
Age-Sensitive Features for Detection of Muscle Fatigue using 

the High-Density Electromyogram 
 

by 

Bharath Krishnan 

 

 

 

 

 

 

 

A thesis 

presented to the University of Waterloo in 

fulfilment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Systems Design Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waterloo, Ontario, Canada, 2021 

 

 

© Bharath Krishnan 2021 

  



ii 

Author’s Declaration 
The contents of this thesis consist of material all of which I authored or co-authored: see 

Statement of Contributions included in the thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. I understand that my thesis may be made 

electronically available to the public. 

  



iii 

Statement of Contributions 
The publications that are associated with the work presented in this thesis are as follows: 

I. Krishnan B., Zanelli, S., Boudaoud, S., Scapucciati, L., McPhee, J., Jiang, N. “Age-

sensitive High Density Surface Electromyogram Features for Detecting Muscle 

Fatigue Using Core Shape Modelling” (Submitted for publication) 

The research associated with this paper was conducted at the University of Waterloo by Bharath 

Krishnan, Léa Scapucciati and Serena Zanelli under the supervision of Dr. Ning Jiang, Dr. John 

McPhee, and Dr. Sofiane Boudaoud. Léa Scapucciati and Serena Zanelli were responsible for the 

study design and participant recruitment. Bharath Krishnan and Serena Zanelli were primarily 

responsible for the coding and data analysis. Bharath Krishnan wrote the draft manuscripts which 

all co-authors intellectually contributed on. 

  



iv 

Abstract 
The processes behind fatigue development within the muscles have been a topic of interest 

for exercise scientists for decades. This is because fatigue is one of the primary reasons for a 

decrease in performance and increase in likelihood of injury during exercise[1]. Typically, muscle 

fatigue is detected through modifications of the amplitude and spectral characteristics of a surface 

electromyogram (sEMG), or the variability of torque signals recorded throughout a sustained 

contraction. However, the behaviour of these parameters with the generation of fatigue depends 

on a variety of factors. One major factor is age, where the age-related loss of muscle fibers, and 

changes in neuromuscular system impact how muscles adapt to and develop fatigue. The purpose 

of this study was to examine age-sensitive High Density Surface Electromyogram (HD-sEMG) 

features and investigate the effect of spatial filter type on intramuscular coherence analysis in 

fatigue detection. Fatiguing submaximal isometric contractions of the bicep brachii was performed 

by eight young (24.40 ± 2.42 years) and five elderly (72.90 ± 2.21 years) males, while HD-sEMG 

recorded signals from the biceps brachii and a dynamometer recorded torque signals. The task was 

performed at 20% maximal voluntary contraction (MVC). From the HD-sEMG signals, the mean 

intramuscular coherence was calculated in the alpha (11-15Hz), beta (16-29Hz), and gamma (30-

50Hz) frequency bands each of which stems from different neurological origins. Statistical 

differences were only found in the alpha (p=0.0006), and beta (p=0.0207) bands between the pre-

and post-fatigue conditions of the young group. Furthermore, a correlation between mean 

coherence and torque variability during the final 25% of the contraction before task failure revealed 

that both the age groups had positive correlation in the alpha band. Different correlations were 

found in the beta and gamma bands, with positive correlations being observed in the elderly group 

and negative correlations in the young group. These results suggest that age-related changes in the 

corticospinal pathway exist causing the elderly to be less fatigable when compared to the young 
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population. This proposes that the introduced intramuscular coherence analysis can be used to 

obtain fatigue related features from HD-sEMG signals that are age-sensitive.    
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1. Introduction 

Muscle fatigue, and the underlying mechanisms responsible for the phenomenon have been 

one of the primary focuses in the fields of sport, exercise, rehabilitation and ergonomics [2]. 

Understanding these mechanisms is critical in the improvement of performance and/or prevention 

of musculoskeletal injury. A major difficulty in understanding the development of muscle fatigue 

is considering the various factors that may affect the processes behind fatigue generation, such as 

aging. Generally, it is accepted that advanced aging causes changes in the musculoskeletal system, 

resulting in a loss of muscle mass and strength[3], [4]. However, it is still relatively unclear how 

the process of aging changes the muscles resistance to fatigue. In recent years, it has become 

widespread in the literature to evaluate muscle fatigue using surface electromyography (sEMG) as 

changes in the signal can provide information about biochemical and physiological changes in the 

muscle [5]. However, a single pair of sEMG electrodes provide limited spatial coverage, and 

therefore lacks the ability to capture the activity across a muscle and a muscle group, potentially 

missing vital spatial information about the muscles’ activity. To address this, High-Density sEMG 

(HD-sEMG) technology can be used as it accounts for both spatial and temporal characteristics of 

the signal allowing for a broader assessment of muscle activity [6]. Another issue associated with 

the poor spatial coverage of conventional sEMG is that it typically picks up activity of motor units 

(MUs) in the electrodes’ vicinity, which increases the difficulty to make conclusions about specific 

muscles/MUs. The usage of HD-sEMG allows for the construction of different electrode 

configurations which can be used to implement spatial filters to help isolate motor units within the 

muscle. As muscle fatigue progresses, the degree of synchronization between firing times of 

simultaneously active MUs is believed to increase [7], [8]. Coherence analysis can be used to 

quantify this correlated MU activity, however using this analysis whilst utilizing the increased 
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spatial information provided by the HD-sEMG remains largely unexplored. The exploration of 

coherence whilst leveraging the spatial advantages of the HD-sEMG may give more insight into 

how fatigue develops within the muscle and more accurate detection of muscle fatigue. 

For HD-sEMG data from the young and elderly subjects that underwent a fatiguing contraction, 

there are the following main objectives of this thesis: 

I. Evaluate the ability of different spatial filter electrode configurations to detect fatigue 

related differences in a) conventional EMG features and, b) mean coherence within, and 

between the different age groups. 

II. Compare the evolution of force steadiness and mean coherence in each frequency band. 

III. Examine age-related differences in muscle fatigue generation 

  



3 

2. Background 

2.1. Muscles and Muscular Fatigue 

Muscles that are continuously and/or intermittently activated eventually show a gradual 

decline of performance. This process is known as muscle fatigue. In the fields of sports and 

rehabilitation, this phenomenon is one of the most prevalent mechanisms that result in an increase 

in likelihood of injury and decrease in overall task performance. Fatigue can be split into two 

categories based on where it originates from: central fatigue which originates from the central 

nervous system (CNS) and peripheral fatigue which originates from the peripheral nervous system 

(PNS) [8].The purpose of this section of the review is to 1) Examine the underlying physiology of 

muscles, 2) Examine the physiological processes underlying muscular fatigue and its impact on 

muscle function and 3) Understand how age affects the physiology of the muscle and how it 

impacts the generation of muscle fatigue. 
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2.1.1. Muscles 

Muscles are one of the components that make up the musculoskeletal system, where its 

primary role is for maintaining body weight, posture and assisting in movement [9]. All the 

muscles in the human body can be split into 3 distinct groups: skeletal, cardiac, and smooth 

muscles. The type of muscle primarily responsible for movement is skeletal muscle, which attaches 

to the bone via tendons and work together to produce movement. Each skeletal muscle is made up 

of thousands of muscle fibers wrapped together by connective tissue sheaths [10]. These muscle 

fibers are typically classified as Type I (slow-twitch) or Type II (fast-twitch) and these fibers are 

bundled together in the muscle to form fascicles [11]. Each muscle fiber in the fasciculi contain 

numerous myofibrils which each contain several myofilaments, as seen in Figure 1 . 

Myofibrils are bundled together in a striated pattern forming sarcomeres, which is known 

as the fundamental contractile unit of the muscle [10]. Within the sarcomeres, the actin and myosin 

myofilaments play the most significant role for contraction. Contraction of the muscle is elicited 

 

Figure 1: Skeletal muscle anatomy. Taken from [124] 

   .  
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by means of action potentials from the CNS which triggers the release of actin filaments, allowing 

for myosin binding and muscle contraction [12] .  

Action potentials that elicit contractions are delivered to the muscle through signalling 

from alpha motor neurons. One of these motor neurons can innervate several muscle fibers, 

forming a motor unit (MU). The number of MUs activated generally depend on the required force, 

where maximal amounts of force require maximal amounts of MUs. Although maximal MUs are 

activated, all available MUs are not simultaneously activated to prevent complete muscle fatigue 

[11]. The size of the MU is indicative of its function, with smaller MUs being responsible for 

precise control of a muscle and larger MUs are responsible for general/simple movements [11]. A 

twitch occurs when a single action potential from a motor neuron produces a single contraction in 

the muscle fibers it innervates. The resulting force of a muscle’s contraction can be modulated 

through descending neural drive applied to the motor unit pool of the muscle. An increase in 

descending drive would result in a general increase of activating frequencies of the motor units in 

the pool. Consequently, the force twitches of the motor unit would occur in faster succession. This 

leads to wave summation, where a new force twitch is superimposed on the previous twitch, 

resulting in a stronger over all force output. The temporal frequency can continue to increase 

 

Figure 2: Temporal summation in the muscle. Taken from [11]. 

   .  
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reaching a state of incomplete tetanus and then eventually complete tetanus, where the relaxation 

phase completely disappears between twitches. However, complete tetanus rarely occurs, and it 

cannot be sustained as it eventually leads to muscle fatigue. 

Motor units are recruited based on the Henneman’s size principle, which dictates that 

during a contraction MUs that have the smallest fibers are activated first [13]. When a contraction 

first starts, the smallest and most excitable MUs are activated, then as the contraction is sustained, 

larger and larger MUs are recruited. The muscle fibers themselves can be split into two different 

categories. Type I fibers are characterized by low force twitch and speed but are highly fatigue 

resistant, whereas type II fibers generally have capabilities of high force twitch but have lower 

fatigue resistance. 

2.1.2. Muscle Fatigue: Central and Peripheral Factors 

From a skeletal muscle’s perspective, fatigue can be defined as the decline of a muscle’s 

ability to produce force or power in response to the same level of target force or power level. 

Several physiological processes that contribute to the muscle fatigue start at the beginning of a 

sustained contraction and continues until the contraction is completed or failed. Once the 

contraction has finished, fatigue related changes in the muscle during the contraction gradually 

reverts to its original state [14]. The accumulation of muscle fatigue is not solely due to processes 

within the muscle. In fact, there are two systems that influence the generation of muscle fatigue, 

as such they are split into two categories: central fatigue and peripheral fatigue. In this case, central 

fatigue refers to fatigue caused by processes of spinal and/or supra-spinal sources whereas 

peripheral fatigue stems from the peripheral nerves, neuromuscular junction and muscles [15].  
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Central fatigue is an important aspect of muscle fatigue as processes with the CNS reduce 

the neural drive to the muscle causing a decline in performance, despite conscious effort to 

maintain the output of the muscle [16]. Specifically, the CNS via central neurotransmitters such as 

dopamine play a key role in the  activation and inhibitory responses of motoneurons during fatigue 

[17]. This is one of the main mechanisms that ultimately activates MUs for force production. When 

the CNS elicits the repetitive activation of motoneurons during a sustained contraction, changes in 

the intrinsic properties of the motoneurons occur[16]. These changes could result in a reduction in 

the ability to respond to excitatory synaptic input, thereby decreasing the ability to sustain a force. 

Sensory neurons innervating skeletal muscle also performs a critical role in the development of 

central fatigue. These neurons, namely group III and IV muscle afferents, are responsible for 

conveying information to the CNS about nociceptive, non-nociceptive, mechanical, chemical and 

thermal events that take place within the muscle [18]. Feedback from these muscle afferents during 

a fatiguing task results in the impairment of spinal motoneurons, causing a reduction in muscle 

activation[16]. 

Peripheral fatigue refers to the decline in force generating capacity due to factors 

originating in the muscle itself rather than the CNS [7] . This is typically characterized by the 

depletion of energy stores, accumulation of by-products and/or the impairment contractile 

mechanisms within the muscle [19]. Specifically, peripheral fatigue impairs contractile 

mechanisms from the neuromuscular junction (where motor neuron connects to muscle fibers) to 

where the muscle connects to the tendon (muscle-tendon complex) both electrochemically and 

mechanically [20]. Major electrochemical mechanisms of the muscle that are affected are the 

action potential synaptic transmission, propagation of action potentials (conduction velocity) 

across the sarcolemma, and the excitation-contraction coupling [20]. From a mechanical 
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perspective, peripheral fatigue influences force transmission between the muscle and tendon by 

altering the stiffness and viscoelasticity of the muscle-tendon complex and surrounding tissues 

[20]. 

2.1.3. Muscle Fatigue and Aging 

As an individual ages, modifications occur within the neuromuscular system which may 

result in changes of the size, shape and fiber composition of skeletal muscles [3], [4]. This age 

associated loss in muscle mass and strength is due to increased fat infiltration, which is commonly 

referred to as sarcopenia [21]. Epidemiological studies estimate that sarcopenia is prevalent in 5-

15% of elderly people aged 60-70 years old but this number rises to 11-50% in those aged 80 or 

above [22]. The loss of muscle mass associated with age may involve a decrease in the number of 

muscle fibers, specifically type I and II. As both fiber types have different resistances to fatigue, 

the loss of these muscle fibers in the elderly may result in a different response to fatigue. In fact, 

one study found that the elderly group had 24% less type II muscle fibers, and 20% less mean 

muscle fibers in the biceps brachii when compared to the young [23]. Similarly, a study on the 

number of fibers within the vastus lateralis reported 50% less in number of fibers and 24% 

reduction in type II muscle fibers [24]. The reduction in type II fibers suggest that elderly produce 

contractions with less strength but in turn also fatigues more slowly when compared to the young.  

Throughout the literature, it has been seen that healthy elderly subjects are typically less 

fatigable than young adults in both maximal and submaximal contractions [25]. This behaviour 

between young and elderly subjects are consistent between different muscle groups [26]–[28], 

sexes [28], [29], intensities [28], as well as when subjects of both age groups are matched for 

strength [30]. However, some studies reported no difference in fatigue or the elderly being more 

fatigued [31]–[33]. The inconsistencies in these results could be attributed to the contraction type 
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or methodology implemented, with studies utilizing dynamic contractions typically reporting the 

elderly being more susceptible to fatigue. 

2.2. Electromyographical Signal Processing and Properties 

Currently, surface electromyography (sEMG) is one of the most widely used non-invasive 

modalities to record muscle fatigue and muscle activity in general [5]. EMG works by detecting 

the electrical potential generated by muscle fibers through the skin. However, the recorded signal’s 

amplitude is considerably weak at 1-10 mV [34]. The frequency of the signal is between 0-500Hz 

with majority of the energy being between 50-150 Hz [34], [35]. It also is able to capture changes 

in neuromuscular and morphological properties that occur during muscle fatigue through 

modifications in its time-domain and spectral parameters [5]. In contrast to sEMG, HD-sEMG 

adds a spatial dimension to the signal by arranging multiple electrodes in a two-dimensional grid 

over a muscle, thereby enhancing the spatiotemporal resolution of a typical sEMG signal. Each 

electrode on the grid are made of an electrically conductive material (typically Au, Ag, AgCl) , 

have a diameter of 3-5mm and have interelectrode distances between 5-10mm to avoid aliasing 

[36]. 

The usage of HD-sEMG allows for a more representative view of the muscle during a 

contraction, providing additional information about the activation, fiber heterogeneity and 

distribution of a muscle [37]. Another advantage of HD-sEMG is that it allows for the 

implementation of spatial filters using different electrode configurations. This is important as 

sEMG in general has a large pick-up volume, meaning the activity of multiple muscles far from 

the electrode can potentially be reflected in one signal [38]. Leading to one of the most prominent 

obstacles in sEMG analysis, crosstalk, which is defined as the signals observed from target muscles 

that are contaminated by different muscles [38]. This is unfavorable in EMG studies as conclusions 
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cannot be made about specific areas/muscles if signals from other areas are also being recorded. 

Spatial filtering can be used to reduce the effect of crosstalk as well as other unwanted components 

such as movement artifacts [39]. Among the different spatial filters, Bipolar (BP) and Laplacian 

(LA) are commonly implemented to isolate wanted parts of the signal [40]–[42]. BP is one of the 

most applied spatial filters in sEMG studies, for which the difference between the signals recorded 

from two adjacent electrodes, typically 1-3cm apart, along the muscle fiber direction are calculated 

[43]–[46]. LA acts as a spatially high-pass filter and is more sensitive to the activities of superficial 

motor units of the muscle directly below the measurement site, making it less susceptible to 

recording crosstalk [47]. 

2.3. Electromyographical Features in Fatigue Detection 

Throughout the literature, many sEMG features have been investigated for use in muscle 

fatigue detection/analysis. The most widely explored features used in fatigue analysis are those 

that are calculated in the time or frequency domain. This is because these features best characterize 

changes in muscle fiber conduction velocity, motor unit recruitment, and time synchronization in 

the activity of particular motor units (MUs) [5], [48]. The most commonly used features to 

characterize these parameters would be the Average Rectified Value (ARV), Root-Mean-Square 

(RMS) in the time domain and the Mean Frequency (MNF) and Median Frequency (MDF) in the 

frequency domain [49]–[52]. Wavelet features has also been well-studied and successfully 

detected and/or predicted fatigue [5], [53]–[55]. A variety of other parameters have been used to 

study muscle fatigue in the form of autoregression analysis, entropy , recurrence quantification 

analysis, higher-order statistics and composite features [49]. Coherence is another way of detecting 

fatigue by the correlated activity of simultaneously active MUs, which is considered an important 

physiological principle that occurs as muscle fatigue progresses [8]. 
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Although coherence has been gaining traction as a means of detecting muscle fatigue, it 

remains relatively unexplored. To this end, coherence was chosen as the primary feature 

investigated in the work presented in this thesis. The study also compared the performance of this 

feature with the ARV, RMS, MNF and MDF features in the time and frequency domain as they 

are used most often in the detection of muscle fatigue in the literature. 

2.3.1. Coherence 

As previously discussed, many modifications in both the central and peripheral nervous 

system occur during a fatiguing contraction. One such mechanism that has been commonly 

suggested in the literature as of late is the alteration of the degree of synchronization between the 

firing times of simultaneously active MUs [8]. In detail, a pair of motor neurons within a motor 

pool receive neural input, one proportion is common synaptic input to the entire motor pool, while 

another proportion is independent input [56]. This common synaptic input is responsible for 

correlated firing of the pair of motor neurons, and the strength of this correlation is known as motor 

unit synchronization (MU synchronization). MU synchronization can be measured using 

correlation analysis in either the time or frequency domain. When the correlation is quantified in 

the frequency domain, it is known as coherence. Coherence derived from a pair of EMG signals 

(EMG-EMG coherence) quantifies the common synaptic input either between muscles 

(intermuscular coherence) or between parts of the same muscle (intramuscular coherence) [57], 

[58]. The detected coherence are typically separated into different frequency bands, including delta 

(1-4 Hz), alpha (8-15 Hz), beta (16-29 Hz) and gamma (30-45 Hz), with coherence in different 

bands representing different neurological origins [8], [59], [60] . The delta band typically 

corresponds to “common drive” which is the neural input received by all the MUs in the motor 

pool that is later translated into individual firing rates [8], [61]. The origin of alpha coherence is 
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still unclear in the literature, however some studies have suggested a relation to physiological 

tremor and a central origin[62]–[64]. Both beta and gamma bands reflect information from 

oscillatory cortical and sub-cortical processes within the cortico-spinal pathway, where these 

processes are known to correlate to MU synchronization [8], [65]. 

Several studies have shown that there are changes in intermuscular coherence during a 

fatiguing contraction. This was most prominent in the beta coherence band, where an increase was 

seen in synergistic hand muscles during index finger flexion [66], knee extensor muscles [67], 

antagonistic elbow muscles [68], and three digit grasping [69]. Furthermore, a study was 

conducted that assessed the differences in fatigue development between the young and elderly 

which revealed that there was age-specific reductions in beta-band coherence between specific 

ankle muscles during gait [70]. In contrast to these studies, some have recorded no significant 

increase in beta band coherence but rather showed increased coherence in other bands such as an 

increase in alpha band coherence between elbow flexor muscles [71] , and synergetic quadricep 

muscles [72]. In addition to this, one study reported no changes in alpha or beta band coherence 

but a decrease in delta coherence within unilateral plantar flexors during a fatiguing task [73]. 

Although not as many, there are studies that have investigated the relationship between 

fatigue and intramuscular coherence. Analysis of intramuscular coherence of the first dorsal 

interosseous muscle reported increases in delta, alpha and beta band coherence following a 

fatiguing contraction [8], [74]. Investigation of the biceps brachii revealed an increase in alpha 

band coherence after a isometric contraction of elbow flexors measured using intramuscular 

electrodes [75]. Another study examined fatigue through continuous dynamic contractions of the 

biceps brachii and revealed an increase in beta band energy of the intramuscular coherence profile 

using HD-sEMG electrodes [76]. Current fatigue analysis of intramuscular coherence generally 
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uses composite MU spike trains derived from either decomposition techniques of sEMG signals 

or through intramuscular electrodes. Analyzing intramuscular coherence for the detection of 

fatigue using interference sEMG signals have yet to be explored. Additionally, the use of 

intramuscular coherence to assess age-associated differences in fatigue generation is not explored 

either. 

2.3.2. Time-Frequency Domain Features 

As muscle fatigue progresses, the recorded sEMG signal undergoes changes in its 

amplitude and spectral content [49], [77], [78]. This is due to the effect of conduction velocity 

reduction, which acts as a scaling factor for EMGs amplitude and associated power spectrum [79]. 

The changes in amplitude can be quantified using ARV and RMS, which are commonly used 

metrics in the literature to quantify fatigue [49]. Both of these metrics are known to increase 

substantially at the beginning of a contraction, then increase gradually until mechanical failure 

[80]. The power spectrum of the EMG signal compresses during a fatiguing contraction because 

of the reduction of conduction velocity and can be measured using both MNF and MDF. Multiple 

studies revealed that compression of the power spectrum leads to a decreasing trend in both MNF 

and MDF as fatigue accumulates [49], [52], [80]. Although these features are widely used, there 

are several limitations that keep them from being global indicators of muscle fatigue. One principle 

limitation is the fact that a change in conduction velocity is not the only factor in determining 

changes in sEMG signals [79], [81]. To account for these other factors, different indices are 

explored to evaluate their ability to detect fatigue. 
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3. Methods 

3.1. Subjects, Systems and Procedures 

Seventeen male subjects free from physical impairment were recruited from the University 

of Waterloo to participate. Subjects were split into two groups according to age; the young group 

comprised of 10 subjects between the ages of 22 and 30 years old (24.40 ± 2.42 years) and the 

elderly group had 7 subjects between ages 68 and 75 years old (72.85 ± 2.67 years). The weight 

and height of every subject was measured as well as their arm length and diameter, the former of 

which was used for BMI calculations. Max torque was also recorded as the force outputted during 

Table 1: Young subject demographics and relevant data. 

Subject 
ID 

Age 
(years) 

BMI 
(Kg/m2) 

Max 
Torque 
(N.m) 

Arm 
Length 

(cm) 

Arm 
Diameter 

(cm) 

1 23 24.82 110.3 28 32 

2 22 21.63 89.0 30 28 

3 23 24.33 57.0 34 31 

5 23 23.08 88.0 33 30 

6 23 23.20 66.0 33 28 

7 27 23.12 55.0 33 30 

10 22 18.81 52.0 34 25 

15 30 21.37 44.0 31 27 

16 24 22.01 79.0 34 28 

17 26 21.10 62.0 30 27 

 
Table 2: Elderly subjects demographics and relevant data. 

Subject 
ID 

Age 
(years) 

BMI 
(Kg/m2) 

Max 
Torque 
(N.m) 

Arm 
Length 

(cm) 

Arm 
Diameter 

(cm) 

4 75 22.63 54.0 33 30 

8 72 27.46 89.0 32 32 

9 74 20.92 63.0 35 27 

11 75 23.67 35.0 32 27 

12 68 23.77 39.0 32 26 

13 75 22.26 67.0 32 26 

14 71 27.74 44.0 31 31 
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the 100% MVC contractions. The demographics for all subjects in both groups are presented in 

Table 1 and Table 3. 

All recruited subjects were right hand dominant and using the body mass index (BMI), no 

subject in either the young group (22.34±1.66) or the elderly group (25.55±3.06) was reported as 

underweight (BMI ≤ 18.5) or obese (BMI ≥ 30). At the time of the study, the participants did not 

report any abnormal pathologies, myopathy, and musculoskeletal injury within the past 6 months. 

Informed consent was obtained from each participant before the experiment and procedures were 

in accordance with the Declaration of Helsinki. 

 A HD-sEMG electrode system (EMG-USB2+, OT Bioelettronica, Italy), was used to 

acquire sEMG data in a monopolar montage. The system recorded signals with a sampling rate of 

2048 Hz, and a gain of 500. Following skin preparation, an 8x8 grid of electrodes (10mm inter-

electrode distance, 4mm electrode diameter) was placed atop the biceps brachii of the dominant 

right arm (approximately placed such that the grid lied between 20% and 61% of the upper limb 

length measured from the elbow; Figure 3). The biceps was chosen as it is a large superficial 

 

Figure 3: High Density sEMG (HD-sEMG) electrode grid placement on subject and numerical reference 

of the electrodes. 
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muscle that is primarily responsible for elbow flexion and has known observable changes in 

muscle fibers with aging [24]. 

 Subjects used a Dynamometer system (System 4 Pro, Biodex, USA) to generate torque 

signals during elbow flexion. The system acquired torque signals with a sampling rate of 2048 Hz. 

Using this system, an isometric contraction is ensured as zero velocity is maintained in all possible 

range, allowing no significant variations in muscle length or joint angle during contraction. 

Subjects were seated in the dynamometer with 85° hip flexion from the anatomical position. The 

dynamometer arm was oriented 30° toward the participant resulting in an elbow angle of 90° prior 

to elbow flexion. Following calibration, the user was seated with their right elbow resting against 

a support. The forearm was placed in supination position firmly holding the fixed handle on the 

dynamometer arm, as seen in Figure 4. Due to the electrodes placed on the arm, it was not possible 

to immobilize the arm completely. 

 

Figure 4: Dynamometer system during elbow flexion. Arm constraint was removed throughout the 

protocol to allow for placement of HD-sEMG electrode grid. Taken from [82].   
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To get used to the experimental setup, subjects first performed test contractions to get a 

sense of familiarity. Subjects were then instructed to produce maximal voluntary contractions 

(MVC) by pulling the dynamometer handle towards them at maximal effort and maintaining it for 

five seconds. This was repeated three times to get an accurate reading of the MVC value. Two-

minute breaks were provided between the MVC contractions to minimize the effect of fatigue on 

the MVC recordings. Following the MVC contractions, subjects rested an additional 2 minutes 

before continuing the remainder of the protocol. Recording of both sEMG and torque data was 

started after the rest period and subjects were instructed to perform three quick contractions to 

allow for realignment between the sEMG and torque data in offline analysis. Subjects were then 

asked to sustain 20% MVC contraction until a subjectively determined endurance limit, which was 

defined as “task failure”. Subjects were able to see their torque output overlaid with the 20% MVC 

target on a monitor, allowing them to constantly maintain a force above the 20% MVC torque 

objective. 

3.2. Preprocessing of EMG Data 

The EMG data for all subjects in both groups was pre-processed prior to further analysis. 

The EMG signals recorded were filtered within the EMG-USB2 device using a bandpass filter 

between 10 and 500Hz. A subject matter expert inspected raw EMG data for quality, identifying 

channels that either have no signal or excessive noise (<1% of the channels recorded, only found 

in five subjects). The data of these channels were substituted by the average value of surrounding 

channels. Subjects that exhibited a signal-to-noise ratio (SNR) under 12dB were excluded from 

further analysis. The signals recorded were obtained from a monopolar configuration, meaning it 

is highly susceptible to crosstalk contamination [83]. To mitigate the effects of crosstalk, Bipolar 

and Laplacian spatial filters were introduced. As the filters may affect the detection of muscle 
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fatigue, features were calculated with and without these filters applied. This was done to 

investigate if muscle fatigue detection could be improved depending on the selection of spatial 

filter. To align the torque and EMG signals together in time, the data obtained from the three brisk 

contractions prior to the fatiguing contraction was used. An alignment procedure was implemented 

which calculated the cross-correlation function between the two signals. The position of the peak 

values of the cross-correlation function was identified, which was then used to realign the EMG 

and torque signals. 

3.2.1. Signal To Noise Ratio (SNR) 

For every subject, the signal-to-noise ratio (SNR) was computed to eliminate any 

participants that had noisy sEMG signals. This metric represents the ratio of the sEMG signal 

during a contraction over the background noise during the resting periods. The SNR for each 

recording was calculated using a one second non-overlapping moving window and translating it 

over the duration of the entire signal. The noise was then determined by taking a one second 

window of the two-minute rest period in-between MVC contractions at the beginning of the 

protocol. The SNR values was then averaged over all 64 electrodes on the HD-sEMG grid and 

Table 3: Averaged SNR values for each participant. * Indicates subject that was excluded due to SNR 

lower than threshold value of 12dB 

Young 
Subjects 

SNR 
(dB) 

Elderly 
Subjects 

SNR 
(dB) 

1 24.04 4 24.31 

2 23.07 8 14.82 

3 *9.34  9 12.06 

5 31.74 11 18.02 

6 17.19 12 13.97 

7 16.19 13 12.33 

10 16.83 14 12.67 

15 15.36   

16 23.64   

17 29.52   
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compared to an empirically determined 12dB threshold. One out of the 17 subjects were excluded 

from further analysis due to being below this threshold. The SNR for every subject is reported in 

Table 3. 

3.2.2. Spatial Filtering 

sEMG data was collected using the 64-channel electrode grid and from this grid, spatial 

filter electrode configurations were constructed. The three spatial filter electrode configurations 

used in this study is: Monopolar (MP), Bipolar (BP) and Laplacian (LA). MP spatial filter 

configuration used the raw EMG signal obtained from each electrode and no further calculation 

 

 

Figure 5: Three different spatial filters derived from 3 different electrode configurations of the HD-

sEMG grid: monopolar (MP), bipolar (BP) and Laplacian (LA). All filters are implemented for all 

available electrodes on the electrode grid. 
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was used. The BP spatial filter was implemented on the entire grid using the closest-neighbouring 

electrode pairs in the proximal-distal direction, aligning with the direction of the muscle fiber of 

the biceps brachii. This resulted in 56 bipolar EMG signals being obtained from the grid (7 

longitudinal bipolar recordings except most distal column on grid) by subtracting EMG signals  

recorded from adjacent electrodes along the muscle fiber direction, as seen in (1)  

where 𝑉𝑖
𝐸is the sEMG signal recorded from the ith electrode and 𝑉𝑖+1

𝐸 is the sEMG signal recorded 

from the signal adjacent to the ith electrode in the distal direction. 

The Laplacian spatial filter configuration was also used as it is a spatially high-pass filter and is 

more sensitive to the activities of the superficial motor units of the muscle directly below the 

measurement site [47]. As such, it is also less susceptible to surface EMG crosstalk [47]. The 

Laplacian filter is set up by assigning a fixed weighting factor of ’4’ to the central electrode, and 

a factor of ‘-1’ to the nearest neighbouring electrodes, and the output of the filter is the weighted 

summation of all the channels. This can be computed using equation (2) below. 

where 𝑆𝑖 is the set of electrodes surrounding the ith electrode and N is the number of surrounding 

electrodes [84]. This resulted in 36 Laplacian EMG signals being obtained from the grid as edge 

electrodes. 

3.3. Data Analysis 

Features were extracted from the EMG data of both groups to quantify the 

electrophysiological changes in muscle activity due to fatigue. First, three widely used time and 

  (1) 

  (2) 
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frequency domain features in the analysis of muscle fatigue were calculated for each filter. These 

features include the average rectified value (ARV), mean frequency (MNF) and median frequency 

(MDF). Following this, the pooled intramuscular coherence was calculated for each filter. The 

coherence was calculated between interference EMG signals on the HD-sEMG grid and were 

examined in the alpha (11-15 Hz), beta (16-29 Hz) and gamma (30-45 Hz) frequency bands, as 

explained in the Coherence Analysis subsection. This was implemented as coherence allowed for 

investigation of the correlation between MU discharges in the biceps brachii during a fatiguing 

contraction [8]. Both conventional fatigue features and coherence was calculated for each filter to 

compare 1) the ability each filter has to detect fatigue within the young and elderly groups, 2) 

ability of each filter to detect differences in generation of muscle fatigue between both age groups, 

and 3) fatigue detection ability between mean coherence values and previously established EMG 

fatigue features. Following this, the correlation of mean coherence in each frequency band and the 

variation of torque during the fatiguing contraction was calculated. This was done to assess if there 

were any age-related differences between the increase in force fluctuations, which is typically 

associated with muscle fatigue(as seen in [85]) and the various neural mechanisms that are 

reflected by intramuscular coherence and associated frequency bands. 

3.3.1. Torque Analysis 

Torque measures were calculated as it allows for the investigation of muscle performance 

during a fatiguing contraction. Specifically, the variability of torque production was evaluated as 

there is a considerable amount of evidence reported in the literature that the fluctuations of torque 

increase with muscle fatigue both during and after a sustained contraction [85]–[87]. Interestingly, 

although the elderly have been found to be less fatigable than the young, studies have revealed that 

older adults have a diminished ability to produce consistent torque when compared to young adults 
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[88], [89]. This is likely due to age related changes in the muscles and/or nervous system such as 

Sarcopenia [89], [90] and/or changes in inputs to the motoneuron pool [91], [92]. However, these 

findings suggest that while the elderly have more variability in torque initially, such variability 

increases in a lesser extent throughout a fatiguing contraction when compared to the young. This 

reveals potential differences in the physiology behind torque production during a sustained 

contraction between both groups. As such, the coefficient of variation (CoV) was calculated for 

each participant in both groups to quantify the fluctuations of torque throughout the fatiguing 

contraction. This was performed by segmenting the acquired torque signal for each subject into 

overlapping 25-second segments. The torque signal was recorded with a sampling rate of 2048 Hz, 

the same as the EMG signals, to avoid synchronization issue. For the first epoch, the CoV of the 

first 25 seconds of the torque signal was calculated. The epoch was then shifted 1 second forward 

in time (2048 samples) and then CoV was calculated for the following 25 seconds, which caused 

an overlap of 96%. This shifting in time was iterated from the first epoch, Epoch 1 through Epoch 

‘n-25’, where n is the length of the torque signal in seconds. This segmentation process is shown 

below in Figure 6.  
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3.3.2. Time and Frequency Feature Analysis 

Three of the most widely used features in the time and frequency domain for analysing 

muscular fatigue are extracted from the HD-sEMG signal for every filter. In the time domain, the 

average rectified value (ARV) and root-mean-square (RMS) were calculated and used to 

characterize the amplitude of the EMG signals. Both ARV and RMS is used to provide insight into 

the activity of the muscle under fatiguing conditions, and is calculated using the following discrete 

equation [5], [52]: 

 
 

(3) 

 
 

(4) 

where Ntot is the number of samples in the selected time window, and xi is the ith sample of the 

analyzed sEMG signal. Both the mean (MNF) and median frequency (MDF) features were 

 

Figure 6: Overview of the torque segmentation method. Each square corresponded with one second in 

the torque signal. Every 1 second window represents 2048 torque samples. The first second (dark 

green) corresponding with the epoch number and the rest of the epoch (light green) was used to 

calculate the CoV. 
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calculated in the frequency domain. These parameters were extracted from the power spectral 

density (PSD) of the EMG signal, estimated by the Welch method. Both features are used to 

represent the spectral component of the EMG signal, which provides information about the muscle 

fibres conduction velocity during fatiguing contractions. To calculate the spectral features, the 

entire EMG signal was split into smaller time-windows. Each window is further split into 5 sub-

windows where the periodogram has been estimated for each sub-window and then averaged over 

the 5 sub-windows. The following discrete expressions were used to calculate both MNF and 

MDF. 

 
 

(5) 

   (6) 

where FTot is the total frequency bins and Sk is the magnitude of the power spectrum at the kth bin.  

3.3.3. Coherence Analysis 

Coherence analysis was utilized to assess the linear correlation between the spectral 

components of different motor units within the biceps brachii. Coherence was studied throughout 

the bicep brachii by pooling the coherence calculated from the electrodes furthest apart in the 

medial-lateral direction on the HD-sEMG grid. This was done to minimize the effect crosstalk may 

have on the coherence spectra. Prior to coherence analysis, no additional filters were applied to 

avoid the effect filtering may have on coherence. Rectification is often recommended for EMG 
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signals prior to coherence analysis because of its ability to facilitate the detection of oscillatory 

inputs by increasing the spectral power associated with these inputs [93]. However, rectification 

itself is a nonlinear process that effects the frequency components of the original signal [94], [95]. 

As stated in [95], rectification should be implemented if there is a low amount of amplitude 

cancellation, which is associated with low contraction levels. Although a low contraction level 

(20% MVC) is used, as it is a fatiguing contraction the amplitude cancellation increases due to the 

recruitment of additional MUs, increased MU potential duration and change in amplitude [96]. 

Consequently, EMG signals were not rectified prior to coherence calculations to limit the adverse 

effects associated with the rectification process. All coherence analyses reported in this study was 

implemented in the Neurospec toolbox for MATLAB (www.neurospec.org, Version 2.0, 2008 ,see 

[97] for theoretical framework). Coherence analysis was based on the spectral estimates of the 

EMG signals for each electrode in the electrode pair. Non-overlapping windows of one second 

(segment length of 2048 samples) were used resulting in spectral plots having a resolution of 1 Hz 

per bin. The magnitude squared coherence, |𝐶𝑥𝑦(𝑓)|
2
 , between two EMG signals recorded from 

two different electrodes, x(t) and y(t), for a frequency 𝑓 was calculated as  

 
 

(7) 

where 𝑆𝑥𝑥(𝑓) and 𝑆𝑦𝑦(𝑓) are the auto spectra of each signal and 𝑆𝑥𝑦(𝑓) is the cross spectra. 

Coherence provides a measure of linear association of the two signals at each frequency on a scale 

of 0 to 1, where 0 shows no correlation and 1 means the two signals are identical. In other words, 

coherence estimates show how much of the EMG signal of one surface electrode can predict the 

activity in another EMG signal from a different electrode. Using this, coherence can help detect 

http://www.neurospec.org/
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fatigue by quantifying the frequency content of common presynaptic input to MUs [16], [98]. 

Significance thresholds of coherence measure were determined through  

 
 

(8) 

where CI stands for confidence interval, 𝛼 is the confidence level, which was set to be 0.05 to 

correspond with a 95% confidence limit and L is the number of segments used in the coherence 

calculation [97] . 

The spatial information that the HD-sEMG provides was leveraged to provide a more 

holistic view of the muscle. To do this, the correlation structure of the multiple electrode pairs was 

combined to form an estimate of coherence. This is known as pooled coherence which provides a 

single value which represents this correlation structure at the population level across several data 

sets [99] . Pooled coherence is similar to individual coherence as it is also measures linear 

association on a 0 to 1 scale but differs in that any inferences relate to the population (pairs of 

electrodes) as a whole rather than an individua l pair of electrodes [100]. The pooled coherence, 

𝐶𝑃𝑜𝑜𝑙(𝑓), at frequency 𝑓 is defined as  

  (9) 

where 𝐶𝑥𝑦
𝑖 (𝑓)  is the individual coherency (not to be confused with coherence |𝐶𝑥𝑦(𝑓)|

2
) 

calculated from 𝐿𝑖 segments of EMG data for each individual record (in the context of the present 

study, this equates to electrode pair) 𝑖, calculated within a population consisting of a total number 

of records (total electrode pairs) 𝑘.  
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To compare the coherence more accurately across participants in different age groups and 

filter types, the raw pooled coherence estimates was normalized using a Fischer z-transformation 

[101], [102]. This normalization transforms the data to normal distribution with zero mean and 

unit variance. The transformation was defined as  

 
 

(10) 

where 𝑍𝑥𝑦(𝑓) is the resultant z-score after z-transformation and 𝐿 is the number of segments used 

in the estimation of the entire coherence plot. Fisher z-transformation is typically used in coherence 

analysis as it stabilizes the variance of the coherence estimates allowing for more accurate 

statistical results [69]. 

The z-score of the pooled coherence was calculated for every subject within both groups 

separately to determine 1) which spatial filter is the most capable at detecting fatigue related 

differences in intermuscular coherence, 2) if there are age-related differences in the coherence 

profiles during fatigue, and 3) identify if there is a correlation between CoV of torque and 

coherence in both groups. The mean coherence was analyzed in the alpha (11-15 Hz), beta (16-29 

Hz) and gamma (30- 45 Hz) frequency bands for both pre- and post-fatigue conditions. The length 

of each fatigue condition changed depending on the analysis, with analysis 1) and 2) utilizing the 

first and last 25 seconds of the contraction for the pre- and post-fatigue conditions respectively. 

The first 25 seconds was used as it is representative of the muscle with minimal fatigue. The 25 

seconds prior to task failure was analysed as it can provide insight into the physiological processes 

underlying the generation of muscle fatigue [103]. Usage of a smaller time-window of 25 seconds 

is leveraged through the usage of the spatial information from the multiple electrodes pooled. This 

allowed for conclusions to be made about the fatigue state of the muscle from time windows that 
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are considerably shorter when compared to other similar studies [68], [69]. Analysis 3) used the 

first and last 25% of the fatiguing contraction as the considerably longer length allowed for better 

correlation estimates between the CoV of torque and mean coherence. 

3.4. Statistical Analysis 

Statistical analysis was first performed on the mean ARV, RMS, MDF and MNF 

parameters as well as the z-score mean coherence in the alpha, beta, and gamma bands in both the 

pre- and post-fatigue states. To compare the effect each spatial filter had on time-frequency 

parameters, a linear regression was performed to assess the change throughout the fatiguing 

contraction. In addition, Mann-Whitney U tests were utilized to investigate 1) if there was a 

significant difference between fatigue states within each of the young and elderly groups and 2) if 

there was a difference in fatigue generation between both young and elderly groups. This analysis 

was repeated for each of the MP, BP, and LA spatial filters. Next, the CoV of the mean coherence 

calculated in every frequency band was calculated for each filter type. These results were 

compared with one another using Mann-Whitney U tests to examine the consistency of coherence 

measured throughout the contraction. The effect force steadiness had on mean z-score coherence 

was investigated using Spearman’s rank correlation for each frequency band. For all analyses, the 

level of significance was set to 0.05. 
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4. Results 

The data from one subject had been removed from the analysis due to predominately poor 

SNR. An additional two subjects were removed from the study because they voluntarily stopped 

sustaining the contraction before their muscle fatigued  as indicated by positive trends in ARV 

values. As a result, 8 and 5 subjects remained in the young and elderly group, respectively. An 

example of the raw sEMG and torque signals taken from a representative subject throughout the 

fatiguing contraction is shown in Figure 7.   

 

Figure 7: A) EMG signals and B) Torque signals taken during the fatiguing contraction for a 

representative subject. Rest is when the subject is at rest prior to the contraction starting. The start of 

the contraction (SC) represents when the subject starts the fatiguing contraction and end of the 

contraction (EC) represents when the subject reaches task failure and is no longer able to sustain the 

contraction. 
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4.1. Effect of Spatial Filter on Time Frequency Feature Extraction 

For every spatial filter, the ARV, RMS, MNF, and MDF time and frequency domain 

parameters were calculated, and tracked over the fatiguing contraction, as seen on a representative 

subjected in Figure 8. It was observed that there was an increase in both ARV and RMS during 

the fatiguing contraction, while the MNF and MDF spectral parameters decreased, which is in 

agreement with what has been reported in the literature [5], [103], [104] .  

For each spatial filter, a linear regression was computed for every feature to assess if filter 

type influenced detection of fatigue related differences between the young and elderly. The 

 

Figure 8: Changes in mean A) ARV, B) RMS, C) MDF, and D) MNF throughout the fatiguing 

contraction of a representative subject. Each feature was calculated for each of the MP, BP and 

LA spatial filters. Regression lines were depicted with solid lines along the trace of each feature. 



31 

resulting slopes of this analysis are reported in Table 4 for the young population and Table 5 for 

the elderly population. As the contraction approached task failure, time domain features (ARV, 

RMS) increased the most rapidly using MP for both groups. MP was also the most sensitive to 

fatigue related decline in frequency domain features (MDF, MNF) in the young group. However, 

frequency domain features calculated in the elderly recorded the greatest decline using LA. 

Although features calculated under the different filters followed similar trends, none were able to 

distinguish differences in fatigue development between the young and elderly. Mann-Whitney U 

tests reported non-significant differences between both groups in each of the ARV (MP: p= 0.222; 

BP: p= 0.093; LA: p=0.127) , RMS (MP: p= 0.1709; BP: p= 0.093; LA: p=0.127), MDF (MP: p= 

0.284; BP: p= 0.622; LA: p=0.435), MNF (MP: p= 0.065; BP: p= 0.354; LA: p=0.435) features.  

Table 4: Slope values (derived from linear regression of each time-frequency feature (ARV, RMS, 

MDF, MNF) for every participant in the young population. The slope values for every feature are 

reported for each of the MP, BP, and LA spatial filter configurations. 

 MP BP LA 

Subject 

# 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

1 2.719 3.371 -0.197 -0.193 0.712 0.995 -0.077 -0.070 1.079 1.637 -0.028 -0.040 

2 0.240 0.286 -0.052 -0.046 0.101 0.140 -0.004 -0.021 0.195 0.294 -0.013 -0.026 

3 0.190 0.239 -0.033 -0.036 0.043 0.058 -0.016 -0.021 0.070 0.098 -0.028 -0.035 

4 0.068 0.086 -0.010 -0.020 0.021 0.027 -0.012 -0.032 0.038 0.049 -0.045 -0.062 

5 0.013 0.016 -0.009 -0.010 0.025 0.033 -0.009 -0.004 0.055 0.070 -0.035 -0.044 

6 0.041 0.054 -0.003 -0.017 0.003 0.002 -0.048 -0.063 0.038 0.036 -0.073 -0.079 

7 0.137 0.173 -0.009 -0.039 0.037 0.052 -0.010 -0.024 0.044 0.065 -0.024 -0.043 

8 0.164 0.198 -0.032 -0.035 0.062 0.079 -0.017 -0.021 0.132 0.171 -0.025 -0.046 

Average 0.447 0.552 -0.043 -0.050 0.125 0.173 -0.022 -0.031 0.206 0.302 -0.034 -0.047 

 
Table 5: Slope values (derived from linear regression of each time-frequency feature (ARV, RMS, 

MDF, MNF) for every participant in the elderly population. The slope values for every feature are 

reported for each of the MP, BP, and LA spatial filter configurations. 

 MP BP LA 

Subject 

# 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

ARV 

(μV/s) 

RMS 

(μV/s) 

MDF 

(Hz/s) 

MNF 

(Hz/s) 

1 0.101 0.126 -0.003 -0.016 0.022 0.028 -0.054 -0.036 0.010 0.017 -0.083 -0.094 

2 0.124 0.155 -0.012 -0.021 0.021 0.026 -0.031 -0.024 0.036 0.046 -0.046 -0.045 

3 0.023 0.028 -0.014 -0.018 0.003 0.003 -0.011 -0.013 0.008 0.010 -0.009 -0.001 

4 0.086 0.106 0.0003 -0.002 0.057 0.075 -0.009 -0.008 0.107 0.147 -0.003 -0.003 

5 0.032 0.041 -0.016 -0.016 0.002 0.004 0.007 0.004 0.004 0.006 0.011 0.007 

Average 0.073 0.091 -0.009 -0.015 0.021 0.027 -0.019 -0.015 0.033 0.045 -0.026 -0.027 
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In addition, a ‘ratio of change’’ was formed between the feature values calculated within 

the first 25 seconds of the contraction and the final 25 seconds prior to task failure to highlight 

changes when fatigue is at its maximum. This was calculated for the features calculated under 

every spatial filter, shown in Figure 9  

It was observed that both ARV and RMS in the young group exhibited larger average 

change throughout the fatiguing contraction when compared to elderly. However, these features 

calculated using MP revealed that the young group (ARV: 26.02%, RMS: 25.89%) changed less 

throughout the contraction than the elderly (ARV: 30.69%, RMS: 29.02%). The BP spatial filter 

showed the largest ratio of change in ARV and RMS between the three filters. The ARV increased 

 

Figure 9: The ratio of change of conventional sEMG features., ARV, MNF, MDF pre- and post-

fatigue, for young (white) and elderly (black) subjects. The ratio of change is used to represent the 

ratio of the respective metrics obtained in the first 25 seconds of the contraction and the last 25 

seconds, just prior to task failure. 
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43% and RMS increased 44.37% for the young population, whereas the elderly increased 34% and 

32.58% respectively, throughout the fatiguing contraction.  

Irrespective of filter type, the two frequency domain indices (MDF and MNF) showed larger 

changes in the young population. In the case of MDF, the LA filter observed  the largest change 

as the muscle fatigued with a decrease of 9.29%, whereas both MP and BP decreased 6.04% and 

7.34% respectively. MP had the biggest difference in MNF as it decreased 9.33% when compared 

to BP and LA which decreased 6.37% and 6.84% respectively.  

Although the trends are observable and the ratio of change seemed to be non-zero, regardless of 

the spatial filters and features used, no statistically significant differences existed between the 

young and elderly: ARV (MP: p=0.222; BP: p=0.833; LA:0.435), RMS (MP: p=0.2844; BP: 

p=0.7242; LA:0.3543), MDF (MP: p=0.093; BP: p=0.833; LA:0.833), MNF (MP: p=0.127; BP: 

p=0.724; LA:0.222).  
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4.2. Effect of Spatial Filter on Coherence 

The effect each spatial filter had on the pooled intramuscular coherence values on 2 

representative subjects (1 young subject and 1 elderly subject) are shown below in Figure 10. Pre- 

and post-fatigue coherence plots is shown to highlight the effect each spatial filter had on the 

detection of fatigue.  

 

Figure 10: Coherence plots from one representative subject from the young population (Black) and a 

subject from the elderly population (Red). Coherence is shown for both Pre- and Post-fatigue 

conditions, and for each condition the resultant coherence plots from the Monopolar, Bipolar and 

Laplacian spatial filters are given. The horizontal dotted lines represent the 95% confidence limit of 

coherence. 
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For both the young and elderly representative subject, LA filtering appeared to be the most 

sensitive to fatigue related changes. This can be observed in its coherence plot which showed a 

substantial increase in its coherence values after fatigue, particularly in the 11-55Hz range. The 

coherence values in this range transitioned from being mostly below significance level (calculated 

to be 0.0199) at the start of the task to being well above significance prior to task failure. Revealing 

possible fatigue related changes in the alpha (11-15Hz), beta (16-29Hz) and low gamma (30-45Hz) 

frequency bands of the coherence profile. Both MP and BP filters did not capture any significant 

changes in coherence pre- and post-fatigue in either participant. It was observed that the MP and 

BP filters resulted in coherence values far above significance levels, with the former showing no 

coherence below the significance level. Analysis of the different frequency bands of both young 

and elderly groups using mean coherence distributions for each spatial filter are presented in Figure 

11.  
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Analysis of both groups revealed a similar trend to that of the singular subject, with MP 

having the highest mean coherence values, followed by BP and LA. Statistical analysis revealed 

no significant differences in mean coherence during pre- or post-fatigue conditions between the 

young and elderly groups for any of the MP, BP, and LA filters, seen in Table 6. Suggesting that 

the spatial filters are not sensitive to age-related changes in mean coherence values, either pre- or 

post-fatigue. 

 

Figure 11: Violin plots showing the distribution of mean coherence values across participants from 

both (A) young and (B) elderly groups. Distributions are shown for each of the Monopolar (first row), 

Bipolar (second row), and Laplacian (third row) spatial filters, and for each filter the pre- and post-

fatigue distributions are given for the alpha, beta, and gamma frequency bands. * Indicates significant 

differences (p<0.05) between both pre- and post fatigue conditions. 
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When comparing pre- and post-fatigue conditions, both LA and BP filters recorded an 

increase in mean coherence whereas MP generally recorded a decrease in young and elderly 

subjects. However, only the LA filter recorded significant differences in coherence between both 

fatigue conditions within the young group. Specifically, LA was sensitive to changes in coherence 

in the alpha (p=0.0006), and beta (p=0.0207) frequency bands but not gamma (p=0.5054). 

Coherence values calculated within the elderly group using the same LA filter resulted in 

nonsignificant changes between fatigue conditions in the alpha (p=0.1508), beta (p=0.2222), and 

gamma(p=0.6905) bands. 

Table 6: Mann-Whitney U test results comparing pre- and post fatigue conditions of both 

young and elderly age groups. Where p-values are calculated for each of the alpha, beta, and 

gamma frequency bands. 

 Young Elderly p-value 

 Alpha Beta Gamma 

Monopolar 
Pre-Fatigue Pre-Fatigue 0.0932 0.3543 0.0653 

Post-Fatigue Post-Fatigue 0.3543 0.5237 0.0932 

Bipolar 
Pre-Fatigue Pre-Fatigue 0.7242 0.7242 0.7242 

Post-Fatigue Post-Fatigue 0.3543 0.8329 0.5237 

Laplacian 
Pre-Fatigue Pre-Fatigue 0.1709 0.3543 0.4351 

Post-Fatigue Post-Fatigue 0.1274 0.4531 0.4351 
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4.3. Variability in Torque and Coherence 

For both groups, the correlation between mean coherence in all frequency bands and 

windows (length of time) is presented in Figure 12. This correlation was calculated for both the 

initial 25% (I25) of the contraction and the final 25% (F25) of the contraction prior to task failure. 

When comparing I25 and F25 of both groups, the young group consistently exhibited higher mean 

coherence in all frequency bands. Interestingly, significant positive correlations between  time and 

 

Figure 12: Scatter plot of the windows (time) and i) mean Alpha, ii) mean Beta, and iii) mean Gamma 

coherence are shown for A) Young and B) Elderly participants. Associated r and p-values are 

calculated using Spearman’s rank correlation. Correlations calculated for the first 25% of the 

contraction (red) and the last 25% of the contraction (black) prior to task failure. 
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each of the mean alpha (I25: r=0.171, p=0.01; F25: r=0.413, p=1.26e-9), mean beta (I25: r=0.477, 

p=0; F25: r=0.809, p=0) and mean gamma (I25: r=0.353, p=2.55e-7; F25: r=0.860, p=0) coherence 

bands is observed for the elderly group. The young group showed similar behaviour in the alpha 

coherence band where it displayed significant positive correlation (I25: r=0.969, p=0; F25: 

r=0.564, p=0). This was consistent in mean beta coherence calculated from the initial 25% of the 

contraction, which showed significant positive correlation (r=0.926, p=0). However, mean beta 

coherence calculated from the final 25% of the contraction showed significant negative correlation 

(r=-0.421, p=2.61e-6). Correlations calculated using mean gamma coherence in the young group 

displayed nonsignificant negative correlation (I25: r=-0.122, p=0.193; F25: r=-0.120, p=0.196). 

The elderly group also showcased significant positive correlation between CoV of torque 

and mean alpha (I25: r=-0.012, p=0.099; F25: r=0.511, p=0), beta (I25: r=0.448, p=2.33e-11; F25: 

r=0.643, p=0), and gamma coherence (I25: r=0.264, p=0.0001; F25: r=0.636, p=0) as seen in 

Figure 13.Similarly, the young group also has significant positive correlation between mean alpha 

coherence and CoV of torque (I25: r=-0.090, p=0.337; F25: r=0.387, p=1.87e-5) at the final 25% 

of the contraction. Interestingly, the correlation of CoV of torque and mean beta (I25: r=-0.182, 

p=0.051; F25: r=-0.297, p=0.001) and gamma (I25: r=-0.069, p=0.461; F25: r=-0.245, p=0.007) 

coherence in the young exhibited the opposite behaviour to the elderly, with both showing 

significant negative correlation at the end of the contraction.  
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As expected, the elderly group typically showcased higher CoV of torque when compared 

to the young group throughout the contraction. Interestingly, although both groups did exhibit a 

rise in CoV of torque, the young group had a much steadier rise whereas the elderly seemed to 

oscillate. Correlation between CoV of torque and windows, as shown in Figure 14, revealed that 

both young (r=0.479, p=6.48e-8) and elderly (r=0.565, p=0) groups showed significant positive 

correlation at the final 25% of the contraction. The elderly group displayed significant negative 

correlation (r=-0.404, p=1.96e-9) between CoV of torque and windows at the initial 25% of the 

 

Figure 13: Scatter plot of average CoV of torque and i) mean Alpha, ii) mean Beta, and iii) mean 

Gamma coherence are shown for A) Young and B) Elderly participants. Associated r and p-values 

are calculated using Spearman’s rank correlation. Correlations calculated for the first 25% of the 

contraction (red) and the last 25% of the contraction (black) prior to task failure. 
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contraction, while the young group also showed a negative correlation (r=-0.112, p=0.231), it was 

not statistically significant.  

 

 

Figure 14: Scatter plot of the average CoV of Torque and windows (time) signal are shown for A) 

Young and B) Elderly participants. Associated r and p-values are calculated using Spearman’s rank 

correlation. Correlations calculated for the first 25% of the contraction (red) and the last 25% of the 

contraction (black) prior to task failure. 
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5. Discussion 

Summary of Key Findings 
I. Significant differences in intramuscular coherence existed between pre- and post-

fatigue conditions in the alpha and beta bands of the young group using the LA filter. 

No such differences were found in any of the frequency bands in the elderly. 

II. Significant positive correlations appeared between the intramuscular coherence 

calculated in the alpha band and the CoV of torque for both young and elderly groups. 

III. Significant negative correlations existed between the intramuscular coherence 

calculated in the beta/gamma bands and the CoV of torque for the young group. 

Differing from the significant positive correlations seen in the elderly group between 

the beta/gamma bands and the CoV of torque. 

5.1. Time-Frequency Features  
During submaximal fatiguing contractions, ARV and RMS gradually increased while MDF 

and MNF decreased for all subjects in both young and elderly groups indicating development of 

muscle fatigue. This behaviour is seen in various studies on fatigue development in young [49], 

[105], and elderly [105]–[107]. Although features in both groups exhibit similar trends, it is 

generally argued that there are differences in fatigue development between the young and elderly. 

This is substantiated by the fact that morphological changes due to aging, such as a decreased 

number in type II muscle fibers and changes in metabolic activity such as a decrease in lactate 

dehydrogenase activity affect these features [108], [109]. In fact, Yamada et al. found that the 

decreasing rate of the MDF feature was significantly smaller in the elderly than that of the young 

[105]. Although the current study did find similar behaviour, no statistically significant differences 

were found. The discrepancies of the current results and reports in the literature can be attributed 

to different fatiguing protocols, where Yamada et al. utilized a different contraction duration and 
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intensity (60% MVC for 60 seconds) which can potentially lead to differences in excitatory and 

inhibitory spinal inputs to the motor neuron pool [110]. Another reason for the different 

observations is the fact that the study used female participants, who are known to be more resistant 

to fatigue than male [111], likely reduced the detectable age-related differences. In agreement with 

the results of this paper, a study conducted by Yassierli et al. found no difference between the 

young and elderly for sustained 30%,50% and 70% MVC shoulder abductions and torso extensions 

[106]. Both Bipolar and Laplacian spatial filters were applied to the sEMG signal to isolate motor 

units directly below the measuring site and reduce the amount of cross talk. However, this also 

revealed no significant differences between both groups, suggesting that these features are not 

robust enough to capture age-related differences in fatigue development. 

5.2. Intramuscular Coherence 
Intramuscular coherence was utilized as a more robust methodology to assess age-related 

differences in muscle fatigue development due to it ability to measure oscillatory drive to motor 

units during voluntary contractions. Pooled coherence can be understood as the linear summation 

of the synergistic component common to separate MUs as well as components of the neural drive 

unique to each MU [102]. When MP was applied, the resulting pooled coherence showed 

significantly high values across all physiologically relevant frequency bands regardless of age 

group, as seen in Figure 10. This can be attributed to the fact that two MP EMG signals from which 

the coherence is calculated share a significant amount of common MU activations, i.e., significant 

crosstalk, resulting significant positive bias to the estimated coherence. Multiple studies have also 

reported crosstalk increasing coherence values, and it should be carefully considered as a 

confounding factor when calculating coherence [112]–[114]. BP filter had the advantage of 

reducing this crosstalk by subtracting two signals obtained from adjacent electrodes [115]. 
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Similarly, LA filter also served to further reduce the crosstalk and enhance single MU activity 

through applying a weighted summation of surrounding electrodes [40]. Although both spatial 

filters greatly reduced the inflated coherence values in both groups, the BP filter reported 

coherence values consistently above the significance level for all frequencies, indicating that the 

reduction that BP had on crosstalk was insufficient. The coherence calculated from the LA filter 

seemingly reduced the coherence values, indicating it was able to filter out more crosstalk when 

compared to BP. This is in agreement with the literature [116]. 

Accordingly, the LA filter was the only configuration to find significant differences in 

mean coherence values between pre- and post-fatigue conditions, albeit only within the young 

population. In general, both populations exhibited an increase in mean coherence from pre to post 

fatigue for all frequency bands, but a significant difference was only recorded in the alpha and beta 

bands for the young population. This indicates that the young group underwent significant changes 

in corticospinal excitability during the fatiguing contraction; the elderly likely had similar 

neurophysiological change as indicated by the general increase in mean alpha and beta coherence, 

but significance changes was not detected in the current study. According to [117], the elderly 

experience a deficit in the activation of the corticomotoneuronal pathway which can potentially 

lead to a lesser increase in mean beta coherence after fatigue. The results of this study are in line 

with results from a previous study which observed increases in intramuscular coherence in the 

alpha and beta bands in the first dorsal interosseous and tibialis anterior muscle [8], [118]. 

However, the study regarding the tibialis anterior recorded no significant increase in beta band 

coherence which indicates that the changes in corticospinal pathways may be dependent on the 

muscle studied or the task performed. 
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Investigation of force variability revealed that there was a significantly positive correlation 

in the alpha band in both age groups as the contraction approached task failure. The physiological 

basis behind this phenomenon is that the neural drive responsible for generating the force is filtered 

by the average twitch of the MUs, causing higher frequencies to be attenuated and lower 

frequencies to be enhanced [118]. This is further substantiated by the fact that neural drive typically 

increases to maintain a constant force as the approaching task failure, resulting in a decrease in 

torque steadiness and increase in low-frequency coherence [85], [118]. In contrast to this study, 

significant correlation was observed in the higher frequency bands for both groups as the task 

approached failure. This was evidenced by the increase in both mean beta and gamma coherence 

observed as fatigue progressed. Although this correlation goes against previously established 

physiological phenomenon, it is inline with a recent study that questioned the linearity of the 

transformation of motoneuron pool inputs into force. If the transformation is truly linear, it 

suggests that high frequency input to the muscle will get filtered out and have no effect on force 

control. A simulation study conducted by Watanabe et al. suggested that an increasing beta and 

gamma band input to the motoneurons increased the steadiness of the force generated by the 

muscle [119]. They had associated the muscles response to the cortical oscillations to the 

recruitment strategies of spinal cord motoneurons[119]. These results are inline with the results 

seen in the young population, which observed a significant negative correlation was seen between 

torque variability and mean beta/gamma coherence prior to task failure. However, the elderly 

group showed significant positive correlations between torque variability and beta/gamma 

coherence. The contrast in these results can be attributed to the inability of elderly adults to regulate 

and coordinate common synaptic inputs onto spinal motoneurons [120]. As such, it can be 
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interpreted that increases in oscillatory input are unable to modulate recruitment strategies of spinal 

motoneurons thus being unable to reduce the amount of force variability as fatigue progresses. 
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5.3. Limitations  
Regarding methodological factors, a limitation in this study is the small sample size, 

particularly in the elderly group. This stemmed from difficulties in recruiting participants 

satisfying the inclusion criteria from that age group. For example, many elderly participants that 

inquired about the study were excluded due to increased amounts of subcutaneous fat in the arm 

regions which adversely affects the sEMG signal. Another reason some of the elderly subjects 

were excluded was due to uncertainty they achieved fatigue before task failure, as indicated by 

negative trends in MDF. It is possible that these subjects grew tired of the protocol and failed the 

task prior to actual muscle fatigue onset. The effect of fatigue on maximal torque production was 

not investigated after the protocol, which could help verify the efficacy of the protocol in eliciting 

fatigue. Another limitation in this study was the protocol was not necessarily optimized for 

coherence calculation because the internal bandpass filter of the EMG-USB2 device was used to 

remove motion artifact. This limits the information one can extract from the lower frequency bands 

such as lower alpha and delta (0-5 Hz), both of which have been linked to force generation. 

The observations made in this study have been under the assumption that changes in 

intramuscular coherence solely reflect changes in the oscillatory cortical and sub-cortical processes 

within the cortico-spinal pathway. However, evidence suggests that other common neural drives 

can contribute to coherence as well [121]. As the current study does not provide a measure of the 

corticomuscular coherence (CMC), there is insufficient information on how much other neural 

processes contribute to the intramuscular coherence results observed. 
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5.4. Future Work 
Future studies should prioritize the recruitment of subjects in both age groups, although 

elderly should be prioritized more due to the higher exclusion rates as seen in this study. Similarly, 

recruitment of females should be considered in future studies as biological sex is known to have 

an effect on the physiological mechanisms behind fatigue generation such as differences in muscle 

fiber composition and activation of MUs from cortical/subcortical regions [122]. Future work 

should also assess the repeatability of the proposed coherence measures by having subjects repeat 

the protocol after a set amount of time. This work would further validate the robustness of the 

measures and raise confidence in using this in other clinical studies. CMC should also be evaluated 

in conjunction with the current methodology via EEG or MEG to quantify the contribution of other 

neural drives to the muscle as fatigue progresses [123]. 

Furthermore, more work should be done to validate the use of interference sEMG in the 

calculation of intramuscular coherence. Commonly in the literature, intramuscular coherence is 

calculated between motor unit spike trains found by sEMG decomposition techniques or 

intramuscular electrodes to get a more accurate representation of individual MUs throughout the 

contraction [8], [118]. However, this technique is invasive and computationally intensive, reducing 

the capability of this technology to be used outside of a clinical environment. Future studies should 

adopt one of these techniques in the protocol such that a correlation analysis can be performed. If 

correlation between intramuscular coherence calculated using interference sEMG signals and 

between MU’s extracted from signal decomposition is found, not only will the robustness of the 

measure be increased, but the confidence in implementing this technology in future studies. 
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6. Conclusion 
The following objectives were explored in this study: 

I. The ability of different spatial filter electrode configurations to detect fatigue related 

differences in a) conventional EMG features and, b) mean coherence within and between 

the different age groups was evaluated. This revealed that spatial filters were not sensitive 

for conventionally used time-frequency domain features in muscle fatigue detection but 

was sensitive for calculating fatigue related changes in mean intramuscular coherence. 

II. The evolution of force steadiness and mean coherence throughout the fatiguing contraction 

in each frequency band was examined. Significant correlations were noticed between mean 

intramuscular coherence in the alpha, beta, and gamma bands and force steadiness, 

particularly in the final 25% of the contraction. 

III. Age-related differences in muscle fatigue generation existed when comparing the trend of 

intramuscular coherence in the beta and gamma bands with force steadiness. 

Objective I was addressed revealing that the application of MP, BP, and LA spatial filters had 

no effect on conventional time-frequency domain features pre- and post-fatigue within and 

between both the young and elderly groups. However, differences between the mean coherence 

calculated pre- and post-fatigue were found in the alpha and beta bands within the young group 

using the LA filter. Objective II and III was completed and revealed that both the young and elderly 

have different trends in mean coherence as force steadiness decreases in response to fatigue. The 

young group was found to have a decreasing trend in mean beta and gamma coherence as force 

steadiness decreased whereas the elderly was found to have an increase, demonstrating possible 

age-related changes in MU recruitment strategies. 
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This work is one of the first studies to assess the utility of different spatial filters on the 

calculation of intramuscular coherence using interference sEMG signals. Furthermore, this work 

provides an original methodology of calculating coherence through pooling together coherence 

found between different electrode pairs within the HD-sEMG grid. Moreover, this study presents 

novel findings that MUs within the young and elderly have different responses to fatigue related 

changes in oscillatory input as characterized by force steadiness. 
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