
Analysis of Light–Matter Systems

by

Mohamed El Mandouh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Math (Quantum Information)

Waterloo, Ontario, Canada, 2021

© Mohamed El Mandouh 2021



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

In this thesis we introduce the simplest model of a two–level system coupled to a
single mode of an optical cavity, called the Jaynes–Cummings model. This model is then
extended to an ensemble of identical two–level systems and is studied in more detail, also
known as the Tavis–Cummings model. This model is intractable, but we show that by a
clever but simple choice of basis one can reduce the dimensionality of the Tavis–Cumming
system. We then demonstrate the effectiveness of this reduction by calculating interesting
statistics of the system, and simulating large ensembles of two–level systems which were not
practical before. Finally, we examine some dynamics of the Tavis–Cummings model in the
presence of photon losses, and introduce a method for population transfer by modulating
TLS–cavity interaction strength.
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Chapter 1

Introduction

Through the interaction of a single two–level system (spins [49], superconducting qubits
[35], and neutral atoms [36]) with a single mode of an optical cavity, coherent exchange of
a quantum excitation can be realized. The study of light–matter interactions of this form
is thus called cavity quantum electrodynamics (cQED). The Tavis–Cummings model was
introduced in quantum optics to describe the behaviour of an identical ensemble two–level
systems interacting with a single mode of the electromagnetic field. The Tavis–Cummings
model is of current interest as it can be used for the implementation of many quantum
information methods. In this section we begin by introducing a simpler model of a single
two–level system coupled to a single cavity mode, called the Jaynes–Cummings model.
Then we introduce the Tavis–Cummings model, and describe regimes in which the model
is exactly solvable.

1.1 Jaynes–Cummings Model

The system of interest in this thesis is that of many two–level systems coupled to a
single mode of the cavity, also known as the Tavis–Cummings model. We begin however
by considering the simplest case of one two–level system (TLS) coupled to a single mode
of the cavity, known as the Jaynes–Cummings model.
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1.1.1 A Single Two–Level System in a Cavity

The Hamiltonian of a single two–level system in an optical cavity is the sum of three
terms

Ĥ = Ĥtls + Ĥc + Ĥint, (1.1)

where Ĥtls, Ĥc, and Ĥint describe the TLS, the cavity subsystem and the TLS–cavity
interaction, respectively. The two levels of the TLS are the ground state |g⟩ and excited
state |e⟩, such that (we set ℏ = 1 all through this text)

Ĥtls =
ωtls

2
σ̂z, (1.2)

where ωtls is the frequency of the TLS. While σ̂z is the Pauli z spin operator, which can
also be understood as the population difference between ground and excited state. σ̂z is
written in terms of the ground and excited state as

σ̂z = |g⟩ ⟨g| − |e⟩ ⟨e| . (1.3)

In addition, the spin operators responsible for the transition between the ground and ex-
cited state are the raising σ̂+ and lowering operator σ̂−. The raising and lowering operators
are written as

σ̂+ = |e⟩ ⟨g| , (1.4)

σ̂− = |g⟩ ⟨e| . (1.5)

These operators satisfy the Pauli spin–1/2 Lie algebra

[σ̂−, σ̂+] = −2σ̂z, (1.6)

[σ̂−, σ̂z] = σ̂−. (1.7)

On the other hand, we can describe the energy of the cavity in the second quantization
formalism [30]

Ĥc = ωcâ
†â, (1.8)

where ωc is the frequency of the cavity mode. While â† and â are the creation and annihi-
lation operators satisfying

[â, â†] = 1, (1.9)
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â |n⟩ =
√
n |n− 1⟩ , (1.10)

â† |n⟩ =
√
n |n+ 1⟩ . (1.11)

The â†â term can be understood as the number (photon) counting operator.

Finally, the energy of the interaction between the TLS and the cavity is given by the
electric dipole moment E = d⃗ · E⃗. The quantized Hamiltonian description is then given by
[43]

Ĥint = g(σ̂+ + σ̂−)(â
† + â), (1.12)

where g is coupling strength between the TLS and the cavity. The interaction Hamilto-
nian consists of two terms, the “co–rotating” term σ̂+â+ σ̂−â

† and the “counter–rotating”
term σ̂+â

† + σ̂−â. The counter-rotating term can be neglected in the regime g ≪ ωtls, ωc,
also known as the rotating–wave approximation (RWA). In the regimes where the RWA
holds the full Jaynes–Cummings Hamiltonian [30] is

Ĥ =
ωtls

2
σ̂z + ωcâ

†â+ g(σ̂+â+ σ̂−â
†). (1.13)

In the presence of photon loss (cavity decay) with decay rate κ, and atomic decay (spon-
taneous emission) with decay rate γ, the RWA holds in two regimes, the weak–coupling and
strong–coupling regimes. The weak–coupling regime is characterized by g ≪ ωtls, ωc, κ, γ
[50]. Meanwhile, the strong–coupling regime is characterized by γ, κ≪ g ≪ ωtls, ωc, where
the coupling strength g is much larger than the decay rates of the cavity and the TLS
as to fully realize coherent excitations swap between the cavity and TLS [32]. The RWA
approximation breaks down in the ultra–strong regime and beyond, that is for g ≫ ωtls, ωc.

1.1.2 Jaynes–Cummings Hamiltonian

Notice that in the Jaynes–Cummings Hamiltonian (1.26)

Ĥ =
ωtls

2
σ̂z + ωcâ

†â+ g(σ̂+â+ σ̂−â
†), (1.14)

the interaction term only causes transitions between |e⟩ |n⟩ and |g⟩ |n+ 1⟩. Also, one
notices that the excitation number N̂ = â†â+ 1

2
σ̂z is a constant of motion, that is[

N̂ , Ĥint

]
= 0. (1.15)
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This greatly simplifies our analysis of the system, since we only need to solve for just
one particular value n of N̂ . In other words, the Jaynes–Cummings Hamiltonian can be
written in a block–diagonal basis of N̂

Ĥ =



Ĥ0 0 0 0 · · · · · · · · ·
0 Ĥ1 0 0

. . . . . . . . .

0 0 Ĥ2 0
. . . . . . . . .

...
. . . . . . . . . . . . . . . . . .

...
. . . . . . 0 Ĥn 0

. . .
...

. . . . . . . . . . . . . . . . . .


. (1.16)

Each block Ĥn takes the form

Ĥn =

[
∆
2

g
√
n+ 1

g
√
n+ 1 −∆

2

]
, (1.17)

where ∆ = ωtls−ωc is the TLS–cavity detuning. The eigenstates of the Jaynes–Cummings
Hamiltonian, called dressed state, are a linear coupling of the bare cavity and TLS states,
|e⟩ |n⟩ and |g⟩ |n+ 1⟩,

|+⟩ = cos(θ/2) |e, n⟩+ sin(θ/2) |g, n+ 1⟩ (1.18)

|−⟩ = sin(θ/2) |e, n⟩ − cos(θ/2) |g, n+ 1⟩ , (1.19)

where tan(θ) = 2g
√
n+ 1/∆, and eigenvalues

E± = ±

√(
∆

2

)2

+ g2(n+ 1). (1.20)

A general state evolving under the Jaynes–Cummings Hamiltonian [30] is

|ϕ(t)⟩⟩ =
∞∑
n=0

cn [a+(n, t)|e, n⟩+ a−(n, t)|g, n+ 1⟩] , (1.21)

where cn is initial photon distribution, and

a+(n, t) = i
√
n+ 1 sin

(
g
√
n+ 1

2

)
ei∆t/4, (1.22)

a−(n, t) =

[
cos

(
g
√
n+ 1t

2

)
− i∆

2g
sin

(
g
√
n+ 1t

2

)]
e−i∆t/4. (1.23)
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In the case of zero detuning (∆ = 0), zero photons in the cavity, and a TLS in an
initially excited state, we get what is known as the vacuum Rabi oscillations:

a−(0, t) = cos (gt/2) , (1.24)

a+(0, t) = i sin (gt/2) . (1.25)

(a) Dressed states (b) Rabi oscillations

Figure 1.1: (a) The energies of the dressed states |+⟩ (blue) and |−⟩ (red). (b) Proba-
bility of the TLS being in the ground or excited state when resonant with cavity ∆ = 0.
Highlighting the excitation swap with the cavity.

(a) Ground state occupation (b) Steady state solution

Figure 1.2: The JC model in the ultra–strong coupling regime, i.e. without the RWA
approximation. (a) Ground state occupation of the cavity and TLS as the coupling strength
is varied from the weak–coupling regime g ≪ 1 to the ultra–strong coupling regime, g ≥ 1.
(b) Steady state solution of the cavity in the presence of photon loss, where n(t) = ⟨â†â⟩t.
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1.2 Extending to an Ensemble of Two–Level Systems

The Jaynes–Cummings model is the simplest model describing the interaction between
a single TLS with a single cavity mode. However, as experimental techniques have pro-
gressed, interest in extending the Jaynes–Cummings model has increased. In this text we
are interested in the extension of the Jaynes–Cummings model to an ensemble of identical
TLS interacting with one cavity mode, known as the Tavis–Cummings model. The Tavis–
Cummings system can be realized by an electron spin resonance system (ESR), where an
ensemble of non–interacting electron spins in a large static magnetic field places inside high
quality 3D cavity or coupled to 1D superconducting microwave cavities [42]. In ESR (and
NMR) the ensembles are of the order of 103 to 1018 spins. However, unlike the Jaynes–
Cummings model, the Tavis–Cummings model does not admit exact analytical solutions
for arbitrary numbers of the TLS. As such, for a small number of spins, modelling the sys-
tem becomes impossible. In chapter 2 we present a technique that allows us to determine
the structure of the Tavis–Cummings model efficiently.

The Hamiltonian describing the Tavis–Cummings system [47] is

ĤTC = ωtlsĴz + ωcâ
†â+ g(Ĵ+â+ Ĵ−â

†), (1.26)

where Ĵz, Ĵx and Ĵ± are collective spin operators. The collective spin operators are defined
in terms of the single spin operators as such:

Ĵz =
1

2

N∑
i=1

σ̂(i)
z ,

Ĵ± =
N∑
i=1

σ̂
(i)
± ,

where N is the number of two-level systems.

Similar to the JC Hamiltonian, the TC Hamiltonian [41, 47] conserves the total number
of excitations, with excitation number operator

K̂ = â†â+ Ĵz, (1.27)

and the interaction Hamiltonian can be analogously written in block–diagonal form. For
the case N = 2, we have

ĤTC =


∆

√
n+ 1g

√
n+ 1g 0√

n+ 1g 0 0
√
n+ 2g√

n+ 1g 0 0
√
n+ 2g

0
√
n+ 2g

√
n+ 2g −∆

 (1.28)
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and is spanned by the four bare TLS–cavity states {|e⟩ |e⟩ |n⟩ , |e⟩ |g⟩ |n+ 1⟩ ,
|g⟩ |e⟩ |n+ 1⟩ , |g⟩ |g⟩ |n+ 2⟩}.

The analogy with the JC model breaks down very quickly for general N . Fix the
number of TLS, N , then the number of states for each excitation level k grows very fast

n(k) =

{∑k
i

(
N
k

)
k ≤ N

2N otherwise
, (1.29)

where n(k) is the number of states at excitation level k. Thus, trying to directly diag-
onalize the system becomes very intractable very quickly for anything but very small k.
Fortunately however, the TC model admits more symmetries than just the one given by
total excitation, specifically the conservation of total angular momentum Ĵ2 = Ĵ2

x+Ĵ
2
y+Ĵ

2
z .

We will show in the next chapter how by leveraging the total angular momentum
symmetry, we can reduce the problem into a more tractable one. In addition to total
angular momentum symmetry, the TC model admits a continuous symmetry described by
the circle group, U(1). The generator of the continuous symmetry has infinite eigenvalues,
enumerated by k ∈ N , while the total angular momentum symmetry has eigenvalues
j = N/2, N/2−1, . . . , 1/2(0) when N is even (odd). This additional symmetry is sufficient
to make the TC model integrable and solvable, which is supported by the Bethe ansatz
solution provided by Bogoliubov [6, 7, 8].
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Figure 1.3: Structure of the energy spectrum of the TC Hamiltonian

1.2.1 Exact Analytical Solutions

In the next chapter we look closely at the structure of the TC Hamiltonian (1.26),
however there are two of cases two cases in which exact analytical descriptions of the
eigenstructure can be found. First, is the trivial case of zero TLS–cavity interaction.
Second, is case where the Zeeman term is turned off. The latter of which is of interest in
this text, and we describe here. Consider now the TC Hamiltonian prior to applying the
RWA approximation

Ĥ = ωtlsĴz + ωcâ
†â+ g(â† + â)(Ĵ+ + Ĵ−), (1.30)

This Hamiltonian admits a parity symmetry (symmetry group C2), i.e. the Hamiltonian

H commutes with the parity operator P̂ = e−iπ(â†â+Ĵz/2). Now, we rotate the Hamiltonian

8



by π/2 around y. So we have

Ry(π/2) : Ĵz 7−→ Ĵx = Ĵ+ + Ĵ− (1.31)

Ĵx 7−→ Ĵz, (1.32)

and the Hamiltonian is

Ĥ = ωcâ
†â− ωtls

2
(Ĵ+ + Ĵ−) + g(â† + â)Ĵz. (1.33)

The Hilbert space of the TLS–cavity system is spanned by the basis {|ϕn⟩ |j,m⟩},
solving the model becomes that of finding what the |ϕn⟩ are. The idea is to use joint
“coherent” states of the TLS and cavity . To that end, consider the displacement operator

â′ = â+
g

ωc

Ĵz, (1.34)

the sum of the original annihilation operator of the cavity and Ĵz. Then substituting (1.34)
into (1.33), we get

Ĥ = ωc

(
â′

†
â′ −

(
g

ωc

Ĵz

)2
)

− ωtls

2
(Ĵ+ + Ĵ−). (1.35)

A quick calculation shows that Ĥ commutes with P̂ , so we did not lose the symmetries of
the problem.

Before we solve for the coherent states of (1.34), we first find the action of Ĥ on
|ϕn⟩ |j,m⟩:

Ĥ |ϕn⟩ |j,m⟩ = ωc

(
â′

†
â′ −

(
gm

ωc

)2
)
|ϕn⟩ |j,m⟩

− ωtls

2
|ϕn⟩

(√
j(j + 1)−m(m+ 1)) |j,m+ 1⟩+

√
j(j + 1)−m(m− 1)) |j,m− 1⟩

)
.

(1.36)

We define coherent states of â′ as we usually do as:

|α⟩ = e−
|α|2
2

∞∑
n=0

αnâ′
†

√
n!

|0⟩ . (1.37)
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We can however simply substitute Ĵz in â
′ with the magnetization number m, such that

we index the coherent states by m as follows:

|m⟩ = e−
|m|2
2

∞∑
n=0

mnâ′
†

√
n!

|0⟩

= e−
|m|2
2

∞∑
n=0

mn(â† + g2

ω2
c
m2)

√
n!

|0⟩ . (1.38)

Now if we go back to (1.36) and sub in the coherent states we defined above and take the
limit as ωtls goes to 0, we get the energies

Ek,m = ωc

(
k −

(
gm

ωc

)2
)
, (1.39)

where k are the eigenvalues of the (â′)†â′.

One of the features of this system is that ground state is degenerate with energies
corresponding to k = 0 and m = ±N/2 and eigenstates

|±⟩ = 1√
2
(|−N/2⟩ |N/2, N/2⟩ ± |N/2⟩ |N/2,−N/2⟩), (1.40)

which respects the parity symmetry of our Hamiltonian. Another interesting feature of the
ground states of this system, is the mean number of photons in the cavity is N/2, which
will be quite large for the ensemble of TLS we are interested in. So the non–RWA–TC
model is analytically solvable in the limit of zero–Zeeman term.
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Chapter 2

Structure of the Tavis–Cummings
Model

Consider a TLS–cavity system with no interaction term, that is set the coupling strength
to g = 0 in (1.26), we can then observe a few properties. First, the ground state of the TLS
ensemble is the state where all the TLS are in their ground state |N/2,−N/2⟩. Second,

the number of states is
∑N/2

j=0 2j + 1 = N2 not the full 2N space of possible states. This
gap is due to the degeneracy of each subspace. One can easily find the degeneracy of each
subspace labeled by the total angular momentum of the TLS

dj =
(2j + 1)N !

(N/2 + j + 1)!(N/2− j)!
, (2.1)

for j = N/2, N/2− 1, . . . , and we do indeed recover the full space of states

N/2∑
j=0

(2j + 1)dj =

N/2∑
j=0

(2j + 1)2N !

(N/2 + j + 1)!(N/2− j)!
(2.2)

= 2N . (2.3)

Thus, we notice that if we enumerate our states with the total angular momentum j —
which is conserved— we can reduce the dimensionality of our problem from 2N to N2. Now,
going back to the interacting TC model, we will define a new basis in which to diagonalize
the Hamiltonian (1.26) labeled by total angular momentum j and excitation number k.
For a fixed value of k, the total number of states in each subspace is

nk(j) = min(k + 1, 2j + 1), (2.4)
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and basis states

Bj,k = {|k − i− j −N/2⟩ |j, i− j⟩ | k ∈ {1, nk(j) + 1}}. (2.5)

This basis can be understood in this way; in the k’th excitation level and the subspace
with total angular momentum j, the basis is the set of all states enumerating the TLS
and the cavity excitation exchanges up to nk(j) = min(k + 1, 2j + 1). This simple basis
change is enough to allow us to extract statistical descriptions and to efficiently numerical
simulate dynamics of the TC model. Figure 2.1 illustrates the effect of this basis change
on the eigenstructure of the TC Hamiltonian.

(a) Basis enumerated by excitation level k (b) Basis enumerated by excitation level k and
total angular momentum j

Figure 2.1: Energy diagrams of the TC model Hamiltonian in the basis of bare states of the
TLS-cavity on resonance (∆ = 0) (a) and in the basis of Bj,k of the two quantum numbers
k and j (b).
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2.1 Diagonalization

Consider the resonant case, such that ωtlc = ωc = ω. Then TC Hamiltonian (1.26) in
the Bj,k basis can be written in the following way:

ĤTC =
⊕

(ωk + gL(j, k)) , (2.6)

where L(j, k) is the coupling matrix, describing the interaction between the states in the j
angular momentum subspace and k’th excitation level. Looking at figure 2.1b one sees that
the only transitions allowed by the interaction Hamiltonian is a single excitation transfer
left (j + 1) or right (j − 1) in each excitation level k. Thus, the coupling matrix takes the
form a symmetric tridiagonal matrix with zero diagonal:

L(j, k) =


0 l1(j, k)

l1(j, k) 0 l2(j, k)

l2(j, k) 0
. . .

. . . . . . ln(j, k)
ln(j, k) 0

 , (2.7)

where the matrix elements li(j, k) are given by

li(j, k) = ⟨k − i− j −N/2| ⟨j, i− j| Ĥint |k − i− j −N/2− 1⟩ |j, i− j + 1⟩ (2.8)

=
√

(2ij − i(i− 1)) (k − nk(j)− i+ 1). (2.9)

Hence, diagonalizing the coupling matrices (2.7) would provide us with a full description
of the eigenstuructre of the TC Hamiltonian (1.26). Unfortunately there is no general
analytic solutions to these class of matrices, also known as Jacobi operators. However,
there exists efficient numerical methods [15] for calculating the eigenvalues of symmetric
tridiagonal matrices in O(n log n) time and eigenvectors in O(n2) time, where in the case
of our operators of interest we have n = nk(j). While analytical solutions might not exist,
by switching to the Bj,k basis we can efficiently calculate the eigenenergies and eigenstates
for each subspace of interest for large excitation levels k and TLS N .

Nevertheless, we can still gain some insight into the structure of the TC model without
relying on any numerical methods. For example, one can easily see that the spectrum of
the coupling matrix is symmetric. That is for each eigenvalue λ in the spectrum of L(j, k),
−λ is also an eigenvalue of L(j, k) [51]. Other insights can be found as we will show in the
next section.

13



2.2 Statistics of The Coupling Matrix

In this section we describe some statistics of the eigenvalues of the coupling matrix
L(j, k). Diagonalizing the coupling matrix in the Bj,k basis allows us to easily bound
maximal eigenvalue and find the angular momentum subspaces for which the dynamics of
the system are most relevant. This in turns aids in efficiently simulating the dynamics of
the TC model and calculate important values for experimental set ups.

2.2.1 Maximally Degenerate Subspace

A common approximation of the TC model is to consider only the maximally symmetric
subspace, also known as the Dicke subspace. The Dicke subspace approximation well
approximates the dynamics of the TC system in certain regimes, low temperatures and
dynamics near the ground state. However, this single subspace approximation fails for
warmer systems. One then wonders if there is a subspace or a collections of subspaces
that well approximates the dynamics of the system. A natural consideration is the most
degenerate subspace, which we will denote j∗.

We have from (2.1) that the degeneracy dj of each angular momentum subspace j is
given by

dj =
(2j + 1)N !

(N/2 + j + 1)!(N/2− j)!
. (2.10)

We take the continuous extension of the binomial function:(
N

k

)
=

Γ(N + 1)

Γ(k)Γ(N − k + 1)
, (2.11)

such that (2.10) can be written as a continuous function in j

dj =
2j + 1

N/2 + j + 1

Γ(N + 1)

Γ(N/2 + j + 1)Γ(N/2− j + 1)
. (2.12)

To find the maximum we first find

d

dj
dj = 4

(
N

N/2 + j

) 1
2
(2j + 1)(N + 2j + 2)(HN/2−j −HN/2+j) +N + 1

(N + 2j + 2)2
, (2.13)

where Hk is the Harmonic series. The degeneracy is then maximal when

1

2
(2j + 1)(N + 2j + 2)(HN/2−j −HN/2+j) +N + 1 = 0. (2.14)
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Using the identity Hx = log x+γ+O(x−1), where γ is the Euler–Mascheroni constant and
simplifying, we are left with

1

2
(2j + 1)(N + 2j + 2) log

(
N/2− j

N/2 + j

)
+N + 1 = 0. (2.15)

Then for j∗ =
√
N−1
2

+ 1
6
√
N

and N ≫ 1, we reduce to

1√
N

+O

(
1

N

)
, (2.16)

Thus, we have that the maximally degenerate angular momentum subspace is

j∗ = O
(√

N
)
. (2.17)

This means that as the number of spins N increases, the most degenerate subspace j∗

is increasingly separated from the Dicke subspace.

Figure 2.2: Plot of the angular momentum subspace j vs the it’s scaled degeneracy dj/2
N

for N = 1000 showing a peak at j = 15.

As can be seen in figure 2.2, the essential support of is approximately given by j ∈
0, 1, . . . , 2

√
N . That is most of the states in the system are contained within the first 2

√
N

angular momentum subspaces. This means that for simulating the dynamics of very large
systems that would otherwise be very computationally demanding, one can instead restrict
themselves to the first 2

√
N angular momentum subspaces, gaining a quadratic speed up.

This speed up means that the original reduction from 2N to O(N2) states can be further
reduced to O(N). This analysis also holds for any quantum system whose total angular
momentum is a constant of motion.
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2.2.2 Maximal Energy

An important aspect of the TC model is the energy range we need to consider in our
experimental design. We can find an upper bound on the energy range by bounding the
largest eigenvalue of the coupling matrix (2.7) for each j and k. Let Λ(j, k) denote the
spectrum of the coupling matrix L(j, k), then we wish to find an upper bound on the
largest eigenvalue maxΛ(j, k). To this end, consider the tridiagonal Toelpitz matrix

An =



a b 0 0 · · · 0
c a b 0 · · · 0
0 c a b · · · 0
...

...
...

. . . · · · 0
...

...
...

... a b
0 0 0 · · · c a


, (2.18)

with eigenvalues given by [37]

λk = a+ 2
√
bc cos

kπ

n+ 1
, (2.19)

for k = 1, 2, . . . , n. Now consider the case of a symmetric tridiagonal but not Toelpitz
matrix

Bn =



0 b1 0 0 · · · 0
b1 0 b2 0 · · · 0
0 b2 0 b3 · · · 0
...

...
...

. . . · · · 0
...

...
...

... 0 bn−1

0 0 0 · · · bn−1 0


, (2.20)

with all entries non–negative and each bi bounded above such that bi ≤ bmax for all i. Then
the eigenvector with the largest eigenvalue’s entries must all be positive and it’s eigenvalue
is monotonically increasing in bi. In the Toelpitz case, the largest eigenvalue is 2b cos 1

n+1
.

Thus, in the symmetric tridiagonal case the supremum of the eigenvalues is 2bmax cos
1

n+1
.

Going back to our coupling matrix, we have that each li(j, k) is non–negative and
bounded by j

√
k, and nj,k = min{2j + 1, k + 1}. Thus, the supremum of the eigenvalues

of the coupling matrix L(j, k) is

supΛ(j, k) =

{
2j
√
k cos 1

2(2j+1)
, nj(k) = 2j + 1

2j
√
k cos 1

2
, nj(k) = k + 1

. (2.21)
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Figure 2.3: Plot of the upper bound of the eigenenergies of L(j, k) for fixed excitation level
k.

Bounding the maximal energy can be used to set a tighter bound on g, for which the
RWA approximation is valid. The standard criterion for the strong–coupling regime of an
ensemble of TLS is [32]

g
√
N ≪ ω. (2.22)

As we can see in figure 2.4, this does not provide an adequate description of the validity
of the rotating wave approximation. Instead, equipped with the means of calculating the
maximal energy of each subspace of the coupling matrix, we then naturally set a tighter
criterion of

gmaxΛ(j, k) ≪ ω. (2.23)

This puts a limit on j and k, for which the RWA holds.

2.3 Semi–Classical Approximation of Density of States

A tractable way to describe features of the TC model for a large number of spins is by
restricting ourselves to the fully symmetric subspace (Dicke subspace) and using a semi–
classical approach, by which we can produce analytic results for the thermal behaviour
of the spin–cavity system. We are mainly interested in the thermal dynamics of the TC
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Figure 2.4: Plot of the ground state occupation vs the coupling strength g. In the
ultra–strong coupling regime, the ground state has both photonic (red) and TLS exci-
tations (blue). The transition from the strong to the ultra–strong coupling regime is not
adequately captured by standard criterion of g ≪ ω/

√
N . Meanwhile our criterion of

g ≪ ω/maxΛ(j, k) captures this transition very accurately.
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model by way of computing the partition function. Since the partition function is simply the
Laplace transform of the density of states, we need only concern ourselves with calculating
the density of states. The resonant TC Hamiltonian is once again

Ĥ = ωâ†â+ ωĴz + g(âĴ+ + â†Ĵ−). (2.24)

The semi–classical density of states of the TC model in the Dicke subspace well approxi-
mates the fully quantum density of states in the thermodynamic limit. The semi–classical
Hamiltonian is given by substituting the spin operators Ĵi with classical angular momen-
tum variables ji and substituting the cavity operators with classical harmonic variables q
and p [5, 18]. The semi–classical Hamiltonian is then

Ĥ =
ω

2
(q2 + p2) + ωjz + g

√
j

√
1− j2z

j2
[q cosϕ− p sinϕ] , (2.25)

where ϕ = arctan(jy/jx).

The density of states equation is given by [26]

ν(E) =
1

(2π)2

∫
dq dp dϕ djz δ (E −H (q, p, ϕ, jz)) , (2.26)

which we now need to evaluate. Recall the identity δ(g(x)) =
∑

i
δ(x−xi)
|g′(xi)| , where xi are

the real roots of g(x). We first integrate over q, so we can rewrite δ (E −H (q, p, ϕ, jz)) =
δ(q−q+)

|∂H/∂q|q+
+ δ(q−q−)

|∂H/∂q|q−
, where q+ and q− are the real roots of the quadratic equation E −

H (q, p, ϕ, jz), such that

ν(E) =
1

(2π)2

∫
djz dϕ dp dq

(
δ (q − q+)

|∂H/∂q|q+
+
δ (q − q−)

|∂H/∂q|q−

)
. (2.27)

The roots are

ωq± = −g
√
j cosϕ

√(
1− j2z

j2

)
±
√

−ω2p2 + bp+ c, (2.28)

where

b = 2ωg
√
j sinϕ

√(
1− j2z

j2

)
, (2.29)

c = g2j cosϕ2

(
1− j2z

j2

)
+ 2ω(E − ωjz). (2.30)
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In addition, we have

|∂H/∂q|q+ = |∂H/∂q|q− =
√
−ω2p2 + bp+ c. (2.31)

We then integrate with respect to q from q− to q+ and obtain simply

ν(E) =
1

(2π)2

∫
djz dϕ dp

2√
−ω2p2 + bp+ c

. (2.32)

Next, we repeat the procedure once more for p. The limits of the integration must be such
that denominator has real roots in p, so we must have

b2 − 4ω2c ≥ 0. (2.33)

But first, we can rewrite the integral as

ν(E) =
1

(2π)2

∫
djz dϕ dp

1√
−ω2(p− p+)(p− p−)

, (2.34)

and integrate from p− to p+ and obtain

ν(E) =
1

ω(2π)2

∫
djz dϕ. (2.35)

The roots p± are real when
jg2

2ω
− j2zg

2

jω
− ωj ≥ −E, (2.36)

which leaves us with three cases in E. First, when Emin ≤ E < −ωj, we have that
jz ∈ [a−, a+] holds, where

a± =
jg2

2ω
± g

ω

√
2(E − Emin). (2.37)

Second case is for −ωj < E < ωj, we have jz ∈ [−ωj, a+]. Finally, for E > ωj we have
jz ∈ [−ωj, ωj]. In addition, we have no restrictions on ϕ, so ϕ ∈ [0, 2π). Integrating with
respect to jz and ϕ we obtain

ν(E) =



2jg

ω2

√
2(E − Emin), Emin ≤ E < −ωj

j

ω

[
1− ω2/g2 + ω/g

√
2(E − Emin)

]
, −ωj < E < ωj

2j

ω
, E > ωj

. (2.38)
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This technique can be extended to the rest of the angular momentum subspaces, since
in the TC model each angular momentum sector is decoupled from the rest in the block
diagonal basis βj,k. Thus we can write the semi–classical density of states for all the angular
momentum sectors as

ν(E) =

N/2∑
j=0

djν(E, j). (2.39)

However, the semi–classical approximation is only good for large N and low tempera-
tures, so that the approximation begins to break down for small j. If the state of the system
is populated by states in the lowest lying angular momentum sectors then the approxima-
tion will fail. This may not be of concern in the thermodynamic limit N −→ ∞. However,
for finite N and general dynamics, the semi–classical approximation will not suffice.

Figure 2.5: Numerical results for the scaled density of states of the TC Hamiltonian, for
ω/g = 100.
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Chapter 3

Dynamics of the Tavis–Cummings
Model

In this chapter we examine some dynamics of the Tavis–Cummings model. We begin
by solving for the steady state solution of TC model with and without the RWA in the
presence of dissipation, which provides a better understanding of the symmetries of the
TC model. Next, we show that by modulating the TLS–cavity coupling strength g, we can
achieve close to full population transfer from the ground to the excited states the TLS and
vice–versa. Finally, we briefly discuss entanglement and notion of quantum “collectiveness”
as pertain to light–matter interaction, and propose a measure for quantum collectiveness.

3.1 Steady State Solutions in The Presence of Photon

Loss

The full TC model (Dicke model) without the RWA approximation

ĤDicke = ωtlsĴz + ωcâ
†â+ g(â† + â)(Ĵ+ + Ĵ−) (3.1)

is markedly different different than the one with the RWA approximation

ĤTC = ωtlsĴz + ωcâ
†â+ g(Ĵ+â+ Ĵ−â

†). (3.2)

Mainly, the discrete parity symmetry that the Dicke Hamiltonian admits turns into a
continuous one U(1) symmetry. This means that the TC model is integrable (exactly
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solvable), unlike the Dicke model [6, 7]. This in turn however, means that the Dicke
Hamiltonian’s structure and dynamics are different than that of the TC Hamiltonian. One
way in which the dynamics differ is in the steady state solutions in the presence of photon
loss. The Markovian master equation [11] describing the non–unitary time evolution of the
density matrix ρ̂ of the TLS–cavity system with photon dissipation rate κ is

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ κ(2âρ̂â† − â†âρ̂− ρ̂â†â), (3.3)

for Ĥ = ĤDicke, ĤTC. For which the time evolution of the expectation for an arbitrary
operator Â is

∂t⟨Â⟩ = i⟨
[
Â, Ĥ

]
⟩+ κ⟨2âÂâ† − â†âÂ− Ââ†â⟩. (3.4)

In our case we are interested in expectation of the photon number Â = â†â,

∂t⟨â†â⟩ = i⟨
[
â†â, Ĥ

]
⟩+ 2κ⟨(ââ†)2 − (â†â)2⟩. (3.5)

We can see in figure 3.1 that in the presence of photon losses the TC model decays
exponentially, with rate approximately given by 1/κ, to the state with zero photons and
TLS in their ground states. Furthermore, one can verify that the total excitation K̂
symmetry is not broken in presence of photon losses. Indeed we have that the master
equation is invariant under the following unitary rotations of the Hamiltonian and the
photon loss Lindblad operator â

ĤTC −→ eiK̂θĤTCe
−iK̂θ, (3.6)

â −→ eiK̂θâe−iK̂θ. (3.7)

This should mean that excitation should be conserved, but for Lindblad master equations,
symmetry does not imply that the corresponding quantity is conserved [2]. That is if the
initial state is in the k’th excitation subspace in the presence of photon losses, then it will
not stay there but indeed move down the excitation ladder at an exponential rate.

In contrast, the Dicke model reaches a non–trivial steady state with some number of
photons still in the cavity. The reason is that unlike the continuous symmetry in the
TC model allowing us to decompose the interaction Hamiltonian into block diagonals of
K̂ sectors. The Dicke Hamiltonian allows transitions up and down the excitation ladder,
since K̂ is not conserved, as can be seen from the non–zero elements in figure 3.2. So
while in TC model photon losses allows for the decay into fewer excitation sectors, with
no path upwards. The Dicke Hamiltonian allows for excitation increase and decrease, and
the steady state is the balancing of both processes.

23



Figure 3.1: Time evolution of the photon number in the cavity for the TLS–cavity model
with and without the RWA approximation in the presence of photon loss, for N = 30.

3.2 Phase Modulation of The Coupling Strength

In this section we explore how modulating the TLS–cavity strength g can affect the
dynamics of an ensemble of TLS sufficiently detuned from the cavity. Specifically, starting
with an ensemble of TLS in their excited states, we drive TLS to their ground states by
modulating the TLS–cavity coupling strength g. The Hamiltonian describing such a system
has the form

Ĥ = ωcâ
†â+ ωtlsĴz + g(f(t)Ĵ+â+ f(t)∗Ĵ−â

†). (3.8)
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Figure 3.2: Structure of the Dicke Hamiltonian, N = 4 and k up to 16.

We focus on the simple of case of sinusodial modulation

Ĥ = ωcâ
†â+ ωtlsĴz +

g

2
(sin(ωdrivet) + 1)(Ĵ+â+ Ĵ−â

†). (3.9)

The interaction part of the Hamiltonian is responsible for the excitation transfers be-
tween the TLS ensemble and the cavity and TLS–TLS interactions mediated by the cavity.
However, when the TLS and cavities are detuned, i.e. |ωc − ωtls| ≫ g, population transfer
is highly suppressed. It is easy to see that the appropriate choice of the driving frequency
is ωdrive = |ωc − ωtls|. To see why this is true, we restrict ourselves to the case of a sin-
gle TLS and proceed with routine time–dependent perturbation theory. The interaction
Hamiltonian in the Dirac picture is given by

ĤD
int = e−i(ωcâ†â+ωtlsĴz)tĤinte

i(ωcâ†â+ωtlsĴz)t

=
g

2
(sin(ωdrivet) + 1)(Ĵ+âe

i∆ωt + Ĵ−â
†e−i∆ωt), (3.10)

where ∆ω = |ωc − ωtls| is the TLS–cavity detuning.

The transition probability to first order from excited to ground state is given by

P1→0 = λ2
∣∣∣∣g2
∫ t

0

dt1 (sin(ωdrive t1) + 1)
(
V10e

i∆ωt + V†
10e

−i∆ωt
)∣∣∣∣2, (3.11)
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where λ is the pertubative parameter and

V10 = ⟨0| Ĵ+ |1⟩ , (3.12)

V†
10 = ⟨0| Ĵ− |1⟩ . (3.13)

Evaluating the integral we get

P1→0 =
λ2g2

4

∣∣∣∣ (A+B)

(∆ω − ωdrive)(∆ω + ωdrive)
− C

∆ω

∣∣∣∣2, (3.14)

where
A = ωdrive((V†)10 − V10)e

it∆ω + ωdrive cos(ωdrive t)(V10 + V†
10e

2it∆ω),

B = i∆ω sin(ωdrive t)(V10 − V†
10e

2it∆ω),

C = i(eit∆ω − 1)(V10 + V†
10e

it∆ω).

So, by choosing the driving frequency ωdrive to be close to the detuning frequency,
i.e. |∆ω − ωdrive| ≪ ∆ω + ωdrive, we maximize the transition probability between the
excited and ground state.
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Figure 3.3: Numerical simulation of the maximum population transfer for each ωdrive, for
ωc = 3 GHz and ωtls = 3.08 GHz for N = 15. Largest population transfer is achieved for
ωdrive = ∆ω.
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3.3 Quantum Collectiveness

It would superficially appear that quantum collective behavior is closely linked with
multi–body entanglement. To that end, one would ideally want a measure of collectivity,
similar to one of the many proposed measures of entanglement. We believe the essence
of quantum collective behavior is the emergent structure they induce, and the resultant
cooperative enhancement of more fundamental properties. To elucidate the connection
between collectiveness and multi–body entaglement, we consider the simplest case of two
spins in the presence of an electromagnetic field and dipolar interaction

Ĥ =
ω

2
σ̂1
z +

ω

2
σ̂2
z +

Ω

2

(
σ̂1
+σ̂

2
− + σ̂1

−σ̂
2
+

)
. (3.15)

The eigenstructure is then just the “collective” states of the two spins

|g⟩ = |↓↓⟩ , (3.16)

|s⟩ = 1√
2
(|↑↓⟩+ |↓↑⟩) , (3.17)

|a⟩ = 1√
2
(|↑↓⟩ − |↓↑⟩) , (3.18)

|e⟩ = |↑↑⟩ . (3.19)

With energies, −ω,Ω,−Ω, ω respectively. Notice that the symmetric and anti–symmetric
states are the maximally entangled Bell states. In the basis defined by (3.16), (3.17),
(3.18), and (3.19) the two–spin system acts as a single four level system. We also know
that in the Dicke model [19] that the symmetric state decay channel |e⟩ → |s⟩ → |g⟩
is the enhanced collective behaviour known as superradiance, while |e⟩ → |a⟩ → |g⟩ is
a subradiant transition. One then wonders if all the eigenstates (3.16), (3.17), (3.18),
and (3.19) in which the two spins act as one larger four level system are collective, or
just the symmetric and anti–symmetric states for which non–classical effects can be seen.
If we choose the former, then we notice that while the maximally entangled states |s⟩
and |a⟩ are collective, the separable states |g⟩ and |e⟩ are also collective in this case and
thus discriminating between entangled and separable states is not akin to discriminating
between collective and non–collective states.

Sensitivity to Coherent Operations as a Measure of Collectiveness

Some methods have been suggested as to measure collectiveness of which the most
promising is the permutation symmetric method [24]. Another possible measure of collec-
tiveness for an ensemble might be to determine how sensitive the collection is to erroneous
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perturbative coherent operations. The most sensitive stand–alone states have been shown
in [25], however, it is likely that due to degeneracy factors increasing the erroneous action,
the most sensitive subspace would likely be more near j∗ for ensemble systems such as the
one considered here. In this way, this would provide a measure of sorts of the level of
collectiveness of the various angular momentum subspaces.

If we wish to simply categorize whether a particular state is collective or not, we might
follow a protocol for the discrimination between collective and non–collective states utiliz-
ing quantum Fisher information. For example, a quantum state ρ̂, of a system of spin–1/2

particles are collective if after a unitary transformation ρ̂→ ρ̂θ = eiθĴn⃗ ρ̂e−iθĴn⃗ , there exists
an optimal collective POVM measurement µ such that uncertainty in the phase estimation
∆θest saturates the Cramér–Rao bound. The sensitivity of the phase estimator is bounded
by the Cramér–Rao bound [29]

∆θest ≥
1√
nFQ

, (3.20)

where n is the number of times the measurement is repeated and FQ is the quantum Fisher
information. The quantum Fisher information of a state ρ̂ with respect to an observable
Â is given by [52]

FQ[ρ̂, Â] = 2
∑
l,k

(λk − λl)
2

(λk + λl)
|⟨k|Â|l⟩|2. (3.21)

Given a collective observable, the Fisher information may prove to be a valuable mea-
sure for how much information ρ̂ stores in its collective degrees of freedom. For the case
of a pure state |ψ⟩ and transformation generated the collective spin operators {Ĵx, Ĵy, Ĵz}
we have that [10]

FQ[|ψ⟩ , Ĵn⃗] = 4⟨(∆Ĵn⃗)2⟩. (3.22)

Maximizing Fisher information FQ is reduced to finding the optimal direction n⃗. For
example, the cat state saturates this bound. The collective correlation matrix C for a
quantum state ρ̂ is defined by the matrix elements

Cij =
1

2
⟨ĴiĴj + ĴjĴj⟩ − ⟨Ĵi⟩⟨Ĵj⟩, (3.23)

where ⟨Â⟩ = tr
(
ρ̂Â
)
.

Then the maximum Fisher information is the maximum eigenvalue of the collective
correlation matrix C. This follows from the fact that FQ = 4⟨(∆Ĵn⃗)2⟩ = 4⟨n|C|n⟩.
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Given the relation between the Fisher information and collective correlation matrix C,
we can define a metric on the space of collective matrices as follows [52]:

δ(P,Q) =
√
trP + trQ− 2F(P,Q), (3.24)

where P,Q are any positive semi–definite matrices and F(P,Q) =

[
tr

√√
PQ

√
P

]2
is

the fidelity. Not only can we discriminate between collective and non–collective states
but we can measure how close states are under our definition of “collective–ness” by first
calculating the collective correlation matrix C and using the metric δ.
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Chapter 4

Conclusion and Future Directions

Cavity QED has garnered great interest in recent years for it’s versatile use in quantum
information. The main system of interest in this text is the Tavis–Cummings system, which
can be realized by many different experiments, electronic spin resonance (ESR), nuclear
magnetic resonance (NMR), NV centers, superconducting qubits, and neutral atoms. In
a typical ESR experiment the ensemble of spins can contain 103 and up to 1018 identical
spins. Describing such a system becomes impossible, since Tavis–Cummings model does
not admit exact solutions for arbitrary number of TLS. Meanwhile, simulating the sys-
tem is also impossible due to the exponential growth of hardness in the number of TLS.
However, using the techniques introduced in this text, we can gain interesting insights
into the structure of the Hamiltonian that can aid in both producing significantly more
efficient numerical simulations and derive values critical to the design of spin–cavity ex-
perimental setups. First, we showed that by considering an extra good quantum number,
the total angular–momentum, we can rewrite our Hamiltonian in a new basis that is ag-
nostic to the degeneracy of each total angular–momentum subspace, effectively reducing
the complexity of our system from exponential (2N) to quadratic (N2) in the number of
TLS (N). In addition, by noticing that most of the population resides in the first O(

√
N)

angular–momentum subspaces, we can further reduce the complexity by approximating
the system with only the first O(

√
N) subspaces. With efficient techniques for calculating

the energy of the Tavis–Cummings model, we introduced a better bound on the validity of
the strong–coupling regime and the rotating wave approximation. These methods can be
used to justify experimental setups and aid in the development of new quantum informa-
tion techniques, by way of better spin–cavity control [1, 54, 55]. This thesis has only been
concerned with systems with low temperatures T , as such an interesting research direction
is a more nuanced treatment of the thermal behaviour of the Tavis–Cumming model. An-
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other, future research directions in is a full description of quantum collectiveness especially
as they pertain to spin–cavity systems. Such a description would be critical to extracting
information from quantum systems.
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Appendix A

The Rotating Wave Approximation

Beginning with the full Hamiltonian describing the Jaynes–Cummings model without
the rotating wave approximation (1.1.1)

Ĥ =
ωtls

2
σ̂z + ωcâ

†â+ g(σ̂+ + σ̂−)(â
† + â). (A.1)

Taking a small step back, we know that the time–evolution of an operator in the
Heisenberg picture is given by

dÂ

dt
= i
[
Ĥ, Â

]
, (A.2)

then for the cavity annihilation operator â we have

dâ

dt
= i
[
Ĥ, â

]
(A.3)

= i
[
ωcâ

†â, â
]

(A.4)

= −iωcâ, (A.5)

hence the time–dependent solution of the annihilation operator is

â(t) = â(0)e−iωct, (A.6)

thus we also have

â†(t) = â†(0)eiωct. (A.7)
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Similarly, the time–dependent equation for the TLS raising and lower operators are

σ̂+(t) = σ̂+(0)e
iωtlst (A.8)

σ̂−(t) = σ̂−(0)e
−iωtlst. (A.9)

To that end, we can rewrite the interaction term with explicit time–dependence

Ĥint(t) = g(σ̂+(0)e
iωtlst + σ̂−(0)e

−iωtlst)(â†(0)eiωct + â(0)e−iωct). (A.10)

Consider the change of basis to the interaction picture given by

Û = exp
[
iĤ0t

]
, (A.11)

where Ĥ0 =
ωtls

2
σ̂z +ωcâ

†â is the bare TLS and cavity Hamiltonian. Then the full Jaynes–
Cummings Hamiltonian (A.1) in the interaction picture is given by

Ĥrot = g(σ̂+âe
−i(ωtls−ωc)t + σ̂−â

†ei(ωtls−ωc)t) + g(σ̂+â
†ei(ωtls+ωc)t + σ̂−âe

−i(ωtls+ωc)t), (A.12)

where we set â ≡ â(0) and σ̂− ≡ σ̂(0) for brevity. The first term with slowly oscillating
components (ωtls −ωc) in (A.12) is referred to as the “co–rotating” term, while the second
term with the fast oscillating components (ωtls+ωc) is referred to as the “counter–rotating”
term. In the cases where the counter–rotating term is dropped, it is termed the rotating
wave approximation. In the case of the Jaynes–Cummings model, the counter–rotating
term can be ignored when the coupling strength g between the TLS and cavity is much
smaller than the effective frequency, such that the influence counter–rotating term on the
dynamics of the system is very small. In addition, the validity of the rotating wave approx-
imation depends on the temperature of the system. In the case where of high temperatures
T , excitation and spin numbers are no longer good quantum numbers and rotating wave
approximation breaks down. However, in this thesis regimes of high temperatures are not
considered. Thus, we always assume that the system is cold enough such that rotating
wave approximation holds.
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