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Abstract

The recent line of Versal FPGA devices from Xilinx Inc. includes a hard Network-
On-Chip (NoC) embedded in the programmable logic, designed to be a high-performance
system-level interconnect. While the target markets for Versal devices include applications
with real-time constraints, such as automotive driver assist, the associated development
tools only provide figures for ”structural latencies” of data packets, which assume that the
network is otherwise idle. In a realistic setting, this information is not enough to ensure
deadlines are met, as different packets can contend for NoC switch outputs, which causes
packet contents to be buffered while in transit, increasing their latency. In this work, we
develop an approach for calculating upper bounds for such worst-case latencies (WCLs),
assuming a model where system tasks release packets into the NoC periodically. In order
to develop an accurate model for latencies in the network, we review the architecture
and operation of the Versal NoC. We focus on a formal description of the NPS switches
that compose the NoC from a flit arbitration perspective, based on study the available
cycle-accurate switch simulation code. Working with the presented model, we propose an
adaptation to an existing approach for WCL analysis in NoC, Recursive Calculus (RC), in
order to apply it to the arbitration policy implemented in the Versal NoC. To evaluate the
proposed approach, we implement a simulation experiment for the Versal NoC, with custom
endpoints that allow for injecting packets programatically and measuring their latencies
over the NoC. We simulate both a single NPS module and a complete NoC routing periodic
workloads, in order to compare with the values given by the WCL approach and identify
sources of pessimism.
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Chapter 1

Introduction

The Versal ACAP line of re-configurable computing devices from Xilinx Inc. was an-
nounced in 2019 [50], with the first evaluation boards having been released in 2021 [46].
The Versal architecture includes the new generation of the company’s FPGA fabric, as
well as a dual-core ARM Cortex A57 processor and specialized accelerators for AI opera-
tions [51], a focus on heterogeneous computing that is reflected in the ACAP denomination.

The backbone for communications between the different computing resources in the
platform, and between computing resources and DDRMC modules or I/O, is a hardened
NoC embedded in the FPGA fabric [45].

Figure 1.1 shows an example floorplan of a Versal device, including the embedded NoC.
The Versal NoC consists of VNoC and HNoC segments: multiple VNoCs are embedded in
the FPGA fabric, offering connectivity to instantiated IP modules, while two HNoCs on
the extremities of the device connect all VNoCs and provide network access to hard blocks
in the system.

Internally, VNoCs and HNoCs implement a high-performance, pipelined interconnect
based on 128-bit, full-duplex data links operating at 1GHz, with VNoCs having a bisection
bandwidth of 512 Gbps, and HNoCs a bandwidth of 512 or 1024 Gbps. Besides representing
an opportunity for performance gains in data movement-intensive applications, the NoC
offers other advantages for designers (further discussed in Section 2.1.3), such as simplifying
timing closure for modules in the FPGA fabric [43].

In this work, we explore an issue that can make it more difficult for developers working
with real-time deadlines to take advantage of this new component (the uncertainty on the
latencies that can be experienced by packets traversing the network) and discuss how to
adapt an existing approach, RC [14, 29], to calculate upper bounds for said latency values.
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Figure 1.1: Example floorplan of a Versal device (adapted from Figure 1 of [43])

1.1 Motivation

The target markets for Versal devices include automotive, airspace and defense applica-
tions [50]. Such applications usually encompass a number of timing constraints, which
must be respected in order to ensure the safety of users. A common constraint is that the
WCET of a system task should be inferior to a given relative deadline.

In the context of a SoC deployed on a Versal device, the WCL experienced by packets
traversing the NoC will factor into the WCETs of tasks that involve communications
between different components. For example, an AI inference task for obstacle detection in
an automotive driver assist application may involve the processor using the NoC to send
input data to AI engines or kernels in the FPGA, and to read results subsequently.

If the latency for sending data or reading results is too large, the processor will fail to
complete the sequence of steps before the deadline, violating a timing constraint, which
makes evident the need to determine upper bounds for packet WCLs.

In this work, we model a timing constraints on NoC communications as a CT that
releases packets into the network periodically, with associated deadlines for reception.
The Versal NoC user guide differentiates between two latency values for packets [49]: the
structural latency which corresponds to the best-case latency experienced by a packet
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traversing an otherwise vacant NoC, and the queuing latency which also includes the time
packet contents spend buffered inside NoC switches due to contention with other CTs (the
WCL corresponds then to the worst-case queuing latency).

Only the structural latency for packets of each CT is provided by the development tools
for the Versal NoC, as it is a simple function of the static route the packet follows, while
calculating an upper bound for the queuing latency also depends on the behaviour of the
other CTs using the network. Our goal is then to receive the NoC configuration and CT
parameters as inputs, and determine an upper bound for the WCL experienced by packets
of each CT.

In the context of previous works in WCL analysis for NoCs, we also identify the Versal
NoC as a relevant case study because it supports a diverse set of features that can interact
to affect packet latency, compared to NoC models adopted previously – including more
than one VC, LRU arbitration and additional mechanisms for QoS [49].

Finally, the NPS modules, the main routing mechanism in the NoC, are well docu-
mented, and have an available functional simulation model, which facilitates the experi-
mental evaluation of the WCL analysis approach, as performed in Chapter 5.

1.2 Contributions and Outline

This work presents the following contributions:

• We present a detailed review of the architecture and operation of the Versal NoC, in-
cluding low-level details on the NoC arbitration policy and communication protocols
based on our study of the NPS simulation code.

• We propose a modification to an existing approach for WCL analysis in NoCs, RC,
in order to adapt it to the particular features of the Versal NoC architecture.

• We implement the proposed method as a Python script, and compare the WCL
bounds it provides with results from simulating a subset of the NoC in the xcvc1902
Versal device routing the same workload.

The remainder of this text is organized as follows:

• Chapter 2 reviews the two main background topics for this work, which are embedded
NoCs for FPGA, and WCL analysis for NoCs.

3



• Chapter 3 reviews relevant aspects of the architecture and operation of the Versal
NoC.

• Chapter 4 presents the model we adopt for CTs using the NoC, and our approach
for bounding the WCL experience by packets under said model.

• Chapter 5 presents an experimental evaluation of the proposed WCL analysis ap-
proach, based on simulating the NoC present in a Versal device.

• Chapter 6 includes a conclusion and considerations on future work.

4



Chapter 2

Background and Related Work

In this chapter, we review two important background topics for this text:

• Section 2.1 discusses embedded NoC architectures for FPGAs, including a review of
NoC flow control concepts important for the remainder of this text.

• Section 2.2 reviews WCL analysis approaches for NoCs based on wormhole routing,
the mechanism employed by the Versal NoC.

2.1 Embedded NoCs for FPGA

2.1.1 Context for Embedded NoCs

The Versal NoC replaces multiple system-level interconnects that can be present in a SoC
deployed in an Ultrascale+ device, the preceding line of FPGA devices from Xilinx [47].
In an Ultrascale+-based SoC, an IP module instantiated in the FPGA fabric that needs,
for instance, to access DDR memory would need to be connected with fabric resources to
one of the limited number of direct AXI links to a DDRMC.

Additionally, if it is necessary to share the DDRMC links with other modules, this
connection will not be direct, instead happening through an interconnect also created
with fabric resources. In the Xilinx IP library, the standard solution for creating such
interconnects are multiplexer-based crossbars, such as the SmartConnect IP [48], which is
limited to up to 16 clients.
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A more scalable solution uses fabric resources to construct NoC structures, which trans-
port data packets over multiple interconnected router modules. Following the terminology
in [1, 2], we call such fabric-based implementations overlay (or ”soft”) NoCs, in opposition
to embedded (or ”hard”) NoCs like the Versal NoC, which are a fixed part of the device
die. Some important trends in the development of overlay NoCs include:

• Configuration options for different topologies and feature sets (e.g. CMU CON-
NECT [35] offers a web interface for generating HDL code for NoC variants with
different topologies and features, [32] presents variants of a NoC based on butter-
fly fat-tree topology with different degrees of connectivity as expressed by the Rent
parameter [6]).

• Architectural optimization taking characteristics of the FPGA fabric into account,
such as fracturable LUTs (e.g. Penn Split-Merge [18], Hoplite [22]).

• Employing hard blocks included in more recent FPGA architectures (e.g. DSP
blocks [9], memory cascades [21], high-speed wires [31], wide multiplexers [25]).

While the presence of a hard embedded NoC, such as the Versal NoC, mitigates the
need for FPGA fabric-based interconnects, a complementary role for such interconnects
may still be envisioned for projects that instantiate a large number of IP modules in the
fabric (e.g. the GRVI Phalanx accelerator [16], which includes 400 soft RISC-V processors
compared to the 54 NoC endpoints that the Versal NoC offers to the fabric).

2.1.2 Contemporary Embedded NoCs

NoC Architecture

In a Versal device overlay interconnects can be completely avoided if there are enough
access links to the embedded NoC, which provides memory-mapped connectivity to any
other client, including DDRMCs. The same applies for Speedster S7 line from FPGA de-
veloper Achronix Semiconductor [5], which also features an embedded NoC, with a different
architecture and operating characteristics.

The idea of hardening a NoC as a global interconnect for the FPGA fabric has been
explored in academia [15, 1] before the release of commercial solutions in the form of the
Versal and Speedster S7 lines [5]. A prototype that uses FabricLink modules to interface
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the FPGA fabric with the NoC [2], in particular, anticipated several aspects of these
commercial NoC designs.

The three mentioned NoC architectures (Versal, Speedster S7 and FabricLink) share
the strategy of implementing the ”core” of the network as a high-frequency (1-2GHZ)
clock domain, associated with interfacing modules to the FPGA fabric and to hard clients.
The interfacing modules are responsible for the clock-domain crossing between the clock
domains of the client and the NoC, as well as for translating between the communication
protocols used by the client (e.g. AXI) and the internal protocol of the NoC. In Table 2.1,
we see a comparison of the NoC models in terms of connectivity offered to the FPGA
fabric.

Table 2.1: Connectivity offered to FPGA in each embedded NoC model
NoC Model No. of Interfaces Frequency Data Width (user data)
FabricPort [2] 32 1.2 GHz 128
Versal (xcvc1902) [45] 54 1 GHz 182 (128)
Speedster S7 [4] 162 2 GHz 256 (192)

Another difference between the mentioned embedded NoC architectures is the topology,
where each adopts a different approach: while the FabricLink-based NoC uses a simple
square mesh, the Speedster S7 NoC is based on a peripheral ring NoC connected to multiple
bidirectional links embedded in the fabric, and the Versal NoC uses a custom topology
discussed in Section 3.3. These differences in topology are reflected in the approach to
routing of each NoC, where the FabricPort and Speedster S7 NoCs employ straightforward
routing algorithms based on destination address, while the less regular topology of the
Versal NoC implements routing tables loaded at boot time.

Flow Control and Virtual Channels

An important aspect of NoC architecture, with implications to WCL analysis, is the flow
control strategy adopted by the NoC, or how the transmission of flits is dynamically man-
aged by the network to ensure NoC buffers never overflow. The Versal and FabricPort
NoCs support multiple VCs, independent sets of buffers in the network with which packets
are associated. The presence of multiple VCs helps avoid the phenomenon of transitive
blocking [10], and, in the Versal NoC, provides support for differential QoS between CTs
associated with different VCs [45].

The FabricPort, Speedster and Versal NoCs employ the credit feedback mechanism
for flow-control, in which each output link maintains a counter of credits for each buffer

7



downstream from it (multiple buffers being possible when there are multiple VCs), with
each credit corresponding to a free buffer space. Credits are returned as buffers are emptied
via an auxiliary credit feedback signal with associated latency.

The term backpressure is employed for the situation in which flits of a packet are
prevented from proceeding through a NoC link due to insufficient credits for the relevant
buffer. In the context of the Versal NoC arbitration policy, described in Section 3.7, the
presence of backpressure corresponds to a buffer blocked by arbitration Rule 3.

2.1.3 Trade-offs of Embedded NoCs

We may summarize the main advantages of the embedded hard NoC approach as follows [3,
43]:

• Improves area and power by reusing the same link between router for different CTs,
and sacrificing bit-level control of the wires composing the NoC links (compared to
using the FPGA fabric to implement an Overlay NoC) [43]. Savings in area also
facilitate support for advanced features, such as multiple VCs.

• Improves frequency by implementing the NoC as a packetized, pipelined intercon-
nect [43].

• Simplifies timing closure [45], by limiting the issue to the level of individual modules
in the FPGA, while the timing correctness of the system-level NoC is insured by
design.

• Beyond timing closure, the isolation between modules afforded by the NoC also
simplifies support for modern FPGA trends such as partial reconfiguration and multi-
tenant systems [3].

We may also consider the following disadvantages:

• The latency of a packet can vary in complex ways as a result of contention with other
packets over multiple NoC switches (the issue explored in this text) [45].

• In order to use the NoC to transport data between two IP modules in the FPGA
fabric, both modules are constrained to using a protocol supported by the NoC (in
the case of the Versal NoC, one of the supported variants of the AXI protocol). This
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issue is diminished by the current trend of structuring complex FPGA designs by
integrating smaller IP modules, where the use of standard communication protocols
is expected independently from the presence of the hard NoC [45].

The Intel Spiderweb NoC [27], proposed by another FPGA manufacturer, is presented
as a ”firm NoC” that is built with fabric resources, but is pre-floorplanned to improve
performance and timing closure in a similar manner to embedded NoCs, while maintaining
the flexibility of Overlay NoCs. In this sense, it represents a different approach to the
trade-offs discussed above.

2.2 WCL Analysis for NoCs with Wormhole Routing

A number of different approaches for WCL analysis have been proposed for wormhole
NoCs. We identify two important factors leading to this diversity:

• The different models adopted for the operation of NoC, particularly in terms of how
different CTs contend for outputs.

• The different mathematical tools employed (e.g. Network Calculus [28], CPA [17]).

In this Section, we review WCL analysis approaches for wormhole routing NoCs [33],
in which packets of data traverse the network as a sequence of flow-control digits (flits)
in a pipelined manner, as opposed to store-and-forward mechanisms that store complete
packets in each network switch before transmitting to the next one. As it allows for switches
with significantly smaller buffer sizes, this mechanism is widely employed in contemporary
NoCs, including the Versal NoC and the two other architectures discussed in Section 2.1.2.

Adopting the classification from [34], we can further divide Wormhole NoCs between
contention-less and contention-aware models. We briefly review non-contention models in
Section 2.2.1, and the two most widely employed contention-aware models in Sections 2.2.2
and 2.2.3.

2.2.1 Contention-less Models

Architectures where contention for NoC router outputs is avoided by design are particularly
amenable to WCL analysis. Two common strategies for are:
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• TDMA approaches, which determine at design time a schedule for the transmission
of packets of each CT that avoids contention for switch outputs [38, 42].

• Virtual Circuit approaches, where all the links in the route of a packet are reserved
before packet starts travelling [38, 42].

2.2.2 Prioritized VC Model

Among NoC models that do include contention between packets for router outputs, the
prioritized VC model has received significant attention. In this model, each CT travels in
its own VC (set of buffers in the network), associated with a priority level, and a higher
priority CT can preempt a lower priority CT at any moment (flit-level preemption).

With the prioritized VC model, the WCL analysis can be performed with similar tech-
niques to WCET analysis in uni-processors, treating the whole path followed by a packet
as an atomic resource that has to be shared with other CTs [39]. A subsequent approach,
known SLA, considers the individual links as resources instead [24].

The CPA approach, a different formalism that calculates latencies iteratively by prop-
agating events from the outputs to the inputs of system elements, has also been applied to
the prioritized VC model [36].

The identification of the phenomenon of MPB [53] showed that existing analysis ap-
proaches for the prioritized VC model were optimistic when backpressure can emerge due
to limited buffer spaces, requiring corrections that increase pessimism [34].

Another solution proposed to address the MPB phenomenon is to extend the prioritized
VC model to temporarily store packets that cannot proceed in NoC clients, which are
assumed to have enough buffer space for complete packets. This eliminates backpressure,
while keeping the VC model [8].

2.2.3 Round-Robin Model

While the prioritized VC model allows for applying existing WCET techniques in a natural
manner, it is difficult to realize in practice, especially in designs with many CTs contending
for an output.

Another widespread model has network routers performing RRA among input links:
in this each input link has a single input buffer, and output link performs RRA between
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said buffers. The winning buffer transmits a complete packet through the output before
the RRA process is performed again.

The RRA-based model reflects the operation of NoCs present in commercial devices,
for instance by Tilera [7] and Kalray [12]. Techniques that have been applied for WCL
analysis in RRA-based NoC include RC [11, 30], which we review in detail in Section 4.2.1,
Network Calculus [13] and CPA [37].
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Chapter 3

Versal NoC System Model

In this chapter, we review details of the Versal NoC architecture and operation, in order
to support the WCL analysis in Chapter 4. In Sections 3.1-3.3, we present the general
architecture of the NoC (Sec. 3.1) and how a designer may configure it as part of a project
(Sec. 3.2). These sections correspond to an ”user” view of the NoC, as provided by the
official documentation [49, 50] and tutorial [19] for the Versal NoC.

In Sections 3.3- 3.7 we describe additional details of the 1 GHz clock domain that
corresponds to the ”core” of the network, including the necessary information to develop
a precise timing model. To provide this description, we complement our survey of the
documentation by studying the NPS simulation source code available with Xilinx Vivado
version 2020.3 [20], and simulating the complete system including NoC endpoints, for which
simulation source code is not available.

While Section 3.3 (topology) and Section 3.6 (routing) are included to provide a better
understanding of the Versal NoC, their content does not factor into the WCL analysis
developed in Chapter 4.

3.1 Versal NoC Architecture

Figure 3.1 shows a block diagram of a Versal NoC, including the components of the network
and different types of client that access it.

Internally, the vertical and horizontal segments of the NoC are composed of NPS mod-
ules, and packet flits traverse a sequence of NPS modules along their route in a pipelined
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Figure 3.1: Block diagram of a Versal NoC.

manner according to wormhole routing [33]. We call the first and last flits of a packet the
SoP and EoP flits, respectively. An HNoC may also include NCRB modules, which simply
act as pipelining registers that ensure the timing closure of the NoC [52].

Network interface modules clients interact with the Versal NoC through NMU and NSU
modules, which they access as AXI Slave and Master interfaces, respectively. Following the
general embedded NoC paradigm discussed in Section 2.1.2, the NMU and NSU endpoints
perform the clock domain crossing between the AXI interface and the internal 1GHz clock
domain of the NoC, as well as translate the communication protocol between AXI and the
internal NPP of the Versal NoC [49].

Clients in the FPGA fabric access the NoC via NMU 512/NSU 512 endpoints, which
offer AXI interfaces with width of up to 512b, while hard blocks (such as AI engines and
processors) access the NoC through NMU 128/NSU 128 endpoints. Finally, the Versal
platform includes a number of DDRMC NSUs directly integrated in DDRMC modules,
bypassing the need for an AXI interface.

The NoC is configured on boot time via a NPI module, present in the platform man-
agement system. The NPI programs the various NoC components through an auxiliary,
low-throughput interconnect [49, 52].

13



3.2 Design Entry

Starting from version 2020.2, the Xilinx Vivado and Vitis design software support targeting
Versal devices. In order to incorporate the Versal NoC as part of a design, a user must
supply:

• The connectivity matrix of which NMUs communicate with which NSUs.

• The expected write and read bandwidth for each NMU/NSU pair.

• Traffic classes for AXI writes and reads, for each NMU/NSU pair.

• The AXI address address range of each NSU in the SoC memory map.

Three traffic classes are supported, with corresponding use cases described in the user
guide [52]:

• ISOC traffic class, for reads or writes that exchange data with real-time constraints.

• LL traffic class, for reads that service cache misses.

• BE traffic class, for all other cases.

The traffic classes influence the solution produced by the NoC compiler. At runtime,
they are currently only differentiated in that flits of ISOC and LL packets travel with a
high-priority bit set (discussed in Sections 3.5 and 3.7), while flits of BE packets travel
with the bit unset.

With the NoC parameters as inputs, a NoC compiler attempts to find a valid network
configuration using a SAT solver on an appropriately constructed problem [45]. If a solution
is found, the NoC compiler generates the configuration information for all NoC components.
The compiler produces a solution report in a JSON file with .ncr extension. Below, we
reproduce an entry from the report with the VC assignment and the route followed by
packets of write data transmitted from an NMU to an NSU:
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Listing 3.1: Example path data in a .ncr report produced by the NoC compiler

” PhyInstanceStart ” : ”NOC NMU512 X0Y0” ,
”PhyInstanceEnd ” : ”NOC NSU512 X0Y1” ,
”VC” : 5 ,
”CommType” : ”WRITE” ,
” Connections ” : [

”NOC NMU512 X0Y0” ,
” req out ” ,
”NOC NPS VNOC X0Y1” ,
” p o r t 3 i n ” ,
”NOC NPS VNOC X0Y1” ,
” por t1 out ” ,
”NOC NPS VNOC X0Y0” ,
” p o r t 1 i n ” ,
”NOC NPS VNOC X0Y0” ,
” por t2 out ” ,
”NOC NPS VNOC X0Y2” ,
” p o r t 0 i n ” ,
”NOC NPS VNOC X0Y2” ,
” por t3 out ” ,
”NOC NSU512 X0Y1” ,
” req ”

] ,

3.3 NoC Topology

Figure 3.2 shows the complete topology of the NoC embedded in the xcvc1902 Versal
device, which is included in the VCK 190 evaluation board [46].

The HNoC and VNoC segments of the network are structured around lanes that en-
compass the whole segment, each capable of transmitting 128 Gbps of user data in each
direction. Each VNoC has two lanes, one connected to fabric NMUs, other to fabric NSUs,
for a total bandwidth of 512 Gbps. The number of lanes of an HNoC, on the other hand,
is determined by whether it is connected to DDRMC ports (four lanes / 1024 Gbps), or to
hard accelerators (two lanes / 512 Gbps) [43].

The Versal NoC topology is constructed with repeatable elements, to allow for adjusting
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Figure 3.2: Complete topology of the NoC in the xcvc1902 Versal device.

the network dimension to different FPGA devices in the Versal line. A device with more
DDRMC ports will be wider, while larger FPGA devices will use multiple silicon dies (each
named a SLR), with NIDB components allowing VNoCs to cross between SLRs [45].

We may compare this custom topology with existing options by applying the concept
of the rent parameter [6], which is determined by bisecting the NoC graph recursively, and
modelling the number IO of NoC links cut by each bisection as:

IO = c×Np (3.1)

where c = 8 is the number of ports in each switch, N is is the number of vertices in the
graph to be bisected, and p is the rent parameter, with a higher parameter corresponding
to a more richly connected network.

Figure 3.3 shows the result of the recursive bisections of the NoC graph in Figure 3.2,
performed with the METIS graph partitioning library [23]. The rent parameter for the
NoC is the slope of the trend-line in the plot, which is equal to 0.3. This place the rent
parameter of the Versal NoC above that of a ring or binary tree NoC (p = 0), but below
that of a mesh (p = 0.5) or a graph clique/crossbar (p = 1.0).

3.4 NPS Architecture

3.4.1 Buffers and Arbitration

Figure 3.4 shows the internal structure of an NPS. The NPS module is input queued and
supports eight VCs: each input link has one VCB per VC, for a total of 32 VCBs in each
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Figure 3.3: Plot for Rent Parameter calculation for the Versal NoC.

NPS – Figure 3.4 shows the VCBs of the top, left and bottom links. Each VCB has a
depth of five in NPS modules belonging to VNoCs, and of seven in modules belonging to
HNoCs.

Each packet traversing the network is associated with one of the eight VCs, determined
by the NoC compiler, and its flits are stored in a corresponding VCB in each NPS they
traverse. Each flit and its corresponding VC number are transmitted via the flit data and
valid signals in Figure 3.4.

Routing is performed by the indexing a three-level segmented routing table with the in-
put link, VC and destination address. Tables are indexed by VC, input link and destination
address segment, and return the 2-bit ID of the output link [44].

Configuration data for each NPS, such as routing tables and token registers (discussed
below in Section 3.4.2), is programmed by the NPI module on boot, and may be repro-
grammed at run-time when the network is quiescent [49].
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Figure 3.4: Block diagram of an NPS, including VCBs of three input link and details of
input link and an output link.

3.4.2 Token Counters

As an additional QoS mechanism, each of the four output links of an NPS maintains
an 8-bit token counter for each of the 24 VCBs that can target it, for a total of 96 token
counters per NPS [49]. The token counters are used to implement an adapted version of the
Deficit Round-Robin approach [44], which was originally developed for store-and-forward
networks [41].

We refer to the token counter maintained by output link l for a VCB V as V.c(l), and to
the corresponding token register as V.r(l). An SoP flit at the head of VCB V can only be
transmitted through output link l if V.c(l) ≥ 0, and if V.c(l) = 0 it is treated as low-priority
even if its priority bit is high (with the other flits in the packet will still be treated as high
priority). Each counter is associated with a configurable token register that provides its
reset value.

We contextualize the token counters with respect to the complete arbitration policy
implemented by NPS modules in Section 3.7.
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3.5 NoC Packet Protocol (NPP)

Figure 3.4 includes the signals used in NPP to transmit flit data (Flit Valid and Flit Data)
and to implement credit-based flow control (Credit Return).

The Flit Valid signal acts as a one-hot bitmask indicating which VC the flit belongs to,
while the flit data includes 128 bits of payload data (either application data or encapsulated
data about the AXI transaction) and a 54-bit NPP header. Figure 3.5 shows the generic
format for flits transmitted over the NoC.

FLIT PAYLOAD

FLIT PAYLOAD (CONT)

FLIT PAYLOAD (CONT)

FLIT PAYLOAD (CONT)

FLIT HEADER

FLIT HEADER (CONT)

0 32168 24
Bit

0:31

32:63

64:95

96:127

128:159

160:181

128-bits 

54-bits

Figure 3.5: Generic format for flits traversing the Versal NoC.

The relevant fields of the header for understanding the arbitration policy described in
Section 3.7 approach are:

• A one-bit field indicating high-priority: by simulating the Versal NoC (including
NMU/NSU endpoints) with Vivado 2020.3, we have observed that LL and ISO flits
always travel with this bit set, while BE packets travel with this bit unset.

• A one-bit field indicating if the flit is at the end its packet (EoP flit). SoP flits are
implicitly detected when receiving a new flit after a reset or after an EoP flit.

Other fields in the flit header include:

• Two 12-bit fields, one with internal NoC addresses of the source endpoint, and one
with the address of the destination endpoint (24 bits total). NPS modules use the
destination NoC address for routing, as discussed in Section 3.6.

• A four-bit code identifying the type of AXI transaction.
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Figure 3.6: Format for data flits in the Versal NoC.

• A 10-bit Error Correction Code (ECC), which can be optionally enabled to detect
errors in packet transmission on endpoints.

Regarding the payload-data field, data flits (Figure 3.6) use it to store user data in
the payload field, while Control flits (Figure 3.7) use it to store encapsulated information
about the AXI transaction, including address and AXI ID.

AXADDR

AXADDR (CONT)

AXLEN

AXID (CONT)

TYPE
DST ID
(CONT)

0 32168 24
Bit

MISC 
CTRL TAG SRC ID DST ID 

(1) (2) ECC

0:31

32:63

64:95

96:127

128:159

160:181 (3) (4) (5) (6) 

AXSIZE (7) (8) (9) AXPROT AXQOS AXID

AXUSER RSVD

(1) = DST_PAR (2) = PRI (3) = POISON (4) = TLAST (5) = LAST (6) = DBI 

(7) = AXBURST (8) = AXLOCK (9) = AXCACHE 

128-bit flit payload 

54-bit flit header 

Figure 3.7: Format for control flits in the Versal NoC.

A packet of write data, as considered in Chapter 4, traverses the Versal NoC from NMU
to NSU as a sequence of data flits with a control flit at the head, as seen in Figure 3.8.

As discussed in Section 2.1.2, the Versal NoC implements a credit-based flow control
mechanism: each output link maintains one counter for each VCB downstream from it,
keeping track of available buffer spaces (credits). Every clock cycle, the eight-bit Credit
Return signal is read as a bitmask, with each set bit indicating that a credit is being
returned to the corresponding VC.
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Figure 3.8: Packet with control and data flits.

3.6 Packet Routing

Each NPS is configured with three routing tables programmed via the NPI, organized
hierarchically in order to reduce storage needs. In order to consult the routing tables, the
12-bit destination addresses of flits are split into three fields, each associated with one of
the tables:

• A 6-bit HIGH ID (ID bits 11 to 6).

• A 2-bit MID ID (ID bits 5 to 4).

• A 4-bit LOW ID (ID bits 3 to 0).

NPS modules have their own MID and HIGH IDs programmed via the NPI. Algorithm 1
shows the policy followed by NPS modules to determine which table to consult. The routing
tables are indexed with the corresponding ID field, VC number and link port [44].

Algorithm 1: Routing policy followed to determine the output link of each flit

1 if NPS HIGH ID 6= flit HIGH ID then
2 output link ← HIGH ID table[input link][VC][flit HIGH ID];
3 end if
4 else
5 if NPS MID ID 6= flit MID ID then
6 output link ← MID ID table[input link][VC][flit MID ID];
7 end if
8 else
9 output link ← LOW ID table[input link][VC][flit LOW ID];

10 end if

11 end if

21



We may quantify the space saved by the hierarchical organization by comparing it with
what a single table with one entry for each of the 27 IDs required to cover all 120 NoC
endpoints in the xcvc1902 Versal NoC. If said table were otherwise indexed in the same
way (i.e. with ID, VC and ingress port), the required storage would be:

27 IDs× 8 VCs× 4 ports× 2 bits/entry = 1024 bytes (3.2)

While the hierarchical organization with three tables used by the NPS modules requires
a storage space of:

(26 + 24 + 22) IDs× 8 VCs× 4 ports× 2 bits/entry = 627 bytes (3.3)

Which is 61.2% of the value obtained for the non-hierarchical routing table organization
in Eq. 3.2.

We note that the NPS simulation code code defines a previous version of the names of
the three fields, controlled by the macro RT 2 43:

• REGION ID (previous name for HIGH ID).

• LOCAL ID (previous name for MID ID).

• CHIP ID (previous name for LOW ID).

We hypothesize that this direct semantic meaning for the three address fields was
abandoned to afford more flexibility to the SAT solver employed by the NoC compiler to
generate all the NoC configuration parameters for a design.

3.7 Output Arbitration

At every cycle, each output link of an NPS performs LRU arbitration among a subset
of VCBs that can send flits through it, possibly performing the arbitration among all 24
buffers from the other three links. For instance, the output link on the right in Figure 3.1
can be requested by any of the 24 VCBs from the three other links depicted.

The Versal NoC user guide presents a high-level description of five rules that determine
the VCBs chosen to participate in arbitration each cycle [49]. We restate these rules with
additional details in order to make a precise model possible. The first three rules are used
to validate that the VCB has a flit that can be sent downstream:
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• Rule 1: A VCB V must not be empty, and the flit at its head should be leave the
NPS through link l.

• Rule 2: If another VCB V ′, associated with the same VC number as V , has a
packet in progress leaving the switch through l, V cannot participate in arbitration
for l until after the EoP flit of said packet wins arbitration for l. This prevents the
flits of different packets from interleaving in the VCB downstream from l associated
with the same VC number.

• Rule 3: A VCB V cannot participate in arbitration for the output link if the cor-
responding VCB downstream is full, as determined by the credit-based flow control
mechanism.

The two remaining rules operate on the set of valid VCBs produced by the first three,
to implement additional QoS mechanisms.

• Rule 4: This rule produces sets of high-priority and low-priority requests from the
set of valid VCB requests produced by Rules 1 to 3, according to the following
procedure:

– High-priority requests correspond to VCBs that have a high-priority flit at the
head and either have a V.c(l) > 0 or do not have a SoP flit at the head.

– Low-priority requests, on the other hand, only require that VCBs either have a
token counter V.c(l) ≥ 0 or do not have a SoP flit at the head.

– A VCB that has a SoP flit at the head and a token counter V.c(l) < 0 cannot
be included in either group and is excluded from LRU arbitration in the given
cycle.

• Rule 5: If the sets of high-priority and low-priority requests produced by Rule 4
are both non-empty, the low-priority requests are excluded from LRU arbitration in
the cycle, including those corresponding to high-priority flits in a VCB with a token
counter of 0 for the relevant output. Otherwise, if there are only high-priority priority
requests or only low-priority priority requests, the LRU arbitration is performed
among all the requests in the non-empty group.

In Algorithm 2, we can see the sequence in which these operations are performed every
cycle by each output link. When a token counter V.c(l) is reset at the end of a cycle on
Line 6, it receives V.r(l) if V.c(l) ≥ 0, and V.r(l)− 1 otherwise.
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Algorithm 2: Arbitration policy performed every cycle by each NPS output link

1 Determine valid requests (VCBs that pass Rules 1 to 3) ;
2 If there are any valid requests, and no valid request corresponds to a VCB with a

token counter > 0, record that all token counters for this output link have to be
reloaded ;

3 Determine low and high-priority requests according to Rule 4, among VCBs
selected by Line 1 ;

4 Perform LRU arbitration among high-priority requests, or among low-priority
requests if there are no high-priority ones ;

5 If a VCB won LRU arbitration, decrement its token counter and move the
corresponding flit to the output link ;

6 Reload all token counters if Line 2 determined they should be reloaded ;
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Chapter 4

WCL Analysis for Versal NoC

As discussed in Chapter 3, the Versal NoC switches contain multiple mechanisms that can
interact to delay packets contending for an output link, requiring a custom WCL approach.
Section 4.1 presents the problem statement we address, including the model adopted for
CTs and other assumptions.

Section 4.2 reviews the RC WCL analysis approach and considers how to apply it to
Versal NoC, by changing the optimization problem solved to determine the maximum delay
a packet can experience locally in each NPS in its path. Sections 4.3, 4.4 and 4.5 detail
how to calculate elements of the proposed WCL approach. Section 4.6 summarizes the
complete WCL formulation.

Section 4.7 shows an illustrative example, comparing the bound given by the WCL
approach for a packet traversing an NPS with a constructed trace of the switch status.

Finally, Section 4.8 discusses two alternative versions of the NPS arbitration policy that
simplify the WCL analysis.

4.1 Problem Statement

Consider a set of real-time CTs Γ = {τ1, . . . , τN} that transmit data over a Versal NoC
that conforms to the architecture presented in Chapter 3 (in particular, we refer to the five
arbitration rules presented in Section 3.7 simply as Rules 1 to 5).

Figure 4.1 shows an example with five real-time CTs that traverse a VNoC. According
to the traffic class use cases discussed in Section 3.2, we model the real-time CTs with the
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ISOC traffic class, which means that packet flits travel with the header priority bit set, as
discussed in Sections 3.5 and 3.7.

Each real-time CT τi ∈ Γ is associated with the following parameters, accessed through
dot notation (e.g. τi.D for the relative deadline of τi):

• τi.T is the minimum inter-arrival time, in NoC clock cycles, between releases of
subsequent packets by the real-time CT τi.

• τi.JR is the jitter in clock cycles on the release of a packet of the CT. This means
that if a packet is generated at time t, the NMU can start sending it to the NPS at
time t′ ∈ [t, t+ τi.J

R].

• τi.D is the relative deadline by which the packet of τi must be completely received. We
assume constrained deadlines for all real-time CTs (i.e. ∀τi ∈ Γ, τi.D ≤ τi.T −τi.JR).

• τi.V C is the VC that packets of τi are associated with.

• τi.L is the length of a packet of τi in flits (including the SoP and EoP flits).

• τi.δ is a sequence of NPP links corresponding to the route that a packet of τi travels
through before being received in its destination.

In Figure 4.1, the route τ1.δ of CT τ1 consists of three NPP links: from its origin NMU
client to NPS 2, from NPS 2 to NPS 3, and from NPS 3 to its destination NSU client. We
employ the following auxiliary functions for accessing a packet’s route:

• V CB(τi, l) returns the NPS VCB that CT τi accesses the link l from.

• firstLink(τi)/lastLink(τi) return the first/last link in τi.δ, respectively.

• prevLink(τi, l)/nextLink(τi, l) return the link preceding/succeeding l in τi.δ, respec-
tively.

• prefixPath(τi, l) returns the sub-sequence of τi.δ up to but not including l, returning
an empty sequence if l = firstLink(τi) (used in Section 4.5).

Besides real-time CT parameters, in order to account for NCRBs, which act as pipeline
registers passing NPP signals along transparently while adding latency, we also parame-
terize each output link as:
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• l.b is the basic latency for sending a flit through link l: two cycles for a direct
connection between NPS modules or between an NPS and an NoC endpoint; four
cycles for a connection going through a NCRB.

• l.F is the delay for receiving a credit through the credit feedback mechanism: one
cycle for a direct connection between NPS modules or between an NPS and an NoC
endpoint; two cycles for a connection going through a NCRB.

Finally, we must define the following parameters for VCBs:

• As in Section 3.7, we access the token counter and register maintained by output link
l for VCB V as V.c(l) and V.r(l), respectively.

• V.S is the VCB size in flits (V.S = 5 for NPS modules in VNoCs, = 7 for modules in
HNoCs).

For convenience, we define additional properties of VCBs derived from which CTs are
stored in each VCB:

• V.Γ is the set of CTs that are stored in the VCB V .

• V.Γ(l) is the set of CTs that are stored in the VCB V and leave the NPS through
link l.

• V.L(l) is the maximum packet size for a CT in V.Γ(l).

We also consider a set of best-effort CTs ΓL = {τL1 , . . . , τLNL} that traverse the network
with the priority bit unset, modelled with the BE traffic class. As these are not real-
time CTs, they do not have associated T , D, and JR parameters, only the L, V C and
δ parameters necessary for specifying a NMU/NSU connection in the Versal NoC. We do
not calculate WCLs for these best-effort flows, but consider how they may contribute to
delaying the real-time CTs via the token counter mechanism discussed in Chapter 3.

We may calculate the best-case (or structural) latency C(τi) for packets of each real-
time CT τi ∈ Γ by summing the basic latencies over its route to get the time for the SoP
flit to be received, and adding τi.L − 1 cycles corresponding to the reception of the other
flits in the packet:
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C(τi) =

(∑
l∈τi.δ

l.b

)
+ τi.L− 1 (4.1)

Our goal is to find the value of R(τi) for packets of each high-priority CT τi ∈ Γ, which
is the WCL between the arrival of a packet and its complete reception by the corresponding
client, considering the possible interference from other CTs.

Further assumptions adopted for this chapter are listed below:

• For simplicity, we focus on writes from NMUs to NSUs, as packets of write and read
data are treated in the same way by NPS arbitration, so all routes considered in this
chapter begin in an NMU.

• We assume that each VC is associated either only with high-priority traffic, or only
with low-priority traffic, which we observed to be the case when using the NoC
compiler.

• We focus only on the 1GHz ”core” network composed by the NPS modules, as the
NMU/NSU are not documented in enough detail, and also because the NPP level of
the NoC is independent of the AXI protocol layer, which can be seen with the NSU
DDRMC interfaces directly embedded in the DDRMC modules. Figure 4.1 shows the
abstract model of the NoC that we adopt for the analysis, with NMU/NSU clients
playing the role of the corresponding NoC units and the clients connected to them.

• We adopt the following simple model for injection into the NoC: each NMU client
can only have one high-priority packet in progress at a time, sending its flits as soon
as possible (i.e. when the credit flow-control mechanism indicates there is free space
in the appropriate VCB). The NMU performs RRA among real-time CTs with the
same origin to decide the next real-time packet to send. Any low-priority CTs present
in the system have their flits sent by the NMU only when a high-priority CT is not
in progress, or when high-priority flits cannot be sent due to lack of buffer space (i.e.
there is flit-level preemption of low priority packets by high-priority packets in the
NMU client).

• We assume that the NSU clients are able to consume data and return credits fast
enough that they never block any VCBs due to Rule 3.
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Figure 4.1: Example of five real-time CTs traversing a VNoC in a Versal NoC
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4.2 RC Approach for Versal NoC

4.2.1 RC Review

We review the RC approach for WCL analysis in NoCs [14, 29], employing the notation
from the problem statement in Section 4.1 in order to facilitate the adaptation of this
approach to the Versal NoC.

As discussed in Section 2.2.3, the original RC is applied to an NoC model without
multiple VCs, that employs wormhole routing and performs packet-level RRA among input
buffers. Figure 4.2 shows a diagram of a switch that conforms to this model. As this
NoC model does not support multiple VCs, real-time CTs do not have an associated V C
parameter, but may still be defined with the other parameters described Section 4.1.

Buffer

Buffer

Buffer

Input Port  
1 

Input Port
3

Input Port
0

Output Port
2

Buffer

 
Downstream 

Buffer

Figure 4.2: Diagram of a NoC switch that performs RRA among input port buffers, the
object of the original RC approach

The core of the RC approach consists in evaluating a delay function d(τi, l). We employ
the following definition for this function, in order for it to be applicable it for both the
RRA and Versal NoC architectures:
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Definition 1. d(τi, l), for any l ∈ τi.δ, is the WCL for a packet of τi to be completely
received at its destination after the two following conditions are verified:

1. The packet has won RRA at its origin to be transmitted (if l = firstLink(τi)) or
its SoP flit has reached the head of the buffer from which it accesses l (for any
l 6= firstLink(τi)). In the case of the Versal NoC, said buffer is V CB(τi, l).

2. After the SoP flit, the subsequent flits of the packet of τi are supplied continuously to
the arbitration process for l as they are transmitted, until the EoP flit of the packet
wins arbitration.

We note that the second condition from Definition 1 is always true for the RRA NoC
model as soon as the first condition is verified, as the non-SoP flits of τ will never lose
arbitration against another CT for a link that the SoP has already traversed, only being
prevented from progressing in a pipelined manner if the SoP flit itself is prevented from
progressing due to losing RRA [14]. Thus the definition reduces to the first condition for
that model, but not for the Versal NoC, as discussed in Section 4.2.2.

For the overall WCL R(τi) of a packet under analysis of τi, RC sums the terms
d(τk, firstLink(τi)) over all other real-time CTs τk with the same origin as τi, includ-
ing τi itself, as shown in Algorithm 3. This correspond to each real-time CT with the same
origin as τi sending a complete packet before τi sends the packet under analysis.

Algorithm 3: RC Algorithm for computing R(τi), adapted from [29]

1 R(τi)← 0;
2 forall τk such that firstLink(τi) = firstLink(τk), including τi do
3 R(τi)← R(τi) + d(τk, firstLink(τi))
4 end forall
5 return R(τi);

To evaluate the function d(τi, l), RC follows the steps shown in Algorithm 4, which we
comment on below.

In Figure 4.2, consider that a packet under analysis of the real time CT τi is stored in
the buffer of input port 0 (in red) and leaves through port 2. In the worst case, each of
the other two buffers (in purple) that can target output port 2 will win the RRA process
once before the port 0 buffer, and send a complete packet through output port 2 before
the SoP flit of the packet of τi may be sent through the same port.
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Algorithm 4: RC Algorithm for computing d(τi, l) for a NoC that performs RRA
between input ports, adapted from [29]

1 d(τi, l)← 0 ;
2 if l 6= firstLink(τi) then
3 forall input links l′ 6= prevLink(τi, l) do
4 delayFromLink← 0 ;
5 forall τk that enter the switch through l′ and leave through l do
6 delayFromCT← 0 ;
7 if l = lastLink(τk) then
8 delayFromCT← τk.L ;
9 else

10 delayFromCT← l.b+ d(τk,NextLink(τk, l)) ;
11 end if
12 delayFromLink← max(delayFromCT, delayFromLink) ;

13 end forall
14 d(τi, l)← d(τi, l) + delayFromLink ;

15 end forall

16 end if
17 if l = lastLink(τi) then
18 d(τi, l)← d(τi, l) + l.b+ τi.L− 1 ;
19 else
20 d(τi, l)← d(τi, l) + l.b+ d(τ, nextLink(τi, l)) + dbuf (τi, l) ;
21 end if
22 return d(τi, l) ;
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This interaction with other NoC input buffers only applies if the link l is accessed from
an NoC switch, meaning that l 6= firstLink(τi), as tested for in Line 2. If l is indeed
accessed from an NoC switch, the nested loops in Line 3-15 determines the contribution
of the delay due to contention with other CTs in the switch to the overall value of d(τi, l).
Each iteration of the outer loop in Line 3-15 considers one of the input buffers that can
interfere with τi, while the inner loop in Line 5-13 chooses the CT associated with said
buffer that maximizes the contribution to the overall delay. We note that that the If
condition in Line 2 is left implicit in the original pseudo-code for the delay function in [29].

The contribution of a packet of a specific CT τk being completely transmitted through
the output link l before the packet under analysis is evaluated in Line 7-11. If l is the last
link in the interfering packet’s route, said contribution is calculated in Line 8 as the τk.L
cycles necessary for the all the flits of the packet to be received at the NoC endpoint.

If l is not the last link, on the other hand, the delay calculation must account for the
possibility that the packet of τk itself loses arbitration for an output further along in its
route, and has to wait for another packet to be transmitted before proceeding. As the
NoC works with a wormhole routing mechanism, this may happen while flits of τk are still
waiting to be transmitted through l, in which case the packet of τi will be delayed further.

To account for this scenario, RC calculates the contribution of the interfering packet to
the overall delay in Line 10 by calling the delay function recursively, with the interfering
CT and the next link in its path as arguments. The result of this recursive call is added to
the basic latency l.b required for the SoP flit to reach the head of the buffer downstream
from l (depicted on the right of Figure 4.2), thus establishing the first condition from
Definition 1.

After the if-condition in Line 2-16 is exited, and the delay due to local contention with
other CTs has been accumulated, Line 17-21 add the remaining delay terms necessary to
bound the WCL for delivery of the packet under analysis of τi, depending on whether l is
the last link in the route of the packet.

If l is the last link, Line 18 adds the basic latency l.b for the SoP flit to traverse the last
link and reach the NSU client, and τi.L− 1 additional cycles for the reception of the non-
SoP flits in a pipelined manner. We note that, while the original version of the algorithm
[29] adds τi.L cycles rather than τi.L−1, the term l.b already corresponds to the reception
of the SoP flit of the packet, so it is valid to add only τi.L− 1 cycles for the remaining flits
of the packet.

On the other hand, if l is not the last link in the route, Line 20 adds the basic latency
for l and a recursive call to the delay function with τi and the next link in the route as
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arguments, similar to Line 10, as well as a buffer delay term dbuf corresponding to the
worst-case delay for the buffer downstream from l to be emptied:

Definition 2. For l 6= lastLink(τi), the buffer delay dbuf(τi, l) is an upper bound on the
worst-case delay for the buffer V CB(τi, nextLink(τi, l)) that is downstream from l and holds
τi to be emptied.

Adding the buffer delay term dbuf (τi, l) is necessary because the first packet to be trans-
mitted through l in the worst case scenario will need to wait until the buffer downstream
from l is emptied to reach its head, in order for the delay function to be applicable.

The buffer delay term may be calculated as an ILP problem on variables counting the
packets of each CT stored in the buffer downstream from l, as formulated for the RRA
NoC model in [29]. In Section 4.4 we calculate the term dbuf (τi, l) for the Versal NoC
following an analogous procedure.

Finally, we note that the RC approach assumes that no cyclical dependencies exist
between flow routes, otherwise it would not be always possible to evaluate d(τi, l) by
calling the function recursively. In a NoC with a conventional rectangular mesh topology,
for instance, this property can be ensured by adopting an appropriate routing algorithm,
such as DOR.

In the Versal NoC, the NoC Compiler ensures that the set of routing tables and ad-
dresses that the NPS modules are programmed with does not produce any cyclical depen-
dencies [45].

4.2.2 RC on Versal NoC

To motivate adapting RC for the Versal NoC, and identify issues that must be addressed
for doing so, we may compare the diagram of a Versal NPS module in Figure 4.3 with the
switch model in Figure 4.2.

In a Versal NPS, arbitration for an output link is performed among VCBs instead of
a single buffer per port. Given a CT under analysis τi, we define V(τi, l) as the set of 23
other VCBs in the NPS, besides the buffer V CB(τi, l), that may target the output link l.
In Figure 4.3 if VCB 0 of input port 3 (in red) contains a packet under analysis of τi that
leaves through output port 2, the set V(τi, l) consists in the 23 other VCBs depicted inside
the switch (in purple).

We may partition V(τi, l) into three subsets that interact with V CB(τi, l) in different
manners as the flits of the packet of τi participate in arbitration:
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Figure 4.3: Diagram of an NPS module, for which we adapt the RC approach initially
developed for the switch model depicted in Figure 4.2

• The set VSV (τi, l) containing the two other VCBs associated with τi.V C that can
target l.

• The set VDVH(τi, l) of VCBs associated with a VC 6= τi.V C and high-priority traffic,
that can target l.

• The set VDV L(τi, l) of VCBs associated with a VC 6= τi.V C and low-priority traffic,
that can target l.

We motivate adapting RC to the Versal NoC by observing that arbitration Rule 2
enforces a similar packet-level ordering for packets stored in VSV (τi, l) with respect to the
packet under analysis: if a packet from a CT τk stored in a VCB V ∈ VSV (τi, l) starts
being transmitted before the SoP flit of the packet of τi is sent through l, the SoP flit of
τi will be prevented from participating in arbitration at all until the packet of τk has been
completely transmitted through l.

We may refer to Figure 4.1 to illustrate this phenomenon: consider CTs τ1 and τ4, which
contend for an output link of NPS 2 and are both associated with VC 0. Because the CTs
are associated with the same VC, if the SoP flit of τ4 is sent before τ1, τ1 will be blocked
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from participating in arbitration until the packet of τ4 has been completely transmitted
through the link they share. If τ4 in turn is blocked further along in its path, in this case
by contention with τ5 for an output link of NPS 9, the packet of τi under analysis may be
further delayed. We adopt an RC approach for the Versal NoC in order to capture this
interaction by calculating the delay function recursively, similar to the procedure adopted
in Line 10 of Algorithm 4.

In order to adapt the RC approach to an architecture that implements a more complex
arbitration policy, we abstract the steps from Algorithm 4 as Algorithm 5, which shows a
generic pseudo-code for evaluating the delay function:

Algorithm 5: Generic Algorithm for computing d(τi, l)

1 d(τi, l)← 0 ;
2 if l 6= firstLink(τi) then
3 Evaluate dlocal(τi, l) via local delay analysis;
4 d(τi, l)← dlocal(τi, l);

5 end if
6 if l = lastLink(τi) then
7 d(τi, l)← d(τi, l) + l.b+ τi.L− 1;
8 else
9 d(τi, l)← d(τi, l) + l.b+ d(τi,NextLink(τi, l)) + dbuf (τi, l);

10 end if
11 return d(τi, l);

For a RRA NoC, Line 3-4 in Algorithm 5 corresponds to the nested loops in Line 3-15
in Algorithm 4, which determine an upper bound on how many additional cycles the packet
under analysis may be delayed due to losing arbitration to other CTs in the switch. This
step of the analysis may be generalized as a local delay analysis step that calculates a local
delay term dlocal(τi, l):

Definition 3. The local delay term dlocal(τi, l) is an upper bound on how many cycles the
flits of packet of τi under analysis are prevented from winning arbitration and accessing l
due to the arbitration mechanisms for contention with other CTs:

• In the RRA NoC considered in the original RC, this corresponds to the number of
additional cycles that the SoP flit of the packet of τi under analysis is prevented from
accessing l due to another packet winning the RRA arbitration for the output first.
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• In the Versal NoC, this corresponds to any cycle in which flits of the packet of τi
are prevented from accessing l due to any of: Rule 2, Rule 4, Rule 5, or losing LRU
arbitration. We may exclude Rule 1 from this definition because it necessarily only
applies if a flit of τi is not at the head of the VCB, and Rule 3 because the cycles that
flits of the packet are blocked from progressing only due to the flow-control mechanism
are accounted for in the recursive call d(τi, nextLink(τi, l)).

For l 6= lastLink(τi) the local delay term is calculated assuming that the VCB down-
stream from l that receives the flits of τi (which is V CB(τi, nextLink(τi, l))) starts empty.
The worst-case delay for this said buffer to be emptied is added separately to the total de-
lay as dbuf (τi, l) in Line 9 of the generic approach for calculating the delay function in
Algorithm 5.

Line 3-15 in Algorithm 4 may then be understood as calculating the local delay term
dlocal(τi, l) as a simple optimization problem that consists in choosing one CT per contend-
ing buffer that has the maximum contribution to the total delay.

Line 6-10 of Algorithm 5 correspond to Line 17-21 of Algorithm 4, adding the necessary
delay terms in function of whether l = lastLink(τi). To apply the delay function recursively
in Line 9, we must consider presence of the credit feedback delay l.F . The credit feedback
delay causes the condition of backpressure to be removed only after the returned credit
for an open space in the buffer downstream from l is received, with latency l.F , and not
immediately after the buffer space is freed. This could cause the continuous supply of flits
to the arbitration process for the link nextLink(τi, l) to be interrupted, necessitating an
additional correction factor to establish the second condition of Definition 1.

However, after SoP flit of the packet under analysis of τi reaches the head of the buffer
V CB(τi, nextLink(τi, l)) that is downstream from l, the subsequent flits of the same packet
will only suffer backpressure when accessing l if the buffer downstream from l is completely
filled with other flits of τi. If the size of the buffer downstream from l is larger than the
sum l.F + l.b, there is enough time for a credit to be returned, and for a flit of τi that was
previously blocked by backpressure to reach the buffer, before the buffer becomes empty
and the supply of flits for the arbitration process for nextLink(τi, l) is interrupted. In
Lemma 4.2.1, we show that this condition is always the case in the Versal NoC.

Lemma 4.2.1. In the Versal NoC, for all NPS VCBs V where flits received from a link l
are stored, the condition in Eq. 4.2 is always verified.

V.S ≥ l.F + l.b (4.2)
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Proof. We show that the condition in Eq. 4.2 applies to all VCBs in the Versal NoC by
considering the three possible cases for a link leading to an NPS:

• For a link l ending in an VNoC NPS, the sum l.F + l.b = 1 + 2 = 3 is smaller than
the buffer size of 5 of VCBs in an VNoC NPS.

• For a link l ending in an HNoC NPS, that does not traverse an NCRB module, the
sum l.F + l.b = 1 + 2 = 3 is smaller than the buffer size of 7 of VCBs in an HNoC
NPS.

• For a link l ending in an HNoC NPS, that traverses an NCRB module, the sum
l.F + l.b = 2 + 4 = 6 is again smaller than the buffer size of 7 of VCBs in an HNoC
NPS.

Thus, in the Versal NoC the presence of the credit feedback delay l.F never impedes
the continuous supply of flits of the packet of τi to the next link in its route, and it is not
necessary to add a corresponding correction factor before calculating d(τi, nextLink(τi, l))
in Line 9 of Algorithm 5.

Finally, we identify the following issues that must be addressed for a local delay anal-
ysis adapted for the Versal NoC, alongside the Section(s) of this Chapter where they are
discussed:

Issue 1: Due to arbitration Rules 4 and 5, it is not the case that each VCB in VSV (τi, l)
can only send a single packet before V CB(τi, l), as was the case for the buffers in the RRA-
based model. This requires formulating the local delay analysis as a more complex ILP
optimization problem (Section 4.3.3).

Issue 2: The interference from the VCBs in the subsets VDVH(τi, l) and VDV L(τi, l),
which do not have analogues in the RRA NoC model, must be incorporated into the local
delay analysis. As there is no packet-level ordering between the packet under analysis and
packets stored in VCBs from these subsets, unlike with VCBs in VSV (τi, l), their interfer-
ence may be accounted for without calling the delay function recursively (Section 4.3.3).

Issue 3: The original RC approach does not include the credit feedback delay l.F in
the model, which is necessary for the Versal NoC (this section and Section 4.3.1).

Issue 4: A correction factor must be added to the delay caused by packets stored in
VCBs belonging to VSV (τi, l), because the second condition in Definition 1 is not verified
immediately in the Versal NoC when the first one is, unlike the RRA NoC model.
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We may again refer to Figure 4.1 to illustrate this phenomenon: consider flows τ1 and
τ2, which contend for an output link of NPS 3 and are both associated with VC 0. The
packet of CT τ1 may be blocked by a complete packet of τ2 due to Rule 2, only being
allowed to proceed through the output link of NPS 3 after the EoP flit of the packet of τ2

wins arbitration for said link.

Earlier (upstream) in its route, the CT τ2 also contends with the CT τ3 for an output
link of NPS 4: because the two CTs are not associated with the same VC, there is no
packet-level ordering between τ2 and τ3 enforced by Rule 2, so flits of τ3 can interfere with
non-SoP flits of τ2 by winning the LRU arbitration. This interference from τ3 may delay
the arrival of the EoP flit of the packet of τ2 at NPS 3, where the CT contends with τ1,
further delaying the progress of the packet of τ1.

From the perspective of CT τ1 at the NPS 3, this delay is experienced as a number of
cycles where the VCB containing τ2 fails to supply the subsequent flits of the interfering
packet. We term this additional amount of delay cycles due to upstream interference
experienced by CTs associated with VSV (τi, l) as ”bubbles”, as an analogy with bubbles
in processor pipelines.

Thus, for the Versal NoC, a bubbles delay term dbubbles(τk, l) must then be added to the
equivalents of Line 8 and Line 10 in Algorithm 4 (Section 4.5):

Definition 4. dbubbles(τi, l) is an upper bound on how many cycles the VCB V CB(τk, l)
may fail to supply a non-SoP flit to the arbitration process for the link l after the SoP flit
of a packet of τk is transmitted, due to upstream interference from real-time CTs associated
with other VCs.

We note that it is not necessary to add a bubbles term dbubbles(τi, l) to the equivalents
of Line 18 and Line 20 in Algorithm 4 when evaluating d(τi, l), as, by the second condition
of Definition 1, the flits of τi are supplied continuously for the arbitration for l.

Issue 5: If l is not the last link in the route of the packet under analysis, an appro-
priate dbuf term must be calculated, corresponding to the worst-case delay for the buffer
V CB(τi, nextLink(τi, l)) that is downstream from l to be emptied (Section 4.4).

Issue 6: Given that multiple packets of each CT may interfere with the packet under
analysis in each NPS, unlike in the RRA NoC, it is interesting to take the timing parameters
of other real-time CTs into account in order to produce tighter bounds. In this Chapter,
we use the function packetCount(τi, τk) defined in Eq. 4.3 below for an upper bound on
how many packets of a real-time CT τk can interfere with a packet of a CT under analysis
τi in any given switch.
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packetCount(τi, τk) =

⌈
R(τi) + τk.J

R +R(τk)− C(τk)

τk.T

⌉
(4.3)

As the formulation for packetCount function includes the WCL R(τi) of the packet under
analysis itself, it will be necessary to apply the WCL method developed in this Chapter
iteratively, starting from an estimation R(τi) = C(τi). When we summarize the complete
method in Section 4.6, we review the instances where the packetCount is employed and
demonstrate that the iterative approach converges.

4.3 Local delay Analysis for Versal NoC

In this Section, we present an approach for the local delay analysis step that calculates
dlocal(τi, l) (according to Definition 3) for the Versal NoC as an ILP optimization prob-
lem [26].

We first discuss how to quantify the cycles of delay due to Rule 2 a specific interfering
packet from a VCB V ∈ VSV (τi, l) can add to the total local delay, in order to get an
expression analogous to Line 7-11 of Algorithm 4 (Section 4.3.1). We refer to the resulting
expression for this per-packet delay due to Rule 2 over the rest of the Chapter.

We then describe how the transmission of a packet under analysis over an NPS may
be broken into three time intervals (stages), with different interactions between the packet
under analysis and the subsets of V(τi, l) in each stage (Section 4.3.2).

Finally, we formulate the local delay analysis as a ILP problem on variables counting
how many packets from each CT that is stored in a VCB in VSV (τi, l) are transmitted
before the packet under analysis during each stage (Section 4.3.3).

4.3.1 Per-Packet Rule 2 delay

In Algorithm 4, Line 8-10 follow the procedure shown in Eq. 4.4 to determine an upper
bound on how many cycles the packet under analysis must wait before a packet from CT
τk is completely transmitted through l:{

τk.L, if l = lastLink(τk)

d(τk, nextLink(τk, l)) + l.b, otherwise
(4.4)
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To formulate a similar expression for the Versal NoC, we must first address the possi-
bility of nested blocking, by which we mean the situation in which:

1. The packet under analysis from τi is blocked via Rule 2 by a complete packet of τk,
associated with a buffer in VSV (τi, l), while trying to access a link l.

2. Flits from VCBs in VDVH(τi, l), in turn, win LRU arbitration for l against the VCB
containing the packet of τk.

While the situation of nested blocking does increase the number of cycles of blocking
due to Rule 2, it is more convenient to calculate the contribution of nested delay cycles
to the total local delay separately, in function of the total number of flits associated with
τi.V C that leave through link l while the packet of τi is trying to access said link (which
we do in Section 4.3.3).

Lemma 4.3.1 provides an upper bound dR2(τi, l) for per-packet Rule 2 blocking in the
Versal NoC, without considering eventual nested blocking cycles:

Lemma 4.3.1. Without considering nested blocking cycles, the expression in Eq. 4.5 pro-
vides an upper bound to the total number of cycles that a packet under analysis τi that
leaves through l is delayed by Rule 2 if a packet of CT τk stored in a VCB in VSV (τi, l)
must be completely transmitted through l first:

dR2(τk, l) =

{
τk.L+ dbubbles(τk, l), if l = lastLink(τk)

d(τk, nextLink(τk, l)) + dbubbles(τk, l) + l.b, otherwise
(4.5)

Proof. If l is the last link in the route of τk, the packet of τk will never be prevented from
progressing due to insufficient buffer space in the NSU client. Thus, the time for the packet
to be completely received is the number of flits in the packet τk.L, and the number of cycles
the EoP flit of the packet is delayed by interference upstream in its route dbubbles(τk, l).

On the other hand, if l is not the last link in the route, it is necessary to add the
following values so the two conditions of Definition 1 are established for τk and the link
nextLink(τk, l):

• A term l.b corresponding to the delay for the SoP flit of τk to reach the head of the
buffer downstream from l, which is V CB(τk, nextLink(τk, l)) (first condition).
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• A term dbubbles(τk, l), the delay until flits of τk supplied may continuously supplied
to the arbitration process for nextLink(τk, l), even in the presence of bubbles (second
condition).

We must also account for the presence of the credit feedback delay l.F , in a similar
manner to the discussion in Section 4.2.2 regarding Line 9 of Algorithm 5. The presence of
the credit feedback delay causes the condition of backpressure to be removed only after the
returned credit for the open space is received, and not immediately after space opens up for
it in the relevant buffer. This could cause the continuous supply of flits to the arbitration
process for nextLink(τk, l) to be interrupted, necessitating an additional correction factor
to establish the second condition of Definition 1.

However, after τk reaches the head of the buffer V CB(τk, nextLink(τk, l)) downstream
from l, the subsequent flits of the packet of τk will only suffer backpressure when accessing
l if said buffer is completely filled with other flits of τk. If the size of the buffer is larger
than the sum l.F + l.b, there is enough time for a credit to be returned, and for a flit of τk
that previously blocked by backpressure to reach the buffer, before the buffer empties and
the supply of flits for nextLink(τk, l) is interrupted.

As shown in Lemma 4.2.1, the size of a buffer downstream from a link l is always greater
than or equal to l.F + l.b in the Versal NoC. Thus, it is not necessary to add a correction
factor for the credit feedback delay in the Versal NoC.

With the two conditions of Definition 1 established, value d(τk, nextLink(τk, l)) is then
the delay for the packet of τk to be received at its destination.

4.3.2 Stages of Packet Transmission

Stage Limits

Let t = 0 be the clock cycle when the SoP flit of the packet under analysis τi reaches the
head of V CB(τi, l). We define the following auxiliary points in time, which help us reason
about the interaction with the VCBs in V(τi, l):

• The cycle t = tR, the first cycle after which Rules 4 and 5 cannot exclude the
VCB containing the packet under analysis from participating in arbitration anymore.
This correspond to either the cycle when a token reset causes V CB(τi, l).c(l) to
become > 0 for the first time, or to the SoP of the packet winning arbitration with
V CB(τi, l).c(l) = 0.
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• The cycle t = tS, the last cycle when a flit from a VCB in VSV (τi, l) wins arbitration
for l. The next flit associated with τ.V C to win arbitration for l will then be the
SoP flit of the packet under analysis, after which and VCBs in VSV (τi, l) attempting
to access l will be blocked by Rule 2 until the EoP flit of the packet under analysis
is transmitted.

• The cycle t = tE, the cycle when the EoP flit of the packet under analysis wins
arbitration for l.

The four points in time t = 0, tR, tS and tE delimit three time intervals (stages) for
the transmission of the packet of τi over the NPS:

• A first stage for 0 ≤ t ≤ tR.

• A second stage for tR < t ≤ tS.

• A third stage for tS < t < tE.

We may now consider how the VCBs belonging to each subset of V(τi, l) may inter-
fere with the packet under analysis of τi, during each of the three time intervals defined
above. Figure 4.4, shows a schematic representation of the interactions we describe below
in Sections 4.3.2-4.3.2.

VCB under analysis

VCBs in VDVH

VCBs in VDVL

VCBs in VSV

Arbitration Winner:

t = 0 t = tR t = tS t = tE

First
Stage

Second 
Stage

Third 
Stage

Figure 4.4: Diagram of the three stages of transmission through an NPS, showing which
sets of VCBs can delay the packet under analysis by winning arbitration in each stage.
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First Stage

During the interval 0 ≤ t ≤ tR, we assume that one of the following applies every cycle:

• The SoP flit of τi is blocked by one of Rule 4 or 5.

• The SoP flit of τi is blocked by Rule 2 or Rule 3, but would be blocked by Rule 4 or
5 anyway if it were not.

Any VCB V ∈ V(τi, l) may extend this interval by sending a flit through l with a token
counter > 0. The following lemma provides a limit on how many flits each VCB can send
through l during this first stage:

Lemma 4.3.2. A VCB V ∈ V(τi, l) may only send up to V.r(l) + V.L(l) flits through l
before during the first stage, where Vj.L(l) is the maximum length of a packet that crosses
Vj and leaves through l.

Proof. Starting with V.c(l) = V.r(l), the VCB V may send V.r(l) + 1 flits with a non-
negative counter, with the last one being a SoP flit that leaves V.c = −1.

Rule 4 only blocks buffers with a negative token counter from sending a flit if it is
an SoP flit, so V can send the remaining V.L(l) − 1 flits of the packet it started without
necessarily requiring a token reload, for a total of V.r(l) + V.L(l) flits.

Sending any additional flits before the token reload, however, is not possible, as the
next flit will necessarily have to be a SoP, which cannot be sent while V.c(l) < 0, due to
Rule 4.

Besides delaying tR by sending flits, each packet from a CT τk associated with a VCB
in VSV (τi, l) that is transmitted during the first stage can delay tR for a total of dR2(τk, l)
cycles:

Lemma 4.3.3. A packet of a flow τk stored in VSV (τi, l) that is transmitted through l
during the first stage can delay tR for up to dR2(τk, l) cycles.

Proof. If a VCB from VSV (τi, l) has a packet in progress during the first stage, and is
blocked during a cycle by Rule 1 (due to bubbles) or Rule 3 (due to the flow-control
mechanism), the token reload may also be delayed without any flits being transmitted or
tokens being spent, as the VCB V CB(τi, l) is blocked by Rule 2 and thus cannot cause
a token reload by itself. Thus, tR may be delayed by the total number of cycles that the
packet is blocked by Rule 2, which is given by dR2(τk, l).
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Finally, this first interval is the only one during which the low-priority CTs stored
in VDV L(τi, l) can delay the packet under analysis, while the high-priority packet under
analysis is prevented from participating in arbitration, or is considered low-priority, by Rule
4 as a result of a non-positive token counter. From the definition of tR, for t ≥ tR, Rule
4 cannot block the packet of τi under analysis or cause it to be considered as low-priority,
so flits of τi will always be sent instead of low-priority flits if possible.

Second Stage

During the interval tR < t ≤ tS, additional flits are sent by VCBs in VSV (τi, l), with the
possibility of nested blocking (while this phenomenon may also happen during the first
stage, during said stage the packet under analysis is also blocked by Rule 4 or Rule 5, so
the nested delay does not contribute to delay the packet overall).

Without considering nested delay, the contribution to the local delay from each packet
from a CT τk associated with a VCB in VSV (τi, l) is given by dR2(τk, l) by definition.

After the second interval, VCBs belonging to VSV (τi, l) cannot interfere with the packet
under analysis anymore, due to Rule 2.

Third Stage

During the interval tS < t < tE, the packet under analysis can only be blocked by VCBs
belonging to VDVH(τi, l), which can win the LRU arbitration for the link l.

4.3.3 ILP Formulation

Problem Variables

We formulate the local delay analysis step for the Versal NoC as an ILP optimization
problem on variables x(τk), y(τk), z(τk) and w(τk) defined for each CT τk that is stored
in a VCB V ∈ VSV (τi, l) and contends with τi for l. The variables have the following
meanings:

• 0 ≤ x(τk) ≤ 1 counts the number of packets of τk in progress at t = 0.

• 0 ≤ y(τk) counts the number of packets of τk completely sent in the first stage of
transmission (0 < t ≤ tR).
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• 0 ≤ z(τk) ≤ 1 counts the number of packets of τk in progress when t = tR.

• 0 ≤ w(τk) ≤ 1 counts the number of packets of τk completely sent in the second stage
of transmission (tR < t ≤ tS). This variable is necessarily ≤ 1 because the LRU
arbitration would not let a second packet win against the packet under analysis after
the latter is not blocked by Rule 4 anymore.

Constraints on Problem Variables

We may add the following constraints on the values of the variables x(τk), y(τk), z(τk) and
w(τk), derived from the NoC architecture and the problem statement:

Constraint 1: The sum of the variables counting the packets of each CT belonging to
a VCB in VSV (τi, l) cannot go over the number of packets of the flow that can effectively
arrive while the packet of τi is traversing the NoC:

∀V ∈ VSV (τi, l),∀τk ∈ V.Γ(l), x(τk) + y(τk) + z(τk) + w(τk) ≤ packetCount(τi, τk) (4.6)

Constraint 2: Due to Rule 2, there can be at most one packet in progress from a VCB
in VSV (τi, l) through l at t = 0:

∑
V ∈VSV (τi,l)

∑
τk∈V.Γ(l)

x(τk) ≤ 1 (4.7)

Constraint 3: Likewise, there can be at most one packet in progress from a VCB in
VSV (τi, l) through l at t = tR:

∑
V ∈VSV (τi,l)

∑
τk∈V.Γ(l)

z(τk) ≤ 1 (4.8)

Constraint 4: Due to LRU arbitration, each VCB in VSV (τi, l) can send at most one
packet after tR, as the SoP flit of an eventual second packet would lose arbitration to the
SoP of the τi packet:

∀V ∈ VSV (τi, l),
∑

τk∈V.Γ(l)

w(τk) ≤ 1 (4.9)
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Constraint 5: Each VCB in VSV (τi, l) can either send anything in the interval 0 ≤
t < tR, or start a packet after tr, but not both, as sending anything before tR would cause
it to lose LRU arbitration to the SoP of τi.

∀V ∈ VSV (τi, l),

1−
∑

τk∈V.Γ(l)

w(τk)

 ∗M ≥ ∑
τj∈V.Γ(l)

(x(τj) + y(τj) + z(τj)) (4.10)

Where:

M =
∑

τk∈V.Γ(l)

packetCount(τi, τk) ≥
∑

τj∈V.Γ(l)

(x(τj) + y(τj) + z(τj)) (4.11)

Constraint 6: The sum of flits sent through l during the first stage (i.e. 0 ≤ t < tR)
must be less than or equal to V.r(l) +V.L(l), for each VCB in VSV (τi, l), otherwise a token
reload would happen before tR.

We assume the extreme case where the packets that are only partially transmitted
during 0 ≤ t < tR (counted by x(τk) and z(τk)) only consume one token each.

∀V ∈ VSV (τi, l),
∑

τk∈V.Γ(l)

(x(τk)× 1) + (y(τk)× τk.L) + (z(τk)× 1) ≤ V.r(l) + V.L(l) (4.12)

Objective Function

Finally, we must define the local delay term dlocal(τi, l) as the objective function to be
maximized in the ILP optimization problem. We express this objective function as a sum:

dlocal(τi, l) = 1 + dSVlocal(τi, l) + dDVHlocal (τi, l) + dDV Llocal (τi, l) (4.13)

Where:

• The one cycle added as the first term corresponds to the cycle needed for a token
reset if the token counter V CB(τi, l).c(l) is initially negative, which may happen
independently of any other CTs.
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• dSVlocal(τi, l) is the number of cycles that VCBs from VSV (τi, l) can delay tR during the
first stage (Lemma 4.3.3) or delay tS via Rule 2 during the second stage, without
considering nested delay (dR2(τk, l) by definition).

• dDVHlocal (τi, l) is the number of cycles that VCBs from VDVH(τi, l) can delay tR by
sending flits (during the first stage), delay tS via nested blocking (during the second
stage) or win LRU arbitration against the packet under analysis (during the third
stage).

• dDV Llocal (τi, l) is the number of cycles that VCBs from VDV L(τi, l) can delay tR by sending
flits (during the first stage).

The term dSVlocal(τi, l) may be calculated in function of the ILP problem variables, by
applying Lemma 4.3.1 and Lemma 4.3.3:

dSVlocal(τi, l) =
∑

V ∈VSV (τi,l)

∑
τk∈V.Γ(l)

(x(τk) + y(τk) + z(τk) + w(τk))× dR2(τk, l) (4.14)

For the term dDVHlocal (τi, l), we sum the individual contribution dDVH,Vlocal (τi, l) of each V ∈
VDVH(τi, l):

dDVHlocal (τi, l) =
∑

V ∈VDV H(τi,l)

dDVH,Vlocal (τi, l) (4.15)

Each V ∈ VDVH(τi, l), in each of the three stages, necessarily must send a flit through l
in order to interfere with the packet under analysis (either to delay tR in the first stage or
to win LRU arbitration in the second and third stages). Thus, each term dDVH,Vlocal (τi, l) is
upper-bounded by the number of flits the VCB V can send through link l while the packet
of τi is contending for said link:

∀V ∈ VDVH(τi, l), d
DVH,V
local (τi, l) ≤

∑
τk∈V.Γ(l)

packetCount(τi, τk)× τk.L (4.16)

On the other hand, the number of flits each V ∈ VDVH(τi, l) can send during the first
stage is limited by Lemma 4.3.2. Additionally, during the second and third stages, each
V ∈ VDVH(τi, l) can only delay the packet under analysis by winning LRU arbitration
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against another flit associated with the VC τi.V C (either flits of τi itself during the third
stage, or flits stored in a buffer in VDVH(τi, l) during the second stage). We may add these
per-stage bounds to arrive at another bound for each term dDVH,Vlocal (τi, l):

∀V ∈ VDVH(τi, l), d
DVH,V
local (τi, l) ≤

V.r(l) + V.L(l) + τi.L+
∑

Vj∈VSV (τi,l)

∑
τk∈Vj .Γl

x(τk) + y(τk) + z(τk) + w(τk) (4.17)

Each term dDVH,Vlocal (τi, l) is then obtained as the minimum of the two bounds:

∀V ∈ VDVH(τi, l), d
DVH,V
local (τi, l) = min(

V.r(l) + V.L(l) + τi.L+
∑

Va∈VSV (τi,l)

∑
τk∈Va.Γl

x(τk) + y(τk) + z(τk) + w(τk),∑
τk∈V.Γ(l)

packetCount(τi, τk)× τk.L

)

(4.18)

Finally, the term dDV Llocal (τi, l) may be calculated by applying Lemma 4.3.2 to find upper
bounds for how many flits each VCB in VDV L(τi, l) can send during the first stage, and
summing over all such VCBs:

dDV Llocal (τi, l) =
∑

V ∈VDV L(τi,l)

V.r(l) + V.L(l) (4.19)

4.4 Buffer delay Term

In this Section, we derive an upper bound for the buffer delay term dbuf(τi, l) defined in
Section 4.2.1, the worst-case delay for the buffer downstream from l where the packet of τi
is stored. We adopt the procedure from [29], using, for each packet of a CT τk completely
of partially stored in the buffer downstream from l, the value d(τk, nextLink(τk, l)) as its
contribution to the buffer delay.

The following Lemma, adapted from the analogous result for RRA NoCs in [29] (The-
orem 1) provides a description of the initial state of the buffer downstream from l that
produces the worst-case buffer delay:
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Lemma 4.4.1. The downstream VCB d(τk, nextLink(τk, l)) can only hold up to two partial
packets, one at head and other at the tail of the buffer. The buffer delay dbuf(τi, l) is
maximized when there is only one partial packet, at the head of the VCB.

Proof. The possible presence or absence of the two partial packets results in four cases to
be considered:

1. Case 1: No partial packets present in the VCB.

2. Case 2: Only one partial packet present in the VCB, at the head of the buffer.

3. Case 3: Only one partial packet present in the VCB, at the tail of the buffer.

4. Case 4: Two partial packets present in the VCB.

We consider the other cases in turn to show that Case 2 maximizes the delay:

• For Case 1, if the complete packet of a CT τk at the head of the VCB is moved
forward, until only its EoP remains (resulting in Case 2), there will be more space
at the tail of the buffer for other flits, while the contribution of the packet at the
head to the buffer delay remains d(τk, nextLink(τk, l)). Even if the space that is freed
does not allow for a complete packet to be stored, the total delay will not decrease,
so Case 1 may not produce a larger delay than Case 2.

• For Case 3, if the packet at the tail of the VCB is moved forward until it is completely
stored in the buffer, resulting in Case 1 or Case 2, the VCB from VSV (τi, l) sending
the partial packet will be able to send another complete packet of the same CT before
the packet under analysis, resulting in a larger delay.

• For Case 4, demonstrated in the same manner as case 3.

We may then calculate as an ILP problem in terms of the packets stored in the buffer.
Given Lemma 4.4.1, we define the following variables for each CT in that is stored in the
downstream VCB V CB(τi, nextLink(τk, li)) (except τi itself):

• 0 ≤ A(τk) ≤ 1 counts the number of packets of τk completely stored in the buffer
V CB(τi, nextLink(τk, li)) that is downstream from l.
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• 0 ≤ B(τk) ≤ 1 counts the number of packets of τk partially stored at the head of the
buffer V CB(τi, nextLink(τk, li)).

We may apply the following constraints to the problem variables:

Constraint 1: At most one packet of each CT may be stored in the VCB, as we have
constrained deadlines.

∀τk ∈ V CB(τi, nextLink(τi, l)).Γ \ τi, A(τk) +B(τk) ≤ 1 (4.20)

Constraint 2: The buffer space occupied by all packets stored in the buffer downstream
from l must not be larger than the size V CB(τi, nextLink(τi, l)).S of the buffer.

∑
τk∈V CB(τi,nextLink(τi,l)).Γ\τi

A(τk)× τk.L+B(τk)× 1 ≤ V CB(τi, nextLink(τi, l)).S (4.21)

We maximize dbuf(τi, l) as the objective function, adding the credit feedback delay for
the transmission of the last flit.

dbuf(τi, l) =
∑

τk∈V CB(τi,nextLink(τk,li)).Γ\τi

(A(τk) +B(τk))× d(τk, lj+1) + l.F + 1 (4.22)

4.5 Bubbles delay Term

In this Section, we derive an upper bound for the bubbles delay term dbubbles(τi, l) defined
in Section 4.2.2. The Lemma below provides an upper bound for this term:

Lemma 4.5.1. The expression in Eq. 4.23 below provides an upper bound on how many
cycles the VCB V CB(τi, l) may fail to supply a non-SoP flit to the arbitration process for
the link l after the SoP flit of a packet of τi is transmitted, due to upstream interference
from real-time CTs associated with other VCs.

dbubbles(τi, l) =∑
l′∈prefixPath(τi,l)

∑
V ∈VDV H(τi,l′)

min

τk.L− 1,
∑

τk∈V.Γ(l′)

packetCount(τi, τk)× τk.L

 (4.23)
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Proof. The bubbles delay term results from non-SoP flits of the packet of τi losing arbi-
tration for links along its path prefixPath(τi, l) to the NPS with l as an output link.

For a link l′ ∈ prefixPath(τi, l), the non-SoP flits of the packet may only lose arbitration
to VCBs in VDVH(τi, l

′), as VCBs in VSV (τi, l
′) are blocked by Rule 2 and Rule 4 does not

apply to non-SoP flits. Each VCB in VDVH(τi, l
′) may win LRU arbitration once against

each of the τi.L− 1 non-SoP flits of the packet of τi.

Additionally, the number of times each VCB in VDVH(τi, l
′) may win LRU arbitration

is limited by the number of flits
∑

τk∈V.Γ(l) packetCount(τi, τk) × τk.L it has available for
doing so. For the per-VCB contribution to the bubbles delay, we take the minimum of the
two bounds.

For the total bubbles delay term, we sum this per-VCB contribution over all VCBs in
VDVH(τk, l

′), for each l′ ∈ prefixPath(τk, l).

4.6 WCL Approach Summary

We summarize how to apply Sections 4.2 - 4.5 to calculate WCL bounds for each real-
time CT. To evaluate the WCL function R(τi), we may simply use the same Algorithm 3
employed for the RRA NoC model, as the same assumptions apply for how packets are
injected. For the delay function d(τi, l), we employ the generic approach in Algorithm 5,
formulating the local analysis step according to Sections 4.3-4.5.

We must address the use of the function packetCount, which calls the WCL function
R(τi), producing a recurrence relation. We proceed by calculating WCL values iteratively,
in similar manner to existing WCL approaches based on WCET techniques for proces-
sors [39, 24], producing a sequence of vectors of WCL values R0,R1, . . ..

Each vector of WCL values has N elements, with the i-th entry corresponding to the
WCL value for τi. For iteration number j ≥ 1, when calculating the elements of the vector
Rj, any time the function packetCount is evaluated according to the definition in Eq. 4.3
we apply the following procedure:

• the i-th entry Rj−1 is used for the value R(τi).

• the k-th entry Rj−1 is used for the value R(τk).

For the initial vector R0, we use the values provided by the best-case delay function
C(τi), which is guaranteed to be inferior or equal to the actual WCL values for each CT.
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The iterative process is completed when the WCL values are unchanged by an iteration,
or when a WCL value is obtained that does not respect the deadline for a real-time CT.
In Lemma 4.6.1, we show that this approach completes after a finite number of iterations:

Lemma 4.6.1. The series of iterations producing the vectors of WCL values

R0,R1, . . .

ends after a finite number of steps to either converge to a vector WCL values or show
that a deadline is not respected.

Proof. We employ the function packetCount, defined in Eq. 4.3, in the following three in-
stances: Eq. 4.6, Eq. 4.18 and Eq. 4.23. We first show that the entries of vectors R0,R1, . . .
can only increase or remain constant in each iteration:

• In Eq. 4.6 the function packetCount is used for a bound on the sum of ILP problem
variables representing packets of CTs from VSV (τi, l) that can interfere with the
packet under analysis. If the value returned by packetCount increases, due to R(τi) or
R(τk) increasing, the number of packets that can interfere also increases, subsequently
increasing the local delay.

• In Eq. 4.18, the packetCount function is used for a bound on how many flits from
a buffer in VSV (τi, l) can delay the packet under analysis. If the value returned by
packetCount increases, due to R(τi) or R(τk) increasing, the number of flits that can
interfere also increases, subsequently increasing the local delay.

• In Eq. 4.23, the packetCount function is used for a bound on how many flits from a
buffer in VSV (τk, l) can delay the non-SoP flits of the packet for which the bubbles
term is being calculated. If the value returned by packetCount increases, due to R(τi)
or R(τk) increasing, the number of flits that can interfere also increases, subsequently
increasing the bubbles delay term, and the local delay experienced by the packet
under analysis.

As all values in question are integers, the WCL values are bounded by their deadlines
and only increase or remain constant, the iterative process will complete after a finite
number of steps.
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4.7 Illustrative Example

In this Section, we present an example WCL calculation for a simplified scenario where
packets traverse a single NPS module (Section 4.7.1), and compare the WCL value ob-
tained for the packet under analysis with a cycle-by-cycle trace of the NPS module state
corresponding to Worst-Case interference (Section 4.7.2).

4.7.1 Example Upper Bound

Example Configuration

Figure 4.5 shows a simplified configuration with three NMU clients connected to a NSU
client over a single NPS module. The NMU clients execute a total of five real-time CTs
τ1-τ5 and two best-effort CTs τL1 and τL2 , each associated with a different VCB in the
switch. We focus on τ1 as the CT under analysis.

Table 4.1 shows the parameters for the different CTs. Additionally, we assume that all
token registers in the NPS are configured with a value of 3.

Table 4.1: Example CT parameters
CT VCB L T D JR

τH1 Port 0, VC 0 6 200 200 0
τH2 Port 1, VC 0 3 100 100 0
τH3 Port 3, VC 0 3 100 100 0
τH4 Port 1, VC 1 3 100 100 0
τH5 Port 3, VC 3 3 100 100 0
τL1 Port 1, VC 4 3 - - -
τL2 Port 3, VC 6 3 - - -

With τ1 as the packet under analysis, the other CTs are associated with VCBs from all
three subsets of V(τ1, l2) as defined in Section 4.2.2.

The basic latencies for each real-time CT, given that each packet traverses two links,
are calculated with Eq. 4.1 as:

C(τ1) = 9, C(τ2) = 6, C(τ3) = 6,

C(τ4) = 6, C(τ5) = 6
(4.24)
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Figure 4.5: Example configuration with a single NPS.
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First iteration

For the first iteration, following the procedure delineated in Section 4.6, we use the best-
case values in Eq. 4.24 for the vector R0:

R0 = [9, 6, 6, 6, 6]T (4.25)

We may then evaluate how many packets of each real-time CT may interfere with the
packet of τ1:

packetCount(τ1, τ2) = 1, packetCount(τ1, τ2) = 1,

packetCount(τ1, τ2) = 1, packetCount(τ1, τ2) = 1
(4.26)

The CTs associated with VCBs in VSV (τ1, l2), for which the ILP problem variables are
defined, are τ2 and τ3. A solution to the ILP problem is:

x(τ2) = 0, y(τ2) = 0, z(τ2) = 0, w(τ2) = 1,

x(τ3) = 0, y(τ3) = 0, z(τ3) = 0, w(τ3) = 1
(4.27)

We evaluate the local delay based on the ILP problem variables with Section 4.3.3.
The term dDV Llocal (τ1, l2) corresponding to interference from best-effort CTs does not vary
with subsequent iterations and is calculated with Eq. 4.19:

dDV Llocal (τ1, l2) =
∑

V ∈VDV L(τ1,l2)

V.r(l2) + V.L(l2) = (3 + τL1 .L) + (3 + τL2 .L) = 12 (4.28)

The term dSVlocal(τ1, l2) is calculated in function of the ILP variables with Eq. 4.14:

dSVlocal(τ1, l2) =
∑

V ∈VSV (τ1,l2)

∑
τk∈V.Γ(l2)

(x(τk) + y(τk) + z(τk) + w(τk))× dR2(τk, l2) =

dR2(τ2, l2) + dR2(τ3, l2) = 10

(4.29)

The term dDVHlocal (τ1, l2) is calculated in function of the ILP variables with Eq. 4.15:
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dDVHlocal (τ1, l2) =
∑

V ∈VDV H(τ1,l2)

dDVH,Vlocal (τ1, l2) = min(12, 3) + min(12, 3) = 6 (4.30)

Where 12 is the number of flits associated with τ1.V C = 0 that leave through l2 (two
packets with L = 3 and the packet under analysis with L = 6).

The overall local delay term dlocal(τ1, l2) is then:

dlocal(τ1, l2) = 1 + dSVlocal(τi, l2) + dDVHlocal (τi, lj) + dDV Llocal (τi, l2) = 1 + 10 + 6 + 12 = 29 (4.31)

And the overall R(τ1) in this simple NoC configuration is:

R(τ1) = dlocal(τ1, l2) + τ1.L+ l0.C + l2.C − 1 = 38 (4.32)

By applying the a similar process for CTs τ2 to τ5, we arrive at the vector R1:

R1 = [38, 73, 73, 73, 73]T (4.33)

Where the other CTs have larger WCL due to sharing an NMU client output link.

Second Iteration

With the vector R1, we may evaluate the function packetCount for the second iteration:

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2,

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2
(4.34)

With the updated packet counts, a solution to the local delay analysis ILP problem is:

x(τ2) = 0, y(τ2) = 1, z(τ2) = 1, w(τ2) = 0,

x(τ3) = 0, y(τ3) = 2, z(τ3) = 0, w(τ3) = 0
(4.35)

57



The term dSVlocal(τ1, l2) may again be calculated in function of the ILP variables with
Eq. 4.14:

dSVlocal(τ1, l2) =
∑

V ∈VSV (τ1,l2)

∑
τk∈V.Γ(l2)

(x(τk) + y(τk) + z(τk) + w(τk))× dR2(τk, l2) =

2× dR2(τ2, l2) + 2× dR2(τ3, l2) = 20

(4.36)

The term dDVHlocal (τ1, l2) is also again calculated in function of the ILP variables with
Eq. 4.15:

dDVHlocal (τ1, l2) =
∑

V ∈VDV H(τ1,l2)

dDVH,Vlocal (τ1, l2) = min(15, 6) + min(15, 6) = 12 (4.37)

The overall local delay term dlocal(τ1, l2) for the second iteration is then:

dlocal(τ1, l2) = 1 + dSVlocal(τi, l2) + dDVHlocal (τi, lj) + dDV Llocal (τi, l2) = 1 + 20 + 12 + 12 = 45

(4.38)

And the complete vector R2 is:

R2 = [51, 91, 91, 91, 91]T (4.39)

Third Iteration

With the vector R2, we may evaluate the function packetCount for the third iteration:

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2,

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2
(4.40)

The packet counts are the same as in the second iteration, so the value of R1(τ1) will
remain the same. The other WCL values also remain the same in this iteration:

R3 = [51, 91, 91, 91, 91]T (4.41)

Thus, no more iterations are necessary.
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4.7.2 Example Trace

In this section, we show a trace corresponding to the worst case interference suffered by
a packet of CT τ1, and compare with the WCL bound obtained in Section 4.7.1. The
scenario depicted corresponds to the solution for the ILP problem:

x(τ2) = 0, y(τ2) = 1, z(τ2) = 1, w(τ2) = 0,

x(τ3) = 0, y(τ3) = 2, z(τ3) = 0, w(τ3) = 0
(4.42)

And to the packet counts:

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2,

packetCount(τ1, τ2) = 2, packetCount(τ1, τ2) = 2
(4.43)

Figure 4.6 shows how we represent the state of the NPS module at every clock cycle,
including all information necessary to determine the arbitration result each cycle.

The meaning of each element labeled in Figure 4.6 is as follows:

1. Current clock cycle, with t = 0 being the first cycle with the SoP flit of the packet
of τ1 at the head of the VCB.

2. VCB whose state is represented by the three rows to its right.

3. Token Counter Value for the VCB during the clock cycle.

4. Clock cycle when the VCB last won arbitration, relative to t = 0 (necessary to
determine the winner of LRU arbitration).

5. Flit at the head of the VCB.

6. VCB that wins arbitration in the cycle.

7. Flit at the head of the winning VCB.

8. Rules determining why the VCB containing τ1 does not win arbitration in the cycle,
or None if it wins arbitration.

59



3
-5

Token Counter
Time last won
Flit at the head SOP

t = 0
TIME

1

3
4

5

6

7
8

2

Port 3, VCB 3

Rules Blocking 
VCB 0, Port 0 R4

Winning VCB

Winning flit

Port 3
VC 3

SOP

Figure 4.6: Key for diagram elements in the example trace.

Rules Blocking 
VCB 0, Port 0 R4

-1

3

 
VCB under analysis 

VCBs also associated
with VC 0 

VCBs  associated
with other VCs, 
high-prio. traffic 

-1
SOP

-2
SOP

3
-3

SOP

3
-4

3
-5

SOP

t = 0

SOP

TIME

Port 0, VCB 0

Port 1, VCB 0

Port 3, VCB 0

Port 1, VCB 1

Port 3, VCB 3

Token Counter
Time last won
Flit at the head

Token Counter
Time last won
Flit at the head

Token Counter
Time last won
Flit at the head

Token Counter
Time last won
Flit at the head

Token Counter
Time last won
Flit at the head

VCBs  associated
with other VCs, 
low-prio. traffic 

3
-6

3
-7

SOP
Port 1, VCB 4

Port 3, VCB 6

Token Counter
Time last won
Flit at the head

Token Counter
Time last won
Flit at the head

Winning VCB

Winning flit

Port 3
VC 3

SOP

-1

3

-1
SOP

-2
SOP

3
-3

SOP

3
-4

2
0

1

SOP

3
-6

3
-7

SOP

Port 1
VC 1

SOP

-1

3

-1
SOP

-2
SOP

3
-3

SOP

2
1

2
0

2

3
-6

3
-7

SOP

Port 3
VC 0

SOP

-1

3

-1
SOP

-2
SOP

2
2

2
1

2
0

3

3
-6

3
-7

SOP

Port 3
VC 3

-1

3

-1
SOP

-2
SOP

2
2

2
1

1
3

EOP

4

3
-6

3
-7

SOP

Port 1
VC 1

-1

3

-1
SOP

-2
SOP

2
2

1
4

1
3

EOP

5

EOP

3
-6

3
-7

SOP

Port 3
VC 0

-1

3

-1
SOP

-2
SOP

1
5

EOP

1
4

1
3

EOP

6

EOP

3
-6

3
-7

SOP

Port 3
VC 3

EOP

-1

3

-1
SOP

-2
SOP

1
5

EOP

1
4

0
6

7

EOP

3
-6

3
-7

SOP

Port 1
VC 1

EOP

_

Port 3
VC 0

EOP

-1

3

-1
SOP

-2
SOP

1
5

EOP

0
7

0
6

8

3
-6

3
-7

SOP

_

_

Port 1
VC 0

SOP

-1

3

-1
SOP

-2
SOP

0
8
_

0
7

0
6

9

3
-6

3
-7

SOP

_

_

Port 1
VC 0

-1

2

-1
SOP

9

0
8
_

0
7

0
6

10

3
-6

3
-7

SOP

_

_

Port 1
VC 0

EOP

-1

1

-1
SOP

10
EOP

0
8

SOP

0
7

0
6

11

3
-6

3
-7

SOP

_

_

_ _ _ _ _ _ _ _ _ _ _ _

Port 1
VC 4

SOP

-1

0

-1
SOP

11
_

0
8

SOP

0
7

0
6

12

3
-6

3
-7

SOP

_

_

_

-1

0

-1
SOP

11
_

0
8

SOP

0
7

0
6

13

2
12

3
-7

_

_

_

Port 3
VC 0

SOP

Port 1
VC 4

Port 3
VC 0

-1

0

-1
SOP

11
_

-1
13

0
7

0
6

14

2
12

3
-7

_

_

_

Port 1
VC 4

EOP

Port 3
VC 0

EOP

Port 1
VC 4

SOP

Port 1
VC 4

SOP

Port 1
VC 4

Port 1
VC 4

Port 1
VC 4

EOP

Port 1
VC 4

EOP

Port 1
VC 0

SOP

Port 3
VC 3

SOP

Port 1
VC 0

Port 3
VC 3

Port 1
VC 0

EOP

Port 1
VC 1

SOP

Port 0
VC 0

SOP

Port 3
VC 3

EOP

Port 1
VC 1

Port 0
VC 0

Port 1
VC 1

EOP

Port 0
VC 0

Port 0
VC 0

Port 0
VC 0

Port 0
VC 0

EOP

-1

0

-1
SOP

11
_

-2
14

EOP

0
7

0
6

15

2
12

3
-7

_

_

_

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

16

2
12

3
-7

_

_

_

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

-1

0

-1
SOP

11
_

-2
15
_

0
7

0
6

1
16

3
-7

EOP

_

_

_

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

0
17

3
-7

SOP

_

_

SOP

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

0
17

2
18

SOP

_

_

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

-1
19

2
18

_

_

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

-1
19

1
20

_

_

EOP

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

-2
21

1
20

EOP

_

_

EOP

-1

0

-1
SOP

11
_

-3
15
_

0
7

0
6

-2
21

0
22

EOP

_

_

_

-1

0

-1
SOP

11
SOP

-3
15
_

0
7

0
6

-3
23

0
22

_

_

_

_

2

2

-1
SOP

24

2
15
_

3
7

3
6

2
23

3
22

_

SOP

_

_

t = tR t = tS t = tE

2

2

-1
SOP

24

2
15
_

3
7

2
25

2
23

3
22

_

_

_

2

1

-1
SOP

26
EOP

2
15
_

3
7

2
25

2
23

3
22

_

_

_

2

1

-1
SOP

26
EOP

2
15
_

3
7

1
27

2
23

3
22

_

EOP

_

_

2

0

-1
SOP

28
_

2
15
_

3
7

1
27

2
23

3
22

_

EOP

SOP

_

1

0

29
 

28
_

2
15
_

3
29

1
27

2
23

3
22

_

EOP

_

1

0

29
 

28
_

2
15
_

2
29

1
27

2
23

3
22

_

EOP

_

1

0

29
 

28
_

2
15
_

2
29

0
31

2
23

3
22

_

_

_

1

0

29
 

28
_

2
15
_

1
29

0
31

2
23

3
22

_

_

_

0

0

33
 

28
_

2
15
_

1
33

0
31

2
23

3
22

_

_

EOP

_

-1

0

34
 

28
_

2
15
_

0
33

0
31

2
23

3
22

_

_

EOP

_

-2

0

34
 

28
_

2
15
_

0
35

0
31

2
23

3
22

_

_

_

_

-3

0

36
 

28
_

2
15
_

0
35

0
31

2
23

3
22

_

_

_

_

-4

0

37
EOP

28
_

2
15
_

0
35

0
31

2
23

3
22

_

_

_

_

R4 R4 R4 
R2

R4 
R2

R4 
R2

R4 
R2

R4 
R2

R4 
R2 R4 R4 

R2
R4 
R2 R4 R4 

R2
R4 
R2

R4 
R2 R4 R4 R4 R4 R4 R4 R4 R4 R4 R2 R2 R2 R2 None LRU LRU None LRU None LRU None None None

Figure 4.7: Example Trace.
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Figure 4.7 shows the complete trace for a packet of CT τ1 traversing the NPS. We
comment below on the events depicted in the Figure by referring to the time values.

At t = 0, all SoP flits of packet of τ1 under analysis is at the head of VCB 0 of port 0.
The token counter for this VCB maintained by output link l2 is negative, so the SoP flit of
the packet under analysis is blocked by Rule 4 (R4). Additionally, the VCBs in V(τ1, l2)
with associated CTs all have a packet at the head leaving through link l2, except for VCB
6 of port 3. Among VCBs with high-priority flits, VCB 3 of Port 3 wins LRU arbitration.

At t = 2, VCB 0 of Port 3 wins arbitration for l2 with the SoP flit of a packet, so VCB
0 of Port 1 will be blocked from participating in arbitration until the EoP of the packet is
transmitted.

At t = 11, a second packet arrives at the head of VCB 0 of Port 3, but it cannot
participate in arbitration until the packet of VCB 0 of Port 1 in progress is completely
transmitted.

At t = 12, the low-priority flit in VCB 4 of Port 1 wins LRU arbitration because the
token counter for VCB 0 of Port 3 is equal to 0, so the flit at the head of the VCB is
treated as low-priority.

At t = tR = 24, the conditions for a token reset are fulfilled, because VCB 0 of Port 0
and VCB 0 of port 1 are requesting the link l2 without being blocked by Rule 2 or Rule 3,
and neither has tokens. From this point on, the packet under analysis is never blocked by
Rule 4 anymore.

At t = tS = 28, the EoP flit of the second packet from VCB 0 of Port 1 is transmitted,
the last flit from VSV (τ1, l2) to win arbitration before the SoP flit of the packet under
analysis of τ1.

In the following cycle t = 29, VCB 0 of Port 0 is not blocked by Rule 2 anymore and
wins LRU arbitration with the SoP flit of the packet under analysis. From this point on,
the packet under analysis is never blocked by Rule 2 anymore.

At t = tE = 38, the EoP flit of the packet under analysis wins arbitration for the
output, completing the third stage of transmission through the NPS.

To the 39 cycles depicted in the image, we must add 4 cycles for the two links traversed
by the packet, for a total of 43. If we compare this result with the bound of 51 cycles found
in Section 4.7.1, the bound is 18.6% larger than the WCL value in this trace.

Sources of pessimism in the analysis include it not being possible for all low-priority
packets to actually send V.r(l2) + V.L(l2) flits during the first stage of transmission.
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4.8 Changes to NPS Arbitration

We consider two alternative versions of the NPS arbitration policy:

Alternative Version 1 operates with the following modified Rule 4, Rule 4-ALT,
which ignores token counters:

• Rule 4-ALT: This rule produces sets of high-priority and low-priority requests from
the set of valid VCB requests produced by Rules 1 to 3, according to the following
procedure:

– High-priority requests correspond to VCBs that have a high-priority flit at the
head.

– Low-priority requests, on the other hand, only require that VCBs do not have
a SoP flit at the head.

Alternative Version 2 operates with Rule 4-ALT and with the following modified
Rule 2, Rule 2-ALT:

• Rule 2-ALT: If another VCB V ′, that satisfies any of the following:

– is associated with the same VC number as V

– stores high-priority flits.

has a packet in progress leaving the switch through l, V cannot participate in ar-
bitration for l until after the EoP flit of said packet wins arbitration for l. This
prevents the flits of different packets from interleaving in the VCB downstream from
l associated with the same VC number.

In Sections 4.8.1-4.8.2, we discuss the changes to the WCL analysis implied by each
alternative version of NPS arbitration.

4.8.1 Alternative Version 1

As Rule 4-ALT ignores the value of token counters, the first stage of transmission defined
in Section 4.3.2 is eliminated (i.e. tR = 0). This has the following the effects on the
constraints:
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• All the ILP problem variables x(τk), y(τk) and z(τk) defined in Section 4.3.3 are
constrained to be equal to 0.

• Eq. 4.18 is updated to:

∀V ∈ VDVH(τi, l), d
DVH,V
local (τi, l) = min(

τi.L+
∑

Va∈VSV (τi,l)

∑
τk∈Va.Γl

w(τk),∑
τk∈V.Γ(l)

packetCount(τi, τk)× τk.L

)

(4.44)

• Eq. 4.19 is updated to:

dDV Llocal (τi, l) = 0 (4.45)

4.8.2 Alternative Version 2

With Rule 2-ALT, VCBs in VSV (τi, l) and VCBs in VDVH(τi, l) interact with V CB(τi, l)
in the same manner. Additionally, there is no need for the correction term dbubbles(τi, l), as
the non-SoP flits of a real-time packet cannot lose arbitration to another VCB, which are
all blocked by Rule 2-ALT.

The number of cycles that the packet under analysis may be blocked by a packet from
a VCB in VSV (τi, l) ∪ VDVH(τi, l) is then:

dR2A(τk, l) =

{
τk.L, if l = lastLink(τk)

d(τk, nextLink(τk, l)) + l.b, otherwise
(4.46)

which is equivalent to basic RC, and the local delay term dlocal(τi, l) may be calculated
simply as:

dlocal(τi, l) =
∑

V ∈VSV (τi,l)∪VDV H(τi,l)

max
τk∈V.Γ(l)

dR2A(τk, l) (4.47)
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Chapter 5

Evaluation

In this section, we evaluate the local analysis step and overall RC approach developed in
Chapter 4 by simulating the 1 GHz ”core” of the Versal NoC. Section 5.1 details how the
NoC is simulated, and the general workflow. Section 5.2 describes an experiment with a
single NPS, while Section 5.3 presents a case study with multiple CTs in a complete NoC.

Finally, Section 5.4 repeats the case study for the two alternative versions of the NPS
arbitration policy described in Section 4.8.

5.1 Experimental Setup

Figure 5.1 shows a subset of the NoC embedded in the xcvc1902 Versal AI Core Device,
including 16 NMU/NSU pairs connected to four VNoCs, which in turn are connected by
the two HNoCs at their extremities. We choose the xcvc1902 because it is present in the
VCK 190 board [46], and is the model used by the official Versal NoC tutorials [19]. The
subset of the NoC with 16 clients is representative, in the sense that each individual NMU
can only target 16 NSUs.

To simulate the NoC subset, we configure an NoC project with Vivado 2020.3 [20], and
generate simulation files for the NoC following the steps in the official documentation [49].
The NoC configuration used in simulation (including topology, routing, token registers,
etc.) may be modified by replacing the xlnoc.v topology file and NPS instantiation files
with a design generated with Vivado.

We develop custom Verilog NMU/NSU modules to play the role of the NMU/NSU
clients from Section 4, injecting packets via the NPP interface, and simulate the complete
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system with Modelsim, through a script interface that allows for configuring the behaviour
of the NMU/NSU clients via a CT specification in a .csv file, including the T , JR, D, T
and L parameters.
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Figure 5.1: Subset of the NoC in the xcvc1902 Versal device that was simulated

Finally, we develop Python 3 scripts to post-process simulation logs to determine packet
latencies, and also to implement the WCL approach described in Section 4. The WCL
analysis script processes the .ncr file produced by the NoC compiler, as well as the Verilog
simulation files for info on routing, VC assignments and token registers, which serve as
inputs to the analysis.

Figure 5.2 shows the different components of the experiment, for instance for generating
the plot in Figure 5.4 discussed later in this section.

The simulation takes the real-time CT parameters into account in the following manner:

• Arrival time for next packet sampled from τi.T + exp(1/T ), where exp(λ) is the
exponential distribution with average value 1

λ
.

• Extra delay on the release of the packet uniformly selected from [0, τi.J
R].

• One packet injected at a time by the NMU.
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Figure 5.2: Data flow diagram of the evaluation experiment.

5.2 Single NPS

In order to capture the different types of interaction inside an NPS, we simulate the 8
following scenarios. In each scenario, we include the CT under analysis going through Port
3, VC 0 and one CT for each VCB in the set Vscen, defined depending on the scenario as
show in Table 5.1. We reserved VCs 0-3 for real-time CTs, and VCs 4-7 for best-effort
CTs.

Table 5.1: Single NPS scenarios.
Scenario No. Vscen
0 ∅
1 VSV
2 VDVH
3 VSV ∪ VDVH
4 VDV L
5 VSV ∪ VDV L
6 VDVH ∪ VDV L
7 VSV ∪ VDVH ∪ VDV L

For simplicity, we assume a value of 16 for each token register, and the following pa-
rameters for all CTs: T = D = 200, J = 20, L = 8. Each scenario was simulated for 107
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cycles.

The plot in Figure 5.3a shows the distribution of latencies observed for the CT under
analysis in each scenario, while Figure 5.3b shows a comparison with the WCL bound for
each scenario. Figure 5.3b shows the range of latencies observed for packets of the CT
under analysis, with a marker on the average value. The plot also shows the upper bound
on packet latency for each scenario, which ranges from 1× to 7.11× the worst observed
latency, depending on the scenario.

We note that the most significant gaps between the bounds and observed values corre-
spond to configurations that include the VCBs from VDV L (scenarios 3, 5 and 6). As the
VCBs from VDV L can only interfere with the CT under analysis before the time tR, this
indicates that, during the limited time-span of experiment, the unlikely event where other
VCBs are all able to send up V.r + V.L flits before tR did not occur.

5.3 Multi-NPS Case Study

We adapt the 16-client workload used in [40], maintaining the connectivity matrix and
relative bandwidths between CTs but increasing the bandwidth requested by each CT by
1000× to stress the simulated Versal NoC, which operates at 1GHz. The workload contains
37 CTs that exchange data between applications partitioned among the 16 clients, corre-
sponding to sensing and computation tasks in an autonomous robot application. Table 5.2
shows the parameters of all CTs, with the VC assignments being determined by the Versal
NoC compiler and L = 8 for each CT.

We calculate bounds for and simulate the system for 107 cycles. The violin plot in
Figure 5.4a shows the distribution of latencies for packets of each CT that is simulated.

We compare simulation results with WCL bounds in the log-scale plot in Figure 5.4b.
CTs from the same source are numbered sequentially, so we may observe multiple CTs
sharing the same WCL bound due to how the WCL function R(τ) is calculated.

For each CT in the workload, the plot shows the range of packet latencies observed in
simulation, with a marker on the average value, as well as the best-case (structural) latency
and the WCL upper bound. While the markers at the extremities show the structural
latency and the calculated WCL upper bound.

Excluding the trivial case of CT number 37, which does not contend with any others,
the upper bound is 6× to 12× the maximum observed latency. This likely emerges from
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Figure 5.3: Results for experiment with a single NPS.
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Table 5.2: Flow parameters for the case study in Figure 5.4, adapted from [40]
CT NMU NSU T = D J CT NMU NSU T = D J
1 0 1 1000 100 21 8 4 500 50
2 0 4 2000 200 22 8 5 500 50
3 0 5 2000 200 23 8 9 500 50
4 1 5 500 50 24 9 6 500 50
5 1 6 1000 100 25 9 10 500 50
6 2 7 1000 100 26 10 4 500 50
7 2 9 500 50 27 10 9 500 50
8 3 2 500 50 28 11 5 1000 100
9 4 5 500 50 29 11 7 500 50
10 4 8 1000 100 30 11 10 500 50
11 5 6 500 50 31 12 4 500 50
12 5 8 1000 100 32 12 7 500 50
13 5 13 500 50 33 12 13 500 50
14 5 15 1000 100 34 13 6 1000 100
15 6 9 500 50 35 14 5 500 50
16 6 10 500 50 36 14 9 500 50
17 7 3 2000 200 37 15 14 500 50
18 7 6 500 50
19 7 13 500 50
20 8 1 500 50
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Figure 5.4: Distribution of latencies and comparison with WCL bounds for the case study
variation in Table 5.2.
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a combination of a degree of pessimism in the analysis and the worst-case scenario be-
ing difficult to capture in simulation, especially the first stage of transmission defined in
Section 4.3.2 where multiple flits are sent without a token reload happening.

Table 5.3: Flow parameters for the case study in Figure 5.5, adapted from [40]
CT NMU NSU T = D J CT NMU NSU T = D J
1 0 1 1000 100 9 8 1 500 50
2 1 5 500 50 10 9 6 500 50
3 2 7 1000 100 11 10 4 500 50
4 3 2 500 50 12 11 5 1000 100
5 4 5 500 50 13 12 4 500 50
6 5 6 500 50 14 13 6 1000 100
7 6 9 500 50 15 14 5 500 50
8 7 3 2000 200 16 15 14 1000 100

We also consider a subset of the case study with 16 CTs shown in Table 5.3, such
that each NMU client injects a single CT in the NoC. The plot in Figure 5.5a shows
the distribution of latencies for this version of the case study, while the log-scale plot
in Figure 5.5b shows the overall results, with bounds 2× to 5× the maximum observed
latency, suggesting that the approach to evaluating the WCL function R(τi) by summing
the delay function for all CTs with the same origin as τi is a source of pessimism.

71



0 2 4 6 8 10 12 14 16
Communication Task Number

20

40

60

80

100

La
te

nc
y 

(C
yc

le
s)

(a) Distribution of latencies

0 2 4 6 8 10 12 14
Communication Task Number

102

La
te

nc
y 

(C
yc

le
s)

best case
upper bound
measured

(b) Comparison with Bounds

Figure 5.5: Distribution of latencies and comparison with WCL bounds for the case study
variation in Table 5.3.
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5.4 Changes to NPS Arbitration

We modify the arbitration logic followed by the simulated NPS modules (function arb()

in the file nps ipa.sv) to implement the two alternative versions described in Section 4.8.

5.4.1 Single NPS Module

The plots in Figure 5.6 show a comparison between the base NPS policy and the two
variants for the single switch experiment from Section 5.2. The most significant effect
of the alternative versions in Figure 5.6 is that the WCL bounds for scenarios 4-7 (which
include VCBs in VDV L) can ignore the presence of best-effort CTs, which may not interfere
with the packet under analysis under Rule 4-ALT, leading to tighter estimates. The WCL
bounds for scenarios 0-3 remain the same under the alternative versions, as the number
of interfering packets from VCBs in VSV and VDVH remain bounded to one for each VCB
due to timing parameters.

In the scenarios including VCBs in VDVH (scenarios 2, 3, 6 and 7), we note that
alternative version 2 produces higher maximum latencies, but lower average latencies than
the base policy and alternative version 1.

5.4.2 Multiple NPS Modules

The plots in Figure 5.7 show a comparison between the base NPS policy and the two
variants for the multi-switch experiment from Section 5.3.

We note that alternative version 1 does not change maximum and average latencies
significantly, while slightly reducing the WCL estimates. Alternative version 2, on the
other hand, produces small increases or decreases to the maximum latencies observed by
each CT, but causes the WCL analysis bounds to increase for all cases, due to the larger
number of complete packets blocking the packet under analysis in each switch, resulting in
a worse performance for the analysis. However, we again observe that alternative version
2 decreases the average latency experienced by most of the CTs.
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Figure 5.6: Results for the alternative versions of NPS arbitration, for the experiment with
a single NPS module.
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Figure 5.7: Results for the alternative versions of NPS arbitration, for the experiment with
multiple NPS modules.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this work, we present and evaluate an WCL analysis approach for the Versal NoC
adapted from RC, by following the sequence of steps:

• Study of the architecture and operation of the Versal NoC, focusing on the arbitration
policy implemented by the NPS modules.

• Review of the RC approach for WCL analysis.

• Adaptation of the RC approach to the Versal NoC architecture, by changing the
optimization problem solved to determine the local delay suffered by packets in each
NPS module.

• Evaluation with a simulated NoC from the xcvc1902 Versal device.

In the evaluation step, we observe that the upper bounds obtained through the WCL
analysis dominate the worst-case latencies resulting from simulating the NoC, as the WCL
analysis method was designed to provide.

However, the WCL bounds overestimate the worst-case observed values by a factor of
6× to 12× in the first version of the case study in Section 5.3. We identify mechanisms
implemented by the NPS arbitration policy, and consequently accounted for in the WCL
analysis, that may contribute to the degree of pessimism observed:
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• In the worst case, the first stage of transmission through an NPS (defined in Sec-
tion 4.3.2) corresponds to multiple CTs sending flits in a particular configuration
in order to delay the token counter reset as much as possible, which is unlikely to
happen in practice.

• The interaction between different VCs may gives rise to bubbles (as defined in Sec-
tion 4.3.2) that contribute to further delay the packet under analysis, but are also
unlikely to emerge in practice (as they are maximized when the SoP flit of the inter-
fering packet is never delayed, while the following non-SoP flits are delayed as much
as possible).

6.2 Future Work

We identify the following possible next steps for WCL analysis in the Versal NoC:

• Add the complete behaviour of actual NMU/NSU endpoints to the analysis, pending
additional investigation on their behaviour or release of additional information by
the designers of the Versal NoC.

• Selection of NoC parameters (e.g. VC assignments, token registers, routing tables)
in order to guarantee real-time deadline are met.

• Improvement to the WCL analysis tool developed for Chapter 5, for instance in terms
of how the results are displayed to the designer.

• In a low-latency inference task, such as the one discussed in Section 1.1, the timing
behaviour of the Versal AI engines [51] will also factor into WCET calculations.
The AI engines, structured as a 2-dimensional arrays of scalar cores with vector
processing units, are another architecturally innovative block of the Versal platform,
to which existing WCET techniques could be adapted. A method for this would be
an important complement to the WCL analysis for the NoC component.
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Glossary

backpressure : Situation where flits are prevented from progressing due to insufficient
buffer space downstream, as determined by the flow-control mechanism. In the Versal
NoC, correspond to blocking due to Rule 3. 8

flit : Unit of data that may be transferred over an NoC link over a clock cycle (short for
flow control digit) 9

flow control : Mechanism for handling buffer occupancy in real-time in the NoC. 5, 7

token counter : Counter maintained by an NPS output link for a VC buffer, decremented
for each flit the buffer sends through the output link. Used to implement differential
QoS between CTs. 18

token register : Reset value for a corresponding token register. 18

wormhole routing : Strategy for NoC routing where contents of a packet travel as a
sequence of flits in a pipelined manner. 5
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