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Abstract

This thesis provides an exploration of the interplay between imprecise probability and statis-
tics. Mathematically, one may summarise this relationship as how (Bayesian) sensitivity
analysis involving a set of (prior) models can be done in relation to the notion of coherence
in the sense of de Finetti [32], Williams [84] and, more recently, Walley [81]. This thesis
explores how imprecise probability can be applied to foundational statistical problems.

The contributions of this thesis are three folds. In Chapter 1, we illustrate and motivate
the need for imprecise models due to certain inherent limitations of elicitation of a sta-
tistical model. In Chapter 2, we provide a primer of imprecise probability aimed at the
statistics audience along with illustrative statistical examples and results that highlight
salient behaviours of imprecise models from the the statistical perspective.

In the second part of the thesis (Chapters 3, 4, 5), we consider the statistical application
of the imprecise Dirichlet model (IDM), an established model in imprecise probability. In
particular, the posterior inference for log-odds statistics under sparse contingency tables,
the development and use of imprecise interval estimates via quantile intervals over a set of
distributions and the geometry of the optimisation problem over a set of distributions are
studied. Some of these applications require extensions of Walley’s existing framework, and
are presented as part of our contribution.

The third part of the thesis (Chapters 6, 7) departs from the IDM parametric assumption
and instead focuses on posterior inference using imprecise models in a finite dimensional
setting when the lower bound of the probability of the data over a set of elicited priors
is zero. This setting generalises the problem of zero marginal probability in Bayesian
analysis. In Chapter 6, we explore the methodology, behaviour and interpretability of the
posterior inference under two established models in imprecise probability: the vacuous and
regular extensions. In Chapter 7, we note that these extensions are in fact extremes in
imprecision, the variability of an inference over the elicited set of probability distributions.
Then we consider extensions which are of intermediate levels of imprecision, and discuss
their elicitation and assessment.
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Notation

a, (a1, . . . , am) – a vector in finite dimensional Euclidean space, Rm.

aC – for a vector a ∈ Rm, set of indices C ⊆ {1, . . . ,m}, aC =
∑

i∈C ai.

Ac – the complement of a set A

A – the (topological) closure of a set A

4m, 4m – the unit simplex (and its topological closure) in Rm.

L(Ω) – the linear space of bounded random variables from Ω to R

EP – an expectation operator with respect to a probability measure P .

E, EM – a lower expectation and a lower expectation with respect to a set of distributions
M , respectively.

P , PM – a lower probabilility and a lower probability with respect to a set of distributions
M , respectively.

ν – when used in the context of the imprecise Dirichlet model (IDM), ν is the apriori
fixed concentration parameter of the prior set of Dirichlet distributions of the IDM,
{Dirichlet(να) : α ∈ 4p} (for a fixed, finite p number of categories).
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Chapter 1

Elicitation as a statistical motivation
for imprecise models

Throughout this thesis, we distinguish between the following.

• By a precise model, we refer to the usual Bayesian set up with a single prior and
a single likelihood producing a single posterior distribution. Note that hierarchical
and mixture models with a single hyper-distribution at the top of the hierarchy are
precise.

• By an imprecise model, we mean a statistical model consisting of a set of Bayesian
prior distributions and a single likelihood model that are used to obtain a corre-
sponding set of posterior distributions, one for each prior.

A major theme in this thesis is that imprecise models can be a natural and intuitive
statistical tool due to the fact that (prior) elicitation does not always result in a single
distribution, but rather a collection that cannot be further whittled down with the infor-
mation at hand.
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1.1 A set of models as a more representative elicita-

tion

We illustrate the need for such models with the following examples.

Example 1.1.1: (Elicitation of a finite number of moments) During elicitation, typically
only a finite number of moments can be elicited from an expert (O’Hagan [62]). However,
specifying these may not identify a single distribution. For example, Lindsay and Basak
[54] observes that matching the first 2p moments of a distribution F to a standard nor-
mal distribution results in large values of deviations |F (x) − Φ(x)| in the non-tail region
where |x| is small. For example, they report that when F is matched to the first 2p = 60
moments, |F (0) − Φ(0)| ≤ 0.2233 meaning that moment matching does not guarantee a
tight fit between F and Φ at x = 0. Thus, a finite number of elicited moments cannot be
guaranteed to specify a single distribution, and the elicited information would result in a
set of distributions instead in these cases.

�

Example 1.1.2: (Elicitation of population parameters in an interval) Typically, most
parameters cannot be elicited to an arbitrary degree of precision. This may be due to the
following reasons.

• Limits of communication: The ability of the expert to articulate and communicate to
the statistician as well as the ability of the statistician to comprehend and ‘recover’
the original meaning of the information communicated typically determine how ac-
curate the expert information is translated into statistical quantities. This problem
is explored in more detail in O’Hagan et al [63].

• Limits of the expert knowledge: communication issues aside, the expert may only be
able to specify a statistical quantity up to an interval precision.

Due to the finite precision of the elicited parameters, multiple candidate distributions may
be identified as a result.

�

Example 1.1.3: (Combining experts’ opinion in isolation) It is sometimes desirable to
synthesise a single prior model from the opinions of two or more experts. Garthwaite,
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Kadane and O’Hagan [39] provide a comprehensive account of eliciting a single prior prob-
ability distribution in this case. We outline two considerations that present obstacles on
the path towards eliciting a single prior distribution.

Pooling methods: When individual priors are elicited from experts in isolation, two so-
called opinion pools may be formed. The linear opinion pool is a convex mixture of the
individual elicited prior distributions and the logarithmic opinion pool is their weighted
geometric mean with weights summing to unity. Which pooling method should be used?
Garthwaite, Kadane and O’Hagan, for example, states that the linear pooling satisfies a
consistency in marginalisation whereas the logarithmic pooling satisfies the Bayesian ex-
ternality criteria, meaning that the pooling of the posterior distributions should coincide
with the posterior distribution computed from pooling the priors (Madansky [55]). The
point is that both properties are considered statistically desirable, and yet each of these
two common pooling methods satisfy only one of them [39]. It is not straightforward to
choose which pooling method to use unless one has further prior information.

Weights determination: With a choice of the pooling method, the weights to each expert
need to be assigned values. Two considerations come to mind: what definition or meaning
do the weights have, and how can one verify that the resulting criteria are satisfied?

Let us illustrate these issues with an example of such weight assignments. Garthwaite,
Kadane and O’Hagan [39] remark that some experts may be less informed than others and
the prior should reflect the difference in credibilities. For example, O’Hagan [62] notes that
Cooke [22] proposed to assign weights to each single prior distribution commensurate to
each expert’s credibility. This results in a prior that is a single mixture or convex com-
bination of the priors with the weights being a hyper-prior distributions on the elicited
prior distributions. The weights themselves are determined by having each expert answer
relevant questions about the field, the answers to which the statistician knows but the
expert does not. In this way, the expert’s credibility is checked against a benchmark.

One major issue of this methodology is that the quality of the benchmark is dependent
on the statistician’s competency with the expert domain. The statistician may err on the
side of caution and use more elementary questions that can be easily verified by the statis-
tician. The questions may be so simple that all the experts will pass the benchmark, such
that it does not have much power to discriminate the experts’ competencies. On the other
hand, using more ambitious questions may result in the statistician’s inability to verify the
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answers, thus invalidating the benchmark itself.

At the other extreme, the ideal benchmark will allow the statistician to exactly compute
weights which are commensurate to the benchmark scoring and thus identify a single set
of weights. It is likely that reality falls in between, resulting in a non-singleton subset of
weights that are candidates to reflecting the experts’ competencies.

�

Example 1.1.4: (Combining experts’ opinion in group) A second case of combining ex-
perts’ opinions is when a prior is elicited when the experts act as a group, as opposed to
combining the priors elicited from each individual expert. Here, the experts are to reach,
as a group that can directly interact with one another, a consensus to the questions posed
during elicitation. This is a behavioural aggregation method of group elicitation [39]. This
method naturally introduces biases due to the psychological effects of working in a group
(such as the possibility of dominating personalities affecting and suppressing the views of
others or that a final consensus is not possible for other reasons [39]). To partially mitigate
these effects, Garthwaite, Kadane and O’Hagan [39] considered also the Delphi method
whereby each expert’s beliefs are separately elicited, aggregated and then shared to all
other experts in individual isolation, and these steps are iterated.

Garthwaite, Kadane and O’Hagan [39] also propose two rational ways of reaching a con-
sensus. The first is through a majority voting of ranking of all alternatives (such as the
stochastic preference of indicator variables when eliciting probabilities). This is possible
only in the most trivial of cases: Arrow’s theorem (Arrow [5]) implies that no single set of
such preferences can represent a group consensus (that satisfies some conditions for good
mathematical behaviour) when there are at least three alternatives to be considered with
non-dictatorial rational agents.

The second way discussed by Garthwaite, Kadane and O’Hagan [39] is to consider a single
Bayes’ model representing the group belief that satisfies a so-called (weak) Pareto prin-
ciple: that is, this group prior preserves all stochastic preferences agreed upon by the
individuals of the group. In only a few cases does a prior distribution representing such
a set of preferences exist (Garthwaite, Kadane and O’Hagan cite Seidenfeld, Kadane and
Schervish [72] and Goodman [42] for such existence conditions).
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In conclusion, as Garthwaite, Kadane and O’Hagan [39] have observed: group dynamics
prevent a definitive assertion and measurement of consensus. Without consensus, it is
unclear what information from an interacting group of experts a single prior distribution
actually represents. A set of prior distributions is a more natural representation in this
situation.

�

Example 1.1.5: (Bounds on quantiles specify a set of distribution from a Beta family)
Quantiles are sometimes considered psychologically easier to elicit from an expert as they
are easier to comprehend than moments (O’Hagan [62]). However, we encounter the same
problem as before, where a finite number of quantiles may only identify a set of distribu-
tions.

Suppose that it has been elicited that a candidate prior for a Bernoulli probability θ should
be in the beta family of distributions,{

Ba,b(p) =

∫ p

0

Γ(a)Γ(b)

Γ(a+ b)
tα−1(1− t)b−1dt : a, b > 0

}
.

We are interested in the situation when lower and upper bounds of the 25-th and 75-th
quantiles have also been elicited. The α-th quantile of a random variable θ following a
beta distribution with parameters a, b is given by,

inf {t : Ba,b(t) ≥ α}.

In the left panel of Figure 1.1, the level curves of the 25-th and 75-th quantiles,

a, b 7−→ inf {t : Ba,b(t) ≥ α},

for α = 0.25 and α = 0.75 are respectively plotted in red and blue over the set of
R+ × R+ 3 (a, b).

Now suppose that the elicited bounds are,

0.2 ≤ inf {t : Ba,b(t) ≥ 0.25} ≤ 0.3,

and,
0.7 ≤ inf {t : Ba,b(t) ≥ 0.75} ≤ 0.8.
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The level curves that satisfy these restrictions are plotted (in higher density) in the right
panel of Figure 1.1. Importantly, note that the region of intersection of the red and blue
curves form the natural parameters of the set of distribution that represents exactly the
elicited information: if no other information is given, there is no motivation to prefer one
prior over another within this set. In other words, further elicited information or assump-
tions are needed to distinguish a single prior out of this set as being more suitable than
the rest.
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Figure 1.1: Left: the Beta 25-th (red) and 75-th (blue) quantile functions level curves as
a function of its hyperparameters, a, b. Right: the same level curves, but restricting the
quantile levels to the 25-th quantile being in [0.2, 0.3] (red) and the 75-th quantile functions
being in [0.7, 0.8] (blue).

�

1.2 Sensitivity analysis and sets of distributions

As we have seen, it is quite common that the elicited information does not distinguish a
single prior distribution choice, but merely leaves one with a set of candidate distributions.
In these situations, additional assumptions not implied by the elicitation must be used in
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order to pick out a single distribution. If one does choose a single prior out of this set and
computes the posterior inference with it, then a sensitivity analysis is typically prescribed
to check if the posterior inference is sensitive to the additional assumptions made to make
this choice. See section 4.7 of Berger [11] for an extensive review of this topic.

A complete sensitivity analysis seeks to understand how inference using the posterior dis-
tribution,

P (θ ∈ ·|x) =

∫
· L(x|θ)P (dθ)∫
Θ
L(x|θ)P (dθ)

,

can change when the components L, the likelihood model, P (·), the prior model and x,
the observed data change. For example, the frameworks of Zhu and Ibrahim [88] and
Clarke and Gustafson [21] measure changes of posterior quantities on the left with respect
to changes in all three components. However, a sensitivity analysis more commonly refers
to the sensitivity towards the prior specification (for example, Berger [10], Gustafson [43],
McCulloch [60], Ruggeri and Sivaganesan [68]). In this thesis, we follow the second ap-
proach and make the prior model the main focus out of the three components.

1.2.1 Global sensitivity analysis: Prior sensitivity analysis can be categorised as global
and local sensitivity analyses, and this distinction will become relevant to motivating the
imprecise methodology from a statistical perspective. ‘Global’ is meant in the sense that
the change of posterior inference is taken over the entire prior model space. For example,
if P denotes all the candidate models from which a single prior model on Θ 3 θ is to be
chosen, Ruggeri and Sivaganesan [68] cite that the range (of the posterior expectation of a
statistic T (θ)),

sup
P∈P

EP (T (θ)|x)− inf
P∈P

EP (T (θ)|x),

(where,

EP (T (θ)|x) =

∫
T (θ)L(x|θ)P (dθ)∫
L(x|θ)P (dθ)

,

for a fixed set of observations x), is a popular metric for sensitivity across all candidate
models, whose properties are detailed by, for example, in the overview by Berger et al. [9].
Importantly, for a fixed statistic of interest, the larger the range, the greater the variation
of the posterior expectation over the prior model space. Importantly, this is not to be
confused with the variation due to the randomness inside of a single prior as measured,
for example, by the posterior variance of T (although Ruggeri and Sivaganesan [68] make
a case to scale the range with a variance to obtain a more comprehensive picture of the
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variations due to both of these factors).

Example 1.2.1: (Global sensitivity analysis over Beta family with quantile restrictions)
Continuing with Example 1.1.5, suppose that one wishes to perform a global sensitivity
analysis after computing the posterior expectation (conditional on observing the number
of successes) of the Bernoulli probability θ with a prior chosen from the set of beta priors
with the additional quantile restrictions given in the example. The range introduced by
Ruggeri and Sivaganesan [68] in this example is the difference between the maximum and
minimum of the posterior expectation as a function over the set of parameters beta a, b
whose beta distribution also satisfies the quantile restrictions.

This optimisation may be done in terms of both the natural and mean parametrisation
of the Beta family. To this end, in Figure 1.2, we plot the domain of optimisation in the
natural parameter and the same domain, but in the mean parameters,

µ1(a, b) = γ(1)(a)− γ(1)(a+ b), µ2(a, b) = γ(1)(b)− γ(1)(a+ b),

where γ(1) is the digamma function.

Notice that in neither parametrisations is the domain convex. This generally does not
guarantee that tools of convex optimisation problems may be applied, and makes the
optimisation overall challenging without such tools. (We explore a special case of this
optimisation problem in Chapter 5.)

�

1.2.2 Local sensitivity analysis: On the other hand, ‘local’ sensitivity analysis focuses on
the variation of posterior quantities in a neighbourhood of the chosen prior model. Note
that it is ‘the’ chosen model in the sense that a single model is first chosen and inference is
performed with it. This makes the sensitivity analysis a post-hoc diagnostic and not part
of the inference itself.

It turns out that many of the methodologies of local sensitivity analysis share the same
idea. If the posterior is treated as a mapping from a prior model to a real number, then
how ‘flat’ is this surface at the point of the chosen prior? The flatter it is, naturally the
less the posterior expectation varies over a set around it. The different methods then boil
down to how this variation is measured and how this neighbourhood is defined, and we list
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Figure 1.2: Left: the Beta 25-th (red) and 75-th (blue) quantile functions level curves as a
function of its natural parameters, a, b restricted to the quantile levels to the 25-th quantile
being in [0.2, 0.3] (red) and the 75-th quantile functions being in [0.7, 0.8] (blue). Right:
same level curves over mean parametrisation.
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a sample of such methods. McCulloch [60] measures sensitivity using the Kullback-Leibler
divergences: if the second derivative of the divergence around the chosen prior model is low
but the divergence around the resulting posterior model is high, then it means that small
changes of prior is associated with large changes in the posterior. Diaconis and Freedman
[35] and Ruggeri and Wasserman [69] define a Fréchet derivative of the posterior expecta-
tion of statistic as a function of the prior model and use the magnitude of the derivative
operator evaluated at the chosen prior model as a measure of how sensitive the change
of the posterior expectation is to the prior model. Methods such as those due to Kurtek
and Bharath [51] Zhu and Ibrahim [88] formulate similar calculations in a more explicitly
geometrical manner that leads to using the differential manifold structure to define the
neighbourhood. Lastly, methods such as those due to Marriott and Maroufy [57] use the
concept of local mixing (for example Marriott [59]) to construct a neighbourhood that is
convex and linear, leading to more tractable computations.

1.2.3 Global or local?: We conclude this review of sensitivity analysis by contrasting global
and local analyses. If computationally tractable, a global analysis would by definition yield
more information about sensitivity than local. However, one might prefer the local analyses
over the global exactly because the latter is computationally too expensive or intractable.
In particular, one may be only interested in certain types of perturbations (for example an
ε contamination neighborhood over a collection of distributions (for example, see Berger
et al. [12]). Finally, a local sensitivity implies global sensitivity, such that one might wish
to check the former as a sufficient condition when it is straightforward to test first.

1.3 Imprecise methodology and sets of distributions

The imprecise methodology we study in this thesis is closely related to the global sensitiv-
ity analysis. We will use our previous discussion about the latter to introduce the former
in the statistical context.

As we will see in the later chapters, the models in the imprecise methodology which we will
be exploring can be largely represented by a set of models, say M . Similar to the sensitivity
analysis methodology, we will be working with a set of priors that each produces a posterior
distribution, and we will be computing ranges of such sets of posterior expectations, as
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well as the end points of the resulting intervals of the form[
inf
P∈M

EP (T (θ)|x), sup
P∈M

EP (T (θ)|x)

]
.

In this methodology, the length of this interval is called imprecision.

1.3.1 Sensitivity analysis versus imprecise methodology: If the imprecise methodology is
so similar to that of the global sensitivity analysis, why do we consider the former?

Firstly, the interpretations of the set of distributions in the imprecise setting and the global
sensitivity analysis setting are different. In the former, the set of priors is the object being
assessed as a model. For example, one might form a set of such prior distributions by
translating elicited information into restrictions over a space of distributions.

Example 1.3.1: Consider Θ = {θ1, θ2, θ3} to be the space of possible likelihood parameters
in consideration. A prior on this space is specified by P ({θi}) = pi, for the triplet p =
(p1, p2, p3) ∈ 43 in the unit simplex of R3. Let T (θ) be a statistic over the model space.
One might elicit from an expert bounds on the expectation of a finite number of random
variables f1(T ), . . . , fp(T ), each in the form of,

fi(T (θ1))p1 + fi(T (θ2))p2 + fi(T (θ3))p3 ≤ ci,

where ci is the elicited upper bound of the expectation of fi under p. In other words, the
elicited information about the prior model is that the prior should satisfy,

Fp ≤ c,

where F = [fi(T (θj))] is a p × 3 matrix and c = [ci]
T is a p × 1 vector of real numbers.

When feasible, this system represents a convex polytope in 43. That is to say, the distri-
butions in this set of priors are all consistent with the elicited information, and no single
one is preferred over another in this set. Thus, at this apriori stage, this entire set should
be considered ‘a prior model’, as opposed to a single prior in this set. In the imprecise
methodology, the entire set is to be used in posterior inference and in the subsequent chap-
ters of this thesis we will review how this is done in a coherent manner in the same way
that Bayesian probabilities are coherent (see Lindley [53], Jeffrey [49] or Definition 2.1.2,
for example, for a definition of coherence for Bayesian probabilities).
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�

In contrast, the set in a sensitivity analysis is not elicited in the same sense as the prior
distribution of which it is a neighborhood. Rather, it is a post hoc construction specifically
for testing the robustness of the inference, and is not part of the inference itself.

This leads to different interpretations between imprecision and range, even as they measure
the same quantity over the respective sets of distributions. However, because the set is
part of the model in the imprecise methodology, it is not to be interpreted as a measure of
robustness in the usual sense of the range. Rather, the imprecision is to be taken directly
as one of the posterior statistics to be reported as part of the inference, at the same level
as say posterior means, quantiles and variances. In fact, we draw the following analogy:
just as in Bayesian inference where the posterior distribution is considered to embody the
inference itself (with a sensitivity analysis being post-hoc and considered separate), the set
of posterior distributions resulting from the elicited set of prior distributions is also to be
considered to embody the inference and not to be treated as a diagnostic tool.

One issue of working with a set of distributions as a model is that Bayesian inference
typically works with coherent probabilities: the coherence of a set of probabilities is typ-
ically not defined in common settings. (See Chapter 2.) Another reason why sensitivity
analysis is considered post-hoc and not part of the inference is that the sensitivity analysis
methodology does not have a set of rules that defines it to be coherent, unlike (Bayesian)
probabilities (again see Definition 2.1.2). This fact highlights a difference between a (global)
sensitivity analysis and an imprecise methodology: there is a definition for coherence of a
set of models in the latter, which is why it can be readily claimed to produce principled
and coherent inference directly using a set of models as opposed to just one.

Example 1.3.2: We will see that a form of the generalised Bayes’ rule (GBR) (see
Theorem 2.2.4) in the imprecise methodology provides a coherent manner of constructing
posterior inference from a set of prior distributions. To continue with our earlier example,
if we let θ 7−→ L(x|θ) to be a fixed likelihood model, then a typical way to obtain an
imprecise posterior inference is to form a set of posterior expectations,

M|x =

{
U 7−→

∑3
i=1 U(θi)L(x|θi)pi∑3

i=1 L(x|θi)pi
: p ∈ 43 ∧ Fp ≤ c,

3∑
i=1

L(x|θi)pi > 0

}
,

(where x is some observation from the likelihood model). A typical inference that might
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be reported about T (θ) is,[
inf

P∈M|x
EP (T (θ)|x), sup

P∈M|x
EP (T (θ)|x)

]
.

The real numbers in this interval are then interpreted as values which are consistent with
the data, the likelihood and the set of priors that generated the posterior inference.

�

Thus, we have another motivation to consider the imprecise methodology. Coherence al-
lows for logical consistency when working with Bayesian probabilities (Lindley [53]), but it
needs to be defined for a set of prior distributions. Without such an extension, a Bayesian
has to perform inference with a single prior and essentially work with a candidate set
through the external and post-hoc methodology of sensitivity analysis. From our earlier
discussion, we have concluded that sometimes a single prior distribution might not be de-
ducible from the elicited information alone. In this light, the imprecise methodology allows
one to work with a set of prior models apriori while maintaining coherence.
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Chapter 2

Review of aspects of imprecise
models

In this chapter, we critically review Walley’s [81] theory of imprecise probabilities, the the-
ory upon which this thesis is based. In addition to being a literature review, we will also
provide our own pedagogical examples to illustrate the concepts in the theory for a statis-
tical audience.

Throughout this thesis, we use imprecise probability as a tool to construct posterior infer-
ence. By considering imprecision as part of the model as opposed to a separate indicator
of reliability of the model, posterior inference from imprecise models does not force the
choice of a single prior. This yields a model for statistical inference that is capable of
simultaneously taking multiple prior models into consideration.

As we have alluded in Section 1.3, imprecise expectations, which are a procedure of taking
the minimum and maximum of expectations over a set of distributions, is methodologi-
cally different from a sensitivity analysis over a set of distributions. Sensitivity analysis
does not prescribe principled approaches to either picking a single distribution from a set
of candidates or working with the whole set. Walley’s theory of imprecise probabilities,
the theory behind imprecise expectations, in addition to its mathematical component, also
prescribes how to construct reasonable models, in the form of the concepts of avoiding sure
losses and coherence.
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2.1 Avoiding sure losses and coherence

Let us first give a definition of assessment to pin down our usage of this term throughout
this thesis.

Definition 2.1.1: An assessment is an assignment of (imprecise or precise) expectation
values to a set of random variables.

�

Example 2.1.1: For sets A and B, there are at least two ways to provide an assessment
of the probability P (A ∪ B). One is use the inclusion-exclusion principle P (A) + P (B)−
P (A∩B) if one already has these probabilities at hand. Another is to consider C = A∪B
directly: this can be done, for example, by eliciting information about P (C) from an ex-
pert. (Notice that the expert need not know that C is in fact the union of A and B.)

Importantly, this example distinguishes an assessment which is derived from (and therefore
obeys) the laws of probability from one whose value may not do so. The latter may
potentially contradict other existing assessments of probabilities.

�

The two main principles driving the axioms of imprecise probabilities are avoiding sure
losses (assessments of probabilities that incur such losses are called Dutch books) and co-
herence. Importantly, sensitivity analysis does not implement these concepts, causing it to
diverge from the methodology of imprecise probability models. We review how coherence
and avoiding losses are implemented in the imprecise probability theory, which will be the
workhorse of this thesis.

We begin with the following definition from Lindley [53].

Definition 2.1.2: (Section 5.4 of Lindley [53]) For a sample space Ω with subsets A,B ⊂
Ω, an assessment P (·), P (·|·) over the subsets of this space is coherent iff it satisfies,

P (A), P (B) ∈ [0, 1],

P (Ω) = 1,

P (A ∪B) = P (A) + P (B), when A and B are disjoint,

P (A ∩B) = P (A)P (B|A).
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�

Authors of foundational probability theory such as de Finetti [32], Savage [70], and Lind-
ley [52], [53] have motivated this definition by a so-called subjective Bayesian viewpoint
(Walley [81]). It provides qualitative requirements for consistency of the assessments via
a gambling analogy. A linear utility is established to measure a gambler’s gain or loss. A
gambler engages in a gamble whose random reward is the realisation of a random variable.
Elicitation and assessment of probabilities of events and expectations of random variables
are treated as assigning prices to such gambles which are acceptable for the gambler given
certain knowledge about the realisation of the generating process. In principle, the gambler
should not accept prices that lead to a systematic losses and prices should be internally
consistent. Avoiding sure losses and coherence necessarily avoid two main types of such
inconsistencies in probability assessments.

2.1.1 Probability distribution and expectation

It is more useful to frame these inconsistencies in terms of expectations. In this context,
let us understand first what avoiding sure losses precisely entails. First, we follow Walley
[81] and make the following assumption.

Definition 2.1.3: For a sample space Ω, let L(Ω) be the linear space of bounded random
variables over Ω. (The space is linear because finite sums of bounded random variables is
again a bounded random variable.)

�

Condition 2.1.1: Unless stated otherwise, all random variables are bounded and in L(Ω)1.

�

1This is in accordance with Walley [81] whom we follow closely. For discussions of imprecision involving
unbounded random variables, see Sections 3.3.1 in this thesis. For an in-depth treatment of extensions to
extended-real-valued random variables of the theory of imprecise probabilities, see Troffaes and de Cooman
[78].
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The following is a special case of the more general definition stated in Walley [81], given
in Definition 2.1.7.

Definition 2.1.4: Given a sample space Ω, an assessment of expectation EP incurs sure
losses (or is a Dutch book) iff it is an assessment over a set of random variables F ⊆ L(Ω),
EP : F 7−→ R, such that there exists random variables X1, . . . , Xn ∈ F such that:

∀ω ∈ Ω :
n∑
i=1

(Xi(ω)− EP (Xi)) < 0. (2.1)

An assessment that does not incur sure losses is said to avoid sure losses.

�

An expectation that avoids sure losses ensures that we do not have any finite combination
of zero-expectation random variables being pointwise negative. Otherwise, it contradicts
the principle that such a sum should itself have a zero expectation. Expectations of a
single probability distribution typically avoid sure losses.

Lemma 2.1.1: (Lemma A.2.1) For any sample space Ω, and P a distribution over some
σ-field of Ω, any expectation EP over all bounded random variables avoids sure losses. In
other words, for any X1, . . . , Xn that are bounded,

sup
ω

n∑
i=1

(Xi(ω)− EP (Xi)) ≥ 0.

�

Despite being seemingly trivial in the probabilistic setting, we will see in Example 2.1.2
that avoiding sure losses is not at all trivial when attempting to ensure lack of losses over
multiple distributions, and we have seen from Chapter 1 that the latter could occur com-
monly in statistical practice.

A less severe inconsistency amongst assessments is incoherence. The following is a special
case of Definition 2.1.8, which represents a more general definition by Walley [81].

Definition 2.1.5: Given a sample space Ω, an assessment of expectation EP is incoherent
if it is an assessment over a set of random variables F ⊆ L(Ω), EP : F 7−→ R, such that
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there exists random variables X0, X1, . . . , Xn ∈ F and m ∈ N such that:

∀ω ∈ Ω :
n∑
i=1

(Xi(ω)− EP (Xi)) < m(X0(ω)− EP (X0)). (2.2)

An assessment that is not incoherent is coherent.

�

Let us qualitatively unwrap this definition. The random variables
∑

i(Xi − EP (Xi)) and
X0−EP (X0) both have an expectation of zero. What (2.2) means is that a sum of random
variables with a zero expectations is strictly less than any other positively scaling of any
other random variable with a zero expectation, implying in contradiction that one of the
sides does not have a zero expectation.

Importantly, this is less severe than avoiding sure losses as the assessments for the expecta-
tion of a random variable can still be bounded between the latter’s infimum and supremum,
so they are individually consistent with each other. Indeed, if the assessment EP (X0) is
incoherent with the rest in (2.2), it is intuitively clear that EP (X0) can be corrected by
increasing it so as to bring the right side of the inequality closer to the left2.

Again, expectations of random variables from a single distribution are coherent.

Lemma 2.1.2: (Lemma A.2.2) For any sample space Ω, and P a distribution over Ω over
some σ-field of Ω, any expectation EP over all bounded random variables are coherent. In
other words, for any X0, X1, . . . , Xn that are bounded and m ∈ N,

sup
ω

n∑
i=1

((Xi(ω)− EP (Xi))−m(X0(ω)− EP (X0)) ≥ 0.

�

Like avoiding sure losses, we will see in Section 2.1.2 that coherence is not trivial when
considering multiple distributions simultaneously.

2The minimum value to which to increase the assessment is called a natural extension of EP (Z) (relative
to the rest of the assessments).
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2.1.2 Sets of probability distributions and expectations

Despite the fact that probability assessments following Definition 2.1.2 avoids sure losses
and are coherent, such losses and incoherence may be unnoticeably present in practice when
considering sets of distributions. Throughout this thesis, we follow Walley [81] and focus
on the lower and upper (or imprecise) expectations as a summary over a set of distributions.

Condition 2.1.2: Whenever given a set of distributions M over which we compute the
expectation of a random variable X ∈ L(Ω), we assume that it is measurable against an
existing σ-field shared by all distributions in M : we will simply say that X is suitably
measurable in this case.

�

Definition 2.1.6: Let M be a set of distributions over some sample space Ω with a
suitably chosen σ-field. Define the lower and upper expectations3 and similarly of a suitably
measurable random variable X ∈ L(Ω), as,

EM(X) = inf {EP (X) : P ∈M} ,

and
EM(X) = sup {EP (X) : P ∈M} ,

respectively. We will loosely refer to one or the pair of lower and upper expectations as
imprecise expectations.

�

Notice that, EM(X) = −EM(−X) such that one can compute the upper expectation given
the lower expectation4. As a result, where appropriate, we focus our analyses on the lower
expectation.

Definition 2.1.7: (Walley [81], 2.4.1) Given a sample space Ω, an assessment of lower
expectation EM from a set of probability distributions M incurs sure losses (or is a Dutch

3For reason of clarity, we forgo the typical use of E and E as natural extensions of lower and upper
previsions in the imprecise probabilities literature.

4EM and EM are said to be a conjugate pair of lower and upper previsions (Walley [81]).
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book) iff it is an assessment over a set of random variables F ⊆ L(Ω), EM : F 7−→ R such
that there exists random variables X1, . . . , Xn ∈ F such that:

∀ω ∈ Ω :
n∑
i=1

(Xi(ω)− EM(Xi)) < 0. (2.3)

An assessment that does not incur sure losses is said to avoid sure losses.

�

Definition 2.1.8: (Walley [81], 2.5.1) Given a sample space Ω, an assessment of lower
expectation EM from a set of probability distributions M is incoherent if it is an assessment
over a set of random variables F ⊆ L(Ω), EM : F 7−→ R such that there exists random
variables X0, X1, . . . , Xn ∈ F and m ∈ N such that:

∀ω ∈ Ω :
n∑
i=1

(Xi(ω)− EM(Xi)) < m(X0(ω)− EM(X0)). (2.4)

An assessment that is not incoherent is coherent.

�

We note here that these definitions are not new, even at the time Walley [81] was written.
Indeed, Walley noted that these definitions were previously investigated by Huber [48],
Smith [74] and Williams [86] [85]. For later chapters, we also define imprecise probabilties
over a set of distribution.

Definition 2.1.9: For a set of distributions M , define the lower and upper probabilities of
a suitably measurable event A to be,

PM(A) := EM(IA), PM(A) := EM(IA) ,

where IA is the indicator function of the event A. We say that P and P are coherent iff E
and E are respectively coherent.

�
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We illustrate sure losses by considering the following case involving two random variables,
whose individual assessments on their expectations avoids sure losses but a sure loss can
be generated when they are considered jointly.

Example 2.1.2: Let the sample space consist of three categories, and

X1 = (−2, 0,−1), X2 = (0, 1, 2), Y1 = (−1, 0, 1), Y2 = (0, 1, 0),

be random variables on this sample space. Consider an assessment about these random
variables by combining the elicitations from two different experts. The first expert has
marginal information about X1 and X2 in the form of lower bounds for their expectations
that reflect the elicited information. That is, a probability distribution P of this system
should generate expectations EP satisfying,

EP (X1) ≥ −0.05, EP (X2) ≥ 1.75 .

The second expert has information about Y1 and Y2 in the form of upper and lower bounds
for their respective expectations, such that,

EP (Y1) ≤ 0, EP (Y2) ≥ 0.9 .

Consider that,

sup
ω∈{ω1,ω2,ω3}

(X1(ω) +X2(ω)− Y1(ω) + Y2(ω))− (−0.05 + 1.75− 0 + 0.9) = 2− 2.6 = −0.6.

Why is this problematic? Write M to represent a subset of probability distributions over
Ω that satisfies the elicited bounds, and,

EM(X1) = −0.05, EM(X2) = 1.75, EM(Y1) = 0, EM(Y2) = 0.9,

to represent the bounds. Then,

sup
ω∈{ω1,...,ω3}

(X1(ω) +X2(ω)− Y1(ω) + Y2(ω))

< EM(X1) + EM(X2)− EM(Y1) + EM(Y2)

= inf
P∈M

{EP (X1)}+ inf
P∈M

{EP (X2)} − sup
P∈M

{EP (Y1)}+ inf
P∈M

{EP (Y2)}

= inf
P∈M

{EP (X1)}+ inf
P∈M

{EP (X2)}+ inf
P∈M

{EP (−Y1)}+ inf
P∈M

{EP (Y2)}

≤ inf
P∈M

{EP (X1 +X2 − Y1 + Y2)}.

21



In other words, any expectation due to any probability distribution adhering to the assessed
bounds results in the expectation of X1 + X2 − Y1 + Y2 being strictly greater than the
maximum of this random variable, leading to a contradiction.

�

Let us provide an example where sure losses are avoided by a set of distributions (through
their expectations), but they are incoherent.

Example 2.1.3: Consider X = (−1/8, 1/4), Y = (2,−1) and Z = (3,−1/2), a distribu-
tion P with the assessments,

EP (X) ≥ 0, EP (Y ) ≥ 0, EP (Z) ≥ 0 .

We write the set of distributions satisfying these constraints as,

M = {p ∈ [0, 1] : Ep(X) ≥ 0 ∧ Ep(Y ) ≥ 0 ∧ Ep(Z) ≥ 0},

and the lower expectations,

EM(X) = 0, EM(Y ) = 0, EM(Z) = 0.

To simplify the algebra, we consider EP to be restricted to the domain F = {X, Y, Z}:
this is shown to avoid sure losses over F in Proposition A.2.1. (For assessments over larger
sets of random variables, linear programming is typically used to check avoidance of sure
losses. See Quaeghebeur [66] and Walley, Pelessoni and Vicig [82].)

However, consider the random variable (X − EM(X)) + (Y − EM(Y ))− (Z − EM(Z)) in
the criterion (2.4). By evaluating this point-wise over Ω,

ω = ω1 : −1

8
+ 2− 3 < 0,

and

ω = ω2 :
1

4
− 1 +

1

2
< 0,

such that this satisfies (2.4) so EP is incoherent.
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Consider again the set of distributions that satisfy the assessed constraints:

M = {p ∈ [0, 1] : Ep(X) ≥ 0 ∧ Ep(Y ) ≥ 0 ∧ Ep(Z) ≥ 0}
= {p ∈ [0, 1] : −p/8 + (1− p)/4 ≥ 0 ∧ 2p− (1− p) ≥ 0 ∧ 3p− (1− p)/2 ≥ 0}
= {p ∈ [0, 1] : 2/3 ≥ p ∧ p ≥ 1/3 ∧ p ≥ 1/7}
= {p ∈ [0, 1] : 2/3 ≥ p ∧ p ≥ 1/3}
= {p ∈ [0, 1] : 2/3 ≥ p ≥ 1/3}.

Notice that the constraint Ep(Z) ≥ 0 is subsumed into Ep(Y ) ≥ 0. Incoherence, in this
case, has to do with inconsistencies due to the assessment for Z: the lower bound of Ep(Z),
under the constraints Ep(X) = 0 and Ep(Y ) = 0, is not zero. Indeed, if we consider Ep(Z),

Ep(Z) = −1

2
+

7

2
p.

Because the constraints Ep(X) ≥ 0 and Ep(Y ) ≥ 0 is equivalent to 2/3 ≥ p ≥ 1/3, the
lower bound of Ep(Z) over this set of distributions is in fact,

−1

2
+

7

2

1

3
= −3

6
+

7

6
=

2

3
> 0,

such that the original assessment Ep(Z) ≥ 0 is too loose and, therefore, redundant in light
of Ep(X), Ep(Y ) ≥ 0.

�

In Example 2.1.3, by removing redundant constraints on M , we have corrected the bounds
on Ep(Z) to better reflect the state of information represented by the assessed constraints.
In other words, by reviewing a set of assessment that avoids sure losses, we can alter our
initial assessments to make them consistent with one another5.

2.2 Aspects of the theory of imprecise probabilities

2.2.1 Imprecise expectation

We have already touched on this representation in the previous sections where the assess-
ment is a set of distributions satisfying certain constraints over which we optimise to obtain

5This alteration is the natural extension of EM (Z). See 3.1 of Walley [81].
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imprecise expectations. We illustrate the geometry in finite dimensions using subsets of a
probability simplex, the space of all possible finite dimensional multinomial distributions.

Importantly, we will see that, in this context, coherent sets are convex sets and a finite set
of moments bounds make this set a polytope in this space. We properly review this convex
geometry developed in Walley [81] in general cases in Section 2.2.2.

The following finite dimensional geometrical intuitions are useful as guidelines for the case
of continuous random variables, and also directly used in Chapter 6.

Example 2.2.1: (Sets of multinomial distributions) Let |Ω| <∞ and let p = (p(ωi) : i =
1, . . . , |Ω|) denote a probability distribution on Ω. Suppose that, for two bounded random
variables Y, Z over Ω, the following bounds on the moments are elicited,

a ≤ Y · p =

|Ω|∑
i=1

Y (ωi)pi ≤ b,

c ≤ Z · p =

|Ω|∑
i=1

Z(ωi)pi ≤ d, (2.5)

for real numbers min Y ≤ a < b ≤ max Y and min Z ≤ c < d ≤ max Z and where
u · v denotes the dot product between two Euclidean vectors. The assessment of the set
of distributions that are consistent with this elicitation is,

M =

p :

|Ω|∑
i=1

p(ωi) = 1, a ≤ Ep(Y ),−b ≤ Ep(−Y ), c ≤ Ep(Z),−d ≤ Ep(−Z), p(ωi) ≥ 0

 .

At this point, the assessment corresponding to the elicitation (2.5) is only about Y , Z,
−Y and −Z. This means that upper bounds on expectations such as Y · p ≤ b is simply
P (Y ) = −P (−Y ) ≤ b which yields the restriction −b ≤ −Y · p above.

Now, the lower expectation over this assessment is,

EM : W 7−→ inf {W · p : p ∈M}.

In this finite dimensional space, this is the solution of a linear programming of the objective
function W 7−→ W ·p over the closed convex polytope A. Figure 2.1 illustrates some cases
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of how this convex polytope may be assessed.

Figure 2.1: Cases for assessments of sets of distributions A of hyperplane boundaries
a ≤ Y · p ≤ b (in red) and c ≤ Z · p ≤ d (orange). Top left: assessments about Y do
not intersect with those about Z such that A = AY ∩ AZ = ∅. Top Right: the assessment
Y · p ≤ b (top red line) is not used in constructing A, such that P (Y ) = b does not
contribute to A, and is therefore an incoherent assessment. Bottom centre: a coherent
assessment.

The top left panel is a case where a, b, c, d are such that the moment conditions are in-
compatible: that A is in fact empty. In other words, these constraints incur sure losses as
bounds on expectations. From an optimisation perspective, the optimisation domain M
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contains no feasible solutions. The top right panel is a case where A is in fact not empty,
but is defined only by three of the four conditions (and the boundary of the simplex), such
that the remaining condition Y ·p ≤ b is redundant. Thus, the four constraints avoid sure
losses but are incoherent due to this redundancy. Finally, the bottom panel depicts an
assessment of A where the information from all four assessments are in effect and coherent.

�

We have already covered much of the preliminary construction of lower and upper expec-
tations in Section 2.1.2. Here, we will focus on the key results and concepts of Walley [81]
about the imprecise expectations as a result of them being coherent assessments.

2.2.2 Imprecision and vacuity

In terms of imprecise expectations, the notion of imprecision represents the variation of
the expectation over a set of distributions.

Definition 2.2.1: (Walley [81]) The imprecision of X over a set of distributions M is the
quantity, EM(X) := EM(X)− EM(X).

�

When the imprecision is maximal for X, we say that the imprecise model is vacuous for X,
as the set of distribution contains no information about the expectation of X to decrease
the imprecision.

Definition 2.2.2: (Walley [81]) A set of distributions M generates vacuous imprecise
expectations for X iff EM(X) = inf

ω∈Ω
X(ω) and EM(X) = sup

ω∈Ω
X(ω).

�

We emphasise here that X is in L(Ω), the linear space of bounded random variables. When,
in addition, |Ω| <∞, vacuous imprecise expectations of any element X in L(Ω) are finite
and the imprecision is also finite.
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It is interesting that imprecise expectations has a notation for representing noninformative-
ness through vacuity. This is in contrast with probability models where noninformativeness
typically means the use of a uniform distribution as a single model of uncertainty. As Wal-
ley argues in [80], a uniform distribution assumes that all states have the same probability
of occurring: this itself is a piece of information, which contradicts its purpose of repre-
senting noninformativeness.

Example 2.2.2: (Vacuous sets of multinomial models) Using the setting of Example 2.2.1,
if instead of the moment conditions, suppose that only Ω has been elicited. Then, the set
of distributions consistent with only knowing the finite number of categories of the sample
space is simply the set of all possible categorical distributions over Ω, i.e.

M =

p :

|Ω|∑
i=1

p(ωi) = 1, p(ωi) ≥ 0

 = 4Ω.

This is the closed unit simplex in R|Ω|. Notice that, for any bounded random variable X,

EM(X) = min
ω∈Ω

X(ω), EM(X) = max
ω∈Ω

X(ω).

The optimisers of these solutions are simply the vertices of 4Ω where unit probabilities
are assigned to the minimum and maximum of X, respectively.

�

2.2.3 The lower envelope theorem

Because EM is a functional that assigns values for the lower bound of expectations for a
collection of random variables, we can consider the coherence of such an operator. The
following result, called the lower envelope theorem, is the main driver of the results in
Walley’s imprecise probability theory.

Definition 2.2.3: (Walley [81]) The lower envelope6 of a set of distributions M is the
functional,

EM : X 7−→ inf {EP (X) : P ∈M},

6In the main text of this thesis, we use the notation EM for both the lower envelope of M and lower
expectation over M as they often coincide.
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over the set of suitably measurable random variables in L(Ω).

�

Definition 2.2.4: (Walley [81]) For a functional E over L(Ω), define,

ME := {P ∈ P : ∀X ∈ L(Ω), EP (X) ≥ E(X)},

as its dominating set of distributions7. (P is the set of all distributions over Ω.)

�

Theorem 2.2.1: (Lower envelope theorem, Walley [81], 3.3.3) A functional E is coherent
iff it is the lower envelope of the set ME.

�

Furthermore, the lower envelope of a set of distributions is an element of the set.

Theorem 2.2.2: (Extreme value theorem, Walley [81], 3.6.2 (c)) If E is coherent, then,
for any bounded random variable X ∈ L(Ω), the minimisation,

inf {EP (X) : P ∈ME},

is attainable by an element of ME.

�

We note that Theorems 2.2.1 and 2.2.2 are driven by the fact that, given a lower expec-
tation E, its dominating set of expectations ME is a convex and compact set in the dual
space of L(Ω). (The convexity is clear from the definition of ME. See Appendix D of
Walley [81] for a discussion about the compactness of ME.)

7In Walley [81], this set is expressed as a set of expectation operators, and is more generally a set of
dominating linear previsions.
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Finally, a coherent lower expectation is bijective to the set of distributions that dominates
it.

Theorem 2.2.3: (3.6.1 of Walley [81]) Let E be a coherent lower expectation and M be
its dominating set such that E is the lower envelope of M . Then, the map E 7−→ME and
M 7−→ EM are bijections that form the inverse of each other. In particular,

EME
= E,

and
MEM

= M.

�

2.2.4 Posterior lower/upper expectations

In this section, we introduce a version of the generalised Bayes’ rule that extends Bayesian
posterior calculations to using lower and upper expectations developed in Walley [81].
It guarantees a more general form of coherence called joint coherence than Definition
2.1.8, amongst the imprecise prior model, the single likelihood and the resulting imprecise
posterior model. To avoid detracting from the review, the relevant points to note are that,

• joint coherence (6.3.2 and 7.1 of Walley [81]) is again motivated to avoid Dutch books-
like arbitrage amongst multiple conditional and unconditional imprecise models,

• the conditional lower and upper expectations induced by the lower and upper en-
velopes of a collection of precise conditional distributions due to application of Bayes’
rule on each of the unconditional distributions in the assessed set are also jointly co-
herent with the prior imprecise expectations, and that

• under regularity conditions in Walley [81], any such posterior imprecise expectations
are also jointly coherent with the prior imprecise expectations as well as the precise
likelihood used.

The so-called generalised Bayes’ rule (GBR), Theorem 6.4.1 of Walley [81], is the following
equation as a direct consequence of joint coherence,

PM(IB(X − EM(X|B))) = 0. (2.6)
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It defines the conditional lower expectation EM(·|B) as the solution to the equation that is
jointly coherent with the unconditional model EM and generalises the probabilistic Bayes’
rule. However, the following lower envelope version of the generalised Bayes’ rule is more
useful and illustrative of how Bayes’ rule is generalised to the imprecise expectations setting.

Proposition 2.2.1: (Passage 6.4.2 of Walley[81]) when E is coherent and E(B) > 0, then
the (coherent) conditional lower expectation E(·|B) that is the solution to the generalised
Baye’s rule equation (2.6) is the lower envelope of the pointwise application of the classical
Bayes’ rule:

E(X|B) = min {EP (XIB)/EP (IB) : EP ≥ E} ,

over a domain of suitably measurable random variables.

�

Briefly, this result allows us to achieve joint coherence between our unconditional impre-
cise model represented by the unconditional lower expectations E a set of conditional lower
expectations {E(·|B) : B ∈ B} where B is a partition of Ω.

Given data D, for each prior P ∈M , we construct P (·|D) by applying Bayes’ rule to each
prior distribution paired with the likelihood function given. With this set of probability
distributions of prior distributions, coherent posterior lower and upper expectations of a
suitably measurable random variable, say f(θ), may be had by appealing to Theorem 2.2.4.

Theorem 2.2.4: (Passage 8.4.8 of Walley [81]) Suppose that M is a set of (expectation
operators of) prior distributions on θ. When the likelihood of the data D, LD(θ), defined by
P (D|θ), whenever the lower marginal probability E(LD) > 0 and f ∈ Dom(E) = K ⊆ F ,
the posterior lower expectation,

E(f |D) = inf

{
EP (f(θ)LD(θ))

EP (LD(θ))
: EP ∈M

}
,

is jointly coherent with all likelihoods LD(θ) = P (D|θ) indexed over θ ∈ Θ and E(·).

�
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Let us summarise the material up to this point. In Chapter 1, we discuss the need for
models involving sets of distributions due to the nature of elicitation. At the beginning
of this chapter, we discuss why avoiding losses and coherence is important when consid-
ering such models and that Theorems 2.2.1 and 2.2.2 justify the coherence of optimising
expectations over a set of distributions. Thus the notion of coherence has been extended
to include joint coherence between a set of conditional expectations and a set of uncondi-
tional expectations, with the GBR being one way of generating a conditional model that
are jointly coherent with a given unconditional one. Finally, the GBR is applied to the
context of prior/posterior inference. In all, we have the necessary tools to arrive at poste-
rior imprecise models starting from elicitation of a set of prior distributions.

2.3 Imprecise Dirichlet Model (IDM)

The imprecise Dirichlet model (IDM) was first used by Walley [80] as an imprecise model
for multinomial counts data. Mathematically, it is an application of Theorem 2.2.4 with M
being a set of precise Dirichlet priors and with the single likelihood being the multinomial
distribution. The imprecise Beta model in Examples 2.3.2 and 2.3.3 for binomial data was
also introduced in Walley [81].

Fix the concentration parameter ν > 0, m ∈ N and consider the set of candidate Dirichlet
priors for a random vector θ,

M := {Dirichlet(να) : α ∈ 4m}.

For a suitably measurable random variable, f(θ), a dataset of multinomial counts, n,
Theorem 2.2.4 and the properties of the Dirichlet-Multinomial pairing yields the posterior
lower expectation

EM(f |n) = inf
{
EDirichlet(να+n)(f) : α ∈ 4m

}
,

Theorem 2.2.4 guarantees that this is coherent.

Example 2.3.1: (Posterior inference for first moment of a Bernoulli probability under a
set of beta priors) Again, following the setting of Example 2.3.2, we can show, that when
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P is Beta(να, ν(1−α)) for α ∈ (0, 1), after observing a total of n observations and n1 ≤ n
number of ‘successes’, as the vector n = (n1, n− n1),

EP (θ|ν, α, n1, n) =
να + n1

ν + n
.

The posterior lower expectation of θ is therefore

E(θ|n) := inf {EP (θ|ν, α, n, n1) : α ∈ (0, 1)} = inf
α∈(0,1)

να + n1

ν + n
=

n1

ν + n
.

(Similarly, the upper expectation under this model is,

E(θ|n) := sup {EP (θ|ν, α, n, n1) : α ∈ (0, 1)} = sup
α∈(0,1)

να + n1

ν + n
=
ν + n1

ν + n
.

�

Example 2.3.2: (The imprecise Beta model, Walley [81]) For an observation space
{s1, s2}, let θ ∈ [0, 1] be a distribution on this space (such that Pr({s1}|θ) = θ and
Pr({s2}|θ) = 1− θ). Walley [81] proposes to place a family of Beta priors on θ as follows.
For a fixed concentration parameter ν > 0, consider the set of Beta distributions,

{B(να, ν(1− α)) : α ∈ (0, 1)}.

Note that α ∈ (0, 1) ensures the integrability of the distributions in this set. However,
the case with α ∈ [0, 1] is more appropriate in applications where one does not discount
placing a prior probability of one on θ = 0 and/or θ = 1. We will explore this case more
in Chapter 3.

�

Example 2.3.3: (IBM is vacuous for its positive integer non-central moments) Following
the setting of Example 2.3.2, we can show, that when P is Beta(να, ν(1−α)) for α ∈ (0, 1),

EP (θ|ν, α) = α.

Therefore,
E(θ) := inf {EP (θ|ν, α) : α ∈ (0, 1)} = 0 = inf

θ∈[0,1]
θ = 0.

(Similarly, the upper expectation under this model is 1.) The IBM is called a near ignorant
model by Benavoli and Zaffalon [7]: for certain bounded random variables, their lower
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and upper expectations are respectively their finite infimum and supremum. Because
only the set of all distributions over a measurable space yield vacuous lower and upper
expectations for all random variables in the measurable space [7], any restriction to this
set of distributions should in principle mean that the lower and upper expectations for some
random variable in the measurable space is non-vacuous. However, many common statistics
are vacuous under these models. For example, for the Beta(να, ν(1 − α)) distribution,
expectations that are monotonic functions with respect to α, such as the positive moments,

EP (θk) =
k∏
i=1

να + i− 1

ν + i− 1
,

for k ≥ 1, are minimised at 0, by picking α = 0 and maximised at 1, by picking α = 1.

�

2.4 A commentary for statisticians

2.4.1 Properties of the IDM

Walley [80] notes that the inference of the IDM model carries forward the representation
invariance from the precise Dirichlet-Multinomial model. That is, if θ ∼ Dir(α), any aggre-
gation of a subset of indices of θ gives rise to a Dirichlet distribution with the corresponding
α’s summed, and this aggregation is done for every Dirichlet model in an IDM set. Walley
argues for this principle in both [81] and [80]: however, some practitioners cite examples
where this principle might not be required to hold in the discussions at the end of [80] (see
the synthesis of responses to the IDM in Section 2.4.2). When the prior parameter set is
taken to be {να : α ∈ 4K} for a fixed concentration parameter ν > 0, then inference is
also invariant to permutations of categories (this is the symmetry principle [81]). Bernard
[13] notes many proper priors subsumed by the precise Dirichlet model (for example [13]
ν = K, ν = 1 and ν = K/2, respectively the Laplace uniform, Perks [64] and Jeffreys [50]
priors) have posteriors whose probability of an event depends on on how the event is repre-
sented with respect to the set of multinomial categories. Haldane’s prior [44], with ν → 0,
satisfies these principles, but does not avoid sure loss. The IDM is therefore motivated as
a model which satisfies all of these criteria.
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2.4.2 A synthesis of responses to IDM from statistical commu-
nity

We synthesise some comments from the statistical community regarding the principles
upon which the IDM is built, as well as some of its properties. We review some relevant
comments in the discussions at the end of Walley [80]. Except for explicit citations, all
other author references in this section refer only to those appearing in Walley [80].

Throughout Walley [80], the IDM is applied to two examples. The first is of a conceptual
bag of marbles representing inference of a multinomial sampling distribution, with the goal
of inferring the prior probability of drawing a red marble (R) without knowing anything
about the composition inside the bag. This example is used to demonstrate that no sin-
gle (precise) Bayesian model can produce a coherent prior inference (without additional
assumptions.) The IDM is proposed as an alternative that generates reasonable prior in-
ference (namely, P IDM[R] = 0 and P IDM[R] = 1), while producing non-trivial, reasonable
and coherent posterior inference as data is accumulated. The IDM is then applied in a
hypothesis test setting to the extracorporeal membrane oxygenation (ECMO) dataset to
determine whether or not the ECMO treatment is better than the conventional treatment.

ν as a tuning parameter: discussants observed that there is no principled way of choosing
the value ν, and therefore, as Good notes, makes the IDM more of a subjective than
objective (extension of a) Bayesian model. Furthermore, Levi notes that “choosing a value
for [ν] is one of several ways of exercising boldness in forming prior opinions”, and that
”for [ν]= 1 and [ν]= 2, the inquirer is far from full probabilistic ignorance.” (This is
interesting as Walley proposes that these are suitable heuristics, but is sceptical that they
cannot be justified in principle.) Hutton questions whether or not such an arbitrary choice
representing prior subjectivity should be represented merely by a one-dimensional object.
Coolen gives an example of interest to us. If one was at a mall, and one encounters a person
named John, then, according to the IDM, the lower probability of randomly encountering
another John is P IDM = 1/(1 + ν), that, for ν = 1, 2 the probability of this happening is at
least 1/2 and 1/3, respectively. Coolen deems this to be too high for a single observation.

Representation invariance is not always valid: discussants were concerned that represen-
tation invariance (that the inference of the IDM does not depend on the representation
of the sample space, which was a criticism levelled at many precise Bayesian models by
Walley in the body of the paper), should not always hold. For example, Dawid notes that
coarsening of the multinomial bins typically discards information, and should therefore
result in a different inference, and, if structural knowledge about the probabilities such as
the possibility that they vary continuously over a real variate that has been discretised
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by binning (such as bins of heights of people), then a smoothed distribution should be
expected to produce more realistic and reasonable inference, which is not possible if the
model is representation invariant. Walley concedes to the idea that not all models should be
representation invariant, but nevertheless notes that representation invariance is desirable
when prior knowledge such as the ones discussed by Dawid are not available.

Over complexity of the IDM (and lower and upper probabilities in general): some dis-
cussants have claimed that the IDM may be replaced by simpler, more familiar precise
Bayesian paradigm. For example, O’Hagan and Lindley state that it is possible to elicit a
proper prior under some reasonable assumptions about the bag of marbles example. Wal-
ley’s rejoinder to this is that it is unnecessary (and unjustified given no prior knowledge)
for coherent prior inference to assign a particular single set of probabilities which are con-
ditional on the knowledge of a fixed sample space of colours to begin. (Note that this was
made in reference to the use of imprecise probabilities in general.) Walker cited that the
generalised Polya urn model provides the same lower and upper posterior expectations of
a cell probability as the IDM (although it is unclear if this holds for other functions of the
cell probabilities.) Finally, Spiegelhalter and Best argue that a (local) sensitivity analysis is
more appropriate in the ECMO example. Walley’s rejoinder to these points is that (local)
sensitivity analysis only makes sense when “some meaning can be given to the ‘correct’
prior distribution and there is uncertainty about which distribution is correct”. Finally,
Walley notes that, for the bag of marbles example, it would be even more complex to elicit
a single distribution that can take into account of any and all possible compositions in the
bag.

Conservatism of imprecise probabilities and the need for precise decisions: some discussants
point out that imprecise models sometimes provide inference that does not necessarily
provide a definite conclusion. For example. Lindley questions how a medical decision
should proceed when the (imprecise) model does not give a definite answer to distinguish
between, say, two treatments. Walley replies that, in this case, the model indicates that
both treatments are equally preferable, and therefore random allocation can be used to
assign treatments.

2.4.3 A brief review of statistics in imprecise probabilities

We choose to work with Walley’s framework primarily as a gateway in our exploration
of imprecise probabilities. Because Walley’s work generalises a vein of Bayesian statistics
in an apparent manner (i.e. through the lower envelope version of the generalised Bayes’
rule, Proposition 2.2.1), our choice is meant merely to leverage this familiar grounding to
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explore imprecision from the author’s “precise statistical” perspective. By no means is our
perspective closed off towards other approaches towards imprecision.

Research progress has been done by the imprecise probability community towards applying
imprecise probability towards statistical concerns. A select list of such work include the
following.

Weichselberger [83] introduced a generalisation of Kolmogorov’s measure theoretic proba-
bilities, known as interval probability (or F-probability). Augustin and Coolen [6] combined
F-probabilities with Hill’s nonparametric inference (NPI) ([46] and [45]) to form an impre-
cise probabilities model with frequentist properties. (In particular, Coolen and Augustin
[23] compare this model with the IDM.) Recently, much work has been done on the appli-
cation of this imprecise version of NPI towards statistical hypothesis testing and prediction
problems in various publications of T. Maturi-Coolen and her collaborators (such as [25],
[58], [20], [4] and [24]). Benavoli, Magnili, Ruggeri and Zaffalon [8] introduced a gen-
eralisation of the IDM to the imprecise Dirichlet process and applied it to a hypothesis
test regarding a cell probability of the multinomial likelihood. Perolat, Couso, Loquin
and Strauss [65] generalised the Mann-Whitney U test for random set data (so-called im-
precise(ly observed) data by some researchers). Couso and Dubois [27] generalised the
maximum likelihood procedure for imprecise data. Cattaneo and Wiencierz [19] introduce
a likelihood based approach to regression with imprecise data. Troffaes [76] explored several
criteria towards loss minimisation during decision-making when using imprecise probabil-
ities. Finally, Dempster’s rule of combination in the Dempster-Shafer theory (originally
proposed by Dempster [34] and later further developed in Shafer [73]) has been a long
standing methodology in the imprecise probabilities as well as the sensor fusion literature.

The contributions in this thesis seek to be complementary to the above work. We place
further emphasis and attention towards the exploration of the following items.

• The incorporation of stochastic variation (such as credible and confidence interval
statistics from a precise distribution) with variations due to imprecision (such as the
posterior imprecise expectations produced by Theorem 2.2.4).

• The interplay between the occurrence of sparse data counts in multinomial observa-
tions and a principled approach to sensitivity analysis (for example, under Walley’s
coherence).
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• The statistical interpretability of posterior inference in the above contexts, especially
in light of Walley’s coherence.

• The computational tractability of the IDM when applied to statistics beyond the
multinomial cell probability (particularly in this thesis, to log-odds statistics).

The first point is crucial for a complete generalisation and subsumption of the inferential
methodology with a single precise distribution into the imprecise methodology. The third
and fourth points highlight important obstacles against the mainstream statistical adoption
of imprecise probabilistic methodology. The lack of an established statistical interpretation
sours the prospect of having to overcome the optimisation problem during the computation
of imprecise expectations. A statistician committee member of this thesis summarised this
concisely. The computation for Bayesian posterior expectations is difficult enough without
having to optimise it as a function of the prior. Prospective statisticians considering using
imprecise probabilities (in the form of Theorem 2.2.4) need to be given a very compelling
reason to undertake this expensive operation. This thesis attempts to explore whether or
not such reasons exist in application.

2.4.4 Comments on imprecise models

We end this introductory chapter with a commentary on some key points, that we ourselves
found helpful during the course of writing this document, for the reader to keep in mind
while reading the rest of the document.

Imprecision versus uncertainty: It is important to distinguish between the concepts of
uncertainty and imprecision. Although they both induce variation in inference that statis-
ticians will take into account, we should distinguish the sources. Uncertainty comes from
the randomness that is modelled by a single precise distribution: variation of this kind is
usually interpreted in ways such as the variation represented by frequentist confidence and
Bayesian credible intervals. On the other hand, this is distinct from imprecision where
the variation is due not to the randomness of the system, but our inability to specify the
randomness of the system.

Example 2.4.1: To illustrate this point, for a random variable θ ∈ [0, 1], consider a set
of Dirac delta distributions over [0, 1] that it can take as law;

M = {δa(·) : a ∈ [0, 1]}.
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Then, it is clear that the variance of each distribution is 0, while, for example, the lower
and upper expectations are 0 and 1. We see that the former is ‘within’ variation of due to
the uncertainty represented by each distribution, while the latter is variation and property
‘amongst’ the distributions of a set.

�

Imprecision versus sensitivity analysis: Recall that the distinction between the range in
(global) sensitivity analysis reviewed in Chapter 1 and imprecision defined here as part of
the imprecise methodology. While they both compute the difference between the maximum
and minimum of expectations, they are interpreted very differently as sensitivity analysis
is not defined to be coherent, while imprecise probabilities and expectations have such a
notion. This means that the latter can be used as part of the inference in the same way
coherent probabilities can be without inducing logical inconsistencies such as Dutch book
assessments. This is in contrast to a sensitivity analysis being only treated as a post-hoc
methodology separate from the inferential engine of coherent probabilities. Again, the
point of this thesis is to study aspects of the consequence of using sets of distributions as
a part of the inference through the imprecise methodology.

Boundedness of random variables and coherence: Because the notion of coherence for im-
precise expectations follows Walley [81], it is motivated by betting procedures that are
troublesome to interpret when the random variable is unbounded. For an in-depth treat-
ment of extensions to extended-real-valued (and, therefore, unbounded) random variables
in the theory of imprecise probabilities, see Troffaes and de Cooman [78]. Parts of this
thesis will involve only bounded random variables. In others, such a Chapter 3, part of our
contributions is to justify certain limiting procedures as a sound methodology and explore
their consequences.
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Chapter 3

Log-odds inference under IDM and
sparse observations

In this chapter, we apply the imprecise Dirichlet model (IDM, Walley [81] [80]) to the
posterior inference of log-odds statistics of a multinomial system. We motivate the need
for imprecision by first showing that posterior inference can be sensitive to the choice of
prior when the likelihood does not dominate the prior in posterior expressions. This can
occur when the multinomial counts contain zero counts in certain categories, and we focus
on inference when this kind of sparsity of observations occur. The set of distributions of
the IDM captures this notion of prior sensitivity. Bickis [14] notes that the geometrical
properties in the natural parameter space of exponential families can be used to easily
construct imprecise posterior inference. However, under our sparse cases, we will see that
the boundary of this space comes into effect and requires careful consideration.

A significant part of our work in this chapter deals with a modification of the IDM under
Walley’s theory in order to apply it to the log-odds statistic. This is in order to over-
come the fact that Walley’s imprecise probabilities are only defined for bounded random
variable, whereas the log-odds statistic is unbounded. Walley’s [81] notion of coherence
introduced in Chapter 2 breaks down in light of this: we will discuss the relation between
our modifications and Walley’s notion of coherence.

3.1 Sensitivity of posterior inference to prior choice

Under the multinomial setting, the posterior inference is sensitive to prior choice when the
likelihood is almost or exactly flat in certain directions that extend to the boundary of the
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parameter space. Particularly, distributional approximations such as Gaussian approxima-
tions become increasingly poor close to the boundary. In these cases, sensitivity analysis is
necessary to analyse the effects of the prior on inference where the likelihood is relatively
uninformative.

Below we highlight these points in the Dirichlet-Multinomial setting.

Example 3.1.1: For a Dirichlet prior with hyperparameter ν(α1, α2, 1− α1 − α2), ν > 0,
after observing the i.i.d.-trinomial data n = (n1, n2, n3), the posterior has the kernel,

(θ1, θ2) 7−→ θn1+να1−1
1 θn2+να2−1

2 (1− θ1 − θ2)n−n1−n2+ν(1−α1−α2)−1.

where (θ1, θ2, 1− θ1 − θ2) is a trinomial probability.

Let us consider using a single fixed Dirichlet prior with concentration ν = 2.0 and (α1, α2, 1−
α1−α2) = (0.01, 0.98, 0.01), and consider the cases where we observe two different datasets
(n1, n2, n3) = (10, 1, 10) and (10, 0, 10). Notice that the prior direction puts a lot of weight
to the second category, whereas the dataset suggests otherwise in both cases.

Consider Figure 3.1, the case with the dataset (10, 0, 10) which has 0 samples in the second
cell. A prior Dirichlet concentration parameter of 2.0, when interpreted as the effective
prior sample size, is weak relative to a dataset with 20 observations. Yet it is strong enough
to force the posterior contours to be unimodal, even if it is not well approximated by a
Gaussian. This is in contrast with the likelihood (lower panel of figure) which flats out
to the bottom direction. This demonstrates the sensitivity of posterior inference to prior
choice in this setting. We note that this is despite the prior being relatively weak compared
to the total number of observations.

We see that sparsity (i.e. the observed 0 in the second cell of (n1, n2, n3) = (10, 0, 10)) is
a significant contributor to this sensitivity. In Figure 3.2, we see the significant effect of
just adding 1 observation to cell 2: the likelihood contours are mostly pulled back to the
centre, just like those of the posterior. So, sparsity in a cell category represents a major
contributor to the sensitivity to the prior in Dirichlet-Multinomial systems.
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Figure 3.1: Contour plots of the posterior density p((θ1, θ2, 1− θ1 − θ2)|ν(α1, α2, 1− α1 −
α2) + (n1, n2, n3)) (Top) and the trinomial likelihood L((n1, n2, n3)|(θ1, θ2, 1 − θ1 − θ2))
(Bottom). Plots are in barycentric coordinates relative to the space of trinomial dis-
tributions Conv({(0, 0, 1), (0, 1, 0), (1, 0, 0)}) (left) and in log-odds space of all trinomial
distributions (right). Posterior parameters are ν = 2.0, (α1, α2) = (0.001, 0.998) and
(n1, n2, n3) = (10, 0, 10).
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Figure 3.2: Contour plots of the posterior density p((θ1, θ2, 1− θ1 − θ2)|ν(α1, α2, 1− α1 −
α2) + (n1, n2, n3)) (Top) and the trinomial likelihood L((n1, n2, n3)|(θ1, θ2, 1 − θ1 − θ2))
(Bottom). Plots are in barycentric coordinates relative to the space of trinomial dis-
tributions Conv({(0, 0, 1), (0, 1, 0), (1, 0, 0)}) (left) and in log-odds space of all trinomial
distributions (right). Posterior parameters are ν = 2.0, (α1, α2) = (0.001, 0.998) and
(n1, n2, n3) = (10, 1, 10).

�

This example illustrates that in the sparse data case, when likelihood information does not
uniformly dominate prior information, we expect strong sensitivity to prior specification.
In particular, as shown in Chapter 1, we recall that elicitation often produces imprecise
prior specification. So we expect imprecise posterior specification here. This Chapter ex-
plores if the tools of imprecise inference, described in Chapter 2, can be helpful to the
statistician in this situation.

42



In our exploration we take inference about log-odds, in the IDM framework, as a practical
and statistically important test case for the applications of imprecise methods. Because the
log-odds is unbounded, we see that in Section 3.3.1 the boundedness condition on random
variables used in Chapter 2 immediately creates a problem for application.

3.2 Literature: Affine geometry of IDM posterior up-

dating under sparse observations

We apply the work of Bickis [14] to establish that updating the posterior of the IDM
amounts to the translation of a simplex in the prior Dirichlet natural parameter space
by the observation vector which is a sufficient statistic of the likelihood. We see that in
the sparse case the translation does not move the posterior support entirely into the rela-
tive interior and so the boundary still plays a role in understanding the sensitivity problem.

3.2.1 Affine geometry of exponential family and Dirichlet-multinomial
updating

Following Bickis [14], we review a familiar result of conjugate pairs of prior and observation
models.

Definition 3.2.1: A random variable X follows a distribution in the exponential family
spanned by the sufficient statistic v(x) = (v1(x), . . . , vk(x)) (with respect to a base measure
λ) if there exists a vector ξ = (ξ1, . . . , ξk) such that,

P (X ∈ A) =

∫
A

exp(ξTv(x)− φ(ξ))λ(dx),

where,

φ(ξ) = log

(∫
exp(ξTv(x))λ(dx)

)
.

The family is said to be finite dimensional when k <∞.

�
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Definition 3.2.2: The natural parameter space of an exponential family spanned by v is
the set,

ΞNat = {ξ : φ(ξ) <∞} .

�

Now, consider that a random variable X which follows a member of a finite dimensional
exponential family spanned by v = (v1(x), . . . , vk(x)) with natural parameters ξ. Place a
prior on ξ with log-density of the exponential form,

ξ 7−→ ηTv∗(ξ)− ψ(η), (3.1)

spanned by,
v∗(ξ) = (−φ(ξ), ξ1, . . . , ξk),

with natural parameters,
η = (η0, η1, . . . , ηk),

For a fixed data point, x, of X,

ξTv(x)− φ(ξ) = v∗(ξ)Tηx,

where,
ηx = (1, v1(x), . . . , vk(x)).

Now, consider the posterior measure after observing x with the aforementioned prior nat-
ural parameters η. For every suitably measurable set B,

Π(ξ ∈ B|x) = k(x)

∫
B

exp(ξTv(x)− φ(ξ))exp(ηTv∗(ξ)− ψ(η))dξ

=

∫
B

exp((ηx + η)Tv∗(ξ)− ψ(η) + log k(x)dξ.

So, the posterior and prior are conjugate and the updating result in a translation in the
natural parameters. We record this in the theorem below.

Theorem 3.2.1: (Bickis [14]) For a likelihood of i.i.d. data {x1, . . . , xn} induced by an
exponential family naturally parametrised by ξ ∈ ΞNat ⊆ Rk, k < ∞, spanned by the
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statistics v(x) = (v1(x), . . . , vk(x)) and a prior distribution of the form in (3.1), the poste-
rior distribution is again in the exponential family of the prior, with natural parameters,(

η0 + n, η1 +
n∑
j=1

v1(xj), . . . , ηk +
n∑
j=1

vk(xj)

)
.

�

Example 3.2.1: (Dirichlet-categorical posterior) A Dirichlet prior on θ with parameters
ν and α over m categories can be identified with the following terms of the exponential
form: for i = 1, . . . ,m− 1,

v∗0(θ) = log(1− θ1 − . . .− θm−1),

v∗i (θ) = log θi/(1− θ1 − . . .− θm−1),

η0 = ν, ηi = ναi, ψ(η) = logB(να) .

(B(·) is the multivariate Beta function.) A categorical likelihood can also be identified
with the following exponential form specification:

vi(x) = I(x = i), ξi(θ) = log θi
1−θ1−...−θm−1

, φ(θ) = log(1− θ1 − . . .− θm−1) .

By Theorem 3.2.1, the posterior after n <∞ i.i.d. observations is also Dirichlet, with the
natural parameter,

η + ηx = (ν + n, να1 + n1, . . . , ναm−1 + nm−1),

which is the well-known Dirichlet-multinomial updating property.

�

3.2.2 Affine geometry of the IDM

The update rule in Theorem 3.2.1 makes posterior lower expectations under the envelope
version of the generalised Bayes’ rule involving exponential families easy to characterise.
Write

Nm−1 :=

{
(α1, . . . , αm−1) : αi ≥ 0,

m−1∑
i=1

αi ≤ 1

}
,
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to denote the closure of the interior of the simplex in Rm.

Example 3.2.2: For a fixed concentration ν > 0 and a count vector of n i.i.d. observations
from m categories parametrised as n = (n, n1, . . . , nm−1) , the posterior set of distributions
of the IDM is,

M|n =
{

Dirichlet(ν + n, να1 + n1, . . . , ναm−1 + nm−1) : (α1, . . . , αm−1) ∈ Nm−1
}
.

�

In particular, Theorem 3.2.1 implies that posterior update amounts to an affine shift of the
prior coordinates by the sufficient statistics of the observation model. In other words, it
can be seen that the natural parameters of the IDM posterior set of distributions is simply
a translation of the whole prior set,

{(ν, να1, . . . , ναm−1) : (α1, . . . , αm−1) ∈ Nm−1} ⊕ (n, n1, . . . , nm−1). (3.2)

This is such that the geometry of posterior update of the IDM is an affine translation of a
fixed closed simplex in the extended natural parameter space.

Notice that, at every fixed number of total observations n, the set of posterior natural pa-
rameters, (3.2), is always contained in the set of posterior parameters over all possible ways
to observe the counts (n, n1, . . . , nm−1). This is simply the set of all Dirichlet parameters
that sum to ν + n: that is, it is the simplex

{(γ1, . . . , γm) : γi > 0, γ1 + . . .+ γm = ν + n}. (3.3)

This particular containment implies the following boundary effects when optimising over
M|n whose parameters are taken from (3.2).

Theorem 3.2.2: When ni > 0 for all i = 1, . . . ,m, the translated set (3.2) is always in
the interior of (3.3), whereas when ni = 0 for some i = 1, . . .m, the posterior translated
set will intersect and travel along the face of (3.3) where αi = 0.

�
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We will explore the consequences of inference with a set of distributions that intersects the
topological boundaries of the natural parameter space of the Dirichlet family.

Figure 3.3: A geometrical view of IDM update by translation. The larger simplex (dashed
black) represents the set (3.3) of possible Dirichlet posteriors after observing n observa-
tions with ν fixed apriori. The simplex of size ν (dashed blue) represents the natural
parameters of the prior IDM set of distributions and the translation of this simplex by
n = (n1, n2, n3) (solid blue) represents the natural parameters (3.2) of the posterior IDM
set of distributions.
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3.3 Inference for log-odds under IDM

We use categorical data analysis as a backdrop to investigate statistical inference using im-
precise probabilities. We focus on the imprecise IDM version of the following log-odds in-
ference. In the precise case with a single prior, under the Dirichlet(να+n) posterior distri-
bution over m categories, for two collections of subsets of cell categories, A = {A1, . . . , Ar}
with each Ai ⊆ {1, . . . ,m} and B = {B1, . . . , Bs} with each Bj ⊆ {1, . . . ,m}, the expec-
tation of the general log-odds of the following form is a linear combination of digamma
functions,

E

(
log

θA1 . . . θAr
θB1 . . . θBs

∣∣∣∣ να+ n

)
=

r∑
i=1

ψ(ναAi+nAi)−
s∑
j=1

ψ(ναBj +nBj)−(|A|−|B|)ψ(ν+n).

(3.4)
where for a vector θ = (θ1, . . . , θm), and a subset of indices C ⊆ {1, . . . ,m},

θC :=
∑
i∈C

θi. (3.5)

(This follows from the fact that the log-probabilities log θi are sufficient statistics of the
Dirichlet distribution and the digamma functions result from differentiating the Beta func-
tion of the normalising constant.) The IDM version of this involves computing the posterior
lower expectation,

EIDM

(
log

θA1 . . . θAr
θB1 . . . θBs

∣∣∣∣ ν,n) = inf

{
E

(
log

θA1 . . . θAr
θB1 . . . θBs

∣∣∣∣ να+ n

)
: α ∈ 4m

}
. (3.6)

From an optimisation perspective, we note that, when counts of some observation cells, ni’s,
are zero, the objective function above contains terms of the form ψ(νa) which tends to −∞
as the optimisation variable a tends to 0. We will examine this in more details in Chapter 5.

3.3.1 Unboundedness of the log-odds and the theory of coher-
ence

We are interested in the cases where the log-odds statistic becomes unbounded when θ
contain zeroes as prior sensitivity may be extreme. However, this case presents a problem
for directly applying the mathematical framework in Chapter 2 as Walley’s coherence of
lower expectations [81] are defined only on sets of bounded random variables. There has
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been relatively little work on extensions to unbounded random variables: we cite Troffaes
and de Cooman [77], Troffaes [75], their culmination in the later book by Troffaes and de
Cooman [78] as well as the investigations by Crisma, Gigante, and Millossovich [31] and
Schervish, Seidenfeld and Kadane [71].

We take an approach that is more in line with sensitivity analyses. We restrict our scope
of analysis to the IDM and justify our use of it with the log-odds with limiting arguments.
Specifically, we consider a truncation of the log-odds that is bounded and finite.

Definition 3.3.1: For a coherent lower expectation, E, defined over the set of bounded
random variable L(Ω)s, write E(ext) as its extension to the linear space,

span(L(Ω) ∪ {g}).

�

When the multinomial is non-sparse in the sense that each category has at least one ob-
servation, we show that the approximation error between the posterior expectations of a
truncated log-odds and the original one converges to zero in the L1 sense uniformly over
the posterior natural parameter space that is the optimisation domain of the IDM.

Theorem 3.3.1: (Theorem B.2.1) Consider the general log-odds statistic,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

and the following truncation of it,

Tc(θ) := g(θ)I(|g(θ)| ≤ c) + cI(|g(θ)| > c).

Under θ ∼ Dirichlet(να+ n) with sets A1, . . . , Ar, B1, . . . , Bs, such that nAi > 0, nBj > 0
for all Ai, Bj,

sup
α∈4|Ω|

E(|Tc − g||να+ n)→ 0,

as c→∞.

�
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The coherence of Troffaes and de Cooman [78] extends that of Walley [81] (introduced in
Chapter 2) to unbounded ones such as the general log-odds by using an approximation
scheme. It can be shown that our construction is also coherent under their extended co-
herence notions.

Theorem 3.3.2: (Theorem B.2.2) Under the conditions of Theorem 3.3.1, the extended
IDM whose value at the unbounded log-odds g is given by,

E
(ext)
IDM(g(θ)|ν,n) = lim

c→∞
EIDM(Tc(θ)|να+ n),

is coherent under the Proposition B.2.1 of Troffaes and de Cooman [78].

�

Following their extension allows us to make the following interpretation of performing the
optimisation and treating its result as an extension of the IDM lower expectation to include
g in its domain.

Interpretation 3.3.1: For any general log-odds,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

whenever n contains at least one count in each category, we interpret, E
(ext)
IDM(g(θ)|ν,n) as

a double limit of the sequence of truncated Dirichlet expectations,

c,α 7−→ E(Tc|να+ n) = E

(
g(θ)I(|g(θ)| ≤ c) + cI(|g(θ) > c|)

∣∣∣∣ να+ n

)
,

over the optimisation path of α contained in 4Ω and the limit of the truncation approxi-
mation via c→∞.

As described in Chapter 2, we can interpret the imprecise theory as either a sensitivity anal-
ysis of elicited priors or in terms of coherence of direct assessments about random variables.
However, care must be taken when applying the interpretation of Section 2.1 motivating the

coherence definition 2.1.8 to E
(ext)
IDM(g|ν,n) = −∞ (and, by conjugacy, E

(ext)

IDM(g|ν,n) =∞).
See 13.11 in Troffaes and de Cooman [78].
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3.3.2 The divergence of coherence from sensitivity analysis under
sparse observations

Despite the material in the previous section, the behavioural and mathematical extension
of Walley’s coherence [81] for the IDM encounters further obstacles when it is used to per-
form posterior inference for the log odds-type statistics. In particular, we now demonstrate
that the error of the previous approximation does not converge to zero if certain cells have
zero samples.

Example 3.3.1: Consider θ ∼ Dirichlet(να + n) with α = (α1, α2, 1 − α1 − α2) ∈ 4|Ω|
and,

g(θ) = log θ1/θ2,

for θ a vector of trinomial cell probabilities.

Consider the case when n = (0, 0, n3) such that n3 > 0:

lim
α1→0

E(|g − Tc||να+ n)

≥
(

lim
α1→0

E(|g||να+ n)− E(|g|I(|g| ≤ c)|να+ n)− E(cI(|g| > c)|να+ n)

)
= lim

α1→0
(E(|g||να+ n)− E(|g|I(|g| ≤ c)|να+ n)− cP (|g| > c|να+ n))

> lim
α1→0

E(|g||να+ n)− 2c

≥ lim
α1→0

|E(g|να+ n)| − 2c

= lim
α1→0

|ψ(να1)− ψ(να2)| − 2c (ψ is the digamma function)

=∞,

Similarly,
lim
α2→0

E(|g − Tc||να+ n) ≥ ∞.

This leads to,
limc→∞ limα1→0E(|g − Tc||να+ n) =∞

limc→∞ limα2→0E(|g − Tc||να+ n) =∞
. (3.7)

That is, the error of the truncation approximation does not converge to zero in this case.
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Example 3.3.1 demonstrates that, in the case of interest where certain cells have zero ob-
servations, there are issues with Walley’s coherence [81] on bounded random variables and
with its extension by Troffaes and de Cooman [78] to unbounded random variables via
approximating random variables for posterior inference of log-odds.

Nevertheless, if we put coherence aside, the optimisation,

inf
α∈4|Ω|

EDir(g|να+ n),

itself can still yield well-defined solutions. This is because, for the general log-odds,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

its expectation under any posterior Dirichlet distribution in the set is a linear combination
of digamma functions,

EDir(g|να+ n) =
r∑
i=1

ψ(ναAi + nAi)−
s∑
j=1

ψ(ναBj + nBj)− (r − s)ψ(ν + n),

and is therefore a smooth function in the interior of the α simplex. (Recall that aC =∑
i∈C ai for a vector a and a set of indices C, and n is the total number of observations.)

In the following sections, Theorem 3.4.1 show that this expectation may optimise to ±∞
for when either all the sets of the numerator or all the sets of the denominator of g(θ) have
strictly positive cell counts. This yields an interpretable inference in the vein of a global
sensitivity analysis methodology.

Interpretation 3.3.2: When there exists no Ai ∈ A and Bj ∈ B such that nAi = 0 and
nBj = 0 simultaneously, the general log-odds problem,

inf
α∈4|Ω|

EDir(g|να+ n),

where,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,
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has the following interpretation at the boundary of 4|Ω| 3 α: the lower or upper bounds
of −∞ or +∞ for the posterior expectation naturally occur as optima. It is an indication
that the inference varies immensely over the set of Dirichlet priors of the IDM.

On the other hand, Theorem B.5.1 shows that the optimum may fail to exist as a limit
point of an optimisation path when some sets in both the numerator and denominator
of g(θ) have zero cell counts. This case is pathological in the sense that nothing can be
done beyond interpreting the resulting inference as vacuous (i.e. that the conclusion of the
posterior inference is simply that the posterior expectation is trivially between −∞ and
+∞).

From this discussion, we can see that coherence of this inference breaks down when the
data set is sparse as the mathematical justification for approximating with bounded ran-
dom variables fails. On the other hand, the interpretation of the optimisation result as
a form of global sensitivity analysis does not break down and is perfectly well defined.
Hence, our posterior inference of the general log-odds demonstrates a divergence between
the two statistical methodologies.

For the rest of this chapter, we will use the sensitivity analysis methodology to interpret
any log-odds inference under the IDM and data sparsity.

3.4 Inference for log-odds under IDM with sparse ob-

servations

3.4.1 Behaviour of the posterior inference of the simple log odds
under the IDM and sparse observations

We consider the optimisation of a single log odds, say,

log
θi

1− θ1 − . . .− θm−1

.

We consider the unboundedness properties of the Dirichlet expected log odds along with
the affine geometrical interpretation of a posterior update as being a translation of fixed
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simplex around a larger simplex.

Example 3.4.1: Suppose that m = 3. Consider the various positions of the translated
simplex relative to the larger simplex of possible (Dirichlet) natural parameters at the slice
s = ν + n under different kinds of observations.

Figure 3.4: For ν = 2, each subplot is associated with updating with different observation
vectors totaling n = 6 observations. Left to right: (n1, n2, n3) = (1, 2, 3), (0, 3, 3), (0, 6, 0).
The prior set of distributions with ν = 2 (dashed blue) is translated by (n1, n2) to obtain
the posterior set of distributions of Dirichlet natural parameters (solid blue.) The possible
posterior Dirichlet natural parameters is the scaled simplex (ν + n)N2 (dashed black.)

From Figure 3.4, when observations contains zero counts, the posterior set of distributions
will always contain distributions whose natural parameters are on the boundary of the
larger, ambient simplex (dashed black).

�

Example 3.4.2: Let us consider what happens to the mean of a simple log-odds under
a posterior Dirichlet distribution when some cells have zero observations. These cases
correspond to the middle and right panels in Figure 3.4. For three categories, when under
the natural parametrisation θ ∼ Dirichlet((ν + n, να1 + n1, να2 + n2)),

µi = EDir

(
log

θi
1− θ1 − θ2

∣∣∣∣n,α, ν) = ψ(ναi + ni)− ψ(ν + n− να1 − n1 − να2 − n2).

for i = 1, 2. The middle panel corresponds the dataset (n1, n2, n3) = (0, n2, n3) where
n2, n3 > 0. We observe that, for vertices (0, ν + n2, n3) and (0, n2, ν + n3), where α2 = 1
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and α3 = 1 respectively,

(µ1, µ2)(0, ν + n2, n3) = (ψ(0+)− ψ(n− n2), ψ(n2)− ψ(n− n2)),

(µ1, µ2)(0, n2, ν + n3) = (ψ(0+)− ψ(ν + n− n2), ψ(n2)− ψ(ν + n− n2)),

where the right limit at 0 of the digamma function ψ(0+) tends to infinity. Notice that
these two vertices represent endpoints of the side of the blue solid simplex that coincides
with the boundary larger black simplex.

Similarly, the right panel corresponds to the dataset (0, n2, 0) for n2 = n > 0. For the
vertex (0, ν + n2, 0),

(µ1, µ2)(0, ν + n2, 0) = (ψ(0+)− ψ(0+), ψ(ν + n2)− ψ(0+)).

The indeterminate form ψ(0+)− ψ(0+) in µ1 arises from (0, ν + n2, 0) coinciding with the
vertex of the black simplex. This is qualitatively different from the terms that involve only
one right limit of the digamma function at zero, which is merely unbounded.

Figure 3.5: The ambient simplex (ν + n)N2 with (n1, n2, n3) = (0, n2, 0). The posterior
expected log odds µ1 takes values +∞ and −∞ on the left and bottom edges, respectively,
and does not have a continuous limit at the vertex of these two edges.

The middle and right panels demonstrate qualitatively different boundary effects of the
posterior natural parameter space upon log-odds inference depending on whether or not
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the boundary contains vertices or not. This leads to the optimisation of the posterior
expectation being also qualitatively very different amongst the three cases of boundaries
in Figure 3.4.

�

3.4.2 Behaviour and solutions to optimisation problem of the
posterior inference of the general log odds under the IDM
and sparse observations

Let us now generalise the observations from the case with the simple log odds. The
observations n can only affect the expected log-odds function only through the elements
that appear explicitly in the linear combination of digamma functions,

α 7−→
r∑
i=1

ψ(ναAi + nAi)−
s∑
j=1

ψ(ναBj + nBj).

We can deduce the behaviour of this function through the behaviour of the difference be-
tween two digamma functions as follows.

Lemma 3.4.1: When nj > 0,

α 7−→ ψ(ναi)− ψ(ναj + nj),

has a minimum of −∞ as αi tends to 0 on 4m 3 α. When ni, nj > 0, then the two terms
in,

ψ(ναi + ni)− ψ(ναj + nj),

are bounded over α ∈ 4m.

Proof: the first result is due to the fact that ψ is an unbounded and increasing function
on R+. The last result is also clear as ψ(x) is finite when x is finite.

�

56



In particular, the appropriate categories having zero observations causes the entire poste-
rior expected log odds to go to infinity in one or both directions.

We note that the optima of the expectation of the general log-odds remain infinite as long
as at least one event has zero counts. In particular, we have the following.

Theorem 3.4.1:

• Suppose that nA1 = 0 and nAi , nBj > 0 for i 6= 1. Then, the lower expectation of the
general log-odds is −∞.

• Suppose that nB1 = 0 and nAi , nBj > 0 for j 6= 1. Then, the upper expectation of
the general log-odds is +∞.

Proof: For the first case, the expectation to be minimised is,

α ∈ 4m 7−→ ψ(ναA1) +
r∑
i=2

ψ(ναAi + nAi)−
s∑
j=1

ψ(ναBj + nBj).

We need only demonstrate that −∞ is attainable and so must be the minimum. Indeed,

any solution on the face
{
α : αA1 = 0,

∧r
i=2 αAi > 0

∧s
j=1 αBj > 0

}
will suffice.

The case for nB1 = 0 is analogous, with
{
α : αB1 = 0,

∧r
i=1 αAi > 0

∧s
j=2 αBj > 0

}
attain-

ing +∞.

�

Finally, we remark upon the indeterminate forms that appear in certain expressions for
the posterior expectation. For example, in Example 3.4.2, the expression for the posterior
expectation of the log-odds was,

ψ(ναi + ni)− ψ(ν + n− να1 − n1 − να2 − n2).

for i = 1, 2, such that with i = 1, n1 = n2 = 0, the indeterminate form ψ(0+)−ψ(0+) occurs
as α1 and α2 approach 0. This is because the limit is not well-defined: the indeterminate
form can take any real value depending on the path taken for α1, α2 to approach 0. This

57



simply means that the posterior expectation EDir

(
log θi

1−θ1−θ2

∣∣n,α, ν) cannot be assigned

the value returned by this expression, and must be directly evaluated. Consequently, if this
case occurs when computing this type of imprecise expectation, we minimise the Lebesgue
integral directly.

3.4.3 Effects of cell counts on imprecision of posterior log-odds
inference under the IDM

We have seen that zero sample counts in categories may cause the IDM’s lower and upper
expectations to be unbounded, and the inference to become noninformative. On the other
hand, as long as the categories involved in the log-odds contain at least one observation, the
expectation becomes finite. As next step, let us explore how observing a single observation
in its event decreases the imprecision of the posterior inference. Suppose that nA = 1 such
that,

E[log θA|n, ν,α] = ψ(ναA + 1)− ψ(ν + n).

Then the minimum is attained at,

ψ(1)− ψ(ν + n),

and the maximum is attained at,

ψ(ν + 1)− ψ(ν + n).

In terms of gain of precision, one observation in A causes the lower expectation to jump
from −∞ to the finite value ψ(1)−ψ(ν+n): thus ν and n also controls the location of the
lower expectation when transitioning away from vacuity. The imprecision decreases from
∞ to ψ(ν+1)−ψ(1) with a single observation nA = 1, and higher values of ν increases this
imprecision value. Interestingly, the total number of observations n does not contribute to
this phenomenon.

As expected, as more counts are accumulated by increasing ∆n, the imprecision of the
log-probability inference also decreases.

Proposition 3.4.1: for n and ∆n such that nA ≥ 1 and ∆nA = (∆n)A ≥ 0,

P [log θA|να+ n] ≥ P [log θA|να+ n+ ∆n].

Proof: See Proposition B.4.1.
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Due to a triangular inequality of the imprecision of a sum (see Lemma B.4.1,) the impreci-
sion of a general log-odds is bounded above by the imprecision of the sum of its components
of log-probabilities.

Theorem 3.4.2: For finite r, s, the imprecision (induced by a coherent conjugate pair of
lower and upper expectations) of the general log odds is bounded by the imprecisions of
its component log-probabilities:

P

[
log

θA1 . . . θAr
θB1 . . . θBs

]
≤

r∑
i=1

P [log θAi ] +
s∑
j=1

P [log θBj ].

Proof: Apply Lemma B.4.1.

�
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3.5 Illustrative numerical examples

3.5.1 Setting for numerical optimisation

Optimisations are run using the spg function of the R library, BB (Varadhan and Gilbert
[79]). This is a variant of constrained gradient descent that projects the solution back
onto the domain if the gradient steps out of it (see Birgin et al. [16]). This is particularly
useful for optimisations with domains that involve closed sets in Euclidean space where
the optimum may exist in a subset that is in a lower dimensional subspace (such as the
boundaries of the closed simplex that parametrises the posterior set of distributions of the
IDM.)

For initialisation of the optimisation on 4m, we instantiate by sampling z ∼ N(0, Ik),
taking the absolute value of each element and normalising the vector:

(|z1(ω)|, . . . , |zk(ω)|)∑m
i=1 |zi(ω)|

. (3.8)

Finally, because we are interested specifically in effects due to the patterns of sparsity in
the data, we fix the IDM parameter ν = 2 for the experiments.

3.5.2 Dataset examples

Example 3.5.1: Hockey goals data: log-odds inference

Goals Scored 0 1 2 3 4 5 6 7 8 9 10 11 12
Goals Given Up

0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 2 1 0 1 1 0 0 0 1
2 0 1 3 2 0 3 1 0 0 0 1 0 0
3 0 1 0 2 3 2 6 3 0 1 0 0 0
4 2 2 1 3 3 2 2 0 0 1 0 0 0
5 0 1 2 3 2 1 2 0 0 1 0 0 0
6 0 1 1 2 1 1 0 1 0 0 0 0 0
7 0 1 1 0 0 1 2 0 0 0 0 0 0
8 1 0 0 0 1 1 0 0 0 0 0 0 0
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This dataset was analysed by Dong and Simonoff [37], whose interest was in constructing
smoothed estimators of cell probabilities θ∗ij, for the i-j-th cell in the table. The data
consists of observations of a total of ‘80 games played by the Pittsburgh Penguins of the
National Hockey League during the 1991-1992 season’ [37]. The i-j-th cell represents the
count of the games where the team gave up i goals and scored j goals. The extent of their
analysis is a heat plot of smooth counts nθ∗ij (where θ∗ij is their smoothed cell probability
estimator:) in particular, the authors remarked that, ‘...typical for a sparse table like this,
drawing any conclusions from the table is difficult, past ... that in most games the team
both scored and gave up between 1 and 7 goals’ [37]. They observed that their smoothing
highlights regions of negative correlation such as high smoothed counts in cells 2-5, 3-5,
3-6, 5-2, and 5-3.

We will first consider this hypothesis by computing the imprecise expectation of the odds
ratio of representing stochastic dominance. Namely,

g(θ) = log
P (GGU > GS)

1− P (GGU > GS)
(θ) = log

∑
i>j

θij − log
∑
i≤j

θij,

where GGU and GS are the counts of goals given up and scored, respectively. The opti-
misation objective function for the imprecise expectations under the IDM is the following
posterior Dirichlet expectation,

α ∈ 4m 7−→ E

[
log

P (GGU > GS)

1− P (GGU > GS)
(θ)

∣∣∣∣ να + n

]
= ψ

(∑
i>j

ναij + nij

)
−ψ

(∑
i≤j

ναij + nij

)
.

Per Walley’s suggestion [80], we choose ν = 2 and, as with the illustrative examples,
perform 100 repeats of the optimisation with the random initialisation (3.8).

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
-0.452 -0.452

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
-0.349 -0.349

All is well in terms of our earlier analysis of sparsity: both optimisation problems of the
lower and upper expectations are convergent (as shown by the repeated testing) to a finite
number. This is due to there being at least one cell of the event {GGU > GS} having
at least one observation such that

∑
i>j nij > 0, and similarly for

∑
i≤j nij > 0. In fact,
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both the lower and upper expectations are negative, suggesting agreement amongst the
prior distributions that the ‘correlation’ is indeed negative. Unlike the lower expectations,
amongst the finite upper expectations, there is a variety of signs being taken by the upper
expectation values.

�

Example 3.5.2: Hockey goals data: log odds ratio inference

Now consider instead the log odds ratio,

g(θ) = log
P (GGU > GS ∩GS ≥ 2)P (GGU ≤ GS ∩GS < 2)

P (GGU > GS ∩GS < 2)P (GGU ≤ GS ∩GS ≥ 2)
(θ)

= log
P (GGU > GS|GS ≥ 2)/P (GGU ≤ GS|GS ≥ 2)

P (GGU > GS|GS < 2)/P (GGU ≤ GS|GS < 2)
(θ).

In other words, we infer on the comparison between the odds of losing a game conditional
on the team scoring at least or less than 2 goals. Again, we check for sensitivity to random
instantiations by reporting the minimum and maximum of lower and upper expectations
over 100 repeats:

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
-3.30 -3.30

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
-2.93 -2.93

For all α parametrising each Dirichlet distribution in the IDM set of priors {Dirichlet(·|ν =
2,α) : α ∈ 48×12},

EPDir

(
log

P (GGU > GS|GS ≥ 2)/P (GGU ≤ GS|GS ≥ 2)

P (GGU > GS|GS < 2)/P (GGU ≤ GS|GS < 2)
(θ)

∣∣∣∣n, να) < 0,

or,

EPDir

(
logP (GGU > GS|GS ≥ 2)/P (GGU ≤ GS|GS ≥ 2)(θ)

∣∣∣∣n, να)
< EPDir

(
logP (GGU > GS|GS < 2)/P (GGU ≤ GS|GS < 2)(θ)

∣∣∣∣n, να) .
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In accordance with the observed data, the posterior distributions in the set of distributions
agree that the expected odds of them losing (goals given up (GGU) greater than goals
scored (GS)) conditional on them scoring at least 2 goals is less than the same odds con-
ditional on scoring less than 2 goals, which is to be expected.

�

Example 3.5.3: Hockey goals data: log odds inference with finer conditioning on rare
events

Suppose that one was interested in comparing the odds of them losing under the regimes
when the number of goals given up (GGU) and goals scored (GS) are low (that is, when
both teams’ scores are low) and when both are high. This is also numerically interesting
because these cases are also part of the sparse parts of the dataset (the upper-left and
lower-right portions of it).

One way to model that is to split the values of the GGU and GS variables such that the
conditioning is as follows. We condition on both GGU and GS being low, which we define
as when they are in {0, 1} and {0, 1} respectively, and when both are high, when they
are in {6, 7, 8} and {8, 9, 10, 11, 12} respectively. The conditioning events are sparse: they
are chosen such that the variable is ordinally smaller than the smallest value whose cell
count is greater than or equal to 3 occur (for example, GGU ∈ {0, 1} was chosen because
GGU = 2 is the smallest ordinal value whose row starts containing cell counts of at least 3.)

The log-odds can be written as,

g(θ) = log P (GGU≥GS ∩ GGU∈{0,1} ∩ GS∈{0,1})P (GGU<GS ∩ GGU∈{6,7,8} ∩ GS∈{8,9,10,11,12})
P (GGU≥GS ∩ GGU∈{6,7,8} ∩ GS∈{8,9,10,11,12})P (GGU<GS ∩ GGU∈{0,1} ∩ GS∈{0,1})(θ).

(3.9)
In terms of conditional odds-ratios,

log P (GGU≥GS | GGU∈{0,1} ∩ GS∈{0,1})/P (GGU≥GS | GGU∈{6,7,8} ∩ GS∈{8,9,10,11,12})
P (GGU<GS | GGU∈{0,1} ∩ GS∈{0,1})/P (GGU<GS | GGU∈{6,7,8} ∩ GS∈{8,9,10,11,12})(θ).

Labelling the log-odds in (3.9), log θAθB/θCθD, its posterior expectation with respect to
one set of distributions element of the IDM is,

ψ(ναA) + ψ(ναB)− ψ(ναC)− ψ(ναD),
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(such that nA, nB, nC , nD = 0.) From this, −∞ is the minimum that can be found on the
face of {α : αA = 0 ∨ αB = 0}. The maximum∞ can be found on {α : αC = 0 ∨αD = 0}.
Again, we check for sensitivity by taking the minimum and maximum over 100 random
initialisations:

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
−∞ −∞

Minimum of P (g|ν,n) Maximum of P (g|ν,n)
+∞ +∞

Compared with Example 3.5.2, by changing the conditioning events to a collection that
does not partition the indices of the table and are rare, the imprecision becomes effectively
infinite and the inference is consequently vacuous.

�

Example 3.5.4: Independence test on modified Hockey Data

We will now draw inference on the independence between the variables GGU and GS.
Under the multinomial likelihood, these two random variables are independent (relative to
the categories I := {0, 1, . . . , 8} × {0, 1, . . . , 12}) iff

∀(i, j) ∈ I : log
θi·θ·j
θij

= 0. (3.10)

We will be computing the imprecise expectation of these 9 × 13 = 117 log odds and, as
with our previous examples, we will perform repetitions of each whilst varying only the
initialisation of each optimisation run. Under a posterior Dirichlet(να + n) distribution,
its expectation is,

E

[
log

θi·θ·j
θij

∣∣∣∣ να+ n

]
= ψ(ναi· + ni·) + ψ(να·j + n·j)− ψ(ναij + nij)− ψ(ν + n). (3.11)

In general, the minimum of the expected log-odds (3.11) is bounded away from −∞ since
all columns and rows sum to at least 1, so that it cannot be achieved by any α ∈ 4m. The
maximum is also similarly bounded away from ∞ when nij > 0, but is ∞ when nij = 0
and the optimum tends to some maximiser satisfying αij = 0. As a general remark, we
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expect this as the statistic itself log θi·θ·j/θij for θ ∈ 4m is unbounded above (as θij tends
to 0) but bounded below away from −∞ as θi·, θ·j ≥ θij prevents the numerator of the
ratio from going to zero when θij > 0.

Notice that because the column GS = 11 has no counts, it can be seen that,

∀i ∈ {0, 1, . . . , 8} : E

[
log

θi·θ·11

θi11

∣∣∣∣ να+ n

]
= ψ(ναi·+ni·)+ψ(να·11)−ψ(ναi11)−ψ(ν+n),

which is minimised and maximised to −∞ and ∞ respectively, so it is not particularly
interesting as far as satisfying (3.10) goes.

Instead, we will modify the hockey data slightly by adding a single unit count to the column
GS = 11. We add a single count to the cell (0,11). The modified table is as follows,

Goals Scored 0 1 2 3 4 5 6 7 8 9 10 11 12
Goals Given Up

0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 1 2 1 0 1 1 0 0 0 1
2 0 1 3 2 0 3 1 0 0 0 1 0 0
3 0 1 0 2 3 2 6 3 0 1 0 0 0
4 2 2 1 3 3 2 2 0 0 1 0 0 0
5 0 1 2 3 2 1 2 0 0 1 0 0 0
6 0 1 1 2 1 1 0 1 0 0 0 0 0
7 0 1 1 0 0 1 2 0 0 0 0 0 0
8 1 0 0 0 1 1 0 0 0 0 0 0 0

Notice that none of the rows and columns sums to zero now.

The lower and upper expectations of this problem is given in Table 3.1. (Based on 100
random initialisations, we found that the results were not sensitive to the random initiali-
sations. The output of these tests have been omitted for brevity.)
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0 1 2 3 4 5 6 7 8

0 [-2.07, +∞] [-1.43, +∞] [-1.32, +∞] [-0.90, +∞] [-0.97, +∞] [-0.97, +∞] [-0.90, +∞] [-1.70, +∞] [-3.04, -1.99 ]
1 [-1.18, +∞] [-0.55, +∞] [-0.44, +∞] [-0.52, 0.83 ] [-0.92, -0.25 ] [-0.59, 0.74 ] [-0.02, +∞] [-1.32, -0.09 ] [-1.93, -0.70 ]
2 [-0.80, +∞] [-0.66, 0.65 ] [-1.14, -0.73 ] [-0.46, 0.21 ] [0.29, +∞] [-0.79, -0.36 ] [-0.13, 1.21 ] [-0.43, +∞] [-1.05, +∞]
3 [-0.35, +∞] [-0.22, 1.16 ] [0.38, +∞] [-0.02, 0.70 ] [-0.34, 0.12 ] [-0.09, 0.62 ] [-0.78, -0.58 ] [-1.07, -0.60 ] [-0.60, +∞]
4 [-1.30, -0.58 ] [-0.66, 0.04 ] [-0.22, 1.15 ] [-0.38, 0.07 ] [-0.45, 0.00 ] [-0.20, 0.50 ] [-0.13, 0.57 ] [-0.10, +∞] [-0.71, +∞]
5 [-0.72, +∞] [-0.59, 0.74 ] [-0.81, -0.14 ] [-0.64, -0.20 ] [-0.46, 0.21 ] [-0.12, 1.21 ] [-0.39, 0.29 ] [-0.35, +∞] [-0.97, +∞]
6 [-1.18, +∞] [-1.05, 0.19 ] [-0.94, 0.32 ] [-0.85, -0.16 ] [-0.59, 0.74 ] [-0.59, 0.74 ] [-0.02, +∞] [-1.32, -0.09 ] [-1.43, +∞]
7 [-1.45, +∞] [-1.32, -0.09 ] [-1.21, 0.05 ] [-0.28, +∞] [-0.35, +∞] [-0.85, 0.47 ] [-1.12, -0.43 ] [-1.09, +∞] [-1.70, +∞]
8 [-2.33, -1.32 ] [-1.18, +∞] [-1.07, +∞] [-0.65, +∞] [-1.22, 0.11 ] [-1.22, 0.11 ] [-0.65, +∞] [-1.45, +∞] [-2.07, +∞]

9 10 11 12

0 [-2.07, +∞] [-2.65, +∞] [-3.99, -2.42 ] [-2.65, +∞]
1 [-1.18, +∞] [-1.77, +∞] [-1.77, +∞] [-2.54, -1.04 ]
2 [-0.80, +∞] [-2.06, -0.56 ] [-1.38, +∞] [-1.38, +∞]
3 [-0.85, 0.53 ] [-0.94, +∞] [-0.94, +∞] [-0.94, +∞]
4 [-0.96, 0.41 ] [-1.05, +∞] [-1.05, +∞] [-1.05, +∞]
5 [-1.22, 0.11 ] [-1.30, +∞] [-1.30, +∞] [-1.30, +∞]
6 [-1.18, +∞] [-1.77, +∞] [-1.77, +∞] [-1.77, +∞]
7 [-1.45, +∞] [-2.04, +∞] [-2.04, +∞] [-2.04, +∞]
8 [-1.82, +∞] [-2.40, +∞] [-2.40, +∞] [-2.40, +∞]

Table 3.1: Lower and upper expectations [E(g|ν,n), E(g|ν,n)] of the independence log-odds statistic g
under the modified hockey dataset.
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Because there are some cells whose imprecise intervals contain 0, while others do not, there
is no agreement amongst the elements about the independence statement (3.10). This leads
us to conclude that, under this modified hockey dataset, this particular inference is sensitive
to the choice of prior at which the posterior expectation is evaluated, to the point that
posterior inference from the different priors do not even agree on the sign of the posterior
expectation of the log-odds in (3.10) for some cells. Indeed, the pair of lower and upper
expectations (E(g|ν,n), E(g|ν,n)) of each cell fall into one of the following cases in terms
of their signs.

1. (−,−): all prior Dirichlet distributions produce posterior expectations of the inde-
pendence statistic (3.11) which are negative. Conclusively, for such cells i − j, the
priors all agree on the statement EP [log θi·θ·j/θij] < 0.

2. (−,+) and (−,∞): some prior Dirichlet distributions produce posterior expectations
of the independence statistic (3.11) which are negative, while some produce positive
values. Consequently, there is no consensus on the sign of EP [log θi·θ·j/θij]. In
particular, the null value of interest 0, is in their imprecise interval.

3. (+,∞): all prior Dirichlet distributions produce posterior expectations of the inde-
pendence statistic (3.11) which are positive. Conclusively, for such cells i − j, the
priors all agree on the statement EP [log θi·θ·j/θij] > 0.

For some cells, the upper expectation is unbounded. For the cells which are otherwise not,
the upper expectation seemss to also be invariant against the random initialisations (3.8).
In fact, the cells that correspond to upper expectations that are bounded are exactly the
ones with at least one observation.

�

3.6 Concluding remarks

Our contributions in this chapters can be summarised as follows. We construct Example
3.1.1 to motivate the material presented in this chapter. Example 3.2.2 and Theorem 3.2.2
demonstrate the geometry of IDM posterior update, pictorially demonstrated by Figure
3.3. Theorem 3.3.1 yields the evaluation of the IDM coherent lower expectation of the un-
bounded general log-odds. Example 3.3.1 demonstrates that this extension fails in certain
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cases when the data is sparse. Subsequently, Corollary 3.3.2 argues that global sensitiv-
ity analysis is a more suitable interpretation of the IDM log-odds problem in sparse data
cases. Using Examples 3.4.1, 3.4.2, we demonstrate the behaviour of the posterior IDM
optimisation of the log-odds statistics at the boundary of the natural parameter space.
We briefly explore the amount of precision gained for one unit of observations: Theorem
3.4.2 provides a triangular inequality bound on its imprecision. Finally, inference on real
dataset were demonstrated in Examples 3.5.1, 3.5.2, 3.5.3 and 3.5.4.

We observed that for some sparse multinomial observations, the likelihood can be flat in
some directions and therefore Bayesian posterior inference will be to some extent dictated
by (and therefore sensitive to) the choice of prior distribution. Imprecise models such as
the IDM allow us to preserve a generalisation of the usual coherence that forms a pillar of
Bayesian inference (see Chapter 2) and a global sensitivity analysis interpretation allows
us to consider the effect of sparsity and the use of multiple (Dirichlet) prior distributions
on the inference by considering the so-called imprecise inference that consists of lower and
upper bounds of posterior expectations.

Following Bickis [14], the posterior update can be geometrically represented by a transla-
tion of the set of (natural parameters of) individual probabilistic models, and sparsity is
readily interpreted as a simplex being translated along the face of a larger simplex, mo-
tivating the need to consider the extended Dirichlet family. We focused our analysis on
the properties of posterior imprecise expectation of a general form of log-odds and derived
its properties as an optimisation of sums and differences of digamma functions and the
latter’s asymptotic properties were heavily used in the analysis. Finally, synthetic and
data examples were used for numerical illustration for the model.

Like the Dirichlet-Multinomial model, the IDM also depends on the multinomial data only
through the cell counts. When the counts of interest are zero, because the IDM includes
some degenerate Dirichlet distributions of lower dimensions, the posterior log-odds expec-
tation value will gravitate towards ±∞ and our analysis and examples readily corroborated
this.

When sparsity is not so severe, the IDM does provide a non-vacuous global sensitivity anal-
ysis. For example, in the Hockey goals data examples 3.5.1 and 3.5.2, the counts involved
are all non-zero, and the IDM produces finite (but different) posterior lower and upper
expectations, yielding a meaningful inference by measuring the discrepancies amongst the
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priors through the non-zero imprecision even though some of the component cells them-
selves have zero count.

Aggregation plays the rôle of making inference less vacuous. For example, comparing Ex-
amples 3.5.2 and 3.5.3, when in the former we condition on events which have non-zero
counts and on events which are finer and are of zero counts in the latter, the latter produces
vacuous lower and upper expectations. In the modified Hockey data example, Example
3.5.4, even when the rows and columns of the dataset have positive marginal counts, the
fact that the independence statistic depend on each individual cell count in the denomina-
tor that can still be zero means that, again, in this case the IDM can provide only (upper)
vacuous inference.

More generally, the modified hockey example brings up some methodological problems in
hypothesis testing and estimation using the imprecise framework. In the precise Bayesian
and frequentist settings, a useful interpretive tool to account for variations of point esti-
mates due to the randomness from the distribution is the construction of intervals such as
credible and confidence intervals (incoherence of the confidence interval not withstanding,
see Chapter 7 of Walley [81]). As we have discussed in Section 2.4.4, the interval of a
pair of imprecise expectations, [E(f(θ)), E(f(θ))], does not have the same interpretation
as the credible or confidence interval, as it is merely a collection of point estimates from a
different prior.

To truly extend the usual statistical methodology of interval estimation to the imprecise
realm, the variation of each prior must also somehow be aggregated to result in a summary
of, say, the imprecision of credible intervals over a set of priors, whichever form this sensi-
tivity analysis may manifest. To our knowledge, this has not been explored in the literature
and, to our example of testing for the independence of the underlying data generating pro-
cess of the modified hockey example, it seems inadequate to conclude anything about the
independence hypothesis by only computing a set of point estimates. An attempt to ad-
dress this is made in Chapter 4 where we explore summarising posterior quantiles due to a
set of prior distributions, and give interpretation to lower and upper quantiles at different
percentiles as a type of ‘imprecise interval’ over a set of distributions.
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Chapter 4

Imprecise quantile functions and
interval-valued statistics in the
imprecise setting

In this chapter, we apply the imprecise probabilities methodology in the context of hypoth-
esis testing and estimation of a univariate parameter. Work has been done on hypothesis
testing using lower and upper probabilities (for example, Couso, Álvarez-Caballero and
Sánchez [26] and Perolat, Couso, Loquin and Strauss [65]) but estimation still remains to
be developed. One issue of estimation in the imprecise setting is that no generalisation of
interval statistics such as confidence or posterior credible intervals have been proposed in
the same way that imprecise expectations coherently generalise the precise point estimate
using the expectation.

We are inspired by the work of Couso, Moral and Sánchez [30] to construct an imprecise
quantile function over a set of distributions. Because the quantile operator is generally
nonlinear, unlike the expectation operator, its optimisation is not guaranteed by the lower
envelope theorem (Theorem 2.2.1) to be a tight bound over a convex set of distributions.
To that issue, we show that, under certain regularity conditions, its optima over a convex
set of distributions also occur over the extreme points of this set. We provide data examples
of how such imprecise quantiles can be used and, more importantly, interpreted in testing
and estimation of a univariate parameter in the context of contingency tables under the
imprecise Dirichlet model (IDM, Chapter 2, due to Walley [81, 80]).
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4.1 Quantiles and imprecision

The notion of a quantile plays a major rôle in statistical theory and practice. In hypothesis
testing, it may be used to define the acceptance region of some prescribed confidence or
credibility. In parameter estimation, one usually wishes to not only have a point estimate,
but to also measure the variability of this estimate. This use of quantiles is important in
Bayesian analysis as the whole posterior distribution can be reported in order to preserve
all the derived information (Gelman et al. [41]): in particular, the set of all quantiles,
being the inverse of the distribution’s cumulative function, describes the whole posterior
distribution.

On the other hand, the imprecise expectations, introduced in Chapter 2, are lacking for the
purposes of statistical inference for the following reason. From the definition of impreci-
sion, an imprecise expectation, [EM(X), EM(X)] is to be interpreted as all point estimates
of the mean coherent with your state of knowledge: it does not summarise the effects of
the uncertainty or randomness of each distribution in M . Indeed, the typical tools to
indicate this are intervals such as confidence and credible intervals, but, to the best of our
knowledge, there have been no development of their imprecise analogues used for statistical
inference.

There are some ways to try and reproduce interval statistics in the imprecise methodology.
For example, Walley [81] justifies the lower and upper variances,

V M(X) := inf {VarP (X) : P ∈M}, V M(X) := sup {VarP (X) : P ∈M},

in the same gamble-theoretic terms as the lower and upper expectations (see Chapter 2).
Heuristically, one may combine them in a sensitivity analysis manner. For example, for
some constant c > 0, the following imprecise interval,[

EM(X)− c
√
V M(X), EM(X) + c

√
V M(X)

]
,

will contain all the intervals of the form [EP (X) ± c
√

VP (X)] over P ∈ M . However, it
is unclear how to formally extend any concept of coherence to this. For example, we can
demonstrate that this interval may exceed the domain of a bounded finite random variable.
This raises the question of how avoidance of sure losses may be defined for such interval
summaries.
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Alternatively, we propose to compute lower and upper quantile functions directly over a set
of distributions M . That is, for a fixed percentile p and random variable X, we compute

the minimum Q(p)

M
(X) and maximum Q

(p)

M (X) of the quantile function as a function of the
underlying distribution,

P 7−→ Q
(p)
P (X) = inf {u : P (X ≤ u) ≥ p}.

Like the imprecise expectation, these will be lower and upper bounds, Q(p)

M
(X),Q

(p)

M (X) of
the p-th quantile over M .

For statistical inference, an imprecise interval statistic can be constructed by considering

α < β ∈ [0, 1], [Q(α)

M
(X),Q

(β)

M (X)]. This construction has several advantages. Firstly,
statements about bounds on imprecise quantiles can be shown to correspond to statements
about bounds of the lower and upper CDFs (Theorem 4.5.1), which are coherent quantities.
However, quantiles themselves do not readily fit into the coherence framework introduced
in Chapter 2. Nevertheless, we show that just as the CDF and quantiles are monotonically
connected in the sense that,

P (X ≤ q) ≥ p ⇐⇒ Q
(p)
P (X) ≤ q,

we show in Theorem 4.5.2 that a similar relation occurs for the imprecise quantiles and
its associate coherent lower and upper probabilities. Secondly, it has a sensitivity analysis
interpretation: it contains all the α-β intervals of every distribution in M . Third, conse-
quently, 1−β−α is in fact a lower bound of the coverage probability of such α-β intervals
of each distribution in M (Theorem 4.5.3).

4.2 Literature: Imprecise Quantiles

Little research investigates the extension of the quantile to the imprecise realm. For our
purposes, the most relevant one can be found in the work done by Couso, Moral and
Sánchez [30], who extend the analysis of a median set of a single distribution to a collec-
tion of such sets over a set of distributions. Let us briefly go over their construction. Note
that they construct the median as a set of values.

Definition 4.2.1: (Couso, Moral and Sánchez [30]) For a distribution P and a random
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variable X, the median of X under P is the set of values:

MeP (X) := {x : P (X ≥ x) ≥ 0.5 ∧ P (X ≤ x) ≥ 0.5}.

�

Definition 4.2.2: (Couso, Moral and Sánchez [30]) For M a set of distributions, define
the lower and upper median of X, respectively, as,

MeM(X) := inf
P∈M

inf MeP (X),

and
MeM(X) := sup

P∈M
sup MeP (X).

�

4.3 Imprecise Quantile Functions

Our goal is to combine the concept of quantile with imprecision in a way that is in line
with the frameworks already introduced in Chapter 2. In probability theory, a quantile
can be defined as a generalised inverse of the CDF. It is therefore reasonable to generalise
this to the imprecise case by taking the lower and upper cumulative distribution functions
to directly leverage the machinery presented in Chapter 2. However, as we have alluded
already, imprecise quantiles such as the imprecise median in Definition 4.2.2 by Couso,
Moral and Sánchez may not be readily analysed using this machinery.

Consider that,

inf
P∈M

inf {x : P (X ≤ x) ≥ 0.5} ≥ q

⇔ ∀P ∈M : inf {x : P (X ≤ x) ≥ 0.5} ≥ q

⇔ ∀P ∈M : P (X ≤ q) ≤ 0.5

⇔ P (X ≤ q) ≤ 0.5.
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However,

inf
P∈M

inf {x : P (X ≤ x) ≥ 0.5} ≥ q

⇒ MeM(X) = inf
P∈M

inf {x : P (X ≤ x) ≥ 0.5 ∧ P (X ≥ x) ≥ 0.5} ≥ q,

but the other direction is not immediately true. So, statements regarding bounds on
their imprecise median over a set of distributions are not equivalent to imprecise CDF
statements. However, if we start by directly considering,

inf
P∈M

inf {x : P (X ≤ x) ≥ 0.5},

instead of MeM , then the statements about the median quantile function over the set of
distribution become equivalent to statements about the corresponding set of CDFs. In-
stead of the formulation by Couso, Moral and Sánchez, we will consider optimising over the
quantile function as opposed to the end points of the quantile set: this slight modification
will result in the upper quantile being defined to maximise (over a set of distributions) the
left end point of a quantile set instead of the right.

Definition 4.3.1: For a set of distributions M and α ∈ [0, 1], we define the lower and
upper imprecise quantile functions of the random variable X over M at level α as,

Q(α)

M
(X) = inf

P∈M
Q

(α)
P (X),

Q
(α)

M (X) = sup
P∈M

Q
(α)
P (X),

with,
Q

(α)
P (X) = inf {x : P (X ≤ x) ≥ α}

being the quantile function evaluated at the α-th percentile.

Henceforth, the word ‘quantile’ will refer to the solution of quantile function, which returns
the infimum of the set of points where the CDF exceeds α, as oppose to the set itself.

�
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Note that the imprecise quantile function in Definition 4.3.1 deviates from the coherence
concepts introduced in Chapter 2. Walley’s construction of Definition 2.1.8 in [81] is moti-
vated by the geometrical fact that expectations are linear operators on random variables.
Because quantiles are not linear operators, it is not readily apparent that this definition is
applicable to imprecise quantiles. We do not pursue this avenue any further: in Theorem
4.5.1, we provide a link from the imprecise quantile function in Definition 4.3.1 to a corre-
sponding set of imprecise probabilities.

Unlike the imprecise expectations of Chapter 2, we will be referring to imprecise quantile
functions for unbounded random variables. To be clear, this is specifically because we will
be taking advantage of Theorem 4.5.1 to construct statements about an imprecise quantile
function in terms of imprecise probabilities. In turn, imprecise probabilities are expecta-
tions of indicator functions of events, which are always bounded random variables. We do
not evaluate the imprecise quantile function of unbounded functions in any other fashion.

4.4 Optimisation of imprecise quantile functions

When a convex set of distributions is specified by a generating collection of distributions,
it is typically taken to be the closure of its convex hull. In the case of lower and upper
expectations, because the expectation operator is a linear functional over the space of dis-
tributions, the Krein-Milman theorem (see appendices of Walley [81] or Holmes [47], for
example) guarantees that the lower and upper expectations (of bounded random variables)
are achieved over the generating set. For example, it is typical to optimise over the set
of Dirichlet priors when computing imprecise expectations using the IDM (as opposed to
finding the optimum over mixtures of the Dirichlet prior).

Because the quantile function is non-linear, we cannot resort to the Krein-Milman theorem.
However, because of the monotonicity of the cumulative distribution functions (CDF), we
will see that the optimisation of the quantiles over the generating set is the same as the
optimisation over its convex hull. The idea of this concept is illustrated as follows.
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Figure 4.1: Four generating CDF’s, along with the lower and upper quantile functions
of this set at percentile p. The yellow and red CDF curves respectively represent the
minimising and maximising CDF’s of the quantile function at p.

In Figure 4.1, a set of four CDF’s, M , whose mixture distributions are all the possible
CDF’s enclosed in the area by the four curves. For a fixed percentile p ∈ [0, 1] depicted
by the horizontal dashed line, the lower quantile function Q(p) = Q(p)

Conv(M)
(X) of some

random variable X is its range value at which any one of the mixtures (and therefore
of the four generating CDF’s) attain or exceed p. Similarly, the upper quantile function

Q
(p)

= Q
(p)

Conv(M)(X) is the range value at which all the mixtures CDF’s will have attained or

exceeded p. The point here is to see that Q(p) = Q(p)

Conv(M)
(X) is in fact achieved by Q(p)

M
(X),

the minimisation over the generating set instead of the set of mixtures, and similarly for

Q
(p)

= Q
(p)

Conv(M)(X) by Q
(p)

M (X). That is, like imprecise expectations, we expect that the
optimisation of imprecise quantile functions over a convex set of mixtures is the same as
that of over the generating set, which greatly decreases the computational complexity and
confirms the intuition provided by the extreme value theorem of convex geometry.

We will now provide a rigourous argument of the above intuition.
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Theorem 4.4.1: For a suitably measurable random variable X, let {Fa : a ∈ A} be a set
of cumulative distribution functions of X indexed by A, a subset of a finite dimensional
Euclidean space equipped with the Lebesgue measure. Write the shorthand Q

(p)
F as the

p-th quantile function of X under a cumulative distribution function F . Write

ΛA = {λ ∈ RA :

∫
λ(a)da = 1 ∧ (∀a : λ(a) ≥ 0)},

as a set of mixing functions such that, for a fixed λ ∈ ΛA, a mixture over {Fa : a ∈ A} is
representable as,

Fλ : q 7−→
∫
λ(a)Fa(q)da.

(We allow λ to be a generalised function such as the Dirac delta function.) Then, for every
fixed p ∈ [0, 1],

Q(p)

ΛA
= inf

λ∈ΛA
Q

(p)
Fλ

= inf
a∈A

Q
(p)
Fa

= Q(p)

A
,

and
Q

(p)

ΛA
= sup

λ∈ΛA

Q
(p)
Fλ

= sup
a∈A

Q
(p)
Fa

= Q
(p)

A ,

Proof: We will prove the infimum case only, as the supremum case can be analogously
proven.

Because the minimisation over A is equivalent to minimising over the point mixture masses
{δa(·) : a ∈ A} which is a subset of ΛA, the infimum over the latter larger set is smaller
than of that over the former smaller subset,

Q(p)

ΛA
= inf

λ∈ΛA
Q

(p)
Fλ
≤ inf

a∈A
Q

(p)
Fa

= Q(p)

A
,

On the other hand, for any set of distritbutions M and real number q0, we have,

inf
F∈M

Q
(p)
F ≥ q0 ⇐⇒ ∀F ∈M : Q

(p)
F ≥ q0 ⇐⇒ ∀F ∈M : F (q0) ≤ p ⇐⇒ sup

F∈M
F (q0) ≤ p.

This is such that, setting q0 = Q(p)

A
,

∀a ∈ A : Q
(p)
Fa
≥ Q(p)

A

⇒ sup
a∈A

Fa(Q
(p)

A
) ≤ p,

⇒ PMA
(X ≤ Q(p)

A
) ≤ p.
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Recall that an upper probability of an event is an upper expectation of the indicator variable
of this event, which in turn is a bounded random variable. Then, the lower envelope
theorem 2.2.1 can be applied here, implying that the optimisation over a generated convex
set of distributions is the optimisation over the generating set,

⇒ PMΛA
(X ≤ Q(p)

A
) ≤ p,

⇒ sup
λ∈ΛA

Fλ(Q
(p)

A
) ≤ p,

⇒ inf
λ∈ΛA

Q
(p)
Fλ
≥ Q(p)

A
,

which is the other side of the inequality, completing the proof.

�

The theorem implies that, for every p for which the quantiles are desired, the minimum
and maximum quantiles over the convex set of mixtures over A may be computed by op-
timising over A directly. Notice that the random variable does not need to be bounded
in this result: we merely need the fact that imprecise CDF’s are imprecise expectations of
indicator functions of events about X are bounded functions.

4.5 Properties of imprecise quantile functions

Because the quantile function is not necessarily expressible through algebraic operations
using expectations, its imprecise version is not necessarily expressible as an optimisation
of expectations. Instead, we will rely on the relationship between the quantile and the
cumulative distribution function, as follows.

4.5.1 Random variables need not be bounded

First and foremost, we do not require that the random variable for which we compute
imprecise quantile function values be bounded. Again, this is because the imprecise quan-
tile function is associated with imprecise probabilities: the boundedness requirements of
Chapter 2 are automatically satisfied considering that the latter are imprecise expectations
of indicator variables that are bounded.
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4.5.2 Relation to imprecise probabilities

We now show the connection between the lower and upper imprecise quantile functions
over a closed set of distributions M to the lower and upper probabilities over this same
set.

Lemma 4.5.1: Let PM and PM be coherent lower and upper probabilities over a closed
set of distributions M . Then,

∀P ∈M : P (A) > α ⇐⇒ PM(A) > α,

∀P ∈M : P (A) < α ⇐⇒ PM(A) < α.

Proof: We prove the first statement only, since the other can be proven in an analogous
manner. It is clear that,

PM(A) > α⇒ ∀P ∈M : P (A) > α.

On the other hand,

∀P ∈M : P (A) > α ⇐⇒ PM(A) = inf
P∈M

P (A) > α.

The strictness of the right inequality is given by noting that, from Theorems 2.2.1 and
2.2.2, the infimum on the right is a coherent lower probability and is therefore attainable
by an element in M . Strictness follows since the inequality is strict for each element P in
M by assumption.

�

Theorem 4.5.1: For α ∈ [0, 1], q ∈ R, M a closed set of distributions such that PM and
PM are coherent, X a suitably measurable random variable,

Q(α)

M
[X] > q ⇐⇒ α > PM [X ≤ q],

Q(α)

M
[X] ≤ q ⇐⇒ α ≤ PM [X ≤ q],

Q
(α)

M [X] > q ⇐⇒ α > PM [X ≤ q],

and
Q

(α)

M [X] ≤ q ⇐⇒ α ≤ PM [X ≤ q].
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Proof: In order of the statements,

Q(α)

M
[X] > q

⇐⇒ ∀P ∈M : inf {x : P (X ≤ x) ≥ α} > q

⇐⇒ ∀P ∈M : P (X ≤ q) < α

⇐⇒ PM [X ≤ q] < α. (Lemma 4.5.1)

Q(α)

M
[X] ≤ q

⇐⇒ ∃P ∈M : inf {x : P (X ≤ x) ≥ α} ≤ q

⇐⇒ ∃P ∈M : P (X ≤ q) ≥ α

⇐⇒ PM [X ≤ q] ≥ α.

Q
(α)

M [X] > q

⇐⇒ ∃P ∈M : inf {x : P (X ≤ x) ≥ α} > q

⇐⇒ ∃P ∈M : P (X ≤ q) < α

⇐⇒ PM [X ≤ q] < α (Lemma 4.5.1)

Q
(α)

M [X] ≤ q

⇐⇒ ∀P ∈M : inf {x : P (X ≤ x) ≥ α} ≤ q

⇐⇒ ∀P ∈M : P (X ≤ q) ≥ α

⇐⇒ PM [X ≤ q] ≥ α

�

And so, indeed, inequality statements about the imprecise quantiles are equivalent to lower
and upper probabilities of events {X ≤ x} so there is a direct connection to sets of models
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used in statistical applications.

However, they only provide bounds to lower and upper probabilities, thus they are not
equivalent to equality statements about coherent values of lower and upper probabilities
(recall that a coherent value for, say, a lower probability, is one which achieves the tight
minimum over a set of distributions, as opposed to a possibly loose bound).

There are two properties of CDF’s that prevent such equality statements. First, CDF’s
may be flat, such that the quantile function is not a unique inverse function of the CDF.
This means that, in general, for any real number q, percentile p, CDF F ,

F (q) = p��⇒ Q
(p)
F = q.

Secondly, vertical discontinuities in a CDF may prevent it from achieving all percentiles.
That is, evaluating a CDF at its p-th quantile value may not result in p:

F (q) = p��⇐ Q
(p)
F = q.

Conversely, a CDF that does is strictly increasing and continuous everywhere satisfies,

F (q) = p ⇐⇒ Q
(p)
F = q.

To generalise this to imprecise probabilities, suppose that, for some fixed q, the minimisa-
tion of an imprecise CDF F (q) = P (X ≤ q) is achieved by some F0 in its set of distributions
M at p = F0(q). That is, by the lower envelope theorem, Theorem 2.2.1, and Theorem
2.2.2 that the lower envelope over M is attainable by an element of M , we have,

∀F ∈M : F (q) ≥ p, ∃F0 ∈M : F0(q) = p.

If F0 is also continuous and strictly increasing at q, then,

∀F ∈M : Q
(p)
F ≤ p, ∃F0 ∈M : Q

(p)
F0

= q,

is equivalent to the above statement. Finally, Theorem 4.4.1 implies that the above opti-
misation of the quantile function coincides with the imprecise quantile function over M :
that is,

Q(p)

M
= q.
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This is the argument for the following result.

Theorem 4.5.2: For p ∈ [0, 1], q ∈ R, M a closed set of distributions, X a suitably
measurable random variable, such that the following optima are achieved by a CDF which
is continuous and strictly increasing at q, then,

Q(p)

M
[X] = q ⇐⇒ p = PM [X ≤ q],

and
Q

(p)

M [X] = q ⇐⇒ p = PM [X ≤ q].

�

4.5.3 Lower coverage probability of quantile intervals

We recall that our motivation is to be able to use imprecise quantiles to construct inter-
vals that not only reflect imprecision over a closed set of distributions, but also reflect the
variation within each distribution. The following theorem derives a lower bound for the
lower coverage probability.

Theorem 4.5.3: For α, β ∈ [0, 1] with α ≤ β, q ∈ R, M a closed set of distributions with
continuous CDF’s, X a suitably measurable random variable,

PM(Q(α)

M
[X] ≤ X ≤ Q

(β)

M ) ≥ β − α.

Proof: Write,

PM(Q(α)

M
[X] ≤ X ≤ Q

(β)

M )

= inf {P (Q(α)

M
≤ X ≤ Q

(β)

M ) : P ∈M}

= inf {P (X ≤ Q
(β)

M )− P (X ≤ Q(α)

M
) : P ∈M}.

The expression in the infimum is of the form aP − bP , which is lower bounded by inf aP −
sup bP . In other words,

PM(Q(α)

M
[X] ≤ X ≤ Q

(β)

M ) ≥ inf {P (X ≤ Q
(β)

M ) : P ∈M}− sup {P (X ≤ Q(α)

M
) : P ∈M}.
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But, by definition,

Q
(β)

M (X) = sup
P∈M

(
Q

(β)
P (X)

)
.

Q(β)

M
(X) = inf

P∈M
Q

(β)
P (X).

Using Theorem 4.5.2 and that the CDF’s are continuous by assumption directly yields,

inf
P∈M

P (X ≤ Q
(β)

M ) = β.

sup
P∈M

P (X ≤ Q(α)

M
) = α.

This completes the proof.

�

From an inferential perspective, the coverage probability of the interval [Q(α)

M
,Q

(β)

M ] mea-
sured with each distributions in M is at least β − α. In terms of the Bayesian sensitivity
analysis methodology, this interval has credibility of at least β − α over each distribution
in M .

4.6 Hypothesis testing using imprecise quantile inter-

vals

Care should be taken when interpreting inference about questions involving hypotheses of
Bayesian probability of zero. A common Bayesian response is that a hypothesis of measure
zero cannot be realised exactly, and so is not a valid hypothesis to test when the proce-
dure involves its measure. For example, Gelman et al. [41] and Berger [11] interprets this
situation as it is ‘unlikely’ for a real parameter to be (known to be) precisely an exact
real number under continuous distributions. Nevertheless, this hypothesis may represent
an important question of study. For example, we may ask: ‘Are categorical variables X
and Y independent?’ Typically, this corresponds to the hypothesis that the their log odds
is zero, forming the hypothesis H = {θ : log ρ(θ) = 0} for some θ that is multinomial:
this hypothesis has measure zero whenever the prior is dominated by the Lebesgue measure.
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We will adopt the stance of Gelman et al. [41] and generally consider interpretation of (sets)
posterior distributions to be the primary tool of inference. We will report imprecise quantile
intervals of a prescribed credibility level and draw qualitative conclusions about the ‘point
hypothesis’ with them. We will also focus on quantile intervals with symmetric percentiles
by setting α = p and β = 1− p for p ∈ (0, 0.5). To wit, suppose H = {θ : T (θ) = t0} ⊂ Θ
is of probability zero under a fixed distribution P over Θ. Then, we may compute quantiles
satisfying,

P (Q
(p)
P (T ) ≤ T (θ) ≤ Q

(1−p)
P (T )) = 1− 2p,

Then, if t0 ∈ [Q
(p)
P (T ),Q

(1−p)
P (T )], we interpret this as not having enough evidence to reject

T (θ) = t0 with 1− 2p level credibility. In the imprecise context, we extend this notion by
considering whether or not:

t0 ∈ [Q(p)

M
[T ],Q

(1−p)
M [T ]].

Due to Theorem 4.5.3, the coverage probability of this interval is at least 1−2p over the set

of prior distributions M . Thus, if t0 ∈ [Q(p)

M
[T ],Q

(1−p)
M [T ]], we interpret this as not having

enough evidence to reject T (θ) = t0 with 1− 2p level credibility or higher.

Figure 4.2: Graphical representation of the p-th symmetrical imprecise quantile intervals
generated by two distributions and its constituent imprecise quantiles.
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From a sensitivity analysis perspective, for p < 0.5, the imprecise interval [Q(p)

M
(X),Q

(1−p)
M (X)]

contains all the p-symmetrical intervals [Q
(p)
P (X),Q

(1−p)
P (X)] for all P ∈M .

4.7 Dataset Examples

We now consider inference arising from using the imprecise quantiles with the IDM. We
apply the IDM to the same inferential problem and compare it with the conclusions drawn
under the methodology of its original author. To observe the effect of different levels of
prior imprecision, we perform inference with increasing values of ν.

Example 4.7.1: Lady Tea Tasting (Fisher [38])

We follow Agresti’s [3] of Fisher’s [38] classical example of contingency table analysis. This
is a small sample table containing the data,

Guess Milk First Guess Tea First

Milk First 3 1
Tea First 1 3

For indexing, let ij denote the i-th row and j-th column. The experiment is set up such
that the marginal sums are known beforehand: the rows marginals are known because
exactly four of cups of teas are poured with milk first and four with tea first, and the
columns are known ahead because the lady was told this information before guessing. The
parameter of interest is,

ρ(θ) =
θ11/θ12

θ21/θ22

=
θ11θ22

θ12θ21

.

When all the margins are known, the contingency table follows a hypergeometric sampling.
In this case, n11 exactly follows a hypergeometric distribution with the probability P (n11 =
t) interpreted as ‘drawing without replacement’ from 8 cups of teas with 4 of them having
milk first. Furthermore, n11 fully determines the table when the margins are given, and,
under the null hypothesis of independent sampling ρ = 1 such that the hypergeometric
distribution is an exact distribution for n11, larger values of the test statistic n11 is evidence
for θ11 > 1 (Agresti [3]).
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With this test statistic and null distribution, the one-sided test for,

H0 : ρ = 1, Ha : ρ > 1 ,

was performed and, for values n11 = 0, 1, 2, 3, 4 (the number of trials in which the lady
guesses correctly), the corresponding p-values are 1.0, 0.986, 0.757, 0.243 and 0.014 (Agresti
[1]): the p-value for this particular table is 0.243 for n11 = 3.

We now focus on inference on the parameter log ρ(θ) using the IDM and infer about the
null hypothesis log ρ(θ) = 0 (which is equivalent to ρ(θ) = 1) at a credibility level of 95-%.

ν = 0.5 1.0 2.0 5.0 10.0

Q(0.025), Q
(0.025)

(-1.457, 0.303) (-1.82, 0.484) (-2.232, 0.868) (-3.288, 1.662) (-4.274, 2.499)

Q(0.975), Q
(0.975)

(5.329, 8.729) (4.515, 9.086) (3.371, 9.212) (1.549, 9.943) (0.1, 10.654)

For all tested values of ν, the intervals [Q(0.025)

M
(log(ρ(θ)),Q

(0.975)

M (log(ρ(θ))] extend further
to the right of 0 than to the left of it: this reflects the pattern in the data in which the di-
agonals are larger than the off-diagonals. In terms of the credibility of H0, all the intervals

[Q(0.025)

M
(log(ρ(θ)),Q

(0.975)

M (log(ρ(θ))] contain the null value θ0 = 0.

Interestingly, the imprecise 2.5-% quantiles, [Q(0.025)

M
(log(ρ(θ)),Q

(0.025)

M (log(ρ(θ))], also all
contain the value of θ0 = 0. That is, some posterior distributions in the IDM are such
that P (log ρ ≤ 0) ≤ 0.025. This suggests that, even at an imprecision level as small as
ν = 0.5, there is disagreement amongst the members of the posterior IDM set of distri-
butions in terms of the left side threshold of 2.5-%. In relation to the sensitivity analysis,
some priors in the IDM achieve one-sided posterior (Bayesian) p-values of less than 0.025
but some do not. This points to the curious question of which distributions in M yield
Q

(0.025)
P (log(ρ(θ))) that are to the left or to the right of zero: it may be useful to identify

similarities amongst prior Dirichlet distributions that induce values on each side of the null
hypothesis.

�

In the following examples, we examine what happens when we apply the imprecise quantile
functions of the IDM to contingency tables with zero observations in the cells. Due to our
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interpreting the imprecise quantile intervals via the coherent imprecise probabilities as in
Theorems 4.5.1 and 4.5.2, the validity of computing posterior imprecise probabilities with
the IDM over such datasets are dealt with as per the development in Chapter 3, where we
detailed the construction of the posterior IDM imprecise expectation for such cases.

Example 4.7.2: Promotion/Racial Bias (Agresti [1], method from Birch [15])

This example illustrates that hypothesis testing with imprecise quantile intervals from the
IDM can be highly sensitive to the hyperparameter ν. This is due to the IDM’s set of
Dirichlet priors consisting of hyperparameter values να over all possible α ∈ 4m, causing
it to include prior distributions with α being close to the extreme points of 4m. Numer-
ically, we will see that the IDM produces some extreme values for imprecise quantiles for
the following log-odds statistic.

Consider the following dataset tabulating the promotion of each person in a group of
computer scientists (Gastwirth [40]) based on their race and stratified over three months:

Promotion Not Promoted Promoted
Race Month

Black
July 7 0
August 7 0
September 8 0

White
July 16 4
August 13 4
September 13 2

For indexing, let ijk index over race ({B,W}), promotion ({N,P}) and the month ({J,A, S}),
respectively. The goal of this example is to determine the conditional independence of race
and promotion variables given the month variable.

Agresti performed the inference under three assumptions. First, the sampling was done
independently. (Agresti notes that the information about the overlapping of employee
promotion applications over the three months is not available.) Secondly, the test by Birch
[15] requires the assumption that the odds ratios over the stratifying variable are equal:
that is, for all k, k′ = J,A, S in the months variable,

ρk =
θBNkθWPk

θBPkθWNk

=
θBNk′θWPk′

θBPk′θWNk′
= ρk′ .
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Finally, Agresti assumes that the marginal counts over race and promotion are fixed.
Writing ρ = ρk for all k, the hypothesis of interest are

H0 : ρ = 1, Ha : ρ < 1.

The test of conditional independence by Birch [15] uses the test statistic nBN ·, whose distri-
bution is a function of the distribution of each nBNk. In turn, the nBNk’s are independent
of each other due to the independence assumption and each has the analogous noncentral
hypergeometric distribution as in Example 4.7.1. Agresti reports a p-value of 0.026 for this
dataset.

Using the IDM, we can compute imprecise quantiles for the log odds,

log ρ(θ) = log
Pr(Black,Not Promoted)/Pr(Black,Promoted)

Pr(White,Not Promoted)/Pr(White,Promoted)
= log

θBN ·θWP ·

θBP ·θWN ·
,

where, for example,
θ11· = θ11J + θ11A + θ11S.

To infer about the point null hypothesis, we consider the lower and upper quantiles at
2.5-% and 97.5-% of log ρ(θ),

ν = 0.5 1.0 2.0 5.0 10.0

Q(0.025), Q
(0.025)

(−∞, -7.824) (−∞, -4.599) (−∞, -2.652) (−∞, -1.121) (−∞, -0.195)

Q(0.975), Q
(0.975)

(−∞, -0.169) (−∞, 0.232) (−∞, 0.672) (−∞, 1.344) (−∞, 1.896)

The −∞ value taken by all the lower quantiles is consistent with the empty cell nBN · = 0.
Because Q(0.975)

IDM
is at −∞, there exists at least one element of the IDM set of priors whose

posterior distribution assigns a probability mass of at least 0.975 to the set {θ : log ρ(θ) =
log θBP · + log θWN · − log θBN · − log θWP · = −∞}.

It can also be seen that between ν = 0.5 and ν = 1.0, the upper quantile changes sign.

When ν = 0.5, Q
(0.975)

IDM [log ρ|ν,n] = −0.169 < 0, such that all posterior distributions agree
that the value 0 is greater than the 97.5% quantile of log ρ. Together with the lower quantile
at 0.025 at −∞, all intervals of the form [Q

(0.025)
P [log ρ|n, ν = 0.5],Q

(0.975)
P [log ρ|n, ν = 0.5]]

over all P ∈ M are contained in (−∞,−0.169]. This means that all priors produce

88



2.5% − 97.5% quantile intervals that do not contain zero, lending evidence at credibil-
ity level 0.05 of rejecting the hypothesis log ρ ≥ 0.

On the other hand, for ν ≥ 1.0, the imprecise interval [Q(0.025)

M
(log ρ|n, ν),Q

(0.975)

M (log ρ|n, ν)]

contain 0. Combined with the fact that Q
(0.025)

M (log ρ|n, ν) < 0 for all tested values of ν, it
means that there exists at least one P ∈M whose 2.5%− 97.5% quantile interval contains
0. Unlike the case of ν = 0.5, there is no definite consensus amongst the priors for ν ≥ 1.0.
In other words, at ν = 0.5, all priors lend credibility to the system being not independent
at level 97.5%, roughly in agreement with the classical test. However, when ν ≥ 1.0, at
least one prior will not yield this conclusion. This demonstrates the sensitivity of the in-
ference to the IDM hyperparameter ν, as discussed at the beginning of this example.

�

Example 4.7.3: (Probability of a girl birth given placenta previa [41])

This example illustrates the behaviour of the IDM imprecise quantiles when the sample
size is large and the number of observations in all categories are far from zero. It also
compares the inference from an IDM model to the inference from a Bayesian treatment
using a single Dirichlet prior. Because of this, the example also highlights the fact that the
IDM inference includes a global analysis over the family of models considered, as opposed
to the local analysis performed on a finite number of models post-hoc of Bayesian inference.

Placenta previa is a ‘condition of pregnancy in which the placenta is ... obstructing the
fetus from normal vaginal delivery.’ Gelman et al. [41] cite a data set of placenta previa
births from Germany with 437 female births out of 980, and they are interested in the in-
ference of the proportion of female births under this condition, and the odds ratio between
the births two genders under this condition. In particular, they wish to test the hypothesis
that the proportion is less than 0.485.

One of their precise Bayesian treatments is as follows. Let θ be the probability of a fe-
male birth under the placenta previa condition. A Beta(1, 1) prior distribution was used
with a binomial likelihood: using the Germany dataset, the posterior distribution for θ is
Beta(438, 544). The statistics of interest are θ and (1 − θ)/θ. The authors report 95%
posterior intervals of [0.415, 0.477] and [1.10, 1.41] for θ and (1− θ)/θ, respectively.
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Sensitivity analysis is done by picking models which are increasingly concentrated around
0.485, the value of the hypothesis of interest: Gelman et al. fixed the prior expectation
α/(α+β) to 0.485 and chose the value of α+β to be 2, 5, 10, 20, 100, 200. They report that
all cases except for the last two are models whose ‘[p]osterior inferences based on a large
sample are not particularly sensitive to the prior distribution’ [41]. In the last two cases,
where the prior information is strong, they notice the ‘posterior intervals (being) pulled
noticeably toward the prior distribution’ [41] but that still, ‘the 95% posterior intervals
still exclude the prior mean’ [41]. Their sensitivity analyses is summarised by the following
table from the author:

α
α+β

α + β 95% (central) posterior interval for θ

0.500 2 [0.415, 0.477]
0.485 2 [0.415, 0.477]
0.485 5 [0.415, 0.477]
0.485 10 [0.415, 0.477]
0.485 20 [0.416, 0.478]
0.485 100 [0.420, 0.479]

Figure 4.3: Sensitivity analysis from the example of Gelman et al. [41].

We compare this example with the IDM of two classes (also known as the Imprecise Beta
model (IBM)). The imprecise expectation and quantiles of θ = Pr(Birth under Placenta Previa is girl),
using values ν = 2, 5, 10, 20, 100 are:

ν = 2.0 5.0 10.0 20.0 100.0

E(θ), E(θ) (0.445, 0.447) (0.444, 0.449) (0.441, 0.452) (0.437, 0.457) (0.405, 0.497)

Q(0.025)(θ), Q
(0.025)

(θ) (0.408, 0.422) (0.406, 0.423) (0.404, 0.427) (0.399, 0.432) (0.369, 0.473)

Q(0.05)(θ), Q
(0.05)

(θ) (0.414, 0.426) (0.413, 0.428) (0.411, 0.431) (0.406, 0.436) (0.375, 0.477)

Q(0.5)(θ), Q
(0.5)

(θ) (0.442, 0.45) (0.441, 0.451) (0.438, 0.454) (0.434, 0.46) (0.402, 0.5)

Q(0.95)(θ), Q
(0.95)

(θ) (0.466, 0.478) (0.465, 0.48) (0.463, 0.483) (0.458, 0.488) (0.425, 0.528)

Q(0.975)(θ), Q
(0.975)

(θ) (0.47, 0.485) (0.469, 0.487) (0.466, 0.489) (0.462, 0.494) (0.428, 0.533)

We compare the 2.5-th, 50-th, and 97.5-th imprecise quantiles to the 95-th central interval
(centred at the 50-th percentile) reported by Gelman et. al. We recall that ν is the sum
of the Beta parameters for all the prior distributions in the set of distributions.
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Figure 4.4: Left: Imprecise intervals, Q
(α)

(θ) := [Q(α)

IDM
(θ|ν,n), Q

(α)

IDM(θ|ν,n)] for various

values of ν. The imprecise expectations E(θ) := [EIDM(θ|ν,n), EIDM(θ|ν,n)] are also
plotted. (Shorter lengths indicate lower ν values in 2,5,10,20,100). The left and right
bounds of the precise Beta interval from Gelman et al. [41] are marked for the 2.5 and 97.5

percentiles. Right: Plot of the imprecise interval [Q(0.025)

IDM
,Q

(0.975)

IDM ] and the precise Beta

intervals [Q
(0.025)
Beta ,Q

(0.975)
Beta ] from Gelman et al. for different ν values.

From the left plot of Figure 4.4, an interesting property regarding an imprecise model such
as the IDM is that the intervals representing imprecise quantiles of differing percentiles can

overlap when imprecision is large: for example, at ν = 20, Q
(0.05)

(θ) ≈ 0.436 > 0.434 ≈
Q(0.5)(θ), meaning that there exists two posterior Beta distributions in the set of distribu-
tions such that the 5-th quantile of one is greater than 50-th quantile of the other, with
the maximiser of the 5-th quantile placing significantly more mass to the right of 0.436
than the minimiser of the 50-th quantile. In addition, we similarly observe the overlap

Q
(0.5) ≈ 0.46 > 0.458 ≈ Q(0.975). These suggest that the posterior set of distributions

contains Beta distributions where α > β and α < β, indicating that there is no agreement
to the (a)symmetry of the shape of the Beta posteriors. This means that the data, despite
containing many samples of a simple Bernoulli system, fails to distinguish between these
two types of Beta distributions since they are both still consistent with the data.
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�

Example 4.7.4: Opinion on government spending on the arts (Agresti [2], Table 11.1,
Section 11.2.5)

This example again compares the IDM to the Bayesian treatment with a single Dirchlet
prior. We examine the effect of imprecision on inference when the dataset is both small-
sample, contains a zero observation one category and one observation in another. We will
see that IDM yields a range of posterior values which are consistent with the model’s set of
Dirichlet priors: these values will turn out to be quite different than the values obtained by
Agresti using a single prior. This reflects the sensitivity to prior specification for inference
in situations such as this.

The following dataset describes the opinions of 23 female survey takers of ages 18 to 21 on
government spending on culture and the arts.

Opinion Much More More Same Less Much Less

1 7 12 3 0

Note that not only is this a somewhat small sample, but also the data contains a cell with
zero observations (the ‘Much Less’ category).

Agresti models the multinomial cell probabilities with a Dirichlet prior with equal relative
weights differing concentrations: the goal is to regularise the cell probabilities estimates in
light of the small sample size and having zero observation in some categories. Note that
the prior implies that the modeller believes that, in expectation, all cell probabilities are
equal. The Bayes’ point estimates are given as follows (Agresti [2]),

Much More More Same Less Much Less
ν = 1 0.050 0.300 0.508 0.133 0.008
ν = 5 0.071 0.286 0.464 0.143 0.036
ν = 20 0.116 0.256 0.372 0.163 0.093

(Credible intervals were not provided by Agresti.) We run the IDM inference also using
ν = 1, 5, 20 for the imprecise expectations of the cell probabilities:
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Opinion Much More More Same Less Much Less

E(θ), E(θ) (0.042, 0.083) (0.292, 0.333) (0.5, 0.542) (0.125, 0.167) (0.0, 0.042)

Q(0.025)(θ), Q
(0.025)

(θ) (0.0, 0.016) (0.109, 0.191) (0.273, 0.378) (0.019, 0.064) (0.0, 0.002)

Q(0.975)(θ), Q
(0.975)

(θ) (0.12, 0.258) (0.445, 0.57) (0.658, 0.766) (0.248, 0.376) (0.0, 0.18)

Opinion Much More More Same Less Much Less

E(θ), E(θ) (0.036, 0.214) (0.25, 0.429) (0.427, 0.607) (0.107, 0.285) (0.0, 0.178)

Q(0.025)(θ), Q
(0.025)

(θ) (0.0, 0.102) (0.093, 0.281) (0.225, 0.454) (0.016, 0.16) (0.0, 0.077)

Q(0.975)(θ), Q
(0.975)

(θ) (0.103, 0.424) (0.388, 0.647) (0.576, 0.802) (0.214, 0.499) (0.0, 0.374)

Opinion Much More More Same Less Much Less

E(θ), E(θ) (0.023, 0.488) (0.161, 0.628) (0.275, 0.744) (0.07, 0.535) (0.0, 0.465)

Q(0.025)(θ), Q
(0.025)

(θ) (0.0, 0.365) (0.058, 0.508) (0.136, 0.633) (0.011, 0.412) (0.0, 0.345)

Q(0.975)(θ), Q
(0.975)

(θ) (0.066, 0.663) (0.258, 0.787) (0.386, 0.879) (0.14, 0.704) (0.0, 0.641)

As a sanity check, note that all the posterior expectations from Agresti’s calculations are
strictly in the imprecise expectations of the IDM, as expected. We now focus on the infer-
ence provided by the 2.5% imprecise quantiles of the IDM for the cells ‘Much More’ and
‘Much Less’, the former with a single observation and the latter with no observations.

The lower expectation of ‘Much Less’ is zero which is in accordance with the formula,

EIDM(θi|n, ν) = inf

{
ναi + ni
ν + n

: α ∈ 4p

}
=

ni
ν + n

,

with ni = 0. Since we are considering the extended parameter space, this lower bound is
achievable by any Dirichlet distribution such that αi = 0. For such a Dirichlet distribution,
the cell probability θi is almost surely zero since the expectation of a nonnegative bounded
random variable is zero. This forces all the quantiles of this distribution to equal zero, and
therefore the distribution also achieves the minimum of all imprecise quantiles of this cell
probability. This corroborates the fact that the lower quantiles at both 2.5% and 97.5%
are zero at all values of ν for ‘Much Less’.

On the other hand, the single observation in ‘Much More’ causes the lower expectation of
its cell probability to be non-zero, again by the lower expectation formula. Note that for
this category, Agresti’s point estimates always tend to be closer to E(θMuch More|ν,n) than
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to E(θMuch More|ν,n), the former of which being brought away from zero due to the single
observation. This corroborates the possibility that, since Agresti started with a uniform
Dirichlet distribution, the low cell count in the data relative to other categories is reflected
here. However, this also means that the fact that there are other posterior expectations
up to E(θ) is also consistent with the global sensitivity analysis it provides. The inference
is therefore sensitive to the prior as there is only one count in the cell of interest, and
this is reflected by the imprecise expectation [EIDM(θMuch More|ν,n), EIDM(θMuch More|ν,n)]
containing values which are very different from the single point estimate of using a single
uniform Dirichlet prior as in Agresti.

�

4.8 Concluding remarks

Our contributions in this chapters are as follows. We define the imprecise quantile function,
the centerpiece of this chapter, in Definition 4.3.1. Theorems 4.4.1, 4.5.1 and 4.5.2 describe
some of its imprecise-probabilistic properties. Theorem 4.5.3 guarantees a lower bound of
the coverage probability of an interval using quantiles derived from the imprecise quan-
tile function. Section 4.6 discusses the interpretation of the imprecise quantile function in
prior/posterior inference settings, while Examples 4.7.1, 4.7.2, 4.7.3, 4.7.4 demonstrate its
application on real-life datasets.

We have defined the imprecise analogue of a quantile function and shown that, like the
imprecise expectations, the optimisation of the lower and upper quantile functions over a
set of mixtures induced by some set of distributions M can be achieved within M . Because
the quantile function is a nonlinear functional and, in a dual manner, CDF’s of sums do not
generally decompose into sums of CDF’s of the component random variables, the impre-
cise quantile is not necessarily coherent. Nevertheless, we noted that they are valuable for
interpretation in two ways: they are properly a sensitivity analysis of the quantile function
over a set of distributions and that they have logically equivalent statements in terms of
bounds on the lower and upper CDF’s. In the case that the CDF’s are all continuous,
these bounds are tight and statements about imprecise quantiles are exactly statements
about lower and upper CDF’s, not just their bounds (Theorem 4.5.2).

Further, we used such imprecise quantiles to construct imprecise interval statistics that has
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the sensitivity analysis interpretation of containing all the quantile intervals induced by the
mixture of the generating set of distributions. Unlike the imprecise expectation, which is a
set of point estimates over the inducing set of distributions, imprecise interval formed using
quantiles also measures variations due to the randomness contributed by each distribution
as well. Furthermore, despite the quantiles themselves not necessarily coherent, we have
shown that the lower coverage probability of our imprecise quantile interval using the α-th
and β-th quantiles (α < β) is at least lower bounded by the nominal coverage probability
β − α of each model in the set of distributions. This provides an imprecise analogue to
the use of credible intervals in the precise Bayesian framework. We have compared our
methodology to existing methodologies of other authors.

It is interesting to note that the construction of the imprecise quantile functions is an
example of coherence departing from sensitivity analysis. By this, we mean that, unlike
the imprecise expectation where the lower envelope theorem (Theorem 2.2.1) implies that
coherence is equivalent to tight bounds of sensitivity analysis (that is, minimisation and
maximisation) of expectations over a set of distributions, our construction of imprecise
quantiles demonstrates that this need not hold, at least for sensitivity analysis of nonlinear
functionals.

This represents a divergence between the adherence to coherence in Bayesian analysis (in
the imprecise setting) and sensitivity analysis. In practice, one would like to do the lat-
ter, and the imprecise framework allows one to perform such analysis globally on a set of
candidate (prior) distributions (and such analysis is not post-hoc as it is part of the infer-
ential process in the imprecise framework). On the other hand, in principle, the imprecise
quantile functions themselves cannot be used as a coherent bounds on from a behavioural
perspective. (See Couso, Moral and Sánchez [30] and Couso and Dubois [28] that gener-
alise the notion of gambling and desirability beyond bounds on expectations as coherent
assessments.)
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Chapter 5

On the optimisation problem for the
log-odds inference with IDM

An integral part of inference using imprecise expectations and probabilities is the opti-
misation over the elicited set of priors. and it becomes important to characterise the set
of optima as part of the qualitative understanding of one’s inference. In this chapter, we
study the specific optimisation problem for the lower expectation of log-odds statistics
under the IDM model. Under the Dirichlet assumption, the expectation of log-odds is a
linear combination of polygamma functions which are individually continuously differen-
tiable and monotonic (see Appendix D.2). However, the difference of such functions is
more involved than expected from working with such nice functions individually. We will
highlight key properties of two aspects of the problem: the identification of a subset of the
natural parameters using the Karush-Kuhn-Tucker (KKT) conditions and the properties
of the objective function over this subset.

5.1 KKT solutions to common log-odds problems

In this section, we study the Karush-Kuhn-Tucker (KKT) conditions of three classes of
log-odds that commonly appear in statistical applications. In particular, we study how
knowing the specific structure of the log-odds may further reduce the set of candidate so-
lutions to the optimisation problem.
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5.1.1 An overview of the KKT conditions

The KKT conditions (for example, see [18]) characterise the necessary conditions of a
constrained optimisation problem,

minimise: I(α),

subjected to: g(α) ≤ 0,

h(α) = 0,

where I : Rm 7−→ R, g : Rm → Rl and h : Rm → R represent the objective function,
l inequality constraints and a single equality constraint respectively. For the inequality
and equality constraints, a vector µ ∈ Rl and scalar λ ∈ R of multipliers are introduced
respectively. The KKT necessary conditions for (α∗,µ∗, λ∗) to be a constrained minimiser
of this problem are,

∇I(α∗) +
l∑

k=1

gk∇g(α∗) + λ∗∇h(α∗) = 0

∀i ∈ 1, . . . , l : µ∗i gi(α
∗) = 0,

g(α∗) ≤ 0,

h(α∗) = 0,

µ∗ ≥ 0.

In particular, the constraints that α∗ is in the m-simplex is written as,

∀i ∈ 1, . . . ,m : µ∗iα
∗
i = 0,

∀i ∈ 1, . . . ,m : α∗i ≥ 0,

1−
m∑
i=1

α∗i = 0,

µ∗ ≥ 0.

The conditions µ∗iα
∗
i = 0 will be used extensively in what follows: a strategy for reducing

the solution space using the KKT condition is to identify α∗i = 0 by showing that µ∗i > 0
using the properties of the stationariry conditions I(α∗)+

∑l
k=1 gk∇g(α∗)+λ∗∇h(α∗) = 0.
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5.1.2 The KKT conditions of posterior log-odds lower expecta-
tion under the IDM

We will use two main facts to drive our analyses: the trigamma function ψ′ is strictly
positive over the positive real numbers (see Appendix D.2) and the optimal values of the
complementary KKT multipliers µ are non-negative (see, for example, Boyd and Vanden-
berghe [18]).

Let L be a finite number of categories of the observation multinomial model. The gen-
eral form of the IDM posterior lower expectation of the log-odds ratio between two finite
collections A and B of subsets of L,

EIDM

(∑
A∈A

log θA −
∑
B∈B

log θB

∣∣∣∣ ν,n
)

= min

{∑
A∈A

ψ(ναA + nA)−
∑
B∈B

ψ(ναB + nB) : α ∈ 4L

}
,

where ψ is the digamma function and, for a vector a = (a1, . . . , am) and a subset C ⊆
{1, . . . ,m},

aC :=
∑
i∈C

ai.

We focus on cases where |A|, |B| are at most two, so that we are interested in minimising
the function,

α 7−→ ψ(ναA1 + nA1) + ψ(ναA2 + nA2)− ψ(ναB1 + nB1)− ψ(ναB2 + nB2).

The Lagrangian equations of the KKT conditions for the minimisers of this problem are,

∇α∗
(
ψ′(να∗A1

+ nA1) + ψ(να∗A2
+ nA2)

−ψ(να∗B1
+ nB1)− ψ(να∗B2

+ nB2)
)

−µ∗ + λ∗1 = 0.

and ψ′ is the trigamma function. We will sometimes denote the digamma and trigamma
functions evaluated at a KKT solution as,

ψC := ψ(να∗C + nC),
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and
ψ′C := ψ′(να∗C + nC),

respectively, when we do not need to appeal to the arguments within and wish to simplify
notation.

Notice that, because,
∂

∂αi
αC ,

is zero when i /∈ C, some trigamma function terms of the Lagrangian equations in some
αi’s will become zero depending on whether or not that αi lies in A1, A2, B1, B2 or not. In
particular, it is useful to distinguish the cases when a category k falls into the numerator
or denominator sets:

k ∈ A1 ∪ A2, k ∈ B1 ∪B2 : ψ′A1
[k ∈ A1] + ψ′A2

[k ∈ A2]− ψ′B1
[k ∈ B1]− ψ′B2

[k ∈ B2]− µk + λ = 0,

k′ ∈ A1 ∪ A2, k
′ /∈ B1 ∪B2 : ψ′A1

[k′ ∈ A1] + ψ′A2
[k′ ∈ A2]− µ′k + λ = 0,

k′′ /∈ A1 ∪ A2, k
′′ ∈ B1 ∪B2 : − ψ′B1

[k′′ ∈ B1]− ψ′B2
[k′′ ∈ B2]− µ′′k + λ = 0,

k′′′ /∈ A1 ∪ A2, k
′′′ /∈ B1 ∪B2 : − µ′′′k + λ = 0,

where [k ∈ C] is the indicator function that k is in C. Depending on A1, A2, B1, B2, L,
some of these forms may not be present. For example, if the log-odds involves all the
categories in question, such that A1 ∪A2 ∪B1 ∪B2 = L, then the Lagrangian equation of
the form k′′′ will not be present. Similarly, if A1 ∪ A2 ⊂ B1 ∪ B2, then equations of the
class of k′ will not be present.

The significance of this decomposition is that, for some equations, the positivity of the
trigamma function that is uniform over 4L 3 α can be more readily exploited when they
are present. In particular, we will frequently make use of the following results.

Lemma 5.1.1: When there exists k′ ∈ L such that k′ ∈ A1 ∪ A2 and k′ /∈ B1 ∪B2,

λ < µk′ .

Proof: This follows from,

0 < ψ′A1
[k ∈ A1] + ψ′A2

[k ∈ A2] = µk′ − λ.

�
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Lemma 5.1.2: When there exists k′′ ∈ L such that k′′ /∈ A1 ∪ A2 and k′′ ∈ B1 ∪B2,

λ > 0.

Proof: This follows from,

0 < ψ′B1
[k ∈ B1] + ψ′B2

[k ∈ B2] + µk′′ < λ.

�

Lemma 5.1.3: When there exists k′′′ ∈ L such that k′′′ /∈ A1 ∪ A2 and k′′′ /∈ B1 ∪B2,

µk′′′ = λ.

Consequently,
λ ≥ 0.

�

Then, for example, if k′, k′′, k′′′ exist, then we can conclude that µk′ , µk′′′ > 0, leading to
the minimiser satisfying α∗k′ , α

∗
k′′′ = 0 by the KKT complementary conditions.

As we have alluded at the beginning, we want to use the Lagrangian conditions,

µ∗ = λ∗1 +∇α∗
(
ψ′(να∗A1

+ nA1) + ψ(να∗A2
+ nA2)

−ψ(να∗B1
+ nB1)− ψ(να∗B2

+ nB2)
)
.

by identifying which components µ∗k are strictly greater than zero to conclude that, corre-
spondingly using the slackness condition µ∗kα

∗
k = 0, α∗k = 0. To that end, define,

dk(α;n, ν) := ψ′A1
(α;n, ν)[k ∈ A1]+ψ′A2

(α;n, ν)[k ∈ A2]−ψ′B1
(α;n, ν)[k ∈ B1]−ψ′B2

, (α;n, ν)[k ∈ B2].

(We will write dk(α) when n and ν are notationally unambiguous.) This is such that the
k-th Lagrangian equation can be written succinctly as,

µ∗k = λ∗ + dk(α
∗;n, ν).

An equivalent sufficient condition for α∗k = 0 is that dk(α
∗;n, ν) +λ∗. This is useful when,

say λ∗ ≥ 0 such that it is sufficient to show dk > 0 to conclude µ∗k > 0. In these cases, the
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properties of the function dk(α|n, ν) over α parametrised by the data n and the hyperpa-
rameter ν becomes of great interest to us.

Note that the sign of dk(α
∗), a difference of sums of trigamma functions, is generally

dependent on α and n. For a fixed set of parameters n, ν and a particular k in question,
suppose I∗ = {i ∈ 1, . . . , L : α∗i = 0} has been identified by, for example, the KKT
conditions. Then, our solution space is reduced to the face,

{α ∈ 4L : ∀i ∈ I∗, αi = 0.}.

Now if dk > 0 over this face, then the Lagrangian equation of k can be exploited in a
similar manner to the others: setting αi = 0 for i ∈ I∗, we can write, for any α∗ that is a
KKT solution in {α ∈ 4L : ∀i ∈ I∗, αi = 0.},

0 < dk(α
∗) = µ∗k − λ∗.

leading to,
λ∗ < µ∗k.

Otherwise, the KKT complementary slackness condition is not used, and we resort to other
methods of analysis depending on the specifics of the problem. For example, we may iden-
tify additional solutions to the constrained optimisation by noticing that dk is in fact the
k-th element of the gradient of the objective function (scaled by 1/ν) and considering the
properties of this function over the face identified by I∗.

5.1.3 Log probability ratios

To illustrate the general approach, we look at the most important examples of odds ratios
statistics.

Let L be a finite number of categories, A,B ⊆ L, ν > 0 be the predefined hyperparameter
of the IDM, θ ∈ 4L be a multinomial probability vector over L, and n ∈ NL be a vector
of non-zero counts. We are interested in computing,

EIDM

(
log

θA
θB

∣∣∣∣ ν,n) = ψ(ναA + nA)− ψ(ναB + nB),
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where θA =
∑

l∈A θl is the sampling probability of the set A.

The possible KKT stationarity conditions for this problem are,

∀k ∈ A, k ∈ B : νψ′A − νψ′B − µk + λ = 0

∀k′ ∈ A, k′ /∈ B : νψ′A − µk′ + λ = 0,

∀k′′ /∈ A, k′′ ∈ B : − νψ′B − µk′′ + λ = 0,

∀k′′′ /∈ A, k′′′ /∈ B : − µk′′′ + λ = 0.

From Lemmas 5.1.1, 5.1.2 and 5.1.3, when the corresponding equations exist, we can de-
duce the following algebraic consequences of each of the equations.

∀k′ ∈ A, k′ /∈ B : µk′ > λ.

∀k′′ /∈ A, k′′ ∈ B : λ > 0.

∀k′′′ /∈ A, k′′′ /∈ B : µk′′′ = λ.

More information is needed to analyse the µ’s of two classes k and k′′, and we will do so
by a specific problem.

Example 5.1.1: Suppose L = {1, 2, 3, 4}, A = {1, 2} and B = {2, 3} and fix a hyperpa-
rameter ν and dataset n. Now,

k ∈ A∩B = {2}, k′ ∈ A∩Bc = {1}, k′′ ∈ Ac∩B = {3}, k′′′ ∈ (A∪B)c = {1, 2, 3}c = {4},

From k′′ = 3, we deduce,
λ > 0.

This is such that µ1, µ4 > 0 and so,

α∗1, α
∗
4 = 0.

So, our solution space is now restricted to the face consisting of points (0, α2, α3, 0) ∈ 4L,
such that α∗3 = 1− α∗2.

In this particularly simple problem, we can directly appeal to the objective function in this
reduced parametrisation,

α2 7−→ ψ(να2 + n1 + n2)− ψ(ν + n2 + n3),
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and, by the increasing property of the digamma function ψ, the minimum must be α∗2 = 0,
leading to α∗3 = 1.

�

Let us also point out a general pattern in the log-probability problem.

Theorem 5.1.1: Consider non-empty sets A 6= B ⊂ L such that the sets A ∩ Bc and
Ac ∩ B are nonempty. Then, all minimisers α∗ of the log-probability IDM problem lie on
the face of the simplex 4L satisfying

αAc∩B = 1.

Proof: Given non-empty sets A 6= B ⊂ L such that the sets A ∩ Bc and Ac ∩ B are
nonempty, the equations of the type for k′, k′′ exist. So, k′′ yields λ > 0, which ultimately
leads to µk′ > 0 and α∗k′ = 0. Similarly, µk′′′ > 0 leading to α∗k′′′ = 0. This means that
the only categories over which to search are in B = (A ∩B) ∪ (Ac ∩B). Over this smaller
simplex, the αi’s over B sum to one, and only the categories in A∩B are active variables.
To wit, the objective function over B reduces to,

ψ(ναA∩B + nA∩B)− ψ(ν + nB).

Because ψ is monotonically increasing, this function achieves its minimum when α∗A∩B = 0,
such that α∗Ac∩B = 1. In the general multivariate setting, any solution on the face of
αAc∩B = 1 can attain the minimum value, so consists of all the minimisers of the problem.
Note that this result continues to hold even if A∩B = ∅, as the objective function over B
becomes constant in this case,

−ψ(ν + nB).

�

5.1.4 Log odds ratios

Let us extend the analysis of the log-probability ratio to the log-odds case. Again, let L
be a finite number of categories, A,B ⊆ L, ν > 0 be the predefined hyperparameter of
the IDM, θ ∈ 4L be a multinomial probability vector over L, and n ∈ NL be a vector of
non-zero counts. We are interested in computing the following quantity,
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EIDM

(
log

θA(1− θB)

(1− θA)θB

∣∣∣∣ ν,n)
= ψ(ναA + nA) + ψ(ναBc + nBc)

− ψ(ναB + nB)− ψ(ναAc + nAc).

We can partition the possible KKT stationarity conditions for this problem as,

∀k ∈ A ∪Bc, k ∈ Ac ∪B : νψ′A[k ∈ A] + νψ′Bc [k ∈ Bc]− νψ′Ac [k ∈ Ac]− νψ′B[k ∈ B]− µk + λ = 0,

∀k′ ∈ A ∪Bc, k′ /∈ Ac ∪B : νψ′A[k′ ∈ A] + νψ′Bc [k
′ ∈ Bc]− µk′ + λ = 0,

∀k′′ /∈ A ∪Bc, k′′ ∈ Ac ∪B : − νψ′Ac [k′′ ∈ Ac]− νψ′B[k′′ ∈ B]− µk′′ + λ = 0,

∀k′′′ /∈ A ∪Bc, k′′′ ∈ Ac ∪B : − µk′′′ + λ = 0.

Once again, when the corresponding equations exist, we can deduce the following algebraic
consequences of each of the equations.

∀k′ ∈ A ∪Bc, k′ /∈ Ac ∪B : µk′ > λ.

∀k′′ /∈ A ∪Bc, k′′ ∈ Ac ∪B : λ > 0.

∀k′′′ /∈ A ∪Bc, k′′′ /∈ Ac ∪B : µk′′′ = λ,

Let us again give the problem more structure and information to analyse the two classes
k and k′′.

Example 5.1.2: Suppose A = {1, 2} and B = {2, 3} with L = {1, 2, 3, 4} and fix a
hyperparameter ν and dataset n. Now,

k ∈ (A ∪Bc) ∩ (Ac ∪B) = {2, 4},

k′ ∈ (A ∪Bc) ∩ (Ac ∪B)c = {1},

k′′ ∈ (A ∪Bc)c ∩ (Ac ∪B) = {3},

k′′′ ∈ (A ∪Bc)c ∩ (Ac ∪B)c = ∅,

There exist no αk′′′ ’s in this problem. Because k′ and k′′ exist, we know that

λ > 0,
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and,
µk′ > λ > 0.

In this case, we obtain
λ∗ > 0,

and
α∗1 = 0.

To proceed with the equations of k, we consider the difference of trigamma functions therein
under the condition that α2 + α3 + α4 = 1, a necessary condition for minimisation:

d2 : (α2, α3, α4) ∈ 43 7−→ ψ′(να2 + n1 + n2)− ψ′(ν(α2 + α3) + n2 + n3),

and,

d4 : (α2, α3, α4) ∈ 43 7−→ ψ′(να4 + n1 + n4)− ψ′(ν(α3 + α4) + n3 + n4).

Knowing λ∗ > 0, there are cases of the signs of d2 and d4 that allow us to identify more
zeroes from the complementary conditions µiα

∗
i = 0. For example, if n has been ob-

served such that d2(·|n, ν) and d4(·|n, ν) are nonnegative functions over α, then we can
respectively show that,

d2 ≥ 0 ⇒ 0 < λ ≤ µ2 ⇒ α∗2 = 0,

and
d4 ≥ 0 ⇒ 0 < λ ≤ µ4 ⇒ α∗4 = 0.

We can solve for these conditions as inequalities by using the decreasing monotonicity of
ψ′ over positive arguments:

d2 ≥ 0 ⇐⇒ α3 ≥
1

ν
(n1 − n3),

and,

d4 ≥ 0 ⇐⇒ α3 ≥
1

ν
(n1 − n3).

If optimisation problem is such that α∗3 ≥ (n1 − n3)/ν, then, knowing λ∗ > 0, we can
conclude,

µ∗2 = λ∗ + d2(α∗) > 0 ⇒ α∗2 = 0,

and,
µ∗4 = λ∗ + d4(α∗) > 0 ⇒ α∗4 = 0.
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Because we have already identified α∗1 = 0 earlier, when this happens, we can directly
conclude that α∗3 = 1.

We briefly remark that this line of reasoning depends on the fact that (n1 − n3)/µ ≤ 1:
there is no information on the positivity of d2 and d4 if this does not hold. From this we
can deduce the following effect of n and ν on this particular example: larger values of ν
and smaller (but nonnegative) differences of n1 − n3 causes the optima to localise to a
small region of the simplex (namely, the singleton {(0, 0, 1, 0)} = {α ∈ 44 : α3 = 1}).

�

5.1.5 Independence test statistic

Relative to the log-probability and log-odds ratios studied above, the independence test
statistic θA1 . . . θAr/θA1∩...∩Ar has a significant structure regarding the posterior distribu-
tions of the IDM. Let us demonstrate these with the KKT conditions of inference for the
independence statistic of a cell in an I × J contingency table.

Consider L = {uv : u = 1, . . . , I, v = 1, . . . , J} with I, J < ∞. For a particular cell, ij,
we are interested in computing the posterior lower expectation of,

EIDM

(
log

θi·θ·j
θij

∣∣∣∣n, ν) = ψ(ναi· + ni·) + ψ(να·j + n·j)− ψ(ναij + nij)− ψ(ν + n),

where, for example, αi· =
∑

v=1,...J αiv.

Notice that, denominator categories, {ij} is nested in the numerator categories {i·}∪{·j}.
This means that there is only one category that is in both the numerator and denominator
sets, and there are no categories that are only in the denominator but not the numerator.
So, the possible KKT equations are,

k = ij : νψ′i· + νψ′·j − νψ′ij − µij + λ = 0,

k′ ∈ {i·} ∪ {·j}, k′ 6= ij : νψ′i·[k
′ ∈ {i·}] + νψ′·j[k

′ ∈ {·j}]− µk′ + λ = 0,

k′′ /∈ {i·} ∪ {·j}, k′′ = ij : (does not exist),

k′′′ /∈ {i·} ∪ {·j}, k′′ 6= ij : µk′′′ − λ = 0.
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Now, given a contingency table, the three classes of equations always exist since they
partition the table. Then, we have,

µk′ > λ,

and
µk′′′ = λ.

Note that this implies,
λ ≥ 0,

so that, µk′ > 0 and,
α∗k′ = 0.

That is, all α∗u = 0, where its cell u is on either the i-th row or the j-th column, but
not equal to ij itself. Finally, note that there is only a single equation in the k class: its
difference of trigamma functions is,

dij(α) = νψ′i·(α) + νψ′·j(α)− νψ′ij(α).

As we have observed in past examples, for some values of n and ν, it is possible for the
differences of the first equation class can have a constant sign over 4IJ 3 α.

Example 5.1.3: Let us study the sign of dij with a 2 × 2 table. Suppose I, J = 2 and
ij = 11. Then

ψ′(ν(α11 + α12) + n11 + n12) + ψ′(ν(α11 + α21) + n11 + n21)− ψ′(να11 + n11),

over 0 ≤ α11 + α12 + α22 ≤ 1. But, we know that α∗12, α
∗
21 = 0, so the domain of interest

of the difference function simply becomes α11 ∈ [0, 1] (with α22 = 1 − α11, and so we are
interested in,

d11(α11) = ψ′(να11 + n11 + n12) + ψ′(να11 + n11 + n21)− ψ′(να11 + n11).
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Figure 5.1: The difference function, α11 7−→ ψ′(να11 + n11 + n12) + ψ′(να11 + n11 + n21)−
ψ′(να11 + n11), plotted over α11 ∈ [0, 1] for various datasets n = (n11, n12, n21, n22) that
total to 10 and permute n1, n2, n3 over {1, 2, 5}, and various ν values in {0.1, 0.5, 1, 2, 10}.

Figure 5.1 plots this univariate function for various values of n and ν. The figure shows
that there are certain values of n and ν for which d11(α11) > 0, d11(α11) ≤ 0 and for which
d11(α11) changes sign over α11 ∈ [0, 1]. In the first case, d11 > 0 over [0, 1] 3 α11 implies
that d11(α∗11) ≥ 0, leading to,

0 < d11(α∗11) = µ∗11 − λ∗ = 0,

which, along with λ ≥ 0, implies µ∗11 > 0 and so α∗11 = 0. In the second and third cases,
we cannot use the complementary conditions to conclude any additional zeroes in α∗.
However, the fact that d11 is univariate can be exploited more directly as follows. Notice
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that d11 is in fact the derivative of the objective function restricted to α12, α21 = 0,

d11(a) =
d

da
(ψ(νa+ n11 + n12) + ψ(νa+ n11 + n21)− ψ(νa+ n11)).

This means that, if d11 is negative over [0, 1] as in the second case, then the restricted
objective function is a non-increasing function over [0, 1], which must achieve its minimum
at α∗11 = 1. In the third case where d11(α11) is continuous, monotonically non-decreasing
on [0, 1] and has a root at, say a0 ∈ [0, 1], then it means that a0 is a stationary point
of the restricted objective function that is decreasing in [0, a0) and increasing in (a0, a].
Because the restricted objective is continuous [0, 1], then a0 must be its minimum, such
that α∗11 = a0. This characterises all the possible cases.

�

5.2 Some properties of the objective function in mean-

parameter space

It is expected that one would numerically optimise the objective function over the sub-
space identified by the KKT conditions in the first step, and this subspace is another closed
simplex of lower dimension than that with which one started. Towards an analysis of this
optimisation, it remains unclear that the objective function itself has any monotonic or
convexity properties.

We show that there exists a reparametrisation of the problem such that the convexity of
the domain in the natural parameter space is preserved, the posterior log-odds expectation
to be optimised is bounded in the interior of the space under the reparametrisation and
that there are some regions of the new space over which the objective function is locally
monotone. The latter is useful as we will show that some datasets and log-odds structures
restrict the optimisation of the posterior expectation to this region, making the function
monotone over this set.

5.2.1 A reparametrisation of the natural parameter space

For illustration, we graphically explore the salient ideas with a low dimensional problems
instead of deriving the general finite dimensional case. Furthermore, the parametrisation
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is simply a tool to transform the problem into one that is more amenable to a gradient
descent, and it is neither unique nor has any other significance. We will therefore focus on
an illustration with an example for the rest of the section.

Example 5.2.1: Given a dataset of counts n over categories L = {1, 2} totaling to n and
a hyperparameter choice ν > 0, the posterior IDM lower expectation of a log-odds statistic
T , is the minimum of,

I : α ∈ 42 7−→ ψ(να1 + n1)− ψ(να2 + n2),

where we note that α2 = 1 − α1 and n2 = n − n1. Recall that the mean parameters are
given by,

µi = ψ(ναi + ni),

for i = 1, 2, with the constraint that,

ψ−1(µ1) + ψ−1(µ2) = ν + n. (5.1)

We will study (5.1) in the subsequent set of examples via a convenient reparametrisation.
The parametrisation allows us to derive some of the curve’s properties without resorting
to direct manipulation (5.1), as well as reveals interesting geometrical properties of the
optimisation problem.

Definition 5.2.1: (Reparametrisation of µ curve) Define the parameter t ∈ R, and,

µ(t) = −a(t)v0 + tv1,

such that v0, v1 and a(t) are chosen to satisfy,

ψ−1(a(t)v01 + tv11) + ψ−1(a(t)v02 + tv12) = ν + n.

�

We can visualise this parametrisation in Figure 5.2.
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Figure 5.2: A visualisation of the parametrisation µ(t) = a(t)v0 + tv1 for two mean
parameters. The black curve is the set of points satisfying ψ−1(µ1) + ψ−1(µ2) = ν, the
normalisation constraint of the natural parameters of the Dirichlet distribution. The red
dashed lines are the asymptotes of the black curve. The cyan line is the hyperplane onto
which µ(t) is projected bijectively.

The map µ(t) takes t, maps it to a point on the linear subspace tv1, then translates it by
−a(t)v0 to a point on the constrained curve. The particular choice of v0 and v1 is not
important: it suffices that v0,v1 and a(t) place the subspace to one side of the curve µ.
We have, for convenience, chosen v0 to be the normal vector and v1 to be orthogonal to v0

and such that the subspace spanned by v1 intersects the origin. The mapping t 7−→ µ(t)
is therefore bijective when v0 and v1 are chosen in such a way.

�

Example 5.2.2: (Convexity of the epigraph of µ(t) and −a(t)) From Figure 5.2, given
that we fix the choice of the hyperplane, then −a(t) traces out the curve (µ1(t), µ2(t)).
Furthermore, it is clear that the epigraph of µ is a convex region and, equivalently, the
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outline of this epigraph, −a(t), is a convex function.

�

Example 5.2.3: (Reparametrised images of faces) It is important to understand how the
faces of the simplex of the natural parameters map to the mean parameter space. Not only
does this give a complete picture of the transformed domain, but, as in examples like the
log-odds, the boundaries may contain optima.

Continuing with Example 5.2.1, the (singleton) faces αi = 0 map to µi = ψ(ni) in the
mean parameter space, for i = 1, 2. In particular, if ni = 0, then αi = 0 maps to an infinity
in µ space. To put this in terms of t, the (singleton) face α1 = 0 is mapped to the set,

{t : a(t)v0 + tv1 = (ψ(n1), ψ(ν + n2))}.

It follows from the bijectivity we have established between t and µ(t) that this is a sin-
gleton set that maps to a single vector (ψ(n1), ψ(ν + n2)). We can similarly establish the
image of the singleton face of α2 = 0 in terms of t.

We will see more nontrivial images of faces of 43 in subsequent examples.

�

5.2.2 Geometry of the objective function

Having established the necessary concepts in two-dimensions, we can explore the non-trivial
geometry that arises in the three-dimensional case that is also easily visualised.

Example 5.2.4: Suppose that we have a dataset of counts n over categories L = {1, 2, 3}
totaling to n and a hyperparameter choice ν > 0. Let us consider the log odds statistic,

log
θ1 + θ2

θ2 + θ3

,

whose posterior IDM lower expectation is the minimum of,

I : α ∈ 43 7−→ ψ(ν(α1 + α2) + n1 + n2)− ψ(ν(α2 + α3) + n2 + n3).
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Again, the mean parameters are given by,

µi = ψ(ναi + ni),

for i = 1, 2, 3, with the constraint that,

ψ−1(µ1) + ψ−1(µ2) + ψ−1(µ3) = ν + n.

Definition 5.2.2: Define t = (t1, t2), and

µ(t) = −a(t1, t2)v0 + t1v1 + t2v2,

such that v0, v1, v2 and a(t1, t2) are chosen to satisfy,

ψ−1(µ1(t)) + ψ−1(µ2(t)) + ψ−1(µ3(t)) = ν + n.

�

The convexity of the epigraph of µ(t) is given by the fact that we choose v0,v1,v2 to be
linearly independent and, for convenience, orthogonal. Also, Lemma D.1.4 asserts that
t1, t2 7−→ −a(t1, t2) is a convex function. Then, the mapping from (t1, t2,−a(t1, t2)) to
(µ1(t), µ2(t), µ3(t)) is simply an invertible rotation of the constrained surface µ, and so
µ(t) preserves the convexity of the graph (t1, t2,−a(t1, t2)).

The face of the natural parameter simplex 43 where, say αi = 0 for all i’s in some index
set I is mapped to sets of t’s as,

{(t1, t2) : a(t1, t2)v0i + t1v1i + t2v2i = ψ(ni) for all i ∈ I}.

Notice that ni = 0 (for example, when the data is sparse, or when performing prior infer-
ence) causes some of the components of µ(t) to become unbounded in certain directions.
For this example, µ1 = ψ(n1) implies that α1 = 0 and α2 + α3 = 1, so the face for α1 = 0
is mapped to,

{(t1, t2) : µ1 = a(t1, t2)v01 + t1v11 + t2v21 = ψ(n1)},

and the other two faces map similarly. The contours,

{(t1, t2) : µ1(t1, t2) = c1}, {(t1, t2) : µ2(t1, t2) = c2}, {(t1, t2) : µ3(t1, t2) = c3}
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for fixing µ1, µ2 and µ3 to various respective real values, c1, c2, c3, are plotted in Figure 5.3.
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Figure 5.3: Level curves of µi(t1, t2) = a(t1, t2)v0i + t1v1i + t2v2i over t1, t2 space for when
µ1, µ2 and µ3 being held constant (respectively, left, middle and right).

Importantly, the resulting optimisation domain in the t1-t2-space corresponds to the area
trapped between these curves. For example, the three dimensional simplex, consisting of
the three edges α1 = 0, α2 = 0, α3 = 0, will, pick out the corresponding contours,

µ1(t1, t2) = ψ(n1), µ2(t1, t2) = ψ(n2), µ3(t1, t2) = ψ(n3),

as boundaries of the optimisation domain in this space. Finally, these contours move to
the infinities of R2 as ni tends to zero.

�

Example 5.2.5: (Geometry of the objective function) The objective function can be
written in terms of t1 and t2:

t1, t2 7−→ ψ(ν(α1(µ(t1, t2))+α2(µ(t1, t2)))+n1+n2)−ψ(ν(α2(µ(t1, t2))+α3(µ(t1, t2)))+n2+n3),

where αi(µ) transforms the mean parameter back to the i-th natural parameter. As noted
before, the domain of optimisation is unbounded when the ni’s are zero. When all of them
are zero, it corresponds to the optimisation problem of the prior lower expectation. The
objective function’s contours in this case are visualised in Figure 5.4.

114



  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

−10 −5 0 5 10

−
10

−
5

0
5

t1

t 2

 −
7.

5 
 −

7 
 −

6.
5 

 −
6 

 −
5.

5 
 −5 

 −4.5 

 −4 

 −3.5 
 −3 

 −2.5  −2 

 −1.5 

 −1 

 −0.5 

 0.5 

 1 

 1.5 

 2 

 2.5 

 3 
 3.5 

 4 

 4.5 

 5 

 5.5 

 6 

 6.5 
 7 

 7.5 
 8 

Figure 5.4: Contours of the objective function as a function of t1, t2 when n = 0.

We can observe that there is a saddle point line at t1 = 0, and the function is increasing
as one heads left away from the line in certain directions, and decreasing on the right of
the line similarly. The function is also unbounded in these regions. This suggests that
the optima of the prior lower expectation problem are also unbounded in R2. By Lemma
D.1.3, in the µ parametrisation, the objective function has no turning points in the interior
of R3 3 µ.

As noted in Example 5.2.4, when data is observed, the optimisation domain becomes
restricted by the constant contours of µ(t1, t2). This is shown in Figure 5.5, where the
objective function contours of Figure 5.4 are overlayed and restricted by the contours in
Figure 5.3 under various cases of the data counts n1, n2 and/or n3 being zero. In Figure
5.5, we see that if certain ni’s have zero counts, then that boundary moves to infinity in
its corresponding direction.
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Figure 5.5: Various restrictions of the domain of optimisation with the objective function’s
contours being plotted only inside this domain. The left panel is when n1 = n2 = 0 such
that only the points of the boundary satisfying µ3(t) = ψ(n3) with n3 > 0 are finite, and
the other two boundaries tend to the infinities of the t1, t2 space. The middle panel is when
n2 = 0 only and the right panel is when n1, n2, n3 > 0.

We observe graphically that indeed the optimisation domains are convex. Furthermore, as
it happens, certain datasets place the domain strictly on one side of the saddle point line,
making the objective function monotone within the domain of optimisation. For example,
the contours of the right panel in Figure 5.5 restrict the posterior objective function to
the left of saddlepoint region t1 = 0 in of the unrestricted objective function in Figure
5.4. Finally, regions where the objective function is unbounded only happens at the cor-
responding boundary of the domain at the infinities of the t1-t2 space. This demonstrates
that the t1, t2 parametrisation yields properties that make the problem readily amenable
to gradient descent optimisation.

�

5.3 Concluding remarks

Our contributions in this chapter are as follows. We use Lemmas 5.1.1, 5.1.2 and 5.1.3 to aid
in the analysis of the Karush-Kuhn-Tucker condition of the optimisation problems of the
IDM lower expectations of three common log-odds statistics: the log-probability (Example
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5.1.1 and Theorem 5.1.1), the log-odds (Example 5.1.2) and the independence statistic
(Example 5.1.3). These demonstrate how the KKT conditions can narrow down the loca-
tion of the optimisers to certain faces of the natural parameters simplex. To geometrically
study the objective function, we construct a reparametrisation of the optimisation problem
explore the geometry of the objective function in the mean parameter space: this is illus-
trated conceptually in two dimensions in Definition 5.2.1, Examples 5.2.1, 5.2.2 and 5.2.3,
and salient properties of higher dimensions are illustrated in three dimensions Examples
5.2.4 and 5.2.5.

In this chapter the optimisation problem involved in computing the posterior lower expec-
tation of log-odds statistics under the IDM was explored. For three commonly occurring
log-odds statistics, their KKT conditions were solved and used to identify the faces of the
natural parameter space containing the optimisers. Considerations were given to gradient
based methods typically used to search for the optimisers on these faces. In particu-
lar, we have noted that these methods are problematic when searching for optimisers of
unbounded objective functions over a closed set such as those occurring with the IDM
log-odds problems. In this vein, we moved beyond the KKT condition to study the shape
of the objective function in the mean parameter space where the region over which the
optimiser is unbounded is at the infinities of the Euclidean space of mean parameters. A
reparametrisation via a projection was developed to illustrate that domain of optimisa-
tion is convex in both prior and posterior cases and, importantly, to provide a proof of
concept that the objective function can be monotone for certain log-odds structure and
parametrised by certain datasets.

The exploration done in this work suggests that, while the original optimisation problem
of the IDM lower expectation problem is not a convex optimisation problem, it possesses
properties that nevertheless make it amenable to the usual tools used to analyse optimi-
sation problems. From a statistical perspective, our study is pertinent regarding a global
sensitivity analysis over the closed simplex of the natural parameters of a Dirichlet fam-
ily of priors with fixed concentration parameter. Our studies suggest that, at least for
log-odds statistics, such global analysis is amenable to optimisation techniques under the
IDM due to the properties of the objective function and its domain. In fact, with log-odds
of certain structures, the observed dataset may parametrise the optimisation problem as
to provide a sufficient amount of information and discrimination for the KKT conditions
to locate the set of optima by itself (for example when observations are predominantly or
even completely observed only in the sets involved in the numerator or only in those of the
denominator). Furthermore, as we have seen in Figures 5.4 and 5.5, the objective func-
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tion, in both the mean parameter and its reparametrisation which we have constructed,
may exhibit directions in which it is monotone, such that its optima always occur at the
boundary of the domain of optimisation. This geometrical fact, which is not apparent
from viewing the objective function in the natural parameters as a difference of digamma
functions, sheds light on the nature of the IDM log-odds problem and, equivalently, the
global sensitivity analysis of Dirichlet prior families and its feasibility.

As gradient-based methods are a typical choice for such problems, we briefly remark on
the ramifications of our exploration upon its use. One may encounter two issues in ap-
plying them to an IDM log-odds minimisation. First, because the objective function is
potentially an arbitrary sum and difference of digamma functions, it is unclear that it
has nice properties such as monotonicity and convexity which the optimiser algorithm can
exploit. Second, as we have illustrated above, certain structures of sets in the log-odds
and datasets that parametrise the posterior problem yield vertex solutions whose objective
values are unbounded, ill-defined and cannot be smoothly extended to the boundary of the
optimisation domain. In this analysis, we have shown that there exists a reparametrisation
of the problem such that the convexity of the domain is preserved, the posterior log-odds
expectation to be optimised is bounded in the interior of the space under the reparametri-
sation and that there are some regions of the new space over which the objective function
is locally monotone.
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Chapter 6

Imprecise posterior inference under
zero lower marginal probability in
finite dimensions

In this chapter, we focus on an inferential issue that, in practice, does not occur when
a single distribution is used. Recall that we are partially motivated by the case where a
set of priors has been elicited from a set of experts, who may not hold consistent beliefs.
The most extreme example of this would be when they differ in what they assess to have
strictly positive probability. Hence, some distributions in an elicited prior set assign zero
marginal probability to the possibly observed data. As a result, the lower probability (see
Definition 2.1.9) of this particular dataset is zero, and the generalised Bayes’ rule of Wal-
ley [81] (Theorem 2.2.4) does not necessarily hold. In these cases, extensions of the lower
expectation may be used instead.

We explore whether or not coherence and imprecision might yield well-defined and sensible
inference when the lower probability of the conditioning set is zero. This is motivated by
the fact in, for example, Walley [81], Couso and Moral [29] and Quaeghbeur (Ch 1. of
Augustin et al. [6]), that the same unconditional lower expectation model may generate
different conditional imprecise models when the lower probability of the conditioning set is
zero. Our finite discrete setting allows tractable and concrete exploration of the properties
directly relevant to this issue.

We focus on two established imprecise methods that can be used in this situation. The
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vacuous extension always yields vacuous inference. (Recall, from Definition 2.2.2, that im-
precise expectations are vacuous for a random variable if the lower and upper expectations
are respectively the infimum and supremum of the random variable.) On the other hand,
under certain conditions, the regular extension may yield non-vacuous inference even when
the marginal lower probability is zero. In this chapter, we discuss in detail a very simple
example to gain insight into the characteristics and problems of statistical inference arising
from these two extensions.

6.1 A running example

Let {1, . . . ,m} index the known categories in consideration with m < ∞. We consider
the case when the sample size n is apriori fixed and each observation is i.i.d. following
some multinomial distribution. Let n ∈ Nm be the counts of the categories summing to n.
Let Θ = {θ1, . . . ,θ|Θ|} ⊂ 4m be a finite set of candidate multinomial probability vectors.

A prior p over Θ is therefore a point on the finite dimensional simplex 4Θ. When the
denominator is non-zero, the posterior expectation of a random variable f(θ) following
from Bayes’ rule is given by,

Ep(f) =

∑
θ∈Θ f(θ)L(θ|n)p(θ)∑
θ∈Θ L(θ|n)p(θ)

. (6.1)

Given a set M of priors, p’s, a posterior lower expectation can be formed by the optimisa-
tion of the posterior expectation over the set M ,

E(f |n) = inf {Ep(f(θ)|n) : p ∈M} . (6.2)

Recall from Definition 2.1.9, the lower probability of an event A under E is P (A) = E(IA).
As a shorthand notation, we will write the lower probability of observing n as P (n).

When P (n) > 0, (6.2) is a coherent lower expectation as a consequence of the generalised
Bayes’ rule (Theorem 2.2.4). But, in this chapter, we are interested in the case when M is
such that this is not the case. To illustrate the context of the need for imprecision under
this finite setting, we furnish the following example.

Example 6.1.1: A linguist wishes to model the probability f(θ) = θ, θ ∈ [0, 1], of a
certain phrase occurring in a corpus of documents all written in a single language. The
phrase is grammatically incorrect in the documents’ language: it is typical to assign a
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structural zero to the occurrence of phrases which are syntactically not permissible (Mohri
and Roark [61]). That is, θ1 = 0 is a candidate model. However, it is also possible that
such a document is written in a way that the phrase nevertheless occurs: for example,
the phrase may be used as a colloquialism or written by somebody unfamiliar with the
language. To account for these cases, the linguist selects two other distributions, θ2, θ3 > 0.
In all, the candidate distributions for the document are Θ = {θ1, θ2, θ3}.

The linguist wishes to construct a prior distribution over Θ. Because the linguist’s prior
state of knowledge does not favour any particular distribution, any prior distribution (as-
signing any probability to θ1) is consistent with this state. In particular, this includes
the prior that assigns a prior probability of one to θ1 = 0 which will cause the marginal
probability of observing a document containing the phrase to be zero. That is, writing n1

to be the number of documents containing this phrase out of n observed documents,

P (n1 documents of n contain the phrase)

= P (n = (n1, n− n1))

= p(θ1)L(θ1|(n1, n− n1)) + p(θ2)L(θ2|(n1, n− n1)) + p(θ3)L(θ3|(n1, n− n1))

= 1 · 0 + 0 · L(θ2|(n1, n− n1)) + 0 · L(θ3|(n1, n− n1))

= 0.

This prevents any posterior inference involving conditional probabilities such as (6.1) to
be well-defined.

�

This example shows that M may happen to be elicited in a way such that the denominator
of (6.1) is zero for at least one potentially observable dataset. For such prior distributions
in the set, we highlight two practical concerns regarding this.

Firstly, the posterior expectation (6.1) is not defined when its denominator is zero. In
turn, this is so if and only if for every θ either its likelihood relative to the data or its prior
probability (or both) are zero. What should be done here methodologically? On the one
hand, one should not alter the prior after observing the data. A satisfactorily elicited prior
should not be modified without any justification. On the other hand, one might apriori
assume a prior that assigns a positive probability to any potential datasets. However, this
prior may contradict any prior information that indicates that certain datasets in fact have
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zero probability of occurring.

Secondly, when a dataset is observed such that its lower prior probability is zero, the gen-
eralised Bayes’ rule does not guarantee a coherent posterior model. Moreover, under the
global sensitivity analysis interpretation, the computation of the posterior lower expecta-
tion found by minimising (6.1) over the prior space is not well-defined in the sense that
some Bayes’ rules will not be defined with priors that produce a zero marginal probability
for the data. As such, one cannot readily depend on the generalised Bayes’ rule to generate
posterior values that are coherent with the elicited set of priors.

From these observations, we do not expect that the lower and upper expectations of the
generalised Bayes’ rule to be readily applicable here, as it is a function of all the precise
Bayes’ rules over an elicited prior set. However, there are other more general ways of
constructing imprecise posterior inferences beyond lower and upper bounds of conditional
expectations.

6.2 Vacuous and regular extensions

Let us introduce some additional notations for this chapter. Consider a set of multinomial
probability vectors over m categories, Θ ⊂ 4m such that |Θ| < ∞, and M , set of prior
distributions over Θ. Let n be a fixed dataset. For a prior,

p = (p(θ1), . . . , p(θ|Θ|)) ∈ 4|Θ|,

and likelihood,
L(θ|n) = (L(θ1|n), . . . , L(θ|Θ||n)).

where,

L(θi|n) =

|Θ|∏
j=1

θ
nj
ij .

Example 6.2.1: With only limited information about the source of the documents, the
linguist decides to construct a set of candidate prior distributions p = (p(θ1), p(θ2), p(θ3)) =
(p1, p2, p3), M , that reflects the available but incomplete information. Suppose that the
linguist elicits Θ = {0, 1/10, 1/4} as the possible probabilities of the phrase occurring and
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that there are 10 documents in the sampled corpus. Suppose also that from prior informa-
tion of similar documents, the linguist assesses an upper bound on the prior expectation
of odds of the phrase occurring, θ/(1− θ), to be less than 1/4,

0 · p1 +
1

9
p2 +

1

3
p3 ≤

1

4
,

as well an upper bound on the prior expectation of the number of occurrences of the phrase
in a document of size 10, 10 · θ,

10 · 0 · p1 + 10 · 1

10
p2 + 10 · 1

4
p3 ≤ 2.

Now, M is to be constructed such that it reflects this known information. First, the linguist
notes the lack of information relevant to assessing probability of a document following the
rules of the language translates into including any p satisfying,

0 ≤ p1 ≤ 1,

as a candidate. After some manipulation, the linguist’s set of prior models is,{
(p1, p2, p3) : (p1, p2, p3) ∈ 43,

1

9
p2 +

1

3
p3 ≤

1

4
, p2 +

5

2
p3 ≤ 2

}
.

This set is a convex subset of the probability simplex in Figure 6.1, with vertices,

{(1, 0, 0), (0, 1, 0), (0, 3/8, 5/8), (1/4, 0/3/4)}.

Importantly, note that p = (1, 0, 0), the prior assigning zero marginal probability to ob-
serving any document containing the phrase of interest, is an extreme point of this convex
set.
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Figure 6.1: The linguist’s set of priors based on two constraints (blue hatched). Notice that
one of the constraints is redundant in defining the set. Notice also that (1, 0, 0), the prior
assigning zero marginal probabilities to certain datasets, is included in the set of priors.

�

The following example demonstrates the effects of the prior assigning a zero lower proba-
bility to a particular observed dataset under M when this dataset becomes observed.

Example 6.2.2: Consider a number of documents with the phrase is n1 ≥ 1 out of the
sample of n <∞, so the binomial count vector is n = (n1, n− n1). The likelihood vector
becomes,

L = (0, 0.1n1 · 0.9n−n1 , 0.25n1 · 0.75n−n1).

Of all the priors in M , only p = (1, 0, 0) assigns zero marginal probability to n = (n1, n−
n1). Indeed,

L · p = (0, 0.1n1 · 0.9n−n1 , 0.25n1 · 0.75n−n1) · (1, 0, 0) = 0, (6.3)
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and by the non-negativity of all the values involved, p = (1, 0, 0) is the only prior that
causes this to happen. Nevertheless, this is sufficient for PM({n}) = 0. Importantly, the
minimisation of posterior expectations under this likelihood over the set of priors M is not
well-defined in the sense some priors cause the denominator in the Bayes’ rule to be zero
causing the objective function to be undefined at those points. On the other hand, the
minimisation over M − {(1, 0, 0)}, as an infimum, is well-defined in this example.

�

There are two ways to proceed with our analysis. On the one hand, one can make posterior
inference based on only the prior models that assign positive probability to the observed
data. This is provided by the so-called regular extension.

Definition 6.2.1: (Walley [81], Appendix J.) For a set of distributions M , a suitably
measurable set B ⊆ Ω, the regular extension (of EM conditioning on B) is defined as,

X 7−→ inf

{
EP (IBX)

P (B)
: P ∈M ∧ P (B) > 0

}
.

�

On the other hand, one can abandon the use of the generalised Bayes’ rule and instead
consider an alternative model. One established alternative method in this case is the so-
called vacuous extension.

Definition 6.2.2: (Walley [81], 8.4.1) For a set of distributions M , a suitable measurable
set B ⊆ Ω, the vacuous extension1 (of P to conditioning on B) is defined as,

X 7−→

 inf
{
EP (IB ·)
P (B)

: P ∈M
}

if PM(B) > 0,

inf
ω∈Ω

X(ω) if PM(B) = 0

 .

�

1In Walley [81], this is a natural extension of a conditional prevision due to the generalised Bayes’ rule,
but, to avoid confusion, we will call this the vacuous extension.
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Notice that the vacuous extension results in effectively throwing away the information pro-
vided by M when the prior lower probability of the dataset is zero. Walley [81] notes that,
under certain conditions, they are both jointly coherent with the prior lower expectation
as discussed in Section 2.2.4. (In Section 6.3.3, we will see how certain assessments and
elicitations may violate this.) As they stand, they are simply modelling choices one makes
in anticipation of actually observing B whose lower probability is apriori zero.

Note that, when (the closure of) M contains at least one prior that assigns all of its mass
to the set of θ’s that assign zero likelihood to n1, the lower probability of observing the
data will always be zero. To identify these priors, write,

In = {i ∈ 1, . . . , |Θ| : L(θi|n) > 0},

the indices of Θ whose likelihood values are strictly positive.

Proposition 6.2.1: If n is such that L(n|θi) = 0 for at least one i = 1, . . . , |Θ|, and there
exists p0 in the closure of M such that

∑
i/∈In p0(θi) = 1, then PM(n) = 0.

Proof: Notice that,

PM(n) = inf


|Θ|∑
i=1

p(θi)L(n|θi) : p ∈M

 .

It is clear that the choice of the limit point p0 will minimise this quantity to zero.

�

6.3 Posterior imprecise inference for discrete param-

eter and observation spaces

From Definition 6.2.2, the vacuous extension takes values from the GBR when the lower
probability of the conditioning event is strictly positive and takes the infimum of the ran-
dom variable otherwise. On the other hand, the computation of the regular extension is
more involved, and we explore it under the discrete setting introduced in Section 6.1.
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6.3.1 Computing the regular extension

Notice that the marginal probability,

L · p =
∑
θ∈Θ

L(θ|n)p(θ),

is zero iff every term in the sum is zero individually. In turn, this is equivalent to the
statement that for each θ ∈ Θ, at least one of L(θ|n) and/or p(θ) are zero, and so the
valid Bayes’ rules come from priors that avoid this.

For constructing the regular extension, we identify the set of priors that yield strictly
positive marginal probability for observing n:

{p ∈M : ∃ i ∈ In, p(θi) > 0}.

The (lower and upper) regular extension(s) for some random variable f(θ) are,

RM(f(θ)|n) = inf

{∑
i∈In fiLipi∑
i∈In Lipi

∣∣∣∣ p ∈M : (∃ i ∈ In : pi > 0)

}
. (6.4)

RM(f(θ)|n) = sup

{∑
i∈In fiLipi∑
i∈In Lipi

∣∣∣∣ p ∈M : (∃ i ∈ In : pi > 0)

}
. (6.5)

6.3.2 Effects of likelihood on regular extension values

From the above construction, the regular extension only considers the optimisation over
the posterior distributions normalised over only the prior probabilities of models θ ∈ Θ
which have a positive likelihood. In turn, the lower and upper regular extensions of, say
f(θ), are bounded below and above only by the minimum and maximum of f taken over
this active set of models. We can summarise this as follows.

Corollary 6.3.1: Consider the setting of Section 6.3.1. Recall that,

In = {i ∈ 1, . . . , |Θ| : L(θi|n) > 0},

is the index set of observation models with a strictly positive likelihood value. Let M be
any subset of the set of all prior distributions over Θ. For any bounded function f(θ) on
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Θ, its regular extensions are bounded only by the values associated with strictly positive
likelihood,

min
i∈In

f(θi) ≤ R(f(θ)|x) ≤ R(f(θ)|x) ≤ max
i∈In

f(θi).

Proof: This follows immediately from the form of the lower and upper regular extensions
in (6.4) and (6.5).

�

6.3.3 Numerical behaviour of posterior inference

Example 6.3.1: Continuing with Example 6.2.1, consider the case that out of n = 10
documents, the phrase of interest occur in n1 = 1 of them. Let us plot the contours of the
posterior expectations,

E(θ|p = (p1, p2, p3), n = (1, 9)) =
0 · p1 + 0.1 · 0.1 · 0.99p2 + 0.25 · 0.25 · 0.759p3

0 · p1 + 0.1 · 0.99p2 + 0.25 · 0.759p3

,

as a function of p1, p2, p3. By (6.3), the prior (1, 0, 0) causes the marginal probability to
be zero. Because the Bayes’ rule of this prior is not defined under this dataset, the regular
extension excludes this prior over M for n = (1, 9).
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Figure 6.2: Contour map of the posterior expectation as a function of the projected prior
distribution (p2, p3) 7−→ E(θ|p = (1 − p2 − p3, p2, p3), n = (1, 9)). Note that the (1, 0, 0)
is excluded from the polytope. Colours are normalised between 0.1 (dark purple) to 0.25
(light yellow).

Note that we cannot define the posterior expectation at this point of by appealing to
continuity since the point is an intersection of the objective contours and so the limiting
value is not well-defined. As a result, we have excluded this prior from the optimisation
domain. With this, the minimum value of the regular extension is 0.1 and is achievable
on the segment between (0, 1, 0) and (1, 0, 0) minus the latter endpoint. The maximum
of 0.25 is achievable on the bottom segment between (1/4, 0, 3/4) and (1, 0, 0) minus the
latter endpoint. Note that the posterior expectation of θ never achieves the minimum 0
over the set Θ = {0, 0.1, 0.25} in the regular extension’s domain. On the other hand, the
vacuous extension always yields inf

θ∈Θ
θ = 0 as long as (1, 0, 0) is in the convex region of the
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optimisation.

The interpretation of whether or not 0.1 and 0.25 can be considered as posterior tight
bounds reflecting the prior information depends on the rôle (1, 0, 0) plays: in the case of
the regular extension, the question is whether or not it can be ignored.

�

Example 6.3.2: We consider how the contour map changes when the dataset n is varied.
Figure 6.3 displays the contour maps of the posterior expectation for various values of
the sample size n and the observed proportion of documents in this corpus containing the
phrase, θ̂1 (such that n1 = nθ̂1), over values for p1.p2, p3.
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Figure 6.3: Contour maps of the posterior expectation as a function of the projected prior
distribution (p2, p3) 7−→ E(θ|p = (1− p2 − p3, p2, p3), n = (n1, n− n1)) for various values

of n1 and n. n is varied across the rows in {0, 4, 10, 20, 30} and n1 computed as nθ̂ where

θ̂ is varied across the columns in {0, 0.1, 0.25, 0.5}. Colours are normalised between 0.1
(dark purple) to 0.25 (light yellow).

Figure 6.3 shows that the regular extension exhibits a typical imprecise behaviour as im-
precise expectations as the dataset is varied. For example, as the number of observations n
increases but the proportion of binomial successes remain zero (left column), the objective
surface becomes flat and predominantly with values close to 0.1, the lower bound. Impor-
tantly, though, due to the likelihood effect described in Corollary 6.3.1, the lower bound
remains strictly away from 0 even as no successes were observed.

131



�

Examples 6.3.1 and 6.3.2 demonstrate that, in our discrete context, the attainable values
of the posterior expectation is restricted away from values for which the likelihood is zero.
This is in accordance with Corollary 6.3.1. The following example explores the behaviour
when the point removed by the regular extension (1, 0, 0) is not included in the set of priors.

Example 6.3.3: Suppose that the linguist had elicited a third linear constraint on the
possible prior distributions, resulting instead in the level curves of the posterior expecta-
tion in Figure 6.4 .

Figure 6.4: Contour map of the posterior expectation as a function of the projected prior
distribution (p2, p3) 7−→ E(θ|p = (1 − p2 − p3, p2, p3), n = (1, 9)) with three constraints,
one of which is redundant. Colours are normalised between 0.1 (dark purple) to 0.25 (light
yellow).
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We see that, the prior causing P ({n}) = 0, (1, 0, 0) (by (6.3)), is no longer in the set,
such that we can calculate the posterior lower expectation directly without either regular
or vacuous extensions. Nevertheless, from the level curves, notice that the minimum value
remains 0.1 which can be attained anywhere on the top-right edge of the convex set while
the maximum remains 0.25 to be attained anywhere on the bottom edge.

�

In the following, we numerically explore the effects due to the assessment of the values of
the likelihood on the regular extension. From Corollary 6.3.1 and the above examples, we
have seen that the parameters for the observation model in Θ with a zero likelihood are
ignored when evaluating the objective function of the regular extension. In the following
examples, we produce two different assessments of the likelihood when zero success counts
are observed: one assessment leads to a contradiction between the posterior regular exten-
sion and the prior imprecise model, while the other does not.

Example 6.3.4: Suppose that the linguist does not have enough information to impose
any constraint on the set of priors, and n = (0, 10) is observed instead, resulting instead
in the posterior expectation,

E(θ|n = (0, n),p) =
0 · 0 · p1 + 0.1 · 0.10(1− 0.1)10p2 + 0.25 · 0.250(1− 0.25)10p3

0 · p1 + 0.10(1− 0.1)10p2 + 0.250(1− 0.25)10 · p3

,

over p, whose the level curves are shown in Figure 6.5.

133



Figure 6.5: Contour map of the posterior expectation as a function of the projected prior
distribution (p2, p3) 7−→ E(θ|p = (1 − p2 − p3, p2, p3), n = (0, 10)) with no constraints
on the prior set except that the prior (1, 0, 0) is excluded from the polytope. Colours are
normalised between 0.1 (dark purple) to 0.25 (light yellow).

Starting with no constraint on the prior set and observing zero binomial successes, we
see from the level curves that, again, the lower and upper regular extensions are attained
at 0.1 on the right edge and 0.25 on the bottom edge, respectively. This example is of
particular interest as it shows that the regular extension is inconsistent with the prior
lower expectation in the sense that the lower regular extension that starts with no elicited
constraints and observations with zero successes minimises to 0.1, such that the success
probability θ = 0 is ignored from Θ. This is in contrast with the prior lower expectation
achieves the minimum of zero:

PM(θ) = min {0 · p1 + 0.1 · p2 + 0.25 · p3 : (p1, p2, p3) ∈ 43} = 0,

(minimised at (1, 0, 0)).
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As in the examples in Section 6.3.3, this inconsistency between the regular extension and
prior is due to the fact that, by Corollary 6.3.1, the value θ = 0 is being ignored because
the likelihood at θ = 0 is zero under the dataset n = (0, 10). However, this also suggests
that if the likelihood for θ = 0 was not zero, then θ = 0 can be exposed to the posterior
expectation and this inconsistency can be avoided.

�

The issue in Example 6.3.4 pertains to the behaviour of the likelihood,

θn1(1− θ)n−n1

around θ = 0 and n1 = 0. One way to specify a limit value of the likelihood at this point is
to use the conventional definition that 00 = 1 such that θn1(1−θ)n−n1 = 1·1n = 1. However,
this limit is not unique: for example, 0 is also a limit if θ tends to 0 faster than n1. Unlike
the other examples where the dataset has at least one success (e.g. n = (1, 9)) and the
likelihood is well defined, we will be more explicit in assessing the value for L(n1 = 0|θ = 0)
in the following.

Example 6.3.5: Continuing with Example 6.3.4, let us directly assess a value for L(n1 =
0|θ = 0) instead of relying on the multinomial likelihood’s algebraic expression. Since
θ = 0 was originally elicited, we can interpret L(n1 = 0|θ = 0) = P (n1 = 0|θ = 0) as the
probability of observing no successes under a data generating process whose probability
of success is zero: a reasonable assessment is L(n1 = 0|θ = 0) = 1. Using the rules of
probability, the resulting posterior expectation is well defined for n = (0, 10) because the
marginal probability is strictly positive:

E(θ|n = (0, 10),p) =
0 · 1 · p1 + 0.1 · 0.10(1− 0.1)10p2 + 0.25 · 0.250(1− 0.25)10p3

1 · p1 + 0.10(1− 0.1)10p2 + 0.250(1− 0.25)10 · p3

.

Notice that this conditional expectation is defined at p = (1, 0, 0) due to L(n1 = 0|θ = 0) =
1. Further, unlike in Example 6.3.4, this prior achieves the minimum posterior expectation
of 0 over the set of priors M and coincides with the vacuous extension.

�

Examples 6.3.4 and 6.3.5 highlight the importance of the assessment of the likelihood func-
tion in contributing to the smooth operation of imprecise posterior inference in our cases.
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In particular, the regular extension in posterior inferential settings is demonstrably sensi-
tive to the definition (and any resulting pathologies) of the likelihood function.

6.4 Concluding remarks

Our contributions in this chapters are as follows. We demonstrated and compared the
use of the regular and vacuous extensions in a concrete, finite dimensional setting with
Examples 6.1.1, 6.2.1, 6.2.2, 6.3.1, 6.3.2 and 6.3.3 and remarked upon some characteristics
of posterior inference when the set of priors is in conflict with data in the sense that the
data’s lower probability is zero. Corollary 6.3.1, Example 6.3.4 and Example 6.3.5 high-
light the effect of the likelihood on the posterior regular extension and, importantly, how it
may induce incoherence between the prior model and posterior regular extension in certain
pathological cases.

The regular and vacuous extensions each have their use cases. The regular extension can
be motivated as follows: if one observes a dataset, then its probability of being observed
is, in hindsight, strictly positive such that it makes sense to perform posterior inference as
if the assessed set of priors did not contain distributions assigning zero marginal proba-
bility to the observed dataset. Note that this does not violate the principle that the data
should not influence the model choice because the choice of using the regular extension was
apriori decided. The vacuous extension, on the other hand, effectively ignores all elicited
prior information and produces vacuous bounds for the (conditional) expectations. It may
sometimes be desirable to discard the entire prior elicitation. For example, if the set of
priors were elicited using the same mechanism, then observing evidence against P (B) = 0
for certain P in the set may indicate that the elicitation mechanism that produced all
the priors may be faulty, leading to the possibility that the elicitation for other P ′ with
P ′(B) > 0 being faulty as well.

The vacuous extension can be an overly conservative choice to handle conflict between
prior and data. In cases such as Example 6.3.1, the only offending prior is a single vertex
out of a polytope, and the geometry of the problem suggests that there are other points
aside from the removed one that would have achieved the global minimum anyway. The
vacuous extension would have missed the global minimum that effectively matches what
we would have expected out of the sensitivity analysis over this polytope. Here, the vac-
uous extension is overly conservative on two counts. First, it ignores the information of
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an entire set of elicited priors due to a single pathological one. Secondly, since n1 = 1 in
Example 6.3.1, it may be reasonable or even desirable to ignore the priors that assign a
zero marginal probability to the dataset.

On the other hand, the regular extension can be overly optimistic (or precise). In cor-
ner cases such as Example 6.3.4, the behaviour of the posterior regular extension may be
overly precise. In particular, the effect of the likelihood on posterior imprecise inference
is interesting in the context of zero-failure problems. When the observation model space
Θ apriori includes the possibility of a zero success probability and zero successes are later
observed, coherence between the regular extension and the prior is dependent on the direct
interpretation and assessment of the likelihood values where the expression of the likeli-
hood function is ill-defined, as demonstrated in Examples 6.3.4 and 6.3.5.
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Chapter 7

Geometry of conditioning on events
with zero lower probability in finite
dimensions

In Chapter 6, we have explored the choice between the vacuous and regular extensions
for posterior inference when the lower marginal probability of the conditioning set is zero.
Under this sort of conflict between the set of priors and the posterior resulting from condi-
tioning upon such a dataset, we have observed that, in contrast with the posterior imprecise
expectations over a set of prior distributions, the conditional vacuous extension effectively
causes one to ignore one’s unconditional set of priors while the regular extension continues
by optimising only over the subset of priors that are not in conflict with the data. However,
the principle of coherence by itself yields no compelling reason or definitive guideline on
how to choose between the two in practice. Moreover, the analysis in Chapter 6 also has
suggested that the regular and vacuous extensions may not be desirable as they are respec-
tively overly precise or conservative in certain cases. This prompts us to consider possible
models of intermediate levels of imprecision between the two extensions. In this chapter,
we will consider the mathematical construction as well as the assessment of such extensions.
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7.1 The existence of imprecise models between the

vacuous and regular extensions

The existence of conditional assessments between the vacuous and regular extensions in
the case when PM(B) = 0 is corroborated by Theorem 10 in Couso and Moral [29] in the
literature of imprecise probabilities. We will not delve deeply into the result as it involves
a significant departure from our current set of notations. Instead, we will summarise those
concepts that are related to this chapter.

Couso and Moral investigate the conditioning problem using sets of desirable gambles,
which are a set of random variables designated as a representation of a set of distributions
in the space of random variables. The possible conditional models associated with a set of
unconditional distributions are characterised by the choice of topological boundary points
of the set of desirable gambles representing the unconditional model. In particular, the
choice to exclude all boundary points results in the vacuous extension and there exists a
maximal set of boundary points associated with the regular extension beyond which there
is no gain in precision. Importantly, this suggests a class of extensions between this two
associated with sets of boundary points which are non-empty strict subsets of the set as-
sociated with the regular extension.

7.2 Sets of conditional assessments between the vac-

uous and regular extensions

Let us consider a closed set of distributions M . Given a non-empty, suitably measurable
subset B ⊆ Ω, one can decompose M into,

M = {P ∈M : P (B) > 0} ∪ {P ∈M : P (B) = 0}.

If {P ∈ M : P (B) = 0} is empty, the generalised Bayes’ rule (Proposition 2.2.1) yields
a corresponding set of conditional distributions by applying Bayes’ rule to each element
of M . Otherwise, one way to form a conditional model is to use the regular extension
introduced in Chapter 6, whose set of conditional distributions is,

MR
|B :=

{
A 7−→ P (AB)

P (B)
: P ∈M ∧ P (B) > 0

}
.
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The unconditional distributions in {P ∈ M : P (B) = 0} do not provide any information
for constructing conditional distributions (see 6.10 of Walley [81]) and so cannot be used
to construct probability assessments conditional on B. Recall that that the imprecision of
a lower expectation decreases as the set of distributions over which one optimises for the
lower envelope becomes smaller. In particular, the regular extension increases the precision
of posterior inference by discarding distributions, and this may not accurately portray the
degree of lack of information. One way to better reflect the state of knowledge conditional
on B is to enlarge and append distributions to MR

|B.

Let us write PB as the set of all distributions over the set of sample points B and V B

to be the vacuous lower expectation of PB. When PM(B) = 0, the vacuous extension
corresponds exactly to

V B(X) = inf
ω∈B

X(ω),

where the vacuous extension on the right is achieved by a Dirac delta distribution in PB.
Then,

MR
|B ⊆ PB,

such that we recover the fact that the vacuous extension is more imprecise than the regular
extension:

RM(X|B) = inf {EPB(X) : PB ∈MR
|B}

≥ inf {EPB(X) : PB ∈ PB}

= inf
ω∈B

X(ω)

= V B(X).

This construction is suggestive of sets of distribution over B in the middle:

MR
|B ⊆MR

|B ∪N ⊆ PB,

where N is any set of distributions over the sample points B1. It is clear that,

RM(X|B) ≥ inf {EPB(X) : PB ∈MR
|B ∪N} ≥ V B(X).

1We implicitly assume that MR
|B ∪N is closed so its lower expectation is attainable in the set.
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7.2.1 Interpretation of N

We are interested in sets of distributions on B, N , that have the following methodological
interpretation. Suppose that, for some fixed B, M was assessed such that PM(B) = 0.
Then, B becomes observed, and this is in conflict with its lower probability being zero and
requires a further investigation. Revisiting the information available apriori, the analysts
come up with a set of distributions N over the sample points B in addition to MR

|B. We
note that, therefore, N contains information only about random variables defined on B,
not Ω, in replacement of such information not provided by unconditional distributions in
M assigning a zero probability to B.

Example 7.2.1: Recall that, in Example 6.3.5, the indeterminacy of the limit of a binomial
likelihood function θn1(1 − θ)n−n1 at θ = 0 and n1 = 0 caused the posterior expectation
over M to be undefined at the prior p = (1, 0, 0) over the model space Θ = {0, 0.1, 0.25}.
As a result, the regular extension excludes this point from its domain of optimisation, MR.
Recall also that we have produced a posterior model alternative to the regular extension,
by directly assessing the likelihood value L(n1 = 0|θ = 0) = 1 so that one defines, outside
of the regular extension, the posterior distribution at p = (1, 0, 0) of θ as

p|n=(0,10),p=(1,0,0)

=
1

1 · p1 + 0.10(1− 0.1)10p2 + 0.250(1− 0.25)10 · p3

 1 · p1

0.10(1− 0.1)10p2

0.250(1− 0.25)10p3)


= (1, 0, 0).

In other words, we have set N = {p|n=(0,10),p} to be the posterior distribution in lieu of
the ill-defined Bayes’ rule posterior and the resulting lower expectation in Example 6.3.5
was in fact the optimisation over MR

|B ∪ {p|n=(0,10),p}.

�

Even though one should in principle avoid revisiting the model after observing (a part
of) the data, this situation is not completely unrealistic. As we have seen in Chapter 1,
real-life elicitation processes are not exact and it is unreasonable to expect the resulting
assessments to be exact. In practice, when a model M apriori assigns PM(B) = 0 and
then B is observed, it is not unreasonable to revisit the elicitation process that has given
rise to this assessment.
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7.2.2 Intermediate extensions and joint coherence

Because we are effectively optimising over a larger set of distributions from MR
|B to MR

|B∪N ,
we can see that this new extension can be written as the minimum of the lower expectations
of the components.

Definition 7.2.1: For B ⊆ Ω, and N a set of distributions on B, define the lower
expectation over L(Ω),

E↑N(X|B) := EN(X|B),

where X|B is the restriction of X to B ⊆ Ω. For a partition B of Ω, write,

E↑N(X|B) =
∑
B∈B

IBE
↑
N(X|B).

�

Definition 7.2.2: For B ⊆ Ω, the intermediate extension of M by N conditional on B is,

EM ;N(X|B) := min
{
EMR

|B
(X), E↑N(X)

}
,

For a partition B of Ω, the intermediate extension of M by N conditional on B is,

EM ;N(X|B) :=
∑
B∈B

IBEM ;N(X|B).

�

Its conjugate upper extension conditional on a set B,

EM ;N(X|B) := −EM ;N(−X|B),

is given by the maximum of its components:

EM ;N(X|B) = −min
{
EMR

|B
(−X), EN(−X|B)

}
= −min

{
−EMR

|B
(X),−EN(X|B)

}
= max

{
EMR

|B
(X), EN(X|B)

}
.
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Example 7.2.2: The vacuous extension is trivially recovered by setting N to be the space
of all distributions over B, PB.

�

To preserve consistency between the unconditional and conditional assessments, they should
be jointly coherent with each other. (See Section 2.2.4.) For example. when PM(B) > 0,
the lower expectation due to generalised Bayes’ rule in Proposition 2.2.1 is automatically
jointly coherent with EM . The vacuous extension is jointly coherent with its prior model
(8.4.1 of Walley [81]) and, under certain regularity conditions, the regular extension is also
jointly coherent with its prior model. (See Appendix J. of Walley [81].)

We can show that with some reasonable assumptions, EM ;N(·|B) is jointly coherent with
EM .

Theorem 7.2.1: (Theorem E.1.1) Let B be a partition of Ω, and M be a closed set of
distributions. Suppose that N is such that E↑N(·|B) is jointly coherent with EM . Suppose
also that that such that its regular extension RM(·|B) is jointly coherent with EM . Then,
EM ;N(·|B) is jointly coherent with EM .

�

7.3 Elicitation and assessment of intermediate exten-

sions

So far, we have defined the intermediate extensions in Definition 7.2.2. Furthermore, The-
orem 7.2.1 establishes that the intermediate extension EM ;N(·|B) is jointly coherent with
the unconditional lower expectation EM . We now explore how the values of intermediate
extensions can be assessed by incorporating certain types of additional information on how
PM(B) = 0 can be further elicited.
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7.3.1 Range of the intermediate extension

The fact that the lower intermediate extension is a minimum of the lower regular extension
means that it is bounded above by the latter and, trivially, below by the lower vacuous
extension. The conjugate upper intermediate extension EM ;N(·|B) is similarly bounded
above by the upper regular extension and, trivially, the upper vacuous extension. These
all point to the fact that any lower bound of the conditional expectation that is above
the regular extension is incoherent due to its being more precise than is justifiable by the
information provided by M .

Example 7.3.1: Consider the extensions of a random variable X depicted in Figure 7.1.

Figure 7.1: A schematic of regular extension (RM(X|B), RM(X|B)) and vacuous extension
(V (X|B), V (X|B)) of X conditional on some event B. The values for any lower and upper
intermediate extensions jointly coherent with the unconditional model EM are hatched on
the left and the right, respectively.

If one assesses a set of conditional distributions N such that its lower expectation µ
N

=
inf {EQ|B(X|B) : Q|B ∈ N} is in the left hatched area between V (X|B) and RM(X|B),

then, EM ;N(X|B) = µ
N

, since µ is less than the lower regular extension. Otherwise,
EM ;N(X|B) = RM(X|B): µ

N
is overly precise and the regular extension ‘corrects’ it such

that the intermediate extension is coherent.

�

Example 7.3.1 highlights an interpretation of N from an elicitation perspective. Because N
always results in a non-decreasing change in precision, exogenous information that moves
the lower intermediate extension strictly away from the lower regular extension indicates
that there are conditional expectation values outside of (RM(X|B), RM(X|B)) that are
consistent with M through joint coherence (when the information of N is also available).
From an elicitation perspective, N may be treated as being representative of an expert
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opinion that is divergent from the pool of experts responsible for eliciting M .

7.3.2 Examples of assessments

In this section, we illustrate the mechanism that determines the values of an intermediate
expectation. We focus on finite dimensional cases where the denominator of Bayes’ rule
is zero for certain elements of a set of unconditional distributions. In such cases, one can
assess conditional probabilities by further providing additional information in the form of
the path that the denominator of Bayes’ rule takes to approach zero.

Example 7.3.2: Consider a coherent unconditional set of distributions M over Ω =
{ω1, ω2, ω3} such that B = {ω2, ω3} and PM(B) = 0. When it is coherent, we know
from Theorems 2.2.1 and 2.2.2 that (1, 0, 0) ∈ M since it is the only distribution that
achieves p(B) = 0. This means that the point (1, 0, 0) is an extreme point on the bound-
ary of M . However, on observing B, the conditional expectation given by Bayes’ rule
is not well-defined at (1, 0, 0): for example, in Figure 7.2, the level curves of the condi-
tional expectation meet at the (1, 0, 0). We can construct a (lower) intermediate extension
by making a conditional assessment a limit of a set of values. We will explore the effects
of the explicit choice of the limiting process on the intermediate extension conditional on B.

For simplicity, we assume that M is a convex polytope formed by a finite number of extreme
points, of which (1, 0, 0) achieves PM(B) = 0. Recall from Chapter 2 that every edge of
M corresponds to an assessment that the expectation of a random variable Y is bounded
below by (and attained at) some real number c, such that PM(Y ) = c. This edge consists
of the distributions {p ∈ 43 : Ep(Y ) = c}. One can think of {(1, 0, 0)} as the limit of
a series of hyperplanes representing the moment condition EMi

(Yi) = ci such that the hy-
perplane sequence eventually approaches and shrinks into the singleton set (see Figure 7.2).
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Figure 7.2: The optimisation domain of some posterior expectation as a function of priors
over a Ω = {ω1, ω2, ω3}. The level curves of this function are drawn with partial trans-
parency. The right vertex (1, 0, 0) is excluded as the level curves meet there such that the
function is not well-defined at that point. A sequence of planes (blue lines) converging to
the singleton set {(1, 0, 0)} each with the same normal vector Y , a fixed random variable
taking values (y1, y2, y3) over Ω. Each plane is of the form {p : y1p1+y2p2+y3p3 = ci} with
Y being its normal vector and where {ci} is a sequence of intercepts that move the planes
towards the limit as i → ∞. The blue dots show one possible path {pi}∞i=1 approaching
(1, 0, 0) with each pi belonging to the i-th plane.

We can demonstrate the dependence of the set of conditional expectation of some X on
the moment conditions that parametrise the sequence of hyperplanes approaching (1, 0, 0).
For simplicity, we will consider fixing a single random variable Y for the moment condition
of interest. For every fixed i, the edge representing EMi

(Y ) = ci are the distributions,

{p ∈ 43 : (1− p2 − p3)y1 + p2y2 + p3y3 = ci},
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for a sequence of real numbers ci. Suppose further that min(Y ) = Y (ω1) = y1 and y3 > y1.
As a result, because the distributions eventually converge to (1, 0, 0), the unconditional
mean will approach y1. (No convex combination of y2 and y3 can result in y1.) Therefore,
it is reasonable to parametrise ci as y1 + εi where εi → 0.

We can study this convergence by analysing any arbitrary sequence of distributions {pi}∞i=1

such that each pi is in the i-th hyperplane. Then, we can parametrise pi = (1 − pi2 −
pi3, pi2, pi3) by pi2, such that the moment condition can be written as,

y1(1− pi2 − pi3) + y2pi2 + y3pi3 = y1 + εi.

This leads to,

pi3 =
εi

y3 − y1

− pi2
y2 − y1

y3 − y1

.

Now, consider the conditional expectation of the random variable of interest, X, on B =
{ω2, ω3} under such a distribution on this edge:

x2pi2 + x3pi3
pi2 + pi3

=
x2pi2 + x3

(
εi

y3−y1
− pi2 y2−y1

y3−y1

)
pi2 +

(
εi

y3−y1
− pi2 y2−y1

y3−y1

) .

For fixed choices of Y and X, this expression can take on various values depending on
the paths taken for pi2 → 0 and εi → 0. For example, suppose that εi = o(pi2) such
that εi approaches zero faster than pi2. The expression will approach the following convex
combination of x2 and x3,

x2 + x3 · y2−y1

y3−y1

1 + y2−y1

y3−y1

.

If y2 = y1, then this expression becomes x2. On the other hand, if pi2 = o(εi), then the
expression approaches x3. If we set pi2 = εi, then, the expression approaches,

x2 + x3

(
1

y3−y1
− y2−y1

y3−y1

)
1 +

(
1

y3−y1
− y2−y1

y3−y1

) =
x2 + x3

(
y3−y2

y3−y1

)
1 +

(
y3−y2

y3−y1

) .

In all, we have demonstrated that the posterior expectation can approach any value in the
convex combination of x2 and x3 as Mi approaches M depending the Y that parametrises
the edge that approaches {(1, 0, 0)}.
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�

Example 7.3.3: Recall the running example of Chapter 6, Example 6.3.1. The linguist
has elicited the model space Θ = {0, 0.1, 0.25} for θ, the probability that a randomly
chosen document in a corpus contains a certain phrase. Suppose that a set of priors M
containing the prior p = (1, 0, 0) was also elicited. Finally, suppose that it is observed
that one document out of a sample of ten contains the phrase, such that n = (1, 9). The
observation probabilities L(θ|n) = θ1(1− θ)9 for each probability in Θ are,

L(n|θ = 0) = 0, L(n|θ = 0.1) = 0.1 · 0.99, and L(n|θ = 0.25) = 0.25 · 0.759.

For p such that the marginal probability of n is positive, the posterior expectation of θ is
then given by,

0 · p1 + 0.1 · 0.1 · 0.99p2 + 0.25 · 0.25 · 0.759p3

0 · p1 + 0.1 · 0.99p2 + 0.25 · 0.759p3

.

Once again, note that this expression is not defined for p = (1, 0, 0) as the denominator
is zero. This opens up the possibility of choosing either the vacuous extension or regular
extension as we have done in Example 6.3.1, or constructing an intermediate extension by
assessing the conditional expectation at p = (1, 0, 0) directly.

Let us consider an intermediate extension defined by the following limiting processes. Sup-
pose that k2, k3 > 0 and a positive sequence ai > 0 such that 0 ≤ k2ai + k3ai ≤ 1 and
ai → 0. Set

pi2 = k2ai, and pi3 = k3ai.

Then, pi2 and pi3 converges to zero as i → ∞ and the expression for the posterior expec-
tation approaches,

0.1 · 0.1 · 0.99k2 + 0.25 · 0.25 · 0.759k3

0.1 · 0.99k2 + 0.25 · 0.759p3k3

.

Because k2 and k3 represent information that is exogenous to the model, they can take
any values, such that the posterior expectation can take any value between 0.1 and 0.25
depending on the values of k2 and k3.

�

7.3.3 Interpreting PM(B) = 0

It is important to note that the assessment PM(B) = 0 can result from an assessment of
another random variable other than IB. As in Example 7.3.2, PM(B) = 0 can be thought
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of as the result of a limiting process of expanding the boundary associated with the mo-
ment condition on any random variable, e.g. {P : EP (Y ) = c} such that the limit set M
includes at least one distribution P0 assigning P0(B) = 0. In turn, this random variable
specified a path for this limit at P0 upon which the conditional assessments with P0 also
depend. Thus, the effect of the ill-definedness at P0 propagates into the imprecise model
M . From an elicitation perspective, if a limiting process provides a valid explanation for
PM(B) = 0, it may be informative to understand from which part of the elicitation process
this stems.

Example 7.3.4: One scenario that results in PM(B) = 0 is the resolution of the assess-
ment. For example, if B = {ω2, ω3} with Ω = {ω1, ω2, ω3} and Y is a random variable such
that min{y1, y2, y3} = y1, the assessment that,

EM(Y ) = y1, (7.1)

may result from approximating,

EMε
(Y ) = y1 + ε, (7.2)

with ε being a measurement error during the assessment process. As discussed in Example
7.3.2, no convex combination of y2 and y3 can result in y1, so p0 = (1, 0, 0) is the only
distribution over all distributions over Ω that achieves Ep0(Y ) = y1 with p0 attaining the
lower envelope of M when it is coherent.

However, as we have seen in Example 7.3.2, choosing a convergence rate for ε affects the
limiting values of the conditional assessments. Furthermore, eliciting information on a dif-
ferent Y will also influence these limiting values. Methodologically, one should scrutinise
how one arrives at the elicitation (7.2) and the assessment (7.1). Perhaps the equipment
is not sensitive enough to measure ε at a sufficient resolution while measuring Y , so the
experts report (7.1) instead of (7.2) due to rounding errors. Furthermore, perhaps a dif-
ferent Y ′ may be measured at a higher resolution and that EM ′(Y

′) = c may result in
PM ′(B) > 0. In other words, in considering the limitation of one’s knowledge of Y , one
may opt to discard this information, possibly in favour of another piece of information Y ′

that has been more reliably measured (or otherwise, more reliably known).

�

When the assessment leading to PM(B) = 0 is about B itself, it may be informative to
understand what kind of elicitation the assessment PM(B) = 0 is ideally meant to repre-
sent in order to troubleshoot and correct the assessment that the lower probability of B
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is zero. In particular, we briefly explore a hypothetical correction to weaken the strength
of the assessment PM(B) = 0 after observing B. (It is hypothetical in the sense that it
cannot be modelled by imprecise probabilities.)

Example 7.3.5: When EM is coherent, the statement PM(B) = 0 is equivalent to the
existence of a distribution P0 ∈M that assigns a zero probability to the event B. That is
to say,

min {P (B) : P ∈M} = 0.

Qualitatively, the analyst has effectively committed to the possibility that P0 is a valid
model. That is, the possibility that B is impossible is definitively consistent with M .

Contrast this with another possible (and much weaker) assessment that PM(B) > 0. Qual-
itatively, this means that the lowest (attainable) probability of B over M is not zero, but
does not specify exactly what this value is. This more accurately describes the state of the
modeller having apriori assigned PM(B) = 0 and later observed B: the modeller knows
that B is now possible, but no single non-zero lower bound can be elicited.

In terms of convex sets of distributions, no single hyperplane boundary can be specified.
Therefore, it is unclear that this assessment (or any other strict inequality bounds about
expectations) can be explicitly expressed in the imprecise probability framework, and high-
lights a statistical elicitation issue that imprecision has difficulty in addressing.

�

7.4 Concluding remarks

The contributions of this chapter are as follows. We were motivated by Couso and Moral
[29] to consider extensions as in Definition 7.2.2 to capture conditional imprecise assess-
ments of the form of lower envelopes of distributions on B in the case when PM(B) = 0.
Theorem 7.2.1 guarantees the joint coherence of the intermediate extensions when the ex-
ogenously appended set of distributions and regular extension from the original set are
simultaneously jointly coherent with the unconditional model. These extensions are point-
wise bounded between the vacuous and regular extensions: Example 7.3.1 illustrates the

150



intuition that intermediate extensions in the form of Definition 7.2.2 always respect the co-
herence of the two extremal extensions. Examples 7.3.2 and 7.3.3 illustrate the mechanism
by which information exogenous to the information used to construct M can determine
the value of the intermediate extension. In particular, we focussed on information in the
form of the specification of a limiting process by which a sequence of Mi with PMi

(B) > 0
approaches M with PM(B) = 0. In Example 7.3.4 and Section 7.3.3, we touched upon
some possible ways to elicit intermediate extensions by revisiting and further scrutinising
the elicitation that led to PM(B) = 0 after B was observed.

The main difficulty in using intermediate extensions lies in their elicitation. Example 7.3.4
provides an example of an elicitation context which readily justifies the limiting process
introduced in Example 7.3.2. It remains an open question as to how other forms of ex-
ogenous knowledge can be translated into similar assessments, or if there are other kinds
of limiting process for Mi →M . From a mathematical perspective, in higher dimensional
spaces, the limit will generally be a face of the probability simplex and the limiting process
will be required to assign a value for a conditional assessment to each of the points on this
face. The mechanism in such cases remain to be explored, and the elicitation process to
specify this process remains also unclear. Even more generally, the possibility of represent-
ing the exogenous information with a mathematical object other than limiting processes is
an outstanding issue.

We also highlight the fact that, when the (lower) probability of the conditioning event
is zero, then the intermediate extension is able to more flexibly accommodate exogenous
information than a precise model with a single distribution. When assessing the interme-
diate extension, appending the exogenous information N to MR

|B either decreases or does

not change the precision of the posterior inference (as in Example 7.3.1). Because of this
property, if the intermediate extension happens to take values from the regular extension,
then information from M is still preserved. In contrast, if one uses a precise model involv-
ing a single prior distribution, one must necessarily discard the original model in favour of
a different set of assessments that incorporate the new information.

Within the imprecise methodology, the elicitation process for the vacuous and regular
extensions is different from that used for the intermediate extensions. The vacuous and
regular extensions produce posterior inference based on an automatic rule for including and
excluding models from the set of distributions M . The decision to use either the vacuous
or regular extensions is simpler because it depends only on judgements upon the existing
assessments M . In contrast, intermediate extensions are not automatic and require an
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explicit intervention from the modeller to provide information N exogenous to the assess-
ment process of M . One can always choose to use the vacuous and regular extensions
but one cannot use (nontrivial) intermediate extensions if no additional information N
is available. However, as we have remarked following Example 7.3.1, N can usefully rep-
resent new conditional beliefs which are divergent from those implied by M and Bayes’ rule.
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Chapter 8

Thesis summary

In this thesis, we began our enquiry by motivating the need for imprecise models in statistics
through careful scrutiny of the elicitation process used to arrive at a probability model. In
particular, we explored cases where a single probability distribution cannot represent the
elicited information.

We focused on applying the imprecise probabilities framework developed in Walley [81] to
problems frequently encountered in Statistics. In particular, coherent sensitivity analyses
using imprecise probabilities were performed for inference regarding the posterior expec-
tation and quantiles of log-odds statistics under the imprecise Dirichlet model (IDM) in
Chapters 3 and 4. Chapter 5 explored the optimization aspects of the posterior expectation
problem.

Chapters 6 and 7 explored the imprecise analogue of posterior inference when the marginal
probability of the conditioning observed data is zero: that is, when the lower probability is
zero over a set of distributions. In particular, Chapter 6 explored the use of the regular and
vacuous extensions in the existing literature to construct coherent conditional assessments
in this situation. Chapter 7 noted that, due to a result by Couso and Moral [29] these
two extensions are respectively the least and most imprecise conditional models thay are
jointly coherent with the prior imprecise model. This led to our construction of extensions
that are of intermediate imprecision. These last two chapters represent our exploration
into how posterior inference can be constructed under the imprecise methodology when
the conditioning event has a lower probability of zero.

These topics represent our earnest attempt at bridging between imprecise probabilities
and everyday statistical practices. This bridge is important because, as we have seen in
Chapter 1, imprecise probabilities allows for a richer representation of elicited information
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such that the statistical model can more naturally reflect the state of knowledge without
unnecessarily restricting the model. For this reason, we hope that this thesis can bring the
imprecise methodology to the needed attention of the statistical community at large.
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Appendix A

Appendix to Chapter 2

A.1 Geometrical interpretation of avoiding losses for

probabilities

Following Borkar, Kinda and Mitter [17], we can ascribe a geometrical interpretation to the
general case of avoiding all Dutch book arbitrage. We note that indeed, this corresponds
to the geometrical analogy of the argument given by Theorem 2.5.5 of Walley [81], where
avoiding Dutch book arbitrage is also known as avoiding sure losses.

We give the following geometrical intuition for the finite dimensional case.

Theorem A.1.1: Let P be a probability assessment over a finite number of events
A1, . . . , As ⊆ Ω, s < ∞, over a finite sample space Ω with |Ω| < ∞. Then, P is such
that

∀c ∈ Rs : max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0,

iff,
(P (A1), . . . , P (As)) ∈ Conv({(IA1(ω), . . . , IAs(ω)) : ω ∈ Ω}).

Proof: (⇒) Suppose that P is such that, for all ci ∈ R, i = 1, . . . , s,

max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0.
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After some manipulations, this is if and only if, for all ci ∈ R, i = 1, . . . , s, and cs+1 ∈ R,

max
ω∈Ω

(
N∑
i=1

c∗IAi(ω) + cs+1

)
≥

N∑
i=1

ciP (Ai) + cs+1.

This means that the following is false:

∃c∗ ∈ Rs+1 :

(
N∑
i=1

c∗i IAi(ω) + c∗s+1

)
≤ 0 ∧

N∑
i=1

c∗iP (Ai) + c∗s+1 > 0.

But, notice that this can be put into the form,

ATc∗ ≤ 0 ∧ bTc∗ > 0, (A.1)

with AT = [(IAi(ωj) : i = 1, . . . , s, j = 1, . . . , |Ω|); 1] being the matrix formed by append-
ing the one vector 1 to the right of the matrix (IAi(ωj))ij and bT = (P (A1), . . . , P (As), 1).
By Farkas’ lemma, because the inequalities (A.5) have no solution, its dual

Ac = b ∧ c ≥ 0, (A.2)

will have solution. But these conditions can be expanded as,

∀j = 1, . . . , |Ω| : P (Ai) =
s∑
i=1

IAi(ωj)ci,

1Tc = 1,

c ≥ 0.

Equivalently, the vector (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}, as required.

(⇐) Now suppose that (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}. Then, reversing Farkas’ lemma implies (A.5),
and retracing the equivalence of the statements above yield the converse.

�
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A.2 Results and proofs

Lemma A.2.1: For any sample space Ω, and P a distribution over some σ-field of Ω, any
expectation EP over all bounded random variables avoids sure losses. In other words, for
any X1, . . . , Xn that are bounded,

sup
ω

n∑
i=1

(Xi(ω)− EP (Xi)) ≥ 0.

Proof: Indeed, because EP is an expectation and Xi’s are bounded, the finite sum of
expectations is the expectation of the sum, so that,

sup
ω

n∑
i=1

(Xi(ω)− EP (Xi)) = sup
ω

n∑
i=1

Xi − EP

(
n∑
i=1

Xi

)
.

Because expectations are convex combinations of its components, we can write,

sup
ω

n∑
i=1

Xi ≥ EP

(
n∑
i=1

Xi

)
,

yielding the result.

�

Lemma A.2.2: For any sample space Ω, and P a distribution over Ω over some σ-field
of Ω, any expectation EP over all bounded random variables are coherent. In other words,
for any X0, X1, . . . , Xn that are bounded and m ∈ N,

sup
ω

n∑
i=1

((Xi(ω)− EP (Xi))−m(X0 − EP (X0)) ≥ 0.

Proof: Indeed, because EP is an expectation and Xi’s are bounded, the finite sum of
expectations is the expectation of the sum, so that,

sup
ω

(
n∑
i=1

(Xi(ω)− EP (Xi))−m(X0 − EP (X0))

)
= sup

ω

(
n∑
i=1

Xi −mX0

)
−EP

(
n∑
i=1

Xi −mX0

)
.
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Because expectations are convex combinations of its components, it is clear that,

sup
ω

(
n∑
i=1

Xi −mX0

)
≥ EP

(
n∑
i=1

Xi −mX0

)
,

yielding the result.

�

Proposition A.2.1: Let X = (−1/8, 1/4), Y = (2,−1) and Z = (3,−1/2). The assess-
ments on p in the form,

EP (X) ≥ 0, EP (Y ) ≥ 0, EP (Z) ≥ 0 ,

avoid sure losses over the domain F = {X, Y, Z}.

Proof: Let us denote the lower bounds by,

E(X) = 0, E(Y ) = 0, E(Z) = 0.

We need to show the following,

∀W ∈ F : sup
ω

(W (ω)− E(W )) ≥ 0,

∀W1 6= W2 ∈ F : sup
ω

(W1(ω)− E(W1)) + (W2(ω)− E(W2)) ≥ 0,

∀W1 6= W2 6= W3 ∈ F : sup
ω

(W1(ω)− E(W1)) + (W2(ω)− E(W2)) + (W3(ω)− E(W3)) ≥ 0.

Plugging in the assessments simplify the conditions.

∀W ∈ F : sup
ω

W (ω) ≥ 0,

∀W1 6= W2 ∈ F : sup
ω

(W1(ω)) + (W2(ω)) ≥ 0,

∀W1 6= W2 6= W3 ∈ F : sup
ω

(W1(ω)) + (W2(ω)) + (W3(ω)) ≥ 0.

Because every X, Y, Z has a positive component, the first set of conditions are satisfied.
The second set of conditions is satisfied because,

X + Y = (15/8,−3/4), X + Z = (23/8,−1/4), Y + Z = (5,−3/2) ,

such that each sum has a positive component. Finally,

X + Y + Z = (39/8,−5/4),

so that the third condition is satisfied.
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�

Theorem A.2.1: Let P be a probability assessment over a finite number of events
A1, . . . , As ⊆ Ω, s < ∞, over the finite sample space Ω with |Ω| < ∞. Then, P is
such that

∀c ∈ Rs : max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0,

iff,
(P (A1), . . . , P (As)) ∈ Conv({(IA1(ω), . . . , IAs(ω)) : ω ∈ Ω}).

Proof: (⇒) Suppose that P is such that, for all ci ∈ R, i = 1, . . . , s,

max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0.

After some manipulations, this is if and only if, for all ci ∈ R, i = 1, . . . , s, and cs+1 ∈ R,

max
ω∈Ω

(
N∑
i=1

c∗IAi(ω) + cs+1

)
≥

N∑
i=1

ciP (Ai) + cs+1.

This means that the following is false:

∃c∗ ∈ Rs+1 :

(
N∑
i=1

c∗i IAi(ω) + c∗s+1

)
≤ 0 ∧

N∑
i=1

c∗iP (Ai) + c∗s+1 > 0.

But, notice that this can be put into the form,

ATc∗ ≤ 0 ∧ bTc∗ > 0, (A.3)

with AT = [(IAi(ωj) : i = 1, . . . , s, j = 1, . . . , |Ω|); 1] being the matrix formed by append-
ing the one vector 1 to the right of the matrix (IAi(ωj))ij and bT = (P (A1), . . . , P (As), 1).
By Farkas’ lemma, because the inequalities (A.5) have no solution, its dual

Ac = b ∧ c ≥ 0, (A.4)

will have solution. But these conditions can be expanded as,

∀j = 1, . . . , |Ω| : P (Ai) =
s∑
i=1

IAi(ωj)ci,

1Tc = 1,

c ≥ 0.
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Equivalently, the vector (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}, as required.

(⇐) Now suppose that (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}. Then, reversing Farkas’ lemma implies (A.5),
and retracing the equivalence of the statements above yield the converse.

�

Theorem A.2.2: Let P be a probability assessment over a finite number of events
A1, . . . , As ⊆ Ω, s < ∞, over the finite sample space Ω with |Ω| < ∞. Then, P is
such that

∀c ∈ Rs : max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0,

iff,
(P (A1), . . . , P (As)) ∈ Conv({(IA1(ω), . . . , IAs(ω)) : ω ∈ Ω}).

Proof: (⇒) Suppose that P is such that, for all ci ∈ R, i = 1, . . . , s,

max
ω∈Ω

s∑
i=1

ci(IAi(ω)− P (Ai)) > 0.

After some manipulations, this is if and only if, for all ci ∈ R, i = 1, . . . , s, and cs+1 ∈ R,

max
ω∈Ω

(
N∑
i=1

c∗IAi(ω) + cs+1

)
≥

N∑
i=1

ciP (Ai) + cs+1.

This means that the following is false:

∃c∗ ∈ Rs+1 :

(
N∑
i=1

c∗i IAi(ω) + c∗s+1

)
≤ 0 ∧

N∑
i=1

c∗iP (Ai) + c∗s+1 > 0.

But, notice that this can be put into the form,

ATc∗ ≤ 0 ∧ bTc∗ > 0, (A.5)
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with AT = [(IAi(ωj) : i = 1, . . . , s, j = 1, . . . , |Ω|); 1] being the matrix formed by append-
ing the one vector 1 to the right of the matrix (IAi(ωj))ij and bT = (P (A1), . . . , P (As), 1).
By Farkas’ lemma, because the inequalities (A.5) have no solution, its dual

Ac = b ∧ c ≥ 0, (A.6)

will have solution. But these conditions can be expanded as,

∀j = 1, . . . , |Ω| : P (Ai) =
s∑
i=1

IAi(ωj)ci,

1Tc = 1,

c ≥ 0.

Equivalently, the vector (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}, as required.

(⇐) Now suppose that (P (A1), . . . , P (As)) is in the convex hill of the set of vectors
{(IA1(ωj), . . . , IAs(ωj)) : j = 1, . . . , |Ω|}. Then, reversing Farkas’ lemma implies (A.5),
and retracing the equivalence of the statements above yield the converse.

�
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Appendix B

Appendix to Chapter 3

B.1 The lower expectation of the general log-odds

statistic under the IDM

We are interested in the posterior inference of the following general log odds statistic of
a categorical distribution θ over m < ∞ categories under the imprecise Dirichlet model
(IDM),

T : θ 7−→ log

∏
A∈A

∑
i∈A θi∏

B∈B
∑

j∈B θj
=
∑
A∈A

log θA −
∑
B∈B

log θB,

whereA = {A1, . . . , Ar} and B = {B1, . . . , Bq} are finite collections of events with Aa, Bb ⊆
{1, . . . ,m}. This statistic includes various ratios of probabilities of interest:

• A = {A},B = {B} yields the log odds ratio log θA − log θB,

• For events C1, . . . , Cq, A = {C1∩ . . .∩Cq},B = {C1, . . . , Cq} is a ratio that measures
the validity of the independence statement,

θ∩C∈{C1,...,Cq}C
=

∏
C∈{C1,...,Cq}

θC .

In this section, we assume that A and B are not non-empty, are not the set of all categories,
and A 6= B for all A ∈ A and B ∈ B.
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The posterior lower expectation of the general log odds under the IDM is given by,

E

[
log

∏
A∈A

∑
i∈A θi∏

B∈B
∑

j∈B θj

∣∣∣∣n, ν
]

= inf
α∈4m

{
PDir

[∑
A∈A

log θA

∣∣∣∣n,α, ν
]
− PDir

[∑
B∈B

log θB

∣∣∣∣n,α, ν
]}

.

(B.1)
An expression for the posterior expectations is obtained as follows.

Proposition B.1.1: Let θ ∼ Dirichlet(να+ n) with m <∞. Then,

P

[
log

(∑
i∈A

θi

) ∣∣∣∣ να
]

= ν
[
ψ (νσA(α) + σA(n))− ψ

(
νσ{1,...,m}(α)

)]
,

where ψ(x) = d
dx

log Γ(x) is the digamma function.

�

The digamma function and its derivative, the trigamma function, are plotted below,

Figure B.1: The digamma (left) and trigamma (right) functins over (0, 20].
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We will be frequently invoking the facts that the diagamma function, ψ is an increasing
function over R, and that the trigamma function ψ′ is a decreasing, strictly positive func-
tion.

Noting that the elements of α sum to one such that, ψ(νσ{1,...,p}(α)) = ψ(ν), the posterior
lower expectation of the general log-odds under the IDM is,

E

[
log

∏
A∈A

∑
i∈A θi∏

B∈B
∑

j∈B θj

∣∣∣∣n, ν
]

= min
α∈4m

{
ν

(∑
A∈A

ψ(νσA(α))−
∑
B∈B

ψ(νσB(α))

)
− (|A| − |B|)ψ(ν)

}
.

(B.2)

Because the last term is independent of α, the achievable minimum is a solution to,

minimise:
r∑

a=1

ψ(νσAa(α) + σAa(n))−
q∑
b=1

ψ(νσBb(α) + σBb(n))

subjected to: α ∈ 4p. (B.3)

(It will be useful for what follows to index A by a ∈ {1, . . . , r} and B by b ∈ {1, . . . , q}.)

B.2 Unboundedness of the log-odds and the theory of

coherence

We detail the extension of Walley’s [81] theory of coherence from bounded random variables
for the IDM to the case of the unbounded log-odds random variable.

B.2.1 Extending Walley’s [81] coherence to the log-odds random
variable under the IDM under non-sparse observations

By a non-sparse observation, we mean that every category of the IDM system has at least
one count being observed. The main result that drives our construction of the extension
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is the convergence of a bounded approximation of the log-odds statistic.

Theorem B.2.1: Consider the general log-odds statistic,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

and the following truncation of it,

Tc(θ) = g(θ)I(|g(θ)| ≤ c) + cI(|g(θ)| > c).

Under θ ∼ Dirichlet(να+ n) with sets A1, . . . , Ar, B1, . . . , Bs, such that nAi > 0, nBj > 0
for all Ai, Bj,

sup
α∈4Ω

E(|Tc − g||να+ n)→ 0,

as c→∞.

Proof: see Theorem B.3.3.

�

Now, we define the IDM lower expectation of the unbounded log-odds statistic as a double
limit of two limiting processes: the relaxation of the approximation of Theorem B.2.1 in
the variable of c and the limit in the optimisation variable α that may approach any point
in 4m (including the boundary).

We have, by the continuity of α 7−→ E(Tc|να+ n),

lim
c→∞

(
lim
α→α0

E(Tc|να+ n)

)
= lim

c→∞
E(Tc|να0 + n) = E(g|να0 + n).

On the other hand, by Theorem B.2.1,

lim
α→α0

(
lim
c→∞

E(Tc|να+ n)
)

= lim
α→α0

E(g|να0 + n) = E(g|να0 + n).

So, the double limits exist and are equal.
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This justifies our plugging in of the log-odds into the IDM, despite it being unbounded, as
follows. Any path based optimisation (such as gradient descent) over 4Ω of the expecta-
tion of the truncated log-odds Tc will yield converge to the limit point that is the infimum
of the expectation of g, as the truncation c is relaxed. That is, we will make the following
interpretation.

Definition B.2.1: For a coherent lower expectation, E, defined over set of bounded ran-
dom variables, write E(ext) to be its natural extension to the linear space of unbounded
random variables.

�

Interpretation 2.2.1: For any general log-odds,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

whenever n contains at least one count in each category, we interpret,

E
(ext)
IDM(g(θ)|ν,n) = inf

α∈4Ω
E(g(θ)|να+ n),

as the double limit of the sequence of truncated Dirichlet expectations,

c,α 7−→ E(g(θ)I(|g(θ)| ≤ c) + cI(|g(θ) > c|)|να+ n),

over the optimisation path of α contained in 4Ω and the release of the truncation approx-
imation via c→∞.

B.2.2 Convergence of lower and upper expectation of L1 approx-
imation error

We note an immediate corollary of Theorem B.2.1.

Corollary B.2.1: Under the conditions of Theorem B.2.1,

inf
α∈4Ω

E(|Tc − g| |να+ n)→ 0,

as c→∞.
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The uniform convergence in Corollary B.2.1 and Theorem B.2.1 are respectively equivalent
to,

EIDM(|Tc − g| |ν,n) = inf
α∈4Ω

E(|Tc − g| |να+ n)→ 0,

EIDM(|Tc − g| |ν,n) = sup
α∈4Ω

E(|Tc − g| |να+ n)→ 0,

as c→∞.

B.2.3 Relation to coherence notions extended to unbounded ran-
dom variables[78]

Theorem B.2.1 is closely related to the notion of previsible gambles introduced by Troffaes
and de Cooman [78] defined in order to extend Walley’s coherence to unbounded random
variables. Roughly, a previsible gamble is one whose lower prevision can be approximated
by a sequence of lower previsions of bounded gambles. We will show that any log-odds
is previsible with respect to the posterior IDM previsions, and subsequently show that
plugging in the general log-odds into the posterior IDM model is coherent in the sense of
the extension of coherence to unbounded gambles by Troffaes and de Cooman.

Definition B.2.2: Throughout Section B.2.3 and nowhere else in this document, a gamble
is a potentially unbounded random variable. This is in distinction to a bounded gamble.
We will use these two terms explictly throughout Section B.2.3.

�

Definition B.2.3: (Troffaes and de Cooman [78], Definition 15.1, p.329) For a coherent
lower prevision E, and gambles f, fn (which are not necessarily bounded), the net fc
converges in E-probability to f iff,

∀ε > 0 : E(|f − fc| > ε)→ 0,

(whereby we interpret 0 to be the Moore-Smith limit of E(|f − fc| > ε) as a net over c in
an indexing directed set).

�
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Definition B.2.4: (Troffaes and de Cooman [78], Definition 15.6, p.333) A gamble f is
E-previsible if there is a sequence fn of bounded gambles such that,

1. fn converges in E-probability to f and,

2. limn,m→∞E(|fn − fm|) = 0.

If f is E-previsible, then the extended lower and upper previsions of f are defined by,

Ex(f) := lim
n→∞

E(fn),

and
E

x
(f) := lim

n→∞
E(fn),

respectively.

�

Proposition B.2.1: (Troffaes and de Cooman [78], Proposition 15.11, p 335) The previ-
sions, Ex and E

x
in Definition B.2.4 are coherent previsions over the set of E-previsible

gambles.

�

With these preliminaries from Troffaes and de Cooman [78], we can now show that the
extension of the IDM to the unbounded log-odds gamble g is coherent by showing that it
satisfies the conditions of Proposition B.2.1.

Theorem B.2.2: Under the conditions of Theorem B.2.1, the extended IDM whose value
at the unbounded log-odds g is given by,

E
(ext)
IDM(g(θ)|ν,n) = lim

c→∞
EIDM(Tc(θ)|να+ n),

is coherent under the Proposition B.2.1 of Troffaes and de Cooman [78].

Proof: By Proposition B.2.1, we are done if we show that, under the conditions of The-
orem B.2.1, g is EIDM(·|ν,n)-previsible by showing that the two conditions in Definition
B.2.4 is satisfied. These two conditions are shown to be satisfied by g (with the sequence
of bounded gambles Tc) by Lemmas B.2.1 and B.2.2, respectively.
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Lemma B.2.1: Under the conditions of Theorem B.2.1, the net Tc converges to g in
EIDM(·|ν,n)-probability. That is,

∀ε > 0 : EIDM(|Tc − g| > ε|ν,n)→ 0,

as c→∞.

Proof: Recall, by Theorem B.2.1,

EIDM(|Tc − g| |ν,n) = sup
α∈4Ω

E(|Tc − g| |να+ n)→ 0.

On the other hand, by Markov’s inequality,

∀ε > 0 : P (|Tc − g| > ε|να+ n) <
E(|Tc − g| |να+ n)

ε
,

such that,

∀ε > 0 : EIDM(|Tc−g| > ε|ν,n) = sup
α∈4Ω

P (|Tc−g| > ε|να+n) <

sup
α∈4

E(|Tc − g| |να+ n)

ε
→ 0,

as c→∞.

�

Lemma B.2.2: Under the conditions of Theorem B.2.1,

lim
c1,c2→∞

EIDM(|Tc1 − Tc2| |ν,n) = 0.

Proof:

EIDM(|Tc1 − Tc2| |ν,n)

= sup
α∈4Ω

E(|Tc1 − Tc2| |να+ n)

≤ sup
α∈4Ω

(E(|g − Tc1| |να+ n) + E(|g − Tc2 | |να+ n))

≤ sup
α∈4Ω

E(|g − Tc1| |να+ n) + sup
α∈4Ω

E(|g − Tc2| |να+ n)

→ 0. (Theorem B.2.1)

�

177



B.2.4 A note on behavioural interpretation of unbounded values
of imprecise expectations [78]

Under the behavioural interpretation of Walley [81], EIDM(f |ν,n) is the highest price that
the agent finds acceptable for the random reward f upon knowing only the IDM assump-
tion, the fixed hyperparameter ν and the dataset n. Specifically, EIDM(f |ν,n), is the price
such that, for all ε > 0, an agent knowing only this information is behaviourally disposed
to engage in the random reward f − EIDM(f |ν,n) + ε. (The meaning of ‘behaviourally
disposed’ is extensively treated in Walley [81].)

Then, EIDM(f |ν,n) = −∞ can be interpreted as: there is no finite buying price be-
low which a gambler who has this information at hand should find desirable. (Similarly,
EIDM(f |ν,n) = −∞ can be interpreted as: there is no finite selling price above which a
gambler who has this information at hand should find desirable.) This coincides exactly
with the interpretation given by Troffaes and de Cooman for E(X) = −∞: for example,
‘... [E(X) = −∞] is taken to mean that ... our subject is not willing to buy the gamble [X]
for any real price t ∈ R.’ and ’[E(X) = +∞] ... is taken to mean that ... the subject is
willing to buy the gamble [X] at any price.’ [78]. In fact, the following remark by Troffaes
and de Cooman is interesting to keep in mind.

‘The rationality axioms [(that imply coherence)] are only
an approximation of how agents really ought to behave...
When utility becomes unbounded, we accept these rationality
axioms as a matter of convenience in modelling... If things
really matter at the infinite end, as with the Saint Petersburg
paradox, perhaps one should rethink one’s choice of utility.’ [78]

B.2.5 A simple counterexample in the sparse data case

We can use the following counterexample to show that the limit of the approximation error
fails to exist as we take both the relevant elements of the posterior hyperparameter, say
γ, to zero and the approximation parameter, c, tends to infinity.

Example B.2.1: Consider θ ∼ Dirichlet(να + n) with α = (α1, α2, 1 − α1 − α2) ∈ 4Ω

and n = (n1, n2, n3) and,
g(θ) = log θ1/θ2,
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for θ a vector of trinomial cell probabilities. From Theorem B.2.1 for every fixed α ∈ 4Ω,

lim
c→∞

E(|g − Tc||να+ n) = lim
c→∞

E(|g − gI(|g| ≤ c)||να+ n) = 0,

This leads to,
limα1→0 limc→∞E(|g − Tc||να+ n) = 0

and limα2→0 limc→∞E(|g − Tc||να+ n) = 0.
. (B.4)

However,

lim
α1→0

E(|g − Tc||να+ n)

≥
(

lim
α1→0

E(|g||να+ n)− E(|g|I(|g| ≤ c)|να+ n)− E(cI(|g| > c)|να+ n)

)
=

(
lim
α1→0

E(|g||να+ n)− E(|g|I(|g| ≤ c)|να+ n)− cP (|g| > c|να+ n)

)
> lim

α1→0
E(|g||να+ n)− 2c

≥ lim
α1→0

|E(g|να+ n)| − 2c

= lim
α1→0

|ψ(1)(να1 + n1)− ψ(1)(να2 + n2)| − 2c (ψ(1) is the digamma function)

=∞,

and similarly, using the last two lines of the preceding inequalities,

lim
α2→0

E(|g − Tc||να+ n) >∞.

This leads to,
limc→∞ limα1→0E(|g − Tc||να+ n) =∞

and limc→∞ limα2→0E(|g − Tc|να+ n) =∞
. (B.5)

This demonstrates that there are at least two paths in the (c, α1, α2) space that lead to
different double limits of E(|g − gI(|g| ≤ c)||να+ n), such that the double limits are not
defined.

�
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B.3 Proof of Theorem B.3.1

For brevity, we will sometimes denote the general log odds by,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

. (B.6)

In this appendix section, we assume that, when dealing with log-odds involving any log
probability of the form logP (Ai|θ) where P (Ai|θ) =

∑
ω∈A θω and θ ∼ Dirichlet(γ), that

γA =
∑

ω∈A γω > 0. This is to ensure that the truncation is approximating something
finite, or else convergence in mean and in probability are ill-defined.

B.3.1 Some lemmas

Lemma B.3.1: For a probability space over a finite dimensional simplex (4Ω,Σ, µ) such
that µ(4Ω) = 1 and µ assigns zero probability to any lower dimensional subsets, and f
which is (Σ,BR∪{±∞})-measurable and µ-integrable, and c a natural number,

E|fI(−c ≤ f ≤ c)− f | −→ 0,

as c→∞.

Proof: Consider,

{fc : c ∈ N} = {|fI(−c ≤ f ≤ c)− f | : c ∈ N}.

{fc} is a sequence of measurable functions in the index of c that decreases to zero in the
interior of 4Ω, which has measure one under µ. Therefore, this convergence is µ-almost
sure. For every fixed c, we have that,

fc = |fI(−c ≤ f ≤ c)− f | = | − fI(|f | > c)| = |f |I(|f | > c) ≤ |f |.

Then, by Corollary B.3.1, the relaxation of the monotone convergence theorem of Yeh [87]
to almost sure convergence requirements, yields,

E|fI(−c ≤ f ≤ c)− f | −→ 0.

180



�

Lemma B.3.2: Under a Dirichlet distribution with parameters γ > 0, the general log
odds,

g(θ) = log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

,

is integrable.

Proof: This follows from the existence of the second moments of log θi’s and cross moments
log θi · log θj, and Hölder’s inequality:

E(|g||γ) ≤ (E(g2|γ))1/2 <∞.

�

Lemma B.3.3: Under a Dirichlet distribution with parameters γ > 0,

E

∣∣∣∣
(

log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

)
I

(
−c ≤

(
log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

)
≤ c

)
−

(
log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

) ∣∣∣∣ −→ 0.

Proof: follows from Lemma B.3.1 with f =
(

log
∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj |θ)

)
with the integrability of f

guaranteed by Lemma B.3.2.

�

We will also need the following convergence in probability result.

Lemma B.3.4: Let θ ∼ Dirichlet(γ) for some γ > 0. Then,

cP

(
| log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

| > c|γ

)
→ 0,

and,

c2P

(
| log

∏r
i=1 P (Ai|θ)∏s
j=1 P (Bj|θ)

| > c|γ

)
→ 0.
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Proof: Write g for the general log odds as in (B.6). Consider that,

g2 =

(
r∑
i=1

log θAi −
s∑
j=1

log θBj

)2

,

is an order two polynomial involving terms of the form (log θA)2, (log θA)(log θB), and
the expectations of these terms all exist and are finite under the Dirichlet distribution.
Importantly,

E
(
g2|γ

)
<∞,

under the assumption that γ > 0. So, using Markov’s inequality,

cP (|g| > c|γ) ≤ c
E (g2|γ)

c2
→ 0,

Similarly, the following fourth moment exists for the Dirichlet distribution when γ > 0,

E
(
g4|γ

)
<∞.

This yields,

c2P (|g| > c|γ) ≤ c2E (g4|γ)

c4
→ 0,

�

B.3.2 L1 and pointwise convergence for general log-odds

Theorem B.3.1: (L1 convergence) Under θ ∼ Dirichlet(γ) with setsA1, . . . , Ar, B1, . . . , Bs,
such that γAi > 0, γBj > 0 for all Ai, Bj,

E(|Tc − g||γ)→ 0.

as c→∞.

Proof: Lemma B.3.3 implies, as c→∞,

E(|g − gI(|g| ≤ c)| |γ)→ 0.

On the other hand, by Lemma B.3.4,

cP (|g| > c|γ)→ 0,

as c→∞. In all,

E(|Tc−g| γ) = E(|gI(|g| ≤ c)−g+cI(|g| > c)| |γ) ≤ E(|gI(|g| ≤ c)−g| |γ)+cP (|g| > c|γ)→ 0.
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Theorem B.3.2: (Pointwise convergence) Under θ ∼ Dirichlet(γ) with setsA1, . . . , Ar, B1, . . . , Bs,
such that γAi > 0, γBj > 0 for all Ai, Bj,

E(Tc|γ)→ E (g|γ) .

as c→∞.

Proof: this is a corollary of the L1 convergence in Theorem B.3.1.

�

B.3.3 Uniform L1 convergence for Dirichlet-Multinomial poste-
rior expectations of general log-odds under non-sparse case

From the last section, we had the following pointwise convergence result,

E(|Tc − g||γ)→ 0,

as c → ∞, under the assumption that γ is such that γAi , γBj > 0 for all the sets Ai, Bj

involved in the general log odds.

We remark that it is generally impossible for this continuity to be uniform when certain
elements of γ are zero. For example, for a fixed general log odds involving sets A1 and
B1, if γA1 , γB1 = 0, then the expectation of the general log odds becomes undefined as the
difference of digamma functions ψ(γA1)−ψ(γB1) has ill-defined limiting behaviour. Rather,
we will restrict ourselves to the special case of,

γ = να+ n,

such that n > 0 (elementwise), ν > 0 and α ∈ 4Ω. In this notation, the pointwise
convergence is,

E(Tc|να+ n)− E (g|να+ n)→ 0.

Uniformity of convergence over the compact domain 4Ω 3 α is now much easier to obtain
than over the positive orthant containing γ whose elements can be zero. Specifically, we
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will verify the conditions of Dini’s theorem, Theorem B.3.5, and apply it to obtain uniform
convergence. We first present the proof of the main results, followed by the major lemmas
used in it.

Theorem B.3.3: (Uniform L1 convergence of posterior expectations) Under θ ∼ Dirichlet(να+
n) with sets A1, . . . , Ar, B1, . . . , Bs, such that nAi > 0, nBj > 0 for all Ai, Bj,

sup
α∈4Ω

E(|Tc − g||να+ n)→ 0,

as c→∞.

Proof: First. consider that,

sup
α∈4Ω

E(|Tc − g| |να+ n)

≤ sup
α∈4Ω

E(|gI(|g| ≤ c)− g| |να+ n) + c sup
α∈4Ω

P (|g| ≥ c |να+ n)

≤ sup
α∈4Ω

E(|gI(|g| ≤ c)− g| |να+ n) +
c

c2
sup
α∈4Ω

E(g2 |να+ n). (Markov’s Inequality)

Because n > 0, the last quantity is finite and so tends to zero in the limit of c. So, if we
can show that the first supremum also tends to zero as c→∞, then we are finished.

We can use Dini’s theorem to do so as follows. Let us verify the conditions for Dini’s
theorem. Over the compact domain 4Ω 3 α, let

fc(α) = E(|gI(|g| ≤ c)− g| |να+ n),

and
f(α) = 0.

• By Lemma B.3.5, fc is continuous over 4Ω metrised by an Lp norm for every c ∈ N.

• For every fixed α ∈ 4Ω, fc → f , by the L1 convergence in Lemma B.3.3.

• Since |gI(|g| ≤ c)− g| ≥ |gI(|g| ≤ c+ 1)− g|, taking expectations on both sides for
every fixed α ∈ 4Ω, fc ≥ fc+1.
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Then, by Dini’s theorem, the convergence,

E(|gI(|g| ≤ c)− g| |να+ n)→ 0,

is uniform over 4Ω 3 α.

�

Lemma B.3.5: For every fixed c ∈ N,

fc(α) = E(|gI(|g| ≤ c)− g| |να+ n),

is continuous at every point in 4Ω 3 α where 4Ω is metrised by an Lp norm.

Proof: For short in this proof, write,

pα(θ) := p(θ|να+ n).

Let us work in the projected parametrisation: write,

α′ = (α1, . . . , α|Ω|−1) ∈ N|Ω|−1,

where

N|Ω|−1 :=

p ∈ R|Ω|−1 : pi ≥ 0 ∧
|Ω|−1∑
i=1

pi ≤ 1

 .

such that,
α = [α′;α|Ω|].

Consider that, for any two points α′,α′0 ∈ N|Ω|−1,

fc(α
′)− fc(α′0) =

∫
4Ω

|gI(|g| ≤ c)− g|(θ)(pα′(θ)− pα′0(θ))dθ

=

∫
4Ω

|g|I(|g| > c)(θ)(pα′(θ)− pα′0(θ))dθ.

It now suffices to prove continuity over N|Ω|−1 to obtain continuity over 4Ω.
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Because n > 0, for every fixed θ ∈ 4Ω, the gradient of the map α′ 7−→ pα′(θ) has
components,

∂

∂αi
pα′(θ) =

∂

∂αi

 1

B(να+ n)

|Ω|−1∏
j=1

θ
ναj+nj−1
j θ

ν(1−α1−...−α|Ω|−1)+n|Ω|−1

|Ω|


=

1

B(να+ n)2

B(να+ n)

 ∂

∂αi

|Ω|−1∏
j=1

θ
ναj+nj−1
j θ

ν(1−α1−...−α|Ω|−1)+n|Ω|−1

|Ω|


−
|Ω|∏
j=1

θ
ναj+nj−1
j

(
∂

∂αi
B(να+ n)

)
=

1

B(να+ n)2

B(να+ n)

|Ω|−1∏
j 6=i

θ
ναj+nj−1
j θ

ν(1−α1−...−αi−1+αi+1−...−α|Ω|−1)+n|Ω|−1

|Ω|

∂

∂αi
θναi+ni−1
i θ−ναi|Ω|

)
−
|Ω|∏
j=1

θ
ναj+nj−1
j

(
∂

∂αi
B(να+ n)

)
=

1

B(να′ + n)2

B(να′ + n)ν(log θi − log θ|Ω|)

|Ω|∏
j=1

θ
ναj+nj−1
j

−
|Ω|∏
j=1

θ
ναj+nj−1
j

(
∂

∂αi
B(να′ + n)

)
= ν(log θi − log θ|Ω|)pα′(θ)−

∂
∂αi
B(να′ + n)

B(να′ + n)
pα′(θ).

This gradient is defined for each θ ∈ 4Ω where θ > 0 when n > 0. Then, for every such
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fixed θ, we can apply the mean value theorem to find α′′ such that,

fc(α
′)− fc(α′0)

=

∫
4Ω

|g|I(|g| > c)(θ)(pα′(θ)− pα′0(θ))dθ

=

(∫
4Ω

|g|I(|g| > c)(θ)
∂

∂αi
pα′′(θ)dθ

)T
i

(α′ −α′0)

=

(∫
4Ω

|g|I(|g| > c)(θ)

(
ν(log θi − log θ|Ω|)pα′′(θ)−

∂
∂αi
B(να′′ + n)

B(να′′ + n)
pα′′(θ)

)
dθ

)T

i

(α′ −α′0).

By Lemma B.3.6, the upper bound of the left integral is finite over the relevant variables:

K = max
i=1,...,|Ω|

sup
α′′∈N|Ω|−1

ν

(∫
4Ω

(|g(θ) log θi|+ |g log θ|Ω||)I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ

)
<∞.

Then, in all,
|fc(α′)− fc(α′0)| ≤ |K| ||α′ −α′0||1,

where |α′ −α′0| = (|α1i − α2i : i = 1, . . . ,Ω). So, if the positive quantity ε is defined as,

|K| ||α′ −α′0||1 = ε,

then, the choice of δε,α′0 such that,

||α′ −α′0||1 ≤ δε,α′0 ,

implies,
|fc(α′)− fc(α′0)| ≤ ε.

This is such that,

∀ε > 0, ∃ δε,α′0 : (||α′ −α′0||1 ≤ δε,α′0 ⇒ |fc(α′)− fc(α′0)| ≤ ε.

Finally, because continuity is preserved over all p-norms,

∀ε > 0, ∃ δε,α′0 : (||α′ −α′0||p ≤ δε,α′0 ⇒ |fc(α′)− fc(α′0)| ≤ ε.
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Lemma B.3.6: When n > 0, the upper bound,

K = max
i=1,...,|Ω|

sup
α′′∈N|Ω|−1

ν

(∫
4Ω

(|g(θ) log θi|+ |g log θ|Ω||)I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ

)
.

is finite.

Proof: For every i = 1, . . . , |Ω|,∫
4Ω

|g(θ)|I(|g(θ)| > c)

(
ν(log θi − log θ|Ω|)pα′′(θ)−

∂
∂αi
B(να′′ + n)

B(να′′ + n)
pα′′(θ)

)
dθ

= ν

∫
4Ω

|g(θ)|(log θi − log θ|Ω|)I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ

≤ ν

∫
4Ω

|g(θ)(log θi − log θ|Ω|)|I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ

≤ ν

∫
4Ω

(|g(θ) log θi|+ |g log θ|Ω||)I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ.

Now, for any cell probability θk, by Hölder’s inequality,∫
|g log θk|pα′′dθ ≤

(∫
g2pα′′dθ

)1/2(∫
(log θk)

2pα′′dθ

)1/2

,

and the right quantities are finite because the second moments finitely exist for both g and
log θk under the Dirichlet distribution of pα′′ .
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Also, the second term involving the derivative of the beta function is finite for every
α′′ ∈ N|Ω|−1, since, by Lemma B.3.2, the log odds g is integrable and the digamma and
trigamma function in the Beta function and its derivative are finite when n > 0 over
α′′ ∈ 4Ω.

Then, any sequence of evaluations of this expression over α′′ in N|Ω|−1 must also have a
finite limit, meaning that the supremum over the closed set N|Ω|−1 is finite. Let us denote
this finite upper bound by,

K = max
i=1,...,|Ω|

sup
α′′∈N|Ω|−1

ν

(∫
4Ω

(|g(θ) log θi|+ |g log θ|Ω||)I(|g(θ)| > c)pα′′(θ)dθ

−
∂
∂αi
B(να′′ + n)

B(να′′ + n)

∫
4Ω

|g(θ)|I(|g(θ)| > c)pα′′(θ)dθ

)
.

�

B.3.4 Auxiliary results

In this appendix section, we make use of the following theorems from other authors.

Theorem B.3.4: (Yeh [87], Theorem 9.17, p.186) Let (X,F , µ) be an arbitrary measure
space. Let (fn : c ∈ N) be a monotone sequence of extended real-valued F -measurable
functions on a set D ∈ F and let f = limc→∞ fn.

If (fc : c ∈ N) is a decreasing sequence, and there exists a µ-integrable extended real-valued
F -measurable function g such that fc ≤ g on D for every c ∈ N, then,

lim
c→∞

∫
D

fcdµ =

∫
D

fdµ.

�

Let us relax the sure convergence condition to almost sure.

Corollary B.3.1: Let (X,F , P ) be an arbitrary probability space. Let (fn : c ∈ N) be
a monotone sequence of extended real-valued F -measurable functions on a set D ∈ F and
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let P (f = limc→∞ fc) = 1.

If (fc : c ∈ N) is a decreasing sequence, and there exists a P -integrable extended real-valued
F -measurable function g such that fc ≤ g on D for every c ∈ N, then,

lim
c→∞

∫
D

fcdµ =

∫
D

fdP.

Proof: Let us denote by E the set of sample points over which fc converges to f almost
surely. Write

hc = fcIE, h = fIE.

We have that, for all c ∈ N,∫
D
hcdP =

∫
D
fcdP, and

∫
D
hdP =

∫
D
fdP. (B.7)

Also, by Theorem B.3.4, because hc ≤ g for the g that bounds fc, we also know that,

lim
c→∞

∫
E

hcdP =

∫
E

hdP.

Because E ⊆ D in order for the almost sure convergence to be defined, and P (E) = 1,∫
D
hcdP =

∫
E
hcdP,

∫
D
hdP =

∫
E
hdP,

such that,

lim
c→∞

∫
D

hcdP =

∫
D

hdP. (B.8)

Substituting (B.7) into (B.8) yields the required result.

�

Theorem B.3.5: (Rudin [67], Theorem 7.13, p. 150) Suppose K is compact and

(a) {fc} is a sequence of continuous functions on K,

(b) {fc} converges pointwise to a continuous function f on K,

(c) fc(x) ≥ fn+1(x) for all x ∈ K and n = 1, 2, 3, . . ..

Then fc → f uniformly on K.

�
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B.4 Results on IDM log-odds imprecision

Proposition B.4.1: for n and ∆n such that nC ≥ 1 and ∆nC ≥ 0,

P IDM[log θC |να + n] ≥ P IDM[log θC |να + n+ ∆n].

Proof: recall that the imprecision of the log-probability is given by,

P IDM[log θC |να + n] = ψ(ν + nC)− ψ(nC).

The change in imprecision between having observations n and n+ ∆n is,

P IDM[log θC |να + n+ ∆n]− P IDM[log θC |να + n]

= ψ(ν + nC + ∆nC)− ψ(nC + ∆nC)− ψ(ν + nC) + ψ(nC).

We write this expression in terms of the derivative ψ′ by using the mean value theorem for
when nC ≥ 1. In particular, when ν > ∆n, there exists u ∈ (ν + nC , ν + nC + ∆nC) and
v ∈ (nC , nC + ∆nC),

(ψ(ν + nC + ∆nC)− ψ(nC + ν))− (ψ(∆nC + nC) + ψ(nC))

= ∆nC(ψ′(u)− ψ′(v))

< 0,

where the last inequality is because ψ′ is a strictly decreasing function and that u > v.
This proves the desired result for ν > ∆n. The case ν ≤ ∆n results in the inequality,

ν(ψ′(a)− ψ′(b)) < 0,

with a ∈ (∆nC + nC , ν + nC + ∆nC) and b ∈ (nC , nC + ν), and this proves the desired
result for ν ≤ ∆n.

�

Lemma B.4.1: For two random variables X and Y , and a conjugate pair of coherent
expectations E,E (not necessarily IDM,)

P [X + Y ] ≤ P [X] + P [Y ].

P [−X] = P [X].
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By proof of induction, for finite collections X1, . . . , Xr and Y1, . . . , Ys,

P

[
r∑
i=1

Xi −
s∑
j=1

Yj

]
≤

r∑
i=1

P [X] +
s∑
j=1

P [Y ].

Proof: For the first statement, because sup {p(x) + p(y) : p ∈ M} ≤ sup {p(x) : p ∈

M}+sup {p(y) : p ∈M}, and inf {p(x)+p(y) : p ∈M} ≥ inf {p(x) : p ∈M}+inf {p(y) :

p ∈M}, imprecision satisfies the triangular inequality

P [X + Y ] = E[X + Y ]− E[X + Y ]

≤ E[X] + E[Y ]− E[X]− E[Y ]

≤ P [X] + P [Y ].

For the second statement, suppose E and E for envelopes for a set of expectations M ,

P [−X] = E[−X]− E[−X]

= sup {p(−X) : p ∈M} − inf {p(−X) : p ∈M}

= sup {−p(X) : p ∈M} − inf {−p(X) : p ∈M}

= −inf {p(X) : p ∈M}+ sup {p(X) : p ∈M}

= P [X].

�

We now prove that the decrease of imprecision of the log-probability inference is greater
when increasing the relevant event’s count from a small number: in particular, the jump
from no observation to a single observation is the greatest. Let us define the imprecision
as well as the change of imprecision of the inference of a log probability log θC (for some
set C ⊂ {1, . . . ,m},

P (n) := ψ(ν + n)− ψ(n),

∆P (n; ∆n) := P (n+ ∆n)− P (n).
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In particular, the last expression is the change of imprecision at n when an additional
∆n > 0 counts are observed in the set C.

Proposition B.4.2: Let n1, n2,∆n, ν > 0 such that n2 > n1. Then,

0 ≥ ∆P (n2; ∆n) > ∆P (n1; ∆n).

Proof: From Lemma B.4.1, imprecision is a decreasing function so that the change of im-
precision is a negative function.

For the next inequality, because sums of digamma functions is continuous and differentiable
on the positive real line, we apply the mean value theorem to n ∈ R 7−→ ∆P (n; ∆n) ∈ R
by,

∆P (n2; ∆n)−∆P (n1; ∆n) = ∆P
′
(u; ∆n)(n2 − n1),

with u ∈ (n1, n2) and ,

∆P
′
(u; ∆n) = ψ′(ν + u+ ∆n)− ψ′(u+ ∆n)− ψ′(ν + u) + ψ′(u).

Our goal is to show that ∆P
′
(u; ∆n) is non-negative. Consider the case when ν > ∆n.

Then, because the trigamma function, ψ′, is again continuous and differentiable on the
positive real line, we can apply the mean value theorem again to obtain,

∆P
′
(u; ∆n) = (ψ′(ν+u+∆n)−ψ′(ν+u))− (ψ′(u+∆n)−ψ′(u)) = ∆nψ′′(w)−∆nψ′′(v),

with w ∈ (ν + u, ν + u+ ∆n) and v ∈ (u, u+ ∆n) such that v < w (for any u ∈ (n1, n2).)
Because the tetragamma function, ψ′′, is strictly increasing, v < w implies ψ′′(v) < ψ′′(w).
Thus, overall, we have, for u, v, w satisfying their respective bounds,

∆P
′
(u; ∆n) = ∆n(n2 − n1)(ψ′′(w)− nψ′′(v)) > 0.

On the other hand, if ν ≤ ∆n, one could instead use the difference,

∆P
′
(u; ∆n) = (ψ′(ν + u+ ∆n)− ψ′(u+ ∆n))− (ψ′(ν + u)− ψ′(u)) = νψ′′(a)− νψ′′(b),

with a ∈ (∆n + u, ν + u + ∆n) and b ∈ (u, ν + u) instead and apply the same procedure
to obtain the same result. This completes the proof.

�
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B.5 Indeterminate forms and their limiting processes

In the following, we demonstrate that when indeterminacy can happen in an expectation of
log-odds under a Dirichlet distribution, then the expectation can take on any value of the
extended real line. We do so by constructing a limiting process for each value it can obtain.

Theorem B.5.1: Suppose that
⋃r
i=1Ai∪

⋃s
j=1Bj ⊂ {1, . . . ,m} (i.e. it does not cover the

whole set of indices.) For any mi,mj ∈ R+ ∪ {0}, the finite collection of paths {αi : i =
1, . . . , r} and {αj : j = 1, . . . , s} satisfying,(

r∑
i=1

1

αi(t)

)
= logmit,

(
s∑
j=1

1

αj(t)

)
= logmjt,

and, as t→∞, αi(t), αj(t)→ 0, will yield,

r∑
i=1

ψ(ναi(t))−
s∑
j=1

ψ(ναj(t))→
1

ν
log

mi

mj

.

Proof: The Laurent expansion of the digamma function around 0 implies that,

ψ(x) ≈ −1

x
,

when x is in a sufficiently small neighbourhood of 0. Then,

r∑
i=1

ψ(ναAi)−
s∑
j=1

ψ(ναBj) ≈ −
1

ν

r∑
i=1

1

αAi
+

1

ν

s∑
j=1

1

αBj
.

This expression can be exponentiated to obtain,

1

ν
log

exp
(∑r

i=1
1
αAi

)
exp

(∑s
j=1

1
αBj

) .
Then, substituting the construction,(

r∑
i=1

1

αi(t)

)
= logmit,

(
s∑
j=1

1

αj(t)

)
= logmjt,

yields the desired result.
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�

Notice that the possibility of mi = 0 and mj > 0 yields −∞ as a limit and mi > 0 and
mj = 0 yields +∞.

Using this result as well as the consideration of aggregation of boundary Dirichlet distri-
butions, one can characterise the degeneracy of the expected general log odds when the
observations are sparse in some cells involved in the general log odds. Indeed, consider,

E

[
log

θA1 . . .θAr
θB1 . . .θBs

∣∣∣∣ να + n

]
= Ψ(A,B; ν, α, n) +

r∑
i=1

ψ(ναAi∩I)−
s∑
j=1

ψ(ναBj∩I),

where A = {A1, . . . , Ar}, B = {B1, . . . , Bs} and Ψ is the term to contain the sums over
the complements Ai − I and Bj − I (which are finite since their n’s are non-zero.) The
analysis can then be boiled down to the expected value tending to +∞ on the face,{

α :
r∨
i=1

αAi∩I = 0 ∧
s∧
j=1

αBj∩I > 0

}
,

to −∞ on the face, {
α :

r∧
i=1

αAi∩I > 0 ∧
s∨
j=1

αBj∩I = 0

}
,

and indeterminate forms that take on any finite real values on,{
α :

r∨
i=1

αAi∩I = 0 ∧
s∨
j=1

αBj∩I = 0

}
.
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B.6 Properties of Dirichlet-multinomial conjugate pair

We briefly review the construction of a posterior distribution when the likelihood is induced
by an observation model of an exponential family. We follow Bickis [14], whose construc-
tion generalises that of the usual interpretation put forth by Diaconis and Ylvisaker [36].

Let x ∈ X be i.i.d. data observed from an exponential family observation model spanned
by finite number of sufficient statistics v = (v1(x), . . . , vk(x)) with natural parameters ξ.
Then, the log-likelihood can be considered to be the logarithm of the Radon-Nikodym
derivative of the posterior with respect to a prior measure Π0 when Bayes’ rule is applied:

log
dΠx

dΠ0

(ξ) =
m∑
i=1

ξivi(x)− 1φ(ξ) =: ξTv(x),

φ(ξ) = log

∫
eξ
T v(x)dx,

(where v(x) = (1, v1, . . . , vk) and dx denotes an ambient measure on X.) The natural
parameter space is the set Ξ = {ξ : φ(ξ) ≤ ∞}. Given this likelihood, one can define the
exponential family on Ξ with sufficient statistics v∗(ξ) = (−φ(ξ), ξ1, . . . , ξk) and natural
parameters η = (η0, η1, . . . , ηk), such that,

log
dΠη

dξ
(ξ) = ηTv∗ − ψ(η),

ψ(η) = log

∫
eη

T v∗(ξ)dξ,

(where dξ denotes an ambient measure on Ξ.) The natural parameter space is H = {η :
ψ(η) < ∞}. When the prior belongs to this exponential family with coordinates η0, the
posterior therefore has density with respect to dξ proportional to,

exp(ξTv(x) + η(0)Tv∗(ξ)) = exp((η(0) + v(x))Tv∗(ξ)).

Thus, the posterior is again in the family spanned by v∗ over Ξ. In particular, we arrive
at the following result for posterior updating in this conjugate system.

Because the Dirichlet distribution is conjugate to the finite dimensional multinomial likeli-
hood, the prior and posterior imprecise probabilities can be cast into the framework above.
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In particular,

Theorem B.6.1: the posterior set of distributions of the IDM with m <∞ categories is,

M |x =
{

Πη(0)+v(x) : η(0) ∈ 4m
}
.

�

A Dirichlet density on the multinomial probabilities θ ∈ 4m with natural parameters να,
with α ∈ 4m, is proportional to the kernel,

m−1∏
i=1

θναi−1
i (1− θ1 − . . .− θm−1)ν(1−α1−...−αm−1)−1,

which is equivalent to,

exp

(
m−1∑
i=1

(ναi − 1)ξi − (ν −m) log

(
1 +

m−1∑
i=1

eξi

))
,

under the following parametrisation,

ξi(θ) = log
θi

1− θ1 − . . .− θm−1

.

Therefore, we have the following lemma.

Lemma B.6.1: a Dirichlet distribution with parameters να is identified with natural
coordinates/parameters,

η = (ν, να1, . . . , ναm−1) + (−m,−1, . . . ,−1),

relative to the span,

v∗(ξ) =

(
− log

(
1 +

m−1∑
i=1

eξ

)
, ξ1, . . . , ξm−1

)
.

�
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The multinomial likelihood can be similarly cast: with probabilities θ ∈ 4m, it is propor-
tional to the kernel,

m−1∏
i=1

θnii (1− θ1 − . . .− θm−1)nk ,

where (n1, . . . , nk) are the observation counts which sum to |n| = 1Tn. Its natural expo-
nential form is,

m−1∑
i=1

niξi − |n| log

(
1 +

m−1∑
i=1

eξi

)
,

under the following parametrisation

ξi(θ) = log
θi

1− θ1 − . . .− θm−1

.

Therefore, we have the following lemma.

Lemma B.6.2: a (finite dimensional) multinomial distribution with probabilities θ ∈ 4m

is identified with natural coordinates/parameters,

ξ =

(
− log

(
1 +

m−1∑
i=1

eξi

)
, ξ1, . . . , ξm−1

)
,

relative to the span,
v(n) = (|n|, n1, . . . , nm−1).

�
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Appendix C

Appendix to Chapter 4

C.1 Optimisation algorithm used in Section 4.7

All optimisations for lower and upper IDM expectations in Section 4.7 are done using a
genetic algorithm built from the deap framework (De Raiville et al. [33]) under Python3.5.
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Algorithm 1: Genetic algorithm for IDM optimisation

# Loop over generations

population = initialise population();
while generation < max iteration do

offsprings = ∅

# Select survivours by tournament

fitnesses = evaluate fitness(population)
survivours = tournament(population, fitnesses)

# Cross over survivours and create offsprings

for surv1 6= surv2 in survivours without replacement do
if Uniform(0,1) < crossover prob then

offspring1, offspring2 = two point crossover(surv1, surv2)
else

offspring1, offspring2 = surv1, surv2
end
offsprings.append(offspring1)
offsprings.append(offspring2)

end

# Mutate offsprings

for offspring in offsprings do
if Uniform(0,1) < mutation prof then

offspring = mutate(offspring)
end

end

# Assign offsprings to population of next generation.

population = offprings

end

A population of 1000 individuals are intialised using a flat Dirichlet distribution. and the
cross-over probability and the probability for bit mutation of each individual are 0.5 and
0.2, respectively. Where the optimisation is constrained over 4m, the objective function
is first penalised by the squared deviation of the sum of the point from unity,

α 7−→ 1000(1 ·α− 1)2.
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Appendix D

Appendix to Chapter 5

D.1 Results and proofs

Lemma D.1.1: Let ψ be the digamma function over the domain of positive arguments.
Then,

ψ−1′(x) =
1

ψ′(ψ−1(x))
.

Proof: The inverse derivative of ψ is justified as it is bijective and continuously differen-
tiable: taking the derivative on both sides of,

x = ψ(ψ−1(x)),

yields the result.

�

Lemma D.1.2: Let ψ be the digamma function over the domain of positive arguments.
Then,

ψ−1′′(x) = − ψ′′(ψ−1(x))

(ψ′(ψ−1(x)))3
.
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Proof: The inverse derivative of ψ and ψ′ are justified as they are continuously differen-
tiable. Then,

ψ−1′′(x) =
d

dx
ψ−1′(x)

=
d

dx

1

ψ′(ψ−1(x))
(Lemma D.1.1)

= −(ψ′(ψ−1(x)))−2 · ψ′′(ψ−1(x)) · d
dx
ψ−1(x)

= −(ψ′(ψ−1(x)))−2 · ψ′′(ψ−1(x)) · 1

ψ′(ψ−1(x))
(Lemma D.1.1)

= − ψ
′′(ψ−1(x))

ψ′(ψ−1(x))3
.

�

Lemma D.1.3: Let ψ be the digamma function over the domain of positive arguments.
Then, for the function,

I : µ 7−→ ψ(ψ−1(µ1) + ψ−1(µ2))− (ψ−1(µ2) + ψ−1(µ3)),

subject to the constraint,

ψ−1(µ1) + ψ−1(µ2) + ψ−1(µ3) = ν + n,

with ν + n > 0, we have,
∇I > 0,

and I has no turning points over µ.

Proof: the gradient of I is given by,

∇I = ψ′(ψ−1(µ1) + ψ−1(µ2))

 ψ−1(µ1)
ψ−1(µ2)

0

− ψ′(ψ−1(µ2) + ψ−1(µ3))

 0
ψ−1(µ2)
ψ−1(µ3)

 .
Also, taking the gradient of the constraint equation yields,

[∂µ1ψ
−1′(µ1), ∂µ1ψ

−1′(µ2), ∂µ1ψ
−1′(µ3)] = 0,
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such that, substituting into the gradient of I,

∇I = ψ′(ψ−1(µ1) + ψ−1(µ2))

 ψ−1(µ1)
ψ−1(µ2)

0

+ ψ′(ψ−1(µ2) + ψ−1(µ3))

 ψ−1(µ1)
0
0

 .
Now, ψ′ is positive over positive arguments and ψ−1 maps any real number back to the
positive line, so ψ′(ψ′(µj)) is positive for j = 1, 2, 3. Furthermore, by Lemma D.1.1,

ψ−1′(x) =
1

ψ′(ψ−1(x))
,

for all x, such that it is again positive by similar arguments. So, all elements of ∇I are
positive. Because ∇I is continuous over µ and strictly positive, it never changes signs and
so there is no turning point.

�

Lemma D.1.4: For t = (t1, t2), v0 = 1 and a choice of v1 and v2 with vi ∈ R3, the
function a implicitly defined to satisfy,

µ(t) = a(t)v0 + t1v1 + t2v2,

and,
ψ−1(µ1(t)) + ψ−1(µ2(t)) + ψ−1(µ3(t)) = ν + n,

is concave:
[∂tk,tla(t)]k,l,

is negative definite.

Proof: For brevity, let us write,

xkj(t) := ∂tka(t) + δ1kv1j + δ2kv2j.

and similarly define xlj(t). Then, taking the partial derivative ∂tl of the second condition
and substituting the first condition for µ yield,

3∑
j=1

ψ−1′(µj(t))xlj(t) = 0.
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Applying a second partial derivative ∂tk yields,

3∑
j=1

ψ−1′′(µj(t))xlj(t)xkj(t) + ψ−1′(µj(t))∂tk,tla(t) = 0.

This solves for,

∂tk,tla(t) = −
∑3

j=1 ψ
−1′′(µj(t))xlj(t)xkj(t)∑3
j=1 ψ

−1′(µj(t))
.

Notice that, by Lemma D.1.2,

ψ−1′′(µj) = − ψ′′(ψ−1(µj))

(ψ′(ψ−1(µj)))3
,

such that, because ψ′′ is a negative function over positive arguments, ψ′ is a positive func-
tion over positive arguments, and ψ−1)(µj) is always positive as ψ is bijective, continuous
and restricted to the domain of positive real numbers,

ψ−1′′(µj) ≥ 0.

The negative definiteness can now be shown as follows. Since ψ−1′′(µj) ≥ 0, its square root
is again a non-negative number such that we can rewrite,

∂tk,tla(t) = −
∑3

j=1(
√
ψ−1′′(µj(t))xlj(t))(

√
ψ−1′′(µj(t))xkj(t))∑3

j=1 ψ
−1′(µj(t))

.

Thus, the numerator is an element of a square product of a square matrix, which is positive
definite. From Lemma D.1.1 and the fact that ψ′ is a positive function over its domain,
the denominator is a positive scalar constant, so the matrix,

[∂tk,tla(t)]k,l = −

[∑3
j=1(

√
ψ−1′′(µj(t))xlj(t))(

√
ψ−1′′(µj(t))xkj(t))∑3

j=1 ψ
−1′(µj(t))

]
k.l

,

is negative definite.

�
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D.2 Some properties of the digamma function

The digamma function is defined as,

ψ(x) :=
d

dx
log Γ(x).

In this document, the digamma function is usually evaluated in the form ψ
(
ν
∑

i∈A αI
)

where 0 ≤
∑

i∈A αi ≤ 1. Indeed, it can be shown that (e.g. see [56]) over x > 0,

ψ(x) = −γ0 +
∞∑
n=0

(
1

1 + n
− 1

x+ n

)
,

where γ0 > 0 is the Euler-Mascheroni constant.

We note the following properties of ψ.

Corollary D.2.1: From this expansion, ψ is a monotonically increasing function in x over
x > 0.

�

Corollary D.2.2: The unique root x0 of ψ(x0) = 0 is greater than one. Indeed, ψ(1) =
−γ0 < 0 and so by increasing monotonicity, the root is unique and ψ must achieve zero
above x = 1.

�

Corollary D.2.3: When x→∞, ψ(x)→∞. This happens as 1
1+n
− 1

x+n
≈ 1

1+n
= O(1/n)

and the infinite sum of the latter diverges.

�

A loose approximation of the root of ψ(x) = 0: Using the scipy.special.digamma

(scipy==1.1.0) function in python3.5, we observe the loose bounds ψ(1.25) < 0 < ψ(1.5)
containing the root.
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Appendix E

Appendix to Chapter 7

E.1 Results and proofs

Lemma E.1.1: (6.5.3 of Walley [81]) Let B be a partition of Ω. Let E be a lower
expectation. For each B ∈ B, let E(·|B) be a lower expectation conditional on B. Write,

E(X|B) =
∑
B∈B

IBE(X|B).

Finally, let E and E(·|B) for each B ∈ B be defined on L(Ω). Then, E and E(·|B) are
jointly coherent iff,

• for all X ∈ L(Ω), E(X − E(X|B)) ≥ 0, and

• for all X ∈ L(Ω) and B ∈ B, E(IB(X − E(X|B))) = 0.

�

Lemma E.1.2: (2.6.1 of Walley [81]) Let E be a coherent lower expectation. Then, for
X ≥ Y , E(X) ≥ E(Y ).

�
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For every X ∈ L(Ω), write,

R(X|B) :=
∑
B∈B

IBR(X|B).

Theorem E.1.1:Let B be a partition of Ω, and M be a closed set of distributions. Suppose
that N is such that E↑N(·|B) is jointly coherent with EM . Suppose also that the regular ex-
tension RM(·|B) is jointly coherent with EM . Then, EM ;N(·|B) is jointly coherent with EM .

Proof: First, notice that,

EM ;N(X|B) =
∑
B∈B

IBmin
{
RM(X|B), E↑N(X|B)

}
≤
∑
B∈B

IBRM(X|B) = RM(X|B),

and,

EM ;N(X|B) =
∑
B∈B

IBmin
{
RM(X|B), E↑N(X|B)

}
≤
∑
B∈B

IBE
↑
N(X|B) = E↑N(X|B).

This leads to,

X − EM ;N(X|B) ≥ X −min
{
RM(X|B), E↑N(X|B)

}
,

and, in turn, because

X −min
{
RM(X|B), E↑N(X|B)

}
≥ X − E↑N(X|B), X −RM(X|B),

by Lemma E.1.2,

EM

(
X − EM ;N(X|B)

)
≥ EM(X − E↑N(X|B)), EM(X −RM(X|B)).

By Lemma E.1.1 and that both RM(·|B) and E↑N(·|B) are both jointly coherent with EM ,
we have that, E(X −RM(X|B)) ≥ 0 and E(X − E↑N(X|B)} ≥ 0. This implies that,

E(X − EM ;N(X|B)) ≥ min{E(X −RM(X|B)), E(X − E↑N(X|B)} ≥ 0. (E.1)

Second, consider a fixed B ∈ B and a fixed X ∈ L(Ω). Then,

EM ;N(X|B) = min
{
RM(X|B), E↑N(X|B)

}
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is a non-random constant whose value is either one of the real numbers in {RM(X|B), EM ;N(X|B)}.
Then, by Lemma E.1.1 and that RM(·|B) and E↑N(·|B) are both jointly coherent with E,
that,

E(IB(X −RM(X|B))) = 0,

E(IB(X − E↑N(X|B))) = 0,

we have,
E(IB(X − EM ;N(X|B))) = 0. (E.2)

By Lemma E.1.1, (E.1) and (E.2) imply that EM ;N(·|B) is jointly coherent with E.

�
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Glossary

Bayes’ rule – The property of expectations that the right hand side of EP (X|B) =
EP (IBX)/P (B) exists when P (B) > 0, and uniquely relates EP (·|B) and EP . (It
does not refer to the relationship between the two conditional measures, P (B|A) and
P (A|B).)

Coherence – Qualitatively, a self-consistency amongst assessments over a set of random
variables such that they do not contradict one another. See Chapter 2.

Generalised Bayes’ rule, GBR – the extension of Bayes’ rule (c.f. Bayes’ rule) to the
imprecise case using expectations.

IDM – Abbreviation for ‘imprecise Dirichlet model’.

Imprecise model – A model that is not a precise model. E.g. a lower expectation
induced by a non-singleton set of distributions.

Imprecise probabilities/expectations – A special case of an imprecise model induced
by forming the lower and upper bounds of probabilities/expectations over a set of
distributions. The term refers to the pair of lower and upper expectations used to
mathematically represent them.

Precise model – A model that assigns a single fair price to every random variable in its
domain. E.g. a single probability distribution assigning a single expectation value to
all random variables when defined.

Vacuity, vacuous – The property that an imprecise model is non-informative regarding
certain statistics of interest. For example, a pair of lower and upper imprecise ex-
pectations of a random variable X is considered vacuous (for X) if the lower and
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upper bounds are trivially the infimum and the supremum of the random variable,
respectively.
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