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Abstract

Lightweight structures have been increasing in popularity in structural designs. How-
ever, they are more prone to disturbances. Therefore, a controller device can be placed
on the structure to control the excessive vibrations. Past works have revealed that there
exist corresponding optimal locations on the structure for placing the crucial parts of
the controller device, the sensor and the actuator, that result in optimal performance of
the controller. The physically practical collocated sensor/actuator design controller de-
vice can be moved around and deployed to different structures. The ideally more optimal
non-collocated sensor/actuator design allows the sensor and the actuator to be placed sep-
arately in their corresponding optimal locations, but it may be physically impractical to
implement. Hence, this motivates the study of the optimal locations, and to compare
the performances of the non-collocated and the collocated sensor/actuator designs for a
lightweight aluminum pedestrian bridge subject to pedestrian walking disturbances. The
structure is modelled using the Euler-Bernoulli beam theory, and modal and Hermite basis
finite element approximations are applied. The linear-quadratic performance objective con-
trol (LQ control) is reviewed and applied. Since approximations are applied, a mapping for
the state energy weight in the LQ control performance objective functional from the orig-
inal functional space to a generic approximation functional space is presented in this thesis.

In the preliminary problem in this thesis, influences of the state weights and the dis-
turbances’ spatial distributions on the non-collocated and the collocated sensor/actuator
designed linear-quadratic Gaussian (LQG) controllers’ optimal locations and comparisons
of the performances at their optimal locations are studied on a simplified system model
with a Gaussian temporally distributed disturbance. Numerical implementation of distur-
bances is presented, and numerical complications are discussed and provided with solutions.

The comparisons of the non-collocated and collocated sensor/actuator designs for a
more realistic bridge model are made using three different state weights. The realistic
bridge model is approximated using the Hermite basis finite element approximation. The
H2-controller is reviewed and applied. The actuator device dynamics and its noise, a reli-
able pedestrian loading, and a low pass filter are included in this model to consider more
realistic disturbances. The results suggest that the physically more practical collocated
sensor/actuator design can achieve similar performances as the ideally more optimal non-
collocated sensor/actuator design at their corresponding optimal locations.
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Chapter 1

Introduction

Figure 1.1: Photo of an aluminum pedestrian bridge from [13].

Lightweight structures, such as an aluminum pedestrian bridge shown in Figure 1.1, have
been increasing in popularity in structural designs. However, due to their compositions
of lightweight materials, they are more prone to disturbances that will cause vibrations
that could lead to serviceability and safety issues. A device can be placed on the struc-
ture to control the excessive vibrations. Past works have revealed that there exist optimal
locations on the structure for placing parts of the controller device, the sensor and the
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actuator, that result in optimal performance of the controller. Physically, the sensor and
actuator can be designed on a single device, and be placed at the same location with re-
spect to the structure. This is known as collocated sensor/actuator design. Figure 1.2
shows a collocated sensor/actuator design controller: the deployable control system proto-
type controller that has been studied in the work [16]. This compact controller device can
move around and deploy to different structures, and it is physically practical. On the other
hand, the sensor and the actuator can be placed at their corresponding optimal locations,
and not constrained to a single location as in the collocated sensor/actuator design. This
is known as non-collocated sensor/actuator design, and ideally, this should yield a better
controller performance. However, in reality, it is physically impractical to implement on
structures, and it often causes serious time delay issues. Hence, one may wish to use the
more physically practical collocated sensor/actuator design while aiming for the ideally
more optimal non-collocated sensor/actuator design’s performances. Thus, the challenge
of the significance of the difference in their performances is addressed in this thesis.

Figure 1.2: Photo of a controller device, the deployable control system prototype controller
from [16].

In this thesis, the non-collocated sensor/actuator and the collocated sensor/actuator
optimal controllers are designed for a lightweight aluminum pedestrian bridge. The main
goal of this thesis is to study and compare their performances as a function of their loca-
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tions on the bridge subject to pedestrian walking loads.

The control studies conducted on the bridge structure system in this thesis are car-
ried out using mathematical models to approximate and simulate the vertical direction
responses of the bridge structure system subject to disturbances. The controllers are de-
signed, and the resulting algorithms are applied to the mathematical models in simulations.

The controller’s algorithm to be designed in this thesis consists of an estimator that
estimates the states and a control law that uses the estimation of the states to stabilize
the system. The optimal estimator achieves minimal estimation error and the optimal con-
trol law achieves a balance between the control effort spent and the system’s total energy.
The combination of the optimal estimator and optimal control yields an optimal controller.

The controller device that executes the control algorithm consists of two crucial phys-
ical components, a sensor and an actuator, that work together to effectively control the
system. The sensor measures the vibration signals at its location that are fed into the
estimator for estimating the state of the system. The actuator receives information from
the control law and applies control forces at its location to stabilize the system.

Structural vibrations are a combination of different sinusoidal signals with correspond-
ing nodes and anti-nodes. To suppress vibrations, applying a control force at the anti-node
location is the most effective. Therefore, certain locations along a long flexible structure
are more easy to control than other locations. Similarly, to estimate an accurate system
subjected to disturbances, measurements at certain locations are more helpful. Hence, the
placement of the controller crucially influences the controller’s performance, and the con-
troller should be placed at the optimal location. Consequently, the optimal non-collocated
sensor/actuator design and the optimal collocated sensor/actuator design may yield dif-
ferent controller’s performances at their optimal locations. Since the non-collocated sensor
and actuator can be at their corresponding optimal locations without being constrained
to a single location as in the collocated sensor/actuator design, the non-collocated sen-
sor/actuator design yields a better controller performance ideally. However, as mentioned
above, the non-collocated sensor/actuator design is physically impractical compare to the
collocated sensor/actuator design.

A preliminary problem of a simplified model, a modal approximated unit parameter
beam, is first simulated in Matlab. Implementation and the associated numerical issues

3



are discussed. Results are presented to study various parameters’ influence on the optimal
controlled response and the optimal locations of the non-collocated and collocated sen-
sor/actuator designs. Then, a more realistic model of a lightweight aluminum pedestrian
bridge is set up for disturbance control. Since the controller is a physical device that is
being attached to the bridge, the interaction between the structure and the controller must
be considered. In this thesis, the sensor is assumed to be relatively lightweight and its mass
can be neglected. The actuator device is assumed to weigh 2% of the bridge mass. Thus,
the actuator dynamics are modelled as a coupled spring-mass-damper (SMD) system to
the bridge.

The bridge controller aims to reduce the vibrations along the entire bridge (state re-
sponse) subject to all frequencies in the domain of a predictable pedestrian walking dis-
turbance, while achieving a balance between the control effort and the bridge’s transient
and equilibrium states so that a pedestrian perceives it as a stable bridge (comfort level for
the pedestrian). Since the pedestrian walking frequencies are in the lower frequency ranges
(< 3Hz) as shown in [13], a low pass filter that targets the rejections in the lower frequency
disturbance response is applied. Since the pedestrian walking disturbance is known, the
disturbance is modelled as a coupled dynamical system to the bridge. An actuator device
noise is included in the model, and this results in the estimator design’s dependency on
both the actuator and sensor locations.

Numerical simulations on the bridge-pedestrian model using the optimal non-collocated
sensor/actuator and the optimal collocated sensor/actuator controllers are conducted in
Matlab. Analysis of the optimal locations and the controlled responses resulting from
the two controllers is conducted. The simulation results show that the differences in the
two controllers’ performances at their optimal locations are not significant, and the col-
located sensor/actuator design potentially performs as excellently as the non-collocated
sensor/actuator design. The results suggest that the physically more practical collocated
sensor/actuator design can achieve similar performances as the ideally more optimal non-
collocated sensor/actuator design at their corresponding optimal locations.

1.1 Literature Review

There are many closed loop feedback control designs that can achieve different control
objectives. Feedback control using state information to stabilize the system via a gain of

4



the state while minimizing a performance index/control objective (usually an indication
of some type of energy spend on stabilizing the system) is called an optimal closed-loop
controller. The works in [44] and [45] compared three control laws for non-stochastic
(constant pulse load disturbance) systems: direct proportional feedback, constant-gain
negative velocity feedback and the optimal linear-quadratic regulator (LQR), and revealed
that the LQR optimal control achieved a better balance between control effort and system
responses while associated with a lower peak actuator forces. The optimal LQR achieves
system stabilization with minimal linear-quadratic (LQ) performance index, known as the
LQ performance index. The LQ performance index is in the form of a linear combination
of the weighted total system state and the control spent for stabilization.

Often, only partial state information is obtained, and an estimator is required to con-
struct the full state feedback. This is called the output feedback controller design. The
optimal estimator achieves full state estimation with minimal performance index, such as
the LQ performance index in the form of the estimation error variance.

Different designs of optimal output feedback controllers are designed for different con-
trol goals. The linear-quadratic Gaussian (LQG) controller is used to control random initial
condition response and Gaussian disturbance response of a stochastic system, which is the
combination of the optimal LQ control and the optimal LQ estimator (or the Kalman Filter
if the covariances of the noises are known). The H2 controller is used to control a known
non-Gaussian disturbance. It is also based on the LQ controller performance index, but
with the disturbance being modelled as part of the system as demonstrated in [33]. The
H∞ controller is used to control an unknown or a spatio-temporally varying disturbance
as shown in [11].

Previous works have shown that the locations of the sensor/actuator placements im-
pact the performance of the control and estimation aspects significantly, and the optimal
locations of the sensor/actuator have been studied. There are many objective functionals
that can be considered for finding the controller’s optimal locations. The two main ap-
proaches are: 1. Using the controller design performance index as the cost functional, and
2. Combining multiple objectives. The controller design performance index, parameterized
with sensor/actuator location(s) can be used as the cost functional for finding the optimal
locations of the sensor/actuator. Reviews and comparisons on the methods for finding the
optimal sensor/actuator locations can be found in [36] and in [18]. They revealed that
LQ performance criterion should be preferred over controllability criterion. Although the
controllability (observability) criterion can be used for choosing the sensor/actuator can-
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didate locations, it is shown that this type of location optimization is mode dependent,
and the optimal location becomes non-optimal when the approximation on the number
of modes (or number of finite elements) increases [36]. Thus, further discussions on the
controllability and/or observability criterion will not be included, and readers may refer to
the works in [19], [49], [27] and [47] for sensor/actuator location optimization based on the
controllability and/or observability criterion.

Theories on the existence of optimal location(s) of the Kalman estimator’s sensor(s)
and the optimal LQ control’s actuator(s) can be found in the works [34] and [50]. For
non-disturbance (or non-stochastic disturbance) systems, the works [10] and [14] stud-
ied separately locating the sensor and actuator using the LQ performance index and [45]
studied the collocated sensor/actuator case. They revealed that placing the sensor and
actuator at their optimal locations resulted in a faster decay of the state response, smaller
energy norm, and faster decay in input control. For a Gaussian disturbance system, the
work [23] proved the existence of the optimal sensor/actuator location pairs of the collo-
cated and non-collocated LQG controllers. The optimal locations of the non-collocated
sensor/actuator was compared with those of the collocated sensor/actuator. This work
also revealed that separately computing optimal locations for the sensor and actuator were
computational advantageous but yielded a higher optimal performance index value.

For known distributed disturbance systems, the works [35],[30] and [29] used the H2

criterion to find the optimal non-collocated and/or collocated sensor/actuator locations.
These works revealed that disturbance and sensor locations influenced the optimal place-
ment of the actuator, and the non-collocated optimally located sensor/actuator pair could
improve the performance of the closed-loop system by 40% − 50% in terms of the spatial
H2 norm.

For spatial-temporal varying or unknown parameter distributed disturbance systems,
the work [26] established the conditions for well-posedness of the approximation H∞ actu-
ator optimization problem and [26] developed a non-gradient based location optimization
approach.

Besides using the location parameterized controller design performance index for se-
lecting the optimal locations for a distributed parameter system, structural control works
in [42], [20], and [52] used other location optimization criteria to find the optimal location,
and then applied LQG control at the fixed optimal location. The work [37] developed an
iterative optimal location finding method, with H2 criterion for optimal sensor location and
H∞ criterion for optimal actuator location, and showed that this method were performed
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in the aforementioned paper requires much less computation time compared to iterative
method.

The work [11] studied a switching scheme for multiple collocated sensor/actuator pairs
placed at optimal locations with multiple optimization criteria. However, the switching
sensor/actuator could only do better than a single fixed actuator but no better than a
fixed two-actuator configuration. Extended work can be found in [12].

The weightings in the LQ performance index impact the effectiveness of the controller
significantly. Studies on the selection of the weighting matrices in the LQ performance
index for controlling beam structures can be found in [20], [4], [22] and [1]. These works
revealed that weighting the state proportional to the system’s potential and kinetic energy
could achieve high damping ratio.

The work [5] revealed that the interaction between the structure and a mass (human)
may affect the vibration dynamics significantly and should be considered as a coupled
dynamical system to the structure. The work [24] considered the interaction between a at-
tached mass (sensor) and the structure as a coupled dynamical system, which was derived
from the Hamilton’s Principle.

The performance comparison between the collocated and non-collocated sensor/actuator
designs for lightweight pedestrian bridges has not been involved in the current literature.
The work [16] has shown that the collocated sensor/actuator deployable prototype con-
troller device is economical for short term control applications on lightweight structures.
However, there is no comparisons done between the physically practical collocated sen-
sor/actuator design and the ideally more optimal non-collocated sensor/actuator design.
The main goal of this thesis is to study the differences in the optimally located non-
collocated sensor/actuator and collocated sensor/actuator controllers’ performances.
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Chapter 2

System Model

The physical system in this research consists of a lightweight aluminum pedestrian bridge,
a sensor device, an actuator device, and walking pedestrians. The bridge is considered as
the plant being controlled. The sensor device provides measurements to the controller, and
the actuator device applies the control forces to the plant based on the control algorithm.
The pedestrian load is considered as an external disturbance to the plant.

2.1 Plant Model

Pedestrians exert disturbance forces in both the vertical and horizontal directions, but only
vibrations in the vertical direction are studied in this thesis. The control on the vertical
displacement and velocity response of the bridge is considered in this research.

The plant model is based on the Euler-Bernoulli beam theory in one-dimensional space.
The key assumptions in the Euler-Bernoulli beam theory are:

• the normals to the midline always remain straight and normal, and

• the midline deformation angle θ is small.

Denote the bridge’s deflection as w(x, t), the bending moment as m(x, t), the control
force as br(x)u(t) and the pedestrian disturbance as gp(x)ωp(t). The dynamics of the bridge
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are modelled by the initial boundary value problem (IBVP)

ρ
∂2w(x, t)

∂t2
+ cd

∂w(x, t)

∂t
+
∂m2(x, t)

∂x2
= br(x)u(t) + gp(x)ωp(t), (2.1.1)

w(0, t) = 0 = w(L, t),

m(0, t) = 0 = m(L, t).
(2.1.2)

w(x, 0) = w0(x),

∂w(x, 0)

∂t
= v0(x),

(2.1.3)

where ρ is the density parameter and cd is the vicious damping parameter.

The term m(x, t) can be expressed in terms of deflection w(x, t) and velocity ∂w(x,t)
∂t

as

m(x, t) = kd
∂3w(x, t)

∂t∂x2
+ EI

∂2w(x, t)

∂x2
, (2.1.4)

where kd is the Kelvin-Voigt damping parameter, E is the Young’s modulus, and I is the
moment of inertia parameter.

Expanding the moment term (2.1.4) in (2.1.1), and the following expression is obtained:

ρ
∂2w(x, t)

∂t2
+ cd

∂w(x, t)

∂t
+ kd

∂5w(x, t)

∂t∂x4
+ EI

∂4w(x, t)

∂x4
= br(x)u(t) + gp(x)ωp(t). (2.1.5)

The term br(x)u(t) models the control force from the actuator with width ∆, where
br(x), parameterized with the actuator’s center location r, is the spatial distribution of the
control force u(t). The actuator location is denoted by

br(x) =

{
1
∆

, |r − x| < ∆
2

0 , |r − x| ≥ ∆
2

. (2.1.6)
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The term gp(x)ωp(t) models the disturbance due to np pedestrians, where gp(x) is the
spatial distribution of the pedestrian load, and ωp(t) is the temporal walking disturbance.
Since controlling the vibrations over the entire bridge is considered, the disturbance is
assumed to be uniformly applied to the beam. Thus, gp(x) =

np

L
. The temporal amplitude

ωp(t) of the input disturbance is the temporal ground reaction force (2.1.7) [13] from the
walking of the pedestrian,

ωp(t) = Wped +Wped

rp∑
k=1

ηk sin(2πkfpt+ ψk), (2.1.7)

where Wped is the average weight of the pedestrian, fp is the pacing frequency in Hz, ηkp
is the periodic load factor (DLF) for the kth harmonic, ψk is the phase angle of the kth
harmonic, rp is the total number of harmonics considered.

The pedestrian mass is assumed to be 70kg. Earth’s gravity is assumed to be 9.81m/s2.
The fundamental mode of the walking load is considered, with pacing frequency fp = 1.6Hz
and DLF η1p = 0.37 [13]. The temporal pedestrian disturbance is simplified to

ωp(t) = Wped +Wped0.37 sin(3.2πt), (2.1.8)

where Wped = 70kg × 9.81m/s2.

In the context of control, systems are usually presented in state-space form. Define the
space H2(0, L) = {ϕ ∈ L2(0, L) : ϕ

′ ∈ L2(0, L), ϕ
′′ ∈ L2(0, L)}, the space Hs(0, L) = {w ∈

H2(0, L), w(0) = 0, w(L) = 0} and the state-space Zinf = Hs(0, L)× L2(0, L). With state
zb(t) = [w(., t), v(., t)], v(., t) = ∂w

∂t
(., t), the state-space formulation of equation (2.1.5) is

dzb
dt

(t) = Abzb(t) +B1bωp(t) +B2bru(t), (2.1.9)

where

Ab =

[
0 I

− d4

dx4 −cd − kd
∂4

∂x4

]
, B1b =

[
0

gp(x)

]
, B2br =

[
0

br(x)

]
. (2.1.10)

The domain of Ab is

dom(Ab) = {(w, v) ∈ Zinf : w′′ ∈ Hs(0, L), v
′′ ∈ Hs(0, L)}.
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It is known from the textbook [32] that Ab with domain dom(Ab) generates an expo-
nentially stable semigroup on Zinf .

The sensor is located at an interval on the bridge to measure the deflection. Let y2(t)
denote the sensor output,

y2(t) = cl(x)zb(x, t), (2.1.11)

where cl(x) denotes the characteristic of the sensor location with its center at x = l and
its width is the same as the actuator’s,

cl(x) =

{
1
∆

, |l − x| ≤ ∆
2

0 , |l − x| > ∆
2

. (2.1.12)

2.2 Numerical Approximations

Since a closed-form solution to the system (2.1.5) is not available, the Galerkin’s approx-
imation method is applied to approximate a system of equations that has closed-form
solutions. For any positive integer n ∈ Z+, n = 1, 2, ..., N , denote the approximation basis
as ϕn and let Hn(0, L) be the span of ϕn. Let wN(x, t) =

∑N
n=1w

n
b (t)ϕn(x) be the approx-

imation solution, where wn
b denotes the time coefficient of the nth basis.

In the preliminary problem, modal approximation is applied. Let wn
b denote the coef-

ficient of the nth mode, n = 1, 2, ..., N . Define Hn(0, L) = H2(0, L) ∩H1
0(0, L), where

H1
0(0, L) = {ϕ ∈ L2(0, L) : ϕ

′ ∈ L2(0, L), ϕ(0) = ϕ(L) = 0}.

Choose ϕn(x) ∈ Hn(0, L) to be the eigenfunctions of ∂4w(x,t)
∂x4 with boundary conditions

(2.1.2),
ϕn = sin(

nπx

L
). (2.2.1)

Denote the approximated deflection coefficients as wN
b ∈ RN and the approximated

system is a system of second order ODEs

MẅN
b (t) +DẇN

b (t) +KwN
b (t) = BN

rposu(t) +BN
d ωp(t), (2.2.2)

where
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M : N ×N diagonal matrix with Mn,j =
∫ L

0
ρϕnϕjdx,

D : N ×N diagonal matrix with Cn,j =
∫ L

0
[cdϕnϕjdx+ kdϕ

′′
nϕ

′′
j ]dx,

K : N ×N diagonal matrix with Kn,j =
∫ L

0
EIϕ′′

nϕ
′′
jdx,

BN
rpos :N × 1 column vector with BN

rposn =
∫ L

0
br(x)ϕndx,

BN
d : N × 1 column vector with BN

dn
=

∫ L

0
gp(x)ϕndx, n, j = 1, ..., N .

The position of the sensor is described by

CN
lpos

: 1×N row vector with CN
lposn

=
∫ L

0
cl(x)ϕndx, n = 1, ..., N .

In another approximation method, the finite element method with Hermite C1 basis
is applied. The bridge structure is discretized into "N" two-node Euler-Bernoulli beam
elements, with element length le.

The two-node Euler-Bernoulli beam element has four degree-of-freedoms (DOFs). At
each node, there is one DOF of vertical displacement and one DOF of rotation about the
mid-line. Let ui denotes the vertical displacement DOF and θi denotes the rotation DOF
of the global ith node.

Figure 2.1: A two-node beam element (the subscript y denotes the vertical displacement
in the y direction), Figure 10.7 in [15].
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Let xni denotes the ith spatial coordinate of the nth element, n = 1, 2, ..., N . Let wn
b

denotes the time coefficient (element nodal displacements) vector of the nth element, wn
b =

[un1 , u
n
2 , θ

n
1 , θ

n
2 ]

T . Define Hn(0, L) = HH(0, L) ∩HH0(0, L), where

HH(0, L) = {w(x, .) ∈ H2(0, L), w(0, .) = w(L, .) = 0, w′(0, .) = w′(L, .) = 0},
HH0(0, L) = {ϕ ∈ L2(0, L) : ϕ

′ ∈ L2(0, L), ϕ(0) = ϕ(L) = 0, ϕ′(x) = ϕ′(L) = 0}.

Choose ϕn(x) ∈ Hn(0, L) to be the Hermite C1 shape functions. Introduce a change of
coordinate variable ζ(x) = 2x

le
− 1 for each element such that the element’s domain is in

[−1, 1]. Let ϕn(ζ(x)) = [ϕn
u1, ϕ

n
u2, ϕ

n
θ1, ϕ

n
θ2], ζ ∈ [−1, 1], where

ϕn
u1 =

1

4
(1− ζ)2(2 + ζ),

ϕn
θ1 =

le

8
(1− ζ)2(1 + ζ),

ϕn
u2 =

1

4
(1 + ζ)2(2− ζ),

ϕn
θ2 =

le

8
(1 + ζ)2(ζ − 1).

(2.2.3)

For each element, the element mass, the element stiffness, the element damping, and
the element input matrices are given by

Mn = ρ
le

2

∫ 1

−1

ϕnTϕndζ

=
ρle

420


156 54 22le −13le

54 156 13le −22le

22le 13le 4le2 −3ln2

−13le −22le −3le2 4le2

 , (2.2.4)

Kn = EI
le

2

∫ 1

−1

d2(ϕn)

dζ2

T
d2(ϕn)

dζ2
dζ

=
EI

(le)3


12 −12 6le 6le

−12 12 −6le −6le

6le −6le 4le2 2le2

6le −6le 2le2 4le2

 ,
(2.2.5)

Dn =
cd
ρ
Mn + kdK

n, (2.2.6)
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Bn
rpos =

le

2

∫ 1

−1

br(x(ζ))ϕ
nTdζ, (2.2.7)

Bn
d =

le

2

∫ 1

−1

gp(x(ζ))ϕ
nTdζ, (2.2.8)

Cn
lpos =

le

2

∫ 1

−1

cl(x(ζ))ϕ
ndζ. (2.2.9)

Then, the element matrices are assembled into the N -elements global mass, the N -
elements global stiffness, the N -elements global damping, and the N -elements global input
matrices correspondingly. The N -elements second-order system ODEs is

MẅN
b (t) +DẇN

b (t) +KNwN
b (t) = BN

rposu(t) +BN
d ωp(t), (2.2.10)

where wN
b denote the global nodal displacements, M , D and K are the global finite element

mass, damping and stiffness matrices respectively, and BN
rpos and BN

d are the global input
force vectors for the system (2.1.5) (with boundary conditions taken into account). Details
in assembling the element matrices into the global matrices can be found in the textbook
[15]. Since the procedure is tedious, details will not be shown in the thesis.

In the remaining thesis, the control designs are applied on the modal approximated
finite-dimensional system in chapter 4 and on the Hermite basis FEM approximated finite-
dimensional system in chapter 5. To keep the approximation state-space form generalized
for both approximation methods, the matricesM , D, K BN

rpos , B
N
d , and CN

lpos
are denoted by

the same names for two approximation methods, and the method chosen will be specified to
the readers when relevant. Define the finite-dimensional space Zn = Hn(0, L)×Hn(0, L),
and let [wN

b , ẇ
N
b ]

T ∈ Zn. Define the sensor position matrix CN
2bl

= [CN
lpos
, 0] and define the

output from the sensor
y2b(t) = CN

2bl
zNb (t). (2.2.11)

After approximating the system (2.1.5), the system model and measurement output
are represented in the state space form

żNb (t) = AN
b z

N
b (t) +BN

2bru(t) +BN
1bωp(t), z

N
b (0) = zNb0 = 0, (2.2.12)

y2b(t) = CN
2bl
z(t), (2.2.13)
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where

AN
b =

[
0 I

−M−1K −M−1D

]
, BN

2br =

[
0

−M−1BN
rpos

]
, BN

1b =

[
0

−M−1BN
d

]
,

CN
2bl

=
[
CN

lpos
0
]
,

(2.2.14)

and M , D, K, BN
1b, BN

rpos and CN
lpos

are the approximation system’s mass, damping, stiffness,
disturbance, actuator location and sensor location matrices respectively.

In the remaining thesis, the approximation superscript "N" may be dropped.
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Chapter 3

Location-Parameterized
Linear-Quadratic Controller Designs

In this chapter, a well-known controller design approach, minimizing the infinite time hori-
zon LQ performance index for the control and estimator, is discussed. Theorems of the
optimal solutions, the optimal control and the optimal estimator, that minimize the per-
formance index are presented.

The locations of the actuator and sensor affect the optimal control and estimator and
consequently affect the controller performance index. Actuator location-parameterized op-
timal control solution and sensor location-parameterized optimal estimators are presented.
Theorems on the existence of optimal locations are provided. The non-collocated and col-
located sensor/actuator designed location optimization problems are presented.

The mapping of the performance index, specifically the state weight that weights the
energy of the original infinite-dimensional system (2.1.9), from the original functional space
to a generic approximation functional space is described in detail.
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3.1 Linear-Quadratic Performance Design for Distur-
bance Systems

Consider a linear system with state z(t), Gaussian disturbance ω(t), control u(t), and
measurement y2(t) with noise ν(t):

ż(t) = Az(t) +B1ω(t) +B2u(t), z(0) = z0, (3.1.1)
y2(t) = C2z(t) +D21ν(t). (3.1.2)

The finite-dimensional system, (3.1.1) is defined by vectors and matrices. z(t) ∈ Rn,
y2(t) ∈ Rq, A ∈ Rn×n, B2 ∈ Rn×m, B1 ∈ Rn×1, C2 ∈ Rq×n,D21 ∈ Rq×m. The disturbance
ω(t) has covariance W , and the sensor noise ν(t) has covariance Re. The integers n, m,
and q denote the number of states in the system, the number of actuators, and the number
of sensors respectively. In this research, m = q = 1.

Define the linear-quadratic (LQ) performance index:

J(u, z0, T ) = [
1

2
zT (T )ΠT z(T ) +

1

2

∫ T

0

[z(t)TQz(t)] + u(t)TRuu(t)]dt, t ∈ [0, T ],

J(u, zo) = lim
T→∞

J(u, z0, T ) =

∫ ∞

0

z(t)TQz(t) + u(t)TRuu(t)dt,

(3.1.3)

where Q ∈ Rn×n, Q ≥ 0, is the state weight, Ru ∈ Rm×m, Ru > 0, is the control weight,
and ΠT ∈ Rn×n is the final state constraint.

In this thesis, the optimal controller is optimal for infinite time, that is, the achieved op-
timal value of performance is the sum of the performance index over infinite time. The LQ
performance control law balances the linear combination of state and control energy spent
before the state reaches equilibrium. Mathematically, the objective of the infinite time
optimal LQ control u(t) is to minimize limT→∞ J(u, z0, T ), which essentially is a weighted
sum of the L2-norm of the state (transient behaviour criterion) and the control (control
criterion) plus a final weighted state, which is zero for the infinite time case [32].

Note that the integrand inside (3.1.3) can also be written in a vector form

y1(t) = C1z(t) +D12u(t), (3.1.4)
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where
C1 =

[√
Q
0

]
, D12 =

[
0√
Ru

]
. (3.1.5)

Thus, minimizing (3.1.3) is equivalent to

min
u

∫ ∞

0

∥y1∥2 dt. (3.1.6)

For a partially observed system, an estimator that provides estimation of the full state
is needed. Consider a general estimator ẑ of the system (3.1.1),

˙̂z(t) = Aẑ(t) +B2u(t) + F (y(t)− C2ẑ(t)), ẑ(0) = ẑ0, (3.1.7)

where F is the estimator gain that needs to be chosen.

The linear-quadratic Estimator (LQE) is an optimal estimator that balances between
the weighted reliability of the system model and the weighted reliability of the sensor
measured state in a LQ performance index. When the variances of the noises, Gaussian
distributed, are known and utilized in the performance index, the LQE becomes the well-
known Kalman estimator (Kalman Filter). The Kalman estimator is an optimal estimator
that minimizes the error covariance between the estimated state and the actual state. The
objective is to minimize the performance index

min
ẑ

E[∥z(t)− ẑ(t)∥2], t ∈ [0, T ], (3.1.8)

where E[.] is the expectation notation.

To solve for the optimal control and estimator in the functional (3.1.3) and (3.1.8),
various approaches such as variation of calculus or dynamic programming by optimizing
the cost functional under the constraints (3.1.1) to solve for the minimum u and ẑ can be
applied. Derivations of the solutions and proofs of existence and uniqueness of the optimal
control can be found in the work [23], and textbooks [32], [2] and [28].

In this thesis, the controllers are designed following the theorems for output feedback
designs. Let λi(A) denote the ith eigenvalue of an n× n matrix A. Consider the following
definitions:
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Definition 1 If max1≤i≤nRe(λi(A)) < 0, then A is Hurwitz.

Definition 2 The pair (A,B) is stabilizable if there exists K such that A−BK is Hurwitz.

Definition 3 The pair (A,C) is detectable if there exists F such that A− FC is Hurwitz.

Theorem 3.1.1 (Optimal solution u to (3.1.3)): Assume (A,B2) is stabilizable and (A,C2)
is detectable. Then the infinite time horizon minimum cost of (3.1.3) exists for each initial
condition z0. There exists a symmetric non-negative matrix Π, such that:

minu∈L2(0,∞;Rm) J(z0, u) = J(z0, uopt) = zT0 Πz0, where Π is the minimal non-negative
solution to the Algebraic Riccati Equation (ARE):

ATΠ+ΠA+Q− ΠB2Ru
−1BT

2 Π = 0. (3.1.9)

That is, any other (symmetric) solution Π1 to the ARE has zT0 Πz0 ≤ zT0 Π1z0, for all
z0 ∈ Rn.

Define the control gain K = R−1
u BT

2 Π. The corresponding optimal control is

uopt(t) = −Kz(t), (3.1.10)

and A−B2K is Hurwitz.

Hence, by Theorem (3.1.1) , the state-feedback law u(t) = −Kz(t) stabilizes the sys-
tem and minimizes the LQ performance index (among all stabilizing controllers) with the
optimal performance zT0 Πz0.

Consider the following definitions:

Definition 4 The trace of an n× n square matrix A is

Tr(A) =
n∑

i=1

aii. (3.1.11)
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Definition 5 The trace norm (nuclear norm) of a real matrix A is

∥A∥1 = Tr(
√
AAT ). (3.1.12)

Theorem 3.1.2 (Optimal Solution ẑ to (3.1.8)): Assume (A,B1

√
W ) is stabilizable and

(A,C2) is detectable. Then the infinite time horizon minimum cost of (3.1.8) exists for all
z ∈ Rn, and there exists a unique symmetric non-negative matrix Σ, such that:

E[∥z(t)− ẑopt(t)∥2] = minẑ E[∥z(t)− ẑ(t)∥2] = ∥Σ∥1,
where Σ is the minimal non-negative solution to the ARE:

AΣ + ΣAT +B1WBT
1 − ΣCT

2 R
−1
e C2Σ = 0. (3.1.13)

That is, any other solution Σ1 to the ARE has ∥Σ∥1 ≤ ∥Σ1∥1.

The error covariance

E[(z(t)− ẑopt(t)) ◦ (z(t)− ẑopt(t))] = Σ. (3.1.14)

Define the optimal estimator gain F = ΣCT
2 R

−1
e . The optimal estimator is

˙̂zopt(t) = Aẑ(t) +B2u(t) + F (y2(t)− C2ẑ(t)), ẑ(0) = ẑ0, (3.1.15)

and A− FC2 is Hurwitz.

The solution to the estimator associated ARE (3.1.13) is the same as the solution to the
LQ control assoicated ARE (3.1.9), with A = AT , B2 = CT

2 , CT
2 C2 = B1WBT

1 , Ru = Re.
Thus, like the concepts of controllability and observability are dual, the optimization prob-
lems of the LQ control and the Kalman estimator are dual.

3.2 Location-Parameterized Controller

In this thesis, the control force is applied at the actuator’s location on the structure, and
the deflection response is measured at the sensor’s location on the structure. Let the pos-
sible actuator locations on the structure be the set denoted by Ωr, and let the possible
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sensor locations on the structure be the set denoted by Ωl.

To consider the dependency on the actuator locations of the input control matrix B2,
let it be actuator location r-parameterized and denoted by B2r . Similarly, to consider
the dependency on the sensor locations of the output measurement matrix C2, let it be
sensor location l-parameterized and denoted by C2l . Thus, the solutions to the location-
parameterized AREs (3.2.1) and (3.2.2) become location dependent: Π = Π(r) and Σ =
Σ(l). Consequently, the optimal performance index will vary with the locations of the
sensor/actuator.

ATΠ(r) + Π(r)A+Q− Π(r)B2rRu
−1BT

2rΠ(r) = 0, (3.2.1)

AΣ(l) + Σ(l)AT +B1WBT
1 − Σ(l)CT

2l
Re

−1C2lΣ(l) = 0, (3.2.2)

Jopt(z0, uopt(r)) = zT0 Π(r)z0, (3.2.3)

E[∥z(t)− ẑopt(t)∥2] = ∥Σ(l)∥1 . (3.2.4)

The following theorems show the existence of the optimal sensor location and the ex-
istence of the optimal actuator location for infinite-dimensional systems. The theorems
apply to the finite-dimensional problem (3.1.1) as well, where the operator B(r) becomes
a matrix B2r , C(l) becomes a matrix C2l . Details on the existences of optimal locations of
actuator and sensor can be found in works [34] and [50].

Theorem 3.2.1 (Continuity of Π(r) and Existence of an Optimal LQ Actuator Location,
Theorem 2.6 [34]) Let B(r) ∈ L(U ,Z) be a family of compact input operators such that for
any r0 ∈ Ωr,

limr→r0 ∥B(r)−B(r0)∥ = 0.

If (A,B(r)) is stabilizable for all r ∈ Ωr and (A,C1) is detectable, then the Riccati
operators Π(r) are continuous functions of r in the operator norm:

limr→r0 ∥Π(r)− Π(r0)∥ = 0,
and there exists an optimal actuator location r̂ such that:

∥Π(r̂)∥ = infr∈Ωr ∥Π(r)∥ = µ̂.
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Theorem 3.2.2 (Continuity of Σ(l) and Existence of an Optimal Sensor Location, The-
orem 4.1 [50])

Assume W and Y are finite-dimensional spaces. Let C(l) ∈ L(Z,Y), l ∈ Ωl be a family
of output operators such that for any l0 ∈ Ωl,

liml→l0 ∥C(l)− C(l0)∥ = 0.

If (A,B1

√
W ) is exponentially stabilizable and (A,C(l)) is exponentially detectable, then

the corresponding Riccati operators Σ(l) are continuous functions of l in the nuclear norm:

liml→l0 ∥Σ(l)− Σ(l0)∥1 = 0,
and there exists an optimal sensor location l̂ such that:∥∥∥Σ(l̂)∥∥∥

1
= minl∈Ωl

∥Σ(l)∥1 = µ̂l.

3.3 Approximation of the State Weight in the Control
Performance Index

The LQ performance index is a combination of the weighted state and control effort of
the controlled system. Structural control works done by [41] and [1] have revealed that
weighting the state proportional to the system’s potential energy via the stiffness matrix
and proportional to the system’s kinetic energy via the mass matrix in the control perfor-
mance index can efficiently control the response.

However, the controllers are for the finite-dimensional system that approximates the
original infinite-dimensional system (2.1.9), so the state weight C1 in the performance index
approximates the original state weight operator. In this section, a mapping is derived for
the state weight operator C1 from the infinite-dimensional space to the finite-dimensional
space spanned by the numerical approximation basis.

Recall the separable Hilbert space, Hs(0, L) = {w ∈ H2(0, L), w(0) = 0, w(L) = 0}
and the functional space, Zinf = Hs(0, L)× L2(0, L) defined in chapter 2.

Define the norm on Hs(0, L) to be

∥w∥Hs
= ∥w∥H2 =

√∫ L

0

|w(x)′′|2 dx. (3.3.1)
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Define the norm on Zinf to be

∥zp(x, .)∥Zinf
=

∥∥∥∥[w(x, t)v(x, t)

]∥∥∥∥
Zinf

=
√

∥w(x, t)∥2Hs
+ ∥v(x, t)∥2L2

=

√∫ L

0

∣∣∣∣∂2w(x, t)∂x2

∣∣∣∣2 + |v(x, t)|2 dx.

(3.3.2)

Define an infinite-dimensional state zp = [w(x, t), v(x, t)]T ∈ Zinf .

Define the weighted state as
y = Czp(x, .), (3.3.3)

Assume that the operator C is in a block diagonal form such that the weights on w(., t)
and v(., t) are orthogonal,

C =

[
C11 0
0 C12

]
. (3.3.4)

Choose an approximation basis {ϕn}Nn=1, where n = 1, 2, ..., N , and N denotes the
order of the approximation. Let Hn(0, L) be the span of ϕn. The approximation space is
Zn = Hn(0, L)×Hn(0, L). Define zNp ∈ Zn be the approximation of zp,

zNp =

[
wN

vN

]
=

[∑
nwnϕn∑
n vnϕn

]
. (3.3.5)

The goal is to find a mapping Ψ for the block diagonal operator C in (3.3.4),

Ψ : L(Zinf ,Zinf ) → L(Zn,Zn), such that Ψ(C) = C|Zn .

Since time dimension is not relevant in the context of spatial functional space transfor-
mation, the time argument is dropped.
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Consider the weighted state in (3.3.3) and denote it by y(x) to indicate the dependency
on the spatial variable x,

y(x) = Czp =

[
C11 0
0 C12

] [
w(x, .)
v(x, .)

]
=

[
C11w(x, .)
C12v(x, .)

]
. (3.3.6)

The norm of y(x) is

∥y∥2Zinf
=< C11w,C11w >Hs + < C12v, C12v >L2 ,

=

∫ L

0

[C11w
′′C11w

′′ + C12vC12v]dx.
(3.3.7)

Consider the approximation (3.3.5) to w and v in (3.3.7),∫ L

0

N∑
m=1

N∑
n=1

C11wmϕ
′′
mwnϕ

′′
nC11dx+

∫ L

0

N∑
m=1

N∑
n=1

C12vmϕm, vnϕnC12dx, (3.3.8)

and the approximation to (3.3.6), denoted as ∥y1n∥22 becomes

∥y1n∥22 =
[
w⃗n v⃗n

] [Kp(C11) 0
0 Mk(C12)

] [
w⃗n

v⃗n

]
, (3.3.9)

where Kp(C11) , Mk(C12) are N ×N matrices with entries

Kpn,m(C11) =

∫ L

0

C2
11
ϕ′′
nϕ

′′
mdx, (3.3.10)

Mkn,m(C12) =

∫ L

0

C2
12
ϕnϕmdx, (3.3.11)

for n,m = 1, 2, ..., N ,
and w⃗n = [w1, ..., wN ] ∈ RN , v⃗n = [v1, ..., vN ] ∈ RN are the vectors of approximation
coefficients in (3.3.5). Rewrite (3.3.9) as

∥y1n∥22 =
[
w⃗T

n v⃗Tn
] [√Kp(C11) 0

0
√
Mk(C12)

]T [√
Kp(C11) 0

0
√
Mk(C12)

] [
w⃗n

v⃗n

]
, (3.3.12)

and define the matrix Cn =

[√
Kp(C11) 0

0
√
Mk(C12)

]
, Cn = C|Zinf

.
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Thus, the mapping Ψ for the block diagonal operator C in (3.3.4) is

Ψ(C) =

[√
Kp(C11) 0

0
√
Mk(C12)

]
. (3.3.13)

When ϕn is an orthogonal basis, as in the modal approximation case, the matrices
Kp and Mk become diagonal matrices, with Kpi,i =

∫ L

0
C2

11
(ϕ′′

i )
2dx, Mki,i = L

2
C2

12
, for

i = 1, ..., N .

An energy-weighted state zb in (2.1.9) can be expressed in the form of (3.3.6), with C11

being the weight on the potential energy and C12 being the weight on the kinetic energy.
For constant potential energy weight C11 and constant kinetic energy weight C12 , (3.3.13)
becomes

Ψ(C) =

[
C11K

I 0
0 C12M

I

]
, (3.3.14)

where

KI
n,m =

√∫ L

0

ϕ′′
nϕ

′′
mdx, (3.3.15)

and

M I
n,m =

√∫ L

0

ϕnϕmdx. (3.3.16)

The matrices KI and M I in Ψ are the mass and stiffness matrices with unit physical
parameters in the numerical approximations.
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Chapter 4

A Preliminary Problem

In this chapter, a simplified model of the system (2.1.5) is studied. The modal approxima-
tion has been used. The model is a unit parameterized simply supported Euler-Bernoulli
beam with random initial condition, and it is subjected to white Gaussian temporal noises.
The LQ optimal controller is applied to control the initial condition response and the Gaus-
sian disturbance response. The controller combines an actuator location-parameterized LQ
control law, and a sensor location-parameterized Kalman estimator. The collocated and
non-collocated sensor/actuator controller designs are considered in this chapter. Numerical
implementations are presented, and numerical challenges are discussed and provided with
resolutions. Optimization on locations with different state weights and disturbances are
calculated to study the changes in controlled responses and optimal locations.

4.1 Simple Preliminary Model Control

Let wu(x, t) denote the deflection and mu(x, t) denote the moment of the simply supported
Euler-Bernoulli beam of unit length, L = 1, at position x and time t. Let the Kelvin-Voigt
damping be 0.0001.
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∂2wu(x, t)

∂t2
+ 0.0001

∂5wu(x, t)

∂t∂x4
+
∂4wu(x, t)

∂x4
= br(x)u(t) + gi(x)ω1(t),

wu(0, t) = 0 = wu(1, t),

mu(0, t) = 0 = mu(1, t),

wu(x, 0) = wu0(x),
∂wu(x, 0)

∂t
= vu0(x),

x ∈ [0, 1], t ≥ 0.

(4.1.1)

The disturbance to the system has bounded spatial distribution gi(x) ∈ L2(0, 1) and
temporal Gaussian disturbance ω1(t). The control force is applied at the location r, char-
acterized by br(x) in (2.1.6).

Define the state zu(t) =
[
wu(x, t)
ẇu(x, t)

]
∈ Zinf , the state-space form of (4.1.1) is

żu(t) = Auzu(t) +B2uru(t) +B1uω1(t), zu(0) = zu0 , (4.1.2)

where

Auzu =

[
ẇu(x, t)

−0.0001∂5wu(x,t)
∂t∂x4 − ∂4wu(x,t)

∂x4

]
, B2ur =

[
0

br(x)

]
, B1u =

[
0

gi(x)

]
,

with domain

dom(Au) = {zu ∈ Zinf |z′′u1 + 0.0001z′′u2 ∈ Hs(0, 1)}.

Using modal approximation on the first 10 modes, N = 10, let (AN
u , [B

N
2ur
, BN

1u], C
N
2ul

)
be the modal approximated system. The matrix BN

2ur
is actuator location r-parameterized

and the matrix CN
2ul

is sensor location l-parameterized. This leads to

żNu (t) = AN
u z

N
u (t) +BN

2ur
u(t) +BN

1uω1(t), z
N
u (0) = zNu0

, (4.1.3)
y2u(t) = CN

2ul
zNu (t) + ν1(t), (4.1.4)

where y2u(t) is the sensor output of the deflection at the location l, characterized by cl(x)
in (2.1.12) and ν1(t) is white Gaussian sensor noise.
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The LQG method is an output feedback design for a stochastic system with Gaussian
distributed disturbances, i.e. z0, ω1(t) and ν1(t) in (3.1.1) are Gaussian random variables
(R.V.s). The LQG design uses the Kalman estimator’s estimated state to design an LQ
state feedback law.

The sensor/actuator location-parameterized LQG controller design will be applied to
the preliminary problem. The superscript "N" denoting the approximated system will be
dropped. Define the LQ control performance index:

J(u, z0) =

∫ ∞

0

zu(t)
TQzu(t) + u(t)TRu(t)dt, (4.1.5)

where Q ≥ 0 being the state weight, and R > 0 being the control weight.

Define the Kalman estimator ẑu performance index:

JK(ẑu) = E[∥ẑu − zu∥2]. (4.1.6)

To obtain the optimal LQG controller, the state feedback control and the estimator
can be designed separately and then combined together. The sensor/actuator location-
parameterized LQG implies that the optimal control and optimal estimator are dependent
on the actuator and sensor location. The following theorem formally states that the out-
put feedback can be decoupled completely into a non-noisy state feedback design and an
estimator design. Textbooks such as [39], [2], [32] state and/or prove the formal theorem.

Theorem 4.1.1 (Stochastic Separation Theorem for LQG Design)[39] The optimal LQG
control of the system (3.1.1), with the control cost functional (3.1.3) and estimator cost
functional (3.1.8), is obtained by taking the optimal control law uk(t) = −Kz(t), where
K = −R−1

u BT
2 Π, and Π is the minimal non-negative solution to the deterministic Algebraic

Riccati Equation (ARE) (3.1.9), and replace z with the optimal estimator ẑ(t) = z(t)−e(t),
yielded by the optimal Kalman filter F = −ΣCT

2 R
−1
e , where Σ is the minimal non-negative

solution to the Algebraic Riccati Equation (ARE) (3.1.13).

The optimal controller is

˙̂z(t) = [A− FC2 −B2K]ẑ(t) + Fy2(t), ẑ(0) = ẑ0 = E{z0}
u∗(t) = −Kẑ(t).

(4.1.7)
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The closed-loop control system of (3.1.1) coupling with the optimal controller (4.1.7)
has eigenvalues:

λ(A−B2K) ∪ λ(A− FC2). (4.1.8)

Such a synthesis is therefore decomposed in two independent problems:

• optimization of the control of the deterministic plant.

• optimization of the estimation of the state z from the plant measurements y.

The optimal LQG controller achieves the minimal performance index [21]:

Jopt = limt→∞E[z
T (t)Qz(t) + u(t)TRuu(t)]

= Tr(ΠB1WB1
T + ΣKTRuK).

(4.1.9)

The location-parameterized LQG controller for the preliminary problem (4.1.3) becomes

˙̂zu(t) = [Au − Ful
C2ul

−B2urKur ]ẑu(t) + Ful
y2u(t), ẑu(0) = ẑu0 ,

u∗(t) = −Kur ẑu(t),
(4.1.10)

where Kur = R−1BT
2ur

Πur , and Πur is the minimal non-negative solution to the actuator
location-parameterized ARE (3.2.1) with A = Au, B2r = B2ur , Ru = R.

Ful
= Σul

CT
2ul
V −1, where Σul

is the minimal non-negative solution to the sensor
location-parameterized ARE (3.2.2), with A = Au, B1 = B1u, C2l = C2ul

, Re = V .

For the optimal infinite time horizon performance index at location (l, r), the optimal
LQG performance index value is

Tr(ΠurB1uWBT
1u + Σul

KT
ur
RKur). (4.1.11)

The sensor/actuator location optimization cost functional is defined as

J∗(l, r) := Tr(ΠurB1uWBT
1u + Σul

KT
ur
RKur). (4.1.12)
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For the non-collocated sensor/actuator design, define Ωs := {(l, r) ∈ Ωl × Ωr} as the
set of possible sensor/actuator location pairs.

For the collocated sensor/actuator design, define Ωc := {rc ∈ Ωr} as the set of possible
collocated sensor/actuator locations.

The non-collocated sensor/actuator location optimization problem is to find (l, r) ∈ Ωs

that minimizes the cost functional (4.1.12). The objective is

min
(l,r)∈Ωs

J∗(l, r). (4.1.13)

Define the optimal locations of the non-collocated sensor/actuator as

(l∗, r∗) = argminJ∗(l, r). (4.1.14)

The collocated sensor/actuator location optimization problem is to find rc ∈ Ωc that
minimizes the cost functional (4.1.12). The objective is

min
rc∈Ωc

J∗(rc, rc). (4.1.15)

Define the optimal locations of the collocated sensor/actuator as

r∗c = argminJ∗(rc(1, 1)). (4.1.16)

4.2 Numerical Implementations

The closed loop formed by the plant with realization (A, [B1, B2], [C1, C2], [D12, D21]) and
the controller with realization (A− FC2 −B2K,F,−K, 0) is implemented in Matlab:

[
ż
˙̂z

]
=

[
A −B2K
FC2 A− FC2 −B2K

] [
z
ẑ

]
+

[
B1 0
0 F

] [
ω1(t)
ν1(t)

]
, (4.2.1)

[
y
ŷ

]
=

[
C2 0
0 C2

] [
z
ẑ

]
+

[
D21

D21

] [
ω1(t)
ν1(t)

]
. (4.2.2)
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The Gaussian disturbance is generated by the Matlab function "randn", which gives a
Gaussian distributed random number with zero-mean and unit variance. That is, randn ∼
N (0, 1).

Any non-Gaussian stochastic disturbance and noise in the system in this thesis are
generated by the "randn" function with a shaping filter and scaling by the noise variance.

The approximated system An matrix involves the inverse of the mass matrix "M",
which often cause numerical difficulties, especially in the Hermite basis FEM simulations.
Thus, the descriptor form of the Hermite basis FEM approximation state system with state
zNb (t) is used. The descriptor form is in the form

M ożNb (t) = AozNb (t) +Bo
1ω1(t) +Bo

2u(t), (4.2.3)

where

M o =

[
I 0
0 M

]
, Ao =

[
0 I

−K −D

]
, Bo

1 =

[
0
BN

d

]
, Bo

2 =

[
0

BN
rpos

]
, (4.2.4)

and where M , D, K, BN
d , and BN

rpos are the mass, damping, stiffness, disturbance input
and actuator location matrices obtained by approximation method. Note that M o =M oT .

The AREs to be solved become

AoTΠM o +M oΠAo + CT
1 C1 −M oΠBo

2R
−1
u BoT

2 ΠM o = 0, (4.2.5)

AoΣM o +M oΣAoT −M oΣCT
2 R

−1
e C2ΣM

o +Bo
1WBoT

1 = 0. (4.2.6)

Matlab "icare" function calculates the solution Π and Σ to the above AREs.

Usually, the approximated beam system’s operator An is ill-conditioned in numerical
simulations, so a similarity transformed system is implemented, the energy realization.
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The energy realization has state z̃p whose elements are moment m(x, t) and velocity
ẇ(x, t). The state is approximated by

z̃p
N = [mn, ẇn]

T ,

= [EIwn(t)Φ(x)
′′ + kdIẇn(t)Φ(x)

′′, ẇ(t)Φ(x)]T .
(4.2.7)

Consider the state transformation, z̃Np = T−1zNp .
Define the transformation matrices

T−1 =

[
(
√
EI ∂2

∂x2 ) (
√
kdI

∂2

∂x2 )
0 I

]
=

[√
Kstiff

√
Kkvd

0 I

]
,

T =

[√
Kstiff

√
Kkvd

0 I

]−1

,

(4.2.8)

where

Kstiffn,m =

∫ L

0

EIϕ′′
nϕ

′′
mdx,

Kkvdn,m =

∫ L

0

kdIϕ
′′
nϕ

′′
mdx.

(4.2.9)

Let Ãn = T−1AnT , B̃1 = T−1B1, B̃2r = T−1B2r , and C̃2l = C2lT .

The transformed state system becomes

˙̃zNp (t) = Ãnz̃p
N(t) + B̃1ω1(t) + B̃2ru(t), z̃p

N(0) = T−1zNp (0) = z̃p
N
0 , (4.2.10a)

ỹ(t) = C̃2l z̃p
N(t) + ν1(t). (4.2.10b)

The condition number of Ãn in the transformed energy realization and the condition
number of Ao in the descriptor realization are reduced. To illustrate this, modal approxi-
mation and Hermite basis FEM approximation to the operator Au in (4.1.2) are calculated
in Matlab, and the ratios between the matrix condition numbers of the approximation to
Au to the transformed realization approximations are presented.
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Let AN
u be the numerical approximation to the state-space operator Au of (4.1.2). De-

note its condition number as cond(AN
u ). Denote the energy transformed AN

u as Ãn =
T−1AN

u T (T , T−1 defined in (4.2.8)) and its condition number as cond(Ãn). Table 4.1 illus-
trates the increasing relationships between the ratio cond(AN

u )

cond(Ãn)
and the number of elements

ne and modes N used in the Hermite basis FEM approximation (named FEM-H in the
table) and modal approximation. The ratio increases faster as the number of modes N
increases in the modal approximation, but increases slower as the number of elements ne
increases in the FEM-H approximation.

Table 4.1: Ratio between the condition number of Hermite FEM approximated AN
u to the

condition number of Ãn = T−1AN
u T (Ratio H) increases as number of elements ne increases

and
ratio between the condition number of modal approximated AN

u to the condition number
of Ãn = T−1AN

u T (Ratio M) increases as number of modes N increases.
AN

u : the numerical approximation to the state-space operator Au of (4.1.2);
Ãn: the energy transformed matrix Ãn = T−1AN

u T (T and T−1 in (4.2.8));
ne: the number of finite elements used in the Hermite basis FEM approximation;
N : the number of modes used in the modal approximation.

FEM-H ne Ratio (H) Modal N Ratio (M)
1 3.4613 1 80.1264
3 13.7436 3 337.3822
9 44.7374 9 109.6616

Denote the descriptor form of AN
u as Ao = M oAN

u (M o in (4.2.4)) and its condition
number as cond(Ao). Table 4.2 illustrates the increasing relationships between the ratio
cond(AN

u )
cond(Ao)

and the number of elements ne and modes N used in Hermite basis FEM approxi-
mation and modal approximation. The ratio increases steeply as as the number of elements
ne increases in FEM-H approximation, but it stays constant as the number of modes N
increases in the modal approximation.
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Table 4.2: Ratio between the condition number of Hermite FEM approximated AN
u to the

condition number of Ao = M oAN
u (Ratio H) increases as number of elements ne increases

and
ratio between the condition number of modal approximated AN

u to the condition number
of Ao =M oAN

u (Ratio M) stays constant as number of modes N increases.
AN

u : the numerical approximation to the state-space operator Au of (4.1.2);
Ao: the descriptor form Ao =M oAN

u (M o in (4.2.4));
ne: the number of finite elements used in the Hermite basis FEM approximation;
N : the number of modes used in the modal approximation.

FEM-H ne Ratio (H) Modal N Ratio (M)
1 420 1 2
3 428.4462 3 2
9 2096 9 2

4.3 Simulation Results of the Location Optimization Prob-
lem on the Beam

In this section, the effects of different state weights and different spatial disturbances on
the optimal sensor/actuator locations are studied. The advantage of weighting heavily on
the velocity states is shown. An association between the optimal locations moving away
from the centers of the beam and the scale of the location optimization cost functional
range is observed.

The parameters and the state weights used in the simulations are given in Table 4.3
and Table 4.4 correspondingly on the next two pages. The spatial disturbances used in the
simulations are shown in Figure 4.1. The sets of possible sensor/actuator locations Ωl, Ωr

are 50 equally-spaced points on the beam from ∆
2

to L− ∆
2
, where L and ∆ are the beam

length and sensor/actuator width.

The optimization problem is to calculate the values of the cost functional at each sen-
sor/actuator location by iterating all the possible sensor/actuator locations, and then find
the sensor/actuator locations that yield the minimal cost functional. Algorithm 1 on the
next page describes the pseudo-code of the numerical optimization method.
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Algorithm 1 Location optimization pseudo-code
for r ∈ Ωr do

for l ∈ Ωl do
Compute J (l,r) = J∗(l, r)

end for
end for

return
(l∗, r∗) = min{min{J}}
r∗c = min{diag(J)}

Table 4.3: Simple Model Parameter Values

Symbol Descriptive Name Value
L Beam Length (m) 1
ρ Beam Density (kg/L) 1
E Young’s Modulus (G.Pa) 1
I Moment of Inertia (mm4) 1
kd Kelvin-Voigt Damping 0.0001
V Sensor Noise 0.002
W Disturbance Noise 1
R Control Weight 1
g1 Uniform Spatial distribu-

tions
g1(x) = 1

g2 Large Peak Spatial distribu-
tions

g2(x) = 200sech(100(x− 0.35)) +
0.5
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Table 4.4: Simple Model State Weights

Notation Descriptive Name Value
α Weight Conservation Factor 2

11

C1e Unit Weight Full State [1, 1, ..., 1] ∈ R2N

C1d Weight Deflection [10α, ..., 10α, α, ..., α] ∈ R2N

C1v Weight Velocity [α, ..., α, 10α, ..., 10α] ∈ R2N

Q Full State Weight Scaled by qI Q = qII ∈ R2N×2N

qI Scalars on Q qI = 0.01, 1, 100

The graphs of the performance index vs. collocated sensor/actuator location are shown
in Figure 4.2. An increase in the state weight from Q = 0.01I to Q = 1I with uniform
disturbance g1(x) flattens the collocated sensor/actuator performance index graph J∗ vs.
rc. An increase in the disturbance from g1(x) to g2(x) with Q = I results in the collocated
sensor/actuator optimal locations moving away from the centers. An increase in the state
weight from Q = I to Q = 100I with large peak disturbance g2(x) results in the collo-
cated sensor/actuator optimal locations converging to the peak location x = 0.35. The
graphs of the performance index vs. non-collocated sensor/actuator locations are shown
in Figure 4.3. An increase in the state weight from Q = 0.01I to Q = 1I with uniform
disturbance g1(x) results in the actuator’s optimal locations being less unique around the
centers. An increase in the disturbance from g1(x) to g2(x) with Q = I results in both
of the sensor/actuator optimal locations being away from the centers. An increase in the
state weight from Q = I to Q = 100I with large peak disturbance g2(x) results in the
sensor’s optimal locations converging to the peak location x = 0.35 and in the center being
non-optimal especially in the sensor location dimension (results in a lighter blue, higher
performance index, around l = 0.5 in the contour plot on the bottom right in Figure 4.3).
In both designs, the scale of the performance index range is increased when Q and gi are
larger. A larger Q magnifies the state response and reduces the control effort in the perfor-
mance index; moving away from the centers enables the control to apply on more modes’
anti-nodes of the state. Similarly, the spatial disturbance gi(x) impacts the optimal loca-
tions of the sensor just as the state weight impacts the optimal locations of the actuator.
A large peak disturbance g2(x) causes the optimal locations of the sensor to move away
from the centers of the beam and closer toward the peak of g2(x). The scale of the loca-
tion optimization cost functional range is also associated with the performances of control
responses. As shown in Figure 4.4, by distributing the state weight heavily on the velocity,
the scale of the location optimization cost functional range becomes larger and the middle
of the beam becomes non-optimal. The controlled response is improved significantly. On
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the other hand, by distributing the state weight more on the deflection, the scale of the
location optimization cost functional range becomes smaller and the middle of the beam
becomes optimal. The controlled responses initially have the largest maximum amplitudes
compare to the velocity weight and uniform weight cases.

The optimal actuator locations of the non-collocated design and of the collocated de-
sign are always the same. The potential difference between the two designs lies in the
non-collocated sensor’s optimal locations. When the scale of the location optimization
cost functional range is relatively big, the optimal locations of the non-collocated sensor
move further away from the center and the performance index at the optimal locations
is relatively smaller than the performance index at the collocated optimal locations. The
controlled responses appear to be similar. When the scale of the location optimization cost
functional range is relatively small, the non-collocated and collocated designs are the same.
The influence of gi(x) on the differences in the non-collocated sensor/actuator and the col-
located sensor/actuator designs are shown in Figure 4.5. An increase in the disturbance
from g1(x) to g2(x) results in the non-collocated sensor’s optimal location l∗ being further
away from the center than the two designs’ same actuator’s optimal location. In g1(x) case,
the two designs’ optimal sensor/actuator locations are exactly the same. In g2(x) case, the
optimally located non-collocated sensor/actuator design performance index is relatively 2%
less to the optimally located collocated sensor/actuator design performance index, yielding
a maximum deflection response that is relatively 1.3% less and an insignificant difference
in control feedback.
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Figure 4.1: Spatial disturbances.
Top: uniform disturbance, g1(x) = 1.
Bottom: large peak disturbance at x = 0.35, g2(x) = 200sech(100(x− 0.35)) + 0.5.
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Figure 4.2: Performance index vs. collocated sensor/actuator locations.
Top left: Q = 0.01I, g1(x), top right: Q = I, g1(x),
bottom left: Q = I, g2(x), bottom right: Q = 100I, g2(x).
Compare effects of the state weights and gi(x) on the shape of the graph J∗ vs. collocated
locations.
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Figure 4.3: Performance index vs. non-collocated sensor/actuator locations.
Top left: Q = 0.01I, g1(x), top right: Q = I, g1(x),
bottom left: Q = I, g2(x), bottom right: Q = 100I, g2(x).
Compare effects of state weights and gi(x) on the graph J∗ vs. non-collocated locations.
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Figure 4.4: Performances at fixed sensor/actuator location rc = 0.51L, random initial
condition zu0 with 0 mean and unit variance, uniform disturbance g1(x), weights C1e (blue),
C1v (yellow), C1d (red).
Compare performances of midpoint deflection (top left), midpoint velocity (top right),
performance index (bottom left) and LQG feedback u(t) (bottom right) of weighting heavily
on deflection, velocity and all states (units normalized by mass).
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Figure 4.5: Compare performances of the non-collocated and collocated designs at their
optimal locations.
Random initial condition zu0 with 0 mean and unit variance.
Left: Q = 100I, uniform disturbance g1(x), r∗ = l∗ = r∗c = 0.49 or 0.51.
J∗(l∗,r∗)−J∗(r∗c (1,1))

J∗(r∗c (1,1))
= 0%.

Right: Q = 100I, large peak disturbance g2(x), r∗ = 0.67, l∗ = 0.29, r∗c = 0.67,
J∗(l∗,r∗)−J∗(r∗c (1,1))

J∗(r∗c (1,1))
= −2% (units normalized by mass).
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Chapter 5

Bridge Model Control

The bridge model has been developed to be a more realistic problem than the preliminary
problem considered previously. The physical actuator dynamics is considered. The bridge
system is subjected to more realistic disturbances instead of a white Gaussian disturbance.
Thus, the H2 optimal controller is applied to aim at disturbance response controlling. It
is compared to the mathematically equivalent LQG controller, with emphasis on the im-
portant differences in their motivations. A periodic pedestrian disturbance is considered.
Actuator noise is added. A low pass filter for the low frequency walking disturbance is added
to enhance control. The augmented plant that includes the non-Gaussian disturbances and
weighting filter is constructed. In section 5.2, Example 5.2.2 and Example 5.2.3 illustrate
the effectiveness of the augmented plant method and the effectiveness of the low pass filter.

In section 5.3, optimization is conducted to find the optimal locations for the non-
collocated and collocated sensor/actuator designs, and comparisons of performances at the
optimal locations of the two designs are presented.

5.1 Coupled Actuator-Structure Design

Interaction between the structure and controller devices may significantly affect the vibra-
tion dynamics. To include the interaction, the actuator of the controller is considered as a
spring-mass damper system coupled to a fixed location on the bridge.
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The work [24] has considered the interactions between an accelerometer sensor and a
second order system as a coupled dynamical system, which are derived from the Hamilton’s
Principle. The work has a theorem (Theorem 6.1, [24]) that states:

If the second order system with state deflection z(t) is coupled to the sensor and that
Clposz(t) is the position of the structure where the sensor is attached, then the following
equations describe the dynamics of the coupled system,

mä(t) + k(a(t)− Clposz(t)) + d(ȧ(t)− Clpos ż(t)) = 0,

Mz̈(t) +Ksz(t) +Dż(t) + kC∗
lpos(Clposz(t)− a(t)) + dC∗

lpos(Clpos ż(t)− ȧ(t)) = Brposu(t),

(5.1.1)

where a(t) is the deflection of the sensor, m, k, d are the sensor’s mass, stiffness and
damping parameters.

Assume that the actuator is fixed at an optimal location on the structure while ap-
plying the control force. The matrix Brpos denotes the position of where the actuator is
attached to the structure. The actuator deflection is a function of time only. The actuator
is coupled with the Hermite basis FEM approximated time-dependent bridge dynamics in
(2.2.10) using N = 34 number of elements, with the state variable zNb (t) = [wN

b (t), ẇ
N
b (t)].

The number of elements is sufficient for the bridge structure state to converge to the modal
approximated state. Their coupled motion of equations is derived via the Hamilton’s Prin-
ciple as in [24]. The control force u(t) is directly applied to the actuator. Thus, u(t)
indirectly controls the bridge through the coupled actuator.

Let a(t) denote the deflection of the actuator, ma, ka, da denote the actuator’s mass,
stiffness and damping parameters. Applying Theorem 6.1 in [24], the control force u(t)
is added to the actuator instead of to the structure by replacing the accelerator with an
actuator and adding the modification. The force acting on the bridge by the actuator is
−BN

rpos(maä), where

maä(t) = +da(B
NT

rposẇ
N
b (t)− ȧ(t)) + ka(B

NT

rposw
N
b (t)− a(t)) + u(t).

44



The coupled system of ODEs becomes

MẅN
b (t) +DẇN

b (t) +KwN
b (t) + kaB

N
rpos(B

NT

rposw
N
b (t)− a(t)) + daB

N
rpos(B

NT

rposẇ
N
b (t)− ȧ(t))

= BN
1bωp(t)−BN

rpos

u(t)

ma

,

maä(t) + da(ȧ(t)−BNT

rposẇ
N
b (t)) + ka(a(t)−BNT

rposw
N
b (t))

= u(t).

(5.1.2)

Converting the coupled system (5.1.2) into state-space form by defining zp(t) ∈ R2N+2q,
where q = 1 is the single number of actuators, zp(t) = [wN

b (t), ẇ
N
b (t), a(t), ȧ(t)]

T .

From now, the superscript "N" on the approximated system will be dropped.

The coupled actuator-bridge plant dynamic system in the state-space form is

żp(t) = Apzp(t) +B2pru(t) +B1pωp(t), zp(0) = zp0 = 0,

y2p = C2plzp + ν(t),
(5.1.3)

where Ap =


0 I 0 0

−[
K+kaBrposBrpos

T

M
] −[

D+daBrposBrpos
T

M
] ka

M
Brpos +da

M
Brpos

0 0 0 I
ka
ma
Brpos

T da
ma
Brpos

T − ka
ma

− da
ma

,

B2pr =


0

− 1
ma
Brpos

0
1
ma

 , B1p =


0
BN

d

0
0

 , C2pl =
[
Clpos , 0, 0, 0

]
,

ωp is the pedestrian disturbance defined in (5.2.9), and ν(t) is the sensor noise.

5.2 H2 Controller Design and the General Plant

For a realistic pedestrian disturbance, white Gaussian disturbance condition is not appro-
priate.
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Closed-loop H2 control minimizes the norm of the disturbance response of a cost ob-
jective in the frequency domain. The cost objective is a combination of weighted state
and weighted control. The H2 estimator minimizes the error of a linear combination of
the estimated state and outputs the estimated linear combination of the state, usually in
the form of the gain that leads to an output feedback controller. This is called the output
estimator. The H2 output feedback finds the optimal control gain operator and connects
to the H2 output estimator which provides the optimal estimated control using the gain
operator. This closed-loop feedback system’s realization in the time domain turns out
to be mathematically equivalent to the LQG output feedback system. The H2 controller
design in the time domain achieves the same minimal LQ performance index. However,
the viewpoint is different from the LQG design, because the original H2 formulation in its
frequency domain is motivated by controlling response to disturbances.

The derivations of H2 output feedback design from the frequency domain to the time
domain can be found in textbooks such as [32] and [51], and will not be shown here. The
following will discuss some important comparisons between these two controllers.

In both of the LQR and the H2 control designs, Π is the solution to the same ARE
3.1.9: ATΠ+ΠA+CT

1 C1−ΠB2R
−1
u BT

2 Π = 0. So the feedback control gain K = R−1
u BT

2 Π
is the same. However, the objectives of the LQ performance index and H2 performance
index are different. The LQ optimal control performance index is Jopt = zT0 Πz0, or for
a random initial condition with covariance matrix Z0, the optimal performance index is
given by Jopt = Tr(Z

1
2
0 ΠZ

1
2
0 ). This implies that the objective of LQ control is to mini-

mize the initial condition response. The H2 optimal control performance index is given by
Jopt = Tr(BT

1 ΠB1). This implies that the objective of the H2 control is to minimize the
disturbance response.

Mathematically, both the Kalman and the optimal H2 estimators are exactly the same
at minimizing the estimation error. In both designs, Σ is the solution to the same estima-
tor associated ARE: AΣ + ΣAT + B1WBT

1 − ΣCT
2 ReC2Σ = 0. However, the estimators

by themselves achieve different optimal cost values. The Kalman estimator provides min-
imum estimator error for the full state in the LQG controller, and achieves optimal value
∥Σ∥1. On the other hand, the H2 output estimator provides minimum estimator error for
a selected linear combination of state to be used in the H2 control. The achieved optimal
estimator value is influenced by control objective C1: < C1,ΣC1 >. Details on output
estimation can be found in the work [33] and in the textbook [32].
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Consider the finite-dimensional system with control cost objective y1(t):

ż(t) = Az(t) +B2u(t) +B1ω1(t), z(0) = z0 = 0,

y1(t) = C1z(t) +D12u(t),

y2(t) = C2z(t) +D21ν1(t),

(5.2.1)

where z(t) ∈ Rn, y1(t) ∈ Rj, y2(t) ∈ Rq, A ∈ Rn×n, B2 ∈ Rn×m, B1 ∈ Rn×1, C1 ∈ Rj×n,
C2 ∈ Rq×n, D21 ∈ Rj×m, D21 ∈ Rq×m. The noises ω1(t) and ν1(t) are white Gaussian
distributed. The integer, n ∈ Z, denotes the number of states in the system, j ∈ Z denotes
the number of independent costs considered in the control performance index, m ∈ Z de-
notes the number of actuators, and q ∈ Z denotes the number of sensors. In this thesis,
m = q = 1.

Since the matrices and vectors are real matrices and vectors, matrix (vector) trans-
pose is equivalent to the conjugate transpose "∗" in the theorems. The matrices B1, C1

are finite-dimensional with finite-dimensional ranges, so they are automatically Hilbert-
Schmidt operators and trace class. Details on operators in infinite-dimensional can be
found in the textbook [32].

Define the following,
Ac = A−B2R

−1D∗
12C1, and C1c = (I −D12R

−1D∗
12)C1,

Ae = A−B1D
∗
21R

−1
e C2, and B1e = B1(I −D∗

21R
−1
e D12).

Let Ru = D∗
12D12 > 0 and Re = D21D

∗
21 > 0 be coercive.

The H2 controller design is the design of an optimal H2 state estimator with an optimal
H2 state feedback law.

Consider the following assumptions made for the controller and estimator:

Assumptions 1 (H2 controller) (H1a) Ru = D∗
12D12 is coercive.

(H1b) Re = D21D
∗
21 is coercive.

(H2a) (A,B2) is stabilizable.
(H2b) (A,C2) is detectable.
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(H3a) (Ac, C1c) is detectable.
(H3b) (Ae, B1e) is stabilizable.

The following theorem for an infinite-dimensional system states the design of an optimal
H2 output feedback controller, and is applied on the finite-dimensional system: (5.2.1).

Theorem 5.2.1 (H2 Output feedback design, Theorem 7.21 [32]) Consider the full-control
system (5.2.1) and assume that in additional to the assumptions (H1)-(H3) at least one of
the following holds:

• B1 is a Hilbert-Schmidt operator,

• C1 is a Hilbert-Schmidt operator,

• both B1 and C1 are trace class.

Let Π ∈ B(Z,Z), Πdom(A) ⊂ dom(A∗) be the positive semi-definite solution to

(A∗
cΠ+ΠAc − ΠB2R

−1
u B∗

2Π+ C∗
1cC1c)z = 0, (5.2.2)

for all z ∈ dom(A∗).

Let Σ ∈ B(Z,Z), Σdom(A∗) ⊂ dom(A∗) be the positive semi-definite solution to

(ΣA∗
e + AeΣ− ΣC∗

2R
−1
e C2Σ +B1eB

∗
1e)z = 0, (5.2.3)

for all z ∈ Dom(A∗).

The H2 optimal state feedback gain is K = R−1
u B∗

2Π + R−1
u D∗

12C1 and the filter is
F = ΣC∗

2R
−1
e +B1D

∗
21R

−1
e . The H2 controller ze(t) is

ze(t) = (A−B2K − FC2)ze(t) + Fy2(t), ze(0) = 0,

u(t) = −Kze(t).
(5.2.4)

The optimal cost is√
trace(B∗

1ΠB1) + trace(ReKΣK∗).
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In order to apply the H2 control on the structural model with more realistic disturbances
included, designing disturbance filters Wd, Wν , Wη, and weight filter W1 are required. The
inclusion of various filters is called the augmented method, and the result coupled plant is
known as the general plant or the augmented plant. The block diagram shown in Figure
5.1 in the frequency domain depicts a general plant.

Figure 5.1: The H2 general plant in the frequency domain.

The general plant contains the actuator-coupled structural system, the weighting filter
W1, the disturbance filters Wd, Wν and Wη that allow non-unit disturbances to be absorbed
into the plant.

In the frequency domain, the non-uniform disturbance ω̂d(s) is shaped by a disturbance
filter Wd, ω̂d(s) = Wd(s)ω̂1(s), where ω̂1(s) = 1 is uniform again. The disturbance filter Wd

has an internal stable finite-dimensional realization (Awd
, Bwd

, Cwd
, 0), and the disturbance

associated state in the time domain is zwd
(t). The following Example 5.2.2 and Figure

5.2 illustrate the efficiency of the augmented plant method over the simple non-augmented
beam plant design in controlling the beam system in the preliminary problem (4.1.1) sub-
ject to a non-uniform disturbance.
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Example 5.2.2 Consider zNu (t) and (AN
u , [B

N
2ur
, BN

1u], C
N
2ul

) be the system from the prelimi-
nary problem (4.1.3), with fixed sensor actuator location at l = r = 0.51. Let zf (t) be the pe-
riodic load associated state with realization (Af , Bf , Cf , 0)). ωper(t) = e−0.0001fsin(10.05t)
can be rewritten in the form of ωper(t) = Cfzf (t). Let ω1, ν1 denote white Gaussian dis-
turbances. Let zaug(t) = [zb(t); zf (t)] be the augmented state. The H2 control is applied to
the augmented system

żaug(t) = Aaugzaug(t) +B1augω1(t) +B2augu(t), zaug(0) = 0,

y1aug(t) = C1augzaug(t) + 0.001u(t),

y2aug(t) = C2augzaug(t) + 0.002ν1(t),

(5.2.5)

where
Aaug =

[
Au B1uCf

0 Af

]
, B1aug =

[
0
Bf

]
, B2aug =

[
B2ur

0

]
, C2aug =

[
C2ul

0
]
, C1aug =

[
I 0

]
.

To compare with the non-augmented plant, the H2 control is applied to the non-augmented
system

żu(t) = Auzu(t) +B1uωper(t) +B2uru(t), zu(0) = 0,

y1u(t) = Izu(t) + 0.001u(t),

y2u(t) = C2ul
zu(t) + 0.002ν1(t).

(5.2.6)

The controlled responses and feedback u(t) are shown in Figure 5.2. With much smaller
controlled response and applied feedback control, the control performances on the aug-
mented plant is better than that on the non-augmented simple beam plant. With the
increase of disturbance intensity, i.e the increase of f , the benefit of incorporating distur-
bance into the system model becomes more prominent.
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Figure 5.2: Ex.5.2.2: Compare periodic loading control performances on the augmented
plant vs. simple non-augmented beam plant. Periodic load ωper(t) = e−0.0001fsin(10.05t),
f = 10 (units normalized with respect to mass).

By inserting a low pass filter W1 as part of the general plant, compared with not
weighting on the lower frequencies, the controlled response is improved and the control
force is much smaller. The following Example 5.2.3 and Figure 5.3 illustrate the efficiency
of the low pass filter H2 control design over the non-filter H2 control design to control the
beam system in the preliminary problem (4.1.1) subject to a white Gaussian disturbance.

Example 5.2.3 Let zWl(t) denote the low pass filter associated state with realization
(AWl, BWl, CWl, DWl) = (−20, 3

√
20, 100, 0) that weights the lower frequencies. The con-

trol objective is to reduce full state response to low frequency disturbance. The cost to be

minimized is y1(t) =

[
CWlzu(t)
0.0001u(t)

]
. Let zlp(t) = [zu(t), zWl(t)]

T denote the H2 low pass

filter augmented state. The H2 control is applied to the augmented system

żlp(t) = Alpzlp(t) +B1lpω1(t) +B2lpu(t), zlp(0) = 0,

y1lp(t) = C1lpzlp(t) + 0.001u(t),

y2lp(t) = C2lpzlp(t) + 0.002ν1(t),

(5.2.7)

where Alp =

[
Au 0
BWlI AWl

]
, B1lp =

[
B1u

0

]
, B2lp =

[
B2ur

0

]
, C2lp =

[
C2ul

0
]
, C1lp =

[
0 CWl

]
.
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The H2 control is applied to the non-filter system

żu(t) = Auzu(t) +B1uω1(t) +B2uru(t), zu(0) = 0,

y1u(t) = CWlzu(t) + 0.001u(t),

y2u(t) = C2ul
zu(t) + 0.002ν1(t).

(5.2.8)

The controlled responses and feedback u(t) are shown in Figure 5.3. The low pass filter
design controlled response performs better with a smaller amplitude, and the applied feed-
back control has a smaller amplitude than the non-filter design. The optimal performance
index value of the low pass design is almost 1

9
of the non-filter design’s.

Figure 5.3: Ex.5.2.7: Compare H2 control performance of the low pass filter plant (with
H2 optimal performance index: J∗ = 94) and the non-filter plant (with H2 optimal perfor-
mance index: J∗ = 843) (units normalized with respect to mass).

In this thesis, the known input disturbance ω̂p(s) is shaped by Wp, i.e. ω̂p(s) =
Wp(s)ω̂1(s). Define its internal stable finite-dimensional realization to be (AW , BW , CW , 0),
and the shaped disturbance state to be zdp(t). To satisfy the H2 control assumptions on
(H2a) and (H3b), a little amount of damping, ζped, on the pedestrian load in (2.1.8) is
added,

ωp(t) = −e−ζpedtWped − 0.37e−ζpedtWped sin(2πfst). (5.2.9)
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This yields a coupled first order and second order realizations, with zdp(t) ∈ R3:

AW =

−ζped 0 0
0 0 1
0 −(f 2

s + ζ2ped) −2ζped

 , BW =

10
1

 , CW = −Wped

[
1 0.37fs 0

]
.

Actuator device noises are considered. In this thesis, the actuator device noises is shaped
by Wη(s) = 0.1 + 0.01

s+100
such that it is present at all frequencies. Let η(s) = Wη(s)η̂1(s),

where η̂1(s) is uniform disturbance. Define its internal stable finite-dimensional realization
to be (Aη, Bη, Cη, Dη), and the shaped disturbance state to be zη(t).

Sensor device noises are usually assumed to be Gaussian noises. Thus, the sensor noise
in this thesis will be considered as a Gaussian noise with variance δn ∈ R. Hence, the
sensor noise filter Wν in Figure 5.1 is not needed.

The pedestrian disturbance is in the lower frequency range, so the controller should
aim at minimizing disturbance response for the lower frequency range. Thus, a low pass
frequency disturbance weighting in the controller design objective is applied. The domi-
nant walking frequency is considered as 1.6 Hz in this thesis, so W1(s) will be a first order
weighting transfer function that weights heavily on the lower frequencies for state responses
and drops dramatically after 1.6 Hz. Denote the stable finite-dimensional realization of
the transfer function from Q

1
2
0 ẑp(s) to the cost, W1ẑW1(s), to be (AW1 , BW1 , CW1 , 0). Let

zW1(t) ∈ R1 denote the state weighted by W1. The control goal is to minimize the response
of a weighted plant state Q

1
2
0 ẑp(s) to low frequency disturbance. Let δu << 1 denote the

control weight such that the control is nonsingular.

The total cost for the augmented system in the time domain is

y1(t) = CW1zW1(t) + δuu(t). (5.2.10)

Define the augmented state for the general plant zau(t) = [zp(t), zW1(t), zdp(t), zη(t)]
T ,

and all the uniform Gaussian disturbances d(t) = [ω1(t), ν1(t), η1(t)]
T . The augmented
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system of equations becomes

żp(t) = Apzp(t) +B2pru(t) +B2prη(t) +B1pωp(t),

y2p(t) = C2plzp(t) + δnν1(t),

˙zW1(t) = AW1zW1(t) +BW1Q
1
2
0 zp(t),

y1(t) = CW1zW1(t) + δuu(t),

żdp(t) = Awzdp(t) +Bwω1(t),

ωp(t) = Cwzdp(t),

żη(t) = Aηzη(t) +Bηη1(t),

η(t) = Cηzη(t) +Dηη1(t).

Define the matrices:

Ar =


Ap 0 B1pCw B2prCη

BW1Q
1
2
0 AW1 0 0

0 0 Aw 0
0 0 0 Aη

,

B1r =


B1pDw 0 B2prDη

0 0 0
Bw 0 0
0 0 Bη

 , B2r =


B2pr

0
0
0

,

C1 =

[
0 CW1 0 0
0 0 0 0

]
, C2l =

[
C2pl 0 0 0

]
,

D12 =

[
0
δu

]
, D21 =

[
0 δn 0

]
.

The state-space form of the augmented plant is

żau(t) = Arzau(t) +B2ru(t) +B1rd(t), zau(0) = z0 = 0,

y1(t) = C1zau(t) +D12u(t),

y2(t) = C2lzau(t) +D21d(t).

(5.2.11)
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The optimal H2 performance index of this system is

J(zau, u) =

∫ ∞

0

∥C1zau +D21u∥22 dt. (5.2.12)

This augmented system is in the form of (5.2.1), with A = Ar, B1 = B1r, B2 = B2r,
C1 = C1, C2 = C2l, D12 = D12, D21 = D21, ω1 = d(t). The actuator location r dependent
matrices are Ar, B1r, B2r and the sensor location l dependent matrix is C2l.

The augmented system satisfies the assumptions in Theorem 5.2.1, and orthogonality
holds, DT

12C1 = 0 and B1rD
T
21 = 0. Thus, Ac = Ar, Ae = Ar, C1c = C1 and B1e = B1r in

Theorem 5.2.1. The H2 controller is

ze(t) = (Ar −B2rK(r)− F (l)C2l)ze(t) + F (l)y2l(t), ze(0) = 0,

u∗(t) = −K(r)ze(t),
(5.2.13)

whereK(r) = R−1
u B2r

TΠ(r), and Π(r) is the solution to the actuator location-parameterized
ARE

AT
r Π(r) + Π(r)Ar − Π(r)B2rR

−1
u BT

2rΠ(r) + CT
1 C1 = 0, (5.2.14)

F (l, r) = Σ(l, r)C2l
TR−1

e , and Σ(l, r) is the solution to the sensor/actuator location-
parameterized ARE

Σ(l, r)AT
r + ArΣ(l, r)− Σ(l, r)CT

2lR
−1
e C2lΣ +B1rB

T
1r = 0, (5.2.15)

and the optimal cost is√
Tr(BT

1rΠ(r)B1r) + Tr(ReK(r)Σ(l, r)K(r)T ).

This problem is interesting since the estimator associated ARE relies on both the sensor
and actuator locations. In the preliminary problem and other works found in the literature
review, the estimator design solely relies on the measurement location, and the control
design solely relies on the actuator location. However, by modelling the actuator noise in
the system, it makes sense that the design of the estimator is now affected by the actuator
location.
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Define the location optimization cost functional to be the squared optimal H2 perfor-
mance index

J∗(l, r) := Tr(BT
1rΠ(r)B1r) + Tr(ReK(r)Σ(l, r)K(r)T ). (5.2.16)

The optimization problem defined for the non-collocated sensor/actuator design (4.1.13)
and the collocated sensor/actuator design (4.1.15) with J∗(l, r) defined in (5.2.16) are ap-
plied to find the optimal non-collocated sensor/actuator locations (l∗, r∗) defined in (4.1.14)
and the optimal collocated sensor/actuator locations r∗c defined in (4.1.16).

5.3 Simulation Results of the Location Optimization Prob-
lem on the Bridge

The parameters of the bridge are referenced from [16], using consistent mass matrix that
assumes uniformly distributed mass on the element. The parameters of the bridge-actuator
system are given in Table 5.1, the parameters of the pedestrian disturbance are given in
Table 5.2, and the filters’ realization are given in Table 5.3.

Three state weights on the plant state zp(t) that result in different scales of the location
optimization cost functional are considered in the simulations. As seen in the preliminary
results, the scale of the location optimization cost functional range is associated with
the optimal locations and the differences in the performance of the non-collocated sen-
sor/actuator and collocated sensor/actuator controllers at their optimal locations. The
state weight matrix Q0 on the plant state zp(t) is defined by

Q0zp(t) =


βpEIK

I 0 0 0
0 βkρM

I 0 0
0 0 λKIβpEI 0
0 0 0 λMIβkρ

 zp(t), (5.3.1)

where KI ,M I are the state energy weighting matrices derived in (3.3.14) with C11 = βpEI
and C12 = βkρ being the potential and kinetic energy weights. The actuator state is
weighted proportional to the maximum eigenvalues of the potential and kinetic energy
state weight matrices denoted by λKI and λMI . Define the notation (βp, βk)I to indicate
the state weight Q0 weighing βpEI on the potential energy and weighing βkρ on the kinetic
energy. The three state weights used in the Matlab simulations are given in Table 5.4.
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Define Ωl, Ωr = X1 : 0.92∆ : X2 in Matlab, where X1, X2 are the spatial nodal
coordinates of the first and last free node of the finite element nodes. The possible sen-
sor/actuator locations are evenly spaced 0.92 of the sensor/actuator width ∆ apart.

Table 5.1: Bridge-Actuator System Parameter Values

Symbol Descriptive Name Value
L Bridge Length (m) 16.76
M Bridge Mass (kg) 1800
E Young’s Modulus (GPa) 69
I Moment of Inertia (m4) 50× 10−6

ζ Damping ratio 1% (Fundamental Mode)
∆ Actuator/Sensor Width (m) 0.02L
ma Actuator Mass (kg) 0.07M
ka Actuator Stiffness (N/m) 9.81ma

da Actuator Damping (Ns/m) 2
√
ka/ma0.9

δν Sensor Noise 0.002
δu Control Weight 0.001

Table 5.2: Pedestrians Disturbance Parameter Values

Symbol Descriptive Name Value
Wped Pedestrian Weight (N) 70× 9.81
nped Number of Pedestrians 3
fs Fundamental Pacing Frequency

(Hz)
1.6

η1p Fundamental Periodic Loading
Factor

0.37

ζped Loading Damping Factor 0.0001
gp(x) Disturbance Spatial Distribution gp(x) = nped/L
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Table 5.3: First Order Filter Realizations

State Descriptive Name Realization (Ai, Bi, Ci, Di)
zW1 Low Pass Filter (−2πfs,

√
2πfs, 100

√
2πfs, 0)

zη Actuator Noise (−100, 0.01, 1, 0.1)

Table 5.4: State Weight Q0 Cases

case
#

Descriptive Name (βpc1, βkc2) Notation:
(βp, βk)

1 Large Scale Weight (20EI, 0.0001ρ) (20, 0.0001)I
2 Intermediate Scale Weight (EI, ρ) (1, 1)I
3 Small Scale Weight (0.0001EI, 0.01ρ) (0.0001, 0.01I)

Let (l, r) denote a pair of sensor/actuator locations; (l∗, r∗) denote the non-collocated
sensor/actuator controller’s optimal sensor location and optimal actuator location corre-
spondingly, and r∗c denotes the optimal collocated sensor/actuator location.

The performances of the controllers are defined by the bridge’s controlled deflection and
velocity responses and the controller’s feedback force. A human’s perception of a stable
surface is associated with the velocity of the system [43]. Therefore, this chapter focuses
on comparing the velocity responses.

Define the relative controlled deflection norms, velocity response norms and feedback
control norms at one location (l1, r1) to another location (l2, r2) as

wrel :=

∥∥w(0.5)(l1,r1)∥∥L2
−

∥∥w(0.5)(l2,r2)∥∥L2∥∥w(0.5)(l2,r2)∥∥L2

,

vrel :=

∥∥v(0.5)(l1,r1)∥∥L2
−
∥∥v(0.5)(l2,r2)∥∥=L2∥∥v(0.5)(l2,r2)∥∥L2

,

urel :=

∥∥u(0.5)(l1,r1)∥∥L2
−

∥∥u(0.5)(l2,r2)∥∥L2∥∥u(0.5)(l2,r2)∥∥L2

.

(5.3.2)

Since physical systems and devices have limitations in their tolerance to force and
exertion of force, it is reasonable to compare the relative maximum responses of the bridge
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and the maximum feedback control. Define the relative maximum controlled deflection
and velocity responses and maximum feedback control at one location (l1, r1) to another
location (l2, r2) as

w∞
rel :=

∥∥w(0.5)(l1,r1)∥∥∞ −
∥∥w(0.5)(l2,r2)∥∥∞∥∥w(0.5)(l2,r2)∥∥∞

,

v∞rel :=

∥∥v(0.5)(l1,r1)∥∥∞ −
∥∥v(0.5)(l2,r2)∥∥∞∥∥v(0.5)(l2,r2)∥∥∞

,

u∞rel :=

∥∥u(l1,r1)∥∥∞ −
∥∥u(l2,r2)∥∥∞∥∥u(l2,r2)∥∥∞

.

(5.3.3)

The more negative the relative performances are, the better the performances of the
non-collocated sensor/actuator design are.

Details of the results for each case are presented in the rest of this section.

Table 5.5 on the next page shows the relative changes in performance index at the
optimal locations of the non-collocated to the collocated sensor/actuator design, defined
as J∗

rel in the below equation (5.3.4), and the optimal locations of the non-collocated and
the collocated sensor/actuator from simulations using the three state weights. The order
presented is from the largest scale of the location optimization cost functional range to the
smallest scale.

Define the relative changes in performance index at the optimal locations of the non-
collocated to the collocated sensor/actuator design as

J∗∗
rel :=

J∗
N.C. − J∗

Col

J∗
Col

, (5.3.4)

where J∗
N.C. = J∗(l∗, r∗), J∗

Col = J∗(r∗c ).
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Table 5.5: Compare relative optimal performance index at the optimal location and op-
timal locations for the three state weight cases; l∗: the optimal non-collocated sensor
location, r∗ : the optimal actuator location, r∗c : the optimal collocated sensor/actuator
location, values inside brackets denote the corresponding symmetric optimal locations;
J∗
N.C. = J∗(l∗, r∗): optimal performance index at the non-collocated optimal location

(l∗, r∗); J∗
Col = J∗(r∗c ): the optimal performance index at the collocated sensor/actuator

optimal location r∗c ; J⋆
rel :=

J∗
N.C.−J∗

Col

J∗
Col

.

(βp, βk) J∗(l∗, r∗) J∗∗
rel l∗ r∗ = r∗c

(20, 0.0001)I 1.13× 1012 −0.00002% 0.872L(0.128L) 0.502L(0.498L)

(1, 1)I 5.67× 1010 −0.98% 0.354L(0.646L) 0.502L

(0.001, 0.01)I 5.79× 107 −2.00% 0.631L(0.369L) 0.502L

Table 5.6 on next page shows the comparisons on the performances of the optimally
located non-collocated sensor/actuator controller to the optimally located collocated sen-
sor/actuator controller, to the non-optimal randomly located sensor/actuator controller
with actuator at r∗, and to the non-optimal collocated sensor/actuator controller at l∗.
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Table 5.6: Relative controlled response L2-norms and control feedback L2-norms of the
optimally located non-collocated sensor/actuator controller to:
the collocated sensor/actuator designed controller,
the non-optimal randomly located sensor/actuator controller with actuator at r∗,
and to the non-optimal located collocated sensor/actuator controller at l∗.
J∗
N.C. = J∗(l∗, r∗): optimal performance index at the non-collocated optimal location

(l∗, r∗),
J∗
2 = J∗(l2, r2): optimal performance index at the location (l2, r2),
J∗
rel :=

J∗
N.C.−J∗

2

J∗
2

.
Relative response norms at a location (l1, r1) to another location (l2, r2):

wrel :=
∥w(0.5)(l1,r1)∥L2

−∥w(0.5)(l2,r2)∥L2

∥w(0.5)(l2,r2)∥L2

,

vrel :=
∥v(0.5)(l1,r1)∥L2

−∥v(0.5)(l2,r2)∥=L2

∥v(0.5)(l2,r2)∥L2

,

urel :=
∥u(0.5)(l1,r1)∥L2

−∥u(0.5)(l2,r2)∥L2

∥u(0.5)(l2,r2)∥L2

.

Case/ Locations J∗
rel wrel vrel urel

(20, 0.0001)I
(l∗, r∗) vs. r∗c 0% −1.92% 0.43% 0.22%
(l∗, r∗) vs.Non-optimal(0.24L, r∗) 0% −2.97% 0.51% 0.43%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −89.70% −75.54% −58.83% −46.94%

(1, 1)I
(l∗, r∗) vs. r∗c −0.98% −12.05% −1.45% 0.68%
(l∗, r∗) vs.Non-optimal(0.33L, r∗) −10.56% −50.3% −18.94% 4.81%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −58.78% 86.95% −29.36% −8.14%

(0.001, 0.01)I
(l∗, r∗) vs. r∗c −2% −10.79% 3.33% 0.71%
(l∗, r∗) vs.Non-optimal(0.24L, r∗) −1.34% −17.77% 3.62% 1.06%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −54.11% −64.59% −58.86% −7.07%
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Table 5.7: Relative maximum controlled responses and control feedback of the optimally
located non-collocated sensor/actuator controller to:
the collocated sensor/actuator designed controller,
the non-optimal randomly located sensor/actuator controller with actuator at r∗,
and to the non-optimal located collocated sensor/actuator controller at l∗.
J∗
N.C. = J∗(l∗, r∗): optimal performance index at the non-collocated optimal location

(l∗, r∗),
J∗
2 = J∗(l2, r2): optimal performance index at the location (l2, r2),
J∗
rel :=

J∗
N.C.−J∗

2

J∗
2

. Relative maximum responses at a location (l1, r1) to another location
(l2, r2):

w∞
rel :=

∥w(0.5)(l1,r1)∥∞
−∥w(0.5)(l2,r2)∥∞

∥w(0.5)(l2,r2)∥∞
,

v∞rel :=
∥v(0.5)(l1,r1)∥∞

−∥v(0.5)(l2,r2)∥∞

∥v(0.5)(l2,r2)∥∞
,

u∞rel :=
∥u(l1,r1)∥∞

−∥u(l2,r2)∥∞

∥u(l2,r2)∥∞
.

Case/ Locations J∗
rel w∞

rel v∞rel u∞rel
(20, 0.0001)I
(l∗, r∗) vs. r∗c 0% −1.84% 0% −1.83%
(l∗, r∗) vs.Non-optimal(0.24L, r∗) 0% −3.61% 0% 0%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −89.70% −71.87% −63.59% −33.86%

(1, 1)I
(l∗, r∗) vs. r∗c −0.98% −10.38% 1.37% 1.38%
(l∗, r∗) vs.Non-optimal(0.33L, r∗) −10.56% −39.69% −22.11% 13.46%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −58.78% 71.17% −33.93% −2.49%

(0.001, 0.01)I
(l∗, r∗) vs. r∗c −2% −6.25% 2.6% 2.67
(l∗, r∗) vs.Non-optimal(0.24L, r∗) −1.34% −7.41% −0% 5.92%
(l∗, r∗) vs.Non-optimal(l∗, l∗) −54.11% −62.06% −60.00% 0.61%
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Table 5.8: Relative error in estimations at the optimally located non-collocated sen-
sor/actuator controller (l∗, r∗),
the optimally located collocated sensor/actuator controller (r∗c , r

∗
c ),

the non-optimal randomly located sensor/actuator controller at (l, r∗),
and the non-optimal located collocated sensor/actuator controller at (l∗, l∗).
eL2
w :=

∥we−w∥2
∥w∥2

, eL2
v :=

∥ve−v∥2
∥v∥2

, where we and ve are the estimated deflection and velocity.

Case/ Locations errorL2
w errorL2

v

(20, 0.0001)I
(l∗, r∗) 0.0021 0.0090
(r∗c , r

∗
c ) 0.0024 0.0334

Non-optimal (0.24L, r∗) 0.005 0.0586
Non-optimal (l∗, l∗) 0.0013 0.0082

(1, 1)I
(l∗, r∗) 0.0083 0.1227
(r∗c , r

∗
c ) 0.0036 0.0419

Non-optimal (0.33L, r∗) 0.0165 0.3805
Non-optimal (l∗, l∗) 0.0130 0.0349

(0.001, 0.01)I
(l∗, r∗) 0.0050 0.0439
(r∗c , r

∗
c ) 0.0037 0.0408

Non-optimal (0.24L, r∗) 0.0072 0.0716
Non-optimal (l∗, l∗) 0.0026 0.0170
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For case 1, the scale of the overall performance index is relatively large. The perfor-
mance with respect to the actuator locations resembles a steep concave up shape relation-
ship, and the minima are near the center. The performance with respect to the sensor
locations resembles a constant relationship. The optimal locations of the non-collocated
and collocated actuator are the same at 50.2% of the bridge length. The non-collocated sen-
sor optimal locations are far away from the centers, at 0.13L and 0.87L on the bridge. The
controlled responses and feedback controls of the two controllers are almost identical. The
relative difference in the deflection L2-norms of the two designs is less than 2%, the relative
difference in the velocity and feedback L2-norms are less than 0.5%. The relative errors
in estimating deflection response and velocity response are smaller in the non-collocated
sensor/actuator design at its optimal locations than the collocated sensor/actuator design
at its optimal locations, but not smaller than the collocated sensor/actuator design at the
non-collocated sensor optimal location l∗. (See Figure 5.4 for performance index vs. sensor
actuator locations and Figure 5.5 for performances of the non-collocated sensor/actuator
and collocated sensor/actuator controllers).

For case 2, the scale of the overall performance index is intermediate among the three
cases. The performance with respect to the actuator locations resembles a flatter concave
up shape relationship compared with case 1. The performance with respect to the sensor
locations is almost constant. The optimal locations of the non-collocated and collocated
actuator are the same at 50.2% of the bridge length. The non-collocated sensor optimal
locations moves closer toward to centers compare to in case 1. The relative difference in
the deflection L2-norms of the two designs is 12.05%, and the relative difference in the ve-
locity and feedback L2-norms are less than 2%. The relative errors in estimating deflection
response and velocity response are larger in the non-collocated sensor/actuator design at
its optimal locations than the collocated sensor/actuator design at its optimal locations
and at the non-collocated sensor optimal location l∗. (See figure 5.6 for performance index
vs. sensor actuator locations and figure 5.7 for performances of the non-collocated sen-
sor/actuator and collocated sensor/actuator controllers).

For case 3, the scale of the overall performance index is the smallest among the three
cases. The performance with respect to the locations becomes a flatter concave up shape
relationship compared with cases 1 and 2. The performance with respect to the sensor
locations is almost constant. The optimal locations of the non-collocated and collocated
actuator are the same at 50.2% of the bridge length. The non-collocated sensor optimal
locations are closer to the centers than in cases 1 and 2. The relative difference in the
deflection L2-norms of the two designs is 10.79%, the relative difference in the velocity and

64



feedback L2-norms are less than 3%. The relative errors in estimating deflection response
and velocity response are larger in the non-collocated sensor/actuator design at its optimal
locations than the collocated sensor/actuator design at its optimal locations and at the
non-collocated sensor optimal location l∗. (See figure 5.8 for performance index vs. sensor
actuator locations and figure 5.9 for performances of the non-collocated sensor/actuator
and collocated sensor/actuator controllers).

The main goal of this thesis is to study the differences in the optimally located non-
collocated sensor/actuator and the optimally located collocated sensor/actuator controllers’
performances. The results show that the optimal locations of the actuators of the two de-
signs are the same, with r∗ = r∗c . The potential differences in the two designs’ performances
are caused by the optimal non-collocated sensor locations. Actuator position seems to dom-
inate the performance index values over the sensor locations especially when the scale of the
location optimization cost functional range is large. The non-collocated sensor/actuator
controllers fixed at the optimal actuator locations with various non-optimal sensor loca-
tions performs similar to the optimally located controller.

In all cases, the optimal locations of the actuators for both designs are the same, with
r∗ = r∗c being almost at the bridge’s center, and the optimal locations of the non-collocated
sensor are causing the performance difference in the two designs. The optimal locations
of the non-collocated sensor, l∗, change in different cases. The different sensor optimal
locations consequently lead to the differences in the non-collocated sensor/actuator and
the collocated sensor/actuator controllers. Thus, the state weight impacts the differences
in performances of the non-collocated sensor/actuator and collocated sensor/actuator con-
trollers at their optimal locations. See Table 5.5 for the optimal locations of the two
controllers.

Although the non-collocated sensor/actuator design usually yields the smallest perfor-
mance index, its optimal performance index is only relatively smaller to the collocated
sensor/actuator performance index by at most 2%. The controlled responses are almost
identical, with the non-collocated sensor/actuator controller yielding a relatively smaller
L2-norm of deflection response by at most 12% and a relatively smaller L2-norm of veloc-
ity response by at most 2%. See Table 5.6. The non-collocated sensor/actuator controller
yields a relatively smaller maximum amplitude of the deflection response by at most 11%,
but a larger maximum amplitude of the velocity response by almost 3%. This implies
that the collocated sensor/actuator design at its optimal location is only slightly higher
in performance index and can be better in controlling maximum velocity response. As
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shown in all cases, the maximum velocity responses are smaller for the collocated sen-
sor/actuator design compare to the non-collocated sensor/actuator design. See Table 5.7.
In case 1, the optimally located non-collocated sensor/actuator design’s relative error in
estimating the true state response is smaller than the optimally located collocated sen-
sor/actuator design’s. In other cases, the relative error in estimation deflection response
of the non-collocated sensor/actuator design is not always the smallest compare to other
sensor/actuator locations. See Table 5.8 for the listings of the relative error values in esti-
mations of deflection and velocity responses. See Figures 5.5, 5.7 and 5.9 for comparisons of
the non-collocated sensor/actuator and collocated sensor/actuator controller performances.

The actuator location seems to dominate the performance index values, especially in
case 1. In the non-collocated sensor/actuator design, as shown in the contour plots of
J∗(l, r) in Figures 5.4, 5.6, and 5.8, the graph J∗(l, r) resembles a steeper concave up in
the actuator r dimension and almost constant in the sensor l dimension. Moreover, the
performances of a randomly located non-collocated sensor/actuator controller with its ac-
tuator located at the optimal actuator location, r∗, result in smaller performance index
and controlled responses than a non-optimal collocated sensor/actuator controller located
at the optimal non-collocated sensor location l∗. As shown in Figure 5.10, the velocity
responses of the non-collocated sensor/actuator controller at (l, r∗), l being a randomly
selected sensor location in each case, resembles a similar velocity responses at the non-
collocated sensor/actuator optimal location in case 1. Its estimated velocity is slightly
poorer. As shown in Figure 5.11, the velocity responses of the collocated sensor/actuator
controller at l∗ are larger in maximum amplitudes (poorer control performance) but with
a better estimation on velocity.

When the optimal actuator location is fixed at the optimal non-collocated sensor/actuator
actuator location r∗, in case 2 and 3 (the scale of the location optimization cost func-
tional range is relatively smaller), the controlled responses at different sensor locations
yields worse, but small differences, responses than the optimal located non-collocated sen-
sor/actuator at (l∗, r∗). In case 1, ( the scale of the location optimization cost functional
range is relatively larger), the controlled responses at different sensor locations yield almost
identical responses to the optimal located non-collocated sensor/actuator at (l∗, r∗). Note
that the sensor noise is set to be relatively large in this thesis. See Figure 5.12 and Figure
5.13.

The sensor locations affect the estimation of the true responses, but do not signifi-
cantly affect the control performances. Collocated design at the optimal sensor locations,
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l∗, tend to have the smallest relative errors in estimations. Non-collocated design with ran-
domly located sensors tends to have the largest relative errors in estimations. See Table 5.8.

Figure 5.4: Case 1: Q0 = (20, 0.0001)I .
Collocated performance index vs. Ωc, J∗(r∗c ) = J∗(0.502L) = 1.1312× 1012 (top).
Non-collocated performance index vs. Ωs, J∗(l∗, r∗) = J∗(0.872L, 0.502L) = 1.1311× 1012

(bottom).
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Figure 5.5: Case 1: Q0 = (20, 0.0001)I .
Compare performances of non-collocated sensor/actuator and collocated sensor/actuator
at their optimal locations. Compare deflection responses (top). Compare velocity responses
(middle). Compare feedback control (bottom).
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Figure 5.6: Case 2 Q0 = (1, 1)I .
Collocated performance index vs. Ωc,J∗(r∗c ) = J∗(0.502L) = 5.73× 1010 (top).
Non-collocated performance index vs. Ωs, J∗(l∗, r∗) = J∗(0.354L, 0.502L) = 5.67 × 1010

(bottom).
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Figure 5.7: Case 2: Q0 = (1, 1)I .
Compare performances of non-collocated sensor/actuator and collocated sensor/actuator
at their optimal locations. Compare deflection responses (top). Compare velocity responses
(middle). Compare feedback control (bottom).
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Figure 5.8: Case 3: Q0 = (0.001, 0.01)I .
Collocated performance index vs. Ωc, J∗(r∗c ) = J∗(0.502L) = 5.79× 107 (top).
Non-collocated performance index vs. Ωs, J∗(l∗, r∗) = J∗(0.631L, 0.502L) = 5.79 × 107

(bottom).
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Figure 5.9: Case 3: Q0 = (0.001, 0.01)I .
Compare performances of non-collocated sensor/actuator and collocated sensor/actuator
at their optimal locations. Compare deflection responses (top). Compare velocity responses
(middle). Compare feedback control (bottom).
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Figure 5.10: Compare velocity estimations of the optimally located non-collocated sen-
sor/actuator design to the non-collocated sensor/actuator design at a random sensor
and optimal actuator location (l, r∗). Case 1, (l, r∗) = (0.243L, r∗) (top). Case 2,
(l, r∗) = (0.668, r∗) (middle). Case 3, (l, r∗) = (0.243L, r∗) (bottom).
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Figure 5.11: Compare velocity estimations of the optimally located non-collocated sen-
sor/actuator design to the collocated design at the optimal non-collocated sensor location
l∗. Case 1 (top). Case 2 (middle). Case 3 (bottom).
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Figure 5.12: Compare deflection responses at fixed optimal actuator location r∗, with
varying sensor location l. Case 1 (top). Case 2 (middle).Case 3 (bottom).
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Figure 5.13: Compare velocity responses at fixed optimal actuator location r∗, with varying
sensor location l. Case 1 (top). Case 2 (middle). Case 3 (bottom).
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Chapter 6

Conclusion and Future Extensions

In this thesis, the optimal locations of the separated and the collocated sensor/actuator
design for a lightweight aluminum pedestrian bridge are studied. The controlled responses
at the optimal locations of the two controller designs are compared.

A simple beam structure and the realistic bridge system in this thesis are modelled
based on the Euler-Bernoulli beam theory. Two numerical approximation methods are
used.

The LQ objective-driven controller for the approximated finite-dimensional system is
reviewed. The sensor/actuator location-parameterized LQ controller and the separated
and collocated location optimization problems are defined. An explanation of developing
the state energy weight mapping from the original infinite-dimensional functional space to
the approximated finite-dimensional functional space is included in this thesis.

In the preliminary problem, the modal approximation is used to approximate this sim-
plified model. The LQG controller is reviewed and applied. The numerical implementation
of stochastic disturbances is presented. The numerical complications on inverting large ma-
trix and simulating ill-condition matrix are discussed and provided with solutions. Simula-
tion results are consistent with [1] that weighting on the velocity state effectively improves
the controlled response, and are consistent with [36] that increasing on the state weight
moves the optimal actuator locations from the center. Depending on the state weights and
disturbance distributions, the collocated sensor/actuator design at the optimal locations
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can achieve the same control performance as that of the non-collocated design at the op-
timal locations.

In the bridge model, Hermite basis FEM approximation is used to approximate a more
realistic pedestrian bridge model. The H2 controller is reviewed and applied. To consider
more realistic situations, the actuator device dynamics and its noise, the pedestrian load
referencing from [13], and a low pass filter are included in the model. Interestingly, this
augmented model resulted in that the optimal estimator depends on both of the sensor
and actuator locations.

The main simulation results show that, although the optimally located non-collocated
sensor/actuator design yields the smallest performance index, it is only relatively smaller
to the optimally located collocated sensor/actuator performance index by at most 2%.
The controlled responses are almost identical. The optimally located non-collocated sen-
sor/actuator design yields a relatively smaller L2-norm and maximum amplitude of the
deflection response by at most 12%, but a relatively larger L2-norm and maximum am-
plitude of the velocity response by at most 3.33%. In case 1 (the scale of the location
optimization cost functional range is relatively large), the difference in the two optimally
located designs’ optimal performance index values vanishes, and the differences in their
performances diminish. The results suggest that the physically more practical collocated
sensor/actuator design can achieve performances as excellently as the ideally more optimal
non-collocated sensor/actuator design at their corresponding optimal locations.

Future extensions can be done by investigating the optimal locations of the sensor/actuator
by considering more realistic factors to the structural model and control design. The struc-
ture can be extended to a more complicated bridge model such as the Timoshenko beam
model with the shear deformation or a higher dimensional bridge model with the defor-
mations in the horizontal direction. Non-simply supported structures can be considered
to study the differences between the two controller designs when symmetry of the struc-
ture is absent. Realistically, disturbances are unpredictable. Therefore, by using the
H∞-controller design, the control design can be extended to the robustness of the system
against unknown disturbances.
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