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Abstract

States of confined electrons in semiconductors are promising candidates for quantum
bits with high controllability, scalability, and coherence. Particularly, spin quantum dots
offer direct integration with the modern MOS technology, whereas the exotic Majorana
bound states are virtually immune to decoherence. In all cases, high-quality material sys-
tem design is necessary for the fabrication of quantum devices, and the physical quantities
that drive qubit operations require optimal pulse engineering for deterministic quantum
control.

The first goal of our study is to develop a consistent procedure of epitaxial InGaAs
metallization with a flat Al layer and a pristine metal-semiconductor interface, necessary
for the future observation of Majorana quasiparticles. The comprehensive analysis of the
kinetics of Al on III-V heterostructures we carried out shows that the effects of deposi-
tion rate and methods of Al surface protection are understudied. With cross-sectional
transmission electron microscopy, we demonstrate high heterostructure quality using As4

as a capping layer and an order of magnitude larger Al deposition rate than previously
reported. Based on the subsequent analysis for different Al growth rates and cappings, we
conclude that faster rates are beneficial to minimize heat transfer to the wafer, protect the
uncapped Al surface from rearrangement, and improve its morphology.

Our second goal is to simulate the operation of a voltage- and ESR-controlled, quantum-
dot-based spin quantum processor in silicon. To achieve this, we devise methods to extract
the Hubbard model and spin interaction parameters from the electric potential landscape
simulations of realistic device geometries. In addition, we present a novel, numerically
efficient algorithm for voltage and ESR field pulse engineering that yields a theoretical
100% fidelity, preserves charge stability, and automatically incorporates all cross-couplings
between quantum dots. The general optimal control formulation makes it possible to
use the method in conjunction with gradient optimization routines. The algorithms are
implemented as parts of a general-purpose, open-source Python package for semiconductor
quantum dot simulations.

We expect that the obtained results will further facilitate the development of semicon-
ductor qubits, and become a stepping stone towards the realization of hybrid quantum
dot-Majorana devices.

iv



Acknowledgements

First and foremost, I sincerely thank my supervisors, Jonathan Baugh and Zbig Wasi-
lewski, for their relentless support in all academic matters during my Master’s studies. I
also thank the members of both of my research groups: Stephen Harrigan, Alex Currie,
Brandon Buonacorsi, Alan Tam, Chris Deimert, Peyton Shi, and others, for all their time,
help, shared knowledge, and a very positive social experience. I am always grateful to
all my family, whose care, patience and empathy I cannot overstate, and my numerous
Ukrainian friends, now scattered across the globe, for their support and desire to deepen
our friendships despite all distances and borders. I thank all schools I studied in, all
my teachers and people who contributed to my development at all stages of my life for
rendering me capable of doing graduate studies at the prestigious University of Waterloo.
Finally, I thank Fr. Eugene Shchukin and all my friends from the parish of Saint Patriarch
Tikhon Confessor and New Martyrs of Russia (Russian Orthodox Church Abroad) for great
encouragement to grow spiritually, and being as close to a second family as possible during
my stay in Canada.

Overall, I thank everybody for transforming my Master’s studies into a process of
enormous scientific, intellectual, personal, emotional, and spiritual growth that made me
the man I am today.

v



Table of Contents

List of Figures x

List of Tables xiii

1 Quantum information processing with low-dimensional semiconductor
systems 1

1.1 Energy states of electrons in semiconductors . . . . . . . . . . . . . . . . . 1

1.1.1 General energy properties . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Electron interactions in the semiconductor . . . . . . . . . . . . . . 3

1.1.3 Realization of zero-energy states . . . . . . . . . . . . . . . . . . . . 4

1.2 Control of electron interactions for quantum gate operations on spins . . . 6

1.2.1 Single-qubit operations . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Two-qubit operations . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Combined quantum operation of localized electrons and Majorana fermions 8

1.3.1 Non-abelian braiding . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Integration with quantum dots for universal computation . . . . . . 8

2 Eptiaxial metallization of III-V heterostructures with aluminum 11

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Epitaxial heterostructure growth and characterization . . . . . . . . . . . . 13

2.3 Kinetics of aluminum growth on semiconductors . . . . . . . . . . . . . . . 16

vi



2.3.1 Effects of crystal structure and symmetry . . . . . . . . . . . . . . 16

2.3.2 Atomic transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Strain and energetics . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Realization of heterostructure with flat Al layer and sharp interfaces . . . . 20

2.4.1 Statement of experimental problem . . . . . . . . . . . . . . . . . . 20

2.4.2 Surface flatness and layer structure confirmation . . . . . . . . . . . 22

2.4.3 Cross-sectional microscopy and spectroscopy with atomic resolution 26

2.5 Deposition rate optimization and surface protection for low-temperature
growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Choice of growth parameters for investigation . . . . . . . . . . . . 32

2.5.2 Wafer temperature monitoring during the aluminum deposition . . 32

2.5.3 Evolution of surface reconstruction . . . . . . . . . . . . . . . . . . 36

2.5.4 Post-growth imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.5 Surface morphology studies with AFM . . . . . . . . . . . . . . . . 46

2.6 Summary of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Algorithm and software design for a spin-qubit quantum architecture
simulation 54

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Spin qubit quantum computer architecture in silicon . . . . . . . . . . . . . 56

3.3 QuDiPy: a quantum dot simulation package . . . . . . . . . . . . . . . . . 59

3.3.1 Simulation of the node operation . . . . . . . . . . . . . . . . . . . 59

3.3.2 Scope of the simulator . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Theoretical foundations of the simulator . . . . . . . . . . . . . . . . . . . 65

3.4.1 Potential data extraction and manipulation . . . . . . . . . . . . . 65

3.4.2 Determination of the many-electron energy spectrum . . . . . . . . 67

3.4.3 Construction of effective Hamiltonians . . . . . . . . . . . . . . . . 70

3.4.4 Spin dynamics simulation . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



4 Efficient constrained pulse engineering for spin qubits 80

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Pulse engineering method . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Control problem definition . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Expression for the cost function . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Stability of charge configuration . . . . . . . . . . . . . . . . . . . . 85

4.2.5 Restriction on absorbed RF electromagnetic energy . . . . . . . . . 90

4.2.6 Restriction on voltage sweep rates . . . . . . . . . . . . . . . . . . . 91

4.3 Design of effective parameter pulses for primitive quantum gates . . . . . . 92

4.3.1 Choice of the gates to design . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Idling qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Z rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.4 X and Y rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.5 Arbitrary rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.6 SWAPk pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Preliminary quantum circuit optimization . . . . . . . . . . . . . . . . . . 103

4.4.1 Rotation angle shift by 2π . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Hybrid gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.3 Parallel execution of gates . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Engineering of voltage pulses . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.1 Connection between physical and effective parameters . . . . . . . . 109

4.5.2 Voltage values for idling qubits . . . . . . . . . . . . . . . . . . . . 110

4.5.3 General formalism for voltage control pulse engineering . . . . . . . 112

4.5.4 Constraint satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.5 Choice of shape function . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Examples of single-qubit gate simulations . . . . . . . . . . . . . . . . . . . 118

viii



4.6.1 Relations between effective and physical parameters for a standalone
quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.2 High-fidelity resonant and nonresonant spin rotations . . . . . . . . 121

4.7 Summary of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Gradient ascent pulse engineering for spin qubits 126

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Operator formalism for quantum system evolution . . . . . . . . . . . . . . 128

5.2.1 Liouville equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.2 Toggling frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.3 Directional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.4 Van Loan method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Control problem formulation for gradient minimization . . . . . . . . . . . 135

5.3.1 Spin dynamics: generalization to a nonlinear problem . . . . . . . . 135

5.3.2 Expression for the cost function . . . . . . . . . . . . . . . . . . . . 137

5.3.3 Maximizing fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.4 Lowering susceptibility to decoherence . . . . . . . . . . . . . . . . 139

5.4 Summary of chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Conclusions and future work 142

References 144

ix



List of Figures

1.1 A prototypical, voltage controlled device for the information transfer be-
tween a quantum dot and Majorana fermions, proposed in ref. [25] . . . . . 9

2.1 Veeco Gen10 MBE system, used in our lab. . . . . . . . . . . . . . . . . . . 14

2.2 Aluminum grains at the lattice constant threshold value a=5.98 Å corre-
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Chapter 1

Quantum information processing
with low-dimensional semiconductor
systems

1.1 Energy states of electrons in semiconductors

1.1.1 General energy properties

The power and ubiquity of semiconductor technology are directly connected to the quantum
properties of semiconductors. One of the key properties is that at zero temperature, their
electrons fully populate the lowest energy band (valence band). When the temperature
goes above zero, a small fraction of electrons from this band are excited to the band
above (conduction band). Thus, under normal circumstances, all electronic properties of
semiconductors are determined by the electrons at the bottom of the conduction band,
or at the top of the valence band (in this band, however, it is more convenient to work
with the few unpopulated states, interpreted as “holes” with positive charges and masses).
Both extrema can be always approximated with quadratic polynomials, corresponding to
the following dispersion relation:

E(~k) = E0 +
~2(~k − ~k0)2

2m∗
, E0 ≡ E(~k0). (1.1)

Here, ~k0 denotes the extremum of the conduction (or valence) band, and m∗ is the pa-
rameter one can interpret as the electron (or hole) effective mass. Indeed, formula (1.1)
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describes nothing but a motion of a free quantum particle with the momentum ~p = ~~k and
mass m∗ in a reference frame that moves with the constant momentum ~~k0. This essen-
tially means that we can ignore a very strong and nonuniform crystal field as long as we
treat electrons as quasiparticles with the effective mass m∗ (and also the opposite charge
when we describe holes in the valence band). Without loss of generality, only electrons in
the conduction band will be discussed further.

If the electrons are in any way confined, this modifies another fundamental property
of semiconductors: density of states, g(E) = dn

dE
. This quantity defines the concentration

of the electrons dn(E) whose energies lie in the interval [E,E + dE]. For the systems of
different dimensionality, g(E) has different dependencies on the electron energy:

g3d ∝
√
E − E0, g2d = const, g1d ∝

1√
E − E0

g0d ∝ δ(E − E0). (1.2)

This indicates that the presence of confinement fundamentally changes the way how the
conduction band is filled with electrons. Namely, higher level of confinement groups the
electron energies closer to the value E0

1 This effect inevitably changes of electron transport
properties, and is thus of major theoretical and experimental interest.

On the one hand, the modern level of technology allows for the creation of physi-
cally low-dimensional systems: 1 monolayer-thick flakes (e.g., graphene), nanowires, and
nanoparticles. On the other hand, the effective confinement can be also achieved in planar
structures, which are much more common in the modern semiconductor electronics tech-
nology. In particular, band bending that occurs at the interface of distinct semiconductor
layers such as Si and SiO2 creates a triangular potential well in the out-of-plane direction.
This effect localizes the electrons in the vicinity of the interface, leading to the formation of
a 2-dimensional electron gas (2DEG). Another approach to achieve confinement is band gap
engineering, where compounds with distinct electron affinities and band gaps are combined
in one heterostructure to give a desired potential well profile. Experimentally, this can be
achieved, for example, with molecular beam epitaxy [2]. The subsequent gating of such
quantum well structures allows to electrostatically define any one-dimensional channels [3]
or arrays of quantum dots, consistent with the modern MOS or CMOS technology [4].

1As all physical objects are in fact three-dimensional, the electronic states are confined to a series of
values {Ei ≥ E0} rather than a single value E0. They denote electronic subbands within the conduction
band that emerge due to a quantum confinement along some of the object dimensions
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1.1.2 Electron interactions in the semiconductor

For quasi-free electrons in the conduction band, the kinetic part of the Hamiltonian is
conventional:

Ht =
∑
i

− ~2

2m∗
∂2

∂~r 2

In addition, since electrons are charged particles, the pairwise Coulomb interaction between
them is always present:

v =
∑
i>j

e2

4πε0εr|~ri − ~rj|
, (1.3)

where the relative permittivity εr of the semiconductor incorporates the effect of screening.
Apart from the orbital, spin degree of freedom is intrinsic to all electrons in nature. When
an external magnetic field ~B is applied, it directly couples to the spin operator ~S of each
electron:

Hz = g ~B · ~S =
g

2
µb
~B · ~σ, (1.4)

where µb = 5.788 · 10−2 meV
T

= 9.274 · 10−24 J
T

is the Bohr magneton, g is the electron Lande
factor, and ~σ is the vector of Pauli matrices X, Y, Z. It immediately follows from the
Hamiltonian 1.4 that a constant external field induces energy splitting in the spectrum by
gµbB (Zeeman effect).

The spin and orbital degrees of freedom can couple through the mechanism known as
spin-orbit interaction. For electrons in individual atoms, this is a relativistic effect due to
electron motion in the nuclear electric potential. In its own reference frame, an electron

couples to the effective magnetic field induced by the motion of charged nuclei ~Beff =
~E×~v
c2

.
In solids, the effect is of a more complex nature related to interband electron scattering;
nevertheless, the corresponding Hamiltonian can be still written in a general form:

Hso = a~L · ~S, (1.5)

where ~L = ~p× ~r is the orbital angular momentum of the quasielectron.

When we want to describe individual electrons as opposed to their statistical parame-
ters, it is always convenient to work within the spin space only whenever possible. Indeed,
using the algebra of Pauli operators:

σiσj = δij + iεijkσk

is much simpler analytically and numerically than manipulating such continuous variables
as electron position vectors. Fortunately, due to Pauli principle, the exchange interaction
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Hamiltonian 1.3 for each pair of electrons can be mapped onto a pure spin Heisenberg
Hamiltonian [5]:

e2

4πε0εr|~r1 − ~r2|
⇒ Hh =

J

~2
~S1 · ~S2

This effective interaction is commonly referred as exchange, and J is known as exchange
coupling parameter (in units of energy). If Coulomb interaction is small enough to be
considered a perturbation, the parameter J is mainly determined by the overlap between
the single-electron wavefunctions of the two electrons.

In 2D and 1D systems, spin-orbit interaction can be also mapped onto an effective
spin model of Rashba or Dresselhaus spin-orbit coupling [6]. In addition, this interaction
indirectly manifests itself in the change of electron g-factor (this applies to systems of all
dimensions). For example, in InSb quantum wells, a strong interband coupling due to a
very small bandgap leads to extreme negative values of this parameter: −g ∼ 35-50 [7, 8].

1.1.3 Realization of zero-energy states

The interplay of various interactions can lead to exotic electron phases in semiconductors.
One prominent example is the quasiparticles known as Majorana fermions. These particles
are not truly fermions (they obey their own statistics), always exist in pairs, are localized at
the system edges, and realize an exotic zero-energy Majorana zero mode (MZM), doubly
degenerate in fermion (i.e. electron) parity. The Majorana quasiparticle operators are
Hermitian and are equal superpositions of the electron creation and annihilation operators:

γ1 = a+ a†, γ2 = −i(a− a†), (1.6)

Thus, these particles can be referred as “half” an electron each.

The possibility of observing such quasiparticles in the semiconductors with same-spin
(or p-type) pairing was first theorized in the seminal paper by Kitaev [9]. Although pure
pairing of this kind is almost nonexistent in nature, its effective analog can be engineered
in more accessible material systems, as was shown by Lutchyn et al. [10] and Oreg et
al. [11]. Particularly, a quasi-1-dimensional semiconductor with spin-orbit coupling in the
proximity of a superconductor can host an MZM if the axially applied Zeeman field B
exceeds the value [12]:

Bc =
2

gµB

√
∆2 + µ2, (1.7)

where ∆ is the superconducting gap induced in the semiconductor, and µ is the chemical
potential. This value marks the onset of a topologically protected MZM phase, where the
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doubly-degenerate zero energy level is separated from other levels by an energy gap. This
property is especially valuable for quantum information processing, since the decoherence
can be almost fully avoided with the use of topologically protected quasiparticles [12].

Yet, a careful choice of material system parameters is necessary to observe this quasipar-
ticles in nature. First, a large spin-orbit coupling (for better Majorana fermion localization
at the edges [12]) and a large g-factor (for higher Zeeman energy) in the semiconductor are
required. In particular, the current dominance of InAs and InSb-based quantum wire and
quantum well devices in the field is because both of these properties are highly pronounced
in these material systems. Second, the critical magnetic field of the superconducting metal
should be higher than the theshold value 1.7. Thin Al layers [13] and niobium-containing
compounds [14] tend to meet this criterion well. Last but not least, overall high purity
and good sharpness of superconducting-semiconductor interface are highly desirable, which
makes molecular beam epitaxy a perfect choice of the technology.

Over the past decade, significant progress has been made towards the observation of
this exotic phase, though the evidence is still not conclusive. The experimental methods
chiefly rely on the zero-bias conductance peak measurements [14–17], Coulomb blockade
tunnel spectroscopy [18], observation of 4π-periodic Josephson effect [19]. Earlier studies
predominantly involved nanowires, but gearing towards the 1-dimensional voltage-defined
channels in a 2DEG [3] appears to be the current trend.
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1.2 Control of electron interactions for quantum gate

operations on spins

The abundance of interactions in semiconductors led to the development of numerous
quantum control methods to drive qubit operations. Since universal quantum computation
requires only a set of properly chosen single- and two-qubit gates, its realization is generally
sufficient to achieve this goal.

1.2.1 Single-qubit operations

The longest known (and thus the most developed) method for single-electron spin manip-

ulation is electron spin resonance (ESR). When a static Zeeman field ~B0 is applied on a
qubit, it is known to induce a constant spin precession around the direction of the field
with the Larmor frequency ω0 = gµbB0/~. This immediately follows from formula (1.4) if
we write the corresponding evolution operator:

Uz = e−
i
~Hz = e−

it
2~
~B0·~σ,

and use a well-known fact that an angular momentum operator ~S is the generator of
rotation by an angle θ around a unit vector ~n [20]:

R(~n, θ) = e−iθ
~S·~n
~ .

The situation is different when two magnetic fields, namely, static Zeeman ~B0, and oscil-
lating radio frequency ~Brf, are applied in perpendicular directions. The Hamiltonian then
reads:

Hesr/~ =
ω0

2
Z +

Ω

2
[X cos (ωrft+ φ) + Y sin (ωrft+ φ)] , Ω = gµbBrf/~ (1.8)

If we move to a reference frame, also known as the rotation frame, where the fast Larmor
precession is “unwound”:

|ψrot〉 = ei
ω0Z

2 |ψlab〉 ,
the Hamiltonian will transform to the following form (up to a small fast-oscillating com-
ponent that can be neglected):

Hrot = (ω0 − ωrf)
Z

2
+

Ω

2
(X cosφ+ Y sinφ) (1.9)
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Expression (1.9) embodies the essence of ESR method: if the frequency of the oscillating
field is tuned in resonance with Larmor frequency, a qubit realizes deterministic rotations
around the axis in the plane of the oscillating field, with the axis direction specified by
its phase. Conversely, detuning from resonance at Brf = 0 drives spin rotations around ẑ
axis. Therefore, ESR provides a way to drive arbitrary rotations of a single qubit. This
is a wide class of quantum gates that lacks only one additional two-qubit gate to achieve
universal quantum computation.

Another method commonly used to implement single-qubit gates is the electric dipole
spin resonance (EDSR). In this method, spin rotations are realized by changing the dipole
characteristics of an electron with the external electric field. Even though spin-orbit cou-
pling can be harnessed for this purpose, a much more intuitive method is presented in the
works [21, 22] and commonly used overall. A micromagnet creates a gradient of magnetic

field perpendicular to the global Zeeman field ~B0. The electron is periodically displaced
with the external electric field along this gradient. The oscillating coupling is quantified
with a time-dependent spin Hamiltonian of the type 1.8. This means that the scope of
quantum control achievable with EDSR is equivalent to ESR.

1.2.2 Two-qubit operations

The key component of any two qubit spin gate is the exchange coupling 1.3. The Heisenberg
Hamiltonian expression ∝ ~σ1 · ~σ2 is closely related to a 2-qubit SWAP gate:

SWAP =
1

2
(I1I2 +X1X2 + Y1Y2 + Z1Z2) ,

Unfortunately, SWAP does not form a set of universal gates with single-qubit rotations,
but it turns out that

√
SWAP does. It can be shown (cf. sec. 4.3) that 2-qubit exchange

directly realizes any gate of type SWAPk.

It is also possible to combine exchange and Zeeman interactions in case J � ~ω0 to
create universal two-qubit gates of other kinds such as 1√

2
(I1I2 + iZ1Z2) [23], and its more

general version, Ising gate [22].

7



1.3 Combined quantum operation of localized elec-

trons and Majorana fermions

1.3.1 Non-abelian braiding

Majorana fermions are highly nonlocal, and the only quantum operation that can be
realized with them can be their exchange (for example, by moving the borders of a 2-
dimensional T-junction with voltage sweeps, as suggested in [24]). From their topological
properties, it follows that their exchange leads to the following transformation of their
operators [12]:

γ1 → −γ2, γ2 → γ1,

which corresponds to a unitary operation:

U12 = e−i
π
4
γ1γ2 . (1.10)

The most remarkable property of the Majorana exchange operation can be seen when
there is more than one pair of such quasiparticles in the system. Then, the exchange
operations on the Majoranas from different pairs generates a superposition of both charge
states. Moreover, distinct exchange operations that involve one Majorana fermion do not
commute:

[Ui−1,iUi,i+1] = iγi−1,iγi,i+1

which implies that the final state of the system where several pairs are exchanged depends
on the order of these operations. This is the manifestation of a non-Abelian exchange
statistics, or braiding, not observed in known elementary particles. The operation is also
very attractive for fault-tolerant quantum computation: since the information is stored
nonlocally, it cannot be measured by local noise operators [12]. Unfortunately, the quantum
gates of type 1.10 are insufficient for universal quantum computation. Moreover, there does
not exist any purely topological method of Majorana qubit readout. One way to tackle
these problems is to interface the Majorana-hosting systems with spin qubits.

1.3.2 Integration with quantum dots for universal computation

The report [25] was chronologically the first one to suggest an algorithm to transfer quan-
tum information between a quantum dot and an MZM both ways. The device proposal
(fig. 1.1) is based on a degenerate quantum dot located amid two edges of topological
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superconductors. The voltage control of the quantum dot charging energy and tunnel
barriers allows to map the Majorana parity state onto a spin-qubit state or vice versa
deterministically (up to a unitary trasformation). Interestingly, just sweeping the voltage
proves to be enough to create entanglement between Majorana and spin states. Yet, the
experimental implementation of this proposal does not seem feasible due to the need for
a strictly doubly-degenerate dot and Majorana channels with perfect spin polarizations in
opposite directions.

The subsequent study of a system of one Majorana nanowire and one quantum dot
with voltage-controlled coupling [26] sheds significantly more light on the applicability and
consistency of MZM readout. The method is based on inducing the overlap between the
Majorana bound states by bringing them close to each other, resonantly coupling one of
them to the quantum dot, and performing a charge measurement on the dot. The method
allows to directly test the oscillatory nature of a Majorana zero mode, and identify the
protection of the topological order at different length scales. Unlike in [25], this proposal re-
alistically incorporates lifted degeneracy in the quantum dot, and allows to discern distinct
spin-polarized Majorana bound states.

Figure 1.1: A prototypical, voltage controlled device for the information transfer between
a quantum dot and Majorana fermions, proposed in ref. [25]

.

Based on the simple model of Majorana-dot interaction, provided in [25], further inves-
tigations derive scalable architectures with universal quantum computation. The work [27]
analyses a system of 1 quantum dot between two nanowires, similar to the one from fig-
ure 1.1, and creates its more detailed quantum model that incorporates interactions due
to confined electrons and Cooper pairs. From the effective dot-Majorana exchange inter-
action, hybrid SWAP and Phase gates, suitable for universal quantum computation, are
engineered, and a modular Majorana-dot network is designed.

The subsequent study [28] proposes a fully measurement-based architecture, with the
measurements being done on pairs and quartets of quantum dots by detecting changes in
their ground state energy, average charge and differential capacitance. The scheme obviates
the need in physical moving of Majorana fermions for braiding while realizing a Clifford-
complete gate set with high fidelity. As in the study [27], the architecture is scalable and
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modular. The significant improvement is grouping Majorana devices into the islands with
high charging energy to protect topological states from quasiparticle poisoning. Later on,
the same research group complemented their results in the article [29] with the realization
of the topologically nonprotected T magic gate with exponential error suppression. A
measurement-based universal dynamic decoupling algorithm incorporating nonadiabatic
evolution is designed for this purpose. The magic T gate and Clifford group finally realize
universality of quantum computation in this architecture.

Overall, these results indicate the abundance of methods to characterize and manipu-
late Majorana bound states with spin qubit, and to overcome the nonuniversality of the
topologically protected braiding operation. Their implementation, however, is yet to come,
as the MZMs are yet to be unambiguously detected experimentally.
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Chapter 2

Low-temperature epitaxial
metallization of III-V
heterostructures with aluminum for
the observation of Majorana zero
modes

2.1 Motivation

Molecular beam epitaxy (MBE) has long been known as a superior technique to grow atom-
ically clean planar heterostructures at the microscale and nanoscale. Particularly, it is an
excellent choice for a wide class of microelectronic devices based on metal-semiconductor
junctions: Schottky diodes [30, 31], field-effect transistors (FETs), high-Q resonators [32],
radiation detectors, laser diodes, etc. Recently, a significant interest has grown in using
MBE for the cutting-edge quantum technology, such as superconducting [32] and topolog-
ical [3, 12, 15, 18] quantum bits.

The successful creation of any of these devices is contingent on a careful choice of the
material system. Aluminum is a metal abundant in nature with low resistivity (down to
2.4 µΩ·cm), which becomes a type-I superconductor with a very large coherence length at
low temperatures. Therefore, aluminum gates or shells lend themselves very well both to
Schottky barrier-based and superconducting RF devices. Optoelectronic devices operation
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typically relies on a direct semiconductor bandgap, which makes III-V compounds a natural
choice of the semiconductor system in this case. Topological qubits impose even more
requirements [12]: high g-factor and spin-orbit coupling in the semiconductor, and high
critical field of the superconductor. InAs or InSb-based heterostructures with a thin Al
layer on top satisfy these criteria very well.

However, the MBE growth of Al on III-V semiconductors can present difficulties. This
is because multiple factors contribute to the growth mode and, subsequently, sample qual-
ity: temperature, bulk and surface crystal structure, strain, to name a few. To our best
knowledge, no holistic review with the analysis of all these factors has been ever pub-
lished. In addition, there is insufficient data in the literature about the effect of Al growth
rate and its surface capping on the quality of the layer structure. Yet, developing a clear
procedure for consistent III-V metallization with Al is particularly important to realize a
material platform that can host Majorana zero modes. First of all, a sharp, clean metal-
semiconductor interface is necessary to achieve significant proximity superconductivity and
not to harm the electron mobility in the 2DEG. Secondly, flatness of Al layer is needed for
high critical magnetic field and the ability to fabricate multiple Majorana devices on one
chip consistently. Therefore, developing a comprehensive understanding of the aluminum
formation on III-V heterostructures, with the special focus on InAs- and InSb-derived
semiconductor compounds, is the goal of this chapter.

Section 2.2 gives a brief summary of the method of molecular beam epitaxy, growth
monitoring and characterization techniques we used in our experiments. Section 2.3
presents a critical literature review on the topic of III-V heterostructure metallization.
Here, physical mechanisms that underlie aluminum formation are deduced and put in the
context of the very recent papers that also pursue topological qubits. The following sections
summarize our experimental results of Al deposition on In-rich InGaAs, which is a relevant
material for the heterostructures with InAs quantum wells [2]. Section 2.4 presents the
characterization of our two earlier samples, featuring their cross-sectional microscopy and
spectroscopy with atomic resolution. Section 2.5 is dedicated to a comprehensive investi-
gation of Al layer formation and surface morphology evolution for different Al deposition
rates, presence and absence of capping. Section 2.6 provides a summary of the results.

Some images in this chapter are acquired by other people (see Statement of Contribu-
tions for details) but all image processing and analysis are the author’s. Other than this,
all the following sections consist of the author’s original results.
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2.2 Epitaxial heterostructure growth and characteri-

zation

Molecular beam epitaxy

The method of molecular beam epitaxy is conceptually simple: direct deposition of ul-
trapure vapors of elementary substances onto a clean wafer surface at ultra-high vacuum
(UHV). However, the implementation may vary among different setups. Figure 2.1 shows
a Veeco MBE Gen10 facilily installed in our lab, which features automatic wafer transfer
between the modules, one UHV growth module (right of figure), one UHV storage module
(left of figure) and a preparation module (not shown). A wafer, loaded onto a substrate
holder, is first outgassed at 200◦C in the load lock, then transferred to the preparation
module for the outgassing at a higher, substrate material specific, temperature. Finally,
the wafer is moved to the growth module with the UHV on the order of 10−10 Torr. At the
bottom of the growth module, effusion cells with the ultrapure III-V materials: Al, Ga,
In, As, Sb, and dopants: Si, Be, are located. During the epitaxial growth, the shutters
covering the cells with elements needed for the grown layer are opened, while crucibles
with the compounds are being heated up to the temperatures that produce desired fluxes.

In situ growth monitoring

The advantage of MBE is not only a high-precision composition control without contami-
nation but also the ability to monitor numerous parameters of the growth in situ, including
but not limited to pressure, residual gas composition, manipulator and wafer temperature,
growth surface dynamics.

In our case, the manipulator temperature is measured by a conventional thermocou-
ple, whereas the wafer temperature is acquired with band-edge thermometry (BET). The
bandgap of a semiconductor is temperature dependent. Therefore, the cutoff wavelength
below which light does not pass through the wafer can be used to directly determine its
temperature. The spectral position of the absorption edge has been monitored using a com-
bination of InGaAs and Si array spectrometers to allow tracking InP substrate temperature
across a broad temperature range, including sub-0◦C temperatures.

The reflection high-energy electron diffraction (RHEED) technique allows to monitor
the surface reconstruction and flatness in real time. An electron beam, incident on the
sample surface at a grazing angle, produces a diffraction pattern that corresponds to only
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Figure 2.1: Veeco Gen10 MBE system, used in our lab. The photo is reproduced from the
official Veeco website

.

a few monolayers at the surface. This is used to determine the epitaxial growth mode
and surface reconstruction. We utilize a kSA 400 RHEED monitoring system with a Staib
Instruments 12keV electron gun for this purpose. The RHEED pattern image capturing
can be triggered at chosen azimuths during wafer rotation, thus permitting reconstruction
monitoring at several azimuths during the growth.

Ex situ characterization

There are two surface imaging tools immmediately avaliable in our lab. Fist of them is
a “black box” (BB) photography setup that consists of a black box, a photo camera and
a remote flash. The sample of interest is placed inside the black box and photographed
with high exposure and short exposure time. A very strong sensitivity to light scattering,
characteristic of this approach, allows to reveal slightest irregularities in the sample surface
structure. The second tool is a Nomarski differential phase contrast microscope. It can
produce images of the samples with enhanced contrast, determined by the difference in
optical paths of orthogonally polarized beams passing through an anisotropic crystal. This
microscopy technique features a tremendous vertical resolution on the order of nanometers
to expose surface imperfections.
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For a further quantitative analysis of surface morphology and sample cross section, we
use the methods summarized in table 2.1. The cross-sectional studies done at McMaster
University additionally required preparation of thin lamellas. This was done with the Xe+

plasma focused ion beam (FIB) facility Helios G4 by Thermo Fisher Scientific.

Name Working principle Suitable for Tool used
Tool loca-
tion

AFM
Atomic
force mi-
croscopy

Scans the surface with a
probe sensitive to molecu-
lar forces. The vertical co-
ordinates of the probe give
the surface map

Determination
of the verti-
cal relief of
the surface
with atomic
precision

Bruker Icon
Fastscan
AFM

University
of
Waterloo

SEM
Scanning
electron
microscopy

Obtains a contrast im-
age by measuring the sec-
ondary emission current
across the surface

Surface and
cross-sectional
studies of
conductive
samples

JEOL JSM-
7200F

STM
Scanning
tunneling
microscopy

Measures the tunneling
current across the surface
to resolve its morphology
up to an atomic level

Omicron
STM

HAADF
STEM

High-angle
annular
dark field
imaging,
scanning
trans-
mission
electron
microscopy

Scans a thin specimen with
an electron beam and mea-
sures the scattering of the
transmitted electrons with
an annular dark-field de-
tector

Cross-sectional
studies with
atomic
resolution

FEI Titan
80-300

Canadian
Center for
Electron
Micro-
scopy,
McMaster
University

EELS

Electron
energy
loss spec-
troscopy

Locally determines chemi-
cal composition from the
energy spectrum of inelas-
tically scattered electrons

Gatan spec-
trometer
embedded in
Titan STEM
facility

Table 2.1: Summary of the employed characterization techniques.
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2.3 Kinetics of aluminum growth on semiconductors

2.3.1 Effects of crystal structure and symmetry

Bulk parameters

Aluminum is known to have a face-centered cubic crystal structure at room temperature
(RT). The majority of III-V semiconductors have zinc blende (face-centered cubic) or
wurzite (hexagonal) crystal structures, and occasionally rock salt (face-centered cubic).
This review will cover the growth on zinc blende crystals only. When comparing the
lattice constants of aluminum and III-V compounds (tab. 2.2), one can easily notice that
the value of Al scaled by a factor of

√
2: a(Al) ·

√
2 = 5.7163, is close to the values of III-V

compounds. The factor of
√

2 arises when two cubic crystal lattices are rotated by 45◦

with respect to each other. Therefore, it is natural to expect that Al[100], rotated by 45◦

(we denote it as [100]R45) will be a dominant growth direction on (100) III-V substrates
or buffers.

GaAs InAs InSb InP Al

Lattice constant, Å 5.6533 6.0583 6.4794 5.8667 4.042

Table 2.2: Lattice constants of some zinc blende III-V compounds, and Al.

Nevertheless, both early and recent studies on GaAs (100) substrates demonstrate
at least three growth directions of the Al layer with variable quality: [100]R45 [30, 34],
[110]R45 [32, 34, 35], and [111] [36]. Furthermore, in the case of [110]R45 orientation,
atoms are in 1-to-1 registry only along [11̄0] axis of GaAs surface, whereas the lattice
match is good only every 4 unit cells (7 cells is a better approximation) of Al along [110]
axis. However, no 4× or 7× diffraction pattern is observed.

This indicates that the knowledge of bulk crystal parameters is not enough to predict
the growth of Al on III-Vs, and other factors should be considered.

Surface reconstruction

For MBE growth, it is also important to take into account the structure of semiconductor
surface. In most cases, the surface reconstructs into patterns with the symmetry and
stochiometry different from the bulk. In particular, the studies on GaAs (100) [34] show
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that on the As-stabilized (2× 4) and Ga-rich (4× 6), aluminum forms along a well-defined
[110]R45 or [100]R45 direction, respectively, whereas the As-rich (4×4) favors the formation
of grains of both types. This can be understood from the symmetry considerations. The
(4 × 4) reconstruction has high enough symmetry (2-fold rotation & 2 mirror planes) to
allow aluminum migration along both 〈110〉 axes within GaAs (100) surface, leading to
the Al grain formation. Conversely, the low-symmetry reconstructions effectively fix the
Al orientation, and thus are generally better suited for the growth of monocrystalline Al
films on GaAs. However, it it worth noting that the effect of surface reconstruction has
not been extensively investigated in the recent literature on InAs and InSb and thus is yet
to be understood.

2.3.2 Atomic transport

Temperature-driven diffusion

In works [33], [34], Al was grown on differently reconstructed GaAs surfaces at RT and
400◦C. With the aid of Auger electron spectroscopy, the authors observe significant arsenic
diffusion for ∼50 Å up the Al layer at high temperatures, and no As penetration above
∼5 Å at RT. It turns out that Ga diffusion may or may not happen at RT and is surface
reconstruction-dependent, which indicates that the temperature is not the determining
factor of group-III diffusion.

This means that using low enough temperatures suffices to at least inhibit the con-
tamination of metallic layer with group-V elements. The recent reports on GaAs- [37],
InAs- [36, 38, 39], and InSb-based [40, 41] heterostructures metallization confirm this with
the cross-sectional electron energy loss spectroscopy (EELS). In all cases, the authors cool
down samples overnight before the deposition and use additional methods (if applicable)
to reach subzero temperatures, with −40◦C [40] being the lowest value reported.

Group-III exchange

The works [33], [34] provide an important observation on the Al growth on GaAs (001)
at RT: the Al layer contamination is negligible when GaAs reconstructs into As-stabilized
(2×4), whereas the Auger peak of gallium persists up to 1000 Å of Al in case of the Ga-rich
(4× 6) reconstruction. This dramatic difference emphasizes the crucial role of the surface
composition and bond structure in determining the Al growth. Indeed, the (2×4) surface,
abundant in arsenic, forms strong covalent bonds both with Ga from the underlying layers
and the first Al monolayer (ML). On the contrary, the gallium-rich (4× 6) reconstruction
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can form only weak metallic bonds with Al. The bonds are also less directional and thus
not as good at defining the Al layer orientation.

A crude calculation done in [33] suggests that the exothermic energy release due to
aluminum cluster formation is small (≈ 1 eV) on As adsorption sites and significant (≈ 2.5
eV) on Ga sites. This amount of energy is enough to activate a replacement (or exchange)
reaction between Ga and Al, which is the driving force behind the Ga proliferation from
the Ga-rich surface to the top of Al layer.

Therefore, strong covalent bonds due to the group-III elements at the surface inhibit
group-V exchange reactions, thereby protecting the material purity and interface abrupt-
ness. Recent studies on InAs and InSb-based structures take advantage of this by adding
thin interlayers that provide strong bonds at the interface. In particular, the work [36]
showcases a remarkable improvement in the metal-semiconductor interface quality (∼ 5
ML roughness), average width of Al islands, and defect formation suppression by deposit-
ing 1.5 Å, 0.7 Å, and 0.3 Å of AlAs on an InAs buffer. The same group reports an even
better improvement (down to 1 ML roughness) with AlSb interlayers of thicknesses ranging
between 0.8-50 Å on a GaSb buffer [41]. Monocrystalline aluminum grows along [110]R45
in both cases.

The choice of Al-based compounds for the interlayers in these works [36, 41] is very
natural because no exchange reaction is possible in principle between them and metallic
aluminum. However, GaAs interlayers on top of InAs [36, 39] and InGaAs [38, 39] also yield
high-quality interfaces, and 2 MLs of InAs on the InSb buffer is explicitly shown to prevent
interface degradation for more than a year [40]. This proves that the composition of the
top MLs is not always crucial in achieving sharp interface and securing the unidirectional
and low-dislocation growth of Al provided that the covalent bonds are strong enough. The
cross-sectional imaging in all these studies is done with transmission electron microscopy
(TEM, see fig. 2.2 for an example).

2.3.3 Strain and energetics

The energetics of surfaces and interfaces requires special attention, as they are very im-
portant sources of strain. The surface energy of an Al film is determined by its growth
direction, with [111] corresponding to the lowest energy. This means that a sufficiently low
energy of an aluminum-semiconductor interface and low strain in the buffer [38] should
favor the monocrystalline Al formation along [111].

In general, the interplay of interfacial, surface and defect formation energies are hard
to harness. For instance, the work [41] demonstrates the pristine interface between 25 nm
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Figure 2.2: Aluminum grains at the lattice constant threshold value a=5.98 Å correspond-
ing to the two possible Al growth modes, resolved with STEM in work [39]. (a) 1-to-1
registry (low interface energy) between Al and InGaAs, corresponding to [110] Al growth
direction (high surface energy). (b) Mismatch in registry (high interface energy), and [111]
Al growth direction with low surface energy.

of AlSb and Al, whereas 50 nm of AlSb lead to the Al film full of threading dislocations
and Moire fringes, despite the fact that the AlSb critical thickness on GaSb is ∼ 200 nm.
The reason for this unexpected strain imbalance remains to be identified. Nevertheless,
the work [39] offers profound insight into the link between the lattice constant of the top
semiconductor buffer, strain character in the Al film and its growth direction. The authors
analyze a broad spectrum of buffer layers with different lattice constants a ranging from
5.87-6.10 Å, and report the formation of tensely strained [110] Al for a < as = 5.98 Å,
and compressively strained [111] Al for a > as. The STEM scans at a = as (fig. 2.2),
when grains of both type form, reveal that the existence of the threshold value as is a
manifestation of the surface and interface energy competition. It is worth noting that there
is no obvious way to relate this value to the lattice parameter of bulk Al (see subsec. 2.3.1),
which emphasizes the significance of strain contribution to the growth mode.
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2.4 Realization of heterostructure with flat Al layer

and sharp interfaces

2.4.1 Statement of experimental problem

The results from the literature presented in section 2.3 shed light on most mechanisms
that influence the Al formation on III-V semiconductors; however, some of them are yet
to be understood. In particular, the effect of deposition rate on the growth is almost not
investigated in the literature. The only trustworthy resource for the thinnest films [33]
reports no dependency of Al quality/ growth direction on the growth rate in the range of
0.02− 0.4 Å/s, and this information is insufficient to make any conclusions. Furthermore,
no other means of protecting the Al surface except controlled oxidation [38, 40] has been
reported. The field would benefit from the investigation how else the Al layer can be
terminated, and how well this approach protects the layer flatness.

To understand the effects of deposition rate and surface capping, we conduct a series
of MBE growths and investigate them with various in situ and ex situ tools. We grow
all our structures on quarter-3” InP wafers (fig. 2.3). For all such substrates, the primary
flat cut (bottom right) lies in

(
011
)

plane, whereas the secondary flat (left) lies in
(
011
)
.

For consistency, the layer structure is chosen to be the same for all our growths, with the
only possible difference being the substrate doping (n+ or semi-insulating). This design is
presented in table 2.3. Doped substrates are required for the normal operation of STM,
whereas semi-insulating ones are better suited for temperature measurements with BET.

Figure 2.3: Full InP (100) wafer, with
the in-plane crystallographic directions.
We use quarters of such wafers for all ex-
periments.

As cap (amorphous),
∼ 101 − 102 nm

Al, 10 nm

In0.75Ga0.25As, 10 nm

In0.53Ga0.47As
(lattice-matched), 300 nm

InP substrate (600 um):
Fe (semi-insulating) doping,

or S (n+) doping

Table 2.3: Heterostructure design
adopted for all our MBE growths.
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Once the oxide is thermally desorbed from InP, its surface is capped with a 300 nm
buffer layer of a lattice-matched In0.53Ga0.47As. The values for thickness d and composition
x of the top semiconductor buffer InxGa1−xAs — d = 10 nm with x = 0.75 — are adopted
from the reference [2]. In this article, two such layers form a sandwich structure with an
InAs layer in between. This design improves the electron mobility in the InAs quantum
well up to 106 cm2/(V·s). This is precisely what we want to achieve in the long run, when
epitaxially grown structures with aluminum layers on top will be used for Majorana-hosting
devices. In our test structures, outlined in table 2.3, we only aim to optimize the growth
conditions of the top layers and interfaces, and thus do not require an InAs quantum well.
The aluminum layer thickness is borrowed from the pioneering work [38] in the field of
heterostructure-based Majorana qubits. Because of the high surface atomic mobility of
aluminum, it is critical that it be deposited at the lowest possible temperature to achieve
2D smooth epitaxy. For this, after we finalize semiconductor parts of each growths, we
eliminate all non-essential sources of heat and leave the sample in the growth module to
cool down overnight.

For the surface protection, we choose to deposit a layer of amorphous As4. This ap-
proach has been used to protect the surfaces of epitaxially grown semiconductors from
oxidation and contamination in between depositions. For example, Luo et al [42] employed
this method to transfer a GaAs-based heterostructure to another UHV chamber with an Al
cell and a scanning tunneling microscope. The sample was then kept at 300◦C for several
hours to desorb arsenic and subsequently deposit an Al layer. To our best knowledge, how-
ever, this method has never been applied to the surfaces of aluminum layers. With the As
source being readily available in our MBE system, its successful use for capping will even-
tually enable us to fabricate high-quality, uncontaminated superconductor-semiconductor
devices. Together with the sharp metal-semiconductor interfaces, this is crucial for the
successful detection and control of Majorana zero modes.
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2.4.2 Surface flatness and layer structure confirmation

Sample growth

To experimentally pursue the epitaxial growth of heterostructures with high-quality metal-
semiconductor interfaces, we grow two samples, designated as G0680 and G0697. The only
difference in their composition is the substrate doping: semi-insulating in G0680, and n+
in G0697.

The growth procedure for the semiconductor part is conventional, and includes ox-
ide desorption of the InP wafer, soak with As2 to prevent its desorption from the sur-
face, successive deposition of the lattice-matched In0.75Ga0.25As, and then the indium-rich
In0.53Ga0.47As buffers. The cell temperature and flux parameters for G0680 are summa-
rized in table 2.4. In1 and Ga2 are the names of the cells used for the deposition, and BEP
denotes beam-equivalent pressure. The growth rate for both InGaAs layers is chosen to be
2.5 Å/s. A completely analogous procedure for the semiconductor layers growth was used
in all experiments presented in this thesis, with the values of cell temperatures, fluxes and
pressures being possibly different from the ones given in table 2.4.

Material x Ga2 tip
temp. (◦C)

Ga2 base
temp. (◦C)

Ga2 flux
(cm-2 s-1)

Ga2 BEP
(Torr)

GaAs-only equivalent
growth rate (Å/s)

InxGa1-xAs 0.526 1053.7 903.7 2.3439E+14 2.1900E-07 1.1019

InxGa1-xAs 0.750 1022.7 872.7 1.1988E+14 1.1351E-07 0.5636

Material x In1 tip
temp. (◦C)

In1 base
temp. (◦C)

In1 flux
(cm-2 s-1)

In1 BEP
(Torr)

InAs-only equivalent
growth rate (Å/s)

InxGa1-xAs 0.526 953.4 793.4 2.6011E+14 2.7791E-07 1.4032

InxGa1-xAs 0.750 967.6 807.6 3.5964E+14 3.8172E-07 1.9402

Table 2.4: In1 and Ga2 cell flux parameters for the growth of two InGaAs buffers in G0680.

After the top InGaAs layer was finalized, we closed the main shutter, positioned right
under the wafer, and left the sample in MBE chamber to cool overnight. We managed
to reach lower temperature for G0680 (thermocouple reading around 0◦C) than for G0697
(about 6−7◦C). It also manifested itself in a sharper RHEED pattern during the subsequent
deposition. In these two initial experiments, samples were rotated during Al growth to
achieve better uniformity. The Al layers on both samples were grown at 3 Å/s. The
RHEED pattern was used mainly as a guide when to stop supplying arsenic at the final
stage of the deposition (streaks begin to disappear when the surface becomes amorphous).
Unfortunately, we have no means to measure the thickness of arsenic cap in situ; we only
expect it to be thicker on G0680 than on G0697 because we waited for longer.
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Surface morphology

The “black box” (BB) photos of the two samples are given in figure 2.4. They reveal
the unexpected influence of the RHEED beam on the surface. We attribute the circular
pattern of G0680 to the effect of the misaligned RHEED beam on the As coating, or the
way As sticks to the surface: the area is rough wherever the RHEED beam hit the sample
and is smooth where it did not. We speculate that the formation of mirror-like and rough
areas on G0697 is related to the malfunction of the main shutter. Presumably, it did not
close properly before or after the growth, so that the smooth part is where the shutter
properly shields the wafer.

Figure 2.4: BB photos of G0680 and G0697 that reveal two distinct areas on each wafer.
The effect is attributed to the exposure to a misaligned RHEED beam.

Yet, the subsequent morphology study confirms a good level of flatness both inside
(mirror-like area) and outside the circle (rough area) of G0680. The corresponding AFM
scans are shown in figure 2.5. The root mean square (RMS) roughness of the surface
∼1.3 nm both inside and outside the bright circle. The height of point defects that consist
of a pit and two hills on the sides (framed) inside the circle is around 4 nm. The distance
between neighboring defects in both regions is on the order of 5–10 µm.
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Figure 2.5: AFM micrographs of the mirror-like (left) and hazy areas (right) of G0680.
Surface point defects (framed) of this kind are seen all across the sample.

Layer structure determination

Next, we attempted to discern the Al and other thin layers in G0697 with the cross-
sectional scanning tunneling microscopy (the STM on G0680 was not possible because of
its semi-insulating substrate). The sample was transferred to the STM facility and cleaved
in situ at UHV (∼10-10 mbar). On the 300 µm-wide scan in the constant current mode
(left of fig. 2.6), a border between two distinct patterns (blue arrow) stands out. This is
the indication of the In0.53Ga0.47As / InP (substrate) interface, which was later resolved at
higher resolution (right of fig. 2.6). Atomic terraces are conspicuous over the entire scan
area, which confirms high-quality cleaving of the semiconductor part of the growth.

Unfortunately, the cleavage plane was getting more and more curved towards the edge,
and bright spots started appearing on the scans. We now attribute these effects to the fact
that aluminum is very soft compared to III-V compounds and thus cannot cleave smoothly.
Another suspicion was that the amorphous region beside the edge is due to As cap. In
order to desorb it, we kept the sample at 400 oC in the STM preparation chamber for
about 30 minutes. Further measurements reveal that the surface significantly rearranges
(fig. 2.7). First of all, triangular cleavage planes transform into a “camouflage” pattern,
albeit remaining only a few atomic layers thick. The corresponding planes of In0.53Ga0.47As
coalesce and form terraces elongated perpendicularly to the scan direction. Unfortunately,
the region near the surface remained significantly uneven and did not allow for scans.
Therefore, since no layers except the substrate and the lattice-matched In0.53Ga0.47As have
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been resolved, we conclude that STM is of little utility to the cross-sectional studies of
aluminum-metallized heterostructures.

Figure 2.6: STM scans of G0697: near the surface (left), and at the 0.53Ga0.47As / InP
interface (right). The scanning windows are 300 and 500 nm, respectively. The position of
In0.53Ga0.47As / InP interface is indicated with blue arrows.

Figure 2.7: Surface after annealing at 400 oC for 30 min, resolved with STM.
Left: region deep in the substrate (500 nm wide scan); right: 100 nm wide scan near the
In0.53Ga0.47As / InP interface, indicated with a blue arrow (cf. fig. 2.6).
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The STM measurements of G0697 were followed by cross-sectional scanning electron
microscopy (SEM). The sample cleaved well in most places and was flat with the features
at the top. Scanning with SEM (fig. 2.8) happened to resolve the layers clearly (hori-
zontal green lines) and yield very good estimates of the layer thicknesses. The value for
In0.53Ga0.47As (301 nm) from fig. 2.8a perfectly agrees with the adopted heterostructure
design from table 2.3. The n+ doping of the substrate gives a good contrast and thus
proves to be beneficial in this experiment. Also, we finally managed to estimate the As
cap thickness to be on the order of 200 nm for G0697 (fig. 2.8b). Remarkably, a very thin
∼20 nm layer was resolved at x100K magnification (fig. 2.8c). Yet, it was not possible to
identify whether it was Al, In0.75Ga0.25As or both. This scan also reveals the flaky structure
of the As cap in some places.

(a) x100K,
d(In0.53Ga0.47As) = 301 nm

(b) x50K, d(As)∼217 nm (c) x100K: In0.75Ga0.25As and/
or Al 20 nm layer resolved

Figure 2.8: Layer thickness measurements with cross-sectional SEM on G0697.

2.4.3 Cross-sectional microscopy and spectroscopy with atomic
resolution

The subsequent cross-sectional studies with STEM (scanning transmission electron mi-
croscopy) and EELS (electron energy loss spectroscopy) tools, hosted in one UHV chamber,
revealed the layer structure of our epitaxial growths with atomic precision.

Before the experiments, thin lamellas were machined using the Xe+ Focused Ion Beam
(FIB) technique. The lamellas were extracted from the flat, feature-free areas on top of
both samples. Figure 2.9 shows an ∼ 12µm wide lamella for G0697, placed into a copper
frame. The thickness of the lamella is on the order of 80 nm — sufficiently small to provide
electron transparency.
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Imaging of G0680

G0680 sample was studied first. A low-resolution image 2.10 confirms the uniformity of
the layer structure on a micron scale. As in SEM previously, the contrast between InP and
In0.53Ga0.47As, lattice matched to it, is high. The area with the thin In0.75Ga0.25As and Al
layers is discernible by bare eye under a dark, ∼ 70 nm layer of tungsten carbide, initially
deposited onto the lamella to protect the surface from damage. The brightest part at the
top is a remainder of platinum (Pt), which acted a solder for a tungsten needle used to
extract the lamella from the bulk wafer.

Figure 2.9: Thin lamella machined with FIB for
G0697.

Figure 2.10: TEM with a 1 nm
resolution confirms the flatness
of G0680 layers on a µm scale.

The high resolution STEM and EELS scans for G0680 are presented in figure 2.11. The
window of measurement is chosen to make visible all layers starting from In0.53Ga0.47As
up to the onset of tungsten carbide deposit. First of all, we conclude that the elemental
composition is in agreement overall with the expected layer structure (tab. 2.3). The other
results are the following:

• The thickness of the Al layer (∼9 nm) is consistent with our calibrations. The
thickness of As cap is about 8 nm;

• In the STEM micrograph, the top of As layer is rough and appears to pile up out of
the plane of the lamella;
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Figure 2.11: TEM and EELS scans with 0.15 nm resolution, with the highlighted AlOx

region inside the As cap layer.

• The chemical composition within the As capping layer is quite unexpected. Scans in
different regions of the sample consistently show that an aluminum oxide AlOx layer
forms in the middle of it (framed area in figure 2.11). It is also noticeable as a darker
area in the STEM scan;

• As oxidizes neither above nor below the AlOx layer; neither it does below the lower
part of As. This means that although we do not completely understand the formation
of AlOx, it is possible in principle to protect the main Al layer from oxidation with
an As cap;

• The average interdiffusion depths of Al & InGaAs, and Al & bottom of As is about
1 nm, which proves sharpness of both interfaces;
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• Gallium spectrum does not look abruptly terminated at the bottom of Al layer,
indicating a non-negligible group-III exchange.

Additional conclusions can be made from the high-resolution STEM scans that resolve
areas near Al-InGaAs and Al-As interfaces, shown in figure 2.12:

• STEM confirms a very sharp and smooth interface between Al and InGaAs. The
Al-As interface is also good but definitely rougher, and there are signatures of Al
mounts not completely leveled off in certain areas;

• We notice blurry regions in the middle of Al layer (central figure) over a wide range
across the sample. Since they do not spoil the Al crystal structure, we attribute
them to oxide patches, residues of FIB preparation, or imperfect sample cleaning
that followed it;

• AlOx layer is discernible since it is darker than any other layer in the scan except
carbon at the top (right figure), but neither its crystal structure nor morphology is
visible.

Figure 2.12: Expected layer structure (left), compared to the STEM micrographs of G0680
in the areas around Al layer (center and right).
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Imaging of G0697

The low-resolution STEM scan of G0697 (fig. 2.13) shows its significant nonuniformity on
a micron scale and thus lower quality compared to G0680. In addition, the EELS spectra
from figure 2.14 reveal alternating clusters of In and Ga within Al layer, which has a
well-defined interface with InGaAs nonetheless. This effect was completely absent from
G0680, where In concentration above the top InGaAs layer was negligible (cf. fig. 2.11).
This illustrates the need for a more stringent control of the epitaxy. The mechanisms
that underpinned this growth dynamics were not understood; we can only speculate about
the effects of FIB preparation, and implications of higher temperature during Al and As
deposition compared to G0680. Indeed, the G0697 wafer temperature at the beginning of
Al deposition was higher, and the radiative heat transfer to its n+ doped substrate was
significantly more pronounced.

Figure 2.13: 10 nm resolution STEM scan of G0697 shows its nonuniformity on a µm scale.

Figure 2.14: EELS of G0697 resolves intermittent In and Ga clusters within Al layer,
indicative of significant group-III exchange.
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Another important observation is that As cap is virtually non-existent in G0697, which
contradicts the ∼ 200 nm estimate from SEM on this sample. This effectively shows that
the As cap almost fully evaporates at some point before the STEM/EELS experiment, most
likely, during the FIB preparation. Therefore, an additional investigation of the arsenic
evaporation rate, and possibly, its mechanical protection by some ex-situ deposition, would
be beneficial.

Comparison

The STEM and EELS results presented in this subsection conclusively indicate that we
managed to grow a flat aluminum layer with a pristine metal-semiconductor interface only
in one case. This indicates that the deposition of a flat aluminum layer is not trivial and is
highly dependent on the temperature dynamics during the Al deposition. As the tempera-
tures of the wafer before the deposition, of the Al cells during the deposition, and the total
duration of the deposition are the factors that contibute to the total thermal footprint,
they all should be thorougly investigated. Besides, the arsenic capping is shown to be
effective only in one of the two experiments, though the chemical processes it undergoes
remain obscure. This prompts us to a more comprehensive surface morphology study. The
results of both investigations constitute the next section of this chapter.
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2.5 Deposition rate optimization and surface protec-

tion for low-temperature growth

2.5.1 Choice of growth parameters for investigation

In the previous section, we unambiguously demonstrated the growth of a flat aluminum
layer with quality InGaAs-Al interface, and achieved surface protection with capping. A
much higher heterostructure quality of G0680 than of G0697 emphasized the need to
understand better the influence of ambient temperature and heat sources on the growth.
Besides, both depositions were carried out at an extremely high rate (3 Å/s). In terms of the
aluminum cell operation, this value is equivalent to the growth of a zinc blende compound
like AlAs at 6 Å/s. This rate approaches the relative upper limit that does not jeopardize
the long-term performance of aluminum cells. Using lower values is generally preferable
but is not guaranteed a priori to give the same layer structure quality. Therefore, our next
goal is to thoroughly investigate every stage of the epitaxial growth and the evolution of the
wafer surface with or without arsenic capping for varied deposition rates. This will produce
more insight into the process of layer and interface formation, collectively influenced by
the speed of deposition and temperature input into the system.

Table 2.5 summarizes the key parameters of five new heterostructures we have grown
for this purpose. All of them are based on a semi-insulating InP substrate, follow the same
layout and procedure of semiconductor buffer deposition as described in subsection 2.4.1.
Now, we use two Al cells instead of one, and choose three distinct deposition rates that
both cover the conventional range of values and go beyond it. 0.1 and 0.5 Å/s for our
growths roughly correspond to the bounds of the typical operable range (0.09 Å/s [36,
41], 0.33 Å/s [40], 0.5 Å/s [32]), whereas 2 Å/s is much larger than any value reported
previously. We expect the range 0.1−2 Å/s to span distinct growth regimes if they should
be observed. Three of the samples in this batch are capped with amorphous As4, whereas
the surfaces of the rest are deliberately left unprotected.

2.5.2 Wafer temperature monitoring during the aluminum de-
position

For our growths, we have access to two sources of information about the wafer temperature.
The first one is thermocouple directly connected to the manipulator that holds the wafer.
The second one is the Silicon array spectrometer we calibrated specifically to extract the

32



Growth name Growth number Al deposition rate, Å/s Capping

G0841 Gr0.1As 0.1 Capped

G0842 Gr0.5As 0.5 Capped

G0843 Gr0.5 0.5 Uncapped

G0844 Gr2.0As 2 Capped

G0847 Gr2.0 2 Uncapped

Table 2.5: A series of growth with varied deposition rates and capping.

InP substrate temperature from the position of its band edge. A broadband light source
(halogen lamp), used to obtain the InP transmittance spectrum that gives the band edge,
is verified not to cause any noticeable heating of the wafer.

As before, after the deposition of the semiconductor part, the wafers were left in the
MBE chamber overnight will all non-essential sources of heat having been eliminated. For
all our samples, the manipulator thermocouple temperature decayed with a time constant
on the order of 0.5 hours, and stabilized on average over the course of 4-5 hours at the
values ∼ 3−7◦C. The corresponding BET values for the wafers happened to be higher (on
the order of 22 − 29◦C). Unlike for G0680 and G0697, discussed in section 2.4, the main
shutter was not available for our more recent series of growths. As a result, the sample
surface was seeing more thermal radiation from the flange with effusion cells. This did not
allow to reach temperatures below 0◦C.

The temperature dynamics during the growths is presented in figure 2.15. The tem-
peratures of Al cells are kept constant during depositions; therefore, the radiant power
emitted from the cells is deemed constant:

P = σ
(
T 4

1S1 + T 4
2S2

)
. (2.1)

Here, T1,2 are the temperatures of the cells, S1,2 are the sizes of the nozzles where aluminum
atoms come from, and σ is the Stefan-Boltzmann constant for black body radiation (the
emissivity of the cell is assumed to be close to 1): σ = 5.67 · 10−8 W ·m−2 ·K−4.

The radiances of the wafer and a much cooler MBE chamber are negligible compared
to the radiance of the hot aluminum cells. Therefore, the only significant source of energy
dissipation from the wafer is its thermal conductive coupling to the heat reservoir (cham-
ber) through the manipulator. The constant energy input with one thermal conductivity
channel corresponds to a simple first-order (i.e. exponential) temperature process. There-
fore, we interpolate the BET readings for the period of Al growth (t1 ≤ t < t2 ), and the
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Figure 2.15: BET temperature data with the fit to a first-order model (2.2). Only part of
the data, closest in time to the aluminum growth, is shown. The fits are done over time
ranges up to 80 minutes.

period after it (t ≥ t2), with two exponential functions:

T =


T0, t < t1

T0 + a
(

1− exp
(
− t−t1

τ1

))
, t1 ≤ t < t2

T0 + a
(

1− exp
(
− t2−t1

τ1

))
− b
(

1− exp
(
− t−t2

τ2

))
t ≥ t2

(2.2)

Here, T0 is the wafer temperature before the Al deposition, a is the maximum possible
increase of the temperature during the growth of Al; b is the temperature drop after the Al
deposition is finished; τ1, τ2 are thermal time constants of the system before and after the
Al deposition, respectively. Such a choice of the function T (t) ensures that it is continuous
both at t = t1 and t = t2. The initial ramp rate during the growth q = dT

dt
|t1 = a

τ1
.
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The fitting parameters, extracted from the data, along with the relevant quantities that
influence the system temperature dynamics, are presented in table 2.6.

Growth
#

Al depos.
rate, Å/s

T1, ◦C T2, ◦C Al depos.
time

Tmax.,
◦C

q,
◦C/min

Fitting parameters

T0, ◦C a, ◦C b, ◦C τ1, min τ2, min

Gr0.1As 0.1 1000.6 1005.5 16m 40s 116 17.9 25.3 94.7 63.0 5.28 2.72

Gr0.5As 0.5 1075.0 1079.9 3m 20s 76.7 46.0 24.6 55.6 39.9 1.21 4.31

Gr0.5 0.5 1075.1 1079.0 3m 20 s 77.4 30.6 26.3 64.3 45.7 2.10 6.66

Gr2.0As 2 1148.7 1149.8 50 s 52.1 299 27.1 1.52e5 1940 5080 8.13e4

Gr2.0 2 1148.8 1144.5 50 s 53.3 36.8 29.7 55.9 1.29e5 1.52 1.06e5

Table 2.6: Temperature dynamics during and after the Al deposition: measured and fitted
data.

Here, T1, T2 are the temperatures of Al1 & Al2 cells during the Al deposition, respectively,
and Tmax is the maximal recorded BET value at the very end of Al deposition. Importantly,
Tmax decreases when the Al cell temperatures (and thus its growth rate) increase. To
investigate this counterintuitive result closer, we plot in figure 2.16 the measured band-
edge temperature versus the cumulative energy output from unit surface area of the molten
aluminum in a cell:

D(t) =
1

2
σt
(
T 4

1 + T 4
2

)
, (2.3)

(we assume for simplicity that the areas of the Al1 and Al2 cell nozzles are the same). The
different lines are packed very closely together and have almost identical slopes. On the
one hand, it means that the simple model of radiative heat transfer (2.3) explains the wafer
temperature dynamics very well, and on the other hand, the heat losses to the reservoir are
indeed very slow compared to the timescale of the Al deposition. Moreover, short growth
duration proves to be a much more substantial factor than the cell temperature in the
determination of thermal footprint. For example, despite having a 20x faster Al growth
rate than Gr0.1As, Gr2.0 receives an order of magnitude less heat from the Al cells and
thus undergoes an almost 3 times smaller temperature increase despite the difference in
cell temperatures by about 150◦C. This proves that shortening the duration of deposition
is a viable method to mitigate the wafer heating for all observable growth regimes.

When it comes to the quality of the exponential fit with the expression (2.2), we con-
clude from the figure 2.15 that it works reasonably well for slower aluminum depositions:
Gr0.1As, Gr0.5As, Gr0.5. In all cases, though, it fails to capture a kink at the beginning of
Al deposition, being the most pronounced when the growth is the fastest (Gr2.0As, Gr2.0).
At the same time, the right branch of the exponential fit (i.e. after the end of aluminum
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Figure 2.16: Heterostructure temperature measured with BET as a function of the thermal
energy outputted from a unit surface area of hot Al effusion cells. The interpolation is done
with B-splines using SciPy [43].

deposition) remains good in all cases even for long observation times, not shown in figure.
Interestingly, the corresponding time constants τ2 (pure energy dissipation without signif-
icant heating) differ profoundly for the two groups of growths: on the order of minutes
for Gr0.1As, Gr0.5As and Gr0.5 (slower ones) versus days for Gr2.0As and Gr2.0 (faster
ones). Essentially, these values: τfast ∼ 2− 6 min, and τslow ∼ 104− 105 min, are the time
constant estimates for two distinct heat transfer processes. We attribute the faster one to
the heat exchange with the manipulator: apparently, the wafer and manipulator are being
heated highly unequally during the aluminum growth. The slower process is the energy
transfer to the reservoir, which starts to dominate once the wafer and the manipulator
reach thermal equilibrium.

2.5.3 Evolution of surface reconstruction

During the semiconductor layer deposition

To correctly identify the surface reconstructions from the RHEED patterns, we garner
information about the possible reconstructions for related semiconductor materials from
the literature [44–48]. This data is summarized in table 2.7.
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Top layer Substrate 1 × 2 1 × 3 2 × 2 2 × 3 2 × 4 3 × 4 4 × 4
InP X X X X

In0.53Ga0.47As InP X X
In0.27Ga0.73As GaAs X X X
In0.81Ga0.19As InP X X
InAs GaAs X X X X

Table 2.7: Surface reconstructions for selected semiconductor heterostructures, reported in
works [44–48]

Table 2.8 presents the RHEED patterns at two distinct azimuths, and the corresponding
surface reconstructions for Gr0.5As. The same results apply to all other growths, since
the semiconductor part of the heterostructure is grown in the same way. One important
observation is the (2 × 4)-reconstructed surface of the top indium-rich InGaAs barrier,
which precedes the aluminum deposition.

Stage Reconstruction 0◦ azimuth pattern 90◦ azimuth pattern

After oxide des-
orption of InP
substrate

(2 × 1)

After the growth
of In0.53Ga0.47As

(1 × 1) and/
or (2 × 1):
secondary
streaks are
barely visible

After the growth
of In0.75Ga0.25As

(2 × 4)

Table 2.8: RHEED pattern time evolution during the aluminum deposition on Gr0.5As.
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During the Al deposition

Unlike before (sec. 2.4), we do not rotate the substrate during aluminum deposition. Thus
we are hoping to minimize the obscure effect of RHEED beam on the surface observed
previously (see left of fig. 2.4). In turn, this limits the RHEED operation to a single
azimuth and thus disables us from identifying the surface reconstruction unambiguously.
Nonetheless, after the semiconductor growth is finished, we record the azimuth that gives
the most pronounced streaks, and reset the substrate manipulator to it in the morning,
right before the aluminum deposition.

Despite the fact that the growth rates are very different, the scenario of aluminum layer
deposition is the same in all cases. The summary of this process is provided in table 2.9
and is based on Gr0.1As only except for the last stage of RHEED pattern evolution,
where a comparison between the slowest and the fastest growths is relevant. The first
observation is the change in streak spacing after the overnight cooling, which indicates
that the uncapped InGaAs surface reconstructed to (1 × 1), (1 × 2) or (1 × 3) over this
period of time. At the beginning of Al deposition, we identify the “strained” growth
mode (streaks do not change their position). The chemical composition of this part is
not definitively identified. However, we speculate that apart from Al nucleation, this may
possibly signify the formation of lattice-matched AlAs due to the presence of residual As
on the surface adsorbed after the end of In0.75Ga0.25As deposition. In accordance with the
results reported in the work [36] on InAs metallization, such a layer is likely to prevent Al
from etching into the semiconductor.

Next, relaxed Al growth in either [110] or [111] direction is observed, manifested by the
appearance (and then dominance) of a second group of streaks. From the time it takes
Al to start relaxing, we estimate the of strained Al or AlAs layer that grows prior. The
results of each experiment are given in table 2.10 (page 40). We notice that faster growths
allow for thicker strained regions, with ∼1.5 nm, or about 3.6 ML, being the maximum for
Gr2.0 (the fastest one). This is in concordance with the lower thermal output from Al cells,
discussed earlier in subsection 2.5.2: it takes longer to thermally activate the nucleation
that favors the growth in a new direction. Therefore, it is reasonable to expect a higher
quality of the metal-semiconductor interface for faster depositions, too.

It is worth noting that the sharpness of streaks for Gr2.0 was slightly better than for
the rest of the growths at all stages. Moreover, its strained part is almost 1.5 thicker than
of Gr2.0As with the same growth rate. This may be due to the additional measure we took
to minimize sticking of the residual As: we kept the wafer at 400◦C right after the end of
In0.75Ga0.25As deposition until As background pressure dropped below 10-10 Torr.
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Event Description Image at a fixed 0◦ azimuth

Reconstruction changes
overnight before the Al

deposition

The streak spacing increases 2x
during the overnight cooling,
indicating the change of the

reconstruction to (1 × ?)

Strained layer grows

The streaks’ brightness grows,
indicating the formation of a

lattice-matched layer of Al or AlAs
(possible due to the residual As

adsorbate on In0.75Ga0.25As)

Relaxed aluminum
diffraction pattern

appears

2nd series of streaks, spaced
1.41× ≈

√
2× wider appears and

grows in brightness. This indicates
the formation of relaxed Al[110] or

Al[111] layers, as

a0(InP): a0(Al) ≈ 1 :
√

2

Aluminum diffraction
pattern stabilizes

The relaxed Al layer streaks
gradually transform into dots; the
diffraction pattern from InGaAs
layer gradually disappears.

The faster the deposition, the
better the Al streaks preserve their

shape

Gr0.1As (slow):

Gr2.0 (fast):

Table 2.9: Evolution of the RHEED pattern at a fixed azimuth during the aluminum
deposition. Gr0.1As data is presented unless otherwise specified.
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Growth
name

Growth # Time for relaxed Al
streaks to appear, s

Deposition rate
of Al, Å/s

Thickness of the
strained part, Å

G0841 Gr0.1As 58 0.1 5.8

G0842 Gr0.5As 13 0.5 6.5

G0843 Gr0.5 14 0.5 7

G0844 Gr2.0As 5.3 2 10.6

G0847 Gr2.0 7.3 2 14.6

Table 2.10: Strained growth of Al or AlAs: time before the growth of relaxed Al begins,
and the thickness of the strained part.

After the Al deposition

After the deposition of 10 nm of aluminum on Gr0.1As, Gr0.5As and Gr2.0As, we closed
the Al shutter, opened the As valve and shutter, and waited until RHEED showed a
completely hazy image with amorphous rings (fig. 2.17). It took us different time during
different experiments: about 4.5 minutes for Gr0.5As and about 1 minute for Gr2.0As.
This is due to high sensitivity of the process of As sticking to temperature: it takes more
time to deposit an As layer on a hotter wafer.

Figure 2.17: The onset of amorphous rings in Gr0.5As

For the uncapped Gr0.5 and Gr2.0, we waited for some more time until the RHEED pattern
stabilized. After that, these samples were left in the storage part of our MBE chamber
at UHV in the 10−11 range, and were occasionally monitored on a daily or weekly basis.
Gr0.5 demonstrated a very interesting dynamics, outlined in the flowchart 2.18. Within
1 minute after the growth, previously bright spots completely disappeared, and in about
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30 seconds the pattern reorganized into dots separated
√

2 times less than the relaxed
Al streaks, or precisely as much as the initial InGaAs pattern! This clearly indicates a
rearrangement of the top of the aluminum crystal. Dim dots from the relaxed Al growth
mode re-appeared (circled), a new sequence vertical of streaks of unknown origin (framed)
emerged, and a chevron-like pattern indicated the occurrence of faceting. However, these
secondary features disappeared overtime, whereas the backbone of the pattern remained
in place after 10 days at UHV. The relative brightness of the diffuse pattern substantially
increased over this period, signifying the adsorption of background gases.

Remarkably, the dynamics of the Gr2.0 surface evolution (fig. 2.19) was completely
different: the RHEED pattern showed only some increase in the diffuse component over
the course of a month! This is a significant result, not presented previously, that sufficiently
fast deposition of aluminum is sufficient to protect its surface from rearrangement over very
prolonged periods of time even at high vacuum. This is the third advantage of fast epitaxial
growth deduced so far, along with lower temperature increase and thicker strained part of
the layer, which is likely accompanied with a better-quality metal-semiconductor interface.

Figure 2.18: The evolution of RHEED pattern of Gr0.5, starting from the end of Al
deposition.
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Figure 2.19: Evolution of Gr2.0 RHEED pattern over the course of a month.

2.5.4 Post-growth imaging

Photos

After the Gr0.1As-Gr2.0 growths were finalized, we were ready to perform their preliminary
surface morphology analysis with the tools available in our lab: a BB photography setup,
and a Nomarski phase contrast microscope. We kept the uncapped growths at UHV for
longer, though, for the sake of RHEED monitoring on large timescales.

The BB photos of samples capped with amorphous As4 (fig. 2.20) reveal dense arrays
of point defects on their surfaces. Gr0.1As has the largest density of these features among
all three wafers; furthermore, the features on this sample appear to be the most uniformly
distributed. Conversely, there is a highly conspicuous area of finer roughness at the center
of the Gr2.0As quarter, superimposed on the point defect pattern common for all these
growths. Based on the photos at different exposures and at different wafer positions, a
barely noticeable hazy area in the image of Gr0.5As is proved to be a stray reflection. Here
and throughout, the words “hazy”, “wavy” and “shiny” specifically refer to the patterns
observed with BB photography.
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The growths without arsenic capping on top (fig. 2.21) show a significantly lower density
of point defects. This indicates that the point defects largely consist of arsenic. At the same
time, the top corners of both Gr0.5 and Gr2.0 appear wavy, which is most likely indicative
of a more pronounced aluminum migration. As in the case of G0844, the formation of
these distinct surface areas was likely due to the main shutter malfunctioning.

Figure 2.20: BB photos of the wafers capped with As4.

Figure 2.21: BB photos of the wafers not capped with arsenic. Bulging or large-scale
roughness (“waviness”) is conspicuous in the top corners of both wafers.
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Nomarski microscopy

The Nomarski images of Gr0.1As reveal a relatively uniform density of point defects across
the quarter wafer. We also observe horizontal relaxation lines that correspond to

(
011
)

plane, which we determine from the quarter cleavage layout. The appearance of lines is
not directly related to the epitaxy of thinnest layers but is rather due to stress releases in
the substrate during thermal cycling. In Gr0.5As, the density of point defects does not
significantly differ between the edges and the center (only a slightly higher density at the
edges). In this case, we observe vertical relaxation lines, which correspond to the

(
011
)

plane as well. In Gr2.0As, although only a part of the quarter appears hazy, the same types
of features are observed across both hazy and shiny areas. Apart from the point defects of
the same kind as in Gr0.1As and Gr0.5As, there is a finer grainy pattern in between the
larger features. The roughness is more pronounced in the hazy areas; this is noticeable,
however, only at x40 magnification. The Nomarski micrographs for all capped growths are
presented in table 2.11.

The morphologies of uncapped Gr0.5 and Gr2.0 wafers (tab. 2.12) are very similar.
We do not note any visual differences between the Nomarski images of the wavy and flat
regions in either sample. The typical morphology in all parts of both wafers is scarce point
defects and fine grain (similar to the one in the mirror-like areas of Gr2.0As). Relaxation
lines are observed in either 1 or 2 directions in both wavy and mirror-like parts.
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Growth 5x magnification 40x magnification

Gr0.1As, center

Gr0.5As, bottom
edge

Gr2.0As, center
(hazy area)

Gr2.0As, bot-
tom left corner
(mirror-like area)

Table 2.11: Nomarski images of the wafers capped with amorphous arsenic. Unlike Gr0.5,
Gr0.1As and Gr0.5As are relatively uniform.
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Area Gr0.5 Gr2.0

Wavy

Shiny

Table 2.12: Nomarski images of the uncapped wafers (x40 magnification), showing no
significant morphology differences in the areas differently affected by the Al migration.

2.5.5 Surface morphology studies with atomic force microscopy

The subsequent growth morphology analysis with AFM allowed us to better understand
the feature formation on the samples, depending on whether they were capped or not, and
at what rate aluminum was deposited.

Capped, mostly mirror-like samples

On the small scale (1 µm × 1 µm), the surface of Gr0.1As appears very grainy in AFM
(tab. 2.13). Each grain has the lateral size of 40-100 nm and the height of about 12-15
nm. There also appear to be ∼10 nm deep trenches that separate grains. On the larger
scale (25 µm × 25 µm), there are ∼500–nm wide and ∼10-nm deep pits that occur with
the density of 1-2/625 µm-2 (i. e. 1–2 times per scan) and are separated by >15 µm along
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Scan,
µm×µm

Gr0.1As Gr0.5As

1 × 1

25×25

Table 2.13: AFM scans of the mirror-like areas of Gr0.1As and Gr0.5As. Grains look
very similar but are bigger in Gr0.1As. This sample also has wide pits on the larger scale
(highlighted), unlike Gr0.5As.

horizontal or vertical directions. We identify the point defects observed previously with
Nomarski microscopy with these features.

As a reminder, all surface of Gr0.5As is most likely mirror-like; however, there is a
suspicious haze along the round edge which is attributed to a stray reflection. For the
definitely mirror-like part of Gr0.5As, the grainy pattern at 1 µm × 1 µm looks very
similar to the one of Gr0.1As: the lateral size of the grains is very close (40–80 nm)
but the distance “grain top – trench bottom” is much smaller: under ∼8 nm. Another
important difference is the absence of the big pits on the large scale. The RMS surface
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roughness in the areas without pits is on the scale of 2.19 nm. The hazy part of Gr0.5As
looks the same as the mirror-like one in AFM; the only difference is the vertical scale of the
scan being from about -6 nm to 6 nm, indicating slightly higher grains in the hazy area.

Capped, mostly hazy sample

In Gr2.0As, ∼10–nm deep pits surrounded by 10–15 nm tall mounts are scattered across
both the hazy and the mirror-like areas, being more prevalent in the hazy one (fig. 2.22).
The distance between such clusters is about 5 µm (linearly, along x or y axis) in the
mirror-like part, and ∼1 µm in the hazy part, being the smallest observed so far. Unlike in
Gr0.1As, the features between the big pits are elongated horizontally and resemble noodles
rather than point defects (fig. 2.23). The pit-free regions are also shallower than the ones
from other wafers (6.0 nm top to bottom, RMS roughness under 1 nm). The areas free
from both noodles and pits are only several monolayers thick (RMS roughness ∼0.3 nm).

Figure 2.22: 25 µm × 25 µm scans of the mirror-like (left) and hazy (right) areas of
Gr2.0As.

Uncapped samples

In the photos discussed in the previous subsections, the top parts of both Gr0.5 and Gr2.0
look wavy, whereas their bottom parts look flat. However, the AFM scans in the two
distinct regions do not indicate any significant difference in morphology between the wavy
and flat regions on the microscale.
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Figure 2.23: Horizontally elongated shallow features from the mirror-like part of Gr2.0As.
RMS roughness ≈ 0.3 nm in the circled area is indicative of atomic-level flatness.

At the same time, there are differences in morphology between Gr0.5 and Gr2.0 overall. In
the 2D scans from the figure 2.24, “khaki”-like patterns dominate, with a roughly uniform
(Gr0.5) and nonuniform (Gr2.0) density of features. The features of Gr0.5 are alternating
pits and mounts 60-120 nm in width and up to 8-9 nm in height. The surface of Gr2.0 is
mostly intact, with sporadic ∼ 100 × 40 nm elongated clusters of a mount and a trench
around it with peak-to-peak heights of a few nm. The RMS roughness of the flat area is
only about 0.2 nm, which proves that the surface in these regions consists of 1-2 ML thick
atomic terraces.

The important difference from the capped samples discussed earlier is the complete
absence of wide pits on the 25 µm × 25 µm AFM scans.

Figure 2.24: The AFM scans of the top (wavy) parts of Gr0.5 (left) and Gr2.0 (right). The
RMS roughness below 0.2 nm in the frame area is indicative of atomic flatness.
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Surface morphology comparison

Overall, we observe relatively large feature-free areas with the atomic-level rougness only
in one of the uncapped samples (Gr2.0). However, some less prevalent atomically flat areas
can be spotted in Gr0.5 and Gr2.0As as well. All of these samples correspond to either the
fastest (2 Å/s) or capping-free growth modes. The structure with the best surface flatness,
Gr2.0, is also the only one that was kept at 400◦C after the deposition of In0.75Ga0.25As to
prevent unwanted As adsorption.

Table 2.14 summarizes all types of microscopic-level features identified in the samples.
This data enables us to establish the key connection between the growth mode and the
feature type: faster growth rates lead to less uniform feature distributions. Indeed, both
horizontally stretched chains of sharp peaks from Gr2.0As, and sparse clusters of mounts
of Gr2.0 coexist with atomically smooth terraces. The nonuniformity clearly correlates
with a low level of thermalization due to reduced heat flux from Al cells.

When it comes to the large, ∼ 500 nm wide pits, they were observed only in the capped
wafers on the scale of tens of microns. This proves their formation to be directly linked to
the As4 deposition, which is consistent with the Nomarski microscopy results.
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Feature type Found in Capping 3D view

Closely packed
point defects

Gr0.1As,
Gr0.5As

Capped

Elongated,
interconnected
features with

sharp but
shallow peaks

Gr2.0As Capped

Alternating
mounts and

pits of
comparable

sizes

Gr0.5 Uncapped

Sparse clusters
of a mount and

a trench
surrounding it

Gr2.0 Uncapped

Table 2.14: Summary of the distinct feature types identified with AFM in Gr0.1As–Gr2.0
samples.
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2.6 Summary of chapter 2

In summary, we carried out a thorough investigation of the III-V heterostructure metal-
lization with aluminum. A first extensive literature review on this topic was carried out to
identify the mechanisms of aluminum formation and atomic dynamics. Then, numerous
experiments were conducted to gain additional understanding of the effects of temperature
and capping, underrepresented in previous studies.

From the literature, we identified and analyzed the following physical mechanisms of
the Al film formation on a wide class of III-V superconductors:

1. Low temperatures inhibit group-V diffusion [34].

2. Group-V elements form covalent bonds with Al and other group-IIIs particularly
well when the surface reconstruction is group-V-rich. The covalent bonds suppress
the exchange reactions between Al and group-III elements from the semiconductor
layer [34]. Therefore, even a sub-ML of arsenide (antimonide) can ensure an abrupt
interface [36, 38–41, 49] that does not degrade over a long period of time [40]. An
As(Sb)-rich semiconductor surface reconstruction can lead to similar results [32, 35,
38].

3. Good choice of surface reconstruction symmetry based on the symmetry of the crystal
plane fixes the Al growth direction: the reconstruction symmetry should be low
enough so that the grains of equal formation energy, but different orientation do not
form [32].

4. There is a threshold value for semiconductor lattice constants that marks the change
in the dominant Al growth direction [39].

5. Reducing strain at the top of the semiconductor buffer favors the growth of Al along
the axes with lower surface energies, with [111] having the lowest one [37, 38].

6. There exists an optimal thickness of the interlayer buffer used to prevent the exchange
reaction that gives the best interface abruptness [36].

Our experiments complemented this list with two general conclusions: (1) minimizing
the cumulative heat transfer into the wafer during Al deposition is the critical factor to
achieve a high quality of the metal layer and its interface with the underlying semiconduc-
tor; and (2) in situ capping with As4 is a viable alternative to Al layer oxidation reported
in [38, 40].

More specifically, the key results of our original study are the following:
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1. With the use of the Al deposition rate (3 Å/s) much higher than reported in literature,
we demonstrated depositions of flat 10 nm Al layers on top of In0.75Ga0.25As with a
pristine metal-semiconductor interface. The layer structure of the growth G0680 was
confirmed with the cross-sectional SEM, and then with atomic-resolution STEM &
EELS. A significantly lower quality was reported for the growth G0697.

2. Capping with amorphous As4 was proved effective for the better-quality growth
(G0680). The chemical processes that the capping layer undergoes on different
timescales remain to be investigated.

3. A series of heterostructures with a broad range of Al deposition rates (0.1, 0.5,
2 Å/s), and with or without As4 capping, were grown with thorough monitoring of
temperature dynamics, growth mode, and surface quality before, during and after
the Al deposition. In all cases, faster rates yielded growths of better quality:

(a) An analytic model for the first-order heat transfer dynamics during and after Al
deposition was constructed from the BET data. The duration of deposition –
and not the Al cell temperature – was proven to determine the overall thermal
effect on the wafer. This has lead us to the conclusion that using faster growth
rates of Al is beneficial for the mitigation of wafer heating.

(b) Two phases of aluminum deposition (strained and relaxed) were identified with
RHEED, with the strained phase being thicker (up to 15 Å) for faster growths.
The strained part of the structure is speculated to possibly consist of lattice-
matched AlAs rather than Al due to the presence of residual As adsorbate on
In0.75Ga0.25As. Overall, faster Al growths were proven to be significantly closer
to 2-dimensional than slower ones.

(c) Long-term RHEED monitoring of the uncapped structures revealed two distinct
surface evolution scenarios. The surface of the Al layer grown at a low rate
completely rearranged within a minute after the end of deposition, whereas the
surface reconstruction of the one grown faster remained unchanged. After this,
both surfaces retained their structure for weeks even at UHV.

(d) An ex-situ surface morphology study with Nomarski microscopy and AFM re-
vealed ∼500 nm wide point defects separated by ones to tens of microns on all
samples capped with As4. Smaller, nanoscale features of the sample surfaces
were resolved with AFM and classified. The features proved to be less uni-
formly distributed and more spatially dispersed in the samples with faster Al
growth rates. The degree of surface flatness in feature-free areas proved to be
higher in these heterostructures, too (up to the atomic level). The lesser surface
thermalization of faster growths is consistent with their lower degree of heating.
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Chapter 3

Algorithm and software design for a
spin-qubit quantum architecture
simulation

3.1 Motivation

Silicon is known to be a very attractive platform for scalable spin-based quantum compu-
tation. First of all, this material currently dominates microelectronics industry. Secondly,
its most prevalent isotope 28Si has zero nuclear spin; therefore, a significant source of de-
coherence — electron-nuclear interactions — is naturally suppressed in the material. The
additional suppression in isotopically purified samples leads to such particularly outstand-
ing numbers as spin lifetimes on the order of seconds [50].

The development the field has seen since the seminal proposals for universal one- and
two-qubit gate implementations in semiconductor quantum dots [51], and the prototypi-
cal quantum computer architecture [52], is twofold. First of all, initial reports on state
preparation, coherent manipulation and readout in GaAs [21, 53] led to subsequent im-
provements towards highly controlled spin qubits in Si quantum dot arrays [54, 55], very
high fidelities of single-qubit [56, 57] and two-qubit [57] operations. Together with the
improvement of measurement techniques, it already led to the development of controllable,
CMOS-compatible systems [4, 58], and a universal two-qubit programmable processor [22]
in silicon. The recent report on high-fidelity gate operations at high (∼ 1K) tempera-
tures [59] gives even more reassurance that accessible small-scale Si quantum computers
are to be seen in the near future. Secondly, a significant number of scalable network designs
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for spins in silicon quantum dots or donorswere proposed [23, 60–63]. The achievement of
fault-tolerant quantum computation with the network-level error correction (surface code)
algorithms [23, 60, 64] is becoming more realistic as the gate operations approach (or even
already exceed [56]) the necessary error thresholds.

The scalable computer architecture, previously developed in our research group and
published in [65], offers to bridge these two streams of development by utilizing a node-
network approach. This computer design features a network of compute nodes, capable of
performing all necessary quantum operations, separated on a micron scale and connected
with electron shuttling lines. This allows for a gradual experimental implementation (i.
e. starting with small numbers of nodes, and then scaling up) without sacrificing the
logic of a high-level network architecture, which is impossible to achieve in the dense
designs proposed elsewhere [61, 62]. While there is experimental progress in developing
MOS quantum dot devices in our group [66], it is beneficial to simulate the operation of
compute nodes before the prototypical implementations are created. This will allow to
choose the optimal gate geometries, determine the voltage operation range, and design the
optimal voltage and ESR field pulses to experimentally realize quantum computation. The
presentation of the developed software and its node simulation capabilities are the main
topics of this chapter.

Section 3.2 gives a short summary of our architecture [65] with the focus on the quan-
tum control of individual computational nodes, and places this architecture among other
proposals in the field. Sections 3.3 and 3.4 are dedicated to our custom-built Python
package “QuDiPy” for semiconductor quantum dot network simulations, its theoretical
foundations, scope, and the application to the node operation simulation. Section 3.5
gives a summary of the main results.

Since the development of QuDiPy is a large collaborative project, other people authored
some of the code discussed in this chapter; see Statement of Contributions for explanation.
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3.2 Spin qubit quantum computer architecture in sil-

icon

The article [65] published in our group proposes a node-network architecture for a large-
scale surface code quantum processor. The minimal compute node requires only seven
quantum dots for the operation. Entanglement between nodes is distributed by loading
spin singlets locally, and then shuttling individual electrons on a µm scale.

A prototypical device design for the node is shown in figure 3.1. Accumulation gates
(golden) electrostatically define distinct quantum dots in the 2DEG that forms under the
Si/SiO2 interface. The tunnel barriers between all neighboring dots within a node are
directly controlled with the voltages on tunnel gates (grey). Each node is connected to a
distant ion-implanted region (electron reservoir) and other nodes with ∼ 1 µm long chains
of shuttling dots (red ovals) without explicit tunnel gates between them. The large sep-
aration of the nodes from reservoirs enables us to minimize number of interconnects and,
subsequently, capacitive cross-talk between components, charge noise and power dissipa-
tion. This is thus a competitive advantage of our architecture over the ones proposed in [61,
62]. The feasibility of coherent shuttling over micrometer scales was previously confirmed
in the work [67] with the design of constant-adiabaticity voltage pulses.

Unitary operations on the data and ancilla qubits are realized with the pulses of gate
voltages, and the oscillating global magnetic field produced by a microresonator. Compared
to the EDSR-based processor realization [22], our proposal does not require micromagnets
and thus offers a better scalability. To deterministically address individual qubits, we
manipulate the electric field from the plunger and tunnel gates to induce local deviations
of electron g-factors. This phenomenon is a consequence of a nonzero spin-orbit interaction
in silicon. This approach, based on the one implemented in refs. [54, 61], enables us to
drive distinct single-qubit rotations despite the global nature of the ESR field. Two-qubit√

SWAP gates are realized by the direct control of exchange interaction with tunnel gate
voltages.

The measurements of ancilla qubits are carried out with radio-frequency (RF) dispersive
readout [58, 68–70] in conjunction with the Pauli spin blockade. The method is based on
sensing the quantum capacitance of the double dot R1, R2. During the measurement, the
state of the double dot is conditioned on the state of the ancilla by means of a CNOT
operation. Pauli principle determines the possibility of electron tunneling from R1 to R2
and thus the final spin-charge state of R1, R2 (triplet T(1,1), or singlet S(0,2)). It is
discerned from a resonant frequency shift in an RF readout line.
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Figure 3.1: Device-level proposal for a compute
node. Accumulation gates for shuttling dots, and
the tunnel gate between the readout dot R1 and
ancilla qubits are not shown but implied. Repro-
duced from [65].

Figure 3.2: 4-step cycle of the sur-
face code for error correction. X
or Z stabilizer gates are applied
simultaneously on groups of four
nodes (highlghted with different
colors). Reproduced from [65].

The error-correction scheme is based on a surface code algorithm, applied on a square
lattice of nodes (sketched in figure 3.2), is closely related to the surface code proposals
from other sources [23, 61]. The implementation of the stabilizer circuit from figure 3.3
for a group of 4 data qubits includes 4 stages. During stages 1 and 2, two-electron singlet
states are loaded from the reservoirs, transferred to the nodes, and the individual spins
are distributed among the ancillas. At stage 3, a maximally-entangled four-electron GHZ
state is formed:

|GHZ〉 =
1√
2

(|0000〉+ |1111〉) .

It is used as shared entanglement resource for ancilla qubits in different nodes, necessary
to apply X or Z stabilizers at the stage 4. The conditional application of quantum gate
operations based on measurement results, explained in detail in the appendix of this pro-
posal [65], ensures a deterministic ancilla state preparation and data qubit stabilization.
The ancillas are emptied to the reservoirs once measured to make room for newly prepared
states, used in the next step of the stabilization cycle.
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Figure 3.3: Quantum circuit for the data qubit stabilization of a group of four nodes.
Reproduced from [65].
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3.3 QuDiPy: a quantum dot simulation package

To simulate the operation of the proposed quantum computer architecture, we have been
developing an open-source Python package for the simulation of quantum dot systems
named QuDiPy1 (“Quantum Dots in Python”). Code modules that require the most CPU
and memory resources rely on the heavily optimized algorithms from NumPy [71] and
SciPy [43] Python libraries, and are planned to be optimized for distributed computing on
CPU and GPU clusters.

3.3.1 Simulation of the node operation

Figure 3.4 outlines how the modules of QuDiPy are interconnected to design voltage and
ESR field pulses for controlled node operations such as quantum gate applications or elec-
tron transfers.

A node (center of the diagram) consists of a chain of quantum dots defined by the pos-
itive voltages V1, V2, . . . on plunger gates. The voltages on tunnel gates W1,W2, . . . control
the electron confinement, tunnel coupling and exchange interaction between pairs of neigh-
boring dots. The full network of such nodes shares two global magnetic fields. First one
is the static Zeeman field ~B0 (purple) directed along the Si/SiO2 interface (perpendicular
to the plane of the diagram), which we choose to be the z direction for convenience. The
global radio-frequency ESR field, produced by the microresonator located above all gates,
lies in the xy plane, i.e. plane of the diagram (both the resonator and the field it produces
are denoted with orange). The resonator frequency frf is chosen to be constant, but the

envelope of the field oscillations ~Brf(t) and phase φ(t) are time-dependent.

Suppose there is a quantum algorithm that should be implemented. Circuit module (top
left corner) is designed to load and process scripts that define the corresponding quantum
circuits, and transform them to matrix representation. Circuit module communicates this
reference information to Control module, whose role is to generate the appropriate sequence
of voltage and ESR control pulses. The approaches towards optimal pulse design for spin
quantum gates constitute a significant part of the original results presented in this thesis
and are thus dedicated separate chapters 4 and 5. Coherent electron shuttling is achieved
with the constant adiabaticity pulse design, described in the reference [67].

Control module relies on the connection between the gate voltages and the quantum
parameters of the electron system. To establish this dependency, we use a third party

1Link to GitHub repository: https://github.com/mainCSG/QuDiPy
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Figure 3.4: Pulse desing for quantum node operations with a network of QuDiPy modules.
When the modules request only specific information from other ones, it is shown in yellow
ellipses.

solver nextnano++ [72], capable of extracting the potential landscape from the simulation
of a chosen semiconductor structure, gate geometry and supplied voltages. The Potential
module of QuDiPy processes the nextnano++ data to acquire 2-dimensional horizontal
slices of potential energy U(x, z) and electric field ~E(x, z) at the selected distance y0 below
the Si/SiO2 interface. Refer to the subsection 3.4.1 for a more detailed description of how
the data is extracted and processes. The module uses this information further to find
single-electron wavefunctions and energies of the system.

The purpose of Coulomb module (bottom) is to quantify the magnitude of Coulomb
interaction between the electrons, which serves as a starting point for the development of
the effective models of the system. This module relies on a full CI calculation method
outlined in our group’s paper [1]; the summary of the method is given in subsection 3.4.2.
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At first, the module evaluates Coulomb matrix elements in the optimal configuration basis,
and then constructs and diagonalizes the second quantization Hamiltonian of the many-
electron system.

Charge Stability module (left) relies on the single-electron and many-electron energy
spectra of the system, calculated by Potential and Coulomb modules. The energies are used
to calculate the system Hubbard model parameters [73] like chemical potentials, tunnel
couplings, and direct Coulomb repulsion terms between pairs of electrons. Hubbard model
is used to determine the correspondence between gate voltages and the charge configuration
of the quantum dot system. The voltage values that favor undesired charge transitions
are associated with a certain scalar function. This information is directly returned to the
Control module, where it serves as a component of the cost function minimization problem.
This control problem will be rigorously defined in section 4.2 of the following chapter.

Exchange and Stark Shift modules (bottom right) are used to quantify parameters of
another model Hamiltonian that describes spin states of the electrons only. Stark Shift
module uses the electric potential and field landscapes as well as the single-electron wave-
functions to find the g-factor deviations for each electron. The cartoon in the middle of the
diagram shows one of the outcomes of g-factor variations across the dots: spin precessions
around different axes with distinct angular velocities ~Ω1, ~Ω2. This allows us to address
individual spins during the pulses of global ESR field, as will be shown explicilty in the
the section 4.3. Exchange module calculates exchange couplings between pairs of quantum
dots (essential components for 2-qubit gates in our architecture) from the many-electron
energies evaluated in the Coulomb module. Its cartoon reminds that the strength of ex-
change interaction is determined by the Coulomb repulsion of the electrons ~FCoulomb, and
the overlap of their wavefunctions.

The Evolution module takes the outputs of Potential, Charge stability, Stark shift and
Exchange modules for a given sequence of voltages and ESR magnetic field parameters,
and simulates the time dynamics of the electron system. Electron state evolution under the
spin Hamiltonian determines the quantum gate operations, whereas the evolution under
Hubbard or real-space Hamiltonian represents electron shuttling between the dots. Based
on the process and outcomes of the evolution (such as fidelity of the final state with respect
to the expected one), corrections necessary for pulse optimization are supplied to Control
module.

The cycle repeats until the desired level of optimality is achieved. In practice, such mod-
ules as Coulomb, Charge Stability, Exchange, or Stark shift may rely on the nextnano++

data processed and interpolated in advance instead of doing calculations from scratch;
in this case, they can construct time-dependent effective spin and Hubbard Hamiltonians
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right away. The finalized pulse sequence can then be used to test experimental devices,
which consitutes our long-term goal.

3.3.2 Scope of the simulator

The capabilities of our simulator are not limited to the design of optimal control pulses.
From the very beginning, effort has been made to make QuDiPy a general-purpose toolkit
for simulating electron dynamics in semiconductor quantum dots. Its capabilities, either
already implemented or planned, are expected to cover a wide variety of theoretical and ex-
perimental areas of our research towards the development of a scalable spin-based quantum
computer in silicon, and, hopefully, other projects relying on quantum control of electrons
in semiconductors. For example, it is capable of simulating arrays of dots of any lengths,
processing both analytically and numerically defined electric potential landscapes, and ex-
tracting constant interaction model [74] parameters from a given charge stability diagram.
It is also equipped to simulate GaAs devices.

Table 3.1 (pages 62–64) covers the scope of each module from the diagram 3.4 described
earlier, and the external software QuDiPy is interfaced with.

Module Completed In progress Planned

Circuit

- Encode, save, load and
draw custom quantum cir-
cuits

- Simulate evolution under
ideal circuits

Potential

- Process 1D/2D electric po-
tential and/or field land-
scapes from numerical data
and analytical formulas for
any numbers of gate volt-
ages

- Find single-electron wave-
functions and energies

Process 3D poten-
tial data and find
eigenvalues/ eigen-
functions directly

62



Coulomb

- Choose optimal harmonic
basis for full CI calculation

- Evaluate Coulomb inter-
action matrix elements
(CMEs) in the optimal
basis

- Construct and diagonal-
ize second quantization
Hamiltonian

- Speed up the evaluation
of CMEs using symmetry
considerations

- Choose harmonic
basis with opti-
mal origin and az-
imuth

- Deploy the code
on distributed
systems to effi-
ciently simulate
long qubit chains

Stark
shift

Extract electron g-factors
from potential and electric
field landscape

Extract g-factors from dot
chains of any lengths

Exchange
Calculate exchange interac-
tion for each pair of quan-
tum dots

Map energy spec-
trum of multiple
electrons onto
Heisenberg Hamil-
tonian

Charge
stability

Generate charge stability di-
agrams from:

- General capacitance ma-
trix

- Hubbard model

- Extract transition lines
and triple points from
a given charge stability
diagram to build a general
capacitance matrix

- Construct a Hubbard
Hamiltonian parameters
from a potential landscape

- Determine operable win-
dow of gate voltages from
Hubbard model data
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Evolution

Simulate dissipative dynam-
ics under the pure spin
Hamiltonian, including:

- partly unpopulated dot
chains of any lengths

- qubit measurements, loads
- fidelity, purity, single-

electron subsystems being
monitored

Simulate electron shuttling
along a 1D chain of dots:

- real space Hamiltonian
- spin-orbit-valley effective

Hamiltonian

Simulate shuttling
in 2D and 3D

Control

- Load custom control pulses
- Design pulses of chosen

shape for single-qubit gates
- Find constant adiabatic-

ity pulses for 1D electron
transport

- Design pulses of chosen
shape for two-qubit gates

- Engineer high-fidelity volt-
age pulses by incorporating
interdot couplings

- Find constant adiabatic-
ity pulses for 2D and 3D
Hamiltonians

- Design opti-
mal voltage and
ESR pulses with
gradient ascent

- Optimize gra-
dient ascent
code for parallel
and GPU-based
computation

Connec-
tion with
external
software

Import electric poten-
tial and field data from
nextnano++

Output the control pulses
for multiplexing the net-
work of nodes, emulated
in Cadence® Virtuoso soft-
ware

Table 3.1: Functionality and intended use of QuDiPy modules. The implementation pro-
cess of each listed capability consists of code development and testing, creation of tutorials
and unit tests (if applicable), and peer review by 1-2 fellow developers. The Python mod-
ules corresponding to the “completed” status have undergone all these stages (but may
still be improved in the future), the ones “in progress” are missing some of the stages. The
“completed” and “in progress” statuses in this table are up to date for December 22, 2021.
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3.4 Theoretical foundations of the simulator

3.4.1 Potential data extraction and manipulation

As noted before, the Potential module of QuDiPy obtains the electric potential and field
data from the nextnano++ [72] software. It is a Poisson (P) and Schrodinger-Poisson (SP)
solver for 3-dimensional nanoscale semiconductor-based devices (refer to the resource [75]
for a summary of P / SP methods). While being very feature-packed, the functionality
of simulators of this kind does not incorporate the effective electron isolation from highly
doped regions, achieved in our architecture. More precisely, it is impossible to fix the
discrete values of electron charge in each quantum dot: fist, both Poisson and Schrodinger-
Poisson methods yield continuous charge values, and second, nextnano++ simulation pop-
ulates the energy levels that lie below the Fermi level even for isolated dots. Physically,
though, the dots are protected from this (up to a certain degree) due to the decoupling
from electron reservoirs.

To bypass this limitation, we carry out all nanodevice simulations at the voltages just
below the charge accumulation threshold. We use Poisson method for this, since P and SP
methods give the same results for the case of no electron in a dot. In this case, we expect to
observe a consistent dependency of effective spin and Hubbard parameters on the potential
landscapes and thus gate voltages. The work [67] analyzes in more detail the effect of
this simplification on the potential relief, shape of single-electron wavefunctions and their
overlap. The charge accumulation regime at higher voltages allows us to determine the
depth y0 under the Si/SiO2 interface where the electron is localized. The potential and

field landscapes U(x, z), ~E(x, z) are extracted at this depth for all voltages in the operable
window.

Both spin and Hubbard model describe a quantum system in terms of single-electron
or pairwise interactions, or couplings. To approximately separate the effects of individ-
ual electrons or their pairs, we mask certain parts of the potential landscape between
its saddle points, representing tunnel barriers between the dots. This ensures that the
eigenproblem for the “masked” potentials correctly describes a specified subsystem of elec-
trons. Figure 3.5 gives an example of splitting an analytically defined potential landscape,
constructed from three overlapping Gaussians:

U(x, z) = min

(
−U1e

− (x−d)2+z2

a2 ,−U2e
−x

2+z2

a2 ,−U3e
− (x+d)2+z2

a2 ,

)
(3.1)

with U1 = U2 = U3 = 10 Ry∗, dot separation d = 7.5 ab, and dot width 2a = 4.6 ab. Here,
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the effective Rydberg parameters for silicon are introduced:

ab =
ε0εrh

2

πm∗e2
= 2.16 nm, Ry∗ =

e2

8πε0εrab

= 6.84 · 10−21 J = 42.77 meV. (3.2)

(a) 1D slice of the unmasked potential energy landscape
(b) Masked potential energy land-
scapes (in joules) for dot pairs

Figure 3.5: Pre-processing of the 2-dimensional analytical potential (3.1). (a): 1D slice of
the 3-dot potential along the x axis with the single-electron ground state probability. (b):
masked potentials for individual pairs of quantum dots.

In the subfigure 3.5a, the single-electron ground state probability density |Ψ0(x)|2 is
overlayed on top of the 1D slice of a 3-electron potential landscape. The density is clearly
distributed across all three quantum dots; therefore, the single-electron spectrum {Ψ(x, z)}
of U(x, z) cannot adequately describe isolated electrons. This justifies the need to manually
separate certain dots by masking them with high energy values (subfigure 3.5b) to obtain
correct wavefunctions. The x coordinates for mask borders correspond to the local maxima
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of the potential function from subfigure 3.5a. Because the positions and shapes of the tunnel
barriers are influenced by all gate voltage values, our choice of masking procedure preserves
the information about cross-coupling between the dots while making the wavefunctions of
the subsystems directly computable.

3.4.2 Determination of the many-electron energy spectrum

Solving a many-electron problem is the primary task of Coulomb module in QuDiPy. The
many-electron Hamiltonian with Coulomb interaction energy terms for all pairs of electrons
can be written in the second quantization form:

Ĥ =
∑
i

εic
†
ici +

1

2

∑
ijkl

〈ij| v |kl〉 c†ic
†
jclck, v =

e2

4πε0εr|~r2 − ~r1|
. (3.3)

Here, {|i〉} ≡ {|Ψi′(~r)〉} ⊗ {|χms〉} is the single-electron spin-orbit eigenbasis with the
energy eigenvalues {εi} for the specified potential energy landscape (and thus single-
electron Hamiltonian). The magnetic quantum number for each electron can have the
values ms = ±1

2
.

Since Coulomb potential becomes divergent at small separations between electrons, the
evaluation of Coulomb interaction matrix elements (CMEs) 〈ij| v |kl〉 with high precision
is a nontrivial problem. To achieve this, we develop a modified Linear Combination of
Harmonic Orbitals (LCHO) [5] full configuration interaction (CI) method, presented in our
article [1]. For this, we approximate the orbital components of single-electron functions by
a 2D basis of radially symmetric harmonic orbitals (HOs):

φnm(x, z) = φn(x)φm(z), φq(s) =
1√
2qq!

(
m∗ω

π~

) 1
4

exp

(
−m

∗ωs2

2~

)
Hq

(√
m∗ω

~
s

)
,

(3.4)
where Hq(s) is a Hermite polynomial of the order q, and ω is the harmonic frequency.
We emphasize that unlike in [5], all quantum dots are described by a single basis in our
proposal, which is expected to give computational speedup. Then, the approximation to
the lowest K single-electron orbital states |Ψj〉 is given by a truncated basis transform:

|Ψj〉 ≈
M∑
i=1

Aij |φi〉 , Aij = 〈φi|Ψj〉 (3.5)

where i, j are composite indices for {n,m}, and M = MxMz is the total number of 2D
HO states |φi〉 in the truncated basis. Obviously, the relation (3.5) approaches identity for

67



larger M,K; typically, M � K is required for good convergence. Thus, if we calculate
the CMEs in the HO basis 〈αβ| v |γδ〉, we can directly find their expressions in the single-
electron basis with the formula:

〈ij| v |kl〉 = 〈χi|χk〉 〈χj|χl〉
M∑
α=1

M∑
β=1

M∑
γ=1

M∑
δ=1

A∗iαA
∗
jβAkγAlδ 〈αβ| v |γδ〉 , (3.6)

where each Greek letter is a composite index of the type |α〉 ≡ |nαmα〉, etc. The prefactors
〈χi|χk〉 , 〈χj|χl〉 emphasize that the spin state of electrons does not change upon scattering
on the purely orbital Coulomb potential.

The key revelation is that a fully analytic expression exists for CMEs in the harmonic
basis. First of all, their values are strictly zero if either nα+nβ+nγ+nδ, or nα+nβ+nγ+nδ
are odd numbers. Otherwise, the expression reads as:

〈αβ| v |γδ〉 = 〈nαmαnβmβ| v |nγmγnδmδ〉

=
e2

4πε0εr

∫
d~r1d~r2 φ

∗
α(~r1)φ∗β(~r2)

1

|~r2 − ~r1|
φγ(~r1)φδ(~r2)

=

√
m∗ω

~
e2

4πε0εr

√
π(−1)nα+mα+nγ+mγ√

nα!mα!nβ!mβ!nγ!mγ!nδ!mδ!

min(nα,nγ)∑
p1=0

p1!

(
nα
p1

)(
nγ
p1

)

×
min(mα,mγ)∑

p2=0

p2!

(
mα

p2

)(
mγ

p2

)min(nβ ,nδ)∑
p3=0

p3!

(
nβ
p3

)(
nδ
p3

)
(3.7)

×
min(mβ ,mδ)∑

p4=0

p4!

(
mβ

p4

)(
mδ

p4

)
(−1)p

(2p− 1)!!(2p− a− 1)!!(a− 1)!!

22p p!
,

where the variables a = nα+nβ+nγ+nδ−2p1−2p3, 2p = a+mα+mβ+mγ+mδ−2p2−2p4

are introduced, and k!! = k(k− 2) · · · 3 · 1 is the double factorial for odd k with (−1)!! ≡ 1.

Once all CMEs in the single electron spin-orbit basis are found using formulas (3.5)
and (3.6), we use the full CI approach to find the many-electron eigenenergies and eigen-
states. If the total number of electrons in the quantum dots is N , we construct all possible
N -electron configurations of all the 2K spin-orbital states. Then, the Hamiltonian 3.3 is
explicitly rewritten in the configuration basis and diagonalized. Since the total number
of such configuration states scales according to nc =

(
2N
K

)
= (2N)!

K!(2N−K)!
, this part of the

calculation is very numerically intensive. However, as noted before, scattering on Coulomb
potential does not change the electron spin state, and the CME value (3.6) does not other-
wise depend on the actual spin projections |↑〉 or |↓〉. This means that the absolute value
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of total spin |Sz| is a conserved quantum number of the many-electron system, and so its
energy spectrum is degenerate. Therefore, we can restrict the configuration basis to an
appropriate |Sz| subspace. This considerably speeds up the calculations, as only the lowest
energy levels are sufficient to construct spin and Hubbard Hamiltonians (we elaborate on
this matter in subsection 3.4.3).

The computation advantages of our LCHO-CI approach are twofold. First of all, the
harmonic frequency ω factors out of the expression for CMEs in the HO basis (3.7). This
means that a typically very large matrix of CMEs Cho can be calculated only once for ω = 1,
and then simply scaled by

√
ω. Secondly, since we have not imposed any restrictions on

the value of ω from the beginning, we have freedom to optimize it to achieve better overlap
between single-electron and harmonic bases. This is done by solving a trivial single-variable
minimization problem:

min
ω

fmin(ω) = min
ω

1− 1

N ′

N ′∑
i

M∑
j

|〈ξi|φj(ω)〉|2, (3.8)

Figure 3.6: Dependence of the optimiza-
tion function fmin(ω) on ω and the size of
the harmonic orbital basis (MxMy = M).
Reproduced from [1]

where N ′ < N is a user-defined number of
single-electron states to use. Truncating the
orbital eigenbasis does not significantly alter
the optimal values of ω but allows for a faster
minimization. The improvement to the over-
lap by orders of magnitude is showcased in
figure 3.6, where a double quantum dot de-
fined by an analytic quartic potential:

U(x, z) =
m∗ω2

0

2

[
1

4d2
(x2 − d2)2 + z2

]
(3.9)

is simulated. The parameters used for the
figure are N ′ = 6, m∗ = 0.191m0 (silicon),
~ω0 = 0.375 meV, and d = 50 nm. Different
numbers of HO basis states are indicated with
color: as expected, higher values give better
overlap with the single-electron basis.

Unfortunately, if the harmonic frequencies along x and z are different: ωx 6= ωz, they
do not factor out of expression (3.7). Although we prove in the appendix of the paper [1]
that the CMEs can be still analytically expressed in terms of the arithmetic-geometric
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mean function M(ωx, ωz), we lose the computational advantage of pre-calculating Cho only
once. The efficient algorithm for the HOs with ωx 6= ωz would be particularly relevant for
the elongated chains of quantum dots such as in our computer architecture [65]. It is also
a necessity for upgrading to a full 3D simulation, since the electrons are localized much
stronger vertically (along y axis) than horizontally (in xz plane). For this, we suggest
further computational improvement for the CME matrix evaluation by pointing out that
expression (3.7) is invariant under the following transformations:

(1) nα � nγ, (2) mα � mγ,

(3) nβ � nδ, (4) mβ � mδ,

(5)

{
nα � nβ,

nγ � nδ,
(6)

{
mα � mβ,

mγ � mδ,

(7) All at once: nι � mι, ι ∈ {α, β, γ, δ} .

(3.10)

If we roughly estimate that each symmetry allows us to calculate two times fewer matrix
elements, then the number of required mathematical operations will be reduced by a factor
of 27 = 128 (the correct number is somewhat smaller). Meanwhile, the code runtime is
guaranteed to decrease even more, since smaller numbers of loops require lesser memory
allocations. We anticipate an even more significant speed-up if memory-efficient algorithms
for sparse matrices are utilized. The code implementation of (3.10) is being tested now,
but the preliminary results already give the computational time reduction by three orders
of magnitude. Conceptually, this translates ∼ 10 hours of Cho evaluation with Matlab
using conventional algorithm with M = 162, reported in [1], to ∼ 30 seconds.

Therefore, with the appropriate implementation of the symmetries (3.10), the direct
evaluation of Cho will no longer be a bottleneck for a full CI calculation in any system.
Remarkably, all transformations from (3.10) except (7) remain applicable for the HOs with
ωx 6= ωz. The efficient evaluation of CMEs in this case paves the way to high-precision full
CI calculations for arbitrary potential landscapes in 2 and, possibly, 3 dimensions.

3.4.3 Construction of effective Hamiltonians

Spin parameters

The extraction of voltage-dependent spin parameters from nextnano++ potential land-
scapes is relatively straightforward. In particular, Stark Shift module of QuDiPy does

70



not even require any many-electron calculations. The deviation g-factor of the ith electron
depends quadratically on the out-of-plane component of the electic field [54, 65]:

gi(Ey)
gi(E = 0)

− 1 = η2 〈ψi| E2
y |ψi〉 , η2 ≈ 2.2 nm2 V−2 for silicon. (3.11)

Each single-electron wavefunction |ψi〉 for i ∈ {1, . . . , N} is directly calculated as a ground
state in the potential energy landscape Ui(x, z) with all potential wells except the ith one
being masked.

Unlike in the previous case, Exchange module needs two-electron spectra to evaluate
exchange couplings. U(x, z) is “partitioned” into N − 1 functions Uj,j+1(x, z), where all
but the jth and j+1st dots are masked. For each of the potentials Uj,j+1, a two-electron

energy spectrum {E(2)
j,j+1} is found. The corresponding exchange parameter for the jth pair

is calculated as the difference between the ground and first excited state energies:

Jj = E
(2)
j,j+1,e − E

(2)
j,j+1,g. (3.12)

For conciseness, we will henceforth denote the ground state energies of the appropriate
systems as ε(··· )

... .

Hubbard parameters

Next, we construct a simplified Hubbard Hamiltonian for an N -dot chain based on the
work [73]:

Hµ = −
∑
σ=↑,↓

[
N∑
i=1

µini,σ +
N−1∑
j=1

tj,j+1

(
c†j,σcj+1,σ + h.c.

)]

+
N∑
i=1

uini,↑ni,↓ +
∑

σ1,σ2∈{↑,↓}

N−1∑
j=1

u′j ni,σ1nj,σ2 (3.13)

Here, µi is the chemical potential of the ith electron, tj,j+1 is the tunnel coupling (or hop-
ping) for the jth pair of dots, ui and u′i,j are the onsite and interdot Coulomb repulsion

energies, respectively. In general, the number operator ni,σ = c†i,σci,σ counts the electrons
occupying the highest orbital, but we restrict it to the case when no more than 2 electrons
can be in the dot, in agreement with all node operations in our architecture [65]. Ad-
ditionally, in the Hamiltonian 3.13, we ignore second-order contributions from exchange,
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pair hopping and occupation-modulated hopping. Furthermore, we treat all tj,j+1 terms as
real variables, ignoring their possible complex phases. On the contrary, we keep all terms
for the interdot Coulomb repulsion u′i,j (i.e not only for the adjacent dots), since this is a
long-range interaction. Indeed, the results in the paper [73] suggest that for a 2-electron
system, u′1,2 is typically an order of magnitude larger than t1,2. However, we can always
truncate such terms with |i− j| > 1 when high precision is not required.

The values of chemical potentials and Coulomb repulsion terms are greatly influenced by
the strengths of electron-electron interactions; hence, their evaluation requires many-body
energy spectra of quantum dot subsystems. The procedure, however, is straightforward and
naturally derives from the definitions of these parameters. It is summarized in table 3.2.
Whenever a tilde is drawn on top of the potential energy landscape Ũk1,k2,... or the ground-
state energy ε̃k1,k2,..., it means that the dots with indices k1, k2, . . . are masked. If the tilde
is not drawn, k1, k2, . . . dots are the only ones that are unmasked. εΣ is the ground state
energy of the unmasked potential U(x, z).

To calculate the tunnel coupling tj,j+1, we employ a simple 2-level system model, analo-
gous to the one used in references [67, 76, 77]. Electron tunneling is a single-electron effect
and can thus be described by single-electron energies only. Therefore, all superscripts “(1)”
will be dropped henceforth. First, we calculate single-electron energies of each isolated dot
within the jth pair:

Uj(x, z)→ εj, Uj+1(x, z)→ εj+1,

and define their average energy value and detuning:

ε̄ =
εj + εj+1

2
, ∆ε = |εj − εj+1|. (3.14)

Then, a two-level model Hamiltonian for the jth dot pair in the presence of tunnel coupling
will read as:

Htl =

(
ε̄+ ∆ε

2
−tj,j+1

−tj,j+1 ε̄− ∆ε
2

)
(3.15)

It is easy to verify that the eigenenergies of this Hamiltonian are:

Ee,g = ε̄±
√

∆ε2 + 4t2

2
, Ee − Eg =

√
∆ε2 + 4t2. (3.16)

However, the same single-electron spectrum (up to an additive constant ε̄) can be found
directly by masking all dots except jth and j+1st ones in the original potential landscape
U(x, z):

Uj,j+1(x, z)→ {Ej,j+1,1, Ej,j+1,2, . . .} (3.17)
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By combining the results (3.14), (3.16) and (3.17), we obtain the final formula for the
tunnel coupling:

tj,j+1 =
1

2

√(
E

(1)
j,j+1,2 − E

(1)
j,j+1,1

)2

−
(
ε

(1)
j − ε

(1)
j+1

)2

(3.18)

Definition Procedure

µi

Energy needed to
remove an electron
from the ith dot

1. All N electrons in place, solve N -electron problem:

U(x, z)→ ε
(N)
Σ

2. Mask only the ith dot, solve N −1-electron problem:

Ũi(x, z)→ ε
(N−1)
i

3. −µi = ε
(N)
Σ − ε(N−1)

i

ui

Energy contri-
bution due to
Coulomb repulsion
between two elec-
trons in the ith dot

1. Isolate the ith dot: Ui(x, z)
2. Find energy of a single electron with either spin (no

interaction): ε
(1)
i

3. Find two-electron energy (with interaction): ε
(2)
i

4. ui = ε
(2)
i − 2ε

(1)
i

u′ij

Energy contri-
bution due to
Coulomb repulsion
between one elec-
tron in the ith dot,
and one electron in
the jth dot

1. Find energies of noninteracting electrons in two iso-
lated dots:

Ui(x, z)→ ε
(1)
i , Uj(x, z)→ ε

(1)
j ,

2. Mask all dots except ith, jth, find 2-electron energy:

Ui,j(x, z)→ ε
(2)
i,j

3. u′i,j = ε
(2)
i,j −

(
ε

(1)
i + ε

(1)
j

)
Table 3.2: Algorithm for the extraction of electron chemical potentials and Coulomb re-
pulsion terms from the potential energy landscape U(x, y).
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Once the values of all variables µ, t, u, u′ are known, the Hubbard model Hamilto-
nian 3.13 can be diagonalized. The obtained spectrum contains the information about
energetic favorability of the system spin-charge states. This data is used to restrict the
plunger and tunnel gate voltage pulses to the regime of charge configuration stability.
The corresponding cost function minimization formalism is presented in section 4.2 of the
following chapter.

3.4.4 Spin dynamics simulation

Spin Hamiltonian

Since the qubit operations in our architecture [65] include not only unitary gates but also
measurements and qubit loads, we design a spin evolution simulation algorithm capable
of dealing with variable numbers of qubits. Let us consider a chain of N quantum dots,
with no more than 1 electron in each of them. Then, in the lab frame, the system spin
Hamiltonian reads as follows:

Hl =
N∑
j=1

δ̂j
gj(t)

2
µbB0Zj︸ ︷︷ ︸

Zeeman

+
N−1∑
j=1

δ̂j δ̂j+1
Jj(t)

4
~σj · ~σj+1︸ ︷︷ ︸

exchange

+
N∑
j=1

δj µbBrf(t) [cos(ωrft+ φ(t))Xj + sin(ωrft+ φ(t))Yj]︸ ︷︷ ︸
radio frequency field

, (3.19)

where the following parameters are introduced:

• δ̂j = 1 if there is an electron in the jth dot, and δ̂j = 0 if the dot is empty. Since
removing an electron is equivalent to measuring it without knowing the outcome, we
will drop these factors throughout the text. Instead, we will establish an appropriate
measurement procedure at the end of this subsection to describe the systems where
some of the dots are unpopulated;

• B0 and Brf(t) are the static Zeeman field and the envelope of ESR radio frequency
(RF) field, respectively;

• ωrf = 2πfRF and φ(t) are the RF field frequency and phase, respectively;

• Jj(t) is the voltage-controlled parameter of exchange between jth and j+1st dots;
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• ~σj = {Xj, Yj, Zj} is the Pauli vector of the jth spin;

• gj(t) ≡ 2 + δgj(t) is the voltage-controlled in-plane g-factor of jth electron. Since the
out-of-plane g-factor is coupled to a much weaker ESR field, its deviations do not
lead to physically significant effects and are thus ignored.

Each term in equation (3.19) is a Kronecker product of N matrices 2 × 2. To simplify
notation, we drop the identity operators in Kronecker products, e.g.:

Zk ≡

(
k−1⊗
i=1

1i

)
⊗ Zk ⊗

(
N⊗

i=k+1

1i

)
, where 1 =

(
1 0
0 1

)
(3.20)

We adhere to this convention throughout this section.

For the simulation, the Hamiltonian (3.19) and density matrix ρ are transformed into
rotation frame (cf. sec. 1.2) in the following way:

ρr ≡ ρ = RρlR
†, Hr = RHlR

† + i~ṘR†, (3.21)

R =
N⊗
j=1

exp

{
i

2
ωrftZj

}
=

N⊗
j=1

(
cos

ωrft

2
+ i sin

ωrft

2
Zj

)
=

(
e
i
2
ωrft 0

0 e−
i
2
ωrft

)⊗N
(3.22)

By substituting (3.22) into (3.21) and neglecting fast-oscillating terms, we obtain the spin
Hamiltonian (normalized by ~) in the rotating wave approximation:

H = Hr/~ =
N∑
j=1

{
1

2

[(
1 +

δgj(t)

2

)
ω − ωrf

]
Zj +

Ω(t)

2
(cosφ(t) Xj + sinφ(t) Yj)

}
+

+
N−1∑
j=1

Jj(t)

4~
~σj · ~σj+1, (3.23)

Here, ω = 2µbB0

~ is the Larmor frequency, Ω(t) = 2µbBrf(t)
~ is the Rabi frequency.

Even though we essentially describe a single node with N dots, it is equally possible to
construct such Hamiltonian for any network of interconnected nodes so long as all δgi and
Jj parameters are calculated prior.
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Quantum master equation

To simulate the time evolution of the spin system, we use a master equation in Lindblad
form [78] in the rotation frame:

dρ

dt
= i [ρ,H ] +

3∑
α=1

N∑
j=1

2Lα,j ρL
†
α,j −

{
L†α,jLα,j, ρ

}
, (3.24)

Here, the Lindblad operators are defined in the following way:

L1,j =

√
pj

2T1

σ+,j L2,j =

√
1− pj

2T1

σ−,j L3,j =
Zj

2
√
T2

, (3.25)

The first two operators describe the spin relaxation to the states |↑〉 and |↓〉, respectively,
with the characteristic relaxation time T1 and pj being the statistical probability of finding
jth electron in the state |↑〉. The third Lindblad operator represents dephasing with the
characteristic time T2. Since Zeeman splitting determines the largest energy scale in the
system, we assume Boltzmann distribution for pj:

E|↑〉 − E|↓〉 ≈ ~ω; pj = p ≈ 1

exp
(

~ω
kbTe

)
+ 1

for all j, (3.26)

where Te is the electron temperature, kb = 1.380 649 · 10−23 J
K

is the Boltzmann constant.

By combining formulas (3.23),(3.24) and (3.25), we can already write the expression for
the master equation. However, we rewrite some terms in (3.24) first using the identities:

σ+,jσ−,j = 2 · 1 + 2Zj, [σ+,j, σ−,j] = 4Zj,

to achieve an additional computational speedup. With this, we obtain the final expression
for the master equation and the corresponding initial value problem (IVP), numerically
solved by the Evolution module of QuDiPy:

dρ

dt
= F (ρ, t) = i

[
ρ,

ω

4

N∑
k=1

δgk(t)Zk +Brf(t)

(
cosφ(t)

µb

~

N∑
k=1

Xk + sinφ(t)
µb

~

N∑
k=1

Yk

)]

+

[
ρ,

N−1∑
k=1

i

4~
~σk · ~σk+1Jk(t)

]
+

[
ρ,
i

2
(ω − ωrf)

N∑
k=1

Zk

]
+

1

2T2

N∑
k=1

ZkρZk

+
p

T1

N∑
k=1

σ+,k ρ σ−,k +
1− p
T1

N∑
k=1

σ−,k ρ σ+,k +
2p− 1

T1

N∑
k=1

Zk −
(

2

T1

+
1

2T2

)
Nρ;

ρ(t = 0) = ρ0. (3.27)

76



The computational speedup for the master equation simulation is achieved in the following
way. At the beginning, an auxiliary function constructs an array of time-independent Pauli
matrices (Xk, Yk, Zk, σ±,k) and the expressions colored in (3.27) for all k ∈ [1, n], where
n ∈ [1, N0]. The reason why the matrices for different values of n are calculated is that N
is not fixed, i.e. the electrons could be measured or loaded. The function that constructs
the right-hand side of (3.27) at each point of time retrieves the values of pre-calculated
matrices and multiplies them by time-dependent parameters Brf(t), δgk(t),Jk(t), etc. This
significantly speeds up the computation since Kronecker products are not recalculated at
each iteration. Our simulator numerically integrates the IVP (3.27) using the 4th order
Runge-Kutta method. If desired, a better precision can be achieved with higher-order
methods, with the optimization describe above being applicable to all of them.

Qubit measurements and loads

The implementation of the measurement of the kth qubit depends on whether its measure-
ment outcome |Mk〉 is known or not. In these two cases, the system density matrix is
redefined in the following way:

Outcome known: ρ→ Trk

(
〈Mk| ρ |Mk〉

Tr 〈Mk| ρ |Mk〉

)
.

Outcome not known: ρ→ Trk ρ,

(3.28)

Here, Tr denotes trace, and Trk denotes a partial trace with respect to the kth qubit. The
Hamiltonian and Lindblad operators are changed according to the substitution:

H → 1

2
Trk (H ) , Lα,j 6=k →

1

2
Trk (Lα,j 6=k) , (3.29)

with N being replaced by N − 1. The factor 1
2

appears because X, Y, Z are traceless,
and Tr (1) = 2. Note that the Hamiltonian transforms as a whole, whereas the Lindblad
operators need to be redefined individually. Therefore, in practice it is easier to recalculate
each Lα,j individually with formula (3.25) for j = 1, N − 1.

It is simpler to describe loads of new qubits into the system when we populate the
neighboring dots one by one left to right or vice versa. For example, when we load an
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electron in a state ρN+1 from the right, the matrices for N qubits are changed as follows:

ρ→ ρ⊗ ρN+1, H →H ⊗ 1 +
1

2

[(
1 +

δgN+1(t)

2

)
ω − ω̃

]
ZN+1 +

JN(t)

4~
~σN · ~σN+1

+
Ω(t)

2

(
cosφ(t) XN+1 + sinφ(t) YN+1

)
(3.30)

and N is replaced by N+1 afterwards. The Lindblad operators Lα,N+1 defined by (3.25) are
added to the set, and the existing ones with j ≤ N are changed simply as Lα,j → Lα,j ⊗1.
If qubits are loaded in the reverse order, or the order of loads is mixed, formula (3.30)
can still be used provided that transforms (3.28) and (3.29) are modified. If we record the
physical locations of electrons in the chain {lk} with respect to their kth 2×2 contributions
to the total density matrix, the only necessary correction is using Trlk instead of Trk.

Additional capabilities

If specified, the simulator can additionally return the values of matrix purity Tr (ρ2) and
fidelity with respect to the specified reference matrix ρ′ (initial, expected after the pulse,
etc.):

F (ρ, ρ′) =

(
Tr

√
ρ

1
2ρ′ρ

1
2

)2

(3.31)

The other feature is to output the one-qubit density submatrices and their Bloch vectors
during the pulse (by tracing out the contributions of irrelevant electrons, according to
formula (3.28)).
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3.5 Summary of chapter 3

In summary, a software package was developed for modeling semiconductor quantum dots
and, particularly, simulating node operations in a Si quantum computer architecture [65].
The main results presented in this chapter are as follows:

1. A modified Linear combination of harmonic orbital, configuration interaction (LCHO-
CI) algorithm for solving many-electron problems in 2D quantum dot networks, re-
ported in our article [1], is presented. An additional 2-3 order of magnitude im-
provement to the efficiency of the algorithm published earlier is suggested, offering
the prospect of high-precision simulations of elongated dot networks with modest
computational capabilities.

2. A method of processing electric potential and field landscapes to extract effective
parameters, produced by realistic nanodevice geometries, is proposed. The method
relies on the system orbital energy spectra and is capable of automatically separating
contributions of individual electron subsystems without losing cross-coupling infor-
mation. It is utilized to construct effective spin and Hubbard Hamiltonians of the
electron system.

3. The quantum master equation formalism is adapted to efficiently simulate the dissi-
pative evolution of spin qubits, their measurements and loads within the computer
architecture [65].

4. The proposed algorithms are incorporated into an open-source, versatile and efficient
quantum dot simulation package QuDiPy, which is currently under development.
The voltage and ESR pulse engineering for the controlled operation of computational
nodes from the architecture [65] are among the capabilities of QuDiPy.
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Chapter 4

A novel constrained method for
efficient deterministic control pulse
engineering in a silicon spin-qubit
architecture

4.1 Introduction

The field optimal pulse design for the best possible control of quantum systems has gained
significant progress over the past decades [79]. However, the realization of high-fidelity
quantum gates in our spin qubit architecture is associated with an inherent challenge.
Indeed, the effective parameters of the Hamiltonian (3.23) that determine the evolution
of the electron spin state (deviation g-factors, exchange couplings) nontrivially depend on
the physically controlled parameters (plunger and tunnel gate voltages). This makes the
control problem highly nonlinear so that advanced pulse engineering techniques should be
used.

The approaches for quantum gate preparation [80] mostly rely on pulse temporal dis-
cretization (GRAPE, Krotov method) or on optimizing its spectrum in a chosen basis
(GOAT, CRAB). Each of these methods has the advantage of being general and yielding
the pulse profile at all points in time. However, it comes at a high cost of multivariate
optimization with multiple acts of matrix exponentiation, numerical integration of systems
of differential equations, or direct search, depending on the method. One possibility to
reduce the computational cost is to devise an approach that is less general by optimizing
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over a narrow space of functions. The goal of this chapter is to develop a novel method
of pulse engineering, applicable to our choice of silicon spin qubit architecture [65], that
relies on an optimal set of constraints. They ensure that the voltage pulse sequences can
be engineered efficiently and unambiguously within the physical limitations of the system
operation.

Section 4.2 formally defines a control problem for engineering optimal pulses of the
desired kind. The definition incorporates physical mechanisms that lead to non-optimality
and thus should be minimized. In section 4.3, we engineer high-fidelity single and two-qubit
gates with the spin evolution being controlled by time-dependent effective parameters: ex-
change couplings, deviation g-factors, and the global ESR field. We develop approaches
to minimize the duration of control pulses that realize quantum circuits of certain types
in section 4.4. The approaches include choosing between equivalent qubit rotations, run-
ning gates in parallel and/or simultaneously on the same sets of qubits. In both sec. 4.3
and 4.4, we design time dependencies for the effective parameters only, presuming that
individual one or two-qubits gates can be in principle realized physically with high fidelity.
We reserve the discussion of how to map the time-dependent effective parameters to the
experimentally controlled gate voltages for the section 4.5, where a general voltage and
ESR pulse engineering algorithm is presented. In particular, the realization of direct map-
ping between physical and effective parameters of spin evolution puts our work beyond the
control schemes capable of only designing effective pulses, such as the one from [81] pro-
posed for a similar computer architecture. Section 4.6 presents illustrative simulations of
voltage pulses using the developed approaches. Section 4.7 gives a summary of the results.

All the following sections of this chapter consist of original author’s contributions unless
noted otherwise.
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4.2 Pulse engineering method

4.2.1 Control problem definition

We formulate an optimal control problem for the voltage and ESR pulse sequences as a
minimization problem for a scalar non-negative cost function:

f ∈ [0,∞) : f
(
~V (t), ~W (t), Brf(t), φ(t)

)
→ min, (4.1)

where ~V , ~W is a shorthand notation for n plunger gate voltages and n − 1 tunnel gate
voltages, respectively, and T is the duration of the pulse. In practice, f is a weighted sum
of simpler cost functions, where each of them describes a different mechanism that leads
to non-optimality:

f =
∑
i

wifi,
∑
i

pi = 1, (4.2)

where the weighting factors wi are to be chosen empirically. We will discuss the individual
contributions that apply to our architecture in the next subsections.

The control parameters can be additionally subject to a set of constraints:

~Cl ≤ ~Φ
(
t, ~V (t), ~W (t), Brf(t), φ(t)

)
≤ ~Cr. (4.3)

The vectors of bounds ~Cl, ~Cr follow a general notation, where the case Cl,i ≡ Cr,i corre-
sponds to an equality constraint, and a one-sided inequality is realized at Cl/r,i ≡ ∓∞. The
constraints can naturally arise from the physics of the processes in a quantum system, or
be user-defined. Importantly, if the set of constraints (4.3) is complete enough to uniquely

define each of the functions ~V (t), ~W (t), Brf(t), φ(t), then the problem (4.1) is reduced
to the minimization over a discrete set of variables instead of a space of time-dependent
functions:

f ∈ [0,∞) : f
(
~Cl, ~Cr

)
→ min
{ ~Cl, ~Cr}

. (4.4)

Therefore, a clever choice of constraints may significantly simplify and speed up the opti-
mization problem.

4.2.2 Activation function

Before defining an explicit expression for the cost function, it is important to establish
rules about which control parameter configurations are to be considered non-optimal, and
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how to quantify non-optimality. This is convenient to achieve with the aid of an activation
function Ξ, whose purpose is to discard or select (and transform if needed) the value
of another function based on the values of its arguments. When applied on a relevant
physical quantity K that may or may not correspond to a non-optimal regime, it will
decide whether or not to add the contribution to the total cost (4.1). Parenthetically, the
concept of activation functions is one of the mainstays of artificial neural networks [82],
where they are used to conditionally propagate information through neurons based on the
values stored in other neurons.

Suppose there is a system parameter x ∈ [0, 1] which should be kept close to zero at all
times. To ensure that, we add a term of the following kind to the cost function:

Ξp(x, α) =

(
x− 1 + α

α

)p
Θ(x− 1 + α) =

{(
x−1+α

α

)p
, x > 1− α;

0, x ≤ 1− α,
(4.5)

where Θ(x) is the Heaviside step function. This expression penalizes values of x that
approach 1 (fig. 4.1). Such a choice of the activation function has a number of advantages:

• The values of Ξp(x, α) span the range [0, 1] at x ∈
[0, 1] with Ξp(1, α) ≡ 1. This is convenient when we
want to ensure that f ∈ [0, 1] for the physically rele-
vant values of control parameters. Nevertheless, the
function is well defined for x > 1 as well, so there will
be no discontinuity should the gradient optimization
go past the value x = 1.

• Ξp(1−α, α) = 0, which gives the meaning of a cutoff
parameter to α: activation is nonzero only if x lies
within less than α% of its maximal value.

• Ξp(x, α) is a nonincreasing function of x, and the pa-
rameter p allows for tweaking its speed of growth with
x. For simplicity we will always use the values p > 1:
this ensures the function is differentiable at x = 0, as
opposed to the case of p ≤ 1 (this is important not
to accumulate unexpected numerical error during a
gradient-based optimization procedure)

p=1p=2

1

1− α

Ξ

10 x

Figure 4.1: Activation
function Ξp(x, α).

83



The derivative of such activation function reads as:

∂Ξp(x, α)

∂x
≡ Ξ′p(x, α) =

p(x− 1 + α)p−1

αp
Θ(x− 1 + α) =

{
p(x−1+α)p−1

αp
, x > 1− α;

0, x ≤ 1− α,
(4.6)

In the field of deep learning, Ξp(x, α) without the horizontal shift is known as a rectified
linear unit (ReLU [82]) raised to a power p.

4.2.3 Expression for the cost function

The most important optimality criterion for pulse engineering is high fidelity with respect
to the desired quantum transition. We consider only unitary evolution (i.e. case of no
dissipation) thoughout this chapter. Then, if the evolution operator of the system under
its effective Hamiltonian (3.23) is U(t), and the matrix of the quantum gate we want to
implement is U0, then the corresponding expression for fidelity at time T (i.e. at the end
of the pulse) reads as follows:

F [U(T ), U0] =
1

dimU

∣∣trU †(T )U0

∣∣ , F ∈ [0, 1] (4.7)

Optimization methods discussed previously (GRAPE, Krotov, etc.) commonly use the
infidelity f0 = 1−F as the first component of the cost function expression (4.2). However,
this inevitably complicates the problem in our case, since U(t) nontrivially depends on the
system Hamiltonian, which in turn contains the effective parameters (g-factors, exchange
couplings) not directly controlled experimentally. This difficulty can be avoided if the
condition of exact correspondence between U(T ) and U0 (possibly, up to a desired error
ε > 0) is imposed:

1−F [U(T ), U0] < ε.

This condition implicitly specifies a set of constraints of the type (4.3); their explicit forms
for different quantum gates will be derived in the next sections.

Therefore, the cost function in our case will contain only the terms related to the
physical limitations of either the quantum system itself, or the experimental facilities:

f = wcsfcs + wbffbf + wvwfvw, wcs + wbf + wvw = 1. (4.8)

The first term in the expression above ensures that the configuration of charges in the
quantum dots does not change during the pulse; the second and third terms impose limits
on the RF radiation losses and sweep rates of voltages, respectively. The expressions for
each of the terms fcs, fbf, fvw are derived below. Photon-assisted tunneling between the
electron orbital states is yet another physical phenomenon that needs to be suppressed;
however, we do not include the corresponding cost function term in expression (4.8).
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4.2.4 Stability of charge configuration

Although our goal is to to control the evolution of the electron spin states, it is important to
remember that voltage sweeps always directly affect their orbital states. Excessive voltage
changes can attract new electrons to quantum dots, remove the existing ones, or force them
to tunnel from one dot to the other. Therefore, the stability of charge configuration is of
utmost importance to ensure the reliability of quantum gate operation. Unfortunately,
the charge stability regions are not known a priori and thus cannot be specified by the
user before the simulation. Therefore, we propose a novel approach relying solely on the
Hubbard model parameters that do not explicitly depend on voltage values.

Suppose the Hubbard Hamiltonian (3.13) is diagonalized on a set of M distinct Fock
states:

{|~νi, ~ςi〉} , i = 1 . . .M. (4.9)

Here, ~νi and ~ςi are integer-valued row vectors that denote the charge and spin configurations
of N quantum dots, respectively. For example, ~νi = (0, 2, 1, 1) means that there is no
electron in the 1st dot, two electrons in the 2nd one, and one electron each in the 3rd and
4th ones. We assign distinct integer values starting from 0 for each individual spin state:
|0〉 (vacuum state, i.e. no electron in the dot), |↑〉, |↓〉 , |↑↑〉 , |↑↓〉 , . . ., and use them as the
components for each ~ς. Using this notation, ~ςi = (0, 3, 2, 2) means that there is no electron
in the 1st dot, the pair of electrons in the 2nd dot has the spin state |↑↑〉, whereas the rest
of the dots have one electron each with the spin |↓〉. Such a choice of notation permits the
following values for each of ~ςi components:

2(~νi)k − 1 ≤ (~ςi)k < 2(~νi)k+1 − 1, k = 1 . . . N. (4.10)

This choice of notation also implies that the set of vectors {~ςi} spans the entire Fock
basis (4.9), and that each ~νi can be calculated from ~ςi:

{|~νi, ~ςi〉} ↔ {|~ςi〉} , (4.11)

~νi = blog2 (~ςi + 1)c , (4.12)

where the floor and logarithm functions are taken element-wise. However, the |~ν, ~ς〉 nota-
tion will be used further for better clarity.

In this basis, the Hubbard Hamiltonian eigenfunction that corresponds to the energy
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value Ek will have the form:

∣∣∣ψk(~V , ~W )
〉

=
M∑
i=1

Cki(~V , ~W ) |~νi, ~ςi〉 :

HHub

∣∣∣ψk(~V , ~W )
〉

= Ek(~V , ~W )
∣∣∣ψk(~V , ~W )

〉
, k = 0, . . . , K − 1. (4.13)

where C(~V , ~W ) is the basis transform matrix {|~ν, ~ς〉} → {|ψ〉} at the gate voltage values(
~V , ~W

)
, and K is the number of eigenfunctions we consider. If we define the vector

operator ~̂ν that counts the number of electrons in each dot, we can calculate the vector of
charges (in the units of e) observable in state |ψk〉:

~qk = 〈ψk| ~̂ν |ψk〉 =
∑
i,m

C∗mkCki 〈~νm, ~ςm| ~̂ν |~νi, ~ςi〉 =
M−1∑
i=0

~νi|Cik|2 (4.14)

where the asterisk means complex conjugation. The vector of charges rounded to the
nearest integers element-wise defines a charge stability configuration:

~Qk = b~qke (4.15)

The total integer charge in the state |ψk〉 equals the 1-norm of the corresponding charge
stability vector:

Qk =
∥∥∥ ~Qk

∥∥∥
1

=
N∑
i=1

∣∣∣( ~Qk

)
i

∣∣∣ ≡ N∑
i=1

(
~Qk

)
i
. (4.16)

Physically, for each
(
~V , ~W

)
, the charge configuration corresponding to the ground state

(k = 0) is observed. This determines distinct regions of the charge stability diagram.

When we move away from the center of a charge stability region, the energy spacing
between the ground and excited states becomes smaller until we reach the border of the
region, where E0 = E1. Therefore, the ratios between the ground and excited state energies:

Kcs(k, ~V , ~W ) = E0(~V , ~W )/Ek(~V , ~W ), k ∈ {1, 2, . . .M − 1} , (4.17)

are the physical measures of how well the quantum system is protected from charge tran-

sitions at voltage values
(
~V , ~W

)
. Remarkably, the quantities Kcs are universal and ap-

plicable to any voltage configurations, numbers of electrons in the system, and Fock basis
sizes.
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Before we define the corresponding cost function, though, we should take into account
several important considerations. First of all, the desired charge configuration ~Q(0) is
typically known a priori and corresponds to the system ground state within one specific
charge stability region. Therefore, to ensure that the minimum of the cost function is always
centered at the desired charge stability region, the spectrum should be first rearranged
according to ~Q(0). Let the index k0 correspond to the state |ψk〉 whose charge stability
vector (4.15) matches the desired one. Then, formula (4.17) transforms into:

Kcs(k, k0, ~V , ~W ) =
Ek0(~V , ~W )

Ek(~V , ~W )
,

k0 : ~Qk0 ≡ ~Q(0), k 6= k0, k, k0 ∈ {0, 1, . . .M − 1} .
(4.18)

Secondly, different charge transitions occur with different probabilities. In particular, tun-
neling between the dots, which does not change the total charge of the system, is much
more likely than the attraction of new electrons or removal of the existing ones. To take
this into account, we split the values of k according to the corresponding ~Qk and their
relations to ~Q(0): tunneling is likely only if the vectors ~Qk and ~Qk0 are different by only
two adjacent elements, and the total charges are the same:

k =

{
k′, if

[
~Qk − ~Qk0

]
∈ ±C (−1, 1, 0, 0, . . . 0)

k′′, otherwise.
(4.19)

where C denotes a set of cyclic permutations. Since the tunneling from ~Qk0 to k′′-states is
forbidden, and the system of quantum dots is well isolated from the charge sources, we can
allow the voltages to step into such neighboring regions during the pulse: this will not lead
to electron removal or accumulation. We achieve this by effectively increasing the energies
of such states by β × 100% while leaving the energies of k′-states unchanged:

E ′k = Ek′ , E ′′k = Ek′′(1 + β). (4.20)

Since the condition Ek0 < E ′′k is now satisfied at a wider range of voltage values, the

transformation (4.20) effectively pushes the ~Qk0 borders with ~Qk′′ inside the ~Qk′′ regions

but does not significantly alter the borders with ~Qk′ ones, see Fig. 4.2. This redefines the
values of (4.18) in the following way:

Kcs(k
′, k0, ~V , ~W ) =

Ek0(~V , ~W )

E ′k(
~V , ~W )

, Kcs(k
′′, k0, β, ~V , ~W ) =

Ek0(~V , ~W )

E ′′k (β, ~V , ~W )
. (4.21)
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and enables us to finally write the expression for the corresponding cost function:

fcs =
1

(M − 1)T

∫ T

0

[∑
k′

Ξp

(
Kcs

(
k′, k0, ~V (t), ~W (t)

)
, α′
)

+

∑
k′′

Ξp

(
Kcs

(
k′′, k0, β, ~V (t), ~W (t)

)
, α′′
)]

. (4.22)

The prefactor 1
(M−1)T

ensures that the cost function always lies within [0, 1] within the

extended charge stability region ~Qk0 . The integration is necessary for the cost function to
incorporate the non-optimality during the whole duration of the pulse. We introduce two
distinct cutoff parameters α′, α′′ to emphasize the difference between the tunneling and
non-tunneling charge transition probabilities in the system.

Although α′′, β can be chosen only empirically, it is important to establish a link between
α′(k′) with the tunnel coupling tk′,k0 between the dots where ~Qk0 → ~Qk transition is allowed
to occur. Clearly, bigger cutoffs are required for bigger couplings in order to preclude
tunneling. To achieve this, we use the relation between the quantum-mechanical excess
charge (in units of e) on the two neighboring dots, their detuning ε = E2−E1, and tunnel
coupling t [76, 77]:{

〈n1〉 −N1

〈n2〉 −N2

}
=

1

2

[
1∓ ε√

ε2 + 4t2
tanh

(√
ε2 + 4t2

2kbTe

)]
, (4.23)

where Te is the system temperature. The formula is applicable along the line perpendicular
to a boundary between the charge stability regions where tunneling is happening. The
figure 4.3 shows the experimental charge sensor data fitted with this function. As expected,
wider functions correspond to higher values of tunnel coupling.

To quantify the characteristic width of the curve (4.23), we find the zero of the function:

F (t, ε) =
ε√

ε2 + 4t2
tanh

(√
ε2 + 4t2

2kbTe

)
− 1

2

around ε(0) = 0 with one iteration of Newton’s method:

ε1/2 = ε(0) − F (t, ε(0))

∂εF (t, ε(0))
=
t

2
coth

t

kbTe
≈ kbTe

2
+

t

6kbTe
. (4.24)
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Figure 4.2: Extending the charge stability
boundaries to the regions with different to-
tal charges, where tunneling is forbidden:
case of ~Q(0) = (1, 0)

Figure 4.3: Number of electrons in the
left dot of a 2-dot system at different val-
ues of detuning ε and tunnel coupling t.
Reproduced from [77]

If we require that the spacing between E ′k and Ek0 be at least λ times larger than ε1/2 in
the optimality region, we obtain the value of the cutoff parameter:

α′(k0, k
′) = λ

ε1/2
E ′k

= λ
tk0,k′ coth (tk0,k′/kbTe)

2E ′k(
~V , ~W )

, (4.25)

This result, combined with formula (4.22), gives the final expression for the cost function
associated with the charge stability preservation:

fcs(λ, α
′′, β) =

1

(M − 1)T

∫ T

0

dt

[∑
k′′

Ξp

(
Kcs

(
k′′, k0, β, ~V (t), ~W (t)

)
, α′′
)

+

∑
k′

Ξp

(
Kcs

(
k′, k0, ~V (t), ~W (t)

)
, λ
tk0,k′ coth (tk0,k′/kbTe)

2E ′k(
~V (t), ~W (t))

)]
, (4.26)

with the parameters λ, α′′, β being user-defined.
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4.2.5 Restriction on absorbed RF electromagnetic energy

The dissipation of the electromagnetic energy from the ESR resonator is yet another mech-
anism that may lead to non-optimality. We assume that only the magnetic field component
is significant in the region where the quantum dots are located. Indeed, the suppression of
RF electric field component is essential to avoid photon-assisted tunneling processes. This
is achieved in our group with a sophisticated resonator design.

We write the total energy of the ESR magnetic field in the sample, averaged over a
single oscillation:

Wtotal =
1

2µ0

〈
B2

rf(t) cos2 ωrft
〉
Trf

V ≈ B2
rf(t)

4µ0

V , (4.27)

where Trf = 2π/ωrf is the period of the RF field oscillation, and V is the volume of the
sample affected by this field. Following the definition of the Q-factor:

Q = ωrf
Wtotal

Ploss
,

we find the amount of power lost (i.e. absorbed) at each point of time during the pulse:

Ploss(t) =
ωrfV

4µ0Q
B2

rf(t). (4.28)

The maximal allowed value of this quantity Pmax depends on the resonator design and the
experimental setting (especially, refrigeration), and thus should be user-defined before the
simulation. Alternatively, the maximal values of either the ESR field Brf,max or the Rabi
frequency Ωmax can be specified. Then, the corresponding dimensionless physical quantity
and the cost function read as follows:

KRF(t) =
ωrfV

4µ0QPmax
B2

rf(t) =

(
Brf(t)

Brf,max

)2

=

(
Ω(t)

Ωmax

)2

, (4.29)

fRF =
1

T

∫ T

0

Ξp (Krf(t), α) dt. (4.30)
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4.2.6 Restriction on voltage sweep rates

The upper bound for a time derivative of the voltage on a gate (either plunger or tunnel)
|∂tVmax| is necessary to model a realistic voltage pulse generator, whose bandwidth is
always limited. This parameter depends on the device and thus should be user-defined as
well. This corresponds to the following dimensionless quantities for plunger and tunnel
gates, and the cost function:

KVi(t) =

(
∂tVi(t)

∂tVmax

)2

, KWi
(t) =

(
∂tWi(t)

∂tVmax

)2

, (4.31)

fvw =
1

(2N − 1)T

∫ T

0

dt

(
N∑
i=1

Ξp (KVi(t), α) +
N−1∑
i=1

Ξp (KWi
(t), α)

)
. (4.32)

Here, the prefactor 1
(2N−1)T

ensure that f2 ∈ [0, 1] for the allowed values of voltage time
derivatives.
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4.3 Design of effective parameter pulses for primitive

quantum gates

4.3.1 Choice of the gates to design

As noted before, we model a system of N electrons with the effective spin Hamilto-
nian (3.23) in the rotating wave approximation. The Hamiltonian parameters control
the electron spin state evolution and can thus realize quantum gate operations. In our
architecture [65],

√
SWAP and single-qubit rotations are utilized as the primitive unitary

gates. The operator of rotation by an angle θ around a unit vector ~n on a Bloch sphere is
given by:

ROT(~n, θ) = exp

(
−iθ

2
~σ · ~n

)
, −π < θ ≤ π. (4.33)

whereas the matrix forms of SWAP and
√

SWAP are written as follows:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
√

SWAP =


1 0 0 0
0 1+i

2
1−i

2
0

0 1−i
2

1+i
2

0
0 0 0 1

 ,
(√

SWAP
)2

= SWAP.

(4.34)
In a more general case, we can consider SWAP gates, raised to any power k.

As will be shown below, all gates of type (SWAPi,i+1)k , k ∈ R, are mediated by the
pairwise exchange interactions between the neighboring ith and i + 1st dots. Therefore,
each of such gates, particularly

√
SWAP, can be realized locally. Driving certain single-

qubit rotations with the global ESR field, though, is a significant challenge inherent to
our architecture. More specifically, the problem arises when the rotations should happen
locally so that certain qubits remain unaffected during the ESR pulse. The effect of g-factor
deviation is too weak by itself to detune qubits far enough off resonance. On the other
hand, slight local control of individual electron g-factors does not truly detune qubits from
resonance but alters the way their states change over time. Therefore, in order to achieve
high fidelity of a multi-qubit state, the off-resonant qubits must evolve in a specific way
so that they return to the initial state after the pulse while the resonant qubits perform
desired rotations. Fortunately, this is possible to achieve if we impose proper constraints
of type (4.3) on the pulses. Further in this section, we derive these constraints for each of
the single and two-qubit gate we are interested in, both for the qubits that change and the
ones that maintain their quantum states upon gate operations.
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4.3.2 Idling qubits

First, it is important to determine what states qubits should have when no pulse is applied,
i.e. in the “idling” regime.

Since the exchange interaction between neighboring electrons is always present, it is
beneficial to keep this coupling at idle ∆J very small by ensuring high tunnel barriers
between the dots. We will estimate how small ∆J should be in subsection 4.3.6, where
we discuss the evolution of a pair of spins under the exchange part of the Hamiltonian
∼ J~σ1 · ~σ2.

Ignoring the exchange terms, the Hamiltonian for a chain of qubits can be written as
follows:

Hesr =
N∑
j=1

Hj =
1

2

N∑
j=1

{[(
1 +

1

2
δgj(~V , ~W )

)
ω − ωrf

]
Zj + Ω (cosφ Xj + sinφ Yj)

}
,

(4.35)

Obviously, not supplying any ESR field (Ω = 0) is the only way to ensure that no X or Y
rotations take place. When it comes to Z rotations, such parameters as ω ∼ B0 and ωrf

are global, i. e. couple to each of the qubits in the same way. This means that the idling
value of deviation g-factor, δg0, must be the same for all qubits. In a general case, we need
to search for the set of voltage values at idle ∆~V ,∆ ~W that:

• lie deeply in the required charge stability region,

• give an identical value of δgj = δg0 for all j = 1...N .

For a particular value δg0, such experimental parameters as the Zeeman field B0 ∼ ω and
the ESR frequency should be chosen to satisfy the following condition:

δg0,j(~V , ~W )

2
ω = ωrf − ω for all j. (4.36)

This condition ensures that all the coefficients in front of Zj are set to zero, which corre-
sponds to the absence of Z rotations.

For now, we assume that the value of δg0 is chosen a priori and is a constant of the spin

system. The explicit search problem over the set of voltages
{
~V , ~W

}
will be formulated
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in section 4.5. Using the new notation, each of the single-qubit parts of the Hamiltonian
can be written in a simplified form:

Hj =
1

2

[
δgj − δg0

2
ωZj + Ω (cosφ Xj + sinφ Yj)

]
. (4.37)

In the following subsections where we derive the effective pulses for single-qubit rotations,
we will denote each resonant qubit with the index “+”, and each off-resonant qubit with
the index “-”.

4.3.3 Z rotations

The manipulation of electron deviation g-factors gives a way to directly address individual
qubits during rotations around ẑ axis on the Bloch sphere. Indeed, not supplying any ESR
field (Ω = 0) ensures that the rotation axes of all qubits are set to ẑ, and the rotational
speed of each of them is controlled by δgj(t). The dependency of δgj on time t is implicit

through its dependence on time-varying gate voltages ~V (t), ~W (t).

For the non-resonant qubits, the obvious choice of deviation g-factor is δg−(t) ≡ δg0 at
all times. This ensures H− ≡ 0 and no state change, since all qubits can be considered
decoupled in this case. For each resonant qubit, the evolution operator is given by:

U+ = exp

(
−i
∫ T

0

H+(t)dt

)
= exp

(
− i

2
Z · ωT

∫ 1

0

δg+(τ)− δg0

2
dτ

)
, (4.38)

where T is the pulse length, and τ = t/T is the normalized time. By comparing for-
mula (4.38) with (4.33), we obtain the requirement for the pulse length T to rotate the
spin by the angle θ:

ROTZ(θj) : ωT

∫ 1

0

δg+,j(τ)− δg0

2
dτ = θj. (4.39)

The index j reflects the fact that the qubits are completely decoupled from each other;
therefore, Z rotations by any angles θj can occur in parallel. Therefore, the duration of
each such pulse is given by the following:

T (ẑ, α) =
4πα

ω
∣∣∣∫ 1

0
(δg+(τ)− δg0) dτ

∣∣∣ , where α =
|θ|
2π
. (4.40)

Importantly, there are no constraints on the shapes of δg+,j(τ) pulses, only the areas under
their curves (integral in expression (4.39)).
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4.3.4 X and Y rotations

Unlike in the previous case, the states of both resonant and non-resonant qubits neces-
sarily evolve during an X or Y rotation due to the global nature of ESR field. Thus, the
parameters for each of non-resonant qubits should be engineered so that their evolution
operators become unity at t = T . Luckily, there exists a universal approach that achieves
this irrespective of the initial states of the non-resonant qubits.

Resonant qubits

The rotation axis for resonant qubits should be fixed: x̂ for ROTX(θ), and ŷ for ROTY(θ).
Therefore, their g-factors should be set to the idling values at all times:

δg+(t) ≡ δg0, t ∈ [0, T ].

Let us denote ~n0 = (1, 0, 0)T for an X rotation, and ~n0 = (0, 1, 0)T for a Y rotation.
The value of ESR phase φ should be kept constant, since it defines the axis and direction
(clockwise/counterclockwise) of spin rotation. From the Hamiltonian (4.35), we determine
the required values of φ for each type of pulse:

Sign of θ + -

ROTX 0 π
ROTY π/2 −π/2

Table 4.1: Values of ESR phases φ to be supplied during spin rotations around x̂ and ŷ axes.

This allows us to write the Hamiltonian for a resonant qubit for the case of either X or Y
rotation as:

H+ =
Ω

2
sign (θ) ~σ · ~n0.

The corresponding evolution operator is:

U+ = exp

(
−i
∫ T

0

H+(t)dt

)
= exp

(
− i

2
~σ · ~n0 T sign (θ)

∫ 1

0

Ω(τ)dτ

)
, (4.41)

which gives us the condition for T :

ROTX(θ), ROTY(θ) : T

∫ 1

0

Ω(τ)dτ = |θ|. (4.42)
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This condition, along with the choice of constant phase from Table 4.1, indicates that all
resonant qubits will necessarily rotate synchronously by the same angle θ during X or Y
rotations, which is due to the global nature of ESR field.

Nonresonant qubits

In the general case, the Hamiltonian for each nonresonant qubit consists of two time-
dependent parts, even when φ is kept constant:

H−,j(t) =
1

2

δg−,j(t)− δg0

2
ωZj + Ω(t) ~σj ·

cosφ
sinφ

0

 . (4.43)

Because of this, [H−(t′),H−(t′′)] 6= 0 for t′ 6= t′′. Therefore, there is no simple way to
express the spin evolution in the general case, since it is a combination of rotations around
a time-varying axis. Nevertheless, we can make the rotation deterministic if we impose a
constraint that Ω(t) and all δg−(t) pulses have the same shape:

∀t : Ω(t) = A · ω |δg−(t)− δg0|
2

, A = const > 0. (4.44)

Here, we assume (for now) that each g-factor pulse maintains its sign throughout the pulse:

sj = sign [δg−,j(t)− δg0] = const.

This transforms the Hamiltonian expression into:

H−,j(t) =
1

2

|δg−(t)− δg0|
2

ω

sjZj + A ~σj ·

cosφ
sinφ

0

 =

1

2

|δg−(t)− δg0|
2

ω
√

1 + A2 ~σ · ~n′j, ~n′j =
1√

1 + A2

A cosφ
A sinφ
sj

 . (4.45)

Clearly, now the rotation axes ~n′j remains fixed, and we can write the evolution operator:

U−,j = exp

(
−i
∫ T

0

H−,j(t)dt

)
= exp

(
− i

2
~σj · ~n′jωT

√
1 + A2

∫ 1

0

|δg−(t)− δg0|
2

dτ

)
.

(4.46)
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Remarkably, if we require that each nonresonant spin makes an integer number of
complete turns during the pulse, it will always return to its initial state irrespective of
the rotation axis direction ~n′j or the sign sj! By comparing formulas (4.33) and (4.46), we
obtain the following condition:

ROTX(θ)
ROTY(θ)

: |θ−| = ωT
√

1 + A2

∫ 1

0

|δg−(t)− δg0|
2

dτ = 2πν, ν = 1, 2, 3, . . . (4.47)

As it is always preferable to reduce the pulse duration as much as possible, we will always
choose ν = 1, which corresponds to one complete turn. From formula (4.44) it also follows
that in this case, the ESR field Ω(τ) ∼ |δg−(τ)− δg0| will be smallest possible, which is
also desirable.

Combining results

Combining formulas (4.44), (4.47) and (4.42), we obtain the set of conditions that must
be satisfied simultaneously during the pulse:

ROTX(θ), ROTY(θ) :


ωTA

∫ 1

0

|δg−(t)− δg0|
2

dτ = |θ|,

ωT
√

1 + A2

∫ 1

0

|δg−(t)− δg0|
2

dτ = 2π,

(4.48)

Dividing the equations one by the other gives us the constraint on the value of A:

A√
1 + A2

=
|θ|
2π

=⇒ A =
1√(

2π
θ

)2 − 1
. (4.49)

This gives us the pulse duration that corresponds to an X or Y rotation:

T (x̂, α) = T (ŷ, α) =
4π

ω
∫ 1

0
|δg−(τ)− δg0| dτ

√
1− α2, (4.50)

and the expression for the RF magnetic field pulse:

Ω(t) =
ω

2
|δg−(t)− δg0| ·

α√
1− α2

, (4.51)

in terms of α = |θ|/2π.
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4.3.5 Arbitrary rotations

Using the same principles as for X and Y rotations, it is straightforward to engineer effective
pulses for arbitrary rotations ROT(~n0, θ).

As before, we impose a constraint that the deviation g-factor and magnetic field pulses
have the same shape:

ω

2
s± (δg±(t)− δg0) = A±

S(t)

T
, Ω = ß

S(t)

T
. (4.52)

Here, A+, A− and ß are some nonnegative constant factors, whereas S(t) ≥ 0 is a dimen-
sionless continuous shape function with the average value being equal to 1:

〈S(t)〉 =
1

T

∫ T

0

S(t)dt =

∫ 1

0

S(τ)dτ = 1. (4.53)

We additionally require S(t) ≡ 0 before and after the pulse: this ensures return of qubits
to their idling states. It is important to note that formulas (4.52) easily generalize to the
case of functions S(t) being of variable sign. For this, the only correction that needs to be
applied is ensuring that the magnitude of ESR field always remains positive. This means
that whenever S(t) acquires negative values, they should be reinterpreted as a phase shift
by π with Ω(t) ∼ |S(t)|. For simplicity, we will derive the results for S(t) ≥ 0 and then
generalize them.

From the chosen normalization of the shape function , we can immediately determine
the properties of its maximal value Smax:

1. From 〈S〉 = 1 and S(0) = S(T ) = 0, it immediately follows that Smax ≥ 1 when
S(t) ≥ 0.

2. Smax is of the order of unity for the typical simplistic pulse shapes. For example, a
square pulse has Smax = 1, any triangular pulse has Smax = 2, and a Gaussian pulse
with half-width σ has Smax ≈ 1

2π
√
σ

(the equality holds at T →∞).

The Hamiltonian for a singe qubit now reads:

H±,j =
1

2

S(t)

T

[
s±,jA±Zj + ß (cosφXj + sinφYj)

]
=

1

2

S(t)

T

√
A2
± + ß2 ~σj · ~n±,j, (4.54)

~n±,j =

(
ß√

A2
± + ß2

cosφ,
ß√

A2
± + ß2

sinφ,
A±sj√
A2
± + ß2

)T

. (4.55)
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Our goal is to ensure that the resonant spins rotate around the axis ~n0 sign(θ0) by the
angle |θ0|. From the parametrization of ~n0 in spherical coordinates:

~n0 = (n0x, n0y, n0z)
T = (sinχ0 cosψ0, sinχ0 sinψ0, cosχ0)T , (4.56)

we immediately obtain the following condition for phase and the resonant qubit parameters:

φ = ψ0 = atan2 (n0y, n0x) , (4.57)

A+s+,j√
A2

+ + ß2
= cosχ0 sign(θ0) = nz sign(θ0). (4.58)

Since A± ≥ 0, this formula immediately gives us the requirement on the sign of g-factor
pulse for all resonant qubits:

s+,j = sign (nz) sign(θ0) for all j. (4.59)

We determine the angles of rotation from the evolution operator:

U±,j = exp

(
−i
∫ T

0

H±,j(t)dt

)
= exp

− i2
∫ 1

0

S(τ)dτ︸ ︷︷ ︸
=1

√
A2
± + ß2 ~σj · ~n±,j,

 . (4.60)

Therefore, the angles of rotation for the resonant (θ0) and nonresonant (2π) qubits are
connected with the corresponding constants in the following way:√

A2
+ + ß2 = |θ0| ,

√
A2
− + ß2 = 2π. (4.61)

By combining formulas (4.58) and (4.61), we obtain the following expressions for the con-
stants A+, A−, ß:

A+ = |nz0θ0| , A− =
√

(2π)2 − θ2
0

(
n2
x0 + n2

y0

)
, ß = |θ0|

√
n2
x0 + n2

y0. (4.62)

As in the case of X and Y rotations, the expressions hold at any signs of g-factor pulses
on nonresonant qubits s−,j.

By substituting (4.62) into formula (4.52), recalling (4.57) and (4.59), and generalizing
to the case of S(t) having any sign, we obtain the expressions for effective pulses that
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realize ROT(~n, θ) gate (“0” indices are dropped for conciseness):

ROT(~n, θ) :


δg+(t)− δg0

δg−(t)− δg0

Ω(t)

 =
S(t)

T


2nzθ

ω

± 2

ω

√
(2π)2 − θ2

(
n2
x + n2

y

)
|θ|
√
n2
x + n2

y signS(t)


φ(t) = atan2

(
ny signS(t), nx signS(t)

)
(4.63)

These final expressions summarize the constraints sufficient for the arbitrary spin rotation
engineering with 100% theoretical fidelity:

1. same shape function S(t) for deviation g-factors and ESR field magnitude,

2. piecewise constant ESR phase (more precisely, constant within all time intervals
where S(t) maintains it sign).

By taking an average of the left and right hands sides of the matrix identity in (4.63),
we obtain the formula for pulse duration from the g-factor values:

T (~n, α) =
4π

ω
×



α |nz|∣∣∣∫ 1

0
(δg+(τ)− δg0) dτ

∣∣∣ , nz 6= 0,

√
1− α2(n2

x + n2
y)∣∣∣∫ 1

0
(δg−(τ)− δg0) dτ

∣∣∣ , nz 6= 1,

α =
|θ|
2π
. (4.64)

(note that the two expressions give the same result in case 0 < |nz| < 1). One can easily
verify that the special cases of nz = 1 (Z rotation), nx = 1 and ny = 1 (X and Y rotations)
correspond to the formulas (4.40) and (4.50).

4.3.6 SWAPk pulses

Now we discuss the case when no single-qubit rotations occur, which corresponds to the
values

δgj ≡ δg0 for all j ∈ {1, . . . , N} .
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In this case, the spin chain is described by the Heisenberg Hamiltonian (normalized by ~):

Hex(t) =
N−1∑
j=1

Hj,j+1(t) =
N−1∑
j=1

Jj(t)

4~
~σi · ~σi+1, (4.65)

where Jj(t) is the exchange coupling of the jth pair of qubits in a chain (i.e. between
the jth and j + 1st qubits). Their time dependency is inherited from the dependencies
~V (t), ~W (t), by analogy to the case of deviation g-factors discussed earlier. It is evident from
formula (4.65) that all electrons are in principle always coupled to each other. However,
we can approximately treat the jth and j + 1st electrons as an isolated system provided
that the exchange couplings to the other qubits, namely j−1st and j+ 2nd, are very small:

Jj−1, Jj+1 � Jj.

By analogy to the previous discussions, we will denote the pairs of qubits that evolve under
exchange (“resonant”) with the index “+”, and the pairs whose couplings are negligible
(“nonresonant”) with the index “-”.

Knowing that the swap operator for the jth and j + 1st qubits SWAPj,j+1 is given by
the formula:

SWAPj,j+1 =
1

2
(IjIj+1 +XjXj+1 + YjYj+1 + ZjZj+1) , SWAP2

j,j+1 = IjIj+1,

we can write the time evolution operator for the corresponding 2-qubit system:

Uj,j+1 = exp

(
−i
∫ T

0

Hj,j+1(t)dt

)
= exp

[
−iT

∫ 1

0

(
SWAPj,j+1 −

1

2
IjIj+1

)
Jj(τ)

2~
dτ

]
=

exp

(
iΦj

2

)
exp [−iΦj SWAPj,j+1] = exp

(
iΦj

2

)
[I1I2 cos Φ− i SWAPj,j+1 sin Φj] ,

where Φj =
T

2~

∫ 1

0

Jj(τ)dτ. (4.66)

From this expression we conclude that when Φj = π
2
, a SWAP gate (up to an unimportant

global phase factor e
iπ
4 ) is realized. From the exponential character of UJ we deduce that

the operator of a general form SWAPk is realized when Φj(k) = π
2
k. This gives us the

conditions on the parameters for “resonant” and “nonresonant” pairs:

SWAPk :

∫ 1

0

J+(τ)dτ = k
π~
T
, J− = ∆J �

∫ 1

0

J+(τ)dτ, (4.67)
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where ∆J is the exchange offset value for idling qubits. Therefore, the duration of such
pulse reads as:

T
(
SWAPk

)
=

kπ~∫ 1

0
J+(τ)dτ

(4.68)

The formula (4.68) gives us a way to estimate the order of magnitude of ∆J to choose. If
Terr is the period of time between two consecutive error correction cycles, then we must
ensure that the SWAP of idling qubits occurs on a much longer timescale:

Terr �
π~
∆J

⇒ ∆J � π~
Terr

. (4.69)

We can also rewrite the exchange pulse using a dimensionless shape function with the
unit average (cf. subsec. 4.3.5):

J+(t) = Ck ~
S(t)

T
, S(t) ≥ 0, 〈S(t)〉 = 1, (4.70)

Strictly speaking, setting J(0) = J(T ) = 0 is impossible since the exchange interaction
is always present. Therefore, if we require that S(0) = S(T ) ≡ 0 as in subsec. 4.3.5, we
should rewrite the formula above according to:

J+(t) = ∆J (1− S(t)) + Ck~
S(t)

T
(4.71)

to meet the conditions at time interval boundaries. However, in all realistic scenarios
we want to ensure that the period of exchange oscillations on idling qubits 2π~/∆J is
extremely small compared to the period T of any quantum gate (cf. equation (4.67)).
Thus, we expect that still using the expression in the form (4.70) will give only a negligible
numerical error. In either case, by substituting (4.70) or (4.71) to (4.67), we obtain the
value of constant Ck that corresponds to a SWAPk pulse:

SWAPk : Ck = πk. (4.72)

All the considerations above apply to a quasi-isolated subsystem of jth and j + 1st

qubits. Therefore, any number of exchange-driven pulses of different shapes can run in
parallel as long as each qubit is affected by only one gate at a time (i.e. no simultaneous
gates on adjacent pairs). With this, we can write a general expression for all pairs:

(SWAPj)
k : Jj(t) = ∆J (1− Sj(t)) + πk~

Sj(t)

T
,

j ∈ {m,n : |m− n| ≥ 2} ⊂ {1, . . . , N} . (4.73)
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4.4 Preliminary quantum circuit optimization

4.4.1 Rotation angle shift by 2π

In order to get an idea of how the primitive quantum gates designed in previous section
can be optimized for faster operation, it is instructive to compare the durations of the
pulses that realize them. Suppose we want to perform a Z rotation by an angle θ of one
qubit and an X (or Y) rotation by the same angle of the other one by supplying the
same g-factor pulses. Physically, in the simplest case of completely decoupled and isolated
qubits, this corresponds to identical voltage sequences. By comparing the durations of the
corresponding pulses from formulas (4.40) and (4.50):

T (ẑ, α)

T (x̂, α)
=
T (ẑ, α)

T (ŷ, α)
=

α√
1− α2

, α =
|θ|
2π
. (4.74)

we conclude that Z gates are shorter than their X or Y counterparts for typical rotation
angles |θ| ≤ π, or α < 1

2
. Therefore, it is relevant to discuss whether it is possible to

shorten the duration of X or Y gates by some simple considerations.

Since T (ẑ, α) ∼ α, it is obviously always better to choose smaller |θ| for driving Z rota-
tions. On the other hand, from the relations for X (or Y) rotations from (4.50) and (4.51):

T (x̂, α) ∼
√

1− α2, Ω ∼ α√
1− α2

, (4.75)

we conclude that X (or Y) rotations run faster when α is closer to 1, or the angle of rotation
is closer to ±2π. This counterintuitive result stems from the fact that during these gate
operations, spins of nonresonant electrons revolve in parallel until they make one complete
turn. Thus, loosely speaking, resonant and nonresonant qubits rotate in better registry
with each other when α is close to 1, which leads to smaller pulse durations required.

Since the rotations by the angles θ and θ ± 2π always lead to physically equivalent
results, a simple replacement:

θ� θ − 2π sign θ, ⇒ α� (1− α), (4.76)

automatically shortens the pulse duration for smaller angles without changing the physical
picture of quantum evolution. However, it comes at a cost of supplying stronger ESR field,
and therefore, higher energy absorption. Table 4.2 summarizes all these results and shows
that the cost of replacement (4.76) is quite high for a relatively small speed-up ∼ α−1/2.
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For example, for θ = π
2

(
α = 1

4

)
, we get an

√
2 · 17

16
≈ 1.5 times speed-up at a price of

supplying a 4
√

2 · 13
16
≈ 4.6 times stronger magnetic field, which will increase the RF energy

absorption by a factor of 16
√

2 · 9
16
≈ 12.7. Such algorithm may be experimentally feasible

nonetheless, since the Rabi frequency values needed for an X or Y pulse from (4.52) are
coupled to very small values of g-factor shifts:

Ω ∼ ω × 10−4.

Quantity Symbol Formula Asymptotic expansion (α→ 0)
Decrease in pulse
duration

ηt
√

1−α2

1−(1−α)2
1√
2α

(
1 + α

4
+ o(α)

)
Increase in ESR
field amplitude

ηΩ
1−α
α

√
1−α2

1−(1−α)2
1√

2α3/2

(
1− 3α

4
+ o(α)

)
Increase in ESR
power losses

ηp = η2
Ω

(
1−α
α

)2 1−α2

1−(1−α)2
1

2α3

(
1− 3α

2
+ o(α)

)
Increase in energy
absorbed during
the pulse

ηe =
η2

Ω

ηt

(
1−α
α

)2
√

1−α2

1−(1−α)2
1√

2α5/2

(
1− 7α

4
+ o(α)

)
Table 4.2: Relative changes in pulse parameters upon the shift of angle of rotation by 2π.

4.4.2 Hybrid gates

Consider the Hamiltonian (3.23) for a system of 2 qubits, written in a general form:

H12 = a1(t)~σ1 · ~n1(t) + a2(t)~σ2 · ~n2(t) + c(t)~σ1 · ~σ2. (4.77)

Let us derive the parameters which decouple the exchange interaction from spin rotations.
For this, we find the commutator between the single-qubit and two-qubit parts of the
Hamiltonian (Einstein’s summation convention is used throughout):

[c(t)~σ1 · ~σ2, a1(t)~σ1 · ~n1(t) + a2(t)~σ2 · ~n2(t)] = c [σ1lσ2l, a1n1jσ1j + a2n2jσ2j] =

c
(
2iεljkσ1kσ2la1n1j + 2iεljkσ1lσ2ka2n2j

)
= 2ic εljkσ1lσ2k(n2ja2 − n1ja1)

= 2ic(t) [~σ1 × ~σ2] ·
(
a1(t)~n1(t)− a2(t)~n2(t)

)
. (4.78)

Therefore, the necessary condition for the parts of the Hamiltonian to commute is

a1(t) = a2(t), ~n1(t) = ~n2(t), (4.79)
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(the evolution with a1 = −a2, ~n1 = −~n2, which is yet another solution, is physically the
same). Within our approach (sec. 4.3), this means that when identical ROT(~n, θ) pulses of
the same shape are applied on both qubits, a SWAPk gate can be applied simultaneously! In
other words, our architecture allows for hybrid ROT− SWAP gates to be realized directly
(fig. 4.4).

ROT-SWAP(~n, θ, k) : SWAPk

ROT(~n, θ)

ROT(~n, θ)

ROT(~n, θ)

SWAPk

ROT(~n, θ)

Figure 4.4: Equivalent circuits for a hybrid ROT-SWAP gate natively realizable within
our spin quantum computer architecture [65]. Here and throughout, circuit diagrams are
drawn using the quantikz package in LATEX [83].

Remarkably, the shape of the SWAPk pulse ∼ c(t) can be different from the shape of
ROT(~n, θ) pulses ∼ a1(t). The expressions for time-dependent g-factor, Rabi frequency
and exchange coupling from (4.63), (4.73) are applicable to the hybrid gates as well.

4.4.3 Parallel execution of gates

As discussed earlier, in section 4.3, Z rotations and SWAPk gates are realized by manipu-
lating local spin effective parameters (deviation g-factors and exchange couplings, respec-
tively). Therefore, such gates with any parameters (θ, k, or the shape) can be applied
in parallel provided that they act on distinct qubits. It was also shown in the previous
subsection that when the pulses that realize a Z rotation on a pair of qubits are identical,
any SWAPk gate can act on them simultaneously.

When it comes to arbitrary spin rotations different from a Z rotation, a nonzero global
ESR field is necessary. This imposes serious restrictions on which rotations can be run
in parallel. Indeed, assume we want to implement two distinct pulses ROT(~n1, θ1) and

ROT(~n2, θ2) on two different qubits in parallel. Then, the ESR pulse ß |S(t)|
T

, where the
constant ß is determined by equation (4.62), is necessarily the same for both rotations:

ß = |θ1|
√
n2
x,1 + n2

y,1 = |θ2|
√
n2
x,2 + n2

y,2. (4.80)

Evidently, this expression restricts the axis and the total angle of rotation for each ROT(~n, θ)
pulse run in parallel. Therefore, in practice, one will always combine only synchronous and
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identical ROT(~n, θ) pulses, and 2π rotations on nonresonant qubits. The exchange SWAPk

gate can be combined with a pair of either resonant or nonresonant qubits, since the pairs
of both kinds evolve synchronously (cf. subsec. 4.4.2). In the latter case, it is equivalent
to applying a “pure” SWAPk gate as if no other evolution takes place. Since all exchange
operations act locally, their pulse shapes are not restricted.

Tables 4.3 and 4.4 present a summary of the two groups of gates that can be applied
in parallel: voltage-only driven, and voltage and ESR driven. The relevant dimensionless
constants A′, B, C, where A′ is the only signed one, that relate the pulses to their shape
functions (possibly distinct) are deduced from formulas (4.62) and (4.72), combined in one
expression below:

ω
(
δg±,j(t)− δg0

)
= A′±,j

Sg,j(t)

T
, Ω(t) = ß

|SΩ(t)|
T

,

J±,j(t)

~
=

∆J

~
[1− rjSJ,j(t)] + Cj

SJ,j(t)

T
.

(4.81)

A variable r indicates whether the jth pair of qubits participates in an exchange gate or
not:

rj = Θ (Cj − 0) =

{
1, jth pair is resonant,

0, jth pair is nonresonant.
(4.82)

This notations allows us to interpret the nonresonant case as an application of a SWAP0

gate so that C− ≡ 0. As before, when the qubit index “j” is dropped, the constant is the
same for all qubits of a specified kind (“+” for resonant, and “–” for nonresonant).
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Group 1. Voltage-only driven gates
Description Gate layout Relevant

constants
Relevant
shapes

Requirements

Idling qubits A′− = 0
No exchange
with adjacent
qubits:

Cj−1 =

Cj = 0

Z rotations by
any angles

ROTZ(θ1)

ROTZ(θ2)

A′+,j = 2θj Sg,j(t) any

Any SWAPk

gates on sepa-
rated pairs

SWAPk1

SWAPk2

Cj = πkj Sj,j(t) any

Unaffected by
spin rotations:

A′−,j =

A′−,j+1 = 0

Hybrid ROT-
SWAP gates:
synchronous
Z rotations
within each

ROTZ(θ3)

SWAPk3

ROTZ(θ3)

A′+,j =

A′+,j+1 =

2θj

Cj = πkj

Sg,j(t) =

Sg,j+1(t)

Sj,j(t) any

No exchange
with the
qubits adja-
cent to the
pair:

Cj−1 =

Cj+1 = 0

Global parameters ß = 0

Table 4.3: Voltage-only driven quantum gates (no ESR field) that can be run in parallel.
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Group 2. Voltage and ESR driven gates
Description Gate layout Relevant

constants
Relevant
shapes

Requirements

Syncronous
arbitrary rota-
tions ROT(~n, θ)

ROT(~n, θ)

ROT(~n, θ)
A′+ = 2nzθ Sg(t) =

SΩ(t)
No exchange

with
adjacent
qubits:

Cj−1 =

Cj = 0

Synchronous
nonresonant 2π
rotations

2π

A′− =

±2
[
4π2 − θ2×(

n2
x + n2

y

)]1/2
ROT-SWAP
gates on non-
resonant qubits
acting as “pure”
SWAPk gates

SWAPk1

2π

2π

A′− same as
above

Cj = πkj

Sg(t) =
SΩ(t)

Sj,j(t) any

No exchange
with the
qubits adja-
cent to the
pair:

Cj−1 =

Cj+1 = 0

Hybrid ROT-
SWAP gates on
resonant qubits

ROT(~n, θ)

SWAPk2

ROT(~n, θ)

A′+ = 2nzθ

Cj = πkj

Global parameters
ß = |θ|

√
n2
x + n2

y

φ(t) = atan2
(
ny signS(t), nx signS(t)

)
Table 4.4: Quantum gates generated by both voltage and ESR field pulses that can be run
in parallel.
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4.5 Engineering of voltage pulses

4.5.1 Connection between physical and effective parameters

In our architecture, the potential landscape for the electrons in each computational node is
defined by a series of plunger gates and tunnel gates in between. The case of N quantum
dots corresponds to N plunger gates and N − 1 tunnel gates in total, see figure 4.5.

V1 W1 V2 W2 · · · WN−1 VN

Figure 4.5: Diagram of plunger and tunnel gate arrangement in the qubit node.

In section 4.3, we developed a technique to manipulate effective parameters in the spin
space, namely N deviation g-factor parameters and N − 1 exchange couplings, to realize
desired quantum gates. However, in an array of closely-packed dots, the effect of cross-
coupling is always present. This means that changes of each plunger and tunnel gate voltage
necessarily affect several dots at once (the effect on the dots in closest proximity to the
gates is the most significant, though all dots are affected in the general case). Therefore,
each of the effective parameters is a nontrivial function of all plunger and tunnel gate
voltages:

δgi = δgj

(
~V , ~W

)
, i = 1, . . . , N,

Jj = Jj

(
~V , ~W

)
, j = 1, . . . N − 1.

(4.83)

Here and throughout, all g-factors/their deviations and exchange couplings will be grouped

in vectors ~g
(
~V , ~W

)
/δ~g
(
~V , ~W

)
of length N , and a vector ~J

(
~V , ~W

)
of length N − 1, respec-

tively. For any set of voltages
{
~V , ~W

}
, we can extract the dependencies (4.83) from the

gate geometries emulated in nextnano++ using the algorithm outlined in subsection 3.4.3
of the previous chapter. Thus, for the purpose of voltage pulse gate design, we consider
the mapping of the physical (voltages) onto effective parameters to be described by a set
of known functions (4.83). Even though they cannot be specified or estimated a priori,
some relations between physical and effective parameters are expected to be true for all
physically realistic scenarios. In particular, each parameter δgi is much more sensitive to
the voltage Vi on the plunger gate that defines the corresponding ith dot than to any other
voltage. Analogously, each parameter Jj is significantly more sensitive to the voltage Wj
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on the tunnel gate that controls the coupling of the jth pair of dots:∣∣∣∣∂δgi∂Vi

∣∣∣∣ ≡ ∣∣∣∣∂gi∂Vi

∣∣∣∣ > N∑
l=1,l 6=i

∣∣∣∣∂gi∂Vl

∣∣∣∣+
N−1∑
k=1

∣∣∣∣ ∂gj∂Wk

∣∣∣∣, i = 1, . . . , N,

∣∣∣∣ ∂Jj∂Wj

∣∣∣∣ > N∑
l=1

∣∣∣∣∂Jj∂Vl

∣∣∣∣+
N−1∑

k=1,k 6=j

∣∣∣∣ ∂Jj∂Wk

∣∣∣∣, j = 1, . . . , N − 1.

(4.84)

Therefore, if we construct a Jacobian matrix for the vector functions in units of frequency
ω δ~g

(
~V , ~W

)
and 1

~
~J
(
~V , ~W

)
:

Î(~V , ~W ) =
∂
(
ω δ~g, ~J/~

)
∂
(
~V , ~W

) ≡

∂
(
ω~g, ~J/~

)
∂
(
~V , ~W

) =



ω ∂g1

∂V1
· · · ω ∂g1

∂VN
ω ∂g1

∂W1
· · · ω ∂g1

∂WN−1

...
. . .

...
...

. . .
...

ω ∂gN
∂V1

· · · ω ∂gN
∂VN

ω ∂gN
∂W1

· · · ω ∂gN
∂WN−1

1
~
∂J1

∂V1
· · · 1

~
∂J1

∂VN

1
~
∂J1

∂W1
· · · 1

~
∂J1

∂WN−1

...
. . .

...
...

. . .
...

1
~
∂JN−1

∂V1
· · · 1

~
∂JN−1

∂V1

1
~
∂JN−1

∂W1
· · · 1

~
∂JN−1

∂WN−1


, (4.85)

then the inequalities (4.84) suggest that the matrix is strictly diagonally dominant and
thus nonsingular.

Unfortunately, there is no straightforward way to construct an inverse mapping to (4.83)
(i.e. effective back to physical parameters), and it is not guaranteed to be single-valued.
The importance of finding this inverse mapping, though, is evident even for the simplest
physical systems. Indeed, even in a double quantum dot, the voltage changes on the
second plunger gate will disrupt the operation of single-qubit rotations in the first dot
(and vice versa) unless the cross-coupling effects are accounted for by adjusting the shapes
of voltage pulses. Therefore, the goal of this section is to prove that by imposing additional
constraints on the time-dependent effective parameters, one can uniquely, unambiguously
and efficiently determine all corresponding voltage pulses.

4.5.2 Voltage values for idling qubits

At first, it is important to find the optimal voltage configuration for qubits to stay in the
idling state so that no undesired spin evolution happens. In particular, all effective pulses
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devised in section 4.3 rely on an explicit value of δg0, and no approach has been proposed
so far to find it.

Technically speaking, the exact value of δg0 does not matter so long as it is the same
for all qubits in the system; the Zeeman field and/or ESR frequency (both are global
parameters) can be adjusted accordingly to satisfy the condition (4.36). However, it is

natural to search for the voltage value offsets ∆~V ,∆ ~W on plunger and tunnel gates that
not only give the same δg0 value for all qubits but also satisfy the most important constraint
of the qubit operation: stability of charge configuration.

Thus, we can construct a minimization problem for a relevant cost function with addi-
tional constraints on δg0 and exchange coupling values ∆J , which should obviously be very
small at idle. For the cost function, we choose expression (4.26) with some simplifications:

1. As we are constructing a stationary idling state, time dependencies and integration
are dropped;

2. The activation function is removed: we are looking specifically for the most optimal
charge stability configuration, not the range of allowed voltage values.

With these considerations, the constrained minimization problem can be written as follows:


f̃cs(∆~V ,∆ ~W ) =

1

(M − 1)

∑
k 6=k0

Ek0(∆~V ,∆ ~W )

Ek(∆~V ,∆ ~W )
−→ min

∆~V ,∆ ~W
,

δgi+1 − δgi = 0, i = 1, . . . , N − 1,

Jj −∆J = 0, j = 1, . . . , N − 1.

(4.86)

Here, the k0 is the composite index that corresponds to the desired charge configura-
tion ~Q(0). The initial guess ∆~V0,∆ ~W0 can be chosen at the global minimum value of the
function f̃cs. The choice of the constant ∆J was discussed when the SWAPk pulses were
designed in section (4.3.6).

Once the optimal solution is found, the value of δg0 is simply set to value:

δg0 = δgi

(
∆~Vopt,∆ ~Wopt

)
for any i ∈ {0, i = 1, . . . , N} , (4.87)

where the offset values ∆~Vopt,∆ ~Wopt are expected to be close to the center of the desired
charge stability region. For brevity, the “opt” subscripts will be dropped throughout.
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4.5.3 General formalism for voltage control pulse engineering

Once the offset values for all voltages are found, we can proceed with developing a method
to map the values of effective variables δ~g, ~J to the physically controlled voltages ~V , ~W . The
temporal dependencies of the effective variables that realize certain quantum operations
on spin qubits are described by formulas (4.81). The freedom to choose the effective pulses
is due to the dimensionless shape functions they correspond to, and the relations between
the shape functions for different effective parameters. It turns out that by imposing a set
of constrains of type (4.3) that the shape function S(t) is the same for all nonzero effective
pulse parameters except piecewise constant ESR phase from expression (4.63):

1 ≤ i ≤ N
1 ≤ j ≤ N − 1

: S(t) =
δgi(~V (t), ~W (t))− δg0〈
δgi(~V (t), ~W (t))− δg0

〉 =
Jj(~V (t), ~W (t))−∆J〈
Jj(~V (t), ~W (t))−∆J

〉 =
Ω(t)

〈Ω(t)〉
,

φ(t) = atan2
(
ny signS(t), nx signS(t)

)
,

(4.88)

we can devise a deterministic algorithm to find the voltage pulses for a wide class of shapes
simultaneously.

To prove this, we start with equations (4.81) in a vectorized form :

ω
[
δ~g
(
~V , ~W

)
− δg0

~1N

]
= ~A′

S

T
,

~J
(
~V , ~W

)
~

=
∆J

~

(
~1N−1 − ~rS

)
+ ~C

S

T
.

(4.89)

Here, the symbol ~1N denotes a column vector of length N with all elements equal to 1.
The constant parameters both for “resonant” and “nonresonant” qubits, grouped in vectors
~A′, ~C,~r, are summarized in formula (4.82) and tables 4.3 and 4.4. By equating the exact
differentials of both sides of the equation, we obtain:

∂
(
ω~g, ~J/~

)
∂
(
~V , ~W

) (
d~V

d ~W

)
≡ Î(~V , ~W )

(
d~V

d ~W

)
= dS

(
~A′

T
~C
T
− ∆J

~ ~r

)
. (4.90)

We proved in subsection 4.5.1 that the Jacobian matrix Î(~V , ~W ) is nonsingular in all
physically realistic scenarios of quantum dot operation; therefore, its inverse exists with
certainty and is unique. This enables us to multiply both sides of equation (4.90) by the
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inverse Î−1 and divide by dS to obtain a system of ordinary differential equations for
~V (S), ~W (S):

d

dS

(
~V
~W

)
= Î−1(~V , ~W )

(
~A′

T
~C
T
− ∆J

~ ~r

)
. (4.91)

Since the values of S = 0 correspond to the situation when no spin qubit evolution happens,
the corresponding voltages must correspond to their offset values:

~V (S = 0) = ∆~V , ~W (S = 0) = ∆ ~W. (4.92)

The equations (4.91) and (4.92) define an initial value problem for vector functions
~V (S), ~W (S) that is trivially solved numerically (e. g. by one of Runge-Kutta methods)

and is guaranteed to have a unique solution for fixed constants ~A′, ~C,~r and pulse duration
T . Remarkably, there is no explicit dependency on time in (4.91), which means that the

obtained solutions ~V (S), ~W (S) are the same for any shape functions! The time dependency
propagates into the solutions for voltage pulses from the chosen dependency S(t):

~V (t) = ~V (S(t)) , ~W (t) = ~W (S(t)) . (4.93)

The only requirement to make the solutions applicable to a wide enough class of shapes
is to numerically integrate the system (4.91) up to reasonably large values of |S|. We
established in subsec. (4.3.2) that the maximal values of S(t) are of the order of unity
for all typical pulse shapes. Thus, for instance, the integration over the intervals [0, 10]
forwards, and then [−10, 0] backwards is sufficient to cover a very wide class of shape
functions with the property:

−10 ≤ Smin < Smax ≤ 10.

We can further improve our results by ignoring the exchange offset value ∆J/~ com-
pared to any Cj/T . We already discussed in subsection 4.3.6 that this approximation will
give only a negligible error for all realistic quantum circuits. On the other hand, we know
now that the voltage pulses ~V (t), ~W (t) are constructed by numerical integration, which is
likely to give an error comparable to the truncation of ∆J . Moreover, such simplification
gives strictly zero error to the nonresonant qubit terms because Cj = rj = 0 for them
anyway (cf. tab. 4.3). Within this approximation, the pulse duration T factors out of the
expression on the right in equation (4.91), so we can rewrite it as follows:

d

d (S/T )

(
~V
~W

)
= Î−1(~V , ~W )

(
~A′

~C

)
. (4.94)
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Clearly, the solutions of this simplified system of ODEs are functions of a variable S/T

rather than simply S. Consequently, if we numerically obtain the functions ~V0(S), ~W0(S)
for some small value T = T0 (smaller than the typical pulse duration we could expect),
all voltage functions of S at different pulse durations can be found simply by scaling the
argument:

~V (S, T ) = ~V0

(
S
T0

T

)
, ~W (S, T ) = ~W0

(
S
T0

T

)
, T0 < T. (4.95)

This leads us to the final conclusion that only one numerical integration of a vector initial
value problem is enough to engineer voltage pulses of any duration T > T0 and any desired
shape of the corresponding effective pulses S(t). This result is particularly remarkable
because all interdot couplings are taken into account automatically through the Jacobian
matrix function.

4.5.4 Constraint satisfaction

One of the most important results from the previous subsection is that the gate voltage
pulses do not explicitly depend on time when expressed in terms of the shape function
value S. Hence, we can redefine the cost function so that it penalizes high values of S
directly:

f (S) = wcsf
(S)
cs + wbff

(S)
bf + wvwf

(S)
vw , wcs + wbf + wvw = 1. (4.96)

The physical constraints that the terms in the sum represent remain the same as discussed
in subsection 4.2.3 but the expressions will change. This section will demonstrate that
removing the explicit time dependency from consideration significantly simplifies the search
for the shortest pulse duration Topt that satisfies system constraints.

Consider a class of shape functions with the domain lying within [Smin, Smax]. Then,
the charge stability component of the cost function from formula (4.26) can be rewritten
as follows:

f
(S)
cs (T, Smin, Smax, λ, α

′′, β) =
1

(M − 1)(Smax − Smin)

∫ Smax

Smin

dS×{∑
k′

Ξp

[
Kcs

(
k′, k0, ~V0

(
S
T0

T

)
, ~W0

(
S
T0

T

))
, λ

tk0,k′ coth (tk0,k′/kbTe)

2E ′k(
~V0

(
S T0

T

)
, ~W0

(
S T0

T

)
)

]
+

∑
k′′

Ξp

[
Kcs

(
k′′, k0, β, ~V0

(
S
T0

T

)
, ~W0

(
S
T0

T

))
, α′′
]}

, (4.97)
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where the constants λ, α′′, β are user-specified; please refer to the subsec. 4.2.4 for the
definition of other functions and parameters. Here, we shift from the integration over
time-dependent voltage pulses ~V (t), ~W (t) to the integration over the possible values of
effective pulses S T0

T
, scaled according to expressions (4.95). Therefore, f ′cs is a function of

a single variable T (rather than a functional of ~V (t), ~W (t)), and so its minimization can
be expressed a simple root finding problem! In particular, it is enough to find the minimal
possible value Tcs that sets this function to zero; the initial guess can be chosen as T0:

Find smallest Tcs : f
(S)
cs (Tcs, Smin, Smax, λ, α

′′, β) = 0, T
(0)
cs = T0. (4.98)

Analogous reasoning applies to the limitation on voltage sweep rates. The relevant
quantities to minimize (voltage time derivatives) can be then written as follows:

~V (t) = ∂t

(
~V0

(
S(t)T0

T

)
~W0

(
S(t)T0

T

)) = Ṡ(t)
d

dS

(
~V0

(
S T0

T

)
~W0

(
S T0

T

)) , Ṡ(t) ≡ dS(t)

dt
. (4.99)

The expression simplifies if we take (4.94) into account:

~V (t) =
Ṡ(t)

T
Î−1

0 (S, T )

(
~A′

~C

)
, where Î0(S, T ) = Î

(
~V0

(
S
T0

T

)
, ~W0

(
S
T0

T

))
. (4.100)

When we choose a particular function S(t), we automatically know the minimal and max-

imal values of its time derivative: Ṡmin, Ṡmax. Therefore, we can replace
∣∣∣Ṡ(t)

∣∣∣ with its

upper limit: ∣∣∣Ṡ(t)
∣∣∣ ≤ Ṡ0 ≡ max

(∣∣∣Ṡmin∣∣∣, Ṡmax) ,
and replace time integration with the integration over S in formula (4.31):

f
(S)
vw (T, Smin, Smax, α) =

1

(2N − 1)(Smax − Smin)

∫ Smax

Smin

dS×

Ξ̂p(◦, α)

[
Ṡ2

0

∂tV2
maxT

2

(
~A′

T ~CT

)(
Î0(S, T ) ÎT

0 (S, T )
)−1

(
~A′

~C

)]
. (4.101)

The shorthand operator notation notation Ξ̂p(◦, α) [. . .] implies that the activation function
Ξp(xi, α) is applied on each element xi of the sum in square brackets. Again, we end up
with nothing but a root finding problem for a single variable T , where we can choose the
initial guess in the same way as before:

Find smallest Tvw : f
(S)
vw (Tvw, Smin, Smax, α) = 0, T

(0)
vw = T0. (4.102)
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The last constraint we consider (limit on electromagnetic radiation absorption) turns
to give the simplest result. Expression (4.29) implies that the corresponding cost function
is zero if the following inequality holds at all times:

∀t :

(
Ω(t)

Ωmax

)2

≤ 1− α ⇒ frf ≡ 0. (4.103)

Since Ω(t) = B S(t)
T

for single-qubit rotations (cf. eq. (4.63)), and S(t) is a continuous
function, it is sufficient to demand that (4.103) holds for Smin and Smax. From this, we
immediately obtain the minimal pulse duration that satisfies this constraint:

Trf =
ß

Ωmax

√
1− α

max (|Smin|, Smax) . (4.104)

Combining the results (4.98), (4.102), and (4.104), we conclude that the optimal pulse
duration:

Topt = max(Tcs, Tvw, Trf) (4.105)

can be found by only one series of simple single-variable minimizations for the whole class
of shape functions that satisfy Smin ≤ S(t) ≤ Smax.

4.5.5 Choice of shape function

The results derived earlier in this section demonstrate that all voltage pulses are linked
with each other through the shape function S(t) of the corresponding effective pulses. This
makes it impossible to choose S(t) and pulse duration T so that all voltage pulses have
some preferred shapes simultaneously. Nevertheless, it is possible to select S(t) which
yields the voltage pulses with shapes being close to the desired ones. To show this, we use
the fact that the dominant contribution to δgi is the plunger gate voltage Vi, and the one
for Jj is the tunnel gate voltage Wj for all physically realistic scenarios (see the discussion
in subsection 4.5.1 for more details).

Suppose a single-qubit rotation of the ith qubit should occur, and we would prefer
to supply a voltage pulse Ṽi(t) to drive this rotation (of course, this pulse must satisfy

Ṽi(0) = Ṽi(T ) = ∆Vi). Then, we can extract the shape function of the corresponding
g-factor pulse when other voltages remain at their idling values:

S̃(t) =
δgi(∆V1, . . . ,∆Vi−1, Ṽi(t),∆Vi+1, . . . ,∆VN ,∆ ~W )− δg0〈
δgi(∆V1, . . . ,∆Vi−1, Ṽi(t),∆Vi+1, . . . ,∆VN ,∆ ~W )− δg0

〉 . (4.106)
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This shape can then be assigned to all effective parameters, which is required to make the
formalism devised in subsection 4.5.3 applicable. When cross couplings are not very strong,
it is reasonable to expect that the actual voltage pulse Vi(t) obtained from the numerical

integration of (4.94) will not significantly differ from the desired one Ṽi(t). Moreover, if
other plunger gates have similar geometry (which is typically the case), one would expect

the voltage pulses on them Vl(t), l 6= i to be similar in shape to Ṽi(t) if they drive single-
qubit rotations on other qubits in parallel.

Analogously, if a SWAPk gate is applied on the jth pair of qubits, we can infer the
shape for all effective variable pulses from the exchange produced by the desired tunnel
gate voltage pulse W̃j(t):

S̃(t) =
Jj(∆~V ,∆W1, . . . ,∆Wj−1, W̃j(t),∆Wj+1, . . . ,∆WN)−∆J〈
Jj(∆~V ,∆W1, . . . ,∆Wj−1, W̃j(t),∆Wj+1, . . . ,∆WN)−∆J

〉 . (4.107)

When exchange and rotation gates are applied simultaneously in parallel or on the
same qubits — both scenarios are realizable in our architecture, as shown in subsec. 4.4
— the shape of a single-qubit rotation gate should be given priority. The reason is that
the typical durations of exchange pulses are 2–3 orders of magnitude smaller than those
of spin rotations. Therefore, tunnel gates will require much smaller voltage sweeps than
plunger gates, and so it is more important to optimize the voltage pulses for the latter.
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4.6 Examples of single-qubit gate simulations

4.6.1 Relations between effective and physical parameters for a
standalone quantum dot

Now we go on to the demonstration of the proposed pulse engineering algorithm in action.
For the simplest case, we perform electric potential and field simulations in nextnano++

for the gate geometry1 outlined in figure 4.6. Please note that only for the discussion
of device design, we change the coordinate axes convention used previously so that the
Si/SiO2 interface lies in the xy plane: this choice of axes is the standard nextnano++

behavior. The structure models a silicon substrate (red) with a layer of SiO2 (blue) on
top. The 2-dimensional electron gas forms just below the Si/SiO2 interface. An elongated
plunger gate (green), embedded in the layer of the oxide, is used to define a single quantum
dot. A grounded screening gate (yellow) localizes the electric field induced by the plunger
gate (and thus the quantum dot) to the middle of the sample. The uncovered part of the
plunger gate is 40 × 40 nm in size; the oxide thickness between the plunger gate and the
Si/SiO2 interface is 10 nm.

For the simulations of control scheme proposed earlier in this chapter, we assume that
an actual quantum dot array contains two identical gate structures of this kind, separated
far enough so that the effects of cross coupling can be ignored. In this case, the mapping
between the effective and physical parameters is conveniently described by a single function
δg:

δg1(V1) = δg(V1), δg2(V2) = δg(V2).

Therefore, we are free to supply voltage pulses of any shapes so long as the constraint on
the shape of effective pulses is satisfied. From now on, we will be using voltage pulses
with a Gaussian shape. In terms of the normalized time τ = t/T , such pulse profiles are
described by the following:

V (τ) = ∆V +
Vmax −∆V

1− e−
1

8σ2

·
(
e−

(τ−1/2)2

2σ2 − e−
1

8σ2

)
, τ =

t

T
, τ ∈ [0, 1] (4.108)

Here, Vmax is the maximum voltage value during the pulse, ∆V is the voltage offset before
and after the pulse, σ is the dimensionless width of the pulse relative to its length T . The

1The nextnano++ simulations were performed by Rubaya Absar at the author’s request

118



(a) xz plane, y = 60 nm (b) yz plane, x = 0 nm

Figure 4.6: Projections of the single-dot device structure emulated in nextnano++ on xz
plane (a) and yz plane (b). Silicon substrate is shown in red, SiO2 in blue, plunger gate
in green, and screening gate in yellow.

vertical shift of the Gaussian function by e−
1

8σ2 and subsequent normalization ensure that:

V (t = 0) = V (t = T ) = ∆V, V

(
t =

T

2

)
= Vmax.

The simulations with nextnano++ indicate that the charge accumulation threshold for
the chosen device structure is approximately 0.7 V. For the consistent extraction of po-
tential landscapes, we require that the voltage operation window lies just below this value
(see the discussion in the subsec. 3.4.1). With this, we perform nextnano++ simulations for
the plunger gate voltage ranging from 0.5 to 0.7 V with the step of 0.025 V. Moreover, we
choose ∆V = 0.5 V and Vmax = 0.65 V for all control pulses. At the values above 0.7 V,
we observe charge accumulation with the density peak roughly at z = −0.2 nm, which
determines the position of 2DEG. The potential landscape U(x, y) and out-of-plane field
Ez(x, y) profiles, extracted2 at this depth for V = ∆V , are presented in figure 4.7. The
data reveals typical absolute values of the potential energy ∼ 2 eV and field ∼ 60 kV/cm
in the middle of the quantum dot.

2Zach Merino is the author of the code for processing nextnano++ simulation files
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Ez(x, y)
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Figure 4.7: Potential energy and electric field landscapes, obtained from nextnano++ sim-
ulation at z = −0.2 nm, V = 0.5 V.

The value of σ is directly connected to the voltage sweep rate during the pulse and thus
should be limited in practice to satisfy the characteristics of a pulse generator. However,
we do not impose this restriction here and choose σ = 0.1 for all simulations.

Using formula (3.11), we calculate3 the function δg(V ) in the interval V ∈ [0.5 V, 0.7 V]
from the simulated potential landscape and electric field data. The obtained dependency
(plotted in fig. 4.8) proves to be almost perfectly linear with the slope dg

dV
≈ 1.797·10−4 V−1.

To prevent spin evolution before and after pulses, we require that the value at voltage offset
δg (∆V ) corresponds to δg0. For this, we set the resonator frequency to an experimentally
realistic value and calculate the required static Zeeman field from the condition (4.36):

frf = 17 GHz, B0 = 607.285 mT.

3Stephen Harrigan is the author of the code used for deviation g-factor calculation
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Figure 4.8: Deviation g-factor dependency on the plunger gate voltage in a single dot
geometry, obtained from nextnano++ electric potential and field data.

4.6.2 High-fidelity resonant and nonresonant spin rotations

To showcase the high-fidelity detuning of nonresonant qubits during ESR-driven spin ro-
tations, we implement the quantum circuit from figure 4.9. At the beginning, a system
of two qubits is in a pure |↑↓〉 state. Three consecutive π

2
rotations are applied onto the

first qubit so that it returns into its initial state at the end; figure 4.10 gives a cartoon of
this qubit evolution. In the meantime, the second qubit is kept off resonance all the time.
For this, it performs nonresonant 2π rotations during X and Y rotations of the first qubit
to maintain its initial state between pulses (cf. sec. 4.3). The corresponding 2π gates are
explicitly shown in the circuit diagram 4.9 for clarity.

The data obtained in subsection 4.6.1 is almost sufficient to engineer contol pulses
for voltages V1(t), V2(t) and RF field ~Brf that realize the quantum circuit 4.9. One last
necessary calculation is the pulse duration for each quantum gate (formula (4.64) is used):

T
(
x̂,
π

2

)
= T

(
ŷ,−π

2

)
= 17.448 µs, T

(
ẑ,
π

2

)
= 4.504 µs.
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Figure 4.9: Single qubit rotation simulations of a system of two antiparallel spins. The
first qubit is on resonance all the time, whereas the second qubit performs nonresonant 2π
rotations to compensate for the effect of the global ESR field.

Figure 4.10: Evolution of the Bloch vector of the first electron at each step of the quantum
circuit from fig. 4.9.

The simulated sequence of voltage and magnetic field pulses is presented in figure 4.11.
No magnetic field is supplied during the Z rotation in the middle, whereas the voltage
pulse V1(t) drives a resonant transition on the first qubit at this time. Conversely, only the
second plunger gate is active during the first and last quantum gate operations, when it
is driving nonresonant 2π rotations in conjunction with ESR field. Since the dependency
δg(V ) is almost perfectly linear (fig. 4.8), the shape of Brf(t) is very similar to the Gaussian
shape (4.108) of the pulse V2(t).

To confirm that the voltage and ESR sequence from figure 4.11 induces the desired
evolution of a pure state |↑↓〉, we perform the simulation of the corresponding master
equation (3.27) under the assumption of no decoherence (T1 → ∞, T2 → ∞). The fig-
ure 4.12 summarizes the simulation results for the relevant spin system parameters. In
particular, the Bloch vector dynamics of the first electron matches the expected behavior
from the figure 4.10: 〈σy1〉 reaches the value -1 after the first (X) rotation, proceeds to
〈σx1〉 = 1 after the second (Z) rotation, and returns to 〈σz1〉 = 1 after the last (Y) rota-
tion. X and Y rotations clearly affect all Bloch vector components of the second qubit but
always restore the value 〈σz2〉 = −1 when finished. The fidelity function with respect to
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the initial state |↑↓〉 is evaluated using formula (3.31):

F (t) =

(
Tr

√√
ρ(t) |↑↓〉〈↑↓|

√
ρ(t)

)2

and is shown at the bottom of figure 4.12. This function maintains the value ≈ 0.5 when
the Bloch vector of the 1st spin rotates in the xy plane, perpendicular to the initial state
vector, and approaches 1 when the system returns to |↑↓〉 state. The simulated value of
infidelity at the end is very low:

1−F
(
T
(
x̂,
π

2

)
+ T

(
ẑ,
π

2

)
+ T

(
ŷ,−π

2

))
= 7.135 · 10−11,

and is due to the numerical error of the master equation integration. This confirms the
correctness and high-fidelity yield of the control scheme developed earlier in this chapter.

Figure 4.11: Sequence of voltage and ESR field control pulses that realizes the quantum
circuit from figure 4.9. Gray vertical lines delimit distinct quantum operations. For the Z
rotation in the middle, magnetic field is not supplied and is thus not shown.
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Figure 4.12: Time evolution of the 2-electron system spin state: Bloch vector components
of the two spins (top and middle), and the state fidelity with respect to the initial state
|↑↓〉 (bottom). Gray vertical lines delimit distinct quantum operations.
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4.7 Summary of chapter 4

In summary, a novel high-fidelity quantum control scheme is devised for the computer
architecture [65]. The most important accomplishments described in this chapter include:

1. The problem of finding voltage and ESR magnetic field control pulses for the com-
puter architecture [65] is formulated in a general case as a constrained minimization
problem for a cost function. The expressions for cost function contributions that
penalize charge configuration changes, fast voltage sweeps and large oscillating mag-
netic fields are derived.

2. A novel scheme for effective qubit control, based on the combination of global ESR
control and slight local variations of g-factor, is proposed. The approach overcomes
the complication of the off-resonance qubit tuning due to the weakness of Stark effect
in silicon.

3. A very general form of constraints on the shapes of effective parameter pulses δg(t),
J(t), Ω(t) is shown to give deterministic spin evolution. Using these constraints, the
effective pulses are constructed for single and two-qubit quantum gates operating
with 100% theoretical fidelity.

4. Several approaches to reduce the execution time of quantum circuits within the pro-
posed control scheme are developed. They include substitutions of spin rotations
with equivalent ones, running quantum gates in parallel on different qubits, or simul-
taneously on the same groups of qubits.

5. A method to unambiguously construct voltage pulses V (t), W (t) that give the spec-
ified dependencies δg(t), J(t) is presented. The constraints that the ESR phase is
constant on certain time intervals, and that all other effective parameter pulses have
the same shape (up to normalization) are proven to be sufficient to achieve this.

6. The proposed voltage pulse engineering method is shown to be very numerically
efficient. First of all, one numerical integration of a vector initial value problem
maps the effective parameters to physically controlled ones for a very wide class
of pulse shapes and durations. Secondly, cost function minimization is reduced to
a computationally inexpensive single-variable root finding problem for the optimal
pulse duration.
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Chapter 5

Advanced pulse engineering with
gradient ascent for a silicon spin
qubit architecture

5.1 Motivation

Since its first development in the seminal work [84], the Gradient Ascent Pulse Engi-
neering (GRAPE) method has attracted significant attention in the quantum computer
design community. To realize desired quantum operations, the method discretizes contol
pulses into piecewise-constant sequences and finds the optimal values of control param-
eters for each interval of constancy. The method benefits from the natural properties
of matrix exponentials that arise in the evaluation of evolution operators, which allow
to limit the number of numerical operations during the algorithm. Ever since the pub-
lication [84], the field has seen a significant improvement in speed of convergence with
the adoption of quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) [85], and later
Newton-Raphson second-order [86] methods. Remarkably, all derivatives (even second or-
der) require only linear time [87] to be computed — an uncommon property of gradient
optimization methods — thereby allowing very fast minimization. The use of machine
learning toolkits for automatic differentiation [88] and code deployment on graphics pro-
cessing units (GPUs) [89] show a path towards even better optimization. The algorithmic
and hardware improvements indicate that GRAPE is no longer prohibitively costly with
respect to the computational time and memory use even for relatively large numbers of
electrons.
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As the GRAPE algorithm controls pulse values at individual small time intervals, it can
directly incorporate any non-optimality mechanisms, including infidelity, susceptibility to
decoherence and noise. This recently became the basis for such a significant achievement
as single-qubit rotations with fidelities reaching incoherent noise limits in silicon quantum
dots [90]. Implementing GRAPE will be a step towards even better optimized pulses than
the ones designed in the previous chapter 4. In particular, it will allow us to lift stringent
constraints of equal effective pulse shapes and piecewise constant ESR phase. Besides,
one can naturally anticipate that these constrained pulses used as the initial guess for the
GRAPE algorithms will yield intuitively comprehensible pulse shapes and magnitudes, as
opposed to the case where random sequences are used for the initial guess (e.g. in [84]).

Following reference [91], the section 5.2 of this chapter introduces the the reader to
the concepts of operator formalism applied to the case of piecewise constant parameters
of quantum evolution. Using this formalism, the section 5.3 presents the cost function
minimization problem for optimal pulse design establishes for our quantum computer ar-
chitecture [65]. Section 5.4 summarizes the main results of the chapter.

Section 5.3 as well as the part of subsection 5.2.4 where the directional, scalar and mixed
derivatives relevant to our control problem are derived, constitute the original contribution
of the author.
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5.2 Operator formalism for quantum system evolu-

tion

5.2.1 Liouville equation

As is well known, the dynamics of a spin quantum system with N electrons and the initial
state |ψ(0)〉 in the nondissipative case can be described by the Schrodinger equation for a
unitary evolution operator:

∂tU(t) = − i
~
H(t)U(t) = −iH (t)U(t), U(0) = 1, |ψ(t)〉 = U(t) |ψ(0)〉 ,

where both the Hamiltonian H and the evolution operator U are 2N × 2N matrices. This
is a special instance of a more general Liouville equation with an initial condition:

∂tG(t) = L(t)G(t), G(0) = 1, (5.1)

for the evolution of the propagator G under the generator L. In the simplest case, this is
a bilinear control problem, i.e. the generator L can be expressed as follows:

L(t) = L0 +
K∑
k=1

ak(t)Lk, (5.2)

where the scalars ak(t) are time-dependent control parameters, K is the total number of
them, and all Lk are constant. The unitary dynamics corresponds to the case of G =
U, L = −iH . The master equation in Lindblad form (3.24) is equivalent to equation (5.1)
with the following parameters [80]:

L(t) = −iH(t) + Γ, H(t) = 12N ⊗H (t)−H T(t)⊗ 12N

Γ =
3∑

α=1

N∑
j=1

2L∗α,j ⊗ Lα,j −
(
12N ⊗ L†α,jLα,j + LT

α,jL
∗
α,j ⊗ 12N

)
.

(5.3)

In this case, the propagator acts on a vectorized density matrix col [ρ], which is a column
vector of the length 22N created by stacking individual columns of ρ:

col [ρ](t) = G(t)col [ρ](0). (5.4)

The expression above stem from the following identity for the product of 3 matrices, which
is easy to verify:

col [AρB] = (BT ⊗ A) col[ρ]. (5.5)
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Therefore, the propagator of any dynamical spin system can be found using the same
formalism for the cases of presence and absence of dissipation. The only serious bottleneck
in the dissipative case is the size of the matrices being 22N × 22N instead of 2N × 2N in the
nondissipative case (e.g. 256× 256 vs. 16× 16 for N = 4). This can make a big difference
even for relatively small numbers of electrons. Thus, it is imperative that we employ
heavily optimized algorithms at the very beginning to ensure that the computational costs
are manageable for larger systems.

The general solution of equation (5.1) is given by the so-called time-ordered exponential,
defined as the Dyson series [91]:

G(t) = T exp

(∫ t

0

dt1L(t1)

)
≡ 1 +

∫ t

0

dt1L(t1) +

∫ t

0

dt1

∫ t1

0

dt2L(t1)L(t2) + . . . (5.6)

This can be verified in the following way. Having integrated the expression (5.1) once, we
obtain an equivalent integral equation:

G(t) = 1 +

∫ t

0

dt1G(t1)L(t1)

By substituting the operator G under the integral with the whole right-hand side of the
equation repetitively, one easily obtains (5.6). In case [L(t′),L(t′′)] = 0 at all times, the
time-ordered exponential simplifies to an ordinary matrix exponential. In the general case,
this commutation relation does not hold, and the series (5.6) converges badly. Therefore,
we resort to designing piecewise constant control pulses:

ak,m = ak
(
(m− 1) ∆t ≤ t < m∆t

)
= const, m = 1 . . .M, ∆t = T/M, (5.7)

L[m] = L
(
(m− 1) ∆t ≤ t < m∆t

)
= L0 +

K∑
i=1

ai,mLi, (5.8)

where T is the duration of the pulse, and M is the total number of steps (user-defined).
Hereinafter, the upper index in square brackets [m] denotes the value of a time-dependent
operator at the mth time step. The solution in each segment is given by a simple matrix
exponential, thus expression for the propagator reads as follows:

G(T ) =
M∏
m=1

exp

(∫ m∆t

(m−1)∆t

dt1L(t1)

)
=

M∏
m=1

exp

[(
L0 +

K∑
k=1

ak,mLk

)
∆t

]
=

M∏
m=1

exp
(
L[m]∆t

)
, (5.9)

where the operators are conventionally multiplied in the reverse order:
∏

iAi = . . . A3A2A1.
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5.2.2 Toggling frame

Suppose that there are two distinct physical mechanisms that contribute to the evolution
of the system. This corresponds to a generator of the form:

Ltotal(t) = L′(t) + L′′(t)

Clearly, when L′ and L′′ do not commute at all times (which is most often the case), the
system propagator does not factor into the product of propagators under two individual
generators. Nonetheless, there is an important theorem in control theory which shows how
to partly separate the effects of individual evolutions. The decomposition is universal and
especially valuable when L′ is under full experimental control, and L′′ corresponds to the
unwanted interactions or effects to be minimized.

We say that G ′(t) is the propagator under L′(t) alone:

G ′(t) = T exp

(∫ t

0

dt1L′(t1)

)
, (5.10)

whereas the propagator under Ltotal(t) is

Gtotal(t) = T exp

(∫ t

0

dt1 (L′(t1) + L′′(t1))

)
(5.11)

It turns out that:
Gtotal(t) = G ′(t)Gtog(t), (5.12)

where Gtog is the so-called toggling frame propagator under the generator L̃′′:

Gtog(t) = T exp

(∫ t

0

dt1L̃′′(t1)

)
, L̃′′(t) = G ′−1

(t)L′′(t)G ′(t) (5.13)

To prove this, we differentiate the right hand side of equation (5.12):

d

dt
(G ′(t)Gtog(t)) = Ġ ′(t)Gtog(t) + G ′(t)Ġtog(t) = L′(t)G ′(t)Gtog(t) + G ′(t)L̃′′(t)Gtog(t) =

(L′(t) + L′′(t)) (G ′(t)Gtog(t)) = Ltotal(t)Gtotal(t) =
d

dt
Gtotal(t), (5.14)

and obtain the equality of derivatives of both sides. Since the equality (5.12) obviously
holds at t = 0, this concludes the proof that it holds at all times as well.
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Although we have not fully separated the dynamics under L′ from the rest due to the
intrinsic dependency of the toggling frame generator L̃′′ on G, we can try to estimate the
effect of L′ up to different orders. To do this, we expand Gtog(t) in (5.12) into the Dyson
series (5.6):

Gtotal(t) = G ′(t) + G ′(t)
∫ t

0

dt1L̃′′(t1) + G ′(t)
∫ t

0

dt1

∫ t1

0

dt2L̃′′(t1)L̃′′(t2) + . . . . (5.15)

The role of the terms of different orders will be addressed further on.

5.2.3 Directional derivatives

Gradient-based optimization methods essentially rely on the evaluation of the derivatives
of the function to be optimized. Apart from the partial derivative with respect to a scalar,
the derivative along the direction of an operator R may be of interest. For some functional
or superoperator F [L], we define it in the following way:

DRF [L] =
d

dε

∣∣∣∣
ε=0

F [L+ εR]

Clearly, if we put L′ = L,L′′ = εR in the expansion (5.15), we will obtain a series in powers
of a small parameter ε. From this, we immediately obtain the directional derivative of a
time-ordered exponential (5.6) (the term coupled to ε1):

DRG(t) ≡ DG
DR

(t) =
d

dε

∣∣∣∣
ε=0

T exp

{∫ t

0

dt1 [L(t1) + εR(t1)]

}
=

G(t)

∫ t

0

dt1G−1(t1)R(t1)G(t1). (5.16)

This expression shows how susceptible (to a first order) the cumulative system evolution
is to the interactions represented by R. The formulas for higher-order derivatives can be
derived in the same manner, for example:

D2
R,RG(t) ≡ D2G

DR2
(t) = 2G(t)

∫ t

0

dt1

∫ t1

0

dt2G−1(t1)R(t1)G(t1)G−1(t2)R(t2)G(t2) (5.17)

D2G
DRDQ

(t) = G(t)

∫ t

0

dt1

∫ t1

0

dt2G−1(t1)R(t1)G(t1)G−1(t2)Q(t2)G(t2)+

G(t)

∫ t

0

dt1

∫ t1

0

dt2G−1(t1)Q(t1)G(t1)G−1(t2)R(t2)G(t2) (5.18)
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As our control problem (5.2) is bilinear (i.e. linear with respect to each control parameter
ak(t)), we can write the derivative with respect to ak(t) in terms of a directional derivative:

∂G
∂ak

(t) =
∂

∂ak
T exp

{∫ t

0

dt1L0 +
K∑
l=1

al(t1)Ll

}
=

∂

∂ε

∣∣∣∣
ε=0

T exp

{∫ t

0

dt1

[
L0 + εLk +

K∑
l=1

al(t1)Ll

]}
=

DG
DLk

(t) (5.19)

This expression can be simplified further in the case of a discretized pulse (5.9), as all
variables ak,m are independent of each other:

∂G(T )

∂ak,m
= π+

m [L] Υm[L,Lk]π−m [L] , k = 1, . . . , K, m = 1, . . . ,M (5.20a)

π+
m [L] =

M∏
j=m+1

exp
(
L[j]∆t

)
, π−m [L] =

m−1∏
j=1

exp
(
L[j]∆t

)
, π+

M = π−1 = 1 (5.20b)

Υm[L,Lk] =
∂

∂ak,m
exp

[(
L0 +

K∑
i=1

ai,mLi

)
∆t

]
=

D

DLk
exp

(
L[m]∆t

)
=

exp
(
L[m]∆t

) ∫ ∆t

0

dt exp
(
−L[m]t

)
Lk exp

(
L[m]t

)
. (5.20c)

As a reminder, the index k denotes the control parameter, and m is the number of the time
step. The superoperators π+

m, π
−
m, defined in equation (5.20b), are known as the forward

and backward propagators, respectively. Importantly, they do not depend on k and can
be updated recursively at each increment of m:

π+
m+1 [L] = π+

m [L] exp
(
−L[m+1]∆t

)
, π−m+1 [L] = exp

(
L[m]∆t

)
π−m [L] , (5.21)

This method is very memory efficient since it involves only one matrix multiplication at
each update.

5.2.4 Van Loan method

Formulas (5.16), (5.19) and (5.20c) show that we need an efficient algorithm to evaluate
integrals of such type:

∫
[T exp(•)]−1K T exp(•) – in order to find a derivative. The
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method developed by Van Loan shows that such integrals naturally appear in the solutions
of linear differential equations for larger block matrices [91, 92]. Precisely, the solution to
the following block matrix equation:

d

dt

(
C11(t) C12(t)

0 C22(t)

)
=

(
L(t) R(t)

0 L(t)

)(
C11(t) C12(t)

0 C22(t)

)
, C11(0) = C12(0) = C22(0) = 1,

(5.22)
is given by:(

C11(t) C12(t)
0 C22(t)

)
≡ T exp

[∫ t

0

dt1

(
L(t1) R(t1)

0 L(t1)

)]
=

(
G(t) DRG(t)

0 G(t)

)
. (5.23)

Remarkably, the equalities with higher-order directional derivatives, analogous to (5.17)
and (5.18), also hold, e.g.:

T exp

∫ t

0

dt1

L(t1) R(t1) 0
0 L(t1) Q(t1)
0 0 L(t1)

 =

G(t) DRG(t) D2
R,QG(t)

0 G(t) DQG(t)
0 G(t)

 . (5.24)

The time-ordered exponential substantially simplifies in the case of constant matrices
and gives the way to evaluate Υm[L,Lk] from (5.20c), which depends only on the values
at the mth time step:(

exp
(
L[m]∆t

)
Υm[L,Lk]

0 exp
(
L[m]∆t

)) = exp

[(
L[m] Lk

0 L[m]

)
∆t

]
(5.25)

This result shows that for a partial derivative with respect to a scalar, one needs to expo-
nentiate only one block matrix of the size 2 dim (L) × 2 dim (L), and take its top right
slice (highlighted). The situation is different for a directional derivative with respect to an
operator R that affects the system evolution at all times, whether R is time-dependent or
not. We can obtain a formula for it from the fact that the solution to equation (5.22) in
the piecewise constant case can be written as a product of matrix exponentials, by analogy
to (5.9):(

C11(t) C12(t)
0 C22(t)

)
=

(
G(t) DRG(t)

0 G(t)

)
=

M∏
m=1

exp

[(
L[m] R[m]

0 L[m]

)
∆t

]
(5.26)

This brings us to the conclusion that the evaluation of a directional derivative with respect
to an operator requires the evaluation of M matrix exponentials of the size 2 dim (L) ×

133



2 dim (L), and their multiplication. As before, the desired derivative is given by the upper
right quadrant of the obtained matrix.

What about the mixed derivative of this type: ∂
∂ak,m

DRG(t) ? The answer comes from

the differentiation of both sides of equation (5.26) (consider the case of time-independent
R for simplicity):(

∂G(t)
∂ak,m

∂
∂ak,m

DRG(t)

0 ∂G(t)
∂ak,m

)
=

∂

∂ak,m

M∏
j=1

exp

[(
L0 +

∑K
i=1 ai,jLi R

0 L0 +
∑K

i=1 ai,jLi

)
∆t

]
=

∂

∂ak,m

M∏
j=1

exp

[(
L′0 +

K∑
i=1

ai,jL′i

)
∆t

]
,

where L′0 = 12 ⊗ L0 +
(

0 1
0 0

)
⊗R, L′i = 12 ⊗ Li (5.27)

We already have formula (5.20) that gives the derivative of an analogous product of matrix
exponentials. This means we can directly use it for the “effective” Liouville operator
L′(t) = L′0 +

∑K
i=1 ai(t)L′i: ∂G(t)

∂ak,m

∂
∂ak,m

DRG(t)

0 ∂G(t)
∂ak,m

 = π+
m [L′] Υm[L′,L′k] π−m [L′] , (5.28a)

π+
m [L′] =

M∏
j=m+1

exp

[(
L[j] R
0 L[j]

)
∆t

]
, π−m [L′] =

m−1∏
j=1

exp

[(
L[j] R
0 L[j]

)
∆t

]
,

π+
M = π−1 = 1,

(5.28b)

(
exp

(
L′[m]∆t

)
Υm[L′,L′k]

0 exp
(
L′[m]∆t

)) =
M∏
m=1

exp



L[m] R Lk 0

0 L[m] 0 Lk
0 0 L[m] R
0 0 0 L[m]

∆t

 (5.28c)

In this case, the matrix slices should be extracted taken two times (highlighted with red
and yellow). The rules of updating the backward and forward propagators remain the same
as before.
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5.3 Control problem formulation for gradient mini-

mization

5.3.1 Spin dynamics: generalization to a nonlinear problem

The problem we need to solve — find optimal voltage and field sequences for the quantum
control of electron spins — is clearly not bilinear. Indeed, such control parameters as
deviation g-factors and exchange coefficients depend nontrivially on the experimentally
controlled gate voltages. As before, we denote the plunger gate voltages as Vi, i = 1, . . . , N ,
and the tunnel gate voltages as Wj, j = 1, . . . , N − 1. Consider the nondissipative case
first. We can rewrite the Liouville evolution generator as follows:

L(t) = L0 +
K∑
k=1

ak ({bs(t)}k)Lk, {bs(t)} =
K⋃
k=1

{bs(t)}k (5.29)

where {bs}k is the set of experimentally controlled parameters which determine the value
of ak, and {bs} is the set of all such parameters. The coefficients and generator components
are deduced from the system spin Hamiltonian (3.23) and are summarized in table 5.1.

Index k ak Lk {bk} elements

0 –
N∑
j=1

i

2
(ω − ωrf)Zj

–

1 . . . N δgk iω

4
Zk

Vk,Wk−1,Wk

N + 1, . . . , 2N − 1 Jk−N i

4~
~σk−N · ~σk+1−N

Vk−N , Vk+1−N , Wk−N

2N Brf cosφ
i
2µb

~

N∑
j=1

Xj
Brf, φ

2N + 1 Brf sinφ
i
2µb

~

N∑
j=1

Yj
Brf, φ

Table 5.1: Components of the spin evolution generator. If higher precision is required,
influence of all voltages on δgk, Jk can be taken into account.
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Index s bs ∂

∂bs,m

1 . . . N Vs (
∂gs
∂Vs

)
m

∂

∂as,m
+

(
∂Js,s+1

∂Vs

)
m

∂

∂aN+s,m

+

(
∂Js−1,s

∂Vs

)
m

∂

∂aN+s−1,m

N + 1, . . .,
2N − 1

Ws−N
(
∂gs−N
∂Vs−N

)
m

∂

∂as−N,m
+

(
∂gs+1−N

∂Vs+1−N

)
m

∂

∂as+1−N,m
+(

∂Js−N,s+1−N

∂Ws−N

)
m

∂

∂as,m

2N Brf cosφm
∂

∂a2N,m

+ sinφm
∂

∂a2N+1,m

2N+1 φ −sinφm
Brf,m

∂

∂a2N,m

+
cosφm
Brf,m

∂

∂a2N+1,m

Table 5.2: Derivatives with respect to the control parameters of a nonlinear spin dynamics
control problem.

Here, we make a reasonable approximation that each control parameter is dependent only
on the voltages of the three closest gates. However, the approximation can be lifted if
needed to achieve higher precision. In total, there are K = 2N + 1 distinct variables
ak, and 2N + 1 physically controlled quantities: Vi, Wi, Brf, φ. Gradient optimization
methods require the derivative information about the latter. Thus, we need to express
all derivatives with respect to voltages, field magnitude and phase at the mth time step
in terms of ∂

∂ak,m
. This will enable us to utilize the formalism developed earlier, since

L(t) is bilinear with respect to {ak(t)}. In this work, we do not aim at the GRAPE
implementations which incorporate the second derivatives but rather stick to the quasi-
Newton BFGS algorithm [85] that estimates the system Hessian matrix based on the
gradient history. Therefore, we derive the expressions only for the first derivatives.

The summary of the results is presented in table 5.2. The coefficients in the last two
entries correspond to a Jacobian matrix of polar coordinates in a Cartesian system:

∂(r, φ)

∂(x, y)
=

(
∂(x, y)

∂(r, φ)

)−1

=
(

cosφ −r sinφ
sinφ r cosφ

)−1

=
(

cosφ sinφ

− sinφ
r

cosφ
r

)
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As before, we can transition from the nondissipative to the dissipative case with the
substitutions:

1○ Lk → 12N ⊗ Lk − LT
k ⊗ 12N , 2○ L → L+ Γ. (5.30)

Also, for simplicity, we will keep only the dephasing Lindblad terms for further derivations,
i.e. α = 3 in formulas (3.25). First of all, only this contribution to non-unitarity is
”avoidable”, and secondly, it affects the system on much shorter timescales that spin
relaxation (usually, T2 � T1). Thus, the expression for Γ from (5.3) simplifies to the
following:

Γ =
1

2T2

N∑
j=1

(Zj ⊗ Zj − 122N ) (5.31)

5.3.2 Expression for the cost function

As before, the problem to be solved with the gradient descent method is formulated as a
scalar cost function minimization. Unlike in chapter 4, the cost function can include more
terms now — GRAPE allows to directly control more quantities:

f = wfff + wΓfΓ + wcsfcs + wbffbf + wvwfvw,
∑
i

wi = 1. (5.32)

The last three terms have the same meaning as discussed in section 4.2: charge stability
preservation, restrictions on the electromagnetic energy losses and voltage sweep rates.
The corresponding expressions for cost function contributions (4.26), (4.29), and (4.31),
still apply but in a discretized form (integrals are replaced with sums

∫
→
∑

m ∆t, and
time derivatives with the finite difference formulas).

The role of the first two terms is maximizing the quantum operation fidelity and the
reduction of system susceptibility to decoherence, respectively. The corresponding expres-
sions are derived in the next two subsections. Although not discussed here, it is also possible
in principle to design pulses robust to noise using the same cost function formalism. The
examples of noise incorporation for a linear control problem can be found in [91].
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5.3.3 Maximizing fidelity

Suppose the unitary operator U0(t) corresponds to a desired system evolution. In the ideal
case, there is obviously no decoherence, and the density matrix evolution dynamics can be
expressed in one of the two equivalent forms:

ρ(t) = U0(t)ρ(0)U †0(t), col [ρ](t) = U∗0 ⊗ U0 col [ρ](0). (5.33)

We introduce the following general notation for unitary operators:

U =

{
U , nondissipative case,

U ∗ ⊗ U , dissipative case,
(5.34)

where the index “0” corresponds to the desired quantum operation, and no index refers to
the actual system evolution:

L = −iH + Γ, U(t) = T exp

(
−i
∫ t

0

dt1H(t1)

)
(5.35)

We define the infidelity of a quantum operation in the following way:

ff = 1− 1

dimG
|〈G(T ),U0(T )〉| = 1− 1

dimG

√
tr
[
G(T )U †0(T )

]
tr [G†(T )U0(T )], (5.36)

where 〈·, ·〉 denotes a Frobenius inner product: 〈A,B〉 = trA†B; dimG = 2N in the
nondissipative case, and is 22N otherwise. The corresponding Frobenius norm is denoted
as ‖A‖ =

√
〈A,A〉 =

√
trA†A. It immediately follows from Cauchy-Schwarz inequality

that

0 ≤
(

1

dimG
|〈G(T ),U0(T )〉|

)2

≤
tr
[
G†(T )G(T )

]
dimG

·
tr
[
U †(T )U(T )

]
dimU︸ ︷︷ ︸
≡1

≤ 1. (5.37)

The right-hand side of this inequality obviously holds in the nondissipative case, when
the propagator G ≡ U is unitary. Let us now prove it in the dissipative case. As is well
known [93], any density matrix transformation is a completely positive trace-preserving
map and thus can be written in the Kraus form:

ρ̃ =
∑
l

SlρS
†
l ,

∑
l

S†l Sl = 12N (5.38)
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for some set of Kraus operators Sl (their actual expressions for are unimportant). If we
vectorize equation (5.38) according to identity (5.5), we can express the system propagator
in the following way:

G(t) =
∑
l

S∗l (t)⊗ Sl(t). (5.39)

From this we derive:

tr
[
G†G

]
= tr

[∑
l,q

(S∗l ⊗ Sl)
† S∗q ⊗ Sq

]
=
∑
l,q

(
trS†l Sq

)∗
trS†l Sq

=
∑
l,q

|〈Sl, Sq〉|2 ≤
∑
l,q

‖Sl‖2 ‖Sq‖2 = tr

[∑
l

S†l Sl

]
· tr

[∑
q

S†qSq

]
=
(
2N
)2

= dimG.

Thus, the inequality (5.37) holds at all T , which justifies the choice of the infidelity cost
function (5.36). Its derivatives with respect to the control variables:

∂ff
∂ak,m

= − 1

dimG

tr
[
∂G(T )
∂ak,m

U †(T )
]

tr
[
G†(T )U0(T )

]
+ tr

[
G(T )U †(T )

]
tr
[
∂G†(T )
∂ak,m

U0(T )
]

2
√

tr [G(T )U †(T )] tr [G†(T )U0(T )]

=
1

dimG
√

tr [G(T )U †(T )] tr [G†(T )U0(T )]
Re

{
tr

[
∂G(T )

∂ak,m
U †(T )

]
tr
[
G†(T )U0(T )

]}
,

(5.40)

and ∂G(T )
∂ak,m

is given by formula (5.20).

5.3.4 Lowering susceptibility to decoherence

This cost function contribution is obviously defined only in dissipative case and is given
by the following expression:

fΓ =
‖DΓU(T )‖

maxa(t) ‖DΓU(T )‖
(5.41)

The motivation for this choice of cost function is the following. If we put L′ = −iH,L′′ = Γ
in formula (5.15), we get an expansion:

G(t) = U(t) + DΓU(t) + D2
Γ,ΓU(t) + . . . . (5.42)
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From here, we see that the term DΓU(t) is the leading term in the perturbation of the
unitary operator. Consequently, if we minimize its norm, we will maximize the system
robustness to decoherence in the 1st order. The directional derivative with respect to any
operator A satisfies the following inequality:

‖DAU(T )‖ =

∥∥∥∥U(T )

∫ t

0

dt1U †(t1)A(t1)U(t1)

∥∥∥∥ =

∥∥∥∥∫ T

0

dt1U †(t1)A(t1)U(t1)

∥∥∥∥ ≤∫ T

0

dt1
∥∥U †(t1)A(t1)U(t1)

∥∥ =

∫ T

0

dt1 ‖A(t1)‖ , (5.43)

where we used the fact that the Frobenius norm of a matrix does not change when a
unitary acts on it (this immediately follows from the definition of the norm). In case of a
time independent operator A, the maximum simplifies to ‖A‖T . Using expressions (5.31)
and (5.43), we derive the upper bound on the directional derivative with respect to Γ:

max
a(t)
‖DΓU(T )‖ =

T

2T2

√√√√tr

(
N∑
j=1

Zj ⊗ Zj − 122N

)2

=

T

2T2

√√√√tr

[
N∑

j,l=1

ZjZl ⊗ ZjZl + 122N

]
=

T

2T2

√√√√ N∑
j,l=1

22Nδjl + 22N =
T

T2

2N−1
√
N2 +N, (5.44)

and obtain the final expression for the cost function contribution due to decoherence:

fΓ =
T2

2N−1T
√
N2 +N

√
tr [DΓU †(T )DΓU(T )]. (5.45)

Using the same method as before, we find the derivatives of fΓ with respect to control
parameters:

∂fΓ

∂ak,m
=

T2

2N−1T
√
N2 +N

Re
{

tr
[
∂DΓU(T )
∂ak,m

DΓU †(T )
]}

√
tr [DΓU †(T )DΓU(T )]

; (5.46)

refer to subsection 5.2.4 for the appropriate formulas for the directional and mixed deriva-
tives of G = U .
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5.4 Summary of chapter 5

In summary, a powerful gradient ascent pulse engineering (GRAPE) algorithm is adapted
to the problem of voltage and ESR field pulse design in the spin qubit architecture proposed
in [65]. The main results include:

1. A linear control problem for a general Liouville equation (with the incorporation of
dissipation when necessary) is generalized to the case of nonlinear connection between
effective parameters of the spin system and physically controlled gate voltages, ESR
magnetic field amplitude and phase.

2. A nonlinear cost function minimization problem, accounting for the pulse infidelity
and system susceptibility to decoherence, is rigorously defined.

3. Relevant scalar, directional and mixed derivatives needed for the second-order quasi-
Newton optimization, are explicitly derived.

Due to its higher versatility, once implemented, the GRAPE algorithm is expected to
further improve the shapes and timescales of the pulses designed in chapter 4.
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Chapter 6

Conclusions and future work

In conclusion, we made a considerable progress towards the realization of semiconductor
quantum computers with electron spins and Majorana fermions.

The results of chapter 2 are a significant step towards the holistic understanding of the
mechanisms of epitaxial Al formation on III-V heterostructures. The first comprehensive
review of the topic was presented and augmented with two new sets of results obtained
experimentally. First, we demonstrated epitaxial metallization of In-rich InGaAs with a
flat Al layer, and, for the first time, capping of the Al layer with As4 as an alternative to
its oxidation. The sharpness of metal-semiconductor interface was confirmed with cross-
sectional STEM and EELS with atomic precision. Second, based on extensive in situ and
ex situ investigation of capped and uncapped growths with a broad range of Al deposition
rates, we identified a significant advantage of using very fast rates to substantially reduce
wafer heating and improve its surface morphology up to the level of atomic smoothness.

A plethora of interesting phenomena discovered during this study will benefit from
further investigation with a new, targeted series of experiments. The extensive monitoring
and characterization (with STEM and EELS in particular) of the new test samples will
hopefully provide enough data to establish a consistent procedure for growing epitaxially-
metallized, scalable, InAs quantum well based platforms for the observation of Majorana
zero modes.

In chapters 3, 4 and 5, we developed a strong algorithmic and software foundation
for the simulation of a scalable spin-qubit computer architecture in silicon. The full-scale
simulator is being developed as a part of QuDiPy — a general-purpose Python package for
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semiconductor quantum dot simulation. The direct incorporation of realistic gate geome-
tries to infer effective parameters of the qubit system by efficient many-electron calculations
makes possible the use of the simulator in conjunction with real quantum dot devices. A
very general and numerically inexpensive voltage pulse engineering algorithm for unitary
operations, derived in chapter 4, goes far beyond the spin-qubit control schemes proposed
previously for similar devices by featuring theoretical 100% fidelity, automatic incorpora-
tion of all interdot cross-couplings, and numerically inexpensive optimization for meeting
system limitations. The chapter 5 features a novel adaptation of GRAPE to the gate
and ESR voltage control problem for spin qubit manipulation. We anticipate it to further
improve the performance of pulses engineered in chapter 4.

The full software realization of these algorithms (particularly, implementation of ex-
change two-qubit gates and cross-coupling incorporation) along with the improvement of
many-body calculation method in QuDiPy are our primary near-term goals. This will
enable us to demonstrate the full-scale performance of the computer simulation, interface
it with the cryogenic control electronics, and experimentally realize quantum operations
on real quantum dot devices.

Above all, we consider our results to be directly relevant to the development and control
of hybrid topological quantum devices, which will combine advantages of spin quantum dot
and Majorana qubit operations. In particular, our method of mapping potential landscapes
onto effective Hubbard model is immediately applicable to any networks of Majorana is-
lands and quantum dots in planar semiconductor heterostructures. Furthermore, the pulse
engineering algorithm proposed for Si qubits can be utilized in the hybrid devices that will
combine electron spin manipulation and Majorana braiding (or equivalent measurements)
for quantum gate operations.
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