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Abstract

This thesis shows a new type of attack that can secretly gather private measurements
from the target. Wi-Sneak is a stealthy reconnaissance attack which utilizes the ambient
WiFi signal and ubiquitous WiFi-enabled devices without compromising any packets or
WiFi networks.

We demonstrated that an adversary can accurately extract people’s respiration rate
by just sniffing the WiFi network and sending some fake packets no matter outside or
inside the house. The deployment of this attack is simple, and anyone with a laptop, a
USB WiFi-card and a Micro Controller Unit (MCU) can perform the attack by running
the program introduced in this thesis. The attack is tested on various situations and the
accuracy has been verified with a solid ground truth. The attack is low-cost, simple to
deploy and yet very hard for unprofessional people to detect.
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Chapter 1

Introduction

The development of IoT devices and WiFi-enabled smart devices are so rapid recently that
almost every house is equipped with at least one of them (e.g. smart homes, cell-phones,
and smart watches). The existence of these devices has filled the house with overwhelming
amount of RF signals. People inside the house are interacting with these signals constantly,
and thus these signals carry information about people’s locations, movements, and even
private measurements like breathing rates. This thesis discovers Wi-Sneak — by sniffing
WiFi signals and sending back to back fake packets, an adversary outside the house is able
to track the respiration rate of the device user even when the devices are fully secured.

Wi-Sneak can be considered as a reconnaissance attack which is a general knowledge
gathering attack usually done by packet sniffing, ping sweeping or port scanning. The
attacker can gather some private information from the target. Wi-Sneak can be easily
performed by anyone who purchases a WiFi-card and an ESP32 WiFi module which only
costs less than a hundred dollars, and it can be very hard for the people in the house to
notice. The attacker does not need to decrypt any packet or compromise any device. The
only required equipment is a laptop that is connected to the ESP32 WiFi module and the
WiFi-card. The reason that makes Wi-Sneak possible lies in the inherent properties of the
WiFi signal:

1. People’s movement near a WiFi-enabled device will change the signal propagation
and then effect the signal strength, and these changes can be easily observed without
decipher any device or packet.

2. These signals are able to penetrate walls and floors so that people can receive them
at different locations in a house while only one Access Point is needed. However,
outside receivers can usually overhear these signals, which makes Wi-Sneak possible.
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Wi-Sneak is inspired by an interesting behaviour called Polite WiFi, which is discovered
by a research [3] that existing WiFi devices send back acknowledgements (ACK) to fake
packets received from WiFi devices outside of their network. Following the path of this
research, we take a further step to show that this behaviour can be potentially used as an
attack to invade privacy. Wi-Sneak does not take any assumption about the WiFi network
nor does it need any prior information about the device inside the house. The program
will discover the devices to attack, and it will re-pick proper devices if current device is
no longer active. The location of the attacker is flexible, it can either be inside or outside
the house and the attack distance is around 5 − 8 m. Moreover, the injected packets are
disguised as normal traffic inside the WiFi network, which will not cause any attention for
normal people, and this stealthy feature makes it very hard to be noticed.

A prototype of Wi-Sneak is built and evaluated in the thesis, the attacker is a laptop
assembled with a USB WiFi card for sending back to back fake packets and a ESP32 WiFi
module for receiving acknowledgements. In order to be able to send fake packets, we need
to obtain the MAC address of the target device and the SSID of the WiFi Access Point.
A common sniffing software like Wireshark can provide all the information we need. After
that, the laptop is able to send fake packets to the target device and then extract the
breathing rate. However, to ensure the continuity of the data there are two challenges
need to be resolved.

How to keep the device awake? Most of the WiFi devices like cell phones and
laptops will go to sleep to save energy. During this stage, they will not respond to the
any packets and only wake up occasionally to receive beacon frames, and thus the attack
cannot take effect. To address this problem, we look into the 802.11 Power Management
and find out that the Access Point can monitor all the devices that is in the inactive state
and has the ability to wake them up. Therefore, we forge a fake beacon frame and pretend
it is from the Access Point to wake up the device we want. This fake beacon frame is sent
periodically so that the device is always responsive.

How to process subcarrier information? The ESP32 WiFi module will extract the
Channel State Information (CSI) from the acknowledgements sent by the devices. However,
the CSI contains 52 subcarriers per packet, and the quality of them varies drastically. Good
subcarriers has clear pattern for breathing, while poor ones can barely show the breathing
pattern. Since the processing of the acknowledgements need to be real time, an efficient
and accurate algorithm is needed to analyze all 52 subcarriers. In this thesis, we propose
a soft voting algorithm to efficiently extract useful information from the subcarriers. The
algorithm gives each subcarrier weights according to their quality and the final results are
based on the weighted voting of all the subcarriers.
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In this thesis, Wi-Sneak is evaluated on various aspects including accuracy and effective
range. Several experiments are designed to simulate environments including indoor and
outdoor scenarios. The results show that the accuracy of the attack can be more than
99%, and the effective range (from target person to target devices) of this attack can be
up to 140 cm. In addition, we try to develop some effective defenses against this attack.
Although we find a way that may disrupt Wi-Sneak from invading the privacy, it sacrifices
a relatively great amount of network throughput.

The rest of the thesis will describe the detailed process of the attack, the challenges
being resolved, the evaluations and the defenses. The key contributions of this thesis
include:

• We discover a low-cost, stealthy attack which can accurately detect human’s respi-
ration rate.

• We propose an algorithm which fully utilizes the information from each subcarrier in
Channel State Information (CSI)

• We discover a method which can keep the WiFi-enabled devices awake for packet
sending while they are in power-saving mode.

• We propose a possible defense against Wi-Sneak.

For now, Wi-Sneak can only detect well-periodic movements like breathing, and it is
not able to identify more elaborate actions such as walking or separate multiple breathing
rates from each other. Despite of this, the thesis proposed a practical, low-cost attack
that can expose private measurements through ambient WiFi sensing secretly, and the aim
of this thesis is to draw more attention into this area so that researches can be done to
support the security of people’s network.
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Chapter 2

Background

Before describing the details of Wi-Sneak, we explain some related background concepts
in this chapter.

2.1 WiFi Power Saving mechanism

Wireless communication is very power hungry; therefore, WiFi chipsets spend most of the
time in the sleep mode to save power. When a WiFi chipset is in the sleep mode, it cannot
send or receive WiFi packets. This creates a technical challenge for Wi-Sneak because it
requires a target WiFi device to continuously send packets so that an attacker can analyze
the signal to estimate breathing rate. When a WiFi device wants to enter the sleep mode
it notifies the WiFi access point so that it buffers any incoming packets for this device.
WiFi access points broadcast beacon frames periodically to manage their networks. The
beacon frame includes the Traffic Indication Map (TIM) that indicates which devices have
buffered packets on the access point. All devices must wake up to receive beacon frames
to find out if there are packets waiting for them. When a device has some buffered packets
on the access point, it stays awake to receive them. Wi-Sneak takes advantage of the WiFi
power saving mechanism to force a target device to stay awake. Details of this mechanism
is explained in Chapter 4.2.
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2.2 WiFi Channel State Information

The Wi-Sneak attack estimates the breathing rate by analyzing WiFi signals. When we
breath, our lungs move only a few centimeters which creates a very small distortion in WiFi
signals. Therefore, Wi-Sneak requires an accurate metric to detect and track these small
distortions. Coarse grain metrics such as the Received Signal Strength Indicator (RSSI) do
not provide enough accuracy to detect breathing rate. This is because RSSI only reports
the average received signal power for a packet. On the other hand, the Channel State
Information (CSI) reports the amplitude and phase of each OFDM subcarrier. Specifically,
for each WiFi packet, CSI provides 52 measurements for amplitude and phase. The channel
state information has been shown to be sensitive enough to estimate breathing rate [1, 6].
Previous studies could utilize CSI to estimate breathing rate only in controlled settings in
which WiFi devices and the target person are under the control of the experimenter. In
contrast, in the Wi-Sneak attack, the transmitter WiFi device and the target person are
in a building where the attacker has no access to. This creates new technical challenges
that require new solutions as explained in the following chapters.
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Chapter 3

Related Work

The attack presented in this thesis is related to existing WiFi sensing techniques. These
techniques use WiFi signals to infer some information such as gesture detection to enable
a useful application for the user (the good). In addition, Wi-Sneak utilizes some method-
ologies used in existing attacks against the operating of WiFi networks (the bad). Finally,
Wi-Sneak combines some ideas from WiFi sensing and attacks against WiFi networks to
create a new privacy attack against users in smart environments (the ugly).

3.1 The Good

WiFi Sensing is a technique that uses ambient WiFi signals to detect events or human
activities. The motivation behind WiFi sensing is that we can obtain certain information
without dedicated sensors. Instead, WiFi sensing techniques analyzing changes in WiFi
signal to infer different types of information. As mentioned earlier in Chapter 2.2 CSI has
been shown to be well suited for sensing techniques. For instance, there are applications
that can identify the number of people in a closed room and their relative locations[5]. Ap-
plications that develop wireless device-free human detection [11, 10] are also implemented
to determine the presence of human activities. Other than this, subtle movements like
gesture recognition [2] and vital measurement such as respiration rate [1, 6] can also be
measured using wireless sensing. These applications are tools that bring convenient to peo-
ple’s lives. However, for this techniques to work WiFi devices should cooperate to enable
WiFi sensing. Therefore, how can an attacker perform WiFi sensing when he/she has no
access to the target building and the devices inside it?
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3.2 The Bad

There are numerous attacks against WiFi networks form denial of service attack for a par-
ticular client devices or total disruption of the network [18]. Wi-Sneak utilizes a modified
version of these attacks to enable a privacy attack. We now review these techniques.

Beacon Injection: This attack is performed by forging 802.11 beacons and broadcasting
them to all devices in a WiFi network. The attacking device pretends to be the actual
access point and injects false information in the forged beacons to enable a variety of
attacks such as the “evil twin access point” attack. Since beacons are broadcasted to all
devices, this will attack all the devices at the same time. The forged beacon frames can
also be sent to a particular devices (i.e., unicast) to attack individual devices rather than
the entire network.

TIM Forgery: Another attack against WiFi networks is to force client devices not to
enter the sleep mode (i.e., WiFi power saving mechanism). Traffic Indication Map (TIM),
as mentioned in Chapter 2.1, is used in 802.11 beacon frames. It contains information
about whether sleeping devices have buffered packet at Access Point (AP) or not. It is
suggested that an adversary can manipulate the Time Indication Map (TIM) inside beacons
to change the behavior of WiFi devices [7]. For instance, the adversary can forge the TIM
to make a device believe that it has buffered data to receive, so it cannot enter the sleep
mode. In contrast, it can also prevent a device from receiving any data by telling it that
the AP has no buffered data for it.

3.3 The Ugly

In addition to attacks that sabotage WiFi networks, there are attacks that focus on infor-
mation gathering, especially about privacy. Wireless signals pass through walls; therefore,
an attacker who is outside a building can receive signals coming from inside that building.
The attacker can analyze the distortions in WiFi signals, caused by the body of a target
person, to infer various types of information from a target building. For example, a recent
study shows that by capturing WiFi signals coming out of a private building, it is possible
to track user movements inside that building [22]. This is a great threat to the privacy of
users in smart environments with numerous WiFi devices.

To make the problem worse, it has been shown that WiFi devices send acknowledgments
(ACK) when they receive fake packets coming from outside the their network [3]. This
behavior, called Polite WiFi, enlightens the possibility of turning any WiFi device into a
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secret sensor. This is because the CSI information can be extract from the ACKs send by a
victim device to perform WiFi sensing and potentially obtain some sensitive information.
Wi-Sneak combines some ideas from WiFi sensing, attacks against WiFi networks, and
Polite WiFi to enable a new privacy attack. In this thesis, we show for the first time
how an attacker can estimate the respiration rate of target persons inside a building tens
of meters away from that building. We also propose potential methodologies to protect
against this attack.
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Chapter 4

Wi-Sneak

This chapter shows how an attacker can turn WiFi devices into sensors and use them to
monitor the breathing rate of people near them. At a high level, the attacker first discovers
which WiFi devices exist in an environment. Then, it targets them by sending them back
to back packets. The target devices will respond the attacker with ACKs. The attacker
then analysis the signal properties of received ACKs and extract the breathing rate of
people close to the target devices. In the following we explain each of these steps in more
details.

4.1 Discovering WiFi Devices in a Network

To discover which WiFi devices exist in a network, the attacker pretends to be the Access
Point (AP) of that network and broadcast fake beacon frames. Note, to do so, the MAC
address and the SSID of the network’s AP is needed. This can be easily done by sniffing
the WiFi traffic using a software such as Wireshark. Once the attacker sends fake beacon
frames with the SSID and MAC address of the network’s AP, all existing WiFi devices will
respond to the attacker. This process enables the attacker to discover the MAC addresses
of all WiFi devices in that network. Knowing their MAC addresses enables the attacker to
target them individually. Now, the next question is how an attacker can turn a targeted
WiFi device to a breathing rate sensor.
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4.2 Turning a WiFi Device to a Breathing Rate Sen-

sor

When a person inhales and exhales, her/his chest expands and contracts, respectively.
This results in a periodic change in the wireless channel of a WiFi device which is in close
proximity of a person. Therefore, if the attacker continuously monitors the signal of the
WiFi device, it can discover the breathing rate of the person. However, the issue is that,
in practice, WiFi devices are not continuously transmitting. In particular, when a device
is is inactive, it barely sends any packet. Therefore their transmission is intermittent and
can not be used to sense breathing rate continuously.

To solve this problem, the attacker sends back-to-back packets to the WiFi device,
pushing the device to continuously transmitting acknowledgement packets. However, there
is still one issue. Most WiFi devices go to sleep to save energy during inactive state such
as screen lock. They occasionally wake up to receive the beacon frames, and hence the
are mostly in sleep mode. During the sleep mode, the attacker is not able to push them
to transmit by sending back-to-back packets. Figure 4.1 show the result of an experiment
where the attacker is continuously transmitting fake packets to a WiFi device. In this
Figure, we plot the amplitude of CSI over time for the acknowledgement packets received
form the WiFi device. As it can be seen, the responses are sparse and discontinued even
when the attacker sends back to back packets to the WiFi device.

To keep the target device awake, we found that the attacker can send the target device
a forged beacon frame, and claim that it has buffered packets waiting for the target device.
Note, this can simply done by alternating bits in TIM as mentioned in Chapter 2.1. This
process enables Wi-Sneak to prevent the target device from going to sleep since the target
device tries to stay up to receive the buffered packets. Although, sensing fake beacon
frames wakes the target device up, sending it very frequently will cause WiFi devices to
recognize the attacker’s behaviour suspicious and disconnect from it. Therefore, instead
of just sending beacon frames back to back, the attacker is continuously transmitting
normal packets to a WiFi device and periodically send fake beacon frames to keep it
awake. Figure 4.2 shows the result of an experiment where the attacker is continuously
transmitting fake packets to a WiFi device and periodically send fake beacon frames. As
it can be seen, the target device is continuously awake and responding to fake packets
with acknowledgements. Finally, note in this experiment, the device was placed close to a
person and therefore a periodic breathing pattern can be seen in the CSI amplitude of the
acknowledgment packets responded by the WiFi device. Therefore, Wi-Sneak can easily
detect the breathing rate of the person by computing the FFT of this signal.
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Figure 4.1: Disjoint data flow
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Figure 4.2: Continuous data flow

Figure 4.3: Comparison of data flow with and without the fake beacon frames
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4.3 Choosing a Target Device

So far we have explained how Wi-Sneak can turn a WiFi device to a breathing sensor.
The next question is that which WiFi device in a network would be a good candidate for
the attack. Although in theory Wi-Sneak can make any WiFi device into a sensor, not
all devices are good candidates for measuring breathing rate. For instance, people do not
stay close to devices like TV or fridge for a long time, and thus their WiFi devices are not
suitable candidates for Wi-Sneak. Devices such as laptops and mobile phones are better
options for measuring subtle movements since people are likely to spend a good amount of
time near them. To pick the target device, Wi-Sneak first sends fake packets to all devices
continuously. As mentioned before, all WiFi devices respond to these fake packets with
acknowledgement packets. Wi-Sneak then analysis the the responses of each WiFi device,
looking for breathing patterns. Note, as we will show in the following section, there is
no complex computations during analysing the signal. Therefore, the data from all WiFi
devices can be processed on a single processing unit such as a typical laptop. Once Wi-
Sneak discovers the signal of which WiFi devices includes breathing rate patterns, it stops
monitoring the other devices and continues sending fake packets only to those specific WiFi
devices. In the following section, we explain how Wi-Sneak extracts breathing rate from
the responses of a WiFi device using non-uniform FFT.

4.4 Extracting Breathing Rate

So far we have explained how an Wi-Sneak can discover the MAC addresses of WiFi devices
in a network and push them to consciously transmit packets. However, if Wi-Sneak sends
too many packets per second, it will be always occupying the channel. This will result in a
significant drop in the throughput of the WiFi network. In this section, we investigate what
is the minimum number packets required to extract the breathing rate without impacting
the network performance.

An adult’s normal breathing rate is around 12-20 times per minute (i.e. 0.2-0.33 per
second). One can imagine that based on the Nyquist rate, sampling rate of a few times per
second (i.e. sending a few packets per second) is more than enough to detect the breathing
rate. However, based on our experiments, we found that we require at least 100 samples
per second to detect breathing rate. This is mainly due to the fact that the collected data
is not uniformly spaced in time. In particular, when Wi-Sneak tries to send back-to-back
packets to the target device, there is a random delay due to channel access protocol and
also operating system which cause the sample measurements (i.e. ACKs received from the
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target) to be non-uniformly spaced in time. Therefore, Wi-Sneak requires to send packets
to the target device at much higher rate (i.e. at least 100 packets per second). This is
not practical for the attacker. Sending a packet and receiving an ACK takes at least a
millisecond. Therefore, when Wi-Sneak needs to monitor multiple target devices, sending
100 packets per second to each device is impossible and significantly impact the throughput
of the network which makes the attack detectable. In the following, we explain how an
attacker can solve this problem by capturing less number of samples and then performing
a non-uniform FFT.

Algorithm 1: Non-uniform FFT

Data: Two lists t, x of length n and a number d
Result: The non-uniform FFT results
for i← 1 to n− 1 do

interval← t[i]− t[i− 1];
if interval > d then

count← binterval/dc;
Interpolation(t, x, t[i], t[i− 1], count);

end

end
return FFT(t, x)

Non-uniform FFT: Let t0, t1, ..., tn be the timestamp of all the data points. The
attacker first finds the minimum time gap between these data points d where

d = min(ti − ti−1) i = 1, 2, ..., n.

Then for any interval between two consecutive data points such that ti − ti−1 > d, inter-
polated points will be added between them. As shown in Algorithm 1, once the interval
that needs interpolations is found, the number of points needed is recorded into count.
Then the function Interpolation(x, t, start, end, n) will modifies the lists x and t adding
n interpolated points between start and end. Specifically, the linear interpolation is used
in this algorithm. Finally, to reduce the noise, the attacker applies a low pass filter before
feeding the data to the FFT. Figure 4.5 and 4.6 show the amplitude of CSI before and
after interpolation, respectively, when the attacker sends 30 packets per second to a WiFi
device which is close to a person. Each Figure shows both the original data (in blue)
and the filtered data (in orange). These figures show that both interpolation and filtering
significantly help in extracting the breathing pattern. To better evaluate this, we compare
the output of the FFT for these signals when a standard FFT or a non-uniform FFT is
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used. Figure 4.4 shows the result of this comparison. The output of the standard FFT
does not have any clear peak, making it impossible to detect the breathing rate. On the
other hand, the output of the non-uniform FFT has a clear peak around 0.3 Hz, which is
presenting the actual breathing rate of 18 breaths per minute.
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Figure 4.4: FFT results comparison

Voting Algorithm: Since each WiFi packet has 52 sub-carries, Wi-Sneak can com-
pute the breathing rate by taking FFT over CSI of any sub-carriers. However, we found
that some subcarries are more robust than others in detecting the breathing rate, depend-
ing on the environment. Therefore, instead of computing the breathing rate using only one
of the subcarriers, Wi-Sneak takes FFT over CSI of all subcarriers and uses a soft voting
mechanism to calculate the breathing rate. In particular, each subcarrier gives a weighted
vote to a breathing rate. We then calculate which breathing rate has the highest number
of votes. In the following, we explain the attacker voting mechanism.

Let’s assume Pi is the power of each bin in the FFT output, where i = 1, 2, ..., n. We
first find the power of peak (Ppeak = max(Pi)), and then calculate the average power of

other bins (Pave =
∑

i 6=peak Pi

n−1
). We then calculate the ratio of these two value (

Ppeak

Pave
) which

defines the quality or SNR of the FFT peak for that sub-carrier. Finally, we use these
values as a weight for the subcarrier vote. However, instead of just directly use these

values, we use w = e
Ppeak
Pave as the weights. This guaranties that subcarriers with higher

SNR has significantly more votes than the rest of subcarriers. For example, even if there
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is only one sub-carrier which shows the breathing pattern, it has higher weight than the
summation of other votes.
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Figure 4.5: Data before interpolation
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Figure 4.6: Data after interpolation

Figure 4.7: Comparison of the original data and interpolated data
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Chapter 5

Evaluation & Analysis

To evaluate the feasibility of Wi-Sneak, we conduct a set of experiments in different sce-
narios. In the following, we first describe our attack scenarios and experiment setup. We
then present evaluation results on accuracy and effective range of Wi-Sneak.

We evaluate Wi-Sneak in two different scenarios: Indoor and Outdoor. In the indoor
scenario, the attacker and the target are placed in the same building but at different floors.
The height of one floor in the building is around 2.8 m. In the outdoor scenario, the
attacker is outside of the target’s house. For each scenario, we evaluate the attack for
different target and attacker locations, as shown in Figure 5.1. For example, in indoor
experiments, the attacker is placed at location C in the basement of the house, while the
target is tested at both location A and B in the first floor. In outdoor experiments, the
attacker is placed at location D in the backyard, which is around 3 m away from the outside
wall of the house. The target device is tested at location A, B and C. In all experiments,
the target WiFi device is placed 0.5 m away from the person’s body.

5.1 Attacker Hardware

The attacker uses a Linksys AE6000 WiFi-card and a ESP32 WiFi module as an attacker
device. Both devices are connected to a ThinkPad laptop through USB. The Linksys
AE6000 is used to send fake packets and the ESP32 WiFi module is used to received
acknowledgements. Although, we use two different devices for sending and receiving, one
can simply use a ESP32 WiFi module for both purposes.
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As for the target device, we use a One Plus 8T cell phone without any software or
hardware modification. It worth mentioning that any WiFi device can be a target for
Wi-Sneak.

D

Figure 5.1: Floor Plan

5.2 Attacker Software

We implemented the CSI collecting script on the ESP32 WiFi module, and the algorithm
mentioned in Chapter 4.4 on the laptop. The collected CSI data is fed to the algorithm
and produce the breathing rate estimation in real-time.

Upon running the program, the data packets constantly flows into Wi-Sneak. To process
these data in real-time, a sliding window (buffer) is used. The size of the window is 30
s and the sliding step is 1 s. As shown in Figure 5.2, the window is a queue of data
points, and it updates every second by including 1 second new data points to its head and
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Figure 5.2: Real-time analysis with sliding window

Figure 5.3: Synchronization

removing 1 second old data points from its tail. Wi-Sneak runs the analysis algorithm on
the data points in the window whenever it is updated. The window slides once per second.
Hence, Wi-Sneak reports an estimation of breathing rate every second. Note there is a 30
s starting delay since the data need to fill the sliding window first.

5.3 Ground Truth

In order to evaluate the accuracy of the attack in estimating the breathing rate, we need
to measure the ground truth breathing rate. To do so, we use a similar a method as
introduced in [9]. In particular, we place a microphone near the target person’s nose to
record the sound of breathing. We then take an FFT of the sound signal to estimate the
breathing rate accurately. However, as shown in Figure 5.4, each peak of the sound signal
is very noisy. Therefore, an envelope function is applied before taking FFT such that these
noises are removed.
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Figure 5.4: Audio Signal

5.4 Attack Scenarios

Similar to processing the WiFi data, we also apply the sliding window method to the
ground truth data. Thus, the results from both ground truth and WiFi signal can be
matched with each other. In addition, the ground truth and the attack results need to
be synchronised on the time domain. To do so, once the program starts, we start a timer
which serves as a coordinator. As the timer reaches one minute, the ground truth recorder
starts, and this marks the start of experiment as shown in Figure 5.3. The one minute
synchronizing time also covers the 30s starting delay of the estimation processing, so that
the window has already buffered enough data for analyzing.
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Figure 5.5: A controlled experiments with a changing breathing rate

5.5 Sensitivity and Accuracy

We first evaluate the sensitivity of Wi-Sneak in detecting breathing rate by performing a
controlled experiment where a person change its breathing rate. The attacker is outside
the house at location D and the target person is at location A. This experiment lasts
three minutes and the target person breathes slow in the first minute, fast in the following
minute and back to slow again in the last minute. As shown in Figure 5.5, Wi-Sneak can
accurately capture the changes of breathing rates. Note that each data point in this figure
is an FFT estimation over a 30 s window for both the ground truth and the estimation.
This controlled experiment shows that although people’s breathing do not usually change,
Wi-Sneak is sensitive enough to capture the change of breathing rate.

Next we run an experiment to examine Wi-Sneak’s capability in detecting whether
there is a target close to the WiFi device or not. For this experiment, the person stays
around the device for 30 s, then walks away from the device, and then comes back to the
device. Note, in our algorithm, when there is no majority vote during the voting phase,
we return −1. Figure 5.6 shows the result of this experiment. It is clear that Wi-Sneak
detects whether there is a person close to the WiFi device or not.

Finally, we evaluate the accuracy of Wi-Sneak in estimating the breathing rate for both
indoor and outdoor scenarios as explained in Chapter 5.4. For each scenario, we evaluate
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Figure 5.6: An experiment where the target person leaves the device and then comes back

Target Location Attacker Location Method 12 15 20 30

A C
Estimated Result 11.97 15.03 20.01 29.94

Ground Truth 12.05 14.91 20.06 30.17

B C
Estimated Result 11.95 15.00 19.97 29.94

Ground Truth 11.98 15.07 20.01 30.06

A D
Estimated Result 11.96 15.00 19.98 29.96

Ground Truth 11.97 15.12 20.05 30.05

B D
Estimated Result 11.99 15.00 20.00 29.97

Ground Truth 12.08 15.04 20.11 30.05

C D
Estimated Result 12.00 14.94 19.98 29.95

Ground Truth 12.04 15.01 20.08 30.16

Table 5.1: Results comparison of different respiration rate across all experiments

Wi-Sneak’s accuracy when the target’s breathing rate is 12, 15, 20 and 30 per minute.
Note, normal respiration rate for an adult is 12-20 per minute while resting, and higher
when exercising. To make sure the person’s breathing rate is close to these numbers, we
place a timer in front of the target, where they can adjust their breathing rate accordingly.
We run each experiment for two minutes. During this time, we collect the estimated
breathing rate from both audio (used for ground truth) and Wi-Sneak. Table 5.1 shows

21



12 15 20 30
Breathing Rate

0

50

100

Ac
cu

ra
cy

(%
)

99.58 % 99.44 % 99.71 % 99.48 %

Figure 5.7: Accuracy across all experiments

0.0 0.5 1.0 1.5 2.0 2.5
Error(RR/min)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F(

%
)
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he result of these experiments. The result shows that Wi-Sneak accurately detects the
breathing rate of the target person in different scenarios and for various breathing rate.
To quantify the accuracy of Wi-Sneakin estimating the breathing rate, we also plot the
average accuracy of Wi-Sneakin estimating breathing rate for all experiments in Figure
5.7. The accuracy is calculated as the ratio of estimated breathing rate by Wi-Sneak over
the ground truth breathing rate. The figure shows that Wi-Sneak’s accuracy is over 99%
in all scenarios. Finally, Figure 5.8 plots the Cumulative Distribution Function (CDF) of
the error in detecting breathing rate for over 2400 measurement. The CDF is generated
based on the estimated breathing rate reported every second by Wi-Sneak. Therefore,
each 2 minutes experiment has generated 120 estimation. The figure shows that 78% of
the estimated results have no error. The figure also shows that 99% of measurements have
less than one breath per minute error which is negligible.
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Figure 5.9: Target person distances vs Accuracy

5.6 Effective Range

So far, the target device is placed 0.5 m away from the person’s body in our experiments.
Here, we evaluate Wi-Sneak performance for different distances between the target device
and the target person. In particular, we are interested to find out what the maximum
distance between the target device and the person can be while Wi-Sneak still detects the
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person’s breathing rate. To do so, we place the attacker device and the target device in two
different rooms with a wall in between. The distance between the attacker and the target
device is around 7 m. We then run experiments when the person changes distances from
the target device. In each experiment, we measure the breathing rate for two minutes and
calculated the average breathing rate over this time. Finally, we compare the estimated
breathing rate to the ground truth and calculate the accuracy as mentioned before. Figure
5.9 shows the result of this experiment. The figure shows that Wi-Sneak’s accuracy is over
99% when the distance between the target device and the person is less than 60 cm. Note,
in reality, people have their laptop or cellphone very close to themselves most time. The
figure also shows that the accuracy drops as we increase the distance. However, even when
the device is at 1.4 m from the person’s body, the attack can still estimate the breathing
rate with 80% accuracy (i.e. estimating 12 when the person’s breathing rate was 15).
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Chapter 6

Is It Possible to Stop This Attack?

In the previous chapters, we showed how effective Wi-Sneak is in detecting the breathing
rate of a target person. A natural question is whether it is possible to stop an attacker
from monitoring a person’s breathing rate. As explained before, Wi-Sneak relies on the CSI
changes of WiFi signal to estimate the breathing rate. Therefore, one possible solution to
stop such an attack is to artificially create similar changes to CSI. For example, if the target
WiFi device periodically change its transmission power, it might be possible to prevent the
attacker from estimating breathing rate of a person from CSI changes.

To verify the effectiveness of such technique, we perform an experiment. In this ex-
periment, we periodically change the transmission power of the target device between 10
dBm and 18 dBm every 1 second, while Wi-Sneak tries to estimate breathing rate. Figure
6.1 shows the result of this experiment. The periodic pattern can clearly be seen in the
CSI amplitude of the WiFi packets measured by the attacker. In this experiment, Wi-
Sneak reported breathing rate of 30 breath per minute which is the frequency of change
in the transmission power. Although, this result shows the effectiveness of our approach
in preventing Wi-Sneak from monitoring breathing rate, changing the transmission power
by as much as 8 dB every second can significantly impact on the throughput of the WiFi
device. Next, we try to find what the minimum required change in transmission power is
to disrupt Wi-Sneak.

Similar to previous experiment, we run a set of experiments where the target device
is changing its transmission power. However, we try different transmission power changes
at different intervals. In all experiments, there is a person next to the target device and
the attacker tries to estimate their breathing rate. Figure 6.2 shows the result of this
experiment. In particular, the figure shows if the attacker was able to successfully detect
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Figure 6.1: Changing Tx power periodically when no person is near target device

the person’s breathing rate for different change in the transmission power at different
change intervals. The shaded area on the plot shows the area where the attacker was not
able to detect the true breathing rate of the target person, which means the defense is
successful. This results shows that if we lower the interval (i.e. increase the frequency of
change), the required change in the transmission power to prevent the attacker decreases.
However, note, lowering the intervals bellow 0.5 s (i.e. 60 times per minute) will make
the defence ineffective. This is due to the fact that adult’s breathing rate is in the range
of 12-20 breaths per minute and baby’s breathing rate is in the range of 40-60 breaths
per minute [14]. Therefore, the attacker can easily filter out any changes which are above
60 times per minute. Hence, the optimal way to prevent the attacker from estimating
breathing rate is to make the target’s device transmission power to change by 3 dB every
0.5 s.

Now, the next question is whether such a change in the transmission power impacts on
the throughput of the WiFi device. To examine this, we run another experiment.

We setup two laptops. One is a server acting as an Access Point (AP), and the other one
is a client acting as a target device. The server hosts a WiFi network and the target device
connects to it. The client sends UDP packets to the server while we use iperf comment to
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Figure 6.2: Results of different combinations that can disrupt attack

monitor the throughput over 10 minutes. We set the target bandwidth to 20 Mbps and
perform this experiment in three different scenarios: (1) the Tx power is stable at 12dBm,
(2) the Tx power is stable at 15dBm, and (3) the Tx power oscillates between 12dBm and
15dBm every 0.5 s.

Figure 6.3 shows the CDF of throughput for all three scenarios. The figure shows that
the WiFi device archives the same throughput in all scenario. In particular, oscillating
the transmission power does not impact on the throughput of the device. Note, in this
experiment, we set the target bandwidth to 20 Mbps. Although this is more than what
most WiFi devices uses, there are applications where the device require higher bandwidth.
Therefore, next we evaluate if oscillating the transmission power impact on the throughput
of the WiFi device when the device transmit at the maximum data rate (i.e. saturating
the WiFi channel). Figure 6.4 shows the the CDF of throughput when the WiFi device
saturates the channel for all three scenarios. As expected, lowering the transmission power
from 15 dBm to 12 dBm reduces the throughput. However, the results show that when
the transmission power oscillate between 12 and 15 dBm, the throughput is even lower
than the case where the transmission power is kept at 12 dBm. The reason for this is that
WiFi protocol uses a rate adaption algorithm, where the data rate is adapted according
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Figure 6.3: CDF for throughput under different Tx power with 20 M bandwidth
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Figure 6.4: CDF for throughput under different Tx power

to the signal strength. High data rates are adopted when the signal is strong, while low
data rates are adopted during weak signals. Therefore, when we change the transmission
power back and forth, the algorithm tries to adopt. However, since there is a delay, these
repeated changes causes packet drops which result in reduction in the throughput.

In summary, although our idea of oscillating the transmission power prevents an at-
tacker from monitoring the breathing rate, it also impacts on the maximum throughput
the WiFi device can achieve. However, the impact will be negligible for the WiFi devices
that do not require more than 20Mbps throughput.
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Chapter 7

Conclusion & Future Works

This thesis has explored Wi-Sneak , a way of utilizing the ambient WiFi signals to perform a
stealthy reconnaissance attack on people’s private data. The evaluations on various aspects
has proven that Wi-Sneak can retrieve target’s respiration rate accurately under various
scenarios, and the effective range can be up to 1.4 m. Moreover, the attack is also effective
when the WiFi devices are inactive during the sleep mode. Wi-Sneak does not cause any
suspicious behaviour in the WiFi network, so people without special training can hardly
detect it. The technique can be further explored to detect more detailed movements or
actions. Since the signal of the CSI is very sensitive to fine movements, applying machine
learning on the signal analysis may be able to extract even more information other than
breathing rate. Knowing the possibility of this stealthy reconnaissance attack, this thesis
proposed a limited defense method. Although it sacrifices some network throughput, we
hope it raises people’s safety awareness on WiFi network and encourages more studies and
researches in this area to make the WiFi network more secure.
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