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Abstract

We prove that every graph G with chromatic number χ(G) = ∆(G)−1 and ∆(G) ≥ 66
contains a clique of size ∆(G)− 17. Our proof closely parallels a proof from Cranston and
Rabern, who showed that graphs with χ = ∆ and ∆ ≥ 13 contain a clique of size ∆ − 3
[6]. Their result is the best currently known for general ∆ towards the Borodin-Kostochka
conjecture [1], which posits that graphs with χ = ∆ and ∆ ≥ 9 contain a clique of size ∆.
We also outline some related progress which has been made towards the conjecture.
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believe it or you don’t.”
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Chapter 1

Introduction

1.1 Notation and Conventions

We will take our graphs to be finite, undirected, without loops, and without multiple edges.
Throughout this document, we will use the notational conventions of Diestel [7], except
that an n-clique (a graph with all possible edges) will be written Kn instead of Kn. The
maximum degree of a graph G is denoted ∆(G), the chromatic number denoted χ(G),
and the clique number denoted ω(G). A list of the more technical terminology may be
found in the Glossary, and symbols in the List of Symbols.

1.2 Large Chromatic Number

The first bound one learns in graph colouring is the Greedy Bound.

Theorem 1.1. The Greedy Bound
Let G be a graph. Then χ(G) ≤ ∆(G) + 1.

Proof. Let v1, v2, . . . , vn be the vertices of G. Let c1, c2, . . . , c∆(G)+1 be colours. We can
colour G in n steps. At step i, colour vi some colour cj, such that cj has not yet been used
on any of the neighbours of vi. There will always be an available colour cj, as the vertex
vi has at most ∆(G) neighbours.

Having established this relatively easy bound, one may ask if it can be improved. In
a sense the answer is no. If G is a clique on n vertices then G has ∆(G) = n − 1, and

1



χ(G) = n, reaching the ceiling of the Greedy Bound and dashing our hopes for something
lower. However, it turns out that for ∆ sufficiently large, cliques are the only graphs which
are tight with the Greedy Bound. This result, shown in 1941 by R. Leonard Brooks, is
quite famous in graph colouring.

Theorem 1.2. Brooks’ Theorem [2]
Let G be a connected graph with χ(G) = ∆(G) + 1 and ∆(G) ≥ 3. Then G is a clique of
size ∆(G) + 1.

The condition that ∆(G) ≥ 3 is necessary to exclude the case when G is an odd cycle,
which needs ∆(G) + 1 = 3 colours, but which is not a clique unless |G| = 3.

Less formally, this theorem states that if a connected graph G has chromatic number
χ as large as possible, and ∆ sufficiently large, then G is a large clique. If we remove the
condition that G is connected, we weaken the conclusion so that some component of G is
a large clique. This theorem has led to a rich line of inquiry concerning the appearance of
large cliques in graphs with large chromatic number.

Brooks’ Theorem tells us that when a graph has maximum chromatic number χ = ∆+1,
a large clique is responsible. It is natural to wonder whether large cliques are always
responsible for large chromatic numbers in graphs, say, when χ = ∆ or χ = ∆ − 1. The
answers to these questions are unknown, but as we will see, there has been some progress
made towards answering them.

Before we consider what happens when the chromatic number χ is close to ∆, it will be
interesting to consider a theorem due to Erdős, for which we will need a quick definition.

Definition 1.3.
Let G be a graph. If G contains a cycle, the girth of G, denoted g(G), is the minimum
length of a cycle in G. If G contains no cycles, then g(G) :=∞.

Theorem 1.4. Erdős, 1959 [7, p.125]
For every integer n, there exists a graph G with χ(G) ≥ n and girth g(G) ≥ n.

Now, every clique K with at least 3 vertices has the smallest possible girth g(K) = 3.
So in this absolute sense of “large”, graphs can have large chromatic numbers, and no
big cliques at all. Graphs with large girth look locally like trees, if you focus on a vertex
and the vertices near to it, you find no cycles. Since all trees are 2-colourable, one might
expect graphs with large girth to have small chromatic number. This theorem defies that
intuition, and is commonly understood to mean that the chromatic number is a “global”
property of a graph. That is, colouring one region of a graph cannot necessarily be done
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without considering the colourings of other regions in the same connected component.
This conclusion does not look good for the search for big cliques. If graphs can have
astronomical chromatic numbers and lack so much as a triangle, then big cliques cannot
always be responsible for large chromatic numbers.

So in this extremely informal, intuitive realm, we have two opposing ideas at work.
Brooks’ Theorem suggests that chromatic numbers which are large with respect to ∆ might
be caused by large cliques. The theorem of Erdős suggests that chromatic numbers can
be inflated by complicated global factors unrelated to the simple presence of a clique. We
know, via Brooks’, exactly what happens in the case χ = ∆ + 1, so the natural next step is
to ask what happens when χ = ∆. Strangely enough, in the 80 years that have passed since
the proof of Brooks’ Theorem, this question has not been answered. However, the following
conjecture made in 1977 by Borodin and Kostochka posits the existence of another large
clique. In fact, the largest that could be hoped for.

1.3 The Borodin-Kostochka Conjecture

Conjecture 1.5. The Borodin-Kostochka Conjecture [1]
Let G be a graph with χ(G) = ∆(G), and ∆(G) ≥ 9. Then G contains a clique of size
∆(G).

As indicated by the name, the Borodin-Kostochka Conjecture has not yet been settled.
However, much progress has been made towards finding the desired big cliques. The
Borodin-Kostochka conjecture is of central importance to us, and for brevity it will be
often written “BK”.
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Figure 1.1: The graph G3 = C5,3, a cycle of five triangles.

The bound ∆ ≥ 9 is known to be tight, as can be seen from the following example. We
will denote the cycle on n vertices by Cn, and the path on n vertices by Pn, and Cn,m will
denote the graph formed by taking Cn and expanding each vertex to a clique of size m.
Now, let G be the graph C5,3 (see Figure 1.1), where each vertex of C5 is expanded into a
triangle. Then G contains 15 vertices, but the size of an independent set in G is at most
2. Thus, the chromatic number of G is at least 15/2 = 7.5. Since χ(G) must be an integer
we obtain the stronger bound χ(G) ≥ 8. Finally, G is a regular graph with ∆(G) = 8, but
ω(G) = 6, so there is no 8-clique, as would be required by BK. Interestingly, not only does
this graph fail to contain an 8-clique, it actually misses the mark by 2, and contains only
6-cliques.

The Borodin-Kostochka conjecture is a well-known problem which has attracted much
effort (for instance, see [3, 4, 5, 6, 8, 12, 19]), which we will now outline in brief. For
another summary of this history, please see Cranston and Rabern [4].

In 1977, in the same paper where they proposed their conjecture, Borodin and Kos-
tochka themselves proved the following weakening.

Theorem 1.6. Graphs with χ = ∆ have Medium Cliques [1]
Let G be a graph with χ(G) = ∆(G) and ∆(G) ≥ 7. Then G contains a clique of size
b(∆(G) + 1)/2c.

The proof is not complicated and is illustrative of many key techniques for related
arguments, including the main argument of this thesis. We will cover it in more detail in
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Chapter 3, see Theorem 3.4. The result establishes some hope for our search, as it proves
that graphs with χ = ∆ contain a clique which is bounded below by a linear function in
∆.

In 1980, Kostochka proved the following.

Theorem 1.7. [12]
Let G be a graph with ∆(G) ≥ 29 and χ(G) = ∆(G). Then G contains a clique of size
∆(G)− 28.

This yields a larger clique than the b(∆(G) + 1)/2c result for every ∆ ≥ 58. Concep-
tually, this result puts the finish line in view, as it allows us to focus entirely on reducing
the constant 28 down to (hopefully, eventually) 0.

In 1999, Reed used probabilistic methods to show that the Borodin-Kostochka conjec-
ture holds for all graphs with sufficiently large maximum degree. The specific bound he
established was ∆ ≥ 1014, but he remarked that a more detailed analysis could potentially
bring this down to 106 or 103.

Theorem 1.8. BK Holds Eventually [19]
Let G be a graph with χ(G) = ∆(G) ≥ 1014. Then G contains a clique of size ∆(G).

There are many results which prove the conjecture in the case of graphs which do not
have some forbidden subgraph. In 2020 Pradhan and Gupta proved that the conjecture
holds for graphs with no induced P5 or C4.

Theorem 1.9. BK Holds without P5 and C4 [8]
Let G be a graph with χ(G) = ∆(G) ≥ 9, with no induced P5 or C4. Then G contains a
clique of size ∆(G).

The claw is the graph K1,3. In 2012, Cranston and Rabern proved that the conjecture
holds for claw-free graphs.

Theorem 1.10. BK Holds with no Claws [5]
Let G be a graph with χ(G) = ∆(G) ≥ 9, with no induced claw. Then G contains a clique
of size ∆(G).

In 2015 Cranston and Rabern proved that the Borodin-Kostochka conjecture is equiv-
alent to a statement that appears quite weak in comparison. First, we need a definition.
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Definition 1.11.
Let G and H be graphs. Then the join of G and H, denoted G ∨H, is the graph formed
by taking the disjoint union of G and H, and adding every edge between V (G) and V (H).

Similarly, when two subgraphs A and B of a parent graph G have all possible edges
between them, we say that A and B are joined.

The equivalent conjecture is then:

Conjecture 1.12.
Let G be a graph with χ(G) = ∆(G) and ∆(G) = 9. Then G contains K3 ∨ E6.

Chapter 2 is dedicated to discussing the proof that this conjecture is equivalent to BK.

In 2013, Cranston and Rabern proved the following.

Theorem 1.13. Cranston and Rabern, 2013 [6]
Let G be a graph with χ(G) = ∆(G) and ∆(G) ≥ 13. Then G contains a clique of size
∆(G)− 3.

As of today (December 23, 2021), this is the best known result towards the Borodin-
Kostochka Conjecture for general ∆. In proving this result, Cranston and Rabern have
gotten tantalizingly close to the finish line, producing a clique only 3 vertices away from the
target ∆, and a minimum necessary ∆ only 4 away from the target of 9. The main purpose
of this thesis is to demonstrate a thorough understanding of the proof of Theorem 1.13.
To do so, we extend the argument of Cranston and Rabern to address the case χ = ∆− 1,
and use their methods to prove the existence of a ∆ − 17 clique. This result is presented
in Theorem 4.16.

1.4 Relation to Reed’s Conjecture

Reed’s conjecture is another open problem in graph colouring which has also attracted
much attention, for instance, see [9, 11, 16, 20]. The statement is as follows.

Conjecture 1.14. Reed’s Conjecture [18]
Let G be any graph. Then χ(G) ≤ d1

2
(∆(G) + 1 + ω(G))e.
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The bound in Reed’s conjecture cannot be improved, as can be seen from the following
family of counterexamples. For any natural t, let Gt be the graph C5,t, an “expanded cycle”
where each vertex in a copy of C5 is expanded into a clique of size t (for an example, see
Figure 1.1). Then Gt is regular, and ∆(Gt) = 3t− 1. Furthermore, ω(Gt) = 2t, and as the
size of any independent set in Gt is at most 2, we have χ(Gt) ≥ |Gt|/2 = 5t/2.

Now, we compute

d1
2

(∆(Gt) + 1 + ω(Gt))e = d1
2

((3t− 1) + 1 + (2t))e

= d5t
2
e

but we had χ(Gt) ≥ 5t
2

, meaning that the proposed inequality in Reed’s conjecture is
best-possible.

This conjecture strengthens the Greedy Bound, and is closely related to our search for
big cliques in graphs with large chromatic number. Indeed, assuming the truth of this
inequality, heuristically we see that if χ has any hope of getting close to ∆ it must be that
ω is large.

To make things precise, suppose that we have ω(G) = ∆(G)− k. Again supposing the
truth of Reed’s conjecture for a moment, we obtain

χ(G) ≤ d1
2

(∆(G) + 1 + ∆(G)− k)e

=⇒ χ(G) ≤ d∆(G)− 1

2
(k − 1)e

and using the fact that integers can be pulled out from the ceiling function,

=⇒ χ(G) ≤ ∆(G) + d1
2

(1− k)e.

Now in the case that k is even, we get

d1
2

(1− k)e = −k
2

+ 1

=⇒ χ(G) ≤ ∆(G)− k

2
+ 1
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and when k is odd, we get

d1
2

(1− k)e = −k
2

+
1

2

=⇒ χ(G) ≤ ∆(G)− k

2
+

1

2
.

Now consider what happens for various small values of k. If we take k = −1 (the only
time k can be negative), we get χ(G) ≤ ∆(G) + 1, the Greedy Bound. If we take k = 0 so
that ω(G) ≤ ∆(G) we again get χ(G) ≤ ∆(G) + 1. From Brooks’ Theorem we know that
ω(G) ≤ ∆(G) =⇒ χ(G) ≤ ∆(G), so Reed’s conjecture is weaker in this case. If we take
k = 1 so that ω(G) ≤ ∆(G)− 1, we get χ(G) ≤ ∆(G). The Borodin-Kostochka conjecture
would have ω(G) ≤ ∆(G)− 1 =⇒ χ(G) ≤ ∆(G)− 1, so Reed’s conjecture is also weaker
in this case. So what does Reed’s conjecture have to say about the case χ(G) = ∆(G)?
Well, if we take k ≥ 3, then Reed’s would have χ(G) ≤ ∆(G) − 1, which does not allow
χ = ∆. However, k = 2 gives only χ(G) ≤ ∆(G), so the truth of Reed’s conjecture requires
a clique of size ∆(G) − 2 when χ(G) = ∆(G). This is one off of Cranston and Rabern’s
∆ − 3 result (Theorem 1.13). Finally, in the case χ(G) = ∆(G) − 1, taking k ≥ 5 gives
χ ≤ ∆ − 2, a contradiction, but k ≤ 4 requires only χ ≤ ∆ − 1. So our ∆ − 17 result
(Theorem 4.16) is 13 vertices away from the clique which would be required by Reed’s
conjecture when χ = ∆− 1.

1.5 Related Asymptotics

We will need the following definitions.

Definition 1.15.
Let G be a graph. We say that a vertex v ∈ G is dominating when N(v) = V (G − v).
That is, v is adjacent to all other vertices.

Definition 1.16.
Let G be a graph, and let v ∈ G be a vertex. We say that v is critical when χ(G− v) <
χ(G).

Remark. If G is a graph, and v ∈ G is critical, then χ(G−v) = χ(G)−1. Indeed, we know
that χ(G−v) ≤ χ(G)−1 by the definition of criticality. Finally, if G−v can be (χ(G)−2)-
coloured, then using a single additional colour for v produces a (χ(G)− 1)-colouring of G,
which is impossible.
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Definition 1.17.
Let G be a graph. If χ(G) = n, and every proper subgraph of G is (n−1)-colourable, then
we say that G is n-critical.

Observe that if G is a n-critical graph, then every vertex v ∈ G is a critical ver-
tex. Indeed, the proper subgraph G − v ⊂ G is (n − 1)-colourable, and thus satisfies
χ(G− v) < χ(G).

As mentioned previously, Reed has proved BK for graphs with ∆ ≥ 1014 (Theorem 1.8).
Together with Farzad and Molloy, Reed has also proved a family of related statements about
graphs with χ = ∆ − t for t = 1, 2, 3, 4, 5 [14]. Using probabilistic methods, they proved
that ∆− t critical graphs must contain a clique of size ∆− t, or a clique of size ∆− t− l for
some small integer l, joined to an odd cycle, or a small critical graph with no dominating
vertices.

For instance, their result in the ∆− 1 case is the following.

Theorem 1.18. [14]
There exists a number N such that, if G is a graph with ∆(G) > N and χ(G) ≥ ∆(G)− 1,
then G must contain one of:

1. A (∆(G)− 1)-clique.

2. A (∆(G)− 4)-clique joined to C5.

As t increases, the list of excluded subgraphs grows longer and more complicated.

Theorem 1.19. [14]
There exists a number N such that, if G is a graph with ∆(G) > N and χ(G) ≥ ∆(G)− 2,
then G must contain one of:

1. A (∆(G)− 2)-clique.

2. A (∆(G)− 5)-clique joined to C5.

3. A (∆(G) − 6)-clique joined to a 4-critical graph on 7 vertices, with no dominating
vertex.

There are exactly two 4-critical graphs on 7 vertices with no dominating vertex, giving
4 possibilities. For brevity in what follows, we make the following definition.
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Definition 1.20.
Suppose that G is a l-critical graph with n vertices and no dominating vertex. Then we
refer to G as an (n, l)-nucleus.

Theorem 1.21. [14]
There exists a number N such that, if G is a graph with ∆(G) > N and χ(G) ≥ ∆(G)− 3,
then G must contain one of:

1. A (∆(G)− 3)-clique.

2. A (∆(G)− 6)-clique joined to C5.

3. A (∆(G)− 6)-clique joined to C7.

4. A (∆(G)− 7)-clique joined to a (7, 4)-nucleus.

5. A (∆(G)− 7)-clique joined to an (8, 4)-nucleus.

6. A (∆(G)− 8)-clique joined to a (9, 5)-nucleus.

7. A (∆(G)− 9)-clique joined to a (10, 6)-nucleus.

This gives exactly 26 total possibilities. Interestingly, there is only a single (10, 6)
nucleus.

In the case χ = ∆ − 4, the list of possibilities contains 420 graphs, and in the case
χ = ∆ − 5, the list is only known to contain at least 17000 graphs. This is because a
complete characterization of the possible critical subgraphs relies on a characterization of
the l critical graphs on n vertices, which quickly becomes computationally expensive.

We conclude by observing that these results are promising for our search. Indeed, they
seem to suggest that when χ is close to ∆, that a clique of size close to ∆ must be involved
in raising the chromatic number, which cannot be inflated by complex, global, structural
factors alone.

1.6 Overview

The remainder of this thesis is structured as follows. Chapter 2 is dedicated to discussing
the following result due to Cranston and Rabern (see Conjecture 1.12):
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Theorem 1.22. BK is Weaker than it Appears[4]
Suppose that every graph G with χ(G) = ∆(G) = 9 contains K3 ∨E6 as a subgraph. Then
the Borodin-Kostochka conjecture is true.

We present some of the main ideas involved in this proof, including a complete descrip-
tion of the reduction to ∆ = 9, the special minimality condition introduced by the authors,
and the main idea involved in excluding the K3 ∨ E6 subgraph.

Chapter 3 begins the proof of our result by introducing some of the key ideas used
in the proof, most importantly “Mozhan partitions” (Definition 3.5). We then go on to
prove some preliminary facts about Mozhan partitions and their transformations, dubbed
“moves” (Definition 3.16).

Chapter 4 builds on Chapter 3. Using the accumulated facts about Mozhan partitions,
we show that it is possible to find many small cliques inside the parts of a Mozhan partition,
and then show that many of these small cliques are actually joined together, producing the
desired result.

In Chapter 5, we discuss future avenues for these ideas and how they might be used to
further our understanding of graphs with high chromatic number.

11



Chapter 2

A (Seemingly) Weaker Statement

As mentioned before, the main result of this thesis (Theorem 4.16) was produced as a
demonstration of the methods used by Cranston and Rabern in their ∆−3 result (Theorem
1.13), extended to the χ = ∆ − 1 case. In order to more thoroughly survey the progress
which has been made on BK, we will now highlight some of the main ideas used in another
result proved by Cranston and Rabern, prolific as they are, in pursuit of the conjecture.
This highlighting will not constitute a full proof, we only hope to acquaint the reader with
the main ideas. The result is as follows.

Theorem 2.1. BK is Weaker than it Appears [4]
Suppose that every graph G with χ(G) = ∆(G) = 9 contains K3 ∨E6 as a subgraph. Then
the Borodin-Kostochka conjecture is true.

There are two interesting details to note here. The first is that it is only necessary to
consider the case ∆ = 9, as opposed to ∆ ≥ 9. The second is that containing K3 ∨ E6 is
strictly weaker than containing a K9, as is required by the Borodin Kostochka Conjecture.
Taken together it is surprising that this statement, which appears to be a strictly weaker
consequence of the conjecture, is in fact equivalent to the conjecture. We now outline how
this equivalence is proved.

The proof can be split into two independent steps. The first step is to prove that it is
sufficient to prove BK in the case of ∆ = 9, ignoring every ∆ > 9. The second step is to
prove that the subgraph K3 ∨E∆−3 cannot appear in any minimal counterexample to BK,
with respect to a carefully defined minimality condition.
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2.1 Reduction to ∆ = 9

First, we will focus on the reduction of ∆ ≥ 9 to ∆ = 9. The possibility of this reduction
was known to Kostochka [12] and Catlin [3]. The reduction is actually quite straightfor-
ward, and the main instrument involved is the following lemma due to King. The lemma
was proved as a tool for approaching Reed’s conjecture, and is an improvement on a prior
result of Rabern’s [17]. It will also be instrumental in the final step of our own ∆ − 17
result (Theorem 4.16).

Lemma 2.2. King [10]
Let G be a graph with ω(G) > (2/3)(∆(G) + 1). Then G contains an independent set I,
which contains one vertex from every maximum clique in G.

The bound in this lemma is known to be tight. Indeed, recall the graphs Gt = C5,t

for any natural number t. These graphs satisfy ∆ = 3t − 1, and ω = 2t, so that ω(Gt) =
(2/3)(∆(Gt) + 1). However, any maximal independent set in Gt has size 2, and must not
intersect one of the 5 maximum cliques.

Suppose for a moment that we have a counterexample G to BK with χ = ∆ = n for
some n ≥ 9. Let G′ be a vertex-critical subgraph of G, so that χ(G′) = n. As G′ is a
subgraph, we have ∆(G′) ≤ ∆(G). However, if we actually get that ∆(G′) < ∆(G), then
we have ∆(G′) < ∆(G) = χ(G) = χ(G′). Now, as ∆(G′) < χ(G′), the Greedy Bound
tells us that χ(G′) = ∆(G′) + 1. We therefore obtain ∆(G′) = ∆(G) − 1 ≥ 8. But now,
Brook’s Theorem kicks in, and gives us a clique Kn of size χ(G′) = n in G′. But G′ is a
subgraph of G, and so G also contains Kn as a subgraph. This contradicts the fact that G
is a counterexample to BK, and therefore does not contain a clique of size n. All together,
χ(G′) = ∆(G′) = n, and G′ is n-critical. In summary, if we can find a counterexample, we
can find a vertex-critical counterexample.

For n ≥ 9, let bad(n) be the set of vertex-critical counterexamples to BK with ∆ = n.
Formally,

Definition 2.3.

bad(n) := {G : χ(G) = ∆(G) = n, ω(G) < n, G is vertex-critical} .

We will now show that for n ≥ 10, if bad(n) is nonempty, then bad(n− 1) is nonempty,
completing the reduction to ∆ = 9. By our previous discussion, if there is a counterex-
ample G to BK with χ(G) = n, then all vertex-critical subgraphs of G (there must be at
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least one) are members of bad(n). Now, suppose we have a fixed number n ≥ 10, and a
counterexample graph G ∈ bad(n).

Suppose first that ω(G) ≤ n−2. Now let I ⊆ V (G) be a maximal independent set, and
let G′ := G− I. As G is vertex-critical, and I is an independent set, we have χ(G− I) =
χ(G) − 1. Furthermore, as I is a maximal independent set, we have ∆(G′) ≤ ∆(G) − 1,
as for every vertex v ∈ G of maximum degree, I must contain a vertex in {v} ∪ N(G, v).
Now let G′′ be a vertex-critical subgraph of G′. Observe that χ(G′′) = χ(G′) = n − 1.
Thus, if ∆(G′′) ≤ n − 2, Brooks’ Theorem and the Greedy Bound would give us that G′′

and thus G contain an n − 1 clique, contradicting our assumption on ω(G). This means
that ∆(G′′) = χ(G′′) = n − 1. By construction G′′ is vertex-critical, and all together, we
get G′′ ∈ bad(n− 1).

Now suppose that ω(G) = n− 1. We derive

5 < ∆

=⇒ 2 < ∆− 3

=⇒ 2∆ + 2 < 3∆− 3

=⇒ (2/3)(∆ + 1) < ∆− 1

=⇒ (2/3)(∆ + 1) < ω

and so we may use the King result (Lemma 2.2) to get a maximal independent set I which
intersects every maximum clique in G. As G is vertex-critical and I is independent, we
have χ(G − I) = χ(G) − 1. Furthermore, as I contains one vertex from every maximum
clique in G, we have ω(G− I) = ω(G)−1. Once again, we have that ∆(G− I) ≤ ∆(G)−1
by the maximality of I. If we have ∆(G−I) ≤ ∆(G)−2 = χ(G−I)−1, the Greedy Bound
gives us ∆(G − I) = χ(G − I) − 1, and then Brooks’ Theorem gives us a clique of size
χ(G−I) = χ(G)−1 = n−1 in G−I. This contradicts the construction of I, which implied
that ω(G− I) = ω(G)− 1 = n− 2. Therefore, we once again have ∆(G− I) = ∆(G)− 1.
Let G′ be a critical subgraph of G− I. Then we compress our above argument and derive:

∆(G′) < ∆(G− I) = χ(G− I) = χ(G′) =⇒ ω(G− I) ≥ χ(G− I) = n− 1

(via Brooks’ and the Greedy Bound, as above), a contradiction to ω(G− I) = n− 2. This
gives us ∆(G′) = ∆(G−I), and so we get G′ ∈ bad(n−1). Therefore, if bad(n) is nonempty
for n > 9, then bad(n−1) is also nonempty. It follows that the emptiness of bad(9) implies
the nonexistence of any counterexample to BK, and would thus prove the conjecture.
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2.2 Mules

As mentioned before, the second step is to prove that the subgraph K3 ∨ E∆−3 cannot
appear in any “minimal” counterexample to BK. Before we elaborate on the meaning of
“minimal” in this context, we will need the following definition.

Definition 2.4.
Let G and H be graphs. A graph epimorphism is a map

f : V (G)→ V (H)

such that vw ∈ E(G) =⇒ f(v)f(w) ∈ E(H), and f(V (G)) = V (H). We sometimes write
f : G→ H.

Graph epimorphisms are graph homomorphisms which surject onto the target vertex
set. Observe that as a graph epimorphism f : G → H must be a graph homomorphism,
every inverse image f−1(v) ⊆ V (G) must be an independent set, as graph homomorphisms
are not allowed to send the two endpoints of any edge to the same vertex.

Cranston and Rabern then define the following graph relation.

Definition 2.5.
Let G be a graph. We call a graph H a child of G when there exists a subgraph G′ ⊆ G
and a graph epimorphism from G′ → H.

If we have a graph epimorphism f : G→ H, we can construct the graph H from G as
follows. For each v ∈ V (H), collapse the independent set f−1(v) ⊆ V (G) to a single vertex,
call the resulting graph G′. As f is surjective, we can identify V (G′) with V (H). Then
simply add each edge of E(H) \ E(G′) to G′. Thus, the child relation has the following
equivalent definition.

Definition 2.6.
Let G be a graph. Let H be a graph obtained from G by:

1. Taking a subgraph.

2. Contracting independent sets into single vertices.

3. Adding edges.

Then we call H a child of G.
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As might be suggested by the name, the child relation is a partial order.

Lemma 2.7.
The child relation is a partial order.

Proof. First, we show reflexivity. Let G be any graph. We have the subgraph G ⊆ G and
the graph epimorphism id : G→ G. Thus, G is a child of itself, as required.

For transitivity, suppose that A is a child of B, and B is a child of C. We would like
to show that A is a child of C. Let B′ ⊆ B be a subgraph and f : B′ → A be a graph
epimorphism. Likewise, let C ′ ⊆ C be a subgraph and g : C ′ → B be a graph epimorphism.
Consider the subgraph C ′′ := C[g−1(B′)], and let g′ be the restriction of g to C ′′. Then
g′ is also a graph epimorphism, and as the composition of graph epimorphisms is a graph
epimorphism, we have a graph epimorphism f ◦ g′ : C ′′ → A. Thus, A is a child of C, as
desired.

Finally we show antisymmetry. Observe that if H is a child of G and H 6= G, then
either H has fewer vertices than G, or more edges than G. So suppose that G is a child
of H, and H is a child of G. It cannot be that H 6= G, as otherwise G would have fewer
vertices or more edges than itself, a contradiction. This proves that the child relation is
reflexive, transitive, and antisymmetric, i.e. a partial order.

This partial order is well-founded, that is, every nonempty set S of graphs has a minimal
element under the child relation. Indeed, if G is a graph, then any proper child of G must
have fewer vertices or more edges. So if G ∈ S is taken to have a minimum number of
vertices, and with respect to that a maximum number of edges, then G must be minimal
under the child relation.

Definition 2.8.
Let S be a nonempty set of graphs. We refer to the graphs in S which are minimal under
the child relation as S-mules, or just “mules” if the set S is clear from context.

Cranston and Rabern did not discuss the reasoning behind this terminology, but as
pointed out by P. Haxell, it likely has to do with the fact that mules are sterile and
therefore cannot have any children.

2.3 A Sample of the Subgraph Reduction

The remainder of Cranston and Rabern’s proof is in showing that any muleM ∈ bad(n), n ≥
9 cannot contain the subgraph K3 ∨ E∆−3. Thus, when n = 9, no mule M ∈ bad(9) may
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contain K3 ∨ E6, so if every graph G with χ(G) = ∆(G) = 9 contains an K3 ∨ E6, then
it is impossible for there to be any counterexamples to BK, and so BK is true. To yield
some insight into how this result is proved, we outline the proof of a related result, that
every mule in bad(n), n ≥ 9 cannot contain the subgraph K4∨E∆−4. The main ideas used
in both arguments are the same, but turning the “4” into a “3” requires a more in-depth
technical analysis. Except for the short proof of Lemma 2.17 on d1-choosability (to be
defined later), the proofs in this section are not original, and appear as shown in [4].

We will need some definitions from the domain of list colouring.

Definition 2.9.
Let G be a graph. A list assignment on G is a map L : V (G)→ P(N).

Definition 2.10.
Let G be a graph, and let L : V (G)→ P(N) be any list assignment on G. We say that G
is L-colourable when there is a colouring φ : V (G)→ N such that φ(v) ∈ L(v) for every
vertex v.

Definition 2.11.
Let G be a graph, let f : V (G)→ Z be any function, and let L be a list assignment on G.
If for all v ∈ V (G), we have |L(v)| = f(v), then we say that L is an f -assignment.

Definition 2.12.
Let G be a graph, and let f : V (G)→ Z be any function. We say that G is f-choosable
when, for every list assignment f -assignment L, we have that G is L-colourable.

Definition 2.13.
Let G be a graph, and let L be a list assignment on G. We define the pot of L to be

pot(L) :=
⋃

v∈V (G)

L(v).

If φ is a colouring of G, then we define pot(φ) to be the range φ(V (G)).

List colouring generalizes the notion of colouring, as each vertex is allowed to have a
different set of possible colours instead of having to choose from one global set of colours.
The idea of list colouring arises naturally when one considers the idea of extending partial
colourings of graphs. If you have a graph G and an induced subgraph U , and you have a
l-colouring φ of G− U , then you can form the list assignment

Lφ : V (U)→ P(N), v 7→ {n ∈ pot(φ) : n is not used by φ on N(G− U, v)}
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and if U admits an L-colouring ψ, then combining φ and ψ gives you a l-colouring of
the entire graph G. Cranston and Rabern use this idea repeatedly in their proof of the
subgraph reduction.

The following well-known theorem due to Hall is useful in the context of list colouring.

Theorem 2.14. Hall’s Marriage Theorem [7, p.38]
Let G be a bipartite graph with bipartition (A,B). Then G admits a matching covering A
if and only if, for all U ⊆ A, we have |U | ≤ |N(U)|.

This is because, given a graph G and a list assignment L on G, we can form a bipartite
graph H between V (G) and pot(L), including an edge vc between a vertex and a colour
exactly when c ∈ L(v). Then, if H admits a matching covering V (G), that matching can be
used to construct an L-colouring of G by colouring each vertex the colour it is paired with
in the matching. This idea is not very useful in the context of ordinary graph colouring,
as such a matching would entail a colouring where every vertex receives a different colour,
which would be possible if and only if the number of colours is at least the number of
vertices of the graph, an extremely generous (and therefore dull) situation. To see these
ideas in action, we will give a proof of the “Small-Pot Lemma”, a useful result which allows
one to restrict the size of the pot considered in list colourings. To reiterate, this proof is
not new. It appears here in the same form as in [4].

Lemma 2.15. The Small-Pot Lemma
Let G be a graph, and let f : V (G)→ {1, 2, . . . , |G| − 1} be any function. Suppose that G
is not f -choosable. Then there is an f -assignment L on G where G is not L-colourable,
and |pot(L)| < |G|.

Proof. Suppose we have such a graph G and map f , and for the sake of a contradiction,
assume that G is not f -choosable, but whenever an f -assignment L has |pot(L)| < |G| that
G is L-colourable. Since G is not f -choosable let L be an f -assignment, such that G is not
L-colourable. By assumption, it must be that |pot(L)| ≥ |G|. For every subset U ⊆ V (G),
let L(U) be the set L(U) :=

⋃
v∈U L(v). Now, let H be a bipartite graph between V (G)

and pot(L), where there is an edge vc ∈ H exactly when c ∈ L(v). That is, H forms an
explicit representation of the colours available to each vertex v via L. Now, if there is a
matching of H covering V (G), then we have an L-colouring of G. By Hall’s theorem, we
know that such a matching can be found exactly when each subset U ⊆ V (G) satisfies
|U | ≤ |N(H,U)|. For each subset U ⊆ V (G), define h(U) := |U | − |L(U)|. Since G is not
L-colourable, there must be a subset U with h(U) > 0. Choose U to maximize h(U), and
let C be an arbitrary set of |G| − 1 colours which contains L(U). We will construct a new
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list assignment L′, as follows. For v ∈ U define L′(v) := L(v). For v /∈ U , define L′(v) to
be an arbitrary subset of C of size f(v). By assumption, G admits an L′-colouring, which
restricts to an L-colouring φ on U . Now for any subset W ⊆ V (G) \ U , we claim that
|W | ≤ |L(W ) \ L(U)|. Indeed, supposing on the contrary that |W | > |L(W ) \ L(U)|, we
derive:

h(U ∪W ) = |U ∪W | − |L(U ∪W )|
= |U |+ |W | − |L(U ∪W )| Because U and W are disjoint.

= |U |+ |W | − |L(U) ∪ L(W )|
= |U |+ |W | − |L(U) ∪ (L(W ) \ L(U))|
≥ |U |+ |W | − |L(U)| − |L(W ) \ L(U)|
> |U | − |L(U)|
= h(U).

This contradicts the maximality of h(U). Thus, for all sets W ⊆ G \ U , we indeed have
|W | ≤ |L(W ) \ L(U)|. But via Hall’s Theorem, this means that the L-colouring φ of U
can be extended to all of G, contradicting the fact that G is not L-colourable.

The Small Pot Lemma is used by Cranston and Rabern to characterize the graphs
of the form K4 ∨ D, where D is any graph, which are not d1-choosable (Lemma 2.20).
This characterization restricts the number of possible subgraphs, in mules, which could
be induced by the vertices of a K4 ∨ E∆−4. They then show explicitly that each of these
possible induced subgraphs cannot appear, and so there cannot be any K4∨E∆−4 subgraph.

We will need the following definition.

Definition 2.16.
Let G be a graph, and let l be some integer. Let f : V (G)→ Z, v 7→ deg(G, v)− l. If G is
f -choosable, then we say that G is dl-choosable.

The heart of Cranston and Rabern’s weakening of BK is the following.

Lemma 2.17.
Let G be a vertex-critical graph with χ(G) = ∆(G), and ∆(G) ≥ 9. Let U be an nonempty
induced subgraph of G. Then U is not d1-choosable.
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Proof. Suppose for the sake of a contradiction that we have such a graph G, and an induced
subgraph U which is d1-choosable. By the vertex-criticality of G, and the nonemptiness of
U , let φ be a (∆(G)− 1)-colouring of G− U . We construct the following list assignment

Lφ : V (U)→ P(N), u 7→ pot(φ) \
⋃

v∈N(G−U,u)

{φ(v)}

so that each list Lφ(u) contains exactly those colours which have not been used yet on the
neighbours of u. Now, as U is an induced subgraph, we have that for each vertex u ∈ U ,
deg(G, u) = deg(G− U, u) + deg(U, u). This allows us to derive:

|L(u)| ≥ (∆(G)− 1)− deg(G− U, u)

= (∆(G)− 1)− (deg(G, u)− deg(U, u))

≥ (∆(G)− 1)− (∆(G)− deg(U, u))

= deg(U, u)− 1.

But this is a problem. By assumption, U is d1-choosable. Thus, let ψ be an Lφ-colouring
of U . Combining φ and ψ therefore yields a (∆(G)−1)-colouring of G. But χ(G) = ∆(G),
so this is impossible.

To give an example of the use of the minimality criteria of mules, we prove the following.

Lemma 2.18.
Let G be a mule in bad(n) for n ≥ 4. Suppose that H is a child of G with ∆(H) ≤ n.
Then either H is (n− 1)-colourable, or H contains a clique of size n.

Proof. Let H be a child of G, with ∆(H) ≤ n. Suppose for the sake of contradiction
that both χ(H) ≥ n and that ω(H) ≤ n − 1. If χ(H) ≥ n + 1, then the Greedy Bound
and Brooks’ Theorem would give us that ω(H) = n + 1, contradicting our assumption
that H does not contain a clique this large. Likewise, it cannot be that ∆(H) ≤ n − 1,
giving us that χ(H) = ∆(H) = n. But as G is a mule, H cannot be in bad(n), and
so H must not be vertex-critical. Let H ′ ⊂ H be an induced vertex-critical subgraph.
Observe that H ′ is a proper child of H, obtained by removing some vertices, contracting
no independent sets, and adding no edges. By construction, we have χ(H ′) = χ(H) = n,
and ∆(H ′) ≤ ∆(H) = n, and ω(H ′) ≤ ω(H) < n. So it cannot be that ∆(H ′) < n, as
this would imply that ω(H ′) = n. This means that we have χ(H ′) = ∆(H ′) = n, and
ω(H ′) < n, and we know that H ′ is vertex critical. Thus, H ′ ∈ bad(n). But H ′ is a proper
child of H, and therefore a proper child of G, contradicting the fact that G is a mule.
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The following lemma is an intermediate result in Cranston and Rabern’s full reduction
of BK. The proof of this lemma demonstrates the main ideas used in the final proof of
their subgraph reduction. Namely, assume the bad subgraph exists, use d1-choosability to
restrict the possible number of induced subgraphs on those vertices, then explicitly rule
out each induced subgraph. We will need two specific mules, named M7,1 and M7,2 (see
figures 2.1 and 2.2), both of which live in bad(7). The mule M7,1 is formed by taking the
disjoint union of K5∨E3 and K6, and joining each vertex of the E3 to two distinct vertices
of the K6. The mule M7,2 is formed by removing a maximal independent set from the
graph C5,3, which was the graph demonstrating the tightness of the bound ∆ ≥ 9 for BK.

Figure 2.1: The mule M7,1.

Figure 2.2: The mule M7,2.
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Lemma 2.19.
Let n ≥ 7 and let G be a mule in bad(n) which is not M7,1. Then G does not contain
K4 ∨ En−4 as a subgraph.

We will need some intermediate results to prove this intermediate result.

Lemma 2.20.
Let n ≥ 4. Suppose that the graph Kn ∨D is not d1-choosable. Then one of the following
must hold:

• D is a clique.

• D is a clique, minus one edge.

• n = 4 and D = E3

• n = 4 and D = K1,3

• n = 5 and D = E3.

Lemma 2.21.
For n ≥ 7, the only mule in bad(n) containing an induced E3 ∨Kn−3 is M7,1.

Lemma 2.22.
Let n ≥ 7, and let G be a mule in bad(n) which is not M7,1 or M7,2. Suppose that H ⊆ G
is an (n− 1)-clique. Then any vertex in G−H has at most 1 neighbour in H.

Lemma 2.23.
Let n ≥ 7, and let G be a mule in bad(n) which is not M7,1. Then G does not contain an
induced E3 ∨Kn−3.

Using these lemmas, they prove Lemma 2.19.

Proof. Let n ≥ 7 and let G be a mule in bad(n) which is not M7,1. Suppose for the sake of
a contradiction that G contains K4 ∨ En−4 as a subgraph. Then the induced subgraph H
on these vertices is of the form H = K4∨D where |D| = n−4. By Lemma 2.17, the graph
K4 ∨D is not d1-choosable, so by Lemma 2.20, D is a clique, a clique minus one edge, E3,
or K1,3. If D is a clique, then G contains a Kn, which contradicts the fact that all graphs
in bad(n) have ω < n. If D is a clique less an edge, say an edge xy /∈ E(G) for x, y ∈ V (D),
then the graph H − x is an (n − 1)-clique. By Lemma 2.22, the vertex y has at most 1
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neighbour in H − y, contradicting the fact that y is joined to H − x. The only remaining
possibilities are that D is E3 or K1,3. However, observe that K4 ∨K1,3 = K5 ∨ E3. Thus,
in either of the two remaining cases, H is an induced E3 ∨ Kn−4, which is impossible by
Lemma 2.23. Thus, every possibility is impossible, and G cannot contain the subgraph
K4 ∨ En−4.

This proves that BK is equivalent to the “weaker” statement:

Conjecture 2.24.
Every graph G with χ(G) = ∆(G) ≥ 9 contains K4 ∨ E∆(G)−4 as a subgraph.

The remainder of Cranston and Rabern’s reduction consists of ratcheting the “4” down
to a “3”. This is accomplished using very similar means. The induced subgraph on
K3 ∨ E∆−3 can only take a handful of forms, to prevent d1-choosability, and each of these
possible forms is proven to be impossible using specific colouring arguments. Rabern
has published an extensive list of d1-choosable graphs on his website, all of which therefore
cannot be induced subgraphs in mules. For those reading a physical copy of this document,
the link is: “https://landon.github.io/graphdata/borodinkostochka/offline/index.html”.

This concludes our explicit tour of ideas which have been used to attack the Borodin-
Kostochka conjecture. We continue on with an implicit tour, given in the form of a novel
result.
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Chapter 3

Extending to ∆− 1

3.1 Background

Our goal is to prove the following theorem.

Theorem 3.1. Graphs with χ = ∆− 1 have Big Cliques
Let G be a graph with χ(G) = ∆(G)− 1, and ∆(G) ≥ 66. Then G contains a clique of size
∆(G)− 17.

To do this, we will begin by partitioning our graph into many smaller subgraphs, most
of which will contain a small clique. Then we will show that many of these small cliques
are fully joined to each other, producing a large clique.

For the remainder of this document, we will make frequent use of induced subgraphs.
When G is a graph, and U ⊆ V (G) is a set of vertices, we will sometimes refer to the set
U as though it were the induced subgraph G[U ]. Therefore we will speak of such things
as χ(U), when we really mean χ(G[U ]). This is to avoid an overabundance of symbolism
when the parent graph G is clear from context, if there is ambiguity then the full form
G[U ] will be used instead.

We will warm up by reviewing a similar result proved by Borodin and Kostochka in [1].
The reader should observe a few key details of this proof. It begins with a graph satisfying
χ = ∆. We partition our graph, maximizing the number of edges that cross between parts,
then we leverage Brooks’ Theorem to show that one of the parts must contain a clique.
These three points, partition the graph, maximize edges between parts, find cliques within
parts, will remain crucial in the proof of our main result. The formulation of this particular
partition was done by Lovász [13].
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Definition 3.2.
Let G be a graph. A Lovász Partition of G is a partition P = (P1, P2) of V (G) such
that, if v ∈ Pi, then deg(Pj, v) ≥ deg(Pi, v) where j 6= i. That is, every vertex has at least
as many neighbours in the other part as its own part.

Lemma 3.3. The Existence of Lovász Partitions
Let G be any graph. Then G admits a Lovász partition.

Proof. For any partition P = (P1, P2) of V (G), define the function

f(P ) := |{vw ∈ E(G) : v ∈ Pi, w ∈ Pj, i 6= j}|

so that f counts the number of edges which cross between P1 and P2. Now, f is bounded
above by |E(G)|, so let P = (P1, P2) be a partition of G which maximizes f(P ). We
claim that P is a Lovász partition. Indeed, suppose that P is not a Lovász partition. We
may then find v ∈ Pi with deg(Pi, v) > deg(Pj, v). Move v to Pj to obtain P ′. Then
f(P ′) ≥ f(P ) + 1, contradicting the maximality of f(P ). Thus, P is indeed a Lovász
partition.

This proof contains another idea which will be key for what follows. If our partition
does not satisfy the property we want, we can move vertices to obtain a new partition which
is “more extreme” (with respect to whatever extremal criterion we set up beforehand) and
get a contradiction.

Now, we will use the Lovász partition to prove the following.

Theorem 3.4. Graphs with χ = ∆ have Medium Cliques [1]
Let G be a graph with χ(G) = ∆(G) and ∆(G) ≥ 7. Then G contains a clique of size
b(∆(G) + 1)/2c.

Proof. As per Lemma 3.3 (existence of Lovász partitions), let P = (A,B) be a Lovász
partition of G. Observe that χ(G) ≤ χ(A) + χ(B), as we can colour each part separately
with distinct colours. Therefore, we must have χ(A) ≥ χ(G)/2 or χ(B) ≥ χ(G)/2. Observe
further that ∆(A),∆(B) ≤ ∆(G)/2 by the definition of the Lovász partition. Suppose
without loss of generality that χ(A) ≥ χ(G)/2.

We split the proof into two cases. In the first case, suppose that χ(G) = ∆(G) is odd.
Because both χ and ∆ must always take integer values, we may strengthen our inequalities
to get χ(A) ≥ (∆(G) + 1)/2 and ∆(A) ≤ (∆(G) − 1)/2. Thus, we have χ(A) > ∆(A),
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and by the Greedy Bound we know that this implies χ(A) = ∆(A) + 1. We assumed that
∆(G) ≥ 7, giving us that

∆(A) = χ(A)− 1 ≥ (χ(G) + 1)/2− 1 ≥ (7 + 1)/2− 1 ≥ 3

so by Brooks’ Theorem we have that A contains a clique of size χ(A). But

χ(A) ≥ (χ(G) + 1)/2 = (∆(G) + 1)/2 = b(∆(G) + 1)/2c

so we have found a clique in A, and therefore G, of the necessary size.

Suppose now that ∆(G) is even. We can no longer exploit the integrality of χ and ∆
to derive χ(A) > ∆(A) as we did in the previous case. If it happens that χ(A) > ∆(A) by
chance, the Greedy Bound once again implies χ(A) = ∆(A) + 1, and we derive

∆(A) = χ(A)− 1 ≥ χ(G)/2− 1 ≥ (8/2)− 1 = 3

so Brooks’ Theorem tells us that A contains a clique of size

χ(A) ≥ χ(G)/2 = b(∆(G) + 1)/2c

as needed.

It only remains to check the case χ(A) = ∆(A) = χ(G)/2, which would prevent us
from using Brooks’ Theorem. However, we can fix this problem. If there is a vertex
v ∈ A with deg(A, v) = ∆(A) = ∆(G)/2, then by the definition of a Lovász partition,
it must be that deg(B, v) = ∆(G)/2 as well. Thus we can move v from A to B to
obtain another Lovász partition P ′. Repeating this procedure if any more such vertices
exist, we may assume without loss of generality that ∆(A) < ∆(G)/2. This is good,
however, we can no longer assume that χ(A) ≥ χ(G)/2, as moving vertices may have
changed the chromatic number, but this is not a problem. If it happens by chance that we
still have χ(A) ≥ χ(G)/2, then invoking Brooks’ Theorem on A gives us a clique of size
χ(A) ≥ χ(G)/2 = b(∆(G) + 1)/2c. Otherwise, we have that χ(A) < χ(G)/2. However,
now it must be that χ(B) ≥ (χ(G)/2) + 1, while we still have that ∆(B) ≤ ∆(G)/2 =
χ(G)/2. Therefore, Brooks’ Theorem applied to B gives us the necessary clique, and we
are done.

3.2 Mozhan Partitions

We will now define a very important type of graph partition, named the “Mozhan partition”
in honour of N. N. Mozhan, who introduced it [15].
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Definition 3.5.
Let G be a graph. A Mozhan partition of G is a triple M = (P, v, s) satisfying the

following three properties.

1. P = (P1, P2, . . . , Pk) is a partition of V (G).

2. v ∈ Ps is critical for Ps.

3. χ(G) =
∑k

i=1 χ(Pi).

Mozhan partitions come with some additional data.

Definition 3.6.
Let G be a graph, and let M = (P, v, s) be a Mozhan partition of G, with k parts. The
parameters of M are the integers r1, r2, . . . , rk, where rs := χ(Ps) − 1, and for i 6= s,
ri := χ(Pi).

The parameters of a Mozhan partition may seem like a superfluous definition at first,
they merely hold information about the chromatic numbers of the parts. However, later
on we will consider transformations between Mozhan partitions and the parameters will
become an important invariant.

We will often need the minimum parameter of a Mozhan partition to satisfy some lower
bound, so from now on we will use the letter m to denote the minimum parameter of a
given Mozhan partition. In a similar vein, the letter k will always refer to the number of
parts of a Mozhan partition, and the letter s will always refer to the index of the part in
which the special vertex v lives (think “special part” for Ps).

Remark. For a graph G with a Mozhan partition M = (P, v, s), we know that v is critical in
Ps by definition. However, the vertex v is also critical in G. Recall that χ(G) =

∑k
i=1 χ(Pi).

The induced subgraph Ps − v may be (χ(Ps) − 1)-coloured. So by using distinct colours
on all parts, we may (χ(G)− 1)-colour G− v. Similarly, if a vertex is critical in any part
of the Mozhan partition, it is critical in the whole graph.

In fact, criticality in one part implies criticality in all other parts.

Lemma 3.7. Local Criticality is Mobile
Let G be a graph with a Mozhan partition M . Suppose that w ∈ Pi is critical for Pi. Then
w is critical in Pj + w, for all j 6= i.
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Proof. We need to show that χ((Pj + w) − w) = χ(Pj + w) − 1. Simplifying, we must
show that χ(Pj +w) = χ(Pj) + 1. Assume not. Since adding a vertex cannot decrease the
chromatic number, we have χ(Pj + w) = χ(Pj). But by the criticality of w in Pi, we have
χ(Pi − w) = χ(Pi) − 1. So by moving w to Pj and using distinct colours on all parts, we
may (χ(G)− 1)-colour G, which is impossible. This contradiction proves the claim.

The previous lemma demonstrates a technique that will be used often. For a graph
G with a Mozhan partition M = (P, v, s), we have that χ(G) =

∑k
i=1 χ(Pi). Thus, it is

impossible to move vertices between parts to decrease the chromatic number of some part
without increasing the chromatic number of another. Otherwise, we could use distinct
colours on all parts to colour G with fewer than χ(G) colours. Intuitively, the fact that
these movements bump up the chromatic numbers of other parts implies the existence of
many edges between parts, which will come in handy for finding a large clique.

We now introduce the minimality condition which has proven very useful for Mozhan
partitions. It appears here in exactly the same form as in Cranston and Rabern’s ∆ − 3
proof [6].

Definition 3.8.
Let M = (P, v, s) be a Mozhan partition. We say that M is minimum when M minimizes
the sum

σ1(M) :=
∑
i 6=s

|Pi|E + |Ps − v|E

and subject to that, minimizes

σ2(M) := deg(Ps, v)− rs.

A minimum Mozhan partition first seeks to minimize the number of edges within parts,
and then seeks to minimize the number of neighbours of the special vertex inside the special
part. This reduction of edges is what will produce the aforementioned small cliques within
parts, which will be seen shortly. Strangely, it will turn out that for a minimum Mozhan
partition M we will always have σ2(M) = 0.

Now we will give a name to the most important component within a Mozhan partition.

Definition 3.9.
Let G be a graph, and M = (P, v, s) be a Mozhan partition of G. We define the active
component of M to be the component of Ps which contains v. The active component
will be denoted act(M).
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The following lemma essentially follows from the observation that if you add a vertex
v to a graph G to produce G′, and deg(G′, v) < χ(G), then χ(G′) ≤ χ(G). That is, the
chromatic number cannot increase if you add a vertex with low degree. Indeed, if φ is a
χ(G)-colouring of G, then as |N(G′, v)| < χ(G), there is some colour c, used for φ, but
not used in N(G′, v), and so we can use c on v to χ(G)-colour G′. Conversely, if adding a
vertex increases the chromatic number, that vertex must have a lot of neighbours.

Lemma 3.10. Critical Vertices have Many Neighbours
Let G be a graph, and let v ∈ G be a critical vertex. Then there is a component C of G− v
with deg(C, v) ≥ χ(G)− 1.

Proof. Suppose not, so that for all components C of G− v, we have deg(C, v) ≤ χ(G)− 2.
For each component C, let φC be a (χ(G)− 1)-colouring of C, allowed by the criticality of
v in G. Greedily extend each colouring φC to φ′C , a (χ(G)− 1)-colouring of C + v, allowed
by the fact that deg(C, v) ≤ χ(G)−2 = (χ(G)−1)−1, meaning that there will be a colour
left over for v. By definition there are no edges between distinct components of a graph, so
we may choose these colourings such that v always receives the same colour. Combining
these colourings produces a (χ(G)− 1)-colouring of G, a contradiction.

Now we will make our first real use of the fact that χ is close to ∆, to show that
no vertex can have too many neighbours in all parts. Given what we have said about
the utility of many edges between parts, this may seem prohibitive. However, for reasons
we have not yet seen (Lemma 3.15), we would really like our vertices to have exactly ri
neighbours into each part Pi, so this restriction will be helpful.

Lemma 3.11. Every Vertex has a Part with Low Degree
Let G be a graph with χ(G) = ∆(G) − 1, and M a Mozhan partition of G with k ≥ 3
(recall that k denotes the number of parts). Then every vertex w ∈ G has a part Pi with
deg(Pi, w) ≤ ri.

Proof. Recall that χ(G) =
∑k

i=1 χ(Pi) = 1 +
∑k

i=1 ri = ∆(G) − 1. Assume the claim is
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false. We then have:

deg(G,w) ≤ ∆(G)

= 2 +
k∑
i=1

ri

< k +
k∑
i=1

ri

=
k∑
i=1

(ri + 1)

≤
k∑
i=1

deg(Pi, w)

= deg(G,w)

which is a contradiction, as no number can be smaller than itself.

Lemma 3.12. The Active Component is a Clique
Let G be a graph with χ(G) = ∆(G)−1. Let M = (P, v, s) be a minimum Mozhan partition
of G with k ≥ 3. Suppose that rs ≥ 3. Then act(M) is a clique of size rs + 1 (= χ(Ps)).

Proof. For brevity let A := act(M). Recall that by the definition of a Mozhan parti-
tion, v is critical in Ps. Since A is the component of Ps containing v, we thus have that
χ(A) = χ(Ps). We also have χ(Ps) = rs + 1 by the definition of the parameter rs. To show
that A is a clique, we will show that ∆(A) ≤ rs. Together with the Greedy Bound, this
will give us that χ(A) = ∆(A) + 1. Then since odd cycles are 3-colourable, A cannot be
an odd cycle, and so Brooks’ Theorem will give us that A is a clique.

So suppose for a contradiction that we can find a vertex u ∈ A with deg(A, u) ≥ rs + 1.
Choose u to have minimum distance to v in A (in the case u = v, this distance is 0). Let q
be a minimum path from v to u through A, say that q = (q1 = v, q2, q3, . . . , qn = u). Now,
we claim that u is critical in Ps. First, since v is critical in Ps, let φ be an rs-colouring
of Ps − q. We can extend φ to φ′, an rs-colouring of Ps − u, by greedily colouring along
q − u, starting at v. If v = u, then we have no vertices to colour, and so we are done. If
v 6= u, then for i < n− 1, we have that deg(Ps, qi) ≤ rs by the minimal distance of u to v,
and since qi+1 has not yet been coloured, there is a colour available for qi. Then for qn−1,
the vertex u has been removed, and so deg(Ps − u, qi) ≤ rs − 1. Therefore, there is also a
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colour available for qn−1, and so the colouring φ may indeed be extended. By Lemma 3.11
(every vertex has a part with low degree), let Pi be a part of M with deg(Pi, u) ≤ ri. As u
is critical in Ps, and local criticality is mobile (Lemma 3.7), we have χ(Ps−u) = χ(Ps)−1,
and χ(Pi+u) = χ(Pi)+1. Thus, moving u to Pi and taking u to be the special vertex yields
another Mozhan partition M ′ = (P ′, v′, s′) = (P ′, u, i) of G, with the same parameters as
M .

Our minimality criteria now come into play. If u = v, then σ1(M ′) = σ1(M), as the
special vertex is the same for both partitions, but we have

σ2(M ′) = deg(Ps′ , v
′)− rs′ = deg(Pi + v, v)− ri ≤ 0

while
σ2(M) = deg(Ps, v)− rs ≥ 1

by our assumption that deg(Ps, v) > rs. Therefore, σ2(M ′) < σ2(M) which is impossible
by the minimality of M . So it cannot be that u = v, which gives us in particular that
deg(Ps, v) ≤ rs. But now we can derive

σ1(M ′) = σ1(M)− deg(Ps, u) + deg(Ps, v) ≤ σ1(M)− (rs + 1) + rs = σ1(M)− 1.

So again we have contradicted the minimality of M . Therefore, our posited vertex of u
of high degree cannot exist, giving us ∆(A) ≤ rs. As described above, this completes the
proof that A is a clique of size rs + 1.

We get the corollary:

Corollary 3.13. The Local Degree of the Special Vertex
Let G be a graph with χ(G) = ∆(G)− 1, and M a minimum Mozhan partition of G with
m ≥ 3 (recall that m is the minimum parameter of M) and k ≥ 3. Then deg(Ps, v) = rs.

Remark. As promised, we now see that it is always the case that σ2(M) = 0 when M is
minimum.

3.3 Moving Between Mozhan Partitions

It will be useful to restate the idea of “moving vertices” used in the proof of Lemma 3.12
(the active component is a clique) as its own lemma. First, we will show that any vertex
in the active component can serve as the special vertex.
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Lemma 3.14. Vertices in act(M) all Act the Same
Let M = (P, v, s) be a minimum Mozhan partition with k ≥ 3 and m ≥ 3. Let u ∈ act(M)
be any vertex. Then M ′ = (P, u, s) is another minimum Mozhan partition with the same
parameters.

Proof. We know that act(M) is a clique (Lemma 3.12) and so deg(Ps, v) = deg(Ps, u) = rs.
Furthermore, as v is critical in Ps, we know that act(M) is the only component C of Ps
with χ(C) = χ(Ps). Since every vertex in a clique is critical, we get that u is critical in
act(M) as well, and so u is critical in Ps. So, M ′ is indeed a Mozhan partition with the
same parameters. To show minimality, we derive

σ1(M ′) = σ1(M) + deg(Ps, v)− deg(Ps, u) = σ1(M)− rs + rs = σ1(M)

and we know

σ2(M ′) = deg(Ps, u)− rs = 0

as is required for a minimum Mozhan partition. Therefore, M ′ is minimum as well.

This puts us in a situation where, if we have a Mozhan partition M = (P, v, s), and a
vertex u ∈ act(M) with degree ri into some other part Pi, then we can move u to Pi and get
another minimum Mozhan partition! After u moves, Lemma 3.12 (the active component
is a clique) is applicable, and finds us a clique in Pi of size ri. Repeated application of
this principle is what allows us to find lots of small cliques in the parts of our Mozhan
partition. We now make these ideas more formal.

Lemma 3.15. Moving Vertices
Let G be a graph, let M = (P, v, s) be a Mozhan partition of G with k ≥ 3 and m ≥ 3, and
let u ∈ act(M) be any vertex in the active component. Suppose we have a part Pi 6= Ps
with deg(Pi, u) = ri. Then moving u to Pi yields another Mozhan partition M ′ with the
same parameters. Furthermore, if M is minimum, then so is M ′.

Proof. By Lemma 3.14 we may suppose that v = u. By the criticality of v in Ps, we have
χ(Pu − v) = χ(Ps) − 1. By Lemma 3.7 (local criticality is mobile) the vertex v is critical
in Pi + v, so that χ(Pi + v) = χ(Pi) + 1. Move v to Pi to obtain vertex partition P ′. Then
M ′ = (P ′, v, i) is a Mozhan partition with the same parameters as M .

Suppose now that M is minimum. To show that M ′ is minimum, we first have that
σ1(M ′) = σ1(M), as v is the special vertex in both partitions. By our assumption that
deg(Pi, v) = ri, we have deg(Pi, v)− ri = 0. Thus, σ2(M ′) = σ2(M) = 0. Therefore, M ′ is
another minimum Mozhan partition, as desired.
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Definition 3.16.
Let G be a graph, and M = (P, v, s) a Mozhan partition of G with k ≥ 3 and m ≥ 3. Let
u ∈ act(M) be any vertex, and suppose that we have a part Pi with deg(Pi, u) = ri. By
Lemma 3.15 (moving vertices), we can move u to Pi to produce another Mozhan partition
M ′ = (P ′, u, i), which is minimum if M is minimum. The pair (M,M ′) is referred to as a
move.

Definition 3.17.
A finite list of Mozhan partitions S = (M1,M2,M3, . . . ,Mn) such that every pair (Mi,Mi+1)
is a move will be referred to as a move sequence.

We can now outline our argument in more detail. To find a large clique, we will first
start with a critical graph G satisfying χ(G) = ∆(G). The criticality of G allows us to find
a Mozhan partition. Indeed, let v ∈ G be any vertex, and let φ be a (∆(G)− 2)-colouring
of G − v. Create the parts Pi by taking the unions of colour classes of φ, then add v to
any part Pi. The resulting vertex partition will be a Mozhan partition. We can thus find a
minimum Mozhan partition, call it M . We set off a move sequence, starting at M , subject
to a few criteria. Eventually the move sequence must halt, and some analysis will show
that the only possible reason for this halting is the presence of a large clique. We will need
a way to talk about the components within parts as they change across a move sequence,
and for this purpose, we define:

Definition 3.18.
Let S = (M1, . . . ,Mq+1) be a move sequence. For all t ∈ [q], let vt be the vertex which
moves at time t. A club is a sequence

X = (X1, X2, . . . , Xq+1)

such that X1 is a component of some part Pi in M1, and we have

Xt+1 :=


Xt − vt if Xt = act(Mt)

Xt + vt if Xt = act(Mt+1)

Xt otherwise.

That is, a club is a component within a part, as seen across a move sequence. For a
component Y within a part at any time, we denote by clb(Y ) the club to which Y belongs.

To familiarize the reader with clubs, we remark on a few properties. First, recall that
vertices only ever move out of the active component, a clique of size rs + 1, into cliques of
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size ri in some part Pi. Thus, for a component X1 in part Pi in M1 with |X1| < ri, we have
X2 = X1, and X3 = X2, and so on. No vertices ever move into clb(X1), or out of clb(X1),
this component remains static across time. One might imagine that X1 has sub-critical
mass, and cannot participate in the reaction of moving vertices.
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Chapter 4

Finding the Large Clique

We will now use the facts we have collected about Mozhan partitions to prove some more
difficult facts, which we will then use to find our large clique. As mentioned before, this
will be done by first finding many small cliques, and then showing that many of them are
fully joined together. What follows is a series of technical lemmas, building on what we
have discussed previously, which detail exactly how to find these cliques and how to show
they are fully joined.

4.1 Chromatic Excess and Cores

For what follows, it will be useful to formalize the idea of “too many edges” discussed
in Chapter 3. When a vertex w has χ(Pi) neighbours into part Pi, that is good. It is
easier to find cliques when we have many edges to work with, and if w is in the active
component, we may even move w to Pi to get a clique in Pi to which w is joined. However,
when deg(Pi, w) > χ(Pi), the “excess neighbours” end up posing a problem, as it becomes
difficult to determine exactly where the neighbours of w are, that is, what component of
Pi they lie in. We therefore wrap up this idea of “too many neighbours” in a definition.

Definition 4.1.
Let G be a graph, and let U ⊆ G be an induced subgraph. Let v ∈ V (G) be any vertex.
We define the chromatic excess of v into U to be ce(U, v) := deg(U, v)− χ(U).

Observe now that for a Mozhan partition M = (P, v, s), the vertex v must have at least
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ri neighbours into each part Pi, as v is critical in Pi+v. However, since ∆(G) = 2+
∑k

i=1 ri,
v can have at most 2 excess neighbours. This observation produces the following lemma.

Lemma 4.2. Small Chromatic Excess
Let G be a graph with χ(G) = ∆(G)− 1, and let M be a Mozhan partition of G. Suppose
that w ∈ Pi is critical in Pi, and let T ⊆ {1, 2, . . . , k} be any subset of indices. Then
ce(∪j∈TPj, w) ≤ 2.

Proof. Let PT :=
⋃
j∈T Pj. From Lemma 3.7 (local criticality is mobile), we know that w

is critical in each part Pj + w for j 6= i. Thus, from Lemma 3.10 (critical vertices have
many neighbours), we have that deg(Pj, w) ≥ χ(Pj) (when j 6= i), and that deg(Pi, w) ≥
χ(Pi)−1. We therefore have deg(G−PT , w) = deg(∪l /∈TPl, w) ≥

(∑
l /∈T χ(Pl)

)
−1. Observe

that by the definition of M we have

∆(G) = 1 + χ(G) = 1 +
k∑
l=1

χ(Pl).

Thus, the vertex w satisfies

deg(PT , w) = deg(G,w)− deg(G− PT , w)

≤ ∆(G)− deg(G− PT , w)

≤

(
1 +

k∑
l=1

χ(Pl)

)
−

((∑
l /∈T

χ(Pl)

)
− 1

)
= 2 +

∑
l∈T

χ(Pl)

= 2 + χ(PT )

Therefore, ce(G− Ps, w) ≤ 2, as desired.

So when it comes to the special vertex v (which is critical), we have a Goldilocks
situation. Into each part Pi, the vertex v must have at least ri neighbours into some
component by criticality, but at most ri + 2 neighbours since ∆ − 2 =

∑k
i=1 ri. Together

with the fact that χ(Pi) ≥ 3 (given by our assumption that m ≥ 3), these bounds produce
a single component in Pi into which v has at least χ(Pi) neighbours. We will now give a
name to these noteworthy components.
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Definition 4.3.
LetG be a graph, and letM be a Mozhan partition ofG. Let w ∈ G be any vertex. Suppose
that for all i ∈ {1, 2, . . . , k} there is a single component Ci of Pi such that deg(Ci, w) ≥ ri.
Then we define the cores of w to be cores(w) := {C1, C2, . . . , Ck}. Furthermore, we define
the core graph of w to be the induced subgraph cg(M,w) := G[C1 ∪C2 ∪ · · · ∪Ck]. If M
is clear from context, we simply write cg(w).

Lemma 4.4. Minimum Mozhan Partitions Create Cores
Let G be a graph, and let M = (P, v, s) be a minimum Mozhan partition of G with k ≥ 3
and m ≥ 3. Then v has cores in M .

Proof. For i ∈ {1, 2, . . . , k}, by Lemma 3.7 (local criticality is mobile) and Lemma 3.10
(critical vertices have many neighbours), there is a component Ci of Pi such that deg(Ci, v) ≥
ri. Furthermore, by Lemma 4.2 (small chromatic excess), we know that (in particular)
deg(Pi, v) ≤ ri + 2. Since ri ≥ m ≥ 3, the component Ci is therefore the only component
of Pi into which v has at least ri neighbours.

4.2 Two Technical Lemmas

In the following lemma, it may seem strange that we have to include so many assumptions.
Indeed, many of the things which we are assuming are simply properties of minimum
Mozhan partitions which we have proved already. Unfortunately, the lemma will have to
be used in a context where we cannot guarantee a minimum Mozhan partition (Lemma
4.12), so the necessary facts must be dragged in as assumptions.

Lemma 4.5. Adding a Vertex to a Core
Let G be a graph, and let M = (P, v, s) be a Mozhan partition of G with k ≥ 3 and m ≥ 3.
Suppose that v has cores in M , call them C1, . . . , Ck. Let w ∈ Ck ∩ N(v) be any vertex
with ce(G − Pk, w) ≤ 2. Suppose that deg(Ck, v) = rk, that deg(Pk, v) ≤ rk + 2, and that
w has at least 4 neighbours in cg(v)− Ck. Then there is some core Ci, i ∈ {1, . . . , k − 1}
with deg(Ci, w) ≥ χ(Pi).

Proof. For simplicity of notation, and with no loss of generality, suppose that P1 = Ps. We
claim that w is critical in Pk + v. Observe that as v is critical in P1, and local criticality
is mobile (Lemma 3.7), we have χ(Pk + v) = χ(Pk) + 1. But by assumption, we have
deg(Pk, v) ≤ rk + 2, and deg(Ck, v) = rk. Our assumption that m ≥ 3 gives us that
rk ≥ 3. Since w ∈ Ck, the vertex v has at most rk − 1 neighbours into all components of
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Pk − w. Thus we may extend an rk-colouring of Pk − w to Pk − w + v by ensuring that
there is a colour unused on the neighbours of v in each component. This gives us that
χ(Pk + v − w) = rk = χ(Pk + v)− 1, so w is critical in Pk + v as desired.

Let P ′1 := P1−v, and P ′k := Pk+v, and P ′i := Pi for i ∈ {2, 3, . . . , k−1}. Let C ′1 := C1−v,
and C ′i := Ci for i = 2, . . . , k − 1. The vertex w, being critical in P ′k, must have at least
χ(P ′i ) = ri neighbours into some component of each part P ′i for i = 1, . . . , k− 1 by Lemma
3.7 (local criticality is mobile) and Lemma 3.10 (critical vertices have many neighbours).
By our assumption on the chromatic excess of w, we have deg(G−Pk, w) ≤ χ(G−Pk) + 2.
Observe that

χ(G− P ′k) = χ(G− Pk − v) = χ(G− Pk)− 1

and that since since we assumed w ∈ N(v), we have

deg(G− P ′k, w) = deg(G− Pk − v, w) = deg(G− Pk, w)− 1.

So we have the analogous statement deg(G − P ′k, w) ≤ χ(G − P ′k) + 2. Phrasing things
differently, ce(G − P ′k, w) ≤ 2. Now P ′1, . . . , P

′
k−1 partitions G − P ′k so that χ(G − P ′k) =∑k−1

i=1 χ(P ′i ). Thus, ce(G − P ′k, w) =
∑k−1

i=1 ce(P
′
i , w). But we have that deg(C ′1 ∪ · · · ∪

C ′k−1, w) ≥ 3 by our assumption that deg(cg(v) − Ck, w) ≥ 4. Thus, there is some i ∈
{1, . . . , k − 1} with deg(C ′i, w) > ce(P ′i , w). Unpacking notation, we get deg(C ′i, w) >
deg(P ′i , w)− χ(P ′i ), and rewriting, deg(P ′i , w)− deg(C ′i, w) < χ(P ′i ). But w needs at least
ri = χ(P ′i ) neighbours into some component of P ′i , so this component must be C ′i. If i 6= 1,
then C ′i = Ci, and P ′i = Pi, and we are done. If i = 1, then re-adding the vertex v gives
the desired result.

Once again, we need to include many assumptions in the statement of a lemma. For-
tunately this will be the last time we need to do this.

Lemma 4.6. Adding a Vertex to a Big Clique
Let G be a graph, and let M = (P, v, s) be a Mozhan partition of G with k ≥ 3 and
m ≥ 5. Suppose that v has cores in M , and let them be C1, . . . , Ck. Suppose further that
deg(Pk, v) ≤ rk + 2, and deg(Ck, v) = rk. Suppose that for all w ∈ cg(v), say w ∈ Ci, that
ce(G − Pi, w) ≤ 2. Assume that cg(v) − Ck and Ck are complete, and let w ∈ Ck be any
vertex. Finally, suppose that deg(cg(v)−Ck, w) ≥ 4. Then w is fully joined to cg(v)−Ck.

Proof. By Lemma 4.5 (adding a vertex to a core), there is some core Ci, i ∈ {1, . . . , k− 1}
such that deg(Ci, w) ≥ χ(Pi). As Ci is a clique, and thus has |Ci| ≤ χ(Pi), we have that
|Ci| = χ(Pi), so that w is fully joined to Ci. Now if v is not in Pi, then we can move v
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to Pi to produce another Mozhan partition M ′(not necessarily minimum) where all of the
hypotheses still hold, so we may assume that i = s.

Since we assumed that the claim is false, there is j ∈ {1, . . . , k − 1} such that w is not
joined to Cj. So without loss of generality, suppose Ps = P1, (so that w is fully joined to
act(M) = C1), that w is not fully joined to C2, and w ∈ C3.

Let a ∈ act(M)− v be any vertex. Let b ∈ C2 be any non-neighbour of w. Because of
our assumption that such a vertex b can be found, we will be able to reduce a chromatic
number by merely moving vertices around, giving us a contradiction.

Let P ′1 := P1 − {v, a}+ {w, b}, let P ′2 := P2 − b+ a, and let P ′3 := P3 − w + v.

First, we will show that P ′2 is χ(P2)-colourable. Since cg(v)−C3 is a clique (recall that
Ck was relabelled C3), we have that the induced subgraph C2 ⊆ cg(v) − C3 is a clique,
and deg(C2, a) = |C2|. The fact that C2 is a clique implies |C2| ≤ χ(P2), and the fact that
C2 is a core of v gives us that deg(C2, v) ≥ χ(P2), so all together we have |C2| = χ(P2).
Furthermore since a ∈ cg(v), we assumed that ce(G−P1, a) ≤ 2. Again by the assumption
that cg(v)−C3 is a clique we get that act(M), being an induced subgraph of cg(V −C3), is
a clique. The vertex v is critical in P1 by the definition of the Mozhan partition, so a must
be critical in P1 as well. But by Lemmas 3.7 (local criticality is mobile) and 3.10 (critical
vertices have many neighbours), the vertex a has at least χ(Pi) neighbours into all parts
Pi with i 6= 1. Therefore, we obtain deg(P2, a) ≤ χ(P2) + 2, as a larger degree would imply
ce(G−P1, a) ≥ 3. Thus, the vertex a as at most 2 neighbours on any component of P2− b
besides C2 − b. We have that χ(P2) ≥ m ≥ 3, so P2 − b+ a = P ′2 is χ(P2)-colourable.

Analogously, we will show that P ′3 is χ(P3)-colourable. We assumed that C3 is a clique,
and that deg(C3, v) = r3. We also assumed that deg(P3, v) ≤ r3 +2. Thus, the vertex v has
at most 2 neighbours on any component of P3−w besides C3. We have that χ(P3) ≥ m ≥ 3,
so v has at most χ(P3)− 1 neighbours in all components of P3 −w, so P3 −w + v = P ′3 is
χ(P3)-colourable.

Finally, we will show that χ(P ′1) ≤ χ(P1) − 1. To start, we will need to show that
deg(P1, b) ≤ χ(P1) + 2. If we have some index i 6= 2 with deg(Pi, b) < χ(Pi), then Pi + b
can be χ(Pi)-coloured. The criticality of v in P1 gives us that deg(Pj, v) ≥ χ(Pj) for
all j 6= 1, and so the assumption that ce(G − P1, v) ≤ 2 implies that ce(P2, v) ≤ 2. So
the vertex v has at most χ(P2) − 1 neighbours into all components of P2 − b, meaning
P2 − b + v can be χ(P2)-coloured. Moving v to P2 and b to Pi would therefore allow
us to (χ(G) − 1)-colour G, a contradiction. Thus, for all i = 1, . . . , k, i 6= 2 we have
deg(Pi, b) ≥ χ(Pi). Thus, to ensure the truth of our assumption ce(G−P2, b) ≤ 2, we must
have deg(P1, b) ≤ χ(P1) + 2. Completely analogously, we have deg(P1, w) ≤ χ(P1) + 2.
Then since C1 = act(M) is a clique, the component C ′1 := C1−{v, a}+{w, b} is isomorphic
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to Kχ(P1) less the edge bw. Thus, let φ be a (χ(P1) − 1)-colouring of C ′1 such that b, w
receive the same colour. Now, we have that χ(P1) ≥ 6, as the minimum parameter of M
is at least 5. Thus we can let ψ be a (χ(P1)− 1)-colouring of P ′1 − C ′1 ⊆ P1 − v such that
the at most 4 vertices in N(P ′1 − C ′1, w) ∪ N(P ′1 − C ′1, b) do not receive the colour φ(w).
Then combining φ with ψ yields a (χ(P1)− 1)-colouring of P ′1.

We therefore have that χ(P ′1+P ′2+P ′3) ≤ χ(P ′1)+χ(P ′2)+χ(P ′3) < χ(P1)+χ(P2)+χ(P3) =
χ(P1 +P2 +P3). But as induced subgraphs of G, we have P ′1 +P ′2 +P ′3 = P1 +P2 +P3, so
this is a contradiction.

4.3 Joining Big Cliques

We will now use the results we have collected to demonstrate that big cliques in Mozhan
partitions have a tendency to be fully joined to each other.

Lemma 4.7. The Active Component Sticks to Big Cliques
Let G be a graph with χ(G) = ∆(G) − 1, and let M be a Mozhan partition of G with
k ≥ 3 and m ≥ 3. Let v ∈ act(M) be any vertex, and Pi 6= Ps be a non-special part of M .
Suppose that there is some clique C ⊆ Pi such that deg(C, v) ≥ 3. Then v is fully joined
to C.

Proof. By Lemma 3.7 (local criticality is mobile), the vertex v is critical in Pi + v. Thus
by Lemma 3.10 (critical vertices have many neighbours), there is a component D of Pi
such that deg(D, v) ≥ χ(Pi). Combining this with Lemma 4.2 (small chromatic excess),
we have deg(Pi, v) ≤ χ(Pi) + 2. But χ(Pi) ≥ m ≥ 3, so the only component into which v
can have χ(Pi) neighbours is C. Therefore C = D, so we have deg(C, v) ≥ χ(Pi). But C is
a clique, and so |C| ≤ χ(Pi). All together, we get that v is fully joined to C, as desired.

Lemma 4.8. Big Cliques Stick to the Active Component
Let G be a graph with χ(G) = ∆(G)− 1, and let M be a Mozhan partition of G with k ≥ 3
and m ≥ 3. Let Pi 6= Ps be some non-special part, and C ⊆ Pi be some clique. Suppose
that act(M) is a clique, and that there is a vertex v ∈ act(M) with at least 3 neighbours in
C. Suppose further that there is w ∈ C with at least 4 neighbours in act(M). Then w is
fully joined to act(M).

Proof. Suppose that w ∈ Pi. By Lemma 4.7 (the active component sticks to big cliques),
v is fully joined to C. The vertex w is critical in Pi + v, as v has deg(Pi, v) ≤ χ(Pi) + 2
(Lemma 4.2, small chromatic excess) and so C is the only component of Pi into which v
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has at least χ(Pi) neighbours. Thus, we can move v to Pi to get another Mozhan partition
M ′ = (P ′, w, i). Now w has at least 3 neighbours in the clique act(M)− v. Using Lemma
4.7 again, we know that w is fully joined to act(M)− v. Thus, w is fully joined to act(M),
as desired.

A consequence of all this stickiness is that two cliques cannot be joined by moves. This
is because only one vertex moves per move, and so if a move were to try and join two
cliques, they would already have to be so “almost joined” that they were actually joined
all along. Since reversed moves are also moves, we get as a consequence that moves cannot
separate cliques either.

Definition 4.9.
Let S be a move sequence. Let X be a club of S, and suppose that X is in part Pi. We
say that X is full when at each time t, we have |Xt| ≥ ri.

Lemma 4.10. Moves Cannot Join Big Cliques
Let G be a graph with χ(G) = ∆(G) − 1, and let M be a minimum Mozhan partition of
G with k ≥ 3 and m ≥ 4. Let S be a move from M to M ′, another minimum Mozhan
partition. Let A ⊆ Pa and B ⊆ Pb be two cliques with at least 5 vertices, and let A′, B′ be
their corresponding components in M ′. Suppose that A′ is fully joined to B′. Then A is
fully joined to B.

Proof. Suppose that A is not fully joined to B, say the edge ab does not exist between
a ∈ A and b ∈ B. Either a must leave A during S, or b must leave B, otherwise the edge
ab would still fail to exist between A′ and B′. So without loss of generality, A = act(M),
and a moves during S. Observe that A′ = A− a is fully joined to B′ = B. Since A′ is fully
joined to B′, in particular, some a′ ∈ A′ has three neighbours in B. Every vertex b ∈ B′
has at least 4 neighbours in A, those vertices in A′ ⊆ A. Therefore, by Lemma 4.8 (big
cliques stick to the active component), B′ (= B) is fully joined to A, contradicting our
assumption.

If (M,M ′) is a move, then (M ′,M) is also a move. This fact gives us the corollary:

Corollary 4.11. Moves Cannot Separate Big Cliques
Let G be a graph with χ(G) = ∆(G) − 1, and let M be a minimum Mozhan partition of
G with k ≥ 3 and m ≥ 4. Let S be a move from M to M ′, another minimum Mozhan
partition. Let A ⊆ Pa and B ⊆ Pb be two cliques with at least 4 vertices, and let A′, B′ be
their corresponding components in M ′. Suppose that A′ is not fully joined to B′. Then A
is not fully joined to B.
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During any move sequence, two full clubs are therefore fully joined for all times, or not
fully joined for all times. Thus, is makes sense to refer to clubs themselves as being fully
joined or not fully joined.

Now we will leverage those two technical lemmas from earlier to show that if two big
cliques are joined to the active component, then they are joined to each other. This will
be very helpful for our final proof, where we will first find many big cliques joined to the
active component.

Lemma 4.12. Joining Big Cliques
Let G be a graph with χ(G) = ∆(G) − 1, and M a minimum Mozhan partition of G
with k ≥ 3 and m ≥ 5. Suppose that there are two cliques A ⊆ Pa and B ⊆ Pb with
|A| = χ(Pa), |B| = χ(Pb) in different parts, both fully joined to act(M). Suppose further
that deg(Pa, v) = χ(Pa) and deg(Pb, v) = χ(Pb). Then A is fully joined to B.

Proof. Without loss of generality, say that s = 1, a = 2, and b = 3. Let b ∈ B be
any vertex. We would like to use Lemma 4.6 (adding a vertex to a big clique) to show
that b is fully joined to A. To do this, observe that M ′ = ((P1, P2, P3), v, 1) is a Mozhan
partition of G′ := P1 + P2 + P3. Indeed, (P1, P2, P3) is a vertex partition, v is critical
in P1, and χ(P1, P2, P3) = χ(P1) + χ(P2) + χ(P3). Furthermore, the vertex v has cores
act(M), A,B in P1, P2, P3. The Mozhan partition M ′ has k′ = 3 and m′ ≥ m ≥ 5. We
know that deg(P3, v) = r3 ≤ r3 + 2 by assumption. Let C := act(M) ∪ A ∪ B, so that
C = cg(M ′, v). We only need to show that for all w ∈ C, say w ∈ Pi, that ce(G−Pi, w) ≤ 2.
If w ∈ act(M), then w is critical in P1, and we are done by Lemma 4.2 (small chromatic
excess). If i 6= 1, then as we assumed deg(Pi, v) = χ(Pi), moving v to Pi produces
M ′′ = (P ′′, w, i), a minimum Mozhan partition of G (Lemma 3.15, moving vertices) where
w is critical. Once again, Lemma 4.2 (small chromatic excess) applied to M ′′ gives us that
ce(G − (Pi + v), w) ≤ 2. Observe that deg(G − (Pi + v), w) = deg(G − Pi, w) − 1, and
χ(G− (Pi + v)) = χ(G− Pi)− 1. Thus, we have that ce(G− Pi, w) ≤ 2, as needed. Thus,
Lemma 4.6 (adding a vertex to a big clique) applied to M ′ gives us that b is fully joined
to A. But b ∈ B was arbitrary, proving that B is fully joined to A, as desired.

4.4 Properties of Move Sequences

The next few lemmas describe some restrictions on what can happen during a move se-
quence. As mentioned previously, we will find our big clique by setting a move sequence
in motion under some specific conditions, watching it grind to a halt, and deducing that
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the halt was caused by a big clique. Intuitively, the following results will be used to rule
out the other possible reasons our future move sequence could stop.

We will begin with another lemma of the edge-finding type. Imagine we have a club
X = (X1, X2, X3, . . . , Xn), and a vertex v joined to X1. Each time X becomes active, a
vertex leaves X, and so v loses a neighbour in X. However, under certain conditions the
vertex v can be “re-joined” to Xj at a later time j, and this rejuvenation of edges can be
pictured as a “pit-stop”.

Lemma 4.13. The Pit-stop Lemma
Let G be a graph with χ(G) = ∆(G)− 1, and let M be a minimum Mozhan partition of G
with k ≥ 3 and m ≥ 8. Let S be a move sequence starting at M . Suppose that a club X
sends a vertex to a club Y at two times a, b. Suppose further that X is active at most 4
times in {a+ 1, a+ 2, . . . , b− 1}. Let v ∈ G be some vertex which is fully joined to Xa+1,
where v ∈ Yb at time b. Then v is fully joined to Xb.

Proof. Since the minimum parameter of M is at least 8, and Xa is active at time a, we
have that |Xa| ≥ 9. Thus, |Xa+1| ≥ 8. Now by assumption, the club X is active at most
4 times between a and b. Thus, |Xa+1 ∩Xb| ≥ 8 − 4 = 4. This means that v has at least
4 neighbours in Xb, those vertices in Xa+1 ∩Xb. Let vb be the vertex which X sends to Y
at time b. Since X sends vb to Yb at time b, the vertex vb has at least 3 neighbours in Yb
(indeed, it is fully joined to Yb). Therefore, by Lemma 4.8 (big cliques stick to the active
component), v is fully joined to Xb, as desired.

Lemma 4.14. Clubs Don’t Have Many Targets
Let G be a graph, and let M be a minimum Mozhan partition of G. Let S be a move
sequence starting at M in which no vertex moves twice. Suppose that a club X in part Pi
sends two vertices v1, v2 to a part Pj at times t1, t2, and t1 < t2. Suppose that v1 is sent to
a club Y ⊆ Pj. Then v2 is also sent to Y .

Proof. Suppose that v2 is instead sent to a club Z ⊆ Pj with Y 6= Z. Then Yt2+1, Zt2+1

are distinct components of the part Pj at time t2 + 1. However, as no vertex can move
twice, we have that v1, v2 are both in the component X1 at time t = 1. Since X sends a
vertex during S, we know that X is a full club, so X1 is a clique. Thus we have the edge
v1v2 ∈ E(G). But then, the edge v1v2 goes between Yt2+1 and Zt2+1 in part Pj at time
t2 + 1, contradicting the fact that they are two distinct components. This contradiction
proves the claim.
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Lemma 4.15. Full Clubs are Not Very Active
Let G be a graph. Let M be a minimum Mozhan partition of G with k ≥ 3 and m ≥ 8.
Let S be a move sequence starting at M , where no vertex moves twice. Suppose that each
club sends a vertex to at most 3 other parts. Finally, suppose that a club X never sends a
vertex to a club Y if X and Y are fully joined. Then every club of S is active at most 7
times.

Proof. We prove the claim by contradiction. Let S be a move sequence meeting all of the
hypotheses (no vertex moves twice, each club sends to at most 3 parts, clubs don’t send
to fully joined clubs), but violating the conclusion. Choose S to have minimal length, call
that length q+ 1. Let X be a club of S which is active at least 8 times. By the minimality
of S, X is active exactly 8 times. Thus, X sends out exactly 7 vertices during S (at the
final time q + 1, the component Xq+1 is active but does not send out a vertex). Since X
sends vertices to at most 3 other parts, there must be some part Pi to which X sends at
least 3 vertices, as 3 ·2 = 6 < 7. Choose Pi to be the first such part. By Lemma 4.14 (clubs
don’t have many targets), the club X always sends vertices to the same club Y in Pi. For
i ∈ {1, 2, . . . , q} let vi be the vertex which moves at time i. Let t1, t2, t3 be the first three
times at which X sends a vertex to Y . Observe that between any two times ti, tj, the club
X is active at most 4 times, as being active 5 times or more would imply that Pi was not
the first part to which X sends 3 vertices. Let t4 be the first time after t3 at which X is
active. We will show that Xt4 is fully joined to Yt4 . Thus, Xi will be fully joined to Yi for
all times i (Lemma 4.10 and Corollary 4.11, which imply that full clubs are either always
joined or always not joined). This contradicts one of our assumptions about S, namely,
that a club never sends a vertex to a club to which it is fully joined.

First, we will show that vt1 , vt2 , vt3 are all fully joined to Xt3+1. For this, we will make
use of Lemma 4.13 (the pit-stop lemma). Since Xt3 is a clique, and vt3 ∈ Xt3 , we have that
vt3 is fully joined to Xt3+1. Likewise, vt2 is fully joined to Xt2+1. We also have vt2 ∈ Yt3
as vt2 does not move twice, and we know that the club X is active at most 4 times in
{t2 + 1, t2 + 2, . . . , t3− 1}, so the Pit-stop Lemma implies that vt2 is fully joined to Xt3 and
thus to Xt3+1. Completely analogously, vt1 is fully joined to Xt2 , and thus to Xt3 , and thus
to Xt3+1. Now, the vertices vt1 , vt2 , vt3 are all in Yt4 . So the vertices of Xt3 ∩Xt4 all have at
least 3 neighbours in Yt4 , and by Lemma 4.7 (the active component sticks to big cliques)
applied at time t4, they are thus fully joined to Yt4 . But as Xt3+1 ⊆ Xt4 since t4 is the first
time after t3 at which X is active, we get |Xt3+1 ∩Xt4| = |Xt3+1| ≥ 7. So then, the vertices
of Yt4 each have at least 4 neighbours in Xt4 , and by Lemma 4.8 (big cliques stick to the
active component) applied at time t4, we have that Yt4 is fully joined to Xt4 . As mentioned
earlier, this implies that the club X is fully joined to Y at all times, contradicting the fact
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that this means that X is not allowed to send a vertex to Y during S.

4.5 Putting it Together

Finally, we use our body of facts about Mozhan partitions and move sequences to produce
our big clique.

Theorem 4.16. Graphs with χ = ∆− 1 have Big Cliques
Let G be a graph with χ(G) = ∆(G)− 1, and ∆(G) ≥ 66. Then G contains a clique of size
∆(G)− 17.

Proof. Suppose the theorem is false, and let G be a counterexample minimizing |G|. We
claim that G is vertex critical. Indeed, let v ∈ G be any vertex, and suppose that v is
not critical. Then χ(G − v) = χ(G). If ∆(G − v) = ∆(G), then G − v is a smaller
counterexample. Therefore, ∆(G− v) ≤ ∆(G)− 1. Now, we have that χ(G− v) = χ(G) =
∆(G)−1 ≥ ∆(G−v). Therefore by Theorem 1.13, ω(G−v) ≥ ∆(G−v)−3. Furthermore we
have ∆(G−v) ≥ χ(G−v)−1 = ∆(G)−2, and so ω(G) ≥ ω(G−v) ≥ ∆(G)−5 > ∆(G)−17,
contradicting that G is a counterexample. So G is indeed vertex critical.

Any number n ≥ 56 may be written as a sum of 8’s and 9’s. Indeed, taking k := bn/8c,
and letting s := n mod 8, we can write n = (k − s) · 8 + s · 9 (the condition n ≥ 56 is
necessary to ensure that k−s ≥ 0). In particular, ∆(G)−2 ≥ 64 may be written as such a
sum. We can construct a Mozhan partition M of G by removing any vertex v ∈ G, letting
φ be a (∆(G)− 2)-colouring of G− v, taking each part Pi to be the induced subgraph on
an arbitrary choice of n ∈ {8, 9} colour classes of φ, and adding v back to any part Pi. So
let M be a minimum Mozhan partition of G with parameters ri, i = 1, . . . , k such that
each ri is in {8, 9}.

Now, let S be a move sequence of maximum length, starting at M , subject to the
following three conditions.

s1: Each vertex moves at most once.

s2: Each club sends vertices to at most 3 other parts.

s3: A vertex never moves from club X to club Y if X is fully joined to Y .

Let A be the final active component of S, and let X be the club of A. By Lemma 4.15
(clubs are not very active), the club X has been active at most 7 times. The minimum
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parameter of M is at least 8, giving us that |A| ≥ 9, so let v ∈ A be a vertex which has
not moved yet. Let T be the set of indices of the parts to which X has sent vertices. If
there is i ∈ T with deg(Pi, v) = ri, then we can move the vertex v to Pi to produce another
minimum Mozhan partition (Lemma 3.15, vertices can move). This move would not move
any vertex twice (satisfying s1), and would not cause a club to send a vertex to four or more
parts (satisfying s2), so it must be that v is fully joined to a full club C in Pi (violating
s3). But this club C is the only club in Pi to which X can have ever sent a vertex (Lemma
4.14, clubs don’t have many targets), showing that S was already in violation of condition
s3, contradicting the construction of S.

Thus, every i ∈ T has deg(Pi, v) > ri. But this implies that |T | ≤ 2 by Lemma 4.2
(small chromatic excess) applied to v. Now suppose we have any part Pi with deg(Pi, v) =
ri, and let d be the move obtained by sending v to Pi. The move d cannot extend S, as S
is maximal, so d must violate one of the criteria by which S was constructed. The vertex
v moves during d, and v has not moved yet, so s1 is satisfied. The club X has only sent
vertices to two parts, so the move d will not make any club send a vertex to four or more
parts, so s2 is satisfied. There is only one criterion remaining, it must be that X is fully
joined to a full club in Pi. Thus, the club X is fully joined to full clubs in all parts Pi with
deg(Pi, v) = ri. By Lemma 4.12 (joining big cliques), these full clubs are all fully joined to
each other. Together, they induce a large clique, of size 1+

∑
i/∈T ri. If ∆(G) = 66, then we

can choose each ri to be 8, and we are left with a clique of size ∆(G)−1−16 = ∆(G)−17.

Since we assumed that G is a counterexample, it must be that ∆(G) > 66. Our big
clique will have size at least ∆(G)−1−9 ·2 = ∆(G)−19. Suppose that ω(G) < ∆(G)−17.
Recall that the King result (Lemma 2.2) allows us to find a maximal independent set
intersecting all maximum cliques when ω > 2/3(∆+1). We have that ∆−19 > 2/3(∆+1)
when ∆ > 59, and we have ∆(G) > 66, so the King result may be used to find such an
independent set I. As I is an independent set, we have χ(G− I) ≥ χ(G)− 1, and as I is
maximal we have ∆(G− I) ≤ ∆(G)− 1. Thus,

∆(G− I) ≥ χ(G− I)− 1 by the Greedy Bound

≥ χ(G)− 2

= ∆(G)− 3.

If ∆(G− I) ≤ ∆(G)− 2, then χ(G− I) ≥ χ(G)− 1 = ∆(G)− 2 ≥ ∆(G− I), so Theorem
1.13 gives us that ω(G − I) ≥ ∆(G − I) − 3 ≥ ∆(G) − 6, contradicting the fact that
G cannot contain a clique this large. Therefore we know that ∆(G − I) = ∆(G) − 1. If
χ(G−I) = χ(G), then we obtain ∆(G−I) = χ(G−I), and again Theorem 1.13 contradicts
the fact that G is a counterexample. Thus, χ(G−I) = χ(G)−1. All together, we have that
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χ(G− I) = ∆(G− I)− 1, and ω(G− I) = ω(G)− 1 < ∆(G− I)− 17, and ∆(G− I) > 66,
as the case ∆ = 66 was already handled. We therefore get that G − I is a more minimal
counterexample than G, and this final contradiction proves the claim.
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Chapter 5

Conclusion and Further Work

Thus, we have proven that when χ = ∆ − 1, for ∆ sufficiently large, all graphs must
contain a ∆ − 17 clique. This shows that the methods used by Cranston and Rabern to
prove Theorem 1.13 can be extended to the case ∆ − 1, at the expense of the size of the
derived clique. Indeed, we believe that these results may be directly extended even further
to yield a clique of size ∆−O(t2) in the general case χ = ∆− t so long as ∆ ≥ f(t), where
f is some function of t. Heuristically, the loss is O(t2) because the minimum parameter of
the necessary Mozhan partitions must be linear in t, and because the chromatic error of
any critical vertex is also linear in t. These two error quantities multiply together (each
excluded part “subtracts” some vertices from the largest clique we can find) to produce a
loss that is O(t2).

The methods discussed and the results shown will be of some interest in the continued
investigation into the question of what happens to ω when χ is close to ∆. In a joint work
currently in progress with P. Haxell, we use Mozhan partitions and a different framework
for move sequences to prove that graphs with χ = ∆ − t and ∆ ≥ f(t) (again, for some
function f) contain a clique of size ∆ − 2t2 − 6t − 3, generalizing the result of Cranston
and Rabern (Theorem 1.13).

All of these results make progress towards resolving the conjectures of Borodin and
Kostochka (Conjecture 1.5), and Reed (Conjecture 1.14). However, each result leaves a
small margin of error, and it appears that some new ideas will be necessary to close the
gap and prove the conjectures in full, or disprove them. Nonetheless, Mozhan partitions
and move sequences will continue to be fruitful ideas and play an important role in the
settling of these conjectures.

The resolution of these conjectures would go a long way towards our understanding of

48



the chromatic number and its relation to the clique number, particularly when χ is close
to ∆. Once again, we would like to observe how strange it is that we are ignorant of what
happens to ω when χ = ∆, given the near century which has passed since Brook’s full
characterization of the case χ = ∆ + 1.
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Glossary

1. Active Component: See Definition 3.9.

2. BK: The Borodin-Kostochka Conjecture, see Conjecture 1.5.

3. Child Relation: A partial order on graphs, see Definition 2.5.

4. Chromatic Excess: See Definition 4.1.

5. Claw: The graph K1,3.

6. Clique: A graph with all possible edges.

7. Club: A component inside a part as seen across a move sequence, see Definition 3.18.

8. Core, Core Graph: See Definition 4.3.

9. Critical, n-Critical: A vertex v ∈ G is critical when χ(G−v) < χ(G), see Definition 1.16.
A graph is n-critical when χ(G) = n and all proper subgraphs are (n − 1)-colourable,
see Definition 1.17.

10. dl-Choosable: See definition 2.16.

11. Dominating Vertex: A vertex adjacent to all other vertices, see Definition 1.15.

12. f -Assignment: See Definition 2.11.

13. f -Choosable: See Definition 2.12.

14. Full Club: See Definition 4.9.

15. Girth: The minimum length of a cycle, if one is present, else ∞. see Definition 1.3.

16. Graph Epimorphism: A surjective graph homomorphism, see Definition 2.4.
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17. Graph Homomorphism: Given graphs G and H, a map f : V (G) → V (H) such that
vw ∈ E(G) =⇒ f(v)f(w) ∈ E(H).

18. Independent Set: A set of vertices which are pairwise non-adjacent.

19. Induced Subgraph: A subgraph formed by deleting vertices.

20. Joined: Let G be a graph, and let A,B ⊆ V (G). Then A is joined to B when every
edge between A and B exists in G.

21. L-Colourable: See Definition 2.10.

22. List Assignment: See Definition 2.9.

23. Lovász Partition: See Definition 3.2.

24. Matching: A set of edges, no two of which share an endpoint.

25. Minimum Mozhan Partition: See Definition 3.8.

26. Move: See Definition 3.16.

27. Move Sequence: A finite sequence of moves, see Definition 3.17.

28. Mozhan Partition: See Definition 3.5.

29. Mule: A graph which is minimal with respect to the child relation, see Definition 2.8.

30. Nucleus: See Definition 1.20.

31. Parameters (of a Mozhan partition): Given a Mozhan partition M = ((P1, . . . , Pk), v, s),
the parameters are rs := χ(Ps)− 1 and ri := χ(Pi) for i 6= s, see Definition 3.6.

32. Pot: A pool of available colours, see Definition 2.13.
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