization. For optimal single photon

purity, the autocorrelation function at zero time delay (g(2)(0)) should be zero.

The autocorrelation functions of both photons are shown in Fig. 3.8, for QRE and

both resonant and phonon-assisted TPE. ABE was not included in this study, as it has

previously been shown to be inferior to QRE, both in terms of single photon purity and

measured concurrence of the emitted state [33]. For QRE, the measured g(2)(0) values were

0.1276(45) and 0.0206(8) for the biexciton and exciton photons, respectively. For resonant

TPE, the g(2)(0) values were 0.0021(3) and 0.0015(2) for the biexciton and exciton photons,

respectively. The value of g(2)(0) under resonant TPE is two orders of magnitude lower

for the biexciton photon and one order lower for the exciton photon compared to ABE.

This shows a huge improvement in the single photon purity of the source under resonant

TPE. For phonon-assisted TPE, the calculated g(2)(0) values are 0.0035(2) and 0.0112(4)

for the biexciton and exciton photons, respectively. The exciton g(2)(0) is an order of

magnitude larger for phonon-assisted TPE compared to resonant TPE. This is due to

the laser being closer in frequency to the exciton emission line, so a fraction of the laser

spectral line overlaps with the exciton emission wavelength. A portion of the reflected laser

does not get eliminated by the notch filters and is detected as exciton photons, leading to

an increased g(2)(0). For this reason, we chose to use resonant TPE for our tomography

experiment.

Also of interest is the narrow temporal linewidths for both photons under both types

of TPE compared to QRE. This is because TPE directly populates the biexciton state and

does not require charges to decay into the QD, which takes time. While the actual lifetime

of the biexciton in the QD is the same under both excitation schemes, QRE necessitates

waiting a period of time after the excitation pulse for the biexciton to form, which happens

immediately for TPE. This enables TPE to operate at a higher repetition rate, increasing
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the maximum potential brightness with this scheme.

3.3.3 Quantum State Tomography

In order to show that TPE confers an advantage in regard to entanglement, we need

to quantify the entanglement between the emitted photon pairs. For our entanglement

monotone we will use concurrence, which ranges from 0 for a state without entanglement

present, to 1 for a perfectly entangled state. In order to calculate the concurrence, we need

to know the density matrix of the two photon state. As mentioned previously, we will do

so by measuring correlations in a set of 36 polarization bases, corresponding to all possible

combinations of {H,V,D,A,R, L}, and reconstructing the density matrix.
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Figure 3.9: Circular basis correlation counts of the exciton and biexciton photons. a)

Total two-photon flux of the lifetime of the biexciton. Measured lifetimes are 818(8) ps

for TPE and 812(9) ps for QRE. b) Difference between the RL+LR and RR+LL photon

fluxes. Oscillations appear due to precession of the state caused by non-zero fine structure

splitting. The measured fine structure splitting is 759(4) MHz for TPE and 757(5) MHz

for QRE. Neither excitation scheme showed significant dephasing over the lifetime of the

biexciton.

Measuring the photon correlations in a number of bases also allows us to measure

properties of the quantum dot with high precision. First, if we plot the counts measured

in RL + LR + RR + LL, we can find the lifetime of the dot. The correlation counts in
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this sum represent the total two-photon flux over the lifetime of the dot and by fitting the

decaying exponential, we can find the lifetime of the excited state. Fig. 3.9 a) shows the

RL + LR + RR + LL correlation counts for both TPE and QRE. From the exponential

fits, the lifetime of the biexciton was found to be 818(8) ps for TPE and 812(9) ps for

QRE. This agrees with our discussion about the larger linewidths for QRE in Fig. 3.8

being caused by waiting the biexciton to form after the excitation pulse, not from a longer

lifetime of the biexciton.

As discussed in Section 2.4.3, the two-photon state emitted precesses between |RL〉+|LR〉√
2

and |RR〉+|LL〉√
2

at a frequency proportional to the FSS, and our correlation counts in the

R/L bases will reflect this. Taking the difference between the RL + LR and RR + LL

counts, we expect to find an exponentially modified sinusoid at a frequency proportional

to the fine structure splitting. Fig. 3.9 b) shows the RL + LR − (RR + LL) correlation

counts for both TPE and QRE. From the fits, the fine structure splitting was found to

be 759(4) MHz for TPE and 757(5) MHz for QRE. These values are consistent with each

other as expected, since the FSS is a property of the quantum dot and not the excitation

scheme used.

Of interest when comparing the two excitation schemes is the amplitudes of the R/L

oscillations over the lifetime of the dot. The amplitudes should decay exponentially fol-

lowing the lifetime of the dot. If the oscillations damp out faster than this, that is an

indicator of dephasing over the lifetime of the biexciton. The counts from the dot under

both TPE and QRE show minimal dephasing, as the counts between the |RL〉+|LR〉√
2

and
|RR〉+|LL〉√

2
states clearly show oscillations over the entire lifetime of the quantum dot [86].

This is interesting, as it not only shows that TPE leads to minimal dephasing within the

dot, but that QRE appears just as good when it comes to minimizing dephasing. This

agrees with previous experiments, in which minimal dephasing was observed under QRE

over the lifetime of the dot [33].

Since the two-photon state is time-dependent, we reconstruct a time-dependent density

matrix by selecting the counts at a number of time steps throughout the lifetime of the

biexciton state. At each step, we reconstruct a density matrix by considering all counts

within a 50 ps range. From the reconstructed density matrices, we then calculate the
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time-dependent concurrence of our state to quantify the entanglement present using Eq.

1.29. The results of this are shown in Fig. 3.10. Resonant two-photon excitation of the

quantum dot resulted in a higher peak concurrence of 0.87(4), compared to 0.78(3) for

QRE. Additionally, we can calculate a count-averaged concurrence by assigning each time

step a weight based on the number of correlation counts detected within the time bin.

Doing so, we calculated a count-weighted concurrence of 0.52(3) for TPE and 0.47(3) for

QRE. As expected, resonant TPE outperformed QRE in terms of entanglement present

in the emitted two-photon state. To our knowledge, this is the first ever measurement of

concurrence for a nanowire quantum dot under resonant TPE.
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Figure 3.10: Concurrence of the two-photon state during the lifetime of the quantum dot

for TPE and QRE. TPE had a higher peak concurrence of 0.87(4), compared to 0.78(3)

for QRE. The count-weighted concurrence was 0.52(3) for TPE and 0.47(3) for QR. Errors

were assigned based on Poissonian counting statistics and propagated with n = 30 Monte

Carlo simulations. Error bands represent 1σ confidence.

These results show that TPE yields marginally better results than QRE in terms of

entanglement of the emitted photons. As minimal dephasing was observed for both exci-

tation schemes, this difference is likely due to the lower g(2)(0) exhibited by TPE. A low

g(2)(0) indicates high single photon purity, so when a biexciton and exciton photon are
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detected, we are confident they are from the decay of the same biexciton. The relatively

large g(2)(0) of the biexciton under QRE means that a subset of the photon pairs detected

are not from the same biexciton, and are not entangled. This leads to a lower overall

concurrence for the source under QRE compared to TPE.

As discussed in Chapter 2, the inability to reach unity concurrence has been attributed

to the combination of fine structure splitting and detectors with a high timing jitter [33].

In theory, this could be solved by using fast photodetectors, but we would still be left with

the issue of precession caused by the FSS. The next two chapters focus on work towards

an all-optical method of erasing the FSS of any quantum dot.
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Chapter 4

Electro-Optic Modulation

The fine structure splitting of quantum dots arises from asymmetries in the confining

potential for electrons and holes. This leads to an energy difference between the two

recombination pathways, introducing which-path information when detectors with large

timing jitter are used. It is therefore of interest to tune this energy splitting to zero in

order to recover a maximally entangled, time-independent state.

Currently, there exist many methods of tuning the fine structure splitting to zero. These

methods include applying external electric fields [87, 88, 89, 90], magnetic fields [91], strain

fields [92, 93, 94], stress [95, 96], annealing the dot [97] or a combination of these approaches

[98, 99]. However, these approaches can typically only compensate for the FSS of a single

quantum dot on a sample. For experiments that require more than one source of highly

entangled photons, it is desirable to extend FSS erasing capabilities to many quantum dots

on a single sample [100]. To do so, we instead consider an all-optical method of removing

the fine structure, which acts on the photons after they have been emitted, rather than on

the source itself [101]. This means that photons from different sources on the same sample

can be sent to different optical FSS erasers and tuned individually.

This all-optical approach of tuning the FSS has a few benefits compared to other meth-

ods. This method has the ability to tune the FSS of any dot on a sample, so we can use

multiple sources on the same sample. Additionally, it is agnostic to the physical imple-

mentation of the source; whether the quantum dot is embedded in a microlens, nanowire,
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bullseye grating or any other photonic nanostructure makes no difference, since it acts on

the emitted photons and not on the source. This makes it attractive compared to other FSS

erasing techniques like strain fields, which experience significant relaxation on scales on the

order of 100 nm [92], making them less suitable for tall nanostructures like nanowires.

Our approach to erasing the FSS involves using fast-rotating half-waveplates to shift

the energies of the emitted photons in order to correct for the energy difference arising from

the fine structure [101]. A waveplate rotating at angular frequency ω will shift the photon

energy by 2~ω, meaning the waveplate will have to rotate on the order of 108 − 109 Hz

in order to compensate for a typical FSS. Obviously, it is not realistic to physically rotate

an optical component this fast, so a different approach is taken: electro-optic modulation.

By modulating the index of refraction of a crystal, we can emulate a fast-rotating half-

waveplate without physically rotating an optical component.

In this chapter, we will start by discussing birefringence in a LiNbO3 crystal. We will

introduce the linear electro-optic effect, called the Pockels effect, and how it can be used

to emulate a rotating half-waveplate in LiNbO3. We will then discuss how a rotating half-

waveplate leads to a polarization-dependent frequency shift for photons passing through

the crystal. Finally, we will show how this can be used to compensate for the fine structure

splitting of a quantum dot.

4.1 Birefringence

In order to understand how we can emulate a half-waveplate using electro-optic modulation,

we will first discuss birefringence in general. Birefringence is a property of a material in

which the index of refraction depends on the polarization of light passing through it. It is

the property used to make quarter and half-waveplates, which are special cases where the

difference between the indices of refraction along two perpendicular axes (called the fast

and slow axes) leads to a relative delay of exactly π
2

(for QWPs) and π (for HWPs).

In order for a material to display birefringence, it must display anisotropy in some

way. Therefore, the materials we are interested in are typically crystalline in nature, since

amorphous materials lack order and tend to be isotropic. In general, any crystal without
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a cubic crystal structure can be birefringent, since these materials are anisotropic and

light polarized in different directions may experience a different index of refraction. In

this thesis, we are specifically interested in lithium niobate (LiNbO3), which is a trigonal

crystal.

Since we are discussing anisotropic media, we need a way to describe the optical prop-

erties in different directions. We first introduce the permittivity matrix ε and its inverse,

the impermeability matrix η:

ε =

ε11 0 0

0 ε22 0

0 0 ε33

 = ε0

n2
11 0 0

0 n2
22 0

0 0 n2
33

 η = ε−1 =
1

ε0


1
n2
11

0 0

0 1
n2
22

0

0 0 1
n2
33

 . (4.1)

The permittivity matrix gives us the electrical permittivity along the x, y and z directions

of the crystal. The impermeability matrix allows us to define a geometrical construction

called the index ellipsoid

ε0
∑
i,j

ηijvivj = 1 (4.2)

where {v1, v2, v3} = {x, y, z}. The index ellipsoid is used to find the refractive indices

seen by the two orthogonal modes of light travelling through the material in an arbitrary

direction. If we take the k-vector of a photon travelling through the crystal, then the index

of refraction is described by the cross-section of the ellipsoid normal to the k vector. The

cross-section is an ellipse and the semi-minor and semi-major axes define the fast and slow

axes, as well and the refractive indices in these directions.

We now consider the specific example of LiNbO3, which is a uniaxial crystal with its

optical axis in the z direction. With no applied electric field, the equation of the index

ellipsoid is:

x2

n2
o

+
y2

n2
o

+
z2

n2
e

= 1 (4.3)
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where n11 = n22 = no is the ordinary index of refraction and n33 = ne is the extraordinary

index of refraction. The index of ellipsoid of LiNbO3 is included for reference in Fig. 4.1.
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Figure 4.1: Polarization ellipsoid and ellipses of LiNbO3. a) Index ellipses of lithium

niobate in the x-y and x-z planes. b) The full index ellipsoid of lithium niobate, with the

ellipses from (a) drawn as cross-sections.

4.1.1 The Pockels Effect

We now consider the effect of an applied electric field on the index ellipsoid. The index

of refraction depends on the structure of the crystal, which is expected to change in the

presence of an external electric field. We therefore expect the index of refraction and the

impermeability matrix to be functions of the applied electric field. This implies that the

index ellipsoid will change in the presence of an external electric field, which can be used

to change the birefringence in the crystal. To emulate a fast-rotating half-waveplate, we

need to be able to set the birefringence to act as a half-waveplate at any arbitrary angle.

To do so, we will first discuss the effect of a general electric field on lithium niobate.

Certain crystals exhibit a linear change in their refractive index in response to an

external electric field. This linear electro-optic effect was first studied by Friedrich Pockels,
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and is known as the Pockels effect. By applying an electric field to a material that exhibits

the Pockels electro-optic effect, such as LiNbO3, we can induce birefringence in the material.

In general, the applied electric field can affect the index of refraction in any direction, not

just the direction of the applied field. We can therefore write the impermeability matrix

as η(E) = η + ∆η(E), where η is defined in Eq. 4.1 and

∆ηij(E) =
3∑

k=1

rijkEk (4.4)

is the change in the impermeability introduced by the applied electric fieldE = (E1, E2, E3) =

(Ex, Ey, Ez). The rijk are called the Pockels coefficients and describe the change in the

index of refraction as a function of applied electric field. It appears as though we would

need 3 separate 3×3 matrices to fully describe the response of the index of refraction to an

applied electric field. However, due to symmetries in η, r is symmetric under permutations

of i and j. Because of this, it is common to replace the two indices i and j with a single

index l, as defined in Table 4.1.

j i = 1 2 3

1 1 6 5

2 6 2 4

3 5 4 3

Table 4.1: Conversion between i, j indices and l index.

Using these new indices, we can write r as a 6 × 3 matrix. Additionally, we rewrite the

impermeability matrix η as a 6×1 vector. The change in impermeability due to the applied

electric field can now be written as

~∆η = r ~E. (4.5)

Depending on the geometry of the crystal, some Pockels coefficients rlk will be exactly

zero, and some will be exactly equal to others. The non-zero elements of r are mea-
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sured experimentally. For a trigonal 3m crystal, such as lithium niobate, the change in

impermeability is



∆η1

∆η2

∆η3

∆η4

∆η5

∆η6


=



0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0


ExEy
Ez

 . (4.6)

We can now write the index ellipsoid for a trigonal crystal in the presence of an electric

field. In general, the equation of the index ellipsoid is:

x2

(
1

n2
o

− r22Ey + r13Ez

)
+ y2

(
1

n2
o

+ r22Ey + r13Ez

)
+ z2

(
1

n2
e

+ r33Ez

)
+ 2r42Eyyz + 2r42Exxz − 2r22Exxy = 1. (4.7)

For the present work, we will restrict ourselves to an electric field applied only in the x-y

plane and light propagating in the z direction. This means we are interested in the index

ellipse in the x-y plane, and how it changes depending on Ex and Ey. We therefore find

the index ellipse of z-propagating light to be:

x2

(
1

n2
o

− r22Ey

)
+ y2

(
1

n2
o

+ r22Ey

)
− 2r22Exxy = 1. (4.8)

The goal now is to show that we can choose Ex and Ey such that they emulate a rotating

half-waveplate.

4.2 Rotating Half-Waveplate

We will now consider the case of sinusoidally varying Ex and Ey, with a 90◦ phase between

the two:
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Ex = E0 sin(ωt)

Ey = E0 cos(ωt).
(4.9)

Because of the xy cross term in Eq. 4.8, we note that the non-zero magnitude of Ex will

cause the semi-major and semi-minor axes of the index ellipse to no longer lie along the x

and y axes. We define the new principle axes of the ellipse x′ and y′ as

x = x′cos(θ)− y′sin(θ)

y = x′sin(θ) + y′cos(θ)
(4.10)

where θ is the angle between the original axes and the rotated ones. Re-writing the index

ellipse in these new coordinates, we find:

x′2
[

1

n2
o

− r22Ey cos(2θ)− r22Exsin(2θ)

]
+ y′2

[
1

n2
o

+ r22Ey cos(2θ) + r22Exsin(2θ)

]
+ x′y′[2r22Ey sin(2θ)− 2r22Ex cos(2θ)] = 1. (4.11)

The x′y′ cross term is eliminated when Ey sin(2θ) = Ex cos(2θ), which is true for ωt = 2θ.

Therefore, the angle of the principle axes rotates at a frequency half that of the applied

electric field. Setting θ = ωt
2

, we find the equation for the polarization ellipse in the rotating

frame:

x′2
[

1

n2
o

− r22E0

]
+ y′2

[
1

n2
o

+ r22E0

]
= 1. (4.12)

We can now find the modified indices of refraction along the principle axes of the

rotating ellipse:

1

n2
x′

=
1

n2
o

− r22E0

nx′ =
no√

1− r22E0n2
≈ no +

1

2
r22E0n

3
o

(4.13)
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and similarly ny′ ≈ no− 1
2
r22E0n

3
o. Therefore, the difference in index of refraction between

the fast and slow axes is ∆n = r22E0n
3
o. For a waveplate of length l, the retardation of

light polarized along the slow axis compared to that polarized along the fast axis is

Γ =
2πlr22E0n

3
o

λ
. (4.14)

Therefore, we can set the magnitude of the applied electric fields to

E0 =
λ

2r22n3
ol

(4.15)

to achieve a Γ = π delay. The applied voltage which achieves this condition is called the

half-wave voltage, and depends on the geometry and optical properties of the device. In

conclusion, by applying the sinusoidal drive signals in Eq. 4.9 with the amplitude given

by Eq. 4.15, we can create a half-waveplate that rotates at an angular frequency of ω
2
.

4.3 Frequency Shifting

So far, we have shown that it is possible to emulate a rotating half-waveplate using a

LiNbO3 electro-optic modulator. However, it is not immediately obvious that a rotating

half-waveplate will shift the frequency of photons passing through it. Intuitively, it can

be thought of as similar to the Doppler shift observed from light reflecting off of a moving

mirror. Conservation of momentum dictates that if the momentum vectors of the incident

photons and moving mirror point in opposite directions, the frequency of the output light

will be increased, and if the angular momentum vectors point the same direction, the

frequency of the output light will be decreased. This is called the Doppler effect and is a

common example of conservation of momentum.

A rotating waveplate works similarly to a moving mirror to shift light. However, while a

moving mirror makes use of conservation of linear momentum, a rotating waveplate makes

use of conservation of angular momentum to shift the frequency of the output photons.

A rotating waveplate will have an angular momentum vector pointing in either the +z
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or −z direction, depending on the direction of rotation. For photons, the handedness of

circularly polarized light is related to the spin angular momentum (SAM) of the photon

[102]. If the SAM vector of the incident photon points in the same direction as that

of the rotating waveplate, the frequency of the output photons will be increased, and if

the angular momentum vectors point in opposite directions, the frequency of the output

photons will be decreased. This is similar to the case of a moving mirror causing a Doppler

shift, and therefore is sometimes referred to as the rotational Doppler effect [103]. While

this is not a rigorous explanation of the effect, it provides some intuition on how the device

works.

We will now look at the electric field vector of an electromagnetic wave travelling

through our rotating half-waveplate. If we consider the case of a right circularly polarized

wave propagating through a clockwise rotating half-waveplate, the electric field vector of

the wave is

ExEy
Ez

 =

E cos(ω0t)

E sin(ω0t)

0

 (4.16)

where ω0 is the angular frequency of the wave. Since the field in the z direction is 0, we will

ignore it from now on. When the wave is in the rotating waveplate, the principle axes of

the polarization ellipse are x′ and y′. We can rotate our reference frame by −θ to describe

the electric field vector in this frame:

[
Ex′

Ey′

]
in

=

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

][
E cos(ω0t)

E sin(ω0t)

]
=

[
E cos(ω0t− θ)
E sin(ω0t− θ)

]
. (4.17)

If we choose our applied electric field E0 such that Γ = π, the x′ component is advanced

by Γ
2

and the y′ component is delayed by the same amount at the output of the rotating

waveplate. In the rotating reference frame, the electric field vector of the photon is:

[
Ex′

Ey′

]
out

=

[
E cos(ω0t− θ + Γ

2
)

E sin(ω0t− θ − Γ
2
)

]
. (4.18)
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Input Polarization HWP Rotation Output Frequency Output Polarization

|L〉 CW ω0 − ω |R〉
|L〉 CCW ω0 + ω |R〉
|R〉 CW ω0 + ω |L〉
|R〉 CCW ω0 − ω |L〉

Table 4.2: A summary of the outputs of a rotating half-waveplate.

Rotating back to the stationary x and y axes, we find:

[
Ex

Ey

]
out

=

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
E cos(ω0t− θ + Γ

2
)

E sin(ω0t− θ − Γ
2
)

]
(4.19)

=

[
E cos(Γ

2
) cos(ω0t)− E sin(Γ

2
) sin(ω0t− 2θ)

E cos(Γ
2
) sin(ω0t)− E sin(Γ

2
) cos(ω0t− 2θ)

]
. (4.20)

We now use the relationships θ = ωt
2

and Γ = π , which simplifies the electric field vector

to:

[
Ex

Ey

]
out

=

[
E sin((ω0 − ω)t)

E cos((ω0 − ω)t)

]
. (4.21)

This is the electric field vector of a left circularly polarized wave of frequency ω0 − ω.

Thus, the effect of the rotating half-waveplate is shifting the frequency of the light down

by ω and switching the handedness of the polarization. This analysis can be repeated for

different combinations of polarization and waveplate rotation direction [104], with results

being summarized in Table 4.2.

4.4 FSS Eraser

The fine structure splitting of a quantum dot introduces which-path information to the

biexciton-exciton cascade. Single photon detectors with high timing jitter have low energy
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uncertainty and can resolve the energy difference between the two paths of the cascade.

While low timing jitter single photon detectors based on superconducting nanowires do

exist, they are expensive and need to be cooled to cryogenic temperatures [105]. Here,

we will discuss how our rotating waveplate frequency shifter can reduce or eliminate an

arbitrary fine structure splitting from a quantum dot.

As explained in Chapter 2, the state produced by a quantum dot with fine structure

splitting δ is:

|Ψ〉 =
|HH〉+ e−i

δ
~ τ |V V 〉√

2
. (4.22)

Following Fognini et al. [101], it is convenient to rewrite this state in the operator notation:

Ψ =
1√
2

[
a†
z,kXX+ δ

2~c ,H
a†
z−τc,kX− δ

2~c ,H
+ a†

z,kXX− δ
2~c ,V

a†
z−τc,kX+ δ

2~c ,V

]
. (4.23)

a† is the creation operator, and corresponds to the creation of a photon with properties

described by its subscript. Its adjoint a is the annihilation operator and corresponds to the

destruction of a photon. The first subscript describes the spatial position of the photon,

the second subscript describes the wavenumber, and the final subscript represents the

polarization of the photon.

In order to shift the frequency of the emitted photons with the EOMs, the photons

must be circularly polarized. Therefore, we use a pair of quarter-waveplates to transform

from the |H〉/|V 〉 basis to the |R〉/ |L〉 basis. The waveplate in the exciton path is set

with its fast axis at π/4 with respect to horizontal in the lab frame, and the waveplate in

the biexciton path is set to −π/4. These waveplates are represented in operator form as

Λ1/4,XX = a†kXX ,LakXX ,V + a†kXX ,RakXX ,H

Λ1/4,X = a†kX ,RakX ,V + a†kX ,LakX ,H .
(4.24)

After the QWPs, the two-photon state becomes:
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Φ =
1√
2

[
a†
z,kXX+ δ

2~c ,L
a†
z−τc,kX− δ

2~c ,R
+ a†

z,kXX− δ
2~c ,R

a†
z−τc,kX+ δ

2~c ,L

]
. (4.25)

Following our analysis in 4.3, a half-waveplate rotating counter-clockwise can be ex-

pressed in operator form as

Λ1/2(ω) =
∑
ki

a†ki+2ω/c,Laki,R + a†ki−2ω/c,Raki,L. (4.26)

Therefore, after the EOMs, the two-photon state is:

χ =

[
Λ1/2,XX(ω)⊗ Λ1/2,X(ω)

]
Φ

=
1√
2

[
a†
z,kXX+ δ

2~c−
2ω
c
,R
a†
z−τc,kX− δ

2~c+ 2ω
c
,L

+ a†
z,kXX− δ

2~c+ 2ω
c
,L
a†
z−τc,kX+ δ

2~c−
2ω
c
,R

]
=

1√
2

[
a†z,kXX ,Re

i(z( δ
2~c−

2ω
c

))a†z,kX ,Le
i(−z( δ

2~c−
2ω
c

)−τckX+τc( δ
2~c−

2ω
c

))

+a†z,kXX ,Le
i(−z( δ

2~c−
2ω
c

))a†z,kX ,Re
i(z( δ

2~c−
2ω
c

)−τckX−τc( δ
2~c−

2ω
c

))
]

=
1√
2

[
a†z,kXX ,Ra

†
z,kX ,L

eiτc(
δ

2~c−
2ω
c

) + a†z,kXX ,La
†
z,kX ,R

e−iτc(
δ

2~c−
2ω
c

)
]

(4.27)

Switching back to the ket notation:

|χ〉 =
1√
2

[
|RL〉 eiτc(

δ
2~c−

2ω
c

) + |LR〉 e−iτc(
δ

2~c−
2ω
c

)
]

=
|HH〉+ |V V 〉√

2

eiτ(2ω− δ
2~ ) + e−iτ(2ω− δ

2~ )

2
− i |HV 〉 − |HV 〉√

2

e−iτ(2ω− δ
2~ ) − eiτ(2ω− δ

2~ )

2

=
|HH〉+ |V V 〉√

2
cos

((
2ω − δ

2~

)
τ

)
+
|HV 〉 − |V H〉√

2
sin

((
2ω − δ

2~

)
τ

)
(4.28)
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Therefore, if we set the angular frequency of the rotating waveplate to ω = δ
4~ , the

output state will be |χ〉 = |HH〉+|V V 〉√
2

. This is exactly the state that would be emitted by a

quantum dot with zero fine structure splitting. The net result of this process is recovering a

maximally-entangled state that does not depend on the time between biexciton and exciton

recombination. The entanglement of the emitted photons will therefore not be degraded,

even when using single photon detectors with a large timing jitter.

Transmission
grating EOM

QWP

EOM

ۧȁΨ =
ۧȁ𝐻𝐻 + 𝑒−𝑖

𝛿
ℏ
𝜏 ۧȁ𝑉𝑉

2

π/4

-π/4

ۧȁ𝜙 =
ۧȁ𝑅𝐿 + 𝑒−𝑖

𝛿
ℏ
𝜏 ۧȁ𝐿𝑅

2
ۧȁ𝜒 =

ۧȁ𝑅𝐿 + ۧȁ𝐿𝑅

2

XX

X

Figure 4.2: Diagram of the fine structure eraser using two EOM devices. The EOMs are

set to rotate at a frequency ω = δ
2~ . The output state corresponds to that of a quantum

dot without any fine structure splitting.

Additionally, Eq. 4.28 gives us a simple way to measure the FSS after the erasing

process. While a full tomography experiment requires measuring the correlations in 36

bases, we can measure the FSS by only measuring in 4: HH, VV, HV and VH. The difference

in HH+VV and HV+VH correlation counts will oscillate at a frequency δ
~−2ω, giving us a

way to experimentally measure the fine structure splitting after the compensation process.

In order to implement the optical FSS eraser scheme, we need to demonstrate electro-

optic frequency shifting experimentally. To do so, we require z-propagating lithium niobate

and the ability to apply electric fields to it in the x and y directions. The next chapter

presents frequency shifting results of a device based on the theory discussed in this chapter.
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Chapter 5

Frequency Shifting

We will now move away from the theory of electro-optic modulation and show how it is

implemented experimentally. From Chapter 4, we know we require the ability to apply

a vertical and horizontal electric field to the region of LiNbO3 that light is propagating

in. Early work used a collimated beam propagating through a bulk LiNbO3 crystal, which

required applied voltages of up to 8 kV to achieve the half-wave condition [106]. This

style of device was able to achieve a frequency shifting efficiency of up to 96% while

operating at 110 MHz [107]. However, the large required voltages makes them unsuitable

for operation at higher frequencies. These large voltages are required since the bulk optics

setup necessitates a large electrode separation. In order to accommodate the incident

beam, these bulk devices consisted of a bar of LiNbO3 with widths of a few millimetres.

Modern LiNbO3 EOM devices instead use a waveguide to confine the light to a region

near the electrodes. This reduces the beam diameter so that the electrodes can be placed

close to the centre of the beam, typically only a few micrometers. This means that a

significantly lower voltage can be applied to achieve the same electric field in the region

the light is propagating. In this chapter, we will discuss how such a device is characterized

and present results of frequency shifting light from a diode laser.

The results presented in this chapter follow from the work of Simon Daley [40] and

Michael Kobierski [108]. Daley and Kobierski demonstrated a conversion efficiency of

92.6% to a single frequency sideband, using a device similar to the one described in this
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section. However, the drive signal they used was found by optimizing for conversion ef-

ficiency, and could not be explained by theory. With this approach, it was found that

high-efficiency conversion of one polarization in one direction did not imply conversion of

the other polarization in the other direction, as is expected from a rotating half-waveplate.

In order for these EOMs to be used in the FSS eraser scheme, they must be able to up-

convert one polarization and down-convert the other with high efficiency and with the same

drive signal. The goal of this chapter is to first determine theoretically what drive signal

is required, and then to use a similar drive signal to up-convert and down-convert light

with opposite handed polarization. This will confirm that the EOM is correctly acting as

a rotating half-waveplate and can be used in the FSS eraser scheme.

5.1 Electro-Optic Modulator

LiNBO3

SiO2
ZnO:LiNBO3

x

y

1μm

7μm


5μm


8μm
 15μm


1μm

Au
A B

Figure 5.1: Cross-section of the LiNbO3 EOM device.

For this project, we used a custom lithium niobate EOM manufactured by SRICO. The

wafer consists of an x-cut, z-propagating LiNbO3 crystal with a waveguide near one of the

surfaces. The waveguide region is formed by zinc oxide diffusion, which forms waveguides

with low polarization selectivity, low loss and a high photorefractive damage threshold

[109]. Silicon dioxide is then deposited on the surface of the wafer to passivate it. On

top of the SiO2, three gold traces are deposited parallel to the waveguide, with the centre

trace directly above the waveguide and the other two equidistant from the centre. The

outer traces are used to apply voltages and the centre trace acts as a common ground. The

LiNbO3 wafer is 3 cm long, and a cross-section of the device is shown in Fig. 5.1.
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As discussed in 4.2, our rotating waveplate protocol requires the ability to apply an

electric field in the x and y directions. For our device, this is achieved by applying either

a common or differential voltage to the two outer traces, while holding the middle trace

at ground. Holding the outer traces at +V0 and the centre trace at ground will create an

electric field in the +x direction within the waveguide. Holding trace A at +V0 and trace

B at −V0 will create an electric field in the +y direction. However, the magnitude of the

electric field will not necessarily be the same in the common and differential cases, due to

the geometry of the device.

20 μm

20 μm

Figure 5.2: QuickField finite element method simulations of the electrostatic potential in

the EOM for differential (±1V) and common (+1V) applied voltages. A differential voltage

creates a horizontal electric field, whereas a common voltage creates a vertical one. The

electric field in the waveguide region is 1.87 times larger in the common case compared to

the differential case.

To quantify the difference in electric field magnitude for the common and differential

cases, the electrostatic potential was solved using QuickField Student, a finite element

analysis program. The device was modelled using the dimensions from Fig. 5.1, except for
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the traces, which were modelled as infinitely thin. We then set the potentials of the two

outside traces and solved for the electric field and potential using finite element analysis.

Fig. 5.2 shows the simulated electrostatic potential in the air, chip and waveguide regions

for differential and common voltages of equal magnitude (±1V). From this, we find Ex =

34.9 kV/m and Ey = 18.7 kV/m at the centre of the waveguide for the common and

differential cases, respectively. For the same magnitude, common voltages produce an

electric field 1.87 times larger in the waveguide region as compared to the differential case.

We can compensate for this by choosing the phase φ between oscillating electric fields to

be some value other than 90◦. We instead select a phase such that, when the signals are

applying a differential voltage, the magnitude of the voltage is 1.87 times larger than when

the signals are applying a common voltage. This is satisfied for φ = 123.7◦, which yields

an electric field of constant magnitude within the waveguide region. While the value of

the phase may change depending on the exact geometry and properties of the device, it is

good to know that the phase between the two signals will not be exactly 90◦ and can be

changed when trying to find optimal experimental parameters.

5.1.1 Electronics

The electrical system for our EOM has a few requirements that guide our choice of com-

ponents. First, we must be able to apply two sinusoidal signals of the same, tunable

amplitude. This will allow us to set the signal amplitudes to the value determined by the

half-wave voltage of the device. We must also be able to tune the phase between the two

signals, as we just outlined. Additionally, we should be able to add DC voltages to both

traces in order to compensate for any unwanted, built-in birefringence in the device. While

the ZnO waveguide is expected to have minimal birefringence, any built-in birefringence

can be tuned to zero by applying DC biases to both traces.

To generate a pair of sinusoidal waves, we use a TI DAC38RF82, a dual channel digital-

to-analog converter capable of generating RF signals up to GHz frequencies. The ampli-

tudes of the signals and the phase between them can all be controlled with custom Python

code, which simplifies interfacing with the device [110]. The FSS of our dot is 760 MHz,

and each EOM shifts one polarization up in frequency and the other down, so we need
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to operate the EOMs at half of the frequency of the FSS. Therefore, want the ability to

produce a drive signal at up to 380 MHz. At this frequency, the device is capable of

generating signals with a measured amplitude of 0.76 dBm. Previous work with a similar

LiNbO3 EOM device required a drive signal of 30 dBm to achieve high-efficiency frequency

shifting [111]. Therefore, the DAC38RF82 device itself does not generate a large enough

amplitude signal to drive the device.

EOM

Amp.  

Amp.  

DAC38RF82

A

B

BK Precision
1761

Bias
Tee

Bias
Tee

ZHL-20W-52

ZHL-20W-52 ZABT-80W-13

ZABT-80W-13

Figure 5.3: Electrical components involved in driving the EOM.

To amplify the voltage, the two RF signals are then sent through a pair of Mini-

Circuits ZHL-20W-52 amplifiers. These high-power amplifiers have a gain of 50 dB, and a

maximum output of 42 dBm. In order to avoid damaging the amplifiers, the output from

the DAC38RF82 is first attenuated by −11 dB, restricting the maximum output to 39.76

dBm. For a 50 Ω system, 39.76 dBm corresponds to 61.5 Vpp. Since the phase between

our signals is variable, so too will be the magnitude of the signals when they are equal,

but opposite (i.e. what differential voltage they can apply). Two sinusoids with a phase

difference of φ will have equal but opposite values at xi = π − φ
2
, where the sinusoids will

have a value of ± sin
(
π − φ

2

)
. If we assume φ = 123.7◦ and an amplitude of 61.5

2
V, this

means the system is capable of applying up to 27.0 V of differential voltage.

Next, we want the ability to apply a constant DC bias to both traces A and B in order

to remove any built-in birefringence from the EOM waveguide. To do so, we use a BK

79



Precision 1761 DC triple output power supply. The 1761 has two tunable voltage sources,

which can be used to individually bias the two traces of the EOM. The DC component

from the power supply is connected to the AC component through a ZABT-80W-13-S bias

tee. The output of each bias tee is then connected to the EOM. A diagram of the electrical

components is included in Fig. 5.3.

The final step is to send the electrical signal to the EOM. There are three different

methods in which we can achieve this. They are the standing wave mode, which has two

variations, and the travelling wave mode. These methods are shown in Fig. 5.4. Each

method has benefits and drawbacks, which we will now discuss subsequently.

EOM

A

B

EOM

1 2

3 4

EOM

A

B

1 2

3 4

50Ω

50Ω

EOM

A

B

EOM

1 2

3 4

a) b) c)

Figure 5.4: The three electrical configurations for the EOM device. a) The single-port

standing wave configuration. b) The two-port standing wave configuration. c) The travel-

ling wave configuration, in which the RF signal is terminated by a pair of 50 Ω resistors.

5.1.2 Standing Wave

The first EOM configuration is the standing wave mode. The idea of this setup is to have

the EOM act as an open circuit, reflecting 100% of the signal back along the transmission

line to form a standing wave. There are two ways to achieve this: first, connecting the

transmission line directly to the input port of the EOM and leaving the output port

disconnected (called the single-port method) or second, splitting the input transmission
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line with a tee adaptor and connecting the outputs to the input and output ports of the

EOM (called the two-port method).

The single-port method, shown in Fig. 5.4 a), places a voltage anti-node at the

unattached port, near where the trace lies on the lithium niobate. A voltage anti-node

corresponds to the maximum amplitude of voltage oscillation, and therefore minimizes the

required power of the AC drive signal. Furthermore, a voltage anti-node corresponds to a

current node, limiting the current flowing within the EOM device, which has destroyed a

similar device through Joule heating [108]. The two-port method, shown in Fig. 5.4 b),

has the ability to place a standing wave anti-node at the centre of the EOM trace, for the

correct choice of transmission line lengths and driving frequency. However, this only works

for drive signal frequencies with wavelengths that match the length of the transmission line

after the splitter. This limits us to frequencies near a fundamental frequency determined

by the transmission line lengths, and multiples thereof. Since we want the freedom to

choose an arbitrary frequency, we will use the single-port method instead.

The standing wave mode is limited in the maximum frequency it can operate at. In

the time that light is travelling through the EOM, it should only see the rotating half-

waveplate at a single angle θ. However, in the standing wave mode, the voltage applied is

approximately the same throughout the entire trace and oscillates at the frequency of the

drive signal. As such, it will change throughout the transit time of the photons through

the device. In order for the standing wave mode to work with high efficiency, we need the

transit time of photons through the device tt = nol
c

to be small relative to an oscillation

period, or 1 � 2π
ωtt

, where ω is the driving frequency. This condition also determines how

closely the single-port method places a voltage anti-node at the centre of the EOM trace,

which occurs for l � λ, or equivalently 1 � 2πc
ωlno

. Our lithium niobate chip is 3 cm long,

so for our device at 380 MHz, we have:

1� 2πc

ωlno

1� 11.4.

(5.1)

The inequality in Eq. 5.1 holds, but not entirely convincingly. We want the photon to see

the waveplate at a single angle during its transit, but the angle of the waveplate will rotate
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by 31.5◦ in the time it takes for a photon to transit the EOM in the current setup. We

therefore expect to not be able to reach unity conversion efficiency in the standing wave

mode. To counteract this, we can operate the EOM device at lower frequencies to increase

the right-hand side of the inequality.
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Figure 5.5: Measured reflected and transmitted signals for the EOM operating in standing

wave mode, when only trace A is connected. 7.3% of the input power is transmitted

through the EOM to trace B, due to capacitive coupling between the traces.

Another limiting factor in the performance of the EOM is the capacitive coupling

between traces A and B. Ideally, the signals on the two traces are completely independent

of each other, but capacitive coupling leads to transmission between the traces. When a

single trace (either A or B) was driven, a portion of the signal was transmitted to the

other trace, rather than entirely reflected back along the input transmission line. To see

this, a pair of Mini-Circuits ZGBDC20-33H-S+ bi-direction couplers were placed before

the EOM on both paths. Bi-directional couplers are four-port devices, which couple a small

fraction of the signal on a transmission line to different ports, depending on the direction

of propagation of the signal. This allows us to see the forward and backward propagating

components on the transmission lines, and therefore determine how much of the signal is

reflected or transmitted at the EOM. Fig. 5.5 shows the reflected and transmitted signal
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when only channel A was driven at 300 MHz in the single-port standing wave configuration.

The signals were recorded with a Textronix MDO4104-6 oscilloscope, which was used for

all subsequent experiments as well. It was determined that 77.5% of the input power was

reflected and 7.3% was transmitted through the EOM to channel B. This process was

repeated with only trace B driven and similar results were obtained: 74.5% reflection and

6.1% transmission. This transmission is attributed to capacitive coupling between the two

traces of the EOM. Since the parallel traces are separated by only a few micrometers, there

is a non-negligible capacitance between the traces, so a portion of the signal is transmitted

across the EOM.

The capacitive coupling between the traces means that the signal applied to each trans-

mission line is not what will be seen on each EOM trace. Instead, it will be a combination

of the input signal on the trace and the transmitted portion of the signal from the other

trace. This can always be compensated for by individually setting the amplitude of the

signal on traces A and B such that the incident, reflected and transmitted signals sum to be

equal on both traces. Another solution would be putting an inductor across traces A and

B, such that the signal sees an infinite impedance across the traces from the capacitance

and inductor at the drive frequency. This would solve the coupling problem and make the

two traces isolated as intended.

5.1.3 Travelling Wave

The second EOM electrical configuration is the travelling wave mode, shown in Fig. 5.4 c).

In this setup, the input transmission line is connected to the input port of the EOM, and

the electrical signal travels along the traces of the EOM before being terminated at the

output port. This setup eliminates reflections by terminating the signal with a 50 Ω resistor

after the EOM. The travelling wave setup addresses the issue of the emulated waveplate

rotating during the transit of the photon, so we are no longer limited by Eq. 5.1. In this

setup, the photons and electrical signal co-propagate, so the problem of a photon seeing a

changing electric field is reduced. Note that in general, the velocity of the electrical signal

and the speed of light in the material will not be the same, but it will be an improvement

over the standing wave method. With this setup, frequency up and down conversion by 2
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GHz has been demonstrated on a laser with efficiencies of over 90% [111].

In contrast to the standing wave method, the travelling wave mode does not place a

voltage anti-node at the location of the EOM, meaning there will be current flowing in

the traces of the EOM. This causes Joule heating on the EOM traces, which can raise the

temperature high enough to damage the waveguide by allowing the ZnO to diffuse deeper

into the LiNbO3 [40]. Unfortunately, the gold traces on our current devices are very thin (1

µm) and heating is a significant problem. As a result, our current devices are not capable

of operating in the travelling wave mode. However, the next generation of devices will have

traces 10 µm thick and will be able to operate in the travelling wave mode.

Laser EOM

QWP HWP QWP HWP

PBSPBS

Figure 5.6: EOM setup for DC testing. In this setup, the voltage sources apply a slow-

changing triangle wave voltage to the EOM traces, 180◦ out of phase with each other.

5.2 DC Results

Before attempting to shift the frequency of light with an AC drive signal, we must find some

device parameters using DC voltages. Of particular interest are two values: the half-wave

voltage and the built-in birefringence of the device. The half-wave voltage is the voltage

we must apply to delay one component of the electric field by one half-wavelength. This
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is the voltage required to emulate a stationary half-waveplate, and will tell us what the

amplitude of the AC drive signal should be. The built-in birefringence is the birefringence

of the device with no voltage applied to either of the traces. It is possible that the waveguide

has different indices of refraction along different axes, leading to an intrinsic birefringence

even with no signal on either trace. Both of these values can be found by applying a slow-

oscillating voltage to both traces and measuring the effect on the polarization of incident

photons.

Figure 5.7: False colour image of the waveguide and LiNbO3 chip, as imaged with a

Thorlabs DCC1545M-GL CMOS camera. The bright spot is laser light travelling through

the EOM waveguide. The faint rectangular region is the bulk LiNbO3 chip.

The following experiments were all done with light from a Thorlabs DBR852P diode

laser. This laser has a spectral linewidth of 10 MHz, so we can easily resolve a frequency

shift on the order of hundreds of MHz. In addition, the wavelength of the laser is 852

nm, which is not far off from the 892 nm of the exciton photon from the quantum dot.

According to Eq. 4.15, the electric field required to emulate a half waveplate scales linearly

with wavelength. Therefore, changing the operating wavelength from 852 nm to 892 nm

will require increasing the amplitude of the drive signal by only 4.7%. Light from the laser
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was coupled into the waveguide with an Olympus LMPLN5XIR objective lens, chosen for

its numerical aperture of 0.1 and high transmission in the near-IR. At the output of the

EOM, the beam passes through a Thorlabs BP108 pellicle beamsplitter and approximately

8% of the intensity is sent to a Thorlabs DCC1545M-GL CMOS camera, to confirm that

the light is propagating in the waveguide region. The optical output of the LiNbO3 chip is

shown in Fig. 5.7, which shows that the majority of the light is confined to the waveguide

region.
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Figure 5.8: Ellipticity angle χ and orientation angle ψ of light output from the EOM as a

function of the applied differential voltage for three input polarizations. For H polarized

input light, the polarization barely changes, since the polarization is aligned with the

principle axes of the EOM waveplate. For D polarized light, the light is not aligned with

the principle axes, and we see modulation of the polarization. For an applied voltage of

around ±7 V, we see complete conversion from D to A polarized light. For R polarized

input, we also see modulation of the polarization, with conversion from R to L also around

± 7 V, as expected.

To find both the built-in birefringence and the half-wave voltage, we apply a slow-

oscillating differential voltage to the EOM traces and measure the output polarization. The

setup for this experiment is shown in Fig. 5.6. After the EOM are a Casix WPA1215-λ/4

QWP followed by a Casix WPA1215-λ/2 HWP and a Thorlabs LPNIRE100-B polarizer,

which are used to measure the output polarization in six bases {H, V,D,A,R, L} and

reconstruct the output polarization of the beam for a given input polarization. After
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reconstructing the output polarization, we can calculate the two values of the polarization

ellipse: the ellipticity angle χ and the orientation angle ψ. Fig. 5.8 shows the calculated

values of ψ and χ when a differential voltage is applied to traces A and B. The experiment

was repeated three times, once each with H, D and R polarized light as the input.

From Fig. 5.8, we can make a few observations. First, the waveguide has minimal

built-in birefringence. This is seen in all three plots; the output polarization at zero

applied voltage always corresponds closely to the input polarization. For example, in the

Input R plot, the discontinuity in ψ at 0 V corresponds to completely circularly polarized

light, for which the orientation angle ψ is undefined. Additionally, the lack of large changes

in the output polarization for any voltages in the Input H plot tells us that the angle of

the waveplate created in the LiNbO3 aligns closely with the H polarization. This makes

sense, as a differential voltage creates an electric field in the y direction, which causes the

waveplate fast and slow axes to lie along the x and y axes, respectively. Since, for H

polarized light, the electric field is entirely in the y direction, no relative shift between

electric field components is created, so the output polarization should be unaffected. This

reasoning is confirmed by the Input D plot, which shows complete conversion of D to A

polarized light around 7 V. At zero volts, the ellipticity angle χ is zero since D is a form

of linear polarization, and the orientation angle ψ is close to π
4
, as expected for diagonally-

polarized light. At 7 volts, the ellipticity is once again zero, and the orientation angle

is now close to −π
4
, indicating that the light is now anti-diagonally-polarized. Since D

polarized light has equal electric field components in the x and y directions, a delay in

one of these directions will cause a change in the output polarization. Going from D to A

requires a half-wave delay, so this plot also tells us our half-wave voltage: 7 V.

5.3 AC Results

With our device characterized, we can now move on to testing its frequency shifting ca-

pabilities using the narrowband laser. The new experimental setup (shown in Fig. 5.9)

was adjusted to accommodate a Thorlabs SA200-8B scanning Fabry-Perot cavity. One end

of the cavity is connected to a piezoelectric transducer, which changes the cavity length
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Figure 5.9: EOM setup for AC experiment. In this experiment, the voltage sources con-

nected to the EOM are the RF signals from the amplifiers. The voltage source connected

to the Fabry-Perot is a slow-oscillating voltage used to scan the transmission frequency of

the cavity.

when a voltage is applied. Changing the length of the cavity changes the wavelength of

transmitted modes, and the output intensity is detected using a photodiode. The cavity

has a free spectral range (FSR) of 1.5 GHz and a resolution of 7.5 MHz. From the FSR, we

can find the conversion between the voltage applied and transmitted wavelength, allowing

us to measure the shift in frequency of the laser light.

In order to confirm that the EOM rotating waveplate emulator is working correctly, we

need to demonstrate both down-shifting of RCP light and up-shifting of LCP light. We

need to be able to achieve both up-shifting and down-shifting with the same drive signal in

order to use the EOM devices for the FSS eraser discussed in the previous chapter. It has

previously been demonstrated that electro-optic half-waveplate emulators are capable of

both up-converting and down-converting light [111, 112], although it is unclear if the same

drive signal was used to shift in both directions. The EOM needs to be able to achieve

both of these simultaneously, and with high efficiency. In addition, the device needs to act

as a half-waveplate, so that we get RCP light out for LCP light in and LCP light out for

RCP light in.

In rotating half-waveplate EOMs, inefficiencies correspond to light not being shifted,
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or being shifted by the wrong amount [107]. These devices are capable of shifting photons

by integer multiples of the drive frequency, forming sidebands. This means that if we want

to increase the frequency by ω, we may get components shifted by {..., −2ω, −ω, 0, ω, 2ω,

...}. For a perfect drive signal, all the optical power will be shifted into the +ω sideband,

but errors such as amplitude imbalance, phase imbalance and higher harmonics will lead

to some optical power in other sidebands. The goal, therefore, is to optimize the drive

signal to get as much power in the desired sideband as possible.
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Figure 5.10: Frequency shifting of light from a narrowband diode laser. The blue line is

the measured intensity of left circularly polarized light, and the red line is the intensity

of right circularly polarized light. The black line is the sum of the intensities in the two

polarization modes. a) Frequency down-conversion of RCP light through the rotating half-

waveplate. Integrating the peaks shows that 83.7% of optical power is converted to the

correct frequency and polarization band. b) Frequency up-conversion of LCP light with an

efficiency of 80.7%. All data was collected with the same drive signal applied to the EOM.

We have five experimental parameters that we can adjust to find an optimal combination

for frequency shifting: frequency (f), amplitude (VAC), phase (φ) and DC bias on traces

A and B (VA and VB). For frequency, we want the ability to go up to 380 MHz, but since

our device is expected to perform worse for higher frequencies, we chose to operate at

f = 200 MHz. The phase was set to 123◦ and both VA and VB were initially set to 0 V.
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For amplitude, we need 7 V of differential voltage to emulate a half-waveplate. For two

sinusoids 123◦ out of phase, this is achieved by a signal amplitude of 7.97 V, or 15.9 Vpp.

Since our system is capable of generating signals up to 61.5 Vpp (39.7 dBm), we start by

driving it at 15.9/61.5 = 25.8% power. With these values, there was a noticeable amount

of light shifted into the desired sideband, but the majority of the intensity was still in

the main band. This is characteristic of too small an amplitude in the drive signal [107].

Therefore, the amplitude of the drive signal was increased until an improvement in the

conversion efficiency was observed.

After some optimization of the drive variables, a high degree of frequency shifting

was achieved. The values were: f = 200 MHz, VAC = 40.6 Vpp (36.1 dBm), φ = 120◦,

VB = 0 V and VA − 6.56 V. With these parameters, frequency shifting both up and down

were observed, depending on the handedness of the input polarization. Many trials were

performed, and the best results are shown in Fig. 5.10. Integrating the peaks shows that,

for right circularly polarized input, 83.7% of the light is shifted down in frequency and

is left circularly polarized. For left circularly polarized input, 80.7% of photons are up-

shifted and right circularly polarized after the EOM. This shows that the EOM is working

as intended by emulating a fast rotating half-waveplate. The inability to reach unity

conversion efficiency can be attributed to the inherent errors introduced by the standing

wave setup, and possibly errors in the drive signal parameters as well.

The experimental parameters required to emulate a fast rotating half-waveplate mostly

agreed with our theoretical analysis of the system. The phase between the two drive signals

was only 3.7◦ off from the predicted value, indicating excellent agreement with our model.

Additionally, the DC bias on trace B was 0 V, as predicted. The DC bias on trace A was

predicted to also be 0 V, but was found to be optimal at -6.56 V. However, this voltage

is relatively low compared to previous trials [40, 108], indicating better agreement with

theory. The signal amplitude disagreed most strongly with the predicted amplitude, as we

needed an amplitude of 40.6 Vpp, which is 2.55 times larger than the predicted 15.9 Vpp.

While we did expect around 50% of the power to be reflected by the EOM [108], this does

not fully explain the difference. The discrepancy may also be partially explained by loss

in the system at higher powers, although further testing is needed to confirm if this is the

case.
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5.3.1 Stability

In order to use our EOM in more interesting experiments, like the FSS eraser described

in Section 4.4, it needs to be stable over long periods of time. The frequency shifting

data in Fig. 5.10 was taken in approximately 100 ms, whereas the tomography experiment

discussed in Chapter 2 consists of data taken over a 6.5-hour period. Even a partial

tomography experiment to measure the FSS would take nearly 45 minutes, so we are

interested in determining if our EOM is stable on these time scales.

In previous trials with these EOM devices, it was observed that the conversion effi-

ciency tends to decrease the longer the devices are run. This could be compensated for

by gradually increasing the DC biases applied to the two traces as the efficiency dropped.

From this observation, we hypothesized that the DC bias causes charges to drift within the

LiNbO3 and generate an internal electric field opposing the applied field. To test this, and

understand the timescale on which this occurs, we ran the EOM device for an extended

period of time and measured the conversion efficiency throughout.

Fig. 5.11 shows the amount of power in four frequency bands over a period of 40

minutes. For the first 20 minutes, both the AC and DC signals were left on, and the

conversion efficiency was measured twice every minute. In minutes 20 to 30, the DC

voltage was turned off, except briefly for data acquisition once every minute. In minutes

30 to 40, the AC signal was also turned off, except for data acquisition. At each time step,

the intensity vs. frequency of the optical output was recorded by the oscilloscope, giving

data like that in Fig. 5.10. For each data acquisition, the four frequency bands with the

highest intensity were identified, and the shifting efficiency was calculated from the relative

heights of the peaks.

In the 20 minutes with the full electrical signal applied, the conversion efficiency grad-

ually decreased from around 80% to 60%. This led to an increase in the power in the

unshifted energy band. However, in the following 10 minutes without DC voltage, the

conversion efficiency recovered and increased to approximately 70%. In the 10 minutes

following that, the DC and AC signals were turned off except for data acquisition, and the

conversion efficiency recovered to approximately the initial 80%.

Turning the AC signal off appears to have no additional benefit compared to turning off
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just the DC signal. This supports our hypothesis that the DC voltage is the cause of the

decreasing conversion efficiency. The likely reason for this is charge accumulation within

the LiNbO3, which opposes the applied DC electric field. Since LiNbO3 is a dielectric, it

can be polarized by an external electric field, producing an internal field that opposes the

applied one. A constant electric field leads to a gradual buildup of charge which opposes

the applied field and thus decreases the conversion efficiency. However, the AC field is

oscillating quickly and does not cause charge buildup in the dielectric, so the efficiency will

not decrease if the AC signal is left on. When the DC bias was turned off, the conversion

efficiency appeared to recover approximately as quickly as it had deteriorated, attributed

to the charges relaxing and no longer opposing the applied field [113]. It still remains to

be shown that this method of duty cycling the EOM can lead to stable operation over

extended periods.
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Figure 5.11: Conversion efficiency of the EOM device over time. In the light grey region,

the DC voltage was turned off and only turned on to take measurements. In the dark grey

region, the AC signal was turned off as well. In the first 20 minutes, the efficiency decays

from around 80% to 60%. The conversion efficiency recovers over a similar time span when

the DC voltage is turned off.

These results are relevant to the feasibility of using these EOM devices in experiments
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that use our quantum dot source. We note that the conversion efficiency is only stable on

short time scales, up to about a minute. This is not ideal for experiments such as quantum

state tomography, which requires hours of data acquisition for a full experiment. However,

the fact that the conversion efficiency recovers on a similar timescale that it deteriorates

is reassuring. Experiments requiring long-term, stable operation of these LiNbO3 EOMs

will likely require cycling the devices on and off to prevent charge buildup and a loss in

efficiency. In the simplest case, this may be possible by running the EOMs at a duty cycle

with enough off time to allow for charge relaxation. If stable operation cannot be achieved

through a simple duty cycle, the EOMs may require an active feedback system to control

when the DC bias is applied. The active feedback system would sample the output from

the EOM and disable the DC bias or apply a reverse bias to facilitate charge relaxation

when the efficiency drops below an acceptable level. Such a system may be necessary to

maintain high conversion efficiency over long periods of time.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

Semiconductor quantum dots have the ability to outperform the current state-of-the-art

SPDC-based photon pair sources. However, there are still a number of issues that need to

be solved before this happens, including long lifetimes and the fine structure splitting. In

this thesis, we have shown that resonant two-photon excitation improves the single photon

purity and measured concurrence of emitted photon pairs. However, the performance of

quantum dot-based sources is still limited by their fine structure splitting, which is an

unwanted property caused by asymmetry in the quantum dot confining potential. It is of

interest to tune the quantum dot fine structure splitting to zero, for which many schemes

have already been demonstrated experimentally.

In this thesis, we discussed an all-optical approach to eliminating the FSS using an

electro-optic rotating half-waveplate emulator. We showed theoretically that such a device

could be used to reduce or eliminate an arbitrary fine structure splitting in photons emitted

by a quantum dot. Importantly, this scheme is agnostic to the specific implementation of

the source, as well as the nanostructure it is embedded in. Furthermore, multiple all-optical

FSS erasers could be used to eliminate the FSS of multiple sources on the same sample,

something that is impossible with many of the other FSS removal schemes.
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This thesis leaves us in a good position to demonstrate the optical FSS eraser exper-

imentally. The average frequency shifting efficiency shown here was 82.2%, with similar

rates for up and down-conversion. Since the FSS eraser scheme depends on two EOMs,

the overall erasing efficiency would be ε = 0.8222 = 0.676. At this rate, the FSS erasing

capability would likely be measurable, as the signal-to-noise ratio (ignoring other sources

of noise) would be 0.676
1−0.676

= 2.09. In Chapter 4, we discussed how a partial tomography

measurement in only four polarization bases could be used to measure a reduction in the

FSS. To do such an experiment, the EOM would need to be capable of stable operation

for approximately 40 minutes. The results in this thesis indicate that the stability drops

significantly over the span of 20 minutes, but can recover when the DC signal is turned

off. In order to reach the stability required for long, automated experiments like quantum

state tomography, the EOMs might require duty cycling or an active feedback system to

control the signal applied to the traces.

In order to fully recover a pure, time-independent state corresponding to a quantum dot

without any fine structure splitting, we would need unity frequency conversion efficiency.

The efficiency of the EOMs may be improved in the future by moving to the travelling

wave method and optimizing both signal amplitudes individually to account for capacitive

coupling between the EOM traces. By implementing both of these, it may be possible

to improve the efficiency of the rotating waveplate emulator even further, getting closer

to an all-optical method of removing the quantum dot fine structure splitting with high

efficiency.

6.2 Outlook

There exist natural next steps for both the resonant excitation and optical FSS eraser

experiments, that will build on the research in this thesis. For resonant two photon ex-

citation, the next step is repeating the tomography experiment performed in this thesis

with low timing jitter photon detectors. With low timing jitter, detectors are unable to

resolve the energy difference between the two branches of the biexciton-exciton cascade.

Because of this, it is predicted that low timing jitter detectors will measure near-unity
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concurrence over the entire lifetime of the excited state. Superconducting nanowire single

photon detectors (SNSPDs) have demonstrated with a timing jitter of less than 3 ps [114]

and sub-15 ps timing jitter SNSPDs are commercially available [115]. Future experiments

can use these low jitter detectors in combination with resonant TPE to attempt to measure

near-unity concurrence over the lifetime of the exciton.

For the FSS eraser experiment, the work in this thesis has demonstrated that the

EOM devices are capable of emulating a fast rotating half-waveplate and converting the

frequency of photons with high efficiency. The immediate next step is addressing the

stability of the devices, either with a simple duty cycle or an active feedback system. Once

stable operation is demonstrated, the next step will be using the EOMs in a simplified

version of the tomography experiment, to determine if they are capable of reducing the

FSS. While a full tomography experiment involves measurement in a set of 36 polarization

bases, we are able to determine the FSS using a small subset of these measurements. The

oscillations between the RL+LR and RR+LL correlation counts are used to determine

the frequency of the precession caused by the FSS. Since the photons must travel through

quarter waveplates in the FSS eraser scheme, the oscillations in the HH+VV and HV+VH

correlation counts will contain information about the FSS at the output of the EOMs.

For EOMs operating at unity efficiency at the frequency corresponding to the FSS, no

oscillations will be present in the HH+VV-(HV+VH) correlation counts. This provides

a simple method of determining whether the FSS eraser scheme has succeeded, without

requiring a full tomography experiment.

Both of these subsequent experiments, if successful, will help overcome different obsta-

cles currently faced by quantum dots. The resonant TPE tomography experiment has the

ability to show that dephasing is not a significant issue faced by quantum dots, and that

the two-photon entanglement is not degraded in the presence of a fine structure splitting.

The FSS eraser experiment may demonstrate that an all-optical method of erasing the

fine structure splitting is possible by acting on the photons after they have been emitted,

rather than modifying the environment of the source itself. Both of these will help push

quantum dot photon sources forward, with the goal of surpassing SPDC-based sources to

become the state-of-the-art entangled photon sources.
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M. S. Skolnick, and A. M. Fox, “Phonon-assisted population inversion of a single

InGaAs/GaAs quantum dot by pulsed laser excitation,” Phys. Rev. Lett., vol. 114,

p. 137401, Mar 2015.

105
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Appendix A

Tomography Results

HH HV HD HA HR HL

VH VV VD VA VR VL

DH DV DD DA DR DL

AH AV AD AA AR AL

RH RV RD RA RR RL

LH LV LD LA LR LL

Figure A.1: Full tomography results when the quantum dot was excited quasi-resonantly.
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HH HV HD HA HR HL
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Figure A.2: Full tomography results of the quantum dot under resonant two-photon exci-

tation
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