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Abstract

Random quantum circuits and random circuit sampling (RCS) have recently garnered
tremendous attention from all sub-fields of the quantum information community, especially
after Google’s quantum supremacy announcement in 2019. While the science of RCS draws
ideas from diverse disciplines ranging from pure mathematics to electrical engineering, this
thesis explores the subject from a theoretical computer science perspective.

We begin by offering a rigorous treatment of the t-design and the anti-concentration
properties of random quantum circuits in a way that various intermediate lemmas will find
further applications in subsequent discussions. In particular, we prove a new upper bound
for expressions of the form EV

[
〈0n|V σpV †|0n〉2

]
for 1D random quantum circuits V and

n-qubit Pauli operators σp. Next, we discuss at a high level the RCS supremacy conjecture,
which forms the main complexity-theoretic basis supporting the belief that deep random
quantum circuits may be just as hard to classically simulate as arbitrary quantum circuits.
Finally, we study the performance of quantum and classical spoofing algorithms on the
linear cross-entropy benchmark (XEB), a statistical test proposed by Google for the purpose
of verifying RCS experiments. We consider an extension of a classical algorithm recently
proposed by Barak, Chou, and Gao and try to show that the extended algorithm can achieve
higher XEB scores [BCG20]. While we are unable to prove a key conjecture for random
quantum circuits with Haar random 2-qubit gates, we do establish the result in other related
settings including for Haar random unitaries, random Clifford circuits, and random fermionic
Gaussian unitaries.
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Introduction

Randomness is inherent in quantum computation. Still, randomization in a classical sense,
different from randomness induced by measurements, has also been proven a useful tool
in quantum information. Over the years, the idea of applying uniformly random uni-
tary transformations, also called Haar random unitaries, has permeated diverse subfields of
the quantum information sciences including quantum communication [HLSW04, ADHW09],
quantum algorithm [Sen06], quantum hardware benchmarking [EAŻ05], black hole physics
[HP07, RY17], quantum tomography [HKP20, HCY21], and one of the topics of this work,
quantum supremacy [BIS+18, BFNV18]. A major algorithmic downside of Haar random uni-
taries is that they cannot be sampled efficiently. In the circuit model of quantum computing,
a quantum processor cannot apply in one step a global unitary acting simultaneously on a
large number of qubits, and it is known that the number of 2-qubit gates needed to imple-
ment an n-qubit Haar random unitary grows exponentially in n [Kni95]. Therefore, drawing
large unitaries from the Haar distribution is unsuitable for applications where the random
unitary needs to be efficiently constructible [DCEL09]. To this end, (Haar) random quantum
circuits stand out as natural alternatives to global Haar random unitaries. A (Haar) ran-
dom quantum circuit is a quantum circuit whose qubit and gate layouts are specified by an
underlying circuit architecture, and the unitary transformation applied by each 2-qubit gate
is drawn independently and identically according to the Haar distribution over the group
of 4 × 4 unitary matrices. Since sampling every random 2-qubit gate consumes a constant
amount of resources (e.g. time and random bits), an n-qubit random quantum circuit with
poly(n) many 2-qubit gates can be sampled efficiently and can be executed on a quantum
computer efficiently just like every other polynomial-size quantum circuit. In addition, to
better model the qubit layout of real-world quantum computers, one considers geometrically
local circuit architectures. For example, in the 1D architecture, qubits are linked in a 1D
chain where 2-qubit interactions can only occur between spatially neighbouring qubits (e.g.
see Figure 2).

Since a random quantum circuit is composed of a sequence of Haar random 2-qubit gates,
many properties of random quantum circuits ultimately reduce to properties of 4 × 4 Haar
random unitaries. In Chapter 2, building upon a classic result in representation theory
known as Schur-Weyl duality, we first give an axiomatic treatment of a few fundamental
results involving the moments of Haar random unitaries. We then formalize, in the t-design
property section, in what sense can random quantum circuits substitute global Haar random
unitaries in applications where some properties of the latter are desired. We will show that
for every t ≥ 1, certain t-th order moments of 1D random quantum circuits converge to that
of Haar random unitaries as the number of gates, or equivalently the circuit depth, goes to
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Figure 2: Qubit layout and connectivity of the 27-qubit ibmq montreal quantum processor;
the chain of pink qubits forms a 20-qubit 1D subsystem; image retrieved from https://

quantum-computing.ibm.com/services?services=systems&system=ibmq_montreal.

infinity, and we also quantify the speed of convergence. In the collision probability and anti-
concentration section, we dive deeper into understanding a few second-moment properties
of random quantum circuits motivated by their relevance to quantum supremacy.

In 2019, Google claimed the achievement of quantum supremacy with a 53-qubit quan-
tum computer performing a calculation termed random circuit sampling [AAB+19]. Simply
put, quantum supremacy seeks to perform on a real-world quantum computer a well-defined
computational task impossible to replicate using even the most powerful supercomputer
[Pre11, AC16]. Since the problem being solved need not possess any practical value, re-
searchers have identified random circuit sampling (RCS) as a suitable candidate for demon-
strating quantum supremacy. RCS consists of simply executing a random quantum circuit on
a quantum computer and measuring all the qubits in the computational basis. RCS is suit-
able for quantum supremacy demonstrations because it is straightforward to execute on noisy
experimental quantum computers while at the same time, complexity-theoretic evidence can
be found to support its classical computational hardness [BJS11, BMS16, BFNV18]. In
Chapter 3, we first give a high-level overview of the yet to be proven RCS supremacy con-
jecture which forms the main theoretical underpinning of RCS-based quantum supremacy
proposals [BFNV18, Mov18]. We then discuss the verification problem of RCS experiments
which persists even after the RCS supremacy conjecture is ultimately proven. We will show
that for typical n-qubit random quantum circuits, the probability of measuring each bit
string z ∈ {0, 1}n as the output is roughly 1

2n
. If a circuit is only executed poly(n) times to

collect poly(n) samples, the same bit string will never be observed twice in practice. Thus,
how can one distinguish between the outputs gathered from an RCS experiment and a set
of uniformly random n-bit strings? The output distribution of a typical random quantum
circuit will be close to but distinct from the uniform distribution over {0, 1}n, and in some
sense, this slight deviation from uniformity is where all the signal lies. To address this prob-
lem, the Google team proposed and adopted a statistical test called the linear cross-entropy
benchmark (XEB) for their quantum supremacy experiment [BIS+18, AAB+19]. Once we
delegate the verification problem to such a benchmark, to certify the quantumness of a
purported quantum computer, it becomes necessary to rule out the possibility of efficient
classical algorithms attempting to match the quantum computer’s score on the benchmark

2
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without faithfully performing random circuit sampling. In a recent paper, Barak, Chou,
and Gao proposed and analyzed the performance of such a classical spoofing algorithm on
the linear cross-entropy benchmark [BCG20]. The BCG algorithm works by computing and
sampling from the marginal output distributions of a set of qubits with disjoint backward
lightcones, and it is efficient and can achieve non-trivial XEB scores for low-depth random
quantum circuits [BCG20]. Hence, the existence of the BCG algorithm elucidates the im-
portance of conducting RCS experiments with sufficiently deep random quantum circuits.
In Chapter 3, we provide a simpler rendition of the main result of the BCG paper by reusing
some of the tools and techniques developed in Chapter 2.

In Chapter 4, we consider an extension of the Barak, Chou, and Gao algorithm which
computes and samples every qubit according to its marginal output distribution. The ex-
tended BCG algorithm has the same asymptotic time complexity as the BCG algorithm,
and we try to show that the extended algorithm attains better XEB scores. While we do not
succeed in proving a key conjecture for the general case of (Haar) random quantum circuits,
we do establish the result in several other settings including global Haar random unitaries,
random Clifford circuits, and random fermionic Gaussian unitaries.
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Chapter 1

Preliminaries

This work assumes the reader is familiar with basic concepts in quantum computing, and
the purpose of this chapter is to establish some definitions and notations that will be used
throughout this work.

1.1 Notations

Let n ≥ 1 be an integer and define [n] = {1, 2, . . . , n}. For every w ∈ {0, 1}n, let |w| =
|{i ∈ [n] : wi = 1}| denote the Hamming weight of w. For every finite set S, let U(S) denote
the discrete uniform distribution over the sample space S. For example, z ∼ U({0, 1}n)
is a uniformly random n-bit string. Let N = 2n and let U(N) denote the group of all
N×N unitary matrices. For examples, U(1) is the set of all complex numbers with modulus
1, and U(4) is the set of all 2-qubit quantum gates. Let j ∈ [n] and b ∈ {0, 1}. Define
(|b〉〈b|)j = I⊗(j−1)⊗|b〉〈b|⊗I⊗(n−j). Let U be a 1-qubit gate. Define Uj = I⊗(j−1)⊗U⊗I⊗(n−j),
the n-qubit unitary which applies a U gate to the j-th qubit and identity to every other qubit.
For every w ∈ {0, 1}n, define U(w) =

⊗n
j=1 U

wj , the n-qubit unitary which applies a U gate
to every qubit j such that wj = 1 and identity to every other qubit where wj = 0. For every
2-qubit gate U and j ∈ [n− 1], let Uj = I⊗(j−1) ⊗ U ⊗ I⊗(n−j−1) denote the n-qubit unitary
which applies U to qubits j and j + 1 and identity to all other qubits.

1.2 The Pauli Group and the Clifford Group

Let I, X, Y , and Z denote the 1-qubit Pauli matrices where

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, and Z =

[
1 0
0 −1

]
.

Definition 1.1 (n-qubit Pauli Group). The n-qubit Pauli group Pn is the group generated
by X1, . . . , Xn, Y1, . . . , Yn, and Z1, . . . , Zn.

Elements in Pn are n-fold tensor products of the four 1-qubit Pauli matrices with a global ±1
or ±i phase factor. Let P = eiθ

⊗n
j=1 P

(j) ∈ Pn where for every j ∈ [n], P (j) ∈ {I,X, Y, Z}.
The weight of P is defined as |{j ∈ [n] : P (j) 6= I}|, the number of non-identity tensor
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factors in P , and we call P an X, Y , or Z-type Pauli if for every j ∈ [n], P (j) ∈ {X, I},
P (j) ∈ {Y, I}, or P (j) ∈ {Z, I} respectively. Note that P is a Z-type Pauli if and only if P
is diagonal.

Definition 1.2 (n-qubit Clifford Group). The n-qubit Clifford group Cn is defined by Cn =
{C ∈ U(N) : CPnC

† = Pn}/U(1).

Alternatively, Cn can be characterized as the set of all n-qubit quantum circuits that can be
constructed using the gate set

S =

[
1 0
0 i

]
, H =

1√
2

[
1 1
1 −1

]
, and CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
A unitary U ∈ U(N) is call a Clifford unitary if U ∈ Cn.

1.3 Superoperators and the Vectorization Isomorphism

Let us consider the Hilbert space CN with the computational basis {|j〉 : j ∈ {0, 1, . . . , N −
1}}. In quantum information, we often encounter superoperators Φ : CN×N → CN×N act-
ing on linear operator A : CN → CN by conjugation such that Φ(A) = V AV † for some
V : CN → CN . Since Φ is a linear transformation, it has a matrix representation such that
the action of Φ on A is represented by matrix-vector multiplication. We can obtain the matrix
representation of Φ in the computational basis via the vectorization isomorphism. The vec-
torization isomorphism between CN×N and CN2

is defined by its action on the basis elements
as vec(|i〉〈j|) = |i〉 ⊗ |j〉 for every i, j ∈ {0, 1, . . . , N − 1}. For A =

∑N−1
i=0

∑N−1
j=0 aij|i〉〈j|, we

define the notation

|A〉 = vec(A) =
N−1∑
i=0

N−1∑
j=0

aijvec(|i〉〈j|) =
N−1∑
i=0

N−1∑
j=0

aij|i〉 ⊗ |j〉.

The definition of |A〉 implies that

〈A| = (|A〉)† =
N−1∑
i=0

N−1∑
j=0

aij〈i| ⊗ 〈j|,

so

〈A|A〉 =
N−1∑
i=0

N−1∑
j=0

|aij|2 = Tr
(
A†A

)
.

By linearity,

|Φ(A)〉 =
N−1∑
i=0

N−1∑
j=0

aijV |i〉 ⊗ V |j〉 = (V ⊗ V )|A〉.

This shows that the matrix representation of Φ is V ⊗ V .

5



1.4 Permutation Operators

Let t ≥ 1 be an integer. The symmetric group of order t, denoted by St, is the group of
all permutations of t elements. Let π ∈ St. While π can be defined as a bijection between
{0, 1, . . . , t − 1} and itself, it is common to represent π by a t × t permutation matrix Pπ
which permutes the standard basis vectors, i.e. for every j ∈ {0, 1, . . . , t−1}, Pπ|j〉 = |π(j)〉.
However, for our purposes, since we will use π to permute the t tensor factors of (CN)⊗t, we
consider another permutation matrix representation of π in U(N)⊗t as

W (N)
π =

∑
i1,...,it∈{0,1,...,N−1}

|iπ−1(1), . . . , iπ−1(t)〉〈i1, . . . , it|.

We observe that
|W (N)

π 〉 = (W (N)
π ⊗ 1)|Ω〉

where
|Ω〉 =

∑
i1,...,it∈{0,1,...,N−1}

|i1, . . . , it〉 ⊗ |i1, . . . , it〉.

For every π ∈ St, let c(π) denote the number of cycles in π. We can easily verify the following
properties of permutation operators:

Lemma 1.1. For every π, σ ∈ St,

(a) W
(N)
π W

(N)
σ = W

(N)
πσ ;

(b)
(
W

(N)
π

)†
= W

(N)

π−1 ;

(c) Tr(W
(N)
π ) = N c(π).

1.5 Local Hamiltonians

An n-qubit-k-local Hamiltonian with m local terms is a hermitian operator of the form
H =

∑m
i=1 hi where each local term hi ∈ C2n×2n only acts non-trivially on at most k qubits.

The set of eigenvalues of H is referred to as the energy levels, and a ground state of H is an
eigenvector of H corresponding to its minimum eigenvalue. We say H is frustration-free if
for every n-qubit state |ψ〉, |ψ〉 is a ground state of H if and only if |ψ〉 is the ground state
of hi for every i ∈ [m]. A notable special case (in fact WLOG from a physical perspective)
is when hi is positive semi-definite and not positive definite for every i ∈ [m], then H is
frustration-free if and only if every zero-energy ground state of H is a simultaneous zero-
energy ground state of hi for every i ∈ [m]. We use ∆(H) to denote the spectral gap of H,
which is the positive difference between its second smallest and smallest eigenvalues, and
when H is positive semi-definite and not positive definite, ∆(H) simply becomes its second
smallest eigenvalue. We say H is translation-invariant if the non-trivial k-qubit operator
applied by hi is the same for every i ∈ [m].

6



1.6 Random Quantum Circuits

We call a probability distribution D an n-qubit random unitary distribution if the sample
space of D is a subset of U(N). The most natural and fundamental random unitary distribu-
tion ought to be the continuous uniform distribution over U(N), which we denote by µNHaar

as it is also called the Haar measure over U(N). A unitary drawn from µNHaar is called a Haar
random unitary, and it is equally likely to be any element in U(N). For a rigorous treatment
of the Haar measure, see section 7.2 of [Wat18]. The Haar distribution is the unique proba-
bility distribution over U(N) that is both left and right unitarily invariant. Namely, if U is
drawn from µNHaar, then for every V ∈ U(N), both V U and UV are distributed according to
µNHaar. Other notable random unitary distributions include the discrete uniform distribution
over the Clifford group or over some finite universal gate set and distributions that produce
quantum circuits.

A random quantum circuit distribution is usually specified by a circuit architecture and a
random unitary distribution over U(4). The architecture dictates the placement of the gates
and the topological structure of the circuit but not the actual unitaries being applied. Then,
a random quantum circuit is constructed by drawing all the 2-qubit gates independently
from the U(4) random unitary distribution. We first define two families of random quantum
circuits that will feature prominently in later chapters.

Definition 1.3 (Local Random Quantum Circuits). For some random unitary distribution
D over U(4) and for every n, s ≥ 1, an n-qubit-s-gate local random quantum circuit is a
quantum circuit constructed using the following procedure. For every i ∈ [s],

1. sample independently an index i ∼ U([n− 1]);

2. sample independently a 2-qubit gate U ∼ D and apply U to qubits i and i+ 1.

Definition 1.4 (1D Random Quantum Circuits). For some random unitary distribution
D over U(4), for every n ≥ 2 even and d ≥ 1, an n-qubit-depth-d 1D random quantum
circuit is define by the following procedure. For every layer i ∈ [d], if i is odd, then apply
U (i,1)⊗U (i,3)⊗ · · · ⊗U (i,n−1), and if i is even, then apply U (i,2)⊗U (i,4)⊗ · · · ⊗U (i,n−2) where
for every j, U (i,j) is drawn independently from D. We use Hpath

n,d to denote the distribution
of n-qubit-depth-d 1D Haar random quantum circuits where D = µ4

Haar.

Both local and 1D random quantum circuits belong to a broader family of geometrically
local quantum circuits since for both, we can imagine placing the n-qubit on a 1D line, and
2-qubit gates can only couple spatially neighbouring qubits. From now on, when we refer
to local or 1D random quantum circuits without specifying the unitary distribution D over
U(4), it is assumed that D = µ4

Haar.
A general deterministic circuit architecture can be formally defined in the following way.

Definition 1.5 (Circuit Architecture). An n-qubit-s-gate-depth-d circuit architecture A can
be specified by a graph G = (V,E) and a sequence of matchings M1, . . . ,Md satisfying the
following properties:

(a) V = [n];

7



(b) an edge ij ∈ E if and only if a 2-qubit gate can be applied to qubits i and j;

(c)
∑d

i=1 |Mi| = s.

In this definition, every vertex in V corresponds to a qubit, and the edge set E specifies the
connectivity of the architecture. For every i ∈ [d], Mi specifies the placement of a layer of
gates where an edge jk ∈Mi corresponds to applying a 2-qubit gate between qubits j and k
in layer i. The matching condition ensures that every qubit is affected by at most one gate
per layer. For example, under this formalism, the n-qubit-depth-d 1D architecture, which
we denote by Apath

n,d , can be specified by the path graph Pn = ([n], E) and layers M1, . . . ,Md

where E = {ei = {i, i+1} : i ∈ [n−1]}, and for every i ∈ [d], if i is odd, then Mi = {ej ∈ E :
j is odd}, and if i is even, then Mi = {ej ∈ E : j is even}. Besides the 1D architecture, 2D
random quantum circuits constitute another extensively studied [BIS+18, BFNV18, HM18,
NLPD+19, BCG20] and experimentally relevant [BIS+18, AAB+19] random quantum circuit
family where the n qubits are laid on a

√
n×
√
n grid and gates are restricted to connecting a

qubit with its up to four neighbours. While numerous results have been rigorously established
for 2D random quantum circuits [HM18, BFNV18, Mov18, NLPD+19, BCG20], some of
them are shown for general circuit architectures as the proofs do not assume any spatial
regularities from the circuit architecture. Other results that do target the 2D geometry
directly sometimes work with customized, nonstandard gate layouts [HM18, NLPD+19].
Within this work, every result applying to 2D random quantum circuits will be proven for
general architectures. Next, we discuss some properties of general circuit architectures.

Definition 1.6 (Backward Lightcone). LetA be a circuit architecture with graphG = (V,E)
and sequence of matchings M1, . . . ,Md. For every qubit i ∈ [n], define Ld+1(i) = {i}, and
for every j ∈ [d], define Lj(i) recursively as

Lj(i) = Lj+1(i) ∪ {k ∈ [n] : ∃uk ∈Mj s.t. u ∈ Lj+1(i)},
and we call L(i) = L1(i) the backward lightcone of qubit i. We call L(A) = maxi∈[n] |L(i)|
the lightcone size of the architecture A.

Lemma 1.2 (Properties of Lightcones). For every n-qubit-depth-d circuit architecture A,

(a) for every i ∈ [n], the marginal output probabilities of qubit i can be computed classically
in poly(2|L(i)|) time;

(b) for every i, j ∈ [n], if L(i) ∩ L(j) = ∅, then the marginal output distributions of qubits
i and j are independent;

(c) L(A) ≤ 2d, and in particular, L(Apath
n,d ) ≤ 2d.

For every i ∈ [n], to compute the marginal output probabilities of qubit i in poly(2|L(i)|)
time, it suffices to initialize just the qubits in L(i) and simulate only the gates acting on
qubits in Lj(i) for every j ∈ [d] using an explicit matrix and state vector representation.

Lastly, we define some notations and terminologies. A 2-qubit gate U ∼ µ4
Haar is called

a Haar random gate, and a 2-qubit gate U ∼ U(C2) is called a random Clifford gate. For
every circuit architecture A, we use HA and CA to denote the random quantum circuit
distributions induced by drawing the gates in A independently and identically according to
µ4

Haar and U(C2) respectively. A sample V ∼ HA is called a Haar random quantum circuit,
and a sample C ∼ CA is called a random Clifford circuit.

8



Figure 1.1: An 8-qubit-depth-3 1D circuit diagram; the top six qubits are in the backward
lightcone of the third (and fourth) qubit; only gates coloured in purple need to be carried
out to compute the marginal output probabilities of the third (or fourth) qubit.

1.7 Output Distributions and the Hiding Property

Let U ∈ U(N) be an n-qubit unitary. Measuring the state U |0n〉 in the computational basis
induces a probability distribution over the sample space {0, 1}n where for every z ∈ {0, 1}n,
the probability of observing z is given by qU(z) = |〈z|U |0n〉|2, and we call qU the output
distribution of U . For every x ∈ {0, 1}n, define Ux = X(x)U and notice that 〈x|U |0n〉 =
〈0n|Ux|0n〉.

An n-qubit random unitary distribution D is said to have the hiding property if for
every x ∈ {0, 1}n, if U is drawn from D, then Ux = X(x)U is also distributed according to
D. It is the unitary invariance property restricted to X-type Pauli operators. The hiding
property is very general and holds for a vast range of random unitary distributions including
random circuit distributions that apply at least one Haar random or random Clifford gate
to every qubit. As a non-example, it is easy to see that local random quantum circuits
(recall Definition 1.3) with a large number of qubits and few gates do not enjoy the hiding
property. Right away, some basic properties of random quantum circuits can be derived from
the hiding property.

Lemma 1.3. Let D be an n-qubit random unitary distribution with the hiding property.
Then for every x ∈ {0, 1}n, EU∼D [|〈x|U |0n〉|2] = 1

2n
.

Proof. Let x ∈ {0, 1}n. Using the hiding property, we see that

E
U∼D

[
|〈x|U |0n〉|2

]
= E

U∼D

[
|〈0n|Ux|0n〉|2

]
= E

U∼D

[
|〈0n|U |0n〉|2

]
.

Thus,

1 = E
U∼D

[ ∑
x∈{0,1}n

|〈x|U |0n〉|2
]

= 2n E
U∼D

[
|〈0n|U |0n〉|2

]
,

9



so

E
U∼D

[
|〈x|U |0n〉|2

]
= E

U∼D

[
|〈0n|U |0n〉|2

]
=

1

2n
.

Generally, the output distribution of a random quantum circuit chains two sources of
randomness, one from the random unitary distribution D and the other induced by com-
putational basis measurements. As demonstrated in the proof of Lemma 1.3, the hiding
property allows one to examine WLOG just the 0n outcome, thereby removing the need to
analyze the randomness originating from measurements in many cases. In other words, we
can focus our efforts on understanding the randomness over D.

10



Chapter 2

Properties of Random Quantum
Circuits

This chapter aims to build an understanding of random quantum circuits and explore the
techniques that have been developed for analyzing them. We have already seen that every
n-qubit random unitary distribution D enjoying the hiding property satisfies

E
U∼D

[
|〈x|U |0n〉|2

]
=

1

2n

for every x ∈ {0, 1}n. In other words, we have shown that E[X] = 1
2n

for the random variable
X = |〈x|U |0n〉|2 where the randomness is over U ∼ D. As a next step, one may wonder,
what about Var(X)? We all know that computing Var(X) reduces to figuring out E[X2]
given our knowledge about E[X]. Then, for example, information about Var(X) enables us
to upper bound the probability that X deviates from E[X] via the Chebyshev inequality. It
turns out that in ways analogous to this simple example, the analyses of many interesting
properties related to random quantum circuits reduce to analyzing moments of the form

E
U∼D

[
U⊗tA(U †)⊗t

]
for some t ≥ 1 and A ∈ (CN×N)⊗t [BHH16, BGM19, BCG20, DHJB20, LOB+21]. For our
example, we see that E[X2] can be related to an expression of this form by choosing t = 2
and A = |02n〉〈02n|.

Since random quantum circuits are composed of layers of random 2-qubit gates, every
global property of the circuits is ultimately determined by the properties of the individual
gates. Hence, it is instructive to begin by studying the moment operators of the Haar
distribution.

2.1 The Haar Moment Operator

Let n ≥ 1 and t ≥ 1 be integers, and let N = 2n. The t-th moment superoperator of an
n-qubit random unitary distribution D is defined by

Φ
(t)
D : (CN×N)⊗t → (CN×N)⊗t

11



A 7→ E
U∼D

[
U⊗tA(U †)⊗t

]
,

and the matrix representation of Φ
(t)
D under the vectorization isomorphism EU∼D

[
U⊗t ⊗ (U)⊗t

]
is called the t-th moment operator of D. Specializing to the Haar distribution, we get the
Haar t-th moment superoperator Φ

(t)

µNHaar
and its matrix representation

P
(t)
N = E

U∼µNHaar

[
U⊗t ⊗ (U)⊗t

]
.

Throughout this work, we will go back and forth between the equivalent operator and super-
operator views frequently. We start by stating a version of a classic result in representation
theory known as Schur-Weyl duality and effectively accepting it as an “axiom”. The theorem
statement is borrowed from [RY17]. For a proof, see section 7.1 of [Wat18].

Theorem 2.1 (Schur-Weyl Duality). For every linear operator A ∈ (CN×N)⊗t, AV ⊗t =
V ⊗tA for every V ∈ U(N) if and only if A is a linear combination of the permutation

operators W
(N)
π , π ∈ St.

For the ( ⇐= ) direction, it is easy to verify that for every permutation operator W
(N)
π ,

π ∈ St,
W (N)
π V ⊗t

(
W (N)
π

)†
= V ⊗t

for every V ∈ U(N), so the result follows. Let W be the N2t-by-t! matrix with columns

|W (N)
π 〉, π ∈ St. For the ( =⇒ ) direction, consider the system of linear equations

Wc = |A〉

with c being the unknowns. Notice that for different choices of N and t, it is possible for
N2t < t! or N2t > t!, resulting in the system being either underdetermined or overdetermined.
The ( =⇒ ) direction of Schur-Weyl duality asserts that the system has solutions for all
choices of N and t provided that A commutes with V ⊗t for every V ∈ U(N).

The following basic properties of the Haar t-th moment operator can be easily derived
from the unitary invariance property and Schur-Weyl duality. For a discussion of similar
properties in the Pauli basis, see section 3 of [HL09].

Lemma 2.1. The following properties hold for P
(t)
N :

(a) P
(t)
N is real symmetric in the computational basis;

(b) P
(t)
N is an orthogonal projector;

(c) the +1-eigenspace of P
(t)
N equals span{|W (N)

π 〉 : π ∈ St}.

Proof.
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(a) We have (
P

(t)
N

)†
= E

U∼µNHaar

[
(U †)⊗t ⊗ (UT )⊗t

]
= E

V∼µNHaar

[
V ⊗t ⊗ (V )⊗t

]
= P

(t)
N

by renaming U † with V . Similarly,
(
P

(t)
N

)T
= P

(t)
N and together with

(
P

(t)
N

)†
= P

(t)
N ,

they imply that P
(t)
N is real symmetric.

(b) By the unitary invariance property, for every A ∈ (CN×N)⊗t,

E
V∼µNHaar

[
V ⊗t E

U∼µNHaar

[
U⊗tA(U †)⊗t

]
(V †)⊗t

]
= E

V∼µNHaar

[
E

U∼µNHaar

[
(V U)⊗tA((V U)†)⊗t

] ]
= E

V∼µNHaar

[
E

U∼µNHaar

[
U⊗tA(U †)⊗t

] ]
= E

U∼µNHaar

[
U⊗tA(U †)⊗t

]
,

which is equivalent to P
(t)
N P

(t)
N |A〉 = P

(t)
N |A〉. Since this is true for every A ∈ (CN×N)⊗t,

P
(t)
N P

(t)
N = P

(t)
N , so P

(t)
N is a projector. Since P

(t)
N is also hermitian, P

(t)
N is an orthogonal

projector.

(c) By the (⇐= ) direction of Schur-Weyl duality, for every π ∈ St,

E
U∼µNHaar

[
U⊗tW (N)

π (U †)⊗t
]

= E
U∼µNHaar

[
W (N)
π U⊗t(U †)⊗t

]
= W (N)

π ,

so |W (N)
π 〉 is a +1-eigenvector of P

(t)
N . Let A ∈ (CN×N)⊗t such that P

(t)
N |A〉 = |A〉. For

every V ∈ U(N), we have that

V ⊗tA = V ⊗tΦ
(t)

µNHaar
(A) = V ⊗t E

U∼µNHaar

[
(V †U)⊗tA((V †U)†)⊗t

]
= Φ

(t)

µNHaar
(A)V ⊗t = AV ⊗t.

Therefore, by Schur-Weyl duality, A is a linear combination of permutation operators,
which is equivalent to saying |A〉 ∈ span{|W (N)

π 〉 : π ∈ St}.

The set of vectors {|W (N)
π 〉 : π ∈ St} may not be linearly independent by a simple dimension

argument. Since |W (N)
π 〉 is N2t dimensional and |St| = t!, for constant N and large enough

t, t! > N2t, so in such cases {|W (N)
π 〉 : π ∈ St} cannot be linearly independent.

Lemma 2.1 (b) and (c) imply that for every A ∈ (CN×N)⊗t, there exist scalars cπ ∈ C, π ∈
St such that

E
U∼µNHaar

[
U⊗tA(U †)⊗t

]
=
∑
π∈St

cπW
(N)
π .

Next, we work out a formula for the coefficients cπ in terms of the Moore-Penrose inverse of
a matrix. The form of the formula is borrowed from [RY17].
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Lemma 2.2. For every linear operator A ∈ (CN×N)⊗t,

E
U∼µNHaar

[
U⊗tA(U †)⊗t

]
=
∑
π∈St

(∑
σ∈St

(Q+)π,σTr
(
W

(N)

σ−1A
))

W (N)
π (2.1)

where for every π, σ ∈ St, Qπ,σ = Tr(W
(N)

π−1W
(N)
σ ), and Q+ is the Moore-Penrose inverse of

Q.

Proof. Let A ∈ (CN×N)⊗t. Let W be the N2t-by-t! matrix with columns |W (N)
π 〉, π ∈ St. We

have shown that for c ∈ Ct!, the system of linear equations

Wc = P
(t)
N |A〉

has solutions, so

c = W+P
(t)
N |A〉 = (W †W )+W †P

(t)
N |A〉 = (W †W )+W †|A〉 (2.2)

is a solution. By defining Q = W †W , we see that (2.2) expands into the RHS of (2.1).

The matrix Q+ appearing in Lemma 2.2 has been called the (unitary) Weingarten matrix,
and for detailed discussions about the Weingarten calculus, see [Gu13, CMN21]. For another
proof of the following well-known lemma, see [Har13].

Lemma 2.3 (t-th Moment of a Haar Random State).

E
U∼µNHaar

[(
U |0n〉〈0n|U †

)⊗t]
=

∑
π∈StW

(N)
π

t!
(
t+N−1

t

)
Proof. By substituting A = (|0n〉〈0n|)⊗t into Lemma 2.2, we get that

E
U∼µNHaar

[(
U |0n〉〈0n|U †

)⊗t]
=
∑
π∈St

(∑
σ∈St

(Q+)π,σ

)
W (N)
π .

Recall that Q = W †W where W is the N2t-by-t! matrix with columns |W (N)
π 〉, π ∈ St. Notice

that for every π ∈ St,∑
σ∈St

Qπ,σ =
∑
σ∈St

Tr
(
W

(N)

π−1σ

)
=
∑
σ∈St

Nnumber of cycles in π−1σ.

By a well-known characterization of the Stirling numbers of the first kind,

N∑
k=1

Nk · (number of permutations of n elements with k cycles) = t!

(
t+N − 1

t

)
.

Thus, the all-ones vector is an eigenvector of Q with eigenvalue t!
(
t+N−1

t

)
. Since Q is hermi-

tian, the all-ones vector is also an eigenvector of Q+ with eigenvalue 1

t!(t+N−1
t )

.
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2.2 The t-design property

We begin by defining the notion of an exact unitary t-design.

Definition 2.1 (Exact unitary t-design). An n-qubit random unitary distribution D is an

exact unitary t-design if for every A ∈
(
CN×N)⊗t,

Φ
(t)
D (A) = E

U∼D

[
U⊗tA(U †)⊗t

]
= E

U∼µNHaar

[
U⊗tA(U †)⊗t

]
= Φ

(t)

µNHaar
(A),

or equivalently,

E
U∼D

[
U⊗t ⊗ (U)⊗t

]
= E

U∼µNHaar

[
U⊗t ⊗ (U)⊗t

]
= P

(t)
N .

We can make use of the exact unitary t-design condition in a few ways. In one scenario,
one may wish to analyze EU∼µNHaar

[
U⊗tA(U †)⊗t

]
for some t and some special A ∈

(
CN×N)⊗t

for which there exists an exact unitary t-design D such that EU∼D
[
U⊗tA(U †)⊗t

]
possesses

special structures. For example, it is known that the discrete uniform distribution over
the Clifford group, U(Cn), forms an exact unitary 2-design [DCEL09]. For Pauli operators
σp ∈ {I,X, Y, Z}⊗n, the fact that Clifford operators conjugate Pauli operators to Pauli
operators leads to rich exploitable combinatorial structures in the expression

E
C∼U(Cn)

[
(C ⊗ C)(σp ⊗ σp)(C† ⊗ C†)

]
.

We will explore implementations of this idea in the next section. In another scenario, one
may be able to prove some results concerning EU∼µNHaar

[
U⊗tA(U †)⊗t

]
for some t and A ∈(

CN×N)⊗t, and then in a black-box fashion, the results automatically generalize to all random
unitary distributions that form exact unitary t-designs. For example, when A is not a Clifford
operator, EC∼U(Cn)

[
C⊗2A(C†)⊗2

]
may be hard to analyze, but the 2-design property allows

one to perhaps sidestep the difficulty by proving the desired result for Haar random unitaries
instead. We record the Clifford 2-design result as a theorem for future references.

Theorem 2.2 ([DCEL09]). The discrete uniform distribution over the Clifford group, U(Cn),
forms an exact unitary 2-design.

In fact, it has been proven more recently that U(Cn) forms an exact unitary 3-design.

Theorem 2.3 ([Web15, Zhu17]). The discrete uniform distribution over the Clifford group,
U(Cn), forms an exact unitary 3-design but not an exact unitary 4-design.

We mention that while a uniformly random n-qubit Clifford operator can be sampled in
O(n2) time [BM21], no efficient construction of exact unitary t-design is currently known for
general t [NZO+21].

It turns out that random quantum circuits form approximate but not exact unitary t-
designs. We formally define approximate unitary t-designs below.
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Definition 2.2 (ε-approximate unitary t-design). An n-qubit random unitary distribution
D is an ε-approximate unitary t-design if∥∥∥ E

U∼D

[
U⊗t ⊗ (U)⊗t

]
− P (t)

N

∥∥∥
∞
≤ ε,

where ‖·‖∞ is the Schatten-∞/operator norm.

In our opening sales pitch, we marketed random quantum circuits as efficient drop-in re-
placements for Haar random unitaries. We will see shortly that the approximate unitary
t-design condition quantifies the depth required for the t-th moments of random quantum
circuits to be sufficiently indistinguishable from the t-th moments of Haar random unitaries.
Depending on the application, many definitions of ε-approximate unitary t-designs have been
proposed, most involve choosing a different norm [BHH16, HM18]. For applications appear-
ing in this work, the operator norm based definition will suffice. We begin by answering a
sanity check question which asks is an approximate t-design also an approximate t′-design
for every 1 ≤ t′ ≤ t?

Lemma 2.4. For every t ≥ 2, if an n-qubit random unitary distribution D is an ε-approximate
unitary t-design, then D is also an ε-approximate unitary (t− 1)-design.

Proof. Let D be an ε-approximate unitary t-design for some t ≥ 2. Let t′ = t − 1. Let

A ∈ (CN×N)⊗t
′

such that |A〉 attains
∥∥∥EU∼D [U⊗t′ ⊗ (U)⊗t

′]− P (t′)
N

∥∥∥
∞

. By the choice of A,

∥∥∥ E
U∼D

[
U⊗t

′ ⊗ (U)⊗t
′
]
− P (t′)

N

∥∥∥
∞

=

∥∥∥(EU∼D [U⊗t′ ⊗ (U)⊗t
′]− P (t′)

N

)
|A〉
∥∥∥

2

‖|A〉‖2

=

∥∥∥Φ
(t′)
D (A)− Φ

(t′)

µNHaar
(A)
∥∥∥
F

‖A‖F
.

By the definition of Φ
(t)
D and properties of ‖·‖F and ‖·‖∞,∥∥∥Φ

(t′)
D (A)− Φ

(t′)

µNHaar
(A)
∥∥∥
F

‖A‖F
=

∥∥∥(Φ
(t′)
D (A)− Φ

(t′)

µNHaar
(A)
)
⊗ I
∥∥∥
F

‖A⊗ I‖F

=

∥∥∥Φ
(t)
D (A⊗ I)− Φ

(t)

µNHaar
(A⊗ I)

∥∥∥
F

‖A⊗ I‖F

≤
∥∥∥∥ E
U∼D

[
U⊗t ⊗ (U)⊗t

]
− P (t)

N

∥∥∥∥
∞

≤ ε

where I is the n-qubit identity operator.

Next, we discuss the techniques first conceived in [BH10] and [BHH16] for showing that
local and 1D random quantum circuits form efficient ε-approximate unitary t-designs w.r.t
the operator norm. For every i ∈ [n− 1], we see that

Q
(t)
i = I⊗(i−1) ⊗ P (t)

4 ⊗ I⊗(n−i−1)
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is the t-th moment operator of the n-qubit random unitary distribution that applies a Haar
random 2-qubit gate to qubits i and i+ 1 and identity to all other qubits. Note that in the
above, I is the 2t-qubit identity operator. Then by the law of total expectation, the t-th
moment operator of each gate in a local random quantum circuit (recall Definition 1.3) is

M
(t)
local =

1

n− 1

n−1∑
i=1

Q
(t)
i .

Since matrix-matrix multiplication represents function composition, the t-th moment oper-

ator of n-qubit-s-gate local random quantum circuits is
(
M

(t)
local

)s
. Before discussing the

efficiency part, we first settle another sanity check question which asks why is it the case

that
(
M

(t)
local

)s
asymptotically converges to P

(t)
N as s goes to infinity at all?

Lemma 2.5 ([BH10, BHH16]). For every t ≥ 1,

lim
s→∞

(
M

(t)
local

)s
= P

(t)
N .

Proof. It suffices to show that

lim
s→∞

∥∥∥(M (t)
local

)s
− P (t)

N

∥∥∥
∞

= 0.

By the unitary invariance property of the Haar measure and linearity,

M
(t)
localP

(t)
N = P

(t)
N = P

(t)
N M

(t)
local.

This implies that for every s ≥ 1,∥∥∥(M (t)
local

)s
− P (t)

N

∥∥∥
∞

=
∥∥∥(M (t)

local − P
(t)
N

)s∥∥∥
∞
≤
∥∥∥M (t)

local − P
(t)
N

∥∥∥s
∞
. (2.3)

Thus, it suffices to show that
∥∥∥M (t)

local − P
(t)
N

∥∥∥
∞
< 1. By Lemma 2.1, M

(t)
local is a positive semi-

definite operator with all eigenvalues falling in [0, 1], and since P
(t)
N and M

(t)
local commute,

they can be simultaneously diagonalized. It is easy to see that M
(t)
local|W

(N)
π 〉 = |W (N)

π 〉 for

every π ∈ St, so M
(t)
local has a +1-eigenspace, and it contains span{|W (N)

π 〉 : π ∈ St}. Hence,

to show
∥∥∥M (t)

local − P
(t)
N

∥∥∥
∞
< 1, it suffices to show that the +1-eigenspace of M

(t)
local coincides

with the +1-eigenspace of P
(t)
N , which is shown to be span{|W (N)

π 〉 : π ∈ St} in Lemma 2.1.

Let A ∈ (CN×N)⊗t such that M
(t)
local|A〉 = |A〉. Since Q

(t)
i is an orthogonal projector for

every i ∈ [n− 1], M
(t)
local|A〉 = |A〉 if and only if Q

(t)
i |A〉 = |A〉 for every i ∈ [n− 1]. Let Vi be

an arbitrary 2-qubit gate acting on qubits i and i+ 1 for some i ∈ [n− 1]. Then,

V ⊗ti A = V ⊗ti E
U∼µ4

Haar

[
(V †i Ui)

⊗tA(U †i Vi)
⊗t
]

= AV ⊗ti . (2.4)

Let V ∈ U(N) be an arbitrary n-qubit unitary. Since the set of all 2-qubit gates acting on
nearest neighbour qubits is exactly universal for quantum computation, there exist r ≥ 1, 2-
qubit gates V (1), . . . , V (r) ∈ U(4), qubit indices i1, . . . , ir ∈ [n−1] such that V = V

(r)
ir
· · ·V (1)

i1
.

Then by (2.4) applied to V
(1)
i1
, . . . , V

(r)
ir

in sequence, V ⊗tA = AV ⊗t. Therefore, by Schur-Weyl

duality, |A〉 ∈ span{|W (N)
π 〉 : π ∈ St}.
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The proof of Lemma 2.5 reveals a few useful properties of M
(t)
local which we record below as

corollaries.

Corollary 2.1.

(a) The eigenvalues of M
(t)
local fall in [0, 1], and the +1-eigenspace of M

(t)
local is span{|W (N)

π 〉 :
π ∈ St};

(b) M
(t)
local − P

(t)
N is positive semi-definite;

(c)
∥∥∥M (t)

local − P
(t)
N

∥∥∥
∞

is the second largest eigenvalue of M
(t)
local.

The proof also suggests a method to bound the rate at which
(
M

(t)
local

)s
converges to P

(t)
N .

Namely, if we can show that
∥∥∥M (t)

local − P
(t)
N

∥∥∥
∞
≤ 1− δ, then by (2.3), for every ε > 0,∥∥∥(M (t)

local

)s
− P (t)

N

∥∥∥
∞
≤ (1− δ)s ≤ e−δs ≤ ε (2.5)

for s ≥ 1
δ

ln(1/ε). Therefore, the problem reduces to upper bounding
∥∥∥M (t)

local − P
(t)
N

∥∥∥
∞

which

by our proof of Lemma 2.5, is simply the second largest eigenvalue of M
(t)
local.

We recognize that M
(t)
local has the form of a translation-invariant 1D 2-local Hamiltonian

with projective local terms Q
(t)
i . M

(t)
local can be put into a canonical form

H(t)
n =

n−1∑
i=1

(
I⊗n −Q(t)

i

)
by flipping the +1-eigenspace of M

(t)
local to be the zero-energy ground space of H

(t)
n . Note that

H
(t)
n is frustration-free. It is easy to see that

M
(t)
local = I⊗n − H

(t)
n

n− 1
,

so ∥∥∥M (t)
local − P

(t)
N

∥∥∥
∞

= 1− ∆(H
(t)
n )

n− 1
(2.6)

where ∆(H
(t)
n ) denotes the spectral gap of H

(t)
n . Thus, the problem further reduces to lower

bounding ∆(H
(t)
n ). Lower bounding the spectral gap of local Hamiltonians is an intensely

studied problem in Hamiltonian complexity theory with several known techniques, in par-
ticular for the special case of frustration-free Hamiltonians [Kna88, Nac96]. The authors of
[BHH16] succesfully applied a method due to Nachtergaele [Nac96] to arrive at the following
theorem.

Theorem 2.4 ([BHH16]). For every n ≥ 2 and t ≥ 1,

∆(H(t)
n ) ≥ 1

62500et9.5dlog2(4t)e2
.
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Note that the spectral gap is independent of n and is a constant for constant t. By combining
Theorem 2.4 and (2.6) with (2.5), we arrive at the main result.

Theorem 2.5 ([BHH16]). Local random quantum circuits of size O (nt9.5 log(t)2 log(1/ε))
form an ε-approximate unitary t-design w.r.t the operator norm.

Stronger and more explicit bounds for the spectral gap and design size can be obtained for
t ∈ {2, 3} using the Knabe bound [Kna88], a technique much simpler than the one adopted
by [BHH16].

Theorem 2.6 ([BH10, HHJ21]). For every n ≥ 6 and t ∈ {2, 3},

∆(H(t)
n ) ≥ 1

5
.

Theorem 2.7 ([BH10, HHJ21]). Local random quantum circuits of size 5n ln(1/ε) form an
ε-approximate unitary 3-design w.r.t the operator norm.

Next, we show how to translate Theorem 2.5 and Theorem 2.7 to 1D random quan-
tum circuits via a powerful yet simple tool in Hamiltonian complexity theory called the
detectability lemma [AALV09, AAV16]. Define

P
(t)
odd = Q

(t)
1 Q

(t)
3 · · ·Q

(t)
n−1 and P (t)

even = Q
(t)
2 Q

(t)
4 · · ·Q(t)

n . (2.7)

Notice that P
(t)
odd and P

(t)
even are the t-th moment operators of the odd- and even-numbered

layers in 1D random quantum circuits respectively, and the t-th moment operator of Hpath
n,2k+1,

k ≥ 1 (recall Definition 1.4) is (
P

(t)
oddP

(t)
evenP

(t)
odd

)k
.

By mirroring the proof of Lemma 2.5, one can show (using Lemma A.3) the following lemma

by establishing the corresponding properties in Corollary 2.1 for P
(t)
oddP

(t)
evenP

(t)
odd.

Lemma 2.6. For every t ≥ 1,

lim
k→∞

(
P

(t)
oddP

(t)
evenP

(t)
odd

)k
= P

(t)
N .

Corollary 2.2.

(a) The eigenvalues of P
(t)
oddP

(t)
evenP

(t)
odd fall in [0, 1], and the +1-eigenspace of P

(t)
oddP

(t)
evenP

(t)
odd

is span{|W (N)
π 〉 : π ∈ St};

(b) P
(t)
oddP

(t)
evenP

(t)
odd − P

(t)
N is positive semi-definite;

(c)
∥∥∥P (t)

oddP
(t)
evenP

(t)
odd − P

(t)
N

∥∥∥
∞

is the second largest eigenvalue of P
(t)
oddP

(t)
evenP

(t)
odd.

Again in a completely analogous fashion, to show that 1D random quantum circuits form

approximate t-designs, it suffices to upper bound
∥∥∥P (t)

oddP
(t)
evenP

(t)
odd − P

(t)
N

∥∥∥
∞

. The main dif-

ference is that in place of (2.6), the detectability lemma is what allows us to reduce upper

bounding
∥∥∥P (t)

evenP
(t)
odd − P

(t)
N

∥∥∥
∞

to lower bounding ∆(H
(t)
n ).
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Lemma 2.7 (The Detectability Lemma (DL)[AAV16]). Let H =
∑m

i=1Qi be a frustration-
free Hamiltonian with projective local terms {Q1, . . . , Qm} such that each Qi commutes with
all but g others. Then for every state |ψ⊥〉 orthogonal to the ground space of H,∥∥∥∥ m∏

i=1

(I −Qi)|ψ⊥〉
∥∥∥∥2

2

≤ 1

∆(H)/g2 + 1

where the product
∏m

i=1(I −Qi) can be taken in any order.

By applying the DL to H
(t)
n with the ordering P

(t)
evenP

(t)
odd, Corollary 2.2, and the variational

characterization of eigenvalues, we get the following bound.

Lemma 2.8. ∥∥∥P (t)
oddP

(t)
evenP

(t)
odd − P

(t)
N

∥∥∥
∞
≤ 1

∆(H
(t)
n )/4 + 1

By combining Lemma 2.8 with Theorem 2.4, we get the following t-design depth bound for
1D random quantum circuits.

Theorem 2.8. 1D random quantum circuits of depth O (t9.5 log(t)2 log(1/ε)) form an ε-
approximate unitary t-design w.r.t the operator norm.

Alternatively, Lemma 2.8 and Theorem 2.6 yield the following explicit 3-design depth bound
for 1D random quantum circuits.

Theorem 2.9. 1D random quantum circuits of depth 43 ln(1/ε) form an ε-approximate
unitary 3-design w.r.t the operator norm.

Skeptical readers may find it doubtful that the design depths can be independent of n. To
resolve the apparent contradiction, we will soon see that typical applications will require
ε = O(1)

2nt
or even smaller, thereby introducing the intuitively expected dependence on n.

2.3 Collision Probability and Anti-Concentration

A probability distribution over some sample space of size N is said to concentrate if a 1−o(1)
fraction of the total probability mass is assigned to a constant fraction of the sample space.
Conversely, a distribution is said to anti-concentrate if it does not concentrate; that is, every
constant fraction of the sample space is assigned a constant fraction of the probability mass.
Let V ∈ U(N) be an n-qubit unitary and consider its output distribution qV . Let pmed be
the median of qV . If qV anti-concentrates according to the above definition, then a simple
argument shows that pmed = α

N
for some constant α ∈ (0, 2). Thus, we get that

Pr
x∼U({0,1}n)

(
|〈x|V |0n〉|2 ≥ α

2n

)
≥ 1

2
.

This motivates the following definition for the anti-concentration property of random quan-
tum circuits.
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Definition 2.3 (Anti-Concentration of Random Unitary Distributions). An n-qubit random
unitary distribution D is said to have the anti-concentration property if there exist constants
α > 0 and δ ∈ (0, 1) such that for every x ∈ {0, 1}n,

Pr
U∼D

[
|〈x|U |0n〉|2 ≥ α

2n

]
≥ 1− δ.

The collision probability of a distribution is the probability that two independent samples
drawn from the distribution take the same value. In the random quantum circuits scenario,
we formalize the idea of collision probability in the following definition.

Definition 2.4 (Collision Probability of Random Unitary Distributions). The (expected)
collision probability of an n-qubit random unitary distribution D is

Coll(D) = E
U∼D

[
Pr

x,y∼qU
(x = y)

]
= E

U∼D

[ ∑
z∈{0,1}n

|〈z|U |0n〉|4
]

where qU is the output distribution of U , and x and y are drawn independently.

It is easy to show that if D has the hiding property, then

Coll(D) = 2n E
U∼D

[
|〈0n|U |0n〉|4

]
.

Intuitively, if a probability distribution is concentrated, then its collision probability will
be high and vice versa. The forward direction of this intuition can be formally established
via the Paley-Zygmund inequality, where we show that for random quantum circuits, having
a small collision probability is a sufficient condition for anti-concentration. The following
lemma statement is borrowed from [BMS16].

Lemma 2.9 (Paley-Zygmund Inequality). If R is a non-negative random variable with finite
variance, then for every 0 < α < 1,

Pr(R ≥ αE[R]) ≥ (1− α)2E[R]2

E[R2]
.

Lemma 2.10. Let D be an n-qubit random unitary distribution with the hiding property. If
Coll(D) ≤ O(1)

2n
, then D has the anti-concentration property.

Proof. Using the hiding property, we see that

E
U∼D

[
|〈0n|U |0n〉|2

]2
=

1

22n

and

E
U∼D

[
|〈0n|U |0n〉|4

]
=

Coll(D)

2n
≤ O(1)

22n
.

Then the claim follows directly from the Paley-Zygmund inequality.
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Therefore, to show anti-concentration for a random unitary distribution, it suffices to upper
bound its collision probability by some constant over 2n. On the other hand, if we can
show a ω(1)

2n
lower bound for the collision probability of some random unitary distribution

D, then it suggests that D does not anti-concentrate. In fact, given their close connections,
some authors have formally defined the anti-concentration property in terms of the collision
probability [DHJB20]. In the rest of this work, we will interpret the condition Coll(D) ≤ O(1)

2n

as being synonymous with anti-concentration.
The significance of the collision probability and anti-concentration is twofold. For one,

the anti-concentration property is one of two main technical conditions needed to complete
the program outlined by Aaronson for proving the random circuit sampling supremacy con-
jecture [AA11]. For two, the mathematical expressions that come up in the analyses of the
collision probability will reappear in analyzing the performance of both quantum and clas-
sical algorithms on the linear cross-entropy benchmark proposed by Google [BCG20]. We
will expand on both applications in Chapter 3.

In the remainder of this section, we will develop an understanding of the collision proba-
bility as a function of circuit depths. We begin by computing the collision probability of the
Haar distribution over U(N), which by Lemma 2.6, also corresponds to the infinite circuit
depth limit for 1D random quantum circuits.

Theorem 2.10. Coll(µNHaar) = 2
2n+1

Proof. There are numerous proofs for this basic result, and arguably the most straightforward
of which involves little more than substituting t = 2 into Lemma 2.3. Instead of doing
that, we will proceed with a more combinatorial argument for the purpose of previewing a
technique that will be useful again and was alluded to in section 2.2. By the definition of
Coll(µNHaar), we see that

Coll(µNHaar) = E
U∼µNHaar

[ ∑
z∈{0,1}n

|〈z|U |0n〉|4
]

= E
U∼µNHaar

[ ∑
z∈{0,1}n

〈02n|(U † ⊗ U †)(|z〉〈z| ⊗ |z〉〈z|)(U ⊗ U)|02n〉
]
.

We can show with some simple algebra (see Lemma A.1) that∑
z∈{0,1}n

|z〉〈z| ⊗ |z〉〈z| = 1

2n

∑
w∈{0,1}n

Z(w)⊗ Z(w).

Thus,

Coll(µNHaar) =
1

2n

∑
w∈{0,1}n

E
U∼µNHaar

[
〈02n|(U † ⊗ U †)(Z(w)⊗ Z(w))(U ⊗ U)|02n〉

]
. (2.8)

Let w ∈ {0, 1}n \ {0n}. Since U(Cn), the discrete uniform distribution over the n-qubit
Clifford group, forms an exact unitary 2-design (recall Theorem 2.2),

E
U∼µNHaar

[
〈02n|(U † ⊗ U †)(Z(w)⊗ Z(w))(U ⊗ U)|02n〉

]
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= E
C∼U(Cn)

[
〈02n|(C† ⊗ C†)(Z(w)⊗ Z(w))(C ⊗ C)|02n〉

]
= E

C∼U(Cn)

[
〈0n|C†Z(w)C|0n〉2

]
.

Let C ∼ U(Cn). Since C is a uniformly random Clifford operator and Z(w) is a non-identity
Pauli, C†Z(w)C is a uniformly random element in Pn \ {±I⊗n} with ±1 phases. Thus,
〈0n|C†Z(w)C|0n〉 ∈ {−1, 0, 1}, implying 〈0n|C†Z(w)C|0n〉2 = |〈0n|C†Z(w)C|0n〉| ∈ {0, 1}.
Since |〈0n|C†Z(w)C|0n〉| = 1 if and only if C†Z(w)C is a Z-type Pauli, we have

E
C∼U(Cn)

[
〈0n|C†Z(w)C|0n〉2

]
= Pr

C∼U(Cn)

(
|〈0n|C†Z(w)C|0n〉| = 1

)
= Pr

C∼U(Cn)

(
C†Z(w)C is a Z-type Pauli

)
=

n∑
j=1

1

3j
Pr

C∼U(Cn)
(C†Z(w)C has weight j)

=
n∑
j=1

1

3j
·
(
n
j

)
3j

4n − 1

=
1

2n + 1
.

Therefore,

(2.8) =
1

2n

(
1 +

2n − 1

2n + 1

)
=

2

2n + 1
.

We record an intermediary finding as a corollary.

Corollary 2.3. For every w ∈ {0, 1}n \ {0n},

E
U∼µNHaar

[
〈02n|(U ⊗ U)(Z(w)⊗ Z(w))(U † ⊗ U †)|02n〉

]
=

1

2n + 1
.

Theorem 2.10 implies the following lemma.

Lemma 2.11. For every n-qubit random unitary distribution D with the hiding property
that forms an O(1)

22n -approximate unitary 2-design, Coll(D) ≤ O(1)
2n

.

Proof. By the approximate 2-design condition,

〈04n|
(

E
U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

)
|04n〉 ≤

∥∥∥ E
U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

∥∥∥
∞
≤ O(1)

22n
. (2.9)

By the hiding property,

Coll(D) = 2n E
U∼D

[
〈02n|(U ⊗ U)|02n〉〈02n|(U † ⊗ U †)|02n〉

]
= 2n〈04n| E

U∼D

[
U⊗2 ⊗ (U)⊗2

]
|04n〉
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≤ 2n〈04n|P (2)
N |0

4n〉+
O(1)

2n

= Coll(µNHaar) +
O(1)

2n

≤ O(1)

2n
.

Corollary 2.4. Coll
(
Hpath
n,O(n)

)
≤ O(1)

2n

Although having the approximate 2-design property is sufficient for anti-concentration, we
do not believe the two properties are equivalent in general since there is no reason to expect
that the first inequality in (2.9) is tight. Indeed, to arrive at

〈04n|
(

E
U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

)
|04n〉 ≤ O(1)

22n
,

it suffices to just assume∥∥∥( E
U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

)
|04n〉

∥∥∥
2
≤ O(1)

22n
,

whereas for D to satisfy the O(1)
22n -approximate 2-design condition∥∥∥ E

U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

∥∥∥
∞
≤ O(1)

22n
,

it would require ∥∥∥( E
U∼D

[
U⊗2 ⊗ (U)⊗2

]
− P (2)

N

)
|A〉
∥∥∥

2
≤ O(1)

22n

for every A ∈ (CN×N)⊗2 with ‖A‖F = 1. Thus, anti-concentration can be viewed as a less
demanding requirement for formally classifying a random unitary distribution D as being
close to Haar.

Next, we report a recently established, much stronger collision probability upper bound
for the 1D architecture, implying 1D random quantum circuits anti-concentrate in O(log n)-
depth.

Theorem 2.11 ([BCG20],[DHJB20]). For every d ≥ 1, Coll
(
Hpath
n,d

)
≤ 2

2n
exp

((
4
5

)d−1
n
)
.

Proof. This proof is based on [DHJB20]. We have that

Coll
(
Hpath
n,d

)
= 2n E

U∼Hpath
n,d

[
〈02n|(U ⊗ U)|02n〉〈02n|(U † ⊗ U †)|02n〉

]
.

By the unitary invariance property applied separately to the first n
2

random 2-qubit gates in
the 1D architecture, we can prepend a random 1-qubit gate to every qubit. Algebraically,
we get that

E
U∼Hpath

n,d

[
(U ⊗ U)|02n〉〈02n|(U † ⊗ U †)

]
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= E
U∼Hpath

n,d

[
(U ⊗ U)

n⊗
i=1

E
V∼µ2

Haar

[
(V ⊗ V )|00〉〈00|(V † ⊗ V †)

]
(U † ⊗ U †)

]
.

Let S2 = {π1, π2} for π1 being the identity permutation and π2 being swap. By substituting
N = 2 and t = 2 into Lemma 2.3, we get that

E
V∼µ2

Haar

[
(V ⊗ V )|00〉〈00|(V † ⊗ V †)

]
=

1

6
(I + S)

where we define I = W
(2)
π1 and S = W

(2)
π2 . Thus,

n⊗
i=1

E
V∼µ2

Haar

[
(V ⊗ V )|00〉〈00|(V † ⊗ V †)

]
=

1

6n
(I + S)⊗n.

For the ease of notation, we will treat a binary string x ∈ {I, S}n with alphabet {I, S} also
as the n-fold tensor product operator

⊗n
i=1 xi. With this notation, we can write

E
U∼Hpath

n,d

[
(U ⊗ U)|02n〉〈02n|(U † ⊗ U †)

]
=

1

6n

∑
γ0∈{I,S}n

E
U∼Hpath

n,d

[
(U ⊗ U)γ0(U † ⊗ U †)

]
.

Let s denote the number of 2-qubit gates in a circuit drawn from Hpath
n,d . Note that s is a

function of d, the circuit depth. Let i1, . . . , is ∈ [n− 1] be qubit indices such that for every
j ∈ [s], the j-th gate acts on qubits ij and ij + 1. Let γ0 ∈ {I, S}n. Since each random
2-qubit gate is drawn independently,

E
U∼Hpath

n,d

[
(U ⊗ U)γ0(U † ⊗ U †)

]
= E

U(1),...,U(s)∼µ4
Haar

[
(U

(s)
is
⊗ U (s)

is
) · · · (U (1)

i1
⊗ U (1)

i1
)γ0(U

(1)
i1
⊗ U (1)

i1
)† · · · (U (s)

is
⊗ U (s)

is
)†
]

= E
U(s)∼µ4

Haar

[
(U

(s)
is
⊗ U (s)

is
) · · · E

U(1)∼µ4
Haar

[
(U

(1)
i1
⊗ U (1)

i1
)γ0(U

(1)
i1
⊗ U (1)

i1
)†
]
· · · (U (s)

is
⊗ U (s)

is
)†
]
.

Since each moment superoperator only acts non-trivially on two qubits, to workout

E
U(1)∼µ4

Haar

[
(U

(1)
i1
⊗ U (1)

i1
)γ0(U

(1)
i1
⊗ U (1)

i1
)†
]
,

it suffices to consider the following four combinations. By Lemma 2.1(c), we have

E
U∼µ4

Haar

[
(U ⊗ U)(I ⊗ I)(U † ⊗ U †)

]
= I ⊗ I

and

E
U∼µ4

Haar

[
(U ⊗ U)(S ⊗ S)(U † ⊗ U †)

]
= S ⊗ S.

By explicit calculations using Lemma 2.2, we get that

E
U∼µ4

Haar

[
(U ⊗ U)(I ⊗ S)(U † ⊗ U †)

]
= E

U∼µ4
Haar

[
(U ⊗ U)(S ⊗ I)(U † ⊗ U †)

]
=

2

5
(I ⊗ I + S ⊗ S)
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where by rearranging the qubit wires, we can make W
(4)
π = W

(2)
π ⊗W (2)

π for both π ∈ S2.
Let i and j be the two qubits that U (1) acts on. The above formulas suggest a transition
rule from γ0 to γ1 where if (γ0)i(γ0)j ∈ {II, SS}, then γ1 = γ0, and if (γ0)i(γ0)j ∈ {IS, SI},
then γ0 splits into two binary strings γ1 and γ′1 where (γ1)i(γ1)j = II, (γ′1)i(γ

′
1)j = SS, and

(γ0)k = (γ1)k = (γ′1)k for every k ∈ [n] \ {i, j}. By linearity, we can evaluate

E
U(2)∼µ4

Haar

[
(U

(2)
i2
⊗ U (2)

i2
)γ1(U

(2)
i2
⊗ U (2)

i2
)†
]

and

E
U(2)∼µ4

Haar

[
(U

(2)
i2
⊗ U (2)

i2
)γ′1(U

(2)
i2
⊗ U (2)

i2
)†
]

separately and scale both terms by a weight of 2
5
. Applying this argument inductively to all

s random 2-qubit gates, a sequence ~γ = (γ0, . . . , γs) of binary strings forms a trajectory, and
a trajectory is valid if for every i ∈ {0, 1, . . . , s − 1}, γi+1 can be obtained from γi by the
above transition rule. For every valid trajectory ~γ = (γ0, . . . , γs), we define its weight to be

w(~γ) =
(

2
5

)|{i:γi 6=γi+1}|. Then, we can write

E
U∼Hpath

n,d

[
(U ⊗ U)|02n〉〈02n|(U † ⊗ U †)

]
=

∑
~γ=(γ0,...,γs)

w(~γ)γs.

Therefore,

Coll
(
Hpath
n,d

)
=

2n

6n

∑
~γ=(γ0,...,γs)

w(~γ)〈02n|γs|02n〉

=
1

3n

∑
~γ=(γ0,...,γs)

w(~γ),

effectively reducing the problem of evaluating Coll
(
Hpath
n,d

)
to the combinatorial problem of

enumerating valid trajectories and their associated weights. While the reduction steps so
far hold more generally for any circuit architecture with the hiding property, the rest of the
proof will heavily exploit specific structures within the 1D architecture.

Let ~γ = (γ0, . . . , γs) be a valid trajectory and let i ∈ {0, . . . , s}. A key observation is
that the binary string γi ∈ {I, S}n can be uniquely specified by its first symbol (γi)0 and
a sorted list of distinct indices Li = {j ∈ {0, . . . , n − 1} : (γi)j 6= (γi)j+1} such that the

mapping L(~γ) = ~L = (L0, . . . , Ls) is 2-to-1. Namely, only ~γ and its complement trajectory

(~γ)c = (γ0, . . . , γs) are mapped to ~L by L. We say a sequence of indices ~L′ is valid if there

exists a valid trajectory ~γ′ such that L(~γ′) = ~L′. Since gates in the 1D architecture only act

on adjacent pairs of qubits, the transition rule for ~γ induces a transition rule for ~L. When
a moment superoperator acts on an adjacent pair of qubits, for every i ∈ {0, . . . , s − 1},
if γi+1 = γi, then Li+1 = Li, and if γi+1 6= γi, then Li+1 can be updated from Li by
either deleting the first or last index, deleting two adjacent indices, or shifting one of the
indices in Li by 1. For example, for γi = SSIS with Li = {2, 3}, if γi+1 = SSSS, then

Li+1 = ∅, and if γi+1 = SIIS, then Li+1 = {1, 3}. We define w(~L) = w(~γ) and see that
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w(~L) =
(

2
5

)|{i:Li 6=Li+1}|. Therefore, the task of enumerating all valid trajectories reduces to

enumerating all valid sequences of indices. By the transition rule for ~L, |Li| ≥ |Li+1| for
every i ∈ {0, . . . , s− 1}, so if Li = ∅, then Lj = ∅ for every j ∈ {i, . . . , s}. Let

G
(d)
0 = {(I0, . . . , Is) : (I0, . . . , Is) is a valid sequence of indices and Is = ∅}

and

G
(d)
1 = {(J0, . . . , Js) : (J0, . . . , Js) is a valid sequence of indices and |J0| = |Js|}.

Notice that the only sequence which belongs to both G
(d)
0 and G

(d)
1 is (∅, . . . , ∅), and ev-

ery valid sequence of indices ~L = (L0, . . . , Ls) can be decomposed as (L0, . . . , Ls) = (I0 ∪
J0, . . . , Is ∪ Js) such that ~I = (I0, . . . , Is) ∈ G

(d)
0 , ~J = (J0, . . . , Js) ∈ G

(d)
1 , and w(~L) =

w(~I) · w( ~J). Therefore, since w(~L) ≥ 0 for every valid ~L,

Coll
(
Hpath
n,d

)
=

1

3n

∑
~γ

w(~γ)

=
2

3n

∑
~L

w(~L)

≤

(
2

3n

∑
~I∈G(d)

0

w(~I)

)( ∑
~J∈G(d)

1

w( ~J)

)
.

We first consider a seemly loose upper bound for the sum over G
(d)
1 . Let k ∈ [n], and let

J0 be an initial list of indices with |J0| = k. Clearly, there are at most
(
n
k

)
choices for J0.

Notice that for a sequence in G
(d)
1 starting with J0, after the first layer, every index will be

moved in every layer by a gate, branching the current sequence of indices into at most two
sequences, each incurring a weight penalty of 2

5
. Therefore,

∑
~J∈G(d)

1

w( ~J) ≤
n∑
k=0

(
n

k

)
2k(d−1)

(
2

5

)k(d−1)

≤

(
1 +

(
4

5

)d−1
)n

≤ exp

((
4

5

)d−1

n

)
.

To handle the sum over G
(d)
0 , we observe that for every ~I = (I0, . . . , Is) ∈ G(d)

0 , (I0, . . . , Is, ∅,
. . . , ∅) ∈ G(d+1)

0 , and since the weights are all non-negative,∑
~I∈G(d)

0

w(~I) ≤
∑

~I∈G(d+1)
0

w(~I).
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Since G
(d)
0 is a subset of all valid sequences of indices,

2

3n

∑
~I∈G(d)

0

w(~I) ≤ 2

3n

∑
~L

w(~L) = Coll
(
Hpath
n,d

)
.

Therefore,

2

3n

∑
~I∈G(d)

0

w(~I) ≤ lim
d→∞

2

3n

∑
~I∈G(d)

0

w(~I)

≤ lim
d→∞

Coll
(
Hpath
n,d

)
= Coll(µNHaar)

=
2

2n + 1
,

and this concludes the proof.

Now, we turn to establish a generic collision probability lower bound for arbitrary circuit
architectures. The main observation is that we can adapt the Pauli weight counting argument
used in the proof of Theorem 2.10 from n-qubit random Clifford operators to random Clifford
circuits. Recall that CA is the distribution of random circuits over some architecture A where
each gate is a uniformly random 2-qubit Clifford gate.

Lemma 2.12. For every n-qubit-depth-d circuit architecture A, and for every w ∈ {0, 1}n,

Pr
C∼CA

(
C†Z(w)C is a Z-type Pauli

)
≥ 1

3|w|

(
2

5

)|w|d
.

Proof. Let w ∈ {0, 1}n. We have that

Pr
C∼CA

(
C†Z(w)C is a Z-type Pauli

)
=

n∑
j=0

1

3j
Pr

C∼CA
(C†Z(w)C has weight j)

≥ 1

3|w|
Pr

C∼CA
(C†Z(w)C has weight |w|).

We proceed by induction on d to show that

Pr
C∼CA

(
C†Z(w)C has weight |w|

)
≥
(

2

5

)|w|d
.

For the base case, we consider C ∼ CA with d = 1. Let P = Z(w) such that P =
⊗n

j=1 P
(j),

and let Q = C†Z(w)C such that Q = ±
⊗n

j=1Q
(j) and Q(j) ∈ {I,X, Y, Z} for every j ∈ [n].

Let i ∈ [n] such that P (i) 6= I. If no gate in C acts on qubit i, then Qi = Pi 6= I. Now
suppose qubit i is acted on by a unique 2-qubit gate that acts on qubits i and j, for some
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j ∈ [n] \ {i}. If Pj 6= I, then the probability that Qi 6= I and Qj 6= I is 9
15
≥ 2

5
. If Pj = I,

then the probability that exactly one of Qi 6= I or Qj 6= I is 6
15

= 2
5
. Therefore, when

d = 1, PrC∼CA(C†Z(w)C has weight |w|) ≥
(

2
5

)|w|
. Now suppose d ≥ 2. For C ∼ CA, we can

decompose C into layers C = Cd · · ·C1. Let P = C†2 · · ·C
†
dZ(w)Cd · · ·C2. Then

Pr
C∼CA

(
C†Z(w)C has weight |w|

)
≥ Pr

C∼CA

(
C†1PC1 has weight |w|

∣∣∣P has weight |w|
)

Pr
C∼CA

(P has weight |w|) .

By the inductive hypothesis,

Pr
C∼CA

(P has weight |w|) ≥
(

2

5

)|w|(d−1)

.

By the same argument as in the base case,

Pr
C∼CA

(
C†1PC1 has weight |w|

∣∣∣P has weight |w|
)
≥
(

2

5

)|w|
.

Theorem 2.12. For every n-qubit-depth-d circuit architecture A,

Coll(HA) ≥ 1

2n

(
1 +

1

3

(
2

5

)d)n

.

Proof. Using Lemma A.1, we get that

Coll(HA) =
1

2n

∑
w∈{0,1}n

Tr

(
(Z(w)⊗ Z(w)) E

V∼HA

[
(V ⊗ V )|02n〉〈02n|(V † ⊗ V †)

])
.

Since each random 2-qubit gate is drawn independently, by applying the exact unitary 2-
design property of U(C2) inductively to each random 2-qubit gate, we get that

E
V∼HA

[
(V ⊗ V )|02n〉〈02n|(V † ⊗ V †)

]
= E

C∼CA

[
(C ⊗ C)|02n〉〈02n|(C† ⊗ C†)

]
.

Thus, by Lemma 2.12,

Coll(HA) =
1

2n

∑
w∈{0,1}n

E
C∼CA

[
〈02n|(C† ⊗ C†)(Z(w)⊗ Z(w))(C ⊗ C)|02n〉

]
=

1

2n

∑
w∈{0,1}n

Pr
C∼CA

(
C†Z(w)C is a Z-type Pauli

)
≥ 1

2n

n∑
k=0

(
n

k

)
1

3k

(
2

5

)kd
=

1

2n

(
1 +

1

3

(
2

5

)d)n

.
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We remark that Theorem 2.12 makes no assumption about any special structures in the cir-
cuit architecture, hence it serves as a general lower bound for all circuit architectures. Theo-
rem 2.11 and Theorem 2.12 together suggest that the phase transition for anti-concentration
occurs precisely at depth Θ(log n) for the 1D architecture.

Corollary 2.5. For the 1D architecture, Coll
(
Hpath
n,lnn

)
> ω(1)

2n
and Coll

(
Hpath
n,5(lnn)00+1

)
≤

O(1)
2n

.

Proof. Substitute d = 5(lnn) + 1 into Theorem 2.11 and d = lnn into Theorem 2.12.

We can extract another interesting corollary from Lemma 2.12 and the proof of Theo-
rem 2.12.

Corollary 2.6. For every n-qubit-depth-d circuit architecture A, and for every n-qubit Pauli
operator σp ∈ {I,X, Y, Z}⊗n,

E
V∼HA

[
〈0n|V †σpV |0n〉2

]
≥ e−O(|σp|d).

Proof. By the gate-wise Haar unitary invariance property, there exists a Z-type Pauli oper-
ator Z(w) with w ∈ {0, 1}n and |w| = |σp| such that

E
V∼HA

[
〈0n|V †σpV |0n〉2

]
= E

V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
.

Then the proof of Theorem 2.12 and Lemma 2.12 imply that

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
≥ e−O(|w|d).

Do we have the tools to derive an upper bound for EV∼HA
[
〈0n|V †σpV |0n〉2

]
? In a recent

paper [LOB+21], the authors studied this expression for the 1D architecture, and they are
able to prove that

E
V∼Hpath

n,d

[
〈0n|V †σpV |0n〉2

]
≤ e−Ω(d) +

1

2n

for every σp ∈ {I,X, Y, Z}⊗n \ {I⊗n} with |σp| ≤ 3 by adapting the trajectory counting
technique from the proof of Theorem 2.11. They further conjectured that for every σp ∈
{I,X, Y, Z}⊗n \ {I⊗n},

E
V∼Hpath

n,d

[
〈0n|V †σpV |0n〉2

]
≤ e−Ω(|σp|+d) +

1

2n
.

We prove this conjecture here.

Theorem 2.13. Let σp ∈ {I,X, Y, Z}⊗n \ {I⊗n}. Let r be the number of nearest neighbour
pairs of qubits on which σp acts non-trivially. Let n′ = min (n, 2rd). Then for every d ≥ 10,

E
V∼Hpath

n,d

[
〈0n|V σpV †|0n〉2

]
≤ e−Ω(|σp|+d) +

1

2n′
.
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Proof. By the unitary invariance property of the Haar measure, we can assume WLOG that
σp ∈ {I, Z}⊗n \ {I⊗n}. We first define some notations. Let |σp〉 denote the vectorized

representation of σp⊗σp. Let Podd and Peven denote P
(2)
odd and P

(2)
even respectively. Let d ≥ 10.

We first consider the case where d is odd. Let k = d−1
2

. Recall the t-th moment operator of

Hpath
n,d (see (2.7)). Observe that,∣∣∣〈04n| (PoddPevenPodd)k − P (2)

N |σp〉
∣∣∣

=
∣∣∣〈04n| (PoddPevenPodd)d

k
2
e
(

(PoddPevenPodd)b
k
2
c − P (2)

N

)
Podd|σp〉

∣∣∣
≤‖〈04n| (PoddPevenPodd)d

k
2
e‖∞ · ‖(PoddPevenPodd)b

k
2
c − P (2)

N ‖∞ · ‖Podd|σp〉‖∞

=‖(PoddPevenPodd)b
k
2
c − P (2)

N ‖∞ ·
√
〈04n| (PoddPevenPodd)2d k

2
e |04n〉 ·

√
〈σp|Podd|σp〉.

Combining Lemma 2.8 and Theorem 2.6, we get∥∥∥(PoddPevenPodd)b
k
2
c − P (2)

N

∥∥∥
∞
≤
(

20

21

)b k
2
c

.

By Lemma 2.2,

E
U∼µ4

Haar

[
(U ⊗ U)(Z ⊗ Z ⊗ Z ⊗ Z)(U † ⊗ U †)

]
= E

U∼µ4
Haar

[
(U ⊗ U)(Z ⊗ I ⊗ Z ⊗ I)(U † ⊗ U †)

]
= E

U∼µ4
Haar

[
(U ⊗ U)(I ⊗ Z ⊗ I ⊗ Z)(U † ⊗ U †)

]
=

1

15
(4S − I ⊗ I ⊗ I ⊗ I)

where S is the swap gate defined by S|ψ〉|φ〉 = |φ〉|ψ〉. We have1

〈ZZZZ|S〉 = Tr ((Z ⊗ Z ⊗ Z ⊗ Z)S) = 4.

Similarly,
〈ZIZI|S〉 = 〈IZIZ|S〉 = 4.

Thus,

〈ZZZZ|P (2)
N |ZZZZ〉 = 〈ZIZI|P (2)

N |ZIZI〉 = 〈IZIZ|P (2)
N |IZIZ〉 =

16

15
.

Therefore,

〈σp|Podd|σp〉 =

(
16

15

)r
16

n
2
−r = 4n

(
1

15

)r
.

By Theorem 2.11,

〈04n| (PoddPevenPodd)2d k
2
e |04n〉 ≤ 2

4n
exp

((
4

5

)d−1

n

)
.

1Here, we use a shorthand notation ZZZZ = Z ⊗ Z ⊗ Z ⊗ Z.
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Therefore,

〈04n| (PoddPevenPodd)k |σp〉 ≤
√

2

(
1

15

) r
2

exp

((
4

5

)d−1
n

2

)(
20

21

)b k
2
c

+ 〈04n|P (2)
N |σp〉.

Running the same argument again with (PoddPeven)k for even-depth circuits (d even, k = d
2
),

we get that

〈04n| (PoddPeven)k |σp〉 ≤
√

2

(
1

15

) r
2

exp

((
4

5

)d−1
n

2

)(√
20

21

)b k
2
c

+ 〈04n|P (2)
N |σp〉.

By Corollary 2.3, 〈04n|P (2)
N |σp〉 = 1

2n+1
. If n ≤ 2rd, then

E
V∼Hpath

n,d

[
〈0n|V σpV †|0n〉2

]
≤
√

2


(

exp
((

4
5

)d−1
d
))2

15


r
2 (√

20

21

) d−1
4

+
1

2n

≤
√

2 (0.98)
r
2

(√
20

21

) d−1
4

+
1

2n

for d ≥ 10. Now suppose n > 2rd. Suppose σp = ⊗ni=1σ
(i)
p . By the lightcone size constraint

of 1D circuits, there exist qubits that lie outside the backward lightcone of every other
qubit i such that σ

(i)
p 6= I, and we can throw away those qubits. Thus, there exists σ′p ∈

{I, Z}⊗2rd \ {I⊗2rd} with |σ′p| = |σp| such that

E
V∼Hpath

n,d

[
〈0n|V σpV †|0n〉2

]
= E

V∼Hpath
2rd,d

[
〈02rd|V σ′pV †|02rd〉2

]
≤
√

2 (0.98)
r
2

(√
20

21

) d−1
4

+
1

22rd
.

We suspect that the upper bound established in Theorem 2.13 is not tight. To reproduce
the phase transition phenomenon near d = Θ(log n) established by Theorem 2.11 using the
characterization

Coll(Hpath
n,d ) =

1

2n

∑
w∈{0,1}n

E
V∼Hpath

n,d

[
〈0n|V †Z(w)V |0n〉2

]
,

we need an upper bound like

E
V∼Hpath

n,d

[
〈0n|V †Z(w)V |0n〉2

]
≤ e−Ω(|w|d) +

1

2n

for every w ∈ {0, 1}n \ {0n}. We record this updated conjecture for future work.

32



Conjecture 2.1. Let σp ∈ {I,X, Y, Z}⊗n \ {I⊗n}. Let r be the number of nearest neighbour
pairs of qubits on which σp acts non-trivially. Let n′ = min (n, 2rd). Then,

E
V∼Hpath

n,d

[
〈0n|V σpV †|0n〉2

]
≤ e−Ω(|σp|d) +

1

2n′
.
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Chapter 3

Applications in Random Circuit
Sampling

Quantum supremacy seeks to perform on a quantum computer a well-defined computational
task whose classical computational cost exceeds the limits of feasible classical computation
[Pre11, AC16]. The challenge to claim quantum supremacy is both experimental and theo-
retical. On the one hand, a successful quantum supremacy experiment requires maintaining
and controlling complex quantum systems involving enough qubits for long enough coherence
times [AAB+19], as otherwise, the resulting quantum dynamics may fall within the realm of
state-of-the-art classical simulation techniques [MFIB18, ZSW20]. On the other hand, one
needs to provide convincing complexity-theoretic evidence for the classical intractability of
the problem that the quantum computer is designed to solve [BJS11, AA11, BMS16, AC16].
The obvious proposal is to “simply” build a fault-tolerant quantum computer to factor large
integers using Shor’s algorithm [Sho99]. Although the factoring proposal satisfies the theo-
retical requirement to a large extent hence sufficient for demonstrating quantum supremacy,
such a feat may still be decades away given the current progress of quantum computing
technologies [SR20]. One crucial aspect of quantum supremacy is that it is unnecessary
for the quantum computer to solve a practically useful problem. Hence, to help minimize
experimental difficulties, it becomes instrumental to search for computational problems,
even contrived ones, that are intrinsically easy to solve quantum mechanically, as long as
complexity-theoretic evidence can be found to support their classical hardness. For these rea-
sons, researchers have identified random circuit sampling as a promising candidate suitable
for the demonstration of quantum supremacy [BIS+18, AAB+19].

3.1 The RCS Supremacy Conjecture

Informally speaking, random circuit sampling (RCS) is a computational problem whose in-
put is a random quantum circuit, and the task is to sample a bit string drawn from some
distribution close to the quantum circuit’s output distribution. The built-in error allowance
in the problem is natural because even a fault-tolerant quantum computer can only perform
RCS up to some small error, hence it will also be unfair to require a classical simulator
to sample from a quantum circuit’s output distribution exactly. From the experimental
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perspective, RCS is straightforward to execute on noisy quantum computers without error
correction such that the quality of the samples will be determined by the fidelity charac-
teristics of the device [MFIB18, BIS+18, AAB+19]. Meanwhile, theoretical investigations
into the RCS problem have advanced our understanding of its computational complexity
[BFNV18, Mov18]. At the core of this line of work lies the RCS supremacy conjecture which
asserts that no efficient classical algorithm can exist to perform RCS in polynomial time for
some small but reasonable error margin. In this section, we give a high-level overview of the
RCS supremacy conjecture and the proof strategy initially proposed by Aaronson [AA11].
For discussions on the same topic with more mathematical details, see [BFNV18, KMM21].
For formal definitions of complexity classes that will appear such as #P and the polynomial
hierarchy, see [AB09].

Before stating the RCS supremacy conjecture, we first need to get familiar with the var-
ious notions of classical simulation of quantum circuits that will take part in the discussion.
For example, one may be interested in understanding the computational complexity of the
additive error worst case probability estimation problem. Recall our definition of circuit
architectures from Chapter 1 (see Definition 1.5).

Problem 3.1 (Additive Error Worst Case Probability Estimation). For some n-qubit circuit
architectureA and some ε ≥ 0, on input an arbitrary quantum circuit C with the architecture
A, output a value p satisfying |p− |〈0n|C|0n〉|2| ≤ ε.

Intuitively, Problem 3.1 seems computationally hard since when ε is sufficiently small, this
problem is even beyond the capabilities of efficient quantum computation. Indeed, it is
known that this problem is #P-hard for certain circuit architectures.

Theorem 3.1 ([Aar11, KMM21]). There exists a (uniform) family of n-qubit-s-gate circuit
architectures An,s such that the additive error worst case probability estimation problem over
An,s is #P-hard for ε < 1/2s

c
for every constant c > 0.

On the contrary, the additive error average case sampling problem seems less demanding
and is modelled after the capabilities of fault-tolerant quantum computers. Recall that for
an n-qubit quantum circuit C, we have defined qC(x) = |〈x|C|0n〉|2 for every x ∈ {0, 1}n.
Also recall that we use the notation HA to denote the distribution of Haar random quantum
circuits with the architecture A.

Problem 3.2 (Additive Error Average Case Sampling). For some n-qubit circuit architec-
ture A, δ ∈ (0, 1), and ε ≥ 0, on input a random quantum circuit C ∼ HA, output a sample
z ∈ {0, 1}n drawn according to some distribution q̃ such that

∑
x∈{0,1}n |q̃(x) − qC(x)| ≤ ε

with probability at least 1− δ over the choice of the random circuit C.

We note that Problem 3.2 can be taken as the formal definition of the RCS problem. The
RCS supremacy conjecture asserts that even Problem 3.2 is intractable for certain circuit
architectures.

Conjecture 3.1 (RCS Supremacy Conjecture). There exists a (uniform) family of n-qubit
circuit architectures An such that for some ε = 1/poly(n) and some constant δ, if there
exists a classical polynomial-time algorithm solving the additive error average case sampling
problem for An, ε, and δ, then the polynomial hierarchy collapses.
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To describe the proof strategy proposed by Aaronson [AA11], we need to define another
variant of the classical simulation problem.

Problem 3.3 (Additive Error Average Case Probability Estimation). For some n-qubit
circuit architecture A, δ ∈ (0, 1), and ε ≥ 0, on input a random quantum circuit C ∼ HA,
output a value p satisfying |p − |〈0n|C|0n〉|2| ≤ ε with probability at least 1 − δ over the
choice of the random circuit C.

The proof strategy involves a three stage reduction from Problem 3.2 to Problem 3.1 via
Problem 3.3. We first choose a (uniform) family of n-qubit architectures A such that HA
has the hiding property, the collision probability of HA satisfies

Coll(HA) = 2n E
C∼HA

[
|〈0n|C|0n〉|4

]
≤ O(1)

2n
, (3.1)

and that Problem 3.1 is #P-hard for A. For instance, we can consider the poly(n)-depth
1D architecture Apath

n,poly(n). We will ignore δ as it is straightforward to manage and highlight
how ε evolves throughout the argument. For the first reduction step, given a classical
randomized polynomial time algorithm A solving Problem 3.2 with ε1 = 1/poly(n), the
authors of [AA11] and [BMS16] showed how to use Stockmeyer’s approximate counting
theorem [Sto85] to construct from A an algorithm in the polynomial hierarchy1 solving
Problem 3.3 with additive error

ε2 ≤ O

(
ε1

2n
+
|〈0n|C|0n〉|2

poly(n)

)
.

For the second step, by (3.1), we can use Chebyshev’s inequality2 to show that

Pr
C∼HA

(
|〈0n|C|0n〉|2 ≤ O(1)

2n

)
≥ Ω(1).

Thus, for at least some constant probability over the choice of C ∼ HA,

ε2 ≤
O(1)

poly(n)2n
.

The final step involves a worst to average case reduction inspired by the randomized self-
reducibility technique first discovered for showing the average case #P-hardness of com-
puting the permanents of matrices [Lip91]. More specifically, the authors of [KMM21] and
[BFLL21] showed how to construct, from an algorithm solving Problem 3.3 with additive
error ε, an algorithm solving Problem 3.1 with error ε′ = 2O(s log s)ε where s is the number of
gates in the circuit. If we substitute ε2 into the theorems of [KMM21] and [BFLL21], then
we get an algorithm in the polynomial hierarchy solving Problem 3.1 with additive error

ε3 = O

(
2O(s log s)

poly(n)2n

)
.

1More formally, an FBPPNPA

machine.
2We use formally a concentration inequality as opposed to the anti-concentration inequalities appearing

originally in [AA11] and [BMS16]; the collision probability upper bound requirement is the same.
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In order to invoke Theorem 3.1, we need to reduce the error blow up in the third step from
2O(s log s) to roughly 2O(n), and it is still an open problem whether this can be achieved. If
it can be done, then Theorem 3.1 together with Toda’s theorem [Tod91], which states that
the polynomial hierarchy is contained in P#P, imply that the entire polynomial hierarchy
is contained in some finite level. In other words, the polynomial hierarchy collapses, and it
is believed to be very unlikely. For prospects and known barriers to closing the robustness
gap, see discussions in [BFLL21].

We remark that the known reductions also do not imply the classical hardness of solving
Problem 3.2 with ε1 = 0 since the error introduced by Stockmeyer’s theorem is inherent
in this proof strategy. However, assuming the existence of an efficient classical algorithm
solving Problem 3.3 with ε2 = 0 is sufficient for invoking Theorem 3.1 via the known worst
to average case reductions, thereby collapsing the polynomial hierarchy.

Theorem 3.2 ([BFNV18, Mov18]). There exists a (uniform) family of n-qubit circuit ar-
chitectures An and a constant δ > 0 such that if there exists an efficient classical algorithm
solving Problem 3.3 for An with failure probability δ and error ε = 0, then the polynomial
hierarchy collapses.

Theoretical studies into the RCS supremacy conjecture are initiated by the real-world pursuit
of quantum supremacy, and they have for sure provided important guidance to experimental
designs. Practical implications aside, the RCS supremacy conjecture also possesses inherent
complexity-theoretic values in the direction of separating efficient quantum computation
from efficient classical computation. Indeed, while not as glorious as unconditionally proving
BQP 6= P and not even about decision problems, Theorem 3.2 presents some of the strongest
complexity-theoretic evidence known to date in favour of the power of efficient quantum
computers over their classical counterparts.

This concludes our coverage of the RCS supremacy conjecture. While the RCS supremacy
conjecture may one day be proven, there remains at least one more interesting theoretical
question related to RCS experiments.

3.2 The Linear Cross-Entropy Benchmark

In a prototypical RCS experiment, a random quantum circuit is drawn from a fixed n-qubit
circuit architecture and fed to a purported quantum computer k times to collect k output
bit strings z1, . . . , zk ∈ {0, 1}n. At this point, an important issue yet to be addressed is, by
examining these k bit strings, how can we verify whether the quantum computer has solved
RCS or not? Since there are 2n possible outputs, and if our quantum device is indeed working
properly, the probability of observing each z ∈ {0, 1}n will be in the order of 1

2n
, so in reality,

we will never observe the same string twice if we only collect poly(n) many samples. How do
we distinguish a set of k bit strings drawn according to the random quantum circuit’s output
distribution from a set of k uniformly random bit strings? In Google’s quantum supremacy
proposal, they adopted a statistical test called the linear cross-entropy benchmark to address
the verification problem [AAB+19]. For two probability distributions p and q over {0, 1}n,

37



the cross-entropy of q relative to p is given by

H(p, q) = E
z∼p

[− log q(z)] =
∑

z∈{0,1}n
p(z) log

(
1

q(z)

)
.

Based on this, the Google team defined linear cross-entropy by simply replacing the log
(

1
q(z)

)
term in the above expression by q(z) [AAB+19]. More formally, the (expected) linear cross-
entropy benchmark for random quantum circuits is defined as follows:

Definition 3.1 ((Expected) Linear Cross-Entropy Benchmark [AAB+19]). Let D be an n-
qubit random unitary distribution. Let A be an algorithm which takes as input U ∼ D and
outputs a string z ∈ {0, 1}n, and let AU denote the output distribution of A on input U .
The (expected) linear cross-entropy benchmark score of A with respect to D is

XEBD(A) = E
U∼D,z∼AU

[
|〈z|U |0n〉|2

]
= E

U∼D

[ ∑
z∈{0,1}n

AU(z)qU(z)

]
.

On the one extreme, the XEB score of the trivial algorithm, which ignores the input
and outputs a string drawn from U({0, 1}n), is 1

2n
for every D. On the other extreme, we

will see that the score of the quantum simulation algorithm, which exactly simulates the
input circuit, will be roughly 2

2n
for deep random quantum circuits. The Google proposal

makes explicitly the strong assumption that for deep random quantum circuits, no efficient
classical algorithm can achieve an XEB score higher than 1

2n
, essentially conjecturing that

the trivial algorithm is optimal [BIS+18]. Under this strong assumption, even if a purported
quantum computer can only achieve a score of 1+ε

2n
for some small ε > 0, that computer must

have accomplished the feat quantum mechanically, thus certifying the “quantumness” of the
device. It is worth noting that the quantum simulation algorithm is not a maximizer of the
XEB score since an exponential time classical algorithm can find the z∗ ∈ {0, 1}n with the
highest output probability3 and output z∗.

In a real experiment, the XEB score is approximated using a Monte-Carlo estimator.
Given an input circuit V , the device is executed k times independently on the same input V to
collect k samples z1, . . . , zk ∈ {0, 1}n. We then compute the sample mean 1

k

∑k
i=1 |〈zi|V |0n〉|2

where the output probabilities |〈zi|V |0n〉|2 are computed using exponential time classical
simulation. It is clear that the sample mean is an unbiased estimator of the expectation.
While this approach remains feasible for verifying 40-50 qubit experiments if we delegate
the classical simulation to a supercomputer, heuristic extrapolation arguments are needed
when the number of qubits is increased to the supremacy regime where classical simulation
becomes prohibitive [AAB+19].

It is important to note that, although the linear cross-entropy benchmark is intended for
the verification of RCS, they are merely two related but different computational problems.
Even if the RCS supremacy conjecture is true, it does not rule out the possibility that efficient
classical algorithms directly targeting the benchmark could exist. We devote the rest of this
work to developing an understanding of the computational complexity of the linear cross-
entropy benchmark, especially on the classical complexity of attaining non-trivial XEB scores
in relation to Google’s strong conjecture.

3The maximum value depends on D, and for D = µN
Haar, it is known to be O(n)/2n [Kre21].
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3.3 The Quantum Simulation Algorithm

We use QS to denote the quantum simulation algorithm which simply executes the input
circuit and measures all qubits in the computational basis, and it models the behaviour of
an ideal, noise-less quantum computer. By Definition 3.1, for every n-qubit random unitary
distribution D,

XEBD(QS) = E
U∼D,z∼qU

[
|〈z|U |0n〉|2

]
= E

U∼D

[ ∑
z∈{0,1}n

|〈z|U |0n〉|4
]

= Coll(D).

Therefore, analysing the performance of the quantum simulation algorithm coincides exactly
with analysing the collision probability, which is the topic of section 2.3. We obtain the
following theorem by reinterpreting the results proven in section 2.3.

Theorem 3.3.

(a)

XEBµNHaar
(QS) =

2

2n + 1
;

(b) For every n-qubit-depth-d circuit architecture A,

XEBHA(QS) ≥ 1

2n

(
1 +

1

3

(
2

5

)d)n

;

(c) For the 1D architecture,

XEBHpath
n,d

(QS) ≤ 2

2n
exp

((
4

5

)d−1

n

)
.

In particular, the general XEB score lower bound highlights from a theoretical perspective
the importance of choosing large circuit depths in RCS experiments. While the 2

2n
figure is

widely cited as the “ideal” score, it is crucial to note that this estimate is only accurate for
sufficiently deep circuits. Therefore, in future RCS experiments, it is necessary to combine
increases in the qubit count with increases in the circuit depth.

3.4 The BCG Algorithm

The algorithm of Barak, Chou, and Gao is a classical algorithm designed for spoofing the
Linear Cross-Entropy Benchmark [BCG20]. Recall the definition of lightcones from Chapter
1 (see Definition 1.6). On input an n-qubit quantum circuit V , the BCG algorithm first
selects a set I of m = bn/Lc qubits with mutually disjoint backward lightcones, where L
is the lightcone size of V . Note that the choice of I only depends on the architecture but
not the specific circuit instantiation. The algorithm then computes the marginal output
probabilities of each qubit in I. To construct an output string z ∈ {0, 1}n, for every bit zi,
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i ∈ [n], if i ∈ I, then the algorithm samples zi according to the marginal output distribution
of qubit i; otherwise, zi is sampled uniformly at random.

The BCG algorithm is well-defined for arbitrary random unitary distributions, and its
time complexity is poly(n, 2L) since computing the marginal output probabilities of a qubit
can be done in O(2L) time (recall section 1.6). Unfortunately, the BCG algorithm is only
efficient for circuit architectures with a small lightcone size since poly(n, 2L) is polynomial in
n only if L is at most O(log n). Therefore, the BCG algorithm is not in the position to refute
Google’s strong conjecture on the linear cross-entropy benchmark because the algorithm is
inefficient for deep random quantum circuits with poly(n) lightcone sizes. Nevertheless, we
will show that the BCG algorithm does imply that the deep circuit depth assumption in
Google’s strong conjecture is necessary. We first show a lower bound for the XEB score of
the BCG algorithm by reusing some of the tools developed in section 2.3. The following proof
is based on the same ideas as in the original proof appearing in [BCG20] but is expressed in
terms of standard mathematical notations.

Theorem 3.4. For every n-qubit-depth-d circuit architecture A with lightcone size L,

XEBHA(BCG) ≥ 1

2n

(
1 +

1

3

(
2

5

)d)m

where m = bn/Lc.

Proof. Let I be the set of m = bn/Lc qubits selected by the BCG algorithm where qubits in
I have mutually disjoint backward lightcones. Let W (I) = {w ∈ {0, 1}n : ∀j /∈ I, wj = 0},
so |W (I)| = 2m. Recall that for every b ∈ {0, 1} and j ∈ [n], we have defined the notation
(|b〉〈b|)j = I⊗(j−1) ⊗ |b〉〈b| ⊗ I⊗(n−j). We wish to lower bound the expression

XEBHA(BCG) = E
V∼HA

[ ∑
z∈{0,1}n

〈0n|V †|z〉〈z|V |0n〉 1

2n−m

∏
j∈I

〈0n|V †(|zj〉〈zj|)jV |0n〉
]

(3.2)

where 〈0n|V †|z〉〈z|V |0n〉 = |〈z|V |0n〉|2 = qV (z), for every j ∈ I, 〈0n|V †(|zj〉〈zj|)jV |0n〉
encodes the probability that the j-th qubit measures zj, and 1

2n−m

∏
j∈I〈0n|V †(|zj〉〈zj|)jV |0n〉

represents the probability that the BCG algorithm outputs z on input V . By properties of
the tensor product, we can write

(3.2)

=
1

2n−m
E

V∼HA

[
(〈0n|V †)⊗(m+1)

( ∑
z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
(⊗

j∈I

(|zj〉〈zj|)j
))

(V |0n〉)⊗(m+1)

]
.

It is straightforward to show (analogous to the proof of Lemma A.2) that∑
z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
(⊗

j∈I

(|zj〉〈zj|)j
)

=
1

2m

∑
w∈W (I)

Z(w)⊗
(⊗

j∈I

Z
wj
j

)
.

Therefore,

(3.2) =
1

2n

∑
w∈W (I)

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

∏
j∈I

〈0n|V †Zwj
j V |0n〉

]
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=
1

2n

∑
w∈W (I)

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
since for every w ∈ W (I),∏

j∈I

〈0n|V †Zwj
j V |0n〉 = 〈0n|V †Z(w)V |0n〉

by the disjoint backward lightcones condition. By Lemma 2.12,

1

2n

∑
w∈W (I)

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
≥ 1

2n

m∑
k=0

(
m

k

)
1

3k

(
2

5

)kd
=

1

2n

(
1 +

1

3

(
2

5

)d)m

.

Theorem 3.4 implies that for constant depth circuits, the trivial algorithm which samples
bit strings uniformly at random is not a maximizer of the XEB score among efficient clas-
sical algorithms. Therefore, similar to the implication of Theorem 3.3(b), Theorem 3.4 also
elucidates the importance of increasing the circuit depth along with the number of qubits in
future larger-scale experiments.

As a loose upper bound, we show that the quantum simulation algorithm outperforms
the BCG algorithm for arbitrary quantum circuits.

Theorem 3.5. For every circuit architecture A, XEBHA(BCG) ≤ XEBHA(QS).

Proof. Let A be an arbitrary n-qubit circuit architecture, and let V be an arbitrary quantum
circuit overA. Let BV : {0, 1}n → [0, 1] denote the output distribution of the BCG algorithm
on input V , and let I denote the set of qubits with disjoint backward lightcones selected
with m = |I|. First observe that

E
z∼qV

[qV (z)] =
∑

z∈{0,1}n
qV (z)2 =

∑
x∈{0,1}m

∑
y∈{0,1}n
s.t. yI=x

qV (y)2. (3.3)

Then by the Cauchy-Schwarz inequality,

(3.3) ≥
∑

x∈{0,1}m

1

2n−m

( ∑
y∈{0,1}n
s.t. yI=x

qV (y)

)2

=
∑

z∈{0,1}n
BV (z)qV (z) = E

z∼BV
[qV (z)] .

Therefore,

E
V∼HA

[
E

z∼qV
[qV (z)]

]
≥ E

V∼HA

[
E

z∼BV
[qV (z)]

]
.

We remark that the above bound does not depend on the randomness over HA.
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Chapter 4

An Extended BCG Algorithm

In this chapter, we consider an extension of the BCG algorithm for spoofing the linear cross-
entropy benchmark. Instead of sampling only a subset of qubits according to their marginal
output distributions, the EBCG algorithm samples every qubit according to its marginal
output distribution. Similar to the BCG algorithm, the EBCG algorithm’s time complexity
is poly(n, 2L) for a circuit architecture with lightcone size L. We wish to understand whether
or not the EBCG algorithm outperforms the BCG algorithm on the linear cross-entropy
benchmark. Let A be a circuit architecture with lightcone size L. Our goal is to analyze the
expression

XEBHA(EBCG) = E
V∼HA

[ ∑
z∈{0,1}n

〈0n|V †|z〉〈z|V |0n〉
n∏
j=1

〈0n|V †(|zj〉〈zj|)jV |0n〉
]
. (4.1)

In the above equation, 〈0n|V †|z〉〈z|V |0n〉 = |〈z|V |0n〉|2 encodes the probability of sampling
z ∈ {0, 1}n from V ’s output distribution, and for every j ∈ [n], 〈0n|V †(|zj〉〈zj|)jV |0n〉
represents the probability that the j-th qubit measures zj where we have used the notation
(|zj〉〈zj|)j = I⊗(j−1) ⊗ |zj〉〈zj| ⊗ I⊗(n−j). By properties of the tensor product, we can write

(4.1) = E
V∼HA

[
(〈0n|V †)⊗(n+1)

( ∑
z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
( n⊗

j=1

(|zj〉〈zj|)j
))

(V |0n〉)⊗(n+1)

]
.

(4.2)
We show in Lemma A.2 the identity∑

z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
( n⊗

j=1

(|zj〉〈zj|)j
)

=
1

2n

∑
w∈{0,1}n

Z(w)⊗
( n⊗

j=1

Z
wj
j

)
. (4.3)

Substituting (4.3) into (4.2), we get that

XEBHA(EBCG) =
1

2n
E

V∼HA

[
(〈0n|V †)⊗(n+1)

( ∑
w∈{0,1}n

Z(w)⊗
( n⊗

j=1

Z
wj
j

))
(V |0n〉)⊗(n+1)

]

=
1

2n

∑
w∈{0,1}n

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
.
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For every w ∈ {0, 1}n, define Supp(w) = {j ∈ [n] : wj = 1}. Let

G = {w ∈ {0, 1}n : Supp(w) corresponds to a set of qubits with disjoint backward lightcones}.

Similar to the set of qubits selected by the BCG algorithm, the set G is completely specified
by the circuit architecture. By the disjoint backward lightcones condition, for every w ∈ G,

n∏
j=1

〈0n|V †Zwj
j V |0n〉 = 〈0n|V †Z(w)V |0n〉.

Let B = {0, 1}n \G. Then, we can write

XEBHA(EBCG)

=
1

2n

∑
w∈G

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
+

1

2n

∑
w∈B

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
.

Let I be the set of m = bn/Lc qubits with mutually disjoint backward lightcones that would
be selected by the BCG algorithm. Let W (I) = {w ∈ {0, 1}n : ∀i /∈ I, wi = 0}. Since
W (I) ⊆ G, we get that for an arbitrary n-qubit quantum circuit V ,∑

w∈G

〈0n|V †Z(w)V |0n〉2 ≥
∑

w∈W (I)

〈0n|V †Z(w)V |0n〉2.

This implies that

1

2n

∑
w∈G

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
≥ 1

2n

∑
w∈W (I)

E
V∼HA

[
〈0n|V †Z(w)V |0n〉2

]
= XEBHA(BCG).

Indeed, the analysis of the EBCG algorithm contains that of the BCG algorithm since for ev-
ery w ∈ G, EV∼HA

[
〈0n|V †Z(w)V |0n〉2

]
can also be lower bounded using Lemma 2.12. How-

ever, for every w ∈ B, the term
∏n

j=1〈0n|V †Z
wj
j V |0n〉 does not collapse to 〈0n|V †Z(w)V |0n〉,

so the expression

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
= E

V∼HA

[
(〈0n|V †)⊗(n+1)

(
Z(w)⊗

( n⊗
j=1

Z
wj
j

))
(V |0n〉)⊗(n+1)

]
always involves the t-th moment of HA for some t ≥ 3 which renders second-moment specific
lower bound methods like Lemma 2.12 inapplicable. Nonetheless, to show that the EBCG
algorithm achieves higher XEB scores than the BCG algorithm, it suffices to show that∑

w∈B
E

V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
≥ 0.

We make a slightly stronger claim in the following conjecture.
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Conjecture 4.1 (The EBCG Conjecture). For every w ∈ {0, 1}n,

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
≥ 0. (4.4)

At the moment, the computational complexity of the linear cross-entropy benchmark is
mostly uncharted territory awaiting exploration. While the analysis of the BCG algorithm
can be viewed as a first step in investigating the classical computational complexity of attain-
ing non-trivial XEB scores, our study of the EBCG algorithm makes up the second attempt
to discover better algorithms for the same task. One may ask, for various choices of the
circuit depth d, what is the highest XEB score attainable by an efficient classical algorithm?
Google has conjectured that for d = poly(n), the trivial uniform algorithm is optimal, and
we have argued that for small enough d rendering the BCG algorithm efficient, for example
when d is constant, Theorem 3.4 shows that the trivial algorithm is not optimal. Likewise,
proving the EBCG conjecture will imply the sub-optimality of the BCG algorithm in these
low-depth regimes. Then one may ask, could the EBCG algorithm be the optimal linear
cross-entropy benchmark spoofing algorithm for constant d? If Google’s strong conjecture
is true, then there is no known evidence against this possibility. On the other hand, if
one hopes to design a spoofing algorithm efficient for even deep random quantum circuits,
thereby refuting Google’s strong conjecture, we will argue in section 4.2 why such algorithms
may need to employ tactics drastically different from the EBCG algorithm.

We will refer to the LHS of (4.4) as the EBCG expression. The rest of the chapter is
devoted to studying the EBCG expression in various settings. While the goal is to prove the
EBCG conjecture for random quantum circuits, our techniques fall short of what is needed
to do so. On the upside, we provide numerical evidence in favour of the EBCG conjecture for
1D random quantum circuits by exactly computing the EBCG expression for small circuit
sizes. We are also able to prove the EBCG conjecture for the special cases of depth-1 and
poly(n)-depth random quantum circuits by analyzing the EBCG expression with expectation
over µNHaar, as well as when |w| ≤ 2, by analyzing the EBCG expression for random Clifford
circuits. In the last section, we show that the EBCG expression is non-negative for random
fermionic Gaussian unitaries and derive a formula for its exact value.

4.1 EBCG Does Not Always Outperform BCG

We begin by arguing that the expectation over HA is necessary in the EBCG conjecture.
Recall that w.r.t. the architecture A, we have defined

G = {w ∈ {0, 1}n : Supp(w) corresponds to a set of qubits with disjoint backward lightcones}

and B = {0, 1}n \G.

Lemma 4.1. For n = 3, there exists a 3-qubit quantum circuit V such that

〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉 < 0

for at least one w ∈ B.
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Proof. Let us consider n = 3 and the probability distribution over {0, 1}n given by

z Pr(z)
000 0
001 0.25
010 0.3
011 0
100 0.3
101 0
110 0.15
111 0

In this example, 000 is the outcome that EBCG thinks is the most likely, but in reality,
the probability of observing 000 is zero. Clearly, there exists a quantum circuit V on three
qubits whose output distribution on input |03〉 is exactly the distribution given in the table.1

We can verify that the performance of the EBCG algorithm on input V is

0.075625× 0.25 + 0.185625× 0.3× 2 + 0.151875× 0.15 = 0.1530625

while by choosing I = {1} containing just the right most qubit, the BCG algorithm achieves
a score of

0.0625× 0.25 + 0.1875× 0.75 = 0.15625.

Thus, the BCG algorithm outperforms the EBCG algorithm for this specific input V . Since∑
w∈G

〈0n|V †Z(w)V |0n〉2 ≥
∑

w∈W (I)

〈0n|V †Z(w)V |0n〉2,

it must be the case that∑
w∈B

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
< 0,

and the conclusion follows.

4.2 Haar Random Unitary

In this section, we first establish a lower bound for XEBµNHaar
(EBCG). The proof will also

imply the non-negativity of the EBCG expression when the expectation is taken over µNHaar.

Theorem 4.1.

XEBµNHaar
(EBCG) ≥ 1

2n
+

n

(2n + n)(2n + n− 1)
1For example, using the construction described in section 4.5 of [NC10].
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Proof. Let w ∈ {0, 1}n. We have that

E
V∼µNHaar

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
=Tr

(
Z(w)⊗

( n⊗
j=1

Z
wj
j

)
E

V∼µNHaar

[
(V |0n〉〈0n|V †)⊗(n+1)

])
.

By substituting t = n+ 1 into Lemma 2.3, the above expression equals

1

(n+ 1)!
(
n+2n

n+1

)Tr

(
Z(w)⊗

( n⊗
j=1

Z
wj
j

) ∑
π∈Sn+1

W (N)
π

)

=
1

(n+ 1)!
(
n+2n

n+1

) ∑
π∈Sn+1

∑
i0,i1,...,in∈{0,1}n

〈i0, . . . , in|
(
Z(w)⊗

( n⊗
j=1

Z
wj
j

))
|iπ−1(0), . . . , iπ−1(n)〉

=
(2n − 1)!

(2n + n)!

∑
π∈Sn+1

∑
i0,i1,...,in∈{0,1}n

〈i0|Z(w)|iπ−1(0)〉
n∏
j=1

〈ij|Z
wj
j |iπ−1(j)〉.

Let π ∈ Sn+1. We construct an undirected graph Gπ = (V,E) where V = {0, 1, . . . , n} and
E = {uv : v = π(u)}. Let H1, . . . , Hc be the components of Gπ. For Z-type Pauli’s, we have
〈a|Z(w)|b〉 6= 0 if and only if a = b and

∑
i∈{0,1}n

〈i|Z(w)|i〉 =

{
2n if w = 0n

0 otherwise
.

Define Z(0) = Z(w), and for every j ∈ [n], define Z(j) = Z
wj
j . Then, we can write

∑
i0,i1,...,in∈{0,1}n

〈i0|Z(w)|iπ−1(0)〉
n∏
j=1

〈ij|Z
wj
j |iπ−1(j)〉 =

∑
i0,i1,...,in∈{0,1}n

n∏
j=0

〈ij|Z(j)|iπ−1(j)〉. (4.5)

In the above expression, for
∏n

j=0〈ij|Z(j)|iπ−1(j)〉 6= 0, we need ij = iπ−1(j) for every j. Thus,

(4.5) =
∑

i1,...,ic∈{0,1}n

c∏
j=1

∏
u∈V (Hj)

〈ij|Z(u)|ij〉

=
c∏
j=1

∑
ij∈{0,1}n

〈ij|
( ∏
u∈V (Hj)

Z(u)

)
|ij〉

=

{
2cn if {0} ∪ Supp(w) is contained in V (Hj) for some j ∈ {1, . . . , c}
0 otherwise

.

For every w ∈ {0, 1}n, let Πw = {π ∈ Sn+1 : {0} ∪ Supp(w) is contained in one cycle of π}.
For every π ∈ Sn+1, let c(π) denote the number of cycles in π. Then,

XEBµNHaar
(EBCG)
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=
1

2n

∑
w∈{0,1}n

E
V∼µNHaar

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
=

(2n − 1)!

2n(2n + n)!

∑
w∈{0,1}n

∑
π∈Sn+1

∑
i0,i1,...,in∈{0,1}n

〈i0|Z(w)|iπ−1(0)〉
n∏
j=1

〈ij|Z
wj
j |iπ−1(j)〉

=
(2n − 1)!

2n(2n + n)!

∑
w∈{0,1}n

∑
π∈Πw

2c(π)n.

We first consider the case where w = 0n. For w = 0n, Πw = Sn+1. For every j ∈ [n + 1],
the number of permutations in Sn+1 with exactly j cycles is given by the unsigned Stirling

numbers of the first kind

[
n+ 1
j

]
. Thus, for w = 0n,

∑
π∈Πw

2c(π)n =
n+1∑
j=1

[
n+ 1
j

]
2jn

= (2n)n+1

=
(2n + n)!

(2n − 1)!
.

Thus,

(2n − 1)!

2n(2n + n)!

∑
w∈{0,1}n

∑
π∈Πw

2c(π)n =
1

2n
+

(2n − 1)!

2n(2n + n)!

∑
w∈{0,1}n\{0n}

∑
π∈Πw

2c(π)n.

Now let w ∈ {0, 1}n\{0n}. Let k = |w|. For every j ∈ {0, . . . , n}, the number of permutations
in Πw with exactly j + 1 cycles is

n+1∑
l=k+1

(
n+ 1− (k + 1)

l − (k + 1)

)
(l − 1)!

[
n+ 1− l

j

]
where l is the length of the cycle that contains {0} ∪ Supp(w) and (l − 1)! is the number of
cycles of length l. Thus,

∑
w∈{0,1}n\{0n}

∏
π∈Πw

2c(π)n =
n∑
k=1

(
n

k

) n+1∑
l=k+1

(
n− k

l − k − 1

)
(l − 1)!

n+1−l∑
j=0

[
n+ 1− l

j

]
2(j+1)n

=
n∑
k=1

n+1∑
l=k+1

(
n

k

)(
n− k

l − k − 1

)
(l − 1)!2n

(2n + n− l)!
(2n − 1)!

.

Therefore,

(2n − 1)!

2n(2n + n)!

∑
w∈{0,1}n\{0n}

∑
π∈Πw

2c(π)n
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=
n∑
k=1

n+1∑
l=k+1

(
n
k

)(
n−k
l−k−1

)
l
(

2n+n
l

)
=

n+1∑
l=2

(
n
l−1

)
l
(

2n+n
l

) l−1∑
k=1

(
l − 1

k

)

=
n+1∑
l=2

(2l−1 − 1)
(
n
l−1

)
l
(

2n+n
l

)
≥ n

(2n + n)(2n + n− 1)

by truncating the sum at l = 2.

In fact, we can analyze the XEB score of further generalizations of the EBCG algorithm
for Haar random unitaries using Lemma 2.3. Let w ∈ {0, 1}n. For n = mr, we can divide w
into r consecutive blocks each of length m. For every j ∈ [r], define w(m, j) ∈ {0, 1}n where
for every i ∈ {m(j − 1) + 1, . . . ,mj}, w(m, j)i = wi, and for every i ∈ [n] \ {m(j − 1) +
1, . . . ,mj}, w(m, j)i = 0. For each choice of n = mr, we can consider an algorithm which
partitions the n qubits into r blocks of size m, and it computes and samples according to the
m-qubit marginal output distributions. We can show that for every n-qubit random unitary
distribution D, the XEB score of this algorithm is given by the expression

1

2n

∑
w∈{0,1}n

E
V∼D

[
〈0n|V †Z(w)V |0n〉

r∏
j=1

〈0n|V †Z(w(m, j))V |0n〉
]
.

Note that when m = n and r = 1, this algorithm reduces to the quantum simulation
algorithm, and by choosing m = 1 and r = n, we recover the EBCG algorithm. By slight
generalizations of the arguments used to prove Theorem 4.1, we can prove the following lower
bound.

Theorem 4.2. For every way of factoring n = mr,

1

2n

∑
w∈{0,1}n

E
V∼µNHaar

[
〈0n|V †Z(w)V |0n〉

r∏
j=1

〈0n|V †Z(w(m, j))V |0n〉
]
≥ 1

2n
+

r(2m − 1)

(2n + r)(2n + r − 1)
.

We observe that in order to attain an XEB score of 1+1/nk

2n
for some k > 0, we need m =

n−k log n. It suggests that for deep random quantum circuits, this family of algorithms does
not achieve non-trivial XEB scores until the algorithm is very close to quantum simulation
despite always having an exponential time complexity. This phenomenon can be viewed as
preliminary evidence supporting the belief which underlies Google’s strong conjecture that
for deep random quantum circuits, attaining non-trivial XEB scores may be just as difficult
as performing random circuit sampling.

4.3 Random Quantum Circuits

Theorem 4.1 implies the EBCG conjecture for depth-1 random quantum circuits. By the t-
design property, Theorem 4.1 also implies the EBCG conjecture for poly(n)-depth 1D random
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quantum circuits via a generalization of the arguments made in the proof of Lemma 2.11.
We will show in the next section that the EBCG expression is non-negative with expectation
over random Clifford circuits. Thus, by applying the 3-design property of U(C2) to each
gate of a random quantum circuit inductively, the lower bound shown for random Clifford
circuits implies the EBCG conjecture for w ∈ {0, 1}n such that |w| = 2.

We briefly discuss some of the difficulties faced in adapting the techniques developed in
Chapter 2 for proving the EBCG conjecture. For a general w ∈ {0, 1}n such that |w| ≥ 3,
the EBCG expression

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
involves the t-th moment of HA for some t ≥ 4, so we cannot apply the Clifford 3-design
property (Theorem 2.3) to replace the expectation to be over CA (recall that CA is the distri-
bution of random Clifford circuits with the architecture A). Thus, combinatorial arguments
like the ones used in the proof of Theorem 2.10 and Lemma 2.12 that are fruitful for lower
bounding second-moment expressions are inapplicable to higher order moment expressions.

We can also try to modify the proof of Theorem 2.13. Theorem 4.1 implies that the
EBCG expression is strictly positive for every w ∈ {0, 1}n for depth-1 random quantum
circuits. We intuitively believe that depth-2 random quantum circuits cannot differ from
depth-1 random quantum circuits by that much. Thus, the value of the EBCG expression
for depth-2 random quantum circuits should not differ from the depth-1 value by that much,
hence implying the EBCG conjecture for depth-2 circuits. More generally, we may wish to
argue by induction that if the EBCG expression is positive for depth-d random quantum
circuits, then it is also positive for depth-(d + 1) random quantum circuits, and we have
already established the d = 1 base case. We can express this idea algebraically for 1D
random quantum circuits using their t-th moment operators (recall (2.7)). Let w ∈ {0, 1}n
and let |x〉 denote the vectorized representation of

Z(w)⊗
( n⊗

j=1

Z
wj
j

)
.

Let Podd and Peven denote P
(n+1)
odd and P

(n+1)
even respectively. For example, for every even k ≥ 1,

we can write the difference between the EBCG expressions of depth-(2k + 1) and depth-
(2k + 3) 1D random quantum circuits as

|〈02n(n+1)| (PoddPevenPodd)k − (PoddPevenPodd)k+1 |x〉|

=|〈02n(n+1)| (PoddPevenPodd)
k
2

(
(PoddPevenPodd)

k
2 − (PoddPevenPodd)

k
2

+1
)
Podd|x〉|

≤‖(PoddPevenPodd)
k
2 − (PoddPevenPodd)

k
2

+1‖∞
√
〈02n(n+1)| (PoddPevenPodd)k |02n(n+1)〉

√
〈x|Podd|x〉.

The 〈x|Podd|x〉 term, which is the only term involving |x〉, can be worked out exactly us-
ing Lemma 2.2 since Podd is only depth-1. Unfortunately, we do not know how to handle
the other two terms. The 〈02n(n+1)| (PoddPevenPodd)k |02n(n+1)〉 term generalizes the collision
probability appearing in the proof of Theorem 2.13, and we do not know of a generalization
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of Theorem 2.11 for upper bounding 〈02n(n+1)| (PoddPevenPodd)k |02n(n+1)〉. It is not hard to
show that

‖(PoddPevenPodd)
k
2 − (PoddPevenPodd)

k
2

+1‖∞ ≤ ‖(PoddPevenPodd)
k
2 − P (n+1)

N ‖∞.

Thus, by combining Theorem 2.4 and Lemma 2.8, we can conclude that

‖(PoddPevenPodd)
k
2 − P (n+1)

N ‖∞ ≤ e−∆k

for some small positive ∆ that depends on t = n+1. For this upper bound to be non-trivial,
k needs to be at least poly(t) to overcome ∆, so it does not reflect our intuition in the case
of shallow random quantum circuits with consecutive numbers of layers. In addition, the
k = poly(n) regime has been handled adequately by the Haar random unitary results of
section 4.2.

The architecture agnostic part of the proof of Theorem 2.11 can be generalized to obtain
an algorithm for exactly computing the EBCG expression for random quantum circuits. For
example, let us consider w = 1n. We wish to compute

E
V∼HA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †ZjV |0n〉
]

= E
V∼HA

[
(〈0n|V †)⊗(n+1)

(
Z(w)⊗

( n⊗
j=1

Zj

))
(V |0n〉)⊗(n+1)

]
.

For each 2-qubit gate in the last layer, we need to evaluate

E
U∼µ4

Haar

[
(U † ⊗ U † ⊗ U †)(Z(11)⊗ Z(10)⊗ Z(01))(U ⊗ U ⊗ U)

]
(4.6)

after cancellations, which is a third moment expression even though we are considering
w = 1n. By applying Lemma 2.2, we get that

(4.6) =
1

45
(W (4)

π1
− 2W (4)

π2
− 2W (4)

π3
+ 4W (4)

π4
+ 4W (4)

π5
− 2W (4)

π6
)

where

π1 = (1)(2)(3), π2 = (12)(3), π3 = (1)(23), π4 = (132), π5 = (123), π6 = (13)(2)

in the disjoint cycle notation. Note that the coefficients in front of each permutation operator
can be either positive or negative. More generally, the algorithm proceeds gate by gate from
the last to the first layer. After handling all the gates directly conjugating the starting Z-
type Pauli operators, the operator evaluated so far can be maintained as a linear combination
of tensor product of permutation operators. To process each additional gate, the algorithm
simply applies Lemma 2.2 and linearity. We implement this algorithm to compute the EBCG
expressions of small 1D random quantum circuits. See Figure 4.1 and Figure 4.2. Since the
algorithm’s space complexity is roughly O((|w|!)n), it is only feasible to execute up to n = 8
and |w| = 3 on a laptop.2

2With n = 8 and |w| = 3, the algorithm is effectively simulating a 32-qubit system.
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Figure 4.1: Exact EBCG values for 6 qubits and |w| = 3.

In summary, if the EBCG conjecture is true, then the EBCG algorithm attains higher
XEB scores than the BCG algorithm for random quantum circuits. However, we expect the
asymptotic scaling of the XEB scores of both algorithms to be similar; namely, we expect

XEBHA(EBCG) to scale like e∆
dn

2n
for some constant ∆ ∈ (0, 1) where e∆dn is understood

as an increasing function of n and decreasing function of d. Since the two algorithms also
have the same asymptotic time complexity, the EBCG algorithm may reveal little additional
insights into the classical computational complexity aspect of the linear cross-entropy bench-
mark. That being said, just like Conjecture 2.1, the EBCG conjecture itself represents an
interesting mathematical question about an inherent property of random quantum circuits
with a current lack of understanding. Hopefully, future efforts in resolving the EBCG con-
jecture will lead to the discovery of new techniques for analyzing t-th moment expressions
of random quantum circuits for arbitrary t ≥ 3. As a speculation, we expect such new ideas
to be effective for analyzing EV∼HA

[
V ⊗tA(V †)⊗t

]
for at least an arbitrary Z-type Pauli

operator A. Resolving the EBCG conjecture may also shed light in ways to improve the t
dependence in Theorem 2.8 or generalizing Theorem 2.9 to t ≥ 4. It is also interesting to
see whether the EBCG conjecture will be resolved by a method that merely establishes the
non-negativity of the EBCG expression while not implying any non-trivial lower bound.
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Figure 4.2: Exact EBCG values for 8 qubits and |w| = 3.

4.4 Random Clifford Circuits

In this section, we show that the EBCG conjecture is true for random Clifford circuits with
a proof that depends on neither the circuit architecture nor the randomness over CA.

Theorem 4.3. For every w ∈ {0, 1}n,

E
V∼CA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
≥ 0.

Proof. Let V be an arbitrary Clifford circuit over the architecture A, and let w ∈ {0, 1}n.
Notice that either V †ZjV is a Z-type Pauli for every j ∈ Supp(w), or there exists j ∈
Supp(w) such that V †ZjV is not a Z-type Pauli. If V †ZjV is a Z-type Pauli for every
j ∈ Supp(w), then∏

j∈Supp(w)

〈0n|V †ZjV |0n〉 = 〈0n|
( ∏
j∈Supp(w)

V †ZjV

)
|0n〉 = 〈0n|V †Z(w)V |0n〉.

Thus,

〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉 = 〈0n|V †Z(w)V |0n〉2 ≥ 0.
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If there exists j ∈ Supp(w) such that V †ZjV is not a Z-type Pauli, then 〈0n|V †ZjV |0n〉 = 0,
which implies that

〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉 = 0.

Therefore, in both cases,

〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉 ≥ 0,

so

E
V∼CA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
≥ 0.

We also show that for random Clifford circuits, the EBCG algorithm can never outperform
the quantum simulation algorithm.

Theorem 4.4.
XEBCA(EBCG) ≤ XEBCA(QS)

Proof. Recall that the quantum simulation algorithm achieves a score of

XEBCA(QS) =
1

2n

∑
w∈{0,1}n

E
V∼CA

[
〈0n|V †Z(w)V |0n〉2

]
.

Let V be an arbitrary Clifford circuit over the architecture A, and let w ∈ {0, 1}n. If
〈0n|V †Z(w)V |0n〉 = 0, then

〈0n|V †Z(w)V |0n〉2 = 0 = 〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉.

If |〈0n|V †Z(w)V |0n〉| = 1, then

〈0n|V †Z(w)V |0n〉2 = 1 ≥ 〈0n|V †Z(w)V |0n〉
n∏
j=1

〈0n|V †Zwj
j V |0n〉.

Thus,

XEBCA(EBCG) =
1

2n

∑
w∈{0,1}n

E
V∼CA

[
〈0n|V †Z(w)V |0n〉

n∏
j=1

〈0n|V †Zwj
j V |0n〉

]
≤ 1

2n

∑
w∈{0,1}n

E
V∼CA

[
〈0n|V †Z(w)V |0n〉2

]
= XEBCA(QS).
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4.5 Random Fermionic Gaussian Unitary

In this section, we consider the EBCG expression w.r.t another classically efficiently simulable
yet highly expressive subset of U(N) called the fermionic Gaussian unitaries. To begin, we
give a purely algebraic definition of fermionic Gaussian unitaries and state a few of their key
properties. For more detailed treatments taking into account the physics perspective, see
[TD02] and [BG17]. Let n ≥ 1. For every j ∈ [n], define the so-called Majorana operators

c2j−1 = Z1 · · ·Zj−1Xj,

c2j = Z1 · · ·Zj−1Yj.

An n-qubit unitary U is called a fermionic Gaussian unitary if there exists R ∈ O(2n) such
that for every j ∈ [2n],

UcjU
† =

2n∑
k=1

Rj,kck. (4.7)

Conversely, every R ∈ O(2n) determines a unique fermionic Gaussian unitary U up to global
phase such that for every j ∈ [2n],

UcjU
† =

2n∑
k=1

Rj,kck.

For example, for every j ∈ [2n], cj is a fermionic Gaussian unitary, and we see that that its
corresponding R ∈ O(2n) is diagonal with Rj,j = 1 and Rk,k = −1 for every k ∈ [2n] \ {j}.
Another primitive type of fermionic Gaussian unitaries are those that only conjugate non-
trivially between a pair of Majorana operators. Namely, for every j, k ∈ [2n], j 6= k and
θ ∈ [0, 2π), we can define an n-qubit fermionic Gaussian unitary U by its action

UcjU
† = (cos θ)cj + (sin θ)ck and UckU

† = −(sin θ)cj + (cos θ)ck,

corresponding to Givens rotations acting non-trivially on the (j, k)-plane by an angle of θ.
We can also verify using (4.7) that for two n-qubit fermionic Gaussian unitaries U and V
with corresponding orthogonal matrices R and S,

V UcjU
†V † =

2n∑
k=1

(RS)j,kck.

For every R ∈ O(2n), by applying the QR factorization algorithm using Givens rotations
to R while also requiring the resulting upper-triangular matrix to be the identity, R can
be decomposed as a product of O(n2) Givens rotations and diagonal reflection operators.
Consequently, every n-qubit fermionic Gaussian unitary can be decomposed as a product of
O(n2) of the two types of primitive fermionic Gaussian unitaries defined above.

An n-qubit state |ψ〉 is called a fermionic Gaussian state if there exists a fermionic
Gaussian unitary U such that |ψ〉 = U |0n〉. Every n-qubit fermionic Gaussian state |ψ〉 is
associated with a 2n× 2n covariance matrix M defined by its matrix elements

Mj,k =
−i
2
〈ψ|cjck − ckcj|ψ〉 (4.8)
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for every j, k ∈ [2n]. Let M0 denote the covariance matrix of |0n〉. The following well-known
properties of the covariance matrices of fermionic Gaussian states can be derived from (4.7)
and (4.8).

Lemma 4.2 ([TD02, Bra04, BG17]).

(a) The covariance matrix of every fermionic Gaussian state is real skew-symmetric;

(b)

M0 =
n⊕
j=1

[
0 1
−1 0

]
;

(c) For every fermionic Gaussian state |ψ〉 with associated covariance matrix M , and for
every fermionic Gaussian unitary U with associated rotation matrix R ∈ O(2n), the
covariance matrix of U |ψ〉 is RMRT .

For every 2n× 2n skew-symmetric matrix M , the Pfaffian of M is defined by

pf(M) =
1

2nn!

∑
σ∈S2n

sgn(σ)
n∏
j=1

Mσ(2j−1),σ(2j).

It is easy to verify from the definition that pf(aM) = anpf(M) for every 2n × 2n skew-
symmetric matrix M and a ∈ C. For every x ∈ {0, 1}2n, define the Majornara monomial
c(x) = cx1

1 c
x2
2 · · · cx2n

2n , and for every 2n× 2n matrix M , let M [x] denote the submatrix of M
that includes the j-th row and column if and only if xj = 1.

Lemma 4.3 ([TD02, BG17]). For every n-qubit fermionic Gaussian state |ψ〉 with covariance
matrix M , and for every x ∈ {0, 1}2n,

〈ψ|c(x)|ψ〉 = pf(iM [x]).

Let U(FGn) denote the uniform distribution over the set of all n-qubit fermionic Gaussian
unitaries, and let U(O(2n)) denote the uniform distribution over O(2n). Similar to the Haar
distribution over U(N), U(FGn) is invariant under left and right multiplication of arbitrary
U ∈ FGn, and U(O(2n)) is invariant under left and right multiplication of arbitrary R ∈
O(2n). In the remainder of this section, we analyze the EBCG expression with expectation
over U(FGn). For every w ∈ {0, 1}n, define w̄ ∈ {0, 1}2n by w̄2j−1 = w̄2j = wj for every
j ∈ [n].

Lemma 4.4. For every w ∈ {0, 1}n and every n-qubit fermionic Gaussian state |ψ〉 with
covariance matrix M ,

〈ψ|Z(w)|ψ〉 = pf(M [w̄]).

Proof. Let |ψ〉 be an n-qubit fermionic Gaussian state, and let w ∈ {0, 1}n with k = |w|. By
the definition of the Majorana operators, it is easy to see that for every j ∈ [n],

Zj = −ic2j−1c2j,
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and more generally,

Z(w) = (−i)k
n∏
j=1

c
wj
2j−1c

wj
2j = (−i)kc(w̄).

Thus, by Lemma 4.3,

〈ψ|Z(w)|ψ〉 = (−i)k〈ψ|c(w̄)|ψ〉 = pf(M [w̄]).

Lemma 4.5. For every w ∈ {0, 1}n with k = |w|,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉

n∏
j=1

〈0n|U †Zwj
j U |0n〉

]
=

1

(2k − 1)!!
E

U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
where (−1)!! = 1.

Proof. Let w ∈ {0, 1}n with k = |w|. Let L = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}. For every
σ ∈ S2k, define

σ(L) = {{σ(1), σ(2)}, {σ(3), σ(4)}, . . . , {σ(2k − 1), σ(2k)}}.

Let Π be the set of all partitions of {1, 2, . . . , 2k} into k parts, each part of size 2. It is easy

to see that |Π| = (2k)!
2kk!

= (2k − 1)!!. For every α ∈ Π, define Pα = {σ ∈ S2k : σ(L) = α}. Let
M be a 2k× 2k skew-symmetric matrix. We see that {Pα : α ∈ Π} is a partition of S2k into
(2k − 1)!! parts such that for every α ∈ Π and σ, τ ∈ Pα,

sgn(σ)
k∏
j=1

Mσ(2j−1),σ(2j) = sgn(τ)
k∏
j=1

Mτ(2j−1),τ(2j).

For every α ∈ Π, let ᾱ denote an arbitrary representative in Pα. Then by the skew-symmetry
of M , we get that

pf(M) =
1

2kk!

∑
α∈Π

∑
σ∈Pα

sgn(σ)
k∏
j=1

Mσ(2j−1),σ(2j) =
∑
α∈Π

sgn(ᾱ)
k∏
j=1

Mᾱ(2j−1),ᾱ(2j).

By Lemma 4.4,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
= E

R∼U(O(2n))

[
pf((RM0R

T )[w̄])2
]

=
∑
ᾱ∈Π

E
R∼U(O(2n))

[
pf((RM0R

T )[w̄])sgn(ᾱ)
k∏
j=1

((RM0R
T )[w̄])ᾱ(2j−1),ᾱ(2j)

]
.
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For every α ∈ Π, there exists a permutation matrix Qᾱ ∈ O(2n) such that

E
R∼U(O(2n))

[
pf((RM0R

T )[w̄])sgn(ᾱ)
k∏
j=1

((RM0R
T )[w̄])ᾱ(2j−1),ᾱ(2j)

]
= E

R∼U(O(2n))

[
pf((RQᾱM0Q

T
ᾱR

T )[w̄])
k∏
j=1

((RQᾱM0Q
T
ᾱR

T )[w̄])2j−1,2j

]
= E

R∼U(O(2n))

[
pf((RM0R

T )[w̄])
k∏
j=1

((RM0R
T )[w̄])2j−1,2j

]
.

Therefore,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
=(2k − 1)!! E

R∼U(O(2n))

[
pf((RM0R

T )[w̄])
k∏
j=1

((RM0R
T )[w̄])2j−1,2j

]
=(2k − 1)!! E

U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉

n∏
j=1

〈0n|U †Zwj
j U |0n〉

]
.

While Lemma 4.5 already implies the non-negativity of the EBCG expression for random
fermionic Gaussian unitaries, we will be able to derive its exact value because Lemma 4.5
reduces computing the fermionic Gaussian EBCG expression to computing a second-moment
expression of random fermionic Gaussian unitaries. At this point, it would be really nice
if U(FGn) forms an exact unitary 2-design (recall Definition 2.1) mirroring that of random
Clifford unitaries. However, our results below will imply the opposite. In fact, it is known
that no random unitary distributions over the set of fermionic Gaussian unitaries can form
an exact unitary 2-design in the sense of Definition 2.1 [BG17]. Inspired by a property of
random Clifford unitaries known as Pauli mixing, Bravyi and Gosset defined a condition
called Majorana mixing as an alternative for the 2-design property [BG17].

Definition 4.1 ([BG17]). A random unitary distribution D over the set of all fermionic
Gaussian unitaries is said to be Majorana mixing if for every w ∈ {0, 1}2n with k = |w|,

E
U∼D

[
(U ⊗ U)(c(w)⊗ c(w))(U † ⊗ U †)

]
=

(
2n

k

)−1 ∑
x∈{0,1}2n:|x|=k

c(x)⊗ c(x).

Lemma 4.6. U(FGn) is Majorana mixing.

Proof Sketch. We provide a proof outline and leave some of the details to the reader. Similar
to the proof of Lemma 2.1, We can show using the invariance property of U(FGn) that the
superoperator

ΦFG : A 7→ E
U∼U(FGn)

[
(U ⊗ U)A(U † ⊗ U †)

]
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is an orthogonal projector and that for every x, y ∈ {0, 1}2n such that x 6= y,

E
U∼U(FGn)

[
(U ⊗ U)(c(x)⊗ c(y))(U † ⊗ U †)

]
= 0. (4.9)

To show (4.9), for the case where |x| and |y| are both odd, we can consider j ∈ [2n] such
that xj = 1 and yj = 0. Then cjc(x)cj = c(x) and cjc(y)cj = −c(y). Thus,

E
U∼U(FGn)

[
(U ⊗ U)(c(x)⊗ c(y))(U † ⊗ U †)

]
= E

U∼U(FGn)

[
((Ucj)⊗ (Ucj))(c(x)⊗ c(y))((Ucj)

† ⊗ (Ucj)
†)
]

=− E
U∼U(FGn)

[
(U ⊗ U)(c(x)⊗ c(y))(U † ⊗ U †)

]
,

and this implies that

E
U∼U(FGn)

[
(U ⊗ U)(c(x)⊗ c(y))(U † ⊗ U †)

]
= 0.

The other cases can be handled analogously. Let w ∈ {0, 1}2n with k = |w|. The fact that
ΦFG is a projector and (4.9) together imply that there exist coefficients ax ∈ C, x ∈ {0, 1}2n

such that

E
U∼U(FGn)

[
(U ⊗ U)(c(w)⊗ c(w))(U † ⊗ U †)

]
=

∑
x∈{0,1}2n

axc(x)⊗ c(x) (4.10)

and ∑
x∈{0,1}2n

ax = 1.

In the next step, we want to show that for an arbitrary n-qubit fermionic Gaussian unitary
U ,

Uc(w)U † =
∑

x∈{0,1}2n:|x|=k

βxc(x) (4.11)

for some coefficients βx ∈ C. Since every fermionic Gaussian unitary can be decomposed into
a product of the two types of primitive unitaries described at the beginning of this section,
it suffices to show (4.11) for those unitaries. Let U be defined by

UcjU
† = (cos θ)cj + (sin θ)ck and UckU

† = −(sin θ)cj + (cos θ)ck

for some j, k ∈ [2n], j 6= k and some θ ∈ [0, 2π). For the case where wj = 1 and wk = 1, we
have

Uc(w)U † = ±
∏

j∈Supp(w)

UcjU
†

= ±
( ∏
p∈Supp(w):p 6=j,k

cp

)
((cos θ)cj + (sin θ)ck)(−(sin θ)cj + (cos θ)ck)

= ±c(w)
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where the ± phases are determined by the order in which the products are taken. The other
cases can be handled analogously. Then, (4.10) and (4.11) together imply that

E
U∼U(FGn)

[
(U ⊗ U)(c(w)⊗ c(w))(U † ⊗ U †)

]
=

∑
x∈{0,1}2n:|x|=k

axc(x)⊗ c(x).

To workout the values of ax, we can use a symmetrization argument. We recall that S2n

denotes the group of all permutations of 2n elements. For every π ∈ S2n, π can be represented
by a permutation matrix Rπ ∈ O(2n) which defines a fermionic Gaussian unitary Vπ such
that for every x ∈ {0, 1}2n, Vπc(x)V †π = c(x′) where x′ is obtained from x by permuting the
bits of x according to π. Thus, by the invariance property of U(FGn),

E
U∼U(FGn)

[
(U ⊗ U)(c(w)⊗ c(w))(U † ⊗ U †)

]
=

1

(2n)!

∑
π∈S2n

(Vπ ⊗ Vπ) E
U∼U(FGn)

[
(U ⊗ U)(c(w)⊗ c(w))(U † ⊗ U †)

]
(V †π ⊗ V †π )

=
1

(2n)!

∑
π∈S2n

∑
x∈{0,1}2n:|x|=k

ax(Vπ ⊗ Vπ)(c(x)⊗ c(x))(V †π ⊗ V †π )

=
1

(2n)!

∑
y∈{0,1}2n:|y|=k

 ∑
x∈{0,1}2n:|x|=k

ax
(2n)!(

2n
k

)
 c(y)⊗ c(y)

=

(
2n

k

)−1 ∑
y∈{0,1}2n:|y|=k

c(y)⊗ c(y).

Theorem 4.5. For every w ∈ {0, 1}n with k = |w|,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
=

(
n
k

)(
2n
2k

) .
Proof. Let w ∈ {0, 1}n with k = |w|. Then by Lemma 4.6,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
=(−i)2k E

U∼U(FGn)

[
〈02n|(U † ⊗ U †)(c(w̄)⊗ c(w̄))(U ⊗ U)|02n〉

]
=(−i)2k

(
2n

2k

)−1 ∑
y∈{0,1}2n:|y|=2k

〈02n|(c(y)⊗ c(y))|02n〉

=

(
n
k

)(
2n
2k

) .
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Lemma 4.6 and Theorem 4.5 may find other independent applications. For example,
Theorem 4.5 implies that U(FGn) is not an exact unitary 2-design as otherwise,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉2

]
should equal 1

2n+1
per Corollary 2.3. Finally, we arrive at the exact value of the EBCG

expression for uniformly random fermionic Gaussian unitaries.

Corollary 4.1. For every w ∈ {0, 1}n with k = |w|,

E
U∼U(FGn)

[
〈0n|U †Z(w)U |0n〉

n∏
j=1

〈0n|U †Zwj
j U |0n〉

]
=

(2(n− k)− 1)!!

(2n− 1)!!

where (−1)!! = 1.

Proof. It easily follows from Lemma 4.5 and Theorem 4.5 with the double factorial identity
(2k − 1)!! = (2k)!

2kk!
for every k ≥ 1.

We leave for future work to analyze the EBCG expression w.r.t random fermionic Gaus-
sian circuits, which are random quantum circuits composed of random 2-qubit fermionic
Gaussian gates.
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Appendix A

Useful Algebraic Identities

Lemma A.1. ∑
z∈{0,1}n

|z〉〈z| ⊗ |z〉〈z| = 1

2n

∑
w∈{0,1}n

Z(w)⊗ Z(w)

Proof. First recall that

|00〉〈00| = (|0〉〈0|)⊗ (|0〉〈0|) =

(
I + Z

2

)
⊗
(
I + Z

2

)
=
I ⊗ I + I ⊗ Z + Z ⊗ I + Z ⊗ Z

4

and

|11〉〈11| = (|1〉〈1|)⊗ (|1〉〈1|) =

(
I − Z

2

)
⊗
(
I − Z

2

)
=
I ⊗ I − I ⊗ Z − Z ⊗ I + Z ⊗ Z

4
.

Thus, ∑
z∈{0,1}n

(|z〉〈z|)A ⊗ (|z〉〈z|)B =
∑

z∈{0,1}n
(|z〉A ⊗ |z〉B)(〈z|A ⊗ 〈z|B)

= (|0A0B〉〈0A0B|+ |1A1B〉〈1A1B|)⊗n

=

(
IA ⊗ IB + ZA ⊗ ZB

2

)⊗n
=

1

2n

∑
w∈{0,1}n

Z(w)A ⊗ Z(w)B.

Lemma A.2.∑
z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
( n⊗

j=1

(|zj〉〈zj|)j
)

=
1

2n

∑
w∈{0,1}n

Z(w)⊗
( n⊗

j=1

Z
wj
j

)
Proof. ∑

z∈{0,1}n

( n⊗
k=1

|zk〉〈zk|
)
⊗
( n⊗

j=1

(|zj〉〈zj|)j
)
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=
n⊗
j=1

((|0〉〈0|)⊗ (|0〉〈0|)j + (|1〉〈1|)⊗ (|1〉〈1|)j)

=
n⊗
j=1

((
I + Z

2

)
⊗
(
Ij + Zj

2

)
+

(
I − Z

2

)
⊗
(
Ij − Zj

2

))

=
n⊗
j=1

I ⊗ Ij + Z ⊗ Zj
2

=
1

2n

∑
w∈{0,1}n

Z(w)⊗
( n⊗

j=1

Z
wj
j

)

A.1 Products of Orthogonal Projectors

Lemma A.3. For every orthogonal projector P and Q, and every state |x〉,

(a) if PQ|x〉 = |x〉, then P |x〉 = |x〉 and Q|x〉 = |x〉;

(b) the set of non-trivial eigenvalues of PQ and PQP are the same counting multiplicity;

(c) the set of eigenvalues of PQ fall in [0, 1].

Proof.

(a) Since P and Q are orthogonal projectors, PQ|x〉 = |x〉 =⇒ PQ|x〉 = P |x〉 =⇒
P |x〉 = |x〉. Since ‖|x〉‖ = ‖PQ|x〉‖ ≤ ‖Q|x〉‖ ≤ ‖|x〉‖, Q|x〉 = |x〉.

(b) Let λ 6= 0 such that PQ|x〉 = λ|x〉. Then PQ|x〉 = λP |x〉, so PQP |x〉 = 1
λ
PQPQ|x〉 =

λ|x〉. Let λ 6= 0 such that PQP |x〉 = λ|x〉. Then PQP |x〉 = λP |x〉 =⇒ P |x〉 =
|x〉 =⇒ PQ|x〉 = λ|x〉.

(c) Let PQ|x〉 = λ|x〉. Then |λ| · ‖|x〉‖ = ‖PQ|x〉‖ ≤ ‖|x〉‖ =⇒ |λ| ≤ 1. Part 2 implies
λ ≥ 0.
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