
Flag Fault-Tolerant Error Correction
with Qudits

by

Elijah Durso-Sabina

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2021

© Elijah Durso-Sabina 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, I explore fault-tolerant quantum error correction using qudits. I show
that a specific flag-fault-tolerant procedure for the five-qubit code may be extended to work
on the five qudit code for any prime dimension. Using insights from this proof, I go on to
show how to extend a procedure for doing flag-fault-tolerant quantum error correction on
any stabilizer code to any qudit stabilizer code. These low overhead codes will be useful
in development of quantum error correction on devices in the NISQ era.

iii

Acknowledgements

Thank you to:

Crystal Senko, for taking in an academic refugee.

Daniel Gottesman, for the ideas.

Raymond Laflamme, for slogging through the results.

My friends and family, for dealing with me while I wrote this thing.

iv

Dedication

This is dedicated to curiosity.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Outline . 2

1.2 Statement of Contribution . 3

2 Background: Fault-Tolerant Error Correction 4

2.1 Generalized Pauli Operators . 4

2.2 Stabilizers and Stabilizer Codes . 6

2.3 Fault-Tolerance . 7

3 Flag Fault-Tolerant Error Correction with the 5-Qudit Code 9

3.1 Syndrome Measurement in Practice . 10

3.2 Commutation Relations and Moving Errors Through Qudit Circuits 12

3.3 Fault-Tolerance and Flags . 13

3.4 General Correlated Errors in the Qudit Circuit 15

3.5 Distinguishability of Errors . 18

3.5.1 Correlated Errors . 18

3.5.2 Distinguishing Flag Errors from Correlated Errors 23

3.6 Fault-Tolerant Error Correction . 23

vi

4 Flag Fault-Tolerant Error Correction for any Qudit Stabilizer Code 26

4.1 The Circuit . 26

4.2 Definitions . 29

4.3 The Algorithm . 31

4.4 Proof . 32

4.5 Fault-Tolerance . 35

4.5.1 Fault-Tolerant Syndrome Measurement 35

4.5.2 Fault-Tolerant Error Correction . 36

5 Conclusion 38

References 39

vii

List of Figures

3.1 This shows a fault on a CNOT gate and how the fault propagates through
the circuit to produce a multi-qubit error at the end of the circuit. The red
letters first appear at the location of the fault. The letters are repeated at
every gate with which the errors interact, and show the error on the wire
at that location and time. The letters are repeated once more at the end of
the circuit to indicate the final error after the circuit has completed. 14

3.2 Sample cumbersome error tracing for the fault-tolerant syndrome measure-
ment circuit of the five qudit code. 17

3.3 The same error tracing exercise as fig. 3.2, but without redundancies. . . . 17

3.4 Error tracing for a general fault on the SUM gate at location B 18

3.5 Error tracing for a general fault on the SUM gate at location C 19

4.1 This figure shows a sample syndrome measurement circuit. There are three
data qubits (c1,c2,c3), each joined to the syndrome bit (s) by CNOT gates.
Each of these CNOT gates is protected by a pair of flags. The three pairs
of flags protecting each of the CNOT gates are the so called “flag rounds.”
The last flag has marked at the points where it is turned on and where it is
turned off. 27

viii

Chapter 1

Introduction

Given all the amazing things that we’ve shown quantum computers can do[1][14][4], we’d
like the biggest, most powerful quantum computers as quickly as possible. I imagine that
this shocks no one. To this end, we’re exploring diverse quantum computing architecture
options.

One of the options in question is to compute with larger systems than just qubits[8].
Qubits are quantum two-state systems (or misspelled archaic units of length). Qudits are
quantum d-state systems. Clearly, qudits should be able to do everything that qubits can
do since they are just qubits if you never access the higher states.

In some ways, qudits are easier to build than qubits. Nature doesn’t give exactly two
options very often, so most quantum systems are more naturally qudits than qubits. Un-
fortunately, qudits are generally harder control and are more prone to errors that qubits.
With only two states, control pulses are simpler and it is easier to exploit symmetries of
the system to reduce noise sensitivity[11]. Some examples of potential qudits are energy
levels of single ions and energy levels of superconducting quantum oscillators.

Okay, so if qudits are hard to make, we should probably look at what we stand to gain
by making them. Since the size of the Hilbert space for qudits is larger than for qubits, a
computer with n qudits supports larger calculations than one with n qubits (by a factor
of log2(d)). Recent research indicates that for some kinds of calculations, qudits have an
advantage greater than just the log factor[5]. Further, qudits support different (and po-
tentially better) quantum error correcting codes than do qubits [10]. The different group

1

structure of qudits compared to qubits means that they inherently support different error
correcting codes. Some of these codes will encode a larger number of logical qudits for the
same number of physical qudits at the same distance compared to qubit codes.

Quantum error correction is exactly what it sounds like[12]. That’s where the simplic-
ity ends, though. Quantum computers rely on superposition and entanglement. Thus, if
we’re correcting errors on a quantum computer, we can’t perform operations which ruin
superposition and entanglement. Specifically, we can’t directly measure any of the qudits
being used in the calculation since that may destroy the relationships between the qudits
which encode the information.

Instead of measuring the qudits directly, we use extra qudits to encode a smaller amount
of information, then measure aggregate properties of the larger system of qudits. In this
way, we can detect errors on the whole system without destroying the information stored
in the system. These larger collections of qudits, together with the correction rules, are
called quantum error correcting codes. The precise definitions of many of these terms will
appear in the following chapters.

1.1 Outline

In Chapter 1, we introduce quantum computing and give some reasons why you might care
about it. We also include an outline of the structure of the paper (you are here) and a
description of the new results I have proven.

In Chapter 2, we introduce some of the concepts necessary to have a discussion about
fault-tolerant error correction.

In Chapter 3, we discuss a procedure for doing fault-tolerant error correction with the
five qudit code. This chapter both shows a useful code and serves as a testing ground for
some of techniques used in the next chapter.

In Chapter 4, we show an algorithm for doing fault-tolerant syndrome measurement
for any qudit stabilizer code. This algorithm uses very few ancilla qudits to achieve fault-
tolerance.

2

1.2 Statement of Contribution

There are two novel results proven in this thesis.

Chapter 3 introduces a procedure for doing fault-tolerant error correction for the five
qudit code which works for qudits of any prime dimension. This is a generalization of the
work in [2] which shows the procedure for qubits. We cover the measurement procedure
explicitly, gate by gate, to make hardware implementation easy for anyone who wants to
run this on a real quantum computer. This code also happens to be the smallest quantum
error correcting code which can correct any single qudit Pauli error, and so is well suited
as a test case for contemporary, small quantum processors.

Chapter 4 shows how to do fault-tolerant syndrome measurement for any stabilizer code
for qudits of any prime dimension. The number of ancilla qudits needed for this procedure
scales with the distance of the code unlike most procedures which scale with the stabilizer
weight. This scaling is important for near term devices where minimizing the number of
qudits necessary to run a program is a high priority. It may also have applications in
efficient use of larger devices in the more distant future. This is a generalization of the
work in [3].

3

Chapter 2

Background: Fault-Tolerant Error
Correction

This chapter defines the concepts necessary to understand what is going on in the next two
chapters. We cover, as concisely as possible, qudit operations, how error correcting codes
work, and what fault-tolerance is.

This thesis is chiefly about fault-tolerance, and not about error correction itself. For
that reason, we’ll leave out a lot of the general theory of quantum error correction and just
discuss the features which are directly relevant to showing fault-tolerance.

2.1 Generalized Pauli Operators

Since we’re going to be talking about errors and groups and the like, now seems to be
a good time to introduce the generalized Pauli operators[8]. Just as the standard Pauli
operators (I,X, Y, Z) span the vector space of 2 × 2 Hermitian matrices (up to a phase),
the generalized Pauli operators for dimension d span the space of d×d Hermitian matrices.
Thus, when considering all possible errors on a qudit, it suffices to consider all generalized
Pauli operators. These operators are defined for dimension d as:

4

X : X|a⟩ = |a⊕ 1⟩ (2.1)

Z : Z|a⟩ = ωa|a⟩ (2.2)

Where ω is the primitive dth root of unity, and ⊕ indicates addition modulo d. These
definitions are identical to the qubit operators when d = 2, though in qudit land, we don’t
talk about Y operators.

The generalized Pauli operators come with the cumbersome but extremely useful com-
mutation relation:

(XrZs)(X tZu) = ωst−ru(X tZu)(XrZs) (2.3)

A general element of the generalized Pauli group (GPG) is of the form ωX iZj for
i, j ∈ Z. When discussing operators on multiple qudits, the elements of the GPG are joined
by tensor products. For example, operators on two qudits take the form (X iZj)⊗ (XkZ l).
These tensored operators span the space of multiple qudits in the same way that, for spaces
A and B, the set of tensor products of the basis vectors {|a⟩⊗ |b⟩} spans the space A⊗B.

To avoid lots of annoying typesetting, I will omit the ⊗ between single-qudit opera-
tors when discussing multi-qudit operators. You should assume that each operator in a
string acts on a new qudit. For example, when I write XZX, I mean the Pauli operator
acting on three qudits with an X applied to the first, a Z applied to the second, and
another X applied to the third. When we need to talk about both X and Z operators
on the same qudit, we’ll indicate that they act on the same qudit with parentheses. For
example, X(XZ)Z is a three qudit operator with bothX and Z acting on the middle qudit.

For multi-qudit Pauli operators, we will use the notion of ”weight” to describe the num-
ber of qudits on which the action of the operator is non-trivial. For example, the operator
XIXIX has weight three while the operator ZIIII has weight one, despite both being
five qudit operators.

5

2.2 Stabilizers and Stabilizer Codes

Most of the well studied quantum error correcting codes belong to a family of codes called
stabilizer codes[12]. The term “stabilizer” comes from the same concept in group theory.
For some state |s⟩ and group G, the stabilizer subgroup is the set of operators with trivial
action on |s⟩, {g ∈ G : g|s⟩ = |s⟩}. We may also discuss the stabilizer of a set of elements,
which is defined exactly like you might imagine. For a set of states S and the same group
G the stabilizer is {g ∈ G : ∀|s⟩ ∈ S, g|s⟩ = |s⟩}.

One can write quite a lot about stabilizers[7], but we’ll just discuss a few salient char-
acteristics here. The elements of a stabilizer form an Abelian group. Also, the elements of
the stabilizer are almost invariably described by elements of the GPG.

The stabilizer group, being a group, must be closed under the group operation. Given
that the elements of the stabilizer group are from the GPG, the group operation is operator
composition. The stabilizer group is typically described not by listing out all the elements
of the group, but by listing a minimal set of generators for the group. These generators,
together with all their powers and compositions can be used to construct the stabilizer
group in a discrete analog of the way basis vectors can be used to construct a vector space.

Usually, stabilizer codes are constructed “backwards.” That is, you begin by picking
the number of qudits you want. Then you pick a set of commuting Pauli operators on that
number of qudits. This set is the generating set for your stabilizer. The codewords are all
the states which are stabilized by chosen operators. Of course, if you just pick a random
set of commuting operators, it probably won’t define a useful set of codewords since there
may be no efficient decoding algorithm. With that, let’s take a look at the properties of
stabilizer codes that make them good (or bad).

An error is some element of the GPG which is applied to the data by some imperfection
in the operation of the quantum computer. This error may arise from a lack of precision
in control pulses or from noise in the environment.

We define the distance (d) of a stabilizer as the weight of the lowest weight Pauli op-
erator which commutes with every element of the stabilizer but is not itself an element
of the stabilizer. This is the lowest weight operator needed to transform one codeword
into another codeword. This type of error cannot normally be detected since it takes valid

6

states to other valid states. This means that the error is equivalent to a logical operator
on the encoded data. An error correcting code which detected logical operators would not
be useful since it would always trigger whenever you manipulated the data during a real
calculation.

If an error occurs and we want to be able to tell what the original codeword was, the
error weight must be strictly less than half the distance. Thus, the largest correctable

error has weight t = ⌊d− 1

2
⌋. Intuitively, if we detect an error and assume that low weight

errors are the norm, then the original state of the data is probably the one with the fewest
differences from our current state.

Our stabilizer code is defined by the stabilizer generators and the rules for returning
states which are not codewords back to states which are. Those rules map a set of syn-
drome measurements to a set of correction operators.

When we discuss “measuring a stabilizer,” what we mean is determining the phase
accumulated by commuting whatever error is on the data past each of the generators sta-
bilizer. The vector consisting of the measurements of each of the stabilizer generators for a
particular error is called the syndrome of that error. Two errors are distinguishable if they
have different syndrome vectors. If the correction operator corresponding to the syndrome
of an error is the inverse of the error (up to multiplication by a stabilizer), that error is
correctable. We will see an explicit example of the process of syndrome measurement and
error distinguishing in the next chapter.

2.3 Fault-Tolerance

Error correction is all well and good, but if faults occur during the correction phase we
might still be in trouble[9]. For this reason, we want faults during error correction not to
mess things up too badly. This condition is called “fault-tolerance.”

There are many equivalent ways to define fault-tolerance, but we’ll start with providing
some intuition about the subject.

7

First, fault-tolerant error correction should probably still correct errors. I imagine this
is not terribly controversial, so we’ll leave it at that.

Second, after the fault-tolerant error correction happens, there should be no more er-
rors left on the data than the next error correction step is capable of correcting. Error
correcting codes alone make no promises about their output if the input has more errors
than the code can correct. You can think of this condition a bit like leaving the kitchen
after a cooking disaster. You can leave dirty dishes and burnt food around until tomorrow,
but there may not be any kitchen left to come back to if you leave a pot of burning oil.
Likewise, if there are too many errors coming out of an error correcting step, it might not
just ruin this data, but everything this data touches in the future.

We will now define these conditions a bit more formally. A fault-tolerant error correct-
ing gadget (circuit acting on a code block whose purpose is to correct errors) must satisfy:

First, a fault-tolerant error correction gadget for a code that corrects t errors must
satisfy the error correction correctness property. That is, if there are r errors coming into
the gadget and s faults during the gadget, and r + s ≤ t then the output is correctable
with an ideal decoder. That is, there must be no logical errors.

Second, the gadget must satisfy the error correction recovery property. That is, for a
fault-tolerant error correction gadget with s ≤ t faults, the output should have at most s
errors regardless of how many errors there were on the input. The output might not be
the right state, but it should at least be correctable to a valid state.

The second condition can be guaranteed by repeating syndrome measurements some
finite (and reasonably small) number of times[15], so we will focus mostly on the first
condition.

8

Chapter 3

Flag Fault-Tolerant Error Correction
with the 5-Qudit Code

In this chapter, we will show that with slight modification, the fault-tolerant protocol pro-
posed by [2] works for qudits of any prime dimension [6]. This serves two purposes. First, it
is an introduction to the notion of flag-fault-tolerance using a simple code. Second, it gives
an explicit set of gates for a simple family of codes which can be used in real experiments.

The five qubit and qudit codes are the smallest (least number of physical qubits) error
correcting codes which can correct general Pauli errors of weight one. The code consists
of, predictably, five qubits (qudits) encoding one logical qubit (qudit). The five qudit code
exists for qudits of any prime dimension. The stabilizer group representatives for the five
qubit code are[6]:

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

, (3.1)

and those for the five qudit code are:

X Z Z−1 X−1 I
I X Z Z−1 X−1

X−1 I X Z Z−1

Z−1 X−1 I X Z

, (3.2)

9

The five qudit code has distance three, and therefore corrects errors of up to weight
one. You can check this explicitly for yourself, but plenty of trustworthy people including
myself have done so already.

3.1 Syndrome Measurement in Practice

This is the qubit circuit for measuring the XZZXI stabilizer for the qubit version of the
code [2]:

c0 H H

c1

c2

c3 H H

c4

s

The code qubits are c0 through c4 and the stabilizer qubit is s. The stabilizer qubit is
initialized into state |0⟩.

You might ask “how does this circuit actually measure the stabilizer?” Since, in real
quantum computers it is much easier to measure in the amplitude(energy) basis rather than
the phase basis, the goal of this circuit is to produce a 0 or a 1 on the s qubit according to
whether the error commutes or anti-commutes with the stabilizer. To do this, the circuit
goes qubit by qubit and flips the s qubit from a 0 to a 1 (or back) for each single qubit
Pauli operator which anti-commutes with the stabilizer XZZXI.

To verify that the circuit does what we just discussed, we’ll need the following commu-
tation relations for qubit gates[12]:

10

XZ = −ZX (3.3)

HX = ZH (3.4)

CNOT (X ⊗ I) = (X ⊗X)CNOT (3.5)

CNOT (I ⊗X) = (I ⊗X)CNOT (3.6)

CNOT (Z ⊗ I) = (Z ⊗ I)CNOT (3.7)

CNOT (I ⊗ Z) = (Z−1 ⊗ Z)CNOT (3.8)

You can verify these relations by doing some multiplication of the matrix representa-
tions of these operators if you really want to. For our purposes, it is enough to just take
these as definitions. From these commutation relations, we can see that CNOT gates copy
X errors from the control to the target qubit and copy Z errors from the target qubit to
the control qubit. H gates turn X errors into Z errors and vice versa. Remember that in
circuit representations, time increases from left to right, while in the operator representa-
tion, time goes from right to left.

So, for the first qubit, we can check what happens when the error has either an X or
a Z or both at that location. If an X comes in on the left, the first thing that happens is
that the H turns it into a Z. Then, since Z errors only move up CNOT gates, it passes the
CNOT without doing anything. It then gets turned from a Z back into an X and goes on
its merry way, having made no change to the syndrome qubit. Alternatively, if a Z comes
in on the left, the H converts it into an X. The X is then copied by the CNOT onto the
syndrome qubit, flipping it. If the error has both an X and a Z at that location, it still
flips the syndrome bit because the X does nothing and the Z flips the bit. This is exactly
the behavior we require, since the stabilizer we are measuring has an X at the first loca-
tion, so an error with a Z at that location anti-commutes and an error with anX commutes.

For the second qubit, the roles are reversed, since there are no H gates on this one.
An incoming X will flip the syndrome qubit and an incoming Z will do nothing. Again,
this is what we want since the stabilizer has a Z at this location so Zs commute and Xs
anti-commute.

Doing this for each of the qubits in the code, we can see that an incoming error will
produce a 0 on the syndrome qubit if an even number (0, 2, 4) of the single qubit operators
anti-commute, and a 1 on the syndrome qubit otherwise. This effectively copies the power

11

of the phase accumulated by commuting the error past the stabilizer to the amplitude of
the stabilizer qubit.

Importantly, the error itself is also not changed by the circuit. If it were, the next
stabilizer measurements would give information about the wrong error (or would have to
be tediously adjusted for the sloppiness in this measurement).

Each of the other stabilizers for the 5-qubit code is just a cyclic permutation of the first
stabilizer, so the circuit to measure it is the same, just with the registers permuted.

3.2 Commutation Relations and Moving Errors Through

Qudit Circuits

In this section, we will discuss qudit gate commutation relations and and how to use
them to trace errors through quantum circuits. The main commutation relations useful in
analyzing qudit circuits are [8]:

XZ = ω−1ZX (3.9)

FX = ZF (3.10)

FZ = X−1F (3.11)

SUM(X ⊗ I) = (X ⊗X)SUM (3.12)

SUM(I ⊗X) = (I ⊗X)SUM (3.13)

SUM(Z ⊗ I) = (Z ⊗ I)SUM (3.14)

SUM(I ⊗ Z) = (Z−1 ⊗ Z)SUM (3.15)

(3.16)

where F is the quantum Fourier transform and SUM adds the amplitude of the first
argument to the amplitude of the second argument.

This set is not, by itself, enough to analyze the qudit circuit 3.4. For that, we must
derive some further relations using the ones we have. A sample of such a derivation follows:

12

SUM(I ⊗ Z) = (Z−1 ⊗ Z)SUM

SUM(I ⊗ Z)(Z ⊗ I) = (Z−1 ⊗ Z)SUM(Z ⊗ I)

SUM(Z ⊗ Z) = (Z−1 ⊗ Z)(Z ⊗ I)SUM

SUM(Z ⊗ Z) = (I ⊗ Z)SUM

(SUM−1)SUM(Z ⊗ Z)SUM−1 = (SUM−1)(I ⊗ Z)SUM(SUM−1)

(Z ⊗ Z)SUM−1 = (SUM−1)(I ⊗ Z)

By this means, we retrieve a commutation relation showing that Z errors on the target
of SUM−1 gates are copied (without inversion) onto the control. This type of commutation
relation allows you to visually trace errors through a circuit:

SUM−1(I ⊗ Z) = (Z ⊗ Z)SUM−1 =⇒
SUM−1

Z

=
SUM−1 Z

Z

(3.17)

Analogous derivations show the relevant commutation relations for X errors. The list
of relevant new commutation relations is:

SUM−1(I ⊗ Z) = (Z ⊗ Z)SUM−1 (3.18)

SUM−1(Z ⊗ I) = (Z ⊗ I)SUM−1 (3.19)

SUM−1(X ⊗ I) = (X ⊗X−1)SUM−1 (3.20)

SUM−1(I ⊗X) = (I ⊗X)SUM−1 (3.21)

Using these commutation relations, we can trace faults during the circuit to the end. By
this means, we can determine which types of faults produce correlated errors and whether
these errors may be detected and corrected.

3.3 Fault-Tolerance and Flags

So far, we have only been looking at the circuit in terms of what it does for incoming
errors. However, there is nothing magical about error correcting circuits that prevents

13

Figure 3.1: This shows a fault on a CNOT gate and how the fault propagates through
the circuit to produce a multi-qubit error at the end of the circuit. The red letters first
appear at the location of the fault. The letters are repeated at every gate with which the
errors interact, and show the error on the wire at that location and time. The letters are
repeated once more at the end of the circuit to indicate the final error after the circuit has
completed.

errors from occurring during the circuit. For clarity, we will call physical errors during
error correction “faults,” and henceforth reserve the term “error” for what comes into and
goes out of the error correction circuit.

Since the five qudit code only corrects weight one errors, it would be a big problem if
a fault during the correction produced more than one outgoing error. We will define such
an error as a “correlated error.” Unfortunately, the circuit 3.1 can produce such errors if
faults occur on the right gates. In particular, two qubit gates like the CNOT gate sort of
automatically produce higher weight errors, but the problem is actually worse than that.
Not only can two qubit gates produce multiple errors with a single fault, but they can also
copy faults on one qubit onto other qubits. Figure 3.1 shows a sample of such a fault and
the associated error.

That doesn’t look good, does it? With a fault on a single gate, we are left with a
multi-qubit data error and the wrong syndrome bit. Worse yet, a fault on the next of the
CNOT gates will produce a different multi-qubit data error. We’d better figure out a way
to deal with this.

Actually, we don’t have to. Someone else already did [2]. They added an extra qubit

14

to the circuit and connected it to the syndrome bit with CNOT gates on either side of
the center two gates. This new qubit will flag whether or not an fault a fault of the type
we’ve been discussing has occurred. Incidentally, the new qubit is called the flag ancilla.
It is initialized in the |+⟩ state.

c0 H H

c1

c2

c3 H H

c4

s

f

You can see that, if a Z fault occurs on the syndrome ancilla for either of the two middle
gates, not only will it be copied to the data qubits, but it will be copied to the flag ancilla as
well. By measuring the flag ancilla in the +/− basis, we can tell if such a fault has occurred.

Note that if a Z fault occurs on the first of the data CNOT gates, it is copied onto
the flag ancilla twice. Since Z = Z−1 for qubits, this causes the flag not to be raised. This
is perfect, since the fault will only produce a weight one error (up to multiplication by a
stabilizer) on the data, which we are prepared to accept. For a full analysis of this circuit,
take a look at [2].

3.4 General Correlated Errors in the Qudit Circuit

Up to this point, we have just been discussing existing results and giving some context.
This is where the new stuff starts. The next circuit does the same thing as the the one in
the previous section, but for qudits.

15

c0 F F−1

c1

c2

c3 F F−1

c4

s SUM SUM SUM SUM−1 SUM−1 SUM−1

cf

If you compare this circuit to the one in fig. 3.3, you can see that they are essentially
the same, but with some gates replaced with their qudit equivalents. H gates have been
replaced with F or F−1 gates and CNOT gates have been replaced with SUM or SUM−1

gates. The main challenge to this extension is figuring out which gates need to be inverted
and which not. Intuitively, at locations in the stabilizer where X and Z are inverted, so
must be the SUM gate. Additionally, the flag must be ”turned off” by a SUM−1 gate
since, for qudits of d > 2, SUM ̸= SUM−1.

Now that we know how to trace errors through the circuits, we can figure out the effect
of single faults during the circuit on the circuit output.

We will ignore errors which will never be measured. For instance, since the syndrome
ancilla is measured in the amplitude basis, we can ignore phase errors on it except insofar
as they travel from the syndrome ancilla to other qudits. For clarity, we will show an
example of the fully general case (fig. 3.2), then the same example in this simplified form
(fig. 3.3).

Note, in the simplified version, the X error on the flag ancilla is removed since it is
never measured and i replaces i− l on the syndrome ancilla since i and l are arbitrary any-
way. On the syndrome ancilla, the Zj error is never measured, but it is transferred to the
data by commuting with the SUM and SUM−1 gates. The stabilizer being measured in
this case is XZZ−1X−1I. The final data error is equivalent to (XjIIII)(XZZ−1X−1I)−j

which is a weight one error multiplied by a stabilizer. Clearly, a fault on the SUM−1 gate
on the flag ancilla can only affect one data qudit and cannot produce a correlated error.
For the same reason, faults at locations A and D cannot produce correlated errors.

16

Figure 3.2: Sample cumbersome error tracing for the fault-tolerant syndrome measurement
circuit of the five qudit code.

Figure 3.3: The same error tracing exercise as fig. 3.2, but without redundancies.

17

Figure 3.4: Error tracing for a general fault on the SUM gate at location B

Thus, the only locations about which we have to worry are B and C. Figures 3.4 and
3.5 show the error tracing for cases B and C respectively.

So, we have that the general correlated errors for the B and C locations are I(X iZj)ZkXkI
and II(X iZj)XkI respectively. For brevity, we will term these B-type and C-type errors
respectively. With that, our job is now to use flag and syndrome information to distinguish
and correct these two different types of correlated errors.

3.5 Distinguishability of Errors

3.5.1 Correlated Errors

For this section, we will make extensive use of the commutation relation in equation 2.3.
With this relation, we can calculate the phase accumulated by commuting the correlated
errors past each of the stabilizers and therefore the syndromes resulting from them. These
can be distinguished from single qudit errors by the flipped flag qudit. Further, the value
of the flag qudit measurement tells us the value of k on in the correlated errors from the
previous section.

If it turns out that the combination of flag and stabilizer information is sufficient to
distinguish the correlated errors from one another, then we will be able to do fault-tolerant

18

Figure 3.5: Error tracing for a general fault on the SUM gate at location C

error correction with this circuit.

Overall, the procedure for detecting measuring, and correcting the error goes as follows:

1: Measure nontrivial flag
2: Remeasure all stabilizers non-fault-tolerantly
3: Use flag and stabilizer information to determine error
4: Correct Error

Note that, for correctness, we are not worried about faults during re-measurement or
about incorrect flag . This is a distance-three code, so we only promise to tolerate one
fault. If the flag measurement is non-trivial, there must already have been at least one
fault. If there is a fault during re-measurement, we have exceeded our allotment. If there
was an error during flag measurement, the stabilizer re-measurement will come back trivial
and no correction will be issued.

With that, we will now actually do the calculation we’ve been talking about. We
calculate the accumulated phase qudit by qudit, then report the total accumulated phase
for each at the end. We’ll start with the XZZ−1X−1I stabilizer and the B-type correlated
error I(X iZj)ZkXkI.

19

(X)(I) = (I)(X) : Phase = 0

(Z)(X iZj) = ωi(X iZj)(Z) : Phase = i

(Z−1)(Zk) = (Zk)(Z−1) : Phase = 0

(X−1)(Xk) = (Xk)(X−1) : Phase = 0

(I)(I) = (I)(I) : Phase = 0

(3.22)

For a total contribution of i.

For the stabilizer IXZZ−1X−1:

(I)(I) = (I)(I) : Phase = 0

(X)(X iZj) = ω−j(I)(X) : Phase = −j
(Z)(Zk) = ωi(X iZj)(Z) : Phase = 0

(Z−1)(Xk) = ω−k(Zk)(Z−1) : Phase = −k
(X−1)(I) = (Xk)(X−1) : Phase = 0

(3.23)

For a total contribution of −j − k.

For the stabilizer X−1IXZZ−1:

(X−1)(I) = (I)(X−1) : Phase = 0

(I)(X iZj) = (X iZj)(I) : Phase = 0

(X)(Zk) = ω−k(Zk)(X) : Phase = −k
(Z)(Xk) = ωk(Xk)(Z) : Phase = k

(Z−1)(I) = (I)(Z−1) : Phase = 0

(3.24)

For a total contribution of 0.

For the stabilizer Z−1X−1IXZ

20

(Z−1)(I) = (I)(Z−1) : Phase = 0

(X−1)(X iZj) = ωj(X iZj)(X−1) : Phase = j

(I)(Zk) = (Zk)(I) : Phase = 0

(X)(Xk) = (Xk)(X) : Phase = 0

(Z)(I) = (I)(Z) : Phase = 0

(3.25)

For a total contribution of j.

Thus, for a B type correlated error, we measure a syndrome of (i,−j − k, 0, j) when
we redo the syndrome measurement after measuring a flipped flag.

Following an equally tedious calculation, we can show that the syndrome for a C type
correlated error is (−i′ , i′ − k,−j ′ − k, 0).

Or job now is to determine if these two syndromes of these forms are always distin-
guishable from one another.

Importantly, the flag measurement gives us the value of k in both cases, so we may
regard it as known.

If we can perform operations on the pair of syndrome vectors in such a way as to isolate
i, j, i

′
and j

′
and to make the vectors perpendicular to one another, then we will have

succeeded. We have to do the same line-by-line operation to both vectors at once, though,
since for a real measurement, we can’t know which case (B or C) we are in. The entries of
the vectors are labelled in order by α, β, γ and δ. This process is analogous to Gaussian
elimination. We start with the two different possible syndrome measurements, B-type on
the left and C-type on the right. Each successive line applies the same transformation to
both syndrome vectors. If the end result is two linearly independent vectors, the two types
of errors are distinguishable.

21

i
−j − k

0
j

−i′

i
′ − k
j
′
+ k
0

add k to row β

i
−j
0
j

−i′

i
′

j
′
+ k
0

let j
′
+ k = j∗

i
−j
0
j

−i′

i
′

j∗

0

let α −→ α + β + δ

i
−j
0
j

0
i
′

j∗

0

let β −→ β + δ

i
0
0
j

0
i
′

j∗

0

Thus, we have shown that the two syndromes are distinguishable in all cases. Further-
more, since we have isolated i, j, i

′
, and j

′
onto different bits of the modified syndrome

vector, we can determine the appropriate correction for any of these errors.

22

3.5.2 Distinguishing Flag Errors from Correlated Errors

While, in the last section, we established that an error on the first flag SUM gate does
not produce a weight two error, there is still potentially a problem. What if such an error
occurs and we mistake it for an error at location B or C? Then we might issue a correction
which produces a weight two error.

To make sure this doesn’t happen, let’s take another look at the analysis for the flag
error circuit, fig. 3.3. We establish that there was a fault by measuring the flag qudit and
thereby determine the value of k. If k is non-trivial, we know something has gone wrong,
but we’re not yet sure if it’s a flag fault or one of the two correlated errors. To distinguish
the two cases, we can measure the syndrome qudit in the same basis to determine the
value of j. Once we know j, then the problem reduces to case B, but with j taking the
role of k. Conveniently, if there is actually a B type fault, and we measure the syndrome
qudit, we just get k back again, so we can use the same procedure for both cases. Similar
analysis shows that a fault on the SUM−1 gate which turns off the flag reduces to case C
with i = j = 0.

For the new procedure, we still start by measuring the flag qudit to determine whether
any correction is necessary. The only change to our procedure due to the possibility of flag
faults is that we use the power of Z on the syndrome qudit instead of the flag qudit to
determine our correction behavior.

With that, we have shown that any singe fault which triggers the flag can be corrected
perfectly including faults which would propagate to higher weight errors. Thus, we have a
circuit which fault-tolerantly measures the syndrome for our code.

3.6 Fault-Tolerant Error Correction

Now that we have a method for fault-tolerantly measuring the syndrome, we need to turn
that into an error correction procedure. This procedure closely mirrors that laid out in
[2], but differs in one key respect. The five qubit code is a perfect code, so every error
is a weight one error away from a code-word. This is not the case for the general five
qudit code. Thus, part of our non-flagged correction procedure must include what to do
if we measure a syndrome corresponding to a weight two error. If this happens, we just
reinitialize the data to some predetermined codeword. This, of course, destroys whatever

23

information was initially encoded, but it prevents the problems from spreading uncontrol-
lably to the rest of the calculation.

Our overall fault tolerant error correction procedure is then:

1: for a = 0 to 2 do
2: Measure the syndrome using the fault-tolerant circuit.
3: if A flag is raised then
4: Remeasure the whole syndrome using the non-fault-tolerant version of the circuit

and issue the correction indicated for the flagged circuit. Break.
5: end if
6: if Syndrome a agrees with syndrome a− 1 then
7: Issue the non-flagged correction based on the syndrome measurement. Break.
8: end if
9: end for
10: Issue the non-flagged correction based on the the last syndrome measurement.
11: Repeat 1 through 10 again.

This procedure is fault-tolerant because:

• If there are no faults during the correction procedure, it corrects one error on the
data.

• If there are no incoming errors and there is at most one fault during correction, then:

– If all syndromes and flags are trivial, there can be at most a weight one error
on the data.

– If a flag is raised or if a non-trivial syndrome is measured, the code corrects the
error, correlated or otherwise.

• If there are multiple incoming errors and there is a fault during the circuit the re-
peated syndrome measurement ensures that the syndrome is measured correctly.
Repeating the block twice ensures that interactions of a fault and incoming errors do
not cause the wrong correction to be issued.

This procedure satisfies the Error Correction Correctness property since it corrects a
single fault or a single error, so long as there is only one and this is a distance 3 code.

24

Demonstrating that this satisfies the Error Correction Recovery Property is a little
trickier. The repeated syndrome measurement is key for this since a large number of in-
coming errors may be disguised by a single fault and leave a high weight outgoing error.
If two measurements in a row agree, there cannot have been a fault on both, so the mea-
surement can be trusted. If the first and third agree, there must have been a fault on the
second, so the third can be trusted. If none agree, there must have been more than one
fault, and we are allowed to give up.

However, the fault may have triggered a flag and therefore the correction of a correlated
error. If the sum of the syndromes of the fault and the incoming error are equal to the
syndrome of the wrong type of correlated error, the procedure could leave a weight-two or
greater error. At present, it is not known whether any such error exists.

If such an error exists, running procedure in lines 1−10 twice would solve the problem.
If there is a fault in the first iteration, the data may wind up with a high weight error.
Then, the second run will correct that back to a code word since we do not permit a second
fault. If there is no fault on the first run, then the data are brought back to a code word
before the second run. Then, even if there is a fault on the second run, it is corrected and
the data are left with at most a weight one error. With that, we guarantee that we end
up with no more than a weight one error on the data after the procedure regardless of the
incoming error, so we satisfy the ECRP.

Thus, this is a fault tolerant error correction procedure.

25

Chapter 4

Flag Fault-Tolerant Error Correction
for any Qudit Stabilizer Code

In this chapter, we will analyze an algorithm which allows for the fault-tolerant measure-
ment of stabilizers for any qudit code. This algorithm is adapted from [3] which shows
how to fault-tolerantly measure stabilizers for any qubit stabilizer code. The proof method
here will show some interesting features of the original algorithm which the original proof
method did not bring to light, though at a slight cost.

4.1 The Circuit

This section will give an explanation of the concepts used in the circuit and algorithm. We
will make reference to a lot of the concepts from the previous chapter which, to a great
extent, serves as an introduction for this one.

Flags detect whether a fault has occurred on a specific qudit between the time the flag
is turned on and when it is turned off. That qudit is said to be protected by the flag. In
particular, if the flag is turned on before a gate and turned off after it, the gate is said to
be protected by the flag. In the qudit case, a flag is turned on by a SUM gate and turned
off by a SUM−1 gate. In the previous section, due to the symmetry of the circuit, the two
gates at locations B and C were protected by a single flag. In this section, gates on the

26

Figure 4.1: This figure shows a sample syndrome measurement circuit. There are three
data qubits (c1,c2,c3), each joined to the syndrome bit (s) by CNOT gates. Each of these
CNOT gates is protected by a pair of flags. The three pairs of flags protecting each of the
CNOT gates are the so called “flag rounds.” The last flag has marked at the points where
it is turned on and where it is turned off.

syndrome qudit will generally be protected by one or more flags.

The reason we want to protect gates during the syndrome measurement process is that
the syndrome circuit connects multiple data qudits to a single syndrome qudit. If faults oc-
cur on this syndrome qudit, they can spread to the data. These faults can be detected and
located by protecting the syndrome qudit with flags in places where it is connected to the
data. If this is done right, the faults can be corrected or at least prevented from spreading.
In general, for a higher distance code, more flags will be necessary to achieve fault tolerance.

Since some of the circuit elements in this section are difficult to picture in the abstract,
I have included a sample circuit (Figure 4.1) protected by flags to be used as a visual
reference. For readability, the circuit depicts qubits, but the circuit is essentially the same
for qudits. The only real difference is that the flags are turned on with SUM gates and
turned off with SUM−1 gates.

For a code with distance d = 2t+1, the algorithm requires that each syndrome gate be
protected by at least d flags. In fig 4.1 depicts a circuit with syndrome gates protected by
two flags each. Since there is no n ∈ Z such that 2n+ 1 = 2, this does not correspond to
any real correction scheme, but it illustrates all the salient features of a circuit protected

27

by flags while remaining small enough to read.

In the general case, the flags are turned on one by one before the first syndrome gate.
After the first syndrome gate, the first flag for the second gate is turned on. Then the first
flag for the first gate is turned off and the second flag for the second gate is turned on,
etc. As the circuit continues, flags are turned on and off in alternating fashion. This way,
there are at least d and at most d+1 flags on at any given moment. As a result, faults on
the syndrome qudit will trigger either d or d + 1 flags. Since these types of faults are the
ones which can spread to larger data errors, we will call them data faults going forward
to distinguish them from faults in the measurement of the syndrome qudit.

Of course, the flags themselves can also have faults. If the fault is just on the flag, the
effect only triggers that one flag. These, we will creatively call flag faults.

For convenience of notation, we will group all the flags protecting a single syndrome
gate into a “flag round.” The measurement result of the flag round will be a string of dits
of length d. The number of these rounds in the algorithm is determined by the weight of
the stabilizer being measured. However, if the qudits can be reset between rounds, the
qudit overhead is just determined by the code distance.

A flag or flags in round l may be triggered by many different types of faults. A fault
on the gate turning off flags from round l − 1 may trigger flags in round l if it results in a
fault on the syndrome qudit. A fault on the gates turning on or off flags for round l will
trigger flags in round l. A fault on the gates turning on flags for round l + 1 may trigger
flags in round l if it results in a fault on the syndrome qudit. Last, a fault on the lth data
SUM gate may trigger flags in round l.

The goal of the algorithm will be to catch and correct data faults before they spread.
The faults spread by travelling from the syndrome qudit, up the SUM gates, back to the
data. If we can figure out the location and value of the fault before it affects more than one
data qudit, then we have a fault tolerant syndrome measurement circuit. To do this, the
algorithm will perform a check at the end of each flag round to determine if a fault which
needs correcting has occurred during that round. Because the flags are turned on and off
in alternating fashion, the flag round is only finished being measured right before the next
syndrome SUM gate. If that flag round indicates that a correction should be issued, the
correction is issued to the next syndrome dit and all future ones. Thus, when we say that

28

a correction is issued “in round l”, what we mean is that flag round l indicates that we
should correct qudits l + 1 and onward.

Without loss of generality, assume the stabilizer we are measuring for this process is
X

⊗
w. Any other stabilizer can be made to match this form by application of single qudit

unitaries on the data qudits. This condition does, however, require that the qudits be of
prime dimension. If the qudits are not of prime dimension, the SUMk is not necessarily
expressible as a product of a SUM gate and single qudit unitaries.

4.2 Definitions

For the purpose of this discussion, a fault is a hardware fault during the correction proce-
dure while an error is a logical error remaining after correction.

The measurement will take place over a number of rounds determined by the weight of
the stabilizer to be measured. Let Ω be the last one of these rounds. In other words, let
the circuit measure a stabilizer of weight Ω.

Let i be an index over the correction rounds from the first to the Ωth.

Let n be the dimension of the qudits used for the code.

Let k be an index over the qudit dimension from 1 to n− 1.

Let t be the number of errors the code will correct.

Let ri be the measurement values of the flags for round i. ri is a string of length d with
entries from the set {0, 1, . . . , n− 1}. We will call ri the flag pattern for round i.

For most of the examples, we will use t = 3 and therefore d = 7 since it is large enough
to illustrate most of the features in the proof.

29

Let mi be another string of the same form as ri, but which is updated each round with
information from flag measurements and corrections. mi has no intrinsic physical meaning.
It is just a construct used for the algorithm to keep track of what has happened so far.

Let |string|(k) denote the number of entries with value k in string. For example, if

string = {0, 0, 0, 1, 1, 2, 3}, then |string|(0) = 3, |string|(1) = 2, |string|(2) = 1, |string|(3) =
1 etc. We will call |string|(k) the k-weight of string.

Let ⊕ be the entry-wise sum of strings modulo n.

During any single round, there are three types of possible errors: a fault directly on
one of the flag qudits, a fault on the data qudit while d flags are active, and a fault on
the data qudit while d + 1 flags are active. For the purpose of this proof, it is easier to
consider the d + 1 case as a combination of a d data fault and a single flag fault occur-
ring immediately before or after. The reason for this will become clear as we move forward.

We denote the set of single flag faults F . Particular flag faults are described with a
double index Fi,j, which is the jth fault in the ith round. For example, if the first fault
in round one adds three to the amplitude of the third qudit, then F1,1 = {0, 0, 3, 0, 0, 0, 0}
Note that, for a round with no flag faults, the j index may be empty.

Let S be the set of faults which flip d flag dits, i.e. data faults. Si,j is indexed in the
same way as flag faults. Data faults apply the same shift to all the flags which they affect.
We will denote that shift ki,j. For example, if S2,3 = {2, 2, 2, 2, 2, 2, 2}, then k2,3 = 2.
Since data faults flip d flags, they may affect the flag patterns of two rounds. To avoid
ambiguity, we will use the i index to refer to the round in which the fault started. So,
for instance, if S3,4 begins on the fourth dit and k3,4 = 1, then r3 = {0, 0, 0, 1, 1, 1, 1} and
r4 = {1, 1, 1, 0, 0, 0, 0}.

For our purposes, a fault and the flag pattern it produces are synonymous, since the
only information we have about faults is the flag pattern. For this reason, when I refer to
a fault, I mean the flag pattern that it produces.

30

4.3 The Algorithm

With our definitions and some intuition in hand, we can now state the whole fault-tolerant
measurement algorithm. Before the algorithm starts, assume that we have measured a
sequence of t + 1 flag rounds during which no flags are triggered. This ensures that the
algorithm starts with no faults on the flag or syndrome ancillas. Finding such a sequence
takes at most t(t+ 2) flag rounds.

31

1: m0 ← {0}d
2: for (i = 1, . . . ,Ω) do
3: mi ← mi−1 ⊕ ri
4: for (k = 1, . . . , n) do

5: if (|mi|(k) > t) then
6: mi ← mi ⊕ {k−1}d
7: Issue k−1 correction to data qudits i+ 1 and onward

In human language, the algorithm initializes the m string with all 0s. Then, every
round, we start by adding the new flag pattern to the m string. Then, we check if more
than half of the entries of the string are the same number k for each of the possible ks.
If they are, we subtract k from all the entries of the m string and issue a k−1 correction
to all the data qudits we measure from now on. In the next section, we’ll explain why
each of these steps is necessary and in doing so, show that this does in fact fault-tolerantly
measure the stabilizer.

At any given time, there are either d or d + 1 flags active. With the syndrome qudit,
then, the overhead of this procedure is d+ 2 qudits.

This overhead is one qudit higher than in the original [3] because qudits for d ≥ 3 lack
the symmetry of qubits. In the qudit case, it matters whether the flag fault comes before
or after the data fault. As a result, the trick to locate and counteract the flag fault in the
original paper is not applicable to the qudit case. However, the addition of a single extra
qudit of overhead is sufficient to solve the problem.

An advantage of the added overhead is that the algorithm can be run in real time,
which is not possible with the reduced overhead.

4.4 Proof

In this section, we will prove that this algorithm allows fault-tolerant stabilizer measure-
ment for up to t faults.

In particular, we need not concern ourselves with the cases where there are more than
t faults of any kind since the original error correcting code doesn’t even promise to fix that
many.

32

The proof relies on splitting the sum up into the data faults and flag faults, then
analyzing them separately. By looking only at the data faults first, we will see that no
matter how we arrange the flag faults after, we can’t mess up the correction behavior.

The sum of all faults up to round l is

l⊕
i=1

⊕
j

(Fi,j ⊕ Si,j). (4.1)

To clarify the notation here, the sum is over the strings of flag patterns produced by
the faults Si,j and Fi,j. It is worth noting that this sum is not usually what the algorithm
“sees” since Si,j may not be over by the end of round i. However, this will not stop us, as
you will see in a moment.

By the commutativity and associativity of ⊕,

l⊕
i=1

⊕
j

(Fi,j ⊕ Si,j) = (
l⊕

i=1

⊕
j

Si,j)⊕ (
l⊕

i=1

⊕
j

Fi,j) (4.2)

Thus, we may consider just the data faults at first and add in the flag faults later in
the analysis.

Note that, since Si,j flips exactly d flags and each flag round consists of d flags, a single
data fault in round l can affect the flag pattern in at most rounds l and l + 1.

Thus, if there is no data fault in round l + 1,

l+1⊕
i=1

ri = (
l⊕

i=1

⊕
j

Si,j)⊕ (
l+1⊕
i=1

⊕
j

Fi,j). (4.3)

Also,

l⊕
i=1

⊕
j

Si,j =
l⊕

i=1

⊕
j

{ki,j}d. (4.4)

33

Let

l⊕
i=1

⊕
j

ki,j = K (4.5)

Then, if there are no corrections issued up to round l, then

ml+1 =
l+1⊕
i=1

ri = {K}d ⊕ (
l+1⊕
i=1

⊕
j

Fi,j). (4.6)

By our assumption,

t ≥|F | ≥

∣∣∣∣∣∣
⊕
i

⊕
j

Fi,j

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
l+1⊕
i=1

⊕
j

Fi,j

∣∣∣∣∣∣ . (4.7)

Then,

t <

∣∣∣∣∣∣{K}d ⊕ (
l+1⊕
i=1

⊕
j

Fi,j)

∣∣∣∣∣∣
(K)

= |ml+1|(K) (4.8)

and we issue a K correction in round l + 1.

After this correction,

ml+1 = (
l+1⊕
i=1

⊕
j

Fi,j), (4.9)

and we issue no more corrections until another data fault occurs, since again,

t ≥

∣∣∣∣∣∣
⊕
i

⊕
j

Fi,j

∣∣∣∣∣∣ . (4.10)

Corrections after the first use this same analysis, but begin counting data faults in
round l + 2 instead of round 1.

34

4.5 Fault-Tolerance

4.5.1 Fault-Tolerant Syndrome Measurement

After a data fault {k}d in round l, the SUM gates connecting the syndrome ancilla to the
data will communicate a k error to all following data qudits. When we issue a correction,
we adjust mi by {k−1}d and apply a k−1 to all successive data qudits.

Our procedure corrects any data faults occurring in round l by round l + 1 if there
is no data fault in round l + 1 and may or may not issue a correction otherwise. For
fault-tolerance, we must not have one data fault spread to more than one data error. If we
have one fault in round l, and correct it by round l + 1, we end up with at most one data
error by construction. If we have one fault in round l and another in round l + 1, we may
end up with the following situation:

Say the fault in round l is {k}d and the fault in round l+ 1 is {k′}d. Further, we issue
a correction {c}d in round l and correction {c′}d in round l+ 1. These corrections may be
trivial and may or may not sum to {(k + k

′
)−1}d. Then, by round l + 2,

ml+2 = (
l+2⊕
i=1

⊕
j

Fi,j)⊕ {k + k
′
+ c+ c

′}d, (4.11)

and all future data qudits have a k+ k
′
+ c+ c

′
error. Data qudit l has error k+ c and

data qudit l + 1 has error k + k
′
+ c+ c

′
, and these can no longer be corrected.

If there is no data fault in round l + 2, then we are left with two errors for two faults,
which is acceptable. We then correct k + k

′
+ c + c

′
in round l + 2 and for all successive

rounds and have no future errors arising from these faults.

If there is a data fault in round l+2, we may have a fault k
′′
and issue correction c

′′
. We

are then left with three irreversible errors, k+ c, k+k
′
+ c+ c

′
, and k+k

′
+k

′′
+ c+ c

′
+ c

′′

for three faults. We continue in this fashion until there is a round which does not contain
a data fault or until there are more than t faults. The key feature here is that, as soon as
we have a round with no data faults, we know the value of the error which will spread to
the rest of the data qudits and can correct it.

35

Thus, we show that for t ≥

∣∣∣∣∣⊕i ⊕
j

Fi,j

∣∣∣∣∣, x faults result in ≤ x errors, and our procedure

is t-fault-tolerant.

This analysis also shows that, during any round where there is a data error, there is no
difference between a single data fault and an arbitrary number of data faults, so long as
they flip precisely d flags. All these extra faults do is change the value of k. They don’t
produce any more data errors.

4.5.2 Fault-Tolerant Error Correction

Now that we have a circuit for doing fault tolerant syndrome measurement, we need to use
that circuit to make an error correction gadget.

Since faults may disrupt the measurement of the syndrome dit, we need to repeat the
syndrome measurement circuit. If we only permit t faults, then repeating the syndrome
measurement circuit until t + 1 of the measurements agree is sufficient to guarantee the
correct measurement of the syndrome. We cannot do this dit by dit, since the total data
error may change during this procedure. We need to measure the whole syndrome in one
go, then do it again, etc.

Say that, for r + s ≤ t, there are s faults during the error correction gadget. We have
proven that the gadget produces no more than a weight s error on the data. For a weight
r error coming into the gadget, the measured syndrome at the end must correspond to an
error of weight ≤ r+ s. Since r+ s ≤ t, this error is correctable. Even if all s faults occur
right after the correction is issued, we are still left with an error of weight s < t, so we
satisfy the ECCP.

If a high weight error comes into the circuit, it may not be correctable. However, since
our circuit doesn’t rely on any syndrome information for fault tolerance, the errors and
faults do not interact. So, we are still able to make an accurate syndrome measurement.
That syndrome measurement can either tell us that we are within t of a codeword or that
we are not. In the first case, we issue a correction taking us to that codeword, whether or
not it is the correct one. In the second case, we can replace the data with a fresh codeword.
In either case, s < t faults in the circuit can produce no more than a weight s error, as

36

we proved in the last section. Thus, for regardless of the weight of the incoming error, our
gadget leaves us with a codeword with no more than s errors on it, and we also satisfy the
ECRP.

This completes the proof.

37

Chapter 5

Conclusion

In this thesis, we have been subjected to proofs of two fault-tolerant syndrome measurement
schemes for prime-dimensional qudit codes. The first shows a gate-by-gate description of
how to do fault-tolerant syndrome measurement for the five qudit code and includes a pro-
cedure for fault-tolerant error correction using the syndrome measurement scheme. The
second proof describes an algorithm for doing fault-tolerant syndrome measurement for
any qudit stabilizer code.

This work may be useful for people with real quantum computers who wish to cor-
rect errors on those computers. This may soon become relevant, since universal quantum
processors using qudits actually exist[13], as of the writing of this particular sentence.
Hopefully we have discussed the procedures in enough detail that someone can implement
them after reading this document.

In the future, it may be worth exploring what happens when we try to implement these
sorts of procedures on qudits of non-prime dimensions, or if anything interesting happens
in the limit of large dimension.

38

References

[1] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key distri-
bution and coin tossing. Theoretical Computer Science, 560(P1):7–11, mar 2020.

[2] Rui Chao and Ben W. Reichardt. Quantum error correction with only two extra
qubits. Physical Review Letters, 121(5), may 2017.

[3] Rui Chao and Ben W. Reichardt. Flag fault-tolerant error correction for any stabilizer
code. PRX Quantum, 1(1), dec 2019.

[4] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics 1982 21:6, 21(6):467–488, jun 1982.

[5] Pranav Gokhale, Jonathan M. Baker, Casey Duckering, Natalie C. Brown, Kenneth R.
Brown, and Frederic T. Chong. Asymptotic Improvements to Quantum Circuits via
Qutrits. Proceedings - International Symposium on Computer Architecture, pages
554–566, may 2019.

[6] Daniel Gottesman. Stabilizer Codes for Prime Power Qudits.

[7] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. 1997.

[8] Daniel Gottesman. Fault-Tolerant Quantum Computation with Higher-Dimensional
Systems. Chaos, solitons and fractals, 10(10):1749–1758, feb 1998.

[9] Daniel Gottesman. An Introduction to Quantum Error Correction and Fault-Tolerant
Quantum Computation. 2009.

[10] Lane G Gunderman. Some Results on Qudit Quantum Error-Correction.

[11] Pei Jiang Low, Brendan M. White, Andrew A. Cox, Matthew L. Day, and Crystal
Senko. Practical trapped-ion protocols for universal qudit-based quantum computing.
Physical Review Research, 2(3), jul 2019.

39

[12] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum Infor-
mation.

[13] Martin Ringbauer, Michael Meth, Lukas Postler, Roman Stricker, Rainer Blatt,
Philipp Schindler, and Thomas Monz. A universal qudit quantum processor with
trapped ions. sep 2021.

[14] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509,
aug 1995.

[15] Peter W. Shor. Fault-tolerant quantum computation. may 1996.

40

	List of Figures
	Introduction
	Outline
	Statement of Contribution

	Background: Fault-Tolerant Error Correction
	Generalized Pauli Operators
	Stabilizers and Stabilizer Codes
	Fault-Tolerance

	Flag Fault-Tolerant Error Correction with the 5-Qudit Code
	Syndrome Measurement in Practice
	Commutation Relations and Moving Errors Through Qudit Circuits
	Fault-Tolerance and Flags
	General Correlated Errors in the Qudit Circuit
	Distinguishability of Errors
	Correlated Errors
	Distinguishing Flag Errors from Correlated Errors

	Fault-Tolerant Error Correction

	Flag Fault-Tolerant Error Correction for any Qudit Stabilizer Code
	The Circuit
	Definitions
	The Algorithm
	Proof
	Fault-Tolerance
	Fault-Tolerant Syndrome Measurement
	Fault-Tolerant Error Correction

	Conclusion
	References

