
List Coloring Some Classes of 1-Planar
Graphs

by

Sam Barr

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Sam Barr 2021

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Sam Barr is the sole author of Chapters 1, 2, 6, and 7, which were written under the
supervision of Professor Therese Biedl and were not written for publication.

Sam Barr is the sole author of Chapter 3, which was written under the supervision
of Professor Therese Biedl. Portions of this chapter are based on unpublished work by
Professor Therese Biedl, Professor Anna Lubiw, and Owen Merkel [15].

Chapters 4 and 5 were joint work with Professor Therese Biedl and were manuscripts
written for publication, see [9, 10].

iii

Abstract

In list coloring we are given a graph G and a list assignment for G which assigns to
each vertex of G a list of possible colors. We wish to find a coloring of the vertices of G
such that each vertex uses a color from its list and adjacent vertices are given different
colors. In this thesis we study the problem of list coloring 1-planar graphs, i.e., graphs
that can be drawn in the plane such that any edge intersects at most one other edge. We
also study the closely related problem of simultaneously list coloring the vertices and faces
of a planar graph, known as coupled list coloring.

We show that 1-planar bipartite graphs are list colorable whenever all lists are of size
at least four, and further show that this coloring can be found in linear time. In pursuit
of this result, we show that the previously known edge partition of a 1-planar graph into
a planar graph and a forest can be found in linear time.

A wheel graph consists of a cycle of vertices, all of which are adjacent to an additional
center vertex. We show that wheel graphs are coupled list colorable when all lists are of size
five or more and show that this coloring can be found in linear time. Possible extensions
of this result to planar partial 3-trees are discussed.

Finally, we discuss the complexity of list coloring 1-planar graphs, both in parameterized
and unparameterized settings.

iv

Acknowledgements

I would like to thank Professor Therese Biedl for her support and guidance during my
graduate studies. I would also like to thank Professor Anna Lubiw and Professor Luke
Postle for agreeing to be readers for my thesis. Many thanks to Owen Merkel for sharing
his manuscript.

I am continuously grateful for the support of my family in all my endeavors.

v

Table of Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Our Results and Organization . 4

2 Definitions 5

2.1 Graphs . 5

2.2 Graph Drawing . 7

2.3 Graph Coloring . 14

2.4 Width Parameters . 16

3 4-List Coloring 1-Planar Bipartite Graphs in Linear Time 20

3.1 All 1-Planar Bipartite Graphs are 4-List Colorable 21

3.2 Finding the 4-List Coloring Efficiently . 23

3.2.1 Orienting the Edges . 24

3.2.2 (∆++1)-List Coloring Bipartite Graphs Efficiently 25

3.3 Complexity of 3-List Coloring 1-Planar Bipartite Graphs 30

vi

4 Partitioning the Edges of a 1-Planar Graph Efficiently 36

4.1 Ackerman’s Proof . 37

4.2 An Alternate Existence Proof . 39

4.3 Efficient Implementation . 44

4.3.1 Data Structure Interface . 44

4.3.2 Preprocessing . 45

4.3.3 Handling the Quadrangles around a Vertex 48

4.3.4 Putting it All Together . 50

5 Coupled List Coloring Planar Graphs of Small Treewidth 54

5.1 Simple Coupled Choosability Results . 54

5.2 Treewidth of Coupled Graphs . 57

5.3 Coupled Graphs and Optimal 1-Planar Graphs 61

5.4 Coupled List Coloring Subgraphs of Wheels 66

5.5 Towards Planar Partial 3-Trees . 72

6 Complexity of List Coloring 76

6.1 Definitions . 77

6.2 Para-NP-Hard problems . 78

6.3 Problems in XP . 79

6.4 W[1]-Hard Problems . 80

6.5 Problems in FPT . 83

6.6 Πp
2-Complete Problems . 84

7 Conclusion 88

References 91

vii

List of Figures

1.1 An example of a 1-planar graph. We have also assigned a list of three
possible colors to each vertex of the graph, with the bold color in each list
denoting a valid coloring from this list assignment. 3

2.1 Examples of graphs drawn in the plane. 7

2.2 Examples of triangular faces. The three angles in each face have been marked
with solid arrows, while edge-sides have been marked with dotted arrows.
Note that the face on the right has only two vertices on its boundary. . . . 8

2.3 A crossing point p of a 1-plane graph, with the kite edges shown as dotted
edges. 11

2.4 A planar graph, its dual, and the graph induced by the intermediate edges.
Note the dual parallel edges resulting from the cutting pairs of edges, and
the parallel intermediate edges resulting from the cut vertices. 12

2.5 Examples of faces of a planar graph, with the dual vertex, dual edges, and
intermediate edges drawn in. Observe that all new cells in f are 3-cells. . 13

2.6 A graph G (left) with a tree decomposition (right) of width two. One con-
firms that the tree decomposition follows the three rules of Definition 2.4.1.
As G is not a tree, we know that tw(G) = 2. 17

2.7 The graph K4 (left) with a branch decomposition (right). Two arcs in the
branch decomposition have been labeled with their respective separator.
This branch decomposition demonstrates that K4 has branchwidth at most
three. (In fact, it is exactly three.) . 18

viii

3.1 A 1-planar bipartite graph that is not 3-choosable. The numbers on each
vertex represent the list assignment L for each vertex. The red (solid ellipse)
vertices and blue (rectangular) vertices form one part of the bipartite graph,
and the black (dashed ellipse) vertices form the other part. The blue (rect-
angular) vertices, labeled x and y, are connected to all of the black (dashed
ellipse) vertices. Next to each red (solid ellipse) vertex we have labelled the
pair of colors for x and y that that vertex blocks. 30

3.2 The construction in Lemma 3.3.3. 32

3.3 Transformation applied to each edge in the reduction of Theorem 3.3.5. . 33

4.1 The construction used in Lemma 4.2.1. (The face f ′ is not shown.) New
vertices are represented with circles, and new edges are represented with
dashed edges. 40

4.2 Some configurations where we contract z1 and z3. Note that in (a), the
quadrangle f is the outer face. 41

4.3 The gadget added to every quadrangle of H, shown for both a quadrangle
with four distinct vertices on its boundary (left) and one with three distinct
vertices on its boundary (right). 45

5.1 The graph K4 (left) and subgraph H (right). 55

5.2 A vertex x resulting from subdividing the edge uv, along with the two faces
f1 and f2 adjacent to x. 56

5.3 A primal edge xy in the coupled graph of a plane graph G (left), and the
transformation applied to the leaf of the branch decomposition of G con-
taining xy used in Theorem 5.2.3 (right). 59

5.4 A cylinder graph Z8,4 (left), along with a cylinder graph Z16,3 shown as a
subgraph of C(Z8,4) (right). 60

5.5 A grid graph R4,7 (left), along with a grid graph R7,6 shown as a subgraph
of C(R4,7). 60

5.6 A vertex d ∈ D in Q (left), along with its neighbors. From construction of
Q, each quadrangle adjacent to d corresponds to a crossing pair of C (shown
with dotted edges) which we use to find the face f of G (right). 65

5.7 The graphW9 (left) and X9 (right). Circled numbers indicate a lower bound
on the list lengths in L′ defined in the cases below. 67

ix

5.8 The graph X9. Circled numbers indicate a lower bound on the list lengths
in L′′. Solid edges show the graph X ′9. 69

5.9 The graphs X5 and X6. 70

5.10 The graph X9. Some of the vertices have been labelled with the 4-list as-
signment defined in the proof of Theorem 5.4.2. 71

5.11 A planar partial 3-tree. Dotted edges show the Apollonian network G. We
can see that G is an Apollonian network: Start with the triangle on the outer
face. Stellate this triangle with the vertex labeled with 1. Then stellate one
of the new faces with the vertex labeled with 2. Continue this process with
the vertices in the order they are labeled. 72

5.12 A Halin-graph G (black solid; the tree is bold), and the dual graph G∗ (blue
dashed) which is a stellated outerplanar graph (the outerplanar graph is
bold). Taking both, and adding the intermediate edges (red dotted) gives
graph C(G). 74

5.13 An IO graph G consists of an outerplanar graph (circles) and an independent
set (squares). Dotted edges are added to obtain G+, and some of the wheels
used to build G+ are shaded. 74

6.1 The relationship between the parameterized complexity classes para-NP, XP,
W[1], and FPT. Figure is based on [33]. 78

6.2 A graph with a proper 4-coloring (left), with the constructed instance of list
coloring (right). On the left vertices are labeled with a, b, c, . . ., and color
classes are denoted by the shape and color of the vertex. Figure is based
on [32]. 81

6.3 A 1-planar graph G constructed by taking four disjoint K4s, and adding
two vertices adjacent to every vertex in one of the K4s. We also give a list
assignment for G where every list is of size 5, except for one list which is of
size 4. 85

x

List of Tables

3.1 The complexity of k-Coloring for planar graphs compared to the com-
plexity of k-ListColoring for 1-planar bipartite graphs. 35

4.1 All possible cases for the quadrangle f with facial circuit 〈z0, z1, z2, z3〉. We
either indicate which case in the proof of Theorem 4.2.3 would be chosen,
or indicate the lemma that demonstrates that this case is impossible. . . . 43

6.1 Known results and open problems for the complexity of k-Choosability
on planar, 1-planar, and optimal 1-planar multigraphs. 87

xi

Chapter 1

Introduction

Graphs are a fundamental data structure in computer science, with many applications
when modeling roadway maps, social networks, and telephone lines. A graph consists of
vertices (also known as nodes) and edges between the vertices.

In graph coloring, one wishes to assign to every vertex of a graph a color such that
adjacent vertices have different colors, using as few colors as possible. A graph is said to
be k-colorable when it can be colored using k colors, and the chromatic number of a graph is
the least k such that the graph is k-colorable. Graph coloring is a very well studied problem
in graph theory and computer science [57, 59]. There are many practical applications of
graph coloring, including register allocation in compilers [22], job scheduling [61], and radio
frequency assignment [44].

List coloring is a generalization of graph coloring where every vertex of the graph is
given a list of colors that it can use. The problem of list coloring was first studied by
Vizing [86] and by Erdős, Rubin, and Taylor [29]. A graph is said to be k-choosable if it
is colorable for any choice of list of size k for each vertex. The list chromatic number of a
graph is the least k such that the graph is k-choosable. It is easy to see that if a graph is
k-choosable then it is k-colorable—simply assign each vertex the same list of k colors. This
does not work the other way around, and in general the list chromatic number of a graph
is not bounded by the chromatic number of a graph. As an example, bipartite graphs are
all 2-colorable, but have an unbounded list chromatic number. (This was observed by both
Erdős et al. and by Vizing in the above papers.)

Vizing proved that the only cycles that are 2-choosable are the even cycles. Erdős
et al. completely characterized the 2-choosable graphs. These graphs can be recognized

1

and colored in linear time. Since the introduction of the problem, list coloring has been
extensively studied, see e.g. [3, 54, 70, 71, 72, 89].

In this thesis, we study list coloring in special graphs, namely those that have a par-
ticular kind of drawing. We first recall that planar graphs are graphs that can be drawn
in the plane with a point for each vertex and a curve between the endpoints for each edge
such that the curves for each edge do not cross over each other. Planar graphs have been
a popular research topic for many years, as many problems that are difficult on general
graphs become easy on planar graphs (see e.g. [66]). In particular, the colorability and
choosability of planar graphs is well studied. Famously, it was proved that every planar
graph can be colored with four colors [4, 5, 6]. This is tight, as the complete graph K4 is
planar and is not 3-colorable. The original proof of 4-colorability led to a O(n4) time algo-
rithm, which was later improved to O(n2) time [74]. Thomassen proved that every planar
graph is 5-choosable [82], and his proof leads to an O(n2) time algorithm to find the color-
ing. This was later improved to linear time [68]. Thomassen’s result is also tight [63, 87].
There are many other results on the choosability of planar graphs under restrictions on
the lengths of short cycles, see e.g. [40, 49, 60, 69, 83, 88].

The main graph class we study in this thesis is the class of 1-planar graphs, a gener-
alization of planar graphs where in the drawing of the graph in the plane we allow any
edge to intersect at most one other edge. (A formal definition of “drawing” will be given
in Chapter 2.) These graphs were first studied by Ringel [73], who was interested in the
problem of simultaneously coloring the vertices and faces of a planar graph, also known
as coupled coloring. (The graph resulting from this coloring problem is a so-called optimal
1-planar graph.) Since Ringel’s work, and especially in recent years, research interest in
1-planar graphs has grown greatly. See [56] for an annotated bibliography from 2017 on
1-planar graphs, and [47] for a book from 2020 that covers 1-planar graphs, and more
generally the field of so-called near planar graphs.

In his original paper, Ringel [73] showed that every 1-planar graph is 7-colorable. This
was later improved to 6-colorable by Borodin [19]. (See [20] for an improved proof of this
result by Borodin that is written in English.) The latter proof leads to a polynomial time
algorithm to find the coloring. Furthermore, 6-colorability is tight for 1-planar graphs:
The complete graph K6 is 1-planar, and is not 5-colorable. Archdeacon [7] studied coupled
colorability, and showed that planar bipartite graphs are 5-coupled colorable. Berman and
Shank [13] characterized the planar graphs that are 4-coupled colorable.

It is not hard to see that any 1-planar graph is 8-choosable, since every 1-planar graph
has a vertex of degree at most 7 (see also Corollary 2.3.2). It is unknown whether 1-planar
graphs are 7-choosable. Wang and Lih [90] studied the problem of simultaneously list

2

{1,2, 3}

{2, 3,4}

{1, 2, 4}

{3, 4,5}

{1, 2,3}

Figure 1.1: An example of a 1-planar graph. We have also assigned a list of three possible
colors to each vertex of the graph, with the bold color in each list denoting a valid coloring
from this list assignment.

coloring the vertices and faces of a graph (also known as coupled choosability) and show
that lists of size 7 suffice. In particular this shows that so-called optimal 1-planar graphs
are 7-choosable. Their proof leads to a polynomial time algorithm to find the coloring.
It is unknown if this result is tight. Very recently, Yang et al. [91] showed that so-called
IC-planar graphs (a subclass of 1-planar graphs) are 6-choosable.

We list here a few more results for coupled choosability of subclasses of planar graphs.
These in turn imply list coloring results for subclasses of 1-planar graphs. As mentioned
above, Wang and Lih [90] show that every planar graph is 7-coupled choosable. They
also prove other coupled choosability results: They show that maximal planar graphs and
planar graphs of maximum degree three are 6-coupled choosable. They also prove that all
K4-minor free graphs are 5-coupled choosable. Hetherington [45] provides another proof
of the same K4-minor free graph result, and also proves 5-coupled choosability for classes
of so-called near outerplanar graphs.

There are numerous variations on coloring problems that impose further conditions.
We list here a few results that specifically studied such results for 1-planar graphs, but do
not otherwise consider such variations in this thesis. Zhang and Li [92] studied dynamic
list colorings of 1-planar graphs, where at least two distinct colors must appear in the
neighborhood of a vertex with two or more neighbors. List edge coloring, list total coloring
(simultaneous coloring of edges and vertices), and other variations have also been studied
for 1-planar graphs [79, 80, 93, 94].

3

1.1 Our Results and Organization

In this thesis, we study list coloring on several classes of 1-planar graphs. To do so, we first
review in Chapter 2 definitions and notation for graph theory, graph drawing, and graph
coloring that will be used in this thesis. We also define the major graph classes that will
be discussed throughout the thesis. Then we show the following:

• In Chapter 3 we show that 1-planar bipartite graphs are 4-choosable. The existence
of such a coloring follows quite easily from known results for list coloring bipartite
graphs; our main result here is to show that this coloring can be found in linear time.
We also show that 4-choosability is tight; in particular testing whether a 1-planar
bipartite graph with given lists of length 3 has a valid coloring is NP-hard.

• A crucial ingredient for the results of Chapter 3 is the ability to partition the edges of
a 1-planar graph into a planar graph and a forest. It was previously known that such
a partition exists, but it was not known to be doable in linear time. In Chapter 4 we
give a linear time algorithm to find this edge partition.

• In Chapter 5 we study the problem of coupled choosability for planar graphs of small
treewidth. In doing so, we study the structure of coupled graphs, in particular upper
bounding their treewidth and characterizing their relationship to optimal 1-planar
graphs. We then characterize the coupled choosability of wheel graphs, doing so with
an eye towards the coupled choosability of planar partial 3-trees. We then discuss
possible extension of our results to various subclasses of planar partial 3-trees.

• In Chapter 6 we give many results on the complexity of list coloring 1-planar graphs
and of coupled choosability, focusing mainly on these problems when parameterized
by treewidth.

We close in Chapter 7 with a summary of the results of this paper, and discuss several
open questions.

4

Chapter 2

Definitions

In this chapter we go over notation and terminology for graphs and graph coloring that
will be used throughout this thesis.

2.1 Graphs

A graph G is a structure consisting of a set of vertices V (G) and a collection of edges
E(G). Each edge e ∈ E(G) consists of a pair of vertices x, y ∈ V (G), and we write e = xy.
The vertices x and y are the endpoints of e, and x and y are said to be adjacent. The
degree d(x) of a vertex x is the number of edges e such that x is an endpoint of e. Note
that we specifically count the number of edges, not the number of adjacent vertices. When
it would not be clear from context, we use dG(x) to denote the degree of vertex x in the
graph G.

An edge e ∈ E(G) is a loop if both endpoints of e are the same vertex; i.e. e = xx for
some vertex x ∈ V (G). Two edges e, e′ ∈ E(G) are parallel if they both have the same
endpoints, i.e. e = xy and e′ = xy for two vertices x, y ∈ V (G). A graph with no loops
and no parallel edges is known as a simple graph, and a graph that is permitted to have
loops and parallel edges is known as a multigraph. Note that in a multigraph it is possible
for the degree of a vertex to be strictly larger than the number of adjacent vertices. A path
is a list of vertices x1, x2, . . . , xk such that xixi+1 is an edge for 1 ≤ i ≤ k − 1 and xi 6= xj
when i 6= j. A walk is a path where we allow repeating vertices. Two vertices x, y ∈ V (G)
are connected if there is a path (equivalently, if there is a walk) x, v1, . . . , vk, y. A graph G
is connected if all vertices in G are connected, and disconnected otherwise. More generally,

5

a graph G is k-vertex-connected if G remains connected after removing any k− 1 vertices.
Similarly, G is k-edge-connected if G remains connected after removing any k − 1 edges.
A cut vertex of a graph G is a vertex x ∈ V (G) such that removing x from G creates a
disconnected graph. A bridge is an edge e ∈ E(G) such that removing e from G creates a
disconnected graph.

Except where explicitly stated, all graphs in this thesis are connected. In certain
chapters we will assume simplicity; we will make it clear when it is assumed. We will use
the variable n to refer to the number of vertices in a graph, and m to refer to the number
of edges in a graph. (The graph they refer to will be clear from context.)

A cycle is a list of vertices x1, x2, . . . , xk such that xi 6= xj when i 6= j, xixi+1 is an edge
for 1 ≤ i ≤ k − 1, and additionally x1xk is an edge. A connected graph with no cycles is
a tree, and a disconnected graph with no cycles is a forest. A circuit is a cycle where we
allow repeating vertices.

The complete graph Kn is the simple graph with n vertices where all vertex-pairs are
adjacent: for any two vertices x, y ∈ V (Kn) there is an edge xy ∈ E(Kn). A graph G is
bipartite if V (G) can be partitioned into two sets A,B such that for any edge e ∈ E(G),
one endpoint of e is in A and the other is in B. The complete bipartite graph Ka,b is the
simple bipartite graph with partition A,B where |A| = a and |B| = b such that for any
vertices x ∈ A and y ∈ B, there is an edge xy ∈ E(Ka,b).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), and we write
H ⊆ G. The graph G is a supergraph of H. Let A ⊆ V (G). By G[A] we denote the sub-
graph of G with vertex set A and edge set {e = xy ∈ E(G) : x, y ∈ A}. We say that G[A] is
an induced subgraph of G. For an edge set B ⊆ E(G), we similarly define an induced sub-
graph G[B] with edge set B and vertex set {x ∈ V (G) : x is the endpoint of an edge in B}.
For a vertex x ∈ V (G), we use G− x to denote the induced subgraph G[V (G) \ {x}], and
similarly for an edge e ∈ E(G) we define G− e := G[E(G) \ {e}].

An independent set in a graph G is a set of vertices A ⊆ V (G) such that for any vertices
a, b ∈ A, we have that a and b are not adjacent in G.

Let G be a graph and let e = xy be an edge of G. We can subdivide the edge e by
deleting e from G and adding a new vertex z /∈ V (G) with two edges xz and zy. If H is
obtained from G by subdividing edges of G, then H is a subdivision of G. Let a, b be two
vertices of G. We contract a and b by creating a new vertex c, adding an edge vc for each
edge va and vb that exists, and deleting a and b. If a and b were adjacent, then c has a
loop, and if a and b were both adjacent to a vertex v, then c will have parallel edges to v.
Note that we permit contracting vertices that are not adjacent. If G has an edge e = ab,
then we write G/e for the graph obtained by contracting a and b. We say that a graph H

6

(a) The graph K4, a planar
graph.

(b) The graph K6, a 1-planar
graph.

(c) The graph K7, which is
not 1-planar.

Figure 2.1: Examples of graphs drawn in the plane.

is a minor of a graph G if H can be obtained from G by deleting edges and vertices and
contracting edges (here we delete loops and parallel edges resulting from the contractions).
If G does not contain H as a minor, then we say that G is H-minor free.

A directed graph is a graph D where for any edge e = xy ∈ E(D), we distinguish x to
be the tail of e, and y to be the head of e. In this way the edge e has a direction, and we
say that e goes from x to y. The outdegree of a vertex x, denoted d+(x), is the number
of directed edges xy ∈ E(G) coming out of x. We call x a sink if d+(x) = 0. Given an
undirected graph G, we can construct a directed graph D by assigning to each undirected
edge e = xy ∈ E(G) one of x, y to be the head and the other to be the tail. This is known
as orienting the edge e. The directed graph D is an orientation of G.

We assume that all graphs are given with the following data structure: Every vertex v
has an incidence list listing all edges incident to v. This is a doubly linked list that knows
its length. Each edge knows its two endpoints and has pointers to its to occurrences in the
incidence lists.

2.2 Graph Drawing

A common way to visualize a graph is to draw it in the plane, with the vertices represented
by dots, and the edges drawn as curves connecting two dots. Formally, a drawing Γ for a
graph G is a function which maps each vertex x ∈ V (G) to a distinct point Γ(x) ∈ R2,
and maps each edge e = xy ∈ V (G) to a curve Γ(e) whose endpoints are Γ(x) and Γ(y)
and whose interior does not intersect Γ(z) for any vertex z. See Figure 2.1 for examples of
graphs drawn in the plane.

7

Figure 2.2: Examples of triangular faces. The three angles in each face have been marked
with solid arrows, while edge-sides have been marked with dotted arrows. Note that the
face on the right has only two vertices on its boundary.

In Figure 2.1(a), we see that the edges have been drawn such that the curves for any two
edges do not intersect each other (except at common endpoints) whereas in Figures 2.1(b)
and 2.1(c) we see that the bold edges cross over other edges. A graph G that can be drawn
with no edges intersecting (except at common endpoints) is known as a planar graph. It is
possible to test whether a graph is planar in linear time [48]. There could be many ways
to draw G in the plane such that no edges intersect, so if one particular drawing Γ of G
in the plane is fixed we call G a plane graph. The maximal regions of R2 \ Γ are known as
the faces of G, denoted F (G). The unique face whose region is unbounded is known as the
outer face. (The plane graph in Figure 2.1(a) has four faces.) If a graph G can be drawn
such that every vertex lies on the boundary of the outer face, then G is an outerplanar
graph. We say that two faces f, f ′ ∈ F (G) are adjacent if they share an edge on their
boundaries.

For algorithmic purposes, we require an efficient way to store a drawing of a planar
graph in the plane. We do so via rotation systems. A rotation system of a graph G assigns
to each vertex x ∈ V (G) a cyclic order πx of the edges incident to x. We can see that a
planar drawing of a plane graph G specifies a rotation system of G, with the cyclic order
πx of a vertex x listing the adjacent vertices in clockwise order. Likewise, given a rotation
system of a graph G that comes from a planar drawing, it is possible to recover the faces of
a planar drawing of G (see e.g. [64] for details). If along with the rotation system an outer
face is specified, we can fully recover a planar drawing of G that has this rotation system
and outer face. A planar embedding of a graph G is this rotation system and specified
outer face.

Let G be a plane graph given with planar drawing Γ. For an edge e = xy, while walking
from x to y, we have a face fL to the left side and a face fR to the right side (possibly
fL = fR). We say that fL and fR are incident to e, and call these incidences edge sides.
For a face f of G, we define the degree of f to be the number of edge-sides on the boundary
of f . We also give another, equivalent definition for the degree of a face: For a vertex x of

8

G with incident cyclic order of edges e0, . . . , ed−1, an angle is a triple 〈ei, f, ei+1〉 for some
face f , i ∈ {0, . . . , d − 1}, and addition modulo d such that f is on the right edge side of
ei and the left edge side of ei+1 when traversing these edges away from x. The degree of
a face is the number of angles contained in a face. We note that in a plane multigraph,
the number of vertices on the boundary of a face is not always the same as the degree
of a face. (See Figure 2.2.) We define a few special kinds of faces: A face of degree 2 is
a bigon, a face of degree 3 is a triangle, and a face of degree 4 is a quadrangle. A plane
(multi)triangulation is a plane (multi)graph G where every face is a triangle, and a plane
(multi)quadrangulation is a plane (multi)graph G where every face is a quadrangle. Any
plane (multi)quadrangulation is bipartite [81].

The Euler characteristic relates the number of vertices, edges, and faces in a planar
graph. See e.g. [66] for a proof.

Theorem 2.2.1. Let G be a connected (not necessarily simple) plane graph with n vertices,
m edges, and f faces. Then n−m+ f = 2.

From the Euler characteristic, the following lemma can be derived.

Lemma 2.2.2. Let G be a connected planar graph, n ≥ 3, which permits a drawing where
every face has degree at least three. Then G has at most 3n− 6 edges and at most 2n− 4
faces. These are equalities if and only if G is a plane multitriangulation.

A simple planar graph with exactly 3n− 6 edges is known as a maximal planar graph.
Every simple planar graph can be turned into a maximal planar graph by adding edges.

We review some graph operations that do not affect planarity. Stellating a face f of a
planar graph is the process of adding a new vertex s inside the region of f , and adding an
edge from s to every vertex on the boundary of f . We add a chord to a face f by adding
an edge between two non-consecutive vertices on the boundary of f and drawing the edge
through the region of f . Finally, for any edge e the graph obtained by contracting e is
planar.

Let G be a connected plane graph. The dual graph G∗ of G is the graph with vertex
set F (G), where two faces f, f ′ are adjacent in G∗ whenever there is an edge e such that
one edge-side is incident to f and the other edge-side is incident to f ′. (The dual graph is
undefined if G is not connected.) The original graph G is known as the primal graph. The
dual graph of a planar graph is planar, and every edge e of G corresponds to a dual edge
e∗ of G∗. The dual graph need not be simple, however. If G has a bridge, then G∗ has a
loop. Moreover, if G contains a cutting pair of edges (two edges which would disconnect
the graph if removed), then G∗ will contain parallel edges.

9

While the drawings given in Figures 2.1(b) and 2.1(c) are both not planar drawings
(and indeed neither graph is a planar graph), a further distinction can be made. In Fig-
ure 2.1(b), every edge intersects at most one other edge. In contrast, one of the bold edges
in Figure 2.1(c) intersects two other edges. We say that the drawing in Figure 2.1(b), where
every edge crosses at most one other edge, is a 1-planar drawing. When we talk about a
drawing of a graph that has crossings, we assume that the drawing is what is known as a
good drawing. See [77] for a full definition of the many properties of a good drawing; for
our purposes here it suffices to know that no three edges cross in one point, that edges that
share an endpoint do not intersect, that no two edges intersect more than once, and that
no edge intersects itself. We do, however, allow loops to be crossed because such crossings
arise naturally later in Lemma 2.2.4. For graphs with a 1-planar drawing, the drawing can
be modified to be a good drawing without increasing the number of crossings on a single
edge [67]. If a graph G has a 1-planar drawing, then G is known as a 1-planar graph. If a
1-planar drawing Γ of G is fixed, then G is referred to as a 1-plane graph. Two intersecting
edges of a 1-plane graph are known as a crossing pair, and the point where they intersect
is a crossing point. We call the maximal regions of R2 \ Γ the cells of G. (We use “cells”
for a 1-plane graph to differentiate from the “faces” of a plane graph.)

The planarization of a 1-planar graph G is a graph G× obtained by, for each crossing
pair of edges ab and cd, deleting these edges and adding a new vertex p adjacent to a, b, c, d.
The planarization of a 1-planar graph is a planar graph, and there is a 1-1 mapping between
the faces of G× and the cells of G. Let c be a cell of G, and let c× be the corresponding
face in G×. A corner in c is an angle in c×. A corner in a cell c occurs either at a vertex on
the boundary of c or at a crossing point on the boundary of c. A cell c may be referred to
as a bigon if the corresponding face c× is a bigon, and likewise for the terms triangle and
quadrangle. We say that a (1-)planar drawing Γ is a (≥ 3)-cell drawing if every cell has
at least three corners. In particular, by Lemma 2.2.2, a plane graph G with a (≥ 3)-cell
drawing and n ≥ 3 has at most 3n− 6 edges since every face has degree at least three.

Let G be a 1-plane graph and p a crossing point of G formed by edges ab and cd. The
edge ac, if it exists, is a kite edge if it is on the boundary of a cell whose corners are exactly
the vertices a and c and the crossing point. Likewise, the edges ad, bc, bd, if they exist,
may be kite edges. (See the dotted edges in Figure 2.3).

Any simple 1-planar graph has at most 4n − 8 edges [18]. A simple 1-planar graph is
called an optimal 1-planar graph if it has exactly 4n− 8 edges. Note that not every planar
graph is the subgraph of an optimal 1-planar graph. In particular the complete graph K6

is 1-planar (see Figure 2.1(b)), but is not the subgraph of an optimal 1-planar graph since
it has 15 = 4n− 9 edges but no edge can be added while maintaining simplicity. A 1-plane
graph G is planar maximal if any edges added to G while keeping the specified drawing

10

a c

bd

p

Figure 2.3: A crossing point p of a 1-plane graph, with the kite edges shown as dotted
edges.

would either form a cell with at most two corners or would add a new crossing. Every cell
in a planar maximal 1-plane graph has at most three corners (and possibly some cells have
only one or two corners). The following was known (see e.g. [2]), but we give details here
because we specifically allow for multigraphs and because we need some properties of the
resulting drawing later.

Lemma 2.2.3. Let G be a 1-plane graph. We can construct a planar maximal 1-plane
supergraph G+ of G in linear time by adding edges to G. Moreover, if the drawing of G
was a (≥ 3)-cell drawing, then so is the one of G+.

Proof. Let p be a crossing point of G created by edges ab and cd. Add all kite edges
around p if they do not already exist. As a result, any cell containing a crossing point has
degree three. (This may add parallel edges to G, but does not create bigons.) To finish
the construction, triangulate all faces of the planarization G× with degree greater than
three (these faces correspond to cells of G that do not contain a crossing point). Let G+

be the resulting graph; it can be constructed from G in linear time. It is clear that our
construction does not add any cells with at most two corners, and hence if G was given
with a (≥ 3)-cell drawing, then the drawing of G+ is also a (≥ 3)-cell drawing.

We now argue that G+ is planar maximal. Any edge added would have to be added
within some cell c of G+ as we cannot add new crossings. If c contains a crossing point
p on its boundary, then c is the result of adding edges around a crossing point and has
exactly two vertices on its boundary. Therefore any edge added within c would create a
bigon or a loop. Otherwise, c has only vertices on its boundary. It is clear that any edge e

11

(a) A planar graph. (b) The dual graph.
(c) The graph induced by the
intermediate edges.

Figure 2.4: A planar graph, its dual, and the graph induced by the intermediate edges.
Note the dual parallel edges resulting from the cutting pairs of edges, and the parallel
intermediate edges resulting from the cut vertices.

we could add within c would create a bigon or a loop, as otherwise we would have added
e when triangulating the faces of G×.

A 1-planar embedding of a 1-planar graph G is a planar embedding of the planarization
G×, with the crossing vertices of G× marked as such and storing the two original edges
of G that were crossed. From a 1-planar embedding of G we can recover a 1-planar
drawing. Given a graph, it is NP-hard to determine whether it is 1-planar [38]. Thus, for
all algorithms in this thesis involving 1-planar graphs, we assume that the 1-planar graph
is given with a 1-planar embedding.

We now explain how planar graphs naturally induce 1-planar graphs. Let G be a
connected plane graph. The coupled graph C(G) of G is constructed by taking the union
of G and its dual G∗ and adding edges between incident faces and vertices. The edge
set of C(G) can be partitioned into the primal edges of G, the dual edges of G∗, and the
intermediate edges representing incidences between vertices and faces. (We add repeated
edges for repeated incidences.) Note that the intermediate edges do not necessarily induce
a simple graph: If G has a cut vertex, then C(G) will have parallel intermediate edges
(see Figure 2.4(c)). Observe that the subgraph of C(G) induced by the intermediate edges
is bipartite, with the primal vertices forming one partition and the dual vertices forming
the other. We also note here that for any plane graph G, we have C(G) = C(G∗). Ringel
observed that C(G) is 1-planar [73], and by inspecting his proof one sees that the resulting

12

vf vf
vf

Figure 2.5: Examples of faces of a planar graph, with the dual vertex, dual edges, and
intermediate edges drawn in. Observe that all new cells in f are 3-cells.

1-planar drawing of C(G) is a (≥ 3)-cell drawing. We here expand his proof to permit
non-simple graphs.

Lemma 2.2.4. Let G be a plane graph that is not necessarily simple and for which the
given drawing is not necessarily a (≥ 3)-cell drawing. Then C(G) has a good 1-planar
(≥ 3)-cell drawing.

Proof. For every face f of G, add the dual vertex vf representing f inside the region
of f . From there, draw the dual edges such that each dual edge e∗ only intersects the
corresponding primal edge e. This divides f into cells with four corners. Lastly, we draw
the intermediate edges without any crossings. If vertex x was incident to face f , then after
placing vf and the dual edges we have a cell with corners vf , c, x, c′ (c and c′ are crossings,
not vertices). Drawing the intermediate edge vfx divides this cell into two cells that each
have three corners. (See Figure 2.5.)

It is clear that the resulting drawing ΓC of C(G) is a 1-planar drawing. It is moreover
a (≥ 3)-cell drawing as any cell of ΓC was obtained by splitting some face f as described
above; we only create cells with three corners. Moreover, we see that ΓC is a good drawing
as a crossing pair is always formed by a primal edge and a dual edge, and hence the edges
do not share an endpoint.

13

2.3 Graph Coloring

Let G be a graph. We say that G is k-colorable if we can assign an integer φ(x) to every
vertex x ∈ V (G) such that 1 ≤ φ(x) ≤ k and for any adjacent vertices x, y ∈ V (G), we
have that φ(x) 6= φ(y). The chromatic number of G, denoted χ(G), is the least k such that
G is k-colorable.

A list assignment L for a graph G is an assignment of a list of colors to each vertex of G.
For a color c, we define L−1(c) := {x ∈ V (G) : c ∈ L(x)} to be all vertices of G whose list
contains the color c. We say that G is L-colorable if we can assign to each vertex x of G a
color φ(x) such that for every vertex x, we have φ(x) ∈ L(x), and for every edge e = xy of
G, we have φ(x) 6= φ(y). A list assignment L is a k-list assignment if |L(x)| ≥ k for every
vertex x of G. A graph G is k-choosable if G is L-colorable for any k-list assignment L.
(Having larger lists can only make finding a coloring easier, so we often assume equality.)
The least k such that G is k-choosable is the list chromatic number of G, denoted χL(G).
We define several decision problems related to graph coloring.

ListColoring
Input: A graph G with list assignment L.
Output: Does G admit an L-coloring?

k-ListColoring
Input: A graph G with k-list assignment L.
Output: Does G admit an L-coloring?

k-Coloring
Input: A graph G.
Output: Is G k-colorable?

k-Choosability
Input: A graph G.
Output: Is G k-choosable?

We note that k-Coloring reduces to k-ListColoring and that k-ListColoring re-
duces to ListColoring, but in general these problems do not reduce to k-Choosability
(nor vice-versa). Indeed, we will see situations where the complexity of k-Choosability
differs from that of k-ListColoring and ListColoring.

14

We list here trivial complexity results for these three problems. We assume familiarity
with the complexity classes P and NP, as well as the theory of NP-hard and NP-complete
problems. The problems k-Coloring, k-ListColoring, and ListColoring are clearly
in NP. Erdős et al. [29], in characterizing 2-choosability, showed that 2-Choosability is
in P. Likewise, it is possible to reduce 2-ListColoring to 2-SAT, and hence it also is in P.
As k-Coloring is NP-hard for k ≥ 3 [52], we therefore have that ListColoring is NP-
hard and k-ListColoring is NP-hard for k ≥ 3. The complexity of k-Choosability
for larger k will be discussed in Chapter 6. Notably, k-Choosability is an example of a
problem that may not be in NP.

Let G be a connected plane graph. A coupled list assignment L is a list assignment
for the coupled graph C(G). We define a k-coupled list assignment to be a coupled list
assignment where all lists are of size exactly k. We say that G is L-coupled choosable if
C(G) is L-colorable, ignoring any loops in C(G). (We ignore loops when coupled coloring,
otherwise a graph with a bridge would have no coloring.) We say that G is k-coupled
choosable if G is L-coupled choosable for any k-coupled list assignment L. The coupled
list chromatic number χLvf (G) is the smallest k such that G is k-coupled choosable. Since
C(G) = C(G∗) for the dual graph G∗, we therefore have χLvf (G) = χLvf (G

∗). We define
some decision problems for coupled list coloring which are analogous to the previously
defined problems for list coloring.

CoupledListColoring
Input: A plane graph G with coupled list assignment L.
Output: Does G admit an L-coupled coloring?

k-CoupledListColoring
Input: A plane graph G with k-coupled list assignment L.
Output: Does G admit an L-coupled coloring?

k-CoupledChoosability
Input: A plane graph G.
Output: Is G k-coupled choosable?

For small values of k, k-CoupledChoosability is in P. One can easily show that
the only graph that is 2-coupled choosable is the graph consisting of a single vertex. (Re-
call that χLvf (G) is only defined if G is connected.) Moreover, the only graphs that are
3-coupled choosable are trees (see also Lemma 5.1.1). Wang and Lih [90] proved that

15

all planar graphs are 7-coupled choosable, and hence k-CoupledListColoring and k-
CoupledChoosability are in P for k ≥ 7. Further discussion of the complexity of
coupled list coloring is delayed to Chapter 6.

We conclude this section with a well known result for list coloring that will be useful
later in this thesis, and also to help familiarize the reader with list coloring.

Theorem 2.3.1. Let G be a graph with vertex order v1, . . . , vn, and let Gi := G[v1, . . . , vi]
for i = 1, . . . , n. Let L be a list assignment for G such that |L(vi)| ≥ dGi

(vi) + 1 for
i = 1, . . . , n. Then G is L-colorable, and the coloring can be found in linear time.

Proof. We proceed by induction on n. In the base case n = 1 and G consists of a single
vertex x with |L(x)| = 1. Then trivially G is L-colorable.

Otherwise, n > 1. The vertex vn has neighbors u1, . . . , ud(vn) in G = Gn. Observe that
the graph Gn−1 with vertex ordering v1, . . . , vn−1 satisfies the premise of the theorem, and
so by the inductive hypothesis let φ be an L-coloring of Gn−1. We have now colored all
vertices of G aside from vn, and so it remains to find a valid color for vn. We must find a
color c ∈ L(vn) not used by any of the neighbors ui. We have that

|L(vn) \ {φ(u1), . . . , φ(ud(vn))}| ≥ |L(vn)| − d(vn) = 1,

and hence such a color c can always be found. Therefore φ can be extended to an L-coloring
of G, and G is L-colorable.

Following the steps of this proof leads to a linear time algorithm to find the coloring
since we spend O(d(v)) time at each vertex v and

∑
v∈V (G) d(v) = 2m.

We say that a graph G is k-degenerate if every subgraph of G has a vertex of degree
at most k. As a corollary of Theorem 2.3.1, we have that a graph that is k-degenerate is
(k+1)-choosable. To see this, we construct the necessary vertex order for a k-degenerate
graph G by picking vn to be a vertex of G of degree at most k, and then finding the rest of
the vertex order inductively on the graph G−vn. As 1-planar graphs are 7-degenerate [18],
we also have the following corollary.

Corollary 2.3.2. All 1-planar graphs are 8-choosable.

2.4 Width Parameters

In preparation for results in Chapters 5 and 6, we review here two notions of width for a
graph. The treewidth of a graph, informally, measures how close a graph is to a tree. The
treewidth of a graph is defined via its tree decomposition.

16

a

b c

d e f

g h

a,b,c

b,c,e

b,d,e c,e,f

d,e,g e,f,h

Figure 2.6: A graph G (left) with a tree decomposition (right) of width two. One confirms
that the tree decomposition follows the three rules of Definition 2.4.1. As G is not a tree,
we know that tw(G) = 2.

Definition 2.4.1. Let G be a graph. A tree decomposition of G is a pair 〈T , X〉, where
T is a tree, X : V (T)→ 2V (G) maps each vertex of T to a set of vertices of G, and

• (vertex coverage) for every vertex x of G, there is a node t of T such that x ∈ X(t),

• (edge coverage) for every edge xy of G, there is a node t of T such that x, y ∈ X(t),
and

• (connectivity condition) for nodes r, s, t of T , if s lies on the unique path from r to t
in T , then X(r) ∩X(t) ⊆ X(s).

The set X(t) is referred to as the bag of t. The width of a tree decomposition 〈T , X〉
is maxt∈V (T) |X(t)| − 1. The treewidth tw(G) of a graph G is the minimum width of any
tree decomposition of G. See Figure 2.6 for an example of a tree decomposition.

A graph of treewidth at most k is known as a partial k-tree. We note that the class
of partial 1-trees is exactly the forests, the class of partial 2-trees is exactly the class of
K4-minor free graphs, and that a graph that is a cycle has treewidth exactly two.

We also note here that subdividing the edges of a graph cannot increase the treewidth.
For trees this is clear, as a subdivision of a tree is still a tree. Otherwise, let G be a
graph with a tree decomposition 〈T , X〉, and let G′ be obtained from G by subdividing
an edge xy ∈ E(G) into two edges xz and zy, where z is new a vertex not present in
G. We construct a tree decomposition 〈T ′, X ′〉 of G′ with the same width as 〈T , X〉.
By edge coverage, T has a node t with x, y ∈ X(t). Add a new node t′ adjacent to t
with X ′(t′) := {x, y, v}. It is not hard to see that this is a tree decomposition of G′, and
moreover it has the same width as 〈T , X〉, since G has treewidth at least two.

17

a b

c

d
e

f
a c

d

b e

f

1

4

2

3

{1, 2, 4}

{3, 4}

Figure 2.7: The graph K4 (left) with a branch decomposition (right). Two arcs in the
branch decomposition have been labeled with their respective separator. This branch
decomposition demonstrates that K4 has branchwidth at most three. (In fact, it is exactly
three.)

We now define the branchwidth of a graph, which is defined by recursively partitioning
the edge set of a graph.

Definition 2.4.2. A recursive partition of a non-empty set A is defined recursively. In
the base case, A contains exactly one element. Otherwise, the recursive partition of A is a
partition into two non-empty sets A1, A2 along with a recursive partition of A1 and A2.

A recursive partition can be naturally represented by a rooted binary tree T : if A has
only one element, then T consists of only a leaf storing that one element. Otherwise, T
consists of a node with two children that represent the recursive partitions of A1 and A2.
In this way, we have a rooted binary tree with a bijection from the leaves to the set A.

Definition 2.4.3. A branch decomposition of a graph G is a recursive partition T of E(G).

Let G be a graph and T a branch decomposition of G; each leaf of T is mapped to a
unique edge of G. Let α be an arc of T . (We use arcs of T to disambiguate from edges
of G.) Observe that T − α has two connected components. The separator σ(α) defined
by α is the set of vertices x which are incident to edges contained in leaves of both of the
components of T − α. The width of T is the size of the largest separator of any arc of T .
The branchwidth bw(G) of a graph G is the minimum width of any branch decomposition
of G. See Figure 2.7 for an example of a branch decomposition.

A star graph is a graph with at most one vertex of degree at most two. A graph G
has branchwidth one if and only if every connected component of G is a star graph. The
graphs of branchwidth at most two are the K4-minor free graphs. In particular, trees have

18

branchwidth at most two [76]. It is also known that the branchwidth and treewidth of a
graph are closely related:

Lemma 2.4.4 (Robertson and Seymour [76]). Let G be a graph with bw(G) > 1. Then
bw(G)− 1 ≤ tw(G) ≤ 3

2
bw(G)− 1.

19

Chapter 3

4-List Coloring 1-Planar Bipartite
Graphs in Linear Time

In this chapter, we show that 1-planar bipartite graphs are 4-choosable, and then present
an algorithm to find this coloring in linear time. We further show that this result is tight,
and moreover that 3-list coloring 1-planar bipartite graphs is hard. The work in this
chapter, particularly the algorithm presented in Section 3.2.2, is based on an unpublished
manuscript by Biedl, Lubiw, and Merkel [15]. We have greatly simplified the description
of the algorithm, and improved the run-time.

We first review some known results for list coloring bipartite graphs. Erdős et al. [29]
characterized the 2-choosable graphs; these graphs are all planar and bipartite. They and
Vizing [86] demonstrated that the list chromatic number of bipartite graphs is unbounded.
Alon and Tarsi [3] proved that planar bipartite graphs are 3-choosable. Gutner [42] studied
a generalization of list coloring on directed graphs with no odd directed cycles, and proved
hardness results for k-Choosability for bipartite graphs. Biedl et al. [15] proved that the
3-list coloring of a planar bipartite graph can be found in linear time, and also provide an
algorithm for 3-list coloring toroidal bipartite graphs (bipartite graphs that can be drawn
on a torus without crossings) in time O(n1.5). Campos et al. [21] studied various color-
ing problems on bipartite graphs of small diameter, and showed that k-ListColoring,
k ≥ 3, is NP-complete on complete bipartite graphs. There are also some results for prob-
lems related to list coloring: Esperet [30] studied the dynamic list coloring problem on
bipartite graphs, and Galvin [14] studied the problem of list coloring the edges of bipartite
multigraphs.

One technique used for list coloring is to repeatedly color a so-called kernel of a directed

20

graph (see e.g. [3, 42]). We modify here the definition of a kernel slightly (calling it a
pseudo-kernel) because this will simplify some proofs. We need some definitions. Let D be
a directed graph. A set of vertices K ⊆ V (D) is called pseudo-absorbing if for every vertex
x ∈ V (D)\K, either there is an edge xy for some y ∈ K, or x is not adjacent to any vertex
in K. A pseudo-kernel is a non-empty vertex set K such that K is both pseudo-absorbing
and an independent set.1

Let D be a directed graph and x ∈ V (D). Recall that the outdegree of x (denoted
d+(x)) is the number of edges xy ∈ E(D). Let L be a list assignment for D and let c be a
color present in some list of L. The colored outdegree with respect to c of x, denoted d+c (x),
is the number of edges xy such that c ∈ L(y). We say that x is a colored sink with respect
to c if c ∈ L(x) and d+c (x) = 0.

In this chapter, we assume that the input graph is simple, since there are no loops in
a bipartite graph, and we can eliminate parallel edges without affecting colorability.

3.1 All 1-Planar Bipartite Graphs are 4-List Colorable

Lemma 3.1.1 was known to Alon and Tarsi [3] (attributed to Bondy, Boppana, and Siegel).
We recreate the proof here both to demonstrate the algorithmic properties and to restate
the result for pseudo-kernels.

Lemma 3.1.1. Let D be a directed graph and let L be a list assignment for D such that
|L(x)| ≥ d+(x) + 1 for every vertex x ∈ V (D). If every induced subgraph of D has a
pseudo-kernel, then D is L-colorable.

Proof. The proof proceeds by induction on n. If n = 1, then trivially D is L-colorable.

Otherwise, let L := ∪x∈V (D)L(x) be the set of all possible colors. Pick some color c ∈ L.
By hypothesis, the induced subgraph D[L−1(c)] has some pseudo-kernel Kc. Color every
vertex of Kc with c. This is feasible because every vertex in Kc has the color c in its list
and because by definition the vertices of a pseudo-kernel are pairwise not adjacent. Let
D′ := D \ Kc be the graph of vertices which remain to be colored, and define a new list
assignment

L′(x) :=

{
L(x) \ {c} if x has a neighbor in Kc,
L(x) otherwise.

1The statements “a directed graph D has a kernel” and “a directed graph D has a pseudo-kernel” are
in fact equivalent; this generalization allows us to eventually more easily state and prove our algorithm.

21

Only vertices in L−1(c) \Kc have had a color removed from their list, but because Kc is
pseudo-absorbing in D[L−1(c)], any vertex which had c removed from its list must have
had an edge to a neighbor in Kc, and had its outdegree decreased by 1. Hence we can
apply induction on D′ with the list assignment L′ and get an L′-coloring for D′. As no
vertex adjacent to Kc uses the color c, this can be extended to an L-coloring of D.

One can easily show that every directed bipartite graph has a pseudo-kernel (and there-
fore that any induced subgraph of a directed bipartite graph has a pseudo-kernel), and so
Lemma 3.1.1 applies to directed bipartite graphs. (Note that this is also a consequence
of Richardson’s theorem (see e.g. [12]) which states that any directed graph with no odd
directed cycles has a kernel.)

Lemma 3.1.2. Every directed bipartite graph D has a pseudo-kernel.

Proof. Let A,B be the two partitions of D. If A contains a sink v, then take v to be the
pseudo-kernel of D: Trivially a single vertex is an independent set, and as v is a sink, every
vertex x adjacent to v is adjacent via a directed edge xv. Otherwise, every vertex in A has
an edge into B, and we take the set B to be the pseudo-kernel of D.

Lemmas 3.1.1 and 3.1.2 give the following list coloring result for directed bipartite
graphs:

Theorem 3.1.3. Let D be a directed bipartite graph and L a list coloring for D such that
|L(x)| ≥ d+(x) + 1 for every vertex x of D. Then D is L-colorable.

This also implies the following corollary:

Corollary 3.1.4. Let D be a directed bipartite graph with maximum outdegree ∆+. Then
D is ∆+ + 1-choosable.

Moreover, by following the proofs of Lemmas 3.1.1 and 3.1.2, we have the following
algorithm for list coloring directed bipartite graphs:

Algorithm 3.1.5. Let D be a directed bipartite graph with partition A,B, and let L be a
list assignment for D. For each color c present in some list in L,

• while there is a colored sink x with respect to c in A, color x with c, remove c from
the lists of all neighbors of x, and delete x, then

22

• color all vertices in B ∩ L−1(c) with the color c, delete these vertices from D, then
remove c from the lists of all vertices in A.

If |L(x)| ≥ d(x) + 1 for every vertex x of the graph D, then Algorithm 3.1.5 always
succeeds. Thus, in order to find a list coloring for a bipartite graph, we wish to orient
the edges of a bipartite graph such that every vertex has a suitably small outdegree.
The following lemma is a special case of a known result, proved independently several
times [25, 34, 43].

Lemma 3.1.6. For some given k ∈ N, a graph G has an orientation such that d+(x) ≤ k
for every x ∈ V (G) if and only if for every subgraph H ⊆ G, we have |E(H)| ≤ k|V (H)|.

Others have studied how quickly this orientation can be found. Venkateswaran [85]
gave in O(m2) time algorithm, and Blumenstock [17] improved this to O(m1.5

√
log log k)

time. We will not review these algorithms here since (as discussed later) we can find the
orientation more efficiently for 1-planar bipartite graphs.

By Lemma 3.1.6, any graph with low edge density for all subgraphs can have its edges
oriented to have small outdegree. While bipartite graphs in general have unbounded edge
density, for 1-planar bipartite graphs the edge density is bounded.

Lemma 3.1.7 (Karpov [53]). Every 1-planar bipartite graph with n ≥ 4 vertices has at
most 3n− 8 edges.

With this, we have the desired coloring for 1-planar bipartite graphs.

Theorem 3.1.8. Every 1-planar bipartite graph is 4-choosable.

Proof. Let G be a 1-planar bipartite graph. By Lemmas 3.1.6 and 3.1.7, G has an ori-
entation such that every vertex has outdegree at most 3. Then by Corollary 3.1.4, G is
4-choosable.

3.2 Finding the 4-List Coloring Efficiently

We now wish to efficiently find the 4-list coloring of a 1-planar bipartite graph, in particular
in linear time. The proof of Theorem 3.1.8 does lead to an algorithm for finding a 4-list
coloring:

23

Algorithm 3.2.1. Let G be a 1-planar bipartite graph and let L be a 4-list assignment for
G. First, orient the edges of G such that every vertex has outdegree at most three, then
use Algorithm 3.1.5 to find an L-coloring of G.

This algorithm is already polynomial time:

• The orientation can be found in time O(m1.5) since k = 4 [17].

• Given the orientation, a feasible coloring can be found in polynomial time by using
of Algorithm 3.1.5.

In pursuit of a linear time algorithm, we need to be able to orient the edges of a 1-
planar bipartite graph such that any vertex has maximum outdegree three in linear time.
Moreover, it is not clear how one would implement Algorithm 3.1.5 in linear time. Hence,
more work is required to establish the desired run-time.

3.2.1 Orienting the Edges

It is easy to see that a forest can be oriented to have maximum outdegree one in linear time
by choosing a root for each tree, traversing down each tree and orienting each edge towards
the root of the tree. Likewise, if we can partition the edges of graph G into k forests, we
can use this partition to orient the edges of G in linear time such that every vertex has
outdegree at most k. The minimum number of forests that a graph G can be partitioned
into is the arboricity of G. The Nash-Williams theorem states that the arboricity of a
graph is directly correlated with the edge density of all subgraphs of a graph.

Theorem 3.2.2 (Nash-Williams [65]). A graph G has arboricity k if and only if for every
nonempty subgraph H ⊆ G, |E(H)| ≤ k (|V (H)|−1).

Note the similarity between this theorem and Lemma 3.1.6. By the Nash-Williams
theorem and Lemma 3.1.7, a 1-planar bipartite graph can be partitioned into three trees.
It is known that the partition of the Nash-Williams theorem can be found in polynomial
time [35], but in general a linear time algorithm is not known. However, it is known that
a planar bipartite graph can be partitioned into two forests in linear time [14]. Hence, if
we could partition a 1-planar bipartite graph into a planar (bipartite) graph and a forest,
then we would have our split into three trees in linear time. Ackerman [1] proved that
such a partition exists for any 1-planar graph, but doing it in linear time turns out to be

24

non-trivial. In Chapter 4, we will reprove Ackerman’s result that a 1-planar graph can be
split into a planar graph and a forest, and obtain a linear time algorithm from our new
proof. Therefore, using the result from Chapter 4, we obtain:2

Theorem 3.2.3. Let G be a 1-planar bipartite graph. The edges of G can be oriented such
that every vertex has outdegree at most 3, and this orientation can be found in linear time.

3.2.2 (∆++1)-List Coloring Bipartite Graphs Efficiently

We now know that, given a 1-planar bipartite graph, we can in linear time orient the edges
such that every vertex has outdegree at most three. It remains to show that we can then
use this orientation to find a 4-list coloring in linear time. As discussed above, although
Algorithm 3.1.5 would lead to a polynomial time algorithm, it is not obviously linear. To
make it a linear time algorithm, we need to be able to repeatedly find colored sinks with
respect to a color c and find the vertices B ∩ L−1(c) for some color c in amortized linear
time, where B is a partition of the bipartite graph. We show here how to do this, and in
fact, our algorithm works for any directed bipartite graph D with color lists that are longer
than the outdegree. We present an algorithm for finding such a list coloring of a directed
bipartite graph D in time O(∆+ ·m), where ∆+ is the maximum outdegree of D. (This
improves slightly on the run-time of O((∆+)2m) presented in [15].) When the algorithm
is applied to 4-list coloring 1-planar bipartite graphs, we will have ∆+ ≤ 3 and hence the
algorithm will have run-time O(m).

Let D be a directed bipartite graph with maximum outdegree ∆+. Let A,B be the
partition of D, and let L be a list assignment for D such that |L(x)| ≥ d+(x) + 1 for every
vertex x of D. Let L := ∪x∈V (D)L(x) be the set of all colors used in L. For every vertex
x of D we assume that |L(x)| = d+(x) + 1 (decreasing the size of the lists can only make
finding a coloring more difficult), and we therefore have

|L| =

∣∣∣∣∣∣
⋃

x∈V (D)

L(x)

∣∣∣∣∣∣ ≤
∑

x∈V (D)

(d+(x) + 1) = n+m.

We assume that the colors are stored as positive integers, and that none of these integers
is larger than |L|.

Our crucial idea for small run-time is to parse always the smallest color c present in
any list and to do appropriate pre-sorting. Namely, we construct an array ColorPairs of

2Chapter 4 does not use any results from this chapter (and in particular does not reference Theo-
rem 3.2.3), so there is no issue of circular reasoning.

25

pairs 〈x, b〉 for each vertex x and color b ∈ L(x), and sort all these pairs by their second
element. This will make it very easy to find the set L−1(c), since these correspond to the
first entries in ColorPairs. (For later colors it will also be easy using suitable updates; see
below.) We will also need to be able to test whether c ∈ L(x) for a vertex x in constant
time. We therefore sort all of the lists L(x) for each vertex x. This allows us to check in
constant time whether c ∈ L(x) by only looking at the first element in the list.

We show how to do this preprocessing in linear time. We first construct the unsorted
array ColorPairs. By the same analysis used to achieve the upper bound on |L|, the size
of ColorPairs is at most n + m. We then use bucket sort with |L| buckets to sort all of
these pairs by their second element. This can be done in time O(|L| + |ColorPairs|) =
O(m+ n) = O(m). After sorting, we make one pass through ColorPairs in order to sort
all of the lists L(x). See Procedure 1 for details.

Procedure 1: Initialize(D, L)
Result: Initialize and sort ColorPairs, and sort the list of every vertex

1 ColorPairs := []
// Initialize and sort ColorPairs

2 for vertex x ∈ V (D) do
3 for color c ∈ L(x) do
4 ColorPairs.add(〈x, c〉)

5 BucketSort(ColorPairs)
// Re-initialize all lists, then pass through ColorPairs to sort

them
6 for vertex x ∈ V (D) do
7 L(x) := []

8 for color pair 〈x, c〉 ∈ ColorPairs do
9 L(x).add(c)

Again letting c be the smallest color present in any list, Procedure 2 shows the process
for coloring the set of vertices Vc := L−1(c), following Algorithm 3.1.5. We first calculate
and store the colored outdegree of every vertex in Vc ∩ A. All vertices where this colored
outdegree is 0 are colored sinks with respect to c, and we add these colored sinks to a queue.
We iterate through this queue. For each vertex x in the queue, we assign the color c to x.
After x is colored, we traverse all edges yx going into x. Presuming c ∈ L(y), we remove
c from the list of y, and then traverse all edges zy going into y. Because x ∈ A, we have
that y ∈ B and z ∈ A, so if c ∈ L(z) then we had computed the colored outdegree d+c (z).

26

Since we removed c from the list of y, this colored outdegree decreases, so we update the
stored value d+c (z). If z becomes a colored sink, we add it to the queue. We then delete x
from the graph. Once there are no more colored sinks in A (and thus the queue is empty),
we loop over all vertices v in Vc that have not been deleted or had c removed from their
list. If v is in B, we assign the color c to v. Otherwise, v is in A, and we remove the color
c from L(v). Note that we specifically do not update ColorPairs during Procedure 2.

Lastly, Procedure 3 demonstrates the entire procedure for (∆++1)-list coloring a bi-
partite graph. After initialization, we loop over the ColorPairs array. We repeatedly
collect all vertices that have not been deleted and have the color c in their list, where
c is at that moment the smallest color, and color those vertices with Procedure 2. It is
possible that a vertex in ColorPairs was deleted in a previous call to Procedure 2; when
we encounter such a vertex we simply skip over it. We continue this until we have made
one pass through ColorPairs. Procedure 3 follows Algorithm 3.1.5, and so it will always
find a valid coloring. It remains to justify the claimed run-time.

Runtime. As previously argued, Procedure 1 takes time O(m). Ignoring the calls to
Procedure 2, Procedure 3 makes one pass over ColorPairs, which can be done in time
O(m). We now analyze the run time of Procedure 2 across all calls. We first observe that a
vertex v will appear in a set Vc for some color c at most |L(v)| = d+(v)+1 times. Therefore
the last loop of Procedure 2 (lines 19–24), ignoring the time to delete any vertices or edges
(since an element can be deleted at most once), in total takes time O(m). In the first loop
(lines 2–6), calculating d+c (x) can be done in time O(d+(x)): First set d+c (x) to zero, then
loop over all outgoing edges xy and increment d+c (x) if c ∈ L(y). Because c is the smallest
color and all the lists are sorted, c ∈ L(y) can be tested in O(1) time. Thus, across all calls
to Procedure 2, the first loop will take time proportional to∑

x∈V (D)

(d+(x))2 ≤ ∆+ ·
∑

x∈V (D)

d+(x) = ∆+ ·m.

Lastly, we consider the run-time of the loop where we color all of the colored sinks (lines
7–18) over all executions of Procedure 2. A vertex in A can be a colored sink at most once
because it then gets colored immediately, and hence the loop of line 7 will run at most
n times. The middle loop (lines 10–16) runs at most m times, since the edges we iterate
over will be deleted when the sink is deleted from the graph. Lastly, when an edge zy
is iterated over in the innermost loop (lines 12–16), we know that a color has just been
removed from L(y). Hence, this edge will appear in this loop at most d+(y) + 1 ≤ ∆++1
times across the entire algorithm. Therefore, the innermost loop runs O(∆+ · m) times

27

Procedure 2: Color(Vc, c)
Result: Color some vertices of Vc with the color c, following Algorithm 3.1.5.

1 initialize a queue q
2 for vertex x ∈ Vc do
3 if x ∈ A then
4 calculate and store d+c (x)
5 if d+c (x) == 0 then
6 q.add(x)

7 while q is not empty do
8 x := q.pop()
9 color x with c

10 for edge yx ∈ E(D) do
11 if c ∈ L(y) then
12 remove c from L(y)
13 for edge zy ∈ E(D) do
14 if c ∈ L(z) then
15 d+c (z) := d+c (z)− 1
16 if d+c (z) == 0 then
17 q.add(z)

18 delete x from D

19 for vertex v ∈ Vc do
20 if c ∈ L(z) and v has not been deleted then
21 if v ∈ A then
22 remove c from L(v)
23 else
24 color v with c
25 delete v from D

28

Procedure 3: DirectedBipartiteListColoring(D, L)
Result: L-list color a directed bipartite graph D.

1 Initialize (D, L)
2 i := 0
3 while i ≤ |ColorPairs| do
4 〈_, c〉 := ColorPairs[i] // retrieve the smallest color
5 Vc := ∅
6 loop
7 〈x, c′〉 := ColorPairs[i]
8 if c′ == c and x has not been deleted then
9 Vc.add(x)

10 i := i+ 1

11 else
12 Color(Vc, c)
13 break

across the whole algorithm. Thus, the claimed run-time has been proven, and we have the
following theorem.

Theorem 3.2.4. Let D be a directed bipartite graph with maximum outdegree ∆+ and L
be a list assignment for D such that |L(x)| ≥ d+(x) + 1 for every vertex x of D. For any
such input, DirectedBipartiteListColoring(D,L) computes an L-coloring of D in O(∆+ ·m)
time.

This implies one of the main results of this chapter.

Theorem 3.2.5. There is a linear time algorithm that, for any graph G with 4-list assign-
ment L, computes an L-coloring of G in linear time.

As mentioned above, our run-time of O(∆+ ·m) in Theorem 3.2.4 is an improvement
on a previously known algorithm with run-time O((∆+)2 ·m) [15]. It is unknown whether
this could further be improved to O(m), i.e., whether there is an algorithm for this list
coloring whose runtime does not depend on ∆+. Such an improvement would likely require
a different approach than we take: Our algorithm is bottlenecked by Procedure 2, where
any edge e of D is touched O(∆+) times. (In fact, it is possible to construct adversarial
inputs where Ω(m) edges are touched Ω(∆+) times.)

29

3.3 Complexity of 3-List Coloring 1-Planar Bipartite
Graphs

1,3,52,3,51,2,52,4,51,2,42,4,6

1,2,6 1,3,4 1,5,6 1,3,4 1,2,4 3,4,5

1,2,32,3,6
1,2,5 2,3,4

2,3,5 1,3,42,3,52,4,61,2,43,4,6

1,3,6 1,2,6 1,5,6 1,2,5 1,4,5 1,2,4

4,5,6

1,6 1,5
1,4

3,4

3,5
2,52,42,6

3,6

y

x

Figure 3.1: A 1-planar bipartite graph that is not 3-choosable. The numbers on each
vertex represent the list assignment L for each vertex. The red (solid ellipse) vertices and
blue (rectangular) vertices form one part of the bipartite graph, and the black (dashed
ellipse) vertices form the other part. The blue (rectangular) vertices, labeled x and y,
are connected to all of the black (dashed ellipse) vertices. Next to each red (solid ellipse)
vertex we have labelled the pair of colors for x and y that that vertex blocks.

In general, our proved upper bound of 4-choosability is tight for 1-planar bipartite
graphs.

Theorem 3.3.1. There exists a 1-planar bipartite graph with 29 vertices that is not 3-
choosable.

Proof. Let G be the graph with list assignment L seen in Figure 3.1. From the given
drawing we can see that G is 1-planar. Let the vertices x and y be as labeled in Figure 3.1.

30

Each red (solid ellipse) vertex prevents some choice of colors for x and y: For each pair
of colors a ∈ L(x) and b ∈ L(y), there is a red vertex ra,b that has list {α, β, γ} that is
disjoint from {a, b}. The vertex ra,b has three neighbors, and these neighbors are black
(dashed ellipse) vertices. Moreover, these three neighbors are all adjacent to both x and y
and have lists {α, a, b}, {β, a, b}, and {γ, a, b}. As we have used the colors a and b for x
and y, we are forced to use the colors α, β, γ for the three neighbors of ra,b. But then there
is no feasible choice of color for ra,b, and therefore no feasible coloring of G uses a and b
for x and y.

We have labelled each red vertex in Figure 3.1 with the pair of colors that it blocks;
one confirms that each red vertex blocks this pair of colors as described, and that there is
a red vertex for each of the 3× 3 = 9 pairs of colors for x and y.

We now show that 3-list coloring 1-planar bipartite graphs is hard in general. To do
so, we give a few lemmas that will be needed both for Theorem 3.3.5 and in Chapter 6.
From the construction in Theorem 3.3.1, we have the following result.

Lemma 3.3.2. For any color r, there exists a 1-plane bipartite graph Hr with a fixed
vertex x on the outer face and a 3-list assignment Lr such that Hr is Lr-colorable, and any
Lr-coloring of Hr must assign r to x.

Proof. By renaming, we may assume that r /∈ {1, . . . , 6}. Let G be the graph with list
assignment L seen in Figure 3.1. Recall that G is not L-colorable. Let Hr := G, and
construct Lr from L by replacing “6” by “r” in the list of x. To see that Hr is Lr-colorable,
pick r for x and an arbitrary color for y. After choosing these colors, every other vertex in
the graph has at least two colors available, as no other vertex in the graph has r in its list.
Let H ′ := Hr−x−y. We argue that H ′ is 2-choosable, and do so by finding an orientation
of H ′ with maximum outdegree one. By Corollary 3.1.4, with such an orientation we will
know that H ′ is 2-choosable. (It is also possible to verify the 2-choosability of H using the
characterization of 2-choosability [29].) This graph H ′ is the graph of red and black (solid
and dashed ellipse) vertices. Observe that this graph is an even cycle along with some
vertices of degree one. For each vertex v of degree one, orient the unique edge e incident
to v such that e goes out of v; now v has outdegree one. Then we orient the edges of the
even cycle in the clockwise direction such that every vertex in the even cycle has outdegree
exactly one. This gives the desired orientation of H ′. Therefore, an Lr-coloring of Hr can
be found. Note that if we did not choose color r for x, and instead used 4 or 5, then no
coloring is possible, since this would be an L-coloring of G.

31

Lemma 3.3.3. Let G be a graph, L be a list assignment for G, and e = uv be an edge of
G such that |L(u)| = 2. Let G′ be the graph obtained from G by subdividing e twice and L′
be the list assignment for G′ given by

L′(x) :=

{
L(x) x ∈ V (G)

L(u) otherwise
.

Then G is L-colorable if and only if G′ is L′-colorable.

Proof. Let {a, b} := L(u). Let u′, u′′ be the new vertices resulting from the two subdivisions
of e, with edges uu′, u′u′′, u′′v. Note that these are the only edges incident to u′ and u′′,
and that L(u′) = L(u′′) = {a, b}. (See Figure 3.2.)

u
{a, b}

v
{. . .}

u′

{a, b}
u′′

{a, b}
u

{a, b}
v

{. . .}

Figure 3.2: The construction in Lemma 3.3.3.

(⇒) Let φ be an L-coloring of G. We construct an L′-coloring φ′ of G′. Assume
without loss of generality that φ(u) = a. For vertices x ∈ V (G) \ {u′, u′′}, we choose
φ′(x) := φ(x). By the edge uu′, we are forced to pick φ′(u′) := b. Similarly, we are forced
to pick φ′(u′′) := a. Since φ is a valid coloring of G, and u and v are adjacent in G, we
know that φ(v) 6= a. Hence φ′ is a valid L′-coloring of G′.

(⇐) Let φ′ be an L′-coloring of G′. We construct an L-coloring φ of G. Assume without
loss of generality that φ′(u) = a. For vertices x ∈ V (G), we define φ(x) := φ′(x). By the
edges uu′, u′u′′, u′′v of G′, it must be that φ′(u′) = b and φ′(u′′) = a. Hence φ′(v) 6= a, and
φ is a valid L-coloring of G.

Lemma 3.3.4. Let G be a graph and L a list assignment for G such that for every edge
e = uv of G, at least one endpoint x of e satisfies |L(x)| = 2. Then there exists a 1-planar
graph G′ that is a subdivision of G and has a list assignment L′ such that G is L-colorable
if and only if G′ is L′-colorable. The graph G′ is obtained by subdividing edges of G an
even number of times and can be constructed in polynomial time. For a vertex x ∈ V (G′),
if x ∈ V (G) then L′(x) = L(x), and otherwise |L′(x)| = 2.

Proof. Fix a good drawing Γ of G in the plane. Let e be an edge of G. Suppose that e
intersects k ≥ 2 edges in the drawing Γ. Since e is incident with a vertex with list of size

32

1,2,3

1,2,4

1,2,3

1,2,4

1,r

1,r 2,r

2,r

Figure 3.3: Transformation applied to each edge in the reduction of Theorem 3.3.5.

two, we can apply Lemma 3.3.3 to e for
⌊
k
2

⌋
times, drawing each new edge resulting from

the subdivisions such that it intersects at most one other edge. Repeat this process for
every edge of G. By construction the resulting graph G′ is 1-planar, and by Lemma 3.3.3,
it is colorable if and only if G is colorable.

Since Γ is a good drawing, any two edges of G intersect at most once in Γ. Hence G has
O(m2) crossings, and we perform O(m2) = O(n4) subdivisions to construct G′. Therefore
G′ can be constructed in polynomial time.

Theorem 3.3.5. 3-ListColoring is NP-hard for 1-planar bipartite graphs.

Proof. We reduce from 3-ListColoring complete bipartite graphs Kn,n. This problem is
known to be NP-hard [21]. Let G be a complete bipartite graph and L a 3-list assignment
for G. We construct a 1-planar bipartite graph Ĝ with 3-list assignment L̂ such that G is
L-colorable if and only if Ĝ is L̂-colorable, and first have two intermediate constructions.

We first construct a bipartite graph G′ with list assignment L′. Let r be a color not
present in any list of G. We begin by adding every vertex x of G to G′, with L′(x) := L(x).
Let x, y be adjacent vertices of G. For every color c ∈ L(x) ∩ L(y), we add two vertices u
and u′ and edges xu, uu′, and u′y. Define L(u) := L(u′) := {c, r}. (See Figure 3.3.) Since
G is bipartite, G′ is also bipartite. However, at this time G′ is not necessarily 1-planar,
and not every vertex has a list of size exactly three. We will later amend this.

We now show that G is L-colorable if and only if G′ is L′-colorable. Let φ be an L-
coloring for G. We construct an L′-coloring φ′ of G′. We first define φ′(x) := φ(x) for every
vertex x of G. Let x, y be two adjacent vertices of G. We must assign colors to the paths
between x and y added due to colors in L(x) ∩ L(y). If L(x) ∩ L(y) = ∅, we are done.
Otherwise, let u, u′ ∈ V (G′) such that xuu′y is a path in G′ and L(u) = L(u′) = {c, r}
where c ∈ L(x)∩L(y). If φ(x) 6= c and φ(y) 6= c, then u and u′ can be colored with c and r.
Otherwise, suppose φ(x) = c. Since φ is a proper coloring of G, we know that φ(x) 6= φ(y),

33

and hence φ(y) 6= c. We thus define φ′(u) := r and φ′(u′) := c and obtain an L′-coloring
of G′.

Let φ′ be an L′-coloring of G′. For every vertex x of G, we define φ(x) := φ′(x). Let
x, y be adjacent vertices of G. We wish to show that φ′ assigns different colors to x and
y. If φ′(x) /∈ L(x) ∩ L(y), then clearly φ′(x) 6= φ′(y). Otherwise, suppose φ′(x) = c ∈
L(x) ∩ L(y). Then there are vertices u, u′ ∈ V (G′) such that xuu′y is a path in G′ and
L(u) = L(u′) = {c, r}. As φ′ is a proper coloring, it must be that φ′(u) = r and φ′(u′) = c.
We therefore know that φ′(y) 6= c, and so φ′(x) 6= φ′(y). In either case, φ′ assigns different
colors to x and y, and so φ is a valid L-coloring of G.

From G′ and L′ we construct a 1-planar bipartite graph G′′ with list assignment L′′.
By construction, every edge of G′ is incident to a vertex with a list of size two. We
therefore apply Lemma 3.3.4 to obtain a 1-planar graph G′′ with list assignment L′′ such
that G′ is L′-colorable if and only if G′′ is L′′-colorable. Recall that the construction of
Lemma 3.3.4 works by subdividing edges an even number of times, and hence G′′ is also
bipartite. Moreover, the size of lists are not increased, and hence every list in L′′ is still of
size two or three.

Lastly, we augment G′′ and L′′ into a 1-planar bipartite graph Ĝ with 3-list assignment
L̂. Let s be a color not present in any list of G′′. Let u be a vertex of G′′ with a list of
size two. We add s to L′(u). We then add a copy of the graph Hs with list assignment Ls
from Lemma 3.3.2, adding an edge from u to the vertex of Hs that must be colored with
s. Doing this preserves the 1-planarity and bipartiteness of the graph. Moreover, by the
forced coloring of each copy of Hs, the L-colorability is preserved.

All transformations of graphs and lists can be done in polynomial time, so this proves
NP-hardness as desired.

In summary, we know that 1-planar bipartite graphs are 4-choosable, and that the
coloring can be found in linear time. In contrast, finding a 3-list coloring of a 1-planar
bipartite graph is NP-hard. We end this chapter by observing a curious coincidence between
the complexity of k-Coloring planar graphs and k-ListColoring 1-planar bipartite
graphs, demonstrated in Table 3.1.

While the fastest known algorithm for finding a 4-coloring of a planar graph runs in
time O(n2) [74], we are able to find the 4-list coloring of a 1-planar bipartite graph in linear
time.

34

k Planar k-Coloring 1-Planar Bipartite k-ListColoring
2 P P
3 NP-hard [37] NP-hard (Thm. 3.3.5)
4 Always Possible [5] Always Possible (Thm. 3.1.8)

Table 3.1: The complexity of k-Coloring for planar graphs compared to the complexity
of k-ListColoring for 1-planar bipartite graphs.

35

Chapter 4

Partitioning the Edges of a 1-Planar
Graph Efficiently

In this chapter, we show that it is possible to partition the edges of a 1-planar graph into
a planar graph and a forest in linear time. As discussed in Chapter 3, this will allow us to
orient the edges of a 1-planar bipartite graph with maximum outdegree 3 in linear time.
Thus, this chapter completes the proof of Theorem 3.2.5, and concludes the description of
the algorithm for finding a 4-list coloring of a 1-planar bipartite graph in linear time.

The existence of this edge partition was previously proved by Ackerman [1]. Following
the steps of his proof, it is clear that the partition can be found in polynomial time.
Ackerman further claims that the edge partition can be found in linear time, but provides
no details. However, it is not clear how one would achieve a linear time (or even O(n log n)
time) algorithm from his proof; we will discuss this in more detail below. (This was
confirmed in private communication with Ackerman.)

We list here some previously known edge partition results for 1-planar graphs and other
classes of so-called near planar graphs. As mentioned above, Ackerman [1] established that
the edges of a 1-planar graph can be partitioned into a planar graph and a forest. This
was an extension of an earlier result from Czap and Hudák [24], who proved the result for
optimal 1-planar graphs. Lenhart et al. [58] showed that optimal 1-planar graphs can be
partitioned into a maximal planar graph and a planar graph of maximum degree four (the
bound of four is shown to be optimal). Bekos et al. [11] proved edge partition results for
some k-planar graphs (graphs that can be drawn in the plane such that any edge crosses
at most k other edges). Di Giacomo et al. [26] proved edge partition results for so-called
NIC-graphs, a subclass of 1-planar graphs. With the exception of Ackerman [1], these

36

proofs either immediately lead to a linear time algorithm or the paper explicitly proves
that the partition can be found in linear time.

In pursuit of a linear time algorithm, we re-prove Ackerman’s result, using a different
approach so as to avoid some problematic situations so that a linear time algorithm can
then be established. We will then show that our proof can be implemented in linear
time. A crucial ingredient for this will be a data structure by Holm, Italiano, Karczmarz,
Łącki, Rotenberg and Sankowski [46] which allows for efficiently contracting edges of planar
graphs. To our knowledge, this data structure has not been implemented. Because of this,
we also show that the partition can be computed in O(n log n) time using a simpler data
structure based on incidence lists.

Both Ackerman’s and our proof operate heavily on the quadrangle faces of a planar
graph. However, Ackerman’s proof is only concerned with quadrangles that have exactly
four distinct vertices on their boundary, whereas our proof operates on quadrangles that
may have repeating vertices on their boundary (see the outer face in Figure 4.2(a)). We
define a quadrangle f to be a simple quadrangle if it has four distinct vertices on its
boundary. (The quadrangles of a simple graph will all be simple quadrangles.) The facial
circuit of a quadrangle f is a 4-tuple 〈z0, z1, z2, z3〉 such that each zi is on the boundary of
f and there are edges zizi+1 and zizi−1 (arithmetic modulo 4) that form an angle in f . Note
that z0, z1, z2, z3 need not be distinct if f has loops or parallel edges, or if it is incident to
a bridge. We say that z0 and z2 are opposing vertices in f (we will often omit mentioning
the face when it is clear from context). Likewise z1 and z3 are opposing vertices in f . Note
that it is possible for a vertex to oppose itself in a quadrangle (in Figure 4.2(a), the vertex
z0 = z2 opposes itself).

We define here a graph operation that Ackerman uses in his proof. Let f be a face of
a plane graph, and let a and b be two vertices on the boundary of f . We can contract a
and b through f by adding an edge e := ab drawn inside the region of f and contracting
this edge e. This preserves planarity but destroys the face f .

For ease of notation, we define an abbreviation for our partition problem.

Definition 4.0.1. A PGF-partition of a graph G is a partition of E(G) into two sets A
and B such that G[A] is a planar graph and G[B] is a forest.

4.1 Ackerman’s Proof

To establish the difficulties of achieving a linear time algorithm, we briefly review here
Ackerman’s proof for the existence of a PGF-partition.

37

Let G be a planar maximal 1-plane multigraph without loops. We assume that G is
planar maximal as by Lemma 2.2.3 any 1-plane graph can be made planar maximal in
linear time by adding edges, and adding edges can only make partitioning more difficult.
We assume that there are no loops since they can be removed and added later to the planar
part of the partition. On the other hand we specifically allow parallel edges since it is not
clear how they could be handled otherwise. We remove all crossing pairs of G and call the
resulting graph H the (planar) skeleton of G. Observe that the faces of H are either bigons,
triangles, or quadrangles: These bigons and triangles were cells in G that only had vertices
on their boundary (i.e. did not have crossing points on their boundary). The quadrangles
of H were created by removing a pair of crossing edges from G, and in this way there is
a 1-1 mapping between the quadrangles of H and the crossing pairs of G. Moreover, by
this 1-1 mapping and the fact that the two edges forming a crossing pair do not share an
endpoint, one can see that the quadrangles of H are in fact simple quadrangles. Ackerman
establishes the following.

Lemma 4.1.1 (Ackerman [1]). Let G be a 1-planar graph, and let H be the skeleton of G.
If we can add a chord to every quadrangle of H such that the chords induce a forest, then
G has a PGF-partition.

Proof. Let C be the set of chords added to H. By the 1-1 mapping between quadrangles
of H and crossing pairs of G, we know that exactly one edge from each crossing pair of
G is contained in C. In particular, each edge e ∈ C forms a crossing pair with some edge
e′ of G. Let C ′ be the set of these edges e′. By assumption G[C] is a forest. Moreover,
the graph H ∪ C ′ is the graph H plus a chord added to each quadrangle of H, and so is a
planar graph. As H ∪C ′ is also the graph induced by the edge-set E(G) \C, this gives us
the desired partition.

Thus, in order to prove the existence of a PGF-partition, it suffices to show (typically
by induction on the number of quadrangles) that such a set of chords can be found. For
the induction to go through, Ackerman additionally forbids the chords from containing a
path between two adjacent pre-specified vertices x, y, and he requires all quadrangles to
be simple.

Theorem 4.1.2 (Ackerman [1]). Let H be a planar multigraph without loops such that
every face has degree at most four and all quadrangles are simple. Let xy be an edge of H.
Then we can add a chord to every simple quadrangle of H such that the subgraph induced
by the chords is a forest and does not contain a path between x and y.

38

Proof. Proceed by induction on the number of quadrangles in H. If H has no quadran-
gles, then the statement is trivial. Otherwise, let f be a quadrangle with facial circuit
〈z0, z1, z2, z3〉. By assumption f is simple, so the four vertices zi are distinct.

Case 1: The only face containing z0 and z2 is f ; in particular z0 and z2 are not adjacent.
Contract z0 and z2 through f . LetH ′ be the graph resulting from this contraction. Observe
that H ′ has one fewer quadrangle than H. All other quadrangles remain simple since f
was the only face containing z0 and z2. Apply induction on H ′ with the same edge xy to
receive a set of chords C ′, and then further add the chord z0z2. Chords have now been
added to every quadrangle of H, and one verifies that we have not added a cycle or a path
from x to y in the chords.

Case 2: There is some face f ′ 6= f containing z0 and z2, but the only face containing
z1 and z3 is f . Proceed as in Case 1, except contract z1 and z3.

Case 3: None of the above. Then there is a face f ′ 6= f containing z0 and z2, and
there is a face f ′′ 6= f containing z1 and z3. Ackerman argues that f ′ = f ′′ (see also
Lemma 4.2.2), and therefore f ′ is also a simple quadrangle. Observe that G can be split
into four connected subgraphs H0, H1, H2, H3, where Hi contains zi and zi+1 (addition
modulo 4) on the boundary (see Figure 4.2(e)). One of these subgraphs, say H0, will
contain the edge xy. Apply induction on H0 with xy, and apply induction on the other
Hi with the edge zizi+1. After induction, add the chords z0z2 in f , and z1z3 in f ′. One
verifies that the added chords do not add a path between x and y and that the chords do
not create a cycle.

4.2 An Alternate Existence Proof

While Ackerman’s proof clearly leads to a polynomial time algorithm for finding the par-
tition, it is not obviously linear since distinguishing between the cases and contracting are
not obviously doable in constant time:

1. We need to test whether a given pair of vertices share more than one face.

2. The graph changes via contractions, and it is not obvious whether the existing data
structures for efficiently contracting edges in planar graphs (e.g. [46]) would support
(1) in constant time.

3. In Case 3 of Ackerman’s proof, we need to identify the four subgraphs H0, H1, H2, H3.
Furthermore, we need to determine which of these subgraphs contains the pair x, y.
Neither operation is obviously doable in constant time.

39

z0 = z2
z1 z3

b

a

f

Figure 4.1: The construction used in Lemma 4.2.1. (The face f ′ is not shown.) New
vertices are represented with circles, and new edges are represented with dashed edges.

We now give a different proof of the existence of a PGF-partition that either avoids
these issues or addresses explicitly how to resolve them. The biggest change is how we
handle Case 3 of Ackerman’s proof. Ackerman used a split into four graphs, which is
necessary in order to maintain that all quadrangles are simple. We prove a more general
statement that permits non-simple quadrangles and hence avoids having to split the graph.
Moreover, we generalize Ackerman’s “forbidden edge” xy by choosing chords in such a way
that the chords do not induce a path between any pair of vertices that were adjacent in the
original graph H. Doing so simplifies the induction since we no longer need to keep track
of where the vertices x and y are. Before we state this result we need a few helper-results
that hold for all quadrangles (simple or not). They are easily proved by finding (after
minor modifications) a planar drawing of K5 if the conclusion is violated.

Lemma 4.2.1. Let H be a plane multigraph without loops, let f be a quadrangle of H,
and let 〈z0, z1, z2, z3〉 be the facial circuit of f . If zi = zi+2 (addition modulo 4) for some i,
then zi+1 6= zi+3, and there is no face f ′ 6= f that contains zi+1 and zi+3.

Proof. (see Figure 4.2(a)) Up to renaming, we may assume that i = 0, so z0 = z2. Assume
for contradiction that z1 = z3. Then f consists of several parallel edges between z0 = z2
and z1 = z3, and thus f is not a quadrangle.

Assume for contradiction that there is some face f ′ 6= f which contains both z1 and z3.
Add two new vertices a and b inside the face f , along with edges az0, az1, az3, bz0, bz1,
and bz3. (See Figure 4.1.) Along with this, add a chord z1z3 through the face f ′. All these
steps maintain the planarity of H. Moreover, the five vertices z0, z1, z3, a, b are pairwise
adjacent. But this forms a K5 which is not planar, a contradiction.

The following lemma was shown (without being stated explicitly) in Case 3 of Acker-
man’s proof.

40

Lemma 4.2.2. Let H be a plane multigraph without loops, let f be a quadrangle of H,
and let 〈z0, z1, z2, z3〉 be the facial circuit of f . If zi and zi+2 (addition modulo 4) are both
on some face f ′ 6= f for some i, then no face f ′′ 6= f, f ′ contains both zi+1 and zi+3.

Proof. (see Figure 4.2(b-e)) Up to renaming we may assume that i = 0, so z0 and z2 are on
f and f ′. Suppose for contradiction that such a face f ′′ exists. By Lemma 4.2.1, z1 6= z3
and z0 6= z2. Stellate f with a new vertex x, add an edge z0z2 through f ′, and add an
edge z1z3 through f ′′. The original multigraph H was planar, and all of these operations
preserve planarity. However, the five vertices z0, z1, z2, z3, and x are pairwise adjacent and
form a K5, which is not planar, a contradiction.

f f ′

z0

z1 z3

z2

f f ′
z1

z2

z3

z0

f

f ′

z0

z3

z2

z1

(a)
(c)

(d) (e)

(b)

f

z0

z2

z3z1
z1z1 f

(b)

f

z1

z3

z0 = z2

z3

Figure 4.2: Some configurations where we contract z1 and z3. Note that in (a), the quad-
rangle f is the outer face.

Now we reprove the existence of quadrangle-chords that form a forest.

Theorem 4.2.3. Let H be a plane multigraph without loops such that every face has degree
at most 4. Then it is possible to add a chord to every quadrangle of H such that the graph
induced by the chords is a forest. Moreover, for any edge ab of H, there is no path from a
to b in the chords.

41

Proof. As in Ackerman’s proof, we prove the claim by induction on the number of quad-
rangles in H and remove each quadrangle by contracting an opposing pair of vertices in the
quadrangle. If H has no quadrangles, the claim is trivial. Otherwise, let f be a quadrangle
of H with facial circuit 〈z0, z1, z2, z3〉. We first pick two opposing vertices of f to contract.

Case 1: This case covers when we choose to contract z1 and z3, and has three sub-cases.
We contract z1 and z3 whenever

Case 1.a z0 = z2 are the same vertex, or

Case 1.b z0 and z2 are adjacent, or

Case 1.c z0 and z2 are opposing vertices of some quadrangle f ′ 6= f . 1

Figure 4.2 illustrates possible configurations of face f where Case 1 applies: Case 1.a
applies to (a), Case 1.b applies to (b), and Case 1.c applies to (c,d,e). Note that Case 1.c
covers Case 3 of Ackerman’s proof, where z0, z1, z2, z3 all belong to two simple quadrangles
f, f ′ (see also Figure 4.2(e)). Our contraction turns f ′ into a non-simple quadrangle, but
our proof can handle this.

Case 2: Otherwise, we contract z0 and z2.

Table 4.1 demonstrates when we pick Case 1 and when we pick Case 2, and crucially
shows cases which are impossible by Lemmas 4.2.1 and 4.2.2. To see that these lemmas
apply in the second row and column, observe that a pair of adjacent vertices x, y must
be on some face that has the edge xy on its boundary. In particular, if x, y are opposing
vertices on some quadrangle f , then additionally they are also on the boundary of some
face f ′ 6= f where the edge xy is on the boundary of f ′.

Let zi, zi+2 be two vertices chosen for contraction and let H ′ be the graph resulting from
contracting zi and zi+2. By Table 4.1, zi and zi+2 are not adjacent, and they are distinct.
Therefore our contraction has destroyed the quadrangle f and not added any loops, so we
can apply induction on H ′. Let C ′ be the set of chords added to H ′. By the inductive
hypothesis, C ′ induces a forest and for any edge ab ∈ H ′, there is no path from a to b in C ′.
Uncontract zi and zi+2, and add a chord e := zizi+2 between them. Define C := C ′ ∪ {e}.
We now verify that C satisfies all conditions.

1In fact, our proof does not require Case 1.c to be separated out; we could equally have contracted z0
and z2 in this case.

42

z0 = z2
z0 6= z2;

z0z2 ∈ E(H)

z0 6= z2;
z0, z2 are

opposing in f ′
Otherwise

z1 = z3
Impossible

(Lemma 4.2.1)
Impossible

(Lemma 4.2.1)
Impossible

(Lemma 4.2.1) Case 2

z1 6= z3;
z1z3 ∈ E(H)

Impossible
(Lemma 4.2.1)

Impossible
(Lemma 4.2.2)

Impossible
(Lemma 4.2.2) Case 2

z1 6= z3;
z1, z3 are

opposing in f ′′
Impossible

(Lemma 4.2.1)
Impossible

(Lemma 4.2.2)

Impossible if f ′ 6= f ′′

(Lemma 4.2.2),
Case 1.c otherwise

Case 2

Otherwise Case 1.a Case 1.b Case 1.c Case 2

Table 4.1: All possible cases for the quadrangle f with facial circuit 〈z0, z1, z2, z3〉. We
either indicate which case in the proof of Theorem 4.2.3 would be chosen, or indicate the
lemma that demonstrates that this case is impossible.

Let ab be an edge of H. Assume for contradiction that there is a path π from a to b in
C. By the inductive hypothesis π must use e. Furthermore, e cannot be the edge ab since zi
and zi+2 are not adjacent, so π must use some edges from C ′. Let c1, . . . , ck1 , e, ck1+1, . . . , ck2
be π for some 1 ≤ k1 ≤ k2. But then c1, . . . , ck would be a path from a to b within C ′ in
H ′ = H/e, a contradiction.

Assume for contradiction that C contains a cycle in H. Since e is not a loop in H, the
cycle must use edges from C ′. Let e, c1, . . . , ck be the cycle, k ≥ 2. Then c1, . . . , ck would
induce a cycle within C ′ in H ′ = H/e, a contradiction.

We therefore have the following algorithm for finding a PGF-partition of a 1-planar
graph.

Algorithm 4.2.4. Let G be a 1-planar multigraph without loops. Let G+ be a planar
maximal supergraph of G and let H be the skeleton of G+. For each quadrangle f of H
with facial circuit 〈z0, z1, z2, z3〉, if z0 and z2 are adjacent, or z0 = z2, or z0 and z2 are
opposing on a quandrangle f ′ 6= f , contract z0 and z2. Otherwise, contract z0 and z2.
Define a partition A,B of G as follows: the partition A is all edges ab ∈ E(G) such that
the pair a, b was never contracted, and the partition B is all other edges of G.

43

4.3 Efficient Implementation

It is still not immediately clear how one would implement Algorithm 4.2.4 in order to
achieve linear run-time, since as in Ackerman’s proof we need to repeatedly test how many
quadrangles two vertices share. However, if we are more careful about the order in which
we contract each quadrangle, an efficient implementation can be achieved. The crucial
idea will be to pick some vertex x and contract all quadrangles incident to x. This will
allow us to store additional information relative to x and hence speed up testing which
case applies. We note that this idea alone would not suffice to make Ackerman’s proof run
in linear time, as one would still need to find a way to implement his Case 3 efficiently,
where he splits the graph into four subgraphs and determines which subgraph contains a
given pair of vertices.

4.3.1 Data Structure Interface

As mentioned earlier, one of the major ingredients to achieve fast run-time is to use the
data structure by Holm et al. [46] for contraction in planar graphs, but we will also provide
an alternative which uses a simpler data structure, at the cost of a slower run-time. We
will discuss these later (in Section 4.3.4) when we analyze the run-time, but note here the
two operations provided by [46] that will be needed:

• x = contract(e) takes a reference to an edge e, contracts e, and returns the vertex
resulting from the contraction.

Note that contracting e creates a loop in the graph, while the proof of Theorem 4.2.3
assumed that the graph has no loops. We could remove loops (the data structure
by Holm et al. can report newly created loops after contract), but this turns out
to be unnecessary: We will only contract edges at artificial gadgets inserted into the
graph, and the created loops are at quadrangles that are destroyed afterwards and
those will not pose problems.

• neighbors(x) returns an iterator over {〈xv, v〉 : xv ∈ E} where E is the edge set
of the graph. In other words, it returns an iterator to tuples containing each edge
incident to x and the endpoint of this edge. In our pseudocode we will often not need
the edges, and so we use neighbors’ to get an iterator over only the vertices. No
guarantee is given as to the order of the neighbors.

We assume that neighbors(x) has O(1) run-time and that the returned list can be
iterated over in O(d(x)) time. Since edge-contraction can create parallel edges, it is

44

f

quad0quad1

quad2 quad3

z0

z1

z2

z3

z0

z1 = z3

z2

f

quad0
quad1

quad2
quad3

Figure 4.3: The gadget added to every quadrangle of H, shown for both a quadrangle
with four distinct vertices on its boundary (left) and one with three distinct vertices on its
boundary (right).

possible that neighbors(x) contains parallel edges, and hence the second element of
the tuple need not be unique. Again this will not pose problems later.

In Section 4.3.2, we will add labels and other meta-data to vertices of our graph.
We make no assumptions as to how the meta-data are updated when two vertices are
contracted, and so we will maintain those manually.

4.3.2 Preprocessing

We take as input a 1-plane multigraph G without loops. Recall that when we are given a
1-plane graph, it is given by specifying its planarization via the rotational clockwise order
of edges at the vertices, and assuming that vertices of the planarization resulting from
crossing points are marked as such. By Lemma 2.2.3, we can construct a planar maximal
supergraph G+ in linear time by adding edges. This also gives us the planarization (G+)× of
G+. As before we use H to denote the skeleton of G+, but we do not construct it explicitly.
Instead, notice that the vertices of (G+)× marked as crossings correspond uniquely to the
quadrangles of H. For this reason, we mark all these vertices with a label quad and we
call such a vertex a quadrangle-vertex (whereas the corresponding face of H is called a
quadrangle-face)

45

Our proof of Theorem 4.2.3 relies heavily on having faces, while the data structure
of Holm et al. makes no provisions for accessing faces. For this reason, we keep the
quadrangle-vertices in the graph as representatives of the quadrangle-faces. We also need
to know the order of the vertices along the boundary of a quadrangle, which again the
data structure does not support. Therefore at any quadrangle-vertex f we stellate each
of the four incident triangular faces. (See Figure 4.3.) Since we have yet not contracted
any edges, we have access to the rotational clockwise order of edges at f ; we can hence
label the added vertices with quadi (for 0 ≤ i ≤ 3) in clockwise order around f . We
use H♦ for the graph that results after all these modifications (it can be viewed as the
skeleton H with a “diamond”-gadget inserted into each quadrangle-face). Clearly a 1-plane
multigraph can only have O(m) crossing points, and therefore H♦ has size O(n+m) and
can be constructed from G in linear time.

The added vertices will make it possible to implement the operation “contract zi and
zi+2 within quadrangle f ” used in Theorem 4.2.3 via edge-contractions at the corresponding
quadrangle-vertex f : We contract each quadj into f for 0 ≤ j ≤ 3, and then contract zi
and zi+2 into f . See Procedure 4 for details. We also assume that the quadrangle-vertex
f has references to the two original edges in G that crossed; when doing this contraction
within f we can hence also record the corresponding edge zizi+2 for inclusion in the forest
part of the partition.

Procedure 4: ContractThrough(u, v, f)
Result: Contract two vertices u and v in H through a quadrangle-face f , and

return the resulting vertex y.
// pre: f is labelled quad
// pre: u and v are opposing on the face of H corresponding to f

1 Find the original edge uv of G that is stored with f .
2 Record edge uv as belonging to the forest of the partition.
3 for 〈e, w〉 in neighbors(f) do
4 if v equals w or v equals u or w has label quadi for some 0 ≤ i ≤ 3 then
5 y := contract(e)

6 Remove labels quad, quadi from y
7 return y

The labels quadi also make it possible to recover the clockwise order 〈z0, . . . , z3〉 of
vertices on the quadrangle-face corresponding to f in constant time: If f is a simple
quadrangle, then the neighbors of quadi are zi−1, the quadrangle-vertex f , and zi. The

46

vertices quadi and quadi+1 only have the neighbors zi and f in common. This allows us
to recover the facial circuit. Special care must be taken if the quadrangle f is not simple,
because if zi−1 = zi+1, then quadi and quadi+1 will have all three neighbors in common.
(See Figure 4.3(right).) However, in such a case we can still determine zi−1 as in the simple
case, and this allows us to recover zi. See Procedure 5 for details.

Procedure 5: FacialCircuit(f)
Result: Reconstruct the facial circuit of a quadrangle-face, given the

corresponding quadrangle-vertex.
// pre: f is a vertex of H♦ with label quad

1 for vertex v in neighbors’(f) do
2 for i = 0, . . . , 3 do
3 if v has label quadi then fi := v

4 for i = 0, . . . , 3 do
5 Ni := neighbors’(fi) ∩ neighbors’(fi+1)
6 if |Ni| equals 2 then zi := Ni \ {f}
// Special case for non-simple quadrangles

7 for i = 0, . . . , 3 do
8 if |Ni| equals 3 then zi := Ni \Ni+2

9 return 〈z0, z1, z2, z3〉

47

We also add the following meta-data to each vertex of H♦:

• A boolean adj, initialized to false.

• A boolean in_worklist, initialized to false.

• An integer opposing, initialized to 0.

The main idea of our algorithm is to iteratively contract all the quadrangles incident to
some vertex x. As we do this, we will use adj to mark vertices that are adjacent to x,
in_worklist to mark unprocessed quadrangles incident to x, and we will use the value
opposing for a vertex y to keep track of the number of quadrangle-faces where y is the
opposing vertex of x.

4.3.3 Handling the Quadrangles around a Vertex

The main subroutine of our algorithm handles all quadrangles incident to some vertex x
by contracting each of them using the criteria laid out in Theorem 4.2.3 to decide which
vertices to contract. To do so, we will initialize and maintain a work-list of faces incident to
x that we need to contract (using in_worklist to avoid putting duplicate quadrangles into
the worklist). We also mark vertices inH♦ as adj and increment opposing as needed. This
can be done in O(d(x)) time by retrieving all neighbours of x via neighbours. Procedure 6
shows the details.

Now we iteratively contract all the faces in the worklist according to Theorem 4.2.3;
with adj and opposing we can determine the correct case in constant time. See Procedure 7
for details. In Case 1, we need to update some values of opposing: the vertex z2 which
was opposing x now no longer opposes x in f (since f was destroyed), so we decrement
z2.opposing. Likewise the new vertex v resulting from the contraction will be opposing
x in all those quadrangles in which z1 and z3 previously opposed x, so we set v.opposing
correspondingly. In Case 2, when we contract some vertex z2 into x, we need to add the
quadrangles incident to z2 to our worklist, for which we can re-use Procedure 6.

Lastly, once our worklist is empty (and hence there are no more quadrangles incident
to x), we reset the meta-data of x and its neighbors, so that when repeating the procedure
with a different vertex as x there are no stray vertices with meta-data set to erroneous
values. See Procedure 8 for details.

48

Procedure 6: InitializeAtOneVertex(y, worklist)
Result: Adds all quadrangle-vertices incident to a vertex y to a worklist, taking

care not to put duplicates in the worklist.
// pre: y is a vertex of H
// pre: y equals x (the vertex we are currently working on), or y

will be contracted into x
1 for vertex v ∈ neighbors’(y) do
2 v.adj := true
3 if v has label quad and not v.in_worklist then
4 v.in_worklist := true
5 worklist.push(v)
6 〈z0, z1, z2, z3〉 := FacialCircuit(v)
7 while y 6= z0 do relabel 〈z0, z1, z2, z3〉 := 〈z1, z2, z3, z0〉
8 z2.opposing += 1

Procedure 7: HandleQuadsAtOneVertex(x)
Result: Contract all the quadrangle-faces incident to a vertex x

1 worklist := []
2 InitializeAtOneVertex(x, worklist) // see Proc. 6
3 for quadrangle-vertex f in worklist do
4 〈z0, z1, z2, z3〉 := FacialCircuit(f) // see Proc. 5
5 while x 6= z0 do relabel 〈z0, z1, z2, z3〉 := 〈z1, z2, z3, z0〉
6 if z2 equals x or z2.adj is true or z2.opposing ≥ 2 then // Case 1
7 opposing1 := z1.opposing
8 opposing3 := z3.opposing
9 v := ContractThrough(z1, z3, f) // see Proc. 4

10 v.adj := true
11 v.opposing := opposing1 + opposing3
12 z2.opposing −= 1
13 else // Case 2
14 InitializeAtOneVertex(z2, worklist)
15 x := ContractThrough(x, z2, f)

16 CleanupAtOneVertex(x) // see Proc. 8

49

Procedure 8: CleanupAtOneVertex(y)
Result: Cleanup the metadata at a vertex y and its neighbors.
// pre: y is a vertex of H

1 for vertex v ∈ neighbors’(y) ∪ {y} do
2 v.adj := false
3 v.in_worklist := false
4 v.opposing := 0

4.3.4 Putting it All Together

The following summarizes our algorithm: after preprocessing, and for as long as there is a
quadrangle-face f left, process all quadrangles at a vertex x on f and record all edges that
belong to the forest along the way. See Procedure 9 in for a detailed description. We have
correctness by Algorithm 4.2.4.

Procedure 9: FindPGFPartition(G)
Result: Find a PGF-partition of a 1-plane graph G.

1 Add edges to make G planar maximal
2 Compute planarization G×, mark vertices of crossings with quad
// Construct H♦ from G×

3 foreach vertex f marked quad do
4 Insert four vertices in four incident faces of f
5 Mark these vertices with quad0, . . . , quad3 according to embedding

6 Initialize edge-contraction data structure with H♦
7 while there remains a vertex f labeled quad do
8 x := some neighbor of f not labeled quadi
9 HandleQuadsAtOneVertex(x)

10 Return all edges that were recorded as forest F , and G \ F as planar graph

Runtime It remains to analyze the run-time. For now, we ignore the time required
to perform the contractions and analyze the time for handling all quadrangles at one vertex
x. Initialization takes O(d(x)) time, and most other steps take constant time per handled
quadrangle, with one notable exception: When we contract some vertex z2 into x, we must
update the worklist, which takes time O(d(z2)). Complicating matters further, z2 may

50

actually be the result of prior contractions, so its degree may be more than what it was in
H♦, and we must ensure that degrees of vertices are not counted repeatedly.

To account for the work, consider the graph H♦f that results from H♦ after all of the
quadrangle-vertices have been contracted. For a vertex x ∈ V

(
H♦f
)
, let s(x) be the set of

vertices of H♦ that were contracted into x, either directly (when handling the quadrangles
at x) or indirectly (i.e., if they had been contracted into one of the vertices z2 that later
get contracted into x). Crucially, note that if x, x′ are two vertices that are parameters
during calls to Procedure 7 (i.e., we contract all quadrangles incident to the vertex), then
s(x) and s(x′) are disjoint. This holds because once we are done with the first of them
(say x), all vertices in s(x) have been combined with x and no longer have any incident
quadrangles. Since we only contract vertices into x′ that are incident to quadrangles, none
of the vertices in s(x) becomes part of s(x′).

Hence for each vertex x of H♦f , the amount of work done in Procedure 7 is proportional
to the sum of the degrees dH♦(y) for each y ∈ s(x). Since H♦ has O(n) edges, and all other
parts of the algorithm take constant time per quadrangle-vertex, the total amount of work
done is at most

O

 ∑
x∈V (H♦f)

∑
y∈s(x)

dH♦(y)

 = O

 ∑
x∈V (H♦)

dH♦(x)

 = O(|E(H♦)|) = O(n+m)

hence the algorithm is linear (ignoring the time for contractions).

Now we consider the run-time of possible data structures for contractions. Our first
approach is to use the usual data structure for a graph introduced in Chapter 2 using
incidence lists, where every vertex has a list of incident edges, each edge knows both of its
endpoints, and every list knows its length. We can implement neighbors(x) in constant
time by simply returning an iterator to the incidence list at x. Contracting two vertices u
and v can be done in O(min{d(u), d(v)}) time by re-attaching the edges of the vertex with
smaller degree to the vertex with larger degree.

Lemma 4.3.1. Let G be a multigraph implemented with incidence lists. Then any number
of contractions can be done in O(m logm) time.

Proof. Consider some edge e of G. We determine how many times one of the endpoints
of e is changed. Suppose that during a contraction, an endpoint v of e is changed to the
vertex u. Then it must have been that d(u) ≥ d(v). The vertex u′ resulting from the
contraction will have degree d′(u) = d(u) + d(v) ≥ 2d(v). Therefore, the degree of one of

51

the endpoints of e has doubled. Since the maximum degree is m, an endpoint of e can be
changed at most 2 logm times. Therefore, the total amount of times an endpoint of some
edge is changed is O(m logm). The time for all contractions is proportional to the number
of endpoint changes and hence also O(m logm).

Note that this is analogous to implementing Union-Find in O(n log n) time, a well
known result (see e.g. Section 4.6 of [55]). With this we have our first result.

Theorem 4.3.2. There exists an algorithm that, for any input graph G implemented
with incidence lists that comes with a 1-planar embedding, finds a PGF-partition of G
in O(m logm) time.

If G is simple, then m ≤ 4n− 8, and hence the algorithm runs in time O(n log n). To
improve this run-time, we appeal to the following result by Holm et al.

Theorem 4.3.3 (Holm et al. [46]). Let G be a (not necessarily simple) planar graph with
n vertices and m edges. Then there exists a data structure that supports contract and
neighbours and that can be initialized in O(n + m) time. Any call to neighbors can be
processed in worst case constant time, and any sequence of Θ(m) calls to contract can be
performed in time O(n+m).

Using this data structure, we have the main result of this chapter.

Theorem 4.3.4. There exists an algorithm that, for any input graph G that comes with
a 1-planar embedding, finds an edge partition of G into a planar graph and a forest in
O(n+m) time.

Again, if G is simple, then this algorithm runs in time O(n). We note here that the
algorithm we have presented requires (regardless of the underlying data structure used)
that we are given the embedding of the 1-planar graph. Indeed, the proof itself (both ours
and Ackerman’s) relies heavily on properties of the embedding. Finding this partition is
the only step in 4-list coloring a 1-planar bipartite graph that requires the embedding.
This leads to the following open problem.

Open Problem 4.3.5. Is there a polynomial time algorithm to find a partition of a 1-
planar graph into a planar graph and a forest without being given an embedding?

Even if in general there is no polynomial time algorithm, it is possible that we can find
a PGF-partition without an embedding when the graph is bipartite. If no polynomial time

52

algorithm is found for this, it is possible that there is a linear time algorithm for 4-list
coloring a 1-planar bipartite graph that avoids having to find the PGF-partition. Recall
that we needed this partition to orient the edges of the 1-planar bipartite graph such that
the vertices have outdegree at most three. Without an embedding, the fastest algorithm
known to us to find this orientation runs in time O(m1.5) [17].

Open Problem 4.3.6. Is there a linear time algorithm to find a 4-list coloring of a 1-
planar bipartite graph without being given am embedding?

53

Chapter 5

Coupled List Coloring Planar Graphs of
Small Treewidth

In this chapter we study the problem of coupled list coloring planar graphs of small
treewidth. In doing so we study the structure of coupled graphs (the graphs of vertex
and face adjacencies of planar graphs), in particular characterizing their relationship with
optimal 1-planar graphs. We then characterize the coupled choosability of wheel graphs,
with an eye towards the coupled choosability of planar partial 3-trees.

5.1 Simple Coupled Choosability Results

We first give a few simple results for coupled choosability. These will be helpful in Sec-
tion 5.4 when we study the coupled choosability of subgraphs of wheel graphs, and they
will also help to familiarize the reader with the problem of coupled choosability. Here we
revisit the characterization of the graphs that are 3-coupled choosable (this was briefly
mentioned in Chapter 2).

Lemma 5.1.1. Let G be a connected planar graph. Then G is 3-coupled choosable if and
only if G is a tree. Moreover, for any tree G with 3-list assignment L, we can find an
L-coloring of G in linear time.

Proof. (⇒) Suppose G is not a tree. Then G contains a cycle and therefore must have
at least two faces. In particular, G has two faces f, g adjacent via an edge e = xy. In
C(G), we have that f, g, x, y are pairwise adjacent: we chose f, g and x, y such that they

54

are adjacent, and the vertices x and y both lie on the faces f and g. Therefore, the coupled
graph C(G) contains K4 as a subgraph, and so G is not 3-coupled choosable (since K4 is
not even 3-colorable).

(⇐) Let G be a tree and let L be a 3-coupled list assignment for G. We first color
the unique face f of G with an arbitrary color of c ∈ L(f). It remains to list color the
vertices of G. We cannot use the color c for any vertex of G, and therefore define lists L′
for the vertices of G given by L′(x) := L(x)\{c}. We have that |L′(x)| ≥ 2 for every vertex
x ∈ V (G), and G is 2-list colorable because it is a tree, so an L′-coloring of G can be found.
We then therefore have an L-coloring of G. Clearly this is a linear time algorithm.

Now we study how graph operations affect the coupled list chromatic number. In
contrast to list coloring, where the list chromatic number of a graph is an upper bound
for the list chromatic number of its subgraphs, there is no clear relationship between the
coupled list chromatic number of a graph and the coupled list chromatic number of its
subgraphs. Indeed, it is possible for a subgraph to have a larger coupled list chromatic
number.

f2

a

b

c

f1

Figure 5.1: The graph K4 (left) and subgraph H (right).

Theorem 5.1.2. There exists a plane graph G with subgraph H such that the coupled list
chromatic numbers satisfy χLvf (H) > χLvf (G).

Proof. Define G = K4, and let H be the result of deleting one edge from K4. From
Theorem 10 of [90] we know that χLvf (K4) = 4. But in the graph C(H) and in the naming
of Figure 5.1, we have that a, b, c, f1, f2 are all pairwise adjacent: the vertices a, b, c are
pairwise adjacent in H, the faces f1, f2 share an edge, and a, b, c all lie on the boundaries
of both f1 and f2. Therefore C(H) contains K5 as a subgraph, and it must be that
χLvf (H) ≥ 5 > 4 = χLvf (K4). (Note that H is outerplanar, so in fact χLvf (H) = 5; see
Corollary 5.1.7.)

Other graph operations are better behaved in this respect. For instance, there is a clear
relationship between the coupled choosability of some graph G and the coupled choosability
of any subdivision of G.

55

u
x v

f1

f2

Figure 5.2: A vertex x resulting from subdividing the edge uv, along with the two faces f1
and f2 adjacent to x.

Lemma 5.1.3. For any plane graph G, any subdivision H of G is max{5, χLvf (G)}-coupled
choosable.

Proof. Let L be a list assignment for H such that |L(x)| = max{5, χLvf (G)} for every
vertex and face of H. We prove the statement by induction on the number of subdivisions
performed on G to obtain H. If H is the result of subdividing the edges of G zero times,
then H = G and so trivially any L-coupled coloring of G is an L-coupled coloring of H.

Otherwise, H was the result of performing k + 1 subdivisions on G for some k ≥ 0. In
particular, H is the result of subdividing a single edge of some graph H ′, where H ′ was
the result of performing k subdivisions on G. Let uv ∈ E(H ′) be the edge of H ′ that was
subdivided, and let x be the vertex which was added. By the inductive hypothesis, H ′
is max{5, χLvf (G)}-coupled choosable. Color the faces of H and the vertices V (H) \ {x}
according to how they would be colored in H ′. Then we only need to color the remaining
vertex x. Note that x has degree two with neighbors u and v. Let f1 and f2 be the two
faces adjacent to the edge uv in H ′. Then u, v, f1, and f2 are the only vertices and faces
that are adjacent (respectively incident) to x. (See Figure 5.2.) Hence, after coloring the
vertices and faces of H ′, x still has at least |L(x)| − 4 ≥ 5 − 4 = 1 color left and can be
colored.

This implies another result. For a planar graph G, subdividing an edge corresponds in
the dual graph G∗ to duplicating edges to form bigons (recall that these are faces of degree
2). Since χLvf (G) = χLvf (G

∗) we therefore have

Corollary 5.1.4. Let G be a plane graph and H be the result of duplicating some edges of
G to form bigons. Then H is max{5, χLvf (G)}-coupled choosable.

We present a similar result for adding a vertex of degree one to a graph.

Lemma 5.1.5. Let G be a planar graph, and let H be G plus a new vertex of degree one.
Then H is max{3, χLvf (G)}-coupled choosable.

56

Proof. Let x be the new vertex, and let L be a list assignment for H such that |L(y)| =
max{3, χLvf (G)} for every vertex and face of H. Color the faces and vertices of H − x
according to how they would be colored in G. It remains to color x. Since x is adjacent to
only one vertex and incident to only one face in H, after coloring the vertices and face of
H − x, x still has at least |L(x)| − 2 ≥ 3− 2 = 1 color left and can be colored.

Note that for the last three results, the coloring of H can be found in constant time
given a suitable coloring of G. We now use these results to prove that all K4-minor free
graphs are 5-coupled choosable, and that this coloring can be found in linear time. The
existence of this coloring was previously known [45, 90], but the linear time result is new.

Theorem 5.1.6. All K4-minor free graphs are 5-coupled choosable, and the coloring can
be found in linear time.

Proof. It is known (see e.g. [27]) that every K4-minor free graph G can be constructed
from some tree T via a series of duplicating edges, subdividing edges, and adding vertices
of degree one. Then by Lemmas 5.1.1, 5.1.3, and 5.1.5, and by Corollary 5.1.4, we have
that G is 5-coupled choosable.

It is known how to find this construction from a tree in linear time if the graph G is 2-
connected [84], and this can be extended to 1-connected graphs by running this construction
on the maximal 2-connected components of G. Since the 3-coupled list coloring of the tree
can be found in linear time, and each of our expansion steps takes constant time, we can
find the coloring of G in linear time.

Recall that an outerplanar graphs is a planar graph with all vertices on the outer face.
Since outerplanar graphs are K4-minor free, we have the following corollary.

Corollary 5.1.7. All outerplanar graphs are 5-coupled choosable, and the coloring can be
found in linear time.

5.2 Treewidth of Coupled Graphs

Recall the definition of treewidth and branchwidth from Section 2.4. In this section we
study the relationship between tw(G) and tw(C(G)) for a planar graph G. Trivially we
have that tw(C(G)) ≥ tw(G) as C(G) is a supergraph of G. We wish to show that
tw(C(G)) can also be upper bounded in terms of tw(G). In Chapter 6, this will allow us
to prove results on the parameterized complexity of coupled list coloring problems when

57

parameterized by the treewidth of the planar graph. Towards our goal, we first show that
if a planar graph has small branchwidth then the coupled graph has small branchwidth.
Recall that bounds on the branchwidth imply bounds on the treewidth as follows:

Lemma 5.2.1 (Robertson and Seymour [76]). Let G be a graph with bw(G) > 1. Then
bw(G)− 1 ≤ tw(G) ≤ 3

2
bw(G)− 1.

To prove the bound on the branchwidth, we use that for most planar graphs, the branch
decomposition of the primal graph can be used to construct a branch decomposition of the
dual graph. It is a direct consequence of the work from Mazoit and Thomassé [62], who
studied the branchwidth of planar graphs by way of branch decompositions of matroids.

Lemma 5.2.2 (based on [62]). Let G be a planar graph that is not a tree and let G∗ be the
dual of G. Let T be a branch decomposition of G and let T ∗ be the branch decomposition
of G∗ obtained by starting with the tree T and, for each leaf t of T mapped to an edge
e ∈ E(G), instead map it to the dual edge e∗ ∈ E(G∗). Then the width of T ∗ is equal to
the width of T .

Mazoit and Thomassé state the result for planar graphs without bridges, but within
their paper they also discuss that the crucial ingredient for the proof fails only if G is a tree
of branchwidth two. In the case where the graph G is a tree, it may be that bw(G) = 2,
but the dual graph G∗ of a tree is a single vertex with many loops, which trivially has
branchwidth one. As a direct corollary of Lemma 5.2.2, for any planar graph G that is not
a tree, we have bw(G) = bw(G∗). With this, we can bound the branchwidth of the coupled
graph.

Theorem 5.2.3. Let G be a connected planar graph with n ≥ 2 vertices that is not a tree.
Then bw(C(G)) ≤ 2bw(G).

Proof. Let T be a branch decomposition of G of minimal width and T ∗ be the branch
decomposition of G∗ of Lemma 5.2.2. We will construct a branch decomposition Tc of
C(G).

We begin with T . Let t be a leaf of T mapped to an edge e = xy of G. Let e∗ = fg
be the dual edge of e. In the coupled graph these four vertices form a K4 (or a K3 with
some parallel edges and a loop in the case where e is a bridge). We replace t with a
recursive partition of the edges {e, e∗, xf, xg, yf, yg}. (See Figure 5.3.) If any of the edges
xf, xg, yf, yg were included in a previous recursive edge partition when constructing Tc,
then simply exclude them here. It is easy to see that Tc is indeed a branch decomposition
of C(G). It remains to prove the claimed upper bound on the width of Tc.

58

x y

f

g

x, y

x, f

f, y g, x

y, g

x, y f, g

Figure 5.3: A primal edge xy in the coupled graph of a plane graph G (left), and the
transformation applied to the leaf of the branch decomposition of G containing xy used in
Theorem 5.2.3 (right).

Let a be an arc of Tc. We first examine the case where a was an original arc of T .
The separator σ(a) can be partitioned into two sets σG(a) and σG∗(a), where the former
consists of primal vertices and the latter consists of dual vertices. These are the separators
of a in T and T ∗, respectively. Therefore we have

|σ(a)| = |σG(a)|+ |σG∗(a)| ≤ bw(G) + bw(G∗) ≤ 2bw(G).

Otherwise, a is an arc added in one of the new recursive partitions. One of the components
of Tc − a is a subtree of a newly added recursive partition. At most four vertices of C(G)
are incident to edges of this recursive partition, and therefore |σ(a)| ≤ 4. Because G is not
a tree and n ≥ 2, we have bw(G) ≥ 2, and therefore have the desired result.

We note that the construction used in Theorem 5.2.3 does not work for tree graphs: The
complete bipartite graph K1,n is a tree and has branchwidth one [76], but the constructed
branch decomposition for C(K1,n) would have width three.

Theorem 5.2.4. Let G be a connected planar graph, n ≥ 2. Then tw(C(G)) ≤ 3tw(G)−1.

Proof. If G is not a tree, this follows from Lemma 5.2.1 and Theorem 5.2.3. If G is a
tree, then tw(G) = 1 and C(G) is a tree along with an additional vertex x∗ connected to
every vertex of the tree and several loops at x∗. A tree decomposition of width two can be
constructed by taking a tree decomposition of G of width one and adding x∗ to every bag
of the decomposition.

We also establish lower bounds for tw(C(G)) and bw(C(G)). (In fact, our result for
the branchwidth is tight.) For graphs G and H, the Cartesian product G�H is a graph

59

Figure 5.4: A cylinder graph Z8,4 (left), along with a cylinder graph Z16,3 shown as a
subgraph of C(Z8,4) (right).

Figure 5.5: A grid graph R4,7 (left), along with a grid graph R7,6 shown as a subgraph of
C(R4,7).

with vertex set V (G)× V (H). Two vertices (g1, h1) and (g2, h2) of G�H are defined to be
adjacent if g1 = g2 and h1h2 ∈ E(H), or g1g2 ∈ E(G) and h1 = h2. The cylinder graph
Zk,h is defined to be the Cartesian product of a cycle on k vertices and a path on h vertices.
In other words, Zk,h consists of h cycles of length k, connected in concentric circles via k
paths of length h. (See Figure 5.4(left).) The grid graph Rk,h is defined to be the Cartesian
product of a path on k vertices and a path on h vertices. The graph Rk,h can be seen as a
k × h integer grid with all of the horizontal and vertical lines. (See Figure 5.5(left).)

Theorem 5.2.5. For every k ≥ 1 there is a graph Gk of treewidth k such that C(Gk) has
treewidth at least 2k− 1. Moreover, there is a graph Hk of branchwidth k such that C(Hk)
has branchwidth 2k.

Proof. It is known that Rk,h has treewidth min{k, h} [75]. We take Gk := Rk,2k and have
tw(Gk) = min{k, 2k} = k. We can see in Figure 5.5(right) that the coupled graph C(Ra,b)

60

contains as a subgraph R2a−1,b−1. Thus C(Gk) contains R2k−1,2k−1 as a subgraph, and
tw(C(Gk)) ≥ 2k − 1.

It is known that a cylinder graph Zk,h has branchwidth min{k, 2h} [39]. We take Hk :=
Zk,k+1, and have bw(Hk) = min{k, 2k+2} = k. As can be seen in Figure 5.4(right), C(Hk)
contains Z2k,k as a subgraph, and therefore has branchwidth at least 2k. By Theorem 5.2.3,
we have bw(C(Hk)) = 2k.

This demonstrates that Theorem 5.2.3 is tight. However, we do not know if Theo-
rem 5.2.4 is tight, and we suspect its bound could be improved.

5.3 Coupled Graphs and Optimal 1-Planar Graphs

Recall that in this chapter we are studying coupled list coloring of planar graphs, or
equivalently, list coloring the graph C(G) for some planar graph G. By Lemma 2.2.4 C(G)
is 1-planar, but it has more structure as we will explain here. Recall that an optimal
1-planar graph is a simple 1-planar graph with 4n − 8 edges. Bodendiek, Schumacher,
and Wagner [18] proved that every simple optimal 1-planar graph is the coupled graph of
some planar graph. In particular, they define an almost elementary planar graph to be
a simple planar graph in which the boundary of every face is a cycle, and any two faces
share at most one edge on their boundary. Equivalently, almost elementary planar graphs
are those simple planar graphs that are 2-vertex-connected and 3-edge-connected. Observe
that these are exactly the simple planar graphs whose coupled graph is simple—any two
faces in an almost elementary planar graph will share at most one edge, and as there are
no cut vertices and no bridges there are no parallel intermediate edges and no loops in the
dual graph. They then prove the following.

Theorem 5.3.1 (Bodendiek et al. [18]). Let C be a (simple) graph. Then C is an optimal
1-planar graph if and only if there is an almost elementary planar graph G such that
C(G) = C.

The main objective of their paper was the coupled chromatic number of planar graphs,
so their colorings did not use lists. They argued that this coupled chromatic number
is maximized for graphs that are almost elementary, and they therefore did not need to
consider planar graphs whose coupled graph is not simple. Part of their argument for
this involved splitting a planar graph that is not almost elementary into almost elementary
subgraphs. These subgraphs are separately colored, and the colorings are then combined by

61

permuting colors. This strategy would not work for list coloring, and therefore we cannot
make the same assumption that our planar graphs are almost elementary, and hence cannot
assume that the coupled graph is simple.

In this section we explore the structure of all coupled graphs. As optimal 1-planar
graphs are defined to be simple, we generalize the concept to 1-planar multigraphs. Recall
that a (≥ 3)-cell drawing is a graph drawing in which every cell has at least three corners.

Definition 5.3.2. An optimal 1-planar multigraph is a 1-planar multigraph with exactly
4n− 8 edges that has a 1-planar (≥ 3)-cell drawing.

Observe that optimal 1-planar multigraphs are a superset of simple optimal 1-planar
graphs, since any simple 1-planar graph trivially has a (≥ 3)-cell drawing. We now show
that optimal 1-planar multigraphs are exactly the coupled graphs. Hence, what we prove is
a generalization of Theorem 5.3.1. Moreover, as Bodendiek et al.’s paper is only available
in German, this also is (as far as the author knows) the first time a proof of this result has
appeared in English.

We first prove that a coupled graph always has exactly 4n− 8 edges. This was proved
for simple graphs in [18], but a different proof via the Euler characteristic shows that it
holds even if there are bigons or loops.

Lemma 5.3.3. Let G be a plane multigraph. Then C(G) has 4|V (C(G))| − 8 edges.

Proof. By definition, C(G) has |V (C(G))| = |V (G)|+ |F (G)| = |E(G)|+ 2 vertices by the
Euler characteristic. We now count the number of edges in C(G). We have |E(G)| primal
edges of G, and |E(G∗)| = |E(G)| dual edges of G∗. A primal vertex x is incident to exactly
dG(x) intermediate edges (recall that we add parallel edges to C(G) if a vertex is incident
to a face more than once). Therefore C(G) has

∑
x∈V (G) dG(x) = 2|E(G)| intermediate

edges. Then in total, C(G) has 4|E(G)| = 4|V (C(G))| − 8 edges, as desired.

We proved in Lemma 2.2.4 that every coupled graph has a 1-planar (≥ 3)-cell draw-
ing. Therefore, by Lemmas 2.2.4 and 5.3.3, every coupled graph is an optimal 1-planar
multigraph.

Before showing the other direction, we first demonstrate that several known results for
simple 1-planar graphs hold for 1-planar multigraphs with a (≥ 3)-cell drawing. (Indeed,
the proof strategies themselves generalize.)

Lemma 5.3.4. Let C be a 1-plane multigraph with a (good) (≥ 3)-cell drawing ΓC, n ≥ 3.
Then the following hold:

62

1. C has at most n− 2 crossings.

2. Let H be the graph obtained from C by removing one edge from each crossing pair of
C. Then the induced drawing of H is a planar (≥ 3)-cell drawing.

3. C has at most 4n− 8 edges. In case of equality, C has exactly n− 2 crossing points.

4. If C has exactly 4n− 8 edges, then C can be obtained from a plane multiquadrangu-
lation Q by adding a pair of crossed edges to every face of Q.

Proof. (1) We recreate the proof by Czap and Hudak [24] of this result for simple 1-
planar graphs, here generalized to 1-planar multigraphs with a (≥ 3)-cell drawing. By
Lemma 2.2.3, let C+ be a planar maximal supergraph of C obtained by adding edges.
Because C has a (≥ 3)-cell drawing, the drawing of C+ is also a (≥ 3)-cell drawing. Note
that C+ has the same number of crossings as C. Let c be the number of crossings of C.
The planarization (C+)× of C+ therefore has n+ c vertices. Because every edge crosses at
most one other edge, no two vertices of V ((C+)×) \ V (C+) are adjacent.

Because C+ is planar maximal and has a (≥ 3)-cell drawing, every cell of C+ has
exactly three corners. Therefore all faces of (C+)× are of degree three and (C+)× is a
plane multitriangulation. By Lemma 2.2.2, (C+)× has exactly 2|V ((C+)×)| − 4 faces.

By construction we have |V ((C×)+)| = |V (C×)| = n + c. Let x be a vertex of (C×)+

resulting from a crossing point. We know x has degree four and is incident to exactly four
distinct faces of (C×)+. Moreover, we know that these faces are triangles. As x is not
adjacent to any vertex resulting from a crossing point, we have that every face of (C×)+

has at most one such vertex on its boundary. Therefore we have |F ((C×)+)| ≥ 4c, which
implies 2(n+ c)− 4 ≥ 4c, which implies n− 2 ≥ c, as desired.

(2) Again, we recreate the proof from Czap and Hudak [24]. Let ΓH be the drawing of
H induced by ΓC . Clearly H is planar since we removed one edge from each crossing pair.
It remains to show that ΓH is a (≥ 3)-cell drawing. Suppose some face f of ΓH has only
one vertex v or two vertices v1, v2. This face f would have resulted from merging some
cells of ΓC since ΓC is a (≥ 3)-cell drawing. So some edge e of C crossed an edge e′ on the
boundary of f , where e′ is either a loop vv or an edge v1v2. As e has only one crossing,
one endpoint of e must have been v or some vi. But ΓC is a good drawing, and edges that
share an endpoint do not cross, so this is a contradiction. Therefore ΓH is a (≥ 3)-cell
drawing.

Let H be as in (2) for the remainder of this proof.

63

(3) By Lemma 2.2.2, H has at most 3n−6 edges, and so C has at most (3n−6)+(n−2) =
4n− 8 edges since there are at most n− 2 edges in C −H by (1). Equality can hold only
if C −H has n− 2 edges, so there were exactly n− 2 crossings.

(4) As in the proof of (3), we know that H has exactly 3n − 6 edges. Then by
Lemma 2.2.2, H must be a plane multitriangulation and has exactly 2n− 4 faces.

Let A be the set of edges removed from C to construct H. Each edge of A is in a
crossing pair with an edge of H; let B ⊆ E(H) be the set of these edges. As H is a plane
multitriangulation and C has a good 1-planar drawing, no face of H can contain more
than one edge-side of B on its boundary (otherwise some edge e ∈ A would either intersect
two different edges or intersect some edge with which it shares an endpoint). Moreover,
by |B| = n − 2 and |F (H)| = 2n − 4, we determine that every face of H has exactly one
edge-side of B on its boundary.

Let Q = H − B. For each edge e ∈ B, there were two incident faces f1, f2 in H
(necessarily f1 6= f2 as f1 and f2 can have at most one edge side of e on its boundary) which
became one face in Q. The faces f1 and f2 each had three edge sides on their boundary,
but two of those edge sides were those of e. Therefore the face f has 3 + 3− 2 = 4 edges
sides and is a quadrangle. Since all faces of H have an edge side of B on their boundary,
all faces of Q are quadrangles and so Q is a plane multiquadrangulation. By definition, C
can be constructed from Q by adding a pair of crossed edges to every face of Q.

We now prove the main result of this section.

Theorem 5.3.5. Let C be a multigraph. Then C = C(G) for some planar graph G if and
only if C is an optimal 1-planar multigraph.

Proof. (⇒) This follows from Lemmas 2.2.4 and 5.3.3.

(⇐) By Lemma 5.3.4(4), let Q be a plane multiquadrangulation such that C can be
constructed from Q by adding a pair of crossed edges to every face of Q. The graph Q
is bipartite, and we let P,D be the partition of Q. Consider some quadrangle f of Q.
Walking along the boundary of f we have vertices z0, z1, z2, z3 in clockwise order (possibly
z0 = z2 or z1 = z3). In C, there is a crossing pair with edges z0z2 and z1z3. As zi is adjacent
to zi+1 (addition modulo 4), assuming z0 ∈ P it must be that z0, z2 ∈ P and z1z3 ∈ D.
Hence, every crossing pair of C consists of one edge of C[P] and one edge of C[D]. Define
G := C[P]. The graph G contains exactly one edge from every crossing pair of C, and
therefore G is a planar graph. We observe that for any vertex d ∈ D, the neighbors of d
that are in P form a circuit: Let N ⊆ P be the neighbors of d that are in P ; enumerated
as as p0, . . . , pk−1 in their cyclic order around d (possibly pi = pj for i 6= j). The vertices

64

f
d

p1

p2

p3

p4

p0

Figure 5.6: A vertex d ∈ D in Q (left), along with its neighbors. From construction of
Q, each quadrangle adjacent to d corresponds to a crossing pair of C (shown with dotted
edges) which we use to find the face f of G (right).

pi, d, pi+1 (addition modulo k) form an angle in a quadrangle of Q, and hence pipi+1 is an
edge of C. Therefore there is a circuit p0, . . . , pk−1. (See Figure 5.6(left).)

In order for C(G) to be meaningful, we must show that the graph G is connected. It
suffices to show that for any vertices p, p′ ∈ P , there is a walk between p and p′ in C that
only uses vertices of P . Let π := 〈p=x1, x2, . . . , xk−1, xk=p′〉 be a walk in C between p and
p′ that uses the minimum possible number of vertices of D. Suppose for contradiction that
xi ∈ D for some 2 ≤ i ≤ k − 1, and assume that xi−1 ∈ P . (It may be that xi+1 ∈ D.)
We know that the neighbors of xi that are in P form a circuit ρ. Using ρ, we can locally
re-route π to go from xi to xi+1 using only vertices from P : This is clear if xi+1 ∈ P , as
then xi+1 is in ρ. Otherwise, the edge xi+1xi is in a crossing pair with an edge qq′ where
q and q′ are in ρ, and we have that q is adjacent to both xi and xi+1. Hence we reroute
π by going from xi to q using vertices in ρ, and then going from q to xi+1. After this
re-routing, we obtain a walk π′ from p to p′, and π′ uses less vertices from D than π. But
π was assumed to use the minimum number of vertices of D, and so this is a contradiction.
Therefore π uses no vertices from D, and G is connected.

Fix the drawing of G induced by the drawing of C. We now show that C(G) = C. Let
d ∈ D and N ⊆ P be the neighbors of d that are in P . As argued above, the neighbors of
d that are in P form a circuit. Moreover, as d was connected to all vertices in this circuit,
the circuit forms the boundary of a face f of G. (See Figure 5.6(right).) The face f is
uniquely defined from d, and we therefore have that V (C) = P ∪D ⊆ V (C(G)).

The edges dpi correspond to the intermediate edges added for the face-vertex-incidences
between f and pi. Finally, for each angle {pi, d, pi+1}, the corresponding quadrangle of Q
contains a fourth angle at some d′ ∈ D (possibly d′ = d), and the edge dd′ inside this

65

quadrangle is the dual edge of pipi+1, so C contains all edges of C(G). We therefore
have that E(C(G)) ⊆ E(C) and V (C) ⊆ V (C(G)). Moreover, as both graphs are optimal
1-planar multigraphs and have 4n−8 edges, we conclude that the two graphs are equal.

In conclusion, any statements that are true for coupled graphs are therefore true for
optimal 1-planar multigraphs. In particular for this thesis, any result for coupled list
coloring is equivalently a result for list coloring optimal 1-planar multigraphs. For example,
Theorem 5.1.6 could be viewed as a result for a subclass of optimal 1-planar multigraphs.

5.4 Coupled List Coloring Subgraphs of Wheels

In this section we investigate the coupled list chromatic number of subgraphs of wheel
graphs, and show that the corresponding coloring can be found in linear time. We do this
with an eye towards coupled list coloring planar partial 3-trees (we discuss this connection
further in Section 5.5). It was already known that all planar partial 2-trees (such graphs are
K4-minor free) are 5-coupled choosable [45, 90], and we moreover proved in Theorem 5.1.6
that this coloring can be found in linear time. In order to prove the desired result for all
subgraphs of wheels, we first determine the coupled list chromatic number of the wheel
graph.

The wheel graph Wn, n ≥ 4, is a plane graph constructed by taking a cycle Yn−1 on
n− 1 vertices, placing a new vertex x0 inside of the cycle, and adding an edge from x0 to
every vertex of Yn−1. We will label the outer face of the wheel graph as f0. We further
label the vertices in the cycle Yn−1 as x1, . . . , xn−1, and label the inner faces as f1, . . . , fn−1
such that xi is incident to fi and fi+1 for 1 ≤ i < n− 1, and xn−1 is adjacent to fn−1 and
f1. It is easy to see that a wheel graph Wn has treewidth at most three: The cycle Yn−1
has treewidth two. We can take a tree decomposition of Yn−1 of width two and then add
x0 to the bag of every node in the decomposition, giving us a tree decomposition of Wn of
width three. We aim to show the following:

Theorem 5.4.1. Every wheel graph Wn, n ≥ 4, is 5-coupled choosable, and the coloring
can be found in linear time.

Proof. For n = 4, W4 is the complete graph K4, Wang and Lih [90] proved that χLvf (K4) =
4. So we assume n ≥ 5. Let L be a 5-coupled list assignment for Wn. Our goal is to
find an L-coupled coloring of Wn. In the coupled graph C(Wn), x0 and f0 are adjacent to
all other vertices. We will color them first and then color the rest of C(Wn). We define

66

Xn := C(Wn) \ {x0, f0}. Observe that |V (Xn)| = 2n− 2. (See Figure 5.7.) When coloring
x0 and f0, we have two cases.

x1

x2

x3

xn−1

xn−2

x0

f1

f2 f3

fn−1

fn−2

f1

x1

f2

x2

f3

x3

xn−1

fn−1

xn−2

fn−2

4

3

3

4

4

3

3

3

3
3

3

3

3

3
34

Figure 5.7: The graph W9 (left) and X9 (right). Circled numbers indicate a lower bound
on the list lengths in L′ defined in the cases below.

Case 1: L(x0) ∩ L(f0) 6= ∅. Pick a color a ∈ L(x0) ∩ L(f0) and assign color a to x0 and
f0. We cannot use the color a for any vertex in Xn, and therefore define lists L′ for
Xn, given by L′(y) := L(y) \ {a} for every vertex y ∈ V (Xn). We see that all lists of
L′ are of size at least four.

Case 2: L(x0)∩L(f0) = ∅. We find suitable colors for x0 and f0 by imitating the method
used for K4 in [90] (adapted here to five colors). We define a set of color pairs S :=
{{a, b} : a ∈ L(x0), b ∈ L(f0)}. By case-assumption |S| = 25. For any y ∈ V (Xn)
define Sy := {s ∈ S : s ⊆ L(y)}. We claim that |Sy| ≤ 6. To see this, consider
the disjoint sub-lists L1 := L(y) ∩ L(x0) and L2 := L(y) ∩ L(f0). Observe that
Sy = L1 × L2. Moreover, |L1|+ |L2| ≤ 5, and so by integrality we have

|Sy| = |L1 × L2| = |L1| · |L2| ≤ 6.

Therefore, color pairs of S appear as subsets of lists in Xn at most

∑
y∈V (Xn)

|Sy| ≤ (2n− 2) · 6 = 12n− 12

times. By |S| = 25, some element {a′, b′} ∈ S appears at most

67

12n− 12

25
<
n− 1

2

times as a subset of a list in Xn. Color x0 with a′ and f0 with b′. We cannot use a′ or
b′ for any vertex in Xn, and therefore define lists L′ for Xn with L′(y) := L(y)\{a′, b′}
for all y ∈ V (Xn). For a vertex y in Xn, we have that 3 ≤ |L′(y)| ≤ 5. We call a
vertex y a 3-vertex if |L′(y)| = 3, i.e., {a′, b′} ⊆ L(y). From our choice of colors a′
and b′, we have

| {y ∈ V (Xn) : y is a 3-vertex} |
|V (Xn)|

<
(n− 1)/2

2n− 2
=

1

4

This ends the description for how to color x0 and f0. In both cases, we have chosen
their colors such that more than three quarters of the vertices of Xn are 4-vertices, i.e.,
have at least 4 colors in the list-assignment L′ obtained by removing the colors of x0 and
f0 everywhere. Consider the cyclic enumeration

σ := 〈f1, x1, f2, x2, . . . , fn−1, xn−1〉

of the vertices of Xn. Since more than three quarters of the vertices of Xn are 4-vertices,
there must be four consecutive 4-vertices in σ. Up to exchanging fi and xi and renumbering,
we may assume that f1, x1, f2, and x2 are 4-vertices. See Figure 5.7(right) for an illustration
of the list sizes in L′.

We next color fn−1 and x1. We wish to color them such that at most one color from
L(f1) is used. If L′(fn−1) ∩ L′(x1) 6= ∅, then color fn−1 and x1 with the same color.
Otherwise, we have |L′(fn−1) ∪ L′(x1)| ≥ 7 > |L(f1)|. Then there must be colors p and q
for fn−1 and x1 respectively such that at most one of them is in L(f1).

Two vertices adjacent to xn−1 have now been colored, and |L′(xn−1)| ≥ 3, so xn−1 still
has at least one valid color left, and we pick this color for xn−1. We now have colors p,
q, and r for fn−1, x1, and xn−1 (respectively) such that |L′(f1) \ {p, q, r}| ≥ 2. Removing
these colors from the lists of their neighbors produces new lists L′′ such that

68

f1

f2

x2

f3

x3

xn−2

fn−2

3

3

3
3

3

3

3

3
32

3

1

2

p

q

r

Figure 5.8: The graph X9. Circled numbers indicate a lower bound on the list lengths in
L′′. Solid edges show the graph X ′9.

|L′′(f1)| = |L′(f1) \ {p, q, r}| ≥ 4− 2 = 2

|L′′(f2)| = |L′(f2) \ {q}| ≥ 4− 1 = 3

|L′′(x2)| = |L′(x2) \ {q}| ≥ 4− 1 = 3

|L′′(xn−2)| = |L′(xn−2) \ {p, r}| ≥ 3− 2 = 1

|L′′(fn−2)| = |L′(fn−2) \ {p}| ≥ 3− 1 = 2

|L′′(xi)| ≥ 3 (for all 3 ≤ i ≤ n− 3)

|L′′(fi)| ≥ 3 (for all 3 ≤ i ≤ n− 3)

Figure 5.8 illustrates these lower bounds on the list lengths in L′′. We then color
the rest of the graph with respect to L′′. We argue that this is always feasible. Define
X ′n := Xn \ {fn−1, xn−1, x1} to be the graph of the vertices that remain to be colored
(shown in solid edges in Figure 5.8). We show that X ′n has an L′′-coloring, and do so via
Theorem 2.3.1. As such we must first define a vertex order for X ′n:

〈xn−2, fn−2, xn−3, fn−3, . . . , x2, f2, f1〉 .

The vertex xn−2 trivially has zero predecessors (neighbors proceeding it in this order), fn−2
has one predecessor (namely xn−2), and f1 only has one predecessor (namely f2). Any
other vertex of X ′n has two exactly predecessors. With this vertex ordering and the known
lower bounds on the size of the lists in L′′ given above, by Theorem 2.3.1, we can find an
L′′-coloring for X ′n in linear time. We therefore have a list coloring of Xn that is compatible

69

Figure 5.9: The graphs X5 and X6.

with the colors chosen for x0 and f0 chosen earlier, and so we have a coupled list coloring
of Wn.

Following the steps of this proof immediately leads to a linear time algorithm to find
the coloring.

In [90], it was shown that K4 = W4 is 4-coupled choosable. One might wonder whether
our result of 5-coupled choosability can be improved for any other wheel graphs. As we
show now, this is not the case and W4 is the only wheel graph that is 4-coupled choosable.

Theorem 5.4.2. χLvf (Wn) = 5 for n ≥ 5.

Proof. From Theorem 5.4.1, we know that all wheel graphs are 5-coupled choosable. It
remains to show that they are not 4-coupled choosable for n ≥ 5.

For n = 5, 6, we consider the coupled list assignment L such that L(y) = {1, 2, 3, 4} for
every y ∈ V (Wn) ∪ F (Wn). (So these graphs are not even 4-coupled colorable. It would
be possible to verify this using the characterization of 4-coupled colorability [13], but it is
easier to give a direct proof.) Assume for contradiction that we have an L-coupled coloring
c of Wn. If c(x0) 6= c(f0), then this leaves two colors for coloring the triangle x1, f1, f2
in Xn, impossible. Hence c(x0) = c(f0), say they are both colored 4. Then we have an
L′-coloring of Xn with lists L′(y) := L(y) \ {4} = {1, 2, 3}.

Observe that for X5 and X6 (illustrated in Figure 5.9), any putative L′-coloring would
be unique up to renaming the colors, since once we have colored one triangle, every other
vertex can be reached via a sequence of triangles. One verifies that for these graphs (and
indeed every Xk where k − 1 is not divisible by 3), attempting such a 3-coloring leads to
a contradiction. This proves the theorem for n = 5, 6.

70

f1

x1

f2

x2

f3

x3

1,2,5,6

1,2,5,6

1,2,5,6

1,2,7,8

1,2,7,8

1,2,7,8

3,4,5,6

3,4,5,6

3,4,5,6

3,4,7,8

3,4,7,8

3,4,7,8

x4

x5

x6

f4

f5

f6

Figure 5.10: The graph X9. Some of the vertices have been labelled with the 4-list assign-
ment defined in the proof of Theorem 5.4.2.

For n ≥ 7, we construct a list assignment L such that Wn is not L-coupled choosable.
Set L(x0) = {1, 2, 3, 4} and L(f0) = {5, 6, 7, 8}. We further define:

L(f1) = L(x1) = L(f2) = {1, 2, 5, 6}
L(x2) = L(f3) = L(x3) = {1, 2, 7, 8}
L(f4) = L(x4) = L(f5) = {3, 4, 5, 6}
L(x5) = L(f6) = L(x6) = {3, 4, 7, 8}

Observe that each of these triples forms a triangle in Xn, and for any a ∈ {1, 2, 3, 4}
and b ∈ {5, 6, 7, 8}, one of these triangles has colors {a, b, x, y} for some colors x, y. (See
Figure 5.10.) Assume for contradiction that we have an L-coupled coloring c of Wn. Up to
symmetry, assume c(x0) = 1 and c(f0) = 5. But then f1, x1, and f2 have only two colors
left, and therefore cannot be colored, a contradiction.

With this, the coupled choosability of wheel graphs is completely characterized.

Theorem 5.4.3. For a wheel graph Wn, we have χLvf (Wn) = min{5, n}.

We now return to the subject of graphs that are subgraphs of wheels. As demonstrated
in Theorem 5.1.2, non-trivial work is required to show that any subgraph of a wheel graph
is 5-coupled choosable. However, the result comes quickly using results proved earlier in
this chapter.

Theorem 5.4.4. Let G be a subgraph of a wheel graph Wn, n ≥ 4. Then G is 5-coupled
choosable and the coloring can be found in linear time.

71

Proof. We examine several possibilities of the structure of G.

Case 1: G is the result of deleting at least one vertex of Wn, or one edge of Wn that is on
the outer face. Then G is outerplanar and thereforeK4-minor free, and so by Theorem 5.1.6
G is 5-coupled choosable and the coloring can be found in linear time.

Case 2: Otherwise. Then all vertices of Wn belong to G, but we deleted zero or more
edges not on the outer face. These are edges that are incident to the center vertex (call
them spokes). If at most two spokes remain, then G has at most 3 faces and therefore is
K4-minor free, and hence is 5-coupled choosable by Theorem 5.1.6. If k ≥ 3 spokes remain,
then G is a subdivision of Wk and we can find the subdivision vertices in linear time by
scanning for vertices of degree two. By Theorem 5.4.1 and Lemma 5.1.3, G is 5-coupled
choosable, and we can find the coloring in linear time.

5.5 Towards Planar Partial 3-Trees

1

2

3

45
6

7
8

Figure 5.11: A planar partial 3-tree. Dotted edges show the Apollonian network G. We
can see that G is an Apollonian network: Start with the triangle on the outer face. Stellate
this triangle with the vertex labeled with 1. Then stellate one of the new faces with the
vertex labeled with 2. Continue this process with the vertices in the order they are labeled.

Our investigation of wheel graphs was motivated by wanting to determine the coupled
choosability number of planar partial 3-trees. We have given their definition via treewidth,
but there is also a more intuitive definition using Apollonian networks. Apollonian networks
are defined recursively as follows. A triangle is an Apollonian network. IfG is an Apollonian
network, and f is a face of G (necessarily a triangle) that is not the outer-face, then the

72

graph obtained by stellating face f is also an Apollonian network. (See Figure 5.11.) Any
planar partial 3-tree can be obtained as the subgraph of an Apollonian network [16].

Any Apollonian network is a maximal planar graph, and these graphs are known to
be 6-coupled choosable [90]. This does not automatically imply 6-coupled choosability of
planar partial 3-trees due to Theorem 5.1.2, and we therefore offer the following conjecture:

Conjecture 5.5.1. Every planar partial 3-tree is 6-coupled choosable.

Towards this conjecture, we examine several classes of planar partial 3-trees that also
generalize wheel graphs. One such class of graphs is the class of Halin graphs, which are
defined by starting with a tree T and adding a cycle between the leaves of T . See also the
solid edges in Figure 5.12. Wheel graphs are the special case of Halin graphs where the
tree T is a star graph. A second class of planar partial 3-trees are the stellated outerplanar
graphs, obtained by starting with some outerplanar graph G and stellating the outer face.
See also the dashed edges in Figure 5.12. Wheel graphs are the special case of stellated
outerplanar graphs where the outerplanar graph is a cycle. One can easily see that Halin
graphs are exactly the duals of stellated outerplanar graphs. Therefore, any coupled list
coloring of a stellated outerplanar graph corresponds to a coupled list coloring of a Halin
graph. Unfortunately, our upper bound for the coupled choosability of wheel graphs does
not in general extend to Halin graphs.

Theorem 5.5.2. There exists a stellated outerplanar graph (equivalently a Halin graph)
that is not 5-coupled colorable (in particular therefore it is not 5-coupled choosable).

Proof. The Halin-graph G is the triangular prism, see Figure 5.12 where we also show the
dual graph G∗ and the coupled graph C(G). The claim holds if we show that there is no
5-coloring of the vertices of C(G).

Assume for contradiction that C(G) had a 5-coloring; up to renaming of colors we may
assume that the triangle formed by the three quadrangles of G is colored 1, 2, 3. Let (t, t′)
be the edge that crosses the edge colored with 2 and 3. Vertices t, t′ are colored with 1, 4
or 5; up to renaming of colors 4 and 5 hence one of them is colored 4.

Starting with these three vertices colored 2,3,4, propagate restrictions on the possible
colors to other vertices of C(G) along the numerous copies of K4 (note that all vertices
other than t, t′ are adjacent to the one colored 1). This leads to a triangle that has only
two possible colors left, a contradiction.

In particular, this shows that we cannot replace “6” with “5” in Conjecture 5.5.1.

73

1

2

5

3

4

53

52

4,5

4,5

4,5

t t′

Figure 5.12: A Halin-graph G (black solid; the tree is bold), and the dual graph G∗ (blue
dashed) which is a stellated outerplanar graph (the outerplanar graph is bold). Taking
both, and adding the intermediate edges (red dotted) gives graph C(G).

Figure 5.13: An IO graph G consists of an outerplanar graph (circles) and an independent
set (squares). Dotted edges are added to obtain G+, and some of the wheels used to build
G+ are shaded.

We now consider a second graph class that lies somewhere between wheels and planar
partial 3-trees. These are IO graphs, which are planar graphs that can be obtained by
adding an independent set to the interior faces of an outerplanar graph. (See Figure 5.13).
Certainly any subgraph of a wheel is an IO graph.

Conjecture 5.5.3. Every IO graph is 5-coupled choosable.

We studied subgraphs of wheel graphs because they may be an important stepping
stone towards Conjecture 5.5.3. In particular, consider some IO graph G obtained from an
outerplanar graph O and independent set I. Let G+ be a maximal IO graph containing G,
i.e., add edges to G for as long as the result is simple and an IO graph. Then G+ is a tree of
wheels, where each wheel consists of a vertex x ∈ I with its neighbours, and the wheels have
been glued together at edges such that the gluing incidences form a tree. Correspondingly

74

G is a tree of subgraphs of wheels. It may be possible to use Theorem 5.4.4 (enhanced with
further restrictions on the coloring of some parts) to prove Conjecture 5.5.3 by building a
coloring of G incrementally in this tree, but this remains future work.

75

Chapter 6

Complexity of List Coloring

In this chapter we give complexity results for both list coloring 1-planar graphs and
coupled list coloring planar graphs. Many of these results can be proved by extending
previously known complexity results to 1-planar graphs. Clearly ListColoring and 3-
ListColoring are NP-hard in 1-planar graphs (because already 3-ListColoring is
NP-hard in bipartite 1-planar graphs, see Theorem 3.3.5). For intractable problems such
as this, it is common to instead consider the complexity in terms of both the size of the
input and in terms of some parameter of the input. For example, it is well known that
finding a vertex cover of size k is an NP-complete problem. However, for fixed k, a simple
recursive algorithm for finding a vertex cover runs in time O(2k · n) [33], i.e., in linear
time with respect to the size of the graph. This type of complexity analysis is known
parameterized complexity (precise definitions will be given in Section 6.1).

In this chapter we mainly consider two such parameters for our analysis: When studying
k-ListColoring, a natural parameter to consider is this integer k. We find that the
problem remains intractable under this parameter. The other parameter we consider is
the treewidth of the input graph. Many NP-complete problems, such as determining the
chromatic number of a graph or finding a maximum size independent set, are known to be
solvable in polynomial time on graphs with small treewidth [8]. We find that list coloring
problems are solvable in polynomial time for graphs of constant treewidth, although they
are still hard when parameterized by treewidth.

We recall here our Theorem 5.3.5, in particular that for any optimal 1-planar multigraph
C there is a planar graph G such that C(G) = C. Therefore, results in this chapter for
coupled list coloring are equivalently results for list coloring optimal 1-planar multigraphs.

76

6.1 Definitions

We assume familiarity with the complexity classes P, NP, and coNP, as well as reductions
and hardness, but review here some complexity classes from the field of parameterized
complexity. In parameterized complexity, we consider the running time of an algorithm
in terms of both the size of the input and a parameter of the input. For a computational
problem Q, a parameterization is a computable function κ that, for any input x to Q,
outputs a positive integer κ(x). We call the pair 〈Q, κ〉 a parameterized problem. For
a positive integer k ∈ N, we can obtain the parameterized problem Qk by restricting Q
to inputs x where κ(x) = k. The problem Qk is known as a slice of 〈Q, κ〉. We say
that an algorithm A is fixed parameter tractable with respect to κ if there is a polynomial
p : N → N and computable function f : N → N such that on input x, A runs in time
O(f(κ(x)) · p(|x|)). We also call A an fpt-algorithm. A parameterized problem 〈Q, κ〉 is
fixed parameter tractable if there is an algorithm for Q that is fixed parameter tractable
with respect to κ. We also say that Q is fixed parameter tractable with respect to κ. We
define FPT to be the complexity class of fixed parameter tractable problems.

One can think of FPT as the parameterized equivalent to the complexity class P. In this
way, there are several parameterized complexity classes one can consider to be an equivalent
to NP. We consider three such classes here. One is the class XP, which are parameterized
problems that can be solved in time O(|x|f(κ(x))) for any input x. The slices of a problem
in XP are solvable in polynomial time. However, in contrast to FPT, the degree of this
polynomial depends depends on the value of the parameter. Another class is para-NP,
which are parameterized problems which can be solved in time O(f(κ(x)) · p(|x|)) by a
non-deterministic Turing machine. The slices of a problem in para-NP are in NP. We also
consider (but do not define here) the class W[1], which consists of parameterized problems
solvable by a certain constrained class of boolean circuit. (See [33] for more details.) When
proving hardness results for parameterized complexity classes, one considers fpt-reductions,
i.e., reductions that can be computed with an fpt-algorithm.

The relationship between these parameterized complexity classes is shown in Figure 6.1.
It is known that FPT is contained in W[1], that W[1] is contained in para-NP and XP,
and that the classes para-NP and XP are not comparable [33]. It is conjectured that FPT
6= W[1] and that FPT 6= para-NP, and hence a problem being W[1]-hard or para-NP-hard
is evidence that there is no fpt-algorithm for that problem.

Lastly, we recall the complexity class Πp
2 from the polynomial hierarchy. This class

consists of all problems that are in coNP when given an oracle for some NP-complete
problem. For hardness results for Πp

2, one considers polynomial-time many-one reductions

77

para-NP XP

W[1]

FPT

Figure 6.1: The relationship between the parameterized complexity classes para-NP, XP,
W[1], and FPT. Figure is based on [33].

(the same as used when proving problems to be NP-hard). The class NP is contained in
Πp

2, and so if a problem is Πp
2-hard it is also NP-hard. It is conjectured that Πp

2 6= NP [36],
so a problem being Πp

2-hard is evidence that it is not in NP.

6.2 Para-NP-Hard problems

When considering the parameterized complexity of k-list coloring, it is natural to examine
the complexity when parameterized by the integer k, i.e., when parameterized by the size
of the lists. In this section we show that list coloring 1-planar graphs with respect to this
parameter is hard, even when list coloring optimal 1-planar multigraphs. The following
theorem reduces proving that a parameterized problem is para-NP-hard to examining the
slices of the problem.

Theorem 6.2.1. [33] Let 〈Q, κ〉 be a parameterized problem. If for some k ∈ N the slice
Qk is NP-hard, then 〈Q, κ〉 is para-NP-hard.

With this, k-ListColoring is para-NP-hard with respect to k even in bipartite 1-
planar graphs by Theorem 3.3.5. To show the result for optimal 1-planar multigraphs, we
need the following:

Theorem 6.2.2. 3-CoupledListColoring is NP-hard. Equivalently, 3-ListColoring
is NP-hard even for optimal 1-planar multigraphs.

Proof. We reduce from 3-Coloring planar graphs, which is known to be NP-hard [37].
Let G be a planar graph. We construct a 3-coupled list assignment L for G such that G is

78

L-coupled colorable if and only if G is 3-colorable. For x ∈ V (G), define L(x) = {1, 2, 3}.
It remains to assign lists for the dual vertices of G∗. As G∗ is a planar graph, we compute
a 4-coloring c∗ of G∗ using the colors {4, 5, 6, 7} [5]. Then for each x ∈ V (G∗), pick L(x)
such that |L(x)| = 3, |L(x)| ⊆ {4, 5, 6, 7}, and c∗(x) ∈ L(x).

Suppose that G is 3-colorable with coloring c. Then the coloring φ given by

φ(x) :=

{
c(x) if x ∈ V (G)

c∗(x) if x ∈ V (G∗)

is a valid L-coupled coloring of G.

Suppose that G is L-coupled colorable with coloring φ. Then since φ only uses colors
in {1, 2, 3} for the primal vertices of G, φ also defines a valid 3-coloring of G.

Combining this with Theorem 6.2.1 gives the following.

Theorem 6.2.3. k-CoupledListColoring is para-NP-hard when parameterized by k.
Equivalently, k-ListColoring is para-NP-hard even for optimal 1-planar multigraphs.

Note that although we have shown that k-CoupledListColoring planar graphs and
that k-ListColoring 1-planar graphs are NP-hard, these problems are both solvable in
polynomial time for large enough k: k-CoupledListColoring is always possible for k ≥
7 [90], and k-ListColoring 1-planar graphs is always possible for k ≥ 8 (Corollary 2.3.2).
Flum and Grohe observe that para-NP-complete problems are “in some sense, uninteresting
from the parameterized point of view” [33], since a problem need only be hard for one
parameter value in order to be para-NP-hard.

We will discuss the complexity of k-Choosability and k-CoupledChoosability
for fixed values of k in Section 6.6.

6.3 Problems in XP

We now turn to considering the complexity of list coloring 1-planar graphs when parame-
terized by the treewidth of the input graph, and first give some positive results. Jansen and
Scheffler give a polynomial time algorithm for list coloring graphs with bounded treewidth.

Theorem 6.3.1 (Jansen and Scheffler [50]). Let G be a graph and L be a list assignment
for G. Let t be the treewidth of G and L be the set of colors used in L. Then an L-coloring
of G (if it exists) can be found in time O(n · |L|t+1).

79

For any vertex x, L(x) need not be larger than d(x) + 1 by Theorem 2.3.1. Hence, we
can assume that

|L| ≤
∑

x∈V (G)

(d(x) + 1) = O(m+ n) = O(n2).

Therefore, the algorithm above can be reanalyzed as running in time nO(t). This is poly-
nomial if t is constant, but the algorithm is not an fpt-algorithm. It is, however, an XP
algorithm.

Theorem 6.3.2. The following problems are in XP when parameterized by the treewidth
of the input graph:

• ListColoring 1-planar graphs

• CoupledListColoring planar graphs.

Proof. The first result holds immediately by the above discussion. To see that the second
holds, recall that coupled list coloring a planar graph G is the same as list coloring C(G),
and we proved that tw(C(G)) ∈ O(tw(G)) in Theorem 5.2.4.

6.4 W[1]-Hard Problems

In this section we show that one cannot hope for an algorithm better than that described
by Jansen and Scheffler, specifically an fpt-algorithm, unless FPT=W[1]. Namely, Fel-
lows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider, and Thomassen [31] prove that
ListColoring is W[1]-hard for general graphs.

Theorem 6.4.1 (Fellows et al. [32]). ListColoring is W[1]-hard when parameterized by
treewidth. Furthermore, it remains W[1]-hard even in bipartite graphs where all vertices in
one partition have lists of length two.

We recreate their proof here, as the second claim was not explicitly stated in their
paper.

Proof. Fellows et al. reduce from MulticolorClique: given a graph G with a proper
k-coloring, test whether there exists a clique of size k in G. This problem is known to be
W[1]-hard when parameterized by the integer k ≥ 3 [31] (the problem is trivial for k ≤ 2).
From G, they construct a graph G′ with treewidth at most k−1 and list assignment L such

80

{a,b,c}

{d,e,f}

{a,i}

{a,g} {b,g}

{d,g}

{f,g}

{d,i}

{h,i}

{a,e}

{c,d}

a

d

b

i

e

c

g

f

h

{i}

{g,h}

Figure 6.2: A graph with a proper 4-coloring (left), with the constructed instance of list
coloring (right). On the left vertices are labeled with a, b, c, . . ., and color classes are
denoted by the shape and color of the vertex. Figure is based on [32].

that G has a multicolor k-clique if and only if G′ is L-colorable. Let c : V (G)→ {1, . . . , k}
be the given proper k-coloring of G.

The graph G′ is constructed as follows: Begin with k nodes v1, . . . , vk. (We use nodes
for G′ to distinguish from the vertices of G.) Assign L(vi) = {x ∈ V (G) : c(x) = i}. (Note
that we are using vertices of G for the colors in G′.) Consider every pair x, y of non-adjacent
vertices of G such that c(x) 6= c(y). Add to G′ a node u adjacent to vc(x) and vc(y) and
assign L(u) := {x, y}. (See Figure 6.2.) This is an fpt-reduction, as it can be constructed
in polynomial time in terms of both k and the size of G.

The graph G′ is bipartite, with one side the nodes v1, . . . , vk, and the other side the
degree two vertices added for non-adjacent pairs of vertices of G. All these vertices of
degree two were assigned lists of size two.

We now demonstrate that G′ has treewidth at most k−1 by constructing a tree decom-
position. Start with a tree-node t∗ with bag {v1, . . . , vk}. Then for every node u adjacent
to vi and vj, add a new tree-node t adjacent to t∗ with bag {u, vi, vj}. Since k ≥ 3, the
tree-node t∗ has the largest bag, being of size k, and therefore the decomposition has width
k − 1.

It remains to show that G has a multicolor clique if and only if G′ is L-colorable.
Suppose that G has a multicolor clique x1, . . . , xk such that c(xi) = i. We compute an
L-coloring φ of G′. Begin by assigning φ(vi) := xi. Let u be a node of G′ not in v1, . . . , vk.
So L(u) = {x, y} for two non-adjacent vertices x, y of G, and u is adjacent to nodes vc(x)

81

and vc(y) of G′. Since x and y are not adjacent, at most one of them belongs to x1, . . . , xk.
Assume y /∈ {x1, . . . , xk}. Then φ(vc(y)) 6= y, so we can pick φ(u) = y.

Suppose that G′ has an L-coloring φ. Take φ(v1), . . . , φ(vk) to be our k-clique of G. By
construction, the vertex φ(vi) of G has color i. Consider two vertices φ(vi) and φ(vj) of G.
Suppose that they were non-adjacent. Then by construction of G′ there would be a node u
adjacent to vi and vj with L(u) = {φ(vi), φ(vj)}. But then u must be colored the same as
one of its neighbors, and φ could not be a valid coloring of G′, a contradiction. Therefore,
the vertices φ(v1), . . . , φ(vk) are all pairwise adjacent, and all of a different color class, and
therefore form a multicolor clique of G.

We note that this construction cannot be used to prove that k-ListColoring is W[1]-
hard when parameterized by treewidth: As stated in the theorem, many lists constructed
in the reduction have size two, but the lists that are not of size two can have unbounded
size.

We now use Theorem 6.4.1 to prove a stronger result: List coloring is W[1]-hard,
even when the graph is 1-planar and bipartite. We will do so by modifying the graph
constructed in the proof to be 1-planar while maintaining that the graph is bipartite. The
graph constructed for the reduction in Theorem 6.4.1 is not always 1-planar, for if the
graph is sparse then the construction will contain Kk with all edges subdivided, which has
k +

(
k
2

)
vertices but Θ(k4) crossings, and hence is not 1-planar.

Theorem 6.4.2. ListColoring is W[1]-hard when parameterized by treewidth, even for
bipartite 1-planar graphs.

Proof. We reduce from MulticolorClique. Let G be a graph given with a proper k-
coloring for some k ≥ 3. From Theorem 6.4.1, we construct a graph G′ with list assignment
L such that G has a multicolor clique if and only if G′ has an L-coloring. We know that
G′ is bipartite, and that every edge of G′ is incident to a vertex with a list of size two.
Recall that we showed in Lemma 3.3.4 that, because we have such a list assignment, we
can subdivide each edge of G′ an even number of times to obtain a 1-planar graph G′′ with
list assignment L′ such that G′ has an L-coloring if and only if G′′ has an L′-coloring, and
we can construct G′′ and L′ in polynomial time. By the construction of G′′, we have that
G′′ is also bipartite, and that the treewidth of G′′ is not greater than the treewidth of G′.
Therefore, G′′ is a bipartite 1-planar graph with treewidth at most k − 1, and G′′ has an
L′-coloring if and only if G has a multicolor clique. This is an fpt-reduction, as G′′ can be
constructed from G in polynomial time in terms of k and the size of G.

82

W[1]-hardness is evidence that there is no fpt-algorithm with respect to treewidth for
ListColoring, even when the graph is 1-planar and bipartite.

As the graph G′′ constructed in the reduction of Theorem 6.4.2 is 1-planar and bipartite,
it has at most 3n − 8 edges [53]. Therefore G′′ is not an optimal 1-planar graph. Also,
while it is easy to go from an arbitrary drawing to a 1-planar drawing by subdividing edges,
we do not know how to remove crossings altogether without increasing the treewidth. We
therefore give the following open questions:

Open Problem 6.4.3. Are the following problems W[1]-hard when parameterized by
treewidth?

• k-ListColoring in arbitrary graphs.

• CoupledListColoring planar graphs. (Equivalently, ListColoring optimal 1-
planar multigraphs.)

• ListColoring planar graphs.

6.5 Problems in FPT

Theorem 6.4.2 shows that ListColoring, when parameterized by treewidth, is (likely)
not in FPT. Surprisingly, k-Choosability (which at first glance may seem harder than
ListColoring) is actually easier. Fellows et al. proved the following:

Theorem 6.5.1 (Fellows et al. [32]). k-Choosability is in FPT when parameterized by
treewidth.

The proof uses Courcelle’s theorem [23], which in particular implies that the algorithm
runs in linear time for graphs of bounded treewidth. From Theorem 6.5.1, we have the
following corollary.

Corollary 6.5.2. The following problems are in FPT when parameterized by the treewidth
of the input graph:

• k-Choosability for 1-planar graphs, and

• k-CoupledChoosability for planar graphs.

83

Proof. The first result is immediate from Theorem 6.5.1. The latter holds as testing
whether a planar graph G is k-coupled choosable is the same as testing if the coupled graph
C(G) is k-choosable, and we proved that tw(C(G)) ∈ O(tw(G)) in Theorem 5.2.4.

In fact, we can obtain a slightly stronger result.

Theorem 6.5.3. The following can be computed in linear time:

1. The list chromatic number of a 1-planar graph G of treewidth at most t, and

2. the coupled list chromatic number of a planar graph G′ of treewidth at most t.

Proof. By Corollary 2.3.2 we know that every 1-planar graph is 8-choosable. We also know
that all planar graphs are 7-coupled choosable [90]. Hence, for (1), we run the algorithm
from Corollary 6.5.2 for k = 1, . . . , 8, and for (2) we run the same algorithm for k = 1, . . . , 7,
and in both cases return the smallest k that is accepted. In both cases we are running a
linear time algorithm a constant number of times, and hence this algorithm is also linear
time.

Because of the large constants associated with Courcelle’s theorem, the associated al-
gorithms here are not necessarily practical.

6.6 Πp
2-Complete Problems

We conclude this section with an unparameterized hardness result for k-Choosability.
Gutner [41] proves that 4-Choosability is not only NP-hard in planar graphs, but it is
hard in the superclass Πp

2. Since planar graphs are 1-planar, 4-Choosability is Πp
2-hard

also for 1-planar graphs. But 5-Choosability is in P for planar graphs (as all planar
graphs are 5-choosable [82]). But what is the status of 5-Choosability in 1-planar
graphs? We first show that k-Choosability and k-CoupledChoosability are both
in Πp

2. (This result was likely known before, but we provide a proof here as a warm-up to
the class Πp

2.)

Lemma 6.6.1. k-Choosability and k-CoupledChoosability are in Πp
2.

Proof. We only show this for k-Choosability; the other result follows by reducing to
k-Choosability in the coupled graph. We must show that it is polynomial to prove that

84

a graph G is not k-choosable, given the ability to guess and an oracle for an NP-complete
problem. Here we guess a k-list assignment L such that G is not L-colorable, and then use
an oracle for k-ListColoring, which is NP-hard and clearly in NP.

Towards proving that 5-Choosability is Πp
2-hard, we first need a helper lemma.

{1, 2, 3, 4}

{5, 6, 7, 8, 9}

{1, 2, 5, 6, 7} {1, 2, 8, 9, 0} {3, 4, 5, 6, 7} {3, 4, 8, 9, 0}

x

q r s t

y

Figure 6.3: A 1-planar graph G constructed by taking four disjoint K4s, and adding two
vertices adjacent to every vertex in one of the K4s. We also give a list assignment for G
where every list is of size 5, except for one list which is of size 4.

Lemma 6.6.2. There exists a 1-planar graph G with 18 vertices that is 5-choosable, and
moreover there is a vertex y of G and a list assignment L for G such that |L(y)| = 4,
|L(u)| = 5 for every vertex u 6= y, and G is not L-choosable.

Proof. Let G be the graph in Figure 6.3 consisting of fourK4s and two vertices x, y adjacent
to all vertices of the K4s. We first argue that G is 5-choosable with an argument similar to
the one used in Theorem 5.4.1. Let L be a 5-list assignment for G. If L(x)∩L(y) 6= ∅, we
pick the same color c ∈ L(x) ∩ L(y) for x and y. After removing c from the lists of every
vertex in the disjoint K4s, every list is of size at least four. Because K4 is 3-degenerate, it
is 4-choosable and a feasible coloring can be found.

If L(x) and L(y) are disjoint, then define S = {{a, b} : a ∈ L(x), b ∈ L(y)}. By case
assumption, |S| = 25. For a vertex u, define Su := {s ∈ S : s ⊆ L(u)} to be the color-pairs

85

of S that are a subset of the list of u. As in Theorem 5.4.1, we have |Su| ≤ 6 by |L(u)| = 5.
Consider the vertices q, r, s, t in the figure. By |Su| ≤ 6, elements of S appear at most
6 · 4 = 24 times in Sq, Sr, Ss, and St. By |S| = 25, some element {a, b} of S is not in
Sq ∪ Sr ∪ Ss ∪ St. Choose these colors a, b for x and y and remove a, b from the lists of all
other vertices. It remains to color the four disjoint K4s.

By our choice of colors for x and y, the vertices q, r, s, t each have four colors in their
lists. For any other vertex u 6= q, r, s, t, x, y, there are still three colors available. Therefore,
each of the K4s has one vertex with at least four colors available, while the other three
vertices of the K4 have at least three colors available. It is easy to see that with such a list
assignment for K4 we can find a vertex ordering satisfying the statement of Theorem 2.3.1:
Let v1, v2, v3 be the vertices with lists of size three, and let v4 be the vertex with a list of
size four. Therefore such a list assignment for K4 always has a feasible coloring, and so G
is 5-choosable.

We finally show that there is a list assignment L for G such that |L(y)| = 4, |L(u)| = 5
for every vertex u 6= y of G, and that G is not L-choosable. Let L be the list assignment
shown in Figure 6.3 (all vertices within one copy of K4 have the same list). This list
assignment was constructed such that any choice of colors for x and y would cause one of
the disjoint K4s to have three colors remaining at all vertices. It is impossible to color this
K4, and hence G is not L-choosable.

Theorem 6.6.3. 5-Choosability is Πp
2-complete for 1-planar graphs.

Proof. By Lemma 6.6.1, we know that 5-Choosability is in Πp
2. To prove hardness, we

reduce from 4-Choosability for planar graphs, which is known to be Πp
2-complete [41].

Let H be a planar graph for which we wish to determine 4-choosability. From H we
construct a 1-planar graph H+: for every vertex u of H, we add a copy of the graph G
from Lemma 6.6.2, and an edge uy from u to the vertex y of G. It is easy to see that H+

is 1-planar. We wish to show that H is 4-choosable if and only if H+ is 5-choosable.

Suppose that H is 4-choosable. Let L be a 5-list assignment for H+. As the graph G is
5-choosable, we can find a feasible assignment for each copy of G in the graph H+. Thus,
at any edge uy with u ∈ V (H) and y in a copy of G, we have colored y and we remove
this color from L(u). Therefore, every vertex of H has at least four colors left, and hence
a feasible coloring can be found because H is 4-choosable.

Suppose that H+ is 5-choosable. Let L be a 4-list assignment for H. We first construct
a 5-list assignment L+ for H+: For each copy of G, we use the list assignment in Figure 6.3.
(We assume that these colors are distinct from any of the colors used in L.) Let c be a
new color. We add c to L(y) for every copy of the vertex y in a copy of G. We also add c

86

to the list of every vertex of H. We now have a 5-list assignment L+ for H+, and because
H+ is 5-choosable, H+ is L+-choosable. In any L+-coloring of H+, the copies of the vertex
y must use the color c by Lemma 6.6.2. Therefore, no vertex of H can be colored with c,
and therefore must use colors from the 4-list assignment L. Therefore H is L-choosable,
and since L was an arbitrary 4-assignment, H is 4-choosable.

For planar graphs, the complexity of k-Choosability has already been completely
characterized for all values of k. However, for k-Choosability for 1-planar graphs
and also for k-CoupledChoosability (or equivalently, k-Choosability for optimal
1-planar multigraphs), there are still gaps to fill. Table 6.1 shows the known results and
open problems here.

k Planar Graphs 1-Planar Graphs Optimal 1-Planar Multigraphs
2 P [29] P [29] P [29]
3 Πp

2-complete [41] Πp
2-complete [41] P (Lem. 5.1.1)

4 Πp
2-complete [41] Πp

2-complete [41] Unknown
5 Always Possible [82] Πp

2-complete (Thm. 6.6.3) Unknown
6 Unknown Unknown
7 Unknown Always Possible [90]
8 Always Possible (Cor. 2.3.2)

Table 6.1: Known results and open problems for the complexity of k-Choosability on
planar, 1-planar, and optimal 1-planar multigraphs.

87

Chapter 7

Conclusion

In this thesis, we studied the list colorability of some classes of 1-planar graphs. We gave a
linear time algorithm to 4-list color a 1-planar bipartite graph and a linear time algorithm
to 5-coupled list color a wheel graph. To prove linear time for the algorithm to 4-list color
a 1-planar bipartite graph, we proved that a 1-planar graph can be edge-partitioned into
a planar graph and a forest in linear time. We also gave many complexity results for list
coloring 1-planar graphs and coupled list coloring planar graphs.

We conclude here with a few open problems. As noted at the end of Chapter 4, the only
step in finding the 4-list coloring of a 1-planar bipartite graph in Chapter 3 that requires
the embedding of the graph is finding the partition of the 1-planar bipartite graph into
a planar graph and a forest. (This partition was used to orient the edges of the 1-planar
bipartite graph with maximum outdegree three.) This embedding must be given as finding
a 1-planar embedding of a graph is NP-hard [38]. We posed the question of whether it is
possible to find this partition without being given the embedding.

Open Problem 7.0.1. Can a 1-planar graph be partitioned into a planar graph and a
forest in polynomial time without being given an embedding?

Recall some open problems from Chapter 6.

Open Problem 7.0.2. Are the following problems W[1]-hard when parameterized by
treewidth:

• k-ListColoring for arbitrary graphs

• CoupledListColoring for planar graphs

88

• ListColoring for planar graphs

We end this chapter with some open problems around k-CoupledChoosability and
k-Choosability. As discussed in Chapter 2, 2-coupled choosability and 3-coupled choos-
ability are easily characterized. 4-coupled choosability seems similarly restrictive, as a “leaf
triangle” (a triangular face adjacent to only two other faces) corresponds to a K5 in the
coupled graph. (Recall that by Theorem 5.4.2 wheel graphs Wn, n ≥ 5, are not 4-coupled
choosable and do not have such a triangular face, hence this does not characterize 4-coupled
choosability.) Moreover, 4-coupled colorability (where no lists are specified) has been fully
characterized [13]. This leads us to ask the following:

Open Problem 7.0.3. Is there a characterization of 4-coupled choosability that can be
tested in polynomial time?

Such a characterization would likely help in proving our two conjectures from Chapter 5,
which we phrase here as open problems.

Open Problem 7.0.4. Are planar partial 3-trees 6-coupled choosable?

Open Problem 7.0.5. Are IO-graphs 5-coupled choosable?

While Theorem 6.6.3 proves 5-Choosability to be Πp
2-hard even for 1-planar graphs,

we have no comparable results for k-CoupledChoosability. Moreover, recall from
Table 6.1 that for k = 6, 7 the complexity of k-Choosability for 1-planar graphs is
unknown.

Open Problem 7.0.6. Is k-CoupledChoosability Πp
2-complete for k = 4, 5, 6?

Open Problem 7.0.7. Is k-Choosability for 1-planar graph Πp
2-complete for k = 6, 7?

One can also consider list coloring problems on 1-planar graphs that don’t have short
cycles. For instance, it is known that planar graphs without cycles of length 3 or 4 are
3-choosable [83]. Can we get better upper bounds for the list chromatic number for triangle-
free 1-planar graphs, or 1-planar graphs without cycles of length 3 or 4? Similarly, can
we get better upper bounds for the coupled list chromatic number of triangle-free planar
graphs?

There are several generalizations of 1-planar graphs for which list coloring problems
can be studied. Some possible generalizations are 1-toroidal graphs (graphs that can be
drawn on the surface of a torus with at most one crossing per edge) or k-planar graphs

89

(graphs that can be drawn in the plane with at most k crossings per edge). Alternatively,
there are generalizations of list coloring that could be studied for 1-planar graph, such as
the Alon-Tarsi number (see e.g. [51]), paintability [78], or correspondence coloring [28]. It
is known that planar graphs have Alon-Tarsi number 5 [95] and are 5-paintable [78]. Since
1-planar graphs are 7-degenerate, they are both 8-paintable and have Alon-Tarsi number
at most 8, but can these bounds be improved?

90

References

[1] Eyal Ackerman. A note on 1-planar graphs. Discrete Applied Mathematics, 175:104–
108, 2014.

[2] Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. Straight-line
grid drawings of 3-connected 1-planar graphs. In Graph Drawing, volume 8242 of
Lecture Notes in Computer Science, pages 83–94, Cham, 2013. Springer International
Publishing.

[3] Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica,
12(2):125–134, 1992.

[4] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Part I:
Discharging. Illinois Journal of Mathematics, 21(3):429 – 490, 1977.

[5] Kenneth Appel, Wolfgang Haken, et al. Every planar map is four colorable. Bulletin
of the American Mathematical Society, 82(5):711–712, 1976.

[6] Kenneth Appel, Wolfgang Haken, and John Koch. Every planar map is four colorable.
Part II: Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 1977.

[7] Dan Archdeacon. Coupled colorings of planar maps. In Proceedings of the Fourteenth
Southeastern Conference on Combinatorics, Graph Theory and Computing (Boca Ra-
ton, Fla., 1983), volume 39, pages 89–94, 1983.

[8] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[9] Sam Barr and Therese Biedl. All subgraphs of a wheel are 5-coupled-choosable. In
Paola Flocchini and Lucia Moura, editors, International Workshop on Combinatorial
Algorithms (IWOCA), volume 12757 of Lecture Notes in Computer Science, pages
78–91, Cham, 2021. Springer International Publishing.

91

[10] Sam Barr and Therese Biedl. Efficiently Partitioning the Edges of a 1-Planar Graph
into a Planar Graph and a Forest. In Hee-Kap Ahn and Kunihiko Sadakane, edi-
tors, 32nd International Symposium on Algorithms and Computation (ISAAC 2021),
volume 212 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–
16:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[11] Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio
Montecchiani, and Chrysanthi Raftopoulou. Edge partitions of optimal 2-plane and
3-plane graphs. Discrete Mathematics, 342(4):1038–1047, 2019.

[12] Claude. Berge. Graphs and hypergraphs. North-Holland mathematical library ; v.6.
North Holland, Amsterdam, 1973.

[13] Kenneth A. Berman and H. Shank. Full 4-colorings of 4-regular maps. Journal of
Graph Theory, 3(3):291–294, 1979.

[14] Therese Biedl and Franz J. Brandenburg. Partitions of graphs into trees. In Michael
Kaufmann and Dorothea Wagner, editors, Graph Drawing, volume 4372 of Lecture
Notes in Computer Science, pages 430–439. Springer, Berlin, 2007.

[15] Therese Biedl, Anna Lubiw, and Owen Merkel. List coloring bipartite graphs embed-
ded on a surface. Unpublished Manuscript, 2019.

[16] Therese Biedl and L.E. Ruiz Velázquez. Drawing planar 3-trees with given face areas.
Computational Geometry: Theory and Applications, 46(3):276–285, 2013.

[17] Markus Blumenstock. Fast algorithms for pseudoarboricity. In Proceedings of the
Meeting on Algorithm Engineering and Experiments (ALENEX), pages 113–126.
SIAM, 2016.

[18] R. Bodendiek, H. Schumacher, and K. Wagner. Bemerkungen zu einem Sechsfar-
benproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, 53:41–52, 1983.

[19] Oleg V. Borodin. Solution of the Ringel problem on vertex-face coloring of planar
graphs and coloring of 1-planar graphs. Metody Diskret. Analiz, 41(12):12–26, 108,
1984.

[20] Oleg V. Borodin. A new proof of the 6 color theorem. Journal of Graph Theory,
19(4):507–521, 1995.

92

[21] Victor A. Campos, Guilherme C. M. Gomes, Allen Ibiapina, Raul Lopes, Ignasi Sau,
and Ana Silva. Coloring problems on bipartite graphs of small diameter. Electronic
Journal of Combinatorics, 28(2), 2021.

[22] Gregory J. Chaitin. Register allocation & spilling via graph coloring. ACM Sigplan
Notices, 17(6):98–101, 1982.

[23] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation, 85(1):12–75, 1990.

[24] Július Czap and Dávid Hudák. On drawings and decompositions of 1-planar graphs.
Electronic Journal of Combinatorics, 20(2), 2013.

[25] Hubert de Fraysseix and Patrice Ossona de Mendez. Regular orientations, arboricity,
and augmentation. In Roberto Tamassia and Ioannis Tollis, editors, Graph Drawing,
volume 894 of Lecture Notes in Computer Science, pages 111–118. Springer, Berlin,
1995.

[26] Emilio Di Giacomo, Walter Didimo, William S. Evans, Giuseppe Liotta, Henk Meijer,
Fabrizio Montecchiani, and Stephen K. Wismath. New results on edge partitions of
1-plane graphs. Theoretical Computer Science, 713:78–84, 2018.

[27] Christian Doczkal and Damien Pous. Treewidth-two graphs as a free algebra. In Igor
Potapov, Paul Spirakis, and James Worrell, editors, 43rd International Symposium on
Mathematical Foundations of Computer Science (MFCS 2018), volume 117 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 60:1–60:15, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[28] Zdeněk Dvořák and Luke Postle. Correspondence coloring and its application to list-
coloring planar graphs without cycles of lengths 4 to 8. Journal of Combinatorial
Theory, Series B, 129:38–54, 2018.

[29] Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In Proceed-
ings of the West Coast Conference on Combinatorics, Graph Theory and Computing,
Congress. Numer., XXVI, pages 125–157. Utilitas Math., Winnipeg, Man., 1980.

[30] Louis Esperet. Dynamic list coloring of bipartite graphs. Discrete Applied Mathemat-
ics, 158(17):1963–1965, 2010.

[31] Michael Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer
Science, 410:53–61, 2009.

93

[32] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances Rosamond, Saket
Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful
problems parameterized by treewidth. Information and Computation, 209(2):143–153,
2011.

[33] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

[34] A. Frank and A. Gyárfás. How to orient the edges of a graph? In Combinatorics
(Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq. Math.
Soc. János Bolyai, pages 353–364. North-Holland, Amsterdam-New York, 1978.

[35] Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algo-
rithms for matroid sums and applications. Algorithmica, 7(5-6):465–497, 1992.

[36] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. A Series of Books in the Mathematical Sciences. W.
H. Freeman and Co., San Francisco, Calif., 1979.

[37] Michail R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[38] Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with
few crossings per edge. Algorithmica, 49(1):1–11, 2007.

[39] Qian-Ping Gu and Hisao Tamaki. Improved bounds on the planar branchwidth with
respect to the largest grid minor size. Algorithmica, 64(3):416–453, 2012.

[40] Jun-Lin Guo and Yue-Li Wang. 3-list-coloring planar graphs of girth 4. Discrete
Mathematics, 311(6):413–417, 2011.

[41] Shai Gutner. The complexity of planar graph choosability. Discrete Mathematics,
159(1):119–130, 1996.

[42] Shai Gutner and Michael Tarsi. Some results on (a:b)-choosability. Discrete Mathe-
matics, 309(8):2260–2270, 2009.

[43] S. L. Hakimi. On the degrees of the vertices of a directed graph. Journal of the
Franklin Institute, 279:290–308, 1965.

[44] W.K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

94

[45] Timothy J. Hetherington. Coupled choosability of near-outerplane graphs. Ars Com-
binatoria, 113:23–32, 2014.

[46] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, Eva Rotenberg,
and Piotr Sankowski. Contracting a planar graph efficiently. In Kirk Pruhs and Chris-
tian Sohler, editors, 25th Annual European Symposium on Algorithms (ESA 2017),
volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1–
50:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[47] Seok-Hee Hong and Takeshi Tokuyama. Beyond Planar Graphs. Springer Nature,
Singapore, 2020.

[48] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

[49] Dai-Qiang Hu, Danjun Huang, Weifan Wang, and Jian-Liang Wu. Planar graphs
without chordal 6-cycles are 4-choosable. Discrete Applied Mathematics, 244:116–123,
2018.

[50] Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Discrete
Applied Mathematics, 75(2):135–155, 1997.

[51] Tommy R. Jensen. Graph Coloring Problems. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, New York, 1995.

[52] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown
Heights, N.Y., 1972), pages 85–103, 1972.

[53] D. V. Karpov. An upper bound on the number of edges in an almost planar bipartite
graph. J. Math Sci., 196:737–746, 2014.

[54] H.A. Kierstead. On the choosability of complete multipartite graphs with part size
three. Discrete Mathematics, 211(1):255–259, 2000.

[55] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley Longman Pub-
lishing Co., Inc., USA, 2005.

[56] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated
bibliography on 1-planarity. Computer Science Review, 25:49–67, 2017.

95

[57] Marek Kubale. Graph Colorings. Contemporary mathematics. American Mathemat-
ical Society, Providence, R.I, 2004.

[58] William J. Lenhart, Giuseppe Liotta, and Fabrizio Montecchiani. On partitioning the
edges of 1-plane graphs. Theoretical Computer Science, 662:59–65, 2017.

[59] Rhyd Lewis. A Guide to Graph Colouring Algorithms and Applications. Springer
International Publishing, Cham, 1st edition, 2016.

[60] Xiangwen Li. On 3-choosable planar graphs of girth at least 4. Discrete Mathematics,
309(8):2424–2431, 2009.

[61] Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electrical Engineering (Archives), 48(1-2):11–16, 2004.

[62] Frédéric Mazoit and Stéphan Thomassé. Branchwidth of graphic matroids. In Surveys
in Combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser., pages
275–286. Cambridge Univ. Press, Cambridge, 2007.

[63] Maryam Mirzakhani. A small non-4-choosable planar graph. Bull. Inst. Combin. Appl,
17:15–18, 1996.

[64] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, Md., 2001.

[65] C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. The Journal
of the London Mathematical Society, 39:12, 1964.

[66] Takao Nishizeki and Norishige Chiba. Planar Graphs: Theory and Algorithms. Else-
vier, 1988.

[67] János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the cross-
ing lemma by finding more crossings in sparse graphs. Discrete & Computational
Geometry, 36(4):527–552, 2006.

[68] Luke Postle. Linear-time and efficient distributed algorithms for list coloring graphs on
surfaces. In IEEE Symposium on Foundations of Computer Science, pages 929–941.
IEEE Comput. Soc. Press., 2019.

[69] Luke Postle. 3-list-coloring graphs of girth at least five on surfaces. Journal of Com-
binatorial Theory, Series B, 147:1–36, 2021.

96

[70] Luke Postle and Robin Thomas. Five-list-coloring graphs on surfaces I. Two lists of
size two in planar graphs. Journal of Combinatorial Theory, Series B, 111:234–241,
2015.

[71] Luke Postle and Robin Thomas. Five-list-coloring graphs on surfaces II. A linear
bound for critical graphs in a disk. Journal of Combinatorial Theory, Series B, 119:42–
65, 2016.

[72] Luke Postle and Robin Thomas. Five-list-coloring graphs on surfaces III. One list of
size one and one list of size two. Journal of Combinatorial Theory, Series B, 128:1–16,
2018.

[73] Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, 29:107–117, 1965.

[74] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. Efficiently
four-coloring planar graphs. In ACM Symposium on the Theory of Computing, pages
571–575. ACM, 1996.

[75] Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph.
Journal of Combinatorial Theory. Series B, 41(1):92–114, 1986.

[76] Neil Robertson and Paul Seymour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[77] Marcus Schaefer. The graph crossing number and its variants: A survey. The Elec-
tronic Journal of Combinatorics, 20, 04 2013.

[78] Uwe Schauz. Mr. Paint and Mrs. Correct. Electronic Journal of Combinatorics, 16(1),
2009.

[79] Wen-yao Song, Lian-ying Miao, and Shu-jie Zhang. List edge and list total coloring
of triangle-free 1-planar graphs. Journal of East China Normal University Natural
Science Edition, (3):40–44, 2014.

[80] Lin Sun, Guanglong Yu, and Xin Li. Neighbor sum distinguishing total choosability
of 1-planar graphs with maximum degree at least 24. Discrete Mathematics, 344(1),
2021.

[81] Yusuke Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM Journal on
Discrete Mathematics, 24(4):1527–1540, 2010.

97

[82] Carsten Thomassen. Every planar graph is 5-choosable. Journal of Combinatorial
Theory, Series B, 62(1):180–181, 1994.

[83] Carsten Thomassen. 3-list-coloring planar graphs of girth 5. Journal of Combinatorial
Theory. Series B, 64(1):101–107, 1995.

[84] Jacobo Valdes, Robert Endre Tarjan, and Eugene L. Lawler. The recognition of series
parallel digraphs. SIAM J. Comput., 11(2):298–313, 1982.

[85] V. Venkateswaran. Minimizing maximum indegree. Discrete Applied Mathematics,
143(1-3):374–378, 2004.

[86] V. G. Vizing. Coloring the vertices of a graph in prescribed colors. Akademiya Nauk
SSSR. Sibirskoe Otdelenie. Institut Matematiki. Diskretny̆ı Analiz. Sbornik Trudov,
(29, Metody Diskret. Anal. v Teorii Kodov i Shem):3–10, 101, 1976.

[87] Margit Voigt. List colourings of planar graphs. Discrete Mathematics, 120(1):215–219,
1993.

[88] Margit Voigt. A not 3-choosable planar graph without 3-cycles. Discrete Mathematics,
146(1):325–328, 1995.

[89] Weifan Wang and Ko-Wei Lih. Choosability and edge choosability of planar graphs
without five cycles. Applied Mathematics Letters, 15(5):561–565, 2002.

[90] Weifan Wang and Ko-Wei Lih. Coupled choosability of plane graphs. Journal of
Graph Theory, 58(1):27–44, 2008.

[91] Wanshun Yang, Yiqiao Wang, Weifan Wang, and Ko-Wei Lih. IC-planar graphs are
6-choosable. SIAM Journal on Discrete Mathematics, 35(3):1729–1745, 2021.

[92] Xin Zhang and Yan Li. Dynamic list coloring of 1-planar graphs. Discrete Mathemat-
ics, 344(5), 2021.

[93] Xin Zhang, Bei Niu, and Jiguo Yu. A structure of 1-planar graph and its applications
to coloring problems. Graphs Comb., 35(3):677–688, 2019.

[94] Xin Zhang, Jianliang Wu, and Guizhen Liu. List edge and list total coloring of 1-planar
graphs. Frontiers of Mathematics in China, 7(5):1005–1018, 2012.

[95] Xuding Zhu. The Alon–Tarsi number of planar graphs. Journal of Combinatorial
Theory, Series B, 134:354–358, 2019.

98

	List of Figures
	List of Tables
	Introduction
	Our Results and Organization

	Definitions
	Graphs
	Graph Drawing
	Graph Coloring
	Width Parameters

	4-List Coloring 1-Planar Bipartite Graphs in Linear Time
	All 1-Planar Bipartite Graphs are 4-List Colorable
	Finding the 4-List Coloring Efficiently
	Orienting the Edges
	(++1)-List Coloring Bipartite Graphs Efficiently

	Complexity of 3-List Coloring 1-Planar Bipartite Graphs

	Partitioning the Edges of a 1-Planar Graph Efficiently
	Ackerman's Proof
	An Alternate Existence Proof
	Efficient Implementation
	Data Structure Interface
	Preprocessing
	Handling the Quadrangles around a Vertex
	Putting it All Together

	Coupled List Coloring Planar Graphs of Small Treewidth
	Simple Coupled Choosability Results
	Treewidth of Coupled Graphs
	Coupled Graphs and Optimal 1-Planar Graphs
	Coupled List Coloring Subgraphs of Wheels
	Towards Planar Partial 3-Trees

	Complexity of List Coloring
	Definitions
	Para-NP-Hard problems
	Problems in XP
	W[1]-Hard Problems
	Problems in FPT
	p2-Complete Problems

	Conclusion
	References

