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Abstract

The airway epithelium represents a critical component of the human lung that helps
orchestrate defences against inhaled substances including air pollution, allergens, bacteria,
and viruses. To manage these continuous insults, the airway epithelium has evolved to be a
multi-functional barrier tissue with mechanical and immunological impedances that protect
the lungs. In health, these coordinated functions can ensure that exposures to harmful
substances are controlled to limit damage to the host, while in disease, a dysfunction in
any capacity of the respiratory mucosa may lead to development or exacerbation of acute
and chronic respiratory diseases. It is therefore important to understand the mechanisms
that regulate respiratory mucosa function and how various stimuli may alter host defences.

Using a bioinformatic approach focused primarily on transcriptomic data, this thesis
presents analyses of three prevalent inhaled particulates: tobacco smoke, cannabis smoke,
and respiratory viruses. I first characterize the ATP-binding cassette (ABC) transporter
gene family, a relatively unexplored contributor to respiratory mucosa biology, in the context
of both tobacco smoke exposure and viral infection. I then describe my direct comparison
of the effects of cannabis and tobacco smoke exposure on lung health, uncovering striking
similarities relating to functional consequences, response to combination treatment, and
relationship to chronic lung disease that may inform future public health policies and
individual user practices. Finally, I detail how, as part of the global effort to research the
novel SARS-CoV-2 virus, I obtained results suggesting an alternate model of coronavirus-
host cell invasion via ACE2-independent pathways and explore the mechanisms of the host
immune response induced upon viral entry, advancing the field as it grapples with the

COVID-19 pandemic.

Bioinformatics coupled with large-scale data collection efforts around the world have
provided a wealth of knowledge and new opportunities for biologists, including those
studying respiratory medicine. Advancements in sequencing technologies and computational
techniques have made possible the high-throughput analyses required to characterize the
myriad changes that occur in the lungs upon exposure to various stimuli. Interdisciplinary
“multi-omic” research is quickly positioning itself as a necessity for novel discoveries from
within such large biological data sets. As researchers begin to adapt their experimental
designs and incorporate new techniques, our collective understanding of the human airway
will expand dramatically and result in increased quality of patient care and decreased global
health burden. Thus, the studies presented here provide examples of how bioinformatics is
essential for the advancement of the respiratory biology field.
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Chapter 1

Introduction

Lungs are a paradox. They are so fragile [...] yet, unlike our other internal
organs, nestled away inside us, they are open, like a wound, to the outside world.

What Happens When You Breathe
BROOKE JARVIS

1.1 The human airway

1.1.1 Structure and function

Almost every cell in the human body relies on oxygen to function, making the lungs and
connecting airways that comprise the human respiratory system of vital importance. The
primary function of the human respiratory system is to facilitate gas exchange: bringing
oxygen to the body’s organs while simultaneously clearing carbon dioxide waste. To achieve
this, the structure of the human airway tree must fulfill various important, and often
contradictory, requirements.””” The tracheobronchial tree and terminating alveoli must
take up minimal space within the chest cavity while still providing enough surface area to
mediate gas exchange efficiently. There needs to be enough rigidity to provide structural
integrity and maintain airflow but also enough flexibility to permit the removal of mucus and
debris.”” In fact, airway architecture is a primary determinant of how inhaled particulates
deposit within the lungs, thereby having major implications to lung health and disease.
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Figure 1.1: Depiction of airway tree generations. Beginning at the trachea (generation 0),
the airway tree branches into bronchi, bronchioles, and alveolar ducts. Termination occurs
at the alveolar sacs, which are also the site of gas exchange. Exposure to external stimuli
may result in biological consequences, as depicted on the right. Figure modified from
Miyashita et al.”"”

The human lung functions at the interface of the external and internal environments and
is exposed to over 10,000 litres of air each day from normal respiration. The entire airway,
in varying degrees, is therefore in frequent contact with the various particulates present in
the air. This reality necessitates the well-vascularized mucus membrane composed primarily
of epithelial cells, which warms and conditions the air while simultaneously cleansing and
protecting the lung.”'"

1.1.2 The airway epithelium

The airway epithelium represents a critical component of the human lung that helps
orchestrate defences against inhaled noxious substances that may include air pollution,
allergens, bacteria, and viral insults.'****%?!" To manage these continuous insults, the
airway epithelium has evolved to be a multi-functional barrier tissue with mechanical and



immunological impedances, manifested through the mucociliary ladder, protein-protein
junctions, and innate immune processes involving cytokine production. The airway epithe-
lium extends along the entire airway tree, from the nasal cavity of the upper airways down
to simple squamous epithelium. " In health, these coordinated functions can ensure
that infections, allergens, and exposures to air pollution are controlled to limit damage to
the host, while in disease, a dysfunction in any capacity of the respiratory mucosa may lead
to development or exacerbation of chronic respiratory disease. It is therefore important to
understand the mechanisms that regulate respiratory mucosa function and how prevalent
airway particulates may alter host defences.

1.1.3 Airway exposure and disease

Innate immune activities of the airway epithelium rely on accurate sensing of the external
environment. Exposure to various particulates can trigger the innate immune response,
causing increased airway inflammation, epithelial cell damage and changes to airway
expression profiles when not resolved in a timely manner. These changes can lead to various
lung diseases and aberrant lung function, both acute and chronic in nature, and may be
dependent on the type of stimuli to which the airway is exposed.

Tobacco smoke

An important example of an airway pollutant to which the respiratory mucosa may be
exposed is tobacco cigarette smoke, which has a well characterized relationship to various
lung diseases such as lung cancer and chronic obstructive pulmonary disease (COPD) via
both first- and second-hand smoke exposure.

The causal link between tobacco smoke exposure and the onset of lung cancer had
been suspected since the early 20th century and was confirmed in the 1940-50s through a
combination of epidemiology, animal experiments, cellular pathology and chemical analytics
(though lobbying from tobacco companies delayed wide-scale acceptance for several decades
still).”"” As of 2020, 2.2 million people were newly diagnosed with lung cancer worldwide
resulting in 1.8 million deaths (the most of any cancer).” Of all lung cancer cases, 80-90%
are estimated to be caused by tobacco smoke exposure.

Extensive evidence now exists that exposure to tobacco smoke, as well as biomass
smoke generated from dried wood and charcoal, are risk factors for the development of
COPD, a disease that can include both chronic bronchitis and emphysema, and lung
cancers. 7775770 In addition to the approximately 100 carcinogenic, co-carcinogenic,



or mutagenic compounds found within tobacco cigarette smoke,”” combustion of tobacco
cigarettes produces polyaromatic hydrocarbons (PAHs) such as benzo[a]pyrene which are
known to be associated with the production of reactive oxygen species (ROS)"” and
increased expression of the cytochrome p4501A1 isozyme gene (CYP1A1) that is involved
in downstream metabolism of PAHs into various carcinogenic compounds. Given the
complexity of tobacco smoke’s chemical composition, determining exactly which active
compounds are responsible for various tobacco-associated disease outcomes has proven
difficult”" and required direct studies of individual constituents. More recent studies
have begun to leverage bioinformatic methods in conjunction with molecular assays and
epidemiology to identify which populations are most susceptible to disease development
and which genes and pathways can be developed into suitable biomarkers of tobacco smoke
exposure.” ="

Cannabis smoke

Cannabis is the second most commonly smoked substance globally next to tobacco
smoke™" """ however, unlike tobacco smoke, research regarding the effects of cannabis
use on lung function and disease onset is not as well understood and is often inconsistent.

While cannabis can be consumed through various routes, combustion of dried cannabis
flower or “bud” is the most common delivery method. In Canada, 90% of users identified
combusted smoke inhalation as a route of delivery with 94 and 89% of users reporting
combustion as their primary mode of consumption in the 2017 and 2018 Canadian Cannabis
Surveys, respectively.”"”" For this reason, and since very little information is available
regarding the pulmonary effects of alternative consumption methods such as vaporization,
this thesis will focus on the acute and long-term effects of cannabis smoking as compared
to tobacco smoking.

Like tobacco smoking, cannabis combustion produces similar toxic compounds such
as PAHs,”"” which can activate C'YP1A1 upon inhalation, as mentioned above. However,
unlike with tobacco smoke, research has suggested that §-9 tetrahydrocannabinol (THC),
a cannabinoid and primary component of cannabis smoke, may act as a competitive
inhibitor of CYP1A1 and therefore have a mitigating effect. In fact, many of the
cannabinoids present in cannabis smoke have been shown to have different biologic effects
and interactions compared to those observed with nicotine and tobacco smoke which makes
the direct comparison of cannabis and tobacco more complex and the acute and long-term
effects of cannabis smoke exposure more difficult to predict.

Cannabis use has been shown to relieve pain and reduce lung inflammation™" however,



it has also been linked to decreased lung immune response™”' and increased risk of chronic
bronchitis.”~ In contrast to tobacco smoke, the existing evidence suggests that repeated
cannabis smoke exposure results in a chronic bronchitis phenotype with little evidence
of emphysema. """’ Furthermore, unlike tobacco and biomass exposure, which are
accompanied by a dose-dependent risk for development of lung cancers, a similar relationship
has not been observed for repeat cannabis users despite the presence of carcinogens in
cannabis smoke. " It should be noted that many cannabis smokers also smoke tobacco
concurrently which adds confounding factors to much of the current body of cannabis-related
research.

It is clear that more research, including well-controlled clinical studies, needs to be
performed in this area to gain a more complete understanding of the effects of cannabis on
the human airway.

Respiratory viruses

Acute upper respiratory viral infections are the most common form of infection in humans,
with influenza A and B viruses being the leading infectious cause of morbidity and mortality
amongst the elderly and children and human rhinoviruses being the leading cause of mild
upper respiratory tract infections overall. ”’ Symptoms of these viruses, responsible for the
“flu” and “common cold”, respectively, have significant overlap including headache, nasal
congestion, nasal discharge, cough and sore throat, '" and may progress to lower respiratory
tract infections in severe cases. Influenza viral infections are often differentiated by the
presence of fever and loss of appetite. " While both of these pathogens are single stranded
RNA viruses, influenza viruses, which belong to the Orthomyxoviridae family and can be
classified as either type A, B, C, or D, are enveloped and utilize a sialylated receptor for host
entry " whereas rhinoviruses, which are members of the family Picornaviridae and exist as
species A, B, or C comprising approximately 160 unique types, are non-enveloped and use
one of three glycoproteins to gain entrance to the host cell: intercellular adhesion molecule
1 (ICAM-1), low density lipoprotein receptor (LDLR) and cadherin-related family member
3 (CDHR3).” The prevalence of these viruses and their functional variation require the
human respiratory system to have diverse defence mechanisms in place to handle oncoming
infections.

The threat posed by viruses that infect the respiratory mucosa is countered by the
airway epithelium expressing functional toll-like receptors (TLRs), nucleotide binding and
leucine-rich-repeat pyrin domain containing (NLRP) receptors, and cytosolic nucleic acid
sensors that are able to rapidly detect exposures and provide host defence.”> "7 0% =55 210,
Antiviral sensing mechanisms in the respiratory mucosa enable responses to influenza A,



respiratory syncytial virus, rhinovirus, and human parainfluenza virus; all single stranded
RNA viruses. " dsDNA viruses are also relevant lung infections, with adenovirus capable of
inducing influenza like symptoms in healthy subjects and associated with chronic respiratory
disease exacerbations.”” """ Like RNA viruses, adenovirus is able to infect airway
epithelium followed by replication, which leads to a variety of innate immune defences able
to sense viral nucleic acids and proteins.” ™ '* Vaccinia virus is another dsDNA virus
that is able to infect airway epithelium and has been explored for capacity to genetically
engineer the virus for transgene delivery, vaccination strategies, and studying Variola virus
infections. 7"

Within the last 20 years, three highly pathogenic human coronaviruses (hCoVs) have
emerged, resulting in varying degrees of global economic and public health crisis. Coro-
naviruses (CoVs) refer to a class of enveloped single standed RNA viruses that can be
broken down into four categories: alpha, beta, gamma, and delta.”” Of these four genera,
[-CoVs have been responsible for the three major outbreaks of the last two decades.
In 2003, an epidemic of Severe Acute Respiratory Syndrome (SARS)-CoV resulted in
8098 infections and 774 deaths, globally. In 2012, Middle East Respiratory Syndrome
(MERS)-CoV emerged resulting in an epidemic that has killed approximately 858 people to
date worldwide.” Both SARS-CoV and MERS-CoV have a high case fatality rate, infecting
the lower airways and rapidly causing acute lung injury(ALI), acute respiratory distress
syndrome (ARDS), and multi-organ failure.”” While there have been no cases of SARS for
over a decade, MERS continues to be an on-going public health concern.

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in December
2019 to cause a pandemic of coronavirus disease (COVID-19). Like it’s predecessors,
SARS-CoV-2 causes a respiratory infection, along with ARDS in severe cases. However,
pre/asymptomatic airborne transmission and high viral titre early in the course of the disease
significantly increases the infectiousness of SARS-CoV-2 compared to other coronaviruses
such as SARS-CoV.”"" This increased transmissibility and infectivity explain how SARS-
CoV-2 has been able to cause such a pandemic and why, despite the lower case fatality rate,
deaths from SARS-CoV-2 far surpass those of SARS-CoV and MERS-CoV.

The seminal report identifying the receptor for SARS-CoV used a HEK293 cell over-
expression system to identify angiotensin-converting enzyme 2 (ACE2) as a receptor by
co-immunoprecipitation with SARS-CoV spike (S) domain 1.7 Like SARS-CoV, SARS-
CoV-2 is suggested to enter the host cell by means of the interaction between the S protein
and the ACE2 receptor.””” However, although there is evidence that SARS-CoV-2 and
SARS-CoV both utilise ACE2 as a receptor to facilitate virus entry, it is possible that
differences in host entry mechanisms play a role in the large epidemiological differences
between the two viruses, which may include additional unidentified receptors. Furthermore,

6



given the novelty of the virus, much is still not fully understood about the host response
elicited by the virus upon entry.

Understanding viral entry mechanisms and exploring how the airway epithelium responds
to viruses may provide insights into the transmission and pathogenesis of both common
and novel respiratory viruses and identify new strategies for controlling infections and
implementing vaccination strategies relevant to lung health and disease.

1.1.4 Knowledge gaps

While there has been substantial progress made in the characterization of the basic mecha-
nisms related to lung disease in recent decades, there are still many facets of how the human
lung responds to external stimuli that remain poorly understood. Clinical management
of various lung diseases have also improved in this time, yet our ability to predict disease
onset and progression and treat patients in a personalized manner is still inadequate.
These areas must be addressed to tackle the rising number of respiratory illnesses around
the world.

Many lung diseases are heterogeneous in nature and by the time they are identified
by current clinical diagnostic tools will often have progressed to a more severe, chronic
condition.””” Advances in molecular biotechnology have allowed for earlier detection of some
lung diseases such as cystic fibrosis (CF) through the development of diagnostic biomarkers
(e.g., the identification and use of the cystic fibrosis transmembrane conductance regulator
(CFTR) gene as the key marker of CF), but to capture the complexity of lung disease
phenotypes and effectively stratify and diagnose disease, larger networks of genes need to
be analyzed. CFTR represents a clinically relevant example of an ATP-binding cassette
(ABC) transporter being used as a key diagnostic marker for lung disease however, this
one gene represents only a fraction of the 48 ABC transporters that remain to be more
extensively studied in the respiratory mucosa for expression patterns and function in lung
health and disease. Moreover, when the diversity of lung disease phenotypes are taken into
account, the list of affected genes that may be indicative of disease onset and progression
rapidly increases. When this is coupled with the fact that many prevalent airway stimuli
are either under-researched (i.e., cannabis smoke) or completely novel (i.e., SARS-CoV-2),
the size of the current knowledge gap grows further.

Advancements in bioinformatic technologies allow for the large-scale analyses required to
characterize the hundreds of molecular changes that occur upon exposure to various inhaled
particulates. This is crucial for defining defence mechanisms, and for identifying potential
diagnostic and prognostic biomarkers in airway epithelial cells. These discoveries have the
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potential to lead to rapid and personalized interventions that could reduce pathologies and
exacerbations of chronic respiratory diseases.

1.2 Bioinformatics in respiratory research

1.2.1 Where are we now?

The foundations for bioinformatics were laid as early as the 1960s when scientists such
as Margaret Dayoff began utilizing computer technology in the fields of biochemistry and
protein analysis. " That said, it was not until the late 1990s-early 2000s that bioinformatics
really gained a foothold through parallel advancements in both computer science and biology
and the sequencing of the human genome.'** As sequencing costs began to drop during this
“dawn of the genomic era”, the amount of biological data being produced and deposited
into public databases increased exponentially.””" The amount of data that exists now is
truly enormous and requires sophisticated tools and techniques to analyze, re-analyze, and
extract useful biological and medical information. Bioinformatics is an interdisciplinary
field that provides the toolkit necessary to procure, store, and assess such data.

While there have been myriad advancements over the years in the areas of bioinformatics
and respiratory research, and while bioinformatic analysis is applicable to all facets of the
central dogma (DNA, RNA, proteins, and beyond), this thesis will focus on the use of
transcriptomics, the study of the complete set of RNA transcripts in a given sample, to
answer biologically relevant questions related to the human airway.

Many lung diseases have been associated with unique mRNA expression signatures.
Notably, the first distinctions between Th2-high and Th2-low asthma were based on
expression levels of a panel of IL-13-induced genes detected through microarray and
polymerase chain reaction (PCR) analyses.

Microarray analysis of primary airway epithelial cells is a low-cost and accessible method
for mRNA detection and can be used to perform differential expression analysis with the goal
of identifying changes in transcript expression that may act as markers for the early onset
of airway diseases. However, microarray technology limits the researcher to only evaluating
genes for which probes exist on the given microarray chip and has a low signal-to-noise
ratio making it difficult to detect lowly abundant transcripts.”” The genomic era of the
early 2000s gave rise to high-throughput next generation sequencing (NGS) resulting in
an influx of biological “‘omic” data; that is, data derived from methods such as genomics,
transcriptomics, or proteomics that aim to quantify and characterize the various biological



molecules that give way to cellular structure and function. RNA-sequencing has now begun
to replace previous microarray technology as the gold standard by allowing researchers to
explore the entire transcriptome and gain insights into the short- and long-term effects of
airway particulate exposure.

NGS is a large-scale alternative to arrays that can be used for, among other things,
differential expression analysis through quantitation of transcript expression levels.
High-throughput RNA-sequencing (RNA-seq) necessitates the conversion of RNA into
complementary ¢cDNA which can then undergo fragmentation into short reads that are then
sequenced at a specified depth and coverage.””” For most applications, 20-30X sequencing
depth is considered sufficient to recall the majority of transcripts. Sequenced, fragmented
reads can be assembled de novo or aligned to a reference transcriptome scaffold and
assembled from there.”"~ After assembly, numbers of each transcript are quantitated which
allows for comparison of transcript abundance and differential expression analysis between
cells exposed to a pollutant or derived from a patient with lung disease and healthy cells.
This provides a snapshot of the cells under a given physiological condition. With respect to
lung disease, lung cancer is one particular area of research that has invested heavily into
NGS and bioinformatics research to pinpoint mutations resulting in biomarker discovery.
As mentioned previously, tobacco smoke exposure is strongly linked to the development of
lung cancer and as such, our understanding of the effects of tobacco smoke exposure have
also benefited greatly from bioinformatic analysis.

While there have now been a multitude of papers citing use of NGS to study the
effects of tobacco smoke on respiratory health,”””“"" " one more recent meta-analysis of
lung RNA-seq data identified 5 SNPs and 2 insertions/deletions (INDELs) in SCGB1A1,
SCGB3A1 and NFKB1A genes only present in smokers with lung cancer compared to
cancer-free smokers, and healthy, non-smokers.”” Smokers with these mutations now have
an indicator for disease pathogenesis which is useful for early diagnosis of lung cancer.
Biomarker discovery such as this highlights the usefulness of NGS in the respiratory space.

Since the use of NGS technology has been so successful in the study of tobacco, methods
such as RNA-seq are starting to be applied to cannabis research as well. While this data
is currently limited, studies comparing RNA-seq expression between cannabis-exposed,
tobacco-exposed, and healthy cells both in vitro”” and in vivo'” are beginning to elucidate
some of the similarities and differences between cannabis- and tobacco-exposed epithelial
expression profiles which will hopefully provide insight into cannabis-associated respiratory
outcomes.

NGS technologies have also revolutionized the study of respiratory viral infections. In
1977, the X174 bacteriophage, a single-stranded DNA virus that infects . coli, became the



first genome ever to be sequenced using first generation methods.””~ Since then, and with
the advent of NGS, countless human-infecting viruses have been sequenced, comprising what
is now known as the human virome. Viral genomes and, subsequently, viral transcriptomes
are incredibly small compared to the human genome, making sequencing of respiratory
viruses for detection and classification readily feasible. High-throughput transcriptomics
have also greatly improved human challenge studies by allowing for the changes in thousands
of transcripts within a human sample to be measured after exposure to a pathogen of
interest.”” As technologies advance further, bioinformatics positions itself as a key method
for the rapid identification and mechanistic understanding of both common and novel
respiratory viruses.

Though there is much debate in the bioinformatic community about best practices
when it comes to sequencing (depth and coverage requirements, number of replicates), the
alignment, assembly, and quantitation of genes (various pipelines and software exist for
each step of the protocol), and statistical analyses, it is clear that transcriptomic NGS
applications have become incredibly important for identifying biomarkers and risk factors
which help with the early detection of human lung disease. It is through this technology
that the field of respiratory medicine has really begun to thrive.

1.2.2 Application of multi-omic approaches

While this thesis focuses primarily on the use of transcriptomics to elucidate novel insights
regarding the effects of various airway exposures, the eventual goal here is the integration
of multi-omic technologies in an attempt to gain a fuller understanding of the afflictions of
the human respiratory system and to usher in the age of precision respiratory medicine.

Biological systems are multi-factorial in how they are governed.™ A complete under-
standing of the mechanisms involved in any given disease or exposure response will therefore
require an integrated approach. The decreased cost and increased accessibility of NGS
technologies has allowed for the analysis of almost every molecular subtype, from DNA and
RNA to proteins and metabolites.””" However, major challenges can arise when attempting
to combine or compare the results of these various ‘omics analyses. For example, mRNA
and protein expression levels are often not strongly correlated' ** making direct comparison
and interpretation difficult.

One solution that aims to mitigate such issues is Similarity Network Fusion which
integrates data by patient thereby having the number of predictors depend on the number
of subjects rather than molecular features.””" This method is well suited to integrate highly
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heterogeneous ‘omic data sets and has been used to integrate multi-omic profiles of patients
with COPD compared to smokers and non-smokers with normal lung function.

By combining knowledge from the fields of biology and computer science together, it
is possible to store and analyze large amounts of ‘omic data in novel ways. Integration
of multi-omic profiles can provide insights into the vast connections between genes and
environmental factors that impact risk of disease onset and progression. " It is also through
addressing this biological complexity and through the close collaboration of basic and
clinical scientists with bioinformaticians that precision medicine can become a reality.

1.3 Thesis outline

The broad theme of the work presented in this thesis is the analysis of the effects of various
external stimuli on the human airway using bioinformatic techniques. My research aims
to characterize these effects in the hopes of better informing public health policy, increas-
ing scientific knowledge, and improving patient outcomes through precision prevention,
detection, and treatment. Throughout this thesis I explore my research questions using
a combination of focused bioinformatic studies of original sequencing data sets as well as
large-scale analyses of publicly available studies, demonstrating the value of multi-omic
data analyses to respiratory medicine.

The thesis is structured as five chapters. This first introductory chapter provides
biological and methodological context to aid interpretation of the following data chapters.
The three data chapters are organized by inhaled particulate.

Chapter 2 presents analyses of tobacco smoke and viral mimic. This chapter addresses
the effects of these stimuli in a directed manner by focusing on a particular gene family
of interest: the ABC transporters, which are ubiquitous within the human airway and
have been previously suggested to have involvement in lung function and health. This
chapter is broken down further into two sub-chapters. Chapter 2.1 characterizes the effects
of tobacco smoking and the onset of common lung diseases such as COPD and asthma
on the expression of ABC transporters in the human airway. Chapter 2.2 focuses on a
single ABC transporter (ABCF1) and how it may be involved in the viral-induced immune
response of the airway epithelium. The goal of this chapter is to interrogate well-studied
particulates (tobacco smoke and virus) in a new way by using bioinformatic approaches to
characterize the previously unexplored effects of these inhaled stimuli.

Chapter 3 focuses on cannabis smoke exposure and how it relates to tobacco smoke
exposure in the context of functional outcome, response to combination treatment, and
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association with disease. This data chapter is divided into three sub-chapters which
respectively focus on the comparison between cannabis smoke- and tobacco smoke-induced
host responses, the efficacy of long-acting S-agonist/glucocorticoid (LABA/GC) intervention
in the context of cannabis and tobacco smoke exposures, and the association between the
endocannabinoid system and lung diseases such as COPD and asthma. This chapter aims
to expand upon currently available research on the effects of cannabis smoke exposure in
the human airway to increase collective knowledge on this increasingly prevalent stimulus.

Chapter 4 is related to SARS-CoV-2, the novel coronavirus responsible for the COVID-19
pandemic. This chapter aims to characterize the mechanism for coronavirus-host cell entry
(Chapter 4.1) as well as the subsequent host immune response triggered upon infiltration
(Chapter 4.2). The goal of this chapter is to contribute to the global efforts in understanding
and combating this novel virus while simultaneously preparing for the emergence of future
disease pandemic-causing pathogens.

Finally, Chapter 5 features a discussion of general and specific information gained from
preceding chapters, including technical and methodological considerations that affect results
and their interpretation, and concludes with a short prospective for the field.
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Chapter 2

Tobacco smoke exposure and viral
mimic

Of the many compounds to which the human respiratory system may be exposed, tobacco
cigarette smoke and respiratory viruses are among the most prevalent and well-studied.
While the causal links between exposure to these particulates and the onset of various lung
diseases are accepted, there is still much that is not yet understood regarding the mechanisms
governing how epithelial cells respond to these stimuli. With the use of bioinformatic tools
and techniques, researchers are able to hone in on previously under-explored areas of even
the most well-characterized airway exposures, leveraging large repositories of existing data
cohorts to further advance our collective understanding of the effects tobacco smoke and
common respiratory tract viral infections have on lung biology.

A relatively unexplored contributor to respiratory mucosa biology is the ATP-binding
cassette (ABC) family of transporters.”" " #0175 185105500999 ABC transporters are ubiq-
uitous across all three domains of life — Archaea, Bacteria, and Eukarya,””” with humans
expressing 48 transporters divided into 7 classes based on structure and function (ABCA,
ABCB, ABCC, ABCD, ABDE, ABCF, and ABCG).”*>""" The majority of ABC trans-
porters couple ATP hydrolysis to the extracellular transport of substrates. ABC transporters
have been demonstrated to transport cytokines, ions, and lipids, and ABC transporter
expression in human airway epithelial cells may contribute to respiratory mucosal immunity
by modulating the lung environment in response to environmental exposures including
cigarette smoke, allergens, air pollution, bacteria, and viruses, although the confirmation
of these functions and expression of these genes and proteins has not been extensively
confirmed in the respiratory mucosa of humans.”*
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The precedent for the importance of ABC transporters in respiratory mucosa biology has
been set by the identification of mutations in ABC transporter genes in patients with lung
pathologies. ABCC7, also known as cystic fibrosis transmembrane conductance regulator

(CFTR), is the causal gene contributing to the development of cystic fibrosis.*** Over
2000 variants in CFTR have been reported, resulting in altered chloride and bicarbonate
secretion, hydration of the airway surface lining fluid, and mucus function. >’ Equally

convincing of the role of ABC transporters in lung health and disease is the link between
genetic loss of function variants of ABCAS3 and fatal surfactant deficiency in newborns.
In addition, members of the Hirota research group have recently confirmed that ABCCY is
expressed in airway epithelial cells,”” "~ is able to transport cAMP and uric acid, ** and can
modulate anti-inflammatory activities of long-acting (-agonist/glucocorticoid therapies
and potentiate CF'TR in select patient populations.'”' These three mechanistic and clinically
relevant examples represent only a fraction of the 48 transporters that remain to be more
extensively studied in the respiratory mucosa for expression patterns and function in lung
health and disease.

2.1 The impact of cigarette smoke exposure, COPD,
or asthma status on ABC transporter gene ex-
pression in human airway epithelial cells

Material in this section has been published as part of Aguiar et al. (2019)."" The published
manuscript is available here:

J. A. Aguiar, A. Tamminga, B. Lobb, R. D. Huff, J. Nguyen, Y. Kim, A.
Dvorkin-Gheva, M. R. Stampfli, A. C. Doxey, and J. A. Hirota. The impact of
cigarette smoke exposure, COPD, or asthma status on ABC transporter gene
expression in human airway epithelial cells. Scientific Reports, 9(1):153. 2019.
https://doi.org/10.1038/s41598-018-36248-9

2.1.1 Introduction

The tobacco epidemic constitutes a major global public health crisis. Approximately 8
million people around the world die from tobacco-related exposures annually with greater
than 7 million of those deaths being caused by direct tobacco use.” Tobacco smoke exposure
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is the leading cause of preventable death worldwide and has been well-characterized as
causing various lung diseases such as lung cancer and chronic obstructive pulmonary
disease (COPD) such as bronchitis and emphysema.”’" Tobacco smoke exposure, including
secondhand exposure, is also a common trigger for asthma.” While the effects of tobacco
smoke exposure are widely understood, computational methods can still be utilized to
uncover further information that may aid in the prevention and treatment of tobacco-induced
airway diseases.

As previously mentioned, confirmation of ABC transporter expression in the human
airway is currently lacking. Therefore, I have initiated a characterization of all 48 ABC
transporters in the respiratory mucosa by performing a bioinformatic analysis of 9 distinct
gene-expression data sets of primary human airway epithelial cells isolated from bronchial
brushings of well-phenotyped healthy subjects and individuals that smoke cigarettes, or
have been diagnosed with COPD or asthma.”" "> =75 202215209, 205,955,218 Ny hypothesis was
that specific ABC transporter gene expression patterns would correlate with presence of
a specific chronic respiratory disease and disease severity. To validate the bioinformatic
analyses, I interrogated select results using an in vitro cell culture model system to provide a
foundational platform for further interrogation of candidate ABC transporters identified that
may be important in chronic respiratory disease pathology. In situ human gene expression
data analysis reveals that ABC transporters are i) variably expressed in epithelial cells from
different airway generations, ii) responsive to cigarette smoke exposure, iii) differentially
expressed in individuals with COPD and asthma, and iv) are amenable to interrogation
with in vitro cell culture systems. I conclude that continued research into the basic biology
of ABC transporters in the respiratory mucosa with mechanistic approaches is required to
truly define the importance of these molecules in lung health and disease.

2.1.2 Methods
Data set selection and quality control

Analysis was performed on previously deposited data sets obtained from the Gene Expression
Omnibus (GEO). Data sets pertaining to smoking and COPD analysis include GSE994,
GSE4498, GSE11784, GSE11906, and GSE37147. Data sets focusing on asthma and severity
include GSE4302, GSE63142, GSE67472, and GSET6227.7 1777770520590, 905, 955

Since the data sets were generated from a variety of studies, microarray chip selection
and data normalization methods vary across the data sets. GSEs 11906, 11784, 4498, and
994 used the MAS 5.0 normalization method without logs-transformation, whereas GSEs
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76227, 4302, 67472, and 37147 used the Robust Multi-array Average (RMA) method with
logs-transformation. GSE63142 used the cyclic LOESS normalization method. To avoid
applying multiple compounding normalization methods, data sets were left as provided
by the original studies and differences in methods noted, with specific mention of the
normalization method denoted in each figure axis. Since probe set IDs and corresponding
gene targets vary across microarray platforms, expression results are reported in the context
of both ABC transporter name and probe set ID. All data set demographics are available
in Table 1.

ABC transporter transcript expression in human airway epithelial cells

Differential expression patterns for all 48 ABC transporter members were examined across
the trachea, large airways (generation 2nd-3rd), and small airways (generation 10th-12th)
using GSE11906 (Affymetrix Human Genome U133 Plus 2 microarray platform).”'” A bar
plot showing average expression of ABC transporters in healthy, non-smoker lung tissue
was generated using the ggplot2 package in R (version 3.4.3). In GSE11906, independent
samples of epithelial cells were isolated from healthy individuals with no smoking history
and normal lung function and included 17 trachea, 21 large airway, and 35 small airway
samples.

Impact of cigarette smoke exposure on ABC transporter expression

Three data sets (GSE11906, GSE11784, and GSE4498), which were all generated from
the Affymetrix Human Genome U133 Plus 2 microarray platform, were used to assess the
impact of cigarette smoke exposure on ABC transporter gene expression. 7' 7% All three
data sets are comprised of small airway (10th-12th generation) epithelial cell transcript
expression patterns in healthy subjects and those with a history of smoking without a
diagnosis of COPD. In GSE11906, 54 independent samples of epithelial cells were isolated
from individuals with > 25 pack years smoking history with no reported COPD.” - In
GSE11784, 72 independent samples of epithelial cells were isolated from individuals with >
25 pack years smoking history with no reported COPD.”"” In GSE4498, 10 independent
samples of epithelial cells were isolated from individuals with > 25 pack years smoking
history with no reported COPD."”" These three GSE data sets were independently curated
to ensure that no samples were repeated across the analyses.
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Impact of cigarette smoking cessation on ABC transporter expression

Two data sets (GSE37147 and GSE994) generated from two distinct microarray platforms
(Affymetrix Human Gene 1 ST and Affymetrix Human Genome U133A, respectively),
which analyzed epithelial cells from medium (6th-8th generation) and large (2nd generation)
airways, respectively, were used to assess the impact of smoking cessation on ABC transporter
gene expression.”” """ In GSE37147, independent samples of epithelial cells were isolated
from 69 current smokers and 82 former smokers with > 47 pack years smoking history with
no reported COPD.™" In GSE37147, the average duration of smoking cessation was 11.11
years. In GSE994, independent samples of epithelial cells were isolated from 34 current
smokers, 14 former smokers, and 23 never-smokers, with > 22 pack years smoking history
with no reported COPD.””” In GSE994, the average duration of smoking cessation was
10.49 years.

Association between COPD status and changes in ABC transporter expression

Three data sets (GSE11906, GSE11784, and GSE37147) were used to assess association
of COPD status with ABC transporter gene expression profile. GSE11906 and GSE11784
collected epithelial cells from small airways (10th-12th generation) while GSE37147 collected
from medium airways (6th-8th generation), with the two different sample types also analyzed
on different microarray platforms (Affymetrix Human Genome U133 Plus 2 and Affymetrix
Human Gene 1 ST, respectively).

In GSE11906, 20 independent samples of epithelial cells were isolated from individuals
with > 38 pack years smoking history with reported COPD and were compared to 54
independent samples of epithelial cells isolated from individuals with > 25 pack years
smoking history with no reported COPD.”" " In GSE11784, 36 independent samples of
epithelial cells were isolated from individuals with > 34 pack years smoking history with
reported COPD and were compared to 72 independent samples of epithelial cells isolated
from individuals with > 25 pack years smoking history with no reported COPD.”" In
GSE37147, 87 independent samples of epithelial cells were isolated from individuals with >
51 pack years smoking history with reported COPD and were compared to 151 independent
samples of epithelial cells isolated from individuals with > 47 pack years smoking history
with no reported COPD.
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ABC transporter expression patterns in airway epithelial cells from asthmatics

For asthma-focused analyses, two pairs of data sets were used: GSE4302 and GSE67472,"~"
which allowed for healthy control comparison to individuals with asthma, and GSE63142
and GSE76227,"" """ """ which allowed for associating expression profiles with asthma sever-
ity. All studies analyzed epithelial cells from medium (3rd-5th generation) airways, while
distinct microarray platforms were used (GSE4302 and GSE67472 used Affymetrix Human
Genome U133 Plus 2, GSE63142 used Agilent 014850 Whole Human Genome Microarray 4
x 44K, and GSE76227 used Affymetrix HT HG U133 plus PM).

In GSE4302, independent samples of epithelial cells were isolated from 28 healthy
individuals and 42 asthmatics. In GSE67472, independent samples of epithelial cells
were isolated from 43 healthy individuals and 62 asthmatics.”" In GSE63142, independent
samples of epithelial cells were isolated from 26 healthy individuals, 59 mild asthmatics, 19
moderate asthmatics and 51 severe asthmatics.””” In GSE76227, independent samples of
epithelial cells were isolated from 26 healthy individuals, 59 mild asthmatics, 19 moderate
asthmatics and 51 severe asthmatics.

In vitro validation of candidate ABC transporter gene expression changes

In wvitro validation performed by Ryan Huff at The University of British Columbia

A cigarette smoke extract conditioned media experiment with the Calu-3 airway epithelial
cell line was performed as previously described. ™ Expression of ABCA13 and ABCC1
was validated by quantitative-PCR. Cell viability was determined using an LDH assay.

Data set compiling and statistical analyses

Curated data sets contained the data matrix and relevant categorical data such as smoking
status, disease status or airway location from which samples were isolated. Lists of probe
set IDs for each microarray platform used in the study were generated using only probes
that corresponded to ABC transporter proteins. Lists were used to filter corresponding
matrices to include data exclusively for probes that target ABC transporters across data
sets.

Pairwise Mann-Whitney U tests were performed to assess the statistical significance of
differential gene expression between conditions. Adjusted p values (¢ values) were derived
using the Benjamini-Hochberg multiple hypothesis testing correction as implemented in
R (version 3.4.3). This statistical method was chosen because a priori analysis of all data
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set distributions showed that the data was non-Normal. Non-parametric methods such
as Mann-Whitney U (which is the non-parametric equivalent of the unpaired Student’s
T-test) make no assumptions about distribution and are therefore preferred for the analysis
of non-Normal data.

Box plots were generated for individual probe sets using the ggplot2 package in R
(version 3.4.3). Box plots visualize the minimum value (bottom of vertical line), first to
third quartile (box), median (horizontal line within box), and maximum value (top of
vertical line) of a data distribution. To visualize the underlying raw data distributions,
individual data values were plotted as points on top of each box plot with randomized
horizontal skew.

For GSE994 which includes more than 2 independent categorical variables (current,
former and never smokers) I used the Kruskal-Wallis test. The Kruskal-Wallis test is a
non-parametric alternative to the one-way analysis of variance (ANOVA) test that does not
assume a data distribution. The Tukey Honest Significant Difference (Tukey HSD) test was
used to perform post-hoc pairwise comparisons with multiple testing corrections on probe
set IDs found to be significantly differentially expressed across categories as determined by
the Kruskal-Wallis analysis.

To summarize the performed statistical analyses, tables were generated for each data
set that included Probe set ID, Probe set, the Benjamini-Hochberg corrected p value (¢),
and the log, fold change. The top 10 probe set IDs were listed for each data set based on
corrected p value, and multiple data sets used to analyze the same biological question were
combined into final summary tables.

For the in wvitro study of cigarette smoke extract exposure, a one-way ANOVA was per-
formed with a Bonferroni correction for multiple comparisons with a significance determined
at p < 0.05.

2.1.3 Results

ABC transporter transcript expression in human airway epithelial cells

To begin the characterization of the 48 known ABC transporters in airway epithelial cells, I
examined expression patterns of each member across the trachea, large airways (generation
2nd-3rd), and small airways (generation 10th-12th) (Figure 2.1; Table 2) using GSE11906.
A global assessment of all ABC transporters across airway generations revealed diversity
in their expression, with the highest detected expression levels for ABCA5, ABCA13, and
ABCC5 (Figure 2.1) and a trend for increased expression in the trachea relative to the
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small airways. Between the airway generations, differences were only observed between
the small airways and the trachea (¢ < 0.05 - Table 2). The top three candidates ranked
by logsfold-change in small airway relative to trachea were ABCC1, ABCCY4, and ABCBS3
(all with ¢ < 0.05). Collectively the data suggest that ABC transporters are expressed in
human airway epithelial cells with airway generation specific expression patterns.
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Figure 2.1: Gene expression levels for all 48 ABC transporter members were examined
across the trachea, large airways (generation 2nd-3rd), and small airways (generation
10th-12th) using a single data set (GSE11906, Affymetrix Human Genome U133 Plus 2
microarray platform) comprised of independent epithelial cell samples isolated from
healthy, non-smoking individuals. A representative probe set for each ABC transporter was
chosen and average signal intensities (with standard error) for each probe set were
calculated and visualized as a bar plot using ggplot2 in R (version 3.4.3). grey: small
airways, blue: large airways, orange: trachea.
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Impact of cigarette smoke exposure on ABC transporter expression

I next explored the impact of cigarette smoke exposure on ABC transporter expression
profiles. For my analysis I interrogated three data sets of small airway (10th-12th generation)
epithelial cells from healthy subjects and those with a history of smoking without a diagnosis

of COPD (GSE11906, GSE11784, and GSE4498).""" """
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Figure 2.2: Gene expression levels of selected ABC transporters ((A) ABCA13, (B)
ABCBG6, (C) ABCC1, (D) ABCC3) between healthy non-smokers (green) and smokers with
no diagnosis of COPD (blue). Significant expression differences are indicated by asterisks
(¢ < 0.05 according to Mann-Whitney U test with Benjamini-Hochberg correction). All
three data sets used for this analysis (GSE11906, GSE11784, and GSE4498) analyzed
epithelial cells from small airways (10th-12th generation) and were generated from the
Affymetrix Human Genome U133 Plus 2 microarray platform (using the MAS 5.0
normalization method). Data distributions are visualized as box plots (see Methods for
additional details).
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Cigarette smoke exposure was associated with elevated ABCB6 and ABCCS3 expression
levels, a feature conserved across all three independent data sets (Figure 2.2; Table 3). In
two of three data sets, an elevation in ABC'C1 was also observed, with similar non-significant
trends observed in the third data set. In one of three data sets, lower ABCA13 expression
was observed, with similar non-significant trends observed in the two other data sets.

Impact of cigarette smoking cessation on ABC transporter expression

Cigarette smoking is a modifiable risk factor for the development of COPD with cessation
advocated by the Global Initiative for Obstructive Lung Disease.””" I therefore determined
whether smoking cessation could normalize differences observed in ABC transporter expres-
sion for ABCA13, ABCB6, ABCC1, and ABCCS3 by comparing former smokers, current
smokers, and where possible, healthy never-smokers. For my analysis I examined two data
sets generated from two distinct microarray platforms, GSE37147 and GSE994, which
analyzed epithelial cells from medium (6th-8th generation) and large (2nd generation)
airways, respectively.
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Figure 2.3: Differential expression of (A) ABCA13 between current smokers (green) and
former smokers (blue) from GSE37147 (*: ¢ < 0.05, Mann-Whitney U pairwise statistical
analysis with Benjamini-Hochberg multiple testing correction). GSE37147 was selected as
it was the only data set including a probe matching ABCA13. Differential expression of
(B) ABCBG6, (C) ABCC1, and (D) ABCCS3 between current smokers (green), former
smokers (blue), and, where possible, never-smokers (orange) from GSE37147 and GSE994
(*: ¢ < 0.05, Kruskal-Wallis followed by the Tukey Honest Significance Difference (Tukey
HSD) test). The data sets used in this analysis (GSE37147 and GSE994) were generated
from two distinct microarray platforms (Affymetrix Human Gene 1 ST and Affymetrix
Human Genome U133A, respectively), which analyzed epithelial cells from medium
(6th-8th generation) and large (2nd generation) airways, respectively. GSE37147 used the
logged (base 2) RMA normalization method and GSE994 used the MAS 5.0 normalization
method. Data distributions are visualized as box plots (see Methods for additional details).

Smoking cessation was associated with lower expression of ABCB6, ABCC1, and ABCC3
in both data sets (Figure 2.3; Table 4). A trend for elevated ABCA13 expression (¢ = 0.06)
was observed in association with smoking cessation in the medium airways with no primer
sets available in the large airway data set. In GSE994, an additional group of never-smokers
reveals that levels of ABCB6 and ABCC1 elevated with smoking do not normalize to
never-smoker levels even with prolonged smoking cessation (average 10.7 years).
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Association between COPD status and changes in ABC transporter expression

I next analyzed the expression profiles of ABC transporters in relation to confirmed COPD
status in three data sets (GSE11906, GSE11784, and GSE37147). GSE11906 and GSE11784
collected epithelial cells from small airways (10th-12th generation) while GSE37147 collected
from medium airways (6th-8th generation).
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Figure 2.4: Gene expression levels of selected ABC transporters ((A) ABCA13, (B)
ABCBG6, (C) ABCC1, (D) ABCC3) between smokers with COPD (blue) and smokers with
no diagnosis of COPD (green). Significant ABC transporter expression differences are
indicated by asterisks (¢ < 0.05 according to Mann-Whitney U test with
Benjamini-Hochberg correction). Three data sets (GSE11906, GSE11784, and GSE37147)
were used for this assessment. GSE11906 and GSE11784 collected epithelial cells from
small airways (10th-12th generation) while GSE37147 collected from medium airways
(6th-8th generation), with the two different sample types also analyzed on different
microarray platforms (Affymetrix Human Genome U133 Plus 2 and Affymetrix Human
Gene 1 ST, respectively). GSEs 11906 and 11784 used the MAS 5.0 normalization method,
and GSE37147 used the logged (base 2) RMA normalization method. Data distributions
are visualized as box plots (see Methods for additional details).

No ABC transporter showed differential expression across all three independent data
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sets (Figure 2.4; Table 5). Of candidates modified by cigarette smoking history, ABCC1 was
ranked in the top 10 differentially expressed probe sets in each data set containing smokers
with and without COPD, with a trend observed for increased expression with COPD status
that was significant in the medium airways (GSE37147) (Figure 2.4). ABCA13, ABCBG,
and ABCC3 expression profiles did not show any association with COPD status.

ABC transporter expression patterns in airway epithelial cells from asthmatics

For the asthma-focused analysis I interrogated two pairs of data sets: GSE4302 and
GSE67472, which allowed for healthy control comparison to individuals with asthma and
GSE63142 and GSET76227, which allowed for associating expression profiles with asthma
severity.”7?%°% All studies analyzed epithelial cells from medium (2nd-5th generation)
airways.
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Figure 2.5: Gene expression levels of selected ABC transporters ((A) ABCA13, (B) ABCC1,
(C) ABCC?2, (D) ABCCY, (E) ABCC9) between healthy controls (green) and asthmatics

(blue). Significant ABC transporter expression differences are indicated by asterisks (¢ <
0.05 according to Mann-Whitney U test with Benjamini-Hochberg correction). Both data
sets (GSE4302 and GSEG67472) analyzed epithelial cells from medium (3rd-5th generation)
airways and were generated from the Affymetrix Human Genome U133 Plus 2 microarray
platform (using the logged (base 2) RMA normalization method). Data distributions are

visualized as box plots (see Methods for additional details).

It was observed that asthma status is associated with an increase in ABCC2 in both
data sets (Figure 2.5; Table 6). ABCA13 and ABCC9 were decreased in one data set
(GSE67472) with a similar trend in the second data set (¢ < 0.1 — GSE4302). ABCC1
expression was increased in one data set (GSE4302) with no trend observed in the second
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data set. ABCCY expression levels showed trends towards reduced expression in samples
from asthmatics in both data sets that were not significant.

In the data sets that stratified asthmatics based on disease severity (GSE63142 and
GSE76227), trends for reduced ABCC/ and ABCA13 gene expression were associated
with increased severity of disease (Figure 2.6; Table 7). In contrast, ABCC1, ABCC2, and
ABCC9 failed to trend with disease severity (data not shown).

>

ABCA13 (A_23 P364324)  ABCA13 (1553604 PM _at) ABCC4 (A_23_P25559) ABCC4 (1554918 PM_a al)

135 *

s

125 [+

Status

* Mild/Moderate
loderate

12.0 —— evere

RMA Normalized Expression Values
® N @

RMA Normalized Expression Values
@ -

Cyclic LOESS Normalized Expression Values
Cyclic LOESS Normalized Expression Values

|

\

|

\

i

|

% |

|

1

|

[

|

" |
1.0 |
\

|

GSE63142 = "GSE76227 ) ) GSE63142 GSE76227

Figure 2.6: Gene expression levels of (A) ABCA13 and (B) ABCC4 between

mild /moderate (green), moderate (blue), and severe (orange) asthmatics visualized as box
plots (see Methods for additional details). Significant ABC transporter expression
differences are indicated by asterisks (¢ < 0.05 according to Mann-Whitney U test with
Benjamini-Hochberg correction). Both data sets used for this analysis (GSE63142 and
GSET76227) analyzed epithelial cells from medium (3rd-5th generation) airways; however,
they were generated using different microarray platforms (Agilent 014850 Whole Human
Genome Microarray 4x44K G4112F and Affymetrix HT HG U133 plus PM, respectively).
GSE63142 uses the Cyclic LOESS normalization method and GSE76227 uses the RMA
normalization method (both methods use logy scales).

In vitro validation of candidate ABC transporter gene expression changes

A priori it was determined that a complete in vivo COPD and asthma phenotype was
unable to be recapitulated in wvitro, but it was possible to recapitulate the impact of
cigarette smoke exposure.'"’ A cigarette smoke extract conditioned media experiment was
therefore performed with the Calu-3 airway epithelial cell line grown under submerged

27



monolayer conditions to validate an in vitro model system for interrogating candidate ABC
transporters of interest. Cigarette smoke extract conditioned media exposure (10% and
20%) for 24 hours recapitulates the decrease in ABCA13 gene expression and increase in
ABCC1 gene expression that is observed in human bronchial brushing samples (Figure 2.7
A, B) from individuals that have smoked cigarettes (Figure 2.2 A, C), with no changes in
cell viability Figure 2.7 C).
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Figure 2.7: Expression levels of the ABCA13 and ABCC1 genes in Calu-3 cells grown
under submerged monolayer conditions were assessed after exposure of cells to 10% and
20% tobacco cigarette smoke extract (TSE) conditioned media for 24 hours. Expression is
relative to GAPDH levels and also compared to a negative control (unexposed Calu-3 cells)
(A) ABCC1 expression increases under these conditions, whereas (B) ABCA13 expression
decreases as % TSE increased with no observed impact on cell viability (C). One-way
ANOVA was performed with a Bonferroni correction for multiple comparisons; n = 3; *: p
< 0.05 relative to control.
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2.1.4 Discussion

The contribution of ABC transporters to respiratory mucosal immunology remains to be
defined. To address this knowledge gap, I performed a bioinformatic analysis of 9 distinct
gene expression data sets of primary human airway epithelial cells to test the hypothesis
that specific ABC transporter gene expression patterns would correlate with presence of a
specific chronic respiratory disease and disease severity. The in situ human gene expression
data demonstrate that ABC transporters are i) variably expressed in epithelial cells from
different airway generations (top three expression levels - ABCA5, ABCA13, and ABCCH),
ii) regulated by cigarette smoke exposure (ABCA13, ABCB6, ABCC1, and ABCC3), and
iii) differentially expressed in individuals with COPD and asthma (ABCA13, ABCCI,
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ABCC2, ABC(CY). Lastly, this study demonstrates that an in vitro cell culture system of
cigarette smoke exposure is amenable to investigate the consequences of differential gene
expression patterns of candidate ABC transporters (ABCA13 and ABCC1). This work sets
a foundation for further mechanistic research into the basic biology of ABC transporters in
the respiratory mucosa and suggests a potential contribution to chronic respiratory diseases.

My analysis on ABC transporter expression profiles across airway generations was
performed on samples isolated from healthy subjects at the level of the trachea, large airways
(generation 2nd-3rd), and small airways (generation 10th-12th). The data demonstrate that
the expression levels of select ABC transporters are heterogeneous throughout the airway
tree (e.g. ABCC1, ABCCY, and ABCBS3) while others are homogenous (e.g. ABCA13,
ABCC?2, and ABCC3). The relative paucity of literature mechanistically describing the
function of each ABC transporter in human airway epithelial cells precludes us from
attributing any differential expression pattern to airway generation specific functional
responses of the epithelium. Regardless, the data suggests that ABC transporter expression
is differentially expressed along the airway tree, which may be important for chronic airway
diseases that lead to pathology of distinct airway regions (e.g. COPD as a small airways
disease™").

Environmental exposures including cigarette smoke, air pollution, allergens, viruses, and

bacteria can induce immune mediator release in the airway epithelium. """ ABC trans-
porters may be responsible for immune mediator release, including uric acid, leukotrienes,
prostaglandins, and glutathione conjugates,” '~ that may be important for responding to

environmental stimuli. To investigate possible ABC transporter-environment relationships,
I explored the impact of cigarette smoke exposure and smoking cessation on in situ gene
expression in epithelial cells. The analyses of the impact of smoking used three data sets
generated on the same microarray platform (GSE11906, GSE11784, and GSE4498)," "%

while the smoking cessation analysis used two additional data sets generated on two different
microarray platforms (GSE37147 and GSE994).7" Conserved elevations in ABCBG6,
ABCC1, and ABCC3 gene expression in response to cigarette smoke exposure were observed,
accompanied by trends for decreased gene expression with smoking cessation. ABCB6 is a
broad-spectrum porphyrin transporter expressed in mitochondria and plasma membranes
involved in heme biosynthesis and protective responses to reactive oxygen species.”

ABCBG6 over-expression increases catalase gene expression and stability””" and is able to
inhibit arsenic cytotoxicity,” a carcinogenic component found in cigarette smoke.”" Despite
the potential protective consequences of elevated ABCB6 expression that was observed
in cigarette smokers, it is important to note that negative consequences may also arise as
elevated ABCB6 levels may lead to resistance to chemotherapeutic agents.”” Therefore,
the observed up-regulation in ABCBG is likely an important initial protective response to
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cigarette smoke exposure that may have untoward consequences of reducing responsiveness
to chemotherapeutic agents for management of lung cancers. ABCC1 and ABCCS also
provide protective effects by transporting glutathione-conjugated anions from the cytosol to
the extracellular compartment to prevent cellular accumulation of toxic metabolites.” "
Similar to ABCB6, ABCC1, and ABCC3 are also capable of effluxing chemotherapeutics of
broad function including anti-cancer functions. Collectively it is conceivable that A BCB6,
ABCC1, and ABCCS3 gene expression levels are regulated by a feedback mechanism linked
to oxidative stress and toxin exposure induced by cigarette smoke exposure to help facilitate
anti-oxidant activities within airway epithelial cells.

Importantly, it was observed that as cigarette smokers progress to develop COPD,
ABCC1 gene expression is elevated compared to individuals that do not have COPD. Linked
to cigarette smoking, elevated ABCC1 gene expression has been observed in both non-small
cell carcinoma and small-cell carcinoma lung cancers.” The contribution of ABCC1 biology
in response to cigarette smoke exposure and to the associated development of COPD and
lung carcinoma is intriguing. An in vitro model of cigarette smoke extract conditioned
media induction of ABCC1 gene expression may be valuable in further interrogating this
biology and the functional consequences in the context of COPD and lung carcinomas.

In contrast to elevated gene expression levels in response to cigarette smoke exposure and
COPD status, I observed a conserved decrease in the expression of ABCA13. T also observed
a decrease in ABCA13 gene expression in asthmatics relative to healthy controls, suggesting
this may be a non-specific response to an inflammatory lung environment. ABCA13 is an
intriguing candidate as the expression levels are very high relative to other ABC family
members, and there are no reports of endogenous or exogenous substrates, expression
patterns in epithelium, or associations with respiratory mucosal immunology. Reports show
associations between ABCA13 expression and cancers,” “ " while ABCA18 variants
are associated with mental health abnormalities, """ although no mechanisms have been
defined for either of these observations. Other ABCA family members are involved in
lipid transport and dysregulation of their pathways can result in lung inflammation.
To gain insight into ABCA13 biology, one can examine other ABCA family members:
Abcal-KO mice have impaired lipid transport resulting in reduced serum cholesterol and
HDL, elevated intracellular lipid contents, and abnormal lung structure.”’ In contrast, mice
over-expressing the human ABCA1 gene showed reduced inflammation and pathology in a
model of allergic lung inflammation.” In humans and mice, dysfunction of ABCAS3 results
in surfactant deficiencies and fatal respiratory failure.”">""° Based on function of these
two ABCA family members in the lung, I hypothesize that ABCA13 is important in lipid
handling in airway epithelial cells, and when decreased in expression, this could result in
inflammation, altered surfactant production, and impaired innate immune functions. The
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relatively high expression levels of ABCA13 gene throughout the airway generations and
the known function of ABCA family members in lung biology warrants a further exploration
of this candidate.

The observation that cigarette smoke exposure, and to a small extent COPD status, was
associated with changes in ABC transporter gene expression warranted further exploration
to determine if these observations were non-specific responses to inflammatory airway
environments. Although changes in ABCA13 gene expression associate with both cigarette
smoking and asthma status, unique changes in ABC transporter expression profiles are
observed in samples isolated from asthmatics. Elevated ABCC?2 expression in asthmatics
relative to healthy subjects was observed while reductions in ABCCY9 were observed.
ABCC?2 is similar in function to ABCC1 with the shared ability to transport glutathione-

conjugated xenobiotics and control intracellular oxidative stress.”’" """ Elevations in
ABCC?2 that are observed in airway epithelial cells in asthmatics may aid in control of
oxidative environments in the asthmatic lung and epithelial cells,”” """ """ but could also

lead to extracellular transport of pharmacological agents used to control asthma due to the
broad specificity of this transporter. Similar to ABCC1 in smokers, changes in ABCC?2
in asthmatics may be both beneficial (management of oxidative stress) and detrimental
(reduction in intracellular bioavailability of pharmacological agents). In contrast to elevations
in ABC'C2, 1 observed reductions in ABCCY9 in airway epithelial cells from asthmatics.
ABCCY is also known as the sulfonylurea receptor 2 (SUR2) protein and functions as an
ATP sensitive K + channel that helps coordinate calcium levels in skeletal and cardiac
muscle.” Reduced ABCC9 levels could conceivably dysregulate K + and calcium
concentrations within airway epithelial cells, which in turn could impact K + regulated
mechanisms of epithelial cell migration, proliferation, and tissue repair. Irrespective
of the proposed functions of these ABC transporters that are differentially expressed in
epithelial cells from asthmatics, it can be concluded that the different patterns observed
in cells from asthmatics, smokers, or individuals with COPD suggests that regulation and
function of ABC transporters is specific to a given chronic inflammatory lung disease or
environmental insult.

This bioinformatic study has some limitations that need to be recognized due to the use
of publicly available data sets in the NCBI GEO. The deposited data sets were developed
from different microarray platforms, probe sets, and epithelial cells isolated from different
airway generations. Where the information was available, I have attempted to clearly
disclose this in the methods and correspondingly the results sections have axes of figures
labeled based on the pre-processing analysis performed by the original contributors of the
data sets (including different normalization methods). Irrespective of these limitations
and the inability to control for differences in microarray platform and source of epithelial
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cells, the observed common trends across independent data sets are emphasized, suggesting
validity of my approach and the available data sets.

In closing, I have initiated a characterization of the 48 known ABC transporters in
human airway epithelial cells in the context of chronic airway diseases. Using 9 distinct
gene-expression data sets of primary human airway epithelial cells, I tested the hypothesis
that specific ABC transporter gene expression patterns would correlate with presence of a
specific chronic respiratory disease and disease severity. It is clear that ABC transporters
are 1) variably expressed in epithelial cells from different airway generations, ii) regulated
by cigarette smoke exposure, and iii) differentially expressed in individuals with COPD and
asthma, I further demonstrate that an in vitro cell culture system is amenable to investigate
the consequences of differential expression patterns of candidate ABC transporters, creating
a foundation for further mechanistic research into the basic biology of ABC transporters in
lung health and disease.

2.2 ABCF1 regulates dsDNA-induced immune responses
in human airway epithelial cells

Material in this section has been published as part of Cao et al. (2019)."" The published
manuscript is available here:

Q. T. Cao, J. A. Aguiar, B. J.-M. Tremblay, N. Abbas, N. Tiessen, S. Revill, N.
Makhdami, A. Ayoub, G. Cox, K. Ask, A. C. Doxey, and J. A. Hirota. ABCF1
Regulates dsDNA-induced Immune Responses in Human Airway Epithelial
Cells. Frontiers in cellular and infection microbiology, 10:487. 2020."" https:
//doi.org/10.3389/fcimb.2020.00487

2.2.1 Introduction

Respiratory tract viral infections are collectively responsible for more than 2.5 million
deaths per year globally and represent an economic burden on health care systems for all
demographics. " In individuals with underlying chronic airway disease, respiratory tract
viral infections increase frequency and severity of disease exacerbations, hospitalizations,
and contribute to morbidity and mortality. =" """ Understanding the mechanisms
governing respiratory tract viral infections and host defence is essential for the future
development of treatments aimed at minimizing the morbidity and mortality of these
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pathogens. As demonstrated in Chapter 2.1, bioinformatic analysis of previously under-
studied gene families such as ABC transporters can be an important tool in achieving these
goals.

The ABCF family members are unique in their structure and function as they lack
transmembrane regions and therefore lack capacity for transport of substrates.” > Of
the ABCF family members, ABCF1 is most extensively characterized in eukaryotes, with
functions ranging from initiation of mRNA translation, immune modulation, and nucleic acid
sensing.” =75 72225 The diverse functions attributed to ABCF1 are physiologically
important, as demonstrated by the embryonic lethality of homozygous deletion of ABCF1
in mice.""” To date, nucleic acid sensing by ABCF1 has been defined using the dsDNA
immunostimulatory DNA (ISD) sequence derived from Listeria monocytogenes™’ and
a dsDNA HIV sequence, with both nucleic acid motifs inducing CXCL10, interferon-3
expression, and downstream type I interferon responses in mouse embryonic fibroblasts.
Complementary to dsDNA sensing, immune modulation mediated by ubiquitin-conjugating
activities of ABCF1 have been defined in the context of macrophage polarization and
immune responses linked to interferon-g production and tolerance important in mouse
models of sepsis.”” In the context of studies using human lung samples, ABCF1 gene
expression has been identified in the human airway epithelium, = although confirmation of
protein and function remains to be determined. The clear in vivo demonstration of ABCF1
functions in immune responses in mouse models and the presence of detectable ABCF1
gene expression the human airways warrants a deeper interrogation into the expression and
function of this molecule in human health and disease.

Defining defence mechanisms in airway epithelial cells has important consequences
in both lung health and disease, with the potential for interventions that could reduce
viral-induced pathologies and exacerbations of chronic respiratory diseases. =" """
Therefore, the hypothesis that ABCF1 functions as a dsDNA nucleic acid sensor in human
airway epithelial cells important in regulating antiviral responses was tested, using archived
human lung samples and human airway epithelial cells. Expression and localization
experiments were performed using in situ hybridization and immunohistochemistry in human
lung tissue from healthy subjects, while confirmatory transcript and protein expression was
performed in human airway epithelial cells. Functional experiments were performed with
siRNA methods as no selective small molecule inhibitors to ABCF1 have been validated
to date. Complementary transcriptomic analyses were performed to explore the potential
contributions of ABCF1 beyond dsDNA virus sensing. These results confirm expression of
ABCF1 in human airway epithelial cells with a role for mediating CXCL10 production in
response to dsDNA viral mimic challenge. Although ABCF1 knockdown was associated with
an attenuation of select genes involved in the antiviral responses, Gene Ontology analyses
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revealed a greater interaction of ABCF1 with TLR signaling suggesting a multi-factorial
role for ABCF1 in innate immunity in human airway epithelial cells.

2.2.2 Methods

Human ethics

All studies using primary human lung material were approved by Hamilton integrated
Research Ethics Board (HIREB — 5305-T and 5099-T).

Reagents

In situ hybridization was performed using a custom RNAscope™ probe for ABCFI (con-
struct targeting 1713-2726 of NM_001025091.1) generated by Advanced Cell Diagnostics
(ACD, Newark, California). Negative and positive control probes for quality control of RNA
signal in analyzed human tissues were purchased from ACD (data not shown). Protein cell
lysates were collected by lysing and scraping cells with RIPA Lysis buffer (VWR, Missis-
sauga, Ontario) mixed with protease inhibitor cocktail (Sigma-Aldrich, Oakville, Ontario).
Immunoblots were conducted using Mini-Protean TGX stain-free gels and Transfer-Blot
Turbo RTA Transfer Kit reagents (Bio-Rad, Mississauga, Ontario). ABCF1 protein was
probed with primary anti-ABCF1 antibody (HPA017578, Sigma-Aldrich, Oakville, Ontario)
at 1:100 in 3% Casein in 1X Tris Buffered Saline with TWEEN ®)20 (Sigma-Aldrich,
Oakville, Ontario, and Anti-rabbit HRP-linked Antibody (7074S - Cell Signaling Tech-
nology, Danvers, MA) at 1:2000. Immunohistochemistry was performed using the same
anti-ABCF1 antibody as immunoblotting. ABCF1 and scramble siRNA SMARTpool
siGENOME transfection reagents were purchased from Dharmacon (M-008263-01 and
D-001206-14, Lafayette, Colorado). Cell viability was estimated with the Pierce LDH
Cytotoxicity Assay kit (ThermoFisher Scientific, Mississauga, Ontario). RNA samples
were lysed with Buffer RLT and purified with RNeasy Mini Kit columns (Qiagen, Toronto,
Ontario). The ligands ISD, ISD control, VACV-70, VACV-70 control, and Poly:IC were
all complexed with LyoVec transfection reagent and purchased from Invivogen (San Diego,
California). Human CXCL10 was quantified using a commercial ELISA with ancillary
reagent kit (R&D Systems, Oakville, Ontario). The protocol for quantifying CXCL10 was
modified with the use of a loading plate for the samples.
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Cell culture

Cell culture performed by Quynh Cao at McMaster University

All experiments were performed in submerged monolayer cell culture. An immortalized
human airway epithelial cell line (HBEC-6KT) over expressing human telomerase reverse
transcriptase (WTERT) and cyclin-dependent kinase 4 (Cdk4) was used as previously
described. "5 "0 HBEC-6KT were grown in keratinocyte serum free medium
(ThermoFisher Scientific, Mississauga, Ontario) supplemented with 0.8 ng/mL epithelial
growth factor, 50 pg/mL bovine pituitary extract and 1X penicillin/streptomycin. Calu-3
cells (ATCC HTB-55) were grown in Eagle’s Minimum Essential Media supplemented
with 10% fetal bovine serum (Wisent, Saint-Jean-Baptiste, QC), 1mM HEPES, and 1X
penicillin /streptomycin (Sigma-Aldrich, Oakville, Ontario). Primary human bronchial
epithelial cells derived from healthy patient bronchial brushings were grown in PneumaCult
ExPlus Medium supplemented with 96 pg/mL hydrocortisone (StemCell Technologies,
Vancouver, BC) and 1X antimicrobial-antimycotics (ThermoFisher Scientific, Mississauga,
Ontario). All cells were grown at 37°C at 5% CO2. Experiments with primary cells were
performed between passages 1 and 4, and experiments with HBEC-6KT and Calu-3 cells
were performed within 5 passages.

In vitro experiments

In vitro experiments performed by Quynh Cao at McMaster University

All in vitro knockdown experiments in HBEC-6KT were done using siRNA transfected
with DharmaFECT Transfection Reagent according to the manufacturer’s instructions.
Cells were transfected with siABCF1 or siCTRL for 24 hours. After knockdown, cells
were transfected with an immunostimulatory ligand for 24 hours followed by outcome
measurements of cell viability (LDH and cell morphology), function (CXCL10 secretion),
protein expression (immunoblot), or gene transcription (microarray). For TNF-a stimulation
experiments, 10 ng/mlL was incubated for 24 hours followed by protein collection for
immunoblots. For ISD and VACV-70 stimulation experiments, a concentration- response
study was performed using 0.316-3.16 ng/mL (ISD) or 0.1-3.16 pg/mL (VACV-70) followed
by incubation for 24 hours. For Poly I:C stimulation experiments, 1 pg/mL was incubated
for 24 hours.
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Cytokine analysis

Cell supernatants were collected following in vitro experiments and sent to Eve Technolo-
gies for a Human Cytokine Array/Chemokine Array 48-Plex (Eve Technologies, Calgary,
Alberta). Eve Technologies uses the Bio-Plex ®) 200 to detect 49 different cytokines,
chemokines and growth factors: sCD40L, EGF, Eotaxin, FGF-2, Flt-3 ligand, Fractalkine,
G-CSF, GM-CSF, GRO«, IFNa2, IFN~, IL-1«, IL-13, IL-1ra, IL-2, IL-3, 1L-4, IL-5, IL-6,
IL-7, IL-8, IL-9, 1L-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IL-17E/IL-25, IL-17F,
IL-18, 1L-22, 11.-27, IP-10 (CXCL10), MCP-1, MCP-3, M-CSF, MDC (CCL22), MIG,
MIP-1c, MIP-15, PDGF-AA, PDGF-AB/BB, RANTES (CCL5), TGF-«, TNF-o, TNF-{3,
VEGEF-A.

Histology, digital slide scanning and microscopy

Histology, digital slide scanning and microscopy performed by Quynh Cao at McMaster
University

In situ hybridization and immunohistochemistry was performed using a Leica Bond Rx
autostainer with instrument and application specific reagent kits (Richmond Hill, Ontario).
The human lung tissues selected for analysis were formalin fixed, paraffin embedded,
lung samples from archived hospital clinical samples, determined to be free of defined
lung pathology. Following selection, four micron thick sections were stained with using
RNAscope™ probes (in situ hybridization) or antibody (immunohistochemistry) following
directions supplied with the Leica Bond reagent kits. For IHC, heat-induced antigen retrieval
in citrate buffer was performed at pH 6 with primary antibody diluted at 1:50. Slides
underwent digital slide scanning using an Olympus VS120-L100 Virtual Slide System at
40X magnification with VS-ASW-L100 V2.9 software and a VC50 colour camera (Richmond
Hill, Ontario). Image acquisition and formatting was performed using Halo Software (Indica
Labs, Albuquerque, NM).

Gene Expression Omnibus (GEO) data set mining

Gene expression patterns of ABCF1 in human airway epithelial cells were determined
relative to markers for immune cells (CD3/), ABC transporters of known function in airway
epithelial cells (ABCCY4, ABCC7), and junctions (CDH1) in a data set containing samples
from trachea, large airways (generation 2nd-3rd), and small airways (generation 10th-12th)
from healthy subjects (GSE11906, Affymetrix Human Genome U133 Plus 2 microarray
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platform).”'” The following probe sets were used to extract gene expression data: ABCF1
(200045_at), ABCCY (203196_at), ABCC7 (CFTR; 205043_at), CDH1 (201131_s_at), and
CD3/ (209543 s_at). In cases where more than one probe corresponded to a given gene, the
following hierarchy was used to select an individual probe for further use: perfect, unique
matches (probes ending in _at or _a_at) were preferred over mismatch or non-unique probes
(ending in _s_at or x_at). GSE11906 included 17 trachea (age — 42 +/- 7), 21 large airway
(age — 42 +/- 9), and 35 small airway samples.

Processing of raw microarray data

Raw intensity values from a microarray experiment using the Affymetrix Clariom S Human
chip-type were imported into the R statistical language environment (version 3.6.1; R
Core Team, 2019). Probe definition files were obtained from the Brainarray database
(version 24’"). The Single Channel Array Normalization (SCAN) method was used to
obtain log,-transformed normalized expression values with the SCAN.UPC R package
(version 2.26.07""), with annotation data from the Bioconductor project (version 3.9'").
The microarray data generated from ABCF1 siRNA experiments is deposited in GEO with
accession number GSE150541.

Analysis of processed microarray data

From the processed expression values, principal component analyses were performed with
the ‘prcomp’ function (version 0.1.0) from the R statistical language (version 3.6.1; R Core
Team, 2019) using default parameters. Determination of statistically significant differential
gene expression was performed using the empirical Bayes method via the ‘eBayes’ function
from the limma R package (version 3.40.0).”"" Statistical p values were adjusted using the
Benjamini-Hochberg method, with a significance cutoff of 0.05. Significantly enriched Gene
Ontology (GO) Biological Process Terms (ranked by p value) were determined using Enrichr
("#7"). Scatter plots, PCA plots, and GO term enrichment dot plots were generated using
the ggplot2 R package (version 3.2.1). Heat maps were generated using the pheatmap R
package (version 1.0.12), with logy expression scaled by gene and complete hierarchical
clustering using a Euclidean distance measure applied. A GO term enrichment clustergram
was modified from Enrichr using Inkscape.
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Statistical analyses

All experiments were performed with an n > 3 unless otherwise noted. Experiments with
HBEC-6KT and Calu-3 cells were considered independent when separated by a passage.
Statistics were determined by permutation ANOVA with a Bonferroni-corrected post-hoc
test comparing selected groups with p < 0.05 determined to be statistically significant.

2.2.3 Results

ABCF1 gene and protein expression is localized to human airway epithelial
cells #n situ and in vitro

Expression and functional studies of ABCF1 have focused on human synoviocytes, mouse
embryonic fibroblasts, human embryonic kidney cells, and peripheral blood mononuclear
cellg.” =7 =70 20 I have demonstrated gene expression of ABCF1 in human airway
epithelial cells."" To date, no in situ gene and protein expression data has confirmed ABCF'1
expression in human lung tissues.

To address this knowledge gap, I first mined publicly available gene expression data
from primary human airway epithelial cells from healthy subjects. ABCF1 gene expression
was observed along the airway generations (trachea, large, and small) at levels relative
to ABCC7/CFTR and ABCC/, two other ABC transporters with reported functions in
airway epithelial cells”'**'%"7* (Figure 2.8 A). CD3/ and CDHI (encoding E-Cadherin)
were used as negative and positive control genes, respectively, for airway epithelial cells to
provide contextual expression levels.
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Figure 2.8: (A) Gene expression analysis of GEO deposited microarray data set
(GSE11906) generated from epithelial cells isolated from trachea, large (2nd-3rd
generation), and small airways (10th-12th generation) from healthy subjects (see Methods
for details). (B) In situ hybridization of ABCFI1 RNAscope™ probe in human lung under
low (10X) and high (40X) magnification. Red puncta are representative of ABCF'1 gene
transcripts with nuclei counter-stained blue. Representative image of n = 10. (C)
Immunohistochemistry of ABCF1 in human lung under low (10X) and high (40X)
magnification. Representative image of n = 10. Pink/red staining is representative of
ABCF1 protein with nuclei counter-stained blue. (D) Immunoblot confirmation of ABCF1
protein expression in HBEC-6KT, Calu-3, and primary human airway epithelial cells (each
cell type n = 3 distinct cell line passages or donors) with a single band observed at
predicted molecular weight (96 kDa) with total protein loading blot demonstrating equal
protein loading for each cell type. (E) Immunoblot of ABCF1 following TNF-a stimulation
of HBEC-6KT cells with corresponding total protein stain. (F) Quantification of
immunoblot of ABCF1 protein expression. (G) IL-8 secretion from HBEC-6KT cells
measured by ELISA as positive control for TNF-a stimulation. All studies n = 3 unless
otherwise noted. **: p < 0.01.

Next, in situ localization of ABCF1 gene transcript was performed using RNAscope™
probes on archived formalin fixed paraffin embedded human lung samples (Figure 2.8 B).
ABCF1 gene transcript was observed in small puncta throughout the cytoplasm and nuclear
areas of airway epithelial cells. ABCF1 staining was also observed in submucosal cells with
morphology consistent with macrophages.

Protein expression levels were next explored with validation of a commercially available
antibody for ABCF1. Positive staining was observed in human airway epithelial cells as
shown in a serial section used for in situ hybridization (Figure 2.8 C) with sparse staining
in immune cells with macrophage morphology. Using in vitro culture of primary human
airway epithelial cells and two distinct airway epithelial cell lines (Figure 2.8 D). For each
airway epithelial cell type, a single band was observed at the predicted molecular weight of
96 kDa for ABCF1, validating the use of the antibody for in situ immunohistochemistry
localization.

Lastly, to explore proposed regulatory mechanisms for ABCF1,”"" a TNF-a exposure
was performed in human airway epithelial cells. Exposure to 10 ng/mL TNF-« for 24 hours
failed to induce a change in ABCF'1 protein expression (Figures 2.8 E, F), despite inducing
an increase in IL-8 (Figure 2.8 G).

Collectively the in vitro and in situ data confirm gene and protein expression of ABCF1
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in human airway epithelial cells, warranting downstream characterization and functional
studies.

Reduced expression of ABCF1 under basal conditions in wvitro
has limited impact on HBEC-6KT viability and transcriptional
profiles

Functional studies have implicated ABCF1 in translation initiation and have demonstrated
that homozygous loss of function results in embryonic lethality.”’"“°*%"® Therefore, the
basal functions of ABCF1 in human airway epithelial cells were interrogated in the context
of cell viability and transcriptional profiling.

siRNA experiments were performed to reduce ABCF1 expression levels as no small
molecule ABCF1 inhibitor has been described to date. Using siRNA approaches in HBEC-
6KT, it is confirmed that ABCF1 protein levels can be reduced with qualitative (Figure 2.9
A) and quantitative measures (Figure 2.9 B). LDH levels were not elevated when ABCF1
expression was reduced with siRNA (Figure 2.9 C). Cell morphology was not different in
human airway epithelial cells with reduced ABCF1 expression (Figure 2.9 D). Collectively,
the quantitative and qualitative data suggest moderate levels of siRNA knockdown are not
associated with compromised HBEC-6KT viability under basal conditions.
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Figure 2.9: (A) Immunoblot confirming siRNA-mediated knockdown of ABCF1 protein
expression in HBEC-6KT cells. (B) Quantification of ABCF1 protein expression following
siRNA treatment. (C) LDH quantification as a measure of cell viability following siRNA
treatment. (D) Phase-contrast microscopy (4X magnification) of HBEC-6KT following
siRNA treatment. (E) PCA plot of microarray gene expression profiles of HBEC-6KT cells
following siRNA treatment. Purple circles (media alone), blue circles (transfection reagent
only), green circles (transfection reagent and control siRNA), yellow circles (transfection
reagent and ABCF1 siRNA). (F) Logs expression data for transfection reagent with
ABCF1 siRNA compared to transfection reagent with control siRNA. Significantly
differently expressed genes are in blue and are down-regulated (ABCF1 and C12071f75).
All studies n = 3; **: p < 0.01.

To interrogate the impact of reduced expression of ABCF1 under basal conditions, a
human gene expression microarray analysis was performed. A principal component analysis
of ABCF1 reduction and corresponding experimental controls revealed no clustering between
experimental replicates for any condition (Figure 2.9 E), suggesting that the overall impact
of ABCF1 reduction under basal conditions minimally impacted global gene expression
patterns. Statistical analysis comparing ABCF1 reduction and siRNA control treated HBEC-
6KT confirmed ABCF1 gene was down-regulated (Figure 2.9 F) which was associated with
only one other significantly differentially expressed (up or down) gene, C120rf75, which
encodes over-expressed in colon carcinoma-1 (OCC-1) protein.

Collectively these in witro studies under basal conditions demonstrate that reduced
ABCF1 expression is not associated with changes in viability or significant genome wide
changes in transcriptional profiles in HBEC-6KT.

The dsDNA viral mimic VACV-70 induces CXCL10 and an antiviral response
in HBEC-6KT in vitro

Since reduced expression of ABCF1 under basal conditions resulted in limited impacts on cell
viability and gene transcription, conditions of challenge in HBEC-6K'T were next explored.
ABCF1 was described as a dsDNA sensor in mouse embryonic fibroblasts that mediated
CXCL10 secretion under challenge conditions with the viral mimic interferon stimulatory
DNA (ISD) sequence,” a 45 bp oligomer shown to activate the STING-TBKI1-IRF3
antiviral sensing axis.

To determine the response of HBEC-6KT to ISD, a concentration-response study was
performed followed by quantification of extracellular CXCL10 secretion (Figure 2.9 A).
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ISD induced an increase in CXCL10 at 1 pg/mL while no increases were observed at lower
(0.316 pg/mL) and higher (3.16 pg/mL) concentrations. Importantly, as concentration
of ISD increased, the cellular response to the control (ssDNA of the ISD sequence) also
increased. These results limited the use of ISD as dsDNA challenge stimulus in HBEC-6KT
cells for studying ABCF1 function.
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Figure 2.10: (A) Concentration-response analysis of ISD-induced CXCL10 protein
production for HBEC-6KT cells. Gray bars: ISD, Black bars: control ssDNA generated
from ISD. (B) Concentration-response analysis of VACV-70-induced CXCL10 protein
production for HBEC-6KT cells. Gray bars: VACV-70, Black bars: control ssDNA
generated from VACV-70. (C) PCA plot of microarray gene expression profiles of
HBEC-6KT cells following transfection with VACV-70 or control. Blue circles (control
VACV-70), green circles (VACV-70). (D) Logs expression data for transfection treatment
with VACV-70 compared to control VACV-70. Significantly differently expressed genes are
identified in blue (down: 42 genes) and red (up: 170 genes). (E) Heat map of logy
expression data (scaled by gene) of select known antiviral for VACV-70 and control
VACV-70 samples. (F) Top 5 GO Biological Processes are ranked by increasing —logyg
adjusted p value, with number (Count) of significantly differentially expressed genes
between VACV-70 and control VACV-70 contributing to the total number of genes
associated with the given pathway (N) denoted by the size of circle. All studies n = 3; *:
p < 0.05.

Vaccinia virus is a dsDNA virus that is able to infect airway epithelial cells.
The response of HBEC-6KT to VACV-70, a 70 bp dsDNA oligonucleotide containing
Vaccinia virus motifs’”"’ was therefore determined. VACV-70 induced a concentration
dependent increase in CXCL10 from 0.316 pg/mL to 3.16 pg/mL. In contrast to ISD, no
cellular response to the control (ssDNA of the VACV-70 sequence) was observed at any
concentration, based on ANOVA with Bonferroni correction.

To characterize the molecular pathways activated by VACV-70, a transcriptional and
pathway analysis of HBEC-6KT was performed following challenge. To interrogate the
VACV-70 transcriptional responses a principal component analysis was performed for
microarray gene expression data, revealing distinct clustering between stimulation (VACV-
70) and control (Figure 2.10 C). Statistical analysis revealed 170 up-regulated genes and
42 down-regulated genes with VACV-70 stimulus (Figure 2.10 D). VACV-70 up-regulated
CXCL10 gene expression and a curated list of antiviral related interferon stimulated genes
(Figure 2.10 E). GO term analysis revealed that the top pathways activated by VACV-70
were associated with type I interferon signaling, viral responses, and cellular responses to
viruses (Figure 2.10 F).

Collectively these in wvitro challenge studies confirm that VACV-70, a dsDNA viral
mimic, can induce CXCL10 and antiviral transcriptional responses in HBEC-6KT.
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Reduced expression of ABCF1 under VACV-70 stimulated conditions attenu-
ates CXCL10 secretion with limited impact on HBEC-6KT viability

VACV-70 induction of CXCL10 in HBEC-6KT at the gene (Figure 2.10 E) and protein
(Figure 2.10 B) levels have been confirmed. Furthermore, it has been demonstrated that
siRNA-mediated reduction of ABCF1 expression is possible and has no impact on cell
viability (Figures 2.9 A-D). Therefore, a VACV-70 challenge with reduced expression of
ABCF1 by siRNA was next performed with a primary readout of CXCL10.

ABCF1 reduction was associated with a decrease in CXCL10 protein secretion from
HBEC-6KT, with confirmation and quantification of ABCF1 reduction performed by
immunoblot (Figures 2.11 A-C). Cell viability following VACV-70 challenge and ABCF1
attenuation was not impacted as assessed by LDH quantification (Figure 2.11 D). Qualitative
analysis following VACV-70 challenge and ABCF1 reduction revealed no impact on HBEC-
6KT cell morphology (Figure 2.11 E).

Collectively these in wvitro challenge and functional studies demonstrate that ABCF1
siRNA treatment attenuated VACV-70-induced CXCL10 protein secretion in HBEC-6KT.
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Figure 2.11: (A) Immunoblot confirming siRNA-mediated knockdown of ABCF1 protein
expression in HBEC-6KT cells under experimental conditions of VACV-70 challenge. (B)
Quantification of ABCF1 protein expression following siRNA treatment. (C) VACV-70
(3.16 pg/mL)-induced CXCL10 protein production for HBEC-6KT cells with ABCF1
siRNA treatment. Black bars: siCtrl treated. Gray bars: ABCF1 siRNA treated. (D) LDH
quantification as a measure of cell viability following VACV-70 and siRNA treatment. (E)
Phase-contrast microscopy (4X magnification) of HBEC-6KT following VACV-70 and
siRNA treatment. All studies n = 3; *: p < 0.05 and **: p < 0.01.

ABCF1 reduction does not impact VACV-70-induced antiviral transcriptional
responses in HBEC-6KT

In parallel to induction of CXCL10 gene, GO pathway analysis confirms that VACV-70
induces a dominant antiviral transcriptional signature (Figure 2.10 E, F'). Therefore, how
reduced expression of ABCF1 impacts transcriptional responses induced by VACV-70,
beyond induction of CXCL10, was next explored. A principal component analysis was
performed for microarray gene expression data, revealing distinct clustering in samples
where ABCF1 expression was reduced relative to control conditions under conditions of
VACV-70 challenge (Figure 2.13 A; yellow versus blue). Statistical analysis revealed 63 up-
regulated genes and 65 down-regulated genes when comparing ABCF1 reduction relative to
control under conditions of VACV-70 challenge (Figure 2.13 B). siRNA mediated reduction
of ABCF1 was confirmed and associated with attenuation of CXCL10 gene expression
(Figure 2.13 C, p = 0.06).

To explore a focused transcriptional response of ABCF1 reduction in the context of
VACV-70 challenge, a hypothesis-directed approach curated 79 genes from the GO term
“Regulation of defense response to virus” and key components of viral sensing for heat map
visualization' ™ (Figure 2.13 D). Statistical analysis revealed no global significant difference
between ABCF1 reduction and control groups for the expression pattern of this curated
list of genes. To explore the broader transcriptional responses of ABCF1 reduction in
the context of VACV-70 challenge, a data-directed approach with GO term analysis was
performed. Top-ranking GO pathway terms included “Regulation of toll-like receptor 3—4
signaling pathways”, which were driven by the genes WDFY1, TNFAIPS3, and NR1D1
(Figure 2.13 E, F). Complementary cytokine analysis further revealed impacts of ABCF1
reduction on PDGF-BB, VEGF-A, and to a lesser extent IL-6, IL-8, and IL-1 family
members, IL-1a, IL-18, and IL-1RA (Figure 2.12).
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Figure 2.12: VACV-70 (3.16 pg/mL)-induced cytokine protein production for HBEC-6KT
cells with ABCF1 siRNA treatment. (A) RANTES/CCL5, (B) IL-6, (C) IL-8, (D) IL-1a,
(E) IL-18, (F) IL-1RA, (G) PDGF-AA, (H) VEGF-A. All studies n = 3; *: p < 0.05
relative to siCtrl 4 ctrl VACV-70; &: p < 0.05 relative to siCtrl + VACV-70.
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As the data suggested that ABCF1 functions in HBEC-6KT may extend beyond sensing
of VACV-70 dsDNA viral mimic through regulation of TLR signaling, Poly I.C, a dsRNA
analog and TLR3 ligand that induces interferon responses including CXCL10 production,
was explored. ABCF1 reduction was associated with a 63% reduction in Poly I:C-induced
CXCL10 protein (p = 0.07) secretion but did not impact Poly I:C-induced IL-8 protein
secretion (Figure 2.13 G, H).

20



PC2(17.7%) }>

|
EN

IS

o

[

(]
([

-4 4

0
PC1 (23.9%)
siCtrl + Control VACV-70
siCtrl + VACV-70

ABCF1 siRNA + VACV-70

Regulation of toll-like
E receptor 4 signaling pathway
(N=16)

Regulation of anatomical
structure morphogenesis
(N=82)

Positive regulation of cell
differentiation (N=194)

Regulation of intracellular
signal transduction (N=422)

Regquiation of toll-like
receptor 3 signaling pathway
(N=7)

G 1000+
800+
600

400

CXCL10 (pg/ml)

2004

ABCF1 siRNA + Control VACV-70

o 1.5

L €

]

5 34 c g

s, ool 5 1.0

+ - X

< gt u

Z, v ‘§,

x A S 054

— A c

uw o o g

O =

o

< T T T T
0 1 2 3 &
siCtrl + VACV-70 K

NS
* Down
« Up

0.06

mm siCtrl + Contrel VACV-70
siCtrl + VACV-70

Em Abcf1 siRNA + Control VACV-70
3 Abcf1 siRNA + VACV-70

T 200

Combined Scora

0.07
|

0

siCtrl (25 nM) +

Abcf1 siRNA(25 nM) -
Poly:IC (1.0 pg/ml) -

ABCF1 siRNA + VACV-70 12
ABCF1 2iRNA + VACV-70 74
ABCF1 iANA + VACV-70

siCirt + VACV-70 0
siCt + VACV-70
siCtrl + VACV-70 -1
i
v it Positive Regulation of
F IR g, Sup
Sooe o ARHGAP18
o TACSTD2
s CEACAM1
e ARHGAP29
GBP1
-log(adjusted p value) CDK2
o TAF9B
0.05 DYRK2
010 ZNF385A
IL6R
CTNNB1
WDFY1
TNFAIP3
NR1D1
H 1500+
T 10001
=)
&
q
4 5004
0 T -
siCtrl (25 nM) + + S =
Abcf1 siRNA(25 nM) - = + +
Poly:IC (1.0 pg/ml) - + = +

ol



Figure 2.13: (A) PCA plot of microarray gene expression profiles of HBEC-6KT cells
following ABCF1 knockdown and VACV-70 treatment. Purple circles (control siRNA and
control VACV-70), blue circles (control siRNA and VACV-70), green circles (ABCF1
siRNA and control VACV-70), yellow circles (ABCF1 siRNA and VACV-70). (B) Logy
expression data for transfection treatment with ABCF1 siRNA and VACV-70 compared to
control siRNA and VACV-70. Significantly differently expressed genes are identified in blue
(down: 65 genes) and red (up: 63 genes). (C) Confirmation of ABCF1 and CXCL10
attenuation with ABCF1 siRNA treatment presented as log, expression data. Black bars:
control siRNA and control VACV-70, light gray bars: control siRNA and VACV-70, dark
gray bars: ABCF1 siRNA and control VACV-70, white bars: ABCF1 siRNA and
VACV-70. (D) Heat map of logs expression data (scaled by gene) of genes associated with
the “regulation of defense response to virus” GO term (68 genes) plus the selected known
antiviral genes from Figure 2.10 E (11 genes) for VACV-70 samples with and without
ABCF1 siRNA. (E) Top 5 GO Biological Processes are ranked by increasing -log;o adjusted
p value, with number (Count) of significantly differentially expressed genes between
VACV-70 samples with and without ABCF1 siRNA, contributing to the total number of
genes associated with the given pathway (N) denoted by the size of circle. (F) Significantly
differentially expressed genes between VACV-70 samples with and without ABCF1 were
submitted to Enrichr for generation of a clustergram defining the gene contribution (y axis)
to the functional enrichment of the top 5 GO Biological Processes (x axis), with orange
squares denoting the association of a differentially expressed gene with a particular GO
term. (G) Poly I:C (1.0 pg/mL)-induced CXCL10 and (H) IL-8 secretion for HBEC-6KT
cells with ABCF1 siRNA treatment. All studies n = 3; *: p < 0.05.

Collectively these in wvitro challenge and functional studies with transcriptional analyses
demonstrate a role for ABCF1 in mediating VACV-70 and Poly [:C induced CXCL10
secretion and TLR3 related signaling in HBEC-6KT.

2.2.4 Discussion

The human airway epithelium expresses a variety of sensors that can detect and initiate an
immune response to virus infection. Recognition by these sensors can trigger downstream
activation of antiviral responses by inducing the production and release of antiviral and
inflammatory cytokines.”” This includes TLRs found at the cell surface such as TLR3,
which can detect viral RNA to trigger a type I IFN response by the TRIF signaling pathway.
In addition, TLR7 and TLRS8 detect viral RNA while TLR9 detects CpG containing
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viral DNA in the endosomes triggering the same response through the MyD88 signaling
pathway.””" In addition to TLRs, there are several cytosolic receptors including RIG-I-like
receptors that recognizes viral RNA, as well as cytosolic DNA sensors such as cyclic GMP-
AMP synthase, AIM2-like proteins and DNA-dependent activator of IFN-regulatory factors
that produces an IFN response. ™ It is likely that additional candidates are present as
redundancy is built into viral sensing mechanisms in host cells.

ABCF1, a member of the ABC transporter family expressed in diverse mammals
and different tissue types, has been reported to have diverse functions including initia-
tion of mRNA translation, dsDNA viral sensing, and polarization of immune cell pheno-
type. > 7527 h 2250 T have recently reported ABCF1 gene expression levels in human
airway epithelium, = but the function of this molecule remained unexplored. Herein I confirm
ABCF1 gene and protein expression in situ and in vitro in primary human lung tissue and
cell lines and explore its function in airway epithelial cells. Under basal conditions, reduced
expression of ABCF1 did not lead to quantitative changes in cell viability or qualitative
changes in cell morphology associated with cell death. Furthermore, ABCF1 reduction
failed to significantly alter basal transcriptional activity in a human airway epithelial cell
line, HBEC-6KT. Under VACV-70 challenge, a model of dsDNA viral exposure, ABCF1
was linked to CXCL10 secretion. Interestingly, despite the demonstrated activation of a
viral gene signature by VACV-70, no global change in antiviral gene expression patterns
were observed with ABCF1 reduction. In contrast, the gene pathways regulated by ABCF1
under VACV-70 challenge were associated with TLR signaling and intracellular signal
transduction. Furthermore, Poly I:C, a dsRNA analog and TLR3 ligand induced CXCL10
in an ABCF1 sensitive mechanism. Collectively, this study’s data suggests that ABCF1
may regulate CXCL10 production downstream of dsDNA sensing mechanisms and TLR3 in
human airway epithelial cells. It remains possible that ABCF1 can function to complement
viral sensing mechanisms mediated by canonical dsRNA viral response machinery (e.g.,
RIG-I) as there are possible redundancies in viral sensing mechanisms in the cell.

ABCF1 (originally called ABC50) was first identified in human synoviocytes at the
mRNA level as a transcript regulated by TNF-a exposure. ABCF1 is unique in the
mammalian ABC transporter family in that it contains the signature ATP binding LSGGQ
amino acid motif and associated Walker A and B motifs for phosphate binding, but lacks a
predicted transmembrane region, "~~~ which is supportive of a cytosolic localization and
function. ABCF1 transcript expression profiling has revealed near ubiquitous expression
in human organs including lung, heart, brain, placenta, liver, skeletal muscle, kidney,
pancreas, spleen, thymus, prostate, testis, ovary, small intestine, colon, peripheral blood
leukocytes.”” The expression of ABCF1 has subsequently been identified in the human
HeLa cells and embryonic kidney cells and other mammalian cells from rats, rabbits, ham-
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sters, and mice.” ="~ 7°% "7 Highlighting the importance of ABCF1 in normal physiology
and development, homozygous deletion of ABCF'1 is embryonic lethal in either C57B1/6
mice or BALB/c mice."'” As I recently identified gene expression of ABCF! in human
airway epithelial cells,”" I set out to first confirm this at the protein level and then determine
the function(s) of ABCF1 in human airway epithelial cells. It is confirmed that ABCF1 gene
expression is present in airway epithelial cells and expressed at levels relative to other known
ABC transporters with function in this cell type, ABCC4 and ABCC7/CFTR.” "%
In situ hybridization using RNAscope™ technology demonstrated ABCF1 transcripts
present in the airway epithelial cells in human lung samples, which was consistent with
positive immunohistochemical staining of protein in a serial section of the same samples
using an antibody validated for specificity. Since the original discovery of ABCF1 was the
result of an up-regulated transcript resulting from TNF-a stimulation of synoviocytes, it
was examined if this mechanism was functional in human airway epithelial cells. In contrast
to the reported data on synoviocytes, TNF-a stimulation failed to induce ABCF1 protein
expression in HBEC-6KT, despite IL-8 induction as a positive control. Interestingly, in a
recent report profiling the role of ABCF1 in murine bone-marrow derived macrophages,
TNF-«a stimulation suppressed ABCF1 protein expression.”” These contrasting observa-
tions of ABCF1 expression in HBEC-6KT compared to synoviocytes and bone-marrow
derived macrophages could be due to the difference in ontogeny and function of these cells.
Collectively these results and those in the literature support gene and protein expression of
ABCF1 in human airway epithelial cells, and that regulation of this protein is likely to be
cell specific.

The first description of a potential function for ABCF1 in mammalian cells was derived
from the experiments on human synoviocytes, suggesting a role in translation due to
homology of molecular sequence with yeast proteins that performed this function.”
The embryonic lethality observed in mice for homozygous ABCF1 deletion and ubiquitous
expression across multiple cell and tissue types, ” is consistent with ABCF1 playing a
role in a fundamental biological process like protein translation. The observation that
proliferating cells including synoviocytes stimulated with TNF-a and T cells stimulated
with phorbol myristate acetate and ionomycin, elevate ABCF1 levels is further consistent
with a role in translation.” """ Subsequent to the discovery of ABCF1 gene expression
and homology modeling, biochemical studies implicated the protein in interaction with
eukaryotic initiation factor-2 (elF2), a heterotrimeric protein consisting of «, f, and =
subunits, that is important for translation initiation.”” A distinguishing feature of ABCF1
relative to other ABC transporters is a N-terminal domain that is able to interact with elF2«
in a process that potentiates binding of methionyl-tRNA and initiation of translation.”” In
addition to elF2« interactions, ABCF1 associates with ribosomes in a process potentiated
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by ATP binding to the nucleotide binding domains and inhibited by ADP,”*" although
the hydrolysis of ATP seems dispensable for ribosome interaction. To explore the
potential function of ABCF1 as an initiator of translation in human airway epithelial
cells, a siRNA approach was undertaken to attenuate gene and protein expression followed
by a global assessment of cell viability and transcriptomics. Surprisingly, under basal
conditions, reduced expression of ABCF1 at the gene and protein level did not impact
HBEC-6KT viability, morphology or transcriptional profile. Importantly, the outcome
measurements were performed on HBEC-6KT that were sub-confluent and undergoing
proliferation in serum-free media, an experimental condition where ABCF1 function in
translation initiation would be relevant. A limitation of the study design is that global gene
expression was measured under the assumption that this would reflect any global changes in
gene translation, an indirect approach which does not allow us to directly implicate ABCF'1
expression levels to protein synthesis. Interestingly, the observations of minimal changes
in HBEC-6KT may be consistent with cells of epithelial lineage, as near complete ABCF1
knockdown in HeLa cells was also only associated with a modest attenuation of total protein
synthesis.””” Collectively, these results suggest that ABCF1 may function independent of
protein translation functions in HBEC-6KT, as gene and protein attenuation results in no
changes in cell viability or global transcriptional profile.

The original discovery that ABCF1 expression was regulated by TNF-« stimulation
suggested a link to immune responses, although no differential expression patterns were
observed for synoviocytes from healthy individuals or those with rheumatoid arthritis.
Subsequently, ABCF1 has been implicated in immune responses via a cytosolic dsDNA viral
sensing function using mouse embryonic fibroblasts.” Using an integrative bioinformatic
and molecular biology approach, a biotinylated ISD sequence was used as a bait and
transfected into cells, followed by proteomic interrogation of identified candidates. The
ISD bait method was validated by identifying known dsDNA sensors including HMGBI,
HMGB2, and HMGB3, components of the AIM2 inflammasome, and the SET complex that
plays a role in HIV-1 retroviral detection and infection.”” Within the pool of unknown
dsDNA interacting candidates, ABCF1 was mechanistically linked to ISD induced-CXCL10
production using siRNA methods. The observed ISD induced-CXCL10 converged on IRF3
signaling, confirmed by showing reduced IRF3 phosphorylation following ISD treatment
under conditions of ABCF1 silencing. In a separate study, ABCF1 has been implicated as a
molecular switch downstream of TLR4 signaling in mouse bone-marrow derived macrophages
that regulates MyD88 dependent pro-inflammatory and TRIF/TRAM dependent anti-
inflammatory processes.”” Using in vitro an in vivo model systems, ABCF1 was implicated
in polarizing pro-inflammatory macrophages to an anti-inflammatory/tolerant macrophage
phenotype with direct involvement in shifting the systemic inflammatory response syndrome
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to a endotoxin tolerance phase in sepsis.”” The mechanism responsible for the ABCF1-
mediated polarization of macrophages was identified to be a E2-ubiqutin-conjugating enzyme
function. In wild-type macrophages the TRIF-IFN-3 pathway is intact with attenuation of
the MyD88 pathway, allowing IRF3 phosphorylation, dimerization, and IFN-#3 expression. In
contrast, heterozygosity for ABCF1 results in attenuation of the TRIF-IFN-3 pathway, with
reduced IRF3 activation and IFN-beta production. Importantly, these two immunological
studies converge on a relationship between ABCF1 and IRF3, which could involve direct
or indirect interactions to facilitate downstream immune responses. Consistent with the
potential role for ABCF1 as a dsDNA sensor, immune and transcriptional responses were
explored downstream of VACV-70, a dsDNA viral mimic capable of activating STING,
TBK1, and IRF3 independent of TLRs.”"" VACV-70 induced a dominant antiviral signature
and pathway activation in HBEC-6KT, consistent with successful transfection and cytosolic
sensing. Reduced expression of ABCF1 was associated with a reduction in CXCL10,
an antiviral cytokine regulated by IRF3 activation, independent of any changes in cell
viability or morphology. Transcriptomics revealed that although attenuation of CXCL10
was observed with ABCF1 siRNA, a global attenuation of an antiviral signature was not
observed. GO analysis identified that the key pathways that were significantly impacted
by ABCF1 siRNA treatment during VACV-70 challenge were related to TLR signaling.
Interestingly, a key gene identified in the VACV-70 challenge and ABCF1 silencing studies
is WDFY1, which links TLR3/4, TRIF, and IRF3 signaling.' " This finding suggested that
ABCF1 could potentially be regulating both TLR4 and TLR3/TRIF/IRF3 signaling.
This hypothesis was tested by using Poly I:C, a dsRNA viral mimic that activates TLR3
and IRF3.”° ABCF1 siRNA treatment attenuated Poly [:C-induced CXCL10 production,
further demonstrating a link between ABCF1 and TRIF/IRF3, perhaps through regulation
of WDYF1. While the link between ABCF1 and TLR4 has not yet been demonstrated,
a LPS challenge with ABCF1 siRNA treatment would effectively interrogate this. These
exploratory results suggest that ABCF1 is likely to play a complex role in innate immunity
in response to cytosolic nucleic acids, with a potential interaction with TRIF/IRF3 for
regulation of CXCL10.

Throughout this study several technical issues were encountered. The absence of
pharmacological interventions that could antagonize ABCF1 function required us to pursue
molecular approaches with siRNA. siRNA approaches were unable to completely attenuate
ABCF1 at concentrations of 25 nM for up to 48 hours. Longer durations of silencing were
not possible as the human airway epithelial cell line used showed changes in morphology
with vehicle control transfection reagent beyond 48 hours of incubation. The inability to
completely attenuate ABCF1 levels was consistent with human embryonic kidney cells.
Secondary to addressing ABCF'1 expression levels, this study sought to explore the functional
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consequences with the reported dsDNA viral mimic ISD as reported in the literature with
mouse embryonic fibroblasts.”” During the concentration-response studies with ISD, the
vehicle control condition resulted in elevations in the primary readout of CXCL10, which
suggested an unexplained confounding factor. This study therefore opts to use VACV-70 in
place of ISD, which limits the ability to directly compare these results to those that have
established ABCF1 as a dsDNA sensor with ISD.”” Importantly, reported findings from the
HBEC-6KT cell line will require confirmation using primary human airway epithelial cells
under submerged and/or air-liquid interface culture conditions to more accurately model in
the in situ human respiratory mucosa.

In conclusion, this study confirms that ABCF1 is expressed at the gene and protein
level in situ and in vitro in human airway epithelial cells. In HBEC-6KT, ABCF1 has
minimal functions for cell viability and transcriptional regulation under basal conditions
but is important for mediating immune responses to cytosolic nucleic acids in pathways
that involve TLR signaling and CXCL10 production. The data form the foundation to
pursue precisely how ABCF1 is regulated and where it functions in the network of cytosolic
nucleic acid sensors and immune responses in human airway epithelial cells.

2.3 Summary

The goal of this chapter was to leverage bioinformatic techniques to interrogate the effects of
well-characterized airway particulates, thereby elucidating previously unexplored outcomes
of these inhaled stimuli on the human lung epithelium. The studies described in this
chapter demonstrate the myriad functions of the ABC transporter family within the context
of the human airway, from maintaining surfactant homeostasis to potential viral sensing,
while simultaneously further characterizing the wide-reaching effects of ubiquitous airway
particulates on the human lung.

Through targeted statistical analysis, [ was able to identify important, yet previously
unobserved functional outcomes related to ABC transporters. Well-annotated, publicly
available data sets were the foundation of these studies and are excellent resources to
explore a priori hypotheses as they provide large enough samples sizes to confer necessary
statistical power. These case studies reinforce the concept that novelty can come even
from previously well-characterized sources by utilizing informatics. This raises important
questions: what are the capabilities of current computational methods when performing
exploratory, data-directed analyses and how can these methods be harnessed to understand
other relevant yet under-studied or completely novel airway exposures?
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Chapter 3

Cannabis smoke exposure

Cannabis is the most commonly consumed illicit drug worldwide, with the United Nations
World Drug Report estimating over 180 million global cannabis users.”"” Decriminalization
and legalization of medicinal and/or recreational cannabis in several global jurisdictions
have led to increased access to cannabis products that will likely lead to increased use
over the coming years. Canada legalized cannabis in 2017 and concomitantly initiated the
annual Canadian Cannabis Survey to monitor perception and use patterns. These surveys
demonstrate that 20% of the general population consumes cannabis” " with a subset (12%)
of the population using cannabis for medicinal purposes. In Canada, combustion is the most
common form of consumption as reported by 94 and 89% of users in the 2017 and 2018
Canadian Cannabis Surveys, respectively.”"” With over 90% of cannabis consumers having
identified combusted smoke inhalation as a route of delivery, the lung can be highlighted
as a dominant target for cannabis exposures. Within the cannabis consumer population,
there is a skewed distribution of use patterns, with males identified as consuming more
frequently in the past 12 months relative to females (26% versus 18%). The prospective
design of the Canadian Cannabis Surveys has demonstrated that cannabis use over time
is widely accepted at a population level for recreational and medicinal purposes with no
signal for decline in use post-legalization.”~"" Additionally, the data demonstrate a strong
preference for inhalation routes of delivery.

Inhalation of cannabis smoke delivers pharmacologically active ingredients to the lung,
including tetrahydrocannabinol (THC) and cannabidiol (CBD), as well as combustion
products such as polycyclic aromatic hydrocarbons. Many studies have investigated
the psychoactive and immunomodulatory properties of THC and CBD respectively, and
examined the potential use of cannabis as an intervention for chronic pain, immune disorders
and neurological disorders.” """ Despite this body of knowledge and recent rise of systematic
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reviews on these topics, the effects of inhaled cannabis smoke on the respiratory mucosal
immune responses are less clear.

The negative effects of tobacco smoke on the lung and its airway epithelium are univer-

sally accepted.””"" """ Tobacco smoke induces oxidative stress and cytokine production
while disrupting epithelial barrier function, impacting chronic lung disease pathology and
exacerbations. In contrast, there remains a paucity of observational and mechanistic

cannabis smoke exposure studies and models’’” that can inform our understanding of
potential public health issues. Early clinical exposure studies demonstrated that acute
cannabis smoke exposure in healthy subjects is able to provide a sustained increase in lung
function, which contrasted tobacco smoke inhalation.”””"" In asthmatic subjects, cannabis
smoking is able to produce a rapid reversal of exercise-induced bronchoconstriction and
minimize bronchoconstriction induced by methacholine inhalation.”"" Despite these
objective benefits in a controlled laboratory setting, critical consideration needs to be given
to the observed negative impacts on lung function in the context of increased frequency
and intensity of cannabis smoking. Contrasting acute cannabis exposure, cannabis smoking
over a two-month period was associated with a decrease in airway compliance that was
correlated with quantity of cannabis consumed.”’” Like tobacco smoke, repeated exposure
to cannabis smoke has been associated with cough and shortness of breath relative to
non-smokers." >0 Further consolidating the negative impacts of chronic cannabis use
on lung health, population level analyses reveal that greater intensity of cannabis smoking
is correlated with reduced lung function and increased risk of developing chronic obstructive
pulmonary disease (COPD).”""»""" Furthermore, in multiple independent cohorts, cannabis
smoking has been associated with a pro-inflammatory phenotype in the lung, associated
with bronchitis and impaired immune cell function.”>" 75 % However, few studies
have examined the effects of cannabis smoke on the respiratory mucosa, the primary physical
and immunological barrier to the environment.

The lungs are in constant contact with harmful environmental agents such as viruses
and bacteria yet we rarely show signs of infection. "»**° Minimized infection is the result of
innate and adaptive immune processes that include the physical barrier and immunological
functions of the airway epithelium and mucosa. Protection rendered by the airway epithelium
can be compromised by tobacco smoke, ' "7 leading to increased susceptibility to
infections and potential for host pathology. Whether cannabis smoke exposure similarly
impacts airway epithelial cell function and immunity relevant in pathogen defence remains
to be determined.

Through transcriptomic and functional analyses, the following chapter aims to fill in
some of the gaps that currently exist in our understanding of the effects of cannabis and
the endocannabinoid system on human airway epithelial health; data that is needed to
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effectively inform policy, government regulations, and user practices.

3.1 Transcriptomic and barrier responses of human
airway epithelial cells exposed to cannabis smoke

Material in this section has been published as part of Aguiar et al. (2019)."" The published
manuscript is available here:

J. A. Aguiar, R. D. Huff, W. Tse, M. R., Stampfli, B. J. McConkey, A. C.
Doxey, and J. A. Hirota. The impact of cigarette smoke exposure, COPD, or
asthma status on ABC transporter gene expression in human airway epithe-
lial cells. Physiological Reports, 7(20):€14249. 2019."" https://doi.org/10.
14814/phy?2. 14249

3.1.1 Introduction

To characterize the human host response to inhaled cannabis smoke, collaborators and 1
performed a series of in vitro functional and transcriptomic experiments with a human
airway epithelial cell line (Calu-3) exposed to cannabis smoke, with tobacco smoke used as
a positive control. To model cannabis smoke exposure, smoke conditioned media methods
that have been validated for tobacco combustion experiments' "= 771515550 were used.
Comparison of differential gene expression patterns from these tobacco smoke conditioned
media experiments in Calu-3 cells to bronchial brushings from human tobacco smokers
and air-liquid interface cultures of primary epithelial cells exposed to mainstream tobacco
smoke 777 revealed overlap, validating the relevance of the model. Using cannabis
smoke conditioned media, I observed functional and transcriptional responses that were
shared with tobacco smoke. Gene expression pathway analysis revealed that cannabis smoke
induced DNA replication and oxidative stress responses. Functionally, cannabis smoke
impaired epithelial cell barrier function, antiviral responses, and elevated inflammation.
Broadly speaking, the data demonstrate that cannabis smoke exposure is not innocuous
and induces transcriptional and functional responses in human airway epithelial cells that
may impact lung health similar to tobacco smoke.

60


https://doi.org/10.14814/phy2.14249
https://doi.org/10.14814/phy2.14249

3.1.2 Methods

Preparation of cannabis and tobacco smoke extracts

Preparation of smoke extracts performed by Ryan Huff at The University of British Columbia

Cannabis smoke extract (CSE) and tobacco smoke extract (T'SE) conditioned media
were prepared according to previously published methods.” For generation of the TSE,
a Kentucky Research Grade Cigarette (Lot: 3R4F — cellulose acetate filter, ~ 0.7 g of
dried tobacco leaves) was used. For generation of the CSE, cannabis from Dr. Jonathan
Page (University of British Columbia, Vancouver, British Columbia, Canada) (13% THCA
strain (w/w), with 0.18% THC, 0.35% THCVA, and 0.18% CBGA, ~ 0.7 g dried cannabis)
rolled with card- board filters was used. To prepare the smoke-conditioned media, either 1
cannabis cigarette or 1 tobacco cigarette was smoked into 4 mL of HEPES buffered Eagle’s
Minimal Essential Medium (EMEM). Smoke extracts were filtered using a 0.22 mL filter.
Extracts were standardized by measuring absorbance and diluting with fresh medium to
reach a desired dilution (OD260 nm = 0.4045 x dilution factor, 10% dilution = 0.04045
OD260 nm). A single batch of CSE and TSE was generated, aliquoted, and stored at -80°C
and used for all subsequent experiments. For RNA-sequencing experiments, 10% CSE and
TSE were used. For concentration-response studies, 0.625, 1.25, 2.5, 5, 10, and 20% CSE
and TSE were used.

Epithelial cell culture and drugs

Cell culturing performed by Ryan Huff at The University of British Columbia

Calu-3 cells obtained from ATCC (Manassas, Virginia, USA) were grown in EMEM
with 10mM HEPES, 10% fetal bovine serum (FBS), and antibiotic-antimycotic, and used
between passages 10-20. For exposure experiments, 1x10° or 2x10° Calu-3 cells were seeded
onto either 4.7 cm? or 0.3 cm? polyester Transwell®)permeable supports respectively, with
a pore size of 0.4 mL. Cells were grown for 20 days to promote cell polarization, with media
on both apical and basal sides.””” FBS was removed from Calu-3 cultures 24 hours prior to
the start of the exposures. For exposures, fresh FBS-free EMEM culture media was added
to basal chambers and CSE or TSE media diluted with fresh FBS-free EMEM culture
media was added to the apical chambers for 24 hours.

Cell viability assay

Cell viability assay performed by Ryan Huff at The University of British Columbia
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Cell viability was assessed using a Pierce™ LDH Cytotoxicity Assay Kit (ThermoFisher,
Mississauga, Ontario, Canada) according to the manufacturer’s instructions.

Barrier function assessment

Barrier function assessment performed by Ryan Huff at The University of British Columbia

Trans-epithelial Electrical Resistance (TEER) was measured using a Millicell ERS-2
Voltohmmeter (EMD Millipore, Etobicoke, Ontario, Canada). Resistance was measured
just prior to exposure as well as 24 hours post-exposure and multiplied by the growth area
of the inserts (Qx cm?).

Cytokine assays

Cell supernatants collected from the apical side of the culture system were analyzed by
a 42-plex human cytokine/chemokine protein array (Eve Technologies, Calgary, Alberta,
Canada).

RN A-sequencing analysis

Total RNA was extracted using an RNeasy Plus Kit (Qiagen, Toronto, Ontario, Canada).
cDNA was prepared at The Centre for Applied Genomics at the Hospital for Sick Children
(Toronto, Ontario, Canada). Samples were sequenced on the [llumina HiSeq 2500 instrument
with 125 bp paired-end reads to a minimum depth of 30 million reads per sample. Reads
were de-multiplexed and trimmed and BCL files generated from the Illumina sequencer
were converted to FASTQ files.

After quality control using FastQC (v.0.11.7) and Prinseq (v.0.20.4), sequences were
aligned to the human reference genome (hgl9) using HISAT2 (v.2.1.0) and assembled into
full transcriptomes using StringTie (v.1.3.3b). Samtools (v.1.9) was used to convert and
sort HISAT?2 output into sorted BAM files for use by StringTie. StringTie was also used to
calculate transcript abundances for downstream differential expression analysis using the
Ballgown package in R (version 3.4.3) which provides p values, FDR-adjusted p values (¢
values), and logs fold change values for all genes in each comparison. A snakemake-based
pipeline called hppRNA (v.1.3.3) was used to combine the above steps into a streamlined
work-flow.
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Validation of cell culture and exposure methods

To validate the use of Calu-3 cells exposed to smoke extract-conditioned media in vitro,
four independent tobacco smoke exposure data sets were compared to the results from the
TSE versus Control differential expression analysis. Two microarray data sets (GSE4498
and GSE11784)"""""" and two high-throughput RNA-sequencing data sets (SRP096285 and
SRP126155)" """ were used for validation. GSE4498 and GSE11784 data sets consist of
gene expression data obtained from microarray analysis of mainstream tobacco cigarette
smoke-exposed airway epithelial cells compared to cells from healthy individuals (bronchial
brushings). SRP096285 and SRP126155 data sets consist of nasal epithelial cells cultured on
Transwells and exposed to either 3RAF reference tobacco cigarette smoke extract-conditioned
media or air. To determine the correlation between either of these data sets and my own
data set, a list of differentially expressed genes from the deposited data set (adjusted p <
0.05) was compared to the differentially expressed genes from the TSE versus Control data
set (adjusted p < 0.05). The intersection of gene names from both lists was determined
and these genes were plotted and their correlation was determined using Pearson’s r with p
value reported. Significance of the gene overlap was determined by a hypergeometric test
in R (version 3.4.3).

Functional enrichment and pathway analyses

Lists of significantly differentially expressed genes were identified for CSE versus control and
TSE versus control (as determined by Ballgown, FDR ¢ value < 0.05) and genes present in
both comparisons were submitted to Enrichr to identify enriched pathways and functional
ontologies.”” Terms were ranked within ontologies by Enrichr’s combined score (log(p value)
x z-score of the deviation from the expected rank). Expected rank (FDR adjusted p value)
was calculated by Enrichr by running the Fisher exact test for random gene sets in order to
compute a mean rank and standard deviation from the expected rank for each term in the
gene set library.

Statistical analysis

Significant changes in cell viability, TEER, and cytokines were identified through permuta-
tion ANOVA followed by Tukey Honest Significant Difference (HSD) post-hoc test using the
ImPerm package in R (v. 3.4.3). Significant differences between transcriptional expression
profiles were identified through analysis of similarities (ANOSIM) using the vegan package
in R (v.3.4.3). For all analyses, differences were considered statistically significant when
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FDR adjusted p values are less than 0.05, or equivalently with a false-discovery rate of
5%. For all experiments, four independent biological replicates derived from distinct Calu-3
stocks were performed (n = 4).

3.1.3 Results

In vitro cannabis smoke exposure-induced changes in gene expression overlap
with tobacco smoke

For the described experiments, the transcriptomic changes induced by tobacco smoke
were used as positive control stimulus to determine the relative impact of cannabis smoke
exposure. Transcriptomic analysis of differentially expressed genes following cannabis or
tobacco smoke exposure for 24 hours at 10% dilution revealed a highly significant correlation
(r = 0.695, p < 1.0x10%) and overlap of shared changes in gene expression (Figure 3.1, n
= 389, purple triangles).
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Figure 3.1: Correlation of differential gene expression profiles (logy fold change (FC))
versus control, comparing cannabis and tobacco exposures, as determined by Pearson’s
correlation. Significantly differentially expressed genes in cannabis smoke extract (CSE)
only (blue diamonds, n = 832), tobacco smoke extract (TSE) only (red dots, n = 190),
and shared between CSE and TSE (purple triangles, n = 389) are highlighted. Only seven
genes were identified as significantly differentially expressed between CSE and TSE (orange
squares, n = 7).

Enriched pathways and functional ontologies were explored based on gene expression
patterns using the bioinformatic tool, Enrichr™ (data not shown). Significantly differentially
expressed genes that overlapped between CSE-exposed and TSE-exposed (n = 389, purple
triangles) cells were analyzed. Analysis of these shared significantly differentially expressed
genes revealed increased expression of genes involved in the NRF2 and aryl hydrocarbon
receptor pathways that are both involved in responding to oxidative stress and xenobiotic
molecules. Moreover, the two genes most up regulated by both smoke exposures were aryl
hydrocarbon receptor induced genes CYP1A1 and C'YPI1BI. 1 also observed increases in
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genes involved with cell replication pathways, cell cycle activating transcription factors
E2F1 and MYC, altered barrier function, and lowered antiviral responses in smoke-exposed
cells (see Figure 3.3, 3.4).

Minor differences in responses between CSE and TSE reveals that cannabis smoke
exposure is able to induce selective changes in gene expression that are not altered with
tobacco smoke (Figure 3.1, blue diamonds, n = 832) or were different from tobacco
smoke (Figure 3.1, orange squares, n = 7). Only seven genes (ALDHI1L1, CDC42B2B,
MLPH, SQSTM1, TIPARP, TNFRSF10A, and FCLN) were differentially expressed between
CSE and TSE exposure. However, these genes may be of interest in the context of airway
epithelial cell biology following smoke exposure. For instance, TNFRSF10A (Death Receptor
4, DR4) was significantly down-regulated in CSE relative to TSE exposed cells (4.8 logoFC).
Collectively, these results demonstrate that cannabis smoke exposure impacts transcriptional
responses in airway epithelial cells consistent with an oxidative stress phenotype, cell
replication, and altered innate immunity.

In vitro tobacco smoke exposure of Calu-3 cells recapitulates differential gene
expression patterns observed in human smokers and primary airway epithelial
cells

In wvitro tobacco smoke exposure models have been extensively used with many experimental
variations including cell type (cell line versus primary), culture format (submerged monolayer
versus air-liquid interface), or exposure format (smoke conditioned media versus mainstream
smoke). Calu-3 cells grown under submerged monolayer conditions were selected as an in
vitro model for studying the transcriptomic effects of cannabis smoke exposure.

To determine the ability of this model to recapitulate biologically relevant gene expression
patterns, I generated an RNA-sequencing transcriptomic data set of Calu-3 cells following
24 hour tobacco smoke exposure (10% TSE) and compared it with previous transcriptomic
data sets derived from (1) airway epithelial cells isolated from bronchial brushings of lifetime
tobacco smokers; (2) primary human airway epithelial cells grown under air-liquid interface
culture conditions and acutely exposed to mainstream tobacco smoke. > 7
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Figure 3.2: Correlation of Calu-3 cell differential gene expression profile (logs fold change
(FC)) following exposure to tobacco smoke extract (TSE) and differential gene expression
profiles between healthy controls and lifetime smokers in the publicly available data sets
(A) GSE4498 and (B) GSE11784. Genes that are identified in both data sets and exhibit
statistically significant differences in expression are included. Correlations with differential
gene expression profiles from primary human airway epithelial cells grown under air-liquid
interface culture conditions and exposed to main-stream tobacco smoke using the publicly
available data sets (C) SRP096285 and (D) SRP126155.
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A correlation (r = 0.764, p = 3.4x10° and r = 0.576, p = 2.2x10%) of differentially
expressed genes was observed between the transcriptomes of Calu-3 cells exposed to tobacco
smoke conditioned media and bronchial brushings obtained by tobacco smokers in two
independent data sets (GSE4498 and GSE11784)"""""" (Figure 3.2 A, B). Furthermore,
expression levels of differentially expressed genes were also correlated (r = 0.770, p =
3.0x10% and r = 0.665, p = 1.6x107'?) between tobacco smoke exposure Calu-3 cells and
air-liquid interface cultures of primary human airway epithelial cells exposed to mainstream
tobacco smoke in two independent data sets (SRP096285 and SRP126155)" "% "7 (Figure
3.2 C, D). A hypergeometric test shows significant overlap of differentially expressed genes
between the transcriptomes of Calu-3 cells exposed to tobacco smoke conditioned media and
bronchial brushings from both microarray data sets (GSE4498 and GSE11784, Figure 1 A,
B). Significant overlap of differentially expressed genes between the transcriptome of Calu-3
cells exposed to tobacco smoke conditioned media and SRP126155 but not SRP096285
data sets containing air-liquid interface cultures (Figure 1 C, D). Collectively, these results
support the validity of using Calu-3 cells under submerged monolayer culture conditions with
smoke conditioned media to model and interrogate human airway epithelial cell responses
to cannabis.

In wvitro cannabis smoke exposure impairs epithelial cell barrier function and
related cytokine production without impacting viability

Previous studies have implicated oxidative stress in disrupting epithelial barrier function,
therefore my transcriptomic analysis demonstrating oxidative stress suggested that barrier
function could be compromised in cannabis smoke exposed cells.

Genes associated with epithelial repair and remodeling were curated from my RNA-seq
analysis and plotted in a heat map from the transcriptomic data set (Figure 3.3 A) including
TGFB (transforming growth factor-3), TGFBR1 (transforming growth factor-g receptor
1), EGFR (epidermal growth factor receptor), KRT19 (cytokeratin 19), FNI (fibronectin),
MMP1 (matrix metalloproteinase 1), and MMP7 (matrix metalloproteinase 7) (Figure 3.3
A). In parallel, an additional set of genes associated with epithelial cell barrier function
were curated including CDHI (E-Cadherin), CTNB1 (f-catenin), CLDN4 (Claudin 4),
CLDN1 (Claudin-1), and ZO-1 (Zonus Occludin-1). Cannabis smoke exposure results in
both the up-regulation (FN1, MMP1) and down-regulation (TGFB1, CDH1, CTNNB1)
of genes important in epithelial repair, remodeling, and barrier function (adjusted p <
0.05). Similar directions of trends were observed for tobacco smoke-induced changes in
these genes.

To interrogate transcriptomic changes in the context of cell viability, trans-epithelial
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electrical resistance (TEER), and cytokine production at the protein level, a concentration
response of cannabis smoke exposure was performed. No changes in cell viability were
observed at any concentration of cannabis smoke conditioned media, suggesting cell death
was minimally impacted by cannabis smoke (Figure 3.3 B). In the absence of any cell death,
cannabis smoke exposure resulted in a concentration-dependent decrease in TEER at 5,
10, and 20% smoke conditioned media (Figure 3.3 C). The viability and barrier function
results were comparable with tobacco smoke exposure. The functional consequences of
cannabis smoke exposure on cytokine and growth factor protein production important in
epithelial cell barrier function were next explored. Cannabis smoke exposure resulted in
a concentration dependent increase in TGF-a and PDGF-BB at 20% smoke conditioned
media (Figure 3.3 D, E).
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Figure 3.3: Genes involved in (A) airway epithelial repair and remodeling or epithelial
junctions were curated from the RNA-sequencing data set performed at 10% CSE or TSE.
The expression for each gene is presented for all experimental replicates, with expression
for each replicate being scaled by the gene. Calu-3 cells were exposed to increasing
concentrations of CSE (orange) or TSE (blue) (control, 0.625%, 1.25%, 2.5%, 5%, 10%,
and 20%) for 24 hours with outcome measurements of (B) cell viability assessed by lactate
dehydrogenase (LDH) assay, (C) trans-epithelial electrical resistance (TEER) (Q*cm?), (D)
transforming growth factor-alpha (TGF-«) (pg/mL), and (E) platelet derived growth
factor-AA (PDGF-AA) (pg/mL). *: p < 0.05 relative to control untreated - Tukey HSD.
Error bars represent standard deviation (n = 4).
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In vitro cannabis smoke exposure attenuates epithelial cell antiviral cytokine
responses and induces pro-inflammatory cytokine production

Transcriptomic changes induced by cannabis smoke exposure suggested that antiviral and
pro-inflammatory immune responses could be attenuated and induced respectively. Genes
associated with antiviral immunity and pro-inflammatory responses were curated from my
RNA-seq analysis and plotted in a heat map from the transcriptomic data set (Figure
3.4 A) including CXCL10, CCLS5, interferon stimulatory genes (IL-6, IL-13, IL-8), and
several chemokine receptors (Figure 3.4 A). Cannabis smoke exposure results in both the
up-regulation (IL-8, ICAM-1, CXCL5, CXCL6) and down-regulation (CXCL10, CCLS,
RSAD2, IFITMS3) of genes important in antiviral immunity and pro-inflammatory responses
(adjusted p < 0.05). Similar directions of trends were observed for tobacco smoke-induced
changes in these curated genes.

Antiviral and pro-inflammatory cytokine transcriptomic changes were analyzed at the
protein level in the concentration-response study samples. Cannabis smoke exposure resulted
in a concentration dependent trend for a reduction in CXCL10 and a significant reduction
in CCL5 at 10 and 20% smoke conditioned media (Figure 3.4 B, C). These trends were
comparable with tobacco smoke exposure.

The functional consequences of cannabis smoke exposure on pro-inflammatory cytokine
production were explored next. Cannabis smoke exposure resulted in a concentration
dependent trend for increased IL-8 and a significant increase in IL-6 at 10 and 20% smoke
conditioned media (Figure 3.4 D, E). These trends were also conserved with tobacco smoke
exposure.
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Figure 3.4: Genes involved in (A) airway epithelial anti-viral, pro-inflammatory, or
neutrophil mediated immunity were curated from the RNA-sequencing dataset performed
at 10% CSE or TSE. The expression for each gene is presented for all experimental
replicates, with expression for each replicate being scaled by the gene. Calu-3 cells were
exposed to increasing concentrations of CSE (orange) or TSE (blue) (control, 0.625%,
1.25%, 2.5%, 5%, 10%, and 20%) for 24 hours with outcome measurements of (B)
interferon gamma induced protein-10 (CXCL10) (pg/mL), (C) regulated on activation,
normal T cell expressed and secreted (CCL5) (pg/mL), (D) IL-8 (pg/mL), and (E) IL-6

(pg/mL). *: p < 0.05 relative to control untreated - Tukey HSD. Error bars represent
standard deviation (n = 4).
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3.1.4 Discussion

Global cannabis use is an important public health issue that would benefit from experi-
mental evidence to inform policy, government regulations, and user practices. Analyses
that interrogate cannabis in parallel with a positive control of tobacco smoke will help
provide clinically relevant evidence and context.”"» 7"V The in vitro functional and
transcriptomic experiments with Calu-3 human airway epithelial cells exposed to cannabis
smoke demonstrate changes in gene expression signatures related to DNA replication and
oxidative stress responses, an impairment of barrier function and antiviral immune responses,
and an augmented pro-inflammatory cytokine profile. Importantly, all cannabis-induced
responses were observed in tandem with the positive control of tobacco smoke, suggesting
potential parallel implications for lung health.

In vitro experiments using human airway epithelial cell lines and primary cell samples
under different growth conditions have been essential methods in tobacco smoke exposure
science, 00 0 TGRS 20500 while no such diversity and baseline of data currently
exists for cannabis smoke exposure science. Potential exists for differences in experiment
design (e.g. submerged monolayer cell line exposed to smoke-conditioned media versus
air-liquid interface primary airway epithelial cell exposed to mainstream smoke), which
may confound and limit translation of experimental results for any smoke exposure. To
assess the validity of this in vitro model of Calu-3 cells exposed to smoke conditioned
media, I compared the differentially expressed genes from my tobacco exposure experiments
with publicly available data sets from gold standard bronchial brushings in addition to an
air-liquid interface model of primary human airway epithelial cell cultures. Differential gene
expression analyses demonstrate significant correlation between the proposed in vitro model
of Calu-3 cells with in situ bronchial brushings and in wvitro air-liquid interface cultures of
primary human airway epithelial cells. Importantly, significant correlation existed between
the study model and in situ profiles and more complex in vitro models, despite the use of
the Calu-3 cell line (relative to primary cells) and smoke-conditioned media (relative to
main- stream smoke). The results from these cannabis smoke exposure studies are therefore
potentially reflective of the in situ condition, although this should be validated with clinical
studies.

The function of the airway epithelium is to provide the lung a physical and immunological
barrier to the environment.' "> “*° Any perturbation in the airway epithelium may lead to
host susceptibility to infection and lung pathology or disease development. The data in this
study demonstrate that cannabis smoke is able to induce mild impacts on barrier function,
measured by TEER, without impacting cell viability. The mechanism(s) by which TEER
is reduced by cannabis smoke were not determined in this study, but in the absence of
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changes in cell viability it is possible that cell-cell junctions could have been disrupted as
has been reported for tobacco smoke,””" possibly by oxidative stress.”” The down-regulation
of E-cadherin (CDH1) by cannabis smoke has been previously observed in lung cells exposed
to tobacco smoke and associated with the induction of epithelial-to-mesenchymal transition,
migration, and invasion phenotypes®'’ that could be important in the context of lung health
of the cannabis smoker. Disruption of E-cadherin may contribute to -catenin shuttling
from membrane junction sites to transcriptional locations in the nucleus to facilitate gene
expression associated with repair. Importantly, aberrant [-catenin signaling in cells
is associated with oncogenic gene expression signatures. = Independent of any aberrant
transcriptional regulation resulting from disrupted epithelial barrier function; a reduced
impedance of the physical barrier of the airway epithelium offers easier access to the lung
for opportunistic insults from the outside world.

To complement the mechanical barrier of the lung, the airway epithelium is able to
produce and host-defence peptides and antiviral mediators to protect from pathogens. "
Tobacco smoke has been reported to compromise the ability of airway epithelial cells
to effectively control both bacterial and viral insults.””> """ The data in this study
demonstrate striking similarities in the epithelial immune profile in response to cannabis
and tobacco, suggests that the former will impact host defences. Tobacco has been
demonstrated to impact host defence peptide induction in airway epithelial cells by non-
typeable Haemophilus influenzae with a concomitant increase in IL-8 expression.”’ The
experimental data set in this study did not include a pathogen challenge, precluding my
ability to confirm the tobacco smoke induced suppression of host defence peptides or to
extend the results to cannabis smoke. In the context of viral exposures, type I interferons
(IFNs) are capable of rapidly inducing interferon stimulated genes (ISGs) through the
type I IFN receptor to help tackle various components of virus replication, assembly
and budding. ™ Tobacco smoke has been shown to impact antiviral immunity in airway
epithelial cells in response to human rhinovirus-16, with a reduction in CXCL10 and
CCLA5. Tobacco smoke-induced reduction in CXCL10 and CCL5 is associated with
greater rhinovirus production. Tobacco smoke has also been demonstrated to impair airway
epithelial cell antiviral immunity mediated by IFN-v in response to respiratory syncytial
virus exposure,” " which in turn could impact CXCL10 and CCL5 production. The
cytokine and transcriptomic data in this study confirm the tobacco smoke impairment of
CXCL10 and CCL5 and antiviral ontologies and show that this is conserved for cannabis
smoke. It is further demonstrated using my previous transcriptomics data set that a diverse
selection of ISGs were also attenuated with both cannabis and tobacco, consolidating a
common phenotype between both smoke exposures. Future co-culture experiments with
pathogen challenges would help reveal the complex interaction between cannabis and tobacco
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smoke induced immune responses in the epithelium and down-stream immune cell phenotype
and function. Collectively, although the experimental design lacks the mechanistic linkage
between cannabis exposure and increased susceptibility to viral or bacterial infections,
the data strongly mirror those for tobacco, which has been mechanistically linked to
compromised host immunity to pathogens.

Extensive evidence exists that tobacco and biomass smoke exposure, the latter generated
from dried wood, animal dung, or charcoal, are risk factors for the development of chronic

bronchitis, emphysema, and lung cancers. *» "> “">""" In contrast, the existing evidence
suggests that repeated cannabis smoke exposure results in a chronic bronchitis phenotype
with little evidence of emphysema. »*"" """ Furthermore, unlike tobacco and biomass

exposure, which are accompanied by a dose-dependent risk for development of lung cancers,
a similar relationship has not been observed for repeat cannabis users despite the presence of
carcinogens in cannabis smoke. " Of particular note, it was observed that cannabis smoke
significantly up-regulated the proto-oncogene MY, which has previously been observed in
airway epithelial cells exposed to tobacco smoke™"" or benzo|a|pyrene, a known carcinogen
that has been identified in both tobacco and cannabis smokes. »~"" Despite the potential
for cannabis smoke to up-regulate proto-oncogenes, why cannabis smoke exposure is only
tenuously linked to cancer’” remains to be determined and should be explored in additional
cohorts in jurisdictions where cannabis has been legalized.

Tobacco smoke exposure experiments have used standardized research source material
to ensure experimental reproducibility and robustness. In contrast, cannabis experiments
have not benefited from a widely accessible and chemically defined source material. For this
reason, a cannabis strain that was representative of that available in the medicinal cannabis
market in Canada, that included 13% THCA (w/w), 0.18% THC, 0.35% THCVA, and 0.18%
CBGA with no levels of CBD, was used. These results must therefore be interpreted based
on this initial chemical composition and care should be taken to generalize that all cannabis
strains will induce similar responses. Indeed, increasing evidence suggests that there may be
complex interactions between THC and CBD via the CB1 and CB2 cannabinoid receptors
that could impact the immunomodulatory functions of cannabis smoke.”"> """ Exposure
studies could collectively benefit by reporting the chemical composition of the strain that
was used to help facilitate interpretation of data generated.

Methods incorporating the use of smoke conditioned media have been used extensively
for tobacco research. > TGRS Smoke conditioned media methods typically filter
coarse particulates and extract water-soluble components of smoke combustion. The
reduction in compositional complexity of smoke conditioned media relative to mainstream
smoke may be important, although the data in this study and those of others ="
demonstrate that major transcriptional changes are conserved in either model system
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(smoke-conditioned media or mainstream smoke) and both are reflective of in situ human
biology.'”"»"*" Importantly, the presence or absence of filters in tobacco (cellulose acetate)
and cannabis smoke (cardboard) exposure models should be considered in interpreting the
present data and designing future experiments.”” Collectively, the data validate smoke
conditioned media models and suggest that they will provide insight into the impacts of
cannabis smoke exposure on airway epithelial cell biology.

In conclusion, the data in this study demonstrate striking similarities in the impacts of
cannabis and tobacco smoke on airway epithelial cell barrier function, cytokine profile, and
gene expression signatures. Despite the arrival of cannabis legalization, the data suggest
that cannabis smoke exposure still poses a significant health risk and warrants ongoing
study to build a body of evidence to support public policy, government regulations, and
user practices.

3.2 Effect of long-acting [-agonist /glucocorticoids on
human airway epithelial cell cytokine, transcrip-
tomic, and oxidative stress responses to cannabis
smoke

Material in this section has been published as part of Huff et al. (2020).'"® The published
manuscript is available here:

R. D. Huff, J. A. Aguiar, W. Tse, M. R., Stampfli, B. J. McConkey, A. C. Doxey,
and J. A. Hirota. Effect of long-acting [-agonists/glucocorticoids on human
airway epithelial cell cytokine, transcriptomic and oxidative stress responses
to cannabis smoke. Furopean Respiratory Journal Open, 6(1):00265. 2020.
https://doi.org/10.1183/23120541.00265-2019

3.2.1 Introduction

To manage chronic lung diseases, an individual may be prescribed a broad, anti-inflammatory
long-acting S-agonist (LABA)/glucocorticoid (GC) combination treatment.' " *”” LABA/GCs
are transcriptionally active in airway epithelial cells resulting in broad anti-inflammatory
activities that are believed to be important in controlling infections and chronic lung disease
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daily management and to prevent exacerbations. " Importantly, the efficacy of
LABA/GC therapies may be compromised by tobacco smoke exposure.'”" """ It remains
to be determined whether cannabis smoke exposure similarly compromises the efficacy
of LABA/GC anti-inflammatory activities. As cannabis use becomes more universally
accepted, it is important to understand the effects that cannabis use has on airway health
and the interventions used to manage lung inflammation and disease. Given the similarities
between tobacco and cannabis smoke, " I examined whether cannabis smoke exposure simi-
larly attenuates LABA/GC transcriptomic responses and inflammatory mediator release in
human airway epithelial cells.

3.2.2 Methods

Smoke extract preparation, cell culturing, oxidative stress assessment performed by Ryan
Huff at The University of British Columbia

Cannabis smoke extract (CSE)- and tobacco smoke extract (TSE)-conditioned media
were prepared according to previously published methods. TSE was generated from
Kentucky Research Grade Cigarettes with an intact filter (lot 3R4F), and CSE from
cannabis rolled with cardboard filters and sourced from Jonathan Page (University of
British Columbia, Vancouver, Canada) (13% (w/w) tetrahydrocannabinolic acid strain
with 0.18% THC, 0.35% tetrahydrocannabivarinic acid and 0.18% cannabigerolic acid; ~
0.7 g dried cannabis). Extracts were prepared by bubbling cannabis or tobacco smoke
through 4 mLL HEPES-buffered Eagle’s minimal essential medium, filtering (0.22 ym) and
diluting with fresh medium (10% dilution, optical density at 260 nm 0.04045). Calu-3 lung
epithelial cells on Transwells®)(Corning Inc., Corning, NY, USA) were apically exposed to
10% of either CSE or TSE with and without 10 nM of the LABA formoterol and 100 nM
of the GC budesonide (Form/Bud) for 24 hours. Total RNA was extracted and sent to The
Centre for Applied Genomics at the Hospital for Sick Children (Toronto, Canada) for RNA
sequencing. Apical cell supernatants were assessed using a multiplex cytokine/chemokine
protein array by Eve Technologies (Calgary, Canada). Oxidative stress was assessed using
2’ 7’-dichlorodihydrofluorescein diacetate (HoDCFDA) and CellROX Green (Thermo Fisher
Scientific, Waltham, MA, USA), counter-stained using Hoechst 3342 and quantified using
a plate reader. All experiments had four biological replicates. Significant differences in
cytokines and oxidative stress were identified through permutation ANOVA followed by
a Tukey HSD post-hoc test using the ImPerm package in R (version 3.4.3). Significant
differences between transcriptional expression profiles were identified through analysis of
similarities using the vegan package in R (version 3.4.3).
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3.2.3 Results

Exposure to 10% CSE or TSE and/or Form/Bud for 24 hours did not significantly change
cell viability as assessed by lactate dehydrogenase release assays (not shown). Like TSE,
CSE significantly elevated pro-inflammatory cytokine interleukin-8 (IL-8)/CXCLS8 and
epithelial cell repair mediator transforming growth factor-a (Figure 3.5 A, B). Intervention
with Form/Bud prevented CSE and TSE increases in IL-8/CXCLS8 release and, to a lesser
extent, TGF-a. A significant decrease in interferon-vy-induced protein 10 (IP-10)/CXCL10
(Figure 3.5 C) in response to CSE and TSE exposure was also observed, a decrease that
was augmented in response to Form/Bud intervention.

78



A D NEUT
- r=0.771 s
£ p<1.0e"® /
£ GYPIBI
o] _ GDF15 <
L - 25] PINI [SHISAZ UGT1A1
9 S GCLC\ NPT , UgT 3470
s} FRES DPAHG\Q{ FrsFiie  CYPIAT
E PIR—KLE8742 TIPARP
= ATP1B1 S ME!
B —_ s o) \ : UGT1A6
- A L
% 150 + | o,
£ 8 B B % 90 sFPa or
o 100 . . g
8 B B 2 e SE:/F’p e i
: o RN
>< =
3} 50 l LI?\: ARRD\CA{PIK:’K’
S N | S fe
] 0 | o SMIM24
o = 55l EMD ©/
C 3000 . B i [
=5 T IGBP1
E It
2 2000
©
§’_<l 100Q % 3 » c : .
3) I logoFC TSE + Form/Bud
@
2 L
= 0 CSE + Form/Bud CSE + Form/Bud Not significant
& & «&F & ®o° (bob » TSE + Form/Bud and TSE + Form/Bud (g<0.05)
¢ ¥ ¥ & & &
P X § &L
% o % & S O
SEE &
& & K9
E (@) Qoo O F
Regulation of apoptotic
Vot proiessl(N=:16) ‘ Count
itotic cell cycle phase
transition (N=222) ' < ?0 NRF2 Induced
Neutrophil-mediated . L —— - 5
immunity (N=108) @ 5 r "l Control + Vehicle '1.5
Neutrophil activation involved . 20 ._ - Control + Form/Bud = 1
in immune response (N=480) . | i i :
TSE + Vehicle 05
Neutrophil degranulation (N=484) . . 25 CSE + Vehicle 0
Cellular response to oxidative TSE + Form/Bud
stress (N=488) @ @30 " 05
ClaierRiRy @ 03 0002000320000 o
- TOODZONOXTN<<D i-1.5
Response to_unfolded ® 40 X-coo384dd ZM4UUo
protein (N=44) . NOg—~><O>§ pv_..ai
Renal absorption (N= 13) o .45 e N 9 2 =
Regulation of lipid metabolic .
process (N=101) S
O O Q¢
NESENENIS \ A A
Adjusted p M 5eoe [
J o :
Control 10% TSE 10% CSE L soxi0f
x
G H 8 7.0x10*
é 8 6.0x10*
a —~
ks N E 3.0x107
o 2.5x107
(@]
N J K L < 20010
@ 2 1sx107
g 8(“ 1.0x107 | N
find
I . .
AQ’\
& S

79



Figure 3.5: Calu-3 cells were exposed to either control, 10% CSE (orange) or 10% tobacco
smoke extract (TSE) (blue) with either vehicle or Form/Bud for 24 hours. To assess the
impact of Form/Bud on inflammatory mediators, cytokine release of (A) TGF-«, (B)
IP-10/CXCL10 and (C) IL-8/CXCLS8 was measured. (D) The effect of Form/Bud
intervention and CSE or TSE exposure on airway epithelial gene expression was assessed by
RNA sequencing. The logs fold change (FC) of CSE+Form/Bud versus vehicle4Form/Bud
was plotted against the logo FC of TSE+Form/Bud versus vehicle+Form/Bud to reveal
significant TSE- and CSE-specific genes under Form/Bud intervention conditions (r =
0.771; p < 1x10-15). Genes that were significantly differentially expressed (¢ < 0.05) in
CSE+Form/Bud and TSE+Form/Bud versus vehicle+Form/Bud are highlighted in purple,
where as CSE- and TSE-specific genes are highlighted in blue and red respectively. To
examine the similarity of CSE+Form/Bud and TSE+Form/Bud transcriptomic profiles,
correlation of differential gene expression was determined by Pearson’s correlation. (E)
Functional enrichment analysis of genes shown to be significantly differentially expressed (g
< 0.05) in CSE+Form/Bud and TSE+Form/Bud versus vehicle+Form/Bud. Top 10 gene
ontology biological processes were ranked by decreasing adjusted p value, with number of
significantly differentially expressed genes (count) contributing to the total number of genes
associated with the given pathway (n) denoted by the size of circle. (F) Expression of genes
involved in NRF2 and AHR responses. (G-L) Oxidative stress was assessed using CellROX
and m) the fluorescent intensity was quantified n) with complementary quantification using
2’ 7’-dichlorodihydrofluorescein diacetate (HoDCFDA). All experiments were performed
using four biological replicates from serial passages. Different letters indicate significantly
different group means (Tukey Honest Significant Difference, p < 0.05). There are no
significant differences between means sharing a common letter. Error bars represent
standard error of the mean (SEM). Scale bars = 100 pm. RFU: relative fluorescence unit.

Next, RNA sequencing data was interrogated to address the efficacy of LABA/GC
intervention on attenuating CSE- and TSE-induced transcriptomic responses observed in my
previous study.'’ First, I observed that the most up-regulated gene exclusive to Form/Bud
treatment was HSD11B2 (corticosteroid 11-/-dehydrogenase) (vehicle + Form/Bud logo FC
34.80, CSE + Form/Bud logeFC 33.99 and TSE + Form/Bud log, FC 27.32), indicating
that intervention was efficacious on modulating glucocorticoid signalling (data not shown).
Second, to identify expression patterns unique to each smoke exposure + LABA/GC
intervention, I directly compared these data sets to identify differentially expressed genes
and visualized their logs fold changes relative to untreated + Form/Bud (Figure 3.5 D).
Form/Bud intervention in smoke-exposed cells induced a highly correlated transcriptomic
response (r = 0.771, p < 1.0x107'®), with 801 differentially expressed genes in CSE +
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Form/Bud versus untreated + Form/Bud and 1105 differentially expressed genes in TSE
+ Form/Bud versus untreated + Form/Bud. Third, NEUI was the most significantly
increased gene in both CSE 4 Form/Bud and TSE + Form/Bud compared to vehicle
+ Form/Bud exposed cells, and aryl hydrocarbon receptor (AHR) genes CYP1A1 and
CYP1B1 remained up-regulated in both CSE + Form/Bud- and TSE + Form/Bud-exposed
cells.

To further interrogate genes significantly differentially expressed in both CSE + Form/Bud-
and TSE + Form/ Bud-exposed cells, I performed a functional enrichment analysis (Figure
3.5 E). Interestingly, regulation of apoptotic process (rank 1, 45 out of 816 genes, gene ontol-
ogy (GO:0042981), neutrophil-mediated immunity (rank 3, 30 out of 108 genes, GO:0002446),
and cellular response to oxidative stress (rank 6, 13 out of 488 genes, GO:0034599) were
included in the top 10 GO terms ranked by adjusted p value. To functionally characterise
the “cellular response to oxidative stress” term, collaborators performed additional in wvitro
experiments and analysis of oxidative stress-related gene expression data' """ (Figure 3.5
F). Interestingly, several curated genes (e.g. GCLC and GCLM) were increased beyond
CSE or TSE exposure with Form/Bud intervention. Furthermore, when overall oxidative
stress was examined using CellROX (Figure 3.5 G, M) and H,DCFDA (Figure 3.5 N) in
vitro imaging assays, reactive oxygen species (ROS) generation was observed in both CSE
+ Form/Bud- or TSE + Form/Bud-exposed cells.

3.2.4 Discussion

Tobacco smoke has long been associated with increased symptoms and severity of chronic
lung diseases that include asthma, pulmonary fibrosis and COPD, and attenuated GC re-
sponses in human lung epithelial cells.”’ Chronic bronchitis and airway remodelling /scarring
due to persistent inflammation and oxidative stress from recurring exposure to tobacco
smoke are known to be important pathological mechanisms in the progression of COPD and
asthma. "'V It is demonstrated here for the first time that a Form/Bud intervention of hu-
man lung cells exposed to cannabis smoke suppressed increased inflammation (IL-8/CXCLS)
and epithelial repair mediators (TGF-«), while expression of oxidative stress genes remained
elevated. Although Form/Bud intervention reduced the expression of IL-8/CXCLS8, CSE
and TSE exposure may still be modulating epithelial immune responses, as seen by the
continued enrichment of neutrophil-related GO terms. Furthermore, the persistence of
increased generation of ROS and expression of the NRF2 oxidative stress response genes in
the presence of LABA /GC medications used in chronic respiratory disease management
may further impact long-term disease development and management.
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This study has several limitations in the experimental design. The model used is a single
exposure to smoke-conditioned media and may not accurately represent chronic smoke
exposure conditions, which would require repeated exposures over time in vitro. Despite
this limitation, I emphasise that my previous publication using this model demonstrated
strong significant correlations of gene expression with in situ bronchial brushes from human
smokers and primary air-liquid interface cultures exposed to tobacco smoke."” Additional
experiments using primary human airway epithelial cells grown under air-liquid interface
culture conditions and exposed to whole-smoke extract should be explored to complement the
present data. I recognise that there are substantial differences in cannabis strains available
on the medicinal and recreational market, and therefore chose a representative hybrid strain
available on the medicinal cannabis market in Canada. Despite these limitations, the robust
changes observed in this data suggest that cannabis smoke exposure still poses a significant
health risk, and warrants ongoing study to build a body of evidence to support public
policy, government regulations and individual user practices.

3.3 Expression of the endocannabinoid system in the
human airway epithelial cells: impacts of sex and
chronic respiratory disease status

Material in this section has been published as part of Fantauzzi et al. (2020).""" The
published manuscript is available here:

M. F. Fantauzzi, J. A. Aguiar, B. J.-M. Tremblay, M. J. Mansfield, T. Yanagihara,
A. Chandiramohan, S. Revill, M. H. Ryu, C. Carlsten, K. Ask, M. R., Stampfli, A.
C. Doxey, and J. A. Hirota. Expression of endocannabinoid system components
in human airway epithelial cells: impact of sex and chronic respiratory disease
status. Furopean Respiratory Journal Open, 6(4):00128. 2020. https:
//doi.org/10.1183/23120541.00128-2020

3.3.1 Introduction

The mechanism(s) responsible for the clinical observations resulting from cannabis inhalation,
whether beneficial acute or detrimental chronic exposures, remain elusive, but are likely to
be influenced by the endocannabinoid system.””> "
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The endocannabinoid system is responsible for mediating the pharmacological effects
of the endogenous cannabinoids anandamide and 2-arachidonylglycerol (2-AG) and phy-
tocannabinoids present in cannabis.' """ The first identified cannabinoid receptors
were CB1 and CB2, both G-protein coupled receptors that modulate downstream cyclic-
AMP signaling by inhibiting adenylyl cyclase activity.””" The mechanism of acute
phytocannabinoid-induced bronchodilation is suggested to be mediated via CB1 receptors
regulating neural control of airway tone,””> " which may have benefits for management
of bronchoconstriction in asthma or COPD. In addition to CB1 and CB2, the transient
receptor potential vanilloid-1 (TRPV1) and the de-orphanized receptor GPR55 have been
identified as receptors for cannabinoids.”" Although the endocannabinoid signaling
pathway is present throughout multiple tissues and organ systems, the lungs are of par-
ticular interest as they are the organ system targeted by cannabis inhalation. Airway
epithelial cells play a critical role in lung health by acting as the first line of defence
against pathogens and inhaled insults. "> """ Airway epithelial cells carry out a number
of functions such as providing a physical barrier against microbial infiltration, maintaining
the inflammatory microenvironment, and releasing immune mediators to recruit leukocytes
to the site of insult. It has been demonstrated that the inhalation of air pollution, tobacco
smoke, and cannabis smoke can compromise airway epithelial function.'”>" """ Notably,
recent findings show that cannabis smoke exposure can lead to impaired airway epithelium
barrier integrity, attenuated antiviral capacity, and exacerbated inflammatory response
to immune challenges. "' However, the contribution of the endocannabinoid system to
these observations has not been defined. The primary cannabinoid receptors, CB1 and
CB2, have been shown to be expressed in the respiratory mucosa’ = and human airway
epithelial cells are responsive to THC and anandamide.” "~ Additional components of the
endocannabinoid system including MAPK, PI3K, and protein kinase A signaling pathways
downstream of receptors and enzymes responsible for cannabinoid metabolism have not
been explored in an integrated fashion in human airway epithelial cells. An examination of
the entire endocannabinoid system in human airway epithelial cells is required to better un-
derstand which components are dominant and likely to be functionally relevant in response
to inhaled cannabis smoke. Furthermore, it remains possible that sex and disease status
impact the endocannabinoid system expression, which may have functional consequences
in distinct populations of cannabis consumers. Therefore, a generalized understanding of
how a cannabis consumer responds to smoke exposure is likely to be insufficient and should
include both females and males in analyses and consider both healthy individuals and those
that may have underlying medical needs.

To begin my interrogation of the endocannabinoid system in human airway epithelial
cells, a 32-gene endocannabinoid signature encompassing ligand recognition, signaling,
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and metabolism was generated. I set out to examine if the expression of this 32-gene
endocannabinoid signature was present in human airway epithelial cells and whether this
was impacted by sex or disease status. The importance on examining sex and disease
status on the endocannabinoid system is due to the possibility that specific populations
may experience differential effects of cannabis, either positive or negative. To complete this
study I used a bioinformatic approach to analyze gene expression in 1090 unique human
subject samples of airway epithelial cells isolated via bronchial brushing that included
samples from males and females and individuals with asthma or COPD. My bioinformatic
approach is complemented with validation and confirmation of CB1, CB2, and TRPV1
in human airway epithelial cells at the protein level in situ and in vitro. Lastly, my
bioinformatic observation that TRPV1 gene expression is elevated in airway epithelial cells
isolated from asthmatics is validated by performing confirmatory immunoblot analysis on
primary human airway epithelial cells. Collectively, these results demonstrate that an intact
endocannabinoid system is expressed in human airway epithelial cells and that both sex
and disease status impact expression, which may have functional consequences that lead to
differential responses in distinct populations of cannabis consumers.

3.3.2 Methods

Human ethics

All studies using primary human lung material and blood were approved by Hamilton
Integrated Research Ethics Board or University of British Columbia Human Research Ethics
Board.

Primary human airway epithelial cells

Cell preparation performed by Matthew Fantauzzi at McMaster University

Primary human airway epithelial cells isolated via bronchial brushings from consented
healthy or asthmatic subjects were grown in PneumaCult ExPlus (Stemcell Technologies,
Vancouver Canada) under submerged monolayer culture conditions and used in between
passage 1 and 4. Where relevant, asthma diagnosis was confirmed with methacholine
challenge and PC20 analysis as per ATS guidelines.

Human whole lung tissue

Cell preparation performed by Matthew Fantauzzi at McMaster University
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Non-involved tissues from lung cancer cases were used. Lungs were homogenized using
a mechanical homogenizer (Omni International, Waterbuy CT), lysed in 1X lysis buffer
supplemented with complete protease inhibitors (Roche), and the supernatant was collected
for immunoblots.

Human Peripheral Blood Mononuclear Cells (PBMC)

Cell preparation performed by Matthew Fantauzzi at McMaster University

Human PBMC were isolated from the peripheral blood of healthy volunteers using Ficoll
(Sigma-Aldrich) density centrifugation in Greiner LeucoSep-tubes (Sigma) according to the
manufacturer’s recommendations.

Immunohistochemistry

Immunohistochemistry performed by Matthew Fantauzzi at McMaster University

Formalin fixed paraffin embedded human lung tissue from healthy subjects were used
for localization of CB1, CB2, and TRPV1/VR1. Three-micron thick sections were cut
and stained for CB1 (Abcam - Ab23703 at 1:1000), CB2 (Abcam — Ab3561 at 1:50), and
TRPV1/VRI (Abcam — Ab3487 at 5 pg/mL). All staining was performed on a Leica Bond
RX system with Leica Bond reagents and heat-induced antigen retrieval in citrate buffer at
pH 6. Digital slide scanning was performed using an Olympus VS120-L100 Virtual Slide
System at 40X magnification with VS-ASW-L100 V2.9 software and a VC50 colour camera.

Immunoblots

Immunoblots performed by Matthew Fantauzzi at McMaster University

Immunoblots confirming antibody staining and protein expression in human airway
epithelial cells were performed using Biorad stain free 4-20% pre-cast gradient gels and
imaged on a Biorad ChemiDoc XRS+ Imaging system. For each immunoblot, 40 pg of
protein was added per lane. CB1 (Abcam - Ab23703 at 1:500), CB2 (Abcam — Ab3561
at 1:100), and TRPV1 (Abcam — Ab3487 at 1:500) were diluted in 5% skim milk/Tris
buffered saline with 0.1% Tween-20. Primary antibody detection was performed using an
anti-rabbit-HRP conjugated secondary (Cell Signaling Technology, #7074) at 1:1000 for
50 minutes at room temperature. Visualization was performed using Clarity™ Western
ECL Substrate (Bio-Rad) (CB1 and TRPV1) and SuperSignal™ West Femto Maximum
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Sensitivity Substrate (ThermoFisher) (CB2). Total protein loading images were collected
as a confirmation of equal protein loading between sample types.

Gene expression data set curation, normalization, and statistical analyses

Candidate genes to be analyzed were selected based on known relevance in the endo-
cannabinoid signaling pathway. Additional genes and proteins implicated to be involved in
cannabis-associated disorders and novel cannabinoid based therapeutic approaches were
included and described in annotated table format (Table 8).7 7% #7100, 199,202, 208, 208, 520, 210, 40,

) ) ) ) ) ) ) ) ) ) )

Public microarray experiments using Affymetrix chips (HG-U133 Plus 2, HuEx-1.0-st-v1
and HuGene-1.0-st-v1) on airway epithelial cell samples from healthy individuals or those
with asthma or COPD were selected from the NCBI Gene Expression Omnibus (GEO)
database. Healthy samples were further filtered by removing former or current smokers.
This resulted in a total of 1090 individual samples from 27 experiments (Table 9) that
included samples from 616 healthy subjects, 136 subjects with asthma, and 338 subjects with
COPD. 775050500, 10700, 81 120, 108, 101, 210, 912, 900, 950, 208, 982, 985, 981, U2, 205, 200, U0, 10, 215, 125,

Within each sample population, sex was reported for a subset of samples (Healthy: 103
females/227 males, Asthma: 34 females/28 males, COPD: 48 females/93 males).

For all data set samples, raw intensity values and annotation data were downloaded
with the R statistical language (version 3.6.1) using the GEOquery R package (version
2.52.0).” Probe definition files were downloaded from the Brainarray database (version
24).”" To obtain processed microarray gene expression values unaffected by probe CG
compositional biases, the Single Channel Array Normalization (SCAN) method was used via
the SCAN.UPC R package (version 2.26.0)""" using annotation data from the Bioconductor
project (version 3.9). All logs-transformed gene expression data were unified into a
single data set, and only genes detected in all three platforms (n = 16543) were kept for
subsequent analyses. Correction of experiment-specific batch effects was performed using
the ComBat method'”” implemented in the sva R package (version 3.32.1),””” with disease
status and sex supplied as covariates. Principal component analysis (PCA) was performed
using the probabilistic PCA method in the pcaMethods R package (version 1.76.0).
Gene expression levels were tested for significant differences via Student’s T-test with a
Benjamini-Hochberg multiple testing correction using the stats R package (version 3.6.1).
Gene expression box plots, heat maps, and PCA plots were generated with the ggplot2 R
package (version 3.2.1).
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3.3.3 Results

Human airway epithelial cells express CB1, CB2, and TRPV1, in situ and in
vitro

A curated list of genes involved in cannabinoid signaling was generated (herein called the
32-gene endocannabinoid signature) to provide a focused overview of this pathway in human
airway epithelial cells (Figure 3.6 and Table 8).
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Figure 3.6: Solid arrows indicate known relationship between candidates and ligands.
Dotted arrows indicate proposed relationships. Blunted lines indicate inhibition.
Candidate functions are annotated in Table 8. THC: tetrahydrocannabinol.
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To begin the characterization of the endocannabinoid system in human airway epithelial
cells, in situ localization of CB1, CB2, and TRPV1 protein in human lung tissue was
performed (Figure 3.7). It is demonstrated that all three receptors are present at protein
level in human airway epithelial cells in situ relative to negative control (Figure 3.7 A, C,
E, G). To validate the staining patterns observed and antibody specificity, immunoblots
with primary human airway epithelial cells, whole lung tissue, and PBMCs were performed.
A single band for CB1 was observed at approximately 45 kDa in human airway epithelial
cells, but not whole human lung, or PBMCs (Figure 3.7 B). A dominant band for CB2 was
observed at approximately 40 kDa and accompanied by a reported 52-55 kDa doublet ™ in
human airway epithelial cells, with a similar pattern observed for PBMCs (Figure 3.7 D). In
contrast, in whole human lung the dominant band was observed at 55 kDa with only a faint
40 kDa band. The band patterns observed for CB2 are consistent with glycosylation of the
N-terminus and processing of the full-length peptide.””” A dominant band for TRPV1 was
observed at approximately 100 kDa in human airway epithelial cells and accompanied by
two lower molecular weight bands at approximately 70 kDa and 37 kDa (Figure 3.7 F). No
TRPV1 bands were observed in whole human lung, while a dominant single band at 100
kDa was observed in peripheral blood mononuclear cells. Total protein loading staining
from a representative blot demonstrates equal loading within replicates of the same sample
type and distinct protein compositions between sample types (Figure 3.7 H).

To extend the in situ CB1 and CB2 protein staining and to interrogate the potential of
non-specific staining generated with the CB2 antibody, collaborators next performed in
situ hybridisation for CNR1 and CNR2 gene transcripts using RNAscope®) technology
(Figure 3.8). In situ hybridisation demonstrates transcripts for both CNR1 (Figure 3.8 A)
and CNR2 (Figure 3.8 B) in the airway epithelium of all human lung samples examined (n
= 10). Serial sections from each lung sample reveal that CNR1 and CNR2 are likely to
co-express in airway epithelium.
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Figure 3.7: Serial sections from a single patient donor that is representative of n = 10, for
immunohistochemistry of (A) CB1, (C) CB2 and (E) TRPV1 with (G) negative control.
Immunoblots on primary human airway epithelial cells cultured in vitro: (B) CB1, (D)
CB2, and (F) TRPV1 with (H) total protein loading control (n = 4 airway epithelial cells
(HBEC), n = 4 whole-lung samples, n = 1 peripheral blood mononuclear cells (PBMCs)).
Molecular weights (in kilodaltons) are denoted on y-axis of immunoblots.
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Figure 3.8: In situ hybridisation of (A) CNR1 and (B) CNR2 in three patient donors
representative of n = 10. Serial sections of each of the three cases were stained for CNR1
and CNR2. Low magnification images are in the centre of (A) and (B), with high-powered
magnification regions of interest on either side highlighted by black boxes. Pink arrows
correspond to positive puncta representative of mRNA transcript.

To further corroborate the in situ CB1 and CB2 protein and gene transcript staining,
promoter activity data for CNRI1 and CNR2 were extracted and analysed from the
FANTOMS5 data set, which includes 1886 primary cells, cell lines, and tissue sample types.
All samples that included “lung”, “nasal”, “trachea”, “bronchial”, “airway”, or “alveolar”
were selected to identify lung-specific sample types (n = 28). CDH1 promoter activity
was used as a positive control. Consistent with the observed gene expression analysis in
airway epithelial cells, normalized transcripts per million (TPM) values for each CAGE
peak demonstrate that CNRI and CNR2 promoter activity was present but modest across
airway epithelial cells and lung tissue samples (Figure 2). Both microarray gene expression
analysis and promoter activity were consistent with results of candidate gene and protein
expression in airway epithelial cells via in situ hybridisation and immunohistochemistry.

Collectively, the in situ and in wvitro data confirm expression of CB1, CB2, and TRPV1
protein in human airway epithelial cells.
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Sex differences in endocannabinoid system gene expression in human airway
epithelial cells from healthy subjects

Sex differences in CB1 and CB2 expression levels have been reported,”” which could
impact downstream responses to cannabinoid exposures. Furthermore, sex and gender
differences in cannabis consumption practices have been reported.” " Collectively, these
two factors could interact and contribute to differential responses to cannabinoids in distinct
populations.

To examine sex differences in the endocannabinoid system, I analysed the 32-gene
endocannabinoid signature in a curated data set of airway epithelial cells from 616 unique
healthy subjects, where the identifier of sex was available for 103 females and 227 males
(Table 9). The 32-gene endocannabinoid signature was first analysed in all 616 subjects to
show overall trends for each gene (Figure 3.9 A). Subsequently, a PCA plot was performed
for all samples with sex as an identifier (Figure 3.9 B). The PCA plot reveals clustering of
samples from males within a larger space occupied by the female samples. Statistical analysis
at the individual gene level revealed a difference in 7 of 32 genes (Figure 3.9 C). Five genes
(ABHDG, MAPK14, NAAA, NRG1, and PIK3CA) were down-regulated in males relative
to females, while two genes (CYP2C9 and GPR55) were up-regulated in males relative
to females. The gene expression patterns were overlaid on the endocannabinoid signalling
pathway for qualitative visualization of global changes in the 32-gene endocannabinoid
signature in males relative to females (Figure 3.9 D).
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Figure 3.9: (A) Gene expression data for 616 healthy subjects with no history of smoking
or chronic respiratory disease. (B) Principal-component (PC) analysis plot of healthy
females (n = 103) and males (n = 227) generated by expression patterns of the 32-gene
endocannabinoid signature. The first (22.5%) and second (17.5%) PCs were used. Ellipses
were added to represent 95% confidence intervals per sex. (C) Healthy samples with
metadata defining sex were further divided into male and female groups and plotted
separately as blue and orange-outlined box plots, respectively. For both (A) and (C),
logs-transformed expression values were plotted as box plots. The dashed line at zero
represents the global baseline of expression for the entire set of genes. (D) Visual
representation of the differences between healthy females and males in the 32-gene
endocannabinoid signature. Colour coding is reflective of logs fold change (FC) of males
relative to females. THC: tetrahydrocannabinol. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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Collectively, the data in this study confirm that the endocannabinoid system is expressed
at gene level in human airway epithelial cells, suggesting that signaling downstream of
receptors is intact. Importantly, sex differences are observed in the 32-gene endocannabinoid
signature expression in healthy subjects, with 5/7 differentially abundant genes exhibiting
higher gene expression in females relative to males.

The endocannabinoid system is dysregulated in human airway epithelial cells
from individuals with asthma and COPD

In addition to sex, disease status may also impact the expression of the endocannabinoid
system in airway epithelial cells, as specific phenotypes are observed in cells isolated from
asthmatics and individuals with COPD.”""=*%°"" T therefore tested the hypothesis that the
32-gene endocannabinoid signature was dysregulated in asthma and COPD.

To test this hypothesis, I curated all 1090 samples that included 616 healthy subjects,
136 subjects with asthma, and 338 subjects with COPD. A PCA plot reveals clustering of
samples from healthy, asthmatic, and COPD subjects, with samples from people with asthma,
separating from both healthy subjects and those with COPD (Figure 3.10 A). Statistical
analysis at the individual gene level revealed changes in 21 of 32 genes in people with
asthma and 26 of 32 genes in those with COPD (Figure 3.10 B). In people with asthma, 11
of 21 dysregulated genes were up-regulated (ABCB1, ABHD6, CYP2C9, GABRA2, GNAII,
GPR55, NOS2, NRG1, PTGS2, TP53, and TRPV1), while 10 of 21 were down-regulated
(ABHD12, CNR2, COMT, CYP3A4, DAGLA, DAGLB, MAP2K2, MAPK3, MGLL, and
NAAA). In COPD subjects, 11 of 26 dysregulated genes were up-regulated (ABHDG,
CNR1, CYP2C9, CYP3A4, FAAH, GABRA2, GPR55, NAAA, NAPEPLD, OPMRI, and
TRPV1), while 15 of 26 were down-regulated (ABCB1, ABHD12, ABCY3, AKT1, DAGLB,
DUSP6, FAAH2, GNAI1, MAPK1/, MAPK3, MGLL, NOS2, PIK3CA, PRKACA, and
TP53). The most dysregulated gene was TRPV1, with the largest up-regulation observed
in the samples from people with asthma relative to healthy controls. The differential gene
expression patterns were overlaid on the endocannabinoid signalling pathway for qualitative
visualization in asthma (Figure 3.10 C) and COPD (Figure 3.10 D).
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Figure 3.10: (A) Principal-component (PC) analysis plot of healthy subjects (n = 616),
people with asthma (n = 136) and individuals with COPD (n = 338) generated by
expression patterns of the 32-gene endocannabinoid signature. The first (18%) and second
(16.3%) PCs were used. Ellipses were added to represent 95% confidence intervals per sex.
(B) Gene expression data of the 32 genes were compared between healthy, asthmatic and
COPD samples. The logs-transformed mean expression values were compared to that of
the healthy samples and shown as logy fold change (FC). Visual representation of the
differences in the 32-gene endocannabinoid signature between (C) healthy subjects and
people with asthma and (D) healthy subjects and individuals with COPD. Colour coding
is reflective of logoFC relative to healthy subjects. THC: tetrahydrocannabinol. *: p <
0.05; **: p < 0.01; ***: p < 0.001.
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Collectively, the data in this study demonstrate that underlying chronic respiratory
disease status is associated with a dysregulation of the endocannabinoid system at the gene
level in human airway epithelial cells.

Impact of sex on endocannabinoid system gene expression in human airway
epithelial cells from asthmatics and subjects with COPD

Sex differences in incidence, age of onset, and pathology are observed in both asthma and
COPD.”""** Cannabinoid exposures have been explored in the context of both asthma and
COPD management for immunomodulatory and bronchodilation purposes.”” »*"" To date,
the potential interaction of sex status and endocannabinoid system expression in chronic
respiratory disease has not been addressed.

Taking the same approach as for healthy subjects, I analyzed a curated data set of
airway epithelial cells from 136 unique asthmatic subjects, where the identifier of sex was
available for 34 females and 28 males. For COPD, I analyzed a curated data set from 338
unique COPD subjects, where the identifier of sex was available for 48 females and 93 males
(see Table 9 for study group compositions).

In both asthma and COPD samples, PCA plots revealed no separation between sexes
with clustering of samples overlapping between disease groups (Figure 3.11 A, C). At the
individual gene level, no sex dependent differences were observed for any gene in the 32-gene
endocannabinoid signature in either disease groups (Figure 3.11 B, D).

Collectively, the data do not support sex differences in the endocannabinoid system in
human airway epithelial cells from asthmatics or subjects with COPD.

TRPV1 is up-regulated in airway epithelial cells from asthmatics

As my bioinformatic interrogation of the 32-gene endocannabinoid signature was restricted
to genes, confirmatory protein expression analysis was performed. The candidate chosen
for validation was TRPV1, a confirmed receptor for cannabinoids that was the most
differentially expressed candidate between the comparisons examining sex or disease status.

Using primary human airway epithelial cells from healthy donors or those with physician
diagnosed asthma, protein was isolated from cells grown under submerged monolayer culture
conditions. Immunoblot analysis confirms TRPV1 protein expression in human airway
epithelial cells and revealed a qualitative increase in cells from asthmatics (Figure 3.12).
TRPV1 staining normalized to total protein loading confirms a quantitative increase. In

95



1

|}

|

g ° 1 |
o] o N g;:q-i - |
]

1

!

1

PC2 (8.5%)
o
o
o
o
() @
°
33
22

!
]
= !
MAPK14 < e
M - [R=
|

> NAPER DE’
|

O 1 ==
PIK3CA 1
<A1 Iy
GS2 1 =
53 4

=

0
PC1 (68.2%)

T ¥ . = T T
Sex -1 0 1 2
log,Expression
© Female 0g2EXp

© Male Sex

Female

C D ~1 Male

059 V el |
I

004 \

PC2 (12.8%)

0.

PC1 (21.6%) N R —

— T
1 2
xpression

Theos -‘

log

Figure 3.11: (A) Principal-component analysis (PCA) plot of asthmatic females (n = 34)
and males (n = 28) generated by expression patterns of the 32-gene endocannabinoid
signature. The first (68.2%) and second (8.5%) principal components (PCs) were used. (B)
Asthmatic samples divided into female and male, and plotted separately. (C) PCA plot of
females (n = 48) and males (n = 93) with COPD generated by expression patterns of the
32-gene endocannabinoid signature. PC1 (21.6%) and PC2 (12.8%) used. (D) COPD
samples divided into female and male, and plotted. For both (A) and (C), ellipses were
added to represent 95% confidence intervals per sex. For both (B) and (D),
logs-transformed expression values were plotted as box plots of logs fold change (FC). The
dashed line at zero represents the global baseline of expression for the entire set of genes.

96



closing, the performed protein analysis is consistent with the bioinformatic analysis that
revealed elevations in TRPV1 in human airway epithelial cells from people with asthma.
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Figure 3.12: Immunoblot of HAECs from healthy subjects (n = 4), people with asthma (n
= 4) and peripheral blood mononuclear cell (PBMCs) (control) were analysed for TRPV1

and quantified as fold change over healthy subjects, normalized to total protein loading. *:
p < 0.05.

3.3.4 Discussion

The dominant route of delivery of cannabis is via inhalation of combustion smoke, resulting
in exposure to phytocannabinoids and activation of the endocannabinoid system."" "’ The
airway epithelium represents the first line of defence in the human lung against inhaled
insults including cannabis smoke. To better understand how the epithelium is able to
respond to cannabis smoke exposure in the context of the endocannabinoid system, I
performed a characterization study using bioinformatic and complementary protein analysis
approaches. This study demonstrates that three cannabinoid receptors, CB1, CB2, and
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TRPV1, are expressed at the protein level in human airway epithelium in situ and in vitro.
The demonstration that these receptors were present warranted an exploration into the
endocannabinoid system downstream of the receptors. Using 1090 unique patient samples
of airway epithelial cells curated from publicly available data sets, I demonstrate in healthy
subjects that the gene expression levels of the endocannabinoid system are elevated in
females relative to males. Furthermore, I demonstrate that the sex-dependent effect is
lost when examining samples from asthmatics or individuals with COPD, and that disease
status appears to be a stronger driver of endocannabinoid system gene expression. Lastly,
my bioinformatic approach was validated by demonstrating that TRPV1, a top candidate
up-regulated at the gene level in these studies, is also up-regulated at the protein level
in asthmatics. Collectively, these results confirm the expression of the endocannabinoid
system in human airway epithelial cells and suggest that both sex and disease status may
impact cannabinoid responses.

The legalization of cannabis in multiple jurisdictions on a global scale reduces barriers
for individuals to consume cannabis for either medicinal or recreational purposes. The
dominant route of cannabis delivery is through inhalation of smoke from plant combus-
tion.”” "V Inhaled cannabis smoke travels through the upper and lower airways, with airway
epithelial cells being a major site of first contact. This study has demonstrated with an in
vitro model of airway epithelial cell culture that cannabis smoke induces a concentration-
dependent reduction in airway epithelial cell viability, barrier function, while promoting
pro-inflammatory cytokine secretion.””''* Complementary profiling of human epithelial
cells isolated via bronchial brushings has demonstrated cannabis consumption-dependent
elevations in TLRS, TLR6, and TLRY gene expression.” A limitation of these studies is the
lack of mechanistic interrogation into the role that the endocannabinoid system contributed
to the observed functional consequences of cannabis smoke. To begin to implicate the
endocannabinoid system in epithelial cell functions, an in vitro approach has used direct
cannabinoid administration to airway epithelial cells independent of combustion, showing
functional consequences with altered barrier function mediated by mechanisms dependent
and independent of cannabinoid receptors.” >~ The demonstration that multiple compo-
nents of the endocannabinoid system are expressed at the gene level in airway epithelial
cells with CB1, CB2, and TRPV1 receptors confirmed at the protein level are consistent
with this system playing a contributing role in mediating cannabis smoke-induced effects.
Collectively, the data in this study and existing literature demonstrate that the dominant
form of cannabis consumption, cannabis smoke inhalation, is able to induce functional
consequences in airway epithelial cells in a process that is mediated, at least in part, by the
endocannabinoid system.

Cannabis use patterns have been reported to differ among males and females, with
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females consuming less overall quantity and frequency.”~"" The endocannabinoid system
is in turn regulated by sex hormones with diverse interactions at levels of receptors,
enzymes, and signaling molecules.”” In the context of lung health and disease, sex
dependent lung physiology is observed as well as asthma and COPD disease incidence and
progression.”’” 7" In light of the potential for interactions between sex, user practices, and
the endocannabinoid system, I performed a bioinformatic analysis that stratified for male
and female sex status. In healthy individuals, I observed that 7/32 of the endocannabinoid
gene signature candidates were differentially regulated between males and females, with
5/7 genes being up-regulated in females. The observations of sex-dependent effects on the
expression of the 32-gene endocannabinoid signature are consistent with sex differences in
the expression of CB1 and CB2 protein expression in heart tissue, where CB1 receptors are
more highly expressed in females and CB2 receptors more highly expressed in males.

Interestingly, age confounded these results in heart tissue with a switch in expression
patterns observed over the ages of 50. Despite the observed sex-differences in healthy
subjects, these observations were not observed in samples from asthmatics or individuals
with COPD, where instead, disease status was associated with differential expression
patterns. Although both asthma and COPD are influenced by sex, with sex hormones
impacting airway epithelial cell biology,””” these results suggest that asthma or COPD
status masks any sex-dependent effect. Collectively, these findings suggest that sex and
asthma or COPD status independently impact expression of the endocannabinoid system.

The potential disease specific responses to cannabis exposure as a result of dysregulated
endocannabinoid signaling is relevant as cannabinoids have and are being pursued for
bronchodilatory and immunomodulatory properties.”~ ="~ Furthermore, in populations
of asthmatics and COPD subjects, cannabis consumption is not avoided and shown to
interact with disease progression. The reported benefits of cannabis exposure on lung
function in asthmatics may be selective for this population based on endocannabinoid
signaling. Indeed, if TRPV1 is a dominant receptor for responses downstream of inhaled
cannabis, the signaling mediated in airway epithelial cells from asthmatics may be augmented
relative to healthy controls. The observation of elevated TRPV1 in airway epithelial cells
from asthmatics is consistent with a previous report demonstrating correlation with asthma
severity.””” A limitation of this study is that other cell-types were not explored for TRPV1,
which is also expressed in airway smooth muscle cells and can modulate smooth muscle
contraction.”” In contrast, the lack of observed benefit on lung function and association
with advanced pathology in COPD subjects may be a result of a distinct expression profile
of the endocannabinoid system.” »°'" These results and those in the literature suggest
that a universal response to inhaled cannabis by healthy subjects and those with asthma
or COPD should not be assumed and cautions translation of safety and efficacy studies
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performed in healthy individuals to those with underlying asthma or COPD.

This study is heavily focused on using deposited data sets generated by microarray
gene expression technology. Microarrays are low cost, cover large numbers of transcripts,
and benefit from a standardized format for analysis and public deposition of data. As a
result of these benefits, gene expression data for large, independent cohorts are available
for curation and data mining purposes if appropriate measures are taken to normalize
and integrate data sets from diverse user groups. Despite benefits of curated microarray
data sets, there exist limitations of such an approach. Specifically, microarray technology
is susceptible to poor signal-to-noise ratio, making transcripts expressed at low levels
difficult to detect, suggesting that the signal may be under-estimated or high variance may
be introduced for these transcripts. To address this limitation, the SCAN method used
functions to reduce technical and across-sample variation and to increase the signal-to-noise
ratio while maintaining the ability to detect differentially expressed genes. As in all
analyses, the sample size will dictate the statistical power, which can only be as large as the
available data sets. In this case, the sample sizes for females and males in the asthma and
COPD data sets were smaller than the healthy cohorts, which may have limited my ability
to detect any sex-specific effects on endocannabinoid gene expression. Finally, in order
to compare data across multiple experiments the microarray chip technology used needs
to be considered with additional normalization methods required for data generated on
different platforms. Different microarray technologies will have unique probe compositions
and quality control protocols which can lead to systematic biases between experiments,
though these batch-specific effects can be addressed using batch correction techniques and
normalization.” Despite these highlighted limitations, the curation of multiple microarray
gene expression data sets from diverse cohorts of study subjects can be aligned with
normalization methods to minimize batch and cross-platform effects and maximizing sample
sizes to detect differential gene expression patterns.

In summary, this study demonstrates that the endocannabinoid system is expressed in
human airway epithelial cells at the gene level and CB1, CB2, and TRPV1 are expressed at
the protein level. T demonstrate that gene expression patterns for a 32-gene endocannabinoid
signature are differentially expressed between females and males in healthy individuals
and between healthy individuals and those with asthma or COPD. It can be confirmed
that my bioinformatic approach for analysis of gene expression has the potential to reflect
corresponding protein expression level changes as demonstrated by elevated TRPV1 protein
expression in human airway epithelial cells from asthmatics relative to healthy controls.
This study lays a foundation with primary human lung samples from well defined patient
populations to justify exploring the functional consequences of endocannabinoid system
signaling in human airway epithelial cells in both health and disease. The complete functions
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of the endocannabinoid system in airway epithelial cells remain to be defined.

3.4 Summary

Cannabis and tobacco smoke exposures produce strikingly similar transcriptome-wide
outcomes in the human airway epithelium, including increased oxidative stress, increased
pro-inflammatory responses, and a shared response to long-acting [-agonist/glucocorticoid
therapy. However, the long-term effects of chronic cannabis use are still not well-
established. This is due, in part, to a paucity of large-scale sequencing analyses and lack
of a standardized product. Differences in the expression of endocannabinoid receptors
between healthy males and females and between healthy individuals and those who are
diagnosed with asthma or COPD suggest variability between these groups with respect
to long-term outcomes, further necessitating large-scale, sequencing-based, longitudinal
studies into cannabis use and it’s effects on the human airway.

A common suggestion is for cannabis users to switch from combustion to vaporization
as their primary mode of delivery however, the effects of vaporizing cannabis are also
poorly understood despite consumption via vaporization increasing in popularity from 34
to 40% between 2017 and 2018.°>"’ Any longitudinal studies into cannabis use should
include various delivery routes with enough participants in each sample group to ensure
sufficient statistical power. This previous data chapter has highlighted the vast capabilities
of current computational methods in answering biologically significant questions however,
these methods are dependent on the availability of large, well-annotated sample groups and
deep-sequencing in order to do so.

It is evident that cannabis use poses a major quandary to global public health and
will continue to be a pertinent area of research in the years to come. It is imperative that
appropriate funding be allocated to such research areas in order to fully benefit from what
current bioinformatics has to offer. Bioinformatics allows researchers to be on the cutting
edge, responding rapidly to pressing public health concerns, be that cannabis consumption
or something far more novel.
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Chapter 4

SARS-CoV-2 infection

We won’t choose whether the next novel disease pandemic emerges, but we will
choose how ready we are and how quickly and equitably we respond.

JOHN GREEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December
2019 to cause a pandemic of coronavirus disease (COVID-19)."" SARS-CoV-2 is spreading
at a much more rapid rate than SARS-CoV."> """ In 2003, the SARS outbreak caused
by the SARS coronavirus (SARS-CoV) resulted in 8096 probable cases with 774 confirmed
deaths.”" ' In patients with SARS, deaths were attributed to acute respiratory distress
associated with diffuse bilateral pneumonia and alveolar damage.””" Similar clinical reports
of diffuse bilateral pneumonia and alveolar damage have been reported for SARS-CoV-2
infection. """ SARS-CoV-2 causes a respiratory infection, along with acute respiratory
distress syndrome in severe cases. Severe cases of SARS-CoV-2 have been associated
with infections of the lower respiratory tract, with detection of the virus throughout this
tissue as well as the upper respiratory tract. ="~ The biological mechanisms that may
govern differences in the number of SARS and COVID-19 cases remain undefined. It is
possible that SARS-CoV-2 possesses distinct molecular mechanisms that affect the virulence
through viral proteins, greater susceptibility of host cells to infection, permissivity of host
cells to virus replication, or some combination of these and other potentially unknown
factors.”” = Understanding SARS-CoV and SARS-CoV-2 virus similarities and
differences at the molecular level in the host may provide insights into transmission,
pathogenesis and interventions.

As well as host-viral entry mechanism, characterization of the host-viral immune response
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is critical for guiding public health measures and intervention. Type I interferons (IFNs)
are one of our first lines of defence against a virus. Protein over-expression studies have
suggested the ability of SARS-CoV-2 proteins to block IFN responses. Emerging data
also suggest that timing and extent of IFN production is associated with manifestation
of COVID-19 severity. In spite of progress in understanding how SARS-CoV-2 activates
antiviral responses, mechanistic studies into wild-type SARS-CoV-2-mediated induction
and inhibition of human type I IFN responses are lacking.

This chapter aims to characterize the mechanisms facilitating SARS-CoV-2 viral entry
into human airway cells and to assess the various host responses observable once viral
entry is achieved. The data suggest that dynamic regulation of ACE2 expression in human
lung and/or the existence of alternate receptors for SARS-CoV-2 facilitate initial host cell
infection in lung tissue. Once the virus has entered the host cell, it is demonstrated that
SARS-CoV-2 infection induces a mild type I IFN response in vitro and that SARS-CoV-2
is not adept in blocking these responses, providing support for ongoing IFN clinical trials.
This research expands our current knowledge base and may inform public health efforts in
the handling of both current and emergent zoonotic pathogen pandemics.

4.1 Gene expression and in situ protein profiling of
candidate SARS-CoV-2 receptors in human air-
way epithelial cells and lung tissue

Material in this section has been published as part of Aguiar et al. (2020)."” The published
manuscript is available here:

J. A. Aguiar, B. J.-M. Tremblay, M. J. Mansfield, O. Woody, B. Lobb, A. Baner-
jee, A. Chandiramohan, N. Tiessen, Q. T. Cao, A. Dvorkin-Gheva, S. Revill, M.
S. Miller, C. Carlsten, L. Organ, C. Joseph, A. John, P. Hanson, R. C. Ausin, B.
M. McManus, G. Jenkins, K. Mossman, K. Ask, A. C. Doxey, and J. A. Hirota.
Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors
in human airway epithelial cells and lung tissue. Furopean Respiratory Journal,
56(3):2001123. 2020."” https://doi.org/10.1183/13993003.01123-2020
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4.1.1 Introduction

The seminal report identifying the receptor for SARS-CoV used a HEK293 cell over-
expression system to identify angiotensin-converting enzyme 2 (ACE2) as a receptor by
co-immunoprecipitation with the SARS-CoV spike domain 1. Subsequently, the spike
(S) protein of SARS-CoV was identified as the viral interacting partner of ACE2. Host
protease activity by transmembrane serine protease 2 (TMPRSS2) was then shown to
facilitate ACE2 ectodomain cleavage and fusion of the SARS-CoV membrane with the host
cell membrane.

ACE2 and TMPRSS2 were identified as cellular entry determinants for SARS-CoV
using mechanistic studies. The original report of in situ human lung ACE2 expression
described positive immunohistochemical staining for alveoli and airway epithelial cells, and
immunocytochemical staining in A549 type II alveolar epithelial cells.””’ ACE2 protein
expression is also present in the human lung adenocarcinoma cell line Calu-3.”” Similar
to ACE2, the original report describing the expression of TMPRSS2 in human respiratory
mucosa described expression in airway epithelium and type II alveolar epithelial cells.”” The
specificity of the ACE2 and TMPRSS2 antibodies used for analysis of expression patterns
in human lung tissues remains to be addressed.

In addition to TMPRSS2, ADAM17 (ADAM metallopeptidase domain 17, a member of
the ADAM (a disintegrin and metalloprotease domain) family), has also been demonstrated
to cleave ACE2 ectodomain, but this was not required for SARS-CoV infection.
Mechanisms of SARS-CoV entry distinct from ACE2 have also been reported and include
activation by endosomal cathepsin L and cell surface expression of CD147 (also known
as basigin (BSG)) or GRP78 (78 kDa glucose-regulated protein; also known as heat
shock protein family A (Hsp70) member 5 (HSPAS5)).”""""" Each of these receptors was
mechanistically interrogated and results suggested that SARS-CoV could initiate host cell
entry and infection using multiple mechanisms.

Recent in vitro reports have demonstrated that similar host proteins are involved in
facilitating cell entry by SARS-CoV-2, such as ACE2 and TMPRSS2."»*"" Biophysical
and structural evidence strongly supports an interaction of ACE2 with SARS-CoV-2 spike
protein, similar to SARS-CoV spike protein.” Molecular docking studies have also
suggested that SARS-CoV-2 spike protein can interact with cell surface GRP78."" Indirect
evidence for a role of CD147 in SARS-CoV-2 binding has been demonstrated in vitro with
the use of an anti-CD147 intervention that prevented virus replication.”’’ Furthermore, a
clinical study with an anti-CD147 intervention reduced symptoms and duration of hospital
admission for COVID-19 patients.”’ In summary, although there is evidence that SARS-
CoV-2 and SARS-CoV both utilise ACE2 as a receptor to facilitate virus entry, it is possible
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that differences in host entry mechanisms play a role in the large epidemiological differences
between the two viruses, which may include additional unidentified receptors.

To address the uncertainties related to SARS-CoV-2 receptors in human lung, gene
expression and in situ protein profiling of candidate receptors in human airway epithelial
cells and lung tissue were performed. My computational analysis used publicly available
microarray gene expression data sets from airway epithelial cells of 515 unique subjects,
single cell sequencing data from 10 subjects, and the FANTOMS5 data set for promoter
activities of 74 lung-related cell and tissue types. My proteomic analysis used data from
the Human Proteome Map”' ' and a data set from primary human airway epithelial cells
grown under air-liquid interface culture conditions. For the wn situ protein profiling,
immunohistochemical analysis of 98 human lung tissue samples was performed. To determine
antibody specificity, collaborators performed immunoblots on protein isolated from Calu-3
cells, primary human airway epithelial cells, primary type II alveolar epithelial cells, the
human bronchial epithelium cell (HBEC)-6KT cell line, the A549 type II alveolar epithelial
cell line, and HEK cells. Collectively, the data contrast with previous reports, demonstrating
rare ACE2 protein expression in the airway epithelium and alveoli of human lung. The
protein expression data are consistent with low ACE2 promoter activity in a variety of lung
epithelial cell samples and low ACE2 gene expression in both microarray and single cell
RNA sequencing (scRNA-seq) data sets. This study presents confirmatory evidence for the
presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and
confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.
The data suggest the presence of a mechanism dynamically regulating ACE2 expression in
human lung, perhaps in periods of SARS-CoV-2 infection, and/or that alternate receptors
for SARS-CoV-2 exist to facilitate initial host cell infection in lung tissue.

4.1.2 Methods
Human ethics

Procurement of primary human airway epithelial cells used for immunoblots and lung
tissue for immunohistochemistry was approved by the Hamilton (ON, Canada) integrated
Research Ethics Board (HIREB 5099T, 5305T, 11-3559 and 13-523-C). The University of
British Columbia (Vancouver, BC, Canada) Research Ethics Office approved heart tissue
archives and primary human airway epithelial cell collection.
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Upper and lower airway gene expression analysis

Public microarray experiments using Affymetrix chips (HuGene-1.0-st-v1 and HG-U133 Plus
2) on airway epithelial cell samples collected from nasal (GSE19190) or bronchial (GSE11906)
brushings of healthy non-smokers were obtained from the NCBI Gene Expression Omnibus
(GEO) database.'” This resulted in a total of 80 individual samples from the two
different experiments that included 11 upper airway samples (nasal: n = 11) and 69 lower
airway samples (trachea: n = 17, large airway: n = 17, small airway: n = 35). For
all data set samples, raw intensity values and annotation data were downloaded using
the GEOquery R package (version 2.52.0)" from the Bioconductor project. Probe
definition files were downloaded from Bioconductor and probes were annotated using
Bioconductor’s annotate package. All gene expression data were unified into a single data
set that was then normalized by robust multiarray average (RMA) normalization, and only
genes present in both of the Affymetrix platforms (n = 16013) were kept for subsequent
analyses. Correction of experiment-specific batch effects was performed using the ComBat
method'”” implemented using the sva R package (version 3.32.1). RMA-normalized
expression levels for conventional (ACE2, TMPRSS2, ADAM17 and CTSL (cathepsin L1))
and non-conventional (CD147 and GRP78) SARS-CoV-2 receptor genes were compared
across the four defined airway levels, with CDH1 (E-cadherin) expression level included as
a positive control with known expression in lung tissue. Gene expression levels were tested
for significant differences via pairwise Wilcoxon rank sum tests with Benjamini-Hochberg
multiple testing correction using the stats R package (version 3.6.1). Gene expression box
plots were generated with the ggplot2 R package (version 3.2.1).

Analysis of curated bronchial epithelial cell brushing data set

A total of 1859 public microarray experiments using Affymetrix chips (HG-U133 Plus
2 and HuGene-1.0-st-v1) on airway epithelial cell samples were selected from the NCBI
GEO database. These samples were further filtered by removing individuals with asthma
or COPD, resulting in a total of 504 individual healthy samples (GSE4302, 28 samples;
GSEG67472, 43 samples; GSE37147, 159 samples; GSE108134, 274 samples). Within this
data set, sex and/or age information was included for 310 samples; of these, sex data were
available for 86 females and 106 males. Smoking status information was also provided for
451 samples, with 260 current smokers, 82 former smokers and 109 never-smokers. For all
data set samples, raw intensity values and annotation data were downloaded as described
above. Probe definition files were retrieved as described above. All gene expression data
were unified into a single data set that was then RMA-normalized, and only genes present in

106



both of the Affymetrix platforms (n = 16105) were kept for subsequent analyses. Correction
of experiment-specific batch effects was performed as described above.

Analysis of promoter activity from the FANTOMS5 data set

Promoter activity analysis performed by Dr. Michael Mansfield at the Okinawa Institute of
Science and Technology, Japan

The FANTOMSb promoterome data set’ for the hg38 assembly’ was used to exam-
ine promoter activity of SARS-CoV-2-related human genes, namely ACE2, TMPRSS2,
ADAM17, CTSL, CD147 and GRP78. Using the ZENBU genome browser,”"” the nearest
cap analysis of gene expression (CAGE) peak upstream and on the same strand as each
of the aforementioned genes was extracted and analysed. The data set consists of CAGE
promoter activity data for 1866 primary cells, cell lines and tissues from humans, and is
quantified as normalized transcripts per million (TPM). A subset of FANTOM5 CAGE
data (120 samples) is presented, considering only samples related to lung, gut, heart and
prostate tissues (consisting of 74, 19, 15 and 12 samples, respectively). Normalized TPM
values for each CAGE peak, an approximation for promoter activity, were log;q transformed
and separated according to tissue and cell type, and the radius of each point is proportional
to these transformed normalized TPM values.

Analysis of protein abundance from proteomic data sets

Publicly available human proteomic data from the data sets of Kim et al.”"" and Foster et
al.""”’ were used to evaluate SARS-CoV-2 receptor-related protein expression in different
human tissues and experimental conditions. Expression values were extracted from the
data set of Kim et al.” " for ACE2, TMPRSS2, ADAM17, CTSL, CD147 and GRPT78, using
CDHI1 as a control for airway cells. Data were created using the pheatmap package in R
(version 1.0.12) and expressed as logjo-transformed to facilitate visualization. Proteomic
data from the data set of Foster et al.""”’ consist of bronchial epithelial cells collected from
healthy non-smokers (n = 4; males) and exposed to PBS control vehicle. Intensity values
for ACE2, TMPRSS2, ADAM17, CD147 and GRP78 were extracted, with CDH1 included
as a positive control. Intensity values were determined by the original study authors via
normalization of all detected peptide intensities associated with a given parent protein.
Box plots were generated with the ggplot2 R package (version 3.2.1) with intensity values
logio-transformed for visualization purposes.
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Analysis of single cell RN A sequencing data

scRNA-seq analysis performed by Dr. Anna Dvorkin-Gheva at McMaster University

Data pre-processed using the Cell Ranger pipeline (10x Genomics) were obtained from
GSE135893. Samples from 10 control subjects and 12 idiopathic pulmonary fibrosis patients
were downloaded and post-processed with the Seurat package in R.”" Cell populations were
defined using the markers provided in the source paper. "’ Cells belonging to the 10 control
subjects were used for further analysis. Visualizations of violin plots were created using
Seurat.

Primary human airway epithelial cells

Cell culturing performed by Abiram Chandiramohan, Nicholas Tiessen, and Quynh Cao at
McMaster University

The human lung adenocarcinoma cell line, Calu-3, was grown under culture conditions
defined by the supplier (ATCC HTB-55). Primary human airway epithelial cells isolated
via bronchial brushings from consented healthy individuals were grown in PneumaCult
ExPlus (Stemcell Technologies, Vancouver, BC, Canada) under submerged monolayer
culture conditions and used between passages 1 and 4. The human bronchial epithelial cell
line, HBEC-6KT, was grown under submerged monolayer culture conditions in keratinocyte
serum-free media supplemented with epidermal growth factor (0.4 ng x mL™?) and bovine
pituitary extract (50 pg x mL™).

Immunoblots

Immunoblots performed by Abiram Chandiramohan, Nicholas Tiessen, Quynh Cao, Louise
Organ, Chitra Joseph, and Alison John at McMaster University

Cell protein was isolated using RIPA lysis buffer (VWR, Mississauga, ON, Canada)
supplemented with protease inhibitor cocktail (Sigma, Oakville, ON, Canada) with quan-
tification performed using Bradford assay reagents (Bio-Rad, Mississauga, ON, Canada).
Immunoblots were performed using stain-free 4-20% pre-cast gradient gels and imaged on
a ChemiDoc XRS+ Imaging system (Bio-Rad). For each immunoblot, 20 pg of protein
was added per lane. ACE2 (MAB933, monoclonal, clone 171606, 2 ng x mL? (R&D
Systems)), TMPRSS2 (HPA035787, polyclonal, 0.4 pg x ' (Atlas Antibodies)), CD147
(ab666, monoclonal, clone MEM-M6/1, 1 pg x ' (Abcam)) and GRP78 (610979, monoclonal,
clone 40/BiP, 0.25 pg x mL! (BD Biosciences), and HPA(038845, rabbit polyclonal (Atlas
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Antibodies)) primary antibodies were diluted in 5% skimmed milk/TBS with 0.1% Tween-20
and incubated overnight on a rocker at 4°C with detection performed the following day using
an anti-mouse (ACE2, CD147 and GRP78 (BD Biosciences)) or anti-rabbit (TMPRSS2 and
GRP78 (Atlas Antibodies)) horseradish peroxidase (HRP)-conjugated secondary antibodies
at 1:3000 for 2 h at room temperature (Cell Signaling, Danvers, MA, USA). visualization
of TMPRSS2, CD147 and GRP78 was performed using Clarity Western enhanced chemilu-
minescence (ECL) Substrate, while ACE2 was visualized with Clarity Max ECL Substrate
(Bio-Rad). Total protein loading images were collected as a qualitative visualization of pro-
tein loading between sample types.'" The immunogen for ACE2 primary antibody is mouse
myeloma cell line NSO-derived recombinant human ACE2 GIn18-Ser740 (predicted). The
immunogen for TMPRSS2 primary antibody is the recombinant protein epitope signature
tag antigen sequence, GSPPAIGPYYENHGYQPENPYPAQPTVVPTVYEVHPAQYYP-
SPVPQYAPRVLTQASNPVVCTQPKSPSGTVCTSKT.

The immunogen for the CD147 primary antibody is recombinant full-length protein
corresponding to human CD147. The immunogen for the GRP78 BD Biosciences pri-
mary antibody is human BiP/GRP78 amino acids 525-628. The immunogen for the
GRPT78 Atlas Antibodies primary antibody is the recombinant protein epitope signature tag
antigen sequence, EKFAEEDKKLKERIDTRNELESYAYSLKNQIGDKEKLGGKLSSED-
KETMEKAVEEKIEWLESHQDADIEDFKAKKKELEEIVQPIISK.

Independent immunoblot analysis (L. Organ, C. Joseph, A. John and G. Jenkins) was
performed on A549, HEK and immortalized human bronchial epithelial cells. Equal amounts
of protein (20 ng) were loaded on to 4-12%, Bis-Tris gradient gels (NP0326BOX; Ther-
moFisher) with anti-ACE2 (ab108252, rabbit monoclonal, clone EPR4435(2), 1/500 dilution
of stock antibody; Abcam). A loading control of GAPDH was used to demonstrate protein
loading (ab181603, rabbit monoclonal, EPR16884, 1/10000 dilution of stock antibody;
Abcam). Visualization was performed with ECL Clarity (Bio-Rad) on a Licor C-DiGit.

Immunohistochemistry

Immunohistochemistry performed by Spencer Rewill at McMaster University

Formalin-fixed paraffin-embedded human lung tissue from non-diseased regions was
obtained from archived tissue blocks from patients who had undergone lung resection for
clinical care. Human heart tissue was from the University of British Columbia Cardiovascular
Tissue Registry. Sections 4 pm thick were cut and stained for ACE2 (15 ng x mL™1),
TMPRSS2 (10 pg x mL™), CD147 (5 pg x mL™), and GRP78 (HPA038845, 1/200 dilution)

using the same antibodies used for immunoblot analysis. All staining was performed on
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a Leica Bond RX system with Leica Bond reagents, heat-induced antigen retrieval at
pH 6 (20 min) with primary antibody incubation for 20 min. Digital slide scanning was
performed using an Olympus VS120-L100 Virtual Slide System at 40x magnification with
VS-ASW-L100 V2.9 software and a VC50 colour camera, followed by image visualization
with HALO image analysis software.

4.1.3 Results

Candidate genes important in SARS-CoV-2 infection are detectable at varying
levels in human airway epithelial cells and lung tissue

I performed a targeted analysis of ACE2, TMPRSS2, ADAM17, CTSL, CD147 and GRP78
gene expression as candidates important for SARS-CoV-2 infection in human airway
epithelial cells. Here and throughout the gene expression analyses, CDH1 (E-cadherin)
was used as a control for lung epithelial cell phenotype. I first examined these genes in a
curated data set of upper and lower airway epithelial cell gene expression from the nasal
sinus to the 12th generation of airway in the lung (Figure 4.1).

Airway *

124 [ Nasal e
Trachea %ﬁ
M Large ?*?

[ Small

| o
J == $¢ﬁ ﬁ*é *

Normalized expression (log?2)

T T T T T T T

ACE2 TMPRSS2 ADAM17 CTSL CD147 GRP78 CDH1

Figure 4.1: Normalized logy expression levels for ACE2, TMPRSS2, ADAM17, CTSL,
CD147 and GRP78 genes compared across the upper airway (nasal; n = 11) and lower
airways (trachea; n = 17, large airway; n = 17, and small airway; n = 35). CDH1
(E-cadherin) gene expression level is included as a positive control. Statistical values for
comparisons for each gene at each airway generation were calculated; those not shown were
non-significant. *: p < 0.05, **: p < 0.01, ***: p < 0.001.
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In the upper airways, all candidates were expressed, with the highest level observed
for GRP78 and the lowest level observed for ACE2. Analysis along multiple generations
of the lower airways (trachea, large (4th-6th generation) and small airways (10th—12th
generation)) revealed identical relative expression patterns, with ACE2 being the least
expressed and GRP78 being the highest expressed. ACE2 gene expression showed the
greatest variability along the upper and lower airways, with greatest expression observed in
the trachea samples and the lowest expression in the small airway (Figure 4.1).

Following the observation of consistent expression along the upper and lower airways
of candidate genes important in SARS-CoV-2 infection, I determined whether sex or age
affected gene expression levels in healthy individuals using a curated data set of bronchial
brushings from 504 healthy subjects (Table 10). The expression levels for the candidate
genes in healthy subjects paralleled the patterns observed in the smaller survey of upper
airways, trachea, large and small airways (Figure 4.2). Median ACE2 gene expression was
the lowest, while GRP78 gene expression was the highest (Figure 4.2 A). No gene candidate
demonstrated sex dependence for expression levels (Figure 4.2 B). ACE2, TMPRSS2,
CD147 and GRP78 were elevated in current smokers relative to never-smokers (Figure 4.2
C and Table 11). CTSL was reduced in current smokers relative to never-smokers. No
microarray chip-dependent effects were observed for relationships between sex or smoking
status and gene expression. For quantitative analyses related to age and gene expression,
the curated database was divided into data sets that used either the HG-U133 Plus 2 or
HuGene-1.0-st-v1 microarray due to differences in age distributions. In the HuGene-1.0-st-v1
data set (n = 181), which included a greater proportion of older individuals (>50 years),
reduced ACE2 gene expression was observed with age (Figure 4.2 E; p < 0.05).

111



A

Expression level

o

Expression level

Expression level

[ —t—
e WY ey = . .
- —— r — - 1 Age 40
i ; | || : i |Sex 280 Wl
RN IEESE YT SO Emomn EY IEEDISSIonT S 1EUSEEIE Chip <
| ] | acez 7 o8 e
. y’ - o
; I ‘ orr7e S ¢ sex
CDH1 B Femate
ADAM17 W Mate
CD147 Chip
’ TMPRSS2 B Ho-u133 Pls 2
- Il l cTsL I HuGene-1.0-st-v1
C
Sex Smoking status
124 E Female 124 @ Current for
B Male -* e B Former L s el
= 3 Never
104 ‘ | * 2 107 AT -
e = = c - & =
i S
8- *ﬁ ' 2 a4 a——
2
=9
>
w
6 b
‘- -
ACE2Z TMPRSS2 ADAM17 CTSL  CD147 GRP78  CDH? ACE2 TMPRSS2 ADAMI7  CTSL  CD147 GRP78  COH1
ACE2 TMPRS52 ADAM17 CTsL CD147 GRP78 CDH1
. 924 e 1250 . - .
. 100{e® o o . Py I Sl . .
65 . ' . . 10 . 12{"e% ° 120 ey o .
’ . o 174 *e IS - 1 3 - g,
. . 95 . e, B8 1% %ep o . .-J" . e o »
60{e ®* ¢ .5 . S b . . N 115 foaghet—
(o2 g o g4{" %% Lof 9 ® 1n{ e . TR
55 o 2 4 <. 9 . —_— - 104 o %
RO B5{® ,** o e vy i e
5.0 . . e 801, 8 Blsaeed® s 107,7 o 105
ML) 801, ‘w o H® ®* 4 g% o . 10.0 .
20 30 40 50 &0 20 30 40 50 60 20 30 40 50 6D 20 30 40 50 40 20 30 40 50 60 20 30 40 S0 &0 20 30 4D 50 60
Age years
ACE2 TMPRSS2 ADAMTY CTSL CDW? GRP78 CDH1
7.5 - - . . 1.7 .
kY 858 .
7.0 . - 9.6 10 o Néle alte L .
R P {;,_.... 1. . ., e
. oht 9212 11.21 * % o
s 2N ke i o SRR
. 8.8 . WE{ »e * AED
551 Ta%y RASE * 108 '
5.0 i ) 8.4 P 10.4 . e e
50 60 70 50 40 70 50 40 70 50 40 70 50 60 70 50 60 70 50 80 70
Age years

112

Figure 4.2: (A) Clustered heat map of logy expression levels from NCBI Gene Expression
Omnibus (GEO) samples (n = 504), annotated by age, sex and microarray chip platform.
Expression values reflect signal intensities, indicating lowest detected expression of ACE2
and highest expression of GRP78 and CDHI. (B) and (C) Box plots of expression levels
separated by (B) sex (n = 194) and (C) smoking status (n = 451). (D) and (E) Plots of
gene expression levels versus age, with linear regression lines of best fit, for data sets that
used either (D) the HG-U133 Plus 2 microarray (n = 43) or (E) the HuGene-1.0-st-v1
microarray (n = 181). Correlations were performed separately between platforms because
of differences in their age distributions. (E) A weak negative correlation (r = -0.20, p =
0.015) was detected for ACE2 in the data set that used the HuGene-1.0-st-v1 microarray.



Promoter activity data of each of the candidate genes important in SARS-CoV-2 binding
and infection were extracted and analysed from the FANTOMS5 data set, which includes
1866 primary cells, cell lines, and tissue sample types (Figure 4.3). All sample formats that
included “lung”, “nasal”, “airway” or “olfactory” were selected, to identify lung-specific
sample types. Gut, heart and prostate tissue samples were analysed as controls. Consistent
with the observed gene expression analysis along the upper and lower airways, normalized
TPM values for each CAGE peak demonstrated that CD147 promoter activity was elevated
relative to ACFE2 promoter activity across airway epithelial cells and lung tissue samples.
CTSL promoter activity was the lowest of all candidate genes, which contrasted with
the modest expression observed at the gene level (Figure 4.2 A). Both microarray gene
expression analysis and promoter activity were consistent with results of candidate gene
expression in a scRNA-seq data set of 10 healthy subjects (Figure 3).

Collectively, this gene expression analysis of the upper and lower airways of healthy
males and females of diverse ages suggests that ACE2 gene expression is low relative to
all other candidate SARS-CoV-2 receptor genes analysed in human airway epithelial cells.
Furthermore, no sex-dependent or age-dependent expression patterns were observed for
any candidates at the gene level, although smoking status did have an impact on gene
expression levels.

In vitro and in situ protein profiling reveals distinct expression patterns for
candidates important in SARS-CoV-2 infection

Analysis of transcriptional data may not be indicative of in situ protein expression levels.
To extend these gene expression observations, I mined publicly available proteomic data from
whole lung and primary human airway epithelial cell cultures and performed in vitro im-
munoblots on human airway epithelial cell lysates and in situ protein immunohistochemistry
on human lung tissue using the same antibodies for each method.

The Human Proteome Map is a publicly available resource that includes select adult and
fetal tissues and circulating immune cell populations.”’" Using this resource, I examined
protein expression of ACE2, TMPRSS2, ADAM17, CTSL, CD147 and GRP78. In human
lung tissue homogenate, ACE2 was not detected, while being detected in heart, gut and
testes, known positive control tissues (Figure 4.4 A). The rank order of the remaining
molecules in human lung tissue homogenate was: GRP78 > CD147 > CTSL > ADAM17 >
TMPRSS2. Human lung tissue homogenate is a heterogeneous population of cells, precluding
the ability to associate protein expression to a given cell type. I therefore interrogated a
publicly available proteomic data set derived from primary human airway epithelial cells
grown under air-liquid interface culture conditions, "~ examining the same candidates.
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Figure 4.3: The FANTOMb5 CAGE data consist of quantified promoter expression levels
across the human genome for 1866 samples from primary cells, cell lines and tissue samples.
The FANTOMS5 CAGE promoter activity data for several SARS-CoV-2-related genes are
shown for samples related to lung, gut, heart and prostate tissues (n = 120). Dot sizes are
proportional to promoter activity, depicted as logig-transformed normalized transcripts per
million (TPM). Notably, ACE2 is either not expressed or expressed at low levels (<1 TPM
in all but one sample) in the airway, including measurements from healthy and cancerous
cells.
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Again, ACE2 protein expression was not detectable (Figure 4.4 B). CD147, GRP78 and
CTSL were expressed with multiple peptide counts, while TMPRSS2 and ADAMI17 were
only marginally expressed with low peptide counts. Collectively, two proteomic data sets
from distinct lung sample formats provide complementary and consistent expression profiles
of candidate molecules important in SARS-CoV-2 infection.
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Figure 4.4: (A) Intensity values of protein expression from Kim et al.”'" for the genes
ACE2, TMPRSS2, ADAM17, CTSL, CD147 and GRP78. CDHI1 intensity is included as a
positive control for expression in airway cells. Intensity values have been logo-transformed
to facilitate comparison between candidates with different basal expression levels across
tissue types. Grey cells in the heat map correspond to an untransformed intensity of 0 and
represent an undetectable signal. (B) Intensity values logjo-transformed for visualization of
ACE2, TMPRSS2, ADAM17, CTSL, CD147 and GRP78 proteins in human airway
epithelial cells from healthy non-smokers (n = 4; males) grown under air-liquid interface
culture conditions."'” CDHI intensity is included as a positive control. Counts indicating
the number of detected peptides associated with each parent protein are provided. ND: the

protein was not detected in this study.
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To localize the in situ expression of the candidate molecules of interest at the protein level,
collaborators pursued immunohistochemical analysis paired with immunoblot validation
of the specificity of the selected antibodies for recognition of proteins of the predicted
molecular weight. An anti-ACE2 antibody detected only a single band in Calu-3 cells at
the predicted molecular weight of ACE2 protein (~ 110 kDa) (Figure 4.5 A, lanes 1-3).
The anti-ACE2 antibody required the use of a super-sensitive ECL solution. No ACE2
protein was detected in primary airway epithelial cells or the HBEC-6KT cell line, despite
confirmation of protein loading (Figure 4.5 A, lanes 4-9, protein loading shown underneath
main blot). Independent immunoblotting with a distinct anti-ACE2 primary antibody
was performed, with a single band observed in HEK cells, but not in immortalized human
bronchial epithelial cells or A549 cells (Figure 4).

An anti-TMPRSS2 antibody detected multiple bands in all airway epithelial cell samples,
with a dominant band at the predicted molecular weight of 57 kDa (Figure 4.5 B). These
patterns were conserved across all cell types that were analysed. An anti-CD147 antibody
detected a single band in all airway epithelial cell samples, with a dominant band at the
predicted molecular weight of 55 kDa (Figure 4.5 C). The immunoblot bands were consistent
with the heavy glycosylation of CD147.""" An anti-GRP78 antibody (BD Biosciences 610979)
detected a single band in all airway epithelial cell samples, with a dominant band at the
predicted molecular weight of 78 kDa (Figure 4.5 D).

The immunoblots using anti-ACE2, anti-CD147 and anti-GRP78 demonstrated a sin-
gle band of predicted molecular weight, suggesting that observed immunohistochemical
staining should be specific to the protein of interest based on the target epitope, as both
methods detect denatured proteins.””’ The same anti-ACE2 and anti-CD147 antibodies
were validated for immunohistochemistry. The anti-TMPRSS2 was used for immunohis-
tochemistry, although the multiple bands observed by immunoblot caution the specificity
of any observed in situ staining. Attempts to optimise anti-GRP78 antibody application
for immunohistochemistry were unsuccessful, requiring additional antibody interrogation
with HPA038845 (Atlas Antibodies), which was suitable for both immunoblotting and
immunohistochemistry (Figure 5).

ACE2 immunohistochemistry revealed only select staining in rare cells in the airways
and the alveoli of all 98 human lung samples analysed, which included healthy subjects and
those with chronic lung diseases (Figure 4.6). A single healthy human sample contained
one positive airway epithelial cell with additional positive staining in the peripheral lung
in cells with type II alveolar epithelial cell morphology (Figure 4.6 A). A representative
image of a sample from a smoker with COPD (Figure 4.6 B) shows no ACE2 protein
staining in the airway epithelium and a rare positive cell in sub-basement membrane tissue.
Quantification of positive pixel count for ACE2 staining normalized to total tissue pixel
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Figure 4.5: (A) ACE2 with single band for predicted molecular weight of 110 kDa (red
box). (B) TMPRSS2 with multiple bands including a dominant band at predicted
molecular weight of 57 kDa (red box). (C) CD147 with a single broad band around
predicted molecular weight of 55 kDa (red box). (D) GRP78 with a single band at
predicted molecular weight of 78 kDa (red box). Lanes 1-3: Calu-3 cells. Lanes 4-6:
primary human airway epithelial cells. Lanes 7-9: human bronchial epithelium cell
(HBEC)-6KT cell line. All cells grown under submerged monolayer conditions, with n = 3
independent passages (Calu-3 or HBEC-6KT) or donor samples (primary human airway
epithelial cells; non-smoker, healthy subjects). For each independent blot of each protein,
all of the same samples were run. A total protein loading control is provided to
demonstrate protein loaded for each sample.
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count revealed no differences between healthy non-smokers and tobacco smokers (Figure
6). Lung microvasculature and human heart tissue had positive staining (Figures 7 and 8),
consistent with previously described reports for ACE2 protein staining patterns.®” "

A Healthy
- - < £

H&E

ACE2

TMPRSS2

CD147

GRP78

Figure 4.6: Representative samples from (A) a healthy non-smoker with no underlying
chronic airway disease, and (B) a smoker with COPD. Black outlines: low magnification
(12x) of conducting airways with airway epithelium; scale bars 100 pm. Green outlines:
high magnification regions (60x) of conducting airway epithelium that are defined in the
low magnification images by green squares; scale bars 50 pm. Red outlines: high
magnification regions (50x) of lung tissue away from the airway lumen that are defined in
the low magnification images by red squares; scale bars 50 pm. H&E: haematoxylin and
eosin. Positive immunohistochemical staining is rust/brown. Total number of independent
samples analysed was 49-98.

TMPRSS2 immunohistochemistry revealed diffuse staining in the airway epithelium
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and in immune cells in the lung periphery, with greater staining in smokers with COPD
(Figure 4.6). These observations were consistent in the majority of the 98 human samples
examined. CD147 immunohistochemistry revealed strong membrane-restricted staining in
the airway epithelium and diffuse staining in immune cells in the lung periphery (Figure
4.6). CD147 displayed greater staining in smokers with COPD. These observations were
consistent in the majority of the 98 human samples examined.

GRP78 immunohistochemistry revealed diffuse staining in airway and alveolar epithelium
and in immune cells in the lung periphery (Figure 4.6; 49 samples). No qualitative differences
in GRP78 staining were observed between healthy subjects and smokers with COPD.
TMPRSS2 and CD147 protein expression are potentiated in individuals with a history of
tobacco smoking and a diagnosis of COPD.

Collectively, the in vitro and in situ protein profiling in this study is consistent with
the gene expression analysis, with CD147 and GRP78 protein expression dominant over
TMPRSS2 and ACE2. Additional examples of staining in lung tissue are provided in Figure
9. ACE2 protein expression is rare in human lung tissue and found in select cells in both
healthy individuals and those with chronic lung diseases.

4.1.4 Discussion

The COVID-19 pandemic that emerged in late 2019 is caused by SARS-CoV-2. The possible
host receptor(s) for SARS-CoV-2 have not been exhaustively surveyed in human lung tissue
at the gene and protein level. Understanding the expression levels and localization of
candidate SARS-CoV-2 receptors in host lung tissue may provide insights into therapeutic
interventions that might reduce disease spread, viral replication or disease pathology. To
address this knowledge gap, gene expression, proteomic profiling at the tissue and cell level,
and in situ protein profiling of candidate receptors in human airway epithelial cells and
lung tissue were performed (summarized in Figure 4.7). Collectively, the data demonstrate
rare ACE2 protein expression in human airway epithelial cells in vitro and in situ. The
protein expression data are consistent with low ACE2 promoter activity in a panel of
lung epithelial cell samples and low ACE2 gene expression in bronchial epithelial cells
(microarray) and lung cells (scRNA-seq). This study presents confirmatory evidence for the
presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and
confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.
The data suggest that for ACE2 to be an integral receptor for SARS-CoV-2, mechanisms
are likely to exist that dynamically regulate expression in human lung, perhaps in periods
of SARS-CoV-2 infection.”"" It is also possible that alternate receptors for SARS-CoV-2
are important in initial host cell infection.
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Figure 4.7: Proteins associated (or suggested to be associated) with host cell entry of
SARS-CoV-2 and the activation of the SARS-CoV-2 spike protein (SARS-S) are displayed.
Angiotensin-converting enzyme 2 (ACE2) is suggested as the primary SARS-S receptor for
viral entry (interaction of ACE2 with SARS-S receptor-binding domain (RBD) leading to
endosomal viral uptake), followed by activation of SARS-S via pH-dependent cleavage
mediated by cathepsin L1 (CTSL). Secondary methods of viral entry and SARS-S
activation are likely to involve proteases (e.g., TMPRSS2 and ADAM17) and/or secondary
receptors (CD147 and GRP78). Dashed lines indicate mechanisms that have not been fully
validated. CyPA: cyclophilin A; N protein: nucleocapsid protein; ER: endoplasmic

reticulum. Adapted from Heurich et al."” with updates and additional information on
candidate host molecules. Figure created with BioRender.com.

Using a curated microarray gene expression data set generated from bronchial brushings
of 504 healthy subjects that considers the limitations of merging multiple data sets from

distinct sources, it was observed that sex did not correlate with gene expression of any
candidate host molecule involved in SARS-CoV-2 infection and that ACE2 and TMPRSS2
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were the lowest expressed genes of interest examined. In one data set, ACE2 gene expression
modestly decreased with age, although protein level confirmation was not possible. The
low level of ACE2 and TMPRSS2 gene expression in bulk bronchial epithelial cell gene
expression samples suggests low levels of cells expressing both of these genes within this
lung tissue. This study confirms that tobacco smoking is associated with elevated ACFE2
gene expression levels in bronchial epithelial cell samples,”” although this was unable to be
confirmed with immunohistochemistry analysis of protein on human lung samples.

Advances in transcriptomics have enabled scRNA-seq that has identified unique and rare
cell types in human lung that may have importance in health and disease.””” """ scRNA-seq
provides an opportunity to look at transcriptional profiles in subsets of cell populations,
which may isolate a cell signal from a bulk sample. Therefore scRNA-seq data from healthy
human lung samples was utilized as a parallel approach. The resolution of scRNA-seq for
sub-populations of epithelial cells revealed low or absent expression of ACE2 gene in all
populations examined, whereas CD147 and GRP78 were present in all populations. These
results are consistent with current publicly available data that discuss the presence of rare
ACE2/ TMPRSS2-positive cells.”" Using lung samples from eight individuals (four HIV
and active tuberculosis double positive, two HIV positive and tuberculosis negative, and
two double negative controls), Ziegler et al.""" have reported in humans that only 0.8%
of type II alveolar epithelial cells expressed both ACE2 and TMPRSS2 genes. Further
analysis of ciliated cells found that 5.3% of these cells expressed both ACE2 and TMPRSS?2
genes. in vitro models with SARS-CoV are consistent with this finding, as ciliated cells
are preferentially targeted by this coronavirus. Most intriguing is that ACFE2 and
TMPRSS2 gene-expressing cells were only identified in the HIV and tuberculosis double
positive samples. These observations were replicated in the upper airways, with only a rare
population of secretory epithelial cells (0.3% of this population) co-expressing ACE2 and
TMPRSS2. The reported scRNA-seq results are consistent with a focused analysis looking
at only ACE2 gene expression in a variety of lung cell types.”' ' Importantly, these elegant
transcriptomic analyses confirm the observations in bulk tissue microarray data sets.

Consortium-based publicly available data sets represent another parallel approach to
confirm the data. This study used the FANTOMS5 data set containing CAGE promoter
activation data for 1866 primary cells, cell lines and tissue samples from humans’ to
examine the level of promoter activity for each candidate SARS-CoV-2 receptor gene. The
FANTOMS5 CAGE data provide an additional and complementary approach to quantifying
gene expression, since a given gene’s shared promoter can yield multiple transcripts at
different expression levels, as well as being partially independent of any given transcript’s
half-life in the cell. In general, the promoter activity of ACE2 in airway-related tissues is
low or absent; only a single sample originating from an adult lung yielded a normalized
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CAGE promoter expression level >1 TPM, while expression was observed in gut cells,
consistent with known patterns of ACE2 expression. "' Consistent with the microarray
data, C'D1/7 promoter activity is elevated relative to ACFE2 across airway-related cells and
tissues, although the relatively low C'T'SL promoter activity is incongruent with modest
levels of gene expression.

The expression of genes does not always correlate with protein expression.””’ With this
in mind, combination proteomic analyses with immunoblot analyses were performed. For
the immunoblots, the human Calu-3 adenocarcinoma cell line was used, as this cell line is
susceptible and permissive to SARS-CoV-2 infection and expresses ACFE2, an observation
this study confirms. "> This study also used primary human airway epithelial cells and
the bronchial epithelial cell line (HBEC-6KT). Immunoblots for ACE2 and TMPRSS2 were
performed, as these have been highlighted as interacting with SARS-CoV-2, and CD147
was probed as recent pre-clinical and clinical studies have provided proof of concept for
this as a candidate SARS-CoV-2 receptor. > """ Lastly, GRP78 was dominantly expressed
throughout transcriptomic studies and was selected as a positive control, as previous
expression has been confirmed in human airway epithelial cells.”” CTSL was excluded from
the present analysis due to low promoter activity (Figure 4.3), while ADAM17 was excluded
as the proposed function in coronavirus infections is via ACE2,"” """ which was included in
analysis. Immunoblot analysis with all antibodies revealed dominant bands of predicted
molecular weight, with the anti-TMPRSS2 polyclonal antibody revealing additional minor
bands in all cell samples examined. The identity of these other bands remains unclear and
suggests downstream immunohistochemical analysis may be confounded by the specificity of
this antibody. In contrast, antibodies for ACE2, CD147 and GRP78 were specific and could
be used for immunohistochemistry without concerns of specificity. Interestingly, ACE2
protein could only be detected with a super-sensitive ECL solution and only in Calu-3 cells,
suggesting absent protein in primary human airway epithelial cells and the HBEC-6KT cell
line. The data in this study are consistent with previous immunoblots of primary human
airway epithelial cells grown under submerged monolayer conditions using the same primary
antibody, where ACE2 protein was absent, and only expressed under air-liquid interface
culture conditions. " The observation that CD147 and GRP78 are also expressed in Calu-3
cells encourages further interrogation into these host proteins, as they may contribute to
function of ACE2 and TMPRSS2 in SARS-CoV-2 binding and fusion in this cell type.
Collectively, the profiling of antibodies by immunoblot of airway epithelial cells revealed
distinct band patterns demonstrative of antibody specificity for ACE2, CD147 and GRPT7S,
and to a lesser extent for TMPRSS2.

Immunohistochemical analysis has been performed for localization of ACE2 and TM-
PRSS2 in human lung.™ The observation of positive staining in human lung tissue
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for these proteins was not accompanied by companion immunoblot or complementary
approaches to define the specificity of the antibody used.”” In the absence of determination
of antibody specificity, the historical data presented should be interpreted with caution.
To address the issue of antibody specificity for immunohistochemical staining, the same
antibodies validated by immunoblot were used and confirmed findings using proteomics as
an orthogonal, antibody independent, approach. This study again focused on ACE2 and
TMPRSS2 as these are candidate proteins important for SARS-CoV-2 infection of host cells.
The immunohistochemical staining patterns of ACE2 observed in this study were consistent
with transcriptional profiling and immunoblots with only one out of 98 human samples
demonstrating rare staining in the airway and alveolar epithelium. Positive ACE2 staining
in heart tissues and areas of lung microvasculature suggest the staining protocol used was
successful. These results directly contrast with those reported using antibodies that lacked
validation for specificity.”” " TMPRSS2 was expressed more frequently across all samples
examined, with variability in the airway epithelium associated with history of smoking
and/or COPD status. In contrast, CD147 expression was observed in airway epithelium of
all samples. Similar to TMPRSS2, elevated CD147 expression was associated with history
of smoking and/or COPD status, consistent with previous reports.'” The original GRP78
antibody selected for immunoblotting was not validated for immunohistochemistry. There-
fore confirmatory GRP78 immunoblotting and immunohistochemistry were performed with
an additional antibody (HPA038845) and provided demonstration of expression in human
airway epithelial cells in vitro and in situ. Importantly, it is well established that GRP78
resides in the endoplasmic reticulum (ER) under normal physiological conditions, where it
acts as an ER-resident molecular chaperone to facilitate correct protein folding. However,
under conditions of ER stress, including viral infection, a portion of ER-resident GRP78
relocates to the cell surface, where it may act as a viral co-receptor. """ The presence of
cell surface GRP78 has been reported in atherosclerotic plaques,’” prostate cancer'” and
kidney.”~ However, there are currently no commercially available anti-GRP78 antibodies
that bind specifically to cell surface GRP78 and dual immunofluorescence is used to show
co-localization of cell surface GRP78 with an established surface receptor.”” This drawback
precludes this study’s ability to perform accurate cell surface GRP78 immunohistochemistry
on lung tissue to interrogate this concept further in the context of SARS-CoV-2 receptors.
Utilisation of prostate cancer patient-derived GRP78 auto-antibodies that are specific for
cell surface GRP78" may be suitable on lung tissue for assessment of cell susceptibility to
SARS-CoV-2 infection by GRP7S.

This study has several limitations that have not already been addressed. The observation
of differences in gene expression between upper and lower airways and along the airway
tree were not corroborated at the protein level. It remains possible that entirely different
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protein expression profiles for the candidate molecules examined exist in the upper airway,
presenting a different environment for SARS-CoV-2 interaction with the respiratory mucosa.
Nasal pharyngeal swabs are capable of detecting SARS-CoV-2 virus"" and this anatomical
region is probably important for subsequent infection in the lower airways. '»**~ Related to
this potential temporality of effect, it is possible that SARS-CoV-2 induces the expression
of receptors on host cells following infection.” " This study is also limited by examining
candidate molecules important in SARS-CoV-2 infection under basal conditions, in the
absence of viral or environmental stimuli that may regulate gene transcription and protein
translation.

SARS-CoV-2 infection and transmission has caused the COVID-19 pandemic. An
understanding of the receptors used by SARS-CoV-2 for host cell infection and the parallel
characterisation in human samples is required to inform development of intervention
strategies aimed at mitigating COVID-19. The data demonstrate rare ACE2 protein
expression in human airway epithelial cells in vitro and in situ, consistent with low ACFE2
promoter activity and ACE2 gene expression in bronchial epithelial cells. This study
presents confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein
in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147
and GRPT78 in the respiratory mucosa. Due to the overwhelming evidence that the SARS
virus interacts with ACE2, there are likely to be alternate mechanisms regulating ACE2
in the respiratory mucosa in the context of SARS-CoV-2 infection, and/or perhaps other
co-receptors, beyond what is expressed under basal conditions at the protein level.

4.2 Experimental and natural evidence of SARS-CoV-
2 infection-induced activation of type I interferon
responses

Material in this section has been published as part of Banerjee et al. (2021).”" The published
manuscript is available here:

Banerjee, A., El-Sayes, N., Budylowski, P., Jacob, R. A., Richard, D., Maan,
H., Aguiar, J. A., Demian, W. L., Baid, K., D’Agostino, M. R., Ang, J. C.,
Murdza, T., Tremblay, B. J., Afkhami, S., Karimzadeh, M., Irving, A. T.,
Yip, L., Ostrowski, M., Hirota, J. A., Kozak, R., Capellini, T. D., Miller, M.
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4.2.1 Introduction

Innate antiviral responses, which include type I interferons (IFNs), are the first line of
antiviral defense against an invading virus.””" Cellular pattern recognition receptors (PRRs)
recognize viral nucleic acids and activate key cellular kinases, such as inhibitor of nuclear
factor kappa-$ kinase subunit epsilon (IKKe) and TANK-binding kinase 1 (TBK1). These
kinases phosphorylate and activate transcription factors such as interferon regulatory factor 3
(IRF3) to stimulate downstream production of type I/III IFNs.”"” Type I IFNs interact with
interferon alpha/beta receptor (IFNAR) on cells to induce phosphorylation and activation
of downstream mediators, such as signal transducer and activator of transcription 1 and
2 (STAT1 and STAT2), which leads to the production of antiviral interferon-stimulated
genes (ISGs). Similarly, type III IFNs interact with their cognate receptors, IL-10R2 and
IFNLR1, to activate STAT1 and STAT?2, followed by the production of ISGs.

Viruses encode proteins that can inhibit type I IFN production and signaling.
Emerging pathogenic human coronaviruses, such as SARS-CoV and Middle East respiratory
syndrome (MERS)-CoV, have evolved multiple proteins that inhibit type I IFN responses
in human cells.” "> =% 22> Thus, to better understand SARS-CoV-2 pathogenesis, it is
critical to identify the dynamic interaction of SARS-CoV-2 and the type I IFN response.
Emerging data suggest that ectopic expression of at least 13 SARS-CoV-2 proteins, namely
NSP1, NSP3, NSP6, NSP12, NSP13, NSP14, NSP15, M, ORF3a, ORF6, ORF7a, ORFET7b,
and ORF9b, can inhibit type I IFN responses in human cells." "> ="">"" "> However, limited
studies have captured the dynamic interplay of viral-RNA-mediated up-regulation of type
I IFN responses, followed by subsequent modulation of these responses by SARS-CoV-2
proteins as they accumulate in infected cells. Understanding the mechanisms of IFN
modulation by SARS-CoV-2 proteins remains an area of intense research. In the meantime,
intriguing observations about SARS-CoV-2 proteins have been reported by different groups.
For example, SARS-CoV-2 NSP15 has been reported as an IFN-modulating protein by
Gordon et al.,"”” but Lei et al.”"" were unable to identify NSP15 as an inhibitor of IFN
promoter activation. In addition, both Gordon et al. and Jiang et al. identified ORF9b as
a modulator of IFN responses, **“"**"* but the study by Lei et al. did not identify ORF9b
as a modulator. Furthermore, infection with wild-type SARS-CoV-2 in Caco-2 cells
activated phosphorylation of TBK1 and IRF3, along with mild induction of ISGs.”" " More
recently, Yin et al. have demonstrated that wild-type SARS-CoV-2 induces a delayed type
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I IFN response via melanoma differentiation-associated protein 5 (MDADS) recognition.

Thus, in-depth studies with clinical isolates of SARS-CoV-2 are required to confidently
identify type I IFN responses that are generated in infected human cells and to determine
the dynamic induction and modulation of type I IFN responses by wild-type virus infection.

Transcriptional data from in vitro and in vivo work have demonstrated the lack of
induction of type I IFN responses following SARS-CoV-2 infection.”” In contrast, emerging
data from patients with mild and moderate cases of COVID-19 have demonstrated the
presence of type I IFN. """ Subsequently, recent studies have identified type I IFN
responses in severe COVID-19 cases, which have been speculated to be associated with
an exacerbated inflammatory response. In addition, up-regulation of ISGs was also
identified in a single-cell RNA sequencing study of peripheral blood mononuclear cells
(PBMCs) from hospitalized COVID-19 patients.”"" Studies with patient samples are critical
to understand the pathogenesis of SARS-CoV-2; however, the timing of sample collection,
case definition of disease severity, and varying viral load can lead to different observations
related to IFN responses. An early and controlled IFN response is preferable during virus
infection. Excessive induction of type I IFN responses in COVID-19 patients is associated
with higher levels of damaging inflammatory molecules.””" Thus, it is critical to identify the
extent to which SARS-CoV-2 can induce or inhibit human IFN responses using controlled
mechanistic studies.

In this study, global early transcriptional responses have been identified that are initiated
during infection of human airway epithelial (Calu-3) cells at 0, 1, 2, 3, 6, and 12 hours post
incubation with a clinical isolate of SARS-CoV-2 from a COVID-19 patient in Toronto.
Data from this study demonstrate that SARS-CoV-2 infection induces the expression of
type I IFNs, along with the expression of downstream ISGs. This study also identified an
increasing trend for type I IFN expression (IFN-a2) in sera from moderate cases of COVID-
19, relative to healthy individuals and severe cases of COVID-19. In wvitro infection with
SARS-CoV-2 induced phosphorylation of canonical transcription factors that are involved
in the type I IFN response, such as IRF3, STAT1, and STAT?2; exogenous activation
of these transcription factors was not inhibited by wild-type SARS-CoV-2. In addition,
higher serum levels of anti-inflammatory cytokines were detected in moderate cases of
COVID-19 than in severe cases. Severe cases of COVID-19 displayed higher serum levels
of pro-inflammatory cytokines. Data from this study suggest that replication-competent
SARS-CoV-2 induces type I IFN responses in human airway epithelial cells, and type I
IFN (IFN-a2) level detected in patients with moderate COVID-19 is sufficient to reduce
SARS-CoV-2 replication in these cells. Further mechanistic studies are warranted to identify
host factors™ " that contribute to varying disease severity during the course of COVID-19,
along with the regulation of inflammatory and anti-inflammatory cellular processes in
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SARS-CoV-2-infected cells.
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Figure 4.8: Depiction of proposed SARS-CoV-2-induced interferon response mechanism
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4.2.2 Methods
Cells and viruses

Cell culturing and viral isolation performed by Dr. Arinjay Banerjee at McMaster University

Vero E6 cells (epithelial kidney cells isolated from the African green monkey; ATCC)
were maintained in Dulbecco’s modified Eagle’s media (DMEM) supplemented with 10%
fetal bovine serum (FBS; Sigma-Aldrich), 1x L-Glutamine and Penicillin/Streptomycin
(Pen/Strep; VWR). Calu-3 cells (human lung adenocarcinoma derived; ATCC) were cultured
as previously mentioned.'” THF cells (human telomerase life-extended cells; from Dr. Victor
DeFilippis’ lab) were cultured as previously described.”’ Drosophila S2 cells (ThermoFisher
Scientific) were cultured in Schneider’s Drosophila medium supplemented with 10% FBS
(Sigma-Aldrich) as recommended by the manufacturer and cells were incubated at 28°C.
Stocks of genetically engineered vesicular stomatitis virus (VSV-GFP) carrying a green
fluorescent protein (GFP) cassette (Noyce et al., 2011) were stored at -80°C. HIN1 (A /Puerto
Rico/8/1934 mNeon — 2A-HA) stocks were obtained from Dr. Matthew Miller’s laboratory.
HSV-GFP stocks were generated and maintained as mentioned previously. Clinical
isolate of SARS-CoV-2 (SARS-CoV-2/SB3) was propagated on Vero E6 cells and validated
by next generation sequencing.”” Virus stocks were thawed once and used for an experiment.
A fresh vial was used for each experiment to avoid repeated freeze-thaws. VSV-GFP,
HSV-GFP and HIN1 infections were performed at a multiplicity of infection (MOI) of 1.
SARS-CoV-2 infections were performed at an MOI of 1 or 2. Experiments with SARS-CoV-2
were performed in a BSL3 laboratory and all procedures were approved by institutional
biosafety committees at McMaster University and the University of Toronto.

Subject details

Acute patient sera (< 21 days from symptom onset) were acquired from moderate (hospital
admission, but no ICU admission) and severe (ICU admission or death) cases of COVID-19
in Toronto, Canada, along with samples from uninfected, healthy individuals (see Table 15
for details). Work with patient sera was approved by the Sunnybrook Research Institute
Research Ethics Board (amendment to 149-1994, March 2, 2020).

RNA-Seq

RNA preparation performed by Dr. Arinjay Banerjee, Nader El-Sayes, Patrick Budylowsksi,
and Rajesh Jacob at McMaster University
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RNA was isolated from cells using RNeasy Mini kit (Qiagen). Sequencing was conducted
at the McMaster Genomics Facility, Farncombe Institute at McMaster University. Sample
quality was first assessed using a Bioanalyzer (Agilent), then enriched (NEBNext Poly(A)
mRNA Magnetic Isolation Module; NEB). Library preparations were conducted (NEBNext
Ultra II Directional RNA Library Prep Kit; NEB) and library fragment size distribution was
verified (Agilent TapeSection D1000; Agilent). Libraries were quantified by qPCR, pooled
in equimolar amounts, and qPCR and fragment size distribution verification were conducted
again. Libraries were then sequenced on an Illumina HiSeq 1500 across 3 HiSeq Rapid v2
flow cells in 6 lanes (Illumina) using a paired-end, 2x50 bp configuration, with onboard
cluster generation averaging 30.8M clusters per replicate (minimum 21.9M, maximum
46.0M).

Cytokine levels in COVID-19 patient sera

Sera preparation performed by Dr. Arinjay Banerjee, Nader El-Sayes, Patrick Budylowski,
and Rajesh Jacob at McMaster University

Sera were analyzed using a 48-plex human cytokine and chemokine array by the
manufacturer (Evetechnologies). Samples with an observed cytokine concentration (pg/mL)
below the limit of detection (OOR <) were floored to the lowest observed concentration for
that cytokine. Average logsFC for moderate patients (n = 10) versus healthy patients (n
= 5) and severe patients (n = 10) versus healthy patients (n = 5) was plotted using the
pheatmap R package (version 3.2.1) for all of the 48 cytokines. Cytokine expression levels
were tested for significant differences via unpaired Student’s t tests with Benjamini-Hochberg
multiple testing correction using the stats R package (version 3.6.1).

Poly(I:C) transfection and IFN treatment

Cell transfection and interferon treatment performed by Dr. Arinjay Banerjee at McMaster
University

Calu-3 cells were mock transfected with 4 nl. or 8 pL of lipofectamine 3000 (Ther-
moFisher Scientific) in Opti-MEM (ThermoFisher Scientific) only or transfected with
varying concentrations of poly(I:C) (InvivoGen) or poly(I:C)-rhodamine (InvivoGen). Re-
combinant human IFN/1 was generated using Drosophila Schneider 2 (S2) cells following
manufacturer’s recommendation and by using ThermoFisher Scientific’s Drosophila Expres-
sion system (ThermoFisher Scientific). Recombinant IFNS1 was collected as part of the
cell culture supernatant from S2 cells, and total protein was measured using Bradford assay.
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Total protein concentration was used for subsequent experiments. To demonstrate that S2
cell culture media did not contain non-specific stimulators of mammalian antiviral responses,
recombinant green fluorescent protein (GFP) was also generated using the same protocol
and used the highest total protein concentration (2 mg/mL) for mock-treated cells (Figure
12 B). S2 cell culture supernatant containing GFP did not induce an antiviral response in
human cells (Figure 12 B). For VSV-GFP, HSV-GFP, and HIN1-mNeon infections, cells
were treated with increasing concentrations of IFNS1 or GFP (control) containing cell
culture supernatant. SARS-CoV-2-infected cells were treated with supernatant containing
IFNfS1 or GFP. Commercially bought recombinant IFN-a2 (Sigma-Aldrich) was used for
experiments that utilized IFN-a2.

Quantitative PCR

Quantitative PCR performed by Nader El-Sayes and Rajesh Jacob at McMaster University

Calu-3 cells were seeded at a density of 3 x 105 cells/well in 12-well plates. Cells were
infected with SARS-CoV-2 for 12 hours. 12 hours post incubation, mock infected or infected
cells were mock stimulated or stimulated with poly(I:C) or IFN/ for 6 hours. RNA extraction
was performed using RNeasy® Mini Kit (Qiagen) according to manufacturer’s protocol 6
hours post poly(Ll:C) tranfection or . 200 ng of purified RNA was reverse transcribed using
iScript™ gDNA Clear cDNA Synthesis Kit (Bio-Rad). Quantitative PCR reactions were
performed with TagMan™ Universal PCR Master Mix (ThermoFisher Scientific) using pre-
designed Tagqman gene expression assays (ThermoFisher Scientific) for IFNS1 (catalog no.
#4331182), IRF7 (catalog no. #4331182), IFIT1 (catalog no. #4331182) and GAPDH
(catalog no. #4331182) according to manufacturer’s protocol. Relative mRNA expression
was normalized to GAPDH and presented as 1/ACt. To quantify SARS-CoV-2 genome
levels, primers were designed to amplify a region (UpE) between ORF3a and E genes.
Primer sequences used were SARS2 UpE F — ATTGTTGATGAGCCTGAAG and SARS2
UpE R-TTCGTACTCATCAGCTTG. qPCR to determine UpE levels was performed using
SsoFast EvaGreen supermix (Bio-Rad) as previously described.

Agarose gel electrophoresis

Gel electrophoresis performed by Nader El-Sayes at McMaster University

UpE qPCR gene products were also run on agarose gels (Invitrogen) as previously
mentioned to visualize qPCR amplicons.
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Immunoblots

Immunoblots performed by Dr. Arinjay Banerjee and Wael Demian at McMaster University

Calu-3 cells were seeded at a density of 3 x 105 cells/well in 12-well plates. Cells
were infected with SARS-CoV-2 at an MOI of 1. Control cells were sham infected. 12
to 24 hours post incubation, cells were transfected or treated with poly(I:C) or IFNg,
respectively for indicated times. Cell lysates were harvested for immunoblots and analyzed
on reducing gels as mentioned previously.” Briefly, samples were denatured in a reducing
sample buffer and analyzed on a reducing gel. Proteins were blotted from the gel onto
polyvinylidene difluoride (PVDF) membranes (Immobilon, EMD Millipore) and detected
using primary and secondary antibodies. Primary antibodies used were: 1:1000 mouse
anti-GAPDH (EMD Millipore; Catalogue number: AB2302; RRID: AB_10615768), 1:1000
mouse anti-SARS/SARS-CoV-2 N (ThermoFisher Scientific; Catalogue number: MA5-
29981; RRID: AB_ 2785780, 1:1000 rabbit anti-IFIT1 (ThermoFisher Scientific; Catalogue
number: PA3-848; RRID: AB_1958733), 1:1000 rabbit anti-S-actin (Abcam; Catalogue
number: ab8227; RRID:), 1:1000 rabbit anti-IRF3 (Abcam; Catalogue number: ab68481;
RRID: AB_11155653), 1:1000 rabbit anti-pIRF3-S386 (Cell Signaling; Catalogue number:
4947; RRID: AB_823547), 1:1000 rabbit anti-TBK1 (Abcam; Catalogue number: ab40676;
RRID: AB_776632), 1:1000 rabbit anti-pTBK1-S172 (Abcam; Catalogue number: ab109272;
RRID: AB_10862438), 1:1000 rabbit anti-STAT1 (Cell Signaling; Catalogue number: 9172;
RRID: AB_2198300), 1:1000 rabbit anti-pSTAT1-Y701 (Cell Signaling; Catalogue number:
9167; RRID: AB_561284), 1:1000 rabbit anti-STAT2 (Cell Signaling; Catalogue number:
72604; RRID: AB_2799824), 1:1000 rabbit anti-pSTAT2-Y690 (Cell Signaling; Catalogue
number: 88410S; RRID: AB_2800123). Secondary antibodies used were: 1:5000 donkey
anti-rabbit 800 (LI-COR Biosciences; Catalogue number: 926-32213; RRID: 621848) and
1:5000 goat anti-mouse 680 (LI-COR Biosciences; Catalogue number: 925-68070; RRID:
AB_2651128). Blots were observed and imaged using Image Studio (LI-COR Biosciences)
on the Odyssey CLx imaging system (LI-COR Biosciences).

Immunofluorescent microscopy

Immunoflourescent microscopy performed by Patrick Budylowski at McMaster University

Calu-3 cells were infected with SARS-CoV-2 (MOI 1) for different times, followed by
fixation in 10% neutral buffered formalin (Sigma) for 1 hour. After fixation, cells were
washed, permeabilized, and stained as mentioned previously.”" Primary antibodies used
were mouse anti-SARS/SARS-CoV-2 N (ThermoFisher Scientific; Catalogue number: MA5-
29981; RRID: AB_2785780) and human anti-SARS-CoV-2 N (GenScript; Catalogue number:
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A02039S). Secondary antibodies used were goat anti-mouse Texas Red-X (ThermoFisher
Scientific; Catalogue number: T-6390; RRID: AB_2556778) and rat anti-human FITC
(BioLegend; Catalogue number: 410719; RRID: AB_2721575). Images were acquired using
an EVOS M5000 imaging system (ThermoFisher Scientific).

Antiviral bioassay

Antiviral bioassay performed by Dr. Arinjay Banerjee at McMaster University

THEF cells were pre-treated or mock treated with recombinant human IFN/, followed
by VSV-GFP, HSV-GFP or HIN1-mNeon infection at an MOI of 1. Infected cells were
incubated at 37°C for 1 hour with gentle rocking every 15 minutes. After 1 hour, virus
inoculum was aspirated and Minimum Essential Medium (MEM) with Earle’s salts (Sigma)
containing 2% FBS and 1% carboxymethyl cellulose (CMC; Sigma) was added on the cells.
Cells were incubated for 19 hours at 37°C and green fluorescent protein (GFP) or mNeon
levels were measured using a typhoon scanner (Amersham, Sigma).

Transcript quantification and differential expression analysis

Daniel Richard at Harvard University contributed to this work

Sequence read quality was checked with FastQC, with reads subsequently aligned to the
human reference transcriptome (GRCh37.67) obtained from the ENSEMBL database,
indexed using the ‘index’ function of Salmon (version 0.14.0)""" with a k-mer size of 31.
Alignment was performed using the Salmon ‘quant’ function with the following parameters:
“1 A -numBootstraps 100 —gcBias —validateMappings”. All other parameters were left
to defaults. Salmon quantification files were imported into R (version 3.6.1) using the
tximport library (version 1.14.0)"" with the ‘type’ option set to ‘salmon’. Transcript
counts were summarized at the gene-level using the corresponding transcriptome GTF file
mappings obtained from ENSEMBL. Count data was subsequently loaded into DESeq2
(version 1.26.0)"" using the ‘DESeqdatasetFromTximport’ function. In order to determine
time/treatment dependent expression of genes, count data was normalized using the
‘estimateSizeFactors’ function using the default ‘median ratio method” and output using
the ‘counts’ function with the ‘normalized’ option.

For subsequent differential-expression analysis, a low-count filter was applied prior to
normalization, wherein a gene must have had a count greater than 5 in at least three
samples in order to be retained. Using all samples, this resulted in the removal of 12,980
genes for a final set of 15,760 used. Principal Component Analysis (PCA) of samples
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across genes was performed using the ‘vst’ function in DESeq2 (default settings) and was
subsequently plotted with the ggplot2 package in R.”'~ Differential expression analyses were
carried out with three designs: (A) the difference between infection/control status across
all time points, (B) considering the effects of post-infection time (i.e., the interaction term
between time and infection status) and (C) the difference between infection/control status at
individual time points. (A) and (B) were performed using the ‘DESeq’ function of DESeq2
using all samples, with results subsequently summarized using the ‘results’ function with
the ‘a’ parameter set to 0.05; p values were adjusted using the Benjamini-Hochberg FDR
method,” with differentially expressed genes filtered for those falling below an adjusted p
value of 0.05. For (C), infected/mock samples were subset to individual time points, with
differential expression calculated using DESeq as described above. Additionally, given the
smaller number of samples at individual time-points, differential-expression analysis was
also performed with relaxation of the low-count filter described above, with results and p
value adjustments performed as above.

Viral transcript quantification

Daniel Richard at Harvard University and Benjamin Tremblay at The University of Waterloo
contributed to this work

Paired-end sequencing reads were mapped to CDS regions of the SARS-CoV-2 genomic
sequence (Assembly ASM985889v3 - GCF_009858895.2) obtained from NCBI, indexed
using the ‘index’ function of Salmon (version 0.14.0) (Patro et al., 2017) with a k-mer
size of 31. Subsequently, reads were aligned using the Salmon ‘quant’ function with the
following parameters: “-1 A —numBootstraps 100 —gcBias —validateMappings”. All other
parameters were left to defaults. Salmon quantification files were imported into R (version
3.6.1) using the tximport library (version 1.14.0)""" with the ‘type’ option set to ‘salmon’.
All other parameters were set to default. Transcripts were mapped to their corresponding
gene products via GTF files obtained from NCBI. Count data was subsequently loaded into
DESeq2 (version 1.26.0) (Love et al., 2014) using the ‘DESeqdatasetFromTximport’ function.
Principal Component Analysis (PCA) of samples across viral genes was performed using the
‘vst” function in DESeq2 (default settings) and was subsequently plotted with the ggplot2
package in R"'” (Figure 4.9 A). As viral transcript levels increased over time post-infection,
non-normalized transcript counts were first converted to a logs scale, and subsequently
compared these across time-points (Figure 4.9 B and Table 16). To look at the changes in
the expression of viral transcripts relative to total viral expression as a function of post-
infection time, normalized transcript counts were used to perform differential-expression
analysis with DESeq2. Results and p value adjustments were performed as described above.
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In order to compare host/viral expression patterns, normalized transcript counts from
infected samples were compared with either normalized or non-normalized viral transcript
counts (from the same sample) across time-points. For each viral transcript (n = 12), all
host genes (n = 15,760, after filtering described above) were tested for correlated expression
changes across matched infected samples (n = 18, across 5 time-points) using Pearson’s
correlation coefficient (via the ‘cor.test” function in R). Correlation test p values were
adjusted across all-by-all comparisons using the Benjamini-Hochberg FDR method, and
gene-transcript pairs at adjusted p < 0.05 were retained. To account for possible effects
of cellular response to plate incubation, viral transcript abundance was averaged at each
time-point and compared to host transcript abundance similarly averaged at each time-
point for non-infected samples; correlation testing was done all-by-all for n = 5 data-points.
Host genes that correlated with viral transcription in mock samples across time were
removed from subsequent analyses; to increase stringency, mock correlation was defined
using unadjusted p < 0.05. Host genes were sorted by correlation coefficient (with any
given viral transcript), with the top 100 unique genes retained for visualization. Normalized
host transcript counts were z-score transformed per-gene using the ‘scale’ function in R,
with normalized /unnormalized viral transcript counts similarly transformed per-transcript.
Resulting z-score expression heat maps were generated using the Complexheatmap library in
R (version 2.2.0)."" heat maps were generated for normalized /unnormalized viral transcript
counts, given the different information revealed by absolute and relative viral expression
patterns.

Viral genome mapping

Daniel Richard at Harvard University and Benjamin Tremblay at The University of Waterloo
contributed to this work

Paired-end RNA-seq reads were filtered for quality control with Trim Galore! (version
0.6.4_dev)”" and mapped to the SARS-CoV-2 reference sequence (NC_045512.2) with the
Burrow-Wheeler Aligner,”" using the BWA-MEM algorithm.””” Output SAM files were
sorted and compressed into BAM files using Samtools (version 1.10).”"" Read coverage
visualization was performed from within the R statistical environment (version 4.0.0)
(RCoreTeam, 2017) using the ‘scanBam’ function from the Rsamtools R package (version
1.32.0) to extract read coverage data and the ggplot2 R package (version 3.3.0)""” to plot
read coverage histograms (using 300 bins across the SARS-CoV-2 sequence).
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Cellular pathway enrichment analysis

Hassaan Maan at the Vector Institute for Artificial Intelligence, Toronto contributed to this
work

To determine cellular pathways that were associated with differentially expressed genes
(DEGs), the ActivePathways R (version 1.0.1)""" package was utilized to perform gene-
set based pathway enrichment analysis. DEGs at each time point were treated as an
independent set for enrichment analysis. Fisher’s combined probability test was used to
enrich pathways after p value adjustment using Holm-Bonferroni correction. Pathways of
gene-set size less than 5 and greater than 1000 were excluded. Only pathways enriched at
individual time-points were considered for downstream analysis; pathways enriched across
combined time points as determined by ActivePathways Brown’s p value merging method
were filtered out.

Visualization of enriched pathways across time points was done using Cytoscape (version
3.8.0)""" and the EnrichmentMap plugin (version 3.2.1),””” as outlined by Reimand et al.
Up-to-date Gene-Matrix-Transposed (GMT) files containing information on pathways for
the Gene Ontology (GO) Molecular Function (MF), GO Biological Process (BP)”* and
REACTOME '~ pathway databases were utilized with ActivePathways. Only pathways
that were enriched at specific time points were considered. Bar plots displaying top
ActivePathway GO terms and REACTOME enrichments for infection versus mock were
plotted using the ggplot2 R package (version 3.2.1) for 1-, 2-, 3-, and 12-hour time points.
Zero and 6-hour time points were omitted due to a lack of sufficient numbers of differentially
expressed genes required for functional enrichment analysis.

Statistical Analysis

Statistical analyses for RNA-seq data were performed in R and are mentioned under the
respective RNA-seq analyses sections. All other statistical calculations were performed
in GraphPad Prism (version 8.4.2; www.graphpad.com) using two-tailed paired t-test.
Significance values are indicated in the figures and figure legends. *: p < 0.05, **: p <
0.01, ***: p < 0.001 and ****: p < 0.0001.

Data Availability
The DESeq2 normalized transcript counts for all genes with RNA-Seq data, significant

or otherwise, plus the raw sequencing FAST(Q reads have been deposited into the Gene
Expression Omnibus (GEO) database with NCBI GEO accession number GSE151513.
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4.2.3 Results
Global cellular response in SARS-CoV-2 infected human airway epithelial cells

The replication cycle of CoVs is complex and involves the generation of sub-genomic RNA
molecules, which in turn code for mRNA that are translated into proteins.””*” To determine
SARS-CoV-2 replication kinetics in human cells using RNA-seq, human airway epithelial
cells (Calu-3) were infected at a multiplicity of infection (MOI) of 2. After incubation
with virus inoculum for 1-hour, media was replaced with cell growth media and RNA was
extracted and sequenced (poly-A enriched RNA) at 0-, 1-, 2-; 3-, 6- and 12-hours post
incubation (hpi). SARS-CoV-2 genome, sub-genomic RNA and transcripts were detected in
infected samples; viral transcript expression clustered based on post-incubation time using
principal component analysis (PCA) (see Figure 10 A). In the RNA-seq analysis, high levels
of expression of SARS-CoV-2 structural and accessory genes were detected at the 3’ end of
the genome as early as 0 hpi (Figure 4.9 A). Significant expression of ORF1ab, relative to 0
hpi was detected at 6 hpi (Figure 4.9 B). SARS-CoV-2 nucleocapsid (N) gene was highly
expressed relative to other genes as early as 0 hpi (Figure 4.9 B), with relative expression
significantly increasing over time (p = 1.4e'%; Figure 4.9 B). The absolute expression of
other genes increased over time with levels of N > M > ORF10 > S > ORF1ab > ORF7a
> ORF8 > ORF3a > ORF6 > E > ORF7b > ORF1a at 12 hpi (Figure 4.9 B and Table
16).
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Figure 4.9
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Calu-3 cells were infected with SARS-CoV-2 at an MOI of 1 or 2. RNA was extracted at different
times post incubation. Viral and cellular gene expression was determined using time-series

RNA-seq analysis or gPCR. (A) SARS-CoV-2 gene expression over 12 hours (n = 3/time point).
The genome organization of SARS-CoV-2 is indicated above in pink.(B) Major SARS-CoV-2 gene
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(C) Cellular genes (n = 124) that are significantly up- or down-regulated (FDR-adjusted p <
0.05; [logoFC| > 1) in SARS-CoV-2-infected cells, relative to mock-infected cells at different times
post incubation. Transcript levels are shown as z score normalized expression (scaled by gene).
See Figure 10 E for a larger figure. (D) Cellular processes that are down- or up-regulated at
different times post incubation. The size of the circles represents the number of genes that are
down- or up-regulated at different times after incubation (n = 3/time point).
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Figure 4.9
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(E) Transcript abundance of type I and III interferon (IFN) genes (IFNS and IFNvy1-8) in
mock-infected and SARS-CoV-2-infected Calu-3 cells at different times (n = 3).(F) Transcript
abundance of representative interferon-stimulated genes (ISGs) in mock-infected and
SARS-CoV-2-infected Calu-3 cells at different times (n = 3).
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(G) IFNP transcript levels in Calu-3 cells infected with SARS-CoV-2 or mock infected for 12
hours, normalized to GAPDH (n = 6). Transcript levels were determined by qPCR.(H) IRF7
transcript levels in Calu-3 cells infected with SARS-CoV-2 or mock infected for 12 hours,
normalized to GAPDH (n = 6). Transcript levels were determined by qPCR. (I) IFIT1
transcript levels in Calu-3 cells infected with SARS-CoV-2 or mock infected for 12 hours,
normalized to GAPDH (n = 6). Transcript levels were determined by qPCR. Data are
represented as mean £+ SD, n = 3 or 6, *: p < 0.05, **: p < 0.01, ***: p < 0.001, and ****: p <
0.0001 (Student’s t test). See also Figures 10-12, and Tables 14-16. Hpi, hours post incubation.

To determine SARS-CoV-2 infection-mediated host responses, total cellular RNA was
extracted at different times post infection and analyzed gene expression in infected and
mock infected Calu-3 cells using RNA-seq. Gene expression levels in these cells clustered
based on time-points via PCA (see Figure 10 B). 124 genes were significantly differentially
expressed in infected cells (FDR-adjusted p < 0.05), relative to mock infected cells in at
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least one time point post infection (|logoaFC| > 1), including genes involved in type I IFN
production and signaling (Figure 4.9 C; see Table 15 and Figure 10 C-E). The extent of
antiviral gene expression at 12 hpi correlated with an increase in viral transcripts (see
Figure 10 C). Interestingly, at early time points of 2 and 3 hpi, pathway enrichment analysis
revealed numerous cellular processes that were significantly down-regulated in SARS-CoV-2
infected cells, relative to mock infected cells (FDR-adjusted p < 0.05). Down-regulated
processes included RNA splicing, apoptosis, ATP synthesis and host translation, while
genes associated with viral processes, cell adhesion and double-stranded RNA binding
were up-regulated in infected cells relative to mock infected cells at 2 and 3 hpi (Figure
4.9 D; see Figures 10 D and 11, and Table 16). Cellular pathways associated with type I
IFN production and signaling, along with OAS/TRAF-mediated antiviral responses were
significantly up-regulated at 12 hpi (Figure 4.9 D and see Figure 11). Consistent with other
reports,’” transcript levels for IFNG1 and [FNvy1 were significantly up-regulated at 12 hpi
with SARS-CoV-2 (Figure 4.9 E). Transcript levels of IFNvy2 and IFNvy3 were elevated
at 6 and 12 hpi, but the levels did not reach significance relative to mock infected cells at
these time points (Figure 4.9 E).

IFN production alone is not sufficient to protect cells from invading viruses. IFNs function
through ISG expression, which in turn confers antiviral protection in infected (autocrine
mode of action) and neighbouring (paracrine mode of action) cells.””"**" Nineteen antiviral
ISGs were up-regulated in infected cells, relative to mock infected cells at 12 hpi, including
interferon induced protein with tetratricopeptide repeats 1 (IFIT1), interferon regulatory
factor 7 (IRF7), 2’-5-oligoadenylate synthetase 2 (OAS2) and MX dynamin GTPase 1
(MX1) (Figure 4.9 F; see Figure 12 A and Table 13). Genes associated with structural
molecule activity, cell adhesion and exocytosis were down-regulated in SARS-CoV-2 infected
cells, relative to uninfected cells at 12 hpi (see Figure 11).

Coronaviruses, such as those that cause SARS and MERS have evolved multiple proteins
that can inhibit type I IFN expression.” =" =% 2552250 To confirm the RNA-seq findings
that SARS-CoV-2 infection alone is sufficient to induce type I IFN and ISG responses in
Calu-3 cells, cells were infected with SARS-CoV-2 and assessed transcript levels of IFNS,
IRF7 and IFIT1 by quantitative polymerase chain reaction ((qPCR). IFNS induction was
observed 12 hpi in SARS-CoV-2 infected cells, relative to mock-infected cells (Figure 4.9
G). Consistent with the up-regulation of IFNf transcripts in SARS-CoV-2 infected cells,
transcript levels for ISGs, such as IRF7 and IFIT1 were also significantly up-regulated at
12 hpi relative to mock infected cells (Figure 4.9 H-I).
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SARS-CoV-2 is not adept at inhibiting exogenous stimulation of type I IFN
expression

To determine if SARS-CoV-2 is able to inhibit type I IFN responses mounted against an
exogenous stimulus, Calu-3 cells were infected with SARS-CoV-2 for 12 hours at an MOI of 1
and stimulated with exogenous double-stranded RNA [poly(I:C)] for 6 hours. SARS-CoV-2
replication was confirmed in Calu-3 cells over 0, 24, 48, and 72 hours of infection by staining
for the nucleocapsid (N) protein (Figure 4.10 A). SARS-CoV-2 replication was quantified
by qPCR using primers designed to amplify genomic RNA by targeting a region between
ORF3a and E genes. This region was denoted as “upstream of E” (UpE). SARS-CoV-
2 UpE levels were higher in SARS-CoV-2-infected cells and in SARS-CoV-2-infected +
poly(I:C)-treated cells, relative to UpE levels at 0 hpi immediately after removing the
inoculum (Figure 4.10 B). The levels of IFNS transcripts in these cells were also measured
by qPCR. Poly(I:C) transfection alone induced higher levels of IFNS transcripts relative to
mock-transfected cells (Figure 4.10 C). SARS-CoV-2 infection alone also induced higher
levels of IFNf transcripts relative to mock-infected cells (Figure 4.10 C). Interestingly,
there was no significant difference in IFNS transcript levels between poly(I:C)-transfected
and SARS-CoV-2-infected + poly(L:C)-transfected cells (Figure 4.10 C).
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Figure 4.10
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(A) Calu-3 cells were infected with SARS-CoV-2 (MOI 1) for 0, 24, 48, and 72 hours and stained
to visualize the nucleus and SARS-CoV-2 nucleocapsid (N) protein. Scale bar indicates 300
nm.(B) SARS-CoV-2 genome (UpE) levels in Calu-3 cells infected with SARS-CoV-2 (MOI 1) or
mock infected for 12 hours and transfected with 100 ng of poly(I:C) or mock transfected for 6
hours (n = 6). 1/dCT values are represented after normalizing Ct values for SARS-CoV-2
genome levels at 18 hpi with Ct values observed at 0 hpi. Gel (below): UpE qPCR amplicons
were visualized on an agarose gel. (C) IFNB, (D) IFIT1, or (E) IRF7 transcript levels in Calu-3
cells that were infected with SARS-CoV-2 (MOI 1) or mock infected for 12 hours. At 12 hpi, cells
were either transfected with 100 ng of poly(I:C) or mock transfected for 6 hours. (C) IFNg, (D)
IFIT1, or (E) IRF7 transcript levels were normalized to GAPDH transcript levels (n = 6).
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Figure 4.10
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(F) IFIT1, SARS-CoV-2 N, and ACTB protein expression in Calu-3 cells that were infected with
SARS-CoV-2 (MOI 1) or mock infected for 24 hours. At 24 hpi, cells were either transfected with
1,000 ng of poly(I:C) or mock transfected for 24 hours (n = 3). (G) IFNS or (H) IFIT1 transcript
levels in Calu-3 cells that were infected with SARS-CoV-2 (MOI 0.1 or 1) or mock infected for 24
hours. At 24 hpi, cells were transfected with 10 ng of poly(I:C) or mock transfected for 12 hours.
(G) IFNB or (H) IFIT1 transcript levels were normalized to GAPDH transcript levels (n = 3).
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(I) IFNB, (J) IFIT1, or (K) IRF'7 transcript levels in Calu-3 cells that were infected with

SARS-CoV-2 (MOI 1) or mock infected for 24 hours. At 24 hpi, cells were either transfected with
varying concentrations of poly(I:C) or mock transfected for 12 hours. (I) IFNS, (J) IFIT1, or (K)

IRF7 transcript levels were normalized to GAPDH transcript levels (n = 3).
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Figure 4.10
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(L) pTBK1-S172, TBK1, pIRF3-S396, IRF3, SARS-CoV-2 N, and ACTB protein expression in
Calu-3 cells that were infected with SARS-CoV-2 (MOI 1) or mock infected for 24 hours. At 24
hpi, cells were either transfected with 1,000 ng of poly(I:C) or mock transfected for an additional
24 hours (n = 3). (M) Calu-3 cells were infected with SARS-CoV-2 (MOI 1) or mock infected for
24 hours, followed by transfection with 1,000 ng of rhodamine-labeled poly(I:C) or mock
transfection for 3 hours. Cells were fixed and stained to visualize SARS-CoV-2 nucleocapsid (N)
protein and rhodamine-labeled poly(I:C). SARS-CoV-2 N and poly(I:C)-rhodamine containing
cells are indicated by arrows. Cells that only contained detectable levels of poly(I:C)-rhodamine
are indicated by arrow heads. Scale bar indicates 150 pm.Data are represented as mean 4+ SD, n
=3 or 6, **: p < 0.01, ***: p < 0.001, and ****: p < 0.0001 (Student’s t test and Tukey’s
multiple comparisons test). pTBK1-S172 and pIRF3-S396 protein expression levels are expressed
as ratios of pTBK1-S172/TBK1 and pIRF3-S396/IRF3 levels, respectively. Blots were quantified
using Image Studio (Li-COR) (n = 3). Ct, cycle threshold. See also Figure 12.

To determine if /FNS expression in SARS-CoV-2-infected and/or poly(I:C)-transfected
cells is associated with ISG expression, the levels of IFIT1 and IRF7 were additionally
quantified. Poly(I:C) transfection alone induced significantly higher levels of IFIT1 and
IRF7 transcripts relative to mock-transfected cells (Figure 4.10 D-E). SARS-CoV-2 infection
alone also induced higher levels of [FIT1 and IRF7 transcripts relative to mock-infected
cells (Figure 4.10 D-E). Notably, IFIT1 and IRF7 transcript levels in SARS-CoV-2-infected
+ poly(I:C)-transfected cells were higher than levels in cells that were transfected with
poly(I:C) alone (Figure 4.10 D-E), suggesting an additive effect of SARS-CoV-2 infection
on poly(I:C)-mediated gene expression.

To validate gene expression observations, SARS-CoV-2 N, IFIT1, and beta-actin (ACTB)
protein expression were examined. Poly(I:C) transfection induced higher levels of IFIT1
in Calu-3 cells, whereas SARS-CoV-2 infection did not induce higher observable levels of
IFIT1 by immunoblot analysis at 48 hpi, relative to mock-infected cells (Figure 4.10 F);
however, at 72 hpi, SARS-CoV-2 infection induced higher observable levels of IFIT1 protein
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expression relative to mock-infected cells (see Figure 13). SARS-CoV-2 infection in these
cells by detecting N protein in the samples (Figure 4.10 F).

To determine if the MOI of SARS-CoV-2 would influence its ability to modulate
exogenous stimulation of interferon responses, Calu-3 cells were infected with two different
MOIs of 0.1 and 1 for 24 hours, followed by exogenous stimulation of cells with 10 ng of
poly(I:C) for 12 hours. Both MOIs of SARS-CoV-2 were unable to suppress the expression
of IFNB and IFIT1 in poly(I:C)-stimulated cells (Figure 4.10 G-H). Furthermore, a high
MOI of 1 had an additive effect on the expression levels of IFNG and IFIT1 in poly(I:C)-
stimulated cells (Figure 4.10 G-H). Next, to determine if high concentrations of poly(I1:C)
in Figure 4.10 C-E may have overwhelmed the ability of SARS-CoV-2 to suppress IFN
responses, Calu-3 cells were infected with SARS-CoV-2 for 24 hours, followed by stimulation
with a range of concentrations of poly(I:C) for 12 hours (Figure 4.10 I-K). Even at the
lowest poly(I:C) concentration of 1 ng, SARS-CoV-2 was unable to suppress IFNS, IFIT1,
and IRF7 gene expression. Indeed, SARS-CoV-2 infection displayed an additive effect
on the expression levels of IFNS at all concentrations of poly(I:C), whereas the additive
effect of SARS-CoV-2 infection on IFIT1 and IRF7 expression levels reached significance
at concentrations of 1 ng and 10 ng of poly(I:C) (Figure 4.10 I-K).

Type I IFN production is primarily mediated by the phosphorylation and activation
of TBK1, which in turn phosphorylates and activates IRF3. " Activation of TBK1
is associated with phosphorylation of serine 172,”" whereas activation of IRF3 involves
phosphorylation of serine 396, among other residues.”” To determine SARS-CoV-2 infection-
induced phosphorylation of TBK1 and IRF3, Calu-3 cells were infected for 24 hours followed
by poly(I:C) or mock stimulation for another 24 hours and performed immunoblot analysis
to detect levels of TBK1 (pTBK1-S172) and IRF3 (pIRF3-S396) phosphorylation. Only
modest increases in phosphorylation of TBK1 were observed in SARS-CoV-2-infected and
poly(I:C)-treated cells relative to untreated cells at the time of sampling (Figure 4.10 L).
Phosphorylation of IRF3 was observed in both SARS-CoV-2-infected and poly(I:C)-treated
cells relative to untreated cells, with similar levels of pIRF3-S396 observed following all
infection and treatment conditions (Figure 4.10 L).

Titrating different concentrations of poly(I:C) in Figure 4.10 I-K demonstrated that
SARS-CoV-2 infection has an additive effect on poly(I:C)-mediated up-regulation of IFN
responses. In addition, it was also determined if poly(I:C) was delivered to infected cells
(Figure 4.10 M). Calu-3 cells were infected with SARS-CoV-2 for 24 hours, followed by
transfection with rhodamine-labeled poly(I:C) for 3 hours. At 24 hpi, visible levels of
SARS-CoV-2 N and poly(I:C) could be detected in Calu-3 cells (Figure 4.10 M; arrows).
Few uninfected cells (Figure 4.10 M; arrow heads) also contained detectable levels of
poly(I:C); however, as identified in Figure 4.10 I-K, these cells are not sufficient to mount
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an overwhelming IFN response, because SARS-CoV-2 infection had an additive effect on
IFN and ISG expression in poly(I:C)-treated cells.

SARS-CoV-2 infection is unable to suppress downstream type I IFN signaling

SARS-CoV and MERS-CoV proteins can also inhibit downstream IFN signaling to restrict
the production of ISGs."”" To evaluate if SARS-CoV-2 can inhibit type I IFN signaling in
response to exogenous IFNS treatment, Calu-3 cells were infected for 12 hours at an MOI
of 1 and stimulated these cells with recombinant human IFNfS for 6 hours. Gene expression
levels of IRF7 and IFIT1 were monitored in these cells by qPCR. Validation of the antiviral
efficacy of the recombinant IFNS1 was carried out in human fibroblast (THF) cells that
were pretreated with IFNS1, followed by RNA and DNA virus infections. Pre-treatment of
THF cells with recombinant IFNS1 inhibited the replication of herpes simplex virus (HSV),
vesicular stomatitis virus (VSV), and HIN1 in a dose-dependent manner (see Figure 12 B).

SARS-CoV-2 genome levels were significantly higher in infected cells relative to mock-
infected cells (Figure 4.11 A). Although SARS-CoV-2 UpE levels displayed a lower trend
in SARS-CoV-2-infected 4+ IFN-treated cells relative to SARS-CoV-2-infected-only cells,
UpE levels were not significantly different after 6 hours of IFNS treatment (Figure 4.11
A). Exogenous IFNf treatment significantly up-regulated transcript levels of IRF'7 and
IFIT1 relative to mock-treated Calu-3 cells (Figure 4.11 B-C). Consistent with this study’s
RNA-seq data, SARS-CoV-2 infection induced mild but significant levels of IRF'7 and IFIT1
transcripts relative to mock-infected cells (Figure 4.11 B-C). IFNS-mediated induction of
IRF7 and IFIT1 was not dampened by SARS-CoV-2 infection (Figure 4.11 B-C).
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Figure 4.11
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(A) SARS-CoV-2 genome (UpE) levels in Calu-3 cells infected with SARS-CoV-2 (MOI 1) or
mock infected for 12 hours and treated with recombinant IFNJ or mock treated for 6 hours (n =
6). 1/dCT values are represented after normalizing Ct values for SARS-CoV-2 genome levels at
18 hpi with Ct values observed at 0 hpi. Gel (below): UpE qPCR amplicons were visualized on
an agarose gel. (B) IRF7 or (C) IFIT1 transcript levels in Calu-3 cells that were infected with
SARS-CoV-2 (MOI 1) or mock infected for 12 hours. At 12 hpi, cells were either treated with
recombinant IFN/ or mock treated for 6 hours. (B) IRF7 or (C) IFIT1 transcript levels were
normalized to GAPDH transcript levels (n = 6).
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Figure 4.11
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(D) SARS-CoV-2 N, IFIT1, and GAPDH protein expression in Calu-3 cells that were infected
with SARS-CoV-2 (MOI 1) or mock infected for 12 hours. At 12 hpi, cells were either treated
with recombinant IFNS or mock treated for 6 hours (n = 3). (E) pSTAT1-Y701, STAT1,
pSTAT2-Y690, STAT2, SARS-CoV-2 N, and ACTB protein expression in Calu-3 cells that were
infected with SARS-CoV-2 (MOI 1) or mock infected for 24 hours. At 24 hpi, cells were either
treated with recombinant IFN/ or mock treated for 30 minutes (n = 3).
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Figure 4.11
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(F) IFIT1 or (G) IRF7 transcript levels in Calu-3 cells that were infected with SARS-CoV-2
(MOI 0.1 or 1) or mock infected for 24 hours. At 24 hpi, cells were mock treated or treated with
recombinant IFN/ containing media (20 pg/mL total protein) for 12 hours. (F) IFIT1 or (G)
IRF7 transcript levels were normalized to GAPDH transcript levels (n = 3). (H) IFIT1 or (I)
IRF7 transcript levels in Calu-3 cells that were infected with SARS-CoV-2 (MOI 1) or mock
infected for 24 hours. At 24 hpi, cells were either treated with varying concentrations of
recombinant IFNS or mock treated for 12 hours. (H) IFIT1 or (I) IRF7 transcript levels were
normalized to GAPDH transcript levels (n = 3). Data are represented as mean + SD, n = 3 or 6,
ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, and ****: p < 0.0001 (Student’s t
test and Tukey’s multiple comparison’s test). Ct, cycle threshold. pSTAT1-Y701 and
pSTAT2-Y690 protein expression levels are expressed as ratios of pSTAT1-Y701/STAT1 and
pSTAT2-Y690/STAT?2 levels, respectively. Blots were quantified using Image Studio (Li-COR) (n
= 3). For IFNJ treatment, cell culture supernatant containing recombinant IFN5 was used. Cell
culture supernatant containing 2 mg/mL of total protein, including IFN/, was used in A-E. A
range of concentrations was used for other figures as indicated. Ct, cycle threshold. See methods
for recombinant IFN/j generation. See also Figures 12 and 13.
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To validate the transcriptional responses, experiments with exogenous IFNS treatment
were repeated to determine if SARS-CoV-2 could inhibit type I IFN-mediated up-regulation
of IFIT1 at the protein level. SARS-CoV-2 infection alone failed to induce detectable levels
of IFIT1 at 12 hpi (Figure 4.11 D). IFNS treatment with or without prior 12 hours of
SARS-CoV-2 infection induced robust expression of IFIT1 (Figure 4.11 D). SARS-CoV-2
infection was confirmed in these cells by immunoblotting for N protein (Figure 4.11 D).

Binding of IFNs to their receptors activates a series of downstream signaling events, which
involves phosphorylation of STAT1 at tyrosine 701 (pSTAT1-Y701) and STAT2 at tyrosine
690 (pSTAT2-Y690).""*""" To determine if SARS-CoV-2 can inhibit phosphorylation of
STAT1 and STAT2 proteins, Calu-3 cells were infected with SARS-CoV-2 for 24 hours
followed by 30 minutes of stimulation with or without recombinant IFN5. SARS-CoV-2
infection alone induced mild pSTAT1-Y701 and pSTAT2-Y690 levels relative to mock-
infected cells, albeit lower than levels observed in exogenous IFNj-treated cells (Figure
4.11 E). Importantly, SARS-CoV-2 infection was unable to inhibit pSTAT1-Y701 and
pSTAT2-Y690 levels in cells treated with IFNS (Figure 4.11 E).

To determine if the MOI of SARS-CoV-2 would influence its ability to suppress exogenous
stimulation of interferon responses, Calu-3 cells were infected with two different MOIs of
0.1 and 1 for 24 hours, followed by exogenous stimulation of cells with IFNS for 12 hours.
Infection with both MOIs of SARS-CoV-2 was unable to suppress the expression of IFIT1
and IRF7 on IFNJ treatment (Figures 4.11 F-G). Furthermore, high MOI 1 of SARS-CoV-2
had an additive effect on the expression of IFIT1 and IRF7 in IFNj-treated cells (Figures
4.11 F-G). Next, to determine if high concentrations of IFNg in Figures 4.11 A-D may
have overwhelmed the ability of SARS-CoV-2 to suppress IFN-mediated responses, Calu-3
cells were infected with SARS-CoV-2 for 24 hours, followed by stimulation with a range
of concentrations of IFN/ for 12 hours (Figures 4.11 H-I). SARS-CoV-2 was unable to
suppress [FIT1 and IRF7 gene expression. MOI 1 of SARS-CoV-2 had an additive effect
on the expression of [FIT1 and IRF7 in IFN-treated cells at all concentrations of IFNS
(Figures 4.11 H-I).

Cytokine levels in COVID-19 patients and effect of type I IFNs on SARS-CoV-2
replication

To evaluate type I IFN and other infection-associated cytokines in COVID-19 patients, acute
sera (< 21 days from symptom onset) was analyzed from 20 COVID-19 positive patients,
of whom 10 were categorized as “moderate” cases requiring hospital admission, but not
admission to intensive care unit (ICU). The remaining 10 samples were from “severe” cases
that required ICU admission. For severe cases, 6/10 patients died, and 10/10 moderate
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cases were discharged (see Table 15). Sera from 5 healthy, uninfected individuals was also
included. Sera from moderate cases of COVID-19 displayed significantly higher levels of
platelet-derived growth factor AA (PDGF-AA) and PDGF-AB/BB relative to uninfected
individuals (Figure 4.12). Patients with severe COVID-19 displayed significantly higher
levels of PDGF-AA, PDGF-AB/BB, GROa (CXCL-1), CXCL-9, MIP-15 and vascular
endothelial growth factor A (VEGF-A) relative to healthy individuals (Figure 4.12). In
addition, severe cases of COVID-19 displayed an increasing trend for levels of interleukin-6
(IL-6), IL-5, macrophage colony stimulating factor 1 (M-CSF), IL-8, tumor necrosis factor
alpha (TNF«a), TNFf, and granulocyte colony stimulating factor 1 (G-CSF) relative to
healthy individuals and moderate cases of COVID-19. In addition, both moderate and
severe cases of COVID-19 displayed an increasing trend for IL-7 and IP-10 relative to
healthy controls, although the data were not significant due to wide within-patient variation
in acute serum samples. Moderate cases of COVID-19 displayed an increasing trend for
levels of IFN-a2 and IL-10 relative to healthy individuals and severe cases of COVID-19
(Figure 4.12 and see Tables 15 and 16).
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A) Protein levels were analyzed in sera using a 48-plex human cytokine and chemokine array.

Mean logy fold-change in serum cytokine protein levels in patients with moderate (n = 10) or
severe (n = 10) case of COVID-19, relative to levels in healthy donors (n = 5) are represented
here.
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(B) SARS-CoV-2 genome (UpE) levels in Calu-3 cells infected with SARS-CoV-2 (MOI 1) or
mock infected for 1 hour followed by treatment with recombinant IFNS or mock treatment for 72
hours (n = 6). 1/dCT values are represented after normalizing Ct values for SARS-CoV-2
genome levels in infected cells (with or without recombinant IFNS treatment) with Ct values
observed in mock-infected cells. Blot (below): IFIT1, SARS-CoV-2 N, and ACTB protein
expression in Calu-3 cells that were infected with SARS-CoV-2 or mock infected for 1 hour,
followed by treatment with recombinant IFNS or mock treatment for 72 hours (n = 3). (C)
IFIT1 or (D) IRF7 transcript levels in Calu-3 cells that were infected with SARS-CoV-2 (MOI 1)
or mock infected for 24 hours. At 24 hpi, cells were treated with varying concentrations of
recombinant IFN-a2 or mock treated for 6 hours. (C) IFIT1 or (D) IRF'7 transcript levels were
normalized to GAPDH transcript levels (n = 3). (E) SARS-CoV-2 genome (UpE) levels in Calu-3
cells infected with SARS-CoV-2 (MOI 1) or mock infected for 1 hour followed by treatment with
recombinant IFN-a2 (1 ng/mL or 10 ng/mL) or mock treatment for 72 hours (n = 3). 1/dCT
values are represented after normalizing Ct values for SARS-CoV-2 genome levels in infected cells
(with or without recombinant IFN-a2 treatment) with Ct values observed in mock-infected cells.
(F) IFIT1, SARS-CoV-2 N, and ACTB protein expression in Calu-3 cells that were infected with
SARS-CoV-2 (MOI 1) or mock infected for 1 hour, followed by treatment with recombinant
IFN-a2 (1 ng/mL or 10 ng/mL) or mock treatment for 72 hours (n = 3). Data are represented as
mean + SD, n = 5 for healthy human controls, and n = 10 each for moderate or severe cases of
COVID-19, n = 3 or 6 for in vitro experiments. *: p < 0.05, **: p < 0.01, ***: p < 0.001, and
FHREE p < 0.0001 (Student’s t tests with Benjamini-Hochberg multiple testing correction,
Student’s t tests and Tukey’s multiple comparison test). See also Tables 15 and 16, and Figure 12.

To determine if exogenous IFNJ treatment can inhibit SARS-CoV-2 replication, Calu-3
cells were infected for 1 hour, following which they were either mock treated or treated with
recombinant IFNS for 72 hours. Exogenous IFNS treatment reduced SARS-CoV-2 genome
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(UpE) and N protein levels in these cells (Figure 4.12 B), consistent with an increase in
IFIT1 levels (Figures 4.12 B and 13).

Next, to determine if levels of IFN-a2 that were detected in sera from patients who
developed moderate COVID-19 (Figure 4.12 A and see Table 16) were sufficient to induce an
IFN response, a range of concentrations of IFN-a2 were tested against SARS-CoV-2. Calu-3
cells contained higher levels of IFIT1 transcripts in the presence of medium (1 ng/mL) and
high (10 ng/mL) concentrations of IFN-a2, whereas IRF7 transcript levels were higher
in Calu-3 cells treated with low (0.1 ng/mL), medium, or high concentrations of IFN-a2
(Figure 4.12 C-D). Furthermore, consistent with the data for IFNg, SARS-CoV-2 infection
was unable to suppress [FN-a2-mediated expression of ISGs, such as IFIT1 and IRF7
(Figure 4.12 C-D). Finally, to determine if IFN-a2 was capable of suppressing SARS-CoV-2
replication, Calu-3 cells were infected with SARS-CoV-2 and treated the cells with two
concentrations of IFN-a2 (1 ng/mL and 10 ng/mL) for 72 hours. Both concentrations of
IFN-a2 significantly reduced SARS-CoV-2 replication (Figure 4.12 E-F).

4.2.4 Discussion

SARS-CoV-2 emerged in December 2019 to cause a pandemic of COVID-19."">""" Clinical
observations and emerging data from in vitro and n vivo studies have demonstrated
the ability of SARS-CoV-2 to induce type I IFNs.”=7" However, a recent review
summarized studies that suggest that antiviral IFN responses are dampened in COVID-19
patients.” Emerging data also suggest that timing and extent of interferon production is
likely associated with manifestation of disease severity. In spite of some progress in
understanding how SARS-CoV-2 activates antiviral responses, mechanistic studies into
SARS-CoV-2-infection-mediated induction and modulation of human type I IFN responses
are lacking. To understand SARS-CoV-2-infection-induced pathogenesis during the clinical
course of COVID-19, it is imperative that we understand if and how replicating SARS-CoV-2
interacts with type I IFN responses. These observations can be leveraged to develop drug
candidates and inform ongoing drug trials, including trials that involve type I and IIT IFNs.

In this study, a time-series RNA-seq analysis of poly(A))-enriched RNA from SARS-CoV-
2-infected human airway epithelial cells allowed us to map the progression of SARS-CoV-2
replication and transcription. As observed with other coronaviruses, '~ “" SARS-CoV-2
replicated and transcribed sub-genomic RNA and mRNA in a directional manner (Figure
4.9 A-B). Thus, this study’s data demonstrate that SARS-CoV-2 replication strategy is
consistent with other coronaviruses. Furthermore, the data in this study demonstrate that
Calu-3 cells support SARS-CoV-2 replication and that these cells represent a good in vitro
model to study SARS-CoV-2-host interactions, as reported by others.
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Studies have demonstrated that ectopically expressed SARS-CoV-2 proteins can suppress
type I IFN responses. Low SARS-CoV-2-induced type I IFN responses may be associated
with (1) the virus’ ability to mask the detection of viral RNA by cellular PRRs and/or (2) the
ability of viral proteins to inactivate cellular mechanisms involved in type I IFN induction.
Data from this study show that infection with wild-type and replication competent SARS-
CoV-2 is capable of inducing a type I IFN response in human airway epithelial cells,
including up-regulation of IFN expression (Figure 4.9 C, E, G) and downstream IFN
signaling genes (Figures 4.9 C, F, H, I and 11). These observations corroborate and expand
upon recent data from Lei, Rebendenne, and Yin et al.’s studies where the authors have
demonstrated that SARS-CoV-2 infection is capable of up-regulating type I IFN responses
in multiple human cell types.

The physiological relevance of an existing but dampened type I IFN response to SARS-
CoV-2 remains to be identified. Emerging data suggest that prolonged and high levels of
type I IFNs correlate with COVID-19 disease severity.” ' Thus, a dampened yet protective
early type I IFN response against SARS-CoV-2 may in fact be beneficial for humans.
However, questions remain about how a low-type I IFN response against SARS-CoV-2
could play a protective role during infection. One possibility is that low levels of type I
IFN production are sufficient to control SARS-CoV-2 replication (Figure 4.12 E). This
may explain the large number of asymptomatic cases of SARS-CoV-2 where an early IFN
response may control virus replication and disease progression. Indeed, in one study, type
I IFN (IFNa) levels were higher in asymptomatic cases relative to symptomatic cases
(n = 37).”"" Further studies are required to identify regulatory mechanisms behind the
protective role of a controlled and early IFN response during SARS-CoV-2 infection versus

the delayed and potentially damaging long-term IFN response observed in some severe
cases of COVID-19.

In one study, SARS-CoV was demonstrated to inhibit poly(I:C)-mediated up-regulation
of IFNS.”"" The data in this study show that infection with SARS-CoV-2 is unable to
inhibit poly(I:C)-mediated up-regulation of IFN transcripts and downstream ISGs, such as
IFIT1 and IRF7 (Figure 4.10 C-E). Indeed, SARS-CoV-2 infection, followed by poly(I:C)
transfection induced higher levels of IFNS and ISG (/FIT1 and IRF7) transcripts relative to
poly(I:C) alone, indicating that wild-type infection partially augments poly(I:C)-mediated
up-regulation of type I IFN signaling (Figure 4.10 C-E, G-K) in Calu-3 cells. Furthermore,
low or high MOI of SARS-CoV-2 was unable to suppress IFN responses stimulated by
poly(I:C) (Figure 4.10 G-H). A high MOI of SARS-CoV-2 was also unable to suppress IFN
responses stimulated by a range of poly(I:C) concentrations (Figure 4.10 I-K). Thus, it
is important to identify the kinetics and landscape of virus infection, transcription and
translation, and how that may regulate human type I IFN responses. Although multiple
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studies have demonstrated that ectopically expressed SARS-CoV-2 proteins can suppress
type I IFN responses, there is a need to study the dynamic interplay between viral RNA-
mediated induction of IFN responses, followed by subsequent dampening of these responses,
as viral proteins accumulate in infected cells. It is also important to identify SARS-CoV-2-
host interactions in different human cell types to discern cell-type-specific differences in
IFN responses. Furthermore, as multiple SARS-CoV-2 variants continue to evolve, it is
important to assess the ability of these emerging variants to modulate human type I IFN
responses.

Coronaviruses, including highly pathogenic SARS-CoV, MERS-CoV, and porcine epi-
demic diarrhea virus (PEDV) have evolved proteins that can efficiently inhibit type I
IFN responses.” " 1900, 223, In spite of observing statistically significant up-
regulation of type I IFNs and ISGs at 12 hpi with SARS-CoV-2 (Figure 4.9), in preliminary
studies collaborators and I were unable to observe detectable levels of pIRF3-S396 prior to
accumulation of antiviral mRNAs. My collaborators have previously shown that antiviral
responses can be induced in the absence of prototypic markers of IRF3 activation such as
dimerization and hyperphosphorylation, even when IRF3 was shown to be essential.”"> The
simplest interpretation is that early activation of IRF3-mediated IFN responses requires
low (or even undetectable) levels of pIRF3-S396, which accumulate to detectable levels over
time (Figure 4.10 L).

SARS-CoV and MERS-CoV can inhibit phosphorylation and activation of STAT1 and
STAT2, which blocks global IFN-induced antiviral responses.'’' The data in this study
demonstrate that SARS-CoV-2 infection induces phosphorylation of STAT1 and STAT?2
(Figure 4.11 E), along with up-regulation of ISGs, such as IRF7 and IFIT1 (Figure 4.11
B-C). In addition, SARS-CoV-2 infection is unable to inhibit the activation of STAT1 and
STAT?2 by exogenous type I IFN (Figure 4.11 E), along with the expression of downstream
ISGs, such as IRF7 and IFIT1 (Figure 4.11 B-C and see Figure 13). Although SARS-CoV-2
infection alone induced low levels of type I IFN (Figures 4.9 E and 4.10 B), it was sufficient
to activate STAT proteins (Figure 4.11 E) and downstream ISG expression (Figures 4.10
B-C, 4.11 B-C; see Figures 10 and 12). Thus, the dampened ability of SARS-CoV-2 to
inhibit downstream type I IFN responses compared with other zoonotic CoVs extends
support to my hypothesis that the pathogenic consequences of a dampened type I IFN
response may be largely negated by the sensitivity of SARS-CoV-2 to this response. Indeed,
in these studies, exogenous type I IFN (IFN51 and IFN-a2) treatment significantly reduced
SARS-CoV-2 replication in human airway epithelial cells (Figure 4.12 B, E, F), consistent
with a recent study that compared the susceptibility of SARS-CoV and SARS-CoV-2 to
type I IFNs.”"" Recent studies have identified the role of an impaired type I IFN response in
COVID-19 disease severity,”” " which support the conclusion that SARS-CoV-2 is capable
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of inducing a type I IFN response, and perhaps the inability of the host to mount this
response contributes to disease severity. In addition, this study’s data provide promising
support for ongoing clinical trials that include type I IFN treatment.

Studies have demonstrated that COVID-19 patients mount a dysregulated immune
response, which is associated with a poor clinical outcome.”"" In this study, it is observed
that patients with moderate or severe case of COVID-19 had elevated serum levels of growth
factors PDGF-AA and PDGF-AB/BB relative to healthy controls (Figure 4.12 A and Tables
15 and 16). The role of PDGFs in driving disease pathology has been described previously,
and therapeutic use of PDGF antagonists has also been recommended. """ PDGF-BB
has also been introduced in the clinic as a wound-healing therapy.*” The physiological
impact of elevated PDGF levels and cellular factors that regulate the expression of PDGF
in COVID-19 patients remains to be understood.

Sera from patients with moderate case of COVID-19 contained higher levels of 11.-10
relative to severe cases, which is suggestive of an anti-inflammatory response’""" (Figure
4.12 A and Tables 15 and 16). On the contrary, sera from patients with severe case of
COVID-19 displayed a higher trend for levels of IL-6, IL-8, and TNF« relative to moderate
cases, which is suggestive of a pro-inflammatory response (Figure 4.12 A and Tables 15
and 16).7' """ Observations from this study (Figure 4.12 A), along with other recent
reports,” "~ " warrant further investigations into mechanistic regulation of pro- and anti-
inflammatory processes in SARS-CoV-2-infected human airway cells. Identifying regulatory
proteins, such as transcription factors that contribute to a pro-inflammatory cytokine
response or “cytokine storm” in SARS-CoV-2-infected individuals, will inform the selection
and utilization of anti-inflammatory drugs.

Patients with moderate COVID-19 demonstrated an increasing trend for type I IFN
(IFN-a2) relative to severe cases and healthy controls (Figure 4.12 A). In a separate study,
IFN-« levels were also higher in asymptomatic patients relative to symptomatic COVID-19
patients. The presence of type I IFN in moderate cases of COVID-19 in this study,
along with a recent study by Lucas et al., suggest that SARS-CoV-2 infection is capable
of inducing a type I IFN response in vivo; however, emerging clinical data suggest that
the extent and duration of type I IFN response may dictate the clinical course of COVID-
19."°%7"" In this study, sera from COVID-19 patients were collected at admission (all < 21
days post symptom onset). Early induction of IFN-a2 in moderate cases of COVID-19 may
provide an antiviral advantage. Indeed, this study was able to demonstrate that a range
of physiologically detected concentrations of IFN-a2 was capable of inducing an antiviral
response in human airway epithelial cells and that SARS-CoV-2 was unable to suppress
ISG expression induced by physiologically detected concentrations of IFN-a2 (Figures 4.12
C-D). Furthermore, two different concentrations of IFN-a2 (1 and 10 ng/mL) were able
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to reduce SARS-CoV-2 replication in human airway epithelial cells (Figure 4.12 E). Thus,
extrapolating from in vitro testing of a range of IFN-a2 concentrations, it can be speculated
that the levels of IFN-a2 detected in sera from moderate cases of COVID-19 would be
sufficient to suppress SARS-CoV-2 replication. This study was unable to detect IFN-a2 in
severe COVID-19 patients at the time of sample collection (< 21 days from first symptom
onset). Thus, early up-regulation of type I IFN responses such as IFN-a2 may be a predictor
of moderate COVID-19 disease severity. Additional studies with later samples from severe
COVID-19 patients will identify if there is a late and prolonged induction of type I IFNs as
reported recently by Lucas et al.”"" In spite of recent progress in understanding type I I[FN
responses in COVID-19 patients, factors associated with early or delayed and short-acting
versus prolonged type I IFN induction in COVID-19 patients are poorly understood. The in
vitro experiments in this study are not sufficient to capture SARS-CoV-2-IFN interactions
in a model of severe COVID-19. There is a need to develop appropriate animal models to
accurately represent and study the full spectrum of COVID-19 disease severities.

Although recent studies have demonstrated the ability of SARS-CoV-2 to induce IFN
responses,” 7 other studies have demonstrated the ability of SARS-CoV-2 proteins to
suppress IFN responses,” ' along with inducing a delayed type I IFN response in SARS-
CoV-2-infected cells.”" In this study, it is demonstrated that SARS-CoV-2 can induce a
type I IFN response in human airway epithelial cells. The human respiratory tract is made
up of more than one cell type that can be infected with SARS-CoV-2, thus it is important
to characterize type I IFN responses in the full range of susceptible human airway and
lung cell types. In this study, the ability of SARS-CoV-2 to mount a more potent IFN
response in the absence of known IFN modulating viral proteins that have been identified
in other studies was not assessed. Future studies will need to assess the full potential of
IFN responses in cells infected with wild-type and deletion variants of SARS-CoV-2. More
work is also needed to identify the detailed kinetics of IFN induction by SARS-CoV-2 RNA
in human cells, followed by subsequent modulation of IFN responses by viral proteins. This
will be particularly important to understand why some patients mount a detectable IFN
response, whereas others do not. Timing, intensity, and duration of type I IFN responses
will be important to understand the range of disease outcomes in COVID-19 patients. Other
beta-coronaviruses continue to infect humans, along with infections with emerging variants
of SARS-CoV-2. Thus, it is important to assess the efficacy of IFN responses against a
range of human coronaviruses to determine differences in pathogenesis and disease severity.

In conclusion, this study demonstrates that SARS-CoV-2 is a weak stimulator of type I
IFN production in infected human airway epithelial cells, relative to poly(I:C). However,
the data suggest that low levels of type I IFN response in SARS-CoV-2-infected cells are
sufficient to activate downstream expression of antiviral ISGs. In addition, the data in this

157



study demonstrate that SARS-CoV-2 is unable to inhibit downstream IFN responses that
are mediated by STAT proteins, which is promising for the development of type I IFNs as
treatment or post-exposure prophylactics. " “’" Clinical trials for combination IFNg therapy
against MERS-CoV are currently ongoing.”” IFNJ, in combination with lopinavir-ritonavir
and ribavirin, has been used with promising results in COVID-19 patients. "~ Nebulized
IFNg is part of the standard of care for COVID-19 patients in China.”” Furthermore, it
is also demonstrated that levels of IFN-a2 detected in sera from patients with moderate
COVID-19 can (A) induce an antiviral ISG response in human airway epithelial cells and
(B) inhibit SARS-CoV-2 replication. Thus, this study highlights the dynamic nature of
virus-host interaction during the course of SARS-CoV-2 infection and raises intriguing

questions about the role and timing of IFN responses in predicting the likely severity of
COVID-19.

4.3 Summary

The COVID-19 pandemic has emphasized the global efforts that are required to manage
global problems. Researchers must join together to form interdisciplinary teams to develop
strategies to effectively respond to current and future public health crises. Bioinformatics
positions itself at the crux of such research teams, allowing for in-depth and efficient analysis
of data, quick dissemination of that data, and the ability to aggregate, disaggregrate, and
re-analyze previously existing data, all with the aim of answering pressing public health
questions.

This data chapter has showcased how multi-omic approaches can be harnessed to
uncover critical information related to both pathogen and host. Through a combination of
transcriptomics, proteomics, and immunohistological validation, the research within chapter
4.1 challenges the current understanding of how the novel SARS-CoV-2 virus enters host
cells. While the ACE2 receptor is still of significance to this viral entry mechanism, low
levels of detection across the various methods reported in this chapter suggest that it may
not be the entire story and further research is required to fully understand the means
by which coronaviruses infect host cells. Using a similar combination of computational
and wet-laboratory techniques, chapter 4.2 delves into the various host responses elicited
once the SARS-CoV-2 virus has entered a cell which may provide insights into long-term
outcomes and potential treatment methods.

The computational techniques outlined provide a blueprint for how bioinformatic analysis
of large data cohorts can be leveraged to answer important biological questions in a timely
manner. Devoting the necessary resources into sequencing analyses of large, diverse patient
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cohorts (even after the pandemic officially ends) will ensure that when the next global
disease outbreak occurs, scientists and public health officials and can more quickly and
equitably respond.
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Chapter 5

Conclusions

[Scientists| are expanding their communication across fields [...] The result
is the formation of new, interdisciplinary scientific fields, such as
bioinformatics, that are painting expanded pictures of the world around
us, thanks to the collective efforts of diverse groups of researchers.

The Benefits of Interdisciplinary Research: Our Experience With
Pathogen Bioinformatics
JENNIFER GARDY AND FIONA BRINKMAN

Pulmonary diseases remain a major public health concern worldwide. Though there have
been numerous advances in respiratory research over the past decades that have allowed
for a deeper understanding of the biological mechanisms governing various lung diseases,
early detection, sub-classification, and personalized treatment methods still elude us.”””’ In
recent years, the research and applications thereof made possible through bioinformatic
analysis of large ‘omic data sets have proven to be incredibly promising at filling in some of
these knowledge gaps and pushing the field of respiratory medicine closer to its goals. In
the following chapter, I briefly describe the contributions of the research presented in this
thesis, discuss some of its limitations, and conclude with a prospective for the field.
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5.1 Summary of major findings

5.1.1 Tobacco smoke exposure and viral mimic

It is universally understood that tobacco smoke exposure has myriad negative effects on
the human body, particularly the lungs. Despite this fact, there are still an estimated 1.3
billion tobacco smokers worldwide "~ and there are still various aspects regarding the effects
of tobacco smoke exposure on lung function, including damage and repair mechanisms,
that remain poorly understood. It is therefore imperative that research continue on this
topic to paint a fuller picture. As has been demonstrated in this thesis, bioinformatics
provides a toolkit to help glean useful information that has been previously out of reach
of gold standard methods. In Chapter 2.1, I demonstrate that by using bioinformatics
to leverage previously deposited data sets, and by focusing on gene families that were
previously understudied in the context of lung biology, such as the ABC transporters, new
information regarding the effects of tobacco smoke exposure on lung function and disease
onset can be obtained.

The analyses performed in Chapter 2.1" identify differential expression of multiple ABC
transporters across patient cohorts. ABCB6, ABCC1, and ABCCS, for example, all show
an increase in expression correlated with tobacco smoke exposure and, while expression
of these genes do significantly decrease following smoking cessation, they do not return to
the levels observed in the healthy, “never-smoker” cohort. As discussed in Chapter 2.1.4,
ABCB6 has been shown to elicit protective responses to reactive oxygen species,”
specifically through the inhibition of carcinogenic cytotoxic components found in cigarette
smoke.”"" It is therefore suggested that the observed up-regulation in ABCB6 is likely
an important initial protective response to cigarette smoke exposure, though potential
consequences of long-term over-expression may exist related to reduced responsiveness to
chemotherapeutic agents. ABCC1 and ABCCS3 have also been shown to provide protective
effects by transporting glutathione-conjugated anions from the cytosol to the extracellular
compartment to prevent cellular accumulation of toxic metabolites™ " and, similar to
ABCB6, ABCC1, and ABC(C3 are also capable of efluxing chemotherapeutics of broad
function including anti-cancer functions. Collectively it is conceivable that ABCB6, ABCC1,
and ABCCS gene expression levels are regulated by a feedback mechanism linked to
oxidative stress and toxin exposure induced by cigarette smoke exposure to help facilitate
anti-oxidant activities within airway epithelial cells.

Importantly, it was observed that as cigarette smokers progress to develop COPD,
ABCC1 gene expression in particular is elevated compared to individuals that do not
have COPD. Linked to cigarette smoking, elevated ABCC1 gene expression has been
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observed in both non-small cell carcinoma and small-cell carcinoma lung cancers.”’ The
contribution of ABCC1 biology in response to cigarette smoke exposure and to the associated
development of COPD and lung carcinoma is intriguing. An in vitro model of cigarette
smoke extract conditioned media induction of ABCC1 gene expression may be valuable in
further interrogating this biology and the functional consequences in the context of COPD
and lung carcinomas.

Respiratory viruses are another prevalent stimuli to which the human airway may be
exposed and, just like tobacco smoke, there is still much that remains to be understood
regarding how different viruses affect lung function and health. Again, we can turn to
understudied genes such as ABCF1 and through a combination of bioinformatics and
functional knock-out studies, elucidate new correlations between this gene and viral defense
mechanisms in the lung.

Under VACV-70 challenge, a model of dsDNA viral exposure, ABCF1 was linked to
CXCL10 secretion and the gene pathways regulated by ABCF1 under VACV-70 challenge
were associated with TLR signaling and intracellular signal transduction. Furthermore, Poly
I.C, a dsRNA analog and TLR3 ligand, induced CXCL10 in an ABCF1 sensitive mechanism.
Collectively, this study’s data suggests that ABCF1 may regulate CXCL10 production
downstream of dsDNA sensing mechanisms and TLR3 in human airway epithelial cells.
It remains possible that ABCF1 can function to complement viral sensing mechanisms
mediated by canonical dsSRNA viral response machinery (e.g., RIG-I) as there are possible
redundancies in viral sensing mechanisms in the cell.”"" The data from this chapter form
the foundation to pursue precisely how ABCF1 is regulated and where it functions in the
network of cytosolic nucleic acid sensors and immune responses in human airway epithelial
cells.

The findings in Chapter 2, as well as previously identified causal relationships be-
tween ABC transporters and lung disease (e.g., ABCC7 and cystic fibrosis) emphasize
the importance of ABC transporters in human lung health and highlight the necessity
of leveraging bioinformatics and data-mining approaches to unearth these critical and
previously overlooked connections.

5.1.2 Cannabis smoke exposure
Unlike tobacco smoke and respiratory viruses, which have well understood correlations to
lung disease (even if some of the details remain to be explored, as mentioned above), the

effects of cannabis smoke on lung function and whether there are any strong correlations
between exposure and the onset of lung disease have yet to be established. Previous legal
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restrictions on the use and consumption of cannabis have resulted in a lack of research
into the area compared to tobacco smoke and almost no large-scale clinical trials or
longitudinal studies have been performed to date. Chapter 2 of this thesis demonstrates
how bioinformatics can be used to extract novel information from already well-studied
exposure systems. In Chapter 3, bioinformatics is instead used to investigate the effects of
stimuli with little prior data.

The in vitro smoke exposure studies performed in Chapters 3.1. and 3.2. underscore the
similarities between tobacco and cannabis smoke exposure on epithelial barrier integrity,
antiviral defense mechanisms, pro-inflammatory immune response, oxidative stress response,
and response to long-acting (-agonist/glucocorticoid therapy. As evidenced by the degraded
cell barrier integrity, decrease in anti-viral defense mechanisms, and increased inflammation
and oxidative stress, cannabis smoke is not innocuous. It may be for these reasons that
the use of vaporizors for cannabis consumption is increasing in Canada’” " as users may
be looking to reduce some of the harmful effects of cannabis combustion that are being
highlighted in the literature and news. However, research still needs to be performed to
determine whether vaping, specifically of dried flower/bud (as cannabis oils have be linked
to their own uniquely concerning respiratory outcomes and as the vaporization of dried
cannabis would be the most reasonable alternative to combustion in terms of product
similarity), actually mitigates these effects and should therefore be suggested as a safer user
practice.

With the above in mind, we do know from previous research”" " that cannabis use
confers some acute benefits to the lung and while reduced airway compliance and association
with bronchitis and coughing have been noted,”" """ cannabis smoking appears to lack the
same direct, long-term correlation with certain lung diseases such as cancer that are found
with tobacco smoke. A limitation of previous cannabis studies is the lack of mechanistic
interrogation into the role that the endocannabinoid system contributes to the observed
functional consequences of cannabis smoke, both protective and detrimental. Chapter 3.3.
looks into the various cannabinoid receptors in the lung to provide a comprehensive profile
of expression and correlation with factors such as sex and airway disease status.

To better understand the functional consequences of the endocannabinoid system
in the epithelial cells of the human airway, I performed a characterization study using
bioinformatic and complementary protein analysis approaches. In situ and in vitro protein
analysis demonstrated that three cannabinoid receptors, CB1, CB2, and TRPV1, are
expressed at the protein level in human airway epithelium. The presence of these receptors
provided the initial confirmation required for an exploration into the endocannabinoid
system downstream of the receptors. Using 1090 unique patient samples of airway epithelial
cells curated from publicly available data sets, I demonstrated in healthy subjects that
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the gene expression levels of the endocannabinoid system are elevated in females relative
to males. However, further analysis of patients with chronic lung diseases such as COPD
and asthma suggest that disease status appears to be a stronger driver of endocannabinoid
system gene expression, as the sex-dependent effects identified in healthy individuals are
lost in individuals with these diseases. Lastly, my bioinformatic approach was validated
by demonstrating that TRPV1, a top candidate up-regulated at the gene level in these
studies, is also up-regulated at the protein level in asthmatics. Collectively, these results
confirm the expression of the endocannabinoid system in human airway epithelial cells
and suggest that both sex and disease status may impact cannabinoid responses. These
results and those in the literature suggest that a universal response to inhaled cannabis
by healthy subjects and those with asthma or COPD should not be assumed and cautions
translation of safety and efficacy studies performed in healthy individuals to those with
underlying asthma or COPD. Adjusting the response to cannabis use is especially pertinent
with respect to sex and gender, as cannabis use patterns have been reported to differ
among males and females, with females consuming less overall quantity and frequency.
Crucial sex differences identified in both the literature and in the surveyed user responses
above mean that cannabis may affects males and females differently, suggesting there is
no “one size fits all” strategy for the regulation of cannabis or for suggested user practice
guidelines. As will be discussed later in this chapter, these results emphasize the importance
of disaggregating data based on key phenotypic groups such as sex, age, and ethnicity to
ensure the bioinformatic analyses performed are applicable to more than just white, cis-male
bodies, which can often be considered the “default” if sex/gender and ethnic considerations
are not taken into account.

5.1.3 SARS-CoV-2 infection

The first two data chapters in this thesis demonstrated how bioinformatics can be used
to glean new information regarding the effects of relatively well-studied airway stimuli
(Chapter 2) and how similar computational methods can be leveraged to characterize the
effects of under-studied stimuli (Chapter 3). Chapter 4 of this thesis uses bioinformatics
to gain insight into a completely novel respiratory stimuli, completing our journey from
the well-known to completely unknown. While respiratory viruses are broadly understood,
as discussed in Chapter 2.2., the SARS-CoV-2 coronavirus did not exist until late 2019,
requiring a vast array of multidisciplinary researchers to come together to characterize both
the mechanisms and host outcomes of this novel pathogen to combat the resulting deadly
disease pandemic.

The seminal report identifying angiotensin-converting enzyme 2 (ACE2) as the primary
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receptor for SARS-CoV-1 did so through co-immunoprecipitation of ACE2 with the SARS-
CoV-1 spike (S) domain 1 in a HEK293 cell over-expression system.””” ACE2, in conjunction
with the cellular serine protease TMPRSS2, were validated as cellular entry determinants
for SARS-CoV-1 using mechanistic studies.””” These findings laid the foundation for our
understanding of how coronaviruses enter their target cells via the binding of a surface unit
of the S glycoprotein to a cellular receptor followed by protease facilitated cleavage of the S
protein leading to fusion of the viral and cellular membranes.

Following the initial outbreak of SARS-CoV-2 in 2019, studies began to suggest that
this novel coronavirus employed both the ACE2 receptor and cellular proteases such as
TMPRSS2, CTSB, and CTSL for host cell entry in a similar manner to SARS-CoV-1.""" The
binding affinity between ACE2 and the SARS-CoV-2 S protein were suggested to be sufficient
for human transmission” and ACE2 was subsequently detected in human alveoli, "’ airway
epithelial cells,” A549 type II alveolar epithelial cells, "’ and human lung adenocarcinoma
cell line Calu-3""" via in situ immunohistochemical and immunocytochemical staining.
TMPRSS2 was also observed to be expressed in the human airway epithelium and type II
alveolar epithelial cells.

While these studies provide an important starting point for our understanding of coron-
avirus cellular entry mechanisms, certain methodological issues need to be addressed. For
instance, in the original report suggesting ACE2 as the primary receptor for SARS-CoV-2
only one antibody was used and the specificity of this antibody was overlooked. A
rigorous protein profiling study undertaken by researchers at the Human Protein Atlas
observed strong staining for ACE2 in several organs that lacked mRNA expression when
using this original antibody, suggesting a lack of binding specificity. Indeed, the im-
munohistochemical analyses performed in Chapter 4.1 found very limited expression of
ACE2 in the respiratory system using this same antibody. © Therefore, the specificity of
the ACE2 antibody used for analysis of expression patterns in human lung tissues remains
to be addressed. Another issue with the seminal studies regarding the SARS-CoV-2::ACE2
association is that there is no comparison of ACE2 expression levels in the lung with those
observed in any other tissues or organs in the human body. The immunohistochemical
analysis performed by the Human Protein Atlas not only used two different and stringently
validated antibodies, but also utilized an extended patient cohort with samples from 61
different organs and tissue types including 360 different normal lung samples analyzed
by three independent consortia (Human Protein Atlas, FANTOMS5, and GTEx).'"" This
analysis shows very little ACE2 expression in the human airway. Rather, the highest levels
of expression of ACE2 occur in the gastrointestinal tract, kidneys, and testis. While these
results do not necessarily negate the potential importance of the ACE2 receptor in relation
to SARS-CoV-2 entry mechanisms, it certainly warrants further investigation.
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To address the uncertainties related to SARS-CoV-2 receptors in the human lung, gene
expression and in situ protein profiling of candidate receptors in human airway epithelial
cells and lung tissue were performed in Chapter 4.1. At both the transcriptomic (microarray,
RNA-seq, and scRNA-seq) and proteomic (Human Proteome Map and immunohistochemical
analysis) levels, ACE2 expression in lung epithelial cells throughout the airway tree was
either not detected or detected at marginal levels. Analysis of the promoter regions of
putative SARS-CoV-2 receptors also suggested low ACE2 expression in the lung. These
results do not appear to be correlated with key phenotypes such as sex and age.

Presence of other candidate receptors and/or proteases such as TMPRSS2, CD147, and
GRP78 were confirmed via in situ protein expression analysis, with CD147 and GRP78 in
particular found to be highly expressed across all methods of analysis, from the trachea down
to the epithelium of the small airways. These findings suggest that while ACE2 may still
be an important receptor for the S protein of SARS-CoV-2 and other similar coronaviruses,
with countless studies identifying it as integral for infection, other mechanisms of viral entry
are likely at play and warrant further investigation. Recent studies have proposed that
SARS-CoV-2 may first enter through the eye conjunctiva and cells in the upper airways were
ACE2 expression is higher whereby up-regulation of ACE2 expression through interferon
stimulation or external factors such as tobacco smoking allows the virus to spread and infect
the lung parenchyma. "' Once again, these putative mechanisms require further validation.

Regardless of the method of entry, it is also important to understand what happens once
the virus has breached the barrier defenses of it’s host. Chapter 4.2 interrogates the human
host response upon viral entry and gains important insights into type I interferons and
interferon-stimulating genes (ISGs), both critical components of the host defense response.
The time-series RNA-seq study in Chapter 4.2 identifies a weak stimulation of type I
interferon transcript expression over time, correlating with an increase in viral replication.
These results demonstrate that infection with wild-type and replication competent SARS-
CoV-2 is capable of inducing a type I IFN response in human airway epithelial cells sufficient
to activate downstream anti-viral ISGs. In addition, the data in this study demonstrate
that SARS-CoV-2 is unable to inhibit downstream IFN responses that are mediated by
STAT proteins, which is promising for the development of type I IFNs as treatment or
post-exposure prophylactics. "

Furthermore, it is also demonstrated that levels of IFN-a2 detected in sera from patients
with moderate COVID-19 can induce an antiviral ISG response in human airway epithelial
cells as well as inhibit SARS-CoV-2 replication. Thus, this study highlights the dynamic
nature of virus-host interaction during the course of SARS-CoV-2 infection and raises
intriguing questions about the role and timing of IFN responses in predicting the likely
severity of COVID-19.
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Another key take-away from Chapter 4 is the observed benefit of multi-omic analysis
through the combination of transcriptomics (both bulk and single cell) and proteomics,
specifically in Chapter 4.1. The multi-disciplinary approach of combining this type of large,
multi-omic analysis with in situ validation techniques is something that will be discussed
further on in this chapter as paramount for the future of respiratory medicine.

It is unlikely that the COVID-19 pandemic will be the last global disease outbreak
experienced in our lifetime. As climate change continues to destabilize our ecological
surroundings, and humans continue to remove or encroach upon the habitats of wild
animals and engage in controversial farming practices, zoonotic viruses will continue to be
of major concern to the global health sector. Our ability to protect ourselves from emerging
pathogenic organisms relies heavily on our ability to combine multidisciplinary skill-sets to
understand the mechanisms and consequences of previous disease outbreaks. Bioinformatics
coupled with large-scale genomic surveillance efforts around the world offers a toolkit to
apply what we have learned to the next global health crisis. It is imperative to learn how
to use this toolkit effectively so that future responses are swift and equitable.

5.2 Limitations and future directions of bioinformatic
analysis

It is evident that high-throughput sequencing, particularly of RNA, and the various
downstream computational work flows have become critical in the advancement of respiratory
medicine. However, there are still areas that require improvement as this type of research
becomes the new standard. My aim is to shed light on these limitations and provide
suggestions on how we as a scientific community can continue to develop bioinformatic
methodologies for the benefit of both basic science and clinical health research.

One of the hurdles to bioinformatic analysis of respiratory diseases is access to sufficiently
large and high quality data sets. On the one hand, some respiratory diseases are relatively
rare and, as such, studies can often be under-powered due to small cohort size."”” On the
other hand, some of the most common, and often chronic, respiratory diseases, such as
COPD and asthma, are incredibly complex and involve multiple pathogenetic mechanisms
resulting in diverse clinical expressions all warranting in-depth analysis. Experiments can
be performed in vitro using cell lines to gain a preliminary understanding of the effects
a specific change may have on the airway epithelium (as is demonstrated in Chapters
3.1 and 3.2 of this thesis) however, primary samples from human subjects are ultimately
considered the best practice, especially when studying the intersection of external stimuli

167



and preexisting respiratory conditions. A coordinated effort to increase data-banking
practices in repositories such as the Gene Expression Omnibus (GEO) will allow for the
sharing of data and the potential to increase population sizes in some studies. Chapters 2.1
and 4.1 of this thesis in particular demonstrate the important and novel findings that can
be obtained through the curation and analysis of previously deposited data sets. However,
a key caveat of the success of this type of data deposition and subsequent analysis is the
type and quality of data that is being collected and shared. As described in Chapters 2.1.4
and 4.1.4 of this thesis, the curation and downstream analysis of data sets from different
studies and research labs requires a considered approach with respect to data normalization
and correction of batch effects, as deviations in sample collection and processing protocols
can have major impacts. " °°’ This type of data pre-processing is critical for drawing any
conclusions as many of these data sets would not be comparable otherwise.

Microarray data can pose particular challenges, especially when it comes to batch
correction and data processing. Microarray technology has been the gold standard for
transcriptomic analysis for years. Since microarrays have been widely used by many research
groups around the world there is both a large repository of data available, as mentioned
above, as well as a thorough understanding of the limitations of the technology. For
transcriptomic analysis, microarrays have proven to be an inexpensive and readily accessible
option for biomarker discovery and detection. Microarray expression profiling of epithelial
brushings in asthma was successfully used to stratify patients into distinct subtypes of
mild to moderate asthma with a Th2-high or Th2-low phenotype.””' However, microarrays
suffer from low signal-to-noise ratio and are limited to the detection of transcripts for which
a probe exists on the given microarray chip, both limiting the ability of detecting lowly
abundant or novel transcripts in a given sample.””" Furthermore, the number of microarray
platforms on the market is quite extensive and, with no two microarray chips being created
equal, the ability to compare results across platforms, which is paramount for the successful
leveraging of deposited data sets, as mentioned above, requires stringent correction methods
and probe annotation. As sequencing of RNA has become more feasible in recent years, it
has been successfully applied to fill into some of the gaps left by microarray technology.
RNA-seq is a high-throughput, dynamic alternative to microarrays for transcriptomic
analysis that is highly sensitive to lowly expressed transcripts and does not restrict the
analysis to known transcripts, providing a path for unbiased, exploratory data analysis and
biomarker discovery.

Though the benefits of transitioning from microarray to RNA-seq technology are
hopefully apparent, especially in instances of whole transcriptomic or exploratory analyses,
some considerations also need to be made to ensure the best results. Sequencing depth needs
to be considered when designing a transcriptomic analysis, as low depth and coverage can
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lead to poor recall which can result in an increase in false negatives and an inability to detect
more rare variants. 30x sequencing depth is considered good for most studies and should be
considered early in the experimental design process. " The RNA-seq studies outlined in this
thesis have a sequencing depth of 30 million reads/sample, providing sufficient depth and
coverage of the transcriptome. RNA-seq also places an extensive demand on bioinformatics
and statistics for storage, processing analysis, and interpretation; far greater than that of
it’s microarray counterpart. The average .FASTQ file output from an RNA-seq run can
range from 5-25 GB compared to the average .CEL file out from an Affymetrix microarray
analysis which is approximately 50 MB. As sequencing depth and sample size increase,
both necessary for sufficient coverage and statistical power, the storage and processing
capabilities required for an RNA-seq analysis grow exponentially. As such, appropriate
resources, both structural and financial, need to be allotted for ‘omics analyses of large
biological data sets.

Another major consideration for effective computational analysis of respiratory data
is the need for consistent and thorough patient phenotyping and a concerted effort to
accumulate this type of detailed metadata. Sex, gender, ethnicity, age, and co-morbidity
are all important co-factors that can affect both the diagnosis and prognosis of respiratory
illness. A good example of this is with idiopathic pulmonary fibrosis (IPF), a chronic lung
disease of unknown etiology that generally affects adults over the age of 50. Patient gender
has been identified as an influencing factor with respect to the diagnosis of IPF, with women
possibly under-diagnosed and men over-diagnosed with the disease, especially when exam
results are inconclusive.”” However, male sex has also been independently associated with
an increased risk of poorer prognostic outcomes such as lung transplantation and death after
adjusting for age and lung function metrics.”~ The disaggregation of data by sex and gender
is critical for this type of understanding and is necessary moving forward. As described in
Chapter 3.3 of this thesis, the direct comparison of endocannabinoid system expression in
males versus females identified important sex differences that, in the context of gendered
cannabis use data, could lead to considerably different outcomes and require targeted
approaches between males and females in terms of cannabis-related disease prevention.
Chapter 3 also highlights the importance of disclosing relevant patient co-morbidities such
as lung disease and smoking status, especially in the context of evolving research areas
such as cannabis exposure. Previous criminalization of cannabis use has made research on
the topic exceedingly difficult. Many of the existing studies on cannabis exposure suffer
from a lack of description of consumption method and furthermore, the tobacco exposure
history for many individuals identified as cannabis users is unclear. With the legalization
of cannabis in Canada, researchers are now able to begin studies into acute and chronic
cannabis use but, to do so, will need sufficiently sized cohorts of individuals who only smoke
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cannabis so as to accurately characterize the short- and long-term effects of it’s use. Efforts
were also made to separate patient data by sex and age in Chapter 4.1 to ascertain whether
there were any significant differences in SARS-CoV-2 receptor expression. However, as
described in Chapter 4.1.4, not all data sets analyzed provided the necessary metadata for
robust disaggregation based on sex and age, and even fewer provided detailed phenotyping
of ethnic background. Moving forward, it is imperative that clinicians, researchers, and
data banks work together to develop and follow guidelines for the collection, reporting, and
use of phenotypic data. Bioinformatics is only as powerful as the data collected. We need
to be harnessing the full potential of computational biology while also ensuring all research
outcomes are more broadly applicable.

With respect to the future of RNA-seq in respirology, a strong push should be made for
the development and funding of more longitudinal studies. RNA-seq inherently provides
a snap shot of what is going on within a cell at a given time. While this is useful for
providing foundational knowledge on the affects of a given airway stimuli or for assessing
acute respiratory conditions, many of the most common airway diseases are both chronic
and complex and therefore cannot be sufficiently characterized by a single sequencing
experiment. To fully understand the impacts environmental exposures such as smoke or
respiratory viruses have on the human lung, and what the relationship is to disease onset
and progression, large cohorts of well-phenotyped patients will need to be followed over
longer periods of time, with sampling frequency being dependent on study design, exposure
type, and expected disease outcome. Considerations will also need to be taken into which
compartments are sampled overtime, as epithelial cells from the lower airways are not
readily accessible for repeated sampling compared to cells derived from the nasopharyngeal
airways. The use of multi-omic technologies to identify surrogate signals of lung pathology
circulating in the blood or saliva would be of further benefit for the above proposed
longitudinal studies. While the cost of sequencing has indeed decreased dramatically over
the last decade, this type of proposed large-scale longitudinal sequencing study is still quite
expensive. However, if we are to effectively characterize the mechanisms and outcomes of
these complex respiratory diseases on our path towards precision medicine, these types of
studies are absolutely necessary.

The final key direction in which I believe both respiratory biology and general science
need to head is towards the further application of multi-omic analyses, particularly in
clinical research. Multi-omic approaches are critical for future medical advances such as the
development of prognostic biomarkers or novel drug candidates™'” and will require sufficient
funding and skilled research analysts to translate the large amounts of data into medically
relevant outcomes.

As noted previously, this thesis has primarily focused on a single ‘omic technology:
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RNA-seq. While the transcriptomic analyses presented in this thesis have led to important
and novel insights into respiratory biology, there are certain biologically relevant questions
that assessment of RNA alone cannot answer. For example, while RNA abundance is a
reasonably good indicator of function and often correlates well with downstream protein
abundance, proteomic validation would no doubt be incredibly useful and perhaps further
elucidate the disease mechanisms being studied. As demonstrated in Chapter 4.1, the
combination and comparison of bulk RNA-seq, scRNA-seq, and proteomics provides deeper
insights while simultaneously validating previous findings thus, strengthening the research
as a whole and improving scientific rigour. Single cell sequencing, for example, provides a
more granular understanding of cellular responses to stimuli which is especially important
given the heterogeneity found between individual cells and cell types in chronic, complex
lung diseases. The combination of bulk and single cell RNA-seq may lead to even more
precise and rapid detection of aberrant function and is just one example of the benefits of
integrative ‘omics.

Multi-omic analysis is not without it’s challenges however. The inherent differences
between different ‘omic data sets in terms of size and retrievable output makes data
harmonization (e.g., normalization, batch correction, and other transformations) both
vitally important and incredibly complex. Data heterogeneity is often one of the primary
bottlenecks for multi-omic workflows and requires considered pre-processing to overcome.
Some tools have been developed in recent years to improve handling of multi-omic data
sets, such as Multi-Omics Factor Analysis (MOFA), but an understanding of the variability
between data sets is still necessary. Furthermore, differences in information burden
(i.e., the amount of data generated between each technique) may lead to information
bias, as the large amounts of output from one ‘omic data set may overshadow that of
another.”” For example, transcriptomic data sets are comprised of hundreds of thousands of
transcripts compared to the few thousand proteins detectable in a proteomic data set, making
interpretation a challenge. Finally, researchers will also need to be cautious when choosing
the statistical tools and models used to analyze their multiple data sets to ensure data is
not over-simplified and to ensure robust and reproducible results. Machine-learning/deep-
learning algorithms and statistical bench-marking studies are currently attempting to
address some of these issues however, the fields are still in their infancy compared to
gold-standard biological methods and more research is warranted.

Given sufficient funding and the expertise of bioinformaticians and other interdisciplinary
researchers, the field of multi-omics will continue to advance us towards a future of precision
or even personalized medicine. The ultimate purpose of applied multi-omics is to increase
the diagnostic yield for health and improve disease prognosis via robust understanding of
genotype-to-phenotype relationship.
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5.3 Final remarks

In spite of the aforementioned limitations, a few key conclusions can be gleaned from this
thesis. While the large amounts of data can be a challenge, it is also an exciting resource.

Success in precision medicine relies heavily on high-quality genetic and molecular data
sets derived from large, well-phenotyped patient cohorts. ”” Bioinformaticians offer the
statistical and computational expertise needed to integrate large amounts of multi-omic
data and make significant meaning from it. It is through these advances that the medical
field inches closer to the goal of personalized medicine for all.

In the broad sense, the future of bioinformatics is definitely bright. The potential
advantages that come from combining both population and individual patient data with
epidemiological and molecular profiling are innumerable, ranging from improved disease
prevention, more accurate diagnosis, tailored treatment and improved long term outcomes
for a variety of human health conditions. ”° As we focus in on respiratory medicine in
particular, bioinformatic analysis of large mutli-omic data will be of vital importance in
tackling some of the greatest threats facing global respiratory health. As previously covered
in this thesis, the progress made leading up to and during the COVID-19 pandemic will
become even more critical as more novel respiratory viruses emerge in the coming years.
Coupled with the already observable effects of climate change on respiratory health such as
increased pollution and decreasing air quality exacerbating pre-existing health conditions
such as asthma, " the need to be able to rapidly and accurately analyze diverse biological
data sets for the benefit of both treatment and prevention has hit a new level of urgency,
requiring a multidisciplinary approach with bioinformatics at the forefront.

The development of bioinformatic and ‘omics research is happening at a rapid rate and
while there are some ‘omics methods that were unable to be fully discussed within this thesis,
it is clear that, even while focusing primarily on RNA, NGS and large amounts of ‘omics
data combined with advances in bioinformatic tools and techniques have provided a wealth
of knowledge and new opportunities for biologists, including those studying respiratory
medicine.

As researchers begin to combine these methods and adapt their experimental designs
to incorporate multi-omics integration, our collective understanding of the human airway
will increase dramatically and result in more prevention and treatment of lung disease and
improvement in the quality of life for many.
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Appendix A
Supplementary Material - Chapter 2

Supplementary Table 1

Table 1: GEO data set demographics

Comparison of Dataset Demographics

GEO ID GSE99%4 GSE4498 GSE11784 GSE11906 GSE37147 GSE4302 GSE63142 GSE67472 GSE76227
Airway Generation | Large airway Small airway Small airway Trachea, large Medium airway Medium airway Medium airway Medium airway Medium airway

(generation 2'-3") | (generation 10"~ ion 10" | ( i “ ion 6"-8") ion 3°-5") | (generation 3"*-5") | (generation 3"'-5") | (generation 3*-5")

1 12") 3), & small
airway (generation
10"-12"%)

Sample Type Epithelial cells Epithelial cells Epithelial cells Epithelial cells ial cells cells i cells Epithelial cells Epithelial cells

from brushings | from brushings | from brushings | from brushings | from brushings | from brushings | from brushings | from brushings | from brushings
Number and 34 current 10 individuals 72 individuals 17 trachea, 21 69 current 28 healthy 26 healthy 43 healthy 26 healthy
Classification of | smokers, 14 with >25 pack with >25 pack large airway, and | smokers and 82 |individuals and |individuals, 59 individuals and | individuals, 59
Patients former smokers | years smoking years smoking 35 small airway | former smokers | 42 asthmatics mild asthmatics, |62 asthmatics mild asthmatics,

(average history with no history with no from healthy (average 19 moderate 19 moderate

duration of reported COPD | reported COPD | individuals duration of asthmatics and asthmatics and

smoking smoking 51 severe 51 severe

cessation was 36 individuals 54 individuals cessation was asthmatics asthmatics

10.49 years), and with >34 pack with >25 pack 11.11 years) with

23 never- years smoking years smoking >47 pack years

smokers, with history with history with no smoking history

current and reported COPD, |reported COPD |with no reported

former smokers 72 individuals COPD

having >22 pack with >25 pack 20 individuals

years smoking years smoking with >38 pack 87 individuals

history with no history with no years smoking with >51 pack

reported COPD reported COPD | history with years smoking

reported COPD, | history with

54 individuals reported COPD,
with >25 pack 151 individuals
years smoking with >47 pack
history with no years smoking
reported COPD | history with no
reported COPD

Microarray Affymetrix Human | Affymetrix Human | Affymetrix Human | Affymetrix Human | Affymetrix Human | Affymetrix Human | Agilent 014850 Affymetrix Human | Affymetrix HT HG
Platform Genome UI33A Genome U133 Genome U133 Genome U133 Gene 1 ST Genome U133 ‘Whole Human Genome U133 U133 plus PM
Plus 2 Plus 2 Plus 2 Plus 2 Genome Plus 2
Microarray 4x44K
G4112F
Normalization Mas5 Mas5 Mas5 Robust Multi-array | Robust Multi-array | Cyclic LOESS Robust Multi-array | Robust Multi-array
Method normalization nor normalizati Average (RMA) | Average (RMA) Average (RMA) | Average (RMA)
without log without log without log without log with log with log with log with log
transformation transformation transformation transformation transformation transformation transformation transformation
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Supplementary Table 2

Table 2: ABC transporter expression in different airway generations

GSE11906 — Small vs Large Airway

Probeset Raw Benjamini Hochber: Log2 FCin
Probeset ID Name valuez JAdjustment o Smgll Airway
230913_at ABCG1 0.180 0.180 -0.894
202804 _at ABCC1 0.180 0.180 -0.874
1557374 _at ABCC9 0.180 0.180 -0.851
217504 _at ABCA6 0.180 0.180 -0.776
213485_s_at ABCC10 0.180 0.180 -0.769
243951_at ABCB1 0.180 0.180 -0.693
203196_at ABCC4 0.180 0.180 -0.681
1555323 _at ABCB9 0.180 0.180 -0.631
206155_at ABCC2 0.180 0.180 -0.614
203192_at ABCB6 0.180 0.180 -0.613

GSE11906 — Large Airway vs Trachea

Probeset ID Probeset Raw p Benjamini Hochberg Log2 F.C in
Name values Adjustment Large Airway
204719_at ABCA8 0.053 0.079 0.963
1552590_a_at ABCC12 0.053 0.079 0.854
220383_at ABCG5 0.053 0.079 0.807
1570505_at ABCB4 0.053 0.079 0.347
1554911_at ABCC11 0.053 0.079 0.133
209735_at ABCG2 0.074 0.110 -0.686
233371_at ABCC13 0.074 0.110 0.423
240717 _at ABCB5 0.037 0.111 0.912
210245_at ABCC8 0.101 0.152 0.389
231751_at ABCG8 0.136 0.204 1.474

GSE11906 — Small Airway vs Trachea

Probeset Raw Benjamini Hochber: Log2 FCin
Probeset ID Name valuez JAdjustment o Smgll Airway
202804 _at ABCC1 0.007 0.022 -0.983
203196_at ABCC4 0.007 0.022 -0.916
225973_at ABCB3 0.007 0.022 -0.902
230913_at ABCG1 0.007 0.022 -0.866
1557374 _at ABCC9 0.007 0.022 -0.849
213485_s_at ABCC10 0.007 0.022 -0.752
200045_at ABCF1 0.007 0.022 -0.743
219577_s_at ABCA7 0.007 0.022 -0.678
203192_at ABCB6 0.007 0.022 -0.627
1554878 _at ABCD3 0.007 0.022 -0.573
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Supplementary Table 3

Table 3: Impact

of smoking status on ABC transporter expression

GSE11906 - Non-smokers vs Smokers

Probeset Raw Benjamini Hochber Log2 FC in
Probeset ID Name valuez JAdjus’(ment o S?nokers
203192_at ABCB6 1.58E-09 1.79E-07 1.194
208161_s_at ABCC3 7.65E-08 4.32E-06 1.045
1553295_at ABCA13  1.58E-06 4 .45E-05 -1.045
1553604 _at ABCA13  1.20E-06 4.45E-05 -0.731
209620_s_at ABCB7 5.58E-06 1.26E-04 -0.455
1553605_a_at ABCA13  8.82E-06 1.58E-04 -0.739
202804 _at ABCC1 9.76E-06 1.58E-04 0.562
209641_s_at ABCC3 5.51E-05 7.79E-04 1.172
230682_x_at ABCC3 7.25E-05 9.11E-04 0.636
223320_s_at ABCB10  1.19E-04 1.22E-03 -0.219
GSE11784 - Non-smokers vs Smokers
Probeset ID Probeset Raw p Benjamini Hochberg  Log2 FC in
Name values Adjustment Smokers
203192_at ABCB6  4.64E-10 5.24E-08 0.902
202804 _at ABCC1 2.75E-09 1.56E-07 0.624
208161_s_at ABCC3 3.63E-06 1.37E-03 0.857
207622_s_at ABCF2 1.83E-04 5.18E-03 -0.258
1553605_a_at ABCA13  2.46E-04 5.55E-03 -0.785
230682_x_at ABCC3 4.09E-04 7.71E-03 0.378
216066_at ABCA1 2.84E-03 0.046 0.663
1553604 _at ABCA13  5.82E-03 0.072 -0.509
209620_s_at ABCB7 5.34E-03 0.072 -0.212
211224 _s_at ABCB11  6.34E-03 0.072 0.390
GSE4498 - Non-smokers vs Smokers
Probeset ID Probeset Raw p Benjamini Hochberg  Log2 FC in
Name values Adjustment Smokers
203192_at ABCB6 1.39E-04 0.016 0.928
208161_s_at ABCC3 6.00E-04 0.034 1.006
1553604 _at ABCA13  5.64E-03 0.213 -1.124
1553605_a_at ABCA13 0.014 0.311 -1.022
215559_at ABCC6 0.021 0.388 -0.322
1558460_at ABCC5 0.030 0.405 -0.293
209994 _s_at ABCB1 0.030 0.405 0.271
1569072_s_at ABCB5 0.036 0.405 0.204
202804_at ABCC1 0.036 0.405 0.296
209641_s_at ABCC3 0.043 0.437 0.377
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Supplementary Table 4

Table 4: Impact of smoking cessation on ABC transporter expression

GSE37147 - Current vs Former Smokers
Benjamini .
Probeset ID Probeset Name  Raw p values Hoc]hberg Log2 FC in
Adjustment o
85320_at ABCC11 3.89E-04 0.019 0.002
24_at ABCC4 1.06E-03 0.026 -0.007
8714_at ABCC3 2.79E-03 0.041 0.137
10058_at ABCB6 3.31E-03 0.041 0.139
22_at ABCB7 5.22E-03 0.045 -0.012
5244 _at ABCB4 5.47E-03 0.045 0.042
4363_at ABCC1 6.89E-03 0.046 0.069
5825_at ABCD3 7.47E-03 0.046 -0.011
154664 _at ABCA13 0.013 0.067 -0.058
64137_at ABCG4 0.014 0.067 -0.010
GSE994 - Current vs Former Smokers
Benjamini Log2 FCin
Probeset ID Probeset Name  Raw p values Hochberg Current
Adjustment Smokers
202804 _at ABCC1 1.562E-04 2.29E-04 0.430
202805_s_at ABCC1 5.45E-04 1.63E-03 0.564
203192_at ABCB6 1.92E-03 5.75E-03 0.401
215703_at CFTR 1.93E-03 5.80E-03 0.343
215873_x_at ABCC10 1.96E-03 5.88E-03 -0.042
219577_s_at ABCA7 0.014 0.021 -0.529
209641_s_at ABCC3 9.77E-03 0.029 0.160
209993 _at ABCB1 0.042 0.064 -0.388
205043_at CFTR 0.024 0.073 0.156
201873_s_at ABCE1 0.026 0.078 0.119
GSE994 - Current vs Never Smokers
Benjamini Log2 FCin
Probeset ID Probeset Name  Raw p values Hochberg Current
Adjustment Smokers
202804 _at ABCC1 9.68E-05 2.90E-04 0.603
219577_s_at ABCA7 8.10E-04 2.43E-03 -0.490
203981_s_at ABCD4 7.02E-03 0.021 -0.317
203192_at ABCB6 0.016 0.024 0.604
202394_s_at ABCF3 0.020 0.061 -0.172
201873_s_at ABCE1 0.053 0.080 0.268
203982_s_at ABCD4 0.027 0.081 -0.510
210245_at ABCC8 0.029 0.088 -0.193
215559_at ABCC6 0.031 0.093 -0.503
202805_s_at ABCC1 0.063 0.094 0.633
GSE994 - Former vs Never Smokers
Benjamini Log2 FCin
Probeset ID Probeset Name  Raw p values Hochberg Former
Adjustment Smokers
215703_at CFTR 9.08E-03 0.014 0.899
205043_at CFTR 0.034 0.051 -0.792
203196_at ABCC4 0.023 0.068 -0.301
215465_at ABCA12 0.055 0.082 0.475
202850_at ABCD3 0.028 0.084 -0.128
214033_at ABCC6 0.063 0.095 -0.294
202805_s_at ABCC1 0.109 0.109 0.069
206155_at ABCC2 0.041 0.122 -0.394
215873_x_at ABCC10 0.158 0.158 -0.089
208561_at ABCC9 0.060 0.180 -0.778
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Supplementary Table 5

Table 5: Association between COPD status and ABC transporter expression

GSE11906 - Smoker without COPD vs Smoker with COPD
Probeset Raw p Benjamini Hochberg  Log2 FC in

Probeset ID Name values Adjustment COPD
203505_at ABCA1 1.91E-04 0.011 0.595
1555039_a_at ABCC4 1.43E-04 0.011 -0.780
207583_at ABCD2 2.59E-03 0.057 -0.493
1554878_a_at ABCD3 2.39E-03 0.057 -0.551
204567_s_at ABCG1 2.12E-03 0.057 0.385
232081_at ABCG1 3.04E-03 0.057 0.457
202804_at ABCC1 7.28E-03 0.091 0.262
1554918_a_at ABCC4 7.28E-03 0.091 -0.494
1558460_at ABCC5 6.52E-03 0.091 -0.283
204343 _at ABCA3 0.018 0.154 -0.485

GSE11784 - Smoker without COPD vs Smoker with COPD

Probeset Raw p Benjamini Hochberg  Log2 FC in

Probeset ID Name values Adjustment COPD
213485_s_at ABCC10 1.09E-03 0.123 0.338
226363_at ABCC5 4.85E-03 0.274 -0.605
209994 _s_at ABCB1 0.028 0.344 -2.124
203191_at ABCB6 0.015 0.344 0.745
223320_s_at ABCB10 0.013 0.344 -0.440
202804_at ABCC1 0.030 0.344 0.208
209380_s_at ABCC5 0.018 0.344 -0.265
208480_s_at ABCC6 0.030 0.344 -1.113
202850_at ABCD3 0.028 0.344 -0.267
232081_at ABCGH1 0.030 0.344 0.429

GSE37147 - Smoker without COPD vs Smoker with COPD
Probeset Raw p Benjamini Hochberg  Log2 FC in

Probeset ID Name values Adjustment COPD
225_at ABCD2 8.37E-07 2.87E-05 -0.0716
10347_at ABCA7 1.17E-06 2.87E-05 0.0321
26154 _at ABCA12 2.10E-05 2.62E-04 0.132
6891_at TAP2 2.14E-05 2.62E-04 0.0387
6890_at TAP1 5.72E-04 5.60E-03 0.0406
4363_at ABCC1 8.29E-04 6.77E-03 0.0323
19_at ABCA1 1.65E-03 0.012 0.0549
23456_at ABCB10 3.49E-03 0.020 -0.00849
89845_at ABCC10 3.60E-03 0.020 0.0128
9429 _at ABCG2 0.029 0.141 -0.0314
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Supplementary Table 6

Table 6: Association between asthma status and ABC transporter expression

GSE67472 - No Asthma vs Asthma
Probeset D PUTES Rawpvaives  PCMRITOTRE  ematics
154664 _at ABCA13 3.19E-07 1.50E-05 -0.438
1244 at ABCC2 8.18E-06 1.92E-04 0.258
10057_at ABCC5 1.81E-04 2.84E-03 -0.219
10060_at ABCC9 4.39E-04 5.16E-03 -0.196
64240 _at ABCG5 9.43E-04 8.86E-03 -0.237
225 at ABCD2 3.00E-03 0.023 -0.223
10351_at ABCA8 9.59E-03 0.064 -0.161
10257_at ABCC4 0.012 0.071 -0.146
8714 _at ABCC3 0.020 0.105 -0.099
10350_at ABCA9 0.042 0.196 -0.118
GSE4302 - No Asthma vs Asthma
Probeset D UTTEEl Rawpvales  BCMETR MR matics
206155_at ABCC2 7.07E-05 7.99E-03 0.167
202805_s_at ABCC1 6.88E-04 0.039 0.152
1553604 _at ABCA13 2.62E-03 0.079 -0.380
1553605_a_at ABCA13 3.49E-03 0.079 -0.325
207623 _at ABCF2 3.22E-03 0.079 0.074
208462_s_at ABCC9 5.00E-03 0.089 -0.167
210099_at ABCA2 5.51E-03 0.089 0.129
1554918 a_at ABCC4 0.010 0.128 -0.111
207583_at ABCD2 0.010 0.128 -0.119
1557374 _at ABCC9 0.017 0.188 -0.506
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Supplementary Table 7

Table 7: Association between asthma severity and ABC transporter expression

GSE63142 - Mild/Moderate Asthma vs Severe Asthma

Probeset ID Probeset Raw p values Benjam.ini Hochberg FC in Less Severe
Name Adjustment vs More Severe
A_23_P160940 ABCA4 4.75E-04 0.012 -0.143
A_23_P25559 ABCC4 8.43E-04 0.012 -0.118
A_24_P16913 ABCC4 5.43E-04 0.012 -0.081
A_24 P222291 ABCC4 7.27E-04 0.012 -0.062
A_23_P41380 ABCE1 3.65E-04 0.012 -0.162
A_23_P18713 ABCG2 1.01E-03 0.012 -0.197
A_23 P201918 ABCB10 1.63E-03 0.017 -0.097
A_23 P39481 ABCA7 5.30E-03 0.048 0.206
A_23_P219013 ABCC10 5.83E-03 0.048 0.081
A_24_P197196 ABCB6 8.98E-03 0.067 0.100

GSE76227 - Moderate Asthma vs Severe Asthma

Probeset ID Probeset Raw p values Benjam.ini Hochberg FC in Less Severe
Name Adjustment vs More Severe
1553604_PM_at ABCA13 6.04E-04 0.065 -0.304
1553605_PM_a_at ABCA13 2.12E-03 0.114 -0.251
1553295_PM_at ABCA13 4.02E-03 0.145 -0.211
209246_PM_at ABCF2 8.92E-03 0.241 0.183
214209_PM_s_at ABCB9 0.019 0.414 0.182
241705_PM_at ABCA5 0.041 0.427 -0.226
240717_PM_at ABCB5 0.044 0.427 0.091
243167_PM_at ABCB5 0.043 0.427 -0.146
1554918_PM_a_at ABCC4 0.035 0.427 -0.077
205142_PM_x_at ABCD1 0.027 0.427 0.108
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Supplementary Figure 1

A GSE4498 TSE B GSE11784 TSE
p = 0.00721 5 p = 4.84x105
SRP096285 TSE SRP126155 TSE
88
*
p=1 p=1.9x10*

Figure 1: Union of differentially expressed genes between the tobacco smoke exposure
experiment in Calu-3 cells from this study and the genes differentially expressed in (A)

GSE4498, (B) GSE11784, (C) SRP096285, and (D) SRP126155 calculated with a
hypergeometric test in R.
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Supplementary Figure 2

Alveolar Epithelial Cells, donor1 : CNhs11325 ctss
Alveolar Epithelial Cells, donor2 : CNhs12084 ctss
Alveolar Epithelial Cells, donor3 : CNhs12119 ctss

Bronchial Epithelial Cell, donor1 : CNhs11327 ctss
Bronchial Epithelial Cell, donor2 : CNhs12085 ctss 1
Bronchial Epithelial Cell, donor3 : CNhs12623 ctss
Bronchial Epithelial Cell, donor4 : CNhs12054 ctss 0
Bronchial Epithelial Cell, donor5 : CNhs12058 ctss

Bronchial Epithelial Cell, donor6 : CNhs12062 ctss
‘ Bronchial Epithelial Cell, donor7 : CNhs12642 ctss
lung, adult, pool1 : CNhs10625 ctss
lung, fetal, donor1 : CNhs11680 ctss
lung, right lower lobe, adult, donor1 : CNhs11786 ctss
nasal epithelial cells, donor1, tech rep1 : CNhs12589 ctss

nasal epithelial cells, donor1, tech rep2 : CNhs12554 ctss
‘ nasal epithelial cells, donor2 : CNhs12574 ctss
‘ Small Airway Epithelial Cells donor2 (cytoplasmic fraction) : CNhs14564 ctss
Small Airway Epithelial Cells donor2 (nuclear fraction) : CNhs14565 ctss
Small Airway Epithelial Cells donor3 (cytoplasmic fraction) : CNhs14563 ctss
Small Airway Epithelial Cells, donor1 : CNhs10884 ctss

Small Airway Epithelial Cells, donor2 : CNhs11975 ctss

Small Airway Epithelial Cells, donor3 (nuclear fraction) : CNhs12583 ctss
Small Airway Epithelial Cells, donor3 : CNhs12016 ctss
trachea, adult, pool1 : CNhs10635 ctss
trachea, fetal, donor1 : CNhs11766 ctss
Tracheal Epithelial Cells, donor1 : CNhs11092 ctss
Tracheal Epithelial Cells, donor2 : CNhs11993 ctss

Tracheal Epithelial Cells, donor3 : CNhs12051 ctss

CDH1
CNR1
CNR2

Figure 2: Heat map of FANTOMb5 CAGE promoter activity data for CNR1, CNR2, and
CDHI (positive control) are shown for samples related to lung tissues (n = 28). Heat map
colour is proportional to promoter activity, depicted as logio-transformed normalized
transcripts per million (TPM). Grey represents no detection.
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Supplementary Table 8

Table 8: Relevant endocannabinoid signalling pathway candidates

Molecule Gene Associated protein Function
Receptor CNRI Cannabinoid receptor 1 (CBI) Primary receptor involved in endocannabinoid signalling
CNR2 Cannabinoid receptor 2 (CB2) Primary receptor involved in endocannabinoid signalling
GABRA2 butyric acid P bunit a-2 (GABRA2) Implicated in cannabis dependency
GPRSS G protein-coupled receptor 55 (GPRSS) Novel cannabinoid receptor
OPRM1 Opioid receptor ul (MOR1) Implicated in cannabis dependency
TRPVI Transient receptor potential vanilloid 1 (TRPV1) Novel cannabinoid receptor
Enzyme ABHDI2 2-AG hydrolase ABHD12 (ABHDI12) Degradation of 2-AG
ABHD6 2-AG hydrolase ABHD6 (ABHD6) Degradation of 2-AG
ADCY3 Adenylyl cyclase 3 (AC) Catalyses formation of cAMP
AKTI AKT serine/threonine kinase 1 (AKT) Regulates cell survival
COMT Catechol-O-methyltransferase (COMT) Degradation of dopamine
CYP2C9 Cytochrome P450 2C9 (CYP2C9) Metabolism of THC
CYP3A4 Cytochrome P450 3A4 (CYP3A4) Metabolism of THC
DAGLA Diacylglycerol lipase a (DAGLA) Biosynthesis of 2-AG
DAGLB Diacylglycerol lipase f§ (DAGLB) Biosynthesis of 2-AG
DUSP6 Dual-specificity phosphatase 6 (MKP3) Regulates MAPK signalling
FAAH Fatty acid amide hydrolase (FAAH) Degradation of AEA
FAAH2 Fatty acid amide hydrolase 2 (FAAH2) Degradation of AEA
MAPKI14 Mitogen-activated protein kinase 14 (MAPK14) Regulates cell survival
MAP2K2 Mitogen-activated protein kinase kinase 2 (MAP2K2) Regulates cell survival
MAPK3 Extracellular signal-regulated kinase (MAKP3) Regulates cell survival
MGLL Monoglyceride lipase (MAGL) Degradation of 2-AG
NAAA N-acylethanolamine acid amidase (NAAA) Degradation of AEA
NAPEPLD N-acylphosphatidylcthanolamine phospholipase D (NAPEPLD) Biosynthesis of AEA
NOS2 Inducible nitric oxide synthase (INOS) Inflammatory mediator
PIK3CA Phosphatidylinositol-3-kinase (PI3 K) Regulates cell survival
PRKACA Protein kinase-A (PKA) Regulates cell survival
PTGS2 Cyclooxygenase-2 (COX2) Inflammatory mediator

Other proteins  ABCBI
GNAIl

NRGI

TP53

P-glycoprotein 1 (p-GP)
Gy @ subunit (Gj/)
Neuregulin 1 (NRG1)

Tumour protein p53 (p53)

2-AG: 2-arachidonoylglycerol; THC: tetrahydrocannabinol; AEA: anandamide.
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Supplementary Table 9

Table 9: GEO data sets analyzed

GSE accession  Affymetrix chip Asthma COPD Healthy
GSE4302 HG-U133 Plus 2 74 0 13
GSE4498 HG-U133 Plus 2 0 0 12 (2F/10M)
GSES058 HG-U133 Plus 2 0 14 (4F/10M) 0
GSE7832 HG-U133 Plus 2 0 0 8 (2F/6M)
GSE8545 HG-U133 Plus 2 0 15 (3F/12M) 5 (1F/4M)
GSE10006 HG-U133 Plus 2 0 20 (4F/16M) 21 (2F/19M)
GSE11784 HG-U133 Plus 2 0 17 (1F/3M) 40 (18F/22M)
GSE11906  HG-U133 Plus 2 0 0 30 (10F/20M)
GSE13931 HG-U133 Plus 2 0 0 19 (4F/15M)
GSE13933  HG-U133 Plus 2 0 0 11 (6F/SM)
GSE14224 HuEx-1.0-st-v2 0 0 11 (7F/aM)
GSE17905  HG-U133 Plus 2 0 0 1 (IM)
GSE19667  HG-U133 Plus 2 0 0 3(3F)
GSE20257  HG-U133 Plus 2 0 1 (1F) 0
GSE22047  HG-U133 Plus 2 0 23 81
GSE34450  HG-U133 Plus 2 0 0 11
GSE37147  HuGene-1.0-st-v1 0 110 (35F/52M) 8
GSE40364  HG-U133 Plus 2 0 7 0
GSE43079 HG-U133 Plus 2 0 0 16
GSE43939  HG-U133 Plus 2 0 0 13
GSES2237 HG-U133 Plus 2 0 0 2
GSE64614 HG-U133 Plus 2 0 0 31
GSE67472  HG-U133Pluis2 62 (34F/28M) 0 43 (20F/23M)
GSE77658 HG-U133 Plus 2 0 0 6
GSE84101  HG-U133 Plus 2 0 0 7
GSE97010  HuGene-1.0-st-v1 0 0 126 (28F/98M)
GSE108134 HG-U133 Plus2 0 131 98

F: female, M: male
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Supplementary Figure 3
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Figure 3: Violin plots for expression levels of ACE2, TMPRSS2, ADAM17, CTSL, CD147,
and GRP78 across lung epithelial cell populations in healthy subjects (see methods for

data set reference for cell population markers).
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Supplementary Figure 4
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Figure 4: Lane 1: Ladder. Lane 2: A549 cell line. Lane 3: HEK293 cells. Lane 4:
immortalised human bronchial epithelial cells. ACE2 has a predicted molecular weight of
110 kDa with GAPDH as a loading control. Anti-human ACE2 antibody is distinct from

immunoblot in Figure 4.
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Supplementary Figure 5

Anti-GRP78 (78 kDa) antibody — HPAO38845
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Figure 5: Lanes 1 to 3: Calu-3 cells. Lanes 4 to 6: primary human airway epithelial cells.
All cells grown under submerged monolayer conditions, with n = 3 independent passages
(Calu-3) or donor samples (primary human airway epithelial cells: non-smoker, healthy
subjects). The larger band may represent GRP94 which contains the KDEL domain
common with GRP78. The same samples run for this immunoblot were sampled in figure 5.
Total protein loading control (bottom image) provided to demonstrate protein loaded for
each sample.
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Supplementary Figure 6
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Figure 6: Positive pixels for immunohistochemical staining were expressed as a percentage
of total tissue pixel count for each sample (n = 49). No statistical difference was observed
between samples from healthy subjects and tobacco smoking subjects.
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Supplementary Figure 7
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Figure 7: Representative examples (n = 3 donors) of positive ACE2 protein staining
(rust/brown) in human lung tissue in regions distinct from those fields of view containing
conducting airways. Images taken from identical slide use for Figure 5 (same staining run
and conditions for image acquisition). Red and green boxes are 60x zoom of 3x
magnification of entire tissue core sample.
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Supplementary Figure 8

[]
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Figure 8: Representative examples (n = 4 donors) of positive ACE2 protein staining
(rust/brown) in human heart tissue. Heart tissues stained on same staining run on Leica
Bond Rx autostainer as for lung tissue. Red and green boxes are 60x zoom of 3x
magnification of entire tissue core sample
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Supplementary Figure 9
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Figure 9: Black squares represent low magnification (12x) of a conducting airway with
airway epithelium. Green squares correspond to high magnification regions (50x) of
conducting airway epithelium that are defined in the low magnification image. Red squares
correspond to high magnification regions (50x) of lung tissue away from airway lumen that
are defined in the low magnification image. Row 1: hematoxylin and eosin; Row 2: ACE2;
Row 3: TMPRSS2; Row 4: CD147; Row 5: GRP78/HSPA5. Positive

immunohistochemical staining is rust/brown.
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Supplementary Figure 10

Figure 10
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Calu-3 cells were infected at and MOI of 2. At 1 hpi, virus inoculum was replaced with cell
growth media and the clock was set to 0 hours. Poly-A enriched RNA was extracted and
sequenced at 0-, 1-, 2-, 3-, 6- and 12-hours post incubation (hpi). SARS-CoV-2 genome,
sub-genomic RNA and transcripts were detected in infected samples. PCA clustering was
performed on (A) quantified SARS-CoV-2 transcript levels in infected samples and (B) quantified
and filtered host gene transcripts in both SARS-CoV-2 infected (blue) and mock infected (red)
samples across time points. Axes labels indicate the proportion of between-samples variance

explained by the first two principal components.
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Figure 10

SARS-CoV-2
gene
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(C) Top 100 host gene expression that correlated with one or more viral transcripts over the
course of infection are shown as z-score normalized expression (bottom), along with viral
transcripts (top).
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Figure 10
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(D) Left: Pathway schematic of REACTOME cytokine signalling pathway involving interferon
a3/ signalling, and antiviral response mediated by interferon stimulated genes. Right: Heat
map of genes within REACTOME cytokine signalling pathway and their logo-transformed
fold-change (FC) between SARS-CoV-2 infected and mock infected samples across all time points.

243



Figure 10
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(E) Larger version of Figure 9C.
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Figure 11: Top significantly (adjusted p < 0.05) enriched ActivePathway GO terms and

REACTOME enrichments for infection versus mock at 1, 2, 3 and 12 hours post infection

with SARS-CoV-2. Orange bars represent enriched terms associated with genes

up-regulated in infection versus mock. Blue bars represent enriched terms associated with
genes down-regulated in infection versus mock. 0 and 6 hour time points were omitted due

to lack of sufficient numbers of differentially expressed genes.
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Supplementary Figure 12

SLCaM FIHT GBo1 RFT (4
e o e o oo
| e " e " w
f oo woox — o wox — e
AIME : ' ‘“llE ) ) ' .VNE ’ ! "A(. ) " ) >Y|“E
g P2 2 "B 18615 g Fm2 usPig
. 5w 3
pe e Lo by 0 e
~ - 3 . » . e
; o woo I oo — v o e
g e e " AL ™e d ME
z  RSAOZ z Fm z  CuPK2 X1 2 XAF1
g : £ £
Jo Foee 5o
8 &
E e 5 e o e e 1 e
I ~ 3 - - ! -
i = woc 7 o o ok Bme e
I~ 1w — £ I
5 s T T T v E ;
» ™e o E ™™E ™ ¥ T™E
i IFTMY 2 Fm axz oAs2
§m 3
3 ™ e 1 b e tee o
o o S . »
H — ook § e oc — woox o
5 “Le 3 =
e 2 e C1ae ™e

(A) ISG expression in Calu-3 cells with significantly different levels of transcript expression
between mock (blue) and SARS-CoV-2 infected (red) samples at 12 hpi are shown (n = 3/time
point). Normalized read counts per gene, across six time-points are represented here. Time
indicated is in hours. Mock, mock infected; INF, SARS-CoV-2 infected.
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Figure 12

[ ﬁj Control treated

B e

2

e
es
. e mawe
e see

Jf KA A X 4 y

e R ion sssbaie b g oty
(B) Human fibroblast (THF) cells were treated with increasing concentrations of recombinant
human IFNS1 containing media or mock treated with GFP containing media (control) for 6
hours. Cells were then infected with vesicular stomatitis virus (VSV-GFP), herpes simplex virus
(HSV-KOS-GFP) or HIN1 influenza virus (HIN1-mNeon). VSV and HSV were engineered to
express green fluorescent protein (GFP). HIN1 expressed mNeon that is detectable in the same
wavelength as GFP. Nineteen hours post incubation, GFP or mNeon levels were measured in
mock infected and virus infected cells as a surrogate for virus replication. VSV-GFP (n = 3),
HSV-KOS-GFP (n = 4) and HIN1-mNeon (n = 4) replication in THF cells treated with IFN51
or mock treated with control, normalized to mock infection is shown above. Data are represented
as mean +/- SD, n =3, 4 or 6, p: ** < 0.01, *** < 0.001 and **** < 0.0001 (Student’s t test).
GFP and mNeon expression is represented after normalization with mock infected cells. hpi,
hours post incubation.
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Supplementary Figure 13
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Figure 13: TFIT1, SARS-CoV-2 N and ACTB protein expression in Calu-3 cells that were

infected with SARS-CoV-2 or mock infected for 1 h

our, followed by control or IFNS

treatment for 72 hours (n = 2). Data are represented as mean +/- SD, n = 2. IFIT1
protein expression levels are expressed as ratios of IFIT1/ACTB levels. Blots were

quantified using Image Studio (Li-COR) (n = 2).
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Supplementary Table 10

Table 10: Metadata and references for curated GEO deposited data sets of primary human
airway epithelial cells

GSE Accession | Affymetrix Chip Sample Annotations (N=504) Citation

GSE4302 HG-U133_Plus_2 15 current smokers Woodruff
11 never smokers etal., 2007;
2 unknown 2009

GSE37147 HuGene-1_0-st-vl | 82 former smokers (49 male, 33 female) | Steiling et
69 current smokers (34 male, 35 female) | al., 2013
8 unknown

GSE67472 HG-U133_Plus_2 23 male Christenson
20 female etal., 2015

GSE108134 HG-U133_Plus_2 176 current smokers O’Beirne et
98 never smokers al., 2018

Supplementary Table 11

Table 11: Statistics for impact of smoking status relative to never smokers on gene
expression of SARS-CoV-2 candidate receptors

ACE2 TMPRSS2 ADAM17 CTSL CD147 GRP78 CDH1

Current vs Former | *** %k * *xx P =
Current vs Never sdind [ ok x| * T
Former vs Never b *% * kK *xk

0 “***' 0,001 **' 0.01*'0.05°/0.1°"1

Results for each individual gene obtained via ANOVA followed by Tukey’s HSD post-hoc test
using the stats package in R (version 3.2.1).
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Supplementary Table 12

Table 12: Mean raw read counts for SARS-CoV-2 transcripts. INF, SARS-CoV-2 infected;
H, hours post incubation; SD, standard deviation.

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD SARS- Transcript
INF INF INF INF INF INF INF INF INF INF INF INF CoV-2
OH OH 1H 1H 2H 2H 3H 3H 6H 6H 12H 12H gene

Icl[NC_045512.
257.67 38.59 285.33 56.13 243.67 39.25 278.00 23.00 12173.3 | 3006.93 25827.33 2054.93 | ORF1ab 2_cds_YP_009
724389.1_1
IclINC_045512.
1.00 1.73 0.00 0.00 0.33 0.58 0.00 0.00 33.67 6.81 1061.00 468.03 ORF1a 2_cds_YP_009
725295.1_2
Icl[NC_045512.
500.67 94.52 491.33 86.19 378.00 61.39 521.67 49.69 19232.3 3952.46 26903.33 3860.82 spike 2_cds_YP_009
724390.1_3
Icl[NC_045512.
173.67 24.99 172.33 43.68 127.33 17.16 203.33 26.50 9995.00 1736.00 13976.33 2233.55 ORF3a 2_cds_YP_009
7243911 4
IclINC_045512.
43.67 5.51 44.67 13.65 39.00 2.65 63.00 11.53 2903.33 | 485.15 4086.33 627.70 envelope 2 _cds_YP_009
724392.1_5
IclINC_045512.
199.67 27.02 196.00 37.32 162.33 28.87 298.67 19.60 223443 3354.18 31200.33 4915.23 membrane 2_cds_YP_009
724393.1 6
Icl[NC_045512.
34.67 2.08 32.33 10.50 25.00 7.81 45.33 1.63 3508.00 509.12 4704.67 886.56 ORF6 2_cds_YP_009
7243941 7
Icl|[NC_045512.
107.33 19.50 102.33 23.35 94.00 22.61 173.67 34.00 14834.0 | 2357.53 21920.67 3441.71 | ORF7a 2_cds_YP_009
724395.1_8
IclINC_045512.
10.33 252 11.67 2.31 15.33 153 20.67 115 1516.33 | 241.00 2191.33 526.17 ORF7b 2 _cds_YP_009
725318.1_9
IclINC_045512.
109.33 22.19 107.00 27.22 98.00 21.70 189.00 14.00 14651.3 | 2136.80 21518.67 3992.04 ORF8 2_cds_YP_009
724396.1_10
Icl[NC_045512.
nucleocapsid | 2_cds_YP_009
724397.2_11
IclINC_045512.
112.33 27.57 97.00 22.52 94.67 10.69 250.00 19.00 18385.3 | 2239.71 27679.00 5406.01 | ORF10 2_cds_YP_009
725255.1_12

230.9 247.5 144.5 402.6

1251.00 1157.33 1067.67 2945.67 258553

38439 | 39320167

62159.0
7
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Supplementary Table 13

Table 13: Mean normalized read counts for differentially expressed IFN and ISG
transcripts. H, hours post incubation; INF, SARS-CoV-2 infected; MOCK, mock infected;
IFN, interferon; ISG, interferon stimulated genes.

OH OH 1H 1H 2H 2H 3H 3H 6H 6H 12H 12H
INF MOCK INF MOCK INF MOCK INF MOCK INF MOCK INF MOCK
(N=3) | (N=3) (N=3) | (N=3) (N=3) | (N=3) (N=3) | (N=3) (N=3) | (N=3) (N=3) (N=3)

IFNB1 1.35 0.00 1.21 0.41 1.48 0.97 0.57 1.93 6.40 0.30 21.23 0.89
_ IFNL1 3.49 3.45 220 4.80 4.93 5.46 3.17 1.90 7.00 2.66 15.07 0.73
g IFNL2 0.00 0.00 0.36 0.96 4.1 0.35 0.28 0.00 4.66 0.00 8.61 0.00
IFNL3 0.35 0.00 0.58 0.44 238 0.31 0.88 0.00 3.02 0.00 8.46 0.00
IFIT1 388.42 358.77 370.80 487.33 447.59 590.32 425.31 498.05 463.17 | 408.65 2790.57 | 367.50
IRF7 278.50 283.73 320.43 284.00 339.99 383.89 399.07 363.67 399.93 | 43229 966.54 305.31
OAS2 172.67 236.24 178.18 222.85 287.61 208.20 252.85 296.10 292.36 378.90 2979.22 | 303.60
MX1 588.48 | 620.75 624.79 647.52 758.95 | 800.13 839.47 867.29 728.29 811.68 3922.41 | 546.94
RSAD2 204.76 216.53 228.73 272.67 313.84 348.31 365.12 393.68 274.53 269.56 948.75 210.54
SLC44A4 ;247.8 171.72 ;218.7 1046.17 ;138.0 1128.19 (1)129.6 1106.06 (1)010.3 1142.19 1032.09 | 1298.09
IFIH1 ;1052.8 1100.39 ;134.7 1163.76 ;235.3 1164.31 é223.6 1371.55 (1)189.7 1191.00 2492.69 | 1087.88
GBP1 506.79 512.73 503.57 608.29 496.74 485.28 458.14 509.15 530.04 509.53 1151.35 | 488.92
IFl144 689.16 741.40 789.19 803.61 963.68 1113.99 997.06 1052.67 785.42 782.39 1889.54 | 671.51
g IFI127 311.49 318.74 302.63 399.59 343.37 472.30 328.28 361.48 333.63 351.85 921.55 342.54
e IFI6 592.82 612.04 599.90 697.80 673.06 1010.20 692.26 752.25 729.19 77517 2066.30 | 709.85

1ISG15 430.95 | 447.57 44360 | 533.02 465.88 | 704.43 490.49 | 554.07 473.88 | 502.97 1260.48 | 435.91

IFIT2 657.23 | 698.02 676.46 | 795.49 64557 | 732.08 455.75 | 504.29 493.48 | 422.04 1465.16 | 413.27

USP18 21227 | 217.53 218.01 257.03 253.55 | 301.50 266.17 | 297.44 243.57 | 232.66 873.18 218.27

IFIT3 648.15 656.89 747.61 858.17 810.13 1069.67 567.26 668.13 458.25 428.90 1900.07 | 420.64

CMPK2 163.89 179.41 169.11 182.05 219.35 244.03 235.97 265.54 172.78 201.60 906.22 153.23

XAF1 58.53 82.76 73.40 53.61 69.79 60.14 79.67 55.09 86.30 91.97 513.01 90.51
IFITM1 27.68 34.25 21.94 27.89 28.53 53.49 26.88 34.91 34.59 35.75 182.01 34.33
MX2 82.11 87.24 69.22 81.96 100.75 83.43 87.84 87.48 108.05 78.88 547.98 64.92
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Supplementary Table 14

Table 14: Pathway enrichment analysis. Significance was determined after FDR correction.
H, hours post incubation; 0, non-significant; 1, significant.

Term ID Term Name Adjustedp | 1H 2H 3H 12H
value
G0:0000976 transcription regulatory region sequence-specific 0.00482425 | 0 1 0 0
DNA binding 5
G0:0001067 regulatory region nucleic acid binding 0.00420370 | O 1 0 0
G0:0001816 cytokine production 3.00552947 0 0 0 1
G0:0001817 regulation of cytokine production (2).00182923 0 0 0 1
G0:0002230 positive regulation of defense response to virus by 8.0021 9783 | 0 0 0 1
G0:0002831 rggsLtJIation of response to biotic stimulus g.GOE-OS 0 0 0 1
G0:0002833 positive regulation of response to biotic stimulus 0.00868705 | 0 0 0 1
G0:0003690 double-stranded DNA binding 3.0001 1287 | O 1 0 0
G0:0003712 transcription coregulator activity E15.30E-06 0 1 0 0
GO0:0003713 transcription coactivator activity 2.39E-05 0 1 0 0
G0:0005178 integrin binding 0.01387490 | 0 0 1 0
G0:0008270 zinc ion binding 8.0001 0393 | 0 1 0 0
G0:0009615 response to virus ?.39E-35 0 0 0 1
G0:0010810 regulation of cell-substrate adhesion 0.00835032 | 0 1 0 0
G0:0016482 cytosolic transport 3.01 108605 | O 1 0 0
G0:0019058 viral life cycle 2.92E-11 0 0 0 1
G0:0019079 viral genome replication 3.87E-15 0 0 0 1
G0:0019221 cytokine-mediated signaling pathway 8.45E-16 0 0 0 1
G0:0019900 kinase binding 0.00353978 | 0 1 0 0
G0:0019901 protein kinase binding 8.01 286742 | O 1 0 0
G0:0030099 myeloid cell differentiation 3.01 138229 | 0 1 0 0
GO0:0031347 regulation of defense response g 16E-05 0 0 0 1
G0:0031589 cell-substrate adhesion 0.00286729 | 0 1 0 0
G0:0032020 ISG15-protein conjugation 8.00862770 0 0 0 1
G0:0032069 regulation of nuclease activity ?.26E-06 0 0 0 1
G0:0032479 regulation of type | interferon production 4.92E-06 0 0 0 1
G0:0032480 negative regulation of type | interferon production 0.00521099 | 0 0 0 1
G0:0032481 positive regulation of type | interferon production 8.00531473 0 0 0 1
G0:0032606 type | interferon production 6.14E-06 0 0 0 1
G0:0032607 interferon-alpha production 0.00523754 | 0 0 0 1
G0:0032647 regulation of interferon-alpha production 2.00400414 0 0 0 1
GO0:0032727 positive regulation of interferon-alpha production 0.00156746 | 0 0 0 1
G0:0034340 response to type | interferon ;).21 E-31 0 0 0 1
GO0:0034341 response to interferon-gamma 1.44E-10 0 0 0 1
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GO0:0034504 protein localization to nucleus 0.00295333 | 0 1 0
G0:0035455 response to interferon-alpha 3.29E-10 0 0 0
G0:0035456 response to interferon-beta 2.08E-07 0 0 0
GO0:0042393 histone binding 0.00298728 | 0 1 0
5
G0:0043900 regulation of multi-organism process 2.03E-17 0 0 0
G0:0043901 negative regulation of multi-organism process 3.86E-17 0 0 0
G0:0043902 positive regulation of multi-organism process 0.00827448 | 0 0 0
4
GO0:0043903 regulation of symbiosis encompassing mutualism 6.66E-20 0 0 0
through parasitism
G0:0044212 transcription regulatory region DNA binding 0.00404741 | O 1 0
6
GO0:0045069 regulation of viral genome replication 1.01E-16 0 0 0
G0:0045071 negative regulation of viral genome replication 3.61E-17 0 0 0
G0:0045088 regulation of innate immune response 5.98E-06 0 0 0
G0:0045089 positive regulation of innate immune response 0.00597980 | O 0 0
2
G0:0046596 regulation of viral entry into host cell 0.04802533 | 0 0 0
7
GO0:0048525 negative regulation of viral process 3.26E-20 0 0 0
G0:0050657 nucleic acid transport 0.04848561 | 0 0 1
5
G0:0050658 RNA transport 0.04848561 | 0 0 1
5
G0:0050688 regulation of defense response to virus 0.00216321 | 0 0 0
6
G0:0050691 regulation of defense response to virus by host 0.00954189 | 0 0 0
2
G0:0050792 regulation of viral process 1.31E-20 0 0 0
GO0:0051056 regulation of small GTPase mediated signal 0.02604849 | 0 1 0
transduction 5
G0:0051607 defense response to virus 1.25E-37 0 0 0
G0:0060333 interferon-gamma-mediated signaling pathway 1.36E-13 0 0 0
G0:0060337 type | interferon signaling pathway 3.69E-31 0 0 0
G0:0060700 regulation of ribonuclease activity 6.89E-07 0 0 0
G0:0060759 regulation of response to cytokine stimulus 0.00074017 | O 0 0
3
G0:0060760 positive regulation of response to cytokine stimulus | 0.00710556 | O 0 0
4
GO0:0061629 RNA polymerase Il-specific DNA-binding 0.01112665 | 0 1 0
transcription factor binding 6
G0:0070566 adenylyltransferase activity 0.00654540 | O 0 0
2
GO0:0071346 cellular response to interferon-gamma 1.05E-09 0 0 0
G0:0071357 cellular response to type | interferon 3.69E-31 0 0 0
G0:0098586 cellular response to virus 0.0037813 0 0 0
GO0:1903900 regulation of viral life cycle 1.50E-18 0 0 0
G0:1903901 negative regulation of viral life cycle 1.15E-18 0 0 0
G0:1990837 sequence-specific double-stranded DNA binding 0.00294552 | 0 1 0
6
G0:2001251 negative regulation of chromosome organization 0.03997967 | O 1 0
2
REAC:R-HSA- | ISG15 antiviral mechanism 5.61E-12 0 0 0
1169408
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REAC:R-HSA- | Antiviral mechanism by IFN-stimulated genes 5.77E-19
1169410

REAC:R-HSA- | Cytokine Signaling in Immune system 1.52E-19
1280215

REAC:R-HSA- | DDX58/IFIH1-mediated induction of interferon- 0.00185113
168928 alpha/beta 5
REAC:R-HSA- | SUMOylation 0.00028922
2990846 3
REAC:R-HSA- | SUMOylation of DNA damage response and repair 0.02340646
3108214 proteins 7
REAC:R-HSA- | SUMO E3 ligases SUMOylate target proteins 0.00085004
3108232 9
REAC:R-HSA- | Chromatin modifying enzymes 0.01608842
3247509 8
REAC:R-HSA- | Chromatin organization 0.01608842
4839726 8
REAC:R-HSA- | Signaling by MET 2.89E-05
6806834

REAC:R-HSA- | Interferon gamma signaling 2.97E-09
877300

REAC:R-HSA- | MET activates PTK2 signaling 0.00099479
8874081 7
REAC:R-HSA- | Regulation of RUNX1 Expression and Activity 0.00074532
8934593 8
REAC:R-HSA- | OAS antiviral response 3.29E-08
8983711

REAC:R-HSA- | Signaling by Receptor Tyrosine Kinases 0.01764375
9006934 5
REAC:R-HSA- | Interferon alpha/beta signaling 2.97E-31
909733

REAC:R-HSA- | Interferon Signaling 4.75E-36
913531

REAC:R-HSA- | TRAF3-dependent IRF activation pathway 0.00013996
918233 7
REAC:R-HSA- | TRAF6 mediated IRF7 activation 0.01877624
933541 3
REAC:R-HSA- | Negative regulators of DDX58/IFIH1 signaling 0.00093123
936440 8
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Supplementary Table 15

Table 15: COVID-19 patient serum sample history and sera from healthy controls.

Charlson co-

mol.'bidity score Adimi q “_:U_ _DG‘"'I Disease
Sample ID  Sample Type Age (years)  Sex ( c;momeit:ir:y of to hospital Hate oxygen icu miss| o Sate ity
groups*)
Discharged
COVIFN1  serum - acute 59 M 0 N Y 2020-04-11 Y N NA alive 2020-04-19 Moderate
Discharged
COVIFN2  serum - acute 86 M 8 N Y 2020-04-17 N N NA alive 2020-04-29 Moderate
Discharged
COVIFN3  serum - acute 96 F 2 N Y 2020-04-26 Y N NA alive 2020-05-28 Moderate
Discharged
COVIFN4  serum - acute 57 M 0 N Y 2020-04-23 Y N NA alive 2020-05-06 Moderate
Discharged
COVIFNS  serum - acute 54 M 1 N Y 2020-04-28 N N NA alive 2020-05-07 Moderate
Discharged
COVIFN6  serum - acute 62 F 6 Y Y 2020-04-26 N N NA alive 2020-05-01 Moderate
Discharged
COVIFN7  serum - acute 83 F 3 N Y 2020-04-28 Y N NA alive 2020-05-22 Moderate
Discharged
COVIFNS  serum - acute 85 M 1 N Y 2020-05-02 N N NA alive 2020-05-05 Moderate
Discharged
COVIFNY9  serum - acute 23 M 1 N Y 2020-04-29 Y N NA alive 2020-05-11 Moderate
Discharged
COVIFNI0 serum - acute 58 F 4 Y Y 2020-05-03 N N NA alive 2020-05-07 Moderate
Discharged
COVIFNI1 serum - acute 80 M 0 N Y 2020-04-02 Y Y 2020-04-03 alive 2020-06-12 Severe
COVIFNI12 serum - acute 69 F 0 N Y 2020-04-08 Y Y 2020-04-10 Died 2020-04-15 Severe
Discharged
COVIFNI3  serum - acute 65 M 0 N Y 2020-04-07 N Y 2020-04-17 alive 2020-04-28 Severe
Discharged
COVIFNI14 serum - acute 73 M 0 N Y 2020-04-06 Y N NA alive 2020-04-23 Severe
COVIFNIS  serum - acute 81 M 2 N Y 2020-04-16 Y Y 2020-04-16 Died 2020-04-29 Severe
COVIFNI16 serum - acute 72 M 1 N Y 2020-04-18 Y Y 2020-04-18 Died 2020-05-27 Severe
Discharged
COVIFNI17 serum - acute 49 M 0 N Y 2020-04-24 Y Y 2020-04-26 alive 2020-05-11 Severe
COVIFNIS serum - acute 75 M 8 N Y 2020-04-26 Y Y 2020-04-27 Died 2020-05-19 Severe
COVIFNI19 serum - acute 94 F 3 N Y 2020-04-08 Y N NA Died 2020-05-16 Severe
COVIFN20 serum - acute 80 F 8 N Y 2020-04-14 Y N NA Died 2020-04-29 Severe
OM1 NA 59 M NA NA NA NA NA NA NA NA NA Healthy
OMS8035 NA 26 M NA NA NA NA NA NA NA NA NA Healthy
OM908 NA 30 F NA NA NA NA NA NA NA NA NA Healthy
OM920 NA 58 M NA NA NA NA NA NA NA NA NA Healthy
OM921 NA 36 F NA NA NA NA NA NA NA NA NA Healthy
*Cl idity groups: 1: My ial i ion, 2: C ive heart failure, 3: Perip i 4: C i 5: ia, 6: COPD, 7: Rheumotological disease, 8: Peptic
ulcer disease, 9: Mild liver di 10: Di i i i 11: Di: with i i 12: P ia and i ia, 13: Renal di: 14: i y i ia, 15: M

or severe liver disease, 16: Metastatic cancer, 17: HIV/AIDS
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Supplementary Table 16

Table 16: Cytokine levels in healthy individuals and COVID-19 patient serum samples.

Sample

ID/Cytokine

level

(pg/ml) COVIFN1 COVIFN2 COVIFN3 COVIFN4 COVIFN5 COVIFN6é COVIFN7 COVIFN8 COVIFN9 COVIFN10 COVIFN11 COVIFN12
sCD40L 1.24 11.05 784.48 2598.72 4394.41 1.24 1629.28 1500.89 4096.10 1441.99 1362.29 8.15
EGF 137.74 142.39 116.09 623.86 293.83 24491 128.46 24.00 347.18 125.25 120.85 66.21
Eotaxin 6.81 9.76 15.32 55.68 19.80 2.81 26.02 27.77 16.54 43.88 36.36 4.95
FGF-2 3141 35.81 37.87 48.89 42.71 3141 77.97 36.85 209.35 41.77 36.85 26.52
FLT-3L 25.20 18.33 7.16 8.10 11.44 13.55 7.54 20.43 18.87 44.95 4.00 24.72
Fractalkine 17.13 35.95 25.13 83.63 13.96 10.31 1334.65 25.13 145.58 43.41 336.72 46.88
G-CSF OOR < OOR < OOR < OOR < OOR < OOR < 11.74 OOR< 17.24 277.59 41.61 OOR <
GM-CSF 7.04 7.86 11.89 6.22 1.79 3.17 3211 5.96 2492 18.69 16.79 14.31
GROa 10.12 8.84 7.15 17.41 11.50 6.65 12.54 8.25 86.48 19.96 20.22 44.06
IFN-a2 OOR < OOR < 47.64 66.74 7.36 OOR < 1864.77 7.36 44.39 OOR < 23.75 OOR <
IFNy OOR < 1.02 1.79 0.28 0.07 OOR < 22.35 0.70 2.92 4.29 2.15 OOR <
IL-1a 3.52 17.68 0.03 10.84 1.16 OOR < 6.85 174 29.05 1.16 5.33 2.04
IL-18 4.29 8.94 1.04 12.45 2.81 2.38 9.33 491 24.47 2.81 1.50 3.45
IL-1RA 1.75 1.75 34.98 22.97 5.99 0.72 17.76 226.55 9.76 243.02 22.47 0.30
IL-2 OOR < OOR < OOR < 0.55 OOR < OOR < 3.96 OOR< 134 0.45 1.22 OOR <
IL-3 OOR < OOR < OOR < OOR < OOR < 0.03 185.31 OOR< 0.03 0.03 OOR < OOR <
IL-4 1.90 0.60 0.67 0.44 0.60 OOR < 0.21 0.23 2.49 0.25 0.20 0.49
IL-5 7.43 9.64 4.29 2.96 4.82 0.26 2.48 8.93 4.17 4.09 54.76 33.72
IL-6 13.87 7.04 22.47 7.19 3.50 9.56 9.13 2.15 4.84 57.07 25.96 158.27
IL-7 5.40 1.46 1.04 15.61 1291 3.52 104.40 5.56 9.76 7.96 3.52 14.03
IL-8 9.31 7.99 6.85 22.33 11.85 2.06 14.04 5.36 10.76 15.26 21.77 8.71
IL-9 OOR < 5.23 OOR < OOR < 4.51 OOR < 6.02 OOR< 17.85 4.04 3.17 4.94
IL-10 OOR < OOR < 11.70 3.72 0.64 OOR < 13.54 0.80 6.60 338.81 18.13 OOR <
IL-12p40 1.63 12.02 53.59 18.91 OOR < OOR < 91.32 25.65 66.30 7.98 64491 OOR <
IL-12p70 0.05 OOR < 0.19 OOR < OOR < 0.34 0.19 0.49 5.27 0.49 0.05 OOR <
IL-13 OOR < 6.03 16.52 35.11 45.40 OOR < 6.03 35.74 135.56 OOR < 151.34 3.84
IL-15 9.11 8.90 13.60 7.30 8.36 23.59 11.57 7.30 21.44 83.09 7.51 22.73
IL-17A OOR < 3.54 143 9.30 1.87 1.87 2.51 1.65 8.77 0.02 1.08 OOR <
IL-17E/IL-25 150.37 445.50 39.60 OOR < OOR < OOR < 244.48 OOR< 583.89 OOR < OOR < 87.52
IL-17F OOR < OOR < 2.68 1.54 1.06 OOR < 5.90 291 154.23 0.82 OOR < OOR <
IL-18 1.51 10.63 20.75 23.25 17.64 11.38 24.52 10.18 35.10 56.13 28.32 69.33
IL-22 OOR < OOR < OOR < OOR < OOR < OOR < OOR< OOR< 107.30 OOR < 108.47 OOR <
IL-27 OOR < OOR < 1174.89 1342.14 616.07 OOR < 5779.33 2252.24 2404.96 2396.84 1290.93 53.99
IP-10 101.29 171.41 408.11 306.80 337.00 41499 3692.55 2872.70 88.11 6241.52 485.68 3403.51
MCP-1 287.95 156.83 215.68 274.98 153.75 184.71 191.73 217.00 33.06 594.23 276.08 527.77
MCP-3 5.05 4.46 17.04 13.20 8.08 OOR < 7.90 7.34 25.71 10.03 25.27 22.17
M-CSF 87.77 82.16 102.43 189.92 86.65 421.41 196.93 64.34 141.25 505.58 100.17 262.88
MDC 173.17 234.10 262.67 364.53 327.27 15.60 112.12 518.15 466.85 89.15 660.76 215.22
MIG/CXCL9 1466.74 4016.77 2018.24 1067.21 1816.00 654.79 2752.32 8500.06 1134.79 5079.75 5120.21 5694.96
MIP-1a 20.80 14.42 14.97 32.09 17.04 5.53 24.21 11.50 39.29 18.02 14.42 18.02
MIP-1B 26.59 28.34 24.01 37.83 31.00 9.91 19.70 44.87 46.08 48.28 73.21 34.57
PDGF-AA 690.76 1475.89 1061.65 977.84 2208.47 283.99 941.93 1429.40 2550.13 1002.92 1000.69 1105.14
PDGF-

AB/BB 17241.96 17026.36 12565.55 13503.22 18036.00 10027.45 12919.49 13950.58 13653.00 14280.43 11440.21 15560.94
RANTES 838.06 856.79 779.87 790.28 647.88 805.26 1026.05 702.34 658.19 858.07 677.35 829.54
TGFa 163 2.43 2.69 2.99 3.38 313 391 3.28 77.54 7.64 12.83 5.47
TNFa 4.80 11.80 65.20 52.38 33.86 35.09 59.25 79.93 122.76 122.76 138.16 56.57
TNFB 2.20 2.05 3.04 14.47 10.09 OOR < 5.89 8.13 16.23 178 26.15 4.68
VEGF-A 12.49 122.01 54.27 271.90 335.94 8.53 118.23 299.64 108.40 103.15 279.12 262.42
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Sample
ID/Cytokine
level
(pg/ml)
sCD40L
EGF
Eotaxin
FGF-2
FLT-3L
Fractalkine
G-CSF
GM-CSF
GROa
IFN-a2
IFNy
IL-1a
IL-1B
IL-1RA
IL-2

IL-3

IL-4

IL-5

IL-6

IL-7

IL-8

IL-9
IL-10
IL-12p40
IL-12p70
IL-13
IL-15
IL-17A

IL-17E/IL-25
IL-17F

IL-18

IL-22

IL-27

IP-10
MCP-1
MCP-3
M-CSF
MDC

MIG/CXCLY
MIP-1a
MIP-1B
PDGF-AA
PDGF-
AB/BB
RANTES
TGFa
TNFa
TNFB
VEGF-A

Note: OOR < stands for Out Of Range (below standard curve)

1549.90
19.33
27.77

110.76
4.97
120.95
47.51
42.84
31.61
68.09
2.61
10.84
26.67
107.69
0.55
OOR <
0.51
8.44
63.14
21.09
8.41
OOR <
9.91
41.63
0.88
95.78
13.92
9.30

OOR <
2.46
37.66
42.70
4477.48
2330.69
364.46
24.82
232.14
415.93

121117
23.38
21.11

1344.27

10888.77
638.74
3.86
117.31
11.84
183.56

2350.61
140.45
73.74
50.56
16.53
35.95
132.14
19.01
28.79
35.73
117
8.38
8.94
13.92
OO0R <
OO0R <
0.64
4.56
43.88
3.09
8.59
OO0R <
7.42
21.81
0.34
8.02
411
17.03

OOR <
1.54
4.82

OOR <

4134.36
154.93
521.49

8.94
40.25
688.93

1812.58
16.02
52.77

1797.14

16226.61
952.85
9.37
43.33
6.76
164.20

1002.59
92.68
22.87
38.87
35.05

116.92
52.98
30.37
21.91
30.02

0.94
OOR<
3.66

291
13.40
289.43
3.56
12.94
13.63
18.87
126.37
0.49
61.07
9.96
143

437.57
378
27.73
51.71
1878.47
492.40
504.26
22.00
281.89
483.93

7877.86
8.82
35.21
2209.35

16510.31
741.83
15.30
99.74
10.38
14237

226.82
68.63
64.36
84.58
23.35
77.37

0.99
20.30
15.86
28.01

0.55

533

491
21.66
OOR<

0.33

1.76
15.41
17.48

7.00
28.43

5.60
17.72
57.24

1.52
11.63

6.45

6.69

262.31
31.88
24.67
OOR <

3564.24

791.77

387.63
10.90

267.63

254.75

5381.92
20.80
89.99

1998.15

14480.42
717.88
17.75
136.45
9.65
362.70

55.64
726.00
8.01
81.02
31.15
79.91
7.29
4.91
74.17
142.39
2.79
34.15
25.02
3.04
0.92
0.23
176
4.94
12.95
12.04
7.63
8.83
118
14.01
4.59
45.40
11.57
12.40

1039.24
8.36
16.56
3317
254.09
319.68
81.27
19.63
1494.36
351.77

1942.65
32.43
25.28

2165.45

18870.15
1502.54
5.42
28.30
12.86
389.47

1094.25
113.98
44.64
103.20
24.32
215.50
103.19
23.59
18.16
14239
177
37.99
37.85
96.75
3.05
0.77
6.64
6.07
24.07
8.56
20.29
19.94
11.41
323.23
6.30
66.91
51.98
13.41

1578.39
110.32
31.84
89.04
3266.53
330.96
113.53
29.51
599.13
237.68

3703.33
61.16
78.73

422.29

12877.04
1106.48
41.99
75.24
8.20
164.55

2476.20
244.36
29.03
47.18
25.51
119.95
51.42
26.94
24.20
98.86
0.81
59.27
16.65
136.97
0.65
OOR<
161
2.54
44.10
7.49
10.16
2.40
4.57
48.09
0.65
72.10
13.92
0.72

31438
29.62
30.88
37.52

2729.04
25093.63

389.16
26.15

443.29

325.16

3962.01
23.80
77.77

1583.75

13524.11
1273.18
5.80
128.47
18.89
270.54
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COVIFN13 COVIFN14 COVIFN15 COVIFN16 COVIFN17 COVIFN18 COVIFN19 COVIFN20

13.78
7111
27.56
42.71
20.07
46.88
OOR <
10.42
79.24
13.84
033
7.76
491
1.06
0.02
0.13
1.08
5.86
35.67
0.92
47.65
OO0R <
OO0R <
11.02
1.12
23.88
5.81
1.65

429.60
291
0.23

OOR <
81.55
71.52

358.01
8.78

227.43

315.86

1863.35
20.35
47.59

2139.64

22634.99
1263.53
7.17
11.80
4.03
167.55

om1

255.18
18.11
29.70

287.46
16.62

122.94
45.92
16.79
11.12

176.90

8.65

137.57

13435
20.18
15.24

0.68
4.77
333
117
5.23
11.61
14.47
6.04

191.52
49.97
50.58
15.74
3397

2018.20
95.57
25.15
51.71

1531.72
65.98
47.33
17.91

108.10
294.45

1130.89
56.73
25.69
43.81

1960.23
367.38
39.85
38.15
8.78
19.20

OM8035

117.26
15.19
36.89
74.85

321
116.92
2.81
5.69
2.10
39.30
4.64
22.72
13.99
4.77
1.04
033
0.28
1.27
1.57
0.41
0.90
7.45
0.44
68.11
2.09
34.48
8.04
4.53

476.96
21.64
16.52
52.74

1540.18
25.66
80.11
16.45
7434

437.50

639.05
28.12
23.33
59.64

2214.42
665.00
7.17
45.45
5.25
1.04

OM908

35.09
OOR <
17.38
26.52
3.95
118.94
OOR <
0.57
2.01
81.06
1.38
20.83
1.94
217
OO0R <
OO0R <
OOR<
5.59
0.20
0.01
1.02
OO0R <
OOR <
56.33
192
29.32
2.94
0.18

OOR <
178
15.71
OO0R <
1776.99
99.57
112.89
10.62
33.79
326.96

1130.89
8.07
12.70
49.49

2088.39
627.87
191
39.98
2.48
0.55

OM920

74.59
22.51
55.40
84.58
11.62
110.72
18.71
18.06
3.39
46.03
0.60
13.32
11.48
16.24
0.26
OOR<
5.58
1.65
3.35
1.59
2.76
7.57
10.56
38.84
0.49
54.51
4.11
6.42

1228.47
8.36
49.68
24.42
2078.08
3835
411.32
9.88
16.88
110.78

792.35
18.02
37.89

120.45

3461.50
502.60
1.28
29.54
1.64
16.81

Oom921

258.68
25.62
25.15
37.87

3.80
88.46
10.16
12.79
18.45
31.97

0.76
13.01

7.15

3.55

0.16

0.43

0.33

3.88

0.89

2.57

1.02

4.28

0.99

102.79

0.42
OOR<

3.04

2.51

189.18
OOR <
38.79

3.39

990.15
70.97

242.60

9.73

129.77

394.18

1281.96
13.87
17.24

304.98

6909.87
1086.69
0.89
23.30
171
4.77
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