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Abstract 

The cornea is the transparent, outermost layer of the human eye that contributes approximately 70% of 

the refractive power of the eye in air. It is composed of five major tissue layers: the epithelium, the 

Bowman’s membrane, the stroma, the Descemet’s membrane, and the endothelium.  Corneal diseases such 

as Keratoconus and Fuchs’ dystrophy can change the morphology of some or all of the corneal layers, which 

can lead to vision impairment and eventually blindness. For example, Keratoconus causes localizes thinning 

and thickening of the corneal epithelium, damage to the collagen structure of the corneal stroma (scarring) 

and alteration of the corneal curvature. All of these changes result in blurred and double vision, and in 

severe cases can lead to corneal blindness that would require corneal replacement surgery.   Fuchs’ 

dystrophy is a genetic disease that damages the endothelium cell. Since the endothelial cells are responsible 

for maintaining the fluid level in the stroma, impairment or death of the endothelial cells leads to 

dehydration or edema of the cornea that results in partial or full corneal blindness. Systemic diseases such 

as diabetes also affect the physiology and morphology of the cornea. Diabetes affects all the corneal cells 

and leads to abnormalities such as neuropathy, keratopathy, stromal edema, decrease in endothelial cell 

density, low tear secretion etc. Although there have been many clinical studies of these diseases, knowledge 

of the early-stage changes in the corneal morphology at the cellular level remains unclear. Understanding 

the early stage of disease development with the help of high speed and ultra-high resolution optical 

coherence tomography (UHR-OCT) corneal imaging can improve the early diagnostics of corneal diseases 

and well as monitoring the effectiveness of different therapies such as surgical intervention or 

administration of pharmaceutical drugs 

The main objectives of my research project were: a) to upgrade the 34 kHz OCT system with a new 

camera that offered a 400 kHz data acquisition rate and 8192-pixel linear array sensor, b) test the 

performance of the 400 kHz OCT system for ex-vivo and in-vivo corneal imaging, and c) develop pre-

processing for the interferogram and post-processing algorithms for the images. Implementing a camera 

with a faster acquisition rate will help to reduce the motion artifact caused by involuntary eye motions. 

Also, compared to 4500 pixels used in the 34 kHz camera, the new system utilizes all the pixels, resulting 

in a larger scanning range. Although new camera has smaller sensor size (30% smaller), vertical binning is 

applied to ensure the light signal is all captured. However, due to the faster acquisition rate (~11 times 

faster), about 10 dB of SNR will suffers from the reduced integration time. Doubling the sample arm power 

while keep all other conditions the same can boost the SNR by about 3 dB. Therefore, incident power at the 

sample arm will be raised carefully according to the maximum permissible exposure calculated using the 
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American National Standard for Ophthalmics – Light Hazard Protection for Ophthalmics instruments 

provided by ANSI. 

The result from the technical tests shows that the 400 kHz SD-OCT system offers 1 µm axial resolution 

in biological tissue with an extended scanning range of 2.8 mm (compared to 1.2 mm of the 34 kHz system). 

It has a lateral resolution of 1.04 μm/pix and can resolve group 7 element 6 of the USAF target with a 20x 

objective.  It can provide 83 dB SNR with 0.95 mW of incident power at a 400 kHz image acquisition rate 

which should be sufficient to image semi-transparent biological tissues such as the human retina and cornea. 

So far, the performance of the 400 kHz OCT system has been tested by imaging plant tissues (cucumber) 

and ex-vivo pig corneas, due to the cancellation of all in-vivo human and animal studies imposed by 

COVID-19. 
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Chapter 1 

Introduction 

Human perceives the environment with five senses, sight, hearing, smell, touch, and taste. Visual 

impairment reduces quality of life significantly since approximately 83.0 percent of the sensory 

information obtained from the outside world are coming from sight (Rosenblum, 2011). The cornea is 

the transparent outer most part of the human eye. Due to its unique shape and morphology, it contributes 

approximates two-thirds of the eye’s total refractive power (Patel & Tutchenko, 2019). Corneal diseases 

like as keratoconus will gradually change the corneal shape from prolate ellipse to conical (Rabinowitz, 

1998) by localized thickening and thinning in the corneal epithelium layer and damage the collagen 

structure at the corneal stroma. Therefore, shifting the focal plane away from the retina, causes blurry 

and double vision. Other diseases affect the corneal shape by dystrophy, damaging the endothelial cells. 

Low in endothelial cell density will also have significant effect on visual acuity (Wilson, Lin, Klyce, 

Reidy, & Insler, 1990) (Wacker, McLaren, & Patel, 2015). Diabetes will have effect on all the corneal 

cells and causing abnormalities. These common diseases are significant affecting patient’s lifestyle yet 

the changes in the early-stage corneal cell morphology remains unclear. While there are plenty of 

corneal imaging modalities available, none can do cellular level, non-contact, in-vivo imaging of the 

corneal structure. This motivates the thesis project, to upgrade the existing 34 kHz UHR-OCT 

developed in 2016 by professor Kostadinka Bizheva with a 400 kHz camera for faster acquisition and 

achieve motion artefact-free, non-contact, in-vivo imaging for corneal cell morphology study.  

Currently, multiple imaging modalities are used clinically for eye diagnosis and research. Slit lamp 

examination of the corneal is currently the most popular clinical method for initial screening and 

diagnosis of corneal diseases. The slit lamp is an optical microscope with a slit of bright light that shines 

onto the corneal surface for the ophthalmologist to visually check for corneal abnormalities. However, 

the slit lamp microscope has very poor spatial resolution both in axial and lateral direction and does not 

allow for imaging of the individual corneal layers or cells. Ultrasound biomicroscopes, which measure 

the echo of the acoustic reflections occurring due to acoustic impedance mismatch at different 

interfaces, has been a popular tool for eye imaging in the past. It requires physical contact of the probe 

and the patient’s cornea and would need to apply the gel for impedance matching. A commercial device 

like ArcScan Insight® 100 can achieve 35 μm axial resolution and 65 μm lateral resolution, with a 2 

Hz scanning rate. The low spatial resolution, prolonged imaging time and requirement of physical 

contact with the patient make it not suitable for cellular level in-vivo corneal imaging. Confocal 
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microscopy (CM) is another optical imaging modality for corneal diagnosis. Commercial CM such as 

the ConfoScan 4 from Nidek Technologies can provide lateral imaging resolution of 1.2 μm/pix for 

non-contact imaging with 20x objective and 0.6 μm/pix for immersive gel imaging with 40x objective. 

However, CM has limited axial resolution (in the order of several tens of micrometers), limited field-

of-view (FOV), typically < 400 µm × 400 µm, and has fairly long 3D image acquisition time due to 

slower scanning in the axial direction. 

Optical coherence tomography (OCT) is an optical imaging modality, based on interferometric 

principle, that can provide non-contact, non-invasive, in-vivo images of ocular tissues with very high 

spatial resolution (in the order of 1 µm, sufficient for visualization of individual corneal cells) and 

scanning range in the order of millimeters. However, the main remaining challenge for using OCT for 

in-vivo imaging of the corneal cellular structure is involuntary eye motion such as drift, tremor and 

microsaccades, that causes motion artefacts in the OCT images. In 2016, our research group designed 

a 34 kHz A-scan rate UHR-OCT system based on supercontinuum laser. The broad spectrum provided 

by that laser allowed the OCT system to achieve 0.95 μm axial resolution in the corneal tissue, 2 μm 

lateral resolution with 10x objective, and 95 dB sensitivity for 680 μW incident power. However, the 

camera in the 34 kHz OCT system has a relatively slow acquisition rate compared to the involuntary 

eye motions, which typically have frequencies from a few Hz (microsaccade) up to a hundred Hz 

(tremor).  Therefore, phase noise and motion artifact will present and significantly affect the imaging 

quality.  

1.1 Corneal Structure 

Corneas is the of outer most part of the eyeball, together with sclera it forms the outer shell for 

protection of the liquid and structures inside. Human, and other primates have corneas consist of five 

layers: corneal epithelium, Bowman’s membrane, corneal stroma, Descemet’s membrane, and corneal 

endothelium. Normal human cornea can have a thickness in the range from 551 to 565 microns (Feizi, 

Jafarinasab, Karimian, Hasanpour, & Masudi, 2014). 



 

 3 

 

Figure 1.1 Histology of human cornea (Reproduced with permission from Prof. Denise Hileeto) 

1 – Corneal Epithelium; 2 – Bowman’s Membrane; 3 – Corneal Stroma; 4 – Descemet’s 

membrane; 5 – Corneal Endothelium 

Corneal Epithelium 

The corneal epithelium consists of about 6 layers populated with different types of cells (superficial 

cells, wing cells and basal cells). The corneal tissue is almost transparent for visible light and there are 

no blood vessels in the cornea to nourish the cells, as these can obstruct the visual field. One of the 

main functions of the epithelium cell is to absorb oxygens from air and nutrients from the tear to nourish 

the cells beneath. It also provides barrier to prevent the foreign dust, water and germs getting into the 

eye. (The Cornea and Corneal Disease, 2017)  

1 

2 

3 

4 
5 
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Bowman’s membrane 

Located immediately below the basal cell layer of the corneal epithelium is the Bowman’s membrane 

(#2 in Figure 1.1). It is not a true membrane but composed of strong layered collagens fibers arranged 

in a single layer to help cornea to maintains its shape (Sridhar, 2018) (The Cornea and Corneal Disease, 

2017) The Bowman’s membrane has about 17.7 μm thickness in a healthy cornea (Tao, et al., 2011), 

and will get thinner with aging. Bowman’s membrane is not regenerative and will form scars when 

injured. (Sridhar, 2018) 

Corneal Stroma 

#3 in Figure 1.1 is the stroma region. Corneal stroma constitutes approximately 90% of the corneal 

thickness. It consists of about 78% of water, 16% of collagens. Keratocyte cells in the corneal stroma 

help to maintain the stromal homeostasis by synthesizing the collagen molecules and 

glycosaminoglycans (Zhang, et al., 2015) necessary for the regeneration and repair of the corneal 

stroma after injury or trauma. The strong collagen structure of the stroma provides mechanical strength 

of the cornea, while the ordered arrangement of the collagen fibrils allows for the cornea to appear 

almost transparent to visible light. The typical thickness of the healthy, normal corneal stroma is about 

500 μm. (Reinstein, Archer, Gobbe, Silverman, & Coleman, 2009) 

Descemet’s membrane 

The Descemet’s membrane is under the stroma region (#4 in Figure 1.1) It is a strong sheet of 

collagen fibres and has thickness of 10 μm (Bizheva, et al., 2016). The collagen in Descemet’s 

membrane is different from the collagens in the stroma. They are made by the anchored endothelial 

cells right beneath it therefore is regenerative and can be healed after injury. It acts as another protection 

layer against infection and injuries. It allows the nutrient traffic into the corneal stroma and is critical 

to the corneal hydration and transparency (Eghrari, Riazuddin, & Gottsch, 2015) (Lwigale, 2015) 

(Saikia, Medeiros, Thangavadivel, & Wilson, 2018). 

Corneal Endothelium  

The endothelium is the most posterior layer of the cornea (#5 in Figure 1.1). It consists of a single 

layer of endothelial cells with thickness of 4 microns. These endothelial cells hexagonally shaped and 

~ 20 μm is diameter in the transverse direction. The endothelial cells are responsible for pumping out 

the excess fluid from the stroma to keep the stroma from swelling. The endothelial cells are lost forever 
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if destroyed by diseases or injuries. Insufficient amount of endothelial cells density will cause corneal 

edema and eventually leads to blindness. Currently, the corneal transplantation of donor tissue is the 

only available therapy to restore vision (Hertsenberg & Funderburgh, 2015). 

1.2 OCT Theory 

Most of the OCT technology (clinical or research-grade) is based on Michelson interferometry. Figure 

1.2 shows a diagram of a typical SD-OCT system based on a fiber-optic Michelson interferometer. The 

SD-OCT system is powered by a low coherent light source, where the central wavelength and the 

spectral bandwidth of the light source determine the OCT axial resolution. Then the light propagates 

through a fibre coupler, which splits the input beam into a sample arm and reference arm beams. In the 

sample arm, the beam is projected on the imaged sample target though a series of optical elements. In 

a similar way, the optical beam in the reference arm is projected onto a reference mirror mounted on a 

translation stage to allow for adjustment of the reference pathlength. Light from the imaged sample and 

the reference mirror, propagates back to the beamsplitter and generates an interference pattern there. 

The interference pattern is then projected on to a linear-array sensor camera though a spectrometer that 

separates the broadband optical beam into a series of a narrow bandwidth beam. Each of those beams 

is focused onto individual pixels of the camera. The output signal from the camera is processed with a 

computer using Fast Fourier Transform (FFT) to convert the spectral signal into depth-depended spatial 

location in the imaged sample where the reflected signal originated. (Izatt & Choma, 2008) (Aumann, 

Donner, Fischer, & Müller, 2019) 

 

 

Figure 1.2 fiber-based SD-OCT typical setup 
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A simplified example would be looking at a Michelson interferometer as illustrated in Figure 1.3 

 

Figure 1.3 Michelson Interferometer setup in OCT 

The light source has electric field of Ei = s(k,ω)ei(kz-ωt), with s(k,ω) representing the wave number and 

angular frequency dependent amplitude. The field travelling the sample arm is then, 

 
𝑬 =

𝑬

√2
 𝑟 (𝑧 ) ∗ 𝑒  (1.1) 

Where rs(zs) is electric field reflectivity from sample arm at given depth zs. the reference arm 

will have electric field ER, 

 
𝑬 =

𝑬

√2
 𝑟 ∗ 𝑒  (1.2) 

The intensity detected at camera end is the time averaged dot product of the electric fields from 

reference arm and sample arm. 

 𝑰 = 𝜌〈 �⃗� + �⃗� ∙ �⃗� + �⃗� 〉 = 𝜌〈|𝑬 + 𝑬 | 〉 (1.3) 

Where ρ is the responsivity of the detector. Consider a 50/50 beam spliter, the intensity will reduce 

to half because of the double pass. The full expression of intensity at detector becomes, 
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𝑰 (𝑘, 𝜔) =

𝜌

2
〈

𝑠(𝑘, 𝜔)

√2
𝑟 e ( ) +

𝑠(𝑘, 𝜔)

√2
𝑟 e ( ) 〉 (1.4) 

Where 𝑟 (𝑧 ) = ∑ 𝑟 𝛿(𝑧 − 𝑧 ), assuming the sample have N discrete different layers with 

electric field reflectivity rsn. Multiply by the direct delta function with offset zSn away from the beam 

splitter. Since frequency of the light v oscillates much faster than the detector response, the frequency 

dependence ωt = 2πvt can be eliminated. The power reflectivity is the square of the electric field 

reflectivity, Rs = rs
2 and RR = rr

2, the equation (1.4) will reduce to,  

 
𝑰 (𝑘) =

𝜌

4
𝑆(𝑘) 𝑅 + 𝑅                                                                  

+ 2 𝑅 𝑅 (cos[2𝑘(𝑧 − 𝑧 )])             

+ 2 𝑅 𝑅
  

(cos[2𝑘(𝑧 − 𝑧 )])  

(1.5) 

There are three terms in the equation: 

1. The first term is the path length independent “DC” term which mainly came from direct 

reflection from the reference mirror as we assume the biological sample has exceedingly small 

reflectivity compares to the sample arm mirror. This term has the most contribution to the 

detector current.  

2. The second term in the equation is “cross-correlation” term, representing the interferences 

between multiple reflection from the different depth of biological sample with the reference 

spectrum. This is the desired signal component in OCT imaging. 

3. The third term is called “auto-correlation”, it is the interference generated between different 

layers in the biological. This term is generally small compares to the DC term and cross-

correlation term.  

Perform Fourier-transform to signal Id(k) will obtain the Id(z), which is the depth dependent 

reflectivity profile,  
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𝑰 (𝑧) =

𝜌

8
𝛾(𝑧) 𝑅 + 𝑅                                                                  

+ 2 𝑅 𝑅 (𝛾[2(𝑧 − 𝑧 )] + 𝛾[−2(𝑧 − 𝑧 )])             

+ 2 𝑅 𝑅
  

(𝛾[2(𝑧 − 𝑧 )] + 𝛾[−2(𝑧 − 𝑧 )])  

(1.6) 

Where γ(z) is the Fourier transform pair of S(k), the cross-correlation term can be used to extract the 

depth dependent reflectivity of the sample arm Rs(zs). Because the DC terms and the auto-correlation 

terms were located close to zero-delay, the cross-correlation signal can be separated by adjusting the 

optical path difference (OPD) of the sample with respect to the beam splitter, shifting the signal away 

from the zero-delay.  

Low coherence laser light source is commonly used in OCT technology. Narrow bandwidth highly 

coherent laser light can maintain the interference pattern over a long distance. Therefore, when the 

signal received by the detector, it has no depth information because it cannot determine where reflection 

happen. Low coherence source will create a noticeable fringe pattern when the optical path of the two 

beams became less than the coherence length of the light source.  

1.2.1 Axial Resolution 

In digital signal processing, the auto-correlation function is found by taking Fourier-transform of a 

spectrum signal. Similarly, coherence function γ(z) of light source can be found by finding the Fourier-

transform of the power spectrum density function S(k). With normalized Gaussian function S(k), its 

Fourier transform pair is found to be, 

 
𝛾(𝑧) = 𝑒 ∆

     . .       
⎯⎯⎯⎯⎯⎯⎯⎯ 𝑆(𝑘) =

1

∆𝑘√𝜋
𝑒

( )
∆  (1.7) 

Where k0 is the central wavenumber of the spectrum, and Δk is the half width of the spectrum at 1/e 

of the intensity.  The coherence length lc is defined Full-With-Half-Maximum (FWHM) of the 

coherence function, 

 
𝑙 = 2𝑧 / =

2√ln 2

𝛥𝑘
=

2 ln 2

𝜋
∙

𝜆

𝛥𝜆
 (1.8) 

Here λ0 is the central wavelength defined by 2π/k0, and Δλ is the FWHM in the wavelength spectrum 

(hence, 𝛥𝑘 =
√

). The coherence function is the PSF of the signal, and the coherence length is 

then the axial resolution of the OCT system. 
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1.2.2 Digital Scanning Range 

An A-scan is one interferogram and the result is the depth profile the axial resolution is determined 

by the light source property. However, the scanning range is limited by the maximum fringe frequencies 

the detector is capable to capture because the maximum frequency of the fringe pattern in equation 

(1.4) contains the reflectivity of the maximum depth. The image depth is defined as, 

 
𝑍 =

1

4

𝜆

𝛿𝜆
  (1.9) 

Here the δλ is the spectral resolution of the detector. Maximum scanning range divide by half number 

of pixels in the detector will determine the digital axial resolution, with the units of micrometer per 

pixel.    

1.2.3 Lateral Resolution of OCT 

The lateral resolution of the OCT system is determined by the FWHM of the spot size of the probing 

beam. Taking 𝑤 =  as the beam waist (defines where the intensity of the beam drops to 1/e2), the 

theoretical limit for lateral resolution is, 

 
∆𝑥 = √2 ln 2 𝑤 = √2 ln 2

𝜆

𝜋𝑁𝐴
= 0.37

𝜆

𝑁𝐴
 (1.10) 

where λ0 is the center wavelength, and 𝑁𝐴 = 𝑛 sin 𝜃 = 𝑛 sin tan ≈ 𝑛 . Here d is the size 

of the incident beam on the objective lens, and f is the focal length.   

The depth of focus (DOF) b, also called focal parameters is square proportional to the lateral resolution 

of the system. It is defined as twice the Rayleigh range: 

 
𝑏 = 2 ∙ 𝑍 =

2𝜋𝑛𝑤

𝜆
=

𝑛𝜆

2𝜋 𝑁𝐴
 (1.11) 

While having higher NA will grant the system better lateral resolution, lower NA setup will provide 

larger depth of focus with poorer but relatively uniform lateral resolution. 
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Figure 1.4 Examples Illustrating effect of having lower NA (left) and Larger NA (right) 

The lateral field of view depends purely on the objective and the scanning beam incident angle as 

illustrated in the Figure 1.5, where 𝐹𝑂𝑉 = 2𝑓𝜃  

 

Figure 1.5 Lateral Field of View 

1.2.4 Signal Noise Ratio and SNR roll off 

The signal noise ratio (SNR) of the system is measured in decibels (dB) and is defined as the ratio of 

the OCT power value to standard deviation (SD) of the background power. OCT system with 100dB 

corresponds to the ability to detect the sample reflectivity (R) as low as R=10-10. SD-OCT typically has 

20dB and more sensitivity compares to TD-OCT because it utilizes N pixel detector where TD-OCT 

normally uses single pixel detector. This theoretically grants SNR of the SD-OCT to be N/2 times larger 

than SNR of the TD-OCT. 

In a shot noise limited SD-OCT system, the photon distribution is said to obey Poisson distribution 

(Choma, Sarunic, Yang, & Izatt, 2003) and the theoretical sensitivity can be approximated to  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝜌𝑃𝑇

2𝑒
 (1.12) 

Where ρ is the photodetector responsivity of the detector, P is the optical power illuminated at the 

detector assumed to be perfectly reflected from sample arm mirror, T is the integration time for the 

detector and e is the electron charge. SNR at zero delay can be then determined by 

 
𝑆𝑁𝑅 = 10 log (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) (1.13) 

The SNR will decrease as function of depth. In SD-OCT, reflectivity profile is caught by the 

interferogram. A perfect measurement of the interferogram requires that each pixel measures a single 

and exact wavelength. The inability of measuring higher frequencies due to finite pixel size (Leitgeb, 

Hitzenberger, & Fercher, 2003) and finite spectral resolution of the spectrometer (Yun, Tearney, 

Bouma, Park, & de Boer, 2003), causes sensitivity roll-off. Crosstalk between neighbour pixels can 

also contributes to the roll-off effect.  

1.3 Brief History of OCT and Current Status 

Optical coherence tomography (OCT) is a non-invasive imaging modality that measures the 

interference of back scattered light to analyze the depth encoded reflectivity profile of the sample. It 

was first introduced as an imaging modality with potential for in-vivo non-invasive ophthalmic imaging 

back in 1991 (Huang, et al., 1991). This publication showed the first in-vivo Time Domain OCT (TD-

OCT) cross-sectional image (B-scan) of the human retina. As TD-OCT was based on mechanical 

scanning of the reference mirror, this resulted in low scanning rates in the order of 1 kHz or less.  The 

first spectral domain OCT (SD-OCT) retinal images were presented by Wojtkoski et al. in 2002 

(Wojtkowski, et al., 2002). The SD-OCT utilizes a spectrometer to disperse the broadband spectrum on 

to a photon detection device, typically an array of charge-coupled device (CCD) or a complementary 

metal-oxide semiconductors (CMOS) sensor. This type of setup increases the imaging process 

significantly because lack of moving part at reference arm for scanning and the depth reflectivity profile 

is decoded by the spectrometer and the sensors. Since then, a lot of effort was made in improving the 

SD-OCT system in image acquisition speed and axial resolution.  Major development of OCT focuses 

on upgrading the light source, faster camera, as well as designing new optics and mechanics to be 

adaptive with respect to the new light source and detection. Because that the OCT axial resolution is 

decoupled with the lateral resolution, by choosing a source light with wider spectrum, micron level and 

even submicron axial resolution can be achieved (Yadav, et al., 2011) (Werkmeister, et al., 2013) 

(Bizheva, et al., 2016). Since eye motion will cause fringe averaging, OCT imaging requires high 
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acquisition speed to reduce motion blur caused by the eye motion without extra eye motion tracking 

hardware. Cellular level resolution was achieved for in-vivo imaging of both animals (Yao, et al., 2019) 

(Chen, et al., 2017) and humans (Tan, et al., 2018) corneal endothelium. 

1.4 Eye motion 

The SD-OCT technologies were only suitable for B-scan images if the acquisition speed cannot 

overcome the disruption occurred on the volumetric data and enface image that is caused by the eye 

motion. The slow speed of the commercial OCT system will result not only smaller FOV, but also 

preserves the eye motion in the image data. Commercial system acquisition speed of 20 kHz up to 100 

kHz often combine the scanning laser ophthalmoscope (SLO) imaging modality to help correct the 

motion between the OCT image slices. Even with the fixation stage for corneal or retinal imaging, 

fixational eye movement (FEyeM) can still occur. FEyeM tracking and objective measurement started 

during late 19th century where EB Heuy first reported the eye movement of the during reading with 

steady fixation (Huey, 1900). later research confirmed the FEyeM and categorized it into three different 

types of movements: drift, tremor and micro saccades. Drift is a tiny random walk like eye movement. 

It has low velocity, and the fixated object can move tens of photoreceptors in the retina during the drift. 

Tremor is irregular, wave-like eye motion occurred at the same time as drift. The average frequency of 

84 Hz from 105 normal participants were measured in a recent article (Bolger, Bojanic, Sheahan, 

Coakley, & Malone, 1999). Micro saccades are jerk-like, fast eye movement occurred in between drifts. 

It has duration about 25 milliseconds and can shift the retinal images across hundreds of photoreceptor 

width (Martinez-Conde, Macknik, & Hubel, 2004). The micro saccades can distort the OCT volumetric 

and enface data significantly since typical lateral field of view can be small as few hundreds of 

photoreceptors when imaging the retina.   

There are another two main source of eye motion during the OCT imaging. Since the OCT has micron 

level resolution, involuntary head movement, even heartbeat and the respiration during imaging will 

also introduce shifts of the retina position, causing axial motion artifact (de Kinkelder, et al., 2011). 

There are hardware and software approach for reducing the artefact caused by the eye motion. One is 

applying eye motion tracking hardware with OCT system, so the eye motion is collected simultaneously 

while scanning. Software based approach approximates the eye motion by referencing a base image 

and perform image registration on the dataset. Hardware solution usually have superior result since it 

has approximately exact information about eye motion for correction. Software based methods are still 

capable of producing moderate result with no extra cost, but their performance is highly dependent on 
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the OCT data qualities. If the data were significantly distorted by the fast eye motion like micro 

saccades, the algorithms cannot help with reconstruct the data. A camera with faster acquisition rate 

will also help to reduce eye motion related artifacts in the OCT images, as well as allow for expanding 

the FOV while sampling it with higher transverse resolution.   
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Chapter 2 

400 kHz UHR-OCT 

To achieve corneal imaging at cellular level, the SD-OCT system requires to have fast temporal 

resolution as well as micron level spatial resolution. Integrating the fast camera will grant a high 

temporal resolution thus reduce the artifacts caused by eye motion. Because the axial and the lateral 

resolutions are decoupled, a broadband light source will provide a better axial resolution. Although the 

light source with longer wavelength in the near infrared (NIR) can have better penetration depth, shorter 

wavelength will provide a higher axial OCT resolution because of the squared relation between center 

wavelength of the source spectrum and the axial resolution described in equation (1.8). As the axial 

OCT resolution is related to the OCT scanning range, increasing the axial OCT resolution while keeping 

the number of camera pixels the same will result in decreased OCT scanning range. Since the water has 

low light absorption at 800nm, local minima in the absorption spectrum at 1060nm and 1300nm and 

the infra-red-light source is less visible or invisible to human eye. Historically, OCT systems operating 

in the 800 nm, 1060nm and 1300 nm central wavelength have been used for in-vivo imaging of the 

human cornea, each of those spectral regions providing a combination of spectral resolution and 

scanning range. (Leitgeb & Baumann, 2018). For an OCT system with high axial resolution to be able 

to image individual cells in the corneal tissue, a similarly high transverse resolution, in the order of ~ 

1um, is required. Since the OCT transverse resolution is determined by the optics of the OCT imaging 

probe, using high NA objective will ensure the required transverse resolution, though at the expense of 

shorter depth-of-focus and limited FOV. Furthermore, when deciding the spot size of the beam 

illuminating on the imaged target, maximum permissible exposure (MPE) also needs to be carefully 

considered and calculated for the system before safely imaging the live sample since concentrating 

massive energy to a fine spot will potentially damage the tissue.   

Corneal diseases such as keratoconus, Fuchs’ dystrophy etc, can cause corneal tissue damage and 

eventually leads to permanent corneal blindness. Right now, the only treatment right now is to perform 

corneal transplant. The ability to perform in-vivo imaging on the corneal structure and see the tissue 

damage at cellular level over a large FOV, can help to study and diagnosis the early-stage corneal 

diseases and advance the development of the more effective treatment.  Due to involuntary eye motion, 

acquisition of volumetric images of the human cornea at cellular level resolution requires OCT 

technology that combines high axial resolution and high image acquisition rates.  
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Previously Bizheva’s research group introduced 34 kHz UHR-OCT system that has the cellular 

resolution of the corneal tissue show in Figure 2.1. The system has sufficient axial resolution to identify 

the corneal layers and can even resolve corneal cells. However, due to the slow acquisition speed, it is 

not possible to acquire the motion artifact free in-vivo 3D volumetric data of human cornea. This thesis 

introduces the upgraded UHT-OCT system with 400 kHz camera that can eliminate the disadvantage 

previous generation.  

 

Figure 2.1 In-vivo imaging of human corneal tissue with the 34kHz system (A), a healthy human 

cornea histology image (B), EPI – epithelium; BM – Bowman’s membrane; STR – stroma; ASL 

– acellular stromal layer; DM – Descemet’s membrane; END – endothelium.  

A B 
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2.1 Maximum permissible exposure calculation for corneal imaging 

American National Standard Institute (ANSI) provides the American National Standard for 

Ophthalmics – Light Hazard Protection for Ophthalmics instruments (ANSI Z80.36-2016). It classifies 

the ophthalmic instruments into two groups and defines the exposure limits.  

The imaging probe of the 400 kHz UHR-OCT system focuses the imaging beam to spot of 10 µm 

diameter on the cornea with the 5x objective. The spot is continuously scanned over the cornea; 

therefore, it stays at one location on the corneal surface only for a duration of 10/400 kHz = 2.5×10−5 

seconds, taking a maximum 90% overlapping illuminating area into consideration. The spectrum of the 

sample arm is presented in Figure 3.1. According to ANSI Z80.36-2016, for a light source with spectral 

range between 380 nm and 1200 nm, the limit value of the unweighted anterior segment visible and 

infrared radiation exposure, (HVIR-AS) is defined as: 25 t1/4 J/cm2, where t is the exposure time.  

The MPE is defined as HVIR-AS divide by time and then multiply the area of exposure,  

 
𝑀𝑃𝐸 = (25𝑡 /  𝑊/𝑐𝑚  ) × 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐴𝑟𝑒𝑎  (2.1) 

Normally human eye will blink at least every 10 seconds and eyelid will naturally block out the light. 

for safety reasons, t is set to 10 seconds in this calculation. According to the ANSI standards, it is 

averaging the radiant power within a circular area having a diameter of 1.0 mm, the MPE is then 

determined to be 

𝑀𝑃𝐸 = 25 × 10 / 𝑊/𝑐𝑚 × 𝜋
0.10 𝑐𝑚

2
 = 0.0349 𝑊 ≈ 35 𝑚𝑊 

For our corneal imaging studies, optical power of the imaging beam at the corneal surface will be 

adjusted to 2.75 mW which is lower than the limit value calculated under the ANSI guideline for 

anterior segment imaging.  

During corneal imaging, since the optical beam is focused on the cornea, it will produce a large 

diffuse illumination of the retina, which will pose no safety concerns in term of retinal damage, since 

the optical imaging power is distributed over a large area. 
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2.2 Methods 

2.2.1 Hardware 

The 34kHz SD-OCT system is based on the fiber-optics Michelson Interferometer. A 

supercontinuum laser (SuperK, NKT Photonics, Denmark) is used with a custom filter unit (Figure 2.2, 

CF). The custom filter unit contains multiple bandpass filters (BPF) and neutral density filters (NDF). 

Since the laser source have extremely wide spectrum, these filters are chosen to filter out unwanted 

band and only leave a spectrum centered around 800 nm with a spectral bandwidth about 390 nm. The 

NDFs are used to reduce the optical power down to around 20mW before coupling into the 50/50 

broadband fiber coupler (Gould Fiberoptics, USA). 

The reference arm of the system comprised of a collimator, a neutral density filter, a beam expander, 

a focusing lens and a silver mirror. A two BK7 prism mounted on miniature translation stages are used 

form the custom hardware dispersion compensator (Figure 2.2, DC). Manual control of the overlap 

between the prism can vary the thickness the glass present in the optical path. Other than the collimator, 

all the other components are mounted on a 12 inches manual translation stage, as indicated in Figure 

2.2 with the red dashed rectangle.   

The sample arm consists of a collimator, a x-y galvanometric scanner, beam expander and a 

microscope objective (5x, 10x or 20x depending on the required trade-off between lateral resolution 

and FOV). The new OCT system utilizes a customized commercially available spectrometer (Cobra, 

Wasatch Photonics, USA) which is equipped with 8192-pixels CMOS camera which can perform 

acquisition at 400kHz rate. Together it provides a spectral resolution of about 0.0476nm. the 

polarization controller is used to perform manual spectrum reshaping so the shape and magnitude of 

system’s point spread function (PSF can be optimized.   

For in-vivo imaging of the human cornea, the optical power of the imaging beam incident on the 

corneal surface will be set to <2.75mW, which is significantly lower than the maximum permissible 

exposure power as specified by the ANSI (American National Standards Institute) standard.  
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Figure 2.2 Schematic of the OCT system. CCD-camera; CF-custom filter; CL-collimator; DC -

dispersion compensation unit; FC-fiber coupler; FL-focusing lens; L1 and L2-lenses; M-silver 

mirror; MO-microscope objective; NDF-neutral density filter; PC-polarization controller; TS-

translation stage; VPHG-volumetric phase holographic grating; XY-galvanometric scanners. 

2.2.2 Acquisition System Setup 

CamExpert from Teledyne DALSA company was used for high-speed image acquisition, and 

LabVIEW was used for scanner control as well as camera trigger signal generation with NI PCIe-6321 

Multifunctional I/O device. Figure 2.3 shows the system layout. The trigger signals use BNC 

connectors. The camera connection to the Xtium2 frame grabber uses camera link cable to allow the 

high data throughput required for the raw data transfer.  



 

 19 

 

Figure 2.3 System Layout, blue indicates hardware system, green is the software. Xtium2 

Frame grabber and NI PCIe-6321is installed on the computer; one computer runs both 

CamExpert and LabVIEW software 

Scanning Pattern 

Detailed schematic for ex-vivo imaging setup is show in Figure 2.3. The x-y scanners were controlled 

by LabVIEW and NI PCIe-6321 devices, and raster scan patter were implemented. 80% duty cycle 

were used for one b-scan, the rest 20% is saved for resetting of the x-scan mirror to starting position. 

For example, by setting up a squared imaging area, 500 by 500 points in x and y direction will result 

400 in x direction (fast scan) and 500 in y direction (slow scan). Although this introduces an uneven 

distribution (0.8 to 1 for fast and slow scans) of the scanning points. It can be adjusted to have a 1 to 1 

by either having close to 100% duty cycle or use 625 by 500 raster pattern. However, maximizing the 

duty cycle will potentially harm the x-scanner since it allows less time for it to scan through the length 

of the FOV. Increasing the raster scan points will consume 20% more computer memory.  
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Figure 2.4 Illustration of raster scan used, dotted line representing the one b-scan, solid line 

representing fly-back of the x-scan mirror (left); example of one b scan and point distribution 

with 80% duty cycle (right). 

Data Throughput 

The camera was set to acquire 8192 pixels of data per scan with 8 bits pixel depth although only 

about 7570 pixels were illuminated on. Setting the camera to operate at full speed, the system will 

generate extensive amount of data,  

𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 = 8192 𝑝𝑖𝑥𝑒𝑙𝑠 𝑙𝑖𝑛𝑒⁄ × 1 𝐵𝑦𝑡𝑒 𝑝𝑖𝑥𝑒𝑙⁄ × 400000 𝑙𝑖𝑛𝑒𝑠 𝑠𝑒𝑐⁄ ≈ 3.05 𝐺𝐵/𝑠𝑒𝑐 

With such huge amount of data needs to be transferred and stored, the old frame grabber from National 

Instrument (NI) used for 34 kHz UHR-OCT system is no longer an option. NI does not have anything 

up to the speed and commercially available yet. Xtium2-CLHS frame grabber from Teledyne DALSA 

is the only available frame grabber that satisfies the compatibility with the 400 kHz camera and the 

high data throughput requirement.  

Trigger Signals 

The Xtium2-CLHS frame grabber is set to have internal trigger of 400kHz while the NI PCIe-6321 

is programmed to generate a TTL trigger signal long enough for the scanning process. Figure 2.5 shows 

an example of generating camera trigger. The Xtium2-CLHS frame grabber takes the trigger signal 

from the NI PCIe-6321, “AND” with the internal 400 kHz clock (outputs high iff both signals are high), 

it reshapes the input and generates camera trigger signal.  
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Figure 2.5 Example of trigger timing diagram  

When taking 500 by 500 area scan, a total of 250,000 scans were required. This will require a trigger 

signal from NI PCIe-6321 to last 250,000 / 400,000 = 0.625 seconds.  

Image acquisition settings 

In the CamExpert image settings, the image was set to acquire a 2D image, with size of (number of 

A-scans times number of B-scans) by 8192 pixels. When acquiring a square area of 400 by 500 raster 

scans, with duty cycle of 80%, a total of 400 ÷ 0.8 × 500 =250,000 lines scans were required. The 

camera will generate a 2D image of 250,000 by 8192 8-bit TIFF grey image. A total of 2048000000 

pixels were contained in the image with 1 byte per pixel, occupying approximately 1.91 GB in the 

computer hard drive. TIFF is non-compressed data format and therefore preserves all the sensor reading 

details with no compression loss. 

2.2.3 MATLAB GUI for Pre-processing of the raw Data 

The stored TIFF file has the 8-bit gray scale info about the interferogram of the scans. MATLAB is 

used for preprocessing of the raw data to generate the B-scan images and enface images. A MATLAB 

application with graphical user interface (GUI) were created for the task as shown in Figure 2.6. It 

allows defines parameters such as duty cycle, number of A-scans for the tasks. It will process the raw 

interferogram data and display the Xth
 image for preview on the whitespace located at the right panel. 

Cropping of the preview is allowed by specifying the “Top”, “Left”, “Height” and “Width” of the 

previewing image. It can be selectively to generate “enface” images, “raw dat” file “xzIntensity” files 

and the phase file, allowing re-accessing the intermediate data file for different purpose. i.e., accessing 

the phase file for functional Doppler application.  

The GUI is set to have adjustable DC constants up to 7th order. The B-scan images on the right panel 

will update the preview image as any of the constants got changed. The program will pick one A-scan 

specified by user for image quality calculation.  
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Figure 2.6 MATLAB application GUI for pre-processing of the raw data. illustrated is B-scan 

image of an inverted pig cornea with high reflection at the cornea-tear film interface 

A sharpness metric of finding maximum energy concentration were used for quantifying the image 

quality after dispersion compensation (Wojtkowski, et al., 2004). By finding the number of points in 

the axial reflectivity profile that exceeds predetermined threshold, the sharpness metric is defined by 

one over the total number of points. With this metric, manual dispersion compensation can be applied 

and the result can be quantified. Contrast constants c1 and c2 are upper limit and lower limit for 

normalizing the intensity value, it is used for better contrast adjustment, and it will affect the sharpness 

calculation as well.  

2.2.4 Pre-processing Steps 

The preprocessing of the raw data to a B-scan image is shown in Figure 2.8. the raw tiff image was 

loaded with MATLAB program. Since the trigger signal suffers delay from the computer to the scanners 

and to the camera as illustrated in Figure 2.7. MATLAB circular shift function can shift the data array 
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in one direction as illustrated in the same diagram. This allows a software correction to the data for 

synchronization, forms correct b-scan and enface images. The number of rows to shift only need to be 

calibrated when the hardware systems setup was complete. Recalibration would be required when the 

electrical wiring got changed. 

 

Figure 2.7 Example of asynchronization between Camera and scanner (left) and graphical 

illustration of MATLAB circular shift function on the tiff data arrays, arrays of interferogram 

been shifted upward and the squeezed-out arrays circulate to the bottom (right) 

The first B-scan image is defined by the A-scan numbers, and duty cycle represent the valid A-scan 

data. with A-scan number equal to 500, and duty cycle of 0.8, the first 400 lines of interferograms 

would be valid to generate the b-scan image. The rest 100 A-scans are the data taken during the flyback.  

The 400 arrays of interferogram are sliced out for further processing. The interferograms were 

collected over wavelength space, but fast Fourier Transform function in MATLAB performs discrete 

Fourier transform and it requires the signal to be in linear wavenumber (k) space instead of linear λ-

space. The most typical solution for this is to perform numerical resampling using interpolation (Dorrer, 

Belabas, Likforman, & Joffre, 2000). MATLAB spline interpolation is used for such tasks, and Hilbert 

Transform (HT) is used prior the FFT to acquire complex phase info of the signal. 7TH order of DC is 

used in the pre-processing of the image, but it requires manual tuning of the constants. DC is achieved 

by multiplying the signal in Hilbert space with the DC factor: 
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𝑑𝑄 =  𝑒∑ ( )  

The DC signal is equal to the Hilbert space signal multiplies the DC factor. 

 

Figure 2.8 Pre-processing algorithms flow chart 

Performing FFT on the DC signals will get the axial reflectivity profile of the A-scan. The absolute 

value of the log value of the reflectivity signal is used to generate b-scan images in Portable Network 

Graphics (PNG) format for storage. The software will loop through the data arrays until it finishes all 

the B-scans. 

The enface images will be generated as illustrated in Figure 2.9, the volumetric OCT data has x,y,z 

dimensions and the b scan is on the xz plane. The enface image is the xy plane of the data.  
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Figure 2.9 Enface image generation from OCT volumetric data 
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Chapter 3 

System Characterization and Result 

This chapter contains result the tests for characterizing the 400 kHz UHR-OCT system. The system 

utilizes spectrum from 600 nm to 980 nm. With center frequency of 802 nm and spectrum band with 

of 256 nm, it can provide an axial resolution of 1.37 μm in air. With a 20x objectives, it is capable of 

providing 1.04 μm/pixel of lateral resolution on the slow axis and 1.31 μm/pixel on the fast axis. 

Element 7 group 6 of the USAF-1951 target can be resolved. Providing 0.95 mW incident power at the 

sample arm, it can achieve 83 dB SNR with about 10 dB roll-off over the 1mm scanning range. Detailed 

result and calculations are displayed in each subsection with figures and plots. 

3.1 Spectrums 

The sample arm and reference arm spectral were measured with at the detection end of the 400kHz 

OCT system by using a silver mirror in place of the imaged object. Figure 3.1 shows the results from 

the test measurements. 

 

Figure 3.1 Sample and reference arm spectra measured at the detection end of the system 
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3.2 Spatial resolution 

3.2.1 Axial Resolution 

The theoretical axial resolution can be calculated from equation (1.8), Δ𝑧 = 1.11 𝜇𝑚. However, this 

equation assumes a Gaussian shape of the spectrum, while as shown in Fig. 3.1. the measured refence 

and sample spectra are not exactly Gaussian. The true axial resolution was measured experimentally by 

using a silver mirror as the imaged object. Because the reference and sample arms of the OCT system 

contain different optical components made of exotic types of glass that generates higher orders of 

dispersion in the propagating optical beam, numerical dispersion compensation up to the 5th order was 

applied to the measured axial PSF of the OCT system. The symmetric axial PSF is shown in Figure 3.2 

and has a FWHM of 1.37 µm in free space. The difference between the theoretically calculated and the 

experimentally measured axial OCT resolution can be attributed to the fact that the shape of the 

reference and sample spectra is very different than a Gaussian one. An additional result from this 

difference is the appearance of small sidelobes adjacent to the main lobe of the experimentally measured 

PSF. The measured PSF function has FWHM of 1.37 μm in free space, which corresponds to about 

1μm of axial resolution in corneal tissue assuming an average corneal refractive index of 1.375 (Meek, 

Dennis, & Khan, 2003).  

 

Figure 3.2 Theoretical PSF and measured PSF 
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The theoretical PSF is calculated by multiplying the sample spectrum with reference spectrum. Then 

adding a cosine term to it so the FFT result, the theoretical PSF function is shifted away from zero delay 

line for ease of comparison. The theoretical PSF has lower FWHM is because the measured PSF’s 

hardware dispersion compensation is not perfect enough and the polarization state of the fibres could 

be changed in between the measurements.  

3.2.2 Lateral OCT resolution evaluation 

An USAF-1951 resolution target was used to evaluate the lateral resolution of the OCT imaging 

system. The resolution target image shown in Figure 3.3 was acquired with a 20x microscope objective 

(Mitutoyo, Infinity, IR corrected). The image shows Elements 6 and 7, which are the highest resolution 

groupings for this version of the USAF-1951 resolution target. 

 

Figure 3.3 USAF-1951 with 20x objectives and 30 layers maximum intensity projection the 

arrow indicates the x-scanning direction 
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Two lines draw on the picture were used to determine the pixel resolution. They are element 4 of 

group 5, and the line pair resolution is 2  , which is 45.3 lp/mm.  

 

Figure 3.4 Line profiles of the imaging result for group 5 element 4 

Taking the normalized intensity at its half maximum, the pixel run across 2.5 line-pairs are 42 pixels 

for the x and 53 pixels for y. the pixel wise resolution is calculated to be 

x =
2.5 lp

45.3 lp/mm
×

1

42 pixels
=  1.31 μm/pixel 

y =
2.5 lp

45.3 lp/mm
×

1

53 pixels
=  1.04 μm/pixel 

 

The result is consistent with the pixel distribution since a square area is scanned over 400 points in x 

direction and 500 points in y direction.  
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Figure 3.5 Group 6 and 7 regions of the USAF imaged with 400kHz UHR-OCT system (A), 

normalized intensity profile of the group 7 element 6 (B), normalized intensity profile of the 

group 7 elements 1 to 6 (C) 

In the y direction of the group 6-7 region, the smallest scale can be resolved easily with the 400kHz 

UHR-OCT system, representing lower contrast. This is expected in the presence of off axis optical 

aberrations, including field curvature and off axis astigmatism, if the image plane is not on the disk of 

least confusion. The x-y directions do not have same contrast is because the scanning is not 

symmetrical, (i.e., 400 points by 500 points of raster scan.).  

3.3 SNR and SNR Roll-off 

The quantum efficiency (QE) of the Linea HS 400 kHz CLHS TDI cameras is show in Figure 3.6 
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Figure 3.6 Spectral QE of the 400 kHz camera (source: Teledyne DALSA) 

For simplified theoretical SNR calculation, taking the QE to be 0.35 since our spectrum is around 

670 nm to 926 nm at FWHM centered at 802 nm. The calculated photodetector responsivity at 802nm 

is approximately 0.23 by converting the quantum efficiency with the equation: 

 𝜌 =  𝜂 ×
𝑞

ℎ𝑓
 (3.1) 

Where η is the quantum efficiency, q is the electron charge, h is the Plank’s constant and f is 

the frequency of the light. When the sample arm has incident power of 0.95 mW, at full speed of 400 

kHz, the camera’s theoretical SNR is calculated to be approximately 92 dB. In real practice, a lower 

SNR is generally measured since factors like the power attenuation in the fibre and intensity fluctuation 

associated with the light source will also contribute approximately 5 to 10 dB to the SNR loss.  

Experimentally, the signal strength is measured up to 2.8 mm with steps size about 100 microns. 

Results from the system’s sensitivity test as a function of the scanning range are presented in Figure 

3.7 
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Figure 3.7 Sensitivity roll-off with scanning range 

By projecting the 390 nm spectral bandwidth over the 8192 pixels, the system provides ~2.8 mm 

scanning range. The maximum SNR was approximately 83 dB measured at ~100 microns away from 

the zero-delay line for 0.95mW optical power incident on the silver mirror. The SNR roll-off was about 

10 dB roll-off over the 1mm scanning range. 

3.4 Images of biological tissue acquired with the 400 kHz OCT system 

3.4.1 Cucumber 

Due to COVID-19 related restrictions on research involving human subjects, we could not evaluate 

the 400 kHz system for in-vivo imaging of the human cornea. Instead, we caried ex-vivo imaging 

sessions on other biological tissues. Since the flesh of cucumber has similar water content and 

transparency of human corneal tissue in the visible spectral, as a first test, we imaged slices of cucumber 

near where the seeds are located. Figure 3.8 shows the enface result of the cucumber imaging with 20x 

objectives and 2.75mW illuminating power at the sample. A cell nucleus was found on the plane and 
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circled in red in the image. The images were post-processed with 8 layers of MIP in Amira software. 

The images on Figure 3.9 show the cellular structure of the cucumber tissue near the surface of a seed. 

Many small cells (~ 10 um in diameter) can be clearly identified in the B-scan and the enface image. 

The fact that the 400 kHz OCT system is able to visualize cells < 10um in size in cucumbers, means 

that the system should be able to visualize human corneal cells which are typically larger (~15 to 20 

um in diameter). 

 

Figure 3.8 Enface image of a big cucumber seed, yellow bar shows the scale of 100 microns 

 

Figure 3.9 B-scan (xz plane) of the large cucumber seed (A), yz-plane of the large cucumber 

seed (B) 

100 μm 

100 μm 100 μm 

A B 
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The B-scan and yz-plane of the same seed are also shown in Figure 3.9. The red circles indicate where 

the cell nucleus is located. 

 

Figure 3.10 B-scan image of a smaller cucumber seed (A) Enface image of the same cucumber 

seed (B) 

 

3.4.2 Images of porcine corneal epithelium 

Freshly enucleated porcine eyes were obtained from a local meat processing plant and placed in buffer 

solution during transportation to the research lab. For the imaging session, the eyes were removed from 

the buffer solution and placed in a custom holder to allow alignment of the cornea relative to the 

imaging beam. A contact lens was placed on the surface of the cornea for 2 reasons: to keep the corneal 

epithelium hydrated for the duration of the imaging procedure and to reduce the refractive index 

mismatch between the epithelial tissue and air. Volumetric images (800 A-scans x 800 B-scans) of the 

corneal epithelium were acquired from a region directly adjacent to the corneal apex in order to avoid 

the specular reflection at the apex. 

Figure 3.11 shows an enface image of the corneal epithelial layer at a depth collation corresponding 

to the basal cell layer. The image clearly shows individual epithelial cells and their nuclei. 

 

100 μm 

100 μm 

A 

B 
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Figure 3.11 Human corneal epithelium. Enface OCT image acquired ex-vivo with 20x objective 

(A). Despeckled image (B). Intensity profile of a limbal cell (C) marked with the red line in (B). 
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Chapter 4 

Challenges and Future Work 

In conclusion, this thesis work provides an UHR-OCT system that combines 1 µm axial resolution 

in biological tissue with an extended scanning range of 2.8 mm, 400 kHz image acquisition rate and 

SNR of 83 dB with 0.95 mW incident power at the sample arm. The design should be sufficient to 

image semi-transparent biological tissues such as the human retina and cornea.  

Images of Cucumber cells were presented in this thesis work, the cellular structure of the cucumber 

seeds can be resolved and even the nuclei of the larger seed cells were visible. An ex-vivo image of the 

pig cornea was imaged, and the epithelial layer is revealed. 

4.1 Challenges  

4.1.1 Software 

Due to the huge amount of data throughput, the old LabVIEW software system used to control both 

the frame grabber and the scanner is no longer working properly. During the high-speed imaging 

process, the software acquires the B-scans intermittently due to the lack of the ability to acquire and 

process a huge amount of data with an incompatible frame grabber. The idea of using Teledyne DALSA 

CamExpert software to synchronize with the LabVIEW controlled scanner and test the system took a 

long time. However, it is not the perfect solution to the system because it is only for ex-vivo imaging. 

For in-vivo imaging, the scanner needs to be constantly scanning to avoid tissue damage of prolonged 

laser exposure. 

4.1.2 COVID-19 Pandemic 

COVID-19 lockdown delayed the development process. Even after the lockdown, communication 

between the camera engineer, software developers were delayed. The imaging policy needs to be 

updated and human subject imaging is restricted.  

4.2 Future Work 

The proposed solution for the software would be using visual studio (VS) to create a new imaging 

GUI for in-vivo imaging since Teledyne DALSA provides SDKs in VS for control of their Xtium2-

CLHS frame grabber. This will solve the incompatibility of the frame grabber and LabVIEW software 
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issue. The logic of how to handle and process the raw data is confirmed and the in-vivo imaging 

protocol is defined. The new GUI should be able to perform similar tasks as the old LabVIEW software 

but without frame loss during the acquisition and saving data phase. The new method of acquisition 

should be sequential (grabbing all the data to the memory buffer) instead of grabbing one frame and 

process the frame at the same time. 

Also, testing of the performance of the OCT system for in-vivo imaging of the animal and human 

ocular tissue is required once the COVID-19 restrictions to clinical studies have been lifted. Appendix 

A shows the fine-tuning of the modified VGG-16 with transferred learning on the OCT retinal images 

for image classification. The result suggests that with enough data for diseased and healthy corneal 

images are collected, a neural network can be trained to perform image classification.  
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Appendix A 

OCT Image Classification  

This an unpublished project work done for SYDE 677 class back in the Fall 2018, the test accuracy 

done were at the that moment the highest to the best of my knowledge. The project was done on the 

OCT retinal images. But with sufficient OCT corneal images, the neural network can be re-tuned with 

transferred learning method to perform image classification on the diseased and healthy corneal images. 

Introduction 

Optical Coherence Tomography is a fast-growing technology that uses coherence property of light and 

gets cross-sectional information of the target. It helped ophthalmologist to obtained cross-sectional 

information of the patient’s eye retina. A dataset of 84484 OCT retinal images is available and 

consisting of four classes, Choroidal neovascularization (CNV), Diabetic Macular Edema (DME), 

Drusen (DRUSEN) and normal (NORMAL). This proposed study aims to fine-tuning of VGG-16 deep 

neural network with customized top layers to perform image classification of the dataset and achieves 

test accuracy of 98.14%. 

Recent development in Spectral Domain Optical Coherence Tomography provides ophthalmologist 

with a perfect tool to perform non-invasive in-vivo image of the human eyes. This breakthrough 

technology detects the interference signal coming back from the sample arm and reference arm and 

transform the signal into the axial depth information of the target which can achieve the axial resolution 

in microns (Wojtkowski, et al., 2004). a report has shown that compare to traditional angiography, OCT 

can achieve better imaging result and it is non-invasive (Spaide, Klancnik, & Cooney, 2015). 

Approximately 30 million OCT images are produced every year, without a smart analysis tool, 

interpretation and analysis of these images would be exceedingly difficult and time-consuming 

(Swanson & Fujimoto, 2017).  
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Figure A.1 OCT Images of Choroidal neovascularization (CNV)(Top-left), Diabetic Macular 

Edema (DME)(Top-right), Drusen (Bottom-left), and Normal Retina (Bottom-Right) 

Figure A.1 shows some examples of the retinal diseases with the comparison to the healthy retina. CNV 

is the creation of new blood in the choroid layer of the eye and makes the patient visually impaired in 

a few weeks. DME occurs when fluid and proteins accumulate on or under the macular region of the 

eye. Macular is the region where most of the cones sit, accumulation of unexpected material may cause 

the visual distortion and patient will lose the ability to see details and colours. Drusen made up of lipid, 

although it does not cause any damage, having drusen will increase the risk of development of age-

related macular degeneration (AMD).  

Those OCT images can be very confusing to people because some of them look remarkably similar, a 

computer aid tool that helps to exam the image and provides suggestion to ophthalmologist would be 

extremely useful. These processing and analysis tasks in OCT can include segmentation and 

classification of the diseases. Researchers have tried both handcrafted method and neural network 

approach for extracting features. Lots of deep learning architectures are available for image 

classification. Alex et al (Krizhevsky, Sutskever, & Hinton, 2012) introduce AlexNet which uses 
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convolutional neural networks (CNN) technique in his deep learning model. This architecture 

significantly reduced the error by almost 10% from the previous year and won the ILSVRC-2012 

competition. Since then, more architectures like VGG (Simonyan & Zisserman, 2014), GoogLeNet 

(Szegedy, et al., 2015) and ResNet (He, Zhang, Ren, & Sun, 2016) came up with different convolutional 

layer combinations and won the ILSVRC from 2014 to 2015. 

Pratul et. al. studied OCT retina images with a histogram of oriented gradient (HOG) for feature 

extraction and support vector machine for classification. For 45 subjects, 15 normal, 15 patients with 

dry age-related macular degeneration (AMD), and 15 patients with DME, his algorithm was able to 

correctly identify 100%, 100% and 86.77% for AMD, DME and normal cases respectively (Srinivasan, 

et al., 2014). 

Kuntoro’s study compared the handcrafted and deep neural network feature extraction for classifying 

the OCT images into CNV, DME, DRUSEN and NORMAL. histogram of oriented gradient approach 

used in the study showed test accuracy of 50.1%. Local binary pattern (LBP) only got test accuracy of 

42.3%. Whereas DenseNet-169 gave 88.0% and 89.2% (Nugroho, 2018). Another reported study in 

OCT images using VGG16 model with Xavier initialization successfully identify AMD with test 

accuracy of 87.63% (Lee, Baughman, & Lee, 2017).  

He et al. and Alonson-Caneiro et al demonstrated deep learning feature extraction on their study (He, 

et al., 2018) (Alonso-Caneiro, Read, Hamwood, Vincent, & Collins, 2018). U-Net followed by S-Net 

and R-Net were proposed to obtain topology guaranteed segmentation (He, et al., 2018).  In comparison, 

CNN was also trained to compute the probability map for each boundary position that was traced with 

a graph-search technique (Alonso-Caneiro, Read, Hamwood, Vincent, & Collins, 2018). Both studies 

shown the superiority of deep learning feature extraction compare to handcrafted approaches. 

However, those studies mostly were done with a small dataset, typically less than 1000 images. This 

could be fine for handcrafted approaches but could be an issue for deep learning model. Kermany et al. 

provides an OCT dataset with over eighty thousand of classified images in 2017. This study will focus 

on fine-tuning modified VGG16 model and train the data to step up the test accuracy compare to 88.0% 

and 89.2% from Kuntoro’s study, who uses the same dataset (Nugroho, 2018). 
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Methods and Experimental Design 

1. Data Re-sampling 

Dataset is provided by Kermany et al. with his study (Kermany, et al., 2018). The dataset is separated 

into four classes, they are Choroidal neovascularization (CNV), Diabetic Macular Edema (DME), 

Drusen (DRUSEN) and normal (NORMAL). However, the provided dataset contains limited validation 

set, only 32 images compare to 83484 training images. The original dataset was trained first, details 

will be discussed in the result section. The dataset was re-sampled for the training and fine-tuning of 

the model. Detailed count comparison of the datasets is shown in Table A.3 and Table A.4 below: 

Table A.1 Original Dataset 

Parameters Train Val Test Total 

CNV 37205 8 242 37455 

DME 11384 8 242 11598 

DRUSEN 8616 8 242 8866 

NORMAL 26315 8 242 26565 

Total 83484 32 968 84484 

 

Table A.2 Resampled Dataset 

Parameters Train Val Test Total 

CNV 36705 508 242 37455 

DME 10884 508 242 11598 

DRUSEN 8116 508 242 8866 

NORMAL 25815 508 242 26565 

Total 83484 2032 968 84484 

 

500 images from each class were randomly selected and moved to the valid data. The test data remained 

the same. 
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2. Deep Learning Model and Platform 

There are several platforms available for applying deep learning model, this study would be using Keras 

Platform. VGG16 will be used as the base model of the project, the model was loaded initially with no 

top layers and the structure is explained in Figure A.2. 

 

Figure A.2 VGG16 model without top layers 
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3. Top Layers 

Customized top layers consist of flattening layer, Fully Connected layers (FCL) and dropout layers. 

SoftMax activation was used for the last FCL. Detailed info can be found in Figure A.3. Dropout layers 

introduced here helps the neurons to learn more robust features and helps to reduce the over-fitting 

(Krizhevsky, Sutskever, & Hinton, 2012) 

 

Figure A.3 VGG16 model without customized top layers 

4. Optimizer 

There are a lot of options for optimizer available. Some of them are stochastic gradient descent (SGD), 

root mean square propagation (RMSProp), AdaGrad, Adadelta, Adam, Adamax and Nadam. RMSProp 

is an optimizer that divides the gradient by a running average of its recent magnitude. AdaGrad has 

adaptive learning rate, it takes larger steps for infrequent and smaller steps for frequent parameters 

(Duchi, Hazan, & Singer, 2011). Adadelta is an extension from AdaGrad, but it adapts the learning rate 

based on a moving window whereas AdaGrad accumulates all the past gradients (Zeiler, 2012). Adam 

is another optimizer which combines both features of Adadelta and RMSProp, it keeps the 

exponentially decayed average of past gradients. Adamax is just another variant of Adam which is 

based on the infinity norm (Kinga & Adam, 2015). Nadam is Adam RMSProp with Nesterov 
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momentum (Dozat, 2016). All of them are similar algorithms and has similar good performance in 

similar cases (Ruder, 2016). However, due to the bias-corrected feature, Adam optimizer slightly 

outperform RMSProp towards the end of the optimization (Kinga & Adam, 2015), and this is the 

optimizer chosen to produce the best result. 

5. Inputs and Parameters 

To simplify and speed up the training process, transfer learning method is used in this study, pre-trained 

weights available from Kaggle website are loaded into the model and frozen for non-Top layers. Only 

customized top layers weights were trained in this study. Although OCT images are theoretically 

grayscale images of the reflected signal, Images from the dataset have 512 x 496 pixels with jpeg 

format. However, the VGG model requires RGB channels with 224 pixels of 2D-squared input data so 

the images were fed into the model with RGB format and resized to 224 x 224 x 3. The resizing of the 

images uses nearest neighbour interpolation.  

Hyperparameters used for fine tuning are number of batch sizes, learning rate, number of epochs and 

dropout rates. Adam optimizer with categorical cross-entropy loss function (for one hot encoded labels) 

were used in this model. The final model contains 40.9 million parameters, 14.7 million of them are 

frozen and 26.2 million of them are trainable. For training of the model, the train images and validation 

images were shuffled while feeding into the model. 

Fine Tuning and Result 

As mentioned previously, the original dataset only contains 32 images for validation. For the first trial, 

the validation accuracy shoots up to 100% and fluctuate between 90% to 100% easily. Therefore 2000 

images from the training set were chosen randomly and moved into the validation set. 

Table A.3 Parameters Tuned for Trial 1 to 4 

Parameters Trial 1 Trial 2 Trial 3 Trial 4 

Dropout Layer 1 0.7 0.7 0.5 0.5 

Dropout Layer 2 0.5 0.5 0.5 0.5 

Learning Rate 1e-4 1e-4 1e-5 1e-5 

Batch Size 16 16 32 32 

Epochs 10 10 10 9/50 
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When training the model second time, it got stuck in roughly 70% train accuracy and 50% validation 

accuracy. This may be caused by the large learning rate and dropout probability used. Therefore, the 

learning rate would be reduced to one order of magnitude less for the next trial and dropout rate changed 

to 50%. 

After 10 epochs of trial 3, it got training accuracy of 89.33% with validation accuracy of 82.29%. 

weights were saved and loaded for trial 4. Epochs for trial 4 were increased to 50 but an early stopping 

function was applied with patience equal to 5. this time it stopped at epochs number 9. This model 

produces a test accuracy of 95.8%. 

Table A.4 Parameters Tuned for Trial 5 and 6 

Parameters Trial 5 Trial 6 

Dropout Layer 1 0.5 0.5 

Dropout Layer 2 0.5 0.5 

Learning Rate 1e-5 1e-5 

Batch Size 32 64 

Epochs 50 50 

In trial 5, the epochs number were increased to 50 epochs and checkpoint were set to monitor the 

validation accuracy. Early stopping function was disabled. although the validation accuracy maxed out 

in epochs number 33. It still produces the best result so far. Trial 6 was attempted to see if increasing 

batch size could push the result better. However, doubling the batch size did not make it converge faster 

or slower, the rates were about the same, but the training time for each epoch increased about 1/6. And 

the final test accuracy is the same. 

Table A.5 Confusion matrix of best model 

 CNV DME DRUSEN NORMAL 

CNV 242 0 0 0 

DME 4 243 0 5 

DRUSEN 8 0 234 0 

NORMAL 0 0 1 241 

 

Overall, the test accuracy of the best model is 
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 242+243+234+241

242+233+234+241+4+8+5+1
=

950

968
=0.9814 

 

with the precision and recall score shown in Table A.6. 

Table A.6 Best model precision and recall result 

 Precision Recall 
CNV 0.95 1.00 
DME 1.00 0.96 

DRUSEN 1.00 0.97 
NORMAL 0.98 1.00 

 

 

Figure A.4 Training loss vs validation loss 

The training accuracy vs validation accuracy in the Figure A.4 shows that the model reaches the 90% 

training accuracy and 85% validation accuracy in first six epochs, rest of the epochs contributed little 

accuracy and after 11 epochs, the validation loss starts to increase as shown in Figure A.5. This might 

indicate that the model is over-fitting. The weight at 11 epochs was loaded and the test accuracy was 
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97.62%. Later epochs just make the model better at fitting the training data while increasing the 

validation loss. 

 

Figure A.5 Training accuracy vs validation accuracy 

Conclusion 

Customized VGG16 model with customized top layers was used to train OCT dataset of 81484 images 

and valid on 2032 images. This model of VGG16 uses 3 FCL with 2 dropout layers in between to 

classify OCT images into CNV, DME, DRUSEN and NORMAL classes. With the learning rate of 1e-

5, batch sizes of 32 images, 50% dropout rates for both dropout layers for 50 epochs, best test accuracy 

were achieved 98.15% with 968 test images. 
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Appendix B 

Python Codes for OCT Image Classification with VGG-16 
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