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Abstract

Database operations are often performed in batch mode, i.e. the analyst issuing the
query must wait till the database has been processed in its entirety before getting feedback.
Batch mode is inadequate for large databases since queries can take several hours to pro-
cess and often an analyst is satisfied with an approximation. Online aggregation greatly
improves user experience and saves resources by providing continuous feedback through
running confidence intervals. Further, it provides an interface for users to terminate early
and allocate resources elsewhere once a sufficient accuracy level has been achieved. Un-
til now, online aggregation has not been studied in a differentially private setting. In this
work, we formulate differentially private online aggregation such that it captures the trade-
offs between privacy, accuracy, and usability. Further, we develop a family of differentially
private mechanisms, which includes our optimal Gap mechanisms, for answering AVG,
COUNT, and SUM queries with WHERE conditions. Also, we develop various optimiza-
tions to improve the accuracy of the Gap mechanism and empirically confirm that the Gap
mechanisms preform the best overall.
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Chapter 1

Introduction

Aggregation in relational databases plays an important role in policy evaluation, medi-
cal applications, and gathering financial and business insights. A common approach to
handle aggregate queries is the use of online aggregation to return fast and accurate ap-
proximations that improve at each time step. Due to the sensitive nature of such data, an
individual’s privacy is of the utmost concern. The main problem is that aggregation does
not guarantee privacy [1 7] and there are many instances of successful reconstruction attacks
[9] after the release of aggregate statistics that have not been perturbed appropriately.

Due to the rapid growth of available data, many aggregation tasks can take several
minutes and even hours to compute exactly. For example, when dealing with encrypted
databases or multiple data federations as in SAQE [5], the overhead from the cryptographic
protocols can often make the runtime 1000x slower. This is because the databases need
to be padded with tuples forcing the worst-case runtime as private information can be
inferred from the runtime. This is unacceptable as data analysis tends to be an interactive
process with the user issuing a set of queries and using the results to determine the next
set of queries. There are many solutions such as approximate query processing and online
aggregation [21], for database systems, that leverage some loss in accuracy for significantly
improved response times. In online aggregation, the user gets estimates of an aggregate
query in an online manner as soon as the query is issued. For example, if the user issues the
following query “SELECT AVG(Salary) FROM D” and the true answer is 100,000 and
would normally have taken several minutes to compute. An online aggregation system,
after & milliseconds, might output something like [120, 000 + 30, 000] with probability at
least 95%. This confidence interval will keep on shrinking as the system gets more and
more samples. To date, there has been no work that tackles one of the biggest modern
roadblocks which is data privacy, for the online aggregation setting. Due to government



policy and regulations, a lot of interesting analyses may not be permitted using non-private
aggregation methods.

Differential privacy (DP) [13, 15] has emerged as the gold standard for measuring and
protecting an individuals privacy. Intuitively, it ensures a level of user privacy while still
allowing for the release of meaningful aggregate statistics by guaranteeing that the output
on similar-looking databases is close. A privacy parameter € is used to capture the privacy
loss guarantees of a differentially private mechanism, where larger € corresponds to greater
privacy loss. Furthermore, differential privacy has several composition properties making
it easy to track the privacy loss when answering multiple private queries on the same
database. The first is sequential composition which allows one to track the privacy loss of
applying two differentially private mechanisms by simply adding the € values. When two
DP mechanisms take as input separate partitions of a database, the overall privacy loss is
instead the maximum loss of the two mechanisms by the parallel composition property of
differential privacy. A classic way to achieve differential privacy for a query with a real-
valued output is to perturb the output with Laplace noise inversely proportional to € and
the sensitivity of the query, where sensitivity refers to the maximum difference in values
between similar inputs.

Online aggregation releases a sequence of estimates based on the aggregate over all the
data seen so far at every time step. A naive way to achieve differentially private online
aggregation is to perturb each estimate with Laplace noise, but each release requires a
fresh privacy budget. The total privacy budget is split among all the timestamps and
the last estimate may be very poor due to large noise. On the other hand, rather than
releasing at every time step, we may release one estimate at the very end with the full
privacy budget. This estimate has very good accuracy, but the user experience will be
poor, as the user has to wait for too long. Hence, the introduction of a privacy constraint
in online aggregation poses new challenges. In particular, the challenges are optimizing the
privacy budget to maintain accuracy, handling accuracy loss from the privacy mechanism,
and designing simple interfaces that allow users to prioritize time-steps based on accuracy
needs.

A related setting to differentially private online aggregation is differentially private
streaming and privacy under continual observation [, 8, 27, 16, 7]. In these settings, an
online sequence of updates is being observed and the requirement is to privately compute
some statistic. For example, Chan et al. and Dwork et al. [$, 14] study the setting in
which there is a stream of 1’s and 0’s and the goal is to privately maintain a count of
the 1’s. Chan et al. [8] develop the binary mechanism, which privately updates the count
using a binary tree structure, and the estimate for the count at time step ¢ has an error

of O(%) Continual observation is different as the input database is static in online
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aggregation and also the database size is known ahead of time. While there exists prior
work on differentially private approximate query processing (AQP) such as SAQE [7],
the focus has been solely on the offline setting. In SAQE, Bater et al. develop various
sampling-based algorithms that quickly output an approximate answer to SQL queries over
the union of multiple datasets. The algorithms in SAQE cannot be directly extended to
the online setting, as there is no mechanism that can optimize the privacy budgets over
estimates released at different time steps.

In this work, we first define a set of desired properties for a differentially private online
aggregation mechanism. It is desired that such mechanism provide (i) e-DP, (ii) bounded
confidence intervals that shrink in length over time, (iii) a well-defined trend line that can
be computed before query execution. We also introduce a family of mechanisms which we
refer to as Gap mechanisms to optimize the utility of the released estimates. Unlike the
binary mechanism which is designed to output at each time step, the Gap mechanisms re-
duce the error from private noise addition by releasing a noisy aggregate and then waiting
for a specified gap in time. During this gap, sufficiently many new samples are accumu-
lated in a manner that warrants creating another noisy partial sum. The structure of these
gap based mechanisms combined with the sequential and parallel composition properties
of differential privacy allows for logarithmic and even constant error from private noise
addition as opposed to error linear in the number of time steps. Furthermore, we identify
several optimizations related to which noisy sums to aggregate together, privacy amplifi-
cation [30, 2] and improvements in common concentration bounds [3, 1]. We also provide
experiments comparing the various mechanisms on the flight delay dataset [1]. The results
show that the Gap mechanisms are the best choice overall.

The main contributions of our work are as follows:

e We are the first to introduce differential privacy to online aggregation and formulate
the desired features for differentially private online aggregation.

e We design and implement several e-differentially private online aggregation mech-
anisms for a popular class of relational database queries including AVG, COUNT
and SUM queries with and without WHERE conditions. This includes a family of
Gap-based mechanisms that outperforms the rest.

e We develop optimizations that improve the results of the Gap mechanism. We do
so by optimizing the budget splitting when given WHERE conditions, leveraging
privacy amplification results, and using improved concentration bounds.

e We provide a tighter analysis of the Laplace concentration bound from [3] that can
achieve up to a v/2 factor improvement in many cases.



This thesis is organized as follows. We first look at the related work on online aggre-
gation in the non-private setting and then on approximate query process with differential
privacy guarantees in Chapter 2. In Chapter 3, we provide the preliminary definitions
and define online aggregation in the non-private setting along with providing the necessary
theorems and lemmas that will aid in designing the private version. Next, in Chapter 4, we
formally define the problem of differentially private online aggregation and contrast it with
the non-private version. In Chapter 5, we introduce several baseline mechanisms along
with the optimal Gap mechanisms for AVG queries without WHERE condition and then
AVG, COUNT, and SUM queries with WHERE condition. Furthermore, in Chapter 6, we
provide optimizations based on privacy amplification, improved concentration bounds for
the sums of Laplace variables and for sampling without replacement. An extensive evalu-
ation of our algorithms over various queries and parameter ranges is provided in Chapter
7. Finally, we conclude this thesis and discuss future work in Chapter 8.



Chapter 2

Related Work

In this section, we will discuss the related work. First, we look at online aggregation in the
non-private setting and recent works that seek to improve the accuracy of estimators [20].
Next, we will look at differentially private aggregation under various settings and contrast
it with our work.

The initial task of adapting relational databases queries from batch mode, in which
the user received feedback only after the entire query had been processed, to an online
manner was done by Hellerstein, Haas and Wang [21]. By using Hoeffding’s inequality,
Hellerstein et al. demonstrated how to construct running aggregates and confidence inter-
vals for common statistical queries such as AVG, COUNT, SUM, VARIANCE, and STD
DEV. Furthermore, Hellerstein et al. provided implementation detail on how to modify
traditional SQL databases to support running aggregates. This is important as the validity
of the statistical estimators used relies on the assumption that the records of the database
are accessed in random order. Our work will also handle AVG, COUNT, and SUM queries
under pure differential privacy but will omit VARIANCE and STD DEV as they have high
sensitivity and are difficult to privately estimate in a general setting.

For queries over single tables, non-private online aggregation is quite easy. Simply
take samples from the database repeatedly and compute the average over the sampled
elements. Unbiased estimators can be generated by scaling up and common statistical
tools provide confidence intervals. The challenging queries in online aggregation are ones
involving multiple tables and JOIN operations [18, 25, 19]. By sampling tuples from each
table and taking the JOIN of the sampled tuples, the result is a sample of the JOIN
results. However, estimating the aggregate of the joint tuples is not as straightforward as
the elements are no longer independent, making it difficult to apply the same statistical



tools as the single table algorithms. In [18], Haas and Hellerstein proposed the ripple join
algorithm which takes samples in a round-robin fashion and keeps all the sampled tuples in
memory. It then joins all the tuples in memory with the new tuple that has been sampled.
Li et al. [25] identify two problems with ripple join; (i) its performance depends on the
fraction of the selected tuples that actually join and (ii) makes the unreasonable assumption
that tuples in each table are in random order. To remedy this, Li et al. propose wander
join, which tackles these two issues by performing random walks over the underlying join
graph. Solving queries with JOIN constraints are quite difficult without privacy constraints
but with privacy constraints even single table queries become challenging. Specifically, (i)
join queries are highly sensitive [29, 12, 22]; (ii) both ripple join and wander join uses
correlated sampling which will further increase the sensitivity of the query output. Macke
et al. [20] identify how approximate query processing (AQP) systems can be improved by
using concentration inequalities tailored specifically for sampling without replacement and
a novel range trimming technique. The setting of Macke et al. is slightly different as they
are taking a sufficiently large sample and approximating based on the single sample rather
than maintaining running aggregates, but the techniques still apply to non-private online
aggregation. Unfortunately, the techniques used by Macke et al. are difficult to adapt to
private online aggregation as it relies on maintaining the maximum and minimum values
of the data sampled so far. These are quantities that are challenging to make private and
showcase how even single table online aggregation is difficult with DP.

A related setting to private online aggregation is differentially private continual ob-
servation [8, 11] in which data aggregators continually release updated statistics while
preserving individual privacy. The privacy guarantee for online aggregation is different as
the input is a static database in which the total number of rows is known while in private
continual observation, the input is a stream of data of potentially unbounded size. A fun-
damental problem addressed by Chan et al. and Dwork et al. [3, 14] is that of maintaining a
private counter given a stream of 0’s and 1’s. The continual observation setting is different
from online aggregation as there is no notion of error from sampling when maintaining the
current count privately. A naive solution for private counting under continual observation
is to add Laplace noise to each item in the stream resulting in O(‘/Ti) error at time step t.
Chan et al. [8] develop the binary mechanism which elegantly partitions the data so that
the overall mechanism is e-differentially private and the error at time step ¢ is O(%)
While a similar approach can be used to solve online aggregation tasks, it is often not
ideal and in our setting, our proposed Gap mechanisms have the much lower private error
O(@) from the addition of Laplace noise. The key difference between COUNT queries
in online aggregation and counting under continual observation is that when convenient,
we may choose not to use additional samples when estimating the true statistic but the



continual counters seek to keep updating when new data is made available. This allows for
the use of less noise as old aggregates can be reused until sufficient data is made available
before generating the next noisy partial sum. The binary mechanism may still have a place
in online aggregation but it tends to be more useful in the cases where the privacy budget
is really high and so the error from sampling is dominating the error from the private noise.

Related work in the area of private approximate query processing is SAQE [5] by Bater
et al. SAQE enables users to query the union of data from multiple federations without
revealing any extra information to the user or the other federations. To achieve this, Bater
et al. use strong cryptography protocols which incur extremely large overhead costs making
exact computation of queries difficult. Bater et al. remedy this by using various sampling
strategies to create private estimators while leveraging privacy amplification results [30] to
decrease the error from privacy when sampling. Our work is similar in that we address
the same set of queries, namely AVG, SUM and COUNT, and also leverage sampling
and privacy amplification results. The main difference is that Bater et al. sample once
and provides an estimate while our work offers continuous feedback. Our private online
aggregation techniques can be applied to the federated settings and we leave this as future
work.

There is a large body of work on private statistics and especially on private mean es-
timation [24, 6, 23, 10]. Often, these works focus on a specific distribution or families of
distributions and seek to obtain tight upper and lower bounds on the error. Common tech-
niques include choosing a suitable truncation interval so that no data points get truncated
with high probability. The benefit of this is that a smaller interval means the query is
less sensitive and so less noise needs to be added to make it private. Our work is slightly
different as we do not make any distributional assumptions on the data other than that it
is contained in some interval [a,b] which the database system knows ahead of time. This
matches the non-private work which tends not to make distributional assumptions on the
data. Another difference is that our source of randomness is from the private noise addition
and from shuffling the data while the other is from the distributional assumptions on the
data and private noise addition. In future work, we will explore how the two areas can be
combined so that private online aggregation can be optimized given more assumptions on
the underlying distribution.



Chapter 3

Preliminaries

Let D,, be the set of all relational databases instances on n elements. A given row D € D,,
consists of one table where the columns correspond to the attributes and the n rows consist
of a unique identifying key along with values for each column. We further assume the
rows of the database D are partitioned into blocks By, ..., B,, of equal size B, except for
potentially the last block. The size of the blocks is generally determined by the hardware
limitations (ex. cache size) and a single block may be accessed and processed at each time
step.

Our setting assumes that the rows have been shuffled uniformly at random and this
may be implemented by paying a one-time up-front cost to shuffle the data. The benefit of
pre-shuffling is improved cache locality and ease of implementation as we do not need to
implement sampling without replacement directly. Further, we assume that the numerical
values we wish to aggregate are bounded in some range [a,b] which the user provides
beforehand. The former assumptions will allow for the use of concentration bounds to
derive confidence intervals.

3.1 Online Aggregation

Let D be a table containing n rows ¢y, ..., t,,. We will focus on SELECT queries Q) : D,, — R,
of the following form

SELECT op(expression) FROM D;

and



SELECT op(expression) FROM D WHERE predicate;

where ‘op’ can be common aggregation functions like AVG, COUNT, SUM, STD DEV and
VARIANCE. Further, ‘expression’ is an arithmetic expression involving the attributes of
R and ‘predicate’ is an arbitrary predicate involving the attributes of D. Let v(i) be the
value of the expression when applied to row t; given that the row satisfies the predicate,
otherwise v(i) = 0.

To illustrate this, consider the following example for computing the average arrival
delay of flights at Phoenix airport in the month of January.

SELECT AVG(arr_dell5) FROM flights WHERE airport="PHX" AND month=1;

Let v(i) be the arrival delay value of ¢; and let u(i) = 1 be the indicator for when the tuple
satisfies the predicate of ’airport="PHX” AND month=1". Then we wish to compute

iy v(d)uli)

Some examples of other queries we handle in this work include.

Q1: SELECT AVG(arr_dell5) FROM flights;

Q2: SELECT AVG(arr_dell5) FROM flights WHERE airport="PHX" AND month=1;
Q3: SELECT COUNT(arr_dell5) FROM flights WHERE airport="PHX" AND month=1;
Q4: SELECT SUM(arr_dell5) FROM flights WHERE month=1;

An online aggregation task seeks to maintain a running aggregate for queries of the
above form while giving the user some level of control over the accuracy and priority of
queries answered. Let p denote the true aggregate value which is obtained by running
the specified aggregate over all applicable tuples in the database. The user also chooses a
confidence parameter p € (0, 1) and at each time step ¢, the system outputs an approximate
aggregate y; and precision parameter «; with a guarantee that y, lies in interval [u £ oy
with probability at least p. i.e.

Prip € [ — ag, p+ ag] > p.

Since the rows are shuffled at random, a linear scan is essentially equivalent to sampling
with replacement. Furthermore, the values being bounded in the user specified range



[a,b] allows us to apply concentration bounds such as Hoeffdings inequality to compute
confidence intervals for AVG. By Hoeffding’s inequality (theorem 5), we can show that we

Zia v g

= (b—a) <%ln(13p)>.

get p-confidence intervals by taking u; =

3.2 Differential Privacy

Definition 1 (Differential Privacy). A randomized algorithm A is e-Differentially Private
(DP) if for all events R in the output space of A, and for all databases D, D" € D,, differing
on a single element, we have Pr[A(D) € R] < e Pr[A(D’) € R].

A classic method of achieving differential privacy is the Laplace Mechanism [15][13].

Theorem 1 (Laplace Mechanism). Let f : D, — R be any function. The global sensitivity
of f is defined as GS; = maxp.p |f(D) — f(D')|. Then the algorithm A(D) = f(D) +

||

Lap(GSy/e), satisfies e-DP, where Lap(z|b) = 5™ 5 .

The accuracy of the Laplace Mechanism can be measured using the following lemma.

Lemma 1. For a query function f : D, — R, the noisy answer f(D) = f(G)+Lap(GSy/e)
satisfies

Pr(| /(D) = f(D)| > tGSg/ < ™.

Theorem 2 (Sequential Composition). Let A; : D — R be an €;-differentially private
mechanism for each i € [k]. Then the composition A = (Ay,...,Ay) : D — RF satisfies
S e-DP.

Theorem 3 (Parallel Composition). Let A; : D — R be an €;-differentially private mech-
anism for each i € [k]. Given a database D € D, let {D;}r_, be a disjoint partition of D.
Then the composition A(D) = (A1(Dy), ..., Ax(Dy)) satisfies max; €;-DP.

Theorem 4 (Post-Processing). Let A : D — R be an e-differentially private mechanism.
Let f: R — R’ be an arbitrary randomized mapping. Then fo A: D — R’ satisfies e-DP.

10



3.3 Concentration Bounds

Theorem 5 (Hoeffding’s inequality). Let D = xy,...,xn be a set of N values in |a,b]. Let
X1, ..., X, denote a random sample with replacement from D. Then, for any t > 0, we

have o [2": w > t] < exp (_%)

=1

Pr [i(X_TEX) < —t] < exp (—%) .

=1

and

Remark. By union bound the above can be combined to get

p[zvf_m <2eup (202,

n
Lemma 2 (Hoeffding). Let D = zy,...,xx be a finite population of N real points. Let
X1, ..., X, denote a random sample with replacement from D and Y7, ..., Y, denote a random
sample without replacement from D. If f : R — R is a continuous and convex function,

then . .
E f (Z)@) <Ef (Zn)
=1 i=1

Remark. The above lemma allows us to use Hoeffding’s inequality even when the sampling
1s without replacement.

>t

i=1

When combining several noisy queries, the following concentration bound on sums of
Laplace variables is useful to measure the overall error.

Theorem 6 (Sums of Independent Laplace Distributions). Let Y = > .Y; where each
Y; ~ Lap(b;) are independent. Let byax = max; by, v > />, b? and 0 < X < %suppase
0<d<1, then

Pr(|Y| > A < exp (_8)\_:2> . (3.1)

Corollary 1 (Measure Concentration). Let Y, {b;}i, bmax and v be defined as before (The-
orem 6). Suppose 0 < 6 <1 and v > max{\/)_, b;, bmax ln(%)}, Then,

V] > y\/@] <.

11
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An immediate corollary of the above is this simple but slightly less tight bound.

Corollary 2. Let Y =Y, where each Y; ~ Lap(b;) and suppose 0 < 6 < 1, then

Pr ||| > /821)?111(%) < 4.

12



Chapter 4

Problem Formulation

Online aggregation is a great feature for query answering in database systems [21] as it
provides instant feedback and allows the user to save on resources via early termination
once a desired approximation has been achieved. In online aggregation, the data analyst
receives a sequence of estimates with confidence levels in an online fashion as soon as
the query is issued. Realizing this online aggregation feature over sensitive data with
differential privacy guarantee is non-trivial due to this additional privacy constraint.

In this chapter, we will formally define the setup and problem statement for differen-
tially private online aggregation. The main problem is that of picking a utility metric that
captures the requirements of private online aggregation. Specifically, (i) the overall algo-
rithm should satisfy e-DP; (ii) a sequence of improving estimates and confidence intervals
over time should be released, just as the non-private setting; (iii) additionally some level
of control should be given to the user over the speed of updates based on their preferences.
The second challenge is to design differentially private algorithms for private online ag-
gregation that meet these requirements and to find an optimal algorithm. We will show
the problem and opportunities in algorithm design after our problem formulation. These
include improving the estimates by leveraging sampling-based privacy amplification and
tightening confidence intervals with better concentration bounds.

4.1 Desiderata for Private Online Aggregation

Desideratum I: Differential privacy guarantee. In private online aggregation, we
require the cumulative privacy loss over the entire output sequence of estimates and con-
fidence intervals to be at most e. It is clear each new estimate must be made private

13



but extra care must be taken to also make the confidence intervals private when WHERE
conditions are involved. Unlike the online setting in which the total privacy loss must be
€, in the offline private aggregation setting, the mechanism takes as input a sample or the
entire data and release a single query answer that satisfies e-DP.

Desideratum II: Continuous observations. Statistical and graphical interfaces are
desired so that users may observe the processing and get a sense of the current level of
precision when executing queries. The set of interfaces must be extensible so that each
aggregate function and or combination of functions can be presented.

Desideratum III: Control of Time. Users should be able to terminate processing
of a query at any time. This gives a trade-off between time and precision in non-private
online aggregation. In private online aggregation, the trade-off is now between time, preci-
sion, and total privacy loss. Also, in the non-private setting, accuracy will always increase
as time progresses but this isn’t necessarily true of any arbitrary private mechanism for
online aggregation. Thus, in private online aggregation, we desire a class of DP algorithms
rather than just a single algorithm used in the non-private setting. Each of the DP algo-
rithms has its own trend lines corresponding to error from sampling and error from privacy.
These trend lines should be made available to the data analyst so that they may choose
the algorithm that best matches their preferences. Alternatively, if a utility function is
provided, the algorithm that will score the best should be chosen. This can be captured by
using weighted priority functions and choosing the algorithm whose output sequence will
minimize the sum of the weighted confidence interval lengths which we will refer to as the
score of an algorithm.

The original goals of non-private online aggregation [21] also focused on the fairness of
updates when there are multiple simultaneous aggregation tasks. These fairness goals are
more applicable when dealing with GROUP BY queries which we leave to future work.
Also, they have main performance goal, minimum time to accuracy, and secondary perfor-
mance goal of minimum time to completion. In differentially private online aggregation,
the former can be obtained by picking the appropriate algorithm based on the trend lines
and the latter must be considered as overly complex private mechanisms can add a lot of
overhead. Non-private online aggregation also has a performance goal of consistent pacing
between new updates and is easily achievable since confidence intervals are shrinking as
new rows are sampled. Such requirements in private online aggregation are undesirable
since attempting to update estimates uniformly will cause the confidence intervals to de-
grade over time. The pacing requirement in private online aggregation is not as rigid and
can be realized through the choice of utility function and trend selection.
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4.2 Problem Setup

Given a database D consisting of n rows. Let @ : D,, — R denote the aggregate query and
let © = Q(D) be the true value. Let a block be the basic unit consisting of B rows for query
processing. Rather than have the system process queries row by row, we generalize it to
block by block. Consider all the rows of this database are stored continuously by blocks,
Bi,..., By, where m = [5]. At each time step ¢ = 1,2, ..., a new block is processed and
an approximation of u along with a confidence interval based on a user-specified probability
p is released. The queries we wish to answer in this work include AVG, COUNT, and SUM
given arbitrary WHERE conditions as seen in section 3.1.

This problem statement directly follows the notation introduced in the first paragraph
of Sec 4.2. This problem statement is a mathematical formulation of all the desiderata
proposed in Sec 4.2.

Problem Statement: Given a database D consisting of m blocks of data, an aggregate
query Q : D — R, a privacy budget €, we say an algorithm A is e-differentially private
online aggregation algorithm, if A releases a sequence of (u, ay)L,, where T < m, such
that fort =1,2,...

1) A satisfies e-differential privacy, i.e. for any possible output O = (1, ), by A,
and any neighboring databases D, D" € D,,, Pr[O|D] < e Pr[O|D’].

2) A provides continuous observations with valid confidence intervals where valid means
(i) bounded and (ii) improving accuracy, i.e., with high probability p, for

Prlu, € [Q(D) — oy, Q(D) + ou]] > p

and
1 < .

3) A provides a well-defined trend line. Before running A, we can provide a trend line
of A to user, i.e. the sequence of the alphas (aq, s, .. .).

4) (Optional) One of the estimate will reach a desired accuracy requirement for early
stoppage, i.e., 3t € [1,T], such that ay < o*.

If there are multiple e-differentially private online aggregation algorithms {A,,..., As},
we would like to choose the best algorithm for the data analyst either by (i) providing the
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trend line of each algorithm to the data analyst; or (ii) optimizing a utility function over
the sequence of confidence intervals provided by the data analyst.

A utility function we may use is the the sum of weighted confidence interval lengths
which we shall refer to as score. Let the weights {w;}L; be a set of increasing positive
numbers. Let

T
score(A) := Z wy - Ly
i=1

where L; = 2a; denotes the length of the confidence interval [u; £ oy, generated by A at
time step t. Given a set of e-DP mechanisms {A;, ..., Ay}, we wish to chose the mechanism
that minimizes the score.

There are a couple of reasons that the sum of the weighted confidence interval lengths
is the preferred metric. Firstly, smaller confidence interval lengths imply the estimate and
true value are close so algorithms that have a smaller score will generally produce estimates
close to the true query value with respect to common distance metrics. Secondly, using
metrics related to the distance between the true value and the estimate is data-dependent
and hence not private.

Thirdly, this metric is preferred as the confidence interval lengths can often be computed
exactly beforehand and in the case of WHERE conditions, can at least be approximated
with assumptions on the count. This allows us to present trend lines to the user beforehand
or after taking a small initial sample. Lastly, the wights are increasing which reflects the
need for confidence intervals to improve over time. Since the user can choose the weights,
they can emphasize which time steps they wish to prioritize giving them some control over
the privacy, time, and accuracy trade-offs of private online aggregation. Choice of weight
functions will be discussed more in the evaluation (section 7.4.1).

Some challenges and opportunities for DP online aggregation algorithm design are as
follows. The first challenge is related to online aggregation itself as it requires random-
ization of the data so that concentration bounds can be applied. In all the algorithms
introduced in Chapter 5, we assume the data has been pre-shuffled ahead of time. This
is a limitation, but at the same time, it allows for better accuracy. Secondly, as there
are many noisy estimates released, compounding these estimates to get a more accurate
estimate and tighter bounds is important. Hence, an interest is to get better concentration
bounds. Another challenge is utilizing privacy amplification to reduce the noise added in
the earlier stages of the algorithms. Specifically, when sampling with replacement, if the
sample size is sufficiently small, one may use a larger privacy budget and still get a small
privacy loss. These optimizations will be addressed in Chapter 6.
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Chapter 5

DP Algorithm Design

In this section, we outline the various DP mechanisms for AVG, SUM, and COUNT queries.
The mechanism of the following section takes in as input a database D of size n, privacy
budget €, confidence parameter p, block size B and total number of time steps T. Where
T can be specified by the user or can be simply set to the maximum possible number
of time-steps [5]. An interval [a,b] is also specified for where the data lies. To start,
we look at AVG queries with no WHERE conditions in section 5.1. This is the simplest
query to make private as each element is counted towards the query so the only thing
that needs to be made private is the sum of values. We develop five different mechanisms
and empirically evaluate them in Chapter 7. It is determined through both empirical and
theoretical analysis that the proposed Gap mechanisms tend to perform the best overall.
In sections 5.2 and 5.3, the Gap mechanism is adapted to work for AVG and COUNT
queries with WHERE conditions. Lastly, in section 5.4, it is shown how to combine the

mechanisms of 5.2 and 5.3 to handle SUM queries given WHERE conditions.

5.1 Average Query

The first mechanism, Baseline 1, maintains the current sum so far and is made private by

adding fresh Laplace noise proportional to T(bT_a) each iteration. The second mechanism,

Baseline 2, samples a new block each iteration, sums the elements of the block and adds
(b—a)

Laplace noise proportional to ~—. It then accumulates all blocks seen so far and so the

error from private noise addition is of magnitude O(‘/Ti) The next three mechanisms are
various Gap mechanisms, which are named because they essentially wait for gaps of time
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to accumulate enough samples before a noisy partial sum is created similar to in Baseline 2.
Gap sizes can vary and be optimized based on weights provided by the user but powers of
two generally work well and are easy to implement. The first Gap mechanism is the Single
Gap mechanism, which outputs the noised partial sum over the most recent gap. Next is
the Multi Gap mechanism which accumulates all the noisy partial sums from each gap and
lastly we have the Hybrid Gap mechanism that essentially interpolates between Single and
Multi gap mechanisms. The error from private noise addition for the Gap mechanisms are
O(2) for single, O(@) for multi and O(@) for hybrid, where s is the number of gaps
used in the hybrid. Note that while the Single Gap mechanism adds the least noise, it
discards roughly half the samples causing the sampling error to be worse. Thus the hybrid
achieves the best of both worlds by optimizing over both the sampling error and the error

from noise addition.

Algorithm 1 Baseline 1 for AVG

1: INPUT: Randomly permuted database D = (Bj, ..., By,), block size B, privacy budget e,
time step T', confidence parameter p

2: fort=1,2,...,7T do

3 a=3.|Bi

4: St=r1 > jen: T

5: fit = s¢/ct + Lap (T(b_a))

ect

~ . T(b—a
6: Qy = minyg(g,1) <(b —a) 2%5 In (A(f_p)) + (@t ) ln((l_)\)l(l_p))>
7 return interval [y — dy, iy + A
8: end for

Theorem 7. Algorithm 1 satisfies e-differential privacy.

Proof. Each [i; has global sensitivity b;—t“ so by Laplace Mechanism, satisfies #-DP. By

sequential composition of DP, the overall privacy loss is e. O]

Theorem 8. Algorithm 1 outputs a valid confidence interval.

Proof. By Hoeftding’s inequality we have that

2
Pl — il > 1] < 2exp (—%) —A(1-p)
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By Laplace tail bound, the noisy estimate satisfies

i (P 4

Pillic — ul > 6] = Pr |
Ct€

<o (-~ ) == NG =)

By union bound and triangle inequality, we get that

Prilfy —pul <Bi+ B >1=A1=p)—(1=N)(1-p)=p

=y 2w ()

= <<1 e —p>> |

Minimizing ;1 + B2 over A € (0,1) gives us the smallest possible o, with the desired
confidence parameter p.

where

and

It is clear that the a; is decreasing and so the confidence intervals are valid. O]

Remark. Note that all algorithms of this section provide trendlines as the alpha values for
the confidence intervals, can be generated ahead of time as they are not data-dependent.

Another simple approach is to make private each block sum and this would lead to
O(v/t) replacing T in the error term. We spell out the details in the Baseline 2 algorithm
(algorithm 2).

Theorem 9. Algorithm 2 satisfies e-Differential Privacy.
Proof. Each b, is generated by sampling with replacement from the remaining m — (t—1)
blocks. By the Laplace mechanism, adding noise proportional to b_T“ to each block provides

e-DP. Since the blocks are disjoint and partition D, by parallel composition, the overall
privacy loss is e.

]

Theorem 10. Algorithm 2 outputs a valid confidence interval.
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Algorithm 2 Baseline 2 for AVG

1: INPUT: Randomly permuted database D = (Bj, ..., By,), block size B, privacy budget e,
time step T', confidence parameter p
2: fort=1,2,...,7T do
3 =3B
4 by=3cp v+ Lap <(b;a))
5 fr = 22:1 Bi/ct
. 2 b—a)/8t 2
6: o = minyg(g,1) ((b —a) % 1n()\(17p)) + ( Eac)t In( (17)\)(17}7)))
7
8:

return interval [ — au, it + o]
end for

Proof. Let Ji_, B; = {z1,..., 7.} be the randomly sampled elements, X = T4 and

Y; ~ Lap(b_T“) be the Laplace random variables from line 4 with respect to the time step

1. Observe that

t
i LY 1
= = |+ 225 i) < | - )+ 61)

t
d v
=1

< (b~ “)\/2% ln()\(12_p)) G _E‘ézﬂln((l — )\)2(1 —) (5.2)

where the first inequality follows by triangle inequality. The second follows from sums of
Laplace concentration, Hoeffding and a union bound as seen in the proof of the theorem 8.
Minimizing over A € (0,1) gives us the smallest possible o; with the desired confidence
parameter p.

It is clear that the a; is decreasing and so the confidence intervals are valid. O]

The rest of this subsection focuses on the Gap mechanisms. While the Gap strategy
and proofs of privacy are similar, the accuracy proofs for Single Gap relies on the Laplace
Tail 1 while the Multi Gap relies on the corollary of Sums of Laplace concentration bound
2. We omit the proofs for the Hybrid Gap Mechanism as it is essentially the same as the
proofs of the other Single and Multi Gap Mechanisms.

Theorem 11. Algorithm 3 satisfies e-Differential Privacy.
Proof. By the Laplace mechanism, adding noise proportional to b_T“ to each partial sums

provides e-DP. Since the blocks are disjoint and partition D, by parallel composition, the
overall privacy loss is €.
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Algorithm 3 Single Gap Mechanism

1: INPUT: Randomly permuted database D = (Bj, ..., By,), block size B, privacy budget e,
time step T', confidence parameter p
2: fort =1,2,22,23....,T do
3: Ct = th:%+1 |BZ|
4. St:Zi—t+1 ZjEB SL‘]'
5: Nt—St/Ct‘i‘Lap(Ect)
- . b
6: ap = mln)\E(OJ) <(b — CL) %Ct In ()\(12—]9)) + (ecta) ln( (l—A)l(l—p))>

7 return interval [ — &y, fir + ]
8: end for

Theorem 12. Algorithm 3 outputs a valid confidence interval.

Proof. At time step t, let Ut . = {x1,...,2.,} be the randomly sampled elements,

X = Zl L% and Y~ Lap(b a) be the Laplace random variables from line 5 with respect
to the tlme step. Observe that

= pl = [X +Y - E[X]| < |X - E[X][ + V] (5:3)

1 (2 (b—a) 1
S(b_a)\/2ct1 <)\(1—p))+ €cy 1((1—)\)(1—]9)) (5:4)

where the first inequality follows by triangle inequality. The second follows from sums of
Laplace concentration, Hoeffding and a union bound as seen in the proof of the theorem 8.
Minimizing over A € (0,1) gives us the smallest possible o; with the desired confidence
parameter p.

It is clear that the a; is decreasing and so the confidence intervals are valid. O]

The Multi Gap mechanism is similar but rather than discarding the previous gaps, it
now combines them with the new gap, improving on the error from sampling while slightly
increasing the error from Laplace noise as there are now several noisy sums being aggregated
together. This is especially beneficial when it is known that the privacy parameter € is
large.
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Algorithm 4 Multi Gap Mechanism

1: INPUT: Randomly permuted database D = (Bj, ..., By,), block size B, privacy budget e,
time step T', confidence parameter p

2: fort =1,2,2223... T do

3 =i |Bil

4 St = ZL%JA ZjeBi Ly

5: St =8+ Lap (5’77“)

6: =313/

7

8

9:

. / b—a)y/8(log, t+1
o = mln)\e(o’l) <(b — CL) QLct ln(/\(12_p)) + ( ) Eﬁt g2 ) 111( (1_)\)2(1_];)))

return interval [ — oy, it + o]
end for

Theorem 13. Algorithm /4 satisfies e-Differential Privacy.

Proof. By the Laplace mechanism, adding noise proportional to b’Ta to each partial sum
provides e-DP. Since the blocks are disjoint and partition D, by parallel composition, the
overall privacy loss is €.

m
Theorem 14. Algorithm 4 outputs a valid confidence interval.
Let U._, Bi = {x1,..., 7, } be the randomly sampled elements, X = Z%—f and Y; ~

Lap(b’T“) be the Laplace random variables from line 5. Note that there are log, ¢ + 1 such
Laplace variables and observe that

Proof.
t : logy t+1
|at—u|:'x+zic—;ﬁ—m1 <IX-EX)+ 2| Y % (5.5)
=0 )\/% (g + B gy 69

where the first inequality follows by triangle inequality. The second follows from sums of
Laplace concentration, hoeffding and a union bound as seen in the proof of the theorem 8.
Minimizing over A € (0,1) gives us the smallest possible a; with the desired confidence
parameter p. It is clear that the «; is decreasing and so the confidence intervals are
valid. O]
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Based on the parameter ranges, the user may desire the Gap mechanism using noisy
sums over the Gap mechanism using a single sum. In particular, when the error from
noise addition is much smaller than the error from sampling, using many sums is preferred
whereas using a single sum benefits the cases where the Laplace noise is overpowering. The
following mechanism is a happy medium between the two and works by taking only the
noisy sums that minimize the private confidence interval length. The proofs of correctness
and privacy essentially follow from that of the previous two mechanisms. Note that we can
implement line 5 of Algorithm 5 by iterating over all pairs of start and end indices (s, f)
and output the smallest confidence interval.

Algorithm 5 Hybrid Gap Mechanism

1: INPUT: Randomly permuted database D = (Bj, ..., By,), block size B, privacy budget e,
time step T', confidence parameter p

2: for t =1,2,22,23....T do

Ct = Zgzl | Bl

St = ZE:%H ZjeBi Zj

(s, f) = sumOptimizer(t, ¢, n,p)

<§t = S + Lap (IFTa)

e = 22:1 St/ct

if s ==t then
ar = minyeqo) /(1 = 52) 3k () + (i)

10: else

. _ 8(f—s+1
11: o = minye (g1 <\/(1 — %)iln()ﬂ{p)) 1Ly (fEk +1) In( 2 ))

(1-M)(1-p)
12: end if
13: return interval [y — oy, iy + oy
14: end for

5.2 Average Query with Where Condition

In this section we adapt the Gap mechanism for average queries with no condition to work
with general WHERE conditions. Extra care must be taken when releasing an aggregate
and confidence interval as the denominator, which is the counts so far, also needs to be
made private. Further, we provide a practical and effective budget optimization strategy
that splits the privacy budget for the noisy sum and noisy count in a more optimal way.
Our experiments in Chapter 7 provide some evidence for when this optimization is useful.
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Algorithm 6 Gap Mechanism for AVG with WHERE condition

1: INPUT: Database D = (Bj, ..., By,), block size B, privacy budget €, time step 7', confidence
parameter p, query
2: fort =1,2,22,23....T do
3: (€1, €2) = BudgetOptimizer(t,¢i—1,€)
t
4: & = Zi=%+1 ZjeBi 1z5eq
t
o St = Ei:gﬂ ZjeBi Tjlejeq
5~t = S¢ + LCLp <b€772a>

6
7: ¢t = ¢+ Lap (é)
8
9

Cp = Ct — ln(%)/fl
: Eub = CNt + hl(ﬁj)/el
10: [Lr = S}/CZ};
11 iy = S/cw
- b—
120 Fi=(b—a)y/s=n (%) 1 ()

13: g =

14: ap = FSE 4+,

15: return interval [y — Ay, iy + A
16: end for
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The BudgetOptimizer essentially wishes to solve the following optimization problem
each iteration of the Gap mechanism. The main difficulty is that we cannot privately solve
such optimization without knowing beforehand what ¢; is. However, this can be approx-
imated by solving the optimization problem by using 2¢,”; in its place. This approach
performs well in practice as can be seen in our empirical analysis of this algorithm (figures

7.2, 7.3, and 7.4).

L . 1 6 (b—a) 3
minimize (b )\/2@ (%)/61 <1—p) T € (G — (li)/el)1 (1—]?) (5.7)

subject to € + e =€

Theorem 15. Algorithm 6 outputs a bounded confidence interval.

Proof. At time step t, let U§:£+1 B; = {x1, ...,z } be the randomly sampled elements,
2

X = Zl:—:wl and Y ~ Lap(be_—;) be the Laplace random variables from line 6 with respect

to the time step. Let i, = X + g Observe that

Y Y
-l =[x+ £ - 5] < px - g+ B

Ct

g(b—a)\/%ln(lﬁp) + (be;ta) 1n(1fp> (5.9)

== a)\/ 20 - 1n1<1%,,>/e1> n(75) o —<bln_<f%)p>/el> (1) =5 61

where the first inequality follows by triangle inequality. The second inequality follows from
Hoeffding and Laplace concentration and each hold with probability at least 1 — %. Since
G =c+ Lap(i), by the Laplace tail we have

(5.8)

3 3
Cip = Cp — ln(1 _p)/el <¢ <G +1n(1 _p)/q = Cub (5.11)
with probability at least 1—-3. Union bounding over the three events gives us [T, —u| < %

with probability at least p.

By using (5.11) with the fact that g, = st“/ , we get that fi; = ¥ <77, < stc;Y [y
Since p € [, £ 4;] with probability at l<?ast p, we get that f; — % § i< f + Y, ie.
W€ [ — A, fir + ). By taking g = % and q; = P + 44, we equivalently get that
p € iz £ &) with probability at least p as needed. O
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Remark. While a; may not always be decreasing, we may apply a simple post processing
step to ensure the confidence interval is valid. Specifically, we take the smallest a; and
corresponding estimate seen so that {a;}, are decreasing.

Theorem 16. Above Algorithm satisfies e-DP.

Proof. Note at each iteration ¢, we compute a noisy count ¢ = ¢; + Lap(i) and also a
noisy sum s; + Lap(b;—;‘). Since ¢; has sensitivity 1 and s; has sensitivity (b—a), by Laplace
mechanism and the guarantee of the budget optimizer, each iteration of the algorithm
satisfies €; + €, = e-DP. Since the database is partitioned in to disjoint blocks, and for each
t, s¢, ¢, do not reuse blocks, by parallel composition, the total privacy loss is still e. O

Remark. Note that trend lines cannot be computed exactly for this algorithm as the alpha
values in the confidence intervals are dependent on the count of database elements satisfying
the WHERE condition. However, we can approximate them by processing a small sample
to estimate the density, then building trend lines based on the approximate density so that
the user may chose which algorithm to run. In this section only the Gap mechanism was
provided but all algorithms from section 5.1 may be adapted to handle WHERE conditions
in a similar manner to algorithm 6.

5.3 Count Query

Since the size of our database |D| = n is known, it is possible to estimate the counts of
elements in D that satisfy a given WHERE condition. Let ) be a counting query with
any WHERE condition and let 1,¢¢ be the indicator for when x satisfies the condition in
(2. Since we are essentially sampling with replacement, the corresponding distribution is
hypergeometric and so we may use the hypergeometric tail bounds or related approxima-
tions to derive confidence intervals. We adapt the Gap mechanism of the previous section
to handle COUNT queries with arbitrary WHERE conditions.

Note that we may implement sumOptimizer on line 5 of Algorithm 7 by trying all pairs
of start and end indices and finding the pair that will minimize the confidence interval
length.

Theorem 17. Algorithm 7 satisfies e-DP.

Proof. Since the global sensitivity of a counting query is 1, the proof follows by the same
Laplace mechanism and parallel composition arguments from before. O
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Algorithm 7 Gap Mechanism for COUNT

1: INPUT: Database D = (B, ..., By,) of size n, block size B, privacy budget ¢, time step T,
confidence parameter p, query @
2: fort =1,2,22,23....,T do

32 bt = Z%+1 |Bz|
~ i

4: Gt = Zi:%+1 ijeBi 1y, + Lap (%)

5: (s, f) = sumOptimizer(t, ¢y, n,p)

6: k=70

7 C‘t:nz,{:sét/k

8: if s ==t then

9: Qi = minyg(o,1) ( i ln()\(ﬁp)) + 111((1,)\)1(1,]0)))
10: else

\/ s+1

11: Q¢ = minyg(o,1) <\/ 2% 1 —p) l (( A —P))>
12: end if . .
13: return interval [C; —n - oy, Cy + 1 - ]
14: end for

Lemma 3. Given a query @), let Ng be the total number of element in D satisfying the
conditions of Q). Let X1, ..., X} be randomly sampled without replacement from a database
D of size n. Let N; be the indicator for when X; satisfies the conditions of @), then

”Zf:l N; . In (%)
k

N,
Q€ ok

with probability at least 1 — 6.

Proof. Observe that E[ZZTIN] = %. Thus by the hoeffding inequality, we get that

N, "N
Pr||—2 - ZTl >t| < 2exp (—2kt*) =6 (5.12)
n
where t = /2 2k , which gives us the desired bounds on Nj. O

Theorem 18. Algorithm 5 outputs a valid confidence interval

Proof. Follows from lemma 3, the Laplace concentration and tail bound just like in section
1 except with (b — a) = 1 and by multiplying by n to get the counts rather than the ratio
of elements satisfying Q). O
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5.4 Sum Query

A simple approach for deriving private confidence intervals for sum using our current
framework is the following. Given a ¢/2-DP mechanism that outputs a (1 — 52)-CI,
[tu, ptr] for the AVG and a €/2-DP mechanism that outputs a (1 — 52)-CI [C, C,], for
COUNT, output [g - Cy, pi- - Ci.]. By union bound, this is a p-confidence interval for sum
and satisfies e-DP by sequential composition.

By carefully analyzing the Gap mechanisms for both AVG and COUNT, you can see
that there is some overlap as both use the noisy current count ¢; = ¢;+ Lap( %) Thus, SUM
queries can be answered with no extra overhead in privacy loss when AVG and COUNT
are simultaneously being estimated. The algorithm is provided below without proof as the
proofs are essentially the same as the ones in the previous sections.

Algorithm 8 Gap Mechanism for SUM with WHERE condition

1: INPUT: Database D = (Bj, ..., By,), block size B, privacy budget €, time step 7', confidence
parameter p, query

2: fort =1,2,22,23....T do

3 by=3"% ,|Bi

4: (€1,€2) - BudgetOptimizer(t, ¢i—1,€)

5: & = Zfz%—s—l ZjeBi 1sjeq

6

7

t
St = Zi:gﬂ ZjeBi zilyieq
St = s¢+ Lap (%)
¢t = ¢+ Lap (é)

9: Cip = Gt — 111(1(72))/61

10: Cup = Ct + ln(l?’fp)/el

11 k=34 b
5 2

12: C’t:nztg_lét/k‘
~ ~ ~2

13: My = St/clb

Wi = 5i/cu

15 = (b—-a)/stIn (L) 4 Oy 8 )

2 1-p €2cp 1-p
16: Y = ,/ﬁ ln(%) + ln(ﬁ)
17: return interval [(4; — &) - (Cy — nye), (fr + @) - (Cr 4+ ny)]

18: end for
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Remark. Let [I,r] be the interval returned by Algorithm 8 on line 17. Note that it can be

written in the form u, + oy by taking p; = ”77" and taking oy = %l
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Chapter 6

Optimizations

6.1 Privacy Amplification

The following lemma of Ullman [30] and Borja et al. [2] state that when a private algo-
rithm is run on a subsample of the database obtained by sampling without replacement,
in many cases the privacy loss is much smaller than what a simple analysis would indicate.
Since a linear scan of our randomly permuted database is equivalent to sampling with-
out replacement, we may apply the bound to our mechanisms developed in the previous
sections.

Lemma 4 (Privacy Amplification). Let m < n. If algorithm A : D™ — R satisfies e-DP
then given a database D € D™ and a random m-element sub-sample D' of the database.
A" := A(D') satisfies @-Diﬁer@ntial Privacy.

The privacy amplification bound for sampling without replacement may be used to
improve the error from Laplace noise especially in the early stages of the algorithms of
Chapter 5. To demonstrate this, consider the basic Gap mechanism for AVG (Algorithm
3). Let (Oq,...0r) be the output sequence of algorithm 3 where each output i satisfies
¢;-DP. By Privacy Amplification (lemma 4) and sequential composition of DP, the first ¢
outputs actually have a total privacy loss of

(X — 1) 330, B2 |Bl(eXim —1)(2" — 1)

n n

. (6.1)

From this, we can pick an appropriate set of ¢; such that the above (6.1) is at most e.
For the remaining values t + 1 < ¢ < T we set ¢; = € which follows from the previous
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parallel composition arguments from the privacy proof of Algorithm 3. A simple approach
is to set ¢; = ¢ for each i < t and then take ¢ = 1 ln(|B|(Z§ 1)). Picking the correct ¢
value will depend on the user’s preference for accuracy. Due to the sequential composition
and sample size, picking a larger ¢ will lead to less overall amplification. Future work will

leverage the user-specified weight functions to pick the optimal ¢.

Example: When |B| = 100, 7' = 29100, n = 2910000 and ¢ = 0.01, by setting t = 5 we
may set € = 0.468 and if ¢ = 10 we may set it to 0.025 which are both improvements from
the default e. We illustrate the improvements empirically for the ¢ = 5 case in Chapter 7
(figure 7.7).

6.2 Improved Laplace Concentration Bound

The proof of the concentration bound on sums of independent Laplace distributons [3] uses
the classic Chernoff method but uses the slightly loose bound 2 when 0 < x < %
This bound is actually true for a larger range of values, namely up to x < 0.7968. Which
allows us to improve the 0< A< 2‘/5” to 0 < A < 3 572 in Theorem 19. Alternatively, we

) Lz When D<zx<i and get everything else the same except

Pr(lY| > A <exp (—8722) is now improved to Pr[|Y] > A] < exp ( 1%2) .

Theorem 19. LetY =), Y; where each Y; ~ Lap(b;) are independent. Let by = max; b;,
v>4/> b and 0 < \ < 22{—2:(2 suppose 0 < 6 < 1, then

)\2
PrilY| > Al <exp (_@> .

Being more general we derive the following theorem and corollary which can lead to
more optimal constants.

Theorem 20. Giwen a > 1 and bound ﬁ < e which holds when v < z* < 1. Let
Y =3, Y; where each Y; ~ Lap(b;) are independent. Let by, = max; by, v > />, b7 and
O<)\§% suppose 0 < 6 < 1, then

)\2
Pr{|Y] > Al <exp (—4 ) .

av?
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Proof. For each Y;, the moment generating function is E[exp(hY;)] = 1=z, where |h| < b%
Using the inequality = < e for & < z*, we have that E[exp(hY;)] < exp(ah?h?), if

|h| < */bi By taking 0 < h < bn@’ we have

Pr[Y > A] =Prlexp(hY) > exp(h))]
< exp(—hA\) Elexp(hY)

= exp(~h) [T Blexp(h) (6.4

= exp(—h\ + ah*?) (6.5)
_ (2a— a)\?

< exp < NCOEER ) (6.6)

— exp (_42;) (6.7)

where the first inequality follows by Markov inequality and the last follows from the as-

sumption of 0 < A < M by setting h := 2;;,2 < g/; -

Remark. We can recover the original bound (Theorem 7) by taking a = 2 and x* = %

Corollary 3. Let Y, v, {b;}i, bmax, @ and x* be defined as in the previous theorem. Suppose
0<6<1andv>max{\/>,b? buax\/ = In(3)}. Then, Pr[|Y| > 2vy/aln(2)] < 4.

Proof. By the symmetry of the Laplace distribution, union bound and the above theorem,

)\2
Pr{lY| > A <2exp (_4ay2) =0

by taking A = 2v4/aIn(3) < % which holds as v > byax/ =+ In(%) by assumption. [

To see how to use the corollary, for simplicity suppose b; = b, then for a given
(a,z*) we take v > max{bv'k, b,/ ——1In(2)}. Notice that when k is sufficiently large, i.c.,

k> ﬁ ln(%), taking a smaller a leads to a smaller A value. Thus we can obtain tighter
concentration bounds by minimizing A over the set {(z*,a) : == < ¢ when 0 < z < 2*}.

—x —
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6.3 Improved Concentration Bounds for Sampling With
Replacement

As an alternative to using Hoeffding and lemma 2, one can directly use the Hoeffding-
Serfling bound for sampling without replacement and even obtain some improvements.

Theorem 21 (Hoeffding-Serfling). Let D = xq,...,xx be a set of N values in [a,b]. Let
Xy, ..., X,, denote a random sample without replacement from D. Then, for any t > 0, we
have

Zf:l(Xi -EX;) 2nt?
" [mf}é P t] <o (=t =)

and

Z?:I(Xi —E X)) 2ni”
o [m P ‘t] <on (g ar)

Hoeffding-Serfling may be used to improve all the algorithms of section 5 and to demon-
strate this we provide an improved mechanism for count queries. As before, we implement
sumOptimizer on line 5 of Algorithm 9 by trying all pairs of start and end indices and
finding the pair that will minimize the confidence interval length. The proof of privacy
and accuracy are essentially the same but we derive the confidence interval using Theorem
21 instead.

We implement and evaluate algorithm 9 in Chapter 7 (figure 7.8). Our analysis shows
that using the Serfling variant provides a significant improvement in the later time steps
of the Gap mechanism.

Remark. Both Hoeffding and Hoeffding-Serfling inequalities result in an error term around
the estimates of magnitude O(I\’/;T%) However, given prior knowledge of the variance or a
private procedure to estimate the variance, we may further improve the confidence inter-
vals by using the Bernstein-Serfling bounds from [3]. The resulting error is of magnitude

O(\/Lm + bﬁ) which is a noticeable itmprovement when the variance bound is small.
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Algorithm 9 Hoeffding Serfling based Gap Mechanism for COUNT

1: INPUT: Database D = (B, ..., By,) of size n, block size B, privacy budget ¢, time step T,
confidence parameter p, query @

2: fort =1,2,22,23....T do

b=, B

Ct = Z§:%+1 2 z;eB,; Lujeq + Lap (¢)

(s, f) = sumOptimizer(t, ¢, n,p)

k= Z£ by

Co=n>1_ a/k

if s ==t then

. 1_b
Qp = minyg(o,1) \/( o ) ln(x(ﬁp)) + ln((lA)l(lp)))
10: else

. 1-A=1 V/8(f—s+1
11: oy = minyg(o,1) (\/( T ) ln(/\(f_p)) + (fek ) 1n((1—)\)2(1—p)))

12: end if
13: return interval [C; —n - oy, Cy + 1 - ]
14: end for
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Chapter 7

Evaluation

In this chapter, we provide several experiments for the differentially private online aggre-
gation mechanisms developed for AVG, COUNT, and SUM queries. We will discuss the
data set and experiment setup, performance metrics, and the results of this evaluation.
Our goal is to determine which mechanism produces the smallest confidence intervals and
to understand the impact of the parameter ranges on the confidence interval lengths. Our
main discovery is that the Gap mechanisms perform the best overall when answering the
queries in table 7.1. Furthermore, we demonstrate and explain the various optimizations
from Chapters 5 and 6.

7.1 Dataset and Queries

Our experiments were performed on the consumer travel report released by the US De-
partment of Transportation’s Bureau of Transportation Statistics [I]. The report contains

Q1: SELECT AVG(arr_dell5) FROM flights;

Q2: SELECT AVG(arr_dell5) FROM flights WHERE airport="PHX" AND month=1;
Q3: SELECT AVG(arr_dell5) FROM flights WHERE airport="PHX" ;

Q4: SELECT AVG(arr_dell5) FROM flights WHERE month=1;

Q5: SELECT COUNT(arr_dellb) FROM flights WHERE airport="PHX";

Q6: SELECT SUM(arr_dell5) FROM flights WHERE month=1;

Table 7.1: SQL queries for the flight delay data set
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WHERE Condition AVG COUNT | SUM
none 74.71617392382139 | 2911301 | 217521272
airport=“PHX” AND month=1 | 209.35321100917432 | 2180 456390
airport="“PHX" 185.1253698224852 | 27040 5005790
month=1 76.00113098479454 | 238730 | 18143750

Table 7.2: True AVG, COUNT, and SUM values of the SQL queries

information on the number of on-time, delayed, cancelled, and diverted flights operated by
larger air carriers. We duplicated the records 10 times to give us roughly 3 million tuples.
Furthermore, we add an index column to each row and uniformly randomly shuffle the
tuples. Each tuple has 21 attributes but we will focus on“arr_dell5” which is the arrival
delay, “month”, and “airport”. For the experiments, we are concerned about aggregating
arrival delay of flights and in this dataset, the values lie in the range [0, 6337].

We evaluate our private mechanisms over the queries found in Table 7.1. The first query
is over the entire data set but the ones involving WHERE conditions were carefully selected
and represent roughly 10%, 1%, and 0.1% of the data satisfying the condition. Specifically,
when the WHERE conditions are ‘airport=“PHX” AND month=1’, ‘airport=“PHX”’, and
‘month=1", the counts are 2180, 27040, and 238730 respectively. We do this to understand
how sparse queries can be while still getting meaningful aggregates.

7.2 Experiment Setup

Our main experiments involve testing the private mechanisms of Chapter 5 over a wide
range of parameters. We mostly focus on AVG queries as the algorithms for COUNT and
SUM are similar. To get a good understanding of the error from private noise addition, we
use privacy budgets e = 0.01,0.1, 1. Also, the various block sizes B = 100, 1000, 10000 are
used but the confidence probability is fixed to be p = 0.95. For the most part, the total
time steps 1" is chosen based on B so that the entire data set is processed by the end.

For the first set of experiments we will answer SELECT AVG (arr_dell5) FROM flights;
using Baseline 1, Baseline 2, Single, Multi, and Hybrid Gap mechanisms and the goal is
to determine the best overall strategy. The goal of the second set of experiments is to
understand the role of budget optimization. We study various AVG queries with WHERE
conditions (Q2-Q4 in Table 7.1) and we do so with two variants of the Single Gap mech-
anism. The first Gap mechanism naively splits the privacy budget in half and the second
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Gap mechanism optimizes how we split the budget € to reduce the confidence interval
lengths. Next, we look at COUNT and SUM queries both with WHERE conditions and
we compare them to the non-private algorithms. Lastly, we take a look at the impact of
some optimizations from sections 6.1 and 6.3. Specifically, how Hoeffding-Serfling bound
and privacy amplification improve our Gap mechanism.

Implementation: All experiments are done on a computer with specifications of 8GB
RAM, Intel Core i5-8250U CPU @ 1.60GHz CPU, and Ubuntu 18.04.2 operating system.
The source code for our experiments is written in Python and uses the DuckDB database
management system to process SQL queries.

7.3 Metrics

We present a few metrics to test our main hypothesis that the Gap mechanisms perform the
best overall. These metrics are also used to test our hypothesis that privacy amplification
and budget optimization are effective for improving the Gap mechanism.

CI Lengths/Alpha Values: The main metric we use is to track the alpha values which
are essentially half the confidence interval length. For a private mechanism, the alpha
values are obtained by combining the sampling error and the error from Laplace noise
addition via union bound. The benefit of comparing the alpha values of the mechanisms is
that it can be done privately and often can be computed or at least approximated before
the query has been run. Furthermore, smaller confidence interval lengths imply small
estimation error so this is a better metric overall.

Score: The objective function of Section 4 seeks to minimize the weighted confidence
interval lengths given an increasing set of weight functions. We refer to this quantity as
the score of a mechanism. We do not directly present results and plots for various score
functions except for when w; = 1 for all ¢ € [T]. However, we will discuss and justify which
mechanism will perform the best for a wide array of score functions.

Estimation Error: We plot the true value, non-private aggregate values and the private
mechanisms aggregate values for certain queries. This allows us to see which mechanism
has the smallest error by taking the difference from the true value, and also the effect of
private noise addition by comparing the private to the non-private aggregate.
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Figure 7.1: AVG Arrival Delays over the entire data set. As e decreases the need for Gap
mechanisms is clear.

7.4 Results

In this section, we present the results of our experiments.

7.4.1 Impact of Mechanism Choice

Overall it is evident that Algorithm 5 (Hybrid Gap Mech) outperforms the rest. Essentially
it interpolates between Algorithm 3 (Single Gap Mech) and Algorithm 4 (Multi Gap Mech)
so will always dominate the two. It is interesting to note that the simple Baseline 2
mechanism is very close to the Gap strategies when € = 0.1 and even outperforms them in
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Figure 7.2: Average delay WHERE airport=“PHX” and month=1". The query is sparse

and so budget optimization is crucial.
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Figure 7.3: Average delay WHERE airport=“PHX”. Except when ¢

optimization is not crucial for queries that make up ~ 1% of the database.
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Figure 7.4: AVG delay WHERE month=1. Roughly %10 of the tuples satisfy this condition
and it is clear that budget optimization is not necessary for dense queries.
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Figure 7.5: COUNT query WHERE airport=“PHX”. Gap based mechanisms preform
relatively well across all ranges of € when the tuples satisfying the query is dense enough
(approximately 1% of database).
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Figure 7.6: SUM Query WHERE month=1.
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Figure 7.7: Single Gap mechanism for AVG with no WHERE conditions. Privacy ampli-
fication is applied to first £ = 5 releases of the mechanism which corresponds to the first
25 —1 = 63 time steps. Amplification provides significant improvement in early stages even
when € = 0.01.
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Figure 7.8: COUNT query WHERE airport="PHX"”. It can be seen that the Hoeffdig-
Serfling based estimator provides significant improvements in the later time steps but is
comparable to classic Hoeffding bound early on.
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most time steps when € = 1. We will explain this phenomenon and go in-depth as to how
the parameter choices change the performance of the algorithms.

In the first column of Figure 7.1, we see that the Single Gap Mech outperforms the
Multi Gap Mech, the reason being that the error from Laplace noise dominates the error
from sampling. Since our gap sizes are powers of 2, the Multi Gap Mech and even Baselinel
and Baseline2 use twice as many samples as Single Gap Mech. This leads to to a smaller
sampling error but the additional O(y/logt), O(T) and O(+/t) factors on the error from
Laplace noise make these a worse strategy compared to the O(1) factor on the Single Gap
Mech. In the second and third columns, we see a similar trend to the first but the larger
privacy budget means that the Laplace noise quickly shrinks, and eventually the sampling
error is the dominant term. Notice that the Baseline 2 strategy is a viable option in these
high privacy budget cases.

It should also be noted that since the Hybrid Gap mechanisms alpha values are almost
always smaller than the alpha values of the other mechanism, we essentially get that the
score of the Hybrid Gap Mech given any increasing set of weights is going to be smaller
than that of the other mechanisms. In figure 7.5, we again see those Gap based mechanisms
perform well even for COUNT queries. It is fair to say Gap mechanisms perform the best
overall.

7.4.2 Impact of Budget Optimization

Given a WHERE condition, we evaluate what is essentially the Single Gap Mech from
the previous section modified as the total number of elements in the database satisfying
the WHERE condition needs to be private. When splitting the privacy budget, we may
simply split it in half for the noisy sum and the noisy count or we can optimize the budget
appropriately. We perform experiments for the gap mechanism with and without budget
optimization. Unlike the previous section where the alpha values will always be consistent,
for this algorithm, a bad estimation of the count can lead to unreasonably large private
alpha values. For that reason, we apply post-processing so that the maximum interval size
corresponds to the range [0,6337]. Furthermore, we run each algorithm a total of 5 times
to get a better idea of the performance. To illustrate the performance based on the sparsity
of the queries that satisfy the condition, we give three different conditions. Roughly, the
first condition is 0.1% of the database the second is 1% and the third is 10%.

When taking the average with “WHERE month=1 AND airport=PHX” the total num-
ber of elements satisfying the condition is 2180. Unfortunately, this is too small of a count
to get any meaningful aggregate with e = 0.01 as can be seen from the first chart in figure
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7.2. Occasionally one can get an interval smaller than the full range with the optimized
budget GAP mechanism but even then, on some iterations, one may get unlucky and get
the largest possible alpha value. As e gets larger we see that the budget optimization is
less essential but still beneficial.

When using “WHERE airport = PHX”, the total count is 27040. As can be seen
in figure 7.3 both algorithms perform relatively well even when ¢ is small as we now
have enough samples. As noted before, budget optimization provides more noticeable
improvements for the smaller € values. The same trend is noticed when we use “WHERE
month = 1”7 which is a query that 238730 elements satisfy. The private alpha values are
much smaller in this case as expected.

7.4.3 Impact of Privacy Amplification

In figure 7.7 we see the impact of privacy amplification on the early time steps when
running the Gap mechanism for simple AVG queries. It should be noted that we post-
process the alpha values so that the estimate always lies in the range [0, 6337] which we did
not do in figure 7.1. Notice that the alpha values for the amplified ranges are increasing
rather than decreasing after time step 63. While this increase is brief and can be corrected
through additional post-processing, it highlights that Laplace noise is the main source of
error in the early steps. Even when the privacy loss is at most € = 0.01, by the privacy
amplification results, for the first 5 gaps it suffices to use ¢ = 0.468. This improves the
error from Laplace noise addition by a factor of 46. Contrast this with the results from
figure 7.1 for the same parameter range of ¢ = 0.01 and B = 100 and notice that in the
chart, the initial alpha values correspond to intervals of size greater than 6337, where the
size of an interval is the difference between the endpoints.

7.4.4 Impact of Improved Concentration Bound

In the early time steps, both the classic Hoeffding bound for sampling with replacement
and the Serfling variant for sampling without perform similarly. This is because sampling a
set of relatively small size from a large data set will result in very few duplicates essentially
making them equivalent. In the later time steps where we have a much larger sample,
sampling without replacement provides a noticeable improvement in reducing the sampling
error.
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Chapter 8

Conclusion and Open Questions

In this thesis, differentially private online aggregation is formulated for the first time. We
identify how the desiderata for data analysis in the non-private online aggregation setting
should be adapted for the differentially private online aggregation setting. Specifically,
some requirements from the non-private setting such as wanting evenly paced updates
are detrimental to private online aggregations’ accuracy. We relax this requirement by
introducing an objective function, which we call the score, that provides users with control
over the accuracy and usability trade-offs.

Our main contribution is a family of differentially private algorithms we refer to as Gap
mechanisms. Gap mechanisms can accurately answer common SQL queries such as AVG,
COUNT, and SUM even in the presence of arbitrary WHERE conditions. Through our
empirical study, we see that the Gap mechanisms perform the best overall in comparison
to our baseline solutions and dominate especially when the privacy budget € is small.
Strategies for improving the Gap mechanisms by integrating privacy budget optimization,
privacy amplification, and improved concentration bounds are discussed and empirically
verified.

In future work, we will explore how distributional assumptions and techniques from
private statistics [24, 0, 23, 10] can be leveraged to improve differentially private online
aggregation. Furthermore, our work focused on single table queries but an interesting
open problem is to adopt GROUP BY and JOIN queries to the private online aggregation
setting.

44



References

1]
2]

3]

[4]

[5]

[7]

8]

[9]

Airline on-time statistics and delay causes, Apr 2021.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsam-
pling: Tight analyses via couplings and divergences, 2018.

REMI BARDENET and ODALRIC-AMBRYM MAILLARD. Concentration inequal-
ities for sampling without replacement. Bernoulli, 21(3):1361-1385, 2015.

Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sam-
pling without replacement. Bernoulli, 21(3):1361 — 1385, 2015.

Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. SAQE: practical

privacy-preserving approximate query processing for data federations. Proc. VLDB
Endow., 13(11):2691-2705, 2020.

Sourav Biswas, Yihe Dong, Gautam Kamath, and Jonathan R. Ullman. Coinpress:
Practical private mean and covariance estimation. In Hugo Larochelle, Marc’ Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Adrian Rivera Cardoso and Ryan Rogers. Differentially private histograms under
continual observation: Streaming selection into the unknown, 2021.

T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of
statistics. ACM Trans. Inf. Syst. Secur., 14(3):26:1-26:24, 2011.

Aloni Cohen and Kobbi Nissim. Linear program reconstruction in practice. J. Priv.
Confidentiality, 10(1), 2020.

45



[10]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

Christian Covington, Xi He, James Honaker, and Gautam Kamath. Unbiased statis-
tical estimation and valid confidence intervals under differential privacy, 2021.

Rachel Cummings, Sara Krehbiel, Kevin A. Lai, and Uthaipon Tantipongpipat. Dif-
ferential privacy for growing databases, 2018.

Wei Dong and Ke Yi. A nearly instance-optimal differentially private mechanism for
conjunctive queries, 2021.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in
Computer Science, pages 265-284. Springer, 2006.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential
privacy under continual observation. In Leonard J. Schulman, editor, Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 715-724. ACM, 2010.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3-4):211-407, 2014.

Hendrik Fichtenberger, Monika Henzinger, and Wolfgang Ost. Differentially private
algorithms for graphs under continual observation. In Petra Mutzel, Rasmus Pagh,
and Grzegorz Herman, editors, 29th Annual FEuropean Symposium on Algorithms,
ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204
of LIPIcs, pages 42:1-42:16. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021.

Simson L. Garfinkel, John M. Abowd, and Christian Martindale. Understanding
database reconstruction attacks on public data. Commun. ACM, 62(3):46-53, 2019.

Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Alex
Delis, Christos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of Data, June
1-8, 1999, Philadelphia, Pennsylvania, USA, pages 287-298. ACM Press, 1999.

Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. Selectivity and
cost estimation for joins based on random sampling. Journal of Computer and System
Sciences, 52(3):550-569, 1996.

46



[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. Selectivity
and cost estimation for joins based on random sampling. J. Comput. Syst. Sci.,
52(3):550-569, June 1996.

Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In Joan
Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Confer-
ence on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages 171—
182. ACM Press, 1997.

Noah M. Johnson, Joseph P. Near, and Dawn Song. Towards practical differential
privacy for SQL queries. Proc. VLDB Endow., 11(5):526-539, 2018.

Gautam Kamath, Vikrant Singhal, and Jonathan R. Ullman. Private mean estimation
of heavy-tailed distributions. In Jacob D. Abernethy and Shivani Agarwal, editors,
Conference on Learning Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz,
Austriaf, volume 125 of Proceedings of Machine Learning Research, pages 2204-2235.
PMLR, 2020.

Vishesh Karwa and Salil P. Vadhan. Finite sample differentially private confidence
intervals. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of
LIPIcs, pages 44:1-44:9. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join and XDB: online aggregation
via random walks. SIGMOD Rec., 46(1):33-40, 2017.

Stephen Macke, Maryam Aliakbarpour, Ilias Diakonikolas, Aditya G. Parameswaran,
and Ronitt Rubinfeld. Rapid approximate aggregation with distribution-sensitive in-
terval guarantees. In 37th IEEFE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19-22, 2021, pages 1703-1714. IEEE, 2021.

Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N. Wright.
Pan-private algorithms: When memory does not help. CoRR, abs/1009.1544, 2010.

R. J. Serfling. Probability Inequalities for the Sum in Sampling without Replacement.
The Annals of Statistics, 2(1):39 — 48, 1974.

Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. Computing local
sensitivities of counting queries with joins. In David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings
of the 2020 International Conference on Management of Data, SIGMOD Conference

47



2020, online conference [Portland, OR, USAJ, June 14-19, 2020, pages 479-494. ACM,
2020.

[30] Jonathan Ullman. Cs7880: Rigorous approaches to data privacy hwl, 2017.

48



	List of Figures
	List of Tables
	Introduction
	Related Work
	Preliminaries
	Online Aggregation
	Differential Privacy
	Concentration Bounds

	Problem Formulation
	Desiderata for Private Online Aggregation
	Problem Setup

	DP Algorithm Design
	Average Query
	Average Query with Where Condition
	Count Query
	Sum Query

	Optimizations
	Privacy Amplification
	Improved Laplace Concentration Bound
	Improved Concentration Bounds for Sampling With Replacement

	Evaluation
	Dataset and Queries
	Experiment Setup
	Metrics
	Results
	Impact of Mechanism Choice
	Impact of Budget Optimization
	Impact of Privacy Amplification
	Impact of Improved Concentration Bound


	Conclusion and Open Questions
	References

