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Abstract

Explainable AI (XAI) methods are frequently applied to obtain qualitative insights
about deep models’ predictions. However, such insights need to be interpreted by a human
observer to be useful. In this thesis, we aim to use explanations directly to make decisions
without human observers. We adopt two gradient-based explanation methods, Integrated
Gradients (IG) and backprop, for the task of 3D object detection. Then, we propose a
set of quantitative measures, named Explanation Concentration (XC) scores, that can be
used for downstream tasks. These scores quantify the concentration of attributions within
the boundaries of detected objects. We evaluate the effectiveness of XC scores via the task
of distinguishing true positive (TP) and false positive (FP) detected objects in the KITTI
and Waymo datasets. The results demonstrate improvement of more than 100% on both
datasets compared to other heuristics such as random guesses and number of LiDAR points
in bounding box, raising confidence in XC’s potential for application in more use cases.
Our results also indicate that computationally expensive XAI methods like IG may not be
more valuable when used quantitatively compared to simpler methods. Moreover, we apply
loss terms based on XC and pixel attribution prior (PAP), which is another qualitative
measure for attributions, to the task of training a 3D object detection model. We show
that performance boost is possible as long as we select the right subset of predictions for
which the attribution-based losses are applied.
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Chapter 1

Introduction

1.1 Motivation

Recent development in deep neural networks (DNNs) has led to the state of the art perfor-
mance on 2D [16, 18, 32, 39, 40] and 3D [25, 47, 62] object detection tasks. However, de-
spite of the improvement in model performance, the lack of model interpretability remains
a significant drawback. This issue has sparked interest in explainable artificial intelligence
(XAI). The primary goal of these XAI methods is to uncover the logic behind the models’
decisions [29].

Several recent methods have been proposed to generate interpretable visual explana-
tions [44, 48, 51, 53, 61]. They are usually analyzed by a human observer to understand
the model’s reasoning for some particular decisions. Hence, explanations are very useful
for debugging and diagnosis. However, it would be impossible for a human to analyze
each instance in a large dataset. To analyze explanations on a large scale, it is necessary
to derive quantitative measures from the explanations. There have been a few works in
this direction [11, 42, 43], one notable measure is pixel attribution prior [11], which mea-
sures the smoothness of the attribution map. But the input data experimented with in
these works are 2D image, text, or tabular data. We have not found any experiments
on explanations-related quantitative measures applied to LiDAR point cloud input or to
the task of object detection. Our motivation is to fill in the gap by exploring quantitative
usage of explanations for LiDAR-based object detection. We choose to focus on 3D LiDAR
data mainly due to its relevance to robot perception, specifically for the task of automated
driving.
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1.2 Overview

We study explanations in the form of attribution maps for a 3D object detector named
PointPillars [25] and use them for the problem of distinguishing true positive (TP) vs.
false positive (FP) predictions. Attributions, in the context of XAI, denote the influence
of input features on model output. We generate attribution maps using two XAI methods:
1) Integrated Gradients (IG) [53], selected for its axiomatic properties; 2) backpropagation
[48], selected for its low computational cost. Our main contributions are 1:

• We demonstrate that quantitative usage of explanation for 3D object detection is
a promising direction for future research: We propose a set of quantitative metrics
called Explanation Concentration (XC), which measures the concentration of attri-
butions within each predicted object. XC can be used to classify the TP vs. FP
predictions effectively, often achieving more than 100% improvement compared to
simple heuristics such as number of LiDAR points within a predicted box.

• We discover that XC scores derived from backpropagation can perform better than
those derived from IG.

• We propose a new score that can identify TP vs. FP predictions better than the
individual XC scores and object class score. This score is generated by combining
the XC scores with object class score using a MLP.

• We design loss functions based on XC and pixel attribution prior and apply them
when training PointPillars. We discover that in some cases, the model trained with
attribution related losses can notably outperform the model trained without such
losses.

Chapter 2 briefly introduces related work on XAI methods, quantitative usages of XAI,
LiDAR-based object detection, and false positive detection. Chapter 3 then describes how
we obtain feature attributions for PointPillars and how the XC scores are computed from
the attributions. Chapter 4 describes the experiments on using XC derived from IG and
backpropagation attributions to help identify TP vs. FP predictions, as well as combining
the XC scores with class score to further improve performance. And lastly in Chapter 5
we present results on using attribution-related loss functions to train PointPillars.

1Our code is available at https://github.com/SunshengGu/XC_eval_pcdet.
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Chapter 2

Related work

2.1 Explanation methods

As listed in the Cambridge Dictionary of English Language, the term “explanation” is
defined as “the details or reasons that someone gives to make something clear or easy to
understand”[55]. Arrieta et al. [1] rephrased this definition in the context of machine
learning as “the details or reasons a model gives to make its functioning clear or easy to
understand”. Interpretability, on the other hand, can be defined as “the ability to explain or
to provide the meaning in understandable terms to a human” [1]. Some simple models, such
as logistic regression or decision trees, are highly interpretable. It can be said that these
models explain themselves. A human observer would not need any extra algorithms/tools
to understand the model’s reasoning. However, more complex models with millions of
parameters, such as deep neural networks, can not be interpreted by a human being. The
model’s parameters cannot offer an explanation for its reasoning that can be understand
by humans. This is where Explainable AI (XAI) methods can be helpful. There are many
methods are designed to reveal complex models’ reasoning easily understandable by human
observers. Details will be provided in the following sections.

2.1.1 Categorization of explanation methods

This section discusses the categorization of XAI methods. XAI approaches can be catego-
rized along four dimensions [1]:

1. Model dependency
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2. Level of explanation

3. Time of explanation

4. Methodology

Explanation approaches can be categorized by dependency on the model being ex-
plained. When an explanation approach does not require any knowledge of the model be-
sides model inputs and outputs, then the approach is said to be “model-agnostic”. When
an explanation approach relies on access to model parameters to generate explanations,
such an approach is called “model-dependent”.

The level of explanation can also be used to categorize different approaches. Expla-
nations can be at the model or class level or at the instance level. At the model level,
the reasoning of the model towards a specific class or classes is explained. This requires
global understanding of the model and is very difficult to achieve. At the instance level,
the reasoning of the model towards a specific input and output pair is explained. Note that
all the explanation methods presented in Section 2.1.2 to Section 2.1.4 are generating
instance level explanation, which is reflective of the current state of the field.

Explanations can also be generated at different points in time. Very frequently, expla-
nations are generated in a post-hoc fashion, i.e., explaining the model’s reasoning after the
model has completed its task. In this case, the explanation process is not part of the model.
In some other cases, explanations are generated in an intrinsic fashion, i.e., explanations
are generated by the model itself as it is performing its primary task (e.g., classification
or regression). Such approaches are useful when explanations can help the model perform
better on its primary task.

We can also categorize the explanation methods based on the way how the explanations
are generated. One could use a separate simpler model (i.e., the surrogate model) to
generate explanations for a more complex model, or apply perturbation to model inputs
and analyze changes in model outputs (perturbation analysis), or generate explanations
by computing the gradient of model output with respect to model input (gradient-based
explanations). The following sections discuss each of these mythologies in details. The
explanation methods experimented in this thesis, backprop and Integrated Gradients, are
all gradient-based methods.

2.1.2 Surrogate model

One method for creating explanations is to learn a surrogate model. The surrogate model
is more interpretable than the original model, but generates similar output given the same
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input. The original model could be a convolutional neural network (CNN), whereas the
surrogate model would be a linear model or decision tree. One famous work applying such
technique is Local Interpretable Model-agnostic Explanations (LIME) [41]. The intuition
behind the LIME technique is demonstrated in Figure 2.1. The key idea is to learn a
locally faithful linear classifier as a surrogate model for the original model. In Figure 2.1,
the boundary between the blue and pink regions represents the decision boundary learned
by the original model. The bold red cross represents the instance to be explained, the
smaller red crosses represent samples from the same class, and the dark blue dots are
samples from another class. The size of a cross/dot represents its weight, the closer it
is to the instance of interest (bold red cross), the more important that sample is. Then
from this weighted set of samples, a linear classifier is learned, signified by the dashed line.
This linear classifier roughly coincides with the original model’s decision boundary in the
instance’s vicinity, and the goal of learning a locally faithful surrogate model has been
achieved. To obtain the instances in the neighborhood of the input image to learn the
linear surrogate model and generate interpretable explanations, LIME converts the input
image into a vector of superpixels. Then many instances close to the input image can be
generated by simply graying out or retaining these superpixels. Explanations are obtained
by producing instances that corresponds to different predictions, as shown in Figure 2.2.

LIME provides instance level explanation by design, although it could be used to gen-
erate model level explanation by combining surrogate models learned from many different
instances across the input distribution. LIME is model-agnostic and generates post-hoc
explanations.

Figure 2.1: Illustration of LIME’s surrogate model generation process [41].
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Figure 2.2: LIME’s explanation for different classes [41].

2.1.3 Perturbation analysis

Explanations may also be generated by introducing perturbations in the input. One com-
mon approach is to partially occlude an input to learn regional importance. Zeiler and
Fergus [61] presented a partial occlusion analysis in the form of heatmap. Their approach
is illustrated in Figure 2.3. The input image contains a Pomeranian dog. A smaller square
grey box is overlaid onto the input image to partially occlude it. The partially occluded
image is fed through the classification model and the class probability for Pomeranian is
obtained. The grey box is moved across the input image according to a certain step size, the
model performs classification at each of these steps. The class probability for the correct
class is plotted as the function of the grey box center location. The end result is a heatmap.
Regions with low scores are recognized as more important for the class of interest. From
the given example, one can observe that when the face of the dog is occluded, there is
a significant drop in class probability for “Pomeranian”, indicating that the dog’s face is
important for correctly classifying it, which is a quite reasonable explanation. This partial
occlusion scheme generates explanation in a post-hoc fashion, and is model-agnostic.

2.1.4 Gradient-based methods

There are an abundance of gradient-based approaches for assigning importance to input
features. The values indicating feature importance are usually referred to as attributions,
and the attributions form an attribution map that is usually the same size as the input
(see Figure 2.4 for examples). The intuition behind these approaches are similar to that
of backpropagation. In the context of deep learning, backpropagation usually refers to the
process of computing the gradient of the loss function with respect to model parameters,
so that the parameters can be adjusted to improve model performance. In the context
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Figure 2.3: Partial occlusion analysis for a dog image [61].

of XAI, backpropagation can be modified to compute the gradient of an output neuron
with respect to input features [61]. In classification, an output neuron represents a specific
class. Computing the gradient of this neuron with respect to an input pixel would reveal
the importance of this specific pixel to this specific class.

Besides this modified version of backpropagation, there are two other similar ap-
proaches: deconvolutional neural networks (DeconvNet, proposed by Zeiler and Fergus
[61] as a visualization technique and refined by Springenberg et al. [51]) and Guided-
backpropagation [51]. Assuming ReLU activation function is applied, backprop would zero
out gradients for neurons with negative values in the forward pass, and DeconvNet zero out
negative gradients in the backward pass. Guided-backprop combines the two methods and
filters out negative values in both forward and backward passes. The resulting attribution
map from Guided-backprop would highlight features that positively influence the model
output.

Integrated gradients (IG) [53] is a more sophisticated gradient-based approach for as-
signing attributions to inputs. It is designed based on two axioms which the authors claim
are crucial for generating valid explanations: sensitivity and implementation invariance.
Sensitivity has two components: 1) input features that influence the model output are
guaranteed to have nonzero attributions, and 2) input features that do not influence the
model output are guaranteed to have zero attributions. Implementation invariance, on the
other hand, ensures that the explanation method generates the same explanations for two
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functionally equivalent models. Two models are said to be functionally equivalent if, given
the same input, they always generate identical output. Most gradient-based explanation
approaches satisfy implementation invariance due to chain rule: gradient of output with
respect to input equals to the product of the intermediate gradients. But these gradient-
based approaches fail to satisfy sensitivity, because activation functions such as ReLU will
filter out negative values in the forward pass. As a result, the explanation will not capture
all influences in the input image.

IG ensures sensitivity by computing the path gradient along a straight line from the
baseline x′ to the input x. The baseline x′ is an input which produces 0 output when fed
through the model. For perception, the baseline is a black image with all feature values
equals to zero. Integrated gradient is defined below:

IntegratedGrads i(x) ::= (xi − x′i)×
∫ 1

α=0
∂F (x′+α×(x−x′))

∂xi
dα (2.1)

Where F (input) represents model output for a certain input. In this way, the attribution
values are scaled by the difference between the input feature value and the baseline value (0
in this case), and features identical to the baseline are guaranteed to have zero attributions.
Note that the subscript i signifies a specific feature in the input, and integrated gradient
is computed in an element-wise fashion. The authors pointed out that the sum of all the
individual ith integrated gradients is the same as the difference in model outputs between
the input and the baseline. Hence, all differences in outputs are attributed to differences
in input features (i.e., pixels for images) and sensitivity is satisfied. In addition, since this
approach is gradient based, implementation invariance is satisfied as well. The integral part
in Equation (2.1) is approximated using Riemann sum by taking a certain number of steps
from x′ to x. The authors suggest taking 20 to 300 steps to achieve less than 5% error. The
attribution maps generated from integrated gradients are compared with those generated
from backpropagation in Figure 2.4. It is clear that integrated gradients precisely identifies
pixels which are important for the class of interest, whereas backpropagation sometimes
highlights unimportant pixels and ignores important ones due the fact that sensitivity is
not satisfied.

Despite of IG’s recent popularity, Erions et al. [11] challenge it by pointing out that
IG’s choice of a black image as baseline is not always valid. Take MNIST for example, if
one flips the pixel values, then the digits patterns are represented by black pixels with zero
values, and the background pixels would be white. In this case, the zero-valued black pixels
should get some attribution values. Instead of picking a fixed baseline, the authors propose
a new method named Expected Gradients (EG), where a certain number of baseline images

8



Figure 2.4: Pixel attribution for various classes generated by integrated gradients and
backpropagation (i.e., gradients) [53].
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are randomly sampled from the training set D and α is sampled from U(0, 1):

ExpectedGradients i(x) := E
x′∼D,α∼U(0,1)

[
(xi − x′i)×

δf(x′+α×(x−x′))
δxi

]
(2.2)

The authors proposed eighteen evaluation metrics for attributions, and evaluated IG, EG,
and backprop attributions generated from a toy dataset. EG slightly outperforms IG and
greatly outperforms backprop in most of the metrics. They also trained models with a
loss function based on EG attributions and improved performance on noise datasets, more
details are provided in Section 2.2.2.

It is important to note that all gradient-based explanation approaches are post-hoc and
model-dependent. Because backpropagation of gradients can only be performed after the
model has processed the input and gradient values are dependent on the model parameters
and architecture.

2.2 Quantitative Usage of Explanations

Explanations are usually analyzed qualitatively by human observers to help understand
model reasoning and debug models. For example, overlaying attribution map on top of
images can reveal which part of the input image influences model output. If an image
classifier labels an image as “computer monitor” but the attribution map highlights the
keyboard besides the monitor, then we know the model is focusing on the wrong thing.
But explanations can also be used quantitatively. Several previous works [11, 42, 43]
have explored the usage of explanations in training neural networks, the follow paragraphs
discuss the key findings from these works.

2.2.1 Being right for the right reasons

Ross et al. [43] use explanations to 1) make the model ignore irrelevant features when
prior knowledge about feature relevance is available and 2) make the model discover new
rules for generating predictions when such prior is not available. They use gradient of the
log of model output with respect to input features as attributions for these features. The
prior knowledge about feature relevance is encoded as such:

A ∈ {0, 1}N×D (2.3)

where N is the number of training samples and D is the number of features per sample.
Each entry in the matrix encode relevance of the corresponding feature, 1 means irrelevant,
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and 0 means relevant. For example, if An,d = 1 then the dth feature of the nth training
instance should have no influence on the model output.

Then the stage is set for a new loss function that can force the model to make decisions
solely based on the relevant features:

L(θ,X, y, A) =
N∑
n=1

K∑
k=1

−ynk log (ŷnk)︸ ︷︷ ︸
Right answers

+λ1

N∑
n=1

D∑
d=1

(
And

∂

∂xnd

K∑
k=1

log (ŷnk)

)2

︸ ︷︷ ︸
Right reasons

+λ2

∑
i

θ2
i︸ ︷︷ ︸

Regular

(2.4)

where K represents the number of possible classes, Θ represents model parameters, X
and y represent training inputs and labels. In this way, nonzero attributions for irrelevant
features are punished, and the model would learn to ignore such features in the input. The
authors argue that this loss function can make the model make right decisions (achieved
by the classification loss) for the right reasons (achieved by the attribution loss). They
experimented this strategy on the Decoy MNIST dataset, a dataset similar to MNIST [26],
but with gray patches of size 4 × 4 pixels randomly placed on one of the 4 corners of the
input image. Without the attribution loss, the test accuracy is around 50%, but with the
attribution loss penalizing attributions assigned to the gray patch pixels, the test accuracy
reaches close to 100%.

Even when no prior knowledge about feature relevance is available, the attribution loss
can still be used to help the model discover new rules iteratively. Initially, the matrix A is
all zero. After the first training cycle, the features with high attribution values are marked
as 1 in A, forcing the model to not rely on these features in the next training cycle. As a
result, the new model would learn to generate predictions based on other features, hence
learning new rules for making decisions. This process can be repeated multiple times to
generate multiple models, each focusing on a different set of features. A domain expert
can review these models and pick the best one.

2.2.2 Pixel attribution prior

Erion et al. [11] proposed a loss named “pixel attribution prior” (PAP) for image classifica-
tion to make the model assign similar attributions to neighbouring pixels. The formulation
is as follows:

Ωpixel (Φ(θ,X)) = λ
∑
`

∑
i,j

∣∣φ`i+1,j − φ`i,j
∣∣+
∣∣φ`i,j+1 − φ`i,j

∣∣ (2.5)
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where ` is the sample id, i and j represent pixel location, and φ represents attribution
value. To train a model with this loss, one could replace the attribution loss term in
Equation (2.4) with Equation (2.5). The intuition behind PAP is that neighbouring pixels
in an image should have similar attributions. To a human observer, small variations in a
few pixels should barely make any differences, but such variations can sometimes change
model output drastically. The goal of PAP is to make the model more robust by training
it to focus on larger patterns in the input image, rather than allowing a few pixels sway
model decisions. Figure 2.5 shows how PAP changes the attribution map. One advantage
of PAP compared to the method proposed by Ross et al. [43] is that it does not require
any prior knowledge about feature relevance.

Figure 2.5: Attribution maps for digit 7 generated from a model trained without PAP and
a model trained with PAP [11].

The authors injected Gaussian noise into MNIST [26] and CIFAR10 [23] to analyze the
benefit offered by PAP. They compare performance of models trained with vs. without
PAP. When training on the original datasets, the model trained with PAP is performing
slightly worse than the other model. But when training on noisy datasets, the model
trained with PAP outperforms the other model by large margins, sometimes leading to
more than 50% improvement on test accuracy.

2.2.3 Other ways to use explanations quantitatively

Rieger et al. [42] also propose a method called CDEP to constrain attributions by defining
a loss which is proportional to the difference between the attribution values and prior target
attribution values. They are able to improve model performance on skin cancer detection,
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as well as on variations of the MNIST dataset. Du et al. [10] propose a framework called
CREX that can improve DNN performance on text data by forcing the model to generate
explanations that conform to expert rationales (a subset of features recognized by domain
experts as useful for predictions). Even when no such rationales are available, CREX can
still generalize the model by ensuring sparse attributions.

In previous works on quantitative usages of explanations, the focus has always been to
improve model performance. Similarly, in this thesis, we also attempt to improve object
detector performance using quantitative measures of explanations (see Chapter 5). But
we also explore a new use case: distinguishing true positive vs. false positive predictions
using explanations (see Chapter 4).

2.3 LiDAR-based object detection

2.3.1 3D object detection models

Object detection is a more challenging task than image classification, as there can be
multiple detected objects in an image or a LiDAR point cloud, and for each detection, both
classification (for labelling the detection) and regression (for determining the detection box
parameters) need to be performed. In 2D object detection, recent works mainly adopted
two strategies: 1) A two-stage network where region proposals are generated in the first
stage, then refined and filtered into box predictions in the second stage; R-CNN [16] and
its derivatives [15, 17, 40] fall into this category. 2) A single-stage network where a fixed
set of anchor boxes are filtered and refined to generate box predictions; YOLO [39] and
SDD [32] fall into this category.

Since LiDAR point cloud is scattered in a 3D space, object detection using LiDAR
data is a 3D perception problem. One popular technique for 3D object detection is to first
voxelize the 3D point cloud into either 3D grids or 2D bird’s eye view grids, then apply
3D or 2D convolutional layers to the voxel-wise features to learn higher level features.
Techniques used for 2D object detection, such as region proposal and anchor boxes, can
then be applied to the extracted feature maps. MV3D [5], Pixor [60], VoxelNet [62],
SeCOND [59], and PointPillars [25] all partly adopted this strategy.

On the other hand, there are ways to extract features from point cloud without voxel
feature extraction or any convolutional networks. PointNet [37] learns 3D features directly
from point cloud and is invariant to point ordering, translation, and rotation. PointNet++
[38] further improves PointNet by capturing local structures. Recent 3D object detectors
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have been using PointNet or PointNet++ as part of the network. For example, PointRCNN
[47] uses PointNet++ as point feature extractor, PV-RCNN [46] uses PointNet++ to
extract 3D convolutional features at different scales, and PointPillars [25] also uses PointNet
as part of its voxel feature encoding process.

PointPillars’ [25] superior performance on KITTI [14] LiDAR dataset and its fast in-
ference speed (62Hz) make it a desirable choice for deployment on embedded hardware,
such as in autonomous vehicles. It is a 3-stage network consists of a pillar feature net, a
2D CNN backbone, and an SSD [32] as the detection head. Hence, we choose PointPillars
for our experiments.

2.3.2 Evaluation metrics for object detection

The performance of an object detector is most often evaluated in terms of Average Pre-
cision (AP). It evaluates a model’s ability to correctly identify the cared objects without
generating too many false predictions. To understand the AP metric, it is important to
introduce the concept of precision and recall. In the context of object detection, the objects
that are intended to be detected (also called “ground truth” objects) can be considered
as the positive instances, and everything else (including background stuff like sky, road,
and lawn) can be considered as the negative instances. Referring to Table 2.1, if a positive
instance is correctly detected, then we have a true positive (TP), otherwise this object is
a false negative (FN). If a detected object does not match any positive instances, then we
have a false positive (FP). True negative (TN) is usually not evaluated for object detection,
because there is an infinite number of negative instances (everything other than the cared
objects). Note that one may also use the same confusion matrix (Table 2.1) to count the
number of TP, FP, TN, FN in the context of binary classification, more details on that is
provided in Section 4.1.

Intersection over union (IoU) is often used to match predicted objects with ground truth
objects. IoU is the area (for 2D objects) or volume (for 3D objects) of the intersection of
the predicted object and the ground truth object divided by the area or volume of their
union. One can then set a threshold for IoU to decide if a prediction has a matching object.
Precision (TP/(TP+FP)) reveals how much of the detected objects actually correspond
to the ground truth objects, and recall (TP/(TP+FN)) reveals how much of the ground
truth objects are correctly identified by the detector. A plot with precision as the y-axis
and recall as the x-axis is called a precision-recall (PR) curve [8].

To plot the PR curve for an object detector, the final predictions are ranked based
on object class score, the precision and recall values are then computed at different score
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Table 2.1: Confusion matrix for two classes

Positive instances Negative instances
Predicted to be positive TP FP
Predicted to be negative FN TN

values. Say we have n predictions from a model, with scores [S0, S1, ..., Sn−1], then we can
step through each Si as a threshold, and using only the predictions with score >= Si to
compute and plot precision and recall at each step. Now the stage is set for computing
average precision (AP).

Figure 2.6: Smoothing a PR curve by monotone interpolation. The orange curve is the
original PR curve, the green curve is the PR curve after interpolation [7].

AP is often obtained by first smoothing the PR curve and then averaging the precision
values across a number of different recall values. By interpolating all precision values to
match the greatest precision value to the right, small undulations in the PR curve caused
by the ranking of predictions are filtered out (see Figure 2.6). The specific number of data
points used varies for different datasets/models. For example, in Pascal VOC2008 [12],
the average of precision values at 11 recall values (0, 0.1, ..., 0.9, 1) is reported. Whereas
for the COCO dataset [31], up to 101 data points are used to obtain AP. Another way to
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compute AP is to just compute the area under the smoothed PR curve, which is a strategy
adopted by Pascal VOC2010 [13]. If a model achieves high AP, it is means this model is
able to correctly identify most of the ground truth objects without generating too many
FP. If AP is low, then that means the model misses too many ground truth objects and/or
produces too many FP.

In object detection, the term mean AP (mAP) is often used interchangeably with AP.
mAP originally means the mean of several different AP values. For example, one can
evaluate AP using different IoU thresholds, and obtain the mean of these AP values. Or
one can compute the mean of AP values obtained from different object classes. But later
the meaning of mAP gets confused with AP and the true meaning of mAP or AP is often
deduced from context [31].

2.4 False positive detection

Several attempts have been made to effectively identify false positive (FP) predictions.
Hendrycks and Gimpel [19] demonstrated that the softmax class probability could effec-
tively distinguish true positive (TP) and false positive (FP) predictions in various image
classification, sentiment classification, and text categorization datasets, with performance
far exceeding random guess. The intuition is that the model should have higher prediction
confidence for the TP samples than for the FP ones.

On the other hand, Chen et al. [4] used a similar but more sophisticated approach to
suppress false positives and uncover false negatives for pedestrian detection. They first run
a pretrained model Ms and group the predictions into two sets, P containing the boxes
with softmax score exceeding a high threshold h ( 0.95), and N containing the remaining
boxes. Then they 1) retrain Ms to obtain a new model Mi and feed inputs from N through
Mi, and 2) add a cluster of new predictions generated by Mi with high softmax score into
P . In essence, the boxes are re-ranked based on softmax score in each iteration. The
process is repeated until |P | meets a preset threshold. Their method was proven to be
effective in improving model performance on KITTI and Cityscapes [6].

Besides the two above mentioned works which applied techniques specifically for detect-
ing/suppressing FPs, there are some other works focusing on handling adversarial attacks
or detecting out-of-distribution (OOD) samples. The techniques proposed in these works
might also be applied to detect FPs. Some notable works are feature squeezing [57], LID
[34], and GraN [33] for detecting adversarial samples, ODIN [30] for OOD detection, and
[28] who used Mahalanobis distance to detect both adversarial and OOD detection.
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Chapter 3

Explanation Concentration (XC)

Figure 3.1: Overview of the XC calculation process: PointPillars first process the input
point cloud once, then an XAI method computes feature attribution map for specific predic-
tions using the pseudo image as input, and XC metrics are obtained. Blue boxes represent
processes, white boxes represent data.
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3.1 Explanation in the form of attributions

As mentioned before in Chapter 2, explanation can be presented in the form of input feature
attributions, where the magnitude of the attributions corresponds to feature importance,
and the sign of attributions indicates positive or negative influence on the model output.
In our approach, attributions are generated by IG [53] and backprop [48] for PointPillars
[25]. PointPillars has three parts as shown in Figure 3.1: a pillar feature net which learns a
2D bird’s eye view (BEV) voxelized feature map called the psuedo image from the original
point cloud, a backbone 2D CNN to extract more features from the psuedo image, and
SSD [32] as detection head to generate 3D object predictions.

IG’s effectiveness on image data is well-recognized. However, there are a fixed number
of pixels at fixed locations in an image; whereas in a point cloud, both the quantity and
location of the points can vary greatly. IG’s input transformations may not be meaningful
for point cloud. As mentioned before in Section 2.1.4, IG takes a set number of steps from
a baseline input x′ to the input of interest x. x′ is usually set to all zeros. When IG is
applied to an image input, the pixel values are the input features to be transformed. The
pixels values take steps from 0 to their original values, the locations of the pixels are fixed.
Whereas in a 3D point cloud, the points locations themselves are the input features. If
one were to apply IG’s input transformation to a 3D point cloud directly, then initially
all points would be concentrated at (0, 0, 0). Then after each step, they expand outwards
a little bit, until eventually the point cloud reaches its original size. Hence, to avoid
such undesired shift in input feature locations, we chose to generate attributions using the
pseudo image as input, so that IG could be directly applied. Note that our pipeline in
Figure 3.1 is not limited to IG or backprop explanations only, any other XAI method that
produces explanations in the form of feature attributions could be applied too. Neither is
our method limited to the PointPillars model, it can be applied to any object detection
model that produces a voxelized representation of the 3D point cloud.

There could be many predictions in the same pseudo image. To explain the different
predictions separately, each attribution map is generated for a specific predicted box and
its class label. In Figure 3.2, the IG attributions generated for a car prediction is shown.
For this particular example, the positive attributions highlight features that increase the
model’s belief that the object is a car, whereas the negative attributions reduce this belief.
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3.2 Motivation for creating the XC scores

We propose a new set of scores called Explanation Concentration (XC) which measures the
concentration of attributions within a given predicted object’s boundaries. As shown in
Figure 3.2, many pixels outside of the object have noticeable attributions too, indicating
that context features can influence model output as well. The XC scores are partly mo-
tivated by previous studies [45, 47] which claimed that overly-relying on context can hurt
model performance. Shetty et al. [45] demonstrated that when a 2D image classifier relies
too much on the context rather than the object of interest, it can make many mistakes;
but model performance is improved when model dependency on context is reduced. Shi
et al. [47] also did an ablation study on their PointRCNN model and demonstrated that
although small amount of context features can be helpful, too much context information
can be detrimental.

Figure 3.2: Cropped IG attribution map visualization for a car prediction. PointPillars
generates a pseudo image from the point cloud, then we create an attribution map for this
prediction using the pseudo image as input. Note that the attribution map has the same
resolution as the pseudo image. The blue box in the point cloud is the bounding box for
the ground truth object. The red box in the attribution map is the 2D projection of the car
prediction bounding box. Positive attributions are indicated by green pixels and negative
attributions are indicated by red pixels; darker color means greater magnitude. Pixels with
attribution values less than 0.1 are filtered out and appear white. The pseudo image and
attribution map visualizations are generated by summing values across all channels at each
pixel.

To get more information from the pseudo image attribution maps, we then overlay
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them on top of the bird’s eye view (BEV) of the LiDAR point cloud frame (see Figure 3.3
and Figure 3.4), just like how image attribution maps were overlaid on top of 2D images in
previous works. In the point cloud BEV, LiDAR points are shown as white dots and the
background empty space is shown in gray. The ground truth bounding boxes are shown
as green boxes, the predicted boxes are shown in red, and an additional yellow box is used
to highlight the predicted box for which the attributions are generated. As we examine
the overlaid attribution maps, we start to discover some trends. Referring to Figure 3.3,
one can observe that for true positive (TP) predictions, most of the attributions often
resides within the predicted bounding box or right on the box boundary. But referring to
Figure 3.4, it is clear that the false positive (FP) predictions often have some pixels with
relatively high attribution values outside of the predicted box. These observations lead to
the hypothesis that evaluating the concentration of attributions within the predicted box
can help identify the prediction as TP or FP.

Figure 3.3: Cropped positive IG attribution maps for TP car predictions overlaid on point
cloud BEV.

3.3 Computing the XC scores

The process of computing the XC scores is as follows. First, denote the ith predicted box in
a pseudo image as Predi. Then denote the sum of positive attributions across all channels
in the pixel at location (x, y) of the attribution map as a+

(x,y) (this corresponds to the

“Aggregated Positive Attributions” in Figure 3.5). The idea is to avoid having positive
and negative channel values cancelling each other out at a specific pixel.

Using thresholds to eliminate noisy signals is a common practice in computer vision. For
example, in the Canny edge detection algorithm [3], thresholds are used to mask out weak
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Figure 3.4: Cropped positive attribution maps for FP car predictions overlaid on point
cloud BEV. Pixels outside of the predicted box that have high magnitude attributions are
highlighted in red circles.

Figure 3.5: The process of computing the XC metrics.

21



edges. We apply the same idea to the attribution values. Denote a pixel-wise threshold
as athresh, and use it to filter out insignificant attributions (in other words, the sum a+

(x,y)

can be called significant if it exceeds athresh). An indicator function I+
(x,y) is defined such

that it equals to 1 if a+
(x,y) >= athresh, 0 otherwise. Multiplying the indicator function with

the aggregated attributions at each pixel location would produce a filtered attribution
map with small attribution values set to zero (this corresponds to the “Filtered Positive
Attributions” in Figure 3.5). One way to quantify the concentration of attributions within
the predicted box Predi is by summing. Two new variables are defined for each Predi in
a pseudo image:

s+
i =

∑
a+

(x,y) × I
+
(x,y), ∀(x, y) in Predi (3.1)

S+
i =

∑
a+

(x,y) × I
+
(x,y), ∀(x, y) in pseudo image (3.2)

Given the box parameters of Predi, one could generate a box-wise binary mask to indicate
if a pixel is located within Predi or not (see Figure 3.5), so that s+

i could be computed.
Now the stage is set for defining an XC score by summing:

XC s+
i = s+

i /S
+
i (3.3)

XC s+
i is thus the proportion of the positive attributions which lie within Predi.

The other way to quantify the concentration of attributions for Predi is by counting.
For this purpose, we count the number of pixels in the pseudo image having significant
attributions, rather than summing them:

c+
i =

∑
I+

(x,y), ∀(x, y) in Predi (3.4)

C+
i =

∑
I+

(x,y), ∀(x, y) in pseudoimage (3.5)

XC c+
i = c+

i /C
+
i (3.6)

Computing XC by counting might be helpful, because often there are a few outlier
pixels with high magnitude attribution values outside of the bounding bounding box (see
Figure 3.6 for example). When XC is computed by counting, these outliers will not have
a big effect; but when XC is computed by summing, the values of these outlier pixels can
skew the resulting XC value towards the lower end. One may also compute a similar set
of scores by considering the negative attributions only: call them XC s−i and XC c−i for
a certain box Predi.

We observe that pixels located at object boundaries often get labelled as “outside of the
box” when creating the box-wise binary mask (see Figure 3.7). Imagine a scenario where
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Figure 3.6: Negative attribution map for a TP pedestrian prediction (the red box). The
patch of outlier attributions is pointed out by the arrow. To highlight just the attributions,
the point cloud BEV and ground truth bounding box are not shown.

most of the attributions assigned to a prediction are located on the object boundary. This
prediction may have very low XC due to the fact that pixels on the boundary are not
considered as belonging to the predicted object. But this is unreasonable, as most of the
attributions are indeed assigned to pixels on the predicted object and the XC value should
be high. Hence, before calculating any XC scores, the predicted boxes are enlarged by a
small margin m on all sides, so that pixels at object boundaries are labeled as inside the
predicted box.
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Figure 3.7: The effect of padding on the box-wise binary mask: a) In the binary mask
generated from the original bounding box (black box), a lot of the pixels on the object
boundary get labelled as “0” (outside of the object) rather than “1” (inside the object); b)
in the binary mask generated from an enlarged bounding box (the blue box), the pixels on
the original object boundary (the black box) are now labelled as “1”. Note that the pixel
size and predicted box size are not drawn to scale.
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Chapter 4

Using XC to help distinguish TP vs.
FP predictions

4.1 Evaluation metrics and implementation details

The objective of our experiment is to evaluate XC’s performance on a meta classification
task: classifying predictions as either FP or TP. The predicted objects are categorized as TP
or FP as illustrated in Figure 4.1. In essence, a TP prediction has a matching ground truth
object but a FP prediction does not. We will first explain the scoring mechanism of the
model we use, then we explain how we decide if a prediction is TP or FP. In OpenPCDet’s
[54] implementation of PointPillars [25], the class scores are not softmax scores. Rather,
they are class-wise sigmoid scores: a pair of “class vs. not class” scores for each object
class. For example, a predicted box would have a pair of sigmoid scores for “car vs. not
car” probabilities, a pair for “pedestrian vs. not pedestrian”, and another pair for “cyclist
vs. not cyclist”, each pair sums up to 1. The “not” probabilities are discarded, and the
“car”, “pedestrian”, “cyclist” probabilities are retained, with the highest one determining
the class label.

For one particular frame, any predictions with the highest class score less than a thresh-
old Sth is ignored. The IoU between the remaining predictions and the ground truth (GT)
objects in the frame are computed. In order for a prediction to be labelled as TP, its
maximum IoU with any GT objects needs to exceed a threshold IoUth and its label needs
to match with the label of the GT object that has the highest IoU with it, otherwise it’s
considered as FP (as shown in Figure 4.1). Based on KITTI’s [14] conventions, Sth is set to
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be 0.1 for all predictions, and IoUth values are 0.5, 0.25, and 0.25 for 3D IoU for predictions
labeled as car, pedestrian, and cyclist respectively.

Figure 4.1: The process of labeling a prediction as either TP or FP.

To evaluate the performance of a specific score, we could simply apply a score threshold:
if the score is above the threshold then the corresponding prediction is TP, otherwise it’s
FP. Then we can evaluate the resulting detection accuracy. However, the resulting accuracy
is a function of the threshold. To remove the effect of threshold selection and evaluate the
performance of different XC scores more fairly, we compute area under the precision recall
curve (AUPR) [35] and area under the receiver operating characteristics curve (AUROC)
[8], both are threshold-independent performance measures for binary classification.

In binary classification tasks, typically one class is treated as the “positive” class,
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whereas the other class is treated as the “negative” class. We may choose to call the TP
predicted boxes “positive” and call the FP predicted boxes “negative” or vice versa. We
can then apply a threshold to an XC score to classify the predicted boxes as positive or
negative (e.g., say >= 0.5 is positive, otherwise negative).

Referring to the confusion matrix presented in Table 2.1, one can then compute the pre-
cision (TP/(TP+FP)) and recall (TP/(TP+FN)) values for that particular score threshold.
Similarly, true positive rate (TPR = recall) and false positive rate (FPR = FP/(FP+TN))
can also be calculated. One can then repeat the same process across the range of possible
score thresholds to obtain many pairs of precision vs. recall and TPR vs. FPR values
to produce the PR curve and ROC curve respectively. Hence the reason why AUPR and
AUROC are threshold-independent performance measures. Note that in this paragraph,
in the formulae for precision, recall, TPR, and FPR, TP and FP are defined in the context
of binary classification, they are not to be confused with the TP and FP predicted objects
in the context of object detection (which in this case are the instances to be classified).

The AUROC metric treats both classes equally and can reflect the score’s (e.g., one of
the XC scores) ability in correctly identifying both the positive and negative classes. On
the other hand, the AUPR metric puts more emphasis on the score’s ability to correctly
identify the positive class. For both AURP and AUROC, higher values indicate better
performance.

We evaluate the XC scores on three PointPillars [25] models trained on the KITTI
dataset [14] and on one PointPillars model trained on the Waymo dataset [52]. We use
OpenPCDet’s [54] implementation of PointPillars for our experiments and adapt their
default settings for training. The first three models are trained for 80 epochs on the
KITTI dataset, with 3712 frames for training and 3769 frames for validation. Due to time
and resource constraints, we obtain only one more model trained for 30 epochs on 20%
of the Waymo dataset, with 31616 frames for training and 7997 frames for validation. To
obtain attribution values, we use Captum [50], a model interpretability library developed
for PyTorch [36]. We explore both IG [53] and backprop [48] as explanation methods.
For IG, we choose to use 24 steps to obtain the Riemann sum approximation using the
trapezoidal rule in order to save time while retaining some accuracy (since the authors
suggested 20 to 300 steps).

For KITTI, the XC scores are obtained on the predicted objects from the 3769 validation
frames. There are on average 67k predicted objects produced by each model. Each pixel
in the pseudo image has 64 channels, and the size of the pseudo image is 496 × 432 ×
64, representing features learned in a cropped point cloud of size 79.36m × 69.12m ×
4.00m (width× length× height). This means that one pixel in the pseudo image encodes
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Table 4.1: The effect of athresh on XC c+’s ability in classify TP vs. FP predictions.
Results are gathered from predictions generated from the KITTI validation set. The best
value for each metric is highlighted in bold. Note that AUPR op is the AUPR obtained
by treating the FP predictions as positive instances.

athresh AUROC AUPR AUPRop

0.0 0.7162 0.3552 0.8897
0.0333 0.8351 0.6321 0.9325
0.0667 0.8569 0.6671 0.9413

0.1 0.8634 0.6676 0.9446
0.1333 0.8625 0.6701 0.9452
0.1667 0.8551 0.6678 0.9434

0.2 0.8448 0.6683 0.9407

point features in a 0.16m ×0.16m ×4.00m pillar. For Waymo, we comptue XC scores for
94k predicted boxes sampled from 800 validation frames. Again, each pixel in the pseudo
image has 64 channels, but the size of the pseudo image is 512 × 512 × 64, representing
features learned in a cropped point cloud of size 168.96m ×168.96m ×6.00m, (width ×
length× height). One pixel in the pseudo image then represents point features in a 0.33m
×0.33m ×6.00m pillar. For both datasets, we append a margin m = 0.2m to the predicted
boxes and apply athresh = 0.1 to the attribution maps. m = 0.2m is intentionally selected
to be roughly equal to the pseudo image pixel size to prevent the edge effect described in
Figure 3.7. athresh = 0.1 is selected through an experiment on XC c+ applied to predictions
from one of the PointPillars models trained on KITTI. As shown in Table 4.1, when athresh
is 0.1 or 0.1333, the performance of XC c+ is relatively good. But as athresh decreases
below 0.1 or increases beyond 0.1333, the XC score’s performance degrades.

4.2 Distribution of XC values

To get some confidence on the XC score’s ability to distinguish the TP and FP predictions,
we choose to plot the distribution of XC c+ values obtained from one of the models trained
on KITTI [14] (shown in Figure 4.2). Both the histograms and the empirical cumulative
distribution function plots demonstrate that the XC values of TP instances tend to be
greater than those of the FP instances. Another notable observation is that XC values
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Figure 4.2: Distribution of XC c+ values obtained by IG (upper row) and backprop (lower
row) attributions for TP and FP predicted boxes in each of the object class of the KITTI
validation set. “KS” means the Kolmogorov-Smirnov statistic [9].
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derived from IG are well-dispersed within the range of [0, 1] for both the TP and FP
instances, whereas XC values derived from backprop are mostly below 0.5, with almost all
FP instances having XC values below 0.2.

4.3 XC’s relationship with other box-wise features

To understand the correlation between XC and other box-wise features, we pick one of
the three PiontPillars models trained on KITTI [14] to obtain predictions on the KITTI
validation set and plot XC c+ value for each prediction with other box-wise features in
Figure 4.3, Figure 4.4, and Figure 4.5. The predictions with different object class labels are
plotted separately. Each dot represents a prediction. For example, say in one of the plots in
Figure 4.3, there is a dot at coordinate (0.7, 0.3), then this dot represents a prediction with
top class score equals to 0.7 and XC c+ equals to 0.3. The color in these plots indicates
relative density: red highlights relatively densely populated regions, whereas dark blue
highlights relatively sparse regions.

It is important to examine the correlation between XC and other box-wise features
before further experimentation. When two features have very strong correlation, then
the data points would all cluster very closely along a line in a 2D plot, with each axis
representing each of the two feature values. In this case, one would not be able to get extra
benefits by using both of these features. Since they are so strongly correlated, knowing
one feature value would be sufficient to derive the other feature value. Hence, for an XC
score to be able to provide additional value, they should not demonstrate strong correlation
with any other box-wise features. Referring to Figure 4.3, Figure 4.4, and Figure 4.5, it is
clear that XC c+ does not demonstrate strong correlation with top class score, distance
to LiDAR sensor, or number of points in predicted box for any of the three object classes
of interest. We are now confident that the XC scores will be able to reveal new insights
about the predictions.

There are some additional observations worth-mentioning. The separation between
the high density regions of the TP and FP predictions is often the greatest in the car
predictions, but less in the pedestrian and cyclist classes. Hence when using these features
to distinguish TP and FP predictions, the performance on the car predictions is likely to
be better than that on the other two classes (see Section 4.4 for more details on related
results). The separation between the TP and FP clusters is also the most obvious when
the top class score and XC c+ form the 2 axes of the plots. This observation indicates
that combining the XC scores with top class score might be more beneficial for the task
of classifying TP vs. FP predictions compared to combining the XC scores with number
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Figure 4.3: XC c+ value and top class score for predicted boxes in KITTI validation set.

Figure 4.4: XC c+ value and distance to LiDAR sensor for predicted boxes in KITTI
validation set.
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Figure 4.5: XC c+ value and number of LiDAR points within bounding box for predicted
boxes in KITTI validation set. Note that the number of LiDAR points is plotted in log
scale due to the fact that most bounding boxes contain less than 100 points.
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of points or distance to LiDAR sensor. Hence we tried to further boost performance by
combining the XC scores with top class score in Section 4.6.

4.4 Using only XC to identify TP and FP predictions

The results for TP vs. FP box classification using the XC scores on the KITTI dataset [14]
are shown in Table 4.2. Each specific metric in this table is averaged over three models.
The four XC scores derived from IG and backprop are evaluated, along with four other box-
wise features (random guess, distance of the predicted box to LiDAR sensor, the number of
points inside the predicted box, and the highest class score for the predicted box) serving
as baselines for comparison. Each of the aforementioned features are evaluated by three
metrics on different object classes, making up twelve metrics in total. Note that the object
classes in Table 4.2 (as well as those in other tables in later sections) represent the predicted
labels, not the ground truth labels.

When computing AUROC and AUPR, the TP boxes are treated as the positive in-
stances, but AUPR op refers to the AUPR value obtained by treating the FP predicted
boxes as positive instances. In essence, AUPR reflects TP detection performance, whereas
AUPR op reflects FP detection performance. The expected AUROC value for a random
score is 0.5, and the expected AUPR value is the proportion of the positive instances.

Referring to Table 4.2, it is clear that the top class score beats all other features in
every evaluation metric. However, the improvement brought by XC is certainly non-trivial.
One can observe that for all features evaluated, the second best performing feature is most
often XC c−B. Although distance to sensor and number of points in predicted box beat the
XC scores generated by IG on the three pedestrian class metrics, they are unable to beat
any of the XC scores generated by backprop on the pedestrian class.

A very notable case is the AUPR for pedestrian predictions: XC c−B achieves 129%
improvement compared to number of points and 706% improvement compare to random
guess. The other three XC scores derived from backprop also achieve more than 100%
on AUPR for pedestrian compared to the number of points. Improvements of similar
magnitude are also achieved by the backprop XC scores on AUPR for the cyclist class.
These observations indicate that the backprop XC scores are much better at correctly
identifying the TP predictions for the pedestrian and cyclist classes than simple heuristics
such as number of points. Another interesting observation is that the XC scores derived
by counting usually outperforms those derived by summing. Such improvement might be
due to the outlier attenuation effect mentioned in the second last paragraph of Section 3.3.
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Table 4.2: Comparison of the XC scores’ ability to classify TP and FP predictions for dif-
ferent object types in the KITTI dataset. The subscripts “IG” and “B” indicate whether
the corresponding XC score is derived from IG or backprop attributions. For each eval-
uation metric, the XC scores performing worse than number of points are highlighted by
underscore and the best performing feature other than the top class score is highlighted in
bold.

Metrics Random Distance Points XC s+
IG XC c+

IG XC s−IG XC c−IG XC s+
B XC c+

B XC s−B XC c−B Top Class Score

AUROC
All 0.5 0.669 0.720 0.843 0.868 0.827 0.869 0.823 0.903 0.822 0.908 0.971
Car 0.5 0.770 0.779 0.837 0.857 0.822 0.857 0.708 0.861 0.698 0.869 0.964

Pedestrian 0.5 0.779 0.832 0.648 0.699 0.671 0.754 0.864 0.888 0.882 0.894 0.958
Cyclist 0.5 0.635 0.780 0.810 0.797 0.806 0.824 0.808 0.843 0.819 0.855 0.965

AUPR
All 0.232 0.372 0.464 0.585 0.653 0.551 0.635 0.597 0.786 0.577 0.794 0.926
Car 0.391 0.636 0.666 0.713 0.749 0.697 0.747 0.621 0.830 0.597 0.836 0.948

Pedestrian 0.071 0.215 0.250 0.116 0.153 0.136 0.190 0.518 0.557 0.541 0.572 0.759
Cyclist 0.083 0.167 0.203 0.225 0.237 0.239 0.270 0.425 0.534 0.450 0.554 0.829

AUPR op
All 0.768 0.859 0.878 0.941 0.950 0.937 0.952 0.936 0.965 0.937 0.967 0.989
Car 0.609 0.829 0.839 0.894 0.903 0.885 0.905 0.761 0.888 0.761 0.897 0.974

Pedestrian 0.929 0.976 0.984 0.959 0.967 0.962 0.973 0.986 0.989 0.988 0.990 0.996
Cyclist 0.917 0.939 0.976 0.977 0.975 0.978 0.980 0.975 0.979 0.977 0.982 0.992

Table 4.3: Comparison of the XC scores’ ability to classify TP and FP predictions for
different object types in the Waymo dataset. For each evaluation metric, the XC scores
performing worse than number of points are highlighted by underscore and the best per-
forming feature other than the top class score is highlighted in bold.

Metrics Random Distance Points XC s+
IG XC c+

IG XC s−IG XC c−IG XC s+
B XC c+

B XC s−B XC c−B Top Class Score

AUROC
All 0.5 0.609 0.701 0.714 0.758 0.738 0.766 0.729 0.788 0.721 0.793 0.965

Vehicle 0.5 0.703 0.809 0.799 0.821 0.806 0.823 0.754 0.860 0.725 0.860 0.982
Pedestrian 0.5 0.528 0.614 0.529 0.529 0.529 0.545 0.605 0.638 0.646 0.651 0.927

Cyclist 0.5 0.627 0.738 0.766 0.725 0.673 0.689 0.794 0.823 0.799 0.823 0.979

AUPR
All 0.276 0.343 0.476 0.460 0.535 0.483 0.540 0.569 0.700 0.542 0.699 0.936

Vehicle 0.377 0.595 0.721 0.626 0.659 0.624 0.654 0.678 0.827 0.648 0.824 0.973
Pedestrian 0.176 0.121 0.147 0.183 0.184 0.181 0.192 0.284 0.323 0.326 0.340 0.829

Cyclist 0.051 0.072 0.113 0.111 0.096 0.078 0.082 0.279 0.377 0.283 0.394 0.791

AUPR op
All 0.724 0.811 0.862 0.863 0.881 0.874 0.884 0.850 0.876 0.857 0.882 0.983

Vehicle 0.623 0.784 0.873 0.878 0.891 0.883 0.892 0.809 0.891 0.786 0.893 0.987
Pedestrian 0.824 0.897 0.925 0.841 0.839 0.842 0.846 0.866 0.882 0.889 0.888 0.979

Cyclist 0.950 0.967 0.984 0.984 0.980 0.976 0.978 0.984 0.986 0.985 0.986 0.999

34



To ensure that the advantages offered by XC are not specific to the KITTI dataset
[14], we also present results from Waymo dataset [52] in Table 4.3. Again, for most evalu-
ation metrics, one of the XC scores is the second best performing feature besides the top
class score. In addition, the XC scores obtained from backprop often show 100% or more
improvement on AUPR for pedestrian and cyclist predictions compared to the number of
points. And again, XC c−B is the best performing feature in most cases. Hence, we believe
that the advantages of XC are not limited to the KITTI dataset only.

4.5 Why backprop outperforms IG?

IG [53] is designed to reflect feature importance more precisely than other simpler XAI
methods such as backprop. Thus, it would be interesting to know why IG-based XC scores
underperform backprop-based XC scores in the task of classifying TP vs. FP predictions,
especially for the pedestrian and cyclist predictions (see AUPR in Table 4.2 and Table 4.3).
We suspect that this is due to the difference in XC distribution. In Figure 4.2, we present
the KS statistic [9] between the distributions of XC values in the TP and FP instances of
each object class. The KS statistic is a measure for goodness of fit between two distribu-
tions: greater value indicates greater difference between the two distributions. Note that
the backprop-based XC scores are able to produce much KS statistic between TP and FP
distributions in the pedestrian and cyclist class than the IG-based scores.

To alter the distribution of IG-based XC scores, we remove the last step in computing IG
attributions. As mentioned before in Chapter 2, IG zeros out attributions for input features
with zero value. This is often achieved by multiplying the computed attributions at each
input location i by (xi−x′i), where x is the input and x′ is the baseline, which is by default
set to zero. We remove this process and re-calculate IG-derived XC scores on the KITTI
dataset [14]. Then we evaluate the new XC scores on the binary classification task for TP
vs. FP predictions. The average results of all four IG-derived XC scores, all four backprop-
derived XC scores (these are averaged over the values presented in Table 4.2), and of the
four modified IG-derived XC scores are presented in Table 4.4. Note that the results are
also averaged over all three models trained on KITTI. The modified IG XC scores resulted
in 115% improvement in AUPR for pedestrian predictions and in 16% improvement in
AUPR for cyclist predictions compared to the original IG XC scores. Improvement can
also be observed in AUROC and AUPR op for the pedestrian and cyclist classes.

The improvements on pedestrian and cyclist objects also coincide with a shift in the
distribution of XC values. As shown in Figure 4.6, the distribution of XC values now
appears very similar to that of backprop-based XC values, but very different from that
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Table 4.4: Average XC performance on distinguishing TP vs. FP predictions for the KITTI
dataset. The highest value in each row is highlighted in bold.

Metrics XCIG Modified XCIG XCB

AUROC
All 0.852 0.861 0.864

Vehicle 0.843 0.795 0.784
Pedestrian 0.693 0.848 0.882

Cyclist 0.809 0.812 0.831

AUPR
All 0.606 0.657 0.689

Vehicle 0.726 0.707 0.721
Pedestrian 0.149 0.321 0.547

Cyclist 0.243 0.282 0.490

AUPR op
All 0.945 0.952 0.951

Vehicle 0.897 0.848 0.827
Pedestrian 0.965 0.986 0.988

Cyclist 0.977 0.978 0.978

Figure 4.6: Distribution of XC c+ values obtained by modified IG (without multiplying
attributions by input) attributions for TP and FP predicted boxes in the KITTI validation
set.
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of IG-based XC values. By making feature attributions proportional to input feature
magnitude, IG is able to generate attribution maps that capture salient features in the
input, which is one reason why IG attribution maps makes more sense to a human observer
compared to a blurry backprop attribution map (interested readers may visit Sundararajan
et al. [53] for more attribution map examples). As a result, IG zeros out most of the
attributions outside of the bounding box (because the space outside of object bounding
boxes are mostly empty, leading to zero input feature values at such locations), and the
remaining attributions are mostly concentrated within the bounding box or at its close
proximity (see Figure 3.2). Thus, IG is unable to produce mostly very low (¡ 0.1) XC
values for the FP predictions, leading to significant overlap in the values for TP prediction
XC scores and FP predictions XC scores, making classification using XC scores difficult.

These observations echo with Erion et al.’s [11] claim that IG’s choice of a zero-valued
baseline is problematic. Take an image of a digit for example, if the background is white
but the digit itself is black (i.e., zero), then the zero-valued pixels in fact contains the
key features of this image and should not get zero attributions. Similarly for point cloud
inputs, not just the presence of points, but also the absence of points in certain locations
can help the model classify the object. For instance, pedestrian objects are usually filled
with points, whereas car objects have points on its boundaries but are mostly hollow in
the middle.

Note that even without multiplying by input values, IG-derived XC scores still can-
not beat backprop-derived XC scores on the pedestrian and cyclist classes (see Table 4.4).
Hence, a more expensive method such as IG may produce more visually appealing attribu-
tion map, but a less expensive method may have more potential when used quantitatively.

4.6 Combining XC scores with the top class score

In Section 4.4 we demonstrate that the top class score is the best performing box-wise
feature in classifying TP vs. FP predictions. In this section, we aim to improve its
performance by combining it with XC scores generated from backprop attributions. We
train classifiers for different object classes in KITTI [14] and perform an ablation study on
the box-wise features.

To conduct the ablation study, we build a new dataset Df from five features (the top
classs score and the four XC scores computed based on backprop attributions) for each
predicted box produced by one PointPillars [25] model on the KITTI validation set [14].
Since we have three models trained on KITTI, we obtain three Df datasets. For each Df ,
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we first group the samples by the predicted object label, then by the number of LiDAR
points: those with less than 100 points forms one set, the rest forms another set. Thus,
from one Df , we generate six smaller datasets df , two for each of the three object classes.

We then build a 2-layer multilayer perceptron (MLP) with PyTorch [36] as a classifier
to be trained on df . Layer 1 is of size (d×3) and layer 2 is of size (3×1), where d represents
the number of input features per instance. ReLU activation is applied after the first layer,
and the sigmoid function is applied after the second layer to obtain an output score. We
train the MLP to classify a predicted box as TP or FP, using binary cross entropy as the
loss function. All input features are normalized based on the following equation prior to
being fed into the MLP: z = (x − µ)/s, where x is the original feature value, µ is feature
mean value, and s is the standard deviation for that feature. We use the Adam optimizer
[22] with learning rate set to 0.001.

For each experiment, we first shuffle df and then augment it by duplicating the instances
four times. Next we apply 5-fold cross validation to the augmented df , obtaining 5 different
80%/20% train/validation splits. For the training instances, we also add a small uniformly
distributed noise U(−0.05,+0.05) to each feature to help the MLP generalize better. For
each different split, we train the MLP for 12 epochs with batch size = 16 and record three
evaluation metrics (AUROC, AUPR, and AUPR op) of the output score on the validation
instances. We repeat the 5-fold cross validation 5 times, obtaining 5 × 5 = 25 different
values for each of the metrics, and record the average. Note that the above process is
repeated for each df in the three Df we have, each evaluation metric is averaged over the
three Df and shown in Table 4.5.

In Table 4.5, when the top class score is the only input feature, we evaluate its per-
formance directly and use it as baseline for comparison; when more than one features are
used, we evaluate the performance of the MLP output score. The most notable observation
is that for predictions containing less than 100 points, combining the XC scores with top
class score can often result in better performance in distinguishing TP vs. FP predictions,
especially among the pedestrian predictions. The AUPR for pedestrian increased by (0.540
- 0.492) / 0.492 = 9.8% after combining the 4 XC scores with top class score. The im-
provement in AUROC for pedestrian predictions and in AUPR for cyclist predictions also
exceed 1%. Among the predictions with more than 100 points, the benefit of incorporating
the XC scores is less observable. Note that the top class score alone is already performing
very well for these predictions with more points. This might be why it is more difficult to
get additional benefit from the XC scores on these predictions.
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Table 4.5: Ablation study on the features used to help classify TP vs. FP predictions on
KITTI.

Object Class
Features Used Points < 100 Points >= 100

Top class score XC c− XC c+ XC s− XC s+ AUROC AUPR AUPR op AUROC AUPR AUPR op

Car
X 0.958 0.926 0.977 0.956 0.980 0.914
X X 0.958 0.927 0.977 0.950 0.978 0.903
X X X X X 0.960 0.927 0.979 0.957 0.980 0.918

Pedestrian
X 0.932 0.492 0.997 0.969 0.911 0.989
X X 0.938 0.527 0.997 0.973 0.919 0.991
X X X X X 0.944 0.540 0.997 0.973 0.920 0.992

Cyclist
X 0.958 0.765 0.996 0.982 0.947 0.995
X X 0.958 0.777 0.996 0.972 0.931 0.993
X X X X X 0.958 0.779 0.996 0.980 0.946 0.994
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Chapter 5

Using quantitative measures of
explanations to train object detector

5.1 Designing loss functions based on attributions

5.1.1 Loss formulations

We have shown that the XC scores can help identify TP vs. FP predictions. We now
wish to know if we can use XC or pixel attribution prior (PAP) [11] to improve model
performance. Inspired by Ross et al.’s work [43], we design our own loss terms based on
XC or PAP.

Before diving into the loss terms themselves, it is important to discuss the high com-
putational cost of training with attribution-based losses. An XC score is a function of
the attribution map, which is the same size as the pseudo image for PointPillars [25] in
our case. We can now roughly estimate how many extra parameters would be included
in the computational graph if we apply a loss based on the attribution map. In the case
of backprop, the attribution map is the gradient of the model output with respect to the
pseudo image features. To compute the attribution map, one would need to compute all
partial derivatives ∂f

∂θ
from the output layer all the way back to the pseudo image using

chain rule, where f is the model output we wish to explain (class score for the predicted
label in our case) and θ can be any parameter in the pseudo image. There is a 2D backbone
CNN and a SSD network [32] between the pseudo image and the output (see Figure 3.1).
Hence, the attribution map is a function of all the parameters in the 2D CNN and SSD.
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We can denote their sizes as |ΘCNN | and |ΘSSD|. Any loss based on the attribution map
would eventually be backpropagated into the CNN and the SSD.

Now consider that the XC score is a function of all the values in the attribution map
and of the predicted bounding box parameters. We need to compute ∂XC

∂φ
for all values φ

in the attribution map to just backpropagate a loss based on XC into the attribution map.
Therefore, creating a loss term based on an XC score for only one prediction in a LiDAR
frame would make the computational graph at least this much larger:

|ΘCNN |+ |ΘSSD|+ |Φ| (5.1)

where Φ is the attribution map. In our experiments on KITTI, the attribution map has
about 14 million parameters. Therefore, it is easy to see that incorporating a loss based on
the attribution values would significantly slow down the training process, even for just one
prediction per frame. In addition, just computing the attributions and XC values would
be a notable overhead too, especially for IG. It is unrealistic to compute XC score for all
predictions during every epoch of training.

Taking all these above-mentioned factors into account, we are going to: 1) limit the
number of predicted boxes in each frame for which XC is computed and XC related losses
are applied, and 2) conduct most of experiments using attributions based on backprop
rather than IG.

We design three loss terms with different objectives: to increase XC values, to reduce
XC values, and to reduce pixel attribution prior (PAP) [11]. These loss terms are used in
conjunction with the original regression and classification loss terms. The following loss
term Ψ aims to increase XC values:

ψi =
∑
j

(1−XCj), ∀j ∈ P (5.2)

Ψ = λΨ ∗
1

|B|
∑
i

ψi, ∀i ∈ B (5.3)

We denote the predicted box index as j and the LiDAR frame id as i. XCj is an XC
score computed for a specific prediction j, it can be any of the four XC scores described
in Section 3.3. It is clear that as XC approaches one (i.e., its maximum value), the loss
would approach zero. P is the set of selected predictions for a frame. To allow reasonable
training speed, |P | needs to be much less than the total number of predictions generated in
each frame. More details on P will be provided in Section 5.1.2. B represents the training
batch and λΨ is the weighting factor for this loss term. λΨ should be set such that Ψ is
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roughly the same order of magnitude as the regression and classification losses, but slightly
smaller. The idea is that we should not sacrifice regression and classification performance
for improvements in XC.

Using the same set of notations, the following loss term aims to reduce XC values:

ψ̃i =
∑
j

(XCj), ∀j ∈ P (5.4)

Ψ̃ = λΨ̃ ∗
1

|B|
∑
i

Ψ̃i, ∀i ∈ B (5.5)

The next loss term Ω aims to reduce PAP and make the attribution map smoother:

PAPj =
∑
m,n

∣∣φjm+1,n − φjm,n
∣∣+
∣∣φjm,n+1 − φjm,n

∣∣ (5.6)

ωi =
∑
j

PAPj, ∀j ∈ P (5.7)

Ω = λΩ ∗
1

|B|
∑
i

ωi, ∀i ∈ B (5.8)

PAPj is the PAP value computed from the aggregated attribution map (single-channel
attribution map generated by summing all positive/negative attributions at each pixel, see
Section 3.3 for details) for the jth prediction in a frame. m and n are pixel coordinates in
the attribution map φj. ωi is the PAP loss for the ith LiDAR frame and Ω is the PAP-based
loss for a batch. Again, λΩ is tuned such that Ω is of the same order of magnitude as the
classification and regression losses.

5.1.2 Training strategies

We set |P | to be three to avoid slowing down the training process too much. But we are
reluctant to reduce |P | any further since we do not wish to let only one or two predictions
in each frame to dictate the attribution-based losses, which may impede the model’s ability
to generalize. Since this is the first attempt of using XC and PAP to train object detection
model and we are not sure what will work, we propose different training strategies and list
them out in this section. We try different ways of selecting predictions for P , as well as
try increase/decrease the XC values for predictions in P .
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XC top 3 increase

One way is to select the three predictions with the highest top class scores in each frame
as P . The reasoning is as follows:

1. The TP boxes tend to have higher XC values and it makes sense, because they match
the type of ground truth objects which the model has been trained to detect, features
learned from such objects should heavily influence model output (which leads to high
attribution values within the bounding box and high XC). Perhaps making the XC
values higher for the TP predictions can further boost model performance.

2. As shown in Figure 4.3, the predictions with relatively high top class score are most
likely TP predictions.

Hence, by increasing the XC score for the predictions with high class score using Ψ (Equa-
tion (5.9)), we are increasing the XC score for a lot of the TP predictions. In other words,
we are using a readily available value, the top class score, as an oracle that tells if a
prediction has high/low XC score and if it is TP/FP.

XC bottom 3 reduce

Another way to create P is to select the three predictions with the lowest top class
scores. The reasoning is as follows:

1. The FP boxes tend to have lower XC values and it makes sense, because these objects
do not correctly match any ground truth objects that the model has been trained
to detect, the model should not be heavily influenced by features learned from these
objects (low activation leads to low attribution values within the bounding box and
low XC). Perhaps further lowering the XC values for the FP predictions can boost
model performance.

2. As shown in Figure 4.3, the predictions with relatively low top class score are most
likely FP predictions.

Hence, by reducing the XC score for the predictions with high class score using Ψ̃ (Equa-
tion (5.5)), we are reducing the XC score for a lot of the FP predictions. Perhaps making
the model focus less on these irrelevant objects, the overall model performance can improve.

XC bottom 3 increase

We also try increase the XC score for the predictions with low top class score using Ψ.
The reasoning is that predictions with low top class score often have low XC too. If we
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can increase XC for those predictions that tend to have low XC, then XC for the other
predictions should rise too. Perhaps increase XC in general would be beneficial for model
performance. Again, we are using the top class score as an oracle for XC values. This
oracle will not be 100% correct but we need to rely on it due to how prohibitively costly
it is to compute XC for all predictions.

XC random TP FP

Instead of relying on the top class score as an oracle, we can also determine if a pre-
diction is TP or FP during training time and apply different loss functions to them. We
can try apply Ψ to three randomly selected TP predictions, and also apply Ψ̃ to three
randomly selected FP predictions in each frame. The goal is to increase XC for the TP
predictions and also reduce XC for the FP predictions. For the KITTI dataset, sometimes
we may have less than three TP predictions in a frame. In such cases, we do not want the
loss term to drop due to the lack of TP predictions. The loss term Ψ should drop only
when XC improves, not when there are less TP predictions. Hence we normalize Ψ as if
we have three TP predictions in each frame of the batch:

Ψnormalized = Ψ ∗ (|B| ∗ |P |)/T (5.9)

where T is the number of TP boxes in the batch for which XC-related loss is applied. For
example, say the batch size is two, three TP boxes are chosen from the first frame, but the
second frame contains only one TP box. Ψ is computed from only four TP boxes in the
batch. Then we scale Ψ by a factor of 6/4, because there would have been 2 × 3 = 6 TP
boxes in this batch in the usual case.

PAP bottom 3

We apply Ω (Equation (5.8)) to reduce PAP value for the attribution maps generated
for the three predictions in each frame with the lowest top class score. Based on our
observations, the FP predictions tend to have noisier attribution maps (which would lead
to higher PAP values). Hence, if we can reduce PAP for those predictions which tend to
have high PAP values (the FP predictions with low top class score), then PAP values for
the other predictions should be reduced as well, and the model should become more robust.

PAP top 3

We apply Ω to reduce PAP value for the attribution maps generated for the three
predictions in each frame with the highest top class score. This training scheme serves as
a comparison for PAP bottom 3.
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5.2 Implementation details

It is important to explain some details regarding our experiments before diving into the
results. We adopt OpenPCDet’s [54] default settings for training the models: the Adam
optimizer is used and a schedule for the learning rate and the beta values is applied to the
optimizer. As shown in Figure 5.1, the learning rate starts with a small value of 3× 10−4

and gradually reaches a peak value of 3× 10−3 around the middle of the training cycle,
then eventually approaches 0 towards the end of the training cycle. The probable reasoning
behind such design is such: initially, the loss would be high, hence the learning rate does
not need to be large; but as the model performs better, the learning rate should increase
to avoid getting stuck at some local minimum of the loss function; closer to the end of the
cycle, only small fine tuning is desired, small learning rate is ideal for avoiding overfitting.

Figure 5.1: Default learning rate schedule for Adam optimizer in OpenPCDet.

Unless otherwise specified, we apply λΨ = λΨ̃ = 0.2 for the XC-based loss terms, and
λΩ = 5× 10−4 for the PAP-based loss terms. We use Nvidia Tesla v100-sxm2-32gb GPUs
to train our models with these attribution-based losses with a batch size of 4. For all
experiments, we train PointPillars on the KITTI dataset for 80 epochs. To rule out any
effect on model performance due to the shuffling of LiDAR frames, we fix the batches:
instead of shuffling the LiDAR frames differently each epoch, we only shuffle once and the
same batch would always contain the same LiDAR frames.

Another detail worth mentioning is that we set a cap of 0.3 for all the attribution-based
loss functions. The sum of the regression and classification losses is in the range of [0.4,
0.7] throughout most of the training cycle. Occasionally the attribution-based losses can
spike high. To prevent them from overwhelming the other losses, we scale them down when
they exceed 0.3.
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5.3 Results on XC-based loss terms

We present our results on training with XC-based loss terms in Table 5.1. Due to the time
consuming nature of these experiments (∼ 2.5hrs per epoch), we have only explored loss
terms based on XC s+. Training with XC generated by IG is even more costly (∼ 7hrs per
epoch). Thus, we have only done two experiments with IG and have to stop them early.
The average precision (AP) values presented in Table 5.1 are averaged over corresponding
precision values at 40 recall values equally spaced between 0 and 1. The presented AP
values are in the range of [0, 100] instead of [0, 1] because they are in percentages. See
Section 2.3.2 for more information on the AP metric for object detection.

Table 5.1: Training with XC-based loss terms on KITTI. The AP values for different object
classes and difficulty levels are presented for model checkpoint saved at the 20th, 40th, 60th,
and 80th epochs. Underline means less than one percent better than the baseline value,
bold means one percent or more than the baseline value.

Epochs Training Strategy
Easy Medium Hard

Car Pedestrian Cyclist Car Pedestrian Cyclist Car Pedestrian Cyclist

20

Regular 78.7 44.7 68.0 67.8 39.0 48.1 63.8 35.1 45.1
XC s+ top 3 increase 69.9 40.6 56.4 59.5 36.5 41.0 57.2 33.2 38.4

XC s+ bottom 3 increase 74.9 47.7 64.3 63.3 41.6 45.2 58.7 37.6 42.4
XC s+ bottom 3 reduce 83.6 45.4 68.5 68.5 40.1 50.7 65.4 36.3 47.7
XC s+ random TP FP 74.0 39.9 66.2 60.9 34.7 46.2 58.6 31.0 43.2
XC s+ top 3 increaseIG 62.4 29.0 60.7 56.7 26.0 39.7 55.3 23.5 37.1

XC s+ bottom 3 increaseIG 64.4 28.6 52.6 52.1 26.8 34.3 51.0 24.5 32.2

40

Regular 84.4 55.6 77.5 73.3 49.6 57.6 69.1 45.6 54.4
XC s+ top 3 increase 66.8 45.9 52.3 56.5 41.1 38.2 53.5 36.8 36.1

XC s+ bottom 3 increase 86.0 49.3 71.6 72.7 42.8 51.1 69.0 38.5 47.7
XC s+ bottom 3 reduce 83.4 52.4 74.4 71.1 46.1 56.0 66.3 41.9 52.9
XC s+ random TP FP 76.7 52.0 75.4 67.2 46.7 56.9 64.4 42.3 53.3
XC s+ top 3 increaseIG 73.4 41.4 60.3 63.1 36.2 39.3 59.4 32.4 37.0

XC s+ bottom 3 increaseIG 59.6 38.0 67.2 50.1 34.6 42.9 46.8 30.8 40.0

60

Regular 86.1 51.2 73.0 74.2 46.3 57.1 71.6 41.9 53.4
XC s+ top 3 increase 80.8 44.9 73.5 71.5 39.7 55.1 69.1 35.9 51.3

XC s+ bottom 3 increase 86.2 47.9 76.2 74.9 41.9 55.0 71.9 38.0 51.2
XC s+ bottom 3 reduce 86.1 51.6 77.9 74.7 46.0 59.3 71.5 41.6 55.1
XC s+ random TP FP 80.8 49.9 76.3 70.6 43.3 57.1 68.2 39.3 53.4

80

Regular 87.4 55.5 81.5 78.2 49.7 64.5 75.3 45.5 60.7
XC s+ top 3 increase 83.1 41.3 74.1 74.6 37.0 56.6 72.3 33.9 53.0

XC s+ bottom 3 increase 86.7 48.4 74.2 77.7 42.6 55.9 75.0 38.7 52.2
XC s+ bottom 3 reduce 87.6 53.1 84.2 78.3 47.5 65.0 75.2 43.5 60.6
XC s+ random TP FP 85.6 53.7 78.3 76.0 46.8 60.5 73.8 42.5 56.5
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We also present result from training without any attribution-based losses with default
settings from OpenPCDet (labelled as “Regular” in Table 5.1), with only one change: the
frames in each batch are fixed to match the setting for all other experiments. This will
serve as a baseline for comparison.

For all checkpoints evaluated, XC s+ top 3 increase is unable to beat the baseline on
any object classes, except for a very small improvement on easy cyclist objects at the 60th

epoch. The XC values for the predictions with high top class scores are already high,
perhaps trying to further increase them would not lead to any improvement. Rather, it
would impede the effects of the classification and regularization losses and degrade model
performance.

On the other hand, XC s+ bottom 3 increase is certainly doing a bit better, showing
that increasing XC for the predictions with low top class score (also likely to have low XC)
would be better than increasing XC for those with high top class score. However, this
strategy is still unable to outperform the baseline for most object classes. It is possible
that for most TP objects, since the model has been trained to detect them and is familiar
with them, features within the object boundaries are enough for the model to make high
confidence predictions, leading to high class score and high XC; whereas for the FP objects
and grouth objects that look like FP objects, the model is not certain about them and
needs to rely more on the context to make predictions, leading to lower class score and
lower XC. Making the XC higher for these uncertain objects would force the model to pay
less attention to the context, depriving the model of some useful information that can help
generating correct predictions. In short, increasing XC for the low confidence predictions
can hurt model performance, but increasing XC for the high confidence predictions is even
more detrimental.

XC s+ bottom 3 reduce is able to produce the most promising results out of all seven
experiments on XC-based losses. At the 20th epoch, it outperforms baseline on all nine
object classes, six of which are more than 1% improvement. At the 60th epoch, it performs
slightly better than the baseline and at the 80th epoch it performs slightly worse. These
observations support the hypotheses in the last paragraph: the model needs context infor-
mation for uncertain objects, reducing XC for such objects can encourage the model to use
more context information and improve performance. A worth-noting observation is that
at the 40th epoch, XC s+ bottom 3 reduce performs notably worse than the baseline. It
might be due to OpenPCDet’s learning rate schedule (Figure 5.1). The 40th epoch is in the
middle of the training cycle, where the learning rate is relatively high. But in early epochs,
the learning rate is small. It is possible that the success of XC s+ bottom 3 reduce at the
20th and 60th epochs is partly due to the small learning rate, and at the 40th epoch. It is
possible that the high learning rate makes the XC loss influence the model too much and
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degrades performance.

XC s+ random TP FP is performing better thanXC s+ top 3 increase but worse than
XC s+ bottom 3 reduce on most object classes. Note that the batch size for this experi-
ment is set to three instead of four due to the increased memory demand resulting from the
additional number of predictions for which we are computing XC. Overall, it is performing
worse than the baseline. This is understandable as we have already seen that increasing
XC for the high confidence predictions is detrimental, but increasing XC for the low confi-
dence predictions is beneficial. If we combine these two schemes, the result is expected to
be somewhere in the middle.

An interesting observation is that, just as the IG-based XC scores can not distinguish
the TP and FP predictions than the backprop-based XC scores do (see Section 4.4), they
most likely can’t lead to better AP either when incorporated in the training process. At
least when training with XC s+, using IG does not lead to any notable improvements
compared to using backprop. It even leads to very notable degradation for the car and
pedestrian objects.

5.4 Results on PAP-based loss terms

The results of the experiment on PAP-based loss terms are presented in Table 5.2. The “+”
and “-” superscripts indicate whether the positive or negative aggregated attribution map
is being used to compute PAP. It is clear that the PAP-based loss terms are doing better
than the XC-based loss terms. The only XC-based training strategy which leads to notable
improvements compared to the baseline is XC s+ bottom 3 reduce, but all experiments
using PAP-based loss lead to improvements at the 20th and 60th epochs. Erion et al. [11]
showed that although PAP-based loss can improve performance on MNIST dataset with
additional Gaussian noise, it led to worse performance on the original MNIST dataset
compared to training without PAP. This is perhaps because the MNIST digit classification
task is a very simple task, the model does not need to have high generalization capabilities
anyways, increasing model robustness would not improve model performance unless the
data contains extra noise. But LiDAR object detection is a much more difficult task,
and PointPillars must contain a lot more parameters than a simple digit classifier. For
PointPillars, the ability to generalize is highly desired, we can therefore improve model
performance using PAP even on the uncorrupted original KITTI dataset.

When training with PAP, the preferred selection of predictions is different than when
training with XC. It is very clear that applying XC-based loss to the low confidence pre-
dictions is more beneficial than applying them to the high confidence predictions. For
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each experiment, we present 36 AP metrics (nine object classes and four checkpoints).
XC s+ bottom 3 increase beats XC s+ top 3 increase in 32 out of the 36 metrics, and
XC s+ bottom 3 reduce beats XC s+ top 3 increase in all 36 metrics. However, when
training with PAP-based loss, it seems that applying it to the high confidence predic-
tions might be more beneficial. PAP+ top 3 beats PAP+ bottom 3 in 27 AP metrics and
PAP− top 3 beats PAP− bottom 3 in 24 AP metrics. But we do need to acknowledge
that the difference in AP due to the selection of predictions is less for PAP than for XC.
Further experimentation is required for a more concrete conclusion.

Table 5.2: Training with PAP-based loss terms on KITTI. Underline means less than one
percent better than baseline value, bold means one percent or more than basline value.

Epochs Training Strategy
Easy Medium Hard

Car Pedestrian Cyclist Car Pedestrian Cyclist Car Pedestrian Cyclist

20

Regular 78.7 44.7 68.0 67.8 39.0 48.1 63.8 35.1 45.1
PAP+ top 3 82.4 44.9 74.5 70.2 40.5 50.8 67.5 37.0 47.7

PAP+ bottom 3 82.3 47.9 74.5 68.2 41.8 52.3 64.3 37.6 48.8
PAP− top 3 80.3 47.7 77.3 67.5 42.0 55.4 62.7 37.9 51.7

PAP− bottom 3 82.0 49.5 74.1 68.6 43.2 51.0 65.2 38.8 48.0

40

Regular 84.4 55.6 77.5 73.3 49.6 57.6 69.1 45.6 54.4
PAP+ top 3 69.0 51.5 78.3 58.4 45.9 54.4 54.9 41.6 51.0

PAP+ bottom 3 72.3 50.2 73.0 57.0 44.3 52.1 53.5 39.3 48.5
PAP− top 3 82.1 49.5 80.1 66.1 43.9 58.6 62.7 39.5 54.6

PAP− bottom 3 78.0 52.3 70.3 62.4 46.2 51.4 58.8 41.3 48.0

60

Regular 86.1 51.2 73.0 74.2 46.3 57.1 71.6 41.9 53.4
PAP+ top 3 86.5 52.9 83.3 74.9 47.3 63.3 71.7 42.8 59.2

PAP+ bottom 3 86.6 52.1 76.2 74.8 47.2 57.7 71.8 42.7 53.9
PAP− top 3 84.6 54.0 80.9 73.6 48.2 60.4 70.8 43.1 56.4

PAP− bottom 3 86.1 52.1 76.0 75.0 46.5 56.3 72.2 42.2 52.6

80

Regular 87.4 55.5 81.5 78.2 49.7 64.5 75.3 45.5 60.7
PAP+ top 3 87.6 54.9 83.7 78.2 49.1 65.4 75.2 44.8 61.2

PAP+ bottom 3 87.2 53.6 78.9 77.6 47.9 61.0 75.0 43.7 56.9
PAP− top 3 87.6 54.6 85.1 78.5 49.2 65.8 75.4 44.7 61.3

PAP− bottom 3 87.5 54.3 81.3 77.9 48.1 62.5 75.2 44.1 58.4

Compare to the baseline, PAP− top 3 performs particularly well on the cyclist objects.
Maybe the attribution-based loss is applied to more cyclist predictions in PAP− top 3 than
in other experiments. To see if this is really the case, we present the number of predictions
in each object class for which the attribution-based losses have been applied for three
experiments at four different checkpoints in Table 5.3. Although PAP− top 3 leads to
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notably better performance on the cyclist objects than the other two experiments, the
number of cyclist predictions for which we apply the attribution-based losses is similar to
the other two experiments. Also, despite that a lot less pedestrian predictions are used for
PAP− top 3, its performance on the pedestrian object isn’t much worse than the other
two strategies. Hence, it is highly unlikely that the improvements on some specific object
classes are due to large number of objects from that class being coincidentally selected for
attribution-based loss computation.

Table 5.3: Number of predicted objects for which the attribution-based losses have been
applied. Each count value is aggregated over a twenty-epoch interval.

Epochs Training Strategy Car Pedestrian Cyclist

1 to 20
PAP− top 3 163247 19606 39867

PAP− bottom 3 87964 92780 41976
XC s+ bottom 3 reduce 101746 75640 45334

21 to 40
PAP− top 3 164206 20179 38335

PAP− bottom 3 82643 100304 39773
XC s+ bottom 3 reduce 98785 86815 37120

41 to 60
PAP− top 3 171256 16142 35322

PAP− bottom 3 78299 109234 35187
XC s+ bottom 3 reduce 93322 95661 33737

61 to 80
PAP− top 3 175689 12518 34513

PAP− bottom 3 73109 116730 32881
XC s+ bottom 3 reduce 86523 104311 31886

Another important observation is that the PAP-based losses can led to better results
than the baseline at the 20th and the 60th epochs, but similar results to the baseline at
the end of training cycle and usually worse results than the baseline in the middle of
the training cycle where the learning rate peaks. We have observed similar trend for
XC s+ bottom 3 reduce. We now have more confidence in our hypothesis that only small
weighting factors should be applied to the attribution-based losses. Close to the middle
of the training cycle, the learning rate is higher. As a result, the attribution-based losses
would have heavier influence on training, which may not be beneficial.

Training with PAP is promising, especially PAP− top 3: it beats the baseline on six
out of nine object classes at the 80th where most other training strategy perform either
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similar to the baseline or slightly worse, and it even beats the baseline on three object
classes at the 40th epoch, where most other training strategies are doing worse than the
baseline.
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Chapter 6

Conclusion and future works

To use the explanations quantitatively, we proposed four XC scores for object detectors
to measure the concentration of the feature attribution values generated for individual
predictions. The XC scores can be computed for any object detector that has a voxelized
representation of the 3D point cloud, and with any explanation method that produces
feature attributions as explanations. Applying the four XC scores on the task of classifying
TP vs. FP predictions led to over 100% improvement in AUPR on the pedestrian class on
both the KITTI and the Waymo datasets compared to simple heuristics such as distance to
sensor and number of LiDAR points in bounding box. Although the XC scores alone could
not outperform class score in the TP vs. FP classification task, combining class score with
the XC scores using an MLP led to notable improvement compared to using class score
alone on the pedestrian predictions.

We also discovered that the XC metrics derived from backprop attributions often out-
perform those derived from IG attributions on TP vs. FP classification for the pedestrian
and cyclist objects. This indicates that explanations that are more understandable to a
human observer, such as IG, may not offer superior value when analyzed quantitatively and
researchers should not discard simpler explanation methods when exploring quantitative
use cases for XAI.

We experimented with loss terms based on XC and PAP computed from backprop
attributions. We discovered that further decreasing XC values for the low confidence
predictions can lead to improvement in model performance. But all other training strategies
based on XC failed to produce any notable improvement. On the other hand, decreasing
PAP for the high confidence predictions seemed to be a promising strategy for boosting
model performance, especially for the cyclist objects. For all these experiment, there was
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a reoccurring observation: the benefit offered by the attribution-based loss terms are the
most notable when learning rate is around 0.0015, but as learning rate gets higher, these loss
terms often degrade model performance. For 3D object detection, we believe it is possible
to achieve model performance boost large enough to justify the extra computational cost
of training with attributions. Perhaps lowering the weighting factor for attribution-based
losses when learning rate is higher can be beneficial. Or there could be a better way for
selecting predictions for which we compute the attribution-related losses, rather than just
greedily choosing the most/least confident predictions.

There are still few limitations with this work which could be addressed by future work.
Firstly, although we had experimented with multiple datasets (KITTI and Waymo), we
had only experimented with one model, PointPillars. In the future, it would be interesting
to apply the XC scores to predictions generated by other object detectors as well and see
if the XC scores still offer the same benefits. Secondly, we had only explored two XAI
methods, IG and backprop. Backprop is rather crude, thus IG is the only sophisticated
gradient-based explanation we had analyzed. It would be interesting to compare XC scores
produced by other XAI methods such as guided-backprop or Grad-CAM as well. Thirdly,
we had only analyzed car, pedestrian, and cyclist predictions. Future researchers are
encouraged to further explore XC scores or PAP for other types of objects as well.
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