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ABSTRACT 
Robotic leg prostheses and exoskeletons can provide powered locomotor assistance to older 
adults and/or persons with physical disabilities. However, limitations in automated control and 
energy-efficient actuation have impeded their transition from research laboratories to real-world 
environments.  

With regards to control, the current automated locomotion mode recognition systems being 
developed rely on mechanical, inertial, and/or neuromuscular sensors, which inherently have 
limited prediction horizons (i.e., analogous to walking blindfolded). Inspired by the human vision-
locomotor control system, here a multi-generation environment sensing and classification system 
powered by computer vision and deep learning was developed to predict the oncoming walking 
environments prior to physical interaction, therein allowing for more accurate and robust high-
level control decisions. To support this initiative, the “ExoNet” database was developed – the 
largest and most diverse open-source dataset of wearable camera images of indoor and outdoor 
real-world walking environments, which were annotated using a novel hierarchical labelling 
architecture. Over a dozen state-of-the-art deep convolutional neural networks were trained and 
tested on ExoNet for large-scale image classification and automatic feature engineering. The 
benchmarked CNN architectures and their environment classification predictions were then 
quantitatively evaluated and compared using an operational metric called “NetScore”, which 
balances the classification accuracy with the architectural and computational complexities (i.e., 
important for onboard real-time inference with mobile computing devices). Of the benchmarked 
CNN architectures, the EfficientNetB0 network achieved the highest test accuracy; VGG16 the 
fastest inference time; and MobileNetV2 the best NetScore. These comparative results can inform 
the optimal architecture design or selection depending on the desired performance of an 
environment classification system.  

With regards to energetics, backdriveable actuators with energy regeneration can improve the 
energy efficiency and extend the battery-powered operating durations by converting some of the 
otherwise dissipated energy during negative mechanical work into electrical energy. However, the 
evaluation and control of these regenerative actuators has focused on steady-state level-ground 
walking. To encompass real-world community mobility more broadly, here an energy regeneration 
system, featuring mathematical and computational models of human and wearable robotic 
systems, was developed to simulate energy regeneration and storage during other locomotor 
activities of daily living, specifically stand-to-sit movements. Parameter identification and inverse 
dynamic simulations of subject-specific optimized biomechanical models were used to calculate 
the negative joint mechanical work and power while sitting down (i.e., the mechanical energy 
theoretically available for electrical energy regeneration). These joint mechanical energetics were 
then used to simulate a robotic exoskeleton being backdriven and regenerating energy. An 
empirical characterization of an exoskeleton was carried out using a joint dynamometer system 
and an electromechanical motor model to calculate the actuator efficiency and to simulate energy 
regeneration and storage with the exoskeleton parameters. The performance calculations showed 
that regenerating electrical energy during stand-to-sit movements provide small improvements in 
energy efficiency and battery-powered operating durations.  
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In summary, this research involved the development and evaluation of environment classification 
and energy regeneration systems to improve the automated control and energy-efficient 
actuation of next-generation robotic leg prostheses and exoskeletons for real-world locomotor 
assistance.     
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1. INTRODUCTION 

1.1 Motivation and Challenges 

1.1.1 Aging and Rehabilitation 

There are currently hundreds of millions of individuals worldwide with mobility impairments 
resulting from aging and/or physical disabilities, the numbers of which are expected to significantly 
increase over the coming decades. For instance, the number of persons with limb amputations in 
the United States alone is expected to more than double from ~1.6 million in 2005 to ~3.6 million 
in 2050 [1]. This increased prevalence is primarily driven by the aging population and higher rates 
of dysvascular diseases, especially diabetes, among older adults. The World Health Organization 
recently projected that the number of individuals above 65 years age will increase from ~524 
million in 2010 to ~1.5 billion in 2050 [2]. The global prevalence of musculoskeletal disorders like 
osteoarthritis is ~151 million and neurological conditions like Parkinson’s disease, cerebral palsy, 
and spinal cord injury affect approximately 5.2 million, 16 million, and 3.5 million persons, 
respectively [2]. Furthermore, the number of individuals needing physical rehabilitation due to 
immobility and/or disease has recently been exacerbated by the coronavirus disease 2019 (COVID-
19) [3]. Mobility impairments, especially those resulting in wheelchair dependency, are often 
associated with reduced independence and secondary health complications, including 
osteoporosis, coronary artery disease, obesity, hypertension, and sarcopenia [2]. Consequently, 
the demand for mobility assistive technologies is dramatically increasing. 

1.1.2 Passive Assistive Devices 

Fitted with conventional passive assistive devices, persons with mobility impairments tend to fall 
more frequently and walk more energetically inefficient and with greater biomechanical 
asymmetries compared to able-bodied individuals, which have implications on joint and bone 
degeneration resulting from disproportionate loading on the unaffected limb over time, assuming 
unilateral impairments [4]–[6]. For example, persons with transtibial and transfemoral 
amputations expend up to 30% and 60% more metabolic energy, respectively, compared to non-
amputees walking at the same speed, and exhibit 10-65% slower self-selected walking speeds [5]. 
One reason for these gait abnormalities is that many locomotor activities require net positive 
mechanical work about the lower-limb joints via power generation from the human muscles. 
However, limb amputation or paralysis removes/diminishes these sources of biological actuation, 
therein compromising the user’s ability to perform many locomotor activities effectively and 
efficiently. Passive assistive devices (e.g., the prosthetic leg used by Terry Fox, the Canadian 
humanitarian and cancer research activist) cannot generate positive mechanical power and lack 
the ability to actively adapt to the human and/or changes in the walking environment. These 
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devices can only passively control the leg motion using mechanical elements in induce friction or 
hydraulic or pneumatic dampers. 

1.1.3 Robotic Prostheses and Exoskeletons 

Fortunately, newly-developed robotic leg prostheses and exoskeletons can replace the propulsive 
function of the amputated or impaired biological muscles and allow individuals with mobility 
impairments to perform daily locomotor activities that require positive power generation using 
motorized hip, knee, and/or ankle joints [4]–[8]. Generally speaking, these wearable robotic 
devices feature biomimetic design principles, whereby the actuators and mechanical structure 
mimic the human musculoskeletal system; the sensors and microcontroller mimic the peripheral 
and central nervous systems, respectively; and the batteries mimic the metabolic power sources. 
Figure 1.1 shows several examples of robotic leg prostheses under research and development, 
which operate in series with the biological limb. 

With regards to robotic exoskeletons, which operate in parallel with the musculoskeletal 
system, there are three broad categories of devices: 1) human performance augmentation 
exoskeletons designed to increase the physical strength and endurance of able-bodied individuals; 
2) assistive exoskeletons that help older adults and/or persons with physical disabilities perform 
daily locomotor activities; and 3) rehabilitation exoskeletons, which are mainly treadmill-based 
systems (e.g., Lokomat), designed to promote motor learning and improve the user’s physical 

    

Figure 1.1 Examples of robotic leg prostheses under research and development. The photographs (left to right) 
were provided by Drs. Helen Huang (North Carolina State University and University of North Carolina at Chapel 
Hill, USA), Tommaso Lenzi (University of Utah, USA), Robert Riener (ETH Zurich, Switzerland), and Xiangrong Shen 
(University of Alabama, USA), respectively.  
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capabilities when not using the device. The proliferation of exoskeleton technologies largely began 
around the early 2000s when the Defense Advanced Research Projects Agency (DARPA) funded 
the development of human performance augmentation exoskeletons; one of the most notable 
prototypes was the hydraulically-powered Berkeley Lower-Extremity Exoskeleton (BLEEX) device 
developed by Kazerooni’s lab at the University of California, Berkeley (USA) [9]. 

The ReWalk device is one of the oldest and most established commercial exoskeletons for 
assisting persons with physical disabilities, specifically spinal cord injury [8]. The exoskeleton 
bilaterally actuates the hip and knee joints for walking and sit-to-stand motions. The user controls 
the high-level function with a remote control and carries the batteries and controller in a backpack. 
In comparison, the Rex Bionics exoskeleton completely encompasses both lower-limbs and the 
user stands on foot platforms while the machine physically walks for them with minimal human-
robot interaction. Several researchers have used the Rex Bionics exoskeleton to integrate brain-
machine interfaces for neural control [8]. The Indego powered exoskeleton, designed for persons 
with spinal cord injury, bilaterally actuates the hip and knee joints and includes a waist-mounted 
battery pack. Because the Indego device originated from Goldfarb’s lab at Vanderbilt University 
(USA), more information is publicly available about its mechatronic design and control [10]. The 
joint controller functions in either position control, which sets high gains to enforce predefined 
kinematic trajectories, or impedance control, which virtually emulates a spring-damper system. 
The high-level controller includes individual finite state machines, and the user manually switches 
between different states depending on the locomotion mode. In addition to robotic exoskeletons, 
the Össur Power Knee, the only commercially-available powered knee prosthesis, provides 
locomotor assistance using an electrically-motorized knee and manual high-level control based on 
exaggerated movements performed by the user [5]. 

Although early robotic leg prostheses and exoskeletons relied on hydraulic and pneumatic 
actuators tethered to off-board fluid pumps and air compressors, respectively, the field has shifted 
towards using electromagnetic actuators for power generation, specifically brushed and brushless 
direct current (DC) motors [4]–[8]. Electric motors tend to be most efficient at low torques and 
high speeds, with torque and power densities around 15 Nm/kg and 200 W/kg, respectively, with 
an efficiency ~90% [11]. In comparison, human muscles have torque and power densities around 
20 Nm/kg and 50 W/kg, respectively, with an efficiency ~30% during concentric contractions [11]. 
Most electric motors are coupled with a high-ratio transmission (e.g., ball-screw mechanism or 
harmonic gearing) to increase the motor torque output to that needed for legged locomotion; this 
design causes the robotic actuator to have high output impedance (i.e., mechanically stiff), which 
allows for precision position control [12]. For instance, the ReWalk and Ekso Bionics powered 
exoskeletons use stiff actuators to rigidly track predefined kinematic trajectories, which can 
benefit users with limited ability to physically interact with and control the robotic device (e.g., 
persons with complete paralysis) [8]. However, actuators with high output impendence cannot 
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exploit the passive dynamics of legged locomotion and/or other energy storage and return 
mechanisms, therein often resulting in higher energy consumption and peak power requirements 
of the electric motor [6], [12]. 

1.1.4 Practical Limitations 

Despite their ability to replace the propulsive function of the amputated or impaired biological 
muscles and generate positive mechanical power using motorized joints, robotic leg protheses and 
exoskeletons still face many practical challenges limiting their widespread adoption in real-world 
environments. With regards to control, high-level transitions between different locomotor 
activities remain a significant challenge. Inaccurate and/or delayed control decisions could result 
in loss-of-balance and injury, which can be especially problematic when involving stairs. For 
commercial devices, switching between different mode-specific controllers is supervised by a 
high-level controller based on direct communication from the user. For example, the Össur Power 
Knee prosthesis and the Indego and ReWalk powered exoskeletons require the user to perform 
exaggerated movements or use hand controls to manually switch between locomotion modes [4], 
[8]. Although highly accurate in communicating the user’s locomotor intent to the robotic device, 
manual high-level control and decision-making can be time-consuming, inconvenient, and 
cognitively demanding [13]. Transitions between different locomotor activities should ideally be 
seamless and intuitive without requiring volitional action from the user. Researchers have been 
working on developing automated locomotion mode recognition systems to shift the high-level 
control burden from the user to an intelligent controller, as reviewed in Section 2.1. 

With regards to energetics, limitations in battery and actuator technologies have impeded 
the untethered operation of robotic leg prostheses and exoskeletons in real-world environments. 
Traditional rigid actuators used in robotics tend to be heavy and inefficient, which can increase 
the power consumption and thus decrease the operating durations and/or require larger onboard 
batteries [7], [8]. For example, robotic knee prostheses under research and development weigh 2-
5 kg and provide only 3 ± 2 hours of operating time [14]. Similarly, most robotic exoskeletons 
provide 1-5 hours of maximum battery-powered operation [8]. Onboard portable power has often 
been considered one of the leading challenges to developing robotic exoskeletons for real-world 
environments [7], [8]. Increased device mass and inertia, due to heavier onboard motors and 
batteries, would require more effort by the human musculoskeletal system during swing phase, 
thus reducing the locomotor efficiency via higher metabolic power consumption [15]. For socket-
suspended prostheses, increased device weight could also cause pain and discomfort due to 
greater tensile forces on the human-prosthesis interface [16], [17]. Consequently, many review 
papers [4]–[8] have concluded that further advances in energy-dense batteries and lightweight 
and efficient actuators are needed to support the untethered operation of robotic leg prostheses 
and exoskeletons, as reviewed in Section 2.2.  
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1.2 Thesis Outline 

Motivated by these practical limitations, the overall objective of this thesis research is to support 
the energy-efficient actuation and automated control of next-generation robotic leg prostheses 
and exoskeletons for real-world locomotor assistance. Chapter 2 reviews the state-of-the-art in 1) 
locomotion mode recognition systems used for automated high-level control and decision making; 
and 2) energy-efficient actuators, including series elastic actuators and/or backdriveable actuators 
with energy regeneration, which exploit the energetics of human legged locomotion.   

Chapter 3 presents the development and evaluation of a multi-generation environment 
recognition system powered by deep learning and computer vision to predict the oncoming 
walking environment prior to physical interactions, therein allowing for more accurate and robust 
automated high-level control decisions. This includes 1) the development of the largest and most 
diverse open-source dataset of wearable camera images of real-world walking environments, 
known as the “ExoNet” database; 2) the training and testing of state-of-the-art deep convolutional 
neural networks (CNNs) on the ExoNet dataset for image classification and automatic feature 
engineering; and 3) comparison of the benchmarked CNN architectures and their environment 
classification predictions using an operational metric conducive to onboard real-time inference. 
This environment sensing and classification system provides a large-scale benchmark for future 
research in environment-adaptive locomotor control. 

Chapter 4 presents the development and evaluation of an energy regeneration system, 
featuring mathematical and computational models of human and wearable robotic systems, to 
simulate energy regeneration and storage during locomotor activities of daily living, specifically 
stand-to-sit movements. Parameter identification and inverse dynamic simulations of subject-
specific optimized biomechanical models were used to calculate the negative joint mechanical 
work and power while sitting down (i.e., the mechanical energy theoretically available for electrical 
energy regeneration). These lower-limb joint mechanical energetics were then used to simulate 
backdriving a robotic exoskeleton and regenerating energy. An empirical characterization of an 
exoskeleton was carried out using a joint dynamometer system and an electromechanical motor 
model to calculate the actuator efficiency and to simulate energy regeneration and storage with 
the exoskeleton parameters. The performance calculations show that regenerating electrical 
energy during stand-to-sit movements provide small improvements in energy efficiency and 
battery-powered operating durations. 

Building on this thesis research, Chapter 5 recommends future directions for research and 
innovation. With regards to environment recognition, these include 1) the application of depth 
cameras for 3D environment sensing; 2) the classification of sequential walking images using 
recurrent neural networks; and 3) multi-sensor data fusion for automated locomotion mode 
recognition. With regards to energy regeneration, these include 1) the application of advanced 
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ultracapacitors for onboard energy storage; 2) the optimization of actuator design parameters for 
energy efficiency and performance; and 3) the study of older adults and/or persons with physical 
disabilities to evaluate the potential for electrical energy regeneration. In addition to robotic leg 
prostheses and exoskeletons, the principles of environment classification and energy regeneration 
could extend to humanoids, autonomous legged robots, powered wheelchairs, and other mobility 
assistive technologies.   
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2. LITERATURE REVIEW 

To motivate this thesis research, the following chapter reviews the state-of-the-art in locomotion 
mode recognition systems used for automated high-level control and decision making (see Section 
2.1); and energy-efficient actuators, including series elastic actuators and/or backdriveable 
actuators with energy regeneration, which exploit the energetics of human legged locomotion 
(see Section 2.2). 

2.1 Automated Control 

2.1.1 Hierarchical Control Architecture  

Most robotic leg prostheses and exoskeletons use a hierarchical control architecture, including 
high, mid, and low-level controllers [4] (Figure 2.1). The high-level controller is responsible for 
state estimation and predicting the user’s locomotor intent. The mid-level controller converts the 
locomotor activity into mode-specific reference trajectories using dynamic equations of the 
biomechatronic system; this level of control typically includes individual finite-state machines with 
discrete mechanical impedance parameters like stiffness and damping coefficients, which are 
heuristically tuned for different locomotor activities to generate the desired actuator joint torques 
(i.e., the desired device state). Tunning these parameters can be time-consuming as the number 
of parameters increases with the number of states per locomotor activity, the number of activities, 
and the number of actuated joints. The low-level controller uses standard controls algorithms like 
proportional-integral-derivative (PID) control to calculate the error between the measured and 
desired device states and command the robotic actuators to minimize the error using reference 
tracking and closed-loop feedback control. Unlike commercial devices that require direct 
communication from the user for manual high-level control and decision-making, researchers 
have been working on developing automated locomotion mode recognition systems that use 
pattern recognition algorithms and data from wearable sensors like inertial measurement units 
(IMUs) and surface electromyography (EMG). 

2.1.2 Neuromuscular-Mechanical Sensing 

Mechanical sensors embedded in robotic leg prostheses and exoskeletons (e.g., potentiometers, 
pressure sensors, magnetic encoders, and strain gauge load cells) can be used for state estimation 
by measuring the joint angles and angular velocities, and interaction forces and/or torques 
between the human and device, and between the device and environment [4]. These sensors 
resemble how biological proprioceptors and mechanoreceptors provide kinematic and force 
feedback to the central nervous system, respectively. For example, Varol and colleagues [18] used 
onboard mechanical sensors and a Gaussian mixture model classification algorithm for automated 
high-level control of a robotic leg prosthesis. In addition to mechanical sensors, inertial 
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measurement units can measure 3D angular velocities, accelerations, and direction of lower-limb 
segments using an onboard gyroscope, accelerometer, and magnetometer, respectively. Although 
mechanical and inertial sensors allow for fully integrated control systems, such that no additional 
instrumentation or wiring apart from the device need be worn, these sensors can only respond to 
the user’s movements. 

In contrast, the electrical potentials of biological muscles, as experimentally recorded using 
surface electromyography, precede movement initiation and thus could predict locomotion mode 
transitions with small prediction horizons. Some common leg muscles used for prosthetic control 
include the semitendinosus, adductor magnus, sartorius, vastus medialis and lateralis, biceps and 
rectus femoris, and gracilis [14]. For example, using surface EMG and a linear discriminant analysis 

 

Figure 2.1. Hierarchical control architecture of robotic leg prostheses and exoskeletons, including high, mid, and 
low-level controllers. The high-level controller selects the desired locomotion mode using either (1) manual 
communication from the user (i.e., for commercially available devices) or (2) automated systems (i.e., for devices 
under research and development).   
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(LDA) pattern recognition algorithm, Huang et al. [19] differentiated between seven locomotion 
modes with ~90% classification accuracy. In addition to automated locomotion mode recognition, 
EMG signals could be used for proportional myoelectric control [16], [20], [21]. Although several 
researchers have explored using brain-machine interfaces for direct neural control of robotic 
prostheses and exoskeletons (i.e., using either implanted or electroencephalography-based 
systems) [22], these sensor technologies are still highly experimental and infrequently used for 
locomotor applications. 

Fusing information from mechanical and/or inertial sensors with surface EMG, known as 
neuromuscular-mechanical data fusion, can improve the locomotion mode recognition accuracies 
and decision times compared to implementing either system individually [23]–[29]. Huang et al. 
[27] first demonstrated such improvements in classification predictions across six locomotion 
modes using a support vector machine (SVM) classifier, surface EMG data, and measured ground 
reaction forces and torques on a robotic leg prosthesis. However, neuromuscular-mechanical data 
are user-dependent, therein often requiring time-consuming experiments to amass individual 
datasets, and surface EMG require calibration and are susceptible to fatigue, motion artifacts, 
changes in electrode-skin conductivity, and crosstalk between adjacent muscles [4], [8]. EMG 
signals may also be inaccessible in persons with high amputations where insufficient neural 
content is available from the residual limb. Despite advances in automated intent recognition 
using mechanical, inertial, and/or neuromuscular signals, further improvements in performance 
are desired for safe and robust locomotor control. Neuromuscular-mechanical sensors also have 
limited prediction horizons such that the data can only characterize the current state of the user 
and/or device, which is somewhat analogous to walking blindfolded. 

2.1.3 Environment Sensing 

Taking inspiration from the human vision-locomotor control system, supplementing 
neuromuscular-mechanical data with information about the oncoming walking environment could 
improve the automated high-level control performance (Figure 2.2). Environment sensing would 
precede modulation of the user’s muscle activations and/or walking biomechanics, therein 
allowing for more accurate and robust transitions between locomotion modes by minimizing the 
high-level decision space. During human legged locomotion, supraspinal levels of the central 
nervous system acquire state information from biological sensors like the eyes through ascending 
pathways, which are then used to actuate and control the musculoskeletal system through 
feedforward efferent commands [30]. However, these control loops are compromised in persons 
using assistive devices due to limitations in the human-machine interaction. Environment sensing 
and classification could artificially restore these control loops for automated high-level control and 
decision making. Environment information could also be used to adapt the mid-level reference 
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trajectories (e.g., increasing actuator joint torques for toe clearance corresponding to an obstacle 
height) [31]; optimal path planning (e.g., identifying opportunities for energy recycling) [32], [33]; 
and varying foot placement based on the walking surface. 

Some of the earliest research fusing neuromuscular-mechanical data with environment 
information for prosthetic leg control came from Huang’s research lab at the University of North 
Carolina at Chapel Hill and North Carolina State University [23], [24], [26], [28], [34]. Different 
walking environments were statistically modelled as prior probabilities using the principle of 
maximum entropy and incorporated into the discriminant function of an LDA classification 
algorithm. Rather than using equal prior probabilities, the researchers simulated different walking 
environments by adjusting the prior probabilities of each class, which allowed their locomotion 
mode recognition system to dynamically adapt to different environments. For instance, when 
approaching an incline staircase, the prior probability of performing stair ascent would 
progressively increase while the prior probabilities of other locomotion modes would likewise 
decrease. Using these adaptive prior probabilities based on the terrain information significantly 
outperformed (95.5% classification accuracy) their locomotion mode recognition system based on 
neuromuscular-mechanical data alone with equal prior probabilities (90.6% accuracy) [24]. These 
seminal studies showed 1) how environment information could be incorporated into an intelligent 
high-level controller; 2) that including such information could improve the automated locomotion 

   

Figure 2.2. An automated locomotion mode recognition system for robotic leg prostheses and exoskeletons, also 
known as an intent recognition system or intelligent high-level controller. These systems can be supplemented with 
an environment recognition system to forward predict the oncoming walking environments prior to physical 
interaction, therein minimizing the high-level decision space. 
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mode recognition accuracies and decision times; and 3) that the controller could be relatively 
robust to noisy and imperfect environment predictions such that the neuromuscular-mechanical 
data dominated the high-level decision making. 

Several researchers have explored using radar detectors [35] and laser rangefinders [24], 
[26], [34] for active environment sensing. Unlike camera-based systems, these sensors circumvent 
the need for computationally expensive image processing and classification. Radar can uniquely 
measure distances through non-conducting materials like clothing and are invariant to outdoor 
lighting conditions and surface textures. Using a leg-mounted radar detector, the Biomechatronics 
group at MIT [35] were able to measure stair distances and heights within ~1.5 cm and ~0.4 cm 
average accuracies, respectively, up to 6.3 m maximum distances. However, radar reflection 
signatures struggle with source separation of multiple objects and have relatively low resolution. 
Huang and colleagues [24], [26], [34] developed a waist-mounted system using an IMU and laser 
rangefinder to reconstruct the geometry of the oncoming walking environments between 300-
10,000 mm ranges. Environmental features like the terrain height, distance, and slope were used 
for classification using heuristic rule-based thresholds. The system achieved 98.1% classification 
accuracy [34]. Although simple and effective, their system required subject-specific calibration 
(e.g., the device mounting height) and provided only a single distance measurement. 

Compared to radar and laser rangefinders, cameras can provide more detailed information 
about the sampled field-of-view and detect physical obstacles and terrain changes in peripheral 
locations (see Figure 2.3). Most environment recognition systems for robotic leg prostheses and 
exoskeletons have used either RGB cameras [36]–[43] or 3D depth cameras [29], [31], [44]–[50] 
mounted on the chest [40], [41], [46], waist [29], [38], [47], [48], or leg [31], [36], [37], [43]–[45], 
[49]–[51] (Table 2.1). For example, Tung’s research lab [52], [53] at the University of Waterloo 
(Canada) used a chest-mounted camera to collect images of slope changes (e.g., stairs, curbs, and 
ramps) and surfaces (e.g., gravel, grass, and concrete). However, their images were only grey-scale 
and the dataset was relatively small in size, which have implications for data-driven algorithms in 
order to prevent overfitting and promote generalization. Few studies have used head-mounted 
cameras for biomimicry [42], [43], [54]. Zhong et al. [43], [51] compared the effects of different 
wearable camera positions on environment sensing and classification. Compared to glasses, their 
leg-mounted camera more accurately detected closer walking environments but struggled with 
incline stairs, often capturing only 1-2 steps. Although the glasses could detect further-away 
environments, the head-mounted camera also captured irrelevant features like the sky, which 
affected the classification accuracy. The glasses also struggled with detecting decline stairs and 
had larger standard deviations in predictions due to head movement. 

For image classification, researchers have traditionally used statistical pattern recognition 
and machine learning algorithms like support vector machines, which require hand-engineering 
(Table 2.2) [29], [36], [37], [39], [44]–[47], [52]. For example, Hargrove’s research group at the 
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Rehabilitation Institute of Chicago and Northwestern University [39], [46] used standard image 
processing and rule-based thresholds to detect convex and concave edges and vertical and 
horizontal planes for stair recognition. Although their algorithm achieved 98.8% classification 
accuracy, the computations were time-consuming (~8 frames/sec) and the system was evaluated 
using only five images. Huang and colleagues [37] achieved 86% image classification accuracy 
across six environment classes using SURF features and a bag-of-words classifier. 

Varol’s research lab at Nazarbayev University (Kazakhstan) used support vector machines 
for classifying depth images of walking environments [44], [45]. These supervised machine 
learning algorithms work by mapping extracted features into a high-dimensional feature space 
and separate samples into different classes by constructing optimal hyperplanes with maximum 
margins. Different dimensionality reductions and SVM models were tested. Their system achieved 
94.1% classification accuracy across five locomotion modes using a cubic kernel SVM and no 
dimension reduction [44]. Although support vector machines are effective in high-dimensional 
space, these algorithms require manual selection of kernel functions and statistical features, which 
can be time-consuming and suboptimal. In contrast, deep learning replaces hand-designed 
features with multilayer networks that can automatically and efficiently learn the optimal image 
features from training data. Convolutional neural networks also tend to outperform support 
vector machines for image classification [55]. These benefits of deep learning over traditional 
image classification algorithms motivated the thesis research in Chapter 3. This review of 
environment sensing and classification systems for robotic leg prostheses and exoskeletons was 
published in the 2020 IEEE International Conference on Biomedical Robotics and Biomechatronics 
(BioRob) [56]. 

   

Figure 2.3. Examples of walking with a robotic lower-lower exoskeleton with computer vision-based environment 
sensing superimposed.  
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Table 2.1. Experimental datasets used for image classification of walking environments with applications to robotic leg 
prostheses and exoskeletons. Note that the datasets in Laschowski et al. [40] and [41] are from Sections 3.1 and 3.2 of 
this thesis, respectively. The dataset size is expressed as number of images.  

Reference Camera Body Position Dataset Size Image Resolution Classes 
Da Silva et al. [36] RGB Leg 3,992 512×512 6 
Diaz et al. [37] RGB Leg 3,992 1080x1920 6 
Khademi and Simon [38] RGB Waist 7,284 224x224 3 
Krausz and Hargrove [39] RGB Head 5 928x620 2 
Krausz et al. [46] Depth Chest 170 80x60 2 
Krausz et al. [47] Depth Waist 4,000 171x224 5 
Laschowski et al. [40] RGB Chest 34,254 224x224 3 
Laschowski et al. [41] RGB Chest 922,790 1280×720 12 
Massalin et al. [44] Depth Leg 402,403 320x240 5 
Nouredanesh et al. [52] RGB Chest 12,382 32x32 17 
Nouredanesh et al. [53] RGB Chest 3,669 32x32 12 
Novo-Torres et al. [42] RGB Head 40,743 128x128 2 
Rai et al. [54] RGB Head N/A 640x480 3 
Varol and Massalin [45] Depth Leg 22,932 320x240 5 
Zhang et al. [49], [50] Depth Leg 7,500 224x171 5 
Zhang et al. [48] Depth Waist 4,016 2048-point cloud 3 
Zhang et al. [31] Depth Leg 7,500 100x100 5 
Zhong et al. [43], [51] RGB Head and leg 327,000 1240x1080 6 

 
 

Table 2.2. Environment recognition systems that used heuristics, statistical pattern recognition, or support vector 
machines for image classification of walking environments. Note that each classifier was developed and tested on 
different image datasets (see Table 2.1). The computation times are reported per image. 

Reference Feature Extractor and Classifier Computing Devices Test Accuracy 
(%) 

Computation 
Time (ms) 

Da Silva et al. [36] Local binary pattern and 
random forest 

NVIDIA Jetson TX2 90.0 200 

Diaz et al. [37] SURF features and bag-of-
words model 

Intel Core i7-2600 
CPU (3.40GHz) 

86.0 N/A 

Krausz and 
Hargrove [39] 

Hough transform with Gabor 
filter or canny edge detector 

Intel Core i5 N/A 8000 

Krausz et al. [46] Heuristic thresholding and 
edge detector 

Intel Core i5 98.8 200 

Krausz et al. [47] Regions-of-interest and linear 
discriminate analysis 

Intel Core i7-8750H 
(2.2GHz) 

N/A N/A 

Massalin et al. 
[44] 

Cubic kernel support vector 
machine 

Intel Core i7-2640M 
(2.8GHz) 

94.1 14.9 

Nouredanesh et 
al. [52] 

Gabor barcodes and Hamming 
distances 

Intel Core i7 
(3.60GHz) 

88.5 150 

Varol and 
Massalin [45] 

Support vector machine Intel Core i7-2640M 
(2.8GHz) 

99.0 14.9 
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2.2 Energy-Efficient Actuation 

With regards to energetics, traditional robotic leg prostheses and exoskeletons have not exploited 
the passive dynamics of legged locomotion and/or other energy storage and return mechanisms, 
therein leading to heavy and inefficient actuators that require significant power consumption and 
thus provide limited battery-powered operating durations given the finite energy density of 
batteries. To address these limitations, researchers have been working on designing lightweight 
and efficient actuators that more effectively utilize the energetics of legged locomotion, including 
series elastic actuators and/or backdriveable actuators with energy regeneration, as subsequently 
reviewed. Given that the biomechanics of human walking is fundamental to the design of optimal 
energy-efficient actuators for wearable robotic devices, the energetics of legged locomotion are 
first discussed. 

2.2.1 Energetics of Human Locomotion 

Joint mechanical power is defined as the product of the net joint torque and angular velocity, and 
joint mechanical work is the cumulative time-integral of the joint mechanical power. During energy 
generation, the net joint torque and angular velocity have the same sign direction and positive 
mechanical work is done (e.g., a concentric contraction wherein the biological muscles shorten 
under tension). During energy absorption, the net joint torque and angular velocity have opposite 
polarities and negative mechanical work is done (e.g., an eccentric contraction wherein the 
biological muscles lengthen under tension); this assumes that the joint torque generators are 
independent of adjacent joints such that biarticulating muscles spanning multiple joints are 
ignored. The net rate of energy generation or absorption by all muscles crossing the joint is the 
joint mechanical power. During walking, some mechanical energy can be recycled by conservative 
forces (e.g., the elastic storage and return of muscle-tendon units or the pendular dynamics of 
swinging limbs) and transferred between adjacent segments [57]. Most models of legged 
locomotion ignore the elastic potential energy of deformable segments since the amount of 
deformation is relatively small and difficult to measure [57]–[59]. 

The energetics of human walking can be modelled by the mechanical work and power done 
on the total body system [60]–[62]. During single support, the stance leg resembles an inverted 
pendulum, whereby no net mechanical work is needed to move the center of mass (COM) and 
energy is conserved. During step-to-step transitions, however, external mechanical work mainly 
by ground reaction forces is needed to redirect the body’s COM velocity from one pendulum arc 
to another, which is a major determinant of the metabolic cost of human locomotion [62]. To 
maintain steady-state level-ground walking, the leading leg performs negative mechanical work to 
redirect the COM velocity at foot-ground contact, while the trailing leg simultaneously performs 
positive mechanical work during push-off to restore the lost energy [60], [61]. For example, when 
walking at 1.25 m/s, 15.4 ± 2.6 J of positive external mechanical work is performed by the trailing 
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leg and 12.4 ± 3.1 J of negative external mechanical work is performed by the leading leg [62]. In 
theory, the net mechanical work during level-ground walking at constant speed should be nearly 
zero since there is no net change in the gravitational potential energy or translational kinetic 
energy of the total body system. Compared to external mechanical work done on the center of 
mass, joint mechanical work can more accurately model the human musculotendon work [63]. 

Winter at the University of Waterloo (Canada) analyzed the lower-limb joint mechanical 
work and power during level-ground walking using inverse dynamics [57]–[59] (see Figure 2.4). 
Generally speaking, the knee joint behaves like a damper mechanism, performing net negative 
mechanical work with four main power phases: 1) negative mechanical power at weight 
acceptance wherein the knee flexes under the control of an extensor moment; 2) positive 
mechanical power generation by the knee extensors during mid-stance such that the product of 
the extensor moment and angular velocity is positive; 3) negative mechanical power absorption 
by the extensors as the knee flexes during early swing; and 4) negative mechanical power 
absorption by the knee flexors during late swing to decelerate leg extension prior to heel-strike. 
In comparison, the ankle generally behaves like an actuating motor, performing net positive 
mechanical work with two main power phases: 1) negative mechanical power absorption at weight 
acceptance wherein the product of the plantarflexor moment and dorsiflexor velocity is negative; 
and 2) a significant positive mechanical power burst by the plantarflexors during push-off. Note 
that the hip mechanical power is relatively small and irregular. The phases of negative mechanical 
work during human walking present an opportunity to improve the actuator efficiency of robotic 
leg prostheses and exoskeletons by recycling some of the otherwise dissipated energy using series 
elastic actuators and/or backdriveable actuators with energy regeneration.  

2.2.2 Series Elastic Actuators 

Elasticity is a mechanical principle that promotes safe and efficient human-robot dynamic physical 
interactions, which is especially important for robotic leg prostheses and exoskeletons. One 
popular engineering design, pioneered by Pratt and Williamson at the Massachusetts Institute of 
Technology (USA) [64], is to connect a passive elastic element (e.g., mechanical spring) in series 
between the actuator and external load, known as a series elastic actuator. Compared to 
traditional rigid actuators used in robotics, series elastic actuators have lower output impedance; 
greater shock tolerance and efficiency during foot-ground impacts; higher backdrivability via lower 
reflected inertia; and the ability to store and return elastic energy during negative and positive 
mechanical work periods, respectively [64]. Energy recycling via series compliance can improve 
the actuator efficiency by reducing the peak power and energy consumption of the electric motor 
provided that the stiffness of the elastic element is optimally designed (i.e., the spring-mass system 
dynamics matches the external load, thus requiring only a reactionary torque by the motor) [15]. 
This actuator design is bioinspired such that the elastic element stores and returns mechanical 



 

 16 

energy similar to human muscle-tendon units as characterized by Hill muscle models with both 
active contractile and series elastic elements [59]. 

As series elastic actuators can reduce the mechanical power and torque requirements of 
the electric motor, this can further improve locomotor efficiency by reducing the size and weight 
of the onboard motors and batteries. Energy efficiency in legged locomotion is typically measured 
using cost of transport (𝐶𝑂𝑇),  

𝐶𝑂𝑇 = !
"#$

                                                                                                                                                     (1) 

where 𝐸 is the energy consumed by a system of mass (𝑀) to travel distance (𝑑). For example, the 
Cassie bipedal robot, designed based on passive dynamics and series elastic actuation, achieved a 
cost of transport of ~0.7 such that the 30 kg robot consumes 200 W of electrical power while 

 

Figure 2.4. The average hip, knee, and ankle joint mechanical power (W/kg) per stride in healthy young adults (n=19) 
walking at natural cadence (110 ± 8 steps/min at 1.44 m/s) and normalized to total body mass (top left). The positive 
and negative values represent joint mechanical power generation and absorption, respectively. Data were taken 
from Winter [54], the trajectories of which begin and end with heel-strike (top right). These locomotor energetics 
have implications on energy-efficient actuation of robotic leg prostheses and exoskeletons during motoring and 
braking operations (bottom left); the nomenclature are described in the text.  
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walking at 1 m/s [15]. In comparison, humans have a cost of transport of around 0.2. The 
hydraulically-actuated Big Dog quadrupedal robot by Boston Dynamics has a cost of transport of 
~15 [15].  

For applications in wearable robotic devices, Collins’ group at Stanford University (USA) 
recently modelled and optimally controlled an energy-recycling actuator using an electroadhesive 
clutch and spring arranged in parallel with the electric motor [65]. Their simulation results showed 
that including parallel elasticity in their actuator design reduced the electrical power consumption 
by ~57%. In another example, Gregg’s research lab at the University of Michigan (USA) used non-
parametric convex optimization to optimize the stiffness of the elastic element to minimize peak 
power and energy consumption for arbitrary reference trajectories while satisfying actuator 
constraints [66]–[69]. Adding the optimized spring to their robotic ankle prosthesis reduced the 
peak power and energy consumption during walking from 450W to 132W and from 33 J to 25 J 
per stride, respectively [69].  

The Biomechatronics group at MIT developed several robotic knee prostheses with series 
elasticity [70]–[73]. One prototype included a continuously-variable transmission between the 
motor and elastic element to operate the motor at optimal torque-speed regimes with highest 
efficiency by continuously varying the gear ratio [73]. Another prototyped included a clutchable 
series elastic actuator, whereby an electromagnetic clutch in parallel with the series elastic 
actuator supplied a reactionary torque when the task dynamics were elastically conservative and 
mechanical energy was recycled by the spring element [70]. The clutchable series elastic actuator 
consumed ~70% less electrical energy during walking than a series elastic actuator without the 
clutch mechanism [70]. Despite the aforementioned benefits, actuators with series elasticity tend 
to have lower output torque; increased weight and architecture complexity due to the added 
physical spring; and limited force and torque control bandwidth [5]. 

2.2.3 Regenerative Actuators 

In recent years, torque-dense motors with low-ratio transmissions, known as (quasi) direct-drive 
actuators, have been used to achieve low mechanical impedance and high backdrivability and 
energy efficiency [74]. The application of low transmission ratios in legged and wearable robotic 
devices has largely been driven by advances in high torque-density brushless DC motors from the 
drone industry. This actuator design generates high output torque by increasing the motor torque 
density (torque per unit mass) rather than the transmission ratio, therein reducing the effects of 
high gearing (i.e., increased weight, backlash, and reflected inertia and damping of the actuator, 
which scale with the transmission ratio squared) [12]. Gears also have torque-dependent Coulomb 
friction that further increase mechanical impedance and reduce backdrivability and efficiency [11]; 
high external loads are thus needed to overcome the impedance to backdrive the actuator. These 
characteristics of high gearing systems can impede dynamic physical interactions between the 
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human and device and between the device and environment, which could especially encumber 
those with partial motor control function (e.g., elderly and/or individuals with osteoarthritis or 
poststroke) who could potentially benefit from the ability to backdrive the joints and actively 
participate in locomotion. 

Compared to traditional rigid actuators used in robotics, backdriveable actuators with low 
mechanical impedance have many benefits for control and efficiency, including: 1) free-swinging 
dynamic leg motion, which can simplify the control during swing phase and allow for more natural, 
energy-efficient locomotion; 2) compliant foot-ground impacts; 3) negligible unmodeled actuator 
dynamics, which further simplifies the control; 4) intrinsic backdriveability comparable to series 
elastic actuators without their design and manufacturing complexities and low bandwidth; and 5) 
energy regeneration during negative mechanical work [74]. Energy regeneration is the process of 
converting some of the otherwise dissipated energy during negative mechanical work into 
electrical energy by backdriving the electromagnetic actuator. In other words, when backdriven 
by an external load, the motor can provide a braking torque to decelerate the load (e.g., motion 
control during swing phase) while simultaneously generating electricity [32]. This is analogous to 
regenerative braking in electric and hybrid electric vehicles. Assuming a regenerative motor driver, 
the regenerated energy could be used for battery recharging and/or transferred to other joints to 
support positive power generation. Such energy transmission and transduction is mathematically 
described by the laws of thermodynamics.  

The autonomous quadrupedal robot known as the MIT Cheetah was one of the first legged 
robots to use backdriveable actuators with energy regeneration [74]–[78]. To minimize 
inefficiencies in their system (i.e., Joule heating losses in the electromagnetic motor; friction losses 
in the transmission; and interaction losses between the robot and environment via inelastic foot-
ground impacts), the following design principles were implemented: 1) high torque-density 
motors with minimal gearing; 2) regenerative motor drivers; and 3) low leg mass and inertia. The 
motor torque density was increased by increasing the gap radius, which is the radius of the gap 
between the stator windings and permanent magnets on the rotor, assuming a constant mass. 
The low-ratio transmission (6:1) allowed for efficient bidirectional power flow between the motor 
and end effector during forward operation (i.e., power generation) and backdrive operation (i.e., 
power regeneration). The forward and backdrive directional efficiencies of the transmission were 
98% and 96%, respectively, the differences of which were attributed to asymmetric friction and 
viscous damping losses [75]. The actuator backdrive efficiency was ~63% [74]. Exploiting these 
design principles, the MIT Cheetah achieved a cost of transport of ~0.5 such that the 33-kg robot 
can run at 6 m/s while consuming 973 W of electrical power [74].  

Taking inspiration from the MIT Cheetah, Gregg’s group [79]–[85] applied these actuator 
design principles to robotic leg prostheses and exoskeletons to achieve a low impedance, high 
backdriveable interface between the human and device during locomotion. They designed 
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pancake-style brushless DC motors with encapsulated windings for high torque-density. The large 
diameter of the motor allowed for a low-ratio transmission (7:1) to be designed directly inside the 
stator for a high package factor, which reduced the actuator size and weight. Benchtop and human 
walking experiments with a robotic leg prosthesis and exoskeleton showed that their actuator can 
generate 20-24 Nm of peak output torque and 1-3 Nm of backdrive torque [79]–[85], therein 
providing a high torque output during stance phase and low backdrive torque during swing phase. 
Their backdriveable actuators also allowed for energy regeneration and sharing between joints for 
improved locomotor efficiency [83]. To date, these wearable robotic devices are some of the few 
to demonstrate both power generation and regeneration during walking. 

The knee exoskeleton by Donelan and colleagues at Simon Fraser University (Canada) [86]–
[90] was designed to convert human biomechanical power into electrical power without requiring 
significant metabolic effort. Their system included a passive one-way clutch connected to spur 
gears with a 113:1 transmission ratio; a brushless DC generator; and a real-time control system to 
engage energy harvesting during late swing knee extension. Backdriving the motor during this 
period assisted the human muscles in performing negative mechanical work to decelerate the 
swinging leg prior to heel strike, therein minimizing the metabolic cost of operating the muscles 
as biological brakes, while concurrently generating electricity. The mechanical-to-electrical power 
conversion efficiency of the actuator was 63% [89]. The system performance was evaluated by the 
cost of harvesting (COH), which is the additional metabolic effort needed to generate electrical 

power /𝐶𝑂𝐻 = ∆&'()*+,-.	0+1'2
∆','.(2-.),	0+1'2

1. When walking at 1.5 m/s, users were able to generate 4.8 ± 0.8 

W of electricity with a 5 ± 21 W increase in metabolic power consumption compared to walking 
with the device but not generating electricity, therein yielding a cost of harvesting of 0.7 ± 4.4 [89]. 
This biomechanical energy harvesting knee exoskeleton could be worn on the unaffected limb of 
persons with unilateral impairments to recharge a robotic prosthesis or exoskeleton worn on the 
contralateral affected limb. 

More recently, a collaborative group at Cleveland State University (USA) published a series 
of papers on modeling, optimization, and control of robotic and prosthetic systems with energy 
regeneration and storage [91]–[105]. Generally speaking, their multibody system models included 
a mechanical transmission coupled to a brushless DC motor; a regenerative motor driver; and an 
ultracapacitor for energy storage. Biogeography-based optimization, which is an evolutionary 
algorithm, was used to find the optimal system design and control parameters that maximized 
both energy regeneration and reference tracking motion control. A Pareto front was used to 
quantitatively evaluate the optimal trade-off between the two conflicting objective functions such 
that a higher impedance system tends to yield more accurate motion tracking but less energy 
regeneration. For example, their multi-objective optimization in [98] produced 0.0157 rad of RMS 
tracking error relative to reference joint kinematics while regenerating ~53 J of electrical energy 
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over 5-second computer simulations of walking with a semi-powered knee prosthesis. The energy 
regeneration efficiency was ~30%.  

Although regenerative actuators can improve the energy efficiency and reduce the power 
consumption of robotic leg prostheses and exoskeletons, which can extend the battery-powered 
operating durations or decrease the weight of the onboard batteries, most previous studies have 
focused on steady-state level-ground walking [69], [70], [86]–[89], [91], [94], [97]–[100], [100]–
[102], [104], [106]–[111]. However, real-world community mobility involves many short-duration 
walking bouts with low numbers of sequential steps (e.g., ~40% of walking bouts are less than 12 
consecutive steps) [112]. Furthermore, targeted users of these wearable robotic devices (i.e., 
older adults and/or persons with physical disabilities) tend to walk slower and take fewer steps 
per day. For instance, research has shown that self-selected walking speed and daily step count 
decrease by 24% from 25 to 75 years age and by 75% from 60 to 85 years age, respectively [2]. 
These slower walking speeds have implications on energy regeneration performance since faster 
walking tends to generate more electricity and more efficiently [83], [88]–[90], [104], [106], [107], 
[110], [113]. These limitations in energy regeneration only from steady-state level-ground walking 
motivated the thesis research in Chapter 4. This review of robotic leg prostheses and exoskeletons 
with regenerative actuators was published in the ASME Journal of Mechanisms and Robotics [32].   
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2.3 Chapter Summary 

In summary, this chapter reviewed the latest advances in automated control systems and energy-
efficient actuators for robotic leg prostheses and exoskeletons.   

Section 2.1 reviewed the development of locomotion mode recognition systems used for 
automated high-level control and decision making. Fusing data from mechanical and/or inertial 
sensors with surface EMG, known as neuromuscular-mechanical data fusion, can improve the 
locomotion mode recognition accuracies and decision times compared to implementing either 
system individually. However, neuromuscular-mechanical data are user-dependent and have 
limited prediction horizons such that the data can only characterize the current state of the user 
and/or device. Taking inspiration from the human vision-locomotor control system, wearable 
camera systems can perceive the oncoming walking environment prior to physical interactions, 
therein allowing for more accurate and robust high-level control decisions. For image classification 
of the walking environments, researchers have used statistical pattern recognition and machine 
learning algorithms like support vector machines, which require manual feature engineering that 
can be time-consuming and suboptimal. In contrast, deep learning replaces hand-designed 
features with multilayer networks that can automatically and efficiently learn the optimal image 
features from training data. Convolutional neural networks also tend to outperform support 
vector machines for image classification. These design and performance benefits of deep learning 
over traditional image classification algorithms motivated the thesis research in Chapter 3.  

Section 2.2 reviewed the state-of-the-art in efficient actuators that exploit the energetics 
of legged locomotion and/or other energy storage and return mechanisms. The phases of negative 
mechanical work during human walking present an opportunity to improve efficiency by recycling 
energy using series elastic actuators and/or backdriveable actuators with energy regeneration. 
While series elastic actuators can reduce the peak power and energy consumption of the motor, 
these actuators tend to have increased weight and architecture complexity due to the added 
mechanical spring, and limited force and torque control bandwidth. Backdriveable actuators with 
low impedance transmissions can likewise facilitate dynamic locomotion, in addition to energy 
regeneration. Energy regeneration converts some of the otherwise dissipated energy during 
negative mechanical work into electrical energy, which can extend the battery-powered operating 
durations or decrease the weight of the onboard batteries. However, previous studies of robotic 
leg prostheses and exoskeletons with regenerative actuators have focused on steady-state level-
ground walking. Given that targeted users of these wearable robotic devices tend to walk slower 
and take fewer steps per day, and that energy regeneration and efficiency both positively relate 
to walking speed, regenerating energy from steady-state level-ground walking is relatively limited, 
which motivated the thesis research in Chapter 4.     
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3. ENVIRONMENT RECOGNITION 

In this chapter, a multi-generation environment sensing and classification system powered by 
computer vision and deep learning was developed to improve the automated high-level control 
and decision making of robotic leg prostheses and exoskeletons. The environment recognition 
system was designed to predict the oncoming walking environments prior to physical interaction, 
therein allowing for more accurate and robust locomotion mode transitions, which are currently 
limited to data from mechanical, inertial, and/or neuromuscular sensors.  

3.1 Preliminary System Design 

3.1.1 Introduction 

As reviewed in Chapter 2, previous environment recognition systems for robotic leg prostheses 
and exoskeletons have used statistical pattern recognition and machine learning algorithms like 
support vector machines for image classification, which require manual feature engineering that 
can be time-consuming and suboptimal (see Table 2.2). In contrast, deep learning replaces hand-
designed features with multilayer networks that can automatically and efficiently learn the optimal 
image features from training data. Convolutional neural networks also tend to outperform support 
vector machines for image classification [55]. Deep learning has become pervasive in computer 
vision ever since the AlexNet network [114], developed by Hinton’s research lab at the University 
of Toronto (Canada), won the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
[115] with a top-1 classification accuracy of ~63%.  

Motivated by these design and performance benefits, the objective of this research study 
was to develop a preliminary environment recognition system powered by deep learning to 
evaluate the feasibility of using convolutional neural networks for this novel computer vision 
application. Images of indoor and outdoor real-world walking environments were collected around 
the University of Waterloo campus using a lightweight wearable camera and a deep convolutional 
neural network was designed and trained to predict the oncoming walking environments, 
specifically level-ground terrain, incline stairs, and decline stairs. Given that the accuracy of a 
locomotion mode recognition system used for high-level control is especially important when 
interacting with stair environments, from a safety critical perspective, this preliminary system 
design focused on stair recognition. 

3.1.2 Image Dataset of Walking Environments 

One participant was instrumented with a chest mounted RGB camera system (GoPro Hero4) (see 
Figure 3.1). Unlike lower-limb systems [31], [35]–[37], [43]–[45], [49], [50], [116], chest-mounting 
can provide more stable video recording and allow users to wear pants and dresses without 
obstructing the sampled field-of-view. Whereas most environment sensing and classification 
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systems have been limited to controlled laboratory environments and/or prearranged walking 
circuits [23], [24], [26], [29], [34], [35], [38], [39], [46]–[50], [54], [116], the participant in this study 
walked around the University of Waterloo while collecting RGB images of unknown outdoor and 
indoor real-world environments with variable lighting, occlusions, signal noise, and intraclass 
variations. Data were collected at various times throughout the day to account for different 
lighting conditions. The visual field-of-view was ~3 m ahead of the participant. Images were 
sampled at 60 Hz with a 1280×720 resolution and stored on a 64-GB microSD memory card. The 
wearable camera system weighs ~0.3 kg and includes an onboard rechargeable lithium-ion 
battery. Approximately 10 hours of video were recorded across ten 1-hour walking sessions, 
amounting to ~2 million images. Ethical review and approval were not required for this research 
study in accordance with the University of Waterloo Office of Research Ethics. 

Since there were minimal differences between consecutive images sampled at 60 Hz, the 
dataset was downsampled to 1 frame/second to train the convolutional neural network. However, 
for online environment-adaptive control of robotic leg prostheses and exoskeletons, higher 
sampling rates would be advantageous for more accurate and robust automated locomotion 
mode transitions. Images were cropped to an aspect ratio of 1:1 and resized to 224x224 using 
bilinear interpolation. 34,254 images were processed and manually labelled into one of three 
environment classes, including 27,030 images of level-ground terrain; 3,943 images of incline 
stairs; and 3,281 images of decline stairs. Manually labelling the different walking environments 
was relatively subjective, especially near class transitions. For transitions from stairs to level-
ground terrain, the images were labelled “stairs” whenever the stairs were approximately within 
the visual field-of-view. For transitions from level-ground terrain to stairs, the images were again 
labelled “stairs” once the first step of the staircase became visible within the field-of-view. Images 
were labelled by one designated researcher for consistency. 

3.1.3 Convolutional Neural Network 

A 10-layer convolutional neural network was designed and trained for environment classification 
(Figure 3.1) using TensorFlow 1.1 [117]. The architecture included multiple stacked convolutional 
and pooling layers with decreasing spatial resolutions and increasing number of feature maps. 
Starting with an input RGB image, the convolutional layers performed convolution operations (i.e., 
dot products) between the inputs and convolutional filters; the network mainly used 3x3 filters. 
The first few layers extract relatively general features, like edges, while deeper layers learn more 
abstract, problem-dependent features. The feature maps were then passed through a rectified 
linear unit (ReLU) nonlinear activation function. ReLu nonlinearities tend to yield faster training 
times compared to other activation functions [55]. The pooling layers spatially downsampled the 
feature maps to reduce the computational effort by aggregating neighboring elements into a 
single feature map using maximum values; spatial downsampling was also performed using 
convolutional layers with strides of two. The CNN architecture concluded with a fully connected 



 

 24 

layer and a softmax loss function, which estimates the probability distribution (i.e., the predicted 
scores) of each labelled class. The neural network was trained using supervised learning such that 
the differences between the predicted and labelled class scores were computed and the learnable 
network parameters (i.e., weights) were optimized to minimize the loss function through 
backpropagation and stochastic gradient descent. 

Five-fold cross-validation was used during training such that the dataset was split into five 
individual folds and each fold was trialed for validation. Each data-collection session was thus used 
for both training and validation. Since there were significant class imbalances in the dataset, 

 

Figure 3.1. Schematic of the preliminary environment recognition system powered by computer vision and deep 
learning. Images of real-world walking environments were collected using a lightweight wearable camera (1) and 
classified using a 10-layer convolutional neural network (2). The classification predictions during inference for each 
environment class are displayed using a multiclass confusion matrix (3). 
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images of level-ground terrain and stairs were undersampled and oversampled during training, 
respectively, according to the class priors from each fold to maintain uniform distributions. Input 
images to the neural network were normalized by subtracting the average pixel intensities from 
each fold. The learnable weights were initialized with Xavier initialization [118]. The neural 
network was trained for 2000 iterations using a batch size of 256 (~19 epochs); the Adam optimizer 
[119]; and an initial learning rate of 0.001, which was halved after 1000 training iterations. Images 
were also randomly flipped horizontally during training at a rate of 0.5 to increase stochasticity 
and prevent overfitting. Dropout regularization was experimented with but showed no additional 
performance benefit. After training, the CNN performed inference to evaluate the generalizability 
of the learned parameters. Training and inference were both performed on an NVIDIA TITAN Xp 
GPU. Training took ~20 minutes per fold. The computational cost of the convolutional neural 
network was 1.75-G floating point operations (FLOPs). 

3.1.4 Classification Results 

Figure 3.1 shows the multiclass confusion matrix, which illustrates the classification performance 
of the convolutional neural network during inference. The horizontal and vertical axes are the 
predicted and labelled classes, respectively. The diagonal elements are the image classification 
accuracies (%) for each environment class, as known true positives, and the nondiagonal elements 
are the misclassification percentages. The environment recognition system achieved 94.85% 
image classification accuracy during inference, that being the percentage of true positives (32,491 
images) out of the total number of labelled images (34,254 images). The convolutional neural 
network most accurately predicted level-ground terrain, followed by incline stairs, and decline 
stairs. These results could be attributed to the class imbalances in the dataset such that there were 
significantly more images of level-ground terrain compared to other classes. There were relatively 
few misclassifications between incline stairs and decline stairs. 

Figure 3.2 shows several examples of failure cases whereby the convolutional neural 
network incorrectly predicted the walking environment. The images in the top, middle, and 
bottom rows were misclassified as incline stairs, level-ground, and decline stairs, respectively. The 
misclassifications in the top row (i.e., images of level-ground terrain misclassified as incline stairs) 
were particularly interesting given that these misclassifications seem to challenge even the human 
visual system. The misclassifications in the middle row (i.e., images of decline stairs misclassified 
as level-ground terrain) demonstrate the importance of classification accuracy for safe locomotor 
control such that inaccurate control decisions, due to errors in the environment prediction, could 
result in the user falling down a flight of stairs. The misclassifications in the bottom row highlight 
a limitation of the labelling architecture such that the convolutional neural network was forced to 
classify images with “random” objects and/or environments into one of the three predefined 
classes (i.e., either level-ground terrain, incline stairs, or decline stairs). 
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In summary, images of indoor and outdoor real-world walking environments around the 
University of Waterloo campus were collected using a wearable camera and a deep convolutional 
neural network was designed and trained for environment recognition, achieving 94.85% image 
classification accuracy. This preliminary environment sensing and classification system was 
published in the 2019 IEEE International Conference on Rehabilitation Robotics (ICORR) [40]. Since 
then, research in environment recognition for robotic leg prostheses and exoskeletons has almost 
entirely shifted towards using deep learning for image classification [31], [38], [42], [43], [48]–[51], 
[116]. For example, the convolutional neural network developed by Simon’s group at Cleveland 
State University (USA) [38] achieved ~99% image classification accuracy across three environment 
classes using transfer learning of pretrained weights. Fu’s research lab at the Southern University 
of Science and Technology (China) published a series of papers on using deep learning for 3D 
environment sensing and classification for prosthetic leg control [31], [48]–[50]. However, these 
newly-implemented convolutional neural networks for environment recognition (Table 3.1 and 
Figure 3.3) have each been trained and tested on different image datasets, therein preventing 
direct comparisons between CNN architectures from different researchers, which motivated the 
following research in Section 3.2. 

  

     

     

     

Figure 3.2. Examples of failure cases whereby the convolutional neural network incorrectly predicted the walking 
environment. Images in the top, middle, and bottom rows were misclassified as incline stairs, level-ground, and 
decline stairs, respectively. 
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Table 3.1. Environment recognition systems that used convolutional neural networks for image classification of walking 
environments. Note that each neural network was trained and tested on different image datasets (Table 2.1). The 
computing hardware were mostly developed and manufactured by NVIDIA. The number of operations is expressed in 
multiply-accumulates. The inference times are reported per image. 

Reference Operations 
(billions) 

Parameters 
(millions) 

Computing Devices Test Accuracy 
(%) 

Inference 
Time (ms) 

Khademi and Simon [38] 7.7 27 Titan X 99.6 50 
Laschowski et al. [40] 1.2850 4.73 TITAN Xp 94.9 0.9 
Nouredanesh et al. [53] 0.0020 0.04 Intel Core i7 (3.60GHz) 92.0 N/A 
Novo-Torres et al. [42] 0.0011 1.13 Geforce GTX 965M 90.0 5.5 
Zhang et al. [50] 0.0130 0.22 GeForce GTX 1050 Ti 96.8 3.1 
Zhang et al. [49] 0.0130 0.22 Quadro P400 98.9 3.0 
Zhang et al. [48] 0.0215 0.05 GeForce GTX 1050 Ti 99.0 2.0 
Zhang et al. [31] 0.0130 0.22 Quadro P400 96.0 3.0 
Zhong et al. [43]† 0.0544 2.20 Jetson TX2 95.4 12.7 
Zhong et al. [51]l 0.0544 2.20 Jetson TX2 94.0 13.1 

 
†used MobileNetV2 and lused MobileNet for the feature extraction and both used a Bayesian neural network (i.e., 
gated recurrent unit) for the environment classifications. 

 
 
  

 

Figure 3.3. Examples of convolutional neural networks used for image classification of walking environments. The 
top and bottom schematics were adapted from Drs. Dan Simon (Cleveland State University, USA) and Chenglong Fu 
(Southern University of Science and Technology, China), respectively. 
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3.2 Second-Generation System 

3.2.1 Introduction 

Advances in deep learning and computer vision have recently allowed researchers to develop 
environment recognition systems to supplement the locomotion mode recognition systems used 
for automated high-level control and decision making of robotic leg prostheses and exoskeletons. 
However, small-scale and private image datasets have prevented the widespread development 
and comparison of convolutional neural networks for environment classification (Table 3.1). To 
date, researchers have each individually collected training data to develop their image 
classification algorithms. These repetitive measurements are time-consuming and inefficient, and 
individual private datasets have prevented direct comparisons between convolutional neural 
networks from different researchers.  

Taking inspiration from ImageNet [120], here the “ExoNet” database was developed – the 
largest and most diverse open-source dataset of wearable camera images (i.e., egocentric 
perception) of real-world walking environments. Over a dozen state-of-the-art deep convolutional 
neural networks were trained and tested on ExoNet for image classification and automatic feature 
engineering. The benchmarked CNN architectures and their environment classification predictions 
were quantitatively evaluated and compared using an operational metric called “NetScore”, which 
balances the image classification accuracy with the architectural and computational complexities 
(i.e., important for onboard real-time inference with mobile computing devices). This second-
generation environment sensing and classification system provides a large-scale benchmark and 
reference for future research in environment-adaptive locomotor control.  

3.2.2 Large-Scale Image Dataset 

One participant, without wearing and/or using an assistive device (e.g., an exoskeleton, walker, or 
crutches), was instrumented with a lightweight smartphone camera system (iPhone XS Max) (see 
Figure 3.4). The chest-mount height was ~1.3 m from the ground when the participant stood 
upright. The smartphone has two 12-megapixel RGB rear-facing cameras and one 7-megapixel 
front-facing camera. The front and rear cameras provide 1920×1080 and 1280×720 video 
recording at 30 Hz, respectively. The smartphone weighs 0.21 kg and has an onboard rechargeable 
lithium-ion battery; 512-GB of memory storage; and a 64-bit ARM-based integrated circuit (Apple 
A12 Bionic) with a six-core CPU and four-core GPU. These hardware specifications can theoretically 
support onboard deep learning inference for real-time environment classification. The relatively 
lightweight and unobtrusive nature of the wearable camera system allowed for unimpeded human 
locomotion. Similar to Section 3.1, ethical review and approval were not required for this research 
study in accordance with the University of Waterloo Office of Research Ethics. 
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The subject walked around unknown outdoor and indoor real-world environments while 
collecting images with occlusions and intraclass variations (Figure 3.5). Data were collected at 
various times throughout the day to include different lighting conditions. Inspired by human gaze 
fixation during walking [121], the visual field-of-view was 1-5 m ahead of the participant, thereby 
showing the oncoming walking environment rather than the ground directly underneath the 
subject’s feet. This operating range allowed for detecting obstacles and terrain changes within 
several walking strides; research has shown that lower-limb amputees tend to allocate higher 
visual attention to oncoming terrain changes compared to able-bodied individuals [121]. The 
camera’s pitch angle slightly differed between data collection sessions. Images were sampled at 
30 Hz with 1280×720 resolution. Over 52 hours of video were recorded, amounting to ~5.6 million 
images. The same environment was never sampled twice to maximize diversity in the dataset. 
Images were collected throughout the summer, fall, and winter seasons to capture different 
weathered surfaces like snow, grass, and multicolored leaves. The image database, which was 
named “ExoNet”, was uploaded to IEEE DataPort and is now publicly available for download at 
https://ieee-dataport.org/open-access/exonet-database-wearable-camera-images-human-
locomotion-environments [41]. The file size of the uncompressed videos is ~140 GB.  

Given the subjects’ self-selected walking speed, there were relatively minimal differences 
between consecutive images sampled at 30 Hz. The images were thus downsampled and labelled 
at 5 frames per second to minimize the demands of manual annotation and increase the diversity 
in image appearances. Similar to the ImageNet dataset [120], the ExoNet database was human-
annotated using a hierarchical labelling architecture. The images were mainly labelled according 
to common high-level locomotion modes of robotic leg prostheses and exoskeletons, rather than 

 

Figure 3.4. Development of the “ExoNet” database, including (1) a photograph of the wearable camera system used 
for large-scale data collection; (2) examples of the high-resolution RGB images of walking environments; and (3) a 
schematic of the novel hierarchical labelling architecture with 12 classes. 
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a purely computer vision perspective. For instance, images of level-ground terrain showing either 
pavement or grass were not differentiated since both surface textures would be assigned the same 
high-level locomotion mode (i.e., level-ground walking). However, with advances in control system 
designs, future research may want to consider the image classification of different walking surface 
textures. 

Approximately 923,000 images were manually annotated using a novel hierarchical 
labelling architecture with 12 classes (Figure 3.4). The dataset included: 31,628 images of “incline 
stairs transition wall/door” (I-T-W); 11,040 images of “incline stairs transition level-ground” (I-T-
L); 17,358 images of “incline stairs steady” (I-S); 28,677 images of “decline stairs transition level-
ground” (D-T-L); 19,150 images of “wall/door transition other” (W-T-O); 36,710 images of 
“wall/door steady” (W-S); 379,199 images of “level-ground transition wall/door” (L-T-W); 153,263 
images of “level-ground transition other” (L-T-O); 26,067 images of “level-ground transition incline 
stairs” (L-T-I); 22,607 images of “level-ground transition decline stairs” (L-T-D); 119,515 images of 
“level-ground transition seat” (L-T-E); and 77,576 images of “level-ground steady” (L-S) (see Figure 
3.6). These class labels were developed and assigned post hoc to encompass the different walking 
environments from the data collection. In comparison, Novo-Torres et al. [42] simultaneously 
sampled and labelled their images online using a portable keyboard during data collection. Similar 
to previous research [24], [26], [34], an “other” class was used to maintain the image classification 
performance when unlabeled environments and/or objects like pedestrians, cars, and bicycles 
were observable. Having not included an “other” class in the preliminary environment recognition 
system in Section 3.1, the convolutional neural network was required to classify random objects 
and/or environments, such as those shown in Figure 3.2, into one of the three predefined classes, 
which likely affected the overall image classification accuracy. 

Taking inspiration from [23], [24], [26], [28], [38], [54], the ExoNet hierarchical labelling 
architecture included both steady (S) and transition (T) states (Figure 3.7). A steady state describes 
an environment where an exoskeleton or prosthesis user would continue to perform the same 
locomotion mode (e.g., an image showing only level-ground terrain). In contrast, a transition state 
describes an environment where an exoskeleton or prosthesis high-level controller might switch 
between different locomotion modes (e.g., an image showing both level-ground terrain and incline 
stairs). Manually labelling these transition states was relatively subjective. For instance, an image 
showing level-ground terrain was labelled “level-ground transition incline stairs” (L-T-I) when an 
incline staircase was approximately within the visual field-of-view. Similar labelling principles were 
applied to transitions to other conditions. Although the ExoNet database was labelled by one 
designated researcher, consistently determining the exact video frame where an environment 
should switch between steady and transition states was challenging; Huang et al. [28] reported 
experiencing similar difficulties. The development of the ExoNet database was published in the 
Frontiers in Robotics and AI [41].   
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Figure 3.5. Examples of the wearable camera images of indoor and outdoor real-world walking environments in the 
ExoNet database. Images were collected at various times throughout the day and across different seasons (i.e., 
summer, fall, and winter). 
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Note that the images were sampled with relatively high-resolution (1280×720) to provide 

a rich open-source dataset for the research community such that prospective users of ExoNet have 
the option to downscale the image sizes depending on their application. Furthermore, the labelling 
architecture was designed based on current high-level controllers. The most common locomotion 
modes programmed into robotic leg prostheses and exoskeletons include level-ground walking, 
stair ascent, stair descent, sit-to-stand, and stand-to-sit [4]. An environment recognition system 
should thus, at minimum, be designed to classify level-ground terrain, seats, incline stairs, decline 
stairs, and transitions between these different environments; accurate sensing and classification 
of transitions, especially when involving stairs, is important given that they present a safety-critical 
application. To reiterate, an image was labelled as a transition state when the field-of-view showed 
both the current walking environment (e.g., level-ground terrain) and another environment where 
an exoskeleton or prosthesis high-level controller might switch between locomotion modes (e.g., 
incline stairs), such as that illustrated in Figure 3.7. In this example, the beginning of the transition 
was defined as when the lip of the first step in the staircase was visible within the field-of-view. 
Although manually labelling the images at 5 frames per second, rather than the original sampling 
rate of 30 Hz, created greater diversity in the image appearances and thus helped with labelling 
the transitions, the beginning and end of the environment transitions was relatively subjective, 
which likely affects inter-rater reliability.    

Label Number of Images Percent of Dataset (%) 
L-T-W 379,199 41.1 
L-T-O 153,263 16.6 
L-T-E 119,515 13.0 
L-S 77,576 8.4 
W-S 36,710 4.0 
I-T-W 31,628 3.4 
D-T-L 28,677 3.1 
L-T-I 26,067 2.8 
L-T-D 26,067 2.4 
W-T-O 19,150 2.1 
I-S 17,358 1.9 
I-T-L 11,040 1.2 
Total 922,790 100 
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L-T-E
L-S
W-S
I-T-W
D-T-L
L-T-I
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I-S
I-T-L

Figure 3.6. Schematic of the class distributions in the ExoNet database, the images of which were annotated using a 
novel hierarchical labelling architecture. A description of the class labels is provided in the text.  
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Figure 3.7. Examples of “steady” and “transition” states in the ExoNet hierarchical labelling architecture. The images 
in the top and bottom rows were labelled as steady states and those in middle row were labelled as transition states. 
For each column, the left images show the author walking with a robotic exoskeleton and the right images show 
the concurrent field-of-view of the wearable camera system (i.e., what the exoskeleton would see). 
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3.2.3 Deep Convolutional Neural Networks 

TensorFlow 2.3 and the Keras functional API were used to build, train, and test over a dozen state-
of-the-art deep convolutional neutral networks on the ExoNet database, including: EfficientNetB0 
[122]; InceptionV3 [123]; MobileNet [124]; MobileNetV2 [125]; VGG16 and VGG19 [126]; Xception 
[127]; ResNet50, ResNet101, and ResNet152 [128]; and DenseNet121, DenseNet169, and 
DenseNet201 [129]; these artificial neural networks are biologically-inspired variants of the 
multilayer perceptron that resemble the human visual cortex. During data preprocessing, the 
images were cropped to an aspect ratio of 1:1 and downsampled to 256x256 using bilinear 
interpolation. Random crops of 224x224 were used as inputs to the neural networks; this method 
of data augmentation helps further increase the sample diversity. Unlike previous studies that 
used support vector machines that required hand-engineering [44], [45], convolutional neural 
networks can automatically and efficiently learn the optimal image features from training data. 
The final densely connected layer of each CNN architecture was modified by setting the number 
of output channels equal to the number of environment classes in the ExoNet database (n=12). A 
softmax loss function was used to predict the individual class scores of each labelled environment. 

The labelled ExoNet images were split into training (89.5%), validation (3.5%), and testing 
(7%) sets, the proportions of which are consistent with ImageNet [120], which is of comparable 
size. Transfer learning of pretrained weights from ImageNet were experimented with but showed 
no additional performance benefit. Dropout regularization [130] was applied before the final 
dense layer to prevent overfitting during training such that the learnable weights were randomly 
dropped (i.e., activations set to zero) during each forward pass at a rate of 0.5. Images were also 
randomly flipped horizontally during training to increase stochasticity and promote generalization. 
Each CNN architecture was trained for 40 epochs using a batch size and initial learning rate of 128 
and 0.001, respectively; these hyperparameters were experimentally tuned to maximize the 
performance on the validation set and averaged across trials (see Figure 3.8).  

Different combinations of batch sizes of 32, 64, 128, and 256; epochs of 20, 40, and 60; 
dropout rates of 0, 0.2, 0.5; and initial learning rates of 0.01, 0.001, 0.0001, and 0.00001 were 
explored. The learning rate was reduced during training using a cosine weight decay schedule 
[131]. The sparse categorical cross-entropy loss between the labelled and predicted classes were 
calculated, and the Adam optimizer [119] was used to update the learnable weights and minimize 
the loss function by calculating backpropagated gradients using momentum and an adaptive 
learning rate. A single central crop of 224x224 was used during testing. Training and inference 
were both performed on a Tensor Processing Unit (TPU) version 3-8 by Google Cloud; these 
customized chips can allow for accelerated CNN computations (i.e., matrix multiplications and 
additions) compared to more traditional computing devices.  
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3.2.4 Classification Results 

Table 3.2 summarizes the benchmarked CNN architectures (i.e., the number of parameters and 
computing operations) and their environment classification performances on the ExoNet database 
(i.e., prediction accuracies and inference times). The EfficientNetB0 network achieved the highest 
image classification accuracy (𝐶)) during inference (73.2% accuracy) on the ExoNet database, that 
being the percentage of true positives (47,265 images) out of the total number of images in the 

testing set (64,568 images) /𝐶) =
324'	5+6-(-7'6
3+(),	8&)#'6

× 100%1. In contrast, the VGG19 architecture 

produced the least accurate predictions, with an image classification accuracy of 69.2%. The range 
of classification accuracies across the benchmarked CNN architectures was thus relatively small 
with a maximum arithmetic difference of only 4 percentage points. Relatively weak statistically 
correlations were observed between both the number of parameters (Pearson r = -0.3) and  
computing operations (Pearson r = -0.59) and the image classification accuracies on the ExoNet 
database across the benchmarked CNN architectures. 

Although the VGG16 and VGG19 networks have the largest number of computations (i.e., 
15.4 and 19.5 billion multiply-accumulates, respectively), they resulted in the fastest inference 
times (i.e., on average ~1.4 ms and ~1.6 ms per image). For comparison, the DenseNet201 network 
has 72.1% and 78% fewer computing operations than VGG16 and VGG19, respectively, but was 
364% and 306% slower. Note that these inference times were calculated on the Cloud TPU using 
a batch size of eight. These performance trends concur with those reported by Ding et al. [132], 
who recently showed that 1) the number of computing operations does not explicitly reflect the 
actual inference speed; and 2) VGG-style architectures can run faster and more efficiently on CNN 
computing devices compared to more complicated architectures like DenseNets due to their 
relatively simple designs with basic convolutions and ReLU activations. However, the relative 
inference speeds between the benchmarked CNN architectures (i.e., their ordering from fastest 
to slowest) could theoretically differ across different computing devices given that some platforms 
are designed to accelerate certain operations better than others (e.g., cloud computing vs. those 
designed for mobile and embedded systems). 
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Figure 3.8. The loss and image classification accuracies during training and validation on the ExoNet database using 
state-of-the-art deep convolutional neural networks, including: EfficientNetB0, InceptionV3, MobileNet, 
MobileNetV2, VGG16, VGG19, Xception, ResNet50, ResNet101, ResNet152, DenseNet121, DenseNet169, and 
DenseNet201.  
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Table 3.3. The multiclass confusion matrix for EfficientNetB0 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.8 0.6 0.3 0.0 0.0 0.0 1.0 4.5 10.6 0.2 2.6 1.4 
W-S 0.2 72.1 9.2 0.0 0.3 0.2 0.0 0.3 15.2 0.1 1.9 0.5 
W-T-O 0.4 21.9 43.2 0.0 0.4 0.2 0.1 0.1 19.2 0.4 8.8 5.5 
I-S 0.0 0.3 0.1 62.1 33.9 1.9 0.0 0.0 0.5 0.6 0.5 0.0 
I-T-W 0.0 2.0 0.7 16.8 69.0 2.8 0.0 0.2 1.5 5.8 0.6 0.6 
I-T-L 1.0 0.5 0.2 2.5 5.7 77.9 2.2 0.2 6.4 1.5 1.2 0.7 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 79.9 0.3 11.9 0.6 6.4 0.2 
L-T-D 5.5 0.4 0.6 0.0 0.3 0.1 1.0 53.3 28.3 2.8 4.3 3.6 
L-T-W 0.3 1.5 0.4 0.0 0.0 0.1 3.7 0.4 86.5 0.3 4.4 2.3 
L-T-I 0.1 1.0 0.2 1.0 3.9 0.4 3.8 0.7 23.3 49.1 12.1 4.4 
L-T-O 0.3 0.6 1.1 0.0 0.1 0.1 13.7 0.5 28.8 0.7 47.5 6.6 
L-T-E 0.3 0.5 0.3 0.0 0.0 0.1 0.8 0.5 14.0 0.6 10.1 72.7 

 
  

Table 3.2. The benchmarked CNN architectures and their environment classification performances during inference 
on the ExoNet database. The test accuracies, parameters, and computing operations are expressed in percentages 
(0-100%), millions of parameters (M), and billions of multiply-accumulates (GMACs), respectively. Training and 
inference were both performed on a Google Cloud TPU. The EfficientNetB0 network achieved the highest test 
accuracy; VGG16 the fastest inference time; and MobileNetV2 the best NetScore and least number of parameters 
and computing operations. 

CNN Architecture Operations 
(GMACs) 

Parameters (M) Test Accuracy 
(%) 

Inference Time 
(ms) 

NetScore (Ω) 

EfficientNetB0 0.39 4.06 73.2 2.5 72.6 
InceptionV3  2.84 21.83 71.9 4.1 56.3 
MobileNet  0.57 3.24 71.1 1.6 71.4 
MobileNetV2  0.30 2.27 72.9 2.2 76.2 
VGG16  15.36 14.72 70.1 1.4 50.3 
VGG19  19.52 20.03 69.2 1.6 47.7 
Xception  4.55 20.89 70.4 2.3 54.1 
ResNet50  3.86 23.61 69.5 2.5 54.1 
ResNet101 7.58 42.68 70.1 4.2 48.7 
ResNet152  11.29 58.40 71.6 5.6 46.0 
DenseNet121  2.83 7.05 71.5 4.4 61.2 
DenseNet169  3.36 12.66 70.7 5.7 57.7 
DenseNet201  4.29 18.35 70.2 6.5 54.9 
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Table 3.4. The multiclass confusion matrix for InceptionV3 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.3 0.8 0.3 0.0 0.1 0.4 1.1 4.3 11.0 0.2 2.6 1.9 
W-S 0.3 70.6 10.9 0.0 0.2 0.1 0.0 0.2 16.3 0.1 1.0 0.3 
W-T-O 0.7 22.7 38.4 0.0 0.3 0.0 0.2 0.5 21.0 0.5 12.0 3.7 
I-S 0.0 0.8 0.1 66.6 25.9 3.3 0.8 0.0 1.0 1.0 0.3 0.3 
I-T-W 0.1 2.0 0.9 15.1 68.7 3.2 0.0 0.0 2.9 5.3 1.0 0.8 
I-T-L 0.3 1.3 0.2 2.5 3.9 72.4 4.0 0.2 10.3 2.4 1.0 1.5 
L-S 0.2 0.1 0.0 0.0 0.0 0.1 78.6 0.2 12.5 0.3 7.4 0.5 
L-T-D 6.1 0.6 0.4 0.0 0.4 0.1 1.1 53.3 28.2 1.1 5.1 3.6 
L-T-W 0.3 1.9 0.5 0.0 0.1 0.1 4.2 0.5 85.5 0.4 4.3 2.2 
L-T-I 0.0 0.9 0.4 0.5 4.0 0.5 4.4 1.4 24.9 47.6 10.8 4.5 
L-T-O 0.4 0.5 1.1 0.0 0.1 0.0 14.5 0.5 30.7 0.6 46.2 5.3 
L-T-E 0.3 0.5 0.6 0.0 0.1 0.1 0.9 0.4 16.1 0.7 9.7 70.6 

 

Table 3.5. The multiclass confusion matrix for MobileNet showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.7 0.7 0.5 0.0 0.1 0.2 1.0 3.6 10.8 0.2 3.6 1.6 
W-S 0.1 73.0 9.8 0.0 0.3 0.0 0.1 0.3 14.2 0.2 1.5 0.6 
W-T-O 2.7 24.2 38.4 0.0 0.1 0.1 0.2 0.4 19.8 0.5 10.0 3.4 
I-S 0.3 0.4 0.8 59.4 30.6 3.8 0.6 0.0 1.3 1.7 0.5 0.6 
I-T-W 0.1 2.5 0.4 17.7 66.8 3.0 0.0 0.1 3.3 4.5 1.0 0.8 
I-T-L 0.5 1.2 0.0 3.7 4.5 73.9 3.9 0.2 8.4 1.2 1.3 1.2 
L-S 0.2 0.4 0.0 0.0 0.0 0.1 77.6 0.4 12.3 0.4 8.0 0.5 
L-T-D 6.5 1.0 0.4 0.0 0.1 0.1 0.7 51.8 28.3 1.4 6.3 3.5 
L-T-W 0.4 2.2 0.6 0.0 0.1 0.1 3.9 0.5 83.4 0.5 5.8 2.5 
L-T-I 0.6 1.1 0.5 0.7 4.1 0.4 5.1 1.2 23.8 47.4 11.0 4.1 
L-T-O 0.4 0.4 1.1 0.0 0.0 0.1 13.3 0.6 29.0 0.6 48.6 5.8 
L-T-E 0.4 0.6 0.5 0.0 0.1 0.0 0.9 0.3 14.8 0.8 12.8 68.8 

 

Table 3.6. The multiclass confusion matrix for MobileNetV2 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.3 0.6 0.4 0.0 0.1 0.0 0.9 5.0 9.9 0.2 2.9 1.8 
W-S 0.2 73.4 10.1 0.0 0.3 0.3 0.1 0.4 13.4 0.2 1.2 0.5 
W-T-O 0.6 24.2 41.5 0.0 0.4 0.0 0.0 0.6 18.0 0.6 9.5 4.6 
I-S 0.0 0.4 0.1 64.7 28.9 2.6 0.4 0.0 0.9 1.3 0.1 0.6 
I-T-W 0.0 2.0 0.9 18.5 66.2 3.3 0.0 0.1 2.7 4.9 0.5 1.0 
I-T-L 0.2 0.7 0.0 2.2 7.9 73.6 3.4 0.2 7.9 1.7 1.0 1.3 
L-S 0.1 0.3 0.0 0.0 0.0 0.1 79.2 0.1 11.9 0.2 7.7 0.4 
L-T-D 5.5 0.7 0.4 0.0 0.0 0.1 1.0 53.8 28.2 1.1 5.5 3.7 
L-T-W 0.3 1.9 0.5 0.0 0.0 0.1 3.9 0.4 86.5 0.3 4.1 2.0 
L-T-I 0.2 1.2 0.1 0.1 3.9 0.4 4.1 1.0 26.1 48.4 9.5 4.9 
L-T-O 0.3 0.4 1.2 0.0 0.0 0.1 13.9 0.6 29.5 0.4 47.9 5.6 
L-T-E 0.4 0.5 0.6 0.0 0.1 0.1 0.9 0.3 15.3 0.6 10.7 70.7 
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Table 3.7. The multiclass confusion matrix for VGG16 showing the image classification accuracies (%) during inference 
on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.5 0.6 0.6 0.0 0.0 0.2 1.1 5.3 9.9 0.0 3.5 3.3 
W-S 0.2 66.1 8.0 0.0 0.1 0.2 0.2 0.1 22.3 0.1 1.7 1.0 
W-T-O 0.3 23.6 34.2 0.1 0.1 0.2 0.1 0.2 23.5 0.8 10.1 6.7 
I-S 0.0 0.4 0.6 59.2 30.1 3.3 1.5 0.0 1.7 0.9 0.5 1.8 
I-T-W 0.1 1.8 1.0 15.1 66.5 1.9 0.0 0.1 5.0 5.4 1.4 1.8 
I-T-L 0.5 0.0 0.2 4.5 8.1 64.8 3.9 0.0 13.1 1.9 1.5 1.5 
L-S 0.1 0.3 0.0 0.0 0.0 0.0 77.0 0.1 14.8 0.3 7.1 0.2 
L-T-D 7.3 0.8 0.7 0.0 0.2 0.0 1.0 43.8 33.3 0.6 7.8 4.5 
L-T-W 0.3 1.8 0.4 0.0 0.0 0.1 3.8 0.4 86.9 0.2 4.5 1.7 
L-T-I 0.7 1.0 0.3 0.7 5.2 0.6 5.6 1.0 29.9 37.2 12.4 5.4 
L-T-O 0.3 0.3 0.9 0.1 0.0 0.0 14.7 0.4 35.2 0.5 41.7 5.8 
L-T-E 0.6 0.6 0.5 0.0 0.0 0.0 1.0 0.3 19.6 0.3 10.0 67.0 

 

Table 3.8. The multiclass confusion matrix for VGG19 showing the image classification accuracies (%) during inference 
on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 73.9 0.5 0.4 0.0 0.1 0.1 1.2 4.4 12.0 0.2 3.6 3.7 
W-S 0.4 65.0 7.3 0.0 0.3 0.2 1.0 0.3 21.9 0.3 2.0 1.1 
W-T-O 1.1 24.5 31.0 0.1 0.3 0.7 0.1 1.4 24.2 0.8 8.7 7.3 
I-S 0.0 0.5 0.0 73.0 19.7 3.1 0.5 0.0 1.4 0.8 0.5 0.5 
I-T-W 0.1 1.1 1.1 20.7 61.7 2.4 0.1 0.1 5.1 5.3 1.1 1.2 
I-T-L 0.3 1.2 0.2 5.2 5.7 66.3 4.5 0.0 12.0 1.9 1.2 1.5 
L-S 0.0 0.5 0.0 0.0 0.0 0.1 76.8 0.0 13.5 0.4 8.5 0.2 
L-T-D 6.4 0.5 0.8 0.0 0.1 0.0 1.6 41.2 35.9 0.4 8.2 4.9 
L-T-W 0.4 1.8 0.4 0.0 0.0 0.1 4.0 0.4 86.1 0.2 4.7 1.8 
L-T-I 0.4 1.6 0.2 0.5 5.1 0.5 5.9 0.3 28.6 37.6 13.5 5.8 
L-T-O 0.5 0.3 0.9 0.0 0.0 0.1 15.6 0.5 34.5 0.3 41.5 5.7 
L-T-E 0.4 0.7 0.4 0.0 0.0 0.1 1.0 0.3 21.2 0.5 10.9 64.5 

 

Table 3.9. The multiclass confusion matrix for Xception showing the image classification accuracies (%) during inference 
on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 78.4 0.8 0.4 0.0 0.1 0.2 0.9 3.1 10.2 0.2 3.1 2.7 
W-S 0.3 68.1 10.7 0.0 0.1 0.0 0.0 0.2 17.7 0.3 1.2 1.2 
W-T-O 0.3 23.1 39.0 0.1 0.5 0.2 0.1 0.6 18.6 0.7 7.6 9.3 
I-S 0.1 0.9 0.3 57.9 31.6 3.7 0.5 0.0 1.9 1.0 1.3 0.8 
I-T-W 0.1 2.2 1.0 14.9 67.7 2.1 0.0 0.5 4.2 5.3 1.2 0.8 
I-T-L 0.2 0.5 1.2 2.7 5.6 73.4 3.2 0.3 8.6 1.7 1.9 0.8 
L-S 0.1 0.2 0.0 0.0 0.0 0.2 71.7 0.1 13.9 0.4 12.7 0.6 
L-T-D 6.7 0.9 0.6 0.0 0.1 0.0 0.7 50.3 28.1 2.8 6.7 3.0 
L-T-W 0.4 1.8 0.5 0.0 0.0 0.1 3.5 0.5 83.1 0.5 6.9 2.6 
L-T-I 0.2 1.8 0.4 0.4 3.7 0.5 4.0 1.6 22.9 46.2 13.2 5.0 
L-T-O 0.6 0.3 1.4 0.0 0.0 0.1 12.8 0.5 28.5 0.7 48.7 6.4 
L-T-E 0.3 0.6 0.5 0.0 0.1 0.1 0.8 0.4 14.7 0.6 11.8 70.1 
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Table 3.10. The multiclass confusion matrix for ResNet50 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 70.8 0.4 0.3 0.0 0.0 0.2 1.2 13.1 9.1 0.2 2.9 1.8 
W-S 0.0 63.4 9.1 0.0 0.2 0.2 0.0 8.6 15.7 0.2 1.8 0.8 
W-T-O 0.4 22.3 38.5 0.0 0.7 0.1 0.3 3.4 18.0 0.4 8.2 7.7 
I-S 0.1 1.2 0.3 67.9 23.8 2.3 0.8 0.0 1.8 0.6 0.9 0.4 
I-T-W 0.0 1.6 0.5 17.7 65.7 2.5 0.0 1.2 2.6 5.9 0.9 1.3 
I-T-L 0.8 1.0 0.3 2.9 4.7 72.6 4.2 1.0 9.4 1.7 0.5 0.8 
L-S 0.1 0.2 0.0 0.0 0.0 0.1 77.6 0.6 12.6 0.4 8.1 0.4 
L-T-D 5.7 0.3 0.9 0.0 0.0 0.0 0.7 57.5 24.2 1.7 5.1 3.9 
L-T-W 0.4 1.6 0.5 0.0 0.0 0.1 3.1 5.2 80.4 0.5 5.7 2.5 
L-T-I 0.6 2.0 0.1 0.3 4.1 0.3 4.3 3.6 20.7 48.7 11.0 4.3 
L-T-O 0.2 0.4 0.9 0.0 0.0 0.0 13.2 1.7 28.5 0.8 48.2 5.9 
L-T-E 0.6 0.7 0.5 0.0 0.0 0.1 0.8 1.4 14.8 0.8 10.1 70.3 

 

Table 3.11. The multiclass confusion matrix for ResNet101 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.7 0.5 0.2 0.0 0.1 0.3 1.1 4.5 9.7 0.1 3.5 2.3 
W-S 0.4 66.6 10.1 0.0 0.2 0.2 0.1 0.3 18.3 0.1 2.2 1.5 
W-T-O 0.3 24.5 41.8 0.0 0.4 0.1 0.0 0.4 15.6 0.6 7.5 9.0 
I-S 0.1 0.5 0.1 63.1 28.7 2.2 0.5 0.0 1.5 1.3 1.3 0.6 
I-T-W 0.1 1.8 0.8 20.1 63.2 3.5 0.0 0.2 2.4 5.1 0.6 2.2 
I-T-L 0.5 1.0 0.2 3.5 3.9 58.2 2.7 0.2 10.6 1.9 2.0 15.3 
L-S 0.1 0.4 0.0 0.0 0.0 0.1 75.0 0.1 12.8 0.6 8.9 2.0 
L-T-D 7.3 0.7 0.6 0.0 0.1 0.0 1.0 53.1 26.2 1.8 5.8 3.5 
L-T-W 0.3 1.7 0.5 0.0 0.0 0.1 3.5 0.6 81.5 0.4 6.5 4.9 
L-T-I 0.2 1.8 0.2 0.4 3.4 0.2 4.1 1.6 21.9 47.9 12.1 6.2 
L-T-O 0.5 0.4 1.0 0.0 0.0 0.1 12.5 0.6 27.8 0.7 48.6 8.0 
L-T-E 0.8 0.6 0.6 0.0 0.1 0.1 0.7 0.3 13.6 0.6 11.1 71.5 

 

Table 3.12. The multiclass confusion matrix for ResNet152 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 77.1 0.6 0.6 0.0 0.1 0.1 1.0 4.2 10.4 0.2 3.4 2.3 
W-S 0.6 60.5 10.9 0.0 0.1 0.3 0.0 0.7 25.0 0.3 1.1 0.6 
W-T-O 0.4 20.3 42.3 0.0 0.2 0.0 0.0 0.4 23.7 0.6 8.2 4.1 
I-S 0.1 0.9 0.1 62.5 27.9 3.3 1.0 0.0 1.8 1.7 0.5 0.1 
I-T-W 0.1 1.8 0.8 18.6 64.8 2.6 0.3 0.5 2.9 5.4 1.2 1.2 
I-T-L 0.2 1.0 0.3 2.5 5.2 72.2 3.9 0.2 9.9 1.9 1.7 1.0 
L-S 0.1 0.3 0.0 0.0 0.0 0.1 78.5 0.3 12.7 0.3 7.4 0.4 
L-T-D 5.8 0.5 0.4 0.0 0.2 0.1 0.9 54.5 26.2 1.8 6.4 3.2 
L-T-W 0.3 1.5 0.6 0.0 0.0 0.1 3.8 0.5 85.4 0.5 5.0 2.3 
L-T-I 0.1 0.9 0.1 0.4 3.8 0.7 4.7 1.5 23.5 46.7 12.6 5.1 
L-T-O 0.4 0.4 0.9 0.0 0.1 0.0 14.0 0.8 29.9 0.5 46.9 6.0 
L-T-E 0.4 0.5 0.4 0.0 0.0 0.1 0.7 0.7 15.6 0.7 9.9 70.9 
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Table 3.13. The multiclass confusion matrix for DenseNet121 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 79.2 0.5 0.1 0.0 0.2 0.3 1.1 4.1 9.0 0.3 3.1 2.2 
W-S 0.2 66.4 8.8 0.0 0.3 0.1 0.0 0.4 21.5 0.3 1.4 0.6 
W-T-O 0.5 21.1 35.2 0.0 0.4 0.0 1.0 0.2 24.1 0.8 11.1 5.7 
I-S 0.1 0.3 0.6 60.8 29.2 2.3 0.5 0.0 2.3 0.9 1.8 1.2 
I-T-W 0.2 1.8 0.4 20.3 64.9 3.1 0.0 0.1 2.8 4.6 0.8 1.1 
I-T-L 0.2 0.7 0.3 3.0 4.9 74.6 3.2 0.3 8.6 1.9 1.3 1.0 
L-S 0.1 0.1 0.0 0.0 0.0 0.2 78.3 0.3 11.9 0.2 8.3 0.7 
L-T-D 6.0 0.7 0.4 0.0 0.2 0.1 0.8 53.0 27.2 2.4 5.7 3.4 
L-T-W 0.4 1.6 0.5 0.0 0.0 0.1 3.9 0.5 84.4 0.5 5.8 2.2 
L-T-I 0.1 1.2 0.3 0.7 4.1 0.7 4.6 1.1 23.6 48.8 10.7 4.1 
L-T-O 0.5 0.4 0.8 0.0 0.0 0.1 13.8 0.6 29.3 0.6 48.6 5.2 
L-T-E 0.7 0.6 0.4 0.0 0.1 0.2 0.7 0.4 15.8 0.8 10.7 69.6 

 

Table 3.14. The multiclass confusion matrix for DenseNet169 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.0 0.5 0.1 0.0 0.1 0.1 0.8 4.0 13.7 0.1 3.3 2.2 
W-S 0.3 68.9 8.8 0.0 0.1 0.2 0.0 0.2 18.5 0.2 1.8 1.1 
W-T-O 0.3 24.1 36.9 0.0 0.2 0.1 0.6 0.4 19.6 0.4 7.1 10.4 
I-S 0.0 0.8 0.1 58.5 32.8 2.4 0.4 0.1 2.3 1.4 1.0 0.1 
I-T-W 0.2 2.0 0.9 17.8 64.1 3.9 0.0 0.1 5.5 3.9 1.0 0.8 
I-T-L 0.3 0.5 0.0 2.9 5.9 72.9 3.0 0.2 9.8 1.9 1.9 0.8 
L-S 0.2 0.3 0.0 0.0 0.0 0.2 78.1 0.2 12.6 0.3 7.6 0.5 
L-T-D 7.0 0.9 0.6 0.0 0.2 0.1 0.8 50.8 28.5 2.0 5.7 3.5 
L-T-W 0.4 1.8 0.5 0.0 0.1 0.1 3.6 0.6 84.3 0.4 5.4 2.9 
L-T-I 0.2 1.7 0.1 0.3 4.8 0.2 3.6 1.8 24.3 45.9 12.6 4.4 
L-T-O 0.5 0.3 0.9 0.0 0.0 0.1 13.6 0.7 30.1 0.5 46.9 6.3 
L-T-E 0.6 0.6 0.5 0.0 0.0 0.1 0.7 0.5 18.0 0.6 10.2 68.2 

 

Table 3.15. The multiclass confusion matrix for DenseNet201 showing the image classification accuracies (%) during 
inference on the ExoNet database. The columns and rows are the predicted and labelled classes, respectively. 

 D-T-L W-S W-T-O I-S I-T-W I-T-L L-S L-T-D L-T-W L-T-I L-T-O L-T-E 
D-T-L 75.6 0.9 0.2 0.0 0.0 0.4 0.7 5.1 10.0 0.1 4.0 2.8 
W-S 0.3 67.9 12.1 0.0 0.2 0.1 0.0 0.3 16.2 0.6 1.7 0.5 
W-T-O 2.4 23.6 37.8 0.0 0.4 0.2 0.0 1.5 19.9 0.4 8.3 5.5 
I-S 0.1 0.0 0.3 59.4 33.7 2.7 0.1 0.1 1.5 1.2 0.9 0.0 
I-T-W 0.2 1.9 1.0 14.2 68.9 3.0 0.1 0.1 2.8 5.6 1.2 1.0 
I-T-L 0.2 0.5 0.2 4.0 5.7 72.2 2.2 0.2 10.3 2.0 1.3 1.2 
L-S 0.0 0.2 0.0 0.0 0.0 0.1 76.0 0.2 13.4 0.6 8.9 0.6 
L-T-D 6.4 0.7 0.8 0.0 0.2 0.1 1.2 51.4 27.0 2.7 5.0 4.6 
L-T-W 0.4 1.8 0.9 0.0 0.0 0.1 3.5 0.6 82.3 0.5 7.0 2.8 
L-T-I 0.7 1.5 0.4 0.5 4.5 0.4 5.1 1.3 23.9 47.2 10.8 3.7 
L-T-O 0.5 0.4 1.4 0.0 0.0 0.1 12.6 0.8 29.6 0.8 47.4 6.4 
L-T-E 0.8 0.6 0.4 0.0 0.1 0.1 0.9 0.6 13.5 0.7 12.0 70.4 
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Tables 3.3-3.15 show the resulting multiclass confusion matrix for each CNN architecture. 
The matrix columns and rows are the predicted and labelled classes, respectively. The diagonal 
elements are the classification accuracies (%) for each environment class during inference and the 
nondiagonal elements are the misclassification percentages; the darker shades represent higher 
classification accuracies. Despite slight numerical differences, most of the CNN architectures 
displayed a similar interclass trend. The networks most accurately predicted the “level-ground 
transition wall/door” (L-T-W) class, with an average accuracy of 84.3% ± 2.1%, followed by the 
“level-ground steady” (L-S) class with an average accuracy of 77.3% ± 2.1% and the “decline stairs 
transition level-ground” (D-T-L) class with an average accuracy of 76.6% ± 2.4%. These results 
could be attributed to the class imbalances in the dataset such that there were significantly more 
images of L-T-W environments compared to other classes. However, some classes with limited 
images showed relatively good classification performance. For example, the “incline stairs 
transition level-ground” (I-T-L) class contains only 1.2% of the ExoNet database but achieved 71.2% 
± 5.1% average classification accuracy. Not surprisingly, the least accurate predictions were for 
the two environment classes that contain “other” features – i.e., the “wall/door transition other” 
(W-T-O) class with an average accuracy of 38.3% ± 3.5% and the “level-ground transition other” 
(L-T-O) class with an average accuracy of 46.8% ± 2.4%. These lower prediction accuracies are 
likely due to the increased noise and randomness of the environments and/or objects within the 
images. 

The development of these deep convolutional neural networks has traditionally focused 
on improving classification accuracy, often leading to more accurate yet inefficient algorithms with 
greater computational and memory storage requirements [133]. These design features can be 
especially problematic for deployment on mobile and embedded systems, which inherently have 
limited operating resources. Despite advances in computing devices like graphics processing units 
(GPUs), the current embedded systems in robotic leg prostheses and exoskeletons would struggle 
to support the architectural and computational complexities typically associated with deep 
learning for computer vision. For onboard real-time inference, the ideal convolutional neural 
network would achieve high image classification accuracy with minimal parameters, computing 
operations, and inference time. Motivated by these principles, the operational performances of 
the benchmarked CNN architectures (𝒩) on the ExoNet database were quantitatively evaluated 
and compared using a balanced metric called “NetScore” [134]: 

Ω(𝒩) = 20𝑙𝑜𝑔 < )(𝒩)!

0(𝒩)"&(𝒩)#
=                                                                                                                     (2) 

where 𝑎(𝒩) is the image classification accuracy during inference (0-100%); 𝑝(𝒩) is the number 
of parameters in millions; 𝑚(𝒩) is the number of multiply–accumulates in billions; and 𝛼, 𝛽, and 
𝛾 are coefficients that control the effects of the image classification accuracy, and the architectural 
and computational complexities on the NetScore (Ω), respectively. The coefficients wet set to 
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{𝛼 = 2; 	𝛽 = 0.5; 	𝛾 = 0.5} to better emphasize the classification accuracy while partially 
considering the parameters and computing operations since CNNs with low accuracy are less 
practical, regardless of the size and speed. Note that the NetScore does not explicitly account for 
inference time. The number of parameters and multiply–accumulates are assumed to be 
representative of the architectural and computational complexities, respectively, both of which 
are inversely proportional to the NetScore (Table 3.2). Although the ResNet152 network achieved 
one of the highest classification accuracies on the ExoNet database (71.6% accuracy), it received 
the lowest NetScore (Ω = 46) due to the disproportionally large number of parameters (i.e., 
containing more parameters than any other CNN architecture). Interestingly, the EfficientNetB0 
network did not receive the highest NetScore (Ω = 72.6) despite achieving the highest image 
classification accuracy (73.2% accuracy) and the architecture having been optimized using a neural 
architecture search to maximize the classification accuracy while minimizing the number of 
computing operations [122]. 

The MobileNetV2 network developed by Google [125], which uses depthwise separable 
convolutions, received the highest NetScore (Ω = 76.2), therein demonstrating the best balance 
between the classification accuracy (72.9% accuracy) and the architectural and computational 
complexities. Depthwise separable convolutions factorize standard convolutions into depthwise 
convolutions and 1×1 convolutions called “pointwise” convolutions. The depthwise convolution 
layer spatially convolves a filter over each input channel separately. The pointwise convolution 
layer then convolves a 1×1 filter across each input channel to combine the outputs from the 
depthwise convolution layer and generate a new feature representation. By using depthwise 
separable convolutions (i.e., splitting the filtering and combining processes into separate layers), 
MobileNets tend to have significantly fewer parameters and computing operations compared to 
other state-of-the-art deep convolutional neural networks used in computer vision (Table 3.2). 

The researchers at Google previously demonstrated the ability of MobileNetV2 to perform 
onboard real-time inference on a mobile computing device (i.e., ~75 ms per image on a CPU-
powered Google Pixel 1 smartphone) [125]. However, the classification system developed here 
could theoretically generate even faster runtimes since 1) the smartphone camera that was used 
(i.e., the iPhone XS Max) has an onboard GPU; and 2) the size of the final densely connected layer 
of the MobileNetV2 architecture was reduced from 1,000 outputs, as originally used for ImageNet, 
to 12 outputs, for the ExoNet database. Compared to traditional CPUs, GPUs have many more core 
processors, which can permit faster and more efficient CNN computations through parallel 
computing [55]. Moving forward, the existing CPU embedded systems in robotic leg prostheses 
and exoskeletons should be used for the locomotion mode recognition based on neuromuscular-
mechanical data, which is less computationally expensive, and a supplementary GPU computing 
device for the vision-based environment classification; these recommendations concur with those 
recently proposed by Huang and colleagues [36]. 
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It is important to emphasize that the use of state-of-the-art deep convolutional neural 
networks was made possible because of the ExoNet database. In addition to being open-source, 
the large scale and diversity of ExoNet significantly distinguishes itself from all previous datasets 
(see Table 2.1). ExoNet contains ~923,000 labelled images. In comparison, the previous largest 
dataset, developed by Varol’s research lab [44], contained ~402,000 images. Whereas previous 
datasets have included fewer than six environment classes, the most common being level-ground 
terrain and incline and decline stairs, the ExoNet database includes a novel hierarchical labelling 
architecture with 12 distinct classes. These differences can have important practical implications 
since deep learning requires significant and diverse training data to prevent overfitting and 
promote generalization [55]. Furthermore, the quality of the ExoNet images (1280×720) is 
considerably higher than previous datasets (e.g., 224x224 and 320x240). Poor image resolution 
has been shown to decrease the environment classification accuracy [36], [42]. Although higher 
resolution images can increase the onboard computational and memory storage requirements, 
using efficient CNN architectures with fewer computing operations like EfficientNets [122] can 
allow for processing larger images for relatively similar computational cost.  

As robotic leg prostheses and exoskeletons begin to transition out of research laboratories 
and into real-world environments, large-scale and challenging datasets like ExoNet are needed to 
support the development of next-generation image classification algorithms for environment-
adaptive locomotor control. In addition to robotic leg prostheses and exoskeletons, applications 
of ExoNet could extend to humanoids, autonomous legged robots, powered wheelchairs, assistive 
devices for persons with visual impairments, in addition to fundamental science research on 
legged locomotion in real-world environments.  

Building on the results of this chapter, the ExoNet database was used to inform the energy 
regeneration research in Chapter 4. Previous studies of robotic leg prostheses and exoskeletons 
with regenerative actuators have focused on steady-state level-ground walking [32]. However, as 
illustrated in Figure 3.6, steady-state level-ground terrain, labelled as L-S, represents a relatively 
small percentage of real-world walking environments (8.4%). This observation concurs with [112], 
who showed that, in real-world community mobility, steady-state locomotion is generally short 
lived and separated by frequent transitions between different states (e.g., ~40% of walking bouts 
are less than 12 consecutive steps). There are other locomotor activities of daily living like stair 
descent and stand-to-sit movements that involve net negative mechanical work and thus present 
an opportunity for energy regeneration. Decline stairs, labelled as D-T-L in the ExoNet database, 
represent 3.1% of real-world walking environments whereas seat environments, labelled as L-T-E, 
appear much more frequently (13%). These differences in the prevalence of stairs versus seat 
environments may be even larger in the residential communities of persons with mobility 
impairments (e.g., long-term care facilities). Accordingly, Chapter 4 explored the potential for 
energy regeneration during stand-to-sit movements.   



 

 45 

3.3 Chapter Summary 

In this chapter, a multi-generation environment classification system powered by computer vision 
and deep learning was developed for robotic leg prostheses and exoskeletons. Taking inspiration 
from the human vision-locomotor control system, environment sensing and classification could 
improve the automated high-level control and decision-making of these wearable robotic devices 
by predicting the oncoming walking environment prior to physical interactions, therein allowing 
for more accurate and robust locomotion mode transitions (e.g., switching between level-ground 
walking and stair ascent). As a proof-of-concept, Section 3.1 presented the development and 
evaluation of a preliminary environment recognition system. Images of indoor and outdoor real-
world walking environments were collected around the University of Waterloo campus using a 
wearable camera and a convolutional neural network was designed and trained to recognize level-
ground terrain, and incline and decline stairs, therein achieving 94.85% image classification 
accuracy. This preliminary environment classification system demonstrated the feasibility of using 
deep learning for this novel computer vision application. 

Building on the preliminary system design, Section 3.2 outlined the development and 
evaluation of a second-generation environment recognition system. Over 5.6 million images of 
indoor and outdoor real-world walking environments were collected using a lightweight wearable 
camera, of which ~923,000 images were annotated using a hierarchical labelling architecture with 
12 individual classes, known as the ExoNet database. Available publicly through the IEEE DataPort 
repository, ExoNet offers an unprecedented communal platform to train, develop, and compare 
next-generation image classification algorithms for visual recognition of legged locomotion 
environments. 

Over a dozen state-of-the-art deep convolutional neural networks were then trained and 
tested on ExoNet for image classification and automatic feature engineering, including: 
EfficientNetB0; InceptionV3; MobileNet; MobileNetV2; VGG16; VGG19; Xception; ResNet50; 
ResNet101; ResNet152; DenseNet121; DenseNet169; and DenseNet201. The benchmarked CNN 
architectures and their environment classification predictions were quantitatively evaluated and 
compared using an operational metric called NetScore, which balances the classification accuracy 
with the architectural and computational complexities (i.e., important for onboard real-time 
inference with mobile computing devices). The comparative analyses showed that the 
EfficientNetB0 network achieved the highest test accuracy; VGG16 the fastest inference time; and 
MobileNetV2 the best NetScore and least number of parameters and computing operations, which 
can inform the optimal architecture design or selection depending on the desired performance. 
This second-generation environment sensing and classification system, part of which was recently 
published in the 2021 Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC) [135], [136], provides a large-scale benchmark and reference for future 
research in environment-adaptive locomotor control.  



 

 46 

4. ENERGY REGENERATION 

To reiterate, the overall objective of this thesis research is to support the transition of robotic leg 
prostheses and exoskeletons from research laboratories to real-world environments via 
developments in environment-adaptive control (Chapter 3) and energy-efficient actuation. In this 
chapter, an energy regeneration system was developed and evaluated using mathematical and 
computational models of human and wearable robotic systems to simulate energy regeneration 
and storage during locomotor activities of daily living.  

4.1 Biomechanics for Regeneration 

4.1.1 Introduction 

As reviewed in Chapter 2, backdriveable actuators with energy regeneration can improve the 
energy efficiency and extend the battery-powered operating durations of robotic leg prostheses 
and exoskeletons. Previous related studies have focused on steady-state level-ground walking, 
specifically regenerating energy during late swing knee extension [69], [70], [86]–[89], [91], [94], 
[97]–[100], [100]–[102], [104], [106]–[111]. In real-world community mobility, however, steady-
state locomotion is generally short lived and separated by frequent transitions between different 
states [112]. This trend concurs with the research in Chapter 3, which showed that a relatively 
small percentage of real-world legged locomotion environments consist of steady-state level-
ground terrain (see Figure 3.6). Moreover, given that targeted users of these wearable robotic 
devices (i.e., older adults and/or individuals with physical disabilities) tend to walk slower and take 
fewer steps per day [2], and that energy regeneration and efficiency both positively relate to 
walking speed [83], [88]–[90], [104], [106], [107], [113], the potential for energy regeneration from 
only steady-state level-ground walking is relatively limited.  

Real-world community mobility involves many stops and starts, often beginning and ending 
with a seated or standing posture [112]. Sit-to-stand and stand-to-sit movements are common 
daily locomotor activities of persons with mobility impairments and are prerequisites to walking. 
Although several robotic leg prostheses and exoskeletons have been designed and evaluated for 
sitting and standing transitions [137]–[147], these devices did not include regenerative actuators. 
Regenerating energy while sitting down is a relatively unexplored and potentially viable method 
to help recharge the onboard batteries by recovering some of the otherwise dissipated energy 
during negative mechanical work via backdriving the electromagnetic motor.  

As a simple approximation, the biomechanical energy theoretically available for electrical 
energy regeneration while sitting down can first be estimated as the change in mechanical energy, 
specifically gravitational potential energy, of the center of mass of the total body system modelled 
as a point mass. The change in total body mechanical energy during stand-to-sit movements is 
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representative of the mechanical work (𝑊) done on the system. This work-energy principle can 
be described by 

𝑊 = ∆𝐸#0'                                                                                                                                                    (3) 

𝐸#0' = 𝑀𝑔𝑦<                                                                                                                                                      (4) 

where 𝐸#0' is the gravitational potential energy of the total body center of mass, 𝑀 is the body 
mass, 𝑔 is the gravitational acceleration (9.81 m/s2), and 𝑦< is the height of the total body center 
of mass above the horizontal reference axis. Since the shank and feet are assumed to be relatively 
stationary during stand-to-sit movements, these preliminary calculations model the human as an 
inverted double pendulum with only HAT and thigh segments (i.e., 𝑀 equals the combined mass 
of the HAT and bilateral thigh segments). Anthropometric proportions from cadaver research [59] 
were used to estimate the body segment parameters from total body mass (𝑀(+(),) and height, 
which were assumed to be 78 kg and 1.8 m, respectively. The mass and length of each segment 
was estimated as a proportion of the total body mass and height, respectively, and the center of 
mass position was estimated as a proportion of the segment length. The mass (𝑚6) of each 
segment was calculated by  

𝑚6 = 𝑃6𝑀(+(),                                                                                                                                                          (5)  

where 𝑃6 is the segment’s mass proportion, which are 0.678 and 0.200 for the HAT and bilateral 
thigh segments, respectively [59]. A similar calculation was used to estimate the segment lengths. 
The length proportions for the HAT and thigh segments are 0.470 and 0.245, respectively [59]. The 
center of mass position of each segment was estimated as a proportion of the distance from the 
proximal to the distal endpoints Q𝑅02+=-&),S. These equations were used to calculate the vertical 
coordinates (i.e., height) of the center of mass position (𝑦.&) of each segment in both standing 
and seated postures:  

𝑦.& = 𝑦02+=-&), + 𝑅02+=-&),Q𝑦$-6(), + 𝑦02+=-&),S                                                                                   (6) 

where 𝑦02+=-&),  and 𝑦$-6(),  are the coordinates of the proximal and distal endpoints, respectively, 
which were estimated based on the segment lengths of the human system when standing and 
seated (i.e., the thigh and horizontal reference axis are parallel). The proportions for the center of 
mass position of the HAT and thigh segments are 1.142 and 0.433, respectively [59]. The height of 
the center of mass of the total body system in standing and seated postures was calculated by  

𝑦< =
>&$

%&'?()%&'@A>&$
'%*+%?()'%*+%@

"
                                                                                                                                                (7) 

where 𝑀 equals 68.5 kg. The difference in 𝑦< between standing and seated postures was 0.398 m 
(i.e., the distance travelled by the total body center of mass). Based on Equation (4), the estimated 
change in mechanical energy while sitting down is ~267 J, which may be representative of the 
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biomechanical energy available for electrical energy regeneration. Although these equations for 
estimating mechanical energy are relatively simple since only linear kinematics and body segment 
parameters are needed, this method has several limitations [59]. A more informative and accurate 
method uses inverse dynamics to compute the net moments of force at individual joints, which 
can be used to calculate the joint mechanical work and power in order to study the distribution of 
energy generation and absorption throughout the lower-limbs. Accordingly, this research study 
quantified the lower-limb joint mechanical work and power during stand-to-sit movements using 
parameter identification and inverse dynamic simulations of subject-specific optimized 
biomechanical models to estimate the mechanical energy theoretically available for electrical 
energy regeneration. 

4.1.2 Motion Capture Experiments 

Nine subjects were recruited and provided informed written consent (height: 180 ± 4 cm; total 
body mass: 78 ± 7 kg; age: 25 ± 3 years; sex: male). Each participant performed 20 sit-to-stand and 
stand-to-sit movements at self-selected rates while lower-limb kinematics and ground reaction 
forces were experimentally measured using motion capture cameras and force plates, respectively 
(Figure 4.1). Separate force plates were used to measure the ground reaction forces underneath 
the chair and feet. The seat height was ~46 cm. The motion capture cameras (Optotrak) provided 
3D measurements of active marker positions in the global coordinates. Active marker systems are 
generally considered the gold standard in human movement biomechanics. The motion capture 
cameras and force plates were sampled at 100 Hz and 300 Hz, respectively. For tracking individual 
body segment positions in the sagittal plane, virtual markers were digitized overlying palpable 
anatomical landmarks on the right lower-limb, including the lateral malleolus, lateral femoral and 
tibial condyles, and greater trochanter. These virtual marker positions correspond with those 
recommended by the International Society of Biomechanics [148]. This study was approved the 
University of Waterloo Office of Research Ethics. 

Missing marker data were estimated using cubic spline interpolations. The ankle and hip 
joint centers were assumed at the lateral malleolus and greater trochanter marker positions, 
respectively. The estimated knee joint center was the midpoint between the lateral femoral and 
tibial condyle markers. Piecewise cubic Hermite interpolating polynomials were used to resample 
and time-normalize (0-100%) the kinematic measurements. Average line vectors between the 
ankle and knee joint centers, and the knee and hip joint centers, defined the shank and thigh body 
segment lengths, respectively. Inverse kinematics was used to convert the virtual marker positions 
to independent joint coordinates through vector algebra. The ankle joint angle was the relative 
angle between the shank and horizontal axis. The relative angle between the shank and thigh 
segments defined the knee joint angle. Given the relative rotations between the pelvis and head-
arms-trunk (HAT) segment (i.e., pelvis tilting), the experimentally measured pelvis marker-cluster 
rotations differed from HAT segment rotations. Therefore, the HAT segment was assumed vertical  
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Figure 4.1. Examples of the stand-to-sit movements used for energy regeneration, the biomechanics of which were 
experimentally measured using motion capture cameras and force plates. Nine healthy young adults (n=9) were 
tested in total.   
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when standing (i.e., initial posture) and seated (i.e., final posture) and the pelvis angle rotations 
were assumed to progress linearly throughout the movement. The relative angle between the 
thigh and HAT segments defined the hip angle. 

Joint angles were filtered using a 10th-order low-pass Butterworth filter with a 5 Hz cut-
off frequency and zero-phase digital filtering [59]. The joint rotational speeds and accelerations 
were calculated by numerically differentiating the joint angles. Similar to Gao et al. [137], the pelvis 
translational velocities, which were estimated from the low-back marker-cluster shown in Figure 
4.1, were used to segment sitting and standing movements. These kinematic measurements were 
filtered using a 10th-order low-pass Butterworth filter with a 3 Hz cut-off frequency, and zero-
phase digital filtering and moving average smoothing filtering. The sitting and standing movements 
were segmented when the pelvis translational speeds exceeded a percentage of their maximum 
values (i.e., the most common being 15% and 20%), which were estimated through trial-and-error 
simulations. The force plate measurements were filtered using a 10th-order low-pass Butterworth 
filter with a 30 Hz cut-off frequency, and zero-phase digital filtering [59]. Piecewise cubic Hermite 
interpolating polynomials were used to time-normalize the force plate measurements. 

4.1.3 Biomechanical Model 

The human biomechanical system was modelled using MapleSim software (Maplesoft, Canada), 
which uses linear graph theory and principles of mechanics to generate a unified representation 
of the system topology and modelling coordinates. The multibody biomechanical model consisted 
of a 2D sagittal-plane, inverted triple-pendulum with shank, thigh, and HAT rigid body segments 
(see Figure 4.2). Since the foot marker position remained relatively unchanged during the motions 
(i.e., maximum horizontal and vertical displacements of 1.27 cm and 0.7 cm, respectively), the foot 
segment was modelled as rigidly fixed to the ground frame. The ankle, knee, and hip joints were 
modelled as idealized revolute kinematic pairs. Biological passive joint torques, including stiffness 
and damping, were ignored since ideal joints were assumed for modelling an exoskeleton or 
prosthetic system. Frictionless joints ensured that the joint mechanical work on the system was 
due to the net joint torques. 

The biomechanical model had 3 degrees-of-freedom and mathematically described by 3 
generalized coordinates (i.e., the ankle, knee, and hip joint angles) with zero algebraic constraints. 
Assuming the foot segment was rigidly fixed to the ground and had relatively small mass, the 
ground reaction forces underneath the foot corresponded to the ankle joint reaction forces, and 
the ground reaction moments were offset by the ankle position relative to the center of pressure 
(𝐶𝑂𝑃). The center of mass of each body segment was defined relative to the distal joint center, 
and the moment of inertia was defined about the center of mass position. The measured ground 
reaction forces underneath the seat were applied to the biomechanical model buttocks when 
seated. The multibody system equations used for inverse dynamics consisted of only algebraic 
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equations. MapleSim automatically generated these equations symbolically using graph-theoretic 
algorithms, therein allowing for multidomain systems modelling (e.g., humans interacting with 
wearable robotic devices) and computationally efficient dynamic simulations.  

4.1.4 Simulation and Parameter Identification 

The biomechanical model was driven using the experimental joint kinematics and seat forces. The 
ankle, knee, and hip joint torques Q𝜏BS, and the ground reaction forces and moment underneath 
the feet, were calculated from inverse dynamics. In conventional “bottom-up” inverse dynamics, 
the joint reaction forces and torques are solved segment-by-segment, starting from ground and 
moving sequentially upward. However, due to limitations in the measured kinematics, system 
parameters, and/or unmodeled dynamics, the calculated forces and accelerations on the final 
body segment (i.e., the HAT segment) do not satisfy the system equations [149], [150]. In contrast, 
the biomechanical model in this study was driven using the experimental joint kinematics in a 
multibody dynamics simulation and thus could be considered more dynamically consistent. 

The simulated ground reaction forces from inverse dynamics were compared with those 
experimentally measured while the body segment inertial parameters of the biomechanical model 
were concurrently optimized to minimize the differences. Although subject-specific body segment 
parameters can be estimated using medical imaging [151], [152] and/or anthropometric 
proportions from cadaver research, this study used system parameter identification for better 
dynamical consistency (Figure 4.2). Dynamic parameter identification can be subcategorized into 
offline methods (e.g., experimental measurements and system input-output matching) and online 
methods (e.g., nonlinear adaptive control). The offline parameter identification used here involved 
constrained nonlinear programming (Fmincon, MATLAB) and an interior-point algorithm to 
estimate the body inertial segment parameters (i.e., mass, center of mass, and moment of inertia) 
of the HAT, thigh, and shank. The optimization searched for the system parameters that minimized 
the sum of squared differences in ground reaction forces (𝐺𝑅𝐹) and moments (𝐺𝑅𝑀) between 
the experimental measurements (𝑚) and inverse dynamic simulations (𝑠) at each time step (𝑖). 
The optimization multiobjective cost function was: 

𝐽 = ∑-𝑤C(𝐺𝑅𝐹&[𝑖] − 𝐺𝑅𝐹6[𝑖])D ×
C

(",-,./)0
+ ∑-𝑤D <Q𝐺𝑅𝑀&[𝑖] + 𝐺𝑅𝑀+EE6'(S − 𝐺𝑅𝑀6[𝑖]=

D
×

C
(F×HI)0

                                                                                                                                                           (8) 

where the 𝐺𝑅𝐹 vector included both horizontal (𝐺𝑅𝐹=) and vertical Q𝐺𝑅𝐹?S components, 𝐺𝑅𝑀 
was about the z-axis, 𝑀(+(),  is total body mass, coefficient 𝐻 = 1 m, and 𝐺𝑅𝑀+EE6'( compensated 
for the horizontal distance between the ankle and foot center of pressure according to 
^𝐺𝑅𝑀+EE6'( = 𝐺𝑅𝐹? × 𝐶𝑂𝑃= − 𝐺𝑅𝐹= × 𝐶𝑂𝑃?_ with 𝐶𝑂𝑃= and 𝐶𝑂𝑃? being the estimated average 
positions of the foot 𝐶𝑂𝑃 relative to the ankle. The optimization variables were the mass, center  
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Figure 4.2. Schematic of the experimental and computational methods used to evaluate the stand-to-sit 
biomechanics for energy regeneration, including (1) the motion capture experiments; (2) biomechanical model; (3) 
dynamic parameter identification; (4) joint power analyses; and (5) a regenerative actuator model used to convert 
human mechanical power $𝜏1𝜃̇1( into electrical power (𝑖𝑣) while sitting down.   
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of mass, and moment of inertia of the shank, thigh, and HAT segments. Other variables included 
“𝑠𝑒𝑎𝑡+EE6'(” and the 𝐶𝑂𝑃=. 𝑆𝑒𝑎𝑡+EE6'( was the horizontal distance between the biomechanical 
model buttocks (i.e., vertical seat force point-of-application) and the hip joint center. Although the 
𝐶𝑂𝑃 position moved underneath the base of support, the ground reaction forces were not used 
to drive the biomechanical model but rather to validate the system parameter identification. The 
best average position, denoted as parameter 𝐶𝑂𝑃= in the optimization algorithm, was estimated 
by the parameter identification. The 𝐶𝑂𝑃? was the ankle marker height. The optimization was 
constrained by setting 1) lower and upper bounds on individual variables, and 2) the sum of the 
body segment masses equaled to the measured total body mass. Initial guesses were taken from 
human anthropometrics and/or were the midpoints between the upper and lower bounds. 

The upper and lower bounds for the body segment parameters in the optimization were 
3.5 and 0.55 times those estimated from anthropometric proportions from cadaver research [59], 
respectively, based on the total height and body mass of individual subjects. For example, as 
illustrated in Figure 4.3, the estimated mass of the HAT, thigh, and shank segments for each 
subject fall within the upper and lower bounds. Each term in the multiobjective cost function had 
equal weights. Stopping criteria for the step size and objective function changes were both 1e-14 
between iterations. Once the optimal system parameters were found, the joint mechanical powers 
for the ankle, knee, and hip were calculated from the net joint torques and angular velocities 

 
Figure 4.3. The percent difference in HAT, thigh, and shank body segment mass between the system parameter 
identification (ID) and anthropometric proportions from cadaver research [59] scaled to the measured total body 
mass of each subject. The positive and negative values represent an overestimation and underestimation in body 
segment mass, respectively, from the parameter ID compared to the anthropometric proportions. The upper and 
lower bounds in the optimization are also displayed, the values of which are described in the text.   
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^𝑃B = 𝜏B𝜃̇B_ and integrated over time estimate the joint mechanical energy generated and 
absorbed while sitting down. In other words, the mechanical power provided by the net moment 
of force, sometimes called the joint moment power, is the product of the net moment of force 
times the difference between the angular velocities of the two segments that make up the joint. 
The positive and negative joint mechanical work at each time step were summed to calculate the 
total positive and negative joint mechanical work, respectively. Using inverse dynamics to calculate 
the joint mechanical power, and thus mechanical work, can more accurately represent the human 
musculotendon work compared to traditional methods like external and internal mechanical work 
calculations [63].  

It is important to emphasize that for the system parameter identification, only some of the 
inertial parameters theoretically affect the system dynamics, while others have an effect in linear 
combinations. Dynamic parameters can be subclassified into fully-identifiable, identifiable in linear 
combinations, and unidentifiable. Because the body segment parameters of the biomechanical 
model are redundant, the inertial parameters of individual body segments (i.e., mass, center of 
mass, and moment of inertia) cannot be uniquely identified from the experimental measurements 
alone. Consequently, the individual body segment masses in Figure 4.3 were not explicitly 
identified. The non-redundant and identifiable inertial parameters, called base inertia parameters, 
can define the biomechanical model uniquely and sufficiently describe the system dynamics. 
However, to calculate the base inertia parameters, the multibody system equations would need 
to be rewritten in linear form, which is beyond the scope of this research study. 

4.1.5 Biomechanics Results 

Subjective feedback from participants indicated that performing stand-to-sit movements was 
significantly more challenging than sit-to-stand movements, particularly from a balance control 
perspective. The experimental and simulated biomechanical data were uploaded to IEEE DataPort 
and are publicly available for download at https://ieee-dataport.org/documents/measurement-
and-simulation-human-sitting-and-standing-movement-biomechanics. The movement durations 
were time-normalized (0-100%) to allowed for between and within subject averaging. Figure 4.4 
shows the hip, knee, and ankle joint angles during stand-to-sit movements from the inverse 
kinematics. Decreasing joint angles represent hip flexion, knee extension, and ankle dorsiflexion, 
while increasing joint angles represent hip extension, knee flexion, and ankle plantar flexion. The 
uncertainties are ± one standard deviation across multiple subjects (n=9) and trials (20 
trials/subject), equating to 180 total trials. There were minor variations in the joint kinematics 
between and within subjects, as demonstrated by the small standard deviations. These simulated 
joint kinematics both qualitatively and quantitively agree with previous experimental work on 
robotic leg prostheses for sitting and standing movements [145]–[147]. 
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Figure 4.4 also shows the calculated hip, knee, and ankle joint torques per leg during stand-
to-sit movements from inverse dynamics, normalized to total body mass; the corresponding peak 
values were 0.7 ± 0.1 Nm/kg, 1.1 ± 0.3 Nm/kg, and 0.4 ± 0.1 Nm/kg, respectively. The uncertainties 
are ± one standard deviation across multiple subjects and trials. The relatively good quantitatively 
agreement in peak knee joint torques between the biomechanical simulations (1.1 ± 0.3 Nm/kg) 
and previous experimental research on robotic leg prostheses and exoskeletons for sitting and 
standing movements (0.8-1.0 Nm/kg) [138]–[140], [142], [145] supported the model validation. 
Note that these joint torques are high enough to backdrive the actuators of some robotic leg 
prostheses and exoskeletons under research and development (e.g., requiring 1-3 Nm of backdrive 
torque) [81], [83]–[85] and thus theoretically capable of energy regeneration and storage while 
sitting down, assuming a regenerative motor driver. 

Figure 4.5 shows the simulated hip, knee, and ankle joint mechanical powers per leg during 
stand-to-sit movements and normalized to total body mass. The hip absorbed the largest peak 
negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 
± 0.1 W/kg). Previous experimental work on robotic leg prostheses reported 0.7-0.8 W/kg of peak 
knee joint mechanical power during sitting and standing movements [140], [143], [145]. The 
strong quantitative agreement between the simulated (0.8 ± 0.3 W/kg) and experimental (0.7-0.8 
W/kg) peak knee joint mechanical powers further supported the model validation. The joint 
mechanical powers were integrated over time to calculate the joint mechanical energy generated 
and absorbed while sitting down (i.e., the mechanical energy theoretically available for electrical 
energy regeneration). The negative mechanical work on the hip, knee, and ankle joints were 0.82 

  

Figure 4.4. The average hip, knee, and ankle joint angles (°) and torques (Nm/kg) during stand-to-sit movements 
from inverse kinematics and dynamics, respectively. The joint torques are normalized to total body mass and are 
reported per leg. Subjects were healthy young adults. The uncertainties are ± one standard deviation across multiple 
subjects (n=9) and trials (20 trials/subject). 
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± 0.13 J/kg, 0.35 ± 0.17 J/kg, and 0.06 ± 0.03 J/kg, respectively. It is important to mention that 
muscle work, not necessarily joint work, is associated with the metabolic energetics of human 
movements. Accordingly, the design and control of a regenerative actuation system based on joint 
mechanical work and power alone could bring about a metabolic penalty such that the net joint 
work is negative but some muscles crossing the joint are doing positive work. This knowledge of 
the musculoskeletal biomechanics is especially pertinent to exoskeleton devices, which operate in 
parallel with human muscles.    

Although the most negative mechanical work was done on the hip joint while sitting down, 
and therefore theoretically has the greatest potential for energy regeneration [153], robotic leg 
prostheses and exoskeletons with regenerative actuators have focused on knee designs [69], [83], 
[86]–[89], [91], [94], [97]–[102], [104], [106]–[108]; though the robotic ankle prosthesis in [113] 
regenerated electrical energy during stance phase. The knee joint is typically preferred for energy 
regeneration given that 1) the hip is more structurally complex (e.g., more degrees of freedom); 
and 2) many wearable robotic devices, especially prosthetic legs, do not include a hip component. 
This study on stand-to-sit biomechanics for energy regeneration was published in the IEEE 
Transactions on Medical Robotics and Bionics [33]. The human joint mechanical energetics from 
this research study were used in the following section to simulate a robotic lower-limb exoskeleton 
being backdriven and regenerating electrical energy. 
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Figure 4.5. The average hip, knee, and ankle joint mechanical power (W/kg) per leg during level-ground walking at 
natural cadence (n=19) and stand-to-sit movements (n=9), normalized to total body mass. Subjects were all healthy 
young adults. The positive and negative values represent joint power generation and absorption, respectively. The 
walking data were taken from Winter [54], the trajectories of which begin and end with heel-strike. The 
uncertainties are ± one standard deviation across multiple subjects and trials.   

 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90 100

H
ip

 P
ow

er
 (W

/K
g)

Percent of Movement (%)

Walking

Sitting Down
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70 80 90 100

Kn
ee

 P
ow

er
 (W

/K
g)

Percent of Movement (%)

Sitting Down

Walking

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

0 10 20 30 40 50 60 70 80 90 100

An
kl

e 
Po

w
er

 (W
/K

g)

Percent of Movement (%)

Sitting Down

Walking



 

 58 

4.2 Regenerative Actuation 

4.2.1 Introduction 

Backdriveable actuators with energy regeneration can extend the battery-powered operating 
durations and/or decrease the onboard battery weight of robotic leg prostheses and exoskeletons. 
When backdriven by an external load, the electromagnetic actuator can convert some of the 
otherwise dissipated mechanical energy into electrical energy while concurrently providing a 
braking torque to decelerate the load. Building on the biomechanical modelling and simulation 
work in Section 4.1, here an empirical characterization of a robotic lower-limb exoskeleton was 
carried out using a joint dynamometer system and an electromechanical motor model in order to 
1) calculate the actuator efficiency and 2) simulate electrical energy regeneration and storage 
during stand-to-sit movements and level-ground walking. Because the motor driver of the 
exoskeleton does not allow for electrical power flow back to the onboard battery, the benchtop 
testing was conducted during the standard motoring operation (i.e., electrical-to-mechanical 
power conversion) and bidirectional symmetry of the actuator efficiency was assumed for the 
energy regeneration performance calculations. 

4.2.2 Robotic Lower-Limb Exoskeleton 

A research-grade, robotic lower-limb exoskeleton (Exo-H3, Technaid) was used as an experimental 
platform to study energy regeneration and storage during stand-to-sit movements and level-
ground walking. The device weighs ~12 kg and includes two leg modules, each with a thigh, shank, 
and foot segment, and a torso, which houses an onboard rechargeable lithium-iron phosphate 
battery (22 V nominal voltage at 12 Ah capacity) [154]. Six backdriveable actuators, each consisting 
of a harmonic drive and a wye-wound brushless DC motor, provide bilateral hip, knee, and ankle 
joint actuation in the sagittal-plane (i.e., six degrees of freedom in total) over the following ranges 
of motion: 30° plantarflexion and dorsiflexion about the ankle, 105° flexion and 5° extension about 
the knee, and 105° flexion and 30° extension about the hip. Each motor is rated at 19 V; has a 
terminal resistance and inductance phase-to-phase of 0.207 Ohms and 0.169 mH, respectively; a 
torque constant of 0.0375 Nm/A; a speed constant of 225 rpm/V; and a rotor inertia of 0.044 kg-
cm2. The harmonic gearing has a transmission ratio of 160:1 and weighs ~0.24 kg. The final peak 
torque output of motor-transmission system is 152 Nm with a reflected inertia of 1,126 kg-cm2 
[154]. 

An external Controller Area Network (CAN) bus was used to communicate with the main 
onboard controller of the exoskeleton, which runs real-time control algorithms and interacts with 
the electronic drives of each motorized joint by acquiring sensor feedback and controlling the 
actuators. Each joint is equipped with an electronic drive board, which performs data acquisition 
of the onboard sensors, including those for joint angular position, interaction torque, and motor 
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current (see Figure 4.6); the motor drivers are also embedded into the joint boards. Pressure 
sensors in the feet provide data regarding the foot-ground contact via center of pressure 
movement. The main controller and the individual joint controllers communicate at 1 Mbps using 
a real-time network based on CAN technology [154]; each actuated joint can thus be controlled 
independently. The exoskeleton uses a hierarchical control architecture. The high-level controller 
includes individual controllers for different locomotor activities, which are manually selected using 
a mobile interface, and the low-level controller operates in either position control with prescribed 
joint kinematics, torque control, or stiffness control, which emulates a virtual spring system. The 
control architecture is also open, which allows for integration with other devices and/or systems 
such as neural interfaces or computer vision.   

Although the exoskeleton can provide locomotor assistance to individuals with spinal cord 
injury, the relative backdrivability of the actuated joints could also benefit those with partial motor 
control (e.g., elderly and/or persons with osteoarthritis or poststroke) by promoting greater user 
participation and physical rehabilitation [154]. According to the exoskeleton manufacturer, the 
actuator backdrive torque is ~12 Nm, which is the minimum torque needed to overcome the 
mechanical impedance (i.e., reflected inertia and friction) to backdrive the motor through its 
transmission. Backdriveable actuators, either through series elasticity [66]–[71], [73] or low-
impedance transmissions [79]–[85], can allow for dynamic physical interactions between the 
human-exoskeleton-environment system, in addition to energy recycling during periods of 
negative mechanical work [12]. For robotic exoskeletons with high output impedance, the external 
loads experienced during daily locomotor activities might be insufficient to overcome the reflected 
inertia of the actuator and the transmission friction, and thus unable to backdrive the joints and 
regenerate electrical energy. 

4.2.3 Dynamometer Testing 

A joint dynamometer (Biodex) was used to measure the mechanical power output of the robotic 
exoskeleton to calculate the actuator efficiency. These dynamometer systems are commonly used 
in physical rehabilitation for isolated, single-joint testing to evaluate torque-angle (𝜏 − 𝜃) and 
torque-angular speed (𝜏 − 𝜔) relationships [155], from which joint mechanical work and power 
can be calculated. The left exoskeleton knee was used for testing. Straps were used to secure the 
exoskeleton leg to the dynamometer attachment and the trunk segment to the seat; this helped 
prevent relative movement and misalignment between the rotational axes of the exoskeleton 
knee and the dynamometer shaft, which could cause errors in the torque measurements [155]. 
Assuming an upright seated posture, the exoskeleton knee was kinematically driven through 12-
sinusoidal flexion and extension movements using position control (Figure 4.6). The experiment 
was repeated four times with 10-minute breaks in between to prevent the exoskeleton motor 
from overheating (n = 48 total trials). The isokinetic mode of the dynamometer system was 
selected such that the exoskeleton could drive the shaft throughout the range of motion without 
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Figure 4.6. Schematic of the exoskeleton benchtop testing using a joint dynamometer system to calculate the 
actuator efficiency. The exoskeleton knee was kinematically driven through sinusoidal flexion and extension 
movements while the dynamometer measured the joint torque and angular speed (i.e., the mechanical power 
output). The onboard exoskeleton sensors, and an electromechanical motor model, were used to estimate the motor 
voltage and current (i.e., the electrical power input). The actuator efficiency is the ratio of the average instantaneous 
power outputs to inputs over the steady-state time intervals. The nomenclature are described in the text. Details 
regarding the exoskeleton control architecture were taken from [145]. 
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interference since the controlled speed threshold of the dynamometer far exceeded that of the 
exoskeleton joint. Compared to user testing, the benchtop experiments allowed the exoskeleton 
performance to be quantified without the additional complexities of the human musculoskeletal 
system in terms of muscle activations and inertial dynamics of the biological leg. 

During the benchtop testing, the exoskeleton battery voltage and knee actuator torque 
were measured by the onboard sensors, and the joint torque and angular speed were measured 
by the dynamometer with a torque measurement accuracy of ± 1% of full scale (500 ft.lbs). The 
dynamometer performed an automatic gravity correction on the measured joint torques by 
measuring the combined exoskeleton-dynamometer segment weight and applying the gravity 
correction based on the direction of shaft rotation. The weight was taken with the dynamometer 
such that the leg was positioned horizontally (i.e., maximum knee extension), wherein the gravity 
effect was highest, and a torque measurement was made. Depending on the exoskeleton leg 
orientation with respect to gravity during the testing, the weight correction was either added or 
subtracted to the measured joint torques. Data were sampled at 100 Hz and filtered during 
postprocessing using a 10th-order low-pass Butterworth filter with an 8 Hz cut-off frequency and 
normalized to 0-100% of the movement duration. Given that accelerations of the combined 
exoskeleton-dynamometer segment could produce unwanted inertial loads at the beginning and 
end of flexion and extension, only the middle portions of each movement, which were relatively 
constant speed, were used for the data analyses (i.e., 15-35% and 65-85% of the overall sinusoidal 
movement). 

4.2.4 Actuator Efficiency 

The actuator efficiency was calculated based on measurements from the dynamometer and the 
onboard exoskeleton sensors, in addition to an electromechanical motor model. The exoskeleton 
motor converts electrical power (𝑃') to mechanical power (𝑃&) during motoring operation. The 
mechanical power output is the product of the joint torque Q𝜏BS and angular speed Q𝜃̇BS and the 
electrical power input is the product of the motor winding current (𝑖&) and voltage (𝑣). When 
backdriven by an external load, the motor can operate like a generator, converting mechanical 
power to electrical power. The actuator efficiency (𝜂)) during motoring operation is the ratio of 

electrical-to-mechanical power conversion f𝜂) =
C
3
g∫ K2L̇2$(
∫ -)73$(

h × 100%i and vice-versa for energy 

regeneration when backdriven. The average instantaneous mechanical power output of the 
exoskeleton actuator was calculated based on the product of the measured joint torque and 
angular speed by the dynamometer ^𝑃& = 𝜏B𝜃̇B_ at each time step and averaged over the steady-
state time intervals. Determining the corresponding average instantaneous electrical power input 
required some additional consideration, as subsequently discussed.  
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Many exoskeleton and wearable robotics studies [65]–[71], [73], [83], [88], [89], [93], [96], 
[102], [105], [113], [156] have used the standard brushed DC electromechanical motor model 
governed by electrical and mechanical state equations. The motor winding voltage (𝑣&) can be 
mathematically modelled by applying Kirchhoff’s voltage law: 

𝑣& ≈ 𝑘K𝜃̇& + 𝑖&𝑅& + 𝐿 $-)
$(

                                                                                                                       (9) 

𝜏& ≈ 𝑘K𝑖&                                                                                                                                                    (10) 

where 𝑖& is the motor winding current, 𝑘K is the motor torque constant, 𝑅& is the phase resistance 
of the motor windings, and 𝜏& and 𝜃̇& are the motor torque and angular speed, respectively. The 

motor inductance <𝐿 $-)
$(
= is usually relatively small and thus often omitted [65], [68], [105], [156]. 

The relationships between the torque-current and speed-voltage data characterize the motor 
torque constant and back EMF constant, respectively; these constants are device-specific and 
depend on the motor topology and materials. Although the exoskeleton has onboard motor 
current sensors, the raw data are not available through the external CAN bus. However, the 
actuator torque (i.e., the combined motor-transmission system output) is provided. The motor 
phase current (𝑖&) was therefore back-calculated according to  

𝑖& ≈ K.
2,N4

                                                                                                                                                         (11) 

where 𝜏) is the actuator torque at each time step, 𝑟( is the fixed transmission ratio of the harmonic 
gearing (160:1), and 𝑘K is the motor torque constant (0.0375 Nm/A) estimated by the motor 
manufacturer. The motor winding voltage (𝑣&) could not be directly solved for using Equation (9) 
since the onboard sensors do not measure the motor angular speed Q𝜃̇&S and the resolution of 

the joint angular position data was insufficient to back-calculate 𝜃̇& using the transmission ratio 
(𝑟(). For simplicity, the measured battery voltage was assumed equal to the voltage between the 
motor phases. The electrical power input used to drive the exoskeleton knee joint through flexion 
and extension was estimated by {𝑃' = 𝑖&𝑣*}, where 𝑣* is the measured battery voltage reported 
by the external CAN bus. Note that the reference axes of the motor variables and parameters were 
assumed to be equivalent since this information was not provided by the manufacturer. In other 
words, the three phase windings were assumed to be identical and a single set of parameters was 
used.  

The actuator efficiency (𝜂)) over the steady-state time intervals was the ratio between 
the average instantaneous mechanical power output and electrical power input. In theory, the 
power losses (𝑃,+66) are mainly due to Joule heating [156], which is expressed by {𝑃,+66 = 𝑖&D 𝑅&}. 
For example, in the MIT Cheetah, 76% of the energy dissipation was attributed to Joule heating 
[74]. Power losses from battery self-discharging and heating of the motor driver are relatively small 
and thus often assumed to be negligible [65], [69], [92], [97]. The actuator efficiency across trials 
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(n = 48) was studied to account for any winding temperature changes over time. Although the 
exoskeleton is somewhat backdriveable, and thus theoretically capable of energy regeneration 
during negative mechanical work, the motor driver does not allow for electrical power flow back 
to the onboard battery. Consequently, for the energy regeneration performance calculations, the 
actuator efficiency was assumed to be bidirectionally symmetric based on the electrical-to-
mechanical power conversion efficiency value during the motoring operation. There are ongoing 
discussions with the exoskeleton manufacturer as to how to safely and effectively regenerate 
energy without potential damage to the actuator, motor driver, and/or onboard battery. 

4.2.5 Regeneration Results 

The calculated actuator efficiency from the benchtop testing was ~41%. Assuming an 80-kg user, 
the robotic exoskeleton could theoretically regenerate 76.1 J of total electrical energy while sitting 
down since the total negative lower-limb joint mechanical work backdriving the actuators is 185.6 
J. Backdriving the same regenerative actuators during walking using the joint biomechanics data 
by Winter [57], 27.7 J of total electrical energy could theoretically be regenerated per stride since 
the total negative lower-limb joint mechanical work is 67.7 J. These energy regeneration 
performance calculations assume 1) regenerative braking from bilateral hip, knee, and ankle 

Table 4.1. The average hip, knee, and ankle joint mechanical work (J/kg) per stride in healthy young adults (n=19) 
walking at natural cadence (110 ± 8 steps/min at 1.436 m/s) and normalized to total body mass [17]. “Total Work” 
is the combined mechanical energies from the hip, knee, and ankle joints and the “Net Joint Work” is the net 
mechanical work on each joint. Note that 42.6% of the total lower-limb joint mechanical work is negative (i.e., 
theoretically available for energy regeneration and storage). The results are for one leg.   

 Positive Work (J/kg) Negative Work (J/kg) Net Joint Work (J/kg) 
Hip Joint 0.143 -0.054 0.089 
Knee Joint 0.082 -0.247 -0.166 
Ankle Joint 0.345 -0.122 0.223 
Total Work 0.570 -0.423 0.146 

 

Table 4.2. The average hip, knee, and ankle joint mechanical work (J/kg) per stand-to-sit movement in healthy young 
adults (~1 repetition per 2.25 seconds) and normalized to total body mass. The averages were taken across multiple 
subjects (n=9) and trials (20 trials/subject). “Total Work” is the combined mechanical energies from the hip, knee, 
and ankle joints and the “Net Joint Work” is the net mechanical work on each joint. Note that 91.2% of the total 
lower-limb joint mechanical work is negative (i.e., theoretically available for energy regeneration and storage). The 
results are for one leg.   

 Positive Work (J/kg) Negative Work (J/kg) Net Joint Work (J/kg) 
Hip Joint 0.085 -0.780 -0.694 
Knee Joint 0.002 -0.331 -0.328 
Ankle Joint 0.024 -0.049 -0.026 
Total Work 0.111 -1.160 -1.048 
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joints; 2) bidirectionally symmetric and constant (i.e., torque and speed independent) actuator 
efficiencies; 3) power losses only from the motor-transmission system; 4) energy regeneration 
over the entire negative joint mechanical power range; and 5) identical actuator efficiencies at the 
hip, knee, and ankle joints. The exoskeleton and human joints were assumed to be kinematically 
constrained together, therein ignoring any relative translations and rotations. Tables 4.1 and 4.2 
summarize the hip, knee, and ankle joint mechanical energies during level-ground walking and 
stand-to-sit movements, respectively, the quantities of which were used to simulate the robotic 
exoskeleton performance. 

Integrating the positive joint mechanical powers in Figure 4.5 can provide insight into the 
electrical power consumption (i.e., battery performance) of robotic leg prostheses and 
exoskeletons during level-ground walking. Here the total positive mechanical work per stride is 
the sum of the positive mechanical work performed by bilateral hip, knee, and ankle joints. Based 
on these calculations, human locomotion would require 91.2 J of total positive lower-limb joint 
mechanical work per stride, which equates to 222.4 J of total electrical energy consumption by 
the robotic device, assuming an 80-kg bodyweight and the aforementioned actuator efficiency 
model. Using the parameter values of the lithium-iron phosphate battery of the exoskeleton (22.4 
V at 12 Ah for a total battery capacity of 967.7 kJ), the device could theoretically walk 8,701 steps 
per battery charge. The battery-powered operating duration could therefore be extended by an 
additional 14.3% (i.e., 1,240 additional steps for 9,941 total steps Q𝑇6('06S) by regenerating energy 
during walking such that  

𝑇6('06 =
O3

(!56P!76)
× 2                                                                                                                                   (12)  

where 𝐶* is the total capacity of the lithium-iron phosphate battery, 𝐸P' is the total electrical 
energy consumption by the robotic exoskeleton per stride, and 𝐸A' is the total electrical energy 
that could be theoretically regenerated per walking stride. Based on Equation (12), the battery-
powered operating duration could be extended by an additional 0.5% (i.e., 41 additional steps for 
8,742 total steps) by regenerating energy while sitting down, assuming only 60 stand-to-sit 
movements per day per charge [140]. The positive and negative values represent the electrical 
power flowing in and out of the battery during braking and motoring operations, respectively. 
These calculations assume a regenerative motor driver to control the bidirectional flow of 
electrical power between the motor and onboard battery. Also, the electrical-to-chemical energy 
conversion efficiency of the battery was ignored. 

Although regenerating energy during level-ground walking can produce more electricity 
than that from stand-to-sit movements per day (i.e., assuming able-bodied biomechanics and 
activity levels), there are potential benefits to energy regeneration while sitting down. Control of 
regenerative actuators is notoriously challenging. However, stand-to-sit movements could have 
higher tolerances to reference tracking errors since the joint mechanical energies are almost 
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entirely negative (Figure 4.5 and Table 4.2). In contrast, energy regeneration during walking could 
require more robust actuator control since the joint mechanical energies are intermittent, 
multidirectional, and time varying (Figure 4.5 and Table 4.1). Inaccurate and/or delayed reference 
tracking could result in regenerating energy during periods of positive mechanical work. Unlike 
regenerative braking, generating electricity by exerting positive mechanical work would require 
the human muscles, especially in exoskeleton applications, to actively backdrive the actuator, 
which could increase the metabolic power consumption and thus decrease locomotor efficiency 
[86]–[89]. These energetic consequences would be especially pertinent to aging and rehabilitation 
populations who already exhibit more inefficient walking energetics [2]. In summary, there are 
potential advantages and disadvantages to energy regeneration during different locomotor 
activities of daily living. For optimal efficiency and battery performance, robotic leg prostheses and 
exoskeletons should be designed to recover some of the otherwise dissipated energy during many 
different locomotor activities that involve negative mechanical work (e.g., walking, sitting down, 
and ramp and stair descent). 
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4.3 Chapter Summary 

In this chapter, an energy regeneration system was developed and evaluated using mathematical 
and computational models of human and wearable robotic systems to simulate electrical energy 
regeneration and storage during locomotor activities of daily living. Regenerative actuators can 
improve the energy efficiency and extend the battery-powered operating durations or decrease 
the weight of the onboard batteries by converting some of the otherwise dissipated energy during 
negative mechanical work into electrical energy. Although previous studies of robotic leg 
prostheses and exoskeletons with regenerative actuators have focused on steady-state level-
ground walking, persons with mobility impairments (e.g., older adults and/or those with physical 
disabilities) tend to walk slower and take fewer steps per day, therein limiting the potential for 
energy regeneration from steady-state level-ground walking. Furthermore, as illustrated by the 
research in Chapter 3, a relatively small percentage of real-world walking environments consists 
of steady-state level-ground terrain.  

Conversely, sit-to-stand and stand-to-sit movements are common locomotor activities of 
persons with mobility impairments and are prerequisites to walking. Motivated to explore energy 
regeneration during other locomotor activities of daily living, Section 4.1 quantified the lower-limb 
joint mechanical work and power while sitting down using parameter identification and inverse 
dynamic simulations of subject-specific optimized biomechanical models to estimate the joint 
mechanical energy theoretically available for electrical energy regeneration and storage. The 
simulations showed that the hip joint absorbed the largest peak negative mechanical power, 
followed by the knee and ankle. These results differ from previous studies for other human 
movements, which showed that the knee joint has the greatest potential for energy regeneration 
during level-ground walking. 

Building on the biomechanical modelling and simulation work in Section 4.1, an empirical 
characterization of a robotic lower-limb exoskeleton was carried out in Section 4.2 using a joint 
dynamometer system and an electromechanical motor model. The objectives of this research 
study were to 1) calculate the actuator efficiency and 2) simulate energy regeneration and storage 
while sitting down and level-ground walking using the exoskeleton parameters. In other words, 
the human joint mechanical energetics from Section 4.1 were used to simulate an exoskeleton 
being backdriven and regenerating energy. Since the motor driver of the physical exoskeleton does 
not allow for electrical power flow back to the onboard battery, the benchtop testing with the 
joint dynamometer was conducted during motoring operation (i.e., electrical-to-mechanical 
power conversion) and bidirectional symmetry of the actuator efficiency was assumed for the 
energy regeneration performance calculations. The simulation results showed that regenerating 
energy during stand-to-sit movements provide small improvements in energy efficiency and 
battery-powered operating durations.   
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5. CONCLUSIONS AND FUTURE RESEARCH 

5.1 Summary of Contributions 

This thesis research focused on the development and evaluation of environment classification and 
energy regeneration systems using mathematical, computational, and machine learning methods 
to support the energy-efficient actuation and automated control of next-generation robotic leg 
prostheses and exoskeletons for real-world locomotor assistance. In doing so, the following 
contributions were made:  

Environment Sensing and Classification  

• Quantitatively reviewed and compared different statistical pattern recognition and machine 
learning algorithms used for image classification of walking environments, in addition to the 
experimental image datasets.  

• Developed one of the first environment recognition systems powered by deep learning and 
computer vision to predict the oncoming walking environments prior to physical interaction, 
which can allow for more accurate and robust automated high-level control decisions (e.g., 
locomotion mode transitions).  

• Quantitatively reviewed and compared the latest deep convolutional neural networks used for 
image classification of walking environments.  

• Developed the "ExoNet" database - the largest and most diverse open-source dataset of 
wearable camera images of indoor and outdoor real-world walking environments. 

• Introduced a novel hierarchical labelling architecture with 12 individual classes and manually 
labelled over 923,000 images in the ExoNet database using this new architecture.     

• Trained and tested over a dozen state-of-the-art deep convolutional neural networks on 
ExoNet for image classification and automatic feature engineering, including: EfficientNetB0; 
InceptionV3; MobileNet; MobileNetV2; VGG16; VGG19; Xception; ResNet50; ResNet101; 
ResNet152; DenseNet121; DenseNet169; and DenseNet201. 

• Quantitatively evaluated and compared the benchmarked CNN architectures and their 
environment classification predictions using an operational metric called "NetScore", which 
balances the classification accuracy with the architectural and computational complexities 
(i.e., important for onboard real-time inference with mobile computing devices). The 
comparative analyses showed that the EfficientNetB0 network achieved the highest test 
accuracy; VGG16 the fastest inference time; and MobileNetV2 the best NetScore and least 
number of parameters and computing operations, which can inform the optimal architecture 
design or selection depending on the desired system performance.  

• Overall, developed an environment sensing and classification system that provides a large-
scale benchmark for future research in environment-adaptive locomotor control. 
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Energy Regeneration  

• Reviewed the state-of-the-art in backdriveable actuators with energy regeneration for legged 
and wearable robotic devices.  

• Introduced the importance of energy regeneration and storage during locomotor activities of 
daily living other than steady-state level-ground walking, which has been the focus of previous 
research.  

• Proposed the application of energy regeneration during stand-to-sit movements such that the 
otherwise dissipated energy during the periods of negative joint mechanical work can be 
converted into electrical energy and used to extend the battery-powered operating durations 
or decrease the weight of the onboard batteries.  

• Conducted motion capture experiments with human subjects to quantify the lower-limb joint 
biomechanics during stand-to-sit movements.  

• Custom-designed a lower-limb biomechanical model and generated the dynamic equations of 
the system by leveraging linear graph theory and symbolic computing.  

• Developed and implemented parameter identification and inverse dynamic simulations of 
subject-specific optimized biomechanical models to calculate the negative joint mechanical 
work and power while sitting down (i.e., the mechanical energy theoretically available for 
electrical energy regeneration).  

• Created an open-source dataset of experimental and simulated joint biomechanics data during 
stand-to-stand movements to support the research community.  

• Performed benchtop testing of a robotic lower-limb exoskeleton using a joint dynamometer 
system, which, together with an electromechanical motor model, was used to 1) calculate the 
actuator efficiency and 2) simulate energy regeneration during stand-to-sit movements and 
level-ground walking using the exoskeleton parameters.  

• Showed that energy regeneration and storage during stand-to-sit movements provide small 
improvements in energy efficiency and battery-powered operating durations. 

In addition to robotic leg prostheses and exoskeletons, these principles of energy regeneration 
and environment classification could extend to humanoids, autonomous legged robots, powered 
wheelchairs, and other mobility assistive technologies.   
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5.2 Recommendations for Future Research 

5.2.1 Environment Recognition 

Although this thesis research helped advance the state-of-the-art in image classification of walking 
environments via the applications of deep learning and computer vision, there are still many 
promising and relatively untapped areas of research that could support the development of next-
generation environment-adaptive locomotor control systems for robotic leg prostheses and 
exoskeletons. Some potential directions for future research include: 1) the application of depth 
cameras for 3D environment sensing; 2) the classification of sequential walking images using 
recurrent neural networks; and 3) the fusion of environment data with mechanical, inertial, and/or 
neuromuscular data for automated high-level control and decision making. 

5.2.1.1 Depth Sensing 

A potential limitation of the ExoNet database developed in Chapter 3 is the 2D nature of the 
environment information. Many researchers have similarly used a wearable RGB camera for 
passive environment sensing [36]–[43] (see Table 2.1). Although multiple RGB cameras could be 
used to capture 3D environment information, comparable to how the human visual system uses 
triangulation for depth perception [30], each pixel in an RGB image contains only light intensity 
information. Several researchers have explored using depth cameras to explicitly capture images 
containing both light intensity information and distance measurements [29], [31], [44]–[50]. These 
range imaging systems work by emitting infrared light and measuring the light time-of-flight 
between the camera and oncoming walking environment to calculate distance. Depth sensing can 
uniquely extract environmental features like step height and width, which can improve the mid-
level control of robotic leg prostheses and exoskeletons (e.g., increasing the actuator joint torques 
to assist with steeper stairs). 

Despite the aforementioned benefits, depth measurement accuracy typically degrades in 
outdoor lighting conditions (e.g., sunlight) and with increasing measurement distance [157], [158]. 
Consequently, most environment recognition systems using depth cameras have been tested in 
controlled laboratory environments and/or have had limited capture volumes with 1-2 m of 
maximum range imaging [31], [44]–[47]. These systems also require an onboard accelerometer or 
IMU to transform the 3D environment information from the camera coordinate system into global 
coordinates [29], [31], [46], [48]–[50]. Assuming mobile computing (i.e., untethered and no 
wireless communication to cloud computing), the use of depth cameras for active environment 
sensing could potentially require robotic leg prostheses and exoskeletons to have onboard 
microcontrollers with high computing power and low power consumption [44]. In such a case, the 
current embedded systems would need significant modifications to support the real-time 
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processing and classification of depth images. These practical limitations motivated the decision 
to use RGB images for the environment sensing and classification. 

5.2.1.2 Recurrent Neural Networks 

The comparative analysis in Chapter 3 showed that the EfficientNetB0 network [122] achieved the 
highest image classification accuracy on the ExoNet database during inference (73.2%). However, 
for environment-adaptive control of robotic leg prostheses and exoskeletons, higher classification 
accuracies would be desired given that misclassifications could cause loss-of-balance and injury 
[159]. Although the convolutional neural networks that were tested are considered state-of-the-
art in computer vision, the architectures included only feedforward connections such that the 
walking environments were independently classified frame-by-frame without knowledge of the 
preceding decisions. Sequential data over time could potentially improve the image classification 
accuracy and robustness, especially during steady state environments. This technique is analogous 
to how light-sensitive receptors in the human eye capture dynamic images to control locomotion, 
known as optical flow [30]. Sequential data could be classified using majority voting [24], [44], [45] 
or Transformers [160] or recurrent neural networks (RNNs) [43], [50], [51]. Majority voting stores 
sequential decisions in a vector and generates a classification prediction based on the majority of 
stored decisions. These systems can attenuate misclassifications by filtering over the decision 
vector, thereby decreasing the likelihood of a fall resulting from an incorrect high-level control 
decision. 

In comparison, recurrent neural networks process sequential inputs while maintaining an 
internal hidden state vector that implicitly contains temporal information. However, training RNNs 
can be challenging due to exploding and vanishing gradients. Although these networks were 
designed to learn long-term dependencies, theoretical and empirical evidence has shown that 
they struggle with storing sequential information over long periods [55], [161]. To mitigate this 
issue, RNNs can be supplemented with an explicit memory module like a neural Turing machine 
or long short-term memory (LSTM) network, which can improve gradient flow. Fu’s research group 
[50] explored the use of sequential data for environment classification. Sequential decisions from 
a baseline CNN were fused and classified using a recurrent neural network, LSTM network, 
majority voting, and a hidden Markov model (HMM). The baseline network achieved 92.8% 
classification accuracy across five environment classes. Supplementing the baseline CNN with the 
RNN, LSTM network, majority voting, and HMM resulted in 96.5%, 96.4%, 95%, and 96.8% image 
classification accuracies, respectively [50]. Although sequential data could improve the image 
classification accuracy of walking environments, and therefore increase the robustness of the 
automated locomotor control decisions, this technique often requires longer computation times, 
which could impede real-time implementation. 
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5.2.1.3 Sensor Fusion 

Given that information about the oncoming walking environment does not explicitly represent the 
user’s locomotor intent, though it constrains the movement possibilities, data from computer 
vision should supplement, rather than replace, the automated locomotion mode control decisions 
based on user-dependent measurements like mechanical, inertial, and/or neuromuscular data. 
The images from the wearable smartphone camera system used in Chapter 3 could be fused with 
its onboard IMU measurements to improve the high-level control performance. For example, 
when an exoskeleton or prosthesis user wants to sit down, the acceleration data from the IMU 
sensors would indicate a stand-to-sit movement rather than level-ground walking, despite level-
ground terrain being accuracy detected within the visual field-of-view, as illustrated in the bottom 
right image of Figure 3.7.  

Inspired by previous work [24], [34], [36]–[38], the smartphone IMU data could also help 
minimize the onboard computational and memory storage requirements via sampling rate control 
(i.e., providing an automatic triggering mechanism for the image capture). Whereas fast walking 
speeds could benefit from high sampling rates for continuous classification, standing still does not 
necessarily require environment information and thus the smartphone camera could be powered-
down or the sampling rate decreased to conserve the onboard operating resources. Relatively few 
researchers have fused environment data with mechanical and/or inertial measurements for 
automated locomotion mode recognition [23], [24], [26], [28], [29], [34], [47] and only one study 
[31] has used such information for online environment-adaptive control of a robotic leg prosthesis 
during walking (i.e., stepping over an obstacle). These limitations in systems integration offer 
exciting challenges and opportunities for future research such that the optimal multi-sensor data 
fusion for environment-adaptive control of robotic leg prostheses and exoskeletons remains to be 
determined. 
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5.2.2. Energy Regeneration 

With regards to energetics, this thesis research explored energy regeneration and storage during 
locomotor activities of daily living, specifically stand-to-sit movements. Building on the research 
presented in Chapter 4, some potential directions for future research include: 1) the application 
of ultracapacitors for energy storage with high power density; 2) the optimization of actuator 
design parameters for efficiency; and 3) the study of older adults and/or persons with physical 
disabilities to evaluate the potential for energy regeneration. Note that each of these proposed 
research areas could benefit from an integrated system model of the human interacting with a 
wearable robotic device [159]. For instance, a human-exoskeleton system model could provide a 
computational framework for efficient model-based testing and optimization of different actuator 
design parameters and/or energy storage devices while taking into consideration changes in the 
human biomechanics and motor control. This differs from the work in Chapter 4, which developed 
and used independent mathematical and computational models of the human and exoskeleton 
systems without accounting for the closed-loop interactions.  

5.2.2.1 Ultracapacitors 

An interesting topic for future research is to evaluate different onboard energy storage devices 
for robotic leg prostheses and exoskeletons with regenerative actuators. The energy regeneration 
performance calculations presented in Chapter 4 were based on the parameter values of the 
rechargeable lithium-iron phosphate battery of the exoskeleton being tested. Most robotic leg 
prostheses and exoskeletons use lithium-polymer or lithium-ion batteries for energy storage [8], 
[32]. Generally speaking, rechargeable batteries are designed with high energy density (e.g., ~100 
Wh/kg), which allow for extended operation, but low power density (e.g., 0.1-1 kW/kg), which 
produce slow charge and discharge rates [162]. In many mechatronic applications, however, the 
rate at which mechanical energy should be converted into electrical energy for regenerative 
braking is higher than the rate at which most batteries can absorb energy [94]. In other words, 
rechargeable batteries tend to have insufficient power densities. These limitations have led some 
researchers to explore the use of ultracapacitors for energy regeneration and storage in semi-
powered leg prostheses [95], [97], [98], [101], [102], [108], [113]. 

Compared to batteries, ultracapacitors have high power density (e.g., ~10 kW/kg) but low 
energy density (e.g., 1-10 Wh/kg) [162]. They provide an efficient means of energy storage that is 
lightweight and inexpensive; can charge and discharge at high rates without damage; and have 
almost infinite lifecycles [162]. The dynamic and efficient bidirectional power flow characteristics 
of ultracapacitors make them ideal for applications requiring many fast charge and discharge 
cycles and avoid the need for dissipative elements like resistors during regenerative braking. The 
pioneering work by Flowers’ lab at MIT in the 1980s used conventional electrolytic capacitors for 
energy regeneration and storage in their prosthetic leg design [163]–[165] but concluded that the 
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capacitors at the time were insufficient and needed further development. Ultracapacitors bridge 
the gap between conventional capacitors and batteries. Although the total energy stored per unit 
mass in ultracapacitors is usually much smaller than rechargeable batteries, recent breakthroughs 
in nanotechnology are enabling the fabrication of graphene-based ultracapacitors, which have 
reached energy densities of 64 Wh/kg [96]. Moving forward, an optimal energy storage system for 
robotic leg prostheses and exoskeletons with regenerative actuators could include an 
ultracapacitor, for fast charging and discharging rates, and a battery, for extended operation.  

5.2.2.2 Actuator Design Optimization 

One of the biggest limitations to energy regeneration is the relatively low efficiencies of traditional 
motor-transmission systems [15]. The calculated actuator efficiency of the robotic lower-limb 
exoskeleton in Chapter 4 was ~41% during forward operation (i.e., electrical-to-mechanical power 
conversion); bidirectional symmetry of the actuator efficiency was assumed to simulate energy 
regeneration when backdriven (i.e., mechanical-to-electrical power conversion). For comparison, 
the MIT Cheetah robot has reported one of the highest energy regeneration efficiencies during 
backdrive operation (~63%) [74]. Two of the main sources of energy losses in robotic actuators, 
which can characterize the inefficiencies of the system, are Joule heating in the motor windings 
and friction in the transmission [11], [12].  

High transmission ratios can reduce the motor torque needed for legged locomotion, and 
thus decrease the winding current and associated Joule heating losses. However, high gearing 
systems tend to increase weight, friction, and reflected inertia, which increase the impedance and 
reduces backdrivability and the potential for energy regeneration [12]. Alternatively, high torque-
density motors can decrease the needed transmission ratios by generating a high output torque, 
therein circumventing the inefficiencies of high gearing systems, though at the expense of more 
winding current and thus higher Joule heating losses [11]. For example, Joule heating accounted 
for ~76% of the energy losses in the MIT Cheetah, which was designed using high torque motors 
with minimal gearing (i.e., 6:1 transmission ratio) [74].  

An open challenge for the research community is to optimize the tradeoff between the 
actuator output torque and backdrive torque in robotic leg prostheses and exoskeletons in terms 
of energy efficiency and performance. Many design parameters can effect this tradeoff (e.g., the 
transmission ratio and efficiency, and the motor terminal resistance, and the torque and speed 
constants) [11]. Given the complex interactions between these parameters, determining the 
optimal actuator design through experimental trial-and-error would be difficult. Modelling and 
simulation could be used to automatically co-optimize the motor and transmission system design 
parameters to maximize both energy efficiency (including energy regeneration) and performance. 
This computational framework could also help address some of the simplifying assumptions made 
in the energy regeneration performance calculations in Chapter 4 (e.g., bidirectional symmetry).  
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5.2.2.3 Clinical Evaluations 

Future research could also study the potential for energy regeneration in individuals with mobility 
impairments. The energy regeneration performance calculations in Chapter 4 were based on data 
from healthy young adults, therein requiring several assumptions and extrapolations to aging and 
rehabilitation populations. Young adults typically walk at 1.4 m/s and take 6,000-13,000 steps/day 
[2]. However, older adults tend to walk slower and shorter distances. For example, 50% of persons 
over 65 years age walk fewer than 5000 steps/day [2]. These activity levels are further diminished 
in individuals with physical disabilities (e.g., persons with incomplete spinal cord injury walk ~1,640 
steps/day) [2]. The biomechanics of persons with mobility impairments also differ from healthy 
young adults. Table 5.1 and Figure 5.1 show the hip, knee, and ankle joint mechanical work and 
power per stride in older adults walking at preferred speed (1.28 m/s) [57]. The peak power 
absorption by the knee flexors during late swing is lower in older adults (0.87 W/kg) than young 
adults (0.98 W/kg), which decrease the leg deceleration prior to heel strike and thus the potential 
for energy regeneration. Moreover, the peak power generation by the ankle plantarflexors during 
push-off is lower in older adults (2.48 W/kg) compared to young adults (3.23 W/kg), which could 
be attributed to muscle weakening and explain the slower walking speeds [57]. 

These population differences, especially in walking speed, have implications on the energy 
regeneration performance. Experimental studies of robotic leg prostheses and exoskeletons with 
regenerative actuators have consistently shown a positive relationship between walking speed 
and both energy regeneration and efficiency such that faster walking generates more electricity 
and more efficiently [83], [88]–[90], [104], [106], [107], [113]. For a given back EMF constant, an 
electromagnetic motor generates a voltage proportional to its rotational speed. Slower walking 
would backdrive the actuator with lower rotational speeds and therefore generate less electricity 
(i.e., although for a longer time for the same distance). Motors are also generally less efficient 
when generating torques at low speeds due to Joule heating losses.  

A recent study by Gregg’s research lab showed that increasing walking speed with a robotic 
knee-ankle prosthesis from 0.9 m/s to 1.6 m/s increased the power conversion efficiency of the 
actuator from 40% to 59% [83]. Feng et al. [113] showed that the ratio of energy regeneration to 
total power consumption increased from 27% to 35% when walking speed increased from 0.7 m/s 
to 1.3 m/s with a robotic ankle prosthesis. For battery recharging at slower walking speeds, the 
motor could be designed or selected with a higher speed constant, or the number of batteries 
decreased to lower the charging potential. Given the biomechanical and activity level differences 
between healthy young adults and individuals with mobility impairments, and the implications of 
such differences on the energy regeneration and efficiency, future research should study older 
adults and/or those with physical disabilities to improve the energy regeneration performance 
calculations presented in this thesis.    
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Table 5.1. The average hip, knee, and ankle joint mechanical work (J/kg) per stride in older adults (n=18) walking at 
natural cadence (111 ± 8 steps/min at 1.28 m/s) and normalized to total body mass [57]. “Total Work” is the combined 
mechanical energies from the hip, knee, and ankle joints and the “Net Joint Work” is the net mechanical work on each 
joint. Note that 47.5% of the total lower-limb joint mechanical work is negative (i.e., theoretically available for energy 
regeneration and storage). The results are for one leg. 

 Positive Work (J/kg) Negative Work (J/kg) Net Joint Work (J/kg) 
Hip Joint 0.223 -0.066 0.157 
Knee Joint 0.063 -0.260 -0.197 
Ankle Joint 0.225 -0.136 0.089 
Total Work 0.511 -0.462 0.049 

 
 

 

 

Figure 5.1. The average hip, knee, and ankle joint mechanical power (W/kg) per leg while walking at natural cadence 
in young adults (n=19) and older adults (n=18), normalized to total body mass. The positive and negative values 
represent joint power generation and absorption, respectively. Data were taken from Winter [57], the trajectories of 
which begin and end with heel-strike. The uncertainties are ± one standard deviation across multiple subjects and trials. 
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