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Abstract 

Simulations to evaluate climate policy take a lot of time, but little evidence exists to say how 
long is enough, especially for policy impacts related to air pollution. Air pollution and 
climate change are the two leading global environmental issues affecting human health. 
Climate change can increase air pollution, an effect called the “climate penalty”. Climate 
policy can thus reduce air pollution, offering “co-benefits” for human health and the 
economy. However, climate policy makers lack robust information on these air pollution 
related co-benefits. This is due partly to uncertainty in these co-benefits. One such 
uncertainty is due to the natural variability in the climate system. Another is the response of 
the human system – including human health and the economy – to changes in air pollution. 
Natural variability obscures the effects of climate policy on air pollution and its associated 
health impacts. However, the computational cost of modelling health responses under many 
future climate scenarios means little is known about the size of this effect, or its implications 
for policy evaluation. This study seeks to address these gaps by determining minimum 
simulation lengths needed to address natural variability. It employs a novel analysis of results 
from a previously developed integrated modelling framework. This framework implemented 
global climate policies consistent with the Paris Agreement on Climate Change. It captured 
resulting changes to illness and premature death in the United States associated with outdoor 
concentrations of air pollutants including ozone and fine particulate matter, and resulting 
economic damages. Five initializations of the climate system and 30-year modelling periods 
resulted in 150 annual simulations for each pollutant (ozone and fine particulate matter), 
policy scenario (reference, a policy that meets a 2 degree warming target, and a policy 
meeting 2.5 degrees), and time period (2050 and 2100). In this new analysis of these results, 
climate policies were found to produce large co-benefits that were highest in the Eastern US 
and increased from 2050 to 2100. These co-benefits also had significant uncertainty related 
to both natural variability and uncertainty in health and economic responses (“health-related 
uncertainty”). Uncertainty due to natural variability was reduced by sampling within the 
annual simulations and averaging their results together. This process was continued until all 
initializations fall within the 95% confidence interval of health-related uncertainty. At this 
point, the simulation length was deemed sufficient to filter out natural variability. The 
simulation length required was found to vary depending on the signal-to-noise ratio (SNR), 
where co-benefits are the signal and the spread due to natural variability is the noise. SNR 
values increased over time from 2050 to 2100. In 2050, some regions, like the Midwest, 
showed a lower SNR and greater influence of natural variability. For these cases, eight years 
or more of simulation were needed to address natural variability. For cases with high SNR, as 
in 2100, less than three years were needed for all regions in the US. This work demonstrates 
the effect of natural variability on air quality co-benefits, and provides insights to inform 
simulation lengths to address it.  
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Chapter 1 
Introduction 

1.1 Problem 

The Climate Penalty on Air Pollution 

Air pollution is the release or presence of harmful substances in the air. Two air pollutants are thought 

to have the greatest effect on human health. These are fine particulate matter (particulate matter with 

aerodynamic diameter less than 2.5 µm, or PM2.5) and ozone (O3). Together, these pollutants are 

estimated to be responsible for millions of premature deaths worldwide (Vohra et al. 2021), and are 

among the top risk factors leading to premature death in the world (Cohen et al. 2017). The Institute 

for Health Metrics and Evaluation (IHME)’s Global Burden of Disease Study has ranked outdoor (or 

“ambient”) PM2.5 alone in the top 10 risk factors contributing to premature death, with ozone in the top 

40, per Figure 1-1Error! Reference source not found.. These increased health risks are associated 

with economic impacts caused by, for example, medical expenses, lost wages, reduced worker 

productivity, and pain and suffering (U.S. Environmental Protection Agency 2011).  
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    Climate change can make air pollution worse, an effect known as the “climate penalty” (Wu et al. 

2008). The formation of ozone and PM2.5 can be greatly affected by climate change (Fiore, Naik, and 

Leibensperger 2015). For example, future climate change can lead to more hot days with calm winds, 

conditions that boost the chemical reactions that produce ozone (Wu et al. 2008). With anthropogenic 

climate change, air pollution related illness and death have increased (Silva et al. 2013).  

Since climate change can make air quality worse via the climate penalty, climate policy can improve 

air quality, yielding “co-benefits”. Climate policy typically focusing on reduces the main anthropogenic 

source of climate change: greenhouse gas (GHG) emissions. GHGs are gases that absorb outgoing 

terrestrial infrared radiation that would otherwise escape to space. That radiation is transformed into 

heat (IPCC 2013). Policies that reduce GHGs can provide two types of “air quality co-benefits”: the 

“co-emissions co-benefit”, and the “climate co-benefit”, shown in Figure 1-2. This study considers the 

Climate Penalty Pathway, which yields “climate co-benefits” by reducing the direct effect of climate 

change on pollutant formation. 

 

Figure 1-2: Air Quality Co-Benefits of Climate Policy.  

    The Co-Emitted Pollutants Pathway refers to air pollutant emissions reduced by controlling common 

emission sources. The co-emission co-benefit arises because many sources of GHG emissions also emit 

air pollutants. For example, burning coal to produce electricity releases carbon dioxide – a greenhouse 

gas – as well as PM2.5 and other air pollutants. Most climate change policies are focused on addressing 

greenhouse gases at their source. As an ancillary effect, air pollutants from the same sources are curbed 

as well. This leads to a co-emission co-benefit, which can be large enough to exceed climate policy 

costs (Thompson et al. 2014; Saari et al. 2015). Air pollutants can also act as Short-lived Climate 

Forcers (SLCFs), affecting climate change on relatively short time-scales (typically less than a decade). 
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This requires coordinated efforts to reduce air pollutant and GHG emissions to meet climate goals 

(Shindell et al. 2017).  

Studies of air quality co-benefits rarely include the Climate Penalty Pathway, which is the focus of 

this thesis (Saari et al. 2019). This is partly due to the complexity of modelling the climate response, 

and the uncertainty associated with it due to natural variability. Natural variability refers to the 

“unforced” changes of the climate system caused by its chaotic nature (Deser et al. 2012). Natural 

variability acts as random “noise”, obscuring the effect of the “forced signal” of anthropogenic climate 

change or climate policy. If sufficient caution is not taken to address this natural variability, it will yield 

large differences in climate projections, which may be erroneously accredited to policies (Deser et al. 

2020).  

The effect of natural variability due to climate change can be filtered out by averaging many different 

future climate simulations (Milinski, Maher, and Olonscheck 2019). To filter out natural variability, 

the future climate simulations need a sufficient simulation length and ensemble size. Simulation length 

is the number of modelled years in a row to represent a given time period (e.g., in this study’s case, 30-

year simulations from 1981-2010 for start-of-century, 2036-2065 for mid-century, and 2086-2115 for 

end-of-century). An ensemble size is the number of different “members” of a group of simulations. To 

filter out natural variability, an “initial condition ensemble” is needed. Each “member” of an initial 

condition ensemble is a set of different potential climate futures, which differ only due to their starting 

conditions. For example, one member may start with a best estimate of climate conditions for the start-

of-century, and model the climate from 1986-2115. Another may start with a slight random variation 

on those initial climate conditions, modelling another realistic potential future climate that can vary 

significantly from the first climate by 2115 due to the climate systems’ chaotic nature. Long simulations 

(e.g., 30 years) represent year-to-year variability, while using different initial conditions helps to 

capture multi-decadal variability (e.g., natural responses that occur over longer than 30-year periods). 

Application-specific metrics can be used to develop a robust analysis (Milinski, Maher, and 

Olonscheck 2019). This involves sampling across ensemble members to determine a minimum 

simulation length. This minimum length will depend on geographic location, spatial and temporal 

scales, and time outlook (Deser et al. 2020). Previous studies have suggested minimum lengths of 10 

years or more for modelling the climate penalty on air pollution (Fiore, Naik, and Leibensperger 2015; 

Brown-Steiner et al. 2018; Garcia‐Menendez, Monier, and Selin 2017; Pienkosz et al. 2019). However, 

the computational cost of modelling health responses under many climate futures means that natural 
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variability has not been well characterized or addressed for air quality co-benefits (Deser et al. 2020). 

Thus, little is known about the size of this effect, or its implications for policy evaluation.  

1.2 Research Questions 

This thesis seeks to address these gaps by answering three associated research questions:  

1. How do air quality co-benefits vary regionally within the United States of America (US), by 

time period and climate policy? 

2. How large is the “noise” in the signal of air quality co-benefits due to natural variability?  

3. What is the minimum simulation length required to address natural variability in air quality co-

benefits, and how does this vary with geographic location, spatial scale, and time period?  

1.3 Scope 

These questions are applied to the United States, the second-largest emitter of greenhouse gases in 

the world (Climate Watch 2018). The two most harmful air pollutants, PM2.5 and ozone, are included, 

along with their effects on illness, premature death, and associated economic impacts. Three future 

emissions scenarios are considered, which are discussed in detail under Section 3 and shown in Table 

3-2. The analysis includes two time periods (2050 and 2100). Impacts are evaluated for the contiguous 

United States, and for six regions in USA. These regions are defined in the U.S. National Climate 

Assessment reports (USGCRP 2018), as the Northwest, Southwest, Great Plains, Midwest, Southeast 

(excluding the Caribbean), and Northeast, as shown in Figure 1-3.   
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Figure 1-3: US regions.  

Northwest – Idaho, Oregon, Washington; Southwest – Arizona, California, Colorado, Nevada, New 

Mexico, Utah; Great Plains – Kansas, Montana, Nebraska, North Dakota, Oklahoma, South Dakota, 

Texas, Wyoming; Midwest – Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin; 

Southeast – Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, 

South Carolina, Tennessee, Virginia; Northeast – Connecticut, Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, West 

Virginia. 

1.4 Thesis Structure 

This chapter introduced the research problem and questions that, when answered, will advance 

understanding of how to address uncertainty in health impacts of air pollution under climate change 

mitigation. The remainder of this thesis is structured as follows: Chapter 2 presents background on air 

pollution, climate change, the interactions between them, and the uncertainties explored in this study. 

It also situates this work in the literature on air quality co-benefits of climate policy. Chapter 3 describes 

the modeling framework, data, and analysis approach to quantify impacts and uncertainty by region, 

policy, and time period. Chapter 4 presents the results that inform the research questions, including 

quantified uncertainty estimates and uncertainty-driven metrics. Chapter 5 concludes with key findings 

and insights for policy evaluation of air quality co-benefits. Works cited and supporting appendices 

follow.  
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Chapter 2 
Literature Review 

2.1 Ozone and PM2.5 pollution 

PM2.5 is made of aerosols or particles suspended in air. These particles can be solid, liquid, or 

mixtures thereof. Some PM2.5 is primary (emitted directly) and some is secondary (formed in the 

atmosphere through processes like nucleation, condensation and coagulation). In the world, most PM2.5 

is due to primary emissions from natural sources; of the anthropogenic sources, most PM2.5 is secondary 

(Hinds 1998). PM2.5 can last for days or weeks in the air. It leaves the atmosphere through a process 

called deposition, which can be wet (e.g., rainout) or dry (e.g., settling to the ground) (Jacob 1999).  

PM2.5 has significant effects on human health. It can deposit deep into the lungs and even enter the 

blood stream, given its small size. Among other things, it is associated with increased risk of death due 

to lung cancer, heart disease, and respiratory infection (Burnett et al. 2018). It also raises the risk of 

heart attacks and hospital admissions, and decreases worker productivity (U.S. Environmental 

Protection Agency 2011).  

Ozone is a gaseous molecule composed of three oxygen atoms. It is a secondary pollutant. Ozone is 

typically formed in the lower atmosphere through photochemical oxidation of volatile organic 

compounds (VOC) and oxides of nitrogen (NOx). Both VOC and NOx (precursors) are produced by 

fossil fuel combustion, and found commonly in densely populated regions. Ozone’s formation process 

is non-linear, and depends on the amount of NOx and VOCs present in the air. Ozone forms in the 

atmosphere through photo-chemical reactions; usually contaminants generated by vehicles, power 

plants, industrial boilers, refineries, chemical plants, and other sources react in the presence of sunlight 

to form ozone. In urban areas, ozone is more likely to reach harmful levels on hot, sunny days. It can 

also reach high levels during colder months in stagnant (i.e., still) air. It is also possible to transport 

ozone over long distances by wind, so that even rural areas can experience high levels of ozone. It is 

removed from the air by reaction with sunlight, and dry deposition (Jacob 1999).  

Ozone, though the second most harmful pollutant, does far less harm overall than PM2.5 (ranked in 

the 30s for global risk factors, as opposed to the top 10 in the Global Burden of Disease). Ozone is an 

irritant to eyes and lungs and can be harmful to health when exposed to high concentrations. People 

with asthma, infants, older adults, and people who are active outdoors, including outdoor workers are 

susceptible to ozone exposure. Furthermore, individuals with certain genetic features and individuals 
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with decreased intake of certain nutrients, such as vitamins C and E, are at higher risk from exposure 

to ozone (Moreno-Macías et al. 2013). It is associated with premature death caused by chronic 

respiratory diseases. It is also linked to increased hospital and emergency room visits, respiratory 

symptoms (including asthma attacks), missed school days and lost productivity (U.S. Environmental 

Protection Agency 2011).  

2.2 Health and Economic Impacts of Air Pollution 

The health effects of air pollution are estimated using results from epidemiologic studies. Epidemiology 

seeks to identify the determinants of disease frequency in human populations. In particular, this work 

uses studies that assess the extent to which exposure to outdoor air pollution causes a change in the risk 

of disease or death.  

Epidemiologic studies have developed concentration response functions (CRFs) to quantify the link 

between outdoor air pollution and human health risks (Fann et al. (2012)). CRFs are functions that 

can be applied to estimate the resulting outcomes due to changes in pollutant concentrations, such as 

premature deaths, symptoms, or hospitalizations. These outcomes can be estimated using equations 

(Fann et al. 2012) of the following form:  

∆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑦𝑦0  × 𝑝𝑝𝑝𝑝𝑝𝑝 × �1 −  𝑒𝑒(−𝛽𝛽 × ∆𝑥𝑥)� 

Equation 2-1 

Where,  
y0 - Baseline cause-specific incidence rate 
pop - Population size 
β - Risk coefficient for health end point of interest 
∆𝑥𝑥 - Change in pollutant concentration 

 
Health outcomes like premature deaths and hospitalizations have economic impacts. These impacts are 

estimated using economic studies. Ideally, these studies try to estimate the full economic value of an 

outcome, including non-market effects like pain and suffering. For example, avoided premature deaths 

are valued using the Value of a Statistical Life (VSL). VSL is defined as “the monetary value that a 

group of people are willing to pay to slightly reduce the risk of premature death in the population” (U.S. 

Environmental Protection Agency 2017). The VSL therefore is not the value of a life, nor the value of 

avoiding certain death, but the average value people are willing to pay to avoid small changes in their 

risk of death (Cameron 2010). The value of reducing premature death is typically over 90% of the 
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economic impact of improving air quality (Saari et al. 2015). The remainder of the value comes from 

avoiding increased rates of illness and associated effects including hospitalizations, medical expenses, 

unpleasant symptoms, lost wages, and reduced worker productivity (U.S. Environmental Protection 

Agency 2011).  

 

2.3 Health-Related Uncertainty 

To put the effects of natural variability in context, this study compares it to “health-related 

uncertainty”. Here, health-related uncertainty is defined as including the uncertainty associated with 

the CRF relating health risks to outcomes, and with economic valuation of those outcomes.  

   The uncertainty associated with the CRF is represented both as the choice of the CRF, and the 

uncertainty in the CRF parameters. This approach follows US air quality policy analysis. US air 

quality policy analysis typically presents results separately for the two main North American 

epidemiologic studies linking PM2.5 to premature death. These are the American Cancer Society study 

(Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope, Thurston, Calle, Thun, et al. 2009) and the 

Harvard Six Cities study (Lepeule et al. 2012). Presenting results using CRFs from both studies is 

used to estimate the uncertainty introduced by the choice of CRF Both studies are widely used and 

accepted. They each have known advantages and disadvantages (Fann et al. 2012). On average, the 

Harvard Six Cities study estimates an increase in mortality risk that is twice as big as the American 

Cancer Society study.  

Each CRF itself also contains parameter uncertainty. Sampling the uncertainty in these parameters 

via Monte Carlo simulation allows the creation of a 95th percentile confidence interval in the resulting 

outcomes using each CRF. The confidence interval in the CRF associated with individual studies is 

the most commonly quantified health-related uncertainty in US air quality policy analysis (Fraas 

2011). The same approach can be applied across multiple health outcomes (illness and death) and 

distributions of uncertainty in their economic valuations to derive overall confidence intervals in the 

total air quality co-benefits.  

2.4 Climate System, Natural Variability, and Climate Change  

   Weather is the state of the atmosphere, which is constantly changing. Climate is defined by the World 

Meteorological Organization as the average weather over 30 years, reflecting both the mean and 
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variability of weather variables such as temperature,  wind, precipitation, clouds and other weather 

elements (IPCC 2018). The atmosphere is the most variable part of the climate system. The climate 

system is an interactive coupled system consisting of components including land, ocean, atmosphere, 

biosphere, and cryosphere. Variations from natural processes in these components result in “internal 

variability” or natural variability within the climate system. 

    Climate change is a statistically significant shift in the mean state of the climate or of its 

variability, typically persisting for decades or longer (IPCC 2018). Detecting these shifts is made 

difficult by the natural variability in the climate (Brown-Steiner et al. 2018). 

    Climate change occurs when the climate system is influenced, or “forced”, by so-called “external 

forcing mechanisms”. “Radiative forcing” is used to compare the relative importance of different 

forcing mechanisms on the climate system. Radiative forcing is a first-order measure of the relative 

climatic importance of different forcing mechanisms, with units of W/m2. Since the industrial 

revolution, total radiative forcing is positive, primarily driven by emissions of greenhouse gases, 

especially of carbon dioxide (CO2) and methane (CH4) (see Figure 2-1). A measure used to compare 

the relative importance of different greenhouse gas emissions is “CO2 equivalent”, a unit written as 

CO2eq or CO2e. CO2e estimates the total climate effect relative to emissions of CO2.  
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Figure 2-1: Radiative forcing since the Industrial Revolution (IPCC 2013) 

2.5 Climate Change and Air Quality 

     The formation and loss of ozone and PM2.5 depend on the weather, and thus can be affected by 

climate change and climate policy. Figure 2-2 shows the main influence of climate change on these 

pollutants. The effects of climate change can either increase or decrease pollutant levels by affecting 

their sources (e.g., emission rates, stratosphere-troposphere exchange, chemical formation) and sinks 

(e.g., chemical loss and deposition). For example, the figure below shows that atmospheric water vapor 

could increase with climate change, and that this is likely to substantially decrease ozone but increase 

PM2.5 concentrations as seen by a black arrow next to water vapor, when (--) and (+) indicating the 

change in ozone and PM2.5, respectively.  

     Given these complex processes, and the fact that PM2.5 is more harmful to human health than ozone, 

models are needed to understand the balance of these effects for humans. While there is still uncertainty 
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in terms of how climate change will affect air pollution, especially for PM2.5, many recent reviews show 

that climate change will increase health risks due to air pollution (Sujaritpong et al. 2014; Madaniyazi 

et al. 2015; Orru, Ebi, and Forsberg 2017).  

 

Figure 2-2: Air Quality and Climate Connections (Fiore, Naik, and Leibensperger 2015).  

Orange text shows atmospheric processes. Black arrows show sensitivity of processes to warming 

(increase is up; decrease is down; double-headed arrow is unknown). In parentheses is how O3 and 

PM2.5 respond, respectively (For double-headed arrows, the O3 and PM2.5 response denoted is for 

an increase in the process): ++ consistently positive, + generally positive, = weak or variable; - 

generally negative, -- consistently negative, ? uncertainty in the sign of the response, and * the 

response depends on changing oxidant levels. 

    The increase in air pollution under climate change is termed the “climate penalty” (Wu et al. 2008).  

Wu et al. (2008) in their paper discussed how projected population growth coupled with conducive 
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climates such as increased temperatures and stagnant zones can cause an increase in the formation of 

ozone. That increased formation meant that an additional 10% reduction in NOx emissions would be 

needed to meet air quality targets in 2050.  

2.6 Simulation Length 

     One reason that most studies of air quality co-benefits do not include the effect of climate penalty 

has to do with the computational cost. It takes many calculations to solve the systems of nonlinear 

equations that represent the chemical reactions that form ozone and PM2.5 (Jacobson 2005). Thus, 

adding air quality to a typical climate simulation increases the computational time substantially, 

typically by a factor of five in the modelling system used here. As a result, most studies only simulate 

a few years of future air quality with one climate initialization (Pienkosz et al. 2019; Fu and Tian 2019; 

Fiore, Naik, and Leibensperger 2015; Garcia‐Menendez, Monier, and Selin 2017).  

     In other words, most studies use a short simulation length, and an ensemble size of one. The 

simulation length refers to the number of consecutive annual simulations used to represent impacts in 

a given period (e.g., in this study’s case, 30 year simulations from 1981-2010 for start-of-century, 2036-

2065 for mid-century, and 2086-2115 for end-of-century). The ensemble size refers to the number 

“members” of an ensemble. “Members” can refer to different simulations of the same future conditions 

estimated either with different models or the same model with different initial conditions.  

The typical approach in the literature, i.e., a single ensemble member with a few years of simulation, 

is probably not enough to filter out the forced signal (i.e., the effect of climate policy) from natural 

variability (Fiore, Naik, and Leibensperger 2015; Deser et al. 2020). Typically, when modelling the 

atmosphere, the desired forced signal is detected from noisy data by temporal and/or spatial averaging 

(Brown-Steiner et al. 2018). Temporal averaging involves increasing simulation lengths, and spatial 

averaging means calculating results over a larger area. Spatial averaging can be limited by the size of 

the desired study area (e.g., for local or national studies). Temporal averaging, for air quality modelling, 

is typically limited by computational cost restricting simulation lengths. 

     Fiore, Naik, and Leibensperger (2015a) pointed out multiple cases in which a larger ensemble 

size and/or longer simulation length are needed. They occur whenever the forced signal (i.e., the effect 

of climate policy) is expected to be small compared to natural variability, i.e., the signal-to-noise ratio 

is low. This is expected especially for modest policies, shorter time scales, and smaller geographic 
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scales. In other words, near-term, local impacts most relevant for climate action can be the hardest to 

evaluate.  

     Deser et al. (2020) described one way to isolate the forced signal (i.e., the effect of climate policy) 

from the noise of natural variability by averaging both temporally and across an ensemble of model 

simulations. The general approach is to create an ensemble of future climates with a single model, then 

average the results across a “sufficient” number of “initial condition ensemble members”. Each initial 

condition ensemble member is created by randomly changing climate variables at the start of the 

simulation (also called “perturbed initial conditions”). Each member, from slightly different starting 

conditions, can produce very different future climates. The difference between these future climates is 

due only to natural variability, and thus can be used to quantify its effect. Finding the average between 

these many future climates can filter out natural variability.  

  An ensemble can also then be used to determine the minimum simulation length. Milinski, Maher 

and Olonscheck (2019) described how to assess the minimum simulation length using initial condition 

ensembles. Their approach involves averaging results between ensemble members until some 

application-specific metric is reached. However, they did not describe how to apply this approach to 

assessing air quality co-benefits. Large initial condition ensembles have been recently developed for 

climate change applications, involving 10-100 members - e.g., (Kay et al. 2015). For air quality under 

future climates, however, only small ensembles exist. These ensembles have demonstrated the 

importance of accounting for natural variability (Deser et al. 2020), but have not informed minimum 

simulation lengths. 

Multiple studies have suggested that more than 10 years of simulation might be needed to assess 

future air pollution levels under a changing climate (Fiore, Naik, and Leibensperger 2015a; Brown-

Steiner et al. 2018; Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019; Lacressonnière et 

al. 2016; Fu and Tian 2019). This thesis builds on that prior work, using air pollutant concentrations 

developed with 30-year simulations and the largest ensemble to date (Garcia-Menendez et al. 2015; 

Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019). That work proposes a margin of error 

in pollutant concentrations to determine minimum simulation lengths. Table 2-1 and Table 2-2 provide 

the number of simulation years required for different regions and metrics for 2100 for ozone, and PM2.5, 

respectively. Using a 95% confidence level, these margins of error require simulation lengths that 

exceed a decade in most cases.  
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Table 2-1: Simulation lengths for ozone based on margin of error in concentrations (Garcia-

Menendez, Monier, and Selin 2017)).  

 

Note. Simulation years required to achieve ±1.0 or ± 0.5 ppbv margin of error at 90% and 95% 

confidence levels for the 2100 reference scenario climate impact on annual-average ground-level 8-

h-max O3 for national, population-weighted and regional estimates” 

Table 2-2: Simulation lengths for PM2.5 based on margin of error in concentrations (Pienkosz et al. 

2019).  

 
 

However, air quality co-benefits are different from air pollution levels, involving uncertain health 

and economic responses that might inform the minimum simulation length in an approach more relevant 

for policy evaluation. Saari et al. (2019) demonstrated that just 5 years of simulation can reduce natural 

variability to within health-related uncertainty by the end of the century, much less than the 10 years at 

least for 2100 recommended by authors of the work in Table 2-1 and Table 2-2. Saari et al. (2019), 

however, did not identify minimum simulation lengths, nor did it consider subnational impacts. This 

thesis extends that analysis by informing minimum simulation lengths across time periods and locations 

within the US.    

2.7 Summary 

Most studies of the climate penalty do not sufficiently address natural variability because they only 

simulate 5 years or less of future air quality in one future climate (Pienkosz et al. 2019; Fu and Tian 
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2019; Garcia-Menendez, Monier, and Selin 2017; Fiore, Naik, and Leibensperger 2015).  Saari et al. 

(2019) found that ignoring natural variability when assessing co-benefits can mean preferring the wrong 

policy 47% of the time; but this study did not explain how to address natural variability. Studies on 

how to address natural variability recommend using multiple future climates (i.e., a “multiple IC 

ensemble”) and 10 years or more of simulation (Deser et al. 2020; Fiore, Naik, and Leibensperger 2015; 

Brown-Steiner et al. 2018; Garcia‐Menendez, Monier, and Selin 2017; Pienkosz et al. 2019; 

Lacressonnière et al. 2016; Fu and Tian 2019). However, this is very computationally costly for 

evaluating air quality co-benefits. Others recommend estimating the minimum ensemble length by 

choosing a relevant metric and then finding the simulation length that meets it (Milinski, Maher, and 

Olonscheck 2019). Saari et al (2019) looked at co-benefits associated with reducing the climate penalty, 

but this was a national study, and it did not look at results within the country, or estimate minimum 

simulation lengths for such studies to address natural variability.  

Most studies of the climate penalty do not account for natural variability well. Some suggest that this 

will take many simulations of future air quality under different climates. However, it takes about 5 

times as long to estimate future air quality as it does to simulate future climate change, thanks to all the 

non-linear chemical reactions that take place.  Current literature does not address how short our 

simulations can be and still address natural variability. 
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Chapter 3 
Methods 

3.1 Integrated Modelling System 

This thesis further investigated the country wide data that was presented in Saari et al. (2019) to quantify 

the effect of natural variability, inform simulation lengths, and examine regional variation. A brief 

summary of how that data was generated is shown in Table 3-1 and discussed here.  

Table 3-1:  Experimental Design to Isolate the Effect of Natural Variability on Climate Co-Benefits 

(from Saari et al. (2019)) 

Framework Variables Simulations Output 

 

Constant 
Anthropogenic 
pollutant emissions  

Population age/spatial 
distribution 

Varying 
Population growth 

Economic growth 

Baseline mortality 
incidence rates 

GHG emissions  

Climatic conditions 

Pollution 
concentrations 

Scenarios 
Reference, Policy 
4.5, Policy 3.7 

Years of Interest 
2000, 2050, 2100 

Annual simulations 
30-year periods:  
1986-2015; 2036-
2065; 2086-2115 

5 initializations 

150 annual 
simulations per 
scenario and year of 
interest 

Impacts due to fine particulate 
matter and ozone exposure 
(multiple CRFs) 

- All-cause mortality  
- Morbidity including: 

-  acute myocardial infarction, 
-  hospital admissions 

(respiratory, cardiovascular, 
emergency),    

-  respiratory symptoms 
(upper respiratory 
symptoms, asthma 
exacerbation, acute 
bronchitis), 

-  lost productivity (work loss 
days, school loss days, 
minor restricted activity 
days)  

- Economic valuation of 
benefits 

EPPA =MIT Economic Projection & Policy Analysis; MESM = MIT Earth System Model; 
CAM-Chem = Community Atmosphere Model with Chemistry; BenMAP = environmental 
Benefits Mapping and Analysis Program; CRF = concentration-response function 
 

Policy
(EPPA)

Climate
(MESM- CAM)

Air Quality
(CAM-Chem)

Health & 
Valuation
(BenMAP)
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Saari et al. (2019) used a multi-decadal, multiple initial condition ensemble to estimate mortality, 

morbidity, and economic impacts of air pollution under future climate and two global climate policies. 

The pollutants considered were PM2.5 and ozone. Data were generated with a set of coupled models of 

the global economy, earth system, air quality, and human health. The coupling of those models is shown 

in Figure 3-1, including key output variables that served as inputs to this analysis, and sample 

visualizations of these outputs. Note that the economy and Earth system models are shown as the single 

MIT Integrated System Model, which includes the economic model (EPPA) and climate model (MIT-

ESM) from Table 3-1. Two policies and a reference case were considered, as described in Table 3-2. 

 
Figure 3-1: Coupled Models of the Economy, Climate, Air Quality, and Health. 

Table 3-2: End-of-Century Conditions for Climate Change Reference and Mitigation Scenarios (as per 

Paltsev et al. (2015)) 

Scenario CO2 (ppm) Total Radiative 
Forcing (W/m2) 

Global Mean Surface 
Temperature Rise (°C) 

Reference (REF) 830 10 6 
Policy 4.5 (P45) 500 4.5 2.5 
Policy 3.7 (P37) 460 3.7 2.0 

 



 

 18 

 The MIT Integrated Global System Model (IGSM) was used to implement climate policies and assess 

their costs, effects on greenhouse gas emission, and compliance with climate goals (i.e., rise in global 

mean surface temperature compared to pre-industrial conditions). The MIT-IGSM includes a global 

economic model, the Economic Projection & Policy Analysis (EPPA) and the MIT Earth System Model 

(MESM). EPPA is a computable general equilibrium (CGE) economic model with multiple economic 

sectors and regions.  

To implement the climate policy scenarios, a carbon tax was imposed in the economic model EPPA to 

reduce greenhouse gas emissions. EPPA then solved for prices in the economy to balance supply and 

demand while considering exports, imports, government expenditures, household demand for final 

products, labor, capital, and natural resources. Rents on capital, labor, and resources are specified in 

EPPA in billions of dollars, while outputs are specified similarly or in relevant physical units (e.g., 

energy (exajoules), emissions (tonnes), land use (hectares), population (billions of people) etc). 

Emissions from EPPA then drove the Earth system model, which in this case was the MESM-CAM.  

The MESM-CAM couples MIT’s Earth System model with the Community Atmosphere Model (CAM) 

developed by the National Center for Atmospheric Research (NCAR). The MESM-CAM includes 

models of the land, atmosphere, and ocean. It was used to produce three-dimensional climate variables 

such as temperature and precipitation which were input to the air quality model, the Community 

Atmosphere Model with Chemistry (CAM-Chem).  

CAM-Chem produced ground-level concentrations of O3 and PM2.5 at a horizontal resolution of 1.9° x 

2.5°. Once ground level concentrations of the key pollutants were simulated, this information was fed 

into the Benefits Mapping and Analysis Program − Community Edition (BenMAP-CE v1.0814) to 

estimate health and economic impacts.  

3.2 Ensemble Simulations 

In order to weed out the noise from natural variability, many simulations of future health responses 

were produced. To achieve this, the approach recommended by Deser et al. (2020), to use an initial 

condition ensemble was adopted. Details on the development of the five sets of initial conditions used 

can be found in (Monier et al. 2013). For each of the five members in the ensemble, and for each of 

the three emission scenarios described in Table 3-2, three target years of interest were set, namely 

2000, 2050, and 2100. For each of these target years, each ensemble member was run for thirty-year 

periods, specifically 1981-2010 for 2000, 2036-2065 for 2050, and 2086-2115 for 2100. With a total 
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of five ensemble members, this means that one hundred and fifty annual simulations were run for 

each emission scenario and future target year.  

 

3.3 Regional Analysis 

The original analysis in Saari et al. (2019) only considered national total air quality co-benefits. One of 

the main contributions of this thesis, addressing research question number 1, was to examine the 

regional variation in co-benefits from the data developed in Saari et al. (2019). To our knowledge, this 

is the first presentation of regional air quality co-benefits due to reducing the climate penalty in the US.   

3.3.1 Regions of Interest 

A regional analysis was performed using similar regions to Pienkosz et al. (2019), which first presented 

the particulate matter concentrations used herein. There were six regions of interest covering the 

contiguous USA, namely Northwest, Southwest, Greatplains, Midwest, Southeast, and Northeast. The 

states within each region were as follows: 

Northwest - Idaho, Oregon, Washington 

Southwest - Arizona, California, Colorado, Nevada, New Mexico, Utah 

Greatplains - Kansas, Montana, Nebraska, North Dakota, Oklahoma, South Dakota, Texas, 

Wyoming 

Midwest - Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, Wisconsin 

Southeast - Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North 

Carolina, South Carolina, Tennessee, Virginia 

Northeast - Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New 

Jersey, New York, Pennsylvania, Rhode Island, Vermont, West Virginia 

3.3.2 Regional Data Sorting  

The health and economic output data from Saari et al. (2019) was available in grid cells sized 1.9° x 

2.5°. The modelling domain was 15 rows by 25 columns. In total there were two hundred and twenty 

cells covering the contiguous US. Non-contiguous states such as Alaska and Hawaii were not covered 

by these grid cells. The task was to sort the gridded information using political boundaries. The state 
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boundaries of the United States were overlayed on these two hundred and twenty cell grids using QGIS. 

The information from the grid cells was split among the states. Using QGIS, it was determined what 

percentage overland area of each grid cell fell within each state boundary. No impacts were assigned 

over water. The totals for each state were calculated based on the area-weighted sums of the impacts in 

the relevant grid cells. Once the information for each state was determined, it was then represented 

regionally by summing the values of the states within each region.  

3.4 Air Quality Co-Benefits of Climate Policies  

    Climate policy can be used to mitigate climate change. For example, the Global Paris Agreement on 

Climate Change from December 2015 commits Members to the agreement to limit global warming to 

well below 2°C, preferably to 1.5°C, above preindustrial levels by reducing greenhouse gas emissions 

(Dimitrov 2016).  

    Many studies have shown that climate policies have significant air quality co-benefits (Chang et al. 

2017; Nemet, Holloway, and Meier 2010) that can exceed climate policy costs (Saari et al. 2015; 

Thompson et al. 2014; Li et al. 2018). Most of these studies, however, do not include the climate 

penalty, thereby underestimating air quality co-benefits. Studies that do include it find large impacts, 

including thousands of premature deaths avoided and trillions of benefits amounting to one quarter of 

climate policy costs (Saari et al. 2019; Garcia-Menendez et al. 2015; Fann et al. 2015; Zhang et al. 

2017).  

3.4.1 Health and Economic Uncertainty 

As recommended by Milinski et al. (2019), a metric was used to determine the minimum acceptable 

ensemble size. Here, that metric was set via the “health-related uncertainty”. Health-related uncertainty 

was defined as the combined effect of uncertainty in health responses to concentrations, and uncertainty 

in the economic valuation of those responses, as defined in detail in this section. The 95th confidence 

interval of health-related uncertainty was used as the metric to determine how many years of averaging 

were needed to filter out natural variability.  

Health-related uncertainty was measured as the 95th confidence interval in economic impacts based 

on a variety of health responses to both ozone and fine particulate matter, shown in Table 3-3. The data 

were derived from Saari et al. (2019) using the methods discussed in Section 2.2 and implemented in 

BenMAP-CE v1.0814).  
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The BenMAP model configuration was based on the “U.S. EPA approach for quantifying and valuing 

PM effects (1 pg, 4 MB, July 11, 2017)” and “U.S. EPA approach for quantifying and valuing ozone 

effects (1 pg, 4 MB, July 11, 2017)” (available at: https://www.epa.gov/benmap/benmap-community-

edition).  

Table 3-3:  Outcomes, epidemiologic studies, and valuation methods (from Saari et al. (2019)) 

Outcome / 
Outcome Group 

Pollutant Ages 
(yrs) 

Individual Epidemiological Studies Valuation Method 

All-cause Adult 
Mortality (AM) 

PM2.5 30-99 
25-99 

Krewski et al. (2009 
Lepeule et al. (2012) 

Weibull distribution 
based on 26 Value of 
Statistical Life 
estimates from peer-
reviewed literature.  

Ozone 0-99 Smith et al. (2009)(Smith, Xu, and Switzer 
2009) 
Zanobetti and Schwartz (2008)(Zanobetti 
and Schwartz 2008) 

Respiratory 
Hospital 
Admissions 
(RHA) 

PM2.5  >65 
 >65 
0-17 
0-64 
18-64 

Kloog et al. (2012) ICD 460-519 (All 
respiratory) 
Zanobetti et al. (2009) ICD 460-519 (All 
respiratory) 
Babin et al. (2007) ICD 493 (asthma) 
Sheppard (2003) ICD 493 (asthma) 
Moolgavkar (2000) ICD 490–492, 494-496 
(COPD, less asthma) 

Cost of illness 
estimates, including lost 
wages and medical 
expenses, based on ICD 
9 code level 
information from 
Agency for Healthcare 
Research and Quality. 
Medical costs and wage 
loss.  

Ozone  >65 Katsouyanni et al. (2009)(Katsouyanni et al. 
2009)  

Cardiovascular 
Hospital 
Admissions 
(CHA) 

PM2.5 18-64 
 
65-99 
 
 

Moolgavkar (2000) ICD 390–429 (all 
cardiovascular) 
Zanobetti et al. (2009) ICD 390-459 (all 
cardiovascular) 
Peng et al. (2008) ICD 426-427; 428; 430-
438; 410-414; 429; 440-449 (Cardio-, 
cerebro- and peripheral vascular disease) 
Peng et al. (2009) ICD 426-427; 428; 430-
438; 410-414; 429; 440-449 (Cardio-, 
cerebro- and peripheral vascular disease) 
Bell et al. (2008) ICD 426-427; 428; 430-
438; 410-414; 429; 440-449 (Cardio-, 
cerebro- and peripheral vascular disease 
Moolgavkar (2003) 

Asthma-related 
Emergency Room 
Visits (ERA) 

PM2.5 0-99 
  

Glad et al. (2012) 
Slaughter et al. (2005) 
Mar et al (2010)(Mar, Koenig, and Primomo 
2010) 

Average of cost of 
illness estimates from 
Smith et al. (1997) and 
Stanford et al. (1999).   

Ozone 0-99 
 
 
 
 
0-17 
18-99 

Peel et al (2005)(Peel et al. 2005)  
Wilson et al (2005)(Wilson et al. 2005) 
Sarnat et al. (2013) 
Glad et al. (2012) 
Ito et al. (2007) 
Mar and Koenig (2009) 
Mar and Koenig (2009) 

https://www.epa.gov/benmap/benmap-community-edition
https://www.epa.gov/benmap/benmap-community-edition
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Outcome / 
Outcome Group 

Pollutant Ages 
(yrs) 

Individual Epidemiological Studies Valuation Method 

Work Loss Day 
(WLD) 

PM2.5 18-64 Ostro (1987) Median daily wage, 
county-specific 

Acute Bronchitis 
(AB) 

PM2.5 8-12 Dockery et al. (1996) Willingness to pay for 
one symptom day based 
on contingent valuation 
studies for the relevant 
symptoms (IEc, 1994) 

Upper Respiratory 
Symptoms (URS) 

 9-11 Pope et al. (1991) 

Asthma 
Exacerbation 
(AE) 

PM2.5 6-18 Ostro et al. (2001) (cough, wheeze, shortness 
of breath) 
Mar et al. (2004) (cough, shortness of breath) 

Mean of four severity 
levels in Rowe and 
Chestnut (1986) 

Ozone 6-18 Mortimer et al. (2002) 
Schildcrout et al. (2006) 

Acute Myocardial 
Infarction, 
nonfatal (NFMI) 

PM2.5 18-99 Sullivan et al. (2005) 
Pope et al. (2006) 
Zanobetti and Schwartz (2006) 
Zanobetti et al. (2009) 

Lost income based on 
Cropper and Krupnick 
(1990), and medical 
expenses based on 
Russell et al. (1998) 
and Wittels et al. 
(1990). 

Minor Restricted-
Activity Days  

Ozone 18–64 Ostro and Rothschild (1989)(Ostro and 
Rothschild 1989) 
 

Median WTP estimate 
to avoid one MRAD 
from Tolley et al. 
(1986), with a 
triangular distribution 
ranging between a 
single mild symptom 
and a WLD.  

School Loss Days Ozone 5-17 Chen et al. (2000)(Chen et al. 2000) 
Gilliland et al. (2001)(Gilliland et al. 2001) 

Based on lost wages 
given the probability 
that a parent stays home 
with the child. 

ICD = International Classification of Disease 

Many of the above health outcomes were estimated using multiple individual epidemiological 

studies. Those studies were combined (using a technique known as “pooling”) following the 

recommended BenMAP configuration described above. Similarly, results from economic studies were 

also combined for some outcomes (e.g., using a 50% weighting of results from Smith et al. (1997) and 

Stanford et al. (1999) for asthma-related emergency room visits). The steps to combine evidence from 

multiple studies were performed following the aforementioned U.S. EPA approaches.  

BenMAP population, baseline incidence, and currency rates were all set to reflect the year 2000. 

Incidence rates and damages were then projected for future years 2050 and 2100 based on the conditions 

in the integrated modelling framework used, to be consistent with the climate policy conditions. For 

example, early deaths were projected from the base year of 2000, using the following equation: 
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𝑦𝑦𝑓𝑓 = 𝑦𝑦2000 ∗
𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝2000

∗
𝑦𝑦𝑜𝑜,𝑓𝑓

𝑦𝑦𝑜𝑜,2000
= 𝑦𝑦2000 ∗ γpop ∗ γ𝑜𝑜 

Equation 3-1 

Where:  

yf is the incidences of excess premature mortality in the future, in units of incidence per year 

y2000 is the base year incidences of excess premature mortality from BenMAP, in units of 

incidence per year 

popf is the future year population, in units of persons 

pop2000 is the base year population, in units of persons 

yo,f is the future baseline mortality incidence rate, in units of incidence per year  

yo,2000 is the base year baseline mortality incidence rate, in units of incidence per year, 

The ratios of present values to future values are indicated by γ for population (pop) and 

mortality incidence rate (o), respectively.   

 

Projections were completed as detailed in (Garcia-Menendez et al. 2015; Saari et al. 2019), with 

projection factors summarized in Table 3-4.  

Table 3-4: Mortality Incidence Projection Factors and Data Sources (adapted from (Shim 2021)) 

Category Description Year Value Source 

Population 
Projection 

Population Ratio of Year 
vs. Base Year of 2005 

2050 1.48 EPPA modelled population growth based 
on long-term trends of United Nations 
Data provided in Paltsev et al. (2015) 

2100 1.73 

Mortality 
Projection  

Baseline Mortality Ratio 
of Year vs. Base Year of 

2008 (Ozone) 

2050 1.24 Respiratory Mortality Incidence Rates from 
International Futures as provided in West 

et al. (2013) 
2100 1.64 

Baseline Mortality Ratio 
of Year vs. Base Year of 

2008 (PM2.5) 

2050 1.12 Cardiovascular Mortality Incidence Rates 
from International Futures as provided in 

West et al. (2013) 
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2100 0.92 

  

The resulting projection factors, 𝑝𝑝𝑝𝑝𝑝𝑝𝑓𝑓
𝑝𝑝𝑝𝑝𝑝𝑝2000

∗ 𝑦𝑦𝑜𝑜,𝑓𝑓

𝑦𝑦𝑜𝑜,2000
, were summarized in Table 3-5. 

Table 3-5: Overall Mortality Projection Factors 

 Pollutant 
Year Ozone PM2.5 
2050 1.83 1.66 
2100 2.84 1.59 

 

 To assess health-related uncertainty, the 95th confidence interval in the above impacts was 

determined using BenMAP-CE. First, the number of outcomes from different endpoints was determined 

by pooling the results from different studies. That pooling depended on the particular set of studies, 

what they estimated, and their uncertainty.  

The pooling determined the combined risk coefficient (β) from the studies, and a combined (or 

pooled) variance in that β. The pooled risk coefficient was determined automatically in BenMAP-CE 

once the pooling method was specified. BenMAP-CE achieved this by assigning different weights to 

each estimate from each study, as:  

𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �𝑤𝑤𝑖𝑖 × 𝛽𝛽𝑖𝑖 

Equation 3-2 

Where: 

βpooled is the pooled estimate of the risk coefficient 

βi is the risk coefficient from an individual study, i  

w is the weight assigned by the pooling method. 

Similarly, the variance was determined in BenMAP-CE by: 

𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
1

∑ 1/𝑣𝑣𝑖𝑖
 

Equation 3-3 



 

 25 

      For example, estimates of Acute Myocardial Infarction, nonfatal (NFMI) were estimated using 

Random / Fixed effects pooling of all four listed studies. This type of pooling accounts for potential 

between-study variability, as well as the sampling error associated with each study. Details are 

described in the BenMAP-CE Manual appendices sections K2.1.3 and K.2.1.4 (U.S. Environmental 

Protection Agency 2017).  

      The pooled health outcomes were then valued in BenMAP-CE by multiplying the economic value 

times the number of each outcome. The valuation of each endpoint had some variance or uncertainty 

distribution as detailed in Table 3-3.  

     To determine the overall 95th confidence interval, or “health-related uncertainty”, BenMAP-CE 

was used to run 5000 Monte Carlo simulations, sampling within the uncertainty of all parameters. The 

mean and 95th confidence interval for any given year of interest (2050, 2100) and scenario (P3.7, 

P4.5) was determined by using the mean concentrations from the entire ensemble. This full ensemble 

mean, using 150 annual simulations for a given estimate, was assumed to filter out natural variability 

and be the ‘true’ impact without the effect of the noise from natural variability. Thus, the only 

uncertainty contributing to this metric (the 95th CI) was due to health and economic uncertainty.  

     In addition to the 95%CI, health-related uncertainty was also presented in terms of the CRF 

selection. As discussed in Section 2.3, a typical approach used in US regulatory air quality analysis 

was used to show the effect of CRF selection. Specifically, results were presented separately using 

CRFs from the two major studies linking fine particulate matter and mortality, namely the Harvard 

Six Cities study (Laden et al. 2006; Lepeule et al. 2012) and the American Cancer Society study 

(Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope, Thurston, Calle, and Thun 2009; Pope et 

al. 2002; Nasari et al. 2016). For simplicity, these two studies were labeled by the lead authors of the 

study from which the CRF was used, namely “Lepeule” for (Lepeule et al. 2012) and “Krewski” for 

(Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope III, et al. 2009). 

3.4.2 Signal and Noise due to Natural Variability  

     Another main contribution of this thesis, addressing research question number 2, was to quantify the 

effect of natural variability in evaluating air quality co-benefits. The noise due to natural variability 

was determined by using measures of spread across the economic impacts from O3 and PM2.5 as 

estimated using the five different climate condition initializations, Initial Condition (IC) IC1, IC2, IC3, 
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IC4, and IC5. This noise was quantified by examining the co-benefits of different policies, and by 

examining the reference scenario itself.   

First, the noise due to natural variability was quantified as the standard deviation in co-benefits across 

150 annual simulations, i.e., 30 annual simulations for five different initializations to the climate model. 

This approach was used in order to compare the “signal” of air quality co-benefits for different policies 

to the “noise” of natural variability.  

The mean co-benefits estimate was also calculated. This mean was calculated based on the average 

concentrations for all 150 simulations, and also the mean estimate of the distribution in health and 

economic uncertainty. This mean was the considered the desired “signal”.  

This signal was compared to the “noise” of natural variability (as estimated by the standard deviation 

across the 150 annual simulations). Signal-to-noise (SNR) ratios were presented for all cases. These 

cases included two different policies (P3.7, P4.5) and target years (2050, 2100). This analysis was 

repeated and presented separately for six different U.S. regions and for each PM2.5 mortality CRF, 

“Krewski” and “Lepeule”. 

The noise due to natural variability was also quantified for the end of the century over the contiguous 

US using the reference scenario. This approach was used to attempt to remove any “signal”. It was 

quantified by randomly sampling and comparing pairs of the 150 annual simulations for the reference 

case for 2100. Those 150 simulations were all based on the same GHG emissions scenario, and any 

trend in climate change over 2086-2115 was removed using linear regression (Garcia-Menendez et al. 

2015). Therefore, the “forced signal” was zero in all 150 annual simulations. For any two pairs of 

simulations within the reference scenario, the only difference between them was due to natural 

variability.  

Quantifying natural variability using the reference case involved new runs of BenMAP-CE that were 

performed by undergraduate co-op student Maria Vasquez-Romero. Within the 150 annual simulations 

in the reference case for the year 2100, 150 random pairs of annual simulations were selected. The 

differences in concentrations of ozone and PM2.5 between these pairs were analysed in BenMAP-CE, 

and the resulting health and economic impacts were calculated. The data were then loaded and analysed 

in Python using scripts developed by this thesis’ author. The noise due to natural variability was then 

quantified with measures of spread across these 150 pairs, namely the 95th CI and the standard 

deviation.  
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3.4.3 Noise Reduction and Minimum Simulation Lengths 

Per (Milinski, Maher, and Olonscheck 2020), simulations were averaged together to reduce the 

“noise” due to natural variability. This averaging was implemented in Python with relevant scripts 

included in Appendix A. The general procedure is described below: 

Each ensemble member (IC1, IC2, IC3, IC4, IC5) was first considered separately. For each CRF 

(Krewski or Lepeule), policy, target year, and IC, there were 30 annual simulations. Multiple annual 

simulations were averaged together until the entire set had been used.  

The total air quality co-benefit across all health outcomes for a given case was defined as η. The 

cases varied by policy, target year, and IC, for which a set of 30 annual simulations were available. The 

average of two annual simulations, for example, for the policy P3.7, year 2050 and IC1 using Lepeule, 

was calculated using simulations for the year 2050 and 2051 as: 

𝜂𝜂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,2050,𝑃𝑃3.7,𝐼𝐼𝐼𝐼1,2,2050 =
𝜂𝜂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,2050,𝑃𝑃3.7,𝐼𝐼𝐼𝐼1,2050 + 𝜂𝜂𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,2050,𝑃𝑃3.7,𝐼𝐼𝐼𝐼1,2051

2
 

Equation 3-4 

One pair is shown above, but there were 15 unique pairs available in the 30-year period around 2050 

for this case. Thus, 15 pairs of two year averages were found, and this comprised a set of estimates of 

co-benefits using an averaging period of two years. The general form of the set for a generic averaging 

period (AP) between 1 and 30 years follows for the case example above and is provided in Appendix 

A as part of the analysis scripts . In the scripts, error checking was included to deal with the limits of 

the period.  

 

This averaging process was used to demonstrate the value of increasing the simulation length within 

a single-member ensemble. This question is of interest because most studies of the climate penalty only 

use a single-member ensemble and a small averaging period, which may still be subject to considerable 

noise from natural variability (Fiore, Naik, and Leibensperger 2015). For each IC, the maximum 

averaging period is 30 years. Even after this, there remains some spread between the 5 ensemble 

members, indicating a contribution of multi-decadal variability (and the value of a large multi-member 

ensemble). The full range of co-benefits across the five ensemble members (IC1, IC2, IC3, IC4, and 

IC5) after 30 years of averaging is deemed the “noise” after 30 years of averaging within a single-

member ensemble. A relative estimate of the benefit of averaging multiple years in a single-member 
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ensemble is estimated as the “percent error reduction”. Then, for a given averaging period, the full 

range of co-benefits across the ensemble members is deemed the “noise” for that averaging period. The 

“percent error reduction” uses the “noise” at that averaging period compared to the “noise” at the 30-

year period, as per the following equation:  

% 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑛𝑛𝐴𝐴𝐴𝐴 =  
𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝐴𝐴𝐴𝐴 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝐴𝐴𝐴𝐴

𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,30 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,30
× 100% 

Equation 3-5 

The averaging process was also used to estimate the minimum simulation length. This length was 

determined as the point at which the “noise” due to natural variability, as determined in  Section Signal 

and Noise due to Natural Variability 3.4.2., was less than the established metric. In this case, the metric 

was that all estimated co-benefits estimates fell completely within the 95th confidence interval of health-

related uncertainty. Additional metrics were considered, such as only requiring 90% of the estimated 

co-benefits to fall within the 95th CI of health-related uncertainty. This process was repeated for the two 

different policies (P3.7, P4.5) and target years (2050, 2100), as well as geographic locations (over the 

whole contiguous US, and for six US regions).   
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Chapter 4 
Results and Discussion 

4.1 Total Premature Deaths Avoided by Region 

As discussed earlier, previous work focused on the health and economic impacts for the US as a 

whole (Saari et al., 2019). The two key pollutants considered were ozone and PM2.5. In this thesis, 

those impacts are analysed on a regional level to determine the effect of policies (P3.7 & P4.5) for those 

two target years (2050, 2100). Table 4-1 gives an overall summary of the premature deaths avoided in 

each region, based on pollutant, policy, and target year. Results are presented with the CRF from 

(Lepeule et al. 2012). If the deaths avoided are negative, this indicates an increase in premature deaths 

associated with an increase in pollution (namely, ozone). 

Table 4-1: Annual premature deaths avoided in each region (using (Lepeule et al. 2012)).  

 2050 2100 

 P3.7 P4.5 P3.7 P4.5 

 PM2.5 O3 PM2.5 O3 PM2.5 O3 PM2.5 O3 
Northwest 170 -55 81 -46 650 -91 560 -91 
Southwest 280 182 410 104 2,700 1,690 2,400 1,570 
Great Plains 1,120 -14 790 -36 3,000 350 2,500 510 
Midwest 1,700 250 1,420 290 16,300 1,700 12,700 2,150 
Southeast 3,400 178 2,400 256 10,900 1,890 9,400 2,130 
Northeast 7,400 440 6,500 490 24,600 3,200 22,700 3,400 
Total 14,100 980 11,600 1,058 58,000 8,700 50,000 9,700 
 

4.1.1 PM2.5 

PM2.5 was associated with the most cases of annual premature deaths avoided. This is because it has a 

much higher health impact than ozone. Figure 4-1 shows the distribution of the annual premature deaths 

avoided due to PM2.5 on a regional basis over the US using (Lepeule et al. 2012). They reveal that, with 

the implementation of the policies, there is a direct reduction of PM2.5 and corresponding reduction in 

human health impacts. The data shown on the maps have been rounded to the nearest 100th value. In 

general, irrespective of the scenario (Policy or Target Year), there is an increasing trend as we move 

from West to East; i.e., the amount of annual premature deaths avoided is higher in the Eastern US than 

the Western US. The Eastern US is more industrialized and has a belt of coal fired power plants. It also 
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has a substantial population. The relative importance of these factors (pollutant concentrations and 

population) is explored further in section 4.2.  

  

  

Figure 4-1: The annual premature deaths avoided in the six regions of the US, for PM2.5 in the target 

years (2050, 2100) and under policies (P3.7, P4.5) (using (Lepeule et al. 2012)). 

4.1.2 Ozone 

Figure 4-2 show the distribution of annual premature deaths avoided due to O3 on a regional basis over 

the continental US. The data shown on the maps have been rounded to the nearest 100th value. O3 had 

an interesting outcome when compared to PM2.5 for annual premature deaths avoided. For the year 2050 

(P4.5 & P3.7), the most deaths avoided were in the Northeast region; the Northwest and Great Plains 

regions were unaffected with nearly zero deaths avoided. For the year 2100 (P4.5 & P3.7), the most 

deaths avoided was again in the Northeast region; but the Northwest region saw more premature deaths 

occur due to O3.  

This increase in premature deaths due to O3 exposure is due to increasing O3. Figure 4-3 (which is 

extracted from (Garcia-Menendez et al. 2015)) shows the simulated change in concentrations of O3 
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from year 2000 to year 2100 for three cases of REF, P4.5, and P3.7. In the reference (REF) case it can be 

seen there is an increase in O3 towards the east coast, and a decrease in the Mid-north and Northwest. 

In the other two cases where the policy has been applied, the extent of the decrease in O3 in the 

Northwest and Mid-North is lessened. In other words, through the implications of the policy (P4.5 or 

P3.7), there is more O3 exposure in the Northwest and Mid-North regions. As discussed earlier, O3 is 

formed in the lower atmosphere through several mechanisms. This thesis does not explore these 

mechanisms, or their interaction with climate change. However, based on (Fiore, Naik, and 

Leibensperger 2015), the decreases in ozone under climate change might be due to increases in 

humidity. 

  

  

Figure 4-2: The annual premature deaths avoided (rounded to nearest hundreds) in the six regions of 

the US, for O3 in the target years (2050, 2100) and under policies (P3.7, P4.5). 
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Figure 4-3: “Ensemble-mean climate-induced change in annual-average ground-level 8-h-max O3 

from 2000 to 2100 under the REF, P4.5, and P3.7 scenarios. Changes identified as statistically significant 

are indicated by black dots”. Figure extracted as is from Garcia Menendez et al. 2015.  
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There is a lack of other studies with which to compare total premature deaths avoided under these 

policies. This is because most studies do not model climate change itself, and thus do not include the 

climate penalty pathway, which is what we study here. If they do include the climate penalty 

pathway, they do not present those results spatially. Saari et al. (2019) previously compared our 

national total premature deaths avoided to other relevant work, finding that they agreed within errors 

and given differences in study designs.   

   We found no work, however, that spatially presented health impacts resulting from the effect of 

climate policy on the climate penalty alone. We examined literature within multiple recent systematic 

reviews of health co-benefits of climate policy (Chang et al. 2017; Gao et al. 2018; Karlsson, 

Alfredsson, and Westling 2020; Harper et al. 2021; Bikomeye, Rublee, and Beyer 2021) and more 

recent articles that cite them (e.g., (Hamilton et al. 2021)). No study we reviewed included spatial 

U.S. results on premature mortality due to reducing the climate penalty alone.  

    The closest studies provided avoided premature mortality based on the combined effects of co-

emitted pollutans and the climate penalty pathway (see Figure 1-2). One study examined changes in 

premature mortaliy and morbidity under P4.5 over the US in 2050, but only due to changes in extreme 

weather events (Yang Zhang et al. 2020).  

   The closest study examined premature deaths due to total change in air quality under P4.5 (Zhang et 

al. 2017). Their results are provided as Figure 4-4. Figure 4-4(a) is closest to our Figure 4-1 for the 

case of P4.5 and 2050 (bottom left panel). Similarly, Figure 4-4(b) is closest to our Figure 4-2 for case 

of P4.5 and 2050 (bottom left panel). The differences in the presentation of the figures make them 

difficult to compare direcly. Figure 4-4 is shown at the model grid scale, whereas we aggregated to 

six regions and rounded to the nearest 100 deaths.  
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Figure 4-4: Total avoided premature mortality (due to effects of co-emitted pollutants and the climate 
penalty) in 2050 from (Zhang et al. 2017).  
“Total co-benefits (S RCP45-S REF) for avoided premature mortality (deaths yr−1) in the US in 
2050, for (a) PM2.5 (all-cause mortality), and (b) ozone (respiratory mortality). Total avoided deaths 
and 90% confidence intervals are shown at the top of each panel. Positive values indicate fewer 
deaths.” 
 

    Given this, we noticed common patterns between the two studies, with most impacts in the eastern 

US, especially the Northeast. We also noticed that the magntiude of avoided mortality for PM2.5 was 

much greater than for ozone in both studies. This level of agreement was encouraging given the 

differences between their study and ours. In particular, Figure 4-4 includes the effect of reduced co-

emitted air pollutants (the co-emissions co-benefit from Figure 1-2) and the climate penalty co-

benefits studied here. The authors of that study found the contribution of the climate penalty to total 

co-benefits was small, contributing only 300 PM2.5–related and 500 ozone-related deaths, respectively 

(Zhang et al. 2016). Thus, the total premature mortality avoided in Figure 4-4 mostly reflect co-

emission co-benefits, which we did not include. This partly explains why they estimated a higher total 

number of deaths avoided. Other differences are explained by differences in the study designs, with 

details in Saari et al. (2019).  

4.2 Incidence Rates of Premature Deaths Avoided by Region  

The data generated in Section 4.1 was normalised with respect to the population in each region to find 

the incidence rates of premature deaths avoided. These results are presented in Figure 4-5 for PM2.5 

and Figure 4-6 for ozone, respectively. Incidence rates are a common public health metric that 

indicate the rate of occurrence of a health outcome in a population. When discussing mortality, it is 

commonly presented in deaths per 100,000 per year. Here, it is premature deaths avoided per 100,000 
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people per year. Normalising the data with respect to the population in the region isolates the 

contribution of pollutant exposure to the total regional mortality (presented in Section 4.1).  

     Similar trends were observed for both incidences (premature deaths avoided) and incidence rates 

(premature deaths avoided per 100,000 people). This indicates that the pattern in the effect of the 

policy across regions was mostly explained by differences in pollutant concentrations, rather than 

population differences. The incidence rate of premature deaths avoided was higher along the east 

coast than the west. This was the case for both PM2.5 and O3. In the case of O3 for the year 2050, there 

were some increases in incidence rates of premature deaths observed in the Northeast and Great 

Plains; there were also some increases observed in the Northeast for the year 2100. This behavior was 

also observed in incidences of premature deaths and was explained under Section 4.1.2.  

 
  

  
Figure 4-5: Incidence rates of premature deaths avoided (deaths avoided per 100,000 people per year) 

in the six regions of the US, for PM2.5 in the target years (2050, 2100) and under policies (P3.7, P4.5) 

(using (Lepeule et al. 2012)).  
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Figure 4-6: The annual premature deaths avoided per capita in the six regions of the US, for the 

pollutant O3 in the target years (2050, 2100) and under policies (P3.7, P4.5). 

4.3 Total Benefits by Region 

Policies avoided adverse health outcomes and premature mortality. Subsequently, some economic 

benefits were accrued. These benefits were estimated from the health outcomes averted due to 

reductions in the pollutants PM2.5 and O3 (discussed in detail in Chapter 3), and presented in billions 

of USD (year 2000 currency). Most benefits were from premature deaths avoided from PM2.5 

exposure than from illness or exposure to O3. 

Benefits are shown separately using the CRFs from Krewski and Lepeule for PM2.5-related premature 

deaths, respectively. On average, the benefits obtained using Lepeule were nearly twice that of 

Krewski. This result was expected and has been found in previous studies and US regulatory impact 

assessments, for example, (U.S. Environmental Protection Agency 2012; Saari et al. 2019). As 

previously mentioned in Section 2.3, the Harvard Six Cities Study that produced the Lepeule CRF 

found a premature-mortality risk increase that was approximately double that of the American Cancer 

Society study from which the Krewski CRF was produced (with a risk increase of 12% compared to 

6%, or a relative risk of 1.12 compared to 1.06) (Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, 

Pope, Thurston, Calle, Thun, et al. 2009; Lepeule et al. 2012). Since the majority of the value of air 
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quality-related damages derives from PM2.5-related premature mortality, the resulting co-benefits also 

differed by a factor of approximately two.  

In general, total benefits increased from West to East, with maximum benefits realised in the 

Northeast region by target year 2100 and policy P3.7 using Lepeule. The maximum benefit occurred in 

2100 because this was the end of the analysis period, and the policy had more time to effect the 

climate. P3.7, as the most stringent policy, had better outcomes in terms of co-benefits. Following 

similar logic, the minimum benefit was seen in the Northwest in 2050 under policy P4.5 using 

Krewski. Typically, the Midwest had lower co-benefits when compared to the Southeast in the target 

year 2050; but by the target year 2100, the Midwest seemed to have more co-benefits than the 

Southeast.  
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Figure 4-7: Annual air quality co-benefits of climate policy due to reducing the climate penalty for six 

different U.S. regions (billions USD2000). Values are shown for target years (2050, 2100) and policies 

(P4.5, P3.7). Adult premature mortality associated with PM2.5 is based on the CRFs provided by (Lepeule 

et al. 2012; Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope III, et al. 2009). 

   In attempting to compare our co-benefits with our studies, we lacked relevant sources beyond those 

on which we build directly (Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019; Saari et 

al. 2019). (Saari et al. 2019) did not identify any other studies that provided estimates of co-benefits 

due to the climate penalty pathway. The most recent literature review of climate policy co-benefits 

(Karlsson, Alfredsson, and Westling 2020) did not include any new studies not already considered in  

Saari et al. (2019). Studies published since (Karlsson, Alfredsson, and Westling 2020)’s review that 

include co-benefits (e.g., (Vandyck et al. 2020)) do not include the climate penalty pathway. Thus, we 

cannot compare our results directly to other work. However, we can note that, per ton of greenhouse 

gas emissions avoided, co-benefits from the climate penalty pathways are generally smaller than those 

from the co-emissions pathway.  
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4.4 Total Benefits per Capita by Region  

Similar to Section 4.2, the total co-benefits per capita were estimated for each of the six regions. As 

with total benefits, the co-benefits per capita were highest in the Northeast for the target year 2100 

under policy P3.7. The general trend was to see an increase in co-benefits per capita from West to East.  
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Figure 4-8: Total annual air quality co-benefits per capita of climate policy (USD2000) for six U.S. 

regions. Values are shown for target years (2050, 2100) and policies (P4.5, P3.7) using CRFs from 

(Lepeule et al. 2012; Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope III, et al. 2009). 

4.5 Signal-to-Noise Ratios 

The Signal to Noise Ratio (SNR) was calculated to quantify the effect of natural variability on the 

ability to distinguish the impacts of policy from natural variations in the climate. The SNR was 

calculated as in Section 3.4.2. A SNR greater than one signified that the co-benefits due to applied 

policies emerged from the noise of natural variability. Typically, by the target year 2050, the SNR 

values were less than 0.5, indicating that some averaging would be needed to filter out this noise. The 

SNRs closely followed the patterns of the signal itself, i.e., co-benefits and co-benefits per capita in 

Figure 4-7 and Figure 4-8. SNRs, too, increased from West to East, following the co-benefits pattern, 

except for the Midwest. Although the Midwest had a higher signal (co-benefit), the lower SNR showed 

that there was more noise in this region due to natural variability. By the end of the century, the SNR 

was generally near or above one everywhere. Signals were usually stronger towards the Northeast and 

Midwest. However, the SNR was highest in the Southwest region for both policies. This implies that, 

although the Southwest had a smaller signal, its noise due to natural variability must be weaker in order 

to create a higher SNR. This finding is in line with a previous study that compared the effects of natural 

variability on temperature and precipitation. It found that Southwest (exemplified by Phoenix, Arizona) 

had relatively low natural variability compared to the US as a whole (Deser et al. 2012). 
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Figure 4-9: The signal to noise ratio represented by the mean co-benefits from O3 and PM2.5 changes 

over the standard deviation in co-benefits across 150 annual simulations for six different U.S. regions. 

Using CRFs from (Lepeule et al. 2012; Krewski, Jerrett, Burnett, Ma, Hughes, Shi, Turner, Pope 

III, et al. 2009). 

Having reviewed the literature, there were no studies that similarly examined signal-to-noise ratios 

in air quality co-benefits due to natural variability. In climate science, there are studies that examined 

the relationship of simulation length and signal-to-noise for temperature (Santer et al. 2011). For air 

quality, there have been global studies determining the ‘time of emergence’ of the signal of climate 

change on air quality from the noise of natural variability (Barnes, Fiore, and Horowitz 2016). For air 

quality-related mortality, there was a global study using 20-year simulations that estimated the mean 

and standard deviation of premature mortality due to ozone and PM2.5 in 2100 under the IPCC-A1B 

“business-as-usual” scenario. They did not fully report these results, however, stating only that the 

global signal-to-noise ratio was greater than one, but that some regions (such as the Middle East and 

Rest of Asia) had a signal-to-noise ratio less than one (Fang et al. 2013).  

In the US, there are a handful of studies that examined the effect of natural variability on air pollution 

spatially. All of these studies used the same air pollution levels as us, first presented in (Garcia-

Menendez et al. 2015). The work on which we build most directly will be discussed in detail in Section 

4.6 (Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019; Saari et al. 2019). One additional 

study used these air pollution levels along with observations and additional simulations to examine 

variability in ozone levels in the present and future (Brown-Steiner et al. 2018). For their future 

simulations, they used ozone levels similar to the ones we used. For the start-of-century values, they 

used the same air quality model, but with a different set-up (including a different model version and 
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emission inventory). Their present-day results were thus developed with methods slightly different 

from our own, and provided a source of comparison data.   

(Brown-Steiner et al. 2018) presented the effects of both spatial and temporal averaging on the error 

in present-day ozone, reproduced in Figure 4-10. The simulation length increased from left to right 

along the columns (from 1 to 20 years), and each row increased the spatial averaging to give results 

over an area around 200 km2 to about 2000 km2. The value of spatial averaging shown by the reduction 

in error (increasing blue shading) moving from the top to bottom row helps to explain why we 

aggregated (taking a sum of benefits, as opposed to an average of concentrations) to US regions for our 

results. The bottom row is closest in spatial scale to the results we presented. Moving from left to right 

in the bottom row shows which regions were most affected by natural variability for ozone in this study. 

They found that signals of ozone trends were hardest to detect in the Midwest region, as seen in the 

figure by the persistent orange region there in the bottom right figure. We also found that the Midwest 

had a low signal-to-noise in 2050 despite a relatively high signal, reflecting higher natural variability. 

This applied to effects of both ozone and fine particulate matter, but results from this study and ours 

can be considered to be aligned.  
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Figure 4-10: Effect of Temporal and Spatial Averaging on Natural Variability in Ozone (Brown-

Steiner et al. 2018) 

Note: Combined impact of temporal and spatial averaging on reducing ozone variability on the 

likelihood (%) of exceeding the 0.5 ppbv threshold for the present-day (year 2000) simulation. Each 

column increases the simulation length from left to right (from 1 to 20 years), and each row increases 

the spatial averaging (from model resolution (about 200 km) to averaging 9 by 9 grid cells (about 

1800 km))  

When moving beyond pollutant concentrations and considering air quality co-benefits spatially in 

the US, we found only one study. We discuss it with caution, and with the caveat that the uncertainties 

being compared were entirely different. The closest study found examined the effect of uncertainty in 

meteorological variables on premature deaths associated with ozone (O3) and PM2.5 in 2050 (Tagaris et 

al. 2009). The authors used climate fields (temperature and absolute humidity) from an earlier version 
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of the same Earth System Model used here (the MIT-IGSM). They made use of a sensitivity analysis 

of the MIT-IGSM that produced probability distributions for its outputs. The authors chose the 0.5th, 

50th, and 99.5th percentiles of temperature and absolute humidity with which to assess the effect of 

uncertainty in future meteorology.  

This uncertainty, however, was not due to natural variability. It was due to uncertainty in inputs to 

the MIT-IGSM, of which “economic growth, technological change, deep oceanic circulation, aerosol 

radiative forcing, and cloud processes” were the most important influences (Prinn et al. 1999). Using 

this uncertainty, they determined which states had the highest uncertainty in premature mortality, based 

on the change over the 99th percentile weather conditions compared to the 50th percentile. They list 

states which were found to have the highest uncertainty (though the threshold used was not specified) 

as shown in Figure 4-11.  

   

 

Figure 4-11: States with highest uncertainty in premature mortality in 2050 based on uncertainty in 

meteorological variables (adapted from (Tagaris et al. 2009)) 

We note that several states appear in the Midwest, for which our signal-to-noise ratios were lowest 

in 2050, despite relatively high signals. However, our source of uncertainty in meteorological variables 

was different than used in (Tagaris et al. 2009), so it does not reflect on the accuracy of our findings. If 

anything, comparing these two studies served to remind us that certain US regions may be subject to 

greater uncertainty than others in estimating the benefits of future climate policy, including from natural 

variability and other factors.   
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4.6 Minimum Simulation Lengths for Addressing Natural Variability 

Signal-to-noise ratios identified the cases and places for which averaging to reduce the effect of natural 

variability was most needed. However, they did not specify how much averaging is needed, i.e., the 

minimum simulation length for addressing natural variability. The minimum length matters because 

longer simulations take longer to run on high-performance computers. This extra computational costs 

takes time away from other useful activities like evaluating more potential emissions pathways or 

increasing the spatial resolution of the simulation. Thus, the costs of increasing simulation lengths 

should be balanced with the benefits it brings. In this case, we examined benefits in terms of reducing 

noise due to natural variability. As simulation length increased, we found that those benefits 

diminished.  

    Two approaches are presented in this section for evaluating minimum simulation lengths. The first 

approach analysed the diminishing returns of increasing simulation length, and the second used a metric 

to determine the minimum length (here, based on health-related uncertainty), following the advice of 

(Milinski, Maher, and Olonscheck 2020).  

The first approach quantified the reduction in noise achieved by increasing simulation lengths. 

Reductions in both absolute and relative errors introduced by natural variability were calculated. 

Exponential decay curves were fit to characterize the diminishing returns of increasing simulation 

length.  

To calculate the absolute error associated with natural variability, the Reference (REF) case was 

considered for the target year 2100. There were 150 simulations (30 years for 5 initializations) available. 

If there were no noise due to natural variability, the difference in co-benefits between any two random 

pairs of simulations should be zero. Instead, a distribution of non-zero differences was found, each 

representing natural variability between two random annual simulations. The noise due to natural 

variability was measured as the 95th Confidence Interval (95CI) in this distribution, which was $1.2 

Trillion for the CRF by Krewski and about $1.5 Trillion for the CRF by Lepeule. By selecting multiple 

pairs to average together, the averaging period, and thus the minimum simulation length, increased. 

Averaging reduced the noise to ~$0.2 Trillion, reducing it approximately by a factor of six. Figure 4-12 

shows how the noise from natural variability (95CI) dropped by nearly a factor of six, for the two CRFs 

used.  
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Figure 4-12: The reduction in noise in co-benefits due to natural variability with increasing averaging 

period (in years). Noise is measured by the standard deviation (Std Dev) and 95th Confidence Interval 

(95CI) estimating co-benefits within the Reference scenario at end-of-century for (a) Krewski and (b) 

Lepeule (in Trillions USD2000). 

The noise reduction clearly showed diminishing returns as the averaging period increased in 

Figure 4-12. This was quantified by fitting an exponential decay curve to the relative error 

reduction achieved by averaging. This analysis was repeated for all co-benefits cases and 

regions. Since the absolute error varied by case and region, the relative error reduction was 

calculated per Section 3.4.3. The reduction in error was found to have an exponential decay 

trend. Fitting parameters and goodness of fit (R2) for the eight cases at the national scale are 

presented in Equation 4-1 

Table 4-2. The fitting parameters were based on representing the relative error reduction as 

(with code included in Appendix A): 

𝑦𝑦 = 𝐴𝐴𝑒𝑒−𝐾𝐾𝑡𝑡 + 𝐶𝐶 
Equation 4-1 

Table 4-2: Exponential decay fitting parameters and goodness-of-fit for relative noise reduction 

induced by increasing simulation lengths for national-scale analysis. 

Policy Year CRF A K 1/K C R2 

P3.7 
2050 

Krewski et al.  1103 0.28 3.6 31 0.99 
Lepeule et al.  1223 0.30 3.4 40 0.99 

2100 Krewski et al.  1138 0.31 3.2 100 0.95 
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Lepeule et al.  1119 0.31 3.2 98 0.96 

P4.5 
2050 

Krewski et al.  1291 0.32 3.1 51 0.99 
Lepeule et al.  1289 0.33 3.0 49 0.99 

2100 
Krewski et al.  1588 0.42 2.4 151 0.95 
Lepeule et al.  1553 0.38 2.6 142 0.94 

 
   At the national scale, the time constant for this exponential decay was about two to four years; 

hence by the fourth averaging period, the noise had dropped to approximately one third of its initial 

value (because e-1 ≈ 0.37). This means that a few years of averaging decreased the noise due to 

natural variability by 63%, or nearly two-thirds. 

    Figure 4-13 shows the relative error reduction in the Northeast region, at the target year 2050, for 

the policy P3.7. For the six different regions, plots similar to Figure 4-13 were generated for the two 

target years and two policies.  

 
Figure 4-13: The decrease in spread (%Error) across ensemble members with increase in averaging 

period in the Northeast region, at the target year 2050, for the policy P3.7. 

An exponential decay curve was fit to the data, and the time constants for them were summarized in 

Table 4-3. The mean time constant was five years, with a range of 3-7 years. The table was colour-

coded so that cases near the mean are white, cases below are blue, and above are red. Cases and 

regions with higher time constants are areas in which more averaging was needed to reduce the noise 

from natural variability by the same amount, while cases with blue colouring needed less averaging. 

Because these are relative errors, these results had a different meaning than the SNR analysis, which 
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was affected by the magnitude of co-benefits; conversely, these findings focused only on how easy it 

was to reduce noise. The table revealed patterns by region and policy, with smaller changes by target 

year or CRF. For example, the Northwest required more averaging than the Northeast for all cases, 

and for the Midwest for all but two cases. The more stringent policy, P3.7, required slightly less 

averaging, on average, than P3.7; however, there were noticeable differences in this effect across 

regions, with most of the effect seen in the Great Plains and Southeast. Overall, this analysis suggests 

that diminishing returns were obtained by increasing simulation length, especially after 4-7 years of 

simulation.  

Table 4-3: Summary of the time constant from the exponential decay fits, in other words, the simulation 

length needed to reduce the noise from natural variability by two-thirds. 

   Northwest Southwest Great Plains Midwest Northeast Southeast 

Policy 
P3.7 

Year 
2050 

Krewski et al. 5.9 4.9 3.5 4.4 5.1 4.6 
Lepeule et al. 5.4 5.2 3.3 4.4 4.9 4.4 

Year 
2100 

Krewski et al. 4.8 5.1 3.5 5.4 3.9 4.6 
Lepeule et al. 5.5 5.6 3.6 5.2 4.0 4.5 

Policy 
P4.5 

Year 
2050 

Krewski et al. 5.0 3.8 6.1 4.2 4.3 6.0 
Lepeule et al. 3.6 3.9 6.2 4.1 4.2 5.8 

Year 
2100 

Krewski et al. 6.1 5.0 5.9 3.8 4.1 6.9 
Lepeule et al. 6.7 4.9 5.8 4.0 4.1 7.3 

 
While the previous analysis showed the benefits of a few years of averaging, and the diminishing 

returns of additional averaging, it still did not provide a recommended minimum simulation length 

that accounts for the magnitude of co-benefits. This is important, for example, to avoid using precious 

computational time reducing errors in very small co-benefits. To address this, we apply a metric to 

determine the minimum simulation length, as described in section 3.4.3.  

   Nationally and regionally, we used health-related uncertainty as the metric to determine minimum 

simulation length across all co-benefits cases. Specifically, we looked at the percentage of co-benefits 

estimates that fall within the 95th confidence interval (95CI) in health-related uncertainty as 

determined per Section 3.4. That 95CI is estimated based on the mean pollutant concentrations across 

the ensemble (all 150 annual simulations for each case), thus, it reflects only irreducible, epistemic 

uncertainty in health and economic responses that cannot be affected by increasing simulation 

lengths. 
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    Figure 4-14 presents these results at the national scale. The percentage of co-benefits estimates that 

meet the metric are plotted for each averaging period. The minimum simulation length was 

determined by finding the averaging period for which 100% of the estimates met the metric. For 

comparison, a less stringent alternative, a metric of 90% of the estimates falling within the 95CI, was 

also shown with a grey horizontal line. For the target year 2100 (shown in blue), 90% of the co-

benefits estimates met the metric (i.e., fell within the 95CI of health-related uncertainty) immediately, 

with a single year of simulation; 100% of the estimates met the metric with just three years of 

averaging. This suggests a minimum simulation length of just a few years for the end-of-century 

target year across policies and CRFs. Conversely, in the case of the target year 2050, it took about six 

to eight years of averaging to get at least 90% of the estimates to meet the metric, and about ten to 

fifteen years of averaging to get 100% to meet it.  

 
Figure 4-14: National-scale minimum simulation lengths. Minimum determined by finding the 

averaging period (in years) for which either 90% or 100% of co-benefits estimates fall within 95CI of 

health-related uncertainty.  

   The data presented in Figure 4-14 was split for the six regions, and represented in Figure 4-15 for 

target year 2100 and Figure 4-16 for target year 2050. The target year of 2100 is presented first 
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because its interpretation is simpler. In 2100, a similar result was found for the regions as for the 

national scale, requiring minimum simulation lengths of only a few years. In the target year 2100, an 

averaging period of two years put 90% of estimates within health related uncertainty. Four years of 

averaging brought 95% of estimates within the metric. Eight years of averaging brought 100% of 

estimates within the metric.  

 
Figure 4-15: Regional-scale minimum simulation lengths for 2100. Minimum determined by finding 

the averaging period (in years) for which either 90% or 100% of co-benefits estimates fall within 

95CI of health-related uncertainty. 

   In the case of the target year 2050, shown in Figure 4-16, results were more complicated. Regions 

which had the highest signal to noise ratios (e.g., Great Plains, Northeast, and Southeast, per Figure 

4-9) needed a minimum simulation length of about eight years. Other regions with low signal to noise 

ratios needed more than eight years.  

     In fact, the maximum simulation length here (30 years) seemed insufficient for the Midwest region 

in 2050, which never met the metric for any policy or CRF. Even for the 30-year average values, one 

of the five ensemble members for P3.7 did not meet the metric (i.e., only 4 out of 5 or 80% of 

estimates met the metric). In other words, one 30-year mean estimate fell outside of the 95CI of 

health-related uncertainty.  
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    P4.5 was even more troublesome. As the less stringent policy, it had a smaller effect on the climate 

and a smaller co-benefits signal. In the Midwest, which the SNR analysis showed had higher noise, 

two ensemble members gave estimates that failed to meet the metric even with 30 years of averaging.  

 
Figure 4-16: Regional-scale minimum simulation lengths for 2050. Minimum determined by finding 

the averaging period (in years) for which either 90% or 100% of co-benefits estimates fall within 

95CI of health-related uncertainty. 

   The case of the Midwest at mid-century showed that increasing simulation length alone can be 

insufficient for filtering out natural variability in air quality co-benefits. For other cases, the five 

ensemble members converged enough that they agreed within our metric with less than 30 years of 

simulation. In the case of the Midwest at mid-century, however, one or two members did not 

converge enough to meet our metric. 

    This result shows the danger of the common practice in air quality co-benefits research of using a 

single climate model initialization instead of multiple initial conditions (in other words, using a single 

member instead of an ensemble of members). This result fits with findings from climate science, 

which has already shown the importance of long-run, large initial condition ensembles to address 

natural variability in climate variables like temperature or precipitation (Deser et al. 2020).  
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     There are several possible explanations for this result in our case. First, as a reminder, our metric 

for the minimum simulation length was derived using the mean pollutant concentrations from our full 

ensemble, and then deriving a 95CI in so-called “health-related uncertainty” using 5000 Monte Carlo 

simulations based on uncertainty in health and economic responses. The full ensemble included 30-

year simulations meant to represent year-to-year variability. Those 30-year simulations were repeated 

using five different sets of initial climate conditions, which produced five divergent climate futures. 

The different initial conditions helped to capture multi-decadal variability, e.g., natural variations in 

the climate system with periods of longer than 30 years. The difference in mean concentrations 

between policy and reference scenarios across the whole ensemble (150 annual simulations in total), 

was meant to be the “true” estimate of the policy impact without natural variability. However, while  

five members is large compared to previous air quality studies, it is a relatively small ensemble for 

climate studies, and might not be enough to capture the full range of multi-decadal variability (Deser 

et al. 2020). For most cases, the five ensemble members converged enough that they agreed within 

our metric with less than 30 years of simulation. In the case of the Midwest at mid-century, however, 

one or two members continued to stand out, which may be due to persistent multi-decadal variability. 

In such cases, therefore, multiple initial conditions were needed in addition to long simulation lengths 

to address natural variability in co-benefits. 

    Our results for the Midwest and other cases match well with results from climate studies. Such 

studies have not yet been performed for air quality co-benefits, but work on simulating future climate 

change has found similar patterns in natural variability. They find that addressing natural variability is 

more difficult when estimating climate change impacts for smaller regions, shorter time periods, and 

less ambitious policy (Fiore, Naik, and Leibensperger 2015). Logically, then, it would be simplest to 

address for long time periods, large regions and ambitious policies. This is in line with our finding 

that the shortest simulations were needed for our longest time period (2100), largest region 

(continental US), and strongest policy (P3.7).  

    By addressing this thesis’ third research question and finding minimum simulation lengths in air 

quality co-benefits, we extend previous work which found minimum simulation lengths for air quality 

concentrations. We consider uncertainty in health and economic responses to develop a metric for 

minimum simulation lengths that recognises this irreducible uncertainty in policy co-benefits. Using 

this metric, we generally found that minimum simulation lengths could be reduced, saving 

computational time.  
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    By 2100, we found that four years of simulation sufficed for 95% of all estimates in all cases to 

meet our metric. This is shorter than previous studies recommending minimum lengths of 10 years or 

more might be needed to assess future air pollution levels (Fiore, Naik, and Leibensperger 2015; 

Brown-Steiner et al. 2018; Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019; 

Lacressonnière et al. 2016; Fu and Tian 2019). While such longer simulations may be appropriate for 

studies of future air pollution for which such accuracy in concentrations might be needed (Brown-

Steiner et al. 2018), our shorter lengths recognized additional uncertainties in evaluating policy 

benefits. This yielded minimum lengths which are more policy-relevant and realistic given 

computational limits of current studies (Fu and Tian 2019).  

   We specifically compared our recommendation (at 95% confidence level) for 2100 of four years of 

simulation length to those based on modelled ozone and PM2.5 pollution. First, we considered 

recommendations from two studies which used the same modelled ozone and PM2.5 as we did. Those 

studies recommended longer simulation lengths for 2100, provided in Table 2-1 and Table 2-2 

(Garcia-Menendez et al. 2015; Garcia-Menendez, Monier, and Selin 2017; Pienkosz et al. 2019). 

Their minimum lengths were based on accuracy in pollutant concentrations. For PM2.5, their length 

was 8 years for national estimates, and 9-23 years for subnational regions; for ozone, it was 11 for 

national estimates, and 5-19 for subnational regions (based on a 95% confidence level).  

   We also reviewed other advice on simulation lengths based on pollutant concentrations, including 

multiple literature review studies (Fiore, Naik, and Leibensperger 2015; Deser et al. 2020; Fu and 

Tian 2019). Two studies focused only on ozone (Fu and Tian 2019; Brown-Steiner et al. 2018) while 

others included both ozone and PM2.5 (Fiore, Naik, and Leibensperger 2015; Lacressonnière et al. 

2016; Deser et al. 2020). One recent review (Fu and Tian 2019) cites the other studies mentioned. It 

notes that older studies used 3-5 years but that, due to recent findings that at least 15 years of 

simulation may be needed, most, but not all, recent studies use 10-year to 30-year simulation lengths. 

However, individual studies giving these recommendations do point out that the appropriate context 

for decision-making is required. (Brown-Steiner et al. 2018) state, “Quantifying the signal-to-noise 

ratio at a variety of spatial scales, and determining an acceptable threshold of a particular signal, 

could be one accessible method for providing this context”. Here, we aimed to address this specific 

gap to offer more policy-relevant recommendations.  
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Chapter 5 
Conclusion 

 

5.1 Main Contributions and Implications 

This thesis aimed to provide policy-relevant insight about how to evaluate the effects of climate policy 

on impacts associated with air pollution given uncertainty within the climate system. To do this, this 

thesis offered new analysis of results from a multiple initial condition ensemble of future climate 

scenarios previously used to evaluate the effects of natural variability on estimates of air quality co-

benefits nationally in the US (Saari et al. 2019).  

That previous study estimated the effects of different greenhouse gas emissions scenarios in 2050 and 

2100. Specifically, it examined the effect of greenhouse gas emissions on a changing climate, and the 

changing climate’s effect on outdoor air pollutants, a relationship known as the “climate penalty”. It 

quantified the effect of the climate penalty on air pollutants including PM2.5, ozone and their associated 

health and economic effects. Under two different climate policies consistent with the Paris Agreement 

on climate change, the air quality co-benefits associated with reducing the climate penalty on PM2.5 and 

ozone were explicitly modelled and isolated.  

This thesis offered new analysis of that ensemble to address three research questions: 

1. How do air quality co-benefits vary regionally within the United States of America (US), by 

time period and climate policy? 

2. How large is the “noise” in the signal of air quality co-benefits due to natural variability?  

3. What is the minimum simulation length required to address natural variability in air quality co-

benefits, and how does this vary with geographic location, spatial scale, and time period?  

The conclusions and contributions of this thesis to each research question are summarized below: 

1. The air quality co-benefits of climate policies were largest in the Eastern US and grew over 

time. This result was consistent with the closest existing study (Zhang et al. 2016). This thesis, 

however, was the first to present results that isolated the effect of the climate penalty spatially, 
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yielding climate co-benefits which were expectedly smaller than the total co-benefits (climate 

co-benefits and co-emissions co-benefits) in (Zhang et al. 2016). 

2. The noise due to natural variability was large. In 2100, the spread in air quality impacts due 

only to natural variability exceeded $1 trillion USD (year 2000 currency) measured as the 95th 

CI in estimates across the ensemble. To understand the importance of this noise in estimating 

co-benefits, signal-to-noise ratios (SNRs) were calculated for U.S. regions in 2050 and 2100. 

SNRs were below one across the U.S. in 2050, increasing to above one by 2100 in most regions 

as the climate policy had more time to affect the climate system. The magnitude of this noise, 

and its value relative to the signal, suggested that methods were needed to filter it out by 

increasing simulation length.  

3. In 2100, despite the significant noise from natural variability found in response to question (2), 

minimum simulation lengths were relatively short when assessed using a metric based on 

health-related uncertainty. That metric required co-benefits estimates to fall within the 95CI of 

health-related uncertainty. Nationally, 95% of simulations met the metric with a minimum 

length of 2 years, and all regions met the metric with four years. In 2050, however, minimum 

simulation lengths of eight years were needed even in regions with high SNRs. In some regions, 

like the Midwest, even 30 years were not sufficient. This indicated that single simulations of 

the future climate might not be sufficient to filter out natural variability in cases where SNRs 

were expected to be low. In such cases, multiple initial condition ensembles would be needed, 

in addition to long simulation lengths. 

Compared to previous studies, the simulation lengths recommended here are generally shorter. These 

shorter lengths are more reflective of recent practice, less resource-intensive, and help lower the bar for 

including co-benefits in the evaluation of climate policy. Shorter lengths were obtained by designing a 

more policy-relevant metric based on uncertainty in health and economics impacts. Previous studies 

used metrics based on accuracy in pollutant concentrations, recommending that at least 10-15 years of 

simulation be used in 2100 (Fiore, Naik, and Leibensperger 2015; Deser et al. 2020; Fu and Tian 2019; 

Deser et al. 2020; Lacressonnière et al. 2016; Brown-Steiner et al. 2018). As noted by those studies, 

the simulation length for a given policy evaluation will depend on the specific question; however, this 

thesis provided an approach for developing a more accessible, policy-relevant simulation length. 
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5.2 Summary of Comparison to Previous Work 

This thesis built on simulations that were previously evaluated. Firstly, the modelled pollutant 

concentrations used for the start-of-century conditions compare reasonably well with measured 

pollutant concentrations, as detailed in previous work (Garcia-Menendez et al. 2015; Pienkosz et al. 

2019). The economic projections and associated emissions have undergone intermodal comparisons 

(Fawcett et al. 2014; McFarland et al. 2018). National estimates of the future health burden of air 

pollution in 2050 and 2100 agreed with previous relevant studies, as detailed in  (Saari et al. 2019). 

The new results in this thesis, including regional co-benefits, SNRs, and simulation lengths, did not 

have any source of direct comparison to measurements or other modelling studies. However, certain 

components and insights appear aligned with other work. (Zhang et al. 2017) had total co-benefits (due 

to both co-emitted pollutants and the climate penalty) with a similar pattern to our co-benefits due to 

the climate penalty alone. Our findings about the effect of natural variability and resulting signal-to-

noise ratios appeared aligned with other work, even if they only considered one pollutant (Brown-

Steiner et al. 2018), had different sources of meteorological variability (Tagaris et al. 2009), or different 

geographic scope (Fang et al. 2013). We found that the shortest simulation lengths applied to our 

furthest time period (2100), largest region (continental US), and strongest policy (P3.7), which agreed 

with previous findings on the role of natural variability in isolating the climate penalty  (Fiore, Naik, 

and Leibensperger 2015; Deser et al. 2020).  

5.3 Limitations 

This thesis aimed to represent and isolate the effect of natural variability on air pollution and its 

related health and economic outcomes. However, our approach may be inaccurate. First, our model’s 

internal variability may not accurately represent natural variability in the real climate system. 

Nonetheless, comparisons between the CESM modelling system and ground-level observations of 

ozone showed they were largely consistent in their representation of variability (Brown-Steiner et al. 

2018). Still, some natural climate processes that can affect air quality were not included, such as 

projected changes in wildfire emissions, as detailed in (Garcia-Menendez et al. 2015).  Second, we may 

have misattributed some co-benefits to natural variability. We assumed that any difference in co-

benefits between two random years in one emission scenario could be attributed only to natural 

variability. This assumed we completely removed the forced signal from climate change or climate 

policy, leaving only the noise due to natural variability. In the original model results, there was also an 

expected trend due to the climate change over each 30-year period. That was removed through linear 
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regression per (Garcia-Menendez et al. 2015). Theoretically, any variation not caused by the forced 

signal would be due to natural variability. However, it is possible that some variation could have another 

explanation, such as non-linearity in the forced response, or numerical noise due to discretization in the 

computational modelling methods, for example.  

Our metric for assessing the effect of natural variability was based on health-related uncertainty, 

which also had its limitations. There are other sources of health-related uncertainty that we did not 

quantify, such as the effect of thresholds, the shape of the CRF, or the selection of additional CRFs for 

mortality or additional health outcomes (Nasari et al. 2016; Burnett et al. 2018; Silva et al. 2017). Others 

include uncertainty in baseline health incidence rates (West et al. 2013; Silva et al. 2017) and population 

demographics (Dionisio et al. 2017). Further, there are additional health-related uncertainties which 

remain difficult to quantify, such as the effects of emission sources or particulate matter size and 

composition, to name a few (Bell and Ebisu 2012; Hime, Marks, and Cowie 2018). There is also the 

question of how health responses may change over time as populations and relevant factors evolve 

(e.g., characteristics of exposures and available prevention and treatment).  

In addition to limitations affecting the main variables in this thesis – uncertainties due to health 

responses and natural variability – many other factors limit the accuracy or generalizability of its 

findings. The limitations of the modelling framework used here have been detailed at length in other 

studies (Garcia-Menendez et al. 2015; Garcia-Menendez, Monier, and Selin 2017; Paltsev et al. 2015; 

Monier et al. 2013). Previous work focusing the MIT-ISGM have quantified other sources of 

uncertainty (Prinn et al. 1999; Webster et al. 2003) and their effects on health impacts related to air 

pollution (Tagaris et al. 2009). Limitations of a specific modelling system can be addressed in part 

using multi-model ensembles (Lacressonnière et al. 2016). However, they cannot address sources of 

uncertainty which are not captured within these systems. Numerous studies have presented detailed 

critiques of integrated assessment models and their ability to represent natural and human systems 

(Asefi-Najafabady, Villegas-Ortiz, and Morgan 2020). Here, we used a relatively complex IAM 

coupled to an Earth System Model of intermediate complexity, and a full 3-D chemical transport model, 

which offers some advantages in representation. However, many gaps remain, including, for example, 

robust inclusion of social processes (Mathias et al. 2020). Sociocultural responses to emissions and 

their impacts at different scales of governance, by policy-makers, institutions, and individuals, for 

example, introduce significant uncertainties that are generally not well captured in integrated 

assessment models used to evaluate the effects of climate policy (Donges et al. 2020). Linking models 
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of human behavioral change to systems models of climate policy have been shown to introduce 

behavioral uncertainty of a similar magnitude to physical uncertainty (Beckage et al. 2018). 

5.4 Future Work 

Future work could address several limitations to offer more accurate simulation lengths, and to better 

understand the role of natural variability in evaluating climate policy’s effect on air quality co-benefits. 

Simulation lengths here were based on comparing noise due to natural variability and health-related 

uncertainty. Representations of natural variability could be improved by using more sophisticated 

Earth System Models (ESMs) that include other natural responses and feedbacks, especially those 

which affect air pollution. Using an ensemble of multiple ESMs with different internal variability 

could help account for uncertainty in model parameters and structure (Lacressonnière et al. 2016). 

Representations of health-related uncertainty could be expanded by including other relevant sources 

of uncertainty, such as the shape of the CRF. Finally, these techniques could be expanded to better 

represent behavioral responses. Behavioural change appeared most influenced by clear signals with 

clear responses in previous work (Beckage et al. 2018). Natural variability could obscure those signals, 

influencing adaptive responses and the resulting impacts of climate policy. Methods in this thesis could 

be paired with models of behavioral responses to poor air quality to understand how natural variability 

may mediate co-benefits, and how behavioral uncertainty may inform simulation lengths. 
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Appendix A 
Analysis Scripts 

AGU2020-Fig1-DataSorting_20200819 
 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Aug 19 10:23:17 2020 
 
@author: devpu 
""" 
 
import pickle as cp 
import numpy as np 
import os 
import datetime 
import pandas as pd 
import geopandas as gpd 
from osgeo import ogr 
import csv 
import gdal 
 
indir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-Fig1/RawData' 
ExSHP = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/ExMapData' 
outdir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig1/ProcessedData/' 
outdir1 = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig1/ProcessedData/ShapeFiles/' 
 
USAGRIDCUT_DATA = pd.read_csv(os.path.join(indir,'USAGRIDCUT.csv')) 
 
for Yr in [2050]: 
    for Pol in ['P37']: 
        for Poll in ['O3']: 
            iden = 'BenMAP_' + 
str(Yr)+'_'+Pol+'vsREF_'+Poll+'_IncidenceMeanOutput.csv' 
            DEATHS_PER_CELL = pd.read_csv(os.path.join(indir,iden)) 
            DEATHS_PER_CELL.columns = ["ROW", "COL", "MORT"] 
             
            # The grid-state map 
            gs_map = {} 
            state_mort = {} 
             
            for i, row in USAGRIDCUT_DATA.iterrows(): 
                r, c, st, pc = int(row["ROW"]), int(row["COL"]), 
row["STUSPS"], float(row["area_percent_grid"][:-1]) 
                if (r,c) in gs_map: 
                    gs_map[(r,c)].append((st,pc)) 
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                else: 
                    gs_map[(r,c)] = [(st,pc)] 
             
                # If we haven't seen this state before, add it to the 
state_mortality dictionary 
                if st not in state_mort: 
                    state_mort[st] = 0 
             
            # Check all the grid cells which don't add up to at least 99% 
            # for k in gs_map.keys(): 
            #     states = gs_map[k] 
            #     total_pc = sum([pair[1] for pair in states]) 
            # #    if total_pc < 99.0: 
            #        print(k, total_pc) 
             
            for i, row in DEATHS_PER_CELL.iterrows(): 
                 r, c, mort = int(row["ROW"]), int(row["COL"]), 
float(row["MORT"]) 
                 if (r,c) in gs_map: 
                     states = gs_map[(r,c)] 
                     total_pc = sum([pair[1] for pair in states]) 
                     for pair in states: 
                         state_mort[pair[0]] += (pair[1]/total_pc * mort) 
                 else: 
                     print("Couldn't find grid cell {} in USAGRIDCUT 
data".format((r,c))) 
            #print(state_mort) 
                      
            Northwest = state_mort['ID']+state_mort['OR']+state_mort['WA'] 
            Southwest = 
state_mort['AZ']+state_mort['CA']+state_mort['CO']+state_mort['NV']+state_
mort['NM']+state_mort['UT'] 
            Greatplains = 
state_mort['KS']+state_mort['MT']+state_mort['NE']+state_mort['ND']+state_
mort['OK']+state_mort['SD']+state_mort['TX']+state_mort['WY'] 
            Midwest = 
state_mort['IL']+state_mort['IN']+state_mort['IA']+state_mort['MI']+state_
mort['MN']+state_mort['MO']+state_mort['OH']+state_mort['WI'] 
            Southeast = 
state_mort['AL']+state_mort['AR']+state_mort['FL']+state_mort['GA']+state_
mort['KY']+state_mort['LA']+state_mort['MS']+state_mort['NC']+state_mort['
SC']+state_mort['TN']+state_mort['VA'] 
            Northeast = 
state_mort['CT']+state_mort['DE']+state_mort['DC']+state_mort['ME']+state_
mort['MD']+state_mort['MA']+state_mort['NH']+state_mort['NJ']+state_mort['
NY']+state_mort['PA']+state_mort['RI']+state_mort['VT']+state_mort['WV'] 
             
            #region_mort = state_mort 
            #region_mort.update([('NW',0), ('SW',0), ('GP',0), ('MW',0), 
('SE',0), ('NE',0)]) 
             
            region_mort = {'State': 'Mortality','AK': 0,'HI': 0,'RNW': 
0,'RSW': 0,'RGP': 0,'RMW': 0,'RSE': 0,'RNE': 0,} 
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            region_mort.update(state_mort) 
             
            region_mort['Northwest'] = Northwest 
            region_mort['ID'] = Northwest 
            region_mort['OR'] = Northwest 
            region_mort['WA'] = Northwest 
             
            region_mort['Southwest'] = Southwest 
            region_mort['AZ'] = Southwest  
            region_mort['CA'] = Southwest  
            region_mort['CO'] = Southwest  
            region_mort['NV'] = Southwest  
            region_mort['NM'] = Southwest  
            region_mort['UT'] = Southwest  
             
            region_mort['Greatplains'] = Greatplains  
            region_mort['KS'] = Greatplains  
            region_mort['MT'] = Greatplains  
            region_mort['NE'] = Greatplains  
            region_mort['ND'] = Greatplains  
            region_mort['OK'] = Greatplains  
            region_mort['SD'] = Greatplains  
            region_mort['TX'] = Greatplains  
            region_mort['WY'] = Greatplains  
             
            region_mort['Midwest'] = Midwest  
            region_mort['IL'] = Midwest  
            region_mort['IN'] = Midwest  
            region_mort['IA'] = Midwest  
            region_mort['MI'] = Midwest  
            region_mort['MN'] = Midwest  
            region_mort['MO'] = Midwest  
            region_mort['OH'] = Midwest  
            region_mort['WI'] = Midwest  
             
            region_mort['Southeast'] = Southeast  
            region_mort['AL'] = Southeast  
            region_mort['AR'] = Southeast  
            region_mort['FL'] = Southeast  
            region_mort['GA'] = Southeast  
            region_mort['KY'] = Southeast  
            region_mort['LA'] = Southeast  
            region_mort['MS'] = Southeast  
            region_mort['NC'] = Southeast  
            region_mort['SC'] = Southeast  
            region_mort['TN'] = Southeast  
            region_mort['VA'] = Southeast  
             
            region_mort['Northeast'] = Northeast  
            region_mort['CT'] = Northeast  
            region_mort['DE'] = Northeast  
            region_mort['DC'] = Northeast  
            region_mort['ME'] = Northeast  
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            region_mort['MD'] = Northeast  
            region_mort['MA'] = Northeast  
            region_mort['NH'] = Northeast  
            region_mort['NJ'] = Northeast  
            region_mort['NY'] = Northeast  
            region_mort['PA'] = Northeast  
            region_mort['RI'] = Northeast  
            region_mort['VT'] = Northeast  
            region_mort['WV'] = Northeast 
             
            with open(outdir +'/'+ 'BenMAP_' + 
str(Yr)+'_'+Pol+'vsREF_'+Poll+'_IncidenceMeanOutput-
Regions_'+datetime.date.today().strftime("%Y%m%d")+'.csv', 'w') as f: 
                for key in region_mort.keys(): 
                    f.write("%s,%s\n"%(key,region_mort[key])) 
             
            exshpfile = gpd.read_file(os.path.join(ExSHP, 'USA-
Regions20191008.shp')) 
            infile = ogr.Open(os.path.join(ExSHP, 'USA-
Regions20191008.shp')) 
            layer = infile.GetLayer() 
            spatialRef = layer.GetSpatialRef() 
            epsg = spatialRef.ExportToWkt() 
            exshpfile.insert(1, "Mortality", 0, True) 
             
            # Creating blank shapefiles to copy the generated values into; 
            shpMortality = exshpfile.copy() 
             
            for i in range(len(shpMortality)): 
                j = shpMortality.iloc[i,0] 
                kk = region_mort[j] 
                shpMortality.loc[(shpMortality["region"] == j), 
"Mortality"] = kk 
             
            shpfname= 'BenMAP_' + 
str(Yr)+'_'+Pol+'vsREF_'+Poll+'_IncidenceMeanOutput-
Regions_'+datetime.date.today().strftime("%Y%m%d")+'.shp' 
            shpfilename = outdir1 + shpfname 
            shpMortality.to_file(shpfilename) 
            prjfname= 'BenMAP_' + 
str(Yr)+'_'+Pol+'vsREF_'+Poll+'_IncidenceMeanOutput-
Regions_'+datetime.date.today().strftime("%Y%m%d")+'.prj' 
            prj = open(os.path.join(outdir1, prjfname), "w") 
            prj.write(epsg) 
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AGU2020-Fig1-Plotting_20210928 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Aug 21 11:49:35 2020 
edited September 28, 2021 by rks to add projection and change dir 
@author: devpu 
""" 
import os 
#os.environ["PROJ_LIB"] = "C:/Users/devpu/Anaconda3/pkgs/proj4-5.2.0-
ha925a31_1/Library/share"; #fixr 
import geopandas as gpd 
import matplotlib as mpl 
import matplotlib.pyplot as plt 
import datetime 
import numpy as np 
import matplotlib.ticker as ticker 
 
def fmt(x, pos): 
    a, b = '{:.2e}'.format(x).split('e') 
    b = int(b) 
    return r'${} \times 10^{{{}}}$'.format(a, b) 
 
O3_2050 = 1.831321396 
O3_2100 = 2.844556219 
PM_2050 = 1.662276345 
PM_2100 = 1.589653446 
proj_factor = {'O3': {'2050': O3_2050, '2100': O3_2100}, 'PM2.5': {'2050': 
PM_2050, '2100': PM_2100}} 
 
indir = 'C:/Users/rsaari/OneDrive - University of 
Waterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig1/ProcessedData/ShapeFiles/' 
figdir = 'C:/Users/rsaari/OneDrive - University of 
Waterloo/Dr.SaariLab/WorkingFolder/Figures/AGU2020-Fig1/' 
 
myfontsize = 20 
myfontsize_smaller = 18 
 
for Poll in ['PM25','O3']: 
    mysubno = 0 
    for Pol in ['P37','P45']: 
        for Yr in [2050,2100]: 
            iden = 'BenMAP_' + 
str(Yr)+'_'+Pol+'vsREF_'+Poll+'_IncidenceMeanOutput-Regions_20200821' 
 
            strYr = str(Yr) 
             
            if Poll == 'O3': 
                mymax = 3500 
                mymin = -100 
                gap = 200 
            else: 
                mymax = 20000 
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                mymin = 0 
                gap = 3000 
                 
            if Pol == 'P37': 
                pol = 'P3.7' 
            else: 
                pol = 'P4.5'          
             
            if Poll == 'PM25': 
                poll = 'PM2.5' 
                mycmap='Blues' 
            else: 
                poll = 'O3'  
                mycmap='Greens'                     
             
            ticklabels =np.arange(mymin,mymax+gap,gap) 
            norm = mpl.colors.Normalize(mymin, mymax) #play with these 
numbers 
            cbar = plt.cm.ScalarMappable(norm=norm, cmap=mycmap) 
             
            shp_file = ''.join([indir,iden,'.shp']) 
             
            shpfile = gpd.read_file(shp_file) 
            mytitle = ''.join([r'Annual premature deaths 
avoided','\n(',chr(mysubno+97),')',str(Yr),'-
',str(pol),'(',str(poll),')']) 
            fig, ax = plt.subplots(1,1) 
            fig, ax = plt.subplots(figsize=(5.7,4.7)) 
            mysubno+=1 
            # ax  = fig.add_subplot(frameon=False) 
            #ax.set_title(mytitle,  weight = 'bold',fontsize = myfontsize, 
pad=0) 
            #fig.set_dpi(600) 
             
            # divider = make_axes_locatable(ax) 
             
            # cax = divider.append_axes("bottom", size="5%", pad=0.1) 
             
            shpfile.plot(column = 'Mortality', ax=ax, legend=False, 
cmap=mycmap, edgecolor = "black", vmin=mymin, vmax=mymax) 
            # shpfile.plot(column = 'D24HourMea', ax=ax, legend=True, 
legend_kwds={'label': "Population by Country",'orientation': 
"horizontal"}) 
            # shpfile.plot(column = 'D24HourMea', cmap = 'RdBu', edgecolor 
= "black", ax=ax, cax = cax, legend=True, cbar_kwds={"orientation": 
"horizontal"}, vmin=mymin, vmax=mymax) 
            # shpfile.plot(column = 'D24HourMea', cmap = 'RdBu', 
legend=True, ax=ax) 
             
            # add colorbar 
            ax_cbar = fig.colorbar(cbar, ax=ax, orientation='horizontal', 
pad=0) 
            # add label for the colorbar 
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            # ax_cbar.set_label('Annual premature deaths avoided') 
            ax_cbar.set_label(mytitle,fontsize = myfontsize) 
            
ax_cbar.ax.set_xticklabels(ticklabels[::1],rotation=30,fontsize=myfontsize
_smaller)#, format='%.0e') 
            ax.set_axis_off() 
             
             
            RNW=int(round(shpfile.iloc[3,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
            RSW=int(round(shpfile.iloc[5,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
            RGP=int(round(shpfile.iloc[0,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
            RMW=int(round(shpfile.iloc[1,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
            RNE=int(round(shpfile.iloc[2,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
            RSE=int(round(shpfile.iloc[4,1]*proj_factor[poll][strYr]/100, 
ndigits=0))*100 
             
            plt.annotate(RNW, xy=(0.1,0.8), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'), 
fontsize=myfontsize_smaller) 
            plt.annotate(RSW, xy=(0.2,0.45), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'),  
fontsize=myfontsize_smaller) 
            plt.annotate(RGP, xy=(0.425,0.5), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'),  
fontsize=myfontsize_smaller) 
            plt.annotate(RMW, xy=(0.54,0.67), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'),  
fontsize=myfontsize_smaller) 
            plt.annotate(RSE, xy=(0.63,0.35), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'),  
fontsize=myfontsize_smaller) 
            plt.annotate(RNE, xy=(0.76,0.65), xycoords='axes fraction', 
bbox=dict(facecolor='white', edgecolor='none', boxstyle='round,pad=0.2'),  
fontsize=myfontsize_smaller) 
            plt.show() 
             
            fname = 
''.join([iden,'_',datetime.date.today().strftime("%B_%d_%Y"),'.tiff']) 
            figname = os.path.join(figdir,fname)  
            fig.savefig(figname, dpi = 300,  bbox_inches = 'tight', 
pad_inches = 0.2) 
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AGU2020-Fig2-ReadExtractPopulation_20200819.py 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Aug 19 14:12:43 2020 
 
@author: devpu 
""" 
 
import numpy as np 
import pickle as cp 
import csv 
import os 
 
# SPECIFY DIRECTORY AND POLICY 
indir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-Fig2/RawData' 
outdir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig2/ProcessedData/' 
 
# Projection 
proj = -1 # Select Health Projection 
 
if proj == 1: 
    ##UNPROJ 
    P45_2050 = 1 
    P45_2100 = 1 
    P37_2050 = 1 
    P37_2100 = 1 
    ProjStr = 'Unprojected' 
elif proj == 0: 
    # TOTAL PROJ 
    P45_2050 = 3.136074168 
    P45_2100 = 6.191667419 
    P37_2050 = 3.0267895 
    P37_2100 = 5.845025311 
    REF_2100= 6.29375291 
    ProjStr = 'Total Projection' 
else: 
    ##HEALTH PROJ 
    P45_2050 = 1.681818182 
    P45_2100 = 1.666666667 
    P37_2050 = 1.770547945 
    P37_2100 = 1.733944954 
    ProjStr = 'Incidence Projection' 
proj_factor = {'P45': {'2050': P45_2050, '2100': P45_2100}, 'P37': 
{'2050': P37_2050, '2100': P37_2100}} 
 
 
# LOAD THE FILE TO READ FOR  
 
for Yr in [2050,2100]: 
    for Pol in ['P37','P45']: 
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        for Poll in ['PM25','O3']: 
            iden = 'BenMAP_' + str(Yr)+'_'+Pol+'vsREF_'+Poll+'_Incidence' 
            with open (os.path.join(indir, iden), 'rb') as f: 
                infile = (cp.load(f)) 
 
#CREATE NEW CSV FOR BENMAP 
            output = open(outdir +'/'+ iden + 'PopulationOutput.csv', 'w') 
#outputs are  empty csv files created to store the values for BenMAP 
            newlinechar = '\n' 
            output.write('Row,  Column,    Values'+newlinechar) 
 
            for i in range(len(infile['Row'])): #doing this with arrays 
bypasses the necessity to create a seperate aqg dict 
                output.write(str(infile['Row'][i]) + ' ,' + 
str(infile['Col'][i]) + ' , ' + str( 
float(infile['Population'][i])*proj_factor[Pol][str(Yr)]) +  newlinechar) 
            output.close() 
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AGU2020-Fig3-DataSorting_Krewski_20201117 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Sep 11 14:35:53 2020 
 
@author: devpu 
""" 
# In this the mean of O3 and PM2.5 has been summed and then the  .shp 
files generatd 
# for policy and year. 
 
import pickle as cp 
import numpy as np 
import os 
import datetime 
import pandas as pd 
import geopandas as gpd 
from osgeo import ogr 
import csv 
import copy 
 
 
#DEFINE VARIABLES 
mydir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig5/Pickles/CSV-Region' 
ExSHP = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/ExMapData' 
outdir = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-Fig3/' 
outdir1 = 'C:/Users/devpu/OneDrive - University of 
Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig3/ShapeFiles/' 
Poll = ['PM25', 'O3'] 
Year = '2050'    # Year to Plot 
 
if Year == '2050': 
    Year_range = range(2036,2065+1) 
    x_lim = [2034,2067] 
    myticks = np.arange(2035,2070,5) 
else: 
    Year_range = range(2086,2115+1) 
    x_lim = [2084,2117] 
    myticks = np.arange(2085,2120,5) 
         
 
# Projection 
proj = 0 # Select Total Projection 
 
if proj == -1: 
    ##UNPROJ 
    P45_2050 = 1 
    P45_2100 = 1 



 

 78 

    P37_2050 = 1 
    P37_2100 = 1 
    ProjStr = 'Unprojected' 
elif proj == 0: 
    # TOTAL PROJ 
    P45_2050 = 3.136074168 
    P45_2100 = 6.191667419 
    P37_2050 = 3.0267895 
    P37_2100 = 5.845025311 
    ProjStr = 'Total Projection' 
else: 
    ##HEALTH PROJ 
    P45_2050 = 1.681818182 
    P45_2100 = 1.666666667 
    P37_2050 = 1.770547945 
    P37_2100 = 1.733944954 
    ProjStr = 'Incidence Projection' 
proj_factor = {'P45': {'2050': P45_2050, '2100': P45_2100}, 'P37': 
{'2050': P37_2050, '2100': P37_2100}} 
 
# The dictionaries for means calculated 
meanP37PM25 = {} 
meanP45PM25 = {} 
 
meanP37O3 = {} 
meanP45O3 = {} 
 
# The dictionaris which will be later converted to dataframes 
dfP37PM25 = {} 
dfP37O3 = {} 
dfP37Poll={} 
dfP37PollMean = {} 
dfP37PollStd = {} 
dfP37PollSNR = {} 
 
dfP45PM25 = {} 
dfP45O3 = {} 
dfP45Poll={} 
dfP45PollMean = {} 
dfP45PollStd = {} 
dfP45PollSNR = {} 
 
DFP37Mean = {} 
DFP45Mean = {} 
 
DFP37SNR = {} 
DFP45SNR = {} 
# Checking for inconsistancies in row and col numbers 
 
for reg in ['GP','MW','NE','NW','SE','SW']: 
    meanP37PM25[reg] = {} 
    meanP45PM25[reg] = {} 
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    meanP37O3[reg] = {} 
    meanP45O3[reg] = {} 
 
    dfP37PM25[reg] = {} 
    dfP37O3[reg] = {} 
    dfP37Poll[reg]={} 
    dfP37PollMean[reg] = 0 
    dfP37PollStd[reg] = 0 
    dfP37PollSNR[reg] = 0 
 
    dfP45PM25[reg] = {} 
    dfP45O3[reg] = {} 
    dfP45Poll[reg]={} 
    dfP45PollMean[reg] = 0 
    dfP45PollStd[reg] = 0 
    dfP45PollSNR[reg] = 0 
    for ic in range (5): 
        IC = 'IC'+str(ic+1) 
        print (IC) 
            
        #Dictionaries based on Pol and Poll 
        meanP37PM25[reg][str(IC)] = {} 
        meanP45PM25[reg][str(IC)] = {} 
     
        meanP37O3[reg][str(IC)] = {} 
        meanP45O3[reg][str(IC)] = {} 
     
        # dfP37PM25[reg][str(IC)] = {} 
        # dfP37O3[reg][str(IC)] = {} 
     
        # dfP45PM25[reg][str(IC)] = {} 
        # dfP45O3[reg][str(IC)] = {} 
     
        year = [] ## x-axis 
        Mean = [] 
     
        # year2 = [] ## x-axis 
        # Mean2 = [] 
     
        Pol = 'P37' 
     
        # LOAD DATA TO ARRAY 
        for Yr in Year_range: 
             
            year.append(Yr) 
             
            idenPM25 = reg+'_BenMAP_' + 
str(Yr)+'_'+IC+'_'+Pol+'vsREF_'+Poll[0] 
            with open (os.path.join(mydir,idenPM25), 'rb') as f: 
                    mydictP37PM25 = (cp.load(f)) 
     
            idenO3 = reg+'_BenMAP_' + 
str(Yr)+'_'+IC+'_'+Pol+'vsREF_'+Poll[1] 
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            with open (os.path.join(mydir,idenO3), 'rb') as f: 
                    mydictP37O3 = (cp.load(f)) 
             
     
            meanP37PM25[reg][str(IC)][str(Yr)] = 0 
            meanP37O3[reg][str(IC)][str(Yr)] = 0 
     
            # Over here I try to add up the values for each cell based on 
the specific authors, and try to eliminate the author dicitionaries. 
            for author in mydictP37PM25.keys(): 
                if author != 'Lepeule et al.'and author != 'Schwartz and 
Neas' and author != 'Peters et al.': 
                    meanP37PM25[reg][str(IC)][str(Yr)] += 
mydictP37PM25[author] * proj_factor[Pol][Year] /(10**12) 
     
            for author in mydictP37O3.keys(): 
                if author in ['Zanobetti and Schwartz (b)','Smith et 
al.','Schildcrout et al.','Mortimer et al.','Sarnat et al. Peel et al. 
Wilson et al. Glad et al. Mar and Koenig Ito et al.']: 
                    meanP37O3[reg][str(IC)][str(Yr)] += 
mydictP37O3[author] * proj_factor[Pol][Year] /(10**12) 
                else: 
                    meanP37O3[reg][str(IC)][str(Yr)] += 
mydictP37O3[author] * proj_factor[Pol][Year] /(10**12) 
     
     
        Pol = 'P45' 
     
        for Yr in Year_range: 
     
            year.append(Yr) 
             
            idenPM25 = reg+'_BenMAP_' + 
str(Yr)+'_'+IC+'_'+Pol+'vsREF_'+Poll[0] 
            with open (os.path.join(mydir,idenPM25), 'rb') as f: 
                    mydictP45PM25 = (cp.load(f)) 
     
            idenO3 = reg+'_BenMAP_' + 
str(Yr)+'_'+IC+'_'+Pol+'vsREF_'+Poll[1] 
            with open (os.path.join(mydir,idenO3), 'rb') as f: 
                    mydictP45O3 = (cp.load(f)) 
             
     
            meanP45PM25[reg][str(IC)][str(Yr)] = 0 
            meanP45O3[reg][str(IC)][str(Yr)] = 0 
     
     
            # Over here I try to add up the values for each cell based on 
the specific authors, and try to eliminate the author dicitionaries. 
            for author in mydictP45PM25.keys(): 
                if author != 'Lepeule et al.'and author != 'Schwartz and 
Neas' and author != 'Peters et al.': 
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                    meanP45PM25[reg][str(IC)][str(Yr)] += 
mydictP45PM25[author] * proj_factor[Pol][Year] /(10**12) 
     
     
            for author in mydictP45O3.keys(): 
                if author in ['Zanobetti and Schwartz (b)','Smith et 
al.','Schildcrout et al.','Mortimer et al.','Sarnat et al. Peel et al. 
Wilson et al. Glad et al. Mar and Koenig Ito et al.']: 
                    meanP45O3[reg][str(IC)][str(Yr)] += 
mydictP45O3[author] * proj_factor[Pol][Year] /(10**12) 
                else: 
                    meanP45O3[reg][str(IC)][str(Yr)] += 
mydictP45O3[author] * proj_factor[Pol][Year] /(10**12) 
     
    # Over here I am converting the dictionaries to dataframes, in order 
to simplify the averaging within each cell based on Year and IC. 
    dfP37PM25[reg] = pd.DataFrame.from_dict({(i,j): meanP37PM25[reg][i][j] 
    for i in meanP37PM25[reg].keys() 
    for j in 
meanP37PM25[reg][i].keys()},orient='index')#.stack().reset_index() 
         
    dfP37O3[reg] = pd.DataFrame.from_dict({(i,j): meanP37O3[reg][i][j] 
    for i in meanP37O3[reg].keys() 
    for j in 
meanP37O3[reg][i].keys()},orient='index')#.stack().reset_index() 
         
    for reg in dfP37Poll: 
        dfP37Poll[reg] = dfP37PM25[reg]+dfP37O3[reg] 
    dfP37PollMean[reg] = (dfP37Poll[reg].mean(axis = 
0).to_frame()).iloc[0][0] 
    dfP37PollStd[reg] = (dfP37Poll[reg].std(axis = 
0).to_frame()).iloc[0][0] 
    dfP37PollSNR[reg] = dfP37PollMean[reg]/dfP37PollStd[reg] 
     
    dfP45PM25[reg] = pd.DataFrame.from_dict({(i,j): meanP45PM25[reg][i][j] 
    for i in meanP45PM25[reg].keys() 
    for j in 
meanP45PM25[reg][i].keys()},orient='index')#.stack().reset_index() 
         
    dfP45O3[reg] = pd.DataFrame.from_dict({(i,j): meanP45O3[reg][i][j] 
    for i in meanP45O3[reg].keys() 
    for j in 
meanP45O3[reg][i].keys()},orient='index')#.stack().reset_index() 
     
    for reg in dfP45Poll: 
        dfP45Poll[reg] = dfP45PM25[reg]+dfP45O3[reg] 
    dfP45PollMean[reg] = (dfP45Poll[reg].mean(axis = 
0).to_frame()).iloc[0][0] 
    dfP45PollStd[reg] = (dfP45Poll[reg].std(axis = 
0).to_frame()).iloc[0][0] 
    dfP45PollSNR[reg] = dfP45PollMean[reg]/dfP45PollStd[reg] 
 
     



 

 82 

    # Here i sum up PM25 and O3 dataframes for P37 
    # for reg in dfP37PM25Mean.keys(): 
    #     DFP37Mean[reg] = dfP37PM25Mean[reg]+dfP37O3Mean[reg] 
     
    # for reg in dfP37PM25SNR.keys(): 
    #     DFP37SNR[reg] = dfP37PM25SNR[reg]+dfP37O3SNR[reg] #total  
 
    # # Here i sum up PM25 and O3 dataframes for P45 
    # for reg in dfP45PM25Mean.keys(): 
    #     DFP45Mean[reg] = dfP45PM25Mean[reg]+dfP45O3Mean[reg] 
     
    # for reg in dfP45PM25SNR.keys(): 
    #     DFP45SNR[reg] = dfP45PM25SNR[reg]+dfP45O3SNR[reg] 
 
 
region_benP37 = {'State': 'Mortality','AK': 0,'HI': 0,'RNW': 0,'RSW': 
0,'RGP': 0,'RMW': 0,'RSE': 0,'RNE': 0,} 
 
region_benP37['Northwest'] = dfP37PollMean['NW'] 
region_benP37['ID'] = dfP37PollMean['NW'] 
region_benP37['OR'] = dfP37PollMean['NW'] 
region_benP37['WA'] = dfP37PollMean['NW'] 
 
region_benP37['Southwest'] = dfP37PollMean['SW'] 
region_benP37['AZ'] = dfP37PollMean['SW']  
region_benP37['CA'] = dfP37PollMean['SW']  
region_benP37['CO'] = dfP37PollMean['SW']  
region_benP37['NV'] = dfP37PollMean['SW']  
region_benP37['NM'] = dfP37PollMean['SW']  
region_benP37['UT'] = dfP37PollMean['SW']  
 
region_benP37['Greatplains'] = dfP37PollMean['GP'] 
region_benP37['KS'] = dfP37PollMean['GP']  
region_benP37['MT'] = dfP37PollMean['GP']  
region_benP37['NE'] = dfP37PollMean['GP']  
region_benP37['ND'] = dfP37PollMean['GP']  
region_benP37['OK'] = dfP37PollMean['GP']  
region_benP37['SD'] = dfP37PollMean['GP']  
region_benP37['TX'] = dfP37PollMean['GP']  
region_benP37['WY'] = dfP37PollMean['GP']  
 
region_benP37['Midwest'] = dfP37PollMean['MW'] 
region_benP37['IL'] = dfP37PollMean['MW']  
region_benP37['IN'] = dfP37PollMean['MW']  
region_benP37['IA'] = dfP37PollMean['MW']  
region_benP37['MI'] = dfP37PollMean['MW']  
region_benP37['MN'] = dfP37PollMean['MW']  
region_benP37['MO'] = dfP37PollMean['MW']  
region_benP37['OH'] = dfP37PollMean['MW']  
region_benP37['WI'] = dfP37PollMean['MW']  
 
region_benP37['Southeast'] = dfP37PollMean['SE'] 
region_benP37['AL'] = dfP37PollMean['SE']  
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region_benP37['AR'] = dfP37PollMean['SE']  
region_benP37['FL'] = dfP37PollMean['SE']  
region_benP37['GA'] = dfP37PollMean['SE']  
region_benP37['KY'] = dfP37PollMean['SE']  
region_benP37['LA'] = dfP37PollMean['SE']  
region_benP37['MS'] = dfP37PollMean['SE']  
region_benP37['NC'] = dfP37PollMean['SE']  
region_benP37['SC'] = dfP37PollMean['SE']  
region_benP37['TN'] = dfP37PollMean['SE']  
region_benP37['VA'] = dfP37PollMean['SE']  
 
region_benP37['Northeast'] = dfP37PollMean['NE'] 
region_benP37['CT'] = dfP37PollMean['NE']  
region_benP37['DE'] = dfP37PollMean['NE']  
region_benP37['DC'] = dfP37PollMean['NE']  
region_benP37['ME'] = dfP37PollMean['NE']  
region_benP37['MD'] = dfP37PollMean['NE']  
region_benP37['MA'] = dfP37PollMean['NE']  
region_benP37['NH'] = dfP37PollMean['NE']  
region_benP37['NJ'] = dfP37PollMean['NE']  
region_benP37['NY'] = dfP37PollMean['NE']  
region_benP37['PA'] = dfP37PollMean['NE']  
region_benP37['RI'] = dfP37PollMean['NE']  
region_benP37['VT'] = dfP37PollMean['NE']  
region_benP37['WV'] = dfP37PollMean['NE'] 
 
region_benP45 = {'State': 'Mortality','AK': 0,'HI': 0,'RNW': 0,'RSW': 
0,'RGP': 0,'RMW': 0,'RSE': 0,'RNE': 0,} 
 
region_benP45['Northwest'] = dfP45PollMean['NW'] 
region_benP45['ID'] = dfP45PollMean['NW'] 
region_benP45['OR'] = dfP45PollMean['NW'] 
region_benP45['WA'] = dfP45PollMean['NW'] 
 
region_benP45['Southwest'] = dfP45PollMean['SW'] 
region_benP45['AZ'] = dfP45PollMean['SW']  
region_benP45['CA'] = dfP45PollMean['SW']  
region_benP45['CO'] = dfP45PollMean['SW']  
region_benP45['NV'] = dfP45PollMean['SW']  
region_benP45['NM'] = dfP45PollMean['SW']  
region_benP45['UT'] = dfP45PollMean['SW']  
 
region_benP45['Greatplains'] = dfP45PollMean['GP'] 
region_benP45['KS'] = dfP45PollMean['GP']  
region_benP45['MT'] = dfP45PollMean['GP']  
region_benP45['NE'] = dfP45PollMean['GP']  
region_benP45['ND'] = dfP45PollMean['GP']  
region_benP45['OK'] = dfP45PollMean['GP']  
region_benP45['SD'] = dfP45PollMean['GP']  
region_benP45['TX'] = dfP45PollMean['GP']  
region_benP45['WY'] = dfP45PollMean['GP']  
 
region_benP45['Midwest'] = dfP45PollMean['MW'] 
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region_benP45['IL'] = dfP45PollMean['MW']  
region_benP45['IN'] = dfP45PollMean['MW']  
region_benP45['IA'] = dfP45PollMean['MW']  
region_benP45['MI'] = dfP45PollMean['MW']  
region_benP45['MN'] = dfP45PollMean['MW']  
region_benP45['MO'] = dfP45PollMean['MW']  
region_benP45['OH'] = dfP45PollMean['MW']  
region_benP45['WI'] = dfP45PollMean['MW']  
 
region_benP45['Southeast'] = dfP45PollMean['SE'] 
region_benP45['AL'] = dfP45PollMean['SE']  
region_benP45['AR'] = dfP45PollMean['SE']  
region_benP45['FL'] = dfP45PollMean['SE']  
region_benP45['GA'] = dfP45PollMean['SE']  
region_benP45['KY'] = dfP45PollMean['SE']  
region_benP45['LA'] = dfP45PollMean['SE']  
region_benP45['MS'] = dfP45PollMean['SE']  
region_benP45['NC'] = dfP45PollMean['SE']  
region_benP45['SC'] = dfP45PollMean['SE']  
region_benP45['TN'] = dfP45PollMean['SE']  
region_benP45['VA'] = dfP45PollMean['SE']  
 
region_benP45['Northeast'] = dfP45PollMean['NE'] 
region_benP45['CT'] = dfP45PollMean['NE']  
region_benP45['DE'] = dfP45PollMean['NE']  
region_benP45['DC'] = dfP45PollMean['NE']  
region_benP45['ME'] = dfP45PollMean['NE']  
region_benP45['MD'] = dfP45PollMean['NE']  
region_benP45['MA'] = dfP45PollMean['NE']  
region_benP45['NH'] = dfP45PollMean['NE']  
region_benP45['NJ'] = dfP45PollMean['NE']  
region_benP45['NY'] = dfP45PollMean['NE']  
region_benP45['PA'] = dfP45PollMean['NE']  
region_benP45['RI'] = dfP45PollMean['NE']  
region_benP45['VT'] = dfP45PollMean['NE']  
region_benP45['WV'] = dfP45PollMean['NE'] 
 
region_snrP37 = {'State': 'Mortality','AK': 0,'HI': 0,'RNW': 0,'RSW': 
0,'RGP': 0,'RMW': 0,'RSE': 0,'RNE': 0,} 
 
region_snrP37['Northwest'] = dfP37PollSNR['NW'] 
region_snrP37['ID'] = dfP37PollSNR['NW'] 
region_snrP37['OR'] = dfP37PollSNR['NW'] 
region_snrP37['WA'] = dfP37PollSNR['NW'] 
 
region_snrP37['Southwest'] = dfP37PollSNR['SW'] 
region_snrP37['AZ'] = dfP37PollSNR['SW']  
region_snrP37['CA'] = dfP37PollSNR['SW']  
region_snrP37['CO'] = dfP37PollSNR['SW']  
region_snrP37['NV'] = dfP37PollSNR['SW']  
region_snrP37['NM'] = dfP37PollSNR['SW']  
region_snrP37['UT'] = dfP37PollSNR['SW']  
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region_snrP37['Greatplains'] = dfP37PollSNR['GP'] 
region_snrP37['KS'] = dfP37PollSNR['GP']  
region_snrP37['MT'] = dfP37PollSNR['GP']  
region_snrP37['NE'] = dfP37PollSNR['GP']  
region_snrP37['ND'] = dfP37PollSNR['GP']  
region_snrP37['OK'] = dfP37PollSNR['GP']  
region_snrP37['SD'] = dfP37PollSNR['GP']  
region_snrP37['TX'] = dfP37PollSNR['GP']  
region_snrP37['WY'] = dfP37PollSNR['GP']  
 
region_snrP37['Midwest'] = dfP37PollSNR['MW'] 
region_snrP37['IL'] = dfP37PollSNR['MW']  
region_snrP37['IN'] = dfP37PollSNR['MW']  
region_snrP37['IA'] = dfP37PollSNR['MW']  
region_snrP37['MI'] = dfP37PollSNR['MW']  
region_snrP37['MN'] = dfP37PollSNR['MW']  
region_snrP37['MO'] = dfP37PollSNR['MW']  
region_snrP37['OH'] = dfP37PollSNR['MW']  
region_snrP37['WI'] = dfP37PollSNR['MW']  
 
region_snrP37['Southeast'] = dfP37PollSNR['SE'] 
region_snrP37['AL'] = dfP37PollSNR['SE']  
region_snrP37['AR'] = dfP37PollSNR['SE']  
region_snrP37['FL'] = dfP37PollSNR['SE']  
region_snrP37['GA'] = dfP37PollSNR['SE']  
region_snrP37['KY'] = dfP37PollSNR['SE']  
region_snrP37['LA'] = dfP37PollSNR['SE']  
region_snrP37['MS'] = dfP37PollSNR['SE']  
region_snrP37['NC'] = dfP37PollSNR['SE']  
region_snrP37['SC'] = dfP37PollSNR['SE']  
region_snrP37['TN'] = dfP37PollSNR['SE']  
region_snrP37['VA'] = dfP37PollSNR['SE']  
 
region_snrP37['Northeast'] = dfP37PollSNR['NE'] 
region_snrP37['CT'] = dfP37PollSNR['NE']  
region_snrP37['DE'] = dfP37PollSNR['NE']  
region_snrP37['DC'] = dfP37PollSNR['NE']  
region_snrP37['ME'] = dfP37PollSNR['NE']  
region_snrP37['MD'] = dfP37PollSNR['NE']  
region_snrP37['MA'] = dfP37PollSNR['NE']  
region_snrP37['NH'] = dfP37PollSNR['NE']  
region_snrP37['NJ'] = dfP37PollSNR['NE']  
region_snrP37['NY'] = dfP37PollSNR['NE']  
region_snrP37['PA'] = dfP37PollSNR['NE']  
region_snrP37['RI'] = dfP37PollSNR['NE']  
region_snrP37['VT'] = dfP37PollSNR['NE']  
region_snrP37['WV'] = dfP37PollSNR['NE'] 
 
region_snrP45 = {'State': 'Mortality','AK': 0,'HI': 0,'RNW': 0,'RSW': 
0,'RGP': 0,'RMW': 0,'RSE': 0,'RNE': 0,} 
 
region_snrP45['Northwest'] = dfP45PollSNR['NW'] 
region_snrP45['ID'] = dfP45PollSNR['NW'] 
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region_snrP45['OR'] = dfP45PollSNR['NW'] 
region_snrP45['WA'] = dfP45PollSNR['NW'] 
 
region_snrP45['Southwest'] = dfP45PollSNR['SW'] 
region_snrP45['AZ'] = dfP45PollSNR['SW']  
region_snrP45['CA'] = dfP45PollSNR['SW']  
region_snrP45['CO'] = dfP45PollSNR['SW']  
region_snrP45['NV'] = dfP45PollSNR['SW']  
region_snrP45['NM'] = dfP45PollSNR['SW']  
region_snrP45['UT'] = dfP45PollSNR['SW']  
 
region_snrP45['Greatplains'] = dfP45PollSNR['GP'] 
region_snrP45['KS'] = dfP45PollSNR['GP']  
region_snrP45['MT'] = dfP45PollSNR['GP']  
region_snrP45['NE'] = dfP45PollSNR['GP']  
region_snrP45['ND'] = dfP45PollSNR['GP']  
region_snrP45['OK'] = dfP45PollSNR['GP']  
region_snrP45['SD'] = dfP45PollSNR['GP']  
region_snrP45['TX'] = dfP45PollSNR['GP']  
region_snrP45['WY'] = dfP45PollSNR['GP']  
 
region_snrP45['Midwest'] = dfP45PollSNR['MW'] 
region_snrP45['IL'] = dfP45PollSNR['MW']  
region_snrP45['IN'] = dfP45PollSNR['MW']  
region_snrP45['IA'] = dfP45PollSNR['MW']  
region_snrP45['MI'] = dfP45PollSNR['MW']  
region_snrP45['MN'] = dfP45PollSNR['MW']  
region_snrP45['MO'] = dfP45PollSNR['MW']  
region_snrP45['OH'] = dfP45PollSNR['MW']  
region_snrP45['WI'] = dfP45PollSNR['MW']  
 
region_snrP45['Southeast'] = dfP45PollSNR['SE'] 
region_snrP45['AL'] = dfP45PollSNR['SE']  
region_snrP45['AR'] = dfP45PollSNR['SE']  
region_snrP45['FL'] = dfP45PollSNR['SE']  
region_snrP45['GA'] = dfP45PollSNR['SE']  
region_snrP45['KY'] = dfP45PollSNR['SE']  
region_snrP45['LA'] = dfP45PollSNR['SE']  
region_snrP45['MS'] = dfP45PollSNR['SE']  
region_snrP45['NC'] = dfP45PollSNR['SE']  
region_snrP45['SC'] = dfP45PollSNR['SE']  
region_snrP45['TN'] = dfP45PollSNR['SE']  
region_snrP45['VA'] = dfP45PollSNR['SE']  
 
region_snrP45['Northeast'] = dfP45PollSNR['NE'] 
region_snrP45['CT'] = dfP45PollSNR['NE']  
region_snrP45['DE'] = dfP45PollSNR['NE']  
region_snrP45['DC'] = dfP45PollSNR['NE']  
region_snrP45['ME'] = dfP45PollSNR['NE']  
region_snrP45['MD'] = dfP45PollSNR['NE']  
region_snrP45['MA'] = dfP45PollSNR['NE']  
region_snrP45['NH'] = dfP45PollSNR['NE']  
region_snrP45['NJ'] = dfP45PollSNR['NE']  
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region_snrP45['NY'] = dfP45PollSNR['NE']  
region_snrP45['PA'] = dfP45PollSNR['NE']  
region_snrP45['RI'] = dfP45PollSNR['NE']  
region_snrP45['VT'] = dfP45PollSNR['NE']  
region_snrP45['WV'] = dfP45PollSNR['NE'] 
 
exshpfile = gpd.read_file(os.path.join(ExSHP, 'USA-Regions20191008.shp')) 
infile = ogr.Open(os.path.join(ExSHP, 'USA-Regions20191008.shp')) 
layer = infile.GetLayer() 
spatialRef = layer.GetSpatialRef() 
epsg = spatialRef.ExportToWkt() 
# exshpfile["D24HourMean"] = 0 
exshpfile.insert(1, "D24HourMean", 0, True) 
 
# Creating blank shapefiles to copy the generated values into; 
shpP37 = copy.deepcopy(exshpfile) 
shpP45 = copy.deepcopy(exshpfile) 
shpP37snr = copy.deepcopy(exshpfile) 
shpP45snr = copy.deepcopy(exshpfile) 
 
for i in range(len(shpP37)): 
    j = shpP37.iloc[i,0] 
    k = region_benP37[j] 
    shpP37.loc[(shpP37["region"] == j), "D24HourMean"] = k 
 
for i in range(len(shpP45)): 
    j = shpP45.iloc[i,0] 
    k = region_benP45[j] 
    shpP45.loc[(shpP45["region"] == j), "D24HourMean"] = k 
     
for i in range(len(shpP37snr)): 
    j = shpP37snr.iloc[i,0] 
    k = region_snrP37[j] 
    shpP37snr.loc[(shpP37snr["region"] == j), "D24HourMean"] = k 
 
for i in range(len(shpP45snr)): 
    j = shpP45snr.iloc[i,0] 
    k = region_snrP45[j] 
    shpP45snr.loc[(shpP45snr["region"] == j), "D24HourMean"] = k     
 
shpfname12= 
'AGU2020Fig3_'+Year+'_P37'+'_Krewski_Valuations_'+datetime.date.today().st
rftime("%Y%m%d")+'.shp' 
shpfilename12 = outdir1 + shpfname12 
shpP37.to_file(shpfilename12) 
prjfname12= 
'AGU2020Fig3_'+Year+'_P37'+'_Krewski_Valuations_'+datetime.date.today().st
rftime("%Y%m%d")+'.prj' 
prj = open(os.path.join(outdir1, prjfname12), "w") 
prj.write(epsg) 
prj.close() 
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shpfname34= 
'AGU2020Fig3_'+Year+'_P45'+'_Krewski_Valuations_'+datetime.date.today().st
rftime("%Y%m%d")+'.shp' 
shpfilename34 = outdir1 + shpfname34 
shpP45.to_file(shpfilename34) 
prjfname34= 
'AGU2020Fig3_'+Year+'_P45'+'_Krewski_Valuations_'+datetime.date.today().st
rftime("%Y%m%d")+'.prj' 
prj = open(os.path.join(outdir1, prjfname34), "w") 
prj.write(epsg) 
prj.close() 
 
shpfname56= 'AGU2020Fig3_'+Year+'_P37'+'_Krewski_V-
SNR_'+datetime.date.today().strftime("%Y%m%d")+'.shp' 
shpfilename56 = outdir1 + shpfname56 
shpP37snr.to_file(shpfilename56) 
prjfname56= 'AGU2020Fig3_'+Year+'_P37'+'_Krewski_V-
SNR_'+datetime.date.today().strftime("%Y%m%d")+'.prj' 
prj = open(os.path.join(outdir1, prjfname56), "w") 
prj.write(epsg) 
prj.close() 
 
shpfname78= 'AGU2020Fig3_'+Year+'_P45'+'_Krewski_V-
SNR_'+datetime.date.today().strftime("%Y%m%d")+'.shp' 
shpfilename78 = outdir1 + shpfname78 
shpP45snr.to_file(shpfilename78) 
prjfname78= 'AGU2020Fig3_'+Year+'_P45'+'_Krewski_V-
SNR_'+datetime.date.today().strftime("%Y%m%d")+'.prj' 
prj = open(os.path.join(outdir1, prjfname78), "w") 
prj.write(epsg) 
prj.close() 
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AGU2020_Fig6_Plotting_Region_20200301.py 

Fits relative error reduction to exponential decay 

# --- Import 
import matplotlib.pyplot as plt 
import matplotlib.patches as mpatches 
import matplotlib.lines as mlines 
import pickle as cp 
import numpy as np 
import os 
import datetime 
import scipy as sp 
import scipy.optimize 
from sklearn.metrics import r2_score 
import matplotlib as mpl 
mpl.rc('font',size=12) 
mpl.rc('xtick', labelsize=12)  
mpl.rc('ytick', labelsize=12) 
 
# ---------------------------------------------------------------- 
# --- Define Functions 
def model_func(t, A, K, C): 
    return A * np.exp(-K * t)+C 
 
def fit_exp_nonlinear(t, y): 
    opt_parms, parm_cov = sp.optimize.curve_fit(model_func, t, y, maxfev=10000) 
    A, K, C = opt_parms 
    return A, K, C 
 
# def fit_exp_linear(t, y, C=0): 
#     y = y - C 
#     y = np.log(y) 
#     K, A_log = np.polyfit(t, y, 1) 
#     A = np.exp(A_log) 
#     return A, K 
# --- Define variables 
data = {} 
 
mydir = 'C:/Users/devpu/OneDrive - University of Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Data/AGU2020-
Fig6/Pickles/Region/' 
outdir = 'C:/Users/devpu/OneDrive - University of Waterloo/UWaterloo/Dr.SaariLab/WorkingFolder/Figures/AGU2020-
Fig6/SouthWest/' 
 
fig = plt.figure(figsize=(6,4)) 
ax1 = fig.add_subplot(111) 
#ax2 = ax1.twinx() 
 
# --- Load and store the CPickle File Data 
 
data = {} 
for pol in ['P45','P37']: 
    data[pol] = {} 
    for year in ['2050','2100']: 
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        data[pol][year] = {} 
        iden = 'SW_All_150_Lines_data_' + year + '_' + pol #+ '_Unix' 
        with open (os.path.join(mydir, iden), 'rb') as f: 
            data[pol][year] = cp.load(f) 
 
# for pol in ['P37','P45']: 
#     data[pol] = {} 
#     for year in ['2050', '2100']: 
#         data[pol][year] = {} 
#         iden = '150_Lines_data_' + year + '_' + pol + '_Unix' 
#         with open (os.path.join(mydir, iden), 'rb') as f: 
#             data[pol][year] = cp.load(f) 
 
 
data1 = {} 
for pol in ['P45','P37']: 
    data1[pol] = {} 
    for year in ['2050','2100']: 
        data1[pol][year] = {} 
        for auth in ['Krewski et al.', 'Lepeule et al.']: 
            data1[pol][year][auth] = {} 
            for maxmin in ['Max', 'Min']: 
                data1[pol][year][auth][maxmin] = {} 
                # for yr in range(int(year)-14,int(year)+15+1): 
                #     data1[pol][year][auth]['Max'][yr] = max(max(data[pol][year][auth][yr]['IC5']), 
max(data[pol][year][auth][yr]['IC4']), max(data[pol][year][auth][yr]['IC3']), max(data[pol][year][auth][yr]['IC2']), 
max(data[pol][year][auth][yr]['IC1'])) 
                #     data1[pol][year][auth]['Min'][yr] = min(min(data[pol][year][auth][yr]['IC5']), 
min(data[pol][year][auth][yr]['IC4']), min(data[pol][year][auth][yr]['IC3']), min(data[pol][year][auth][yr]['IC2']), 
min(data[pol][year][auth][yr]['IC1'])) 
 
x_value=range(1,31) 
MaxK = {} 
MinK = {} 
MaxL = {}     
MinL = {} 
 
for pol in ['P45','P37']: 
    MaxK[pol] = {} 
    MinK[pol] = {} 
    for year in ['2050','2100']: 
        MaxK[pol][year] = {} 
        MinK[pol][year] = {} 
        for auth in ['Krewski et al.']: 
            MaxK[pol][year][auth] = [] 
            MinK[pol][year][auth] = [] 
            for i in x_value: 
                buf150p = []                               # to store 150 points 
                Yr1 = str(int(year)-14) 
                Yr2 = str(int(year)+15) 
                for start in range(int(Yr1),int(Yr2)+1):  # 30 starting yr 
                    for ic in range(5):                   # 5 ic  
                        IC = 'IC' +str(ic+1) 
                        buf150p.append(data[pol][year][auth][start][IC][i-1]) 
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                MaxK[pol][year][auth].append(max(buf150p)) 
                MinK[pol][year][auth].append(min(buf150p)) 
                 
for pol in ['P45','P37']: 
    MaxL[pol] = {} 
    MinL[pol] = {}     
    for year in ['2050','2100']: 
        MaxL[pol][year] = {} 
        MinL[pol][year] = {}         
        for auth in ['Lepeule et al.']: 
            MaxL[pol][year][auth] = [] 
            MinL[pol][year][auth] = []             
            for i in x_value: 
                buf150p = []                               # to store 150 points 
                Yr1 = str(int(year)-14) 
                Yr2 = str(int(year)+15) 
                for start in range(int(Yr1),int(Yr2)+1):  # 30 starting yr 
                    for ic in range(5):                   # 5 ic  
                        IC = 'IC' +str(ic+1) 
                        buf150p.append(data[pol][year][auth][start][IC][i-1]) 
                         
                MaxL[pol][year][auth].append(max(buf150p)) 
                MinL[pol][year][auth].append(min(buf150p))                 
 
     
for pol in ['P45','P37']: 
    for year in ['2050','2100']: 
        Yr1 = str(int(year)-14) 
        Yr2 = str(int(year)+15) 
        for auth in ['Krewski et al.']: 
            for maxmin in ['Max', 'Min']: 
                # for yr in range(int(year)-14,int(year)+15+1): 
                for i in range(int(Yr1),int(Yr2)+1): 
                    data1[pol][year][auth]['Max'][str(i)] = MaxK[pol][year][auth][i-int(Yr1)] 
                    data1[pol][year][auth]['Min'][str(i)] = MinK[pol][year][auth][i-int(Yr1)] 
 
for pol in ['P45','P37']: 
    for year in ['2050','2100']: 
        Yr1 = str(int(year)-14) 
        Yr2 = str(int(year)+15) 
        for auth in ['Lepeule et al.']: 
            for maxmin in ['Max', 'Min']: 
                # for yr in range(int(year)-14,int(year)+15+1): 
                for i in range(int(Yr1),int(Yr2)+1): 
                    data1[pol][year][auth]['Max'][str(i)] = MaxL[pol][year][auth][i-int(Yr1)] 
                    data1[pol][year][auth]['Min'][str(i)] = MinL[pol][year][auth][i-int(Yr1)] 
 
# --- Generate data for lines 
# --- Calculate % error 
x_val = range(1,30+1) 
y_val = {} 
for pol in ['P37','P45']: 
    y_val[pol] = {} 
    for year in ['2050', '2100']: 
        y_val[pol][year] = {} 
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        for auth in ['Krewski et al.', 'Lepeule et al.']: 
            y_val[pol][year][auth] = {} 
            temp = [] 
            min_val = data1[pol][year][auth]['Min'] 
            max_val = data1[pol][year][auth]['Max'] 
            for i in range(int(year)-14,int(year)+15+1): 
#                temp.append((max_val[str(i)] - min_val[str(i)])/(max_val[str(int(year)+15)] - min_val[str(int(year)+15)])*100) 
                val_avgP = (max_val[str(i)] - min_val[str(i)]) 
                val_year = (max_val[str(int(year)+15)] - min_val[str(int(year)+15)]) 
                temp.append(((val_avgP-val_year)/val_year)*100) 
            y_val[pol][year][auth] = temp 
 
# Non-linear Fit 
fit_y = {} 
AA = {} 
KK = {} 
CC = {} 
R2 = {} 
for pol in ['P37','P45']: 
    fit_y[pol] = {} 
    AA[pol] = {} 
    KK[pol] = {} 
    CC[pol] = {} 
    R2[pol] = {} 
    for year in ['2050', '2100']: 
        fit_y[pol][year] = {} 
        AA[pol][year] = {} 
        KK[pol][year] = {} 
        CC[pol][year] = {} 
        R2[pol][year] = {} 
        for auth in ['Krewski et al.', 'Lepeule et al.']: 
            fit_y[pol][year][auth] = {} 
            AA[pol][year][auth] = {} 
            KK[pol][year][auth] = {} 
            CC[pol][year][auth] = {} 
            R2[pol][year][auth] = {} 
            A, K, C = fit_exp_nonlinear(x_val, y_val[pol][year][auth]) 
            AA[pol][year][auth] = A 
            KK[pol][year][auth] = K 
            CC[pol][year][auth] = C 
            fit_y[pol][year][auth] = model_func(x_val, A, K, C) 
            R2[pol][year][auth] = r2_score(y_val[pol][year][auth], fit_y[pol][year][auth]) 
             
 
# --- Plot the lines 
 
# assign colours, set to P37 = blue and P45 = red (based on loop) 
colour_vec = ['red','red','red','red','blue','blue','blue','blue'] 
bar_col = ['r','g','b','y','r','g','b','y'] 
# assign line styles, set to different line styles for P37 and P45 
line_style = [':','--',':','--',':','--',':','--'] 
marker_style = ['.','^','.','^','.','^','.','^'] 
a = 0 
legend_vec = ['P4.5', 'P3.7', '2050', '2100', 'Krewski', 'Lepeule'] 
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P45_patch = mpatches.Patch(facecolor='red', label='P4.5') 
P37_patch = mpatches.Patch(facecolor='blue', label='P3.7') 
Y2050_patch = mlines.Line2D([], [], color='black', ls = '-', marker='', label='2050') 
Y2100_patch = mlines.Line2D([], [], color='black', ls = ':', marker='', label='2100') 
Krewski_patch = mlines.Line2D([], [], color='black', marker='.', lw = 0, markersize = 8, label='Krewski') 
Lepuele_patch = mlines.Line2D([], [], color='black', marker='^', lw = 0, markersize = 5, label='Lepeule') 
FitY_patch = mlines.Line2D([], [], color='black', ls = ':', marker='*', lw = 0, markersize = 8, label='Exponential Decay Fit') 
 
# for loop structure determines the order of plotting 
 
# For P37-2050 
# for pol in ['P37']: 
#     for year in ['2050']: 
#         for auth in ['Krewski et al.', 'Lepeule et al.']: 
#             if auth == 'Krewski et al.': 
#                 size = 6.5 
#             else: 
#                 size = 4.5 
#             ax1.plot(x_val, y_val[pol][year][auth], linewidth = 0.75, color = 'blue', ls = '-', marker = marker_style[a], ms = 8.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             ax1.plot(x_val, fit_y[pol][year][auth], linewidth = 0.5, color = 'black', ls = '-', marker = '*', ms = 6.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             a += 1 
# ax1.legend(bbox_to_anchor=(1,1), handles=[P37_patch, Y2050_patch, Krewski_patch, Lepuele_patch, FitY_patch], loc = 
1) 
 
# # For P37-2100 
# for pol in ['P37']: 
#     for year in ['2100']: 
#         for auth in ['Krewski et al.', 'Lepeule et al.']: 
#             if auth == 'Krewski et al.': 
#                 size = 6.5 
#             else: 
#                 size = 4.5 
#             ax1.plot(x_val, y_val[pol][year][auth], linewidth = 0.75, color = 'blue', ls = ':', marker = marker_style[a], ms = 8.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             ax1.plot(x_val, fit_y[pol][year][auth], linewidth = 0.5, color = 'black', ls = '-', marker = '*', ms = 6.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             a += 1 
# ax1.legend(bbox_to_anchor=(1,1), handles=[P37_patch, Y2100_patch, Krewski_patch, Lepuele_patch, FitY_patch], loc = 
1) 
 
# # For P45-2050 
# for pol in ['P45']: 
#     for year in ['2050']: 
#         for auth in ['Krewski et al.', 'Lepeule et al.']: 
#             if auth == 'Krewski et al.': 
#                 size = 6.5 
#             else: 
#                 size = 4.5 
#             ax1.plot(x_val, y_val[pol][year][auth], linewidth = 0.75, color = 'red', ls = '-', marker = marker_style[a], ms = 8.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             ax1.plot(x_val, fit_y[pol][year][auth], linewidth = 0.5, color = 'black', ls = '-', marker = '*', ms = 6.5,  
markeredgecolor='white', markeredgewidth=0.2) 
#             a += 1 
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# ax1.legend(bbox_to_anchor=(1,1), handles=[P45_patch, Y2050_patch, Krewski_patch, Lepuele_patch, FitY_patch], loc = 
1) 
 
# # For P45-2100 
for pol in ['P45']: 
    for year in ['2100']: 
        for auth in ['Krewski et al.', 'Lepeule et al.']: 
            if auth == 'Krewski et al.': 
                size = 6.5 
            else: 
                size = 4.5 
            ax1.plot(x_val, y_val[pol][year][auth], linewidth = 0.75, color = 'red', ls = ':', marker = marker_style[a], ms = 8.5,  
markeredgecolor='white', markeredgewidth=0.2) 
            ax1.plot(x_val, fit_y[pol][year][auth], linewidth = 0.5, color = 'black', ls = '-', marker = '*', ms = 6.5,  
markeredgecolor='white', markeredgewidth=0.2) 
            a += 1 
ax1.legend(bbox_to_anchor=(1,1), handles=[P45_patch, Y2100_patch, Krewski_patch, Lepuele_patch, FitY_patch], loc = 1) 
 
# for pol in ['P37','P45']: 
#     for year in ['2050', '2100']: 
#         for auth in ['Krewski et al.', 'Lepeule et al.']: 
#             if auth == 'Krewski et al.': 
#                 size = 6.5 
#             else: 
#                 size = 4.5 
#             ax1.plot(x_val, y_val[pol][year][auth], linewidth = 0.5, color = colour_vec[a], ls = line_style[a], marker = 
marker_style[a], ms = size,  markeredgecolor='white', markeredgewidth=0.2) 
#             a += 1 
#ax1.legend(bbox_to_anchor=(1,1), handles=[P45_patch, P37_patch, Y2050_patch, Y2100_patch, Krewski_patch, 
Lepuele_patch], loc = 1) 
 
# Figure formatting 
ax1.set_xlabel('Averaging Period (Years)', size = 12) 
ax1.set_ylabel('% Error', size = 12) 
plt.xlim(1,30) 
 
fname= 'Figure_'+pol+'_'+year+'_'+datetime.date.today().strftime("%B_%d_%Y")+'.png' 
figname = outdir + fname 
 
plt.savefig(figname,dpi = 800,bbox_inches = 'tight', pad_inches = 0.5) 
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