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Abstract 

 

An important factor in providing effective and efficient therapy for brain tumors is early 

and accurate detection, which can increase survival rates. Current image-based tumor 

detection and diagnosis  techniques are heavily dependent on interpretation by neuro-

specialists and/or radiologists, making the evaluation process time-consuming and prone 

to human error and subjectivity. Besides, widespread use of MR spectroscopy requires 

specialized processing and assessment of the data and obvious and fast show of the 

results as photos or maps for routine medical interpretative of an exam.  

Automatic brain tumor detection and classification have the potential to offer greater 

efficiency and predictions that are more accurate. However, the performance accuracy of 

automatic detection and classification techniques tends to be dependent on the specific 

image modality and is well known to vary from technique to technique. For this reason, it 

would be prudent to examine the variations in the execution of these methods to obtain 

consistently high levels of achievement accuracy. Designing, implementing, and 

evaluating categorization software is the goal of the suggested framework for discerning 

various brain tumor types on magnetic resonance imaging (MRI) using textural features.  

This thesis introduces a brain tumor detection support system that involves the use of a 

variety of tumor classifiers. The system is designed as a decision fusion framework that 

enables these multi-classifier to analyze medical images, such as those obtained from 

magnetic resonance imaging (MRI). The fusion procedure is ground on the Dempster-

Shafer evidence fusion theory.  
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Numerous experimental scenarios have been implemented to validate the efficiency of 

the proposed framework. Compared with alternative approaches, the outcomes show that 

the methodology developed in this thesis demonstrates higher accuracy and higher 

computational efficiency. 
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Chapter 1 
 

“Back in 2015, as I started my academic research, I was diagnosed with lung cancer, 

and after a year of complete recovery, unfortunately, the tumor moved to my brain. I was 

grateful for the diagnostic system that I went through, but what happened gave me a 

strong motivation to look for better methods to enhance medical image classification”  

1 Introduction  
 

Medical image analysis is an integral component of differential disease diagnosis. Correct 

diagnosis allows early treatment, while the incorrect diagnosis has repercussions that vary 

according to the type of improper diagnosis. Missing the disease altogether will result in 

delayed treatment, which might be fatal. In addition, misdiagnosis can be lengthy and 

costly and can lead to needless, painful, and often harmful treatment. These problems are 

even more significant concerning early brain tumor detection misdiagnosis. A substantial 

cause of the challenges associated with the medical image analysis process is the human 

factor. Different radiologists might have differing opinions. Menze et al. [1] showed that 

even expert classifiers exhibited considerable differences in locations where intensity 

gradients between tumor formations and surrounding tissue are smooth or masked by bias 

field aberrations that influence partial volume. On the other hand, automatic detection is 

prone to fluctuations in performance related to the technique chosen, and the imaging 
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modality analyzed. Therefore, a need exists for the design of a robust and reliable brain 

tumor detection support system. This research proposes to fuse a set of classifiers to 

detect and classify medical images to achieve reliable brain tumor detection. In addition, 

the attempt to answer what is the optimal technique for fusing such classifiers in the 

sense that the detection decision of the set is better than the decision of any single 

classifier of the set with respect to accuracy. The objective of combining the information 

and the decisions is to calculate the appropriate group of algorithms for a particular set of 

images and devise a relevant approach that can efficiently integrate the algorithm's 

decisions. The system developed for detecting brain tumors will be designed and 

implemented, and its performance will be analyzed. 

This chapter presents an overview of medical imaging-based diagnosis, with an emphasis 

on brain tumor detection. The chapter discusses the motivation behind this research and 

the specific objectives of the work. The chapter concludes with an outline of this thesis.  

1.1   Research Motivation 

Human brain is a highly complicated organ, as detecting brain tumors is highly 

challenging. In general, the radiologist detects the brain tumor that takes a considerable 

time to examine MR images. The central concept is to enhance a computer-aided 

diagnostic system that would allow the radiologist to get a second opinion on whether or 

not there is a tumor present. As a primary diagnostic tool used in the healthcare system, 

medical imaging involves applying various technologies for visualizing the human body, 

which is employed as alternatives to surgery for monitoring, diagnosing, or treating a 

medical issue. The most frequently utilized diagnostic modalities for detecting several 

types of disease are magnetic resonance imaging and computed tomography [2]. 
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However, the interpretation of MRI and CT results is not always straightforward. 

Scanning creates visual representations of the body's interior, but the performance of 

what the instruments have recorded depends on human eyes and radiologists' opinions.  

While the choice of treatment procedure is linked to the results obtained from scans, 

studies have demonstrated that not every radiologist classifies or explains MRI images in 

a similar way. In general, the classification of test outcomes can be affected by several 

influences, such as the radiologist's level of experience, workload, and fatigue.  Besides, 

radiologists have differing opinions, and unfortunately, even the most experienced 

physicians can make mistakes. As mentioned in [3], even the most capable and highly 

skilled physicians can be in error, or their decisions can differ concerning many 

situations. For instance, discrepancies in the interpreting and reporting of medical 

pictures were discovered in 5,278 of 8,400 CT scan images at Vancouver General 

Hospital between October 2016 and January 2017[4]. Additionally, in Canada's Niagara 

region, groups of six hospitals have begun to recheck 4000 CT, MRI, and mammogram 

scans after discovering a radiologist's mistake in interpreting and classifying these images 

in the period from May 2014 to May 2015. They estimated that it would take up to four 

months to complete this revision [5,6]. Furthermore, in Mississauga, two hospitals from 

April 2012 to March  2013, as many as 3,500 CT scans and mammograms showed that 

the medical specialist had classified and misinterpreted a scan result [7,8]. The 

inadequate number of radiologists and large quantities of medical images such as MRI 

images that must be classified make human interpretation time-consuming and extremely 

expensive. Numerous imaging modalities, such as MRI, CT, and mammography, demand 

specialized capability for knowledgeable diagnosis. In addition, the demand for these 

imaging devices extremely increased, with the requirement to develop a system that 
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presents an alternative perspective. Besides, the detection precision can be enhanced. An 

advantage of applying and utilizing computers rather than another human opinion is that 

specialist radiologists' mistakes will be reduced. The sensitivity and specificity of tumor 

detection executed by an automatic system are assumed superior to those provided by 

radiologists. For this reason, computer system algorithms are recommended for 

application in the analysis and reading of a variety of medical images. The fundamental 

goal is to utilize advanced artificial intelligence to implement innovative image analysis 

tools to assist radiologists by offering more targeted and efficient detection of diseases 

such as brain cancer.  

Key motivators of this research are: 

1. Minimize the error of medical image classification. 

2. The opportunity is to provide a second opinion for radiologists for analyzing 

medical images. 

3. Reducing the time required to read and classify such images. 

A further factor is that reliance on human knowledge for the organization of an MRI scan 

for evaluation, which characterizes the majority of current direct-detection methods, 

increases the chances of incorrect classification and identification of brain cancer [9].  

Implementing an automatic brain tumor detection system can ensure the rapid and precise 

detection of a tumor and reduce observational oversights and the rates of the consequent 

false negatives reported by the radiologists who classify medical images [10]. 

The principal goal of this thesis is to achieve more precision in terms of sensitivity as 

well as specificity to the outcome and to reduce the time complexity by finding the best 

optimization technique. 
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1.2   Research Objectives 

The research approach mainly focuses on devising intelligent algorithms to classify the 

tumor from the brain MR images. Besides, the goal of this research is to improve a 

system that can classify or detect brain tumors in a variety of medical images, such as 

those produced by CT and MRI. This system has been created to be a means of 

minimizing observational errors and the rates of the consequent false negatives that result 

from physician classification of medical images. The method introduced in this research 

can also be employed as additional input by the radiologists who make final decisions. 

The following are the specific objectives of the proposed research: 

1. Investigate several pre-processing and segmentation techniques to implement the 

most recent medical image examination approaches. A variety of feature 

extraction methods will be employed to convert complex image content into 

content features. To create a novel method of significantly expanding the 

effectiveness of image feature selection, optimal features will be selected from a 

range of significant image features. 

2. Since the selection of each classifier is the first stage of the fusion process, the 

developing methods for selecting the appropriate group of classifiers are essential. 

In this context, requiring is to evaluating and tuning each classifier individually to 

achieve optimal fusion performance. 

3. Explore the potential of the Dempster-Shafer theory (DST) as a framework for 

facilitating classifier fusion. The DST represents the uncertainty inherent in the 

final decisions, and hence one can mitigate false negative and false positive 
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detection results. In addition, simple classifier fusion, such as majority voting, 

average probability, min rule-max rule, and product probability will be used for 

implementing the combination of classifier decisions. 

4. Investigate comparatively the applicability and implementation of various medical 

images’ algorithms in the feature extraction, and classification techniques in 

addition to multi-classifier combination techniques. 

5. Conduct experiments to estimate the achievement of the system with regard to 

sensitivity, specificity, and classification accuracy. 

6. The outcomes of the proposed classifier fusion framework are compared to that of 

a deep-learning based detection framework. 

1.3   Thesis Statement  

Medical imaging regularly demands experienced medical physicians to see best the 

information shown in the images. Nevertheless, because of different personal factors and 

short review time and tools, it is considered typical that various medical physicians may 

come up with different analyses or interpretations, heading to various examinations.  This 

thesis proposes a new system for the detection and classification of brain tumors[3]: 

“The ‘human factor' in reviewing and classifying medical images is unavoidable; as a 

result, even obvious anomalies may go undetected; the mere fact that a radiologist misses 

an abnormality on a radiograph does not mean that he or she has committed 

malpractice; and not all radiographic misses are excusable. As a result, the emphasis of 

concentration should be on problems like the utilization of appropriate procedures to              

assist the radiologist in reaching the correct judgment or conclusion.”  
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The literature on discovering and examining brain tumors is reviewed to realize the 

problem and study the topic. Several modalities for brain imaging are considered. Many 

classifications of brain cancer detection in CT and MRI were evaluated, and their 

performance was assessed. Multi-classifiers, all of which use the supervised training 

approach was used for image classification tasks. They differ actually in their approach 

on how to classify data. In addition, the best way to mix or fuse their outputs without 

considering the nature of the feature set and pattern representation of the input data. The 

confusion matrix and other classifier tools evaluate the output of the developed system.  

1.4   Thesis Overview and Scope 

This thesis is composed of the following chapters: 

Chapter  1 presents the research motivation, objective, and research statement. 

Chapter 2  presents the categories of brain tumors and medical-related information of 

brain cancers, MRI and CT images characteristics. 

Chapter 3 presents a survey on brain tumor detection and segmentation. 

Chapter 4 presents the Dempster-Shafer-based brain tumor detection algorithms. 

Chapter 5 presents a Deep-Learning-based Tumor Characterization and Detection.  

Chapter 6 presents the performance results of each classifier and that of the classifier 

fusion with respect to factors such as accuracy, true positive rate, true negative rate, and 

precision. 

Chapter 7 summarizes the proposed brain tumor detection system, the contributions 

made in this thesis, and the recommendations suggested for future work. 
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Chapter 2  
 

Brain Tumors and Medical Imaging 
 

2.1   Introduction 

The primary and most remarkable composite organ in the human body is the brain.  It is 

constructed from more than a hundred billion nerves that interconnect trillions of 

connections named synapses [11]. It is the origin of all human behavior, thoughts, 

feelings, and understanding. It also integrates and controls relating to balance and 

autonomic functions in the body. The brain produces many hormones and regulates its 

processing, awareness, attention, and integration related to emotion. It is supported and 

protected by the surrounding skin, bones of the skull, and the meanings. It also holds a 

watery fluid called cerebrospinal fluid. This fluid flows through spaces between and 

within the brain spaces called ventricles. The skull is another special protector of the 

brain. It is a highly complicated structure,  has compact and elastic types of bones. The 

brain is shaped by three major parts: the forebrain, midbrain, and hindbrain. The 

forebrain is formed by the cerebrum, thalamus, and hypothalamus. The cerebrum is the 

most significant portion of the brain. In fact, 85% of the brain's weight comes up from the 

cerebrum. The thinking portion of the brain and controls and maintains voluntary human 
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muscles also are from cerebrum functions. The midbrain has a tectum and tegmentum. 

The hindbrain forms the cerebellum, pons, and medulla. The brain is the supervisor for 

the displacement, dream, hunger, thirst, and other vital activities indispensable to survive. 

It controls the main five functions: receiving or taking the information by the senses, 

storing and recalling the information, analyzing and thinking about the information, force 

the controller, processing the functions simultaneously, or assigning all internal and 

external operations of the body. 

 

 

                                               Figure 2.1: The structure of the brain [11]. 

 

This brain encloses an incredible number of neurons for the computational process in a 

particular unit. These neurons are attached within the brain, and those make direct 

connections to other neurons. The structure of the brain is shown in Figure 2.1. The brain 

is a smooth, sensitive, and soft form of tissue.  It is the source of all human behavior, 

thoughts, feelings, and experience.  It is supported and protected by the surrounding skin, 

bones of the skull. It also contains a watery fluid called Cerebrospinal fluid. 
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2.2   Brain Tumors 

The tumors are the foremost reason for death in economically developed countries and 

the second most important reason for death in developing countries. Tumor recognized 

medically as a malignant neoplasm is an extensive group of a mixture of diseases, all 

concerning unregulated cell growth. In addition, a tumor is a great set of sicknesses that 

can begin in practically some organ or muscle of the body once irregular cells start to 

grow nonstop, spread outside their usual boundaries to attack attached parts of the body, 

and expanded to other organs. The latter process is called metastasizing and is a 

significant reason for death from cancer. A neoplasm and malignant tumor are other 

common names for cancer. Malignancy is the second reason for disease worldwide, 

accounting for approximately 9.5 million deaths, or one in six deaths, in 2018 [12].The 

grading system scales are utilized from grade 1 to grade 4, as stated by the world health 

organization. The benign and malignant cancer kinds are classified based on these grades. 

The low-level grade tumor is one and two, where the high-level grade is three and four. A 

brain tumor can affect a person at any age. The effects each person endures may not be 

the same. The diagnosis of the tumor area in the brain is challenging due to such a 

complex human brain structure. The fast-growing malignant tumor type is from grades 

three and four. It is also spread to adjacent portions of the brain or spinal, further hurtful, 

and may stay untreated. The classification, place, and dimension of the brain tumor in the 

early phase are essential in the medical field. Improving the novel imaging methods leads 

to support physicians to detect and observe the development of the tumor influence 

region at various phases [13]. 
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Consequently, they can provide an appropriate diagnosis with this image scanning.  

Detecting a brain tumor in the early phases is a high issue; thus, appropriate therapy can 

be adopted. The correct treatment decision, such as radiation, chemotherapy, or surgery, 

is based on this information.  As a result, the opportunity for survival of a tumor-infected 

person can safely rise if the swelling is discovered precisely in its early phase [14]. 

According to 2019, Canadian cancer statistics reports that it is predictable that about one 

in two Canadians will acquire tumors during their lifetime, and around one in four 

Canadians will lose their life of tumor. Predictably, 220,400 Canadians will be identified 

with tumors, and 82,100 will die from the illness in 2019 only, as shown in Figure 2.2 

[15]. 

 

Figure 2.2: Canadian cancer statistics [15]. 

 

2.2.1   Benign and Malignant Brain Tumors 

Benign tumors are non-cancerous growths in the body that cannot invade neighbouring 

tissue. They can be removed entirely and are unlikely to reappear. Benign brain tumors 

do not spread to adjacent tissue; however, they can cause significant pain, lasting brain 

damage, and death. Malignant brain tumors have no specific limits. They overgrow, 

create increasing pressure within the brain, and diffuse throughout the brain or spinal 
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cord beyond their point of origin. It is sporadic for malignant brain tumors to spread 

outside the brain.  

 

Figure 2.3: Benign tumor and malignant tumor [5]. 

 

A malignant brain tumor is either graded 3 or 4, whereas grade 1 or 2 tumors are usually 

classified as benign or non-cancerous. 

2.3   Categories of Brain Tumor 

Brain tumors are separated into dual clusters: primary (brain tumors) and secondary 

(metastatic) tumors, which arise from malignant cells that have moved from their 

principal place and invaded the central nervous system through the hematoencephalic 

barrier. Primary brain tumors can be benign or malignant, and they can be neuronal (brain 

cells) or Neuroepithelial in nature. The major feature of benign tumors is that they are 

made up of slow-growing cells arranged in well-defined patterns. Diagnosis might be 

difficult because of the reality that these cells mimic healthy cells once viewed under a 

microscope. It is worth noting that benign tumors account for roughly 41% of totally 

primary brain tumors. Once the tumor is not in a pivotal place and operating exclusion is 

possible, therapy is beneficial. Radiation therapy is an alternate treatment option, mainly 

when life-threatening illnesses are triggered by the benign growth's location [17]. Due to 
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their hostile and invading character and unlimited mass increase that ultimately drives 

major consequences such as pressure on key tissues, malignant tumors are life-

threatening. Brain malignancies, dissimilar additional kinds of cancer tumors (lung, liver, 

breast, etc.), are typically confined and infrequently prevalent (metastasize) to different 

parts of the body. Furthermore, because of the sensibility of the adjacent brain tissue, 

surgical removal is considered exceedingly risky. Glioblastoma multiform (grade 4 

astrocytoma) is the most common form of malignant primary brain tumor, accounting for 

around 20% of all primary brain tumors [18]. 

2.3.1   Gliomas  

Glial cell tumors are a kind of development that starts in the brain or spine and develops 

from glial cells. The brain is an incredibly popular glioma website. Glioma is a broader 

categorization that includes two primary histologic subtypes: astrocytoma and 

oligodendroglia. 

2.3.2   Meningioma 

The second most frequent essential tumor of the focal nervous system is meningioma, 

arising in the arachnoid villi's arachnoid 'cap' cells. The majority of these tumors are 

typically benign, although they can also be cancerous [18].  

 2.4    Brain Tumor Diagnosis  

A brain tumor is known as irregular cell development in the brain (National Cancer 

Institute, http://www.cancer.gov/). Tumors can be distinguished in many methods, 

including definite symbols and symptoms, screening examinations, or medical imaging. 

Once a possible tumor is detected, then it is identified by microscopic analysis of a tissue 
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sample. The tumor is typically treated with chemotherapy, radiation therapy, and surgery. 

The probability of surviving the disease fluctuates significantly by the type, location of 

the tumor, and the extent of the illness at the start of treatment. There are two types of 

brain tumors: benign and malignant. In opposition to healthy cells, tumor cells occur 

from unrestricted cell outgrowth and spread to the subsequent tissue. Even though benign 

tumors can develop enlarged and push on normal organs and tissue that can influence 

their operation. Prime brain tumors create in the brain, although secondary brain tumors 

start from other body sections. Typically, the definitive analysis of a cerebrum tumor is 

grounded on histological examination of tissue samples acquired by a biopsy. A biopsy is 

highly invasive and has vital dangers with evaluated morbidity of 2.4−3.5% and a death 

percentage of 0.2−0.8% [19,20]. For instance, a biopsy will not always be performed, 

incredibly old or infirm patients or patients with quite slow-increase tumors. 

Furthermore, surgery could be escaped for specific pathologies like lymphomas and brain 

abscesses. Imaging approaches, such as MRI, CT, and PET, could identify a brain tumor 

and bypass needless operation. The anatomical assessment of brain tumors and high-

resolution information can be obtained by MRI, used widely in clinical practice. 

Interestingly, MRS and MRSI can provide important information about metabolism. 

However, despite these promising potentials, MRS and MRSI are not yet widely applied 

in the clinical location since specialized processing, and examination of the obtained 

information are required [21]. This thesis focuses on the application of MRI. 

2.5   Medical Imaging  

Dzung et al. [22] demonstrated that an image gathers measurements in two-dimensional 

or three-dimensional space. In modern medicine, this process is called medical imaging, a 
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field in which significant advances have led to this technique for obtaining knowledge of 

the human body now having several beneficial clinical applications. Several new types of 

medical imaging have been produced in recent years, each characterized by particular 

benefits and drawbacks. Many types of analysis are employed with medical images: 

radiation absorption such as in X-rays, radio frequency (RF) as in magnetic resonance 

imaging, and acoustic pressure, like with ultrasound. In several medical imaging 

techniques, a different technology is utilized for formulating each type of image. Scalar 

imaging involves a single measurement made at each position in an image. Multichannel 

imaging refers to methods in which more than one measurement is made, such as MRI. In 

X-ray imaging, the image can be acquired in a continuous space and  MRI in a discrete 

space. In images with two distinct dimensions, the position of every measurement is 

known as a pixel, and in three-dimensional images, it is called a voxel. Image types also 

vary regarding their display quality and their use for specific body tissues (e.g., bone, soft 

tissue, or tumors). These distinctions are a vital consideration for physicians selecting 

which imaging modality to use [23]. Since the beginning of this century, extensive 

developments in imaging technology have led to the invention of numerous additional 

imaging techniques. The imaging modalities frequently used are X-ray, computed 

tomography (CT),  MRI, and the principal types of imaging used in modern medicine: 

radiography, MRI, and CT nuclear medicine. The following sections offer a whole 

discussion of the theory underlying both the MRI modality and CT imaging, which are 

the image techniques that have been applied for classification using the introduced 

system.  
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2.5.1 Goals of Medical Image Analysis Techniques 

1. Quantification: measuring the attributes on medical images, assist radiologists 

to acquire assessment from medical photos.  

2. To make the features measurable, it is necessary to extract objects from images 

by segmentation. 

 

Figure 2.4: Different medical diagnostic methods. 

 

3. Make a diagnosis using Computer Aided Diagnosis (CAD) based on 

measurements and attributes. Assist radiologists with their diagnostic 

procedures to ensure accuracy and efficiency. 

4. Techniques for evaluation and validation. 

 

                                          Figure 2.5: Computer aided diagnosis  CAD. 
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 2.6   Magnetic Resonance Imaging 

Magnetic resonance imaging is a visual that steps extraordinary resolution photos from 

soft body tissue principally for clinical diagnosis. MRI utilizes a magnetic field and 

radiofrequency to produce a complete image of body organs and structures. It makes 

available a visual representation of the inside of a body for clinical examination and 

medical checking. Compared to other imaging formats, MRI can provide a remarkably 

high level of detail. For example, MRI images of white and grey brain matter can 

differentiate and diagnose aneurysms and tumors. The basic principle behind an MRI 

scanner is that, as a person is positioned in a strong static magnetic field, the protons in 

the body are aligned with the direction of the magnetic field. An RF pulse is generated in 

order to produce a magnetic resonance signal. The protons absorb the transferred power, 

and the radio wave is then switched off, and the RF energy absorbed is retransmitted at 

the resonance frequency. Simultaneously, the protons begin to realign, and during this 

realignment period, the protons begin to emit a radio signal. Figure 2.6 displays a graphic 

picture of an MRI machine and its utmost significant parts. Antennae (coils) are used for 

detecting these RF signals, which are then directed to a computer where the highly 

detailed images are rebuilt. 

 

 
Figure 2.6: MRI scanner with its most important parts [24]. 
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various sorts of magnetic resonance imaging are applied in this process, depending on 

necessity. The kind of series applied in magnetic resonance imaging on condition that as 

an input in the pre-processing phase is identical to T1, T2, and FLAIR.   It is required to 

explain echo and repetition time to comprehend various kinds of MRI images. TE 

denotes the period from the focus of the radio frequency oscillation to the position of the 

TE. For oscillation progression with doubled echoes among every radiofrequency 

oscillation, some  TE times may be described and are usually denoted TE1, TE2, TE3, 

etc. TR is the measurement of period among identical sequence points on a periodical 

chain of pulses and TE. Figure 2.7 shows a tumor's appearance in different images [23]. 

1. T1-weighted images comprise a black show of spinal fluid and liquid. White 

matter is brighter than gray matter. In cerebrum arrangement photos, T1 offers a 

better result, and fat shows shiny in this kind. Time of echo and time of repetition 

with 500 and 14 msec respectively. 

 

 

                                                         Figure 2.7: MRI brain images. 
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2. T2-weighted images comprise the upper signal strength of cerebrospinal fluid and 

liquid related to tissue and cause it to appear luminous. The repetition of 4000 ms  

and echo of 19 ms is used in T2 to make photons-spin relaxation respectively . T2 

is shiny showed at water and liquid, perfect with the edema muscle. 

3.  FLAIR is similar to T2, it has decreased cerebrospinal liquid, and so on, 

irregularities remain brightening. It is perfect for imaging cerebral edema. It uses 

precise length TR and TE times of 9000 ms and 114 ms for creating images 

respectively. 

2.6.1   Physical Principles  

The magnetic characteristics (nuclear spin) of the hydrogen nuclei, which are abundant in 

the human body, are used in MRI. An electromagnetic field is created when hydrogen 

nuclei rotate around their axis. Because the direction of the spins is random in nature, the 

overall magnetic field is null. The nucleus spins align with the external field (positive 

spin) or against it (negative spin) when put in a large magnetic field B0 with a precession 

frequency or Larmor frequency. The spins precess at a rate of ω0 proportional to the 

external field around the magnetic field axis: 

ω0 = γB0                                                                                                                          (2.1) 

The longitudinal component (Mz, parallel to B0) and the transverse component of the 

magnetic vector of spinning nuclei may be expressed (Mxy, perpendicular to B0). The 

number of positive spins outnumbers the number of negative spins by a little margin 

during run-through, resulting in a longitudinal magnetization Mz. The transverse 

magnetization is null because the spins do not precess in phase. When a radiofrequency 

RF pulse is delivered, energy is exchanged between the nuclei and the RF pulse B1 is 

injected at the resonance frequency ω0; this changes the balance of spin. The net 
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magnetization vector tilts away from the linear axis, resulting in a transverse 

magnetization that a receiver coil may detect. In actuality, the pulse B1 is perpendicular to 

B0, resulting in a null longitudinal component at resonance and the highest possible 

transverse signal. The nuclei gradually return to equilibrium once the RF pulse is turned 

off (relaxation phenomenon). The electromagnetic energy that has been absorbed is 

retransmitted and forms the nuclear magnetic resonance NMR signal during relaxation. 

There are two types of relaxation processes: longitudinal and transverse relaxation. The 

spin-lattice (surrounding tissue) interaction correlates to the longitudinal relaxation. By 

providing energy to the lattice, the spin recovers to maintain its balance condition (the 

magnetic field's alignment B0). The recovery of longitudinal magnetism is defined by 

After 63 percent of the final value is recovered, an exponential curve and a tissue a 

certain time constant T1 are used. M0 is the net magnetization at equilibrium, which is 

decided by the proton density and the exterior magnetic fields strong point. The spin-spin 

interaction is described by transverse relaxation, which occurs when the spins go out of 

phase. 

𝑀𝑧 =  𝑀0(1 − exp(
𝑡

𝑇1
)                                                                                                 (2.2) 

This results in an exponential decrease in the cross-sectional component, as measured by 

the a temporal constant that is unique to each tissue T2. 

𝑀𝑥𝑦 =  𝑀𝑥𝑦0 exp(−
𝑡

𝑇2
)                                                                                                 (2.3) 

𝑀𝑥𝑦0  is the transverse signal's amplitude after the RF pulse. 𝑀𝑥𝑦0 equals M0 when the 

RF pulse is perpendicular to B0. T2 is usually smaller than T1 in practise. The picture 

contrast and definition of the various MRI sequences are determined by these two 

parameters [26]. 
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                       Figure 2.8: (a) Orientation of random spins, (b) alignment with the external field, 

                                                      (c) spin precession around B0 [24]. 

 

The MRI offers a number of advantages that make this modality a preferred choice: 

1. High degree of spatial resolution. 

2. Excellent for soft tissue characterization. 

3. Ability to provide functional brain measurements. 

4. No lack of risk to the human body. 

The drawbacks are that they are very noisy and movement can affect them. High static 

magnetic fields may induce nausea, vomiting, dizziness, and headaches in humans. 

2.7   Computed Tomography  

A CT scan (or CAT scan) has become a primary radiological method usable in a range of 

clinical applications. Tomography refers to imaging by sections or sectioning. A machine 

that operates based on tomography is called a tomographic, and the image it generates is 

a tomogram. CT is the process of scanning a patient in order to gather X-ray absorption 

coefficients obtained from thin body sections. Multiple measurements are acquired from 

these coefficients and are subsequently reconstructed into an image that displays the 

anatomy of the section that has been scanned. With CT, X-rays are applied to create a 

representation of the body in two-dimensional images. The X-ray transmitter rotates 
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through 360˚ around the patient at high speed, and a sensitive spherical radiation sensor 

positioned on the gantry around the patient measures the energy transferred. 

The fundamentals of CAT scan  processes consist of four steps: 

1. With the patient properly located in the scanner, the correct protocols and 

technical factors are selected. The initialization of the scanning X-rays going 

from side to side the patient is attenuated according to tissue type. A detector 

system located opposite the X-ray tube measures the attenuation values as an 

analogue signal. This signal is transmitted to the ADC, which converts the 

attenuated signal from analogue to digital, preparing it for processing by the 

computer. 

2. A computer reads the digital data and employs a mathematical formula called a 

reconstruction algorithm to generate a cross-sectional image. The image 

reconstruction, which involves millions of data points, is usually performed in 

less than a second by a group of array processors. 

3. The operator displays the reconstructed image, still in its digital format, on an 

LCD monitor as an image suitable for manipulation. 

A wide range of software is available for enhancing the screen image prior to storage. 

Enhancements include adjusting the density and brightness, changing the plane of the 

image from axial to sagittal or coronal, producing three-dimensional images, and  

presenting  detailed angiography. The image can then be stored on the computer hard 

drive or using an external medium such as a versatile optical disk or a hard copy on 

photosensitive film. Figure 2.9 provides examples of CT images [28]. 
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Figure 2.9:  Fourth-generation scan geometry fixed detector ring [27]. 

 

 

                                                

                                                              Figure 2.10: CT images. 

 

2.8   Other Medical Imaging Modalities 

This section provides a brief introduce to other medical modalities that are beyond the 

scope of this research. [29]: 

1. The X-ray technique is the earliest and most regularly utilized form of medical 

imaging. A beam of X-rays is sent over the body onto a sensitive plate, and the 

ensuing unabsorbed X-rays cause the darkening of photographic material. The 

developed film displays a shadow image of the patient that provides a measure of 

the weakening of the X-ray within the  tissue. X-ray images are frequently 
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employed for examining conditions such as broken bones, lung disorders, 

swallowed items that must be retrieved, and blocked blood vessels.  

2.  The ultrasound modality is a technique based on the application of ultra-

frequency sound waves to produce visible photos that represent the interior of the 

body for clinical examination and therapeutic intervention. A pulse of ultrasonic 

energy is diffused into the patient from a sensor located on the skin, and the same 

sensor receives the backscattered echo signal, from which it creates the image. 

Ultrasound imaging is utilized for large-scale diagnostic imaging of body organs 

and soft tissues. 

 

 

                                                  Figure 2.11: Various method of brain tumor imaging. 

 

3. Positron emission tomography, also known as PET imaging, is a form of nuclear 

medicine. A patient’s vein emits gamma radiation as they decay, while a gamma 

camera scans the radiation area and creates the image. This modality is usually 

employed to detect cancer, discover whether a tumor has expanded within the 

body, determine blood flow to the heart muscle, and map normal human brain and 

heart functions. 
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Various medical imaging used for brain tumor diagnosis shows in Figure 2.11. 
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Chapter 3 
 

Background and Literature Review 
 

3.1 Survey on Brain Tumor Detection and Segmentation 

 
Abstract- Despite significant advancements in medical technology, clinicians still face a 

difficult and time-consuming challenge in detecting brain tumors. Early and accurate 

identification of brain tumors allows for more powerful and effective treatment, leading 

to higher survival rates. The ability to automatically detect and classify brain tumors will 

lead to increased efficiency and predictability.  

Automatic detection and classification approaches, on the other hand, differ from method 

to method and are often image modality reliant. This thesis looks at current detection 

methods and weighs them on their benefits and drawbacks. 

3.2   Introduction  

 The cancer cells multiply and create a tumor, which is a mass of tissue. In a normal 

situation, bodily cells die and are replaced with new ones. The presence of malignant and 

other tumors disturbs this phase to some extent. Tumor cells proliferate despite the fact 

that the body does not require them, and they do not die like healthy cells. As a result of 
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this mechanism, cancer continues to spread as new cells are added to the mass. Glioma is 

a term that refers to a quickly expanding primary brain tumor. Gliomas are tumors that 

arise from glial tissue, which supports and maintains the cells that transport information 

from the brain to all areas of the body. Swelling of the cerebrum can be benign or 

malignant. Non-cancer tumors are non-cancerous growths in the body that do not 

infiltrate nearby tissue. They can be completely eliminated and are unlikely to return. 

Although benign brain tumors cannot spread to surrounding tissue, they can cause severe 

discomfort, long-term brain damage, and death. Brain tumors that are malignant have no 

defined boundaries. They spread rapidly throughout the brain and spinal cord, increasing 

pressure and spreading beyond their place of origin. Malignant brain tumors that spread 

beyond the brain are rare. 

3.3   Brain Tumor Detection 

As per the survey, one of the highest death rates in the world is brain tumors. Symptoms 

include changes in the hormones, blood clots, weakness, uncontrolled walking, muddled 

speech, mood swings, and vision loss . The tumor location defines its type, and its proper 

diagnosis can save the life of the patient [30]. Benign tumors are non-cancerous growths 

in the body that cannot invade neighbouring tissue. They can be excluded entirely and are 

doubtful to appear again. Benign brain tumors do not diffuse to neighbouring tissue; they 

can create meaningful pain, enduring brain damage, and death. Techniques like MRI or 

CT scan give the complete structure of a brain tumor as it directs into the intracranial 

cavity producing a clear tumor image. MRI scan scans by using strong magnetic fields 

and high radio frequencies to provide detailed information of soft tissues. Computed 

tomography scan scans by sending X-ray beams. Stages concerned with recognizing 
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cerebrum tumors are the initializing of an image, feature extraction, segmentation, and 

post-processing. The needed stages for any automatic brain tumor detection are 

demonstrated in Figure 3.1 

 

Figure 3.1: Stages in brain tumor detection system. 

3.3.1  Image Pre-processing  

Pre-processing images is an important part of every image-based application. For the 

following reasons, a pre-processing stage is required: 

1. Pre-processing prepares the images for higher-level processing such as 

segmentation and feature extraction. 

2. Removes the marks or labels such as name, date, and other details (film artifacts) 

in the image that can affect the classification task. 

3. The image quality must be improved. 

4. Reduces any types of noise in the image. 

3.3.2 Image Segmentation 

Image extraction aims to divide a medicinal photo into diverse sections and extract the 

ROI. In particular, it is used for separating components from the remainder of the image 

so that they can be observed or recognized as objects. Alireza et al. [31] divided image 

segmentation into several groups, as illustrated in Figure 3.2. Alireza et al. [31] and Yu 

Jin [32] published general surveys of image segmentation. Some reviews targeted the 
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segmentation of MRI images in particular [33,34,35]. Zhang et al. [36] and Clarke et al. 

[37] provided direct comparisons of diverse approaches for segmenting MRI images. 

 

                        Figure 3.2: Several segmentation methods in MRI brain image examination.  

3.3.3 Feature Extraction and Selection 
 

The defined objective of attribute extraction is to reduce the primary information 

grounded on computing particular components or attributes [38]. The dimensionality 

reduction is one of the goals from the feature extraction stage, which accurately identifies 

interesting components of an image as a compressed attribute trajectory. The technique is 

valuable for applications with large images, for which feature representation must be 

reduced to enable the fast completion of jobs like image identical and recovery. Ziedan et 

al. [39] demonstrated that the best-known feature extraction approaches are local binary 

pattern and spatial dependence matrices. Many research documents have been undertaken 
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to discuss the features of available extraction techniques [40,41]. The objective of feature 

selection is to eliminate unrelated and unnecessary features from input records to choose 

a subgroup of related features for the construction of robust classifiers. This step will 

probably increase the building speed and precision of the latest algorithm. From a 

theoretical viewpoint, it can be claimed that the ideal attribute chosen for supervised 

knowledge tasks needs a comprehensive examination of entirely probable feature 

subsections. Nevertheless, for a considerable number of features or models, conducting a 

complete examination of all features to create an ideal attribute set is unrealistic. For this 

reason, a supervised learning algorithm is employed for analysing an appropriate estimate 

of the best conventional of attributes for a specific algorithm rather than for determining 

an optimal set. 

 3.3.4  Classification Algorithms 

In the field of machine learning and taxonomy, researchers have developed new 

approaches and computer programs to achieve a certain goal. Their research points to the 

creation of specific learning strategies for improving standard accomplishment based on 

the use of model data or past experiences [42]. The acceptance of the training during 

supervised learning is based on patterns with output labels. The usual supervised learning 

is seen in Figure 3.3. The training assignment is called "classification" when the output 

values indicate the various classes to which the samples belong.  

 

               

 

                                          Figure 3.3: Supervised learning model. 
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Because they were derived from model data, the classifier components accurately 

characterized the training data. The training dataset for the taxonomy method that will be 

used to build the classifier is made up of N data points that are formally denoted as {xi, 

yi}
N
n=1, with xi €R

d
 being an input example of dimension d and yi € {−1, +1}, the 

corresponding class label for a two-class classification task. 

3.4    Literature Review 

Adel Kermi et al. [43] propose an automated brain cancer segmentation technique in 

three-dimensional magnetic resonance imaging by using brain and standard group 

similarity analysis. To minimize noise, the image is pre-processed. The FBB method is 

both efficient and unsupervised. Tumor detection is done automatically using the FBB 

technique. In each scenario of tumor form and volume, a geodesic level set-based third 

deformable model is used to differentiate the tumor's boundaries. Detecting and 

segmenting tumors takes an average of five minutes to calculate. The results were 

38.04% accuracy and 89.01% sensitivity, respectively. 

Anithia, S. Murugavali [44] introduce utilizing an algorithm to do a detailed and 

systematic assessment. Tumor information is unique because MRI segmentation is based 

on anatomical characteristics and possibly aberrant tissue data. A two-tier method uses 

K-means algorithms to accomplish successful segmentation and classification. The 

feature extraction is achieved afterward by implementing the discrete wavelet transform 

and learning the neural network's SOM. The KNN algorithm then learns the outcome 

filter features. The testing procedure is similarly done in two phases. It outperforms 

standard classification approaches, and the results of the trial show that it does. Regular 

and irregular MRIs are efficiently organized using two-tier classification segmentation 
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algorithms. The method is implemented using the MATLAB R2013a platform. A 

statistical measure of this two-level classifier technique is subjected to sensitivity and 

specificity expressions. The stated result shows that it outperforms the SVM-based 

classification approach and may be used in medical imaging applications such as image 

classification and CAD. The accuracy factor was 85%, while the sensitivity factor was 

100%. 

Singh, A. [45] propose data mining techniques for the classification of magnetic 

resonance imaging photos. Pre-processing, partition, attribute extraction, and grouping 

are the four phases of classification. Improvement and skull stripping are done in the 

main stage to boost speed and precision. During the segmentation step, a fuzzy C-means 

collecting approach is used. A grey level matrix is used to extract characteristics from 

magnetic resonance imaging photographs. In the last stage, SVM is used to categorize the 

pictures. The findings of this study showed that MRI image categorization may be done 

with a high degree of accuracy and efficiency. 

Daniele Ravi et al. [46] present a new dimensionality reduction and processing approach  

to creating a comprehensive structural map for operation margin. Tissue categorization is 

hampered by manifold embedding and conflicting findings from various dimensionality 

reduction approaches. While this technique does the same task in two phases: first, tissue 

categorization is performed using a distributed stochastic neighbour process, which is 

then followed by a semantic segmentation method based on semantic texton forests. The 

proposed system can assist in the development of cancer. The techniques' real-time nature 

can improve clinical accuracy by providing additional information that can reduce the 

risk of incorrect sectioning of healthy tissue. The generated tumor maps can be of 
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exceptional quality and precision by using a well-established method that is shared with a 

classifier. The accuracy and sensitivity achieved were 81.90% and 80.91%, respectively. 

Lami Salem et al. [47] suggest a convivial procedure for Glioblastoma medialization. The 

tumor area is retrieved using a quick-spreading identical method based on global pixel 

wise-data. To analyse cancer development, the new model uses a cellular automata-

inspired algorithm and a fast marching approach. This technique has an optimised 

runtime of less than 0.7 seconds for each image and does not require much training. 

When compared to healthy cells, glioblastoma has a distinct grey level potency. The 

brain picture is divided into two areas using this information. Because of the intensity 

levels, regions with Glioblastoma are then matched with the estimated model. The tumor 

is extracted in real-time using the suggested technique. 

Mukambik S. Um Ran. [48] propose the following processes to manage four phases in an 

MRI image: pre-processing, segmentation, pattern extraction, and pattern identification. 

The skull is eliminated from the MRI image during the pre-processing phase using a 

twofold thresholding approach; the suggested research provides comparative learning of 

dual algorithms for cancer identification in MRI images. The first technique is based on 

using non-parametric deformable models with an active contour to segment brain cancer 

from magnetic resonance imaging brain images. Another approach used is the K-means 

segmentation algorithm. Following segmentation, decision making occurs in two stages. 

DWT was used to extract features and create a Gray Level Co-occurrence Matrix. 

Finally, in the taxonomy step, SVM is used. There are seventeen noncancerous and 

twenty-four malignant MRI pictures in the collection. For the segmentation job, the K-

means method was used, while the SVM was used for the classification step. In benign 
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picture classification, the accuracy is 94%, while in malignant image classification, it is 

82%. When compared to K-means segmentation, the level set gives the best results. 

K. Sudharani, et al. [49] histogram, K-NN method, and distance matrix are some of the 

approaches used in the proposed procedure. Histogram, for the most part, provides the 

total amount of the given number of strengths dispersed in a certain snapshot. For proper 

geometrical representation, the image size was adjusted to 629×839. After adjusting the 

K value, the KNN algorithm is used to classify and identify the brain tumor. To 

categorize, the distance is computed using the Manhattan metric. The algorithm was 

implemented in LabVIEW. All of the photos evaluated had a categorization score of 

about 95%. 

Rasel Ahmed et al.[50] propose method that includes stages such as primary photo 

treating, segmentation, attributes abstraction, and the last phase is tumor taxonomy 

employing an ANN algorithm. In pre-processing, adjusted adaptive threshold and 

histogram imaging were applied to employ together weiner2 and median2 filter. Attribute 

abstraction is done in dual stages. In the Initial stage, statistical features and in the 

second-order area, property grounded statistical attribute is obtained. Formerly support 

vector machine classifies brain MRI pictures into ordinary or cancer brains. The ANN 

algorithm categorizes the brain tumor. The dataset contains 39 images represents benign 

and malignant tumors.  

Keitan Machale et al. [51] propose an intelligent system that classifies MRI brain images 

as ordinary and malignant. In this suggested method, four stages were used. The feature 

extraction step is followed by the pre-processing stage, and ultimately the classification 
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stage. Diverse classification approaches were applied, such as SVM and KNN, to 

distinguish 50 images. They conclude that overall accuracy of 98% was obtained. 

Cail et al. [52] and Vermaa et al. [53] suggest the intensity command was used to give the 

function vector in magnetic resonance imaging images. In the categorization step, the 

SVM was employed. They are also prepared to distinguish the tumor and non-tumor sub-

areas and split the healthy tissue. 

James Tilton [54] the technique for producing a better hierarchically linked picture 

subdivision has been defined. Specific area-merging algorithms might provide such 

segmentations at various levels of lower detail. Following that, the area combining-based 

hierarchical subdivision, as well as its recursive hierarchical segmentation, was made 

available. This was utilized to apply the information from the segmentation hierarchy to 

the area characteristics based on transformations. Furthermore, in this technique, seed 

point selection in hierarchical extraction and recursive hierarchical extraction remained a 

difficulty. 

Sumitra and Saxena [55] suggest that to categorize the MR brain pictures, a neural 

network approach should be employed. These are divided into three stages: attribute 

extraction, dimensionality classification, and reduction. Absolute key features, such as 

estimations of median, mean, and variance, as well as the greatest and lowest intensity, 

are eliminated from MRI images using principal component analysis (PCA). In addition, 

the pattern classification process used a backpropagation neural network. A method for 

segmenting MRI images that is automated has been discovered. 

Xiao et al.[56] propose to calculate tumor and lateral ventricular deformation 

characteristics in the brain The proposed method is divided into four stages: pre-
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processing, extraction, segmentation, and classification. The surrounding picture's non-

consistency and repeated features were evaluated in the initial step. Unsupervised 

segmentation methods were used to estimate the deformation properties of the tumor 

extraction, and lateral ventricular deformation was used to mine the features. The most 

often utilized approaches are KNN and pattern matching, which are both employed by 

conventional fuzzy connected methods C-means (FCM). The primary drawback is that 

the cluster CSF is incorrectly allocated to a non-CSF pixel, however throughout the 

extraction procedure, a global mask is used to eliminate this unwanted pixel. 

Dahshan et al.[57] suggest a three-stage mixing technique. The factor of MRI pictures 

has been lowered by using principal components, and dual methods have been expanded 

by using DWT in feature abstraction. The main classifier is based on the (FP-ANN), 

whilst the one used to categorize natural or unnatural MRI individual images is based on 

the (FP-ANN). The drawbacks of this approach are that it necessitates the creation of new 

learning datasets as well as changes to picture databases. Furthermore, future research 

may be broadened to include the processing of diseased brain tissue.  

Amia Hald et al. [58] propose automatically segment grey-scale pictures with an 

unmonitored dynamic picture segmentation using fuzzy with a genetic algorithm. This 

method divides a picture into sections using an unmonitored spatial grey-scale image 

segmentation approach. By combining intensity information with neighbouring 

connections, this method promises to give reliable picture segmentation. Furthermore, by 

automatically segmenting the pictures in high quality, the Fuzzy Hopfield Neural 

Network collecting supports the formation of the population of a genetic algorithm. 
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Liwg et al. [59] present a novel training-based multi-source mixing structure for 

segmenting newborn infants' brain pictures, with the goal of assimilating characteristics 

from random forest multi-source picture extraction. The multi-source in this scenario 

includes images that are then repeatedly analyzed including possibly refined tissue, such 

as CSF, WM, and GM. A second examination was carried out on the primary hurdle of 

clinical image computing and computer secondary participation. The approach to be 

employed is rather limited, and it needs a large number of training sets and physical 

segmentation results. For each of the five-time periods, fifty training data are available, 

and considerable effort is required to achieve manual segmentation; moreover, the limits 

will be investigated in future studies. 

Yunlang Ceai et al. [60] applied detection, structure, and grouping inference for regular 

repetitive patterns with the pictures. These are caused by repetitive frameworks, color 

patterns, or repetitive reflections. The segmentation algorithm advocated in this work 

conformed to the traditional area growing picture segmentation project, which used a 

mean-shift-like operational procedure to cluster local picture bits into groups. 

Furthermore, it utilized an uninterrupted combined alignment to correspond to 

resembling bits and modified the subspace grouping. The outcome of a greater-level 

group of picture arrangements may be applied to deduce the calculation of things and 

assess the basic arrangement of a congested area.  

Mohmad Awead et al. [61] a genetic algorithm and an artificial neural network were 

utilized to investigate a multi-component segmentation of images. Various techniques 

were applied to separate the multi-component pictures. The multi-component picture 

division technique is performed using a non-parametric unmonitored ANN known as a 
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self-organizing map (SOM) and mixture genetic algorithm. Subsequently, the image's 

principal features were recognized using the SOM with no previous information to cluster 

the picture into homogeneous areas.  

Tian Lan et al. [62] suggest using the kernel FCM technique to segment a brain picture. 

The FCM, spatial FCM, and kernelled FCM methods are all computed using the brain 

picture, but the accuracy element is verified using the error rate. As a result, the FCM 

approach has a higher accuracy rate than the other techniques, according to this research. 

Agarwal et al. [63] suggest  to divide the brain MRI picture into two clusters, GM and 

WM, they used a bias field correction approach coupled with fuzzy c-means 

segmentation. Finally, the level set segmentation is performed to these regions, and the 

results indicated a higher precision than the previous methods, according to this article. 

Ping and Honglei Wang [64] this paper presents a modified FCM method for MRI brain 

picture segmentation. The technique is implemented by integrating geographical 

neighbourhood information into the standard FCM algorithm and altering each cluster's 

membership weighting. Both artificially produced and authentic images are subjected to 

the suggested algorithm. The suggested approach outperforms the traditional FCM 

algorithm in terms of noise resistance on synthetic images and MRI brain images 

degraded by Gaussian noise and salt-pepper noise. 

Muhammad et al.[65] this paper proposes using convolutional neural networks (CNN) for 

feature extraction from food pictures. On a publicly accessible Pittsburgh fast-food 

picture dataset, a linear support vector machine classifier was trained using a 3-fold 

cross-validation technique. For categorization, features from three distinct, fully linked 

layers of CNN were employed. Two categorization tasks have been established. The first 
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job was to sort photos into 61 categories, and the second was to sort them into seven 

categories. For 61 and 7 class tasks, the best results were achieved utilizing 4096 features 

with an accuracy of 70.13%  and 94.01%, respectively. 

Lu xiaojun et al. [66] propose a method that uses attribute fusion to better describe 

pictures for face recognition using DCNN attribute extraction. They utilized PCA to 

reduce the combined attribute's capacity. For two classes, the SVM machine classifier is 

used. This method can detect faces with extreme occlusion, substantial confusion, and 

size discrepancies, according to test results. On FDDB, this approach achieves an 89% 

recall rate and a 97% average accuracy, according to the conclusion. 

Er-Yang Huan et al. [67] propose CNN-based body constitution recognition technique 

that can distinguish different types of people's constitutions based on facial images. The 

determined model first extracted the facial picture characteristics using CNN and then 

merged the abstracted features with the hue attributes. To get the grouping result, the 

aggregated information is sent through the Soft-max classifier. They claim that the 

approach proposed in this study can achieve a precision of 65.3%. 

Bhandari et al.[68] propose covariance matrices represent the characteristics of deep 

convolutional neural networks (DCNN) for face expression identification. The covariance 

matrices have the same spatial geometry as symmetric positive definite (SPD) matrices. 

They show that the covariance descriptors generated on DCNN features are more 

efficient than the usual classification with fully connected layers and soft max by 

performing facial expression classification using Gaussian kernel on SPD manifold. They 

demonstrate that the suggested technique achieves performance by using the VGG-face 

and exponent architectures and doing extensive tests on the Oulu-CASIA and SFEW 
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datasets. They conclude that the proposed method provides state-of-the-art facial 

expression recognition performance. 

Hong Liang et al. [69] they describe the common methods used in paragraph attribute 

extraction, then expands on the often-used DL process in paragraph attribute extraction 

and its implementation, and last, it anticipates the use of deep learning in attribute 

abstraction. They come to the conclusion that, in comparison to other machine learning 

techniques, DL can detect complicated relationships from the attribute and train lower-

level characteristics from practically unprocessed source data. 

Hawaii et al. [70] suggest a deep neural network-based brain tumor classification 

approach that is fully automated. Glioblastoma sickness pictures of various grades were 

subjected to the proposed algorithm. The construction of a convolutional network is 

shown in a unique way. 

Matilda Lorentzon [71] machine learning is proposed to extract features for picture 

selection. Histograms of directed gradients, discrete cosine transform domain features, 

and characteristics derived from a pre-trained CNN are among the feature extraction 

methods utilized. For content categorization, the attributes that were excluded from CNN 

yielded the best results. 

Ronjian Li et al. [72] the deep learning imaging data achievement for better brain 

sickness analysis is the title of their paper. They proposed a deep learning based 

framework for assessing multi-modality imaging data. Images of Alzheimer's disease 

from two modalities, PET and MRI, were utilized to assess this method. They came to the 

conclusion that their technique outperformed previous methods substantially. 
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Pingping Zhu [73] propose the CNN algorithm to abstract target attributes from the sonar 

photos. The SVM is implemented in the recognition stage, which was trained based on 

manually labeled data. The result demonstrates that deep learning attribute extraction 

provides good achievement compared to applying various feature abstraction approaches.  

Heba Mohsen [74]propose brain tumors classification using learning neural networks. 

The deep neural network is applied to categorize the MRI dataset of 66 brain tumor 

images. The conclusion is that using the deep neural network algorithm demonstrates 

great accuracy related to standard classifiers. 

Pereira et al. [75] propose an auto distinguish technique to classify cancer utilizing a 

convolutional network within three 3×3 kernels. The use of small kernels allows 

designing a deeper architecture, besides having a positive effect against overfitting, given 

the fewer number of weights in the network. Also, they investigated the use of intensity 

normalization as a pre-processing step, which though not common in CNN-based 

segmentation methods, proved together with data augmentation to be very effective for 

brain tumor segmentation in MRI images. The technique achieved the entire core's initial 

location.  

Siar et al.[76] introduce a convolutional neural network algorithm to identify multiple 

sclerosis and normal tumors concurrently. The convolutional network successfully 

classified 96% of the pictures into one of three group. 

Szilagyi et al. [77] propose a divide brain tumors from MRI images, recommend using a 

Fuzzy C-Means algorithm. The proposed approach makes use of prior data at two 

implementation points: the fuzzy C-means-formed groups of voxels are classified as 

maybe cancers or non-cancers based on data extracted from train sizes; and the selection 
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of fuzzy-means factors (amount of groups, fuzzy exponent). They conclude that 

preliminary evaluation results demonstrated the procedure's capacity to extract abstract 

information about the presence and location of cancer. 

Xu et al. [78] propose an effective and operative way, utilizes a convolutional network 

for grouping and segmentation. The suggested approach applied Image-Net for abstract 

attributes. The outcomes achieved 97% and 84% precision for grouping and 

segmentation, respectively. 

Pan et al. [79] introduce a deep learning building, and base neural systems for cancer 

categorizing by MRI images have been considered and evaluated. The outcomes 

demonstrate that the system routine grounded on the Sensitivity and Specificity of the 

convolutional network better by 19% associated with ANN. 

 Basheera et al. [80] propose a new method that utilizes CNN for categorizing brain 

tumors into benign and three various kinds—applying an improved ICA composite model 

to extract the tumor from an MRI photo. After the extracted photo, profound attributes 

are removed and systematic. The outcomes are evaluated by determining the algorithm's 

achievement on a data record free with Harvard Medical School. 

Menegola et al. [81] propose a scenario transfer learning appears as a prominent solution. 

The aim is to clarify how transfer learning schemes may influence classification results. 

Particularly focused in the automated melanoma screening problem, a case of medical 

imaging in which transfer learning is still not widely used. In addition, explored transfer 

with and without fine-tuning, sequential transfers and usage of pre-trained models in 

general and specific datasets They conclude that the experimental design is sensitive to 
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the image annotation, that is, small changes in the fold assembling can cause huge 

impacts in the final results. 

 Bhandari et al. [82] examine the importance of CNNs in segmenting brain tumors by 

first learning about CNNs and then performing dissertation research to find an example 

segmentation pipeline. Additionally, look into the future efficacy of CNNs by looking 

into a new field called radionics. This study looks at the quantitative characteristics of 

brain tumors including form, texture, and signal strength in order to predict clinical 

outcomes like the presence of the tumor and treatment response. 

Naima Otberdout et al. [83] suggest a correlation matrix is employed to encrypt the 

DCNN attribute discrimination for facial appearance. The space geometry of the 

correlation matrix of symmetric is positive. Employ the Gaussian kernel on the SPD 

manifold to accomplish face expression classification. They demonstrate that 

characteristics calculated by DCNN are more powerful and efficient than traditional 

classification methods. They implemented the VGG-face and ExpNet model with large 

practices on the Oulu-CASIA and SFEW datasets. They conclude that the suggested 

technique reaches achievement for face appearance identification. 

Hashemzeh et al. [84] propose a brain tumor identification, a novel hybrid model 

combining neural autoregressive distribution estimation (NADE) and CNN has been 

proposed. Three types of brain tumors were used to test the system with a total of 3064 

T1 spin-lattice relaxation time MRIs. The results reveal that the CNN-NADE 

combination has a substantial categorization, indicating that clinical pictures are difficult 

to produce. 
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Seetha et al. [85] suggest brain tumor recognition by applying convolutional neural 

networks (CNN) classification. Small kernels designed, and neuron weight to obtain 

more in-depth architecture. The weight of the neuron is specified as small. Investigational 

outcomes display that the CNN records 96% precision with slight complication and the 

recent approaches. 

Khan et al. [86] present the CNN algorithm and data expansion and image handling to 

classify malignant and non-malignant brain MRI scan pictures. They compare the 

scratched CNN algorithm's performance to pre-trained VGG-16, ResNet-50, and 

Inception-v3 models. The results showed that model accuracy was 100%, whereas VGG-

16 was 96% accurate, ResNet-50 was 89% accurate, and Inception-V3 was 75% accurate. 

 3.5    Conclusion 

The brain tumor examination is a precise and difficult task that requires constant attention 

to precision and correctness. As a result, a thorough technique focusing on the innovative 

framework for expanding more robust picture cancer segmentation and detection 

methodologies is desperately needed. This chapter provides an overview of currently 

recommended techniques for detecting brain tumors using MR brain imaging. This is due 

to brain tumor detection being complicated and sensitive, precision and consistency will 

be critical components of the selected approach. 
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Chapter 4 
 

  Brain Tumor Detection System 

 

4.1 Introduction  

A brain tumor is considered a dangerous illness, which requires early and accurate 

detection. However, the principal detection methods depend on radiologists who may 

apply a misdiagnosis due to human error; furthermore, more effort and a more significant 

amount of time are necessary to decide on detection.  

This research work addresses automated detection of brain tumors and seeks to discover 

a new but powerful resolution for this. The formal problem definition is listed below: 

1. Low classification performance in expressions of accuracy, sensitivity, and 

reliability.  

2. Radiologists required high classification time.  

3.  Manual classification of medical images is never 100% accurate. 

 It is indispensable to accept, as a priority, the truth that all radiologists, even highly-

skilled ones, do commit errors. The caseload, case complexity, speedy reporting 

requirements, and radiologist fatigue all play a part in a radiologist’s report quality. 

Different individual factors and limited analysis periods and tools different medical 
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doctors may reasonably often produce diverse classifications or interpretations, leading to 

different diagnoses. Brady et al. [3] demonstrate that radiology includes decision making 

in a situation of uncertainty, and consequently, cannot on every occasion create a 

successful explanation or opinion. Additionally, in many diseases, doctors and 

emergency care physicians trust radiology test reports to conclude their patients’ 

diagnoses and the course of their treatment. Furthermore, the image capacity and 

complex data offered to radiologists for classification have risen dramatically in the last 

few years.  

This thesis suggests a novel brain tumor detection support system technique, which 

introduces machine learning techniques to classify images more quickly and accurately. 

The following investigation methodology was performed. The literature on detecting and 

analyzing brain tumors is studied to describe the problem and study topic. Numerous 

techniques of brain tumor recognition in MRI was studied, and their performance was 

evaluated. Moreover, the multi-classifier utilizes the supervised method for the image 

classification task. They apply different methodologies to classify data with the 

inspiration of developing the taxonomy of benign and malicious lesions in brain MRI 

images. Therefore, all of the outputs of the algorithms are combined in a confident 

approach to accomplish the last decision. New detection and classification of tumors are 

offered. A confusion matrix weighs the output of the developed technique. The aim is to 

promote a system that increases disease detection by reducing the false negative and 

positive rates due to observational oversights 

 

. 
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4.2  Brain Tumor Detection System Flowchart 

The proposed solution introduces decision fusion frameworks that coordinate decisions 

from multi-classifier into a single decision, as shown in Figure 4.1. The brain tumor 

detection support system is implemented to classify digital MRI and CT images to detect 

brain tumors as benign or malignant. The introduced system block diagrams consist of 

two phases, a training phase and a testing phase. Both phases consist of the following 

stages: initialization, segmentation, feature abstraction depending on discrete wavelet 

transform DWT, feature decrease by PCA, multi-classifier, and training accuracy 

assessment; finally, the decision fusion is the last stage in the testing phase, which is 

responsible for combining different decisions resulting from the multi-classifier stage. 

In the decision fusion, the elementary combining classifier, such as majority voting, 

minimum likelihood, maximum likelihood, product likelihood, and average probability, 

is employed to fuse considerable evidences from the classification stage. The Dempster-

Shafer theory is applied for the principal technique to fuse  multi decision to arrive at one 

final decision and express any uncertainty regarding this decision. 

4.2.1   Training Phase 

The first stage is the pre-processing, applying median filter followed by image 

segmentation, applying the threshold technique, and feature extraction by applying the 

discrete wavelet transformation DWT technique. The length of the feature vectors is 

decreased through implementing the PCA method. The set of compact feature vectors 

and the class label are utilized to learn the multi-classifier group. A cross-validation 

technique is applied for a successful generalization capability of the system. Besides, the 

training accuracy assessment offers a confidence score for the performance of each 
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algorithm in the training phase. This confidence of each classifier will be used later in the 

decision fusion and allows robust classifiers to participate with greater involvement in the 

decision fusion task. 

 

Figure 4.1: Flowchart of brain tumor detection system. 

4.2.2   Testing Phase 

The user or the radiologist is inputting the brain MRI  image, which the supporting 

system must classify. The segmentation and feature extraction is applied, and the PCA 

decreases the attribute dimension. This decreased attribute pattern of dimension is applied 

to the multi-algorithm stage. The multi-algorithm group is a set of algorithms that 

produce “local” choices by utilizing a suitable decision combination rule to obtain one 

final trusted decision. The essential stage is the decision fusion, where all the local 
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decisions are fused into one decision, namely, normal or abnormal (benign or malignant) 

using different elementary combinations similarly majority voting, weighting averaging, 

minimum, maximum, and probability schemes. The primarily combination method is 

Dempster Shafer theory of evidence DST.  

4.3 Brain Tumor Detection Support System  

The block diagram presented in Figure 4.2 demonstrates the seven phases of constructing 

the brain tumor detection support system. In the following sections, each stage and the 

applied techniques will be discussed in detail. 

 

             Figure 4.2:  System blocks diagram. 

4.3.1 Image Acquisition 

At this stage, the features are removed from the area of attention of the image and classed 

as either benign or malignant and are assigned to the extracted features. The features 

extracted from the normal MRI (class 0) images are assigned as a normal class, and those 

from the abnormal MRI (class1) images are assigned as an abnormal class. The assigned 

features are kept in a database. This stored data is essential for the classifier to assign the 

class to the image under test. The image acquisition steps are presented in Figure 4.3. 
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Figure 4.3: Dataset collections and labeling. 

4.3.2   Pre-processing Stage 

Image initialization is a significant aspect of any photo-based application. In a wide 

variety of image handling techniques, particularly for the assignment of cancer partition, 

pre-processing is critical. The following two stages, i.e., the segmentation and extraction 

stages, produce accurate results. Their high noise levels render raw MRI/CT images 

collected from laboratories inappropriate for direct use, and a pre-processing stage is 

necessary for the following aims: 

1. Any noise in the image must be reduced. 

2. Pre-processing prepares the images for higher-level processing such as  

segmentation and feature extraction. 

3. Marks or labels such as name, date, and other details (film artifacts) that can  

affect the classification task must be eliminated. 

4. Image quality requires to be improved. 

The MRI image contains artifacts or marks similar to the patient's name, label, and tags. 

It is substantial to smooth an image, whereas keeping its edges. The overlap of grayscale 

is a factor that causes followed phases tasks such as feature extraction, segmentation, and 

classification to further complications [87]. In numerous biomedical image-processing 

applications, filtering is likely the generally essential operation, wherever it decreases the 
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noise scale and increases the fineness of the image. Picture marks are detached using a 

tracking procedure. We can use a tracking procedure to eliminate marks surrounding the 

MR photos. Nevertheless, the tracking procedure applies the maximum threshold for the 

grayscale photo that is 255. Several pre-processing methods are shown in Figure 4.4. 

 

 

                  Figure 4.4: Various pre-processing techniques and highlighted the used  technique.  

4.3.2.1    Removal of Film Artifacts 

The MRI/CT images contain film artifacts or labels such as surname, age, and symbols. 

In such a broad diversity of image-treating requests, it is essential to smooth the photo 

whereas maintaining its ends. The grey points usually interfere, which causes any of the 

following stages similarly—segmentation, feature extraction, and labeling more 

challenging. The tracking algorithm is applied to eliminate film artifacts. Figure 4.5 

shows the removal of film artifacts. The tracking procedure is employed to eliminate 

image artifacts. First, the tracking procedure is applied to take off film artifacts like tags, 

names, and tags out of the MRI photo. Letter artifacts are present in most brain MRI 

images due to patient's information being embedded in them. The high quality of MRI 
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machines ensures metal-related and susceptibility artifacts are very few [88]. The steps 

applied to perform the tracking algorithm: 

1. Read the MRI image and save it into a two-dimension array.  

2. Choice the highest threshold value for eliminating white tags  

3. Flag value set to 255.  

4. Select pixels that are the strength value is equal to 255.  

5. If the strength value is 255 now, the pointer amount is set to zero and therefore 

the tags are detached from MRI. 

6. Else, skip to the following pixel.   

 

 

                                   Figure 4.5: Original MRI image (left) after tracking algorithm applied (right). 

 

4.3.2.2   Enhancement 

Filtering is possibly the primary procedure in various medical image classification 

assignments. The function is to decrease the noise level and raise the condition of the 

image. In image processing, it is regularly desired to implement some noise reduction on 

an image or signal. One of the nonlinear digital filters is the median filter, which is 

usually implemented to reduce noise. Median filtering is quite extensively applied in 

digital image treating because it preserves edges although removing noise[89]. This 
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method calculates the neighboring pixels' median to define the novel amount of the 

picture element. A median is computed by arranging picture element amounts wholly by 

their magnitude, at that point choosing the median amount as the pixel's novel value. 

Median filtering is useful in reducing noise from two-dimensional signals without 

blurring boundaries [90]. The median value is employed in its place of the strength value 

of the midpoint pixel. When the process is repeated, a high-resolution image is obtained. 

 

Figure 4.6: Median filtering for 3×3 sliding window on the MRI. 

The white pixel in the image foreground represents the tumor and their pixel strength 

value from zero to 255, where the black pixel with strength from zero to 10 is the 

background. The disparity of the area is calculated by: 

𝐶 =
𝑓−𝑏

𝑓+𝑏
                                                                                                                          (4.1) 

C is the contrast ,where  f and b is the average gray-level rate of the foreground and  the 

background respectively. 

 4.3.3    Image Segmentation 

Image segmentation aims to group a volumetric medical image into partitioned areas, 

typically into anatomic structures essential for a particular task. This is specifically 

utilized to separate regions from the remainder of the image to observe or recognize them 

as objects. The thresholding approaches are applied in the proposed system, and further 
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details of this technique will present in this section. In the literature, several segmentation 

techniques are present. However, no one technique can be assumed perfect for all images. 

In addition, all approaches similarly are not suitable for a specific kind of image. Figure 

4.7 shows various segmentation techniques with a highlighted applied method in this 

research. Thresholding is the manageable and most frequently utilized technique of image 

segmentation. A binary region map or binary image is obtained with only one threshold 

after converting a greyscale or color image. The binary map contains two areas, which 

are possibly separated; the first of these has pixel intensity with input data and is of less 

value than a threshold background; the second area belongs to the input values which are 

equal to or exceed the threshold foreground [91]. 

 

 

Figure 4.7: Various segmentation methods. 

 

                                                     Figure 4.8 : Background and object over grey level. 

 



 

53 

 

The distribution of object (foreground) and background over the grey level shown in  

Figure 4.8 . The threshold is a value in a grey level that splits pixel strengths into binary 

portions:  

𝑘(𝑥, 𝑦) = {

 
𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑖𝑓 𝑘(𝑎, 𝑏) < 𝑇                  

𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑   𝑖𝑓 𝑘(𝑎, 𝑏) ≥ 𝑇                    
                                                  (4.2) 

 

 

Figure 4.9: MRI before applied thresholding and after. 

An incorrect threshold value results in an imperfect segmentation process [92,93]. If 

more than one region with different grey levels is extracted, it must have more than one 

multi thresholding. Figure 4.9 demonstrates the original and segmented image after the 

thresholding method is applied. 

4.3.4   Feature Extraction Scheme Using DWT 

The process of defining a set of features, or image properties, that will most effectively or 

usefully represent the information needed for analysis and classification is known as 

feature extraction. This process substantially affects the classification outcome and shows 

an integral part in the effectiveness of any image classification. Attribute extraction is 

likewise a kind of size decrease, which professionally identifies motivating components 

of an image as a compact feature vector. This technique is beneficial for applications with 
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large images, for which feature representation must be reduced to enable the fast 

completion of jobs such as image matching and retrieval. Figure 4.10 shows various 

feature extraction techniques. This method is used to abstract the attributes from the MRI 

image. The wavelet transform decomposes a signal into a collection of basic functions. 

These functions are known as wavelets. The basis can be obtained by applying 

translations and scaling (stretch/compress) on the mother wavelet ψ(t). Therefore, the 

wavelet transform offers information in both time and frequency [94].   

 

Figure 4.10: Various feature extraction. 

Karibasappa et al. [95] state that the major interest of wavelets is their presentation of 

time and frequency representation, which is particularly useful for classification 

processes. Suppose x(t) is a square-integrable function, then the continuous WT of x(t) 

relative to a given wavelet 𝜑(𝑡) is defined as: 

𝑤𝜑(𝑐, 𝑑) =  ∫ 𝑥(𝑡) ∗ 𝜑𝑐,𝑑(𝑡)𝑑𝑥
∞

−∞
                                                                                 (4.3) 

 𝑤𝜑𝑐,𝑑(𝑡) =
1

√𝑐
𝜑(

𝑡−𝑐

𝑑
)            (4.4)                                                                                                                   

The wavelet Ψ𝑐,𝑑is determined by the mother wavelet Ψ by scaling beside shifting;  c is 

the scaling parameter as well as d is the shifting factor, and together c and d are 
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constants. Furthermore, DWT is a method that splits the image into some frequency 

resolutions, and every section with a resolution similar to its scale is studied. DWT is 

stated as [96]: 

 

                                                               Figure 4.11: 2D DWT block diagram. 

 

𝐷𝑊𝑇𝑥(𝑛) = {
𝑑𝑖,𝑗 =  ∑ 𝑥(𝑚) ℎ𝑖

∗(𝑛 − 2𝑖𝑗)

𝑎𝑖𝑗 =  ∑ 𝑥(𝑚)𝑔𝑖
∗(𝑛 − 2𝑖𝑗)

                                                                     (4.5) 

 

The detailed components in signal x(n) are represented by di,j, a term, where the 

approximation components are by the ai,j term. The low and high pass functions are 

indicated by h(n) and g(n) individually. The terms i and j indicate the wavelet scale and 

shifting parameters. The central point of discrete wavelet transform is a various scale 

illustration from a task. Through applying the wavelets, the particular purpose may be 

inspected by different scales of resolution. The new photo is a procedure lengthways the 
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horizontal and vertical paths by applying the high and low pass filters in a different 

direction. The following result is from low-pass g(n) and high-pass h(n) filters. First, the 

LL sub-band represents the approximation coefficients following the execution of the 

low-pass filter on both the row and column of the image. The LH sub-band is following 

the execution of  the low and high pass filters on the column and row. The HH sub-band 

following the execution of the high-pass filter both on the column and row, and the HL 

sub-band following the execution of the high and low-pass filters both on the column and 

row, respectively. The three groups LH, HH, and HL, represent the detailed coefficients. 

The sub-band photo LL that represents the approximation coefficients is used to calculate 

the next level of DWT.  

In this work, three levels of decomposition of DWT are applied to a given photo, and 

the Haar wavelet transform is executed. The simple, as well as more straightforward, 

wavelet is the Haar wavelet. It is principally a square wave having one period. The image 

size in phase one is each 128×128, second phase 64×64, and third phase 32×32. Figure 

4.12 illustrates the four bands, LL, LH, HL, and HH, of the initial level of DWT 

decomposition. Half of the signal’s size is reduced by half at the individual 

decomposition stage compared to the earlier period. 

 Consequently, if the image size is k × k, then the first decomposition stage size is k/2 × 

k/2, and the next level is k/4 × k/4, and so on. Therefore, the dimension of the calculation 

element achieved as of the initial level decomposition of a k × k photo is k/2 × k/2, where 

the subsequent level is k/4 × k/4, and so on. Additionally, as the degree of the divide is 

extended, a compacted, coarse approximation of the image is achieved. 
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Figure 4.12: MRI image and first level of DWT.  

 

4.3.5   Feature Reduction Scheme Using PCA 

A well-known method is principal component analysis PCA for remodeling the current 

input attribute into a novel and smaller-sized feature space. The PCA is a orthogonal 

linear conversion that assigns the data to a novel dimension scheme. The highest 

variation by any projection of the information appears to fall on the initial coordinate first 

component; the following highest variance comes on the next coordinate second 

component, and so forth. PCA executes size reduction while preserving as much of the 

randomness in the high-dimensional space as possible. The input attribute size is 

converted toward a smaller-sized attribute size utilizing the highest eigenvectors of the 

correspondence matrix. Given a collection of data, the principal component analysis 

obtains the linear lower-sized illustration of the information. Thus, the variance of the 

new information is maintained [97]. The reduction attribute depends on PCA restricting 

the attribute vector to the elements carefully chosen by the principal component analysis, 

leading to an effective taxonomy process. Therefore, the principal goal of applying the 
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primary component analysis is to decrease the DWT coefficients size that consequence in 

a further helpful and high-performance classification. Following this are the stages 

required to perform the principal components of the entered matrix containing the DWT 

coefficients. The dimension of the entry array is reduced to only 13 from 1024. Figure 

4.13 depicts the necessary phases for performing the PCA of the entry path. 

 

Figure 4.13: Feature extraction and reduction scheme. 

  

Consequently, the attribute abstraction procedure was produced by executing two actions; 

initially the wavelet elements were obtained by applying the discrete wavelet transform, 

and following this, the significant coefficients were compact by the principal component 

analysis.  

4.4   Supervised Classification Algorithms 

Supervised learning indicates that the model learns from previously identified outcomes 

and changes their internal factors to fit themselves to the input information. As the 

paradigm is appropriately learned, it can give precise guesses around invisible or unseen 

information. During supervised learning, the approval of the training is dependent on 
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patterns that carry output labels. When the output values identify the various classes to 

which the samples relate, the training assignment is called classification. The classifier 

factors have described the training data consistently because they have been collected 

from the model data. The training dataset to be given to the separation classifier for 

constructing the classifier consists of N data points that can be formally denoted as {xi, 

yi}Nn = 1, with xi 𝜖ℝ𝑑 being an input example of dimension d and yi 𝜖{−1, +1}, the 

corresponding class label for a two-class classification task. The following sections 

describe different algorithms that can produce classifiers for MRI and CT data. In this 

thesis, three algorithms KNN, SVM, and MLP, are applied to solve the tumor 

classification problem. Some of the classifiers are shown in Figure 4.14. 

 

Figure 4.13: Some of image classifiers and highlight the used  classifiers. 

4.4.1 K-Nearest Neighbours 
 

The k-nearest neighbours algorithm is grounded on a distance function that measures the 

correlation or differences among data points [98]. A distance function frequently used for 

this determination is the Euclidean distance: 
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𝑑(𝑝, 𝑞) =  √∑ (𝑞𝑖
𝑛
𝑖 −  𝑝𝑖)2                                               (4.6) 

 

In the nearest neighbour rule, a novel testing point x is consigned to the class of the data 

point xi closest to x Figure 4.15. This approach might produce an unreliable classification 

result since the classification rule assigns the new data point based on only a single N 

point, which might, for example, be unrepresentative of its class. When k neighbours are 

considered rather than one, a more reliable result is possible. The k-nearest neighbours 

algorithm determines the k data closest to x and classifies them according to the majority 

of equal classifications in this group. The use of data normalization can avoid the variable 

that has the most significant scale dominating the distance measure. The advantage of the 

KNN algorithm is easy to use and does not create supposition regarding the information.  

 

.  

Figure 4.14: Three nearest neighbours. 

4.4.2   Multilayer Perceptron 

The MLP is a primary category of ANN model, known to be a universal approximates 

[99]. In the case of one hidden layer, the outcome is achieved by feeding a data point 

𝑥(𝜖ℝ𝑑) to the hidden layer, as illustrated in Figure 5.16. Also, Figure 4.17 shows a 
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mathematical model of a discrete perception. Wherever the weight denoted by w, the 

output  and the input is indicated by y and x , respectively. In the case of MLP with one 

unseen layer the outcome is achieved by input the data point 𝑥(∈ ℝ𝑑) to the hidden layer, 

consisting of H hidden units, which are themselves connected to the outcome unit(s).  

 

 

                  Figure 4.16: Architecture of an MLP, containing four hidden units and one output. 

 

 

Figure 4.17: Mathematical model of a discrete perceptron or neuron. 

For hidden neuron h this can be represented by: 

𝑧ℎ = 𝑓(∑ 𝑤𝑗ℎ𝑥𝑗 +  𝑏ℎ
𝑑
𝑗=1 ), ℎ = 1, … , 𝐻                                                                         (4.7)                                                                   

with f(·) an activation function (e.g. tanh), wjh the weight among the input j and unseen 

neuron h and b the bias term of unseen neuron h. The output unit activation 𝑦𝑘′
∗   is 

modelled as: 
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𝑦𝑘′
∗ = g(∑ 𝑤ℎ𝑘′

𝐻
ℎ=1 𝑧ℎ +  𝑏𝑘′)                                                                                         (4.3) 

where 𝑤ℎ𝑘′ represents the weight between unseen neuron h and the output unit, b the bias 

expression of the output unit and g(·) the activation function. For dual taxonomy tasks, 

there is one output unit, k
’
 = 1, and g(·) can be represented by a logistic sigmoidal 

function. The perceptron learning process follows these steps [100]: 

1. Each weight is multiplied by the input, and computes the total sum. The 

backpropagation is one of techniques applied to tune the weights. 

2. The activation function could the output up and down by this technical step. . It 

causes likely to adjust the value yield of the neuron. 

The stages of neural network learning: 

1. Initialization: primary weights are implemented to all the neurons. 

2. The inputs of  the  learning set are brought over the neural network and an output 

is calculated. 

3. The goal of backpropagation is to modification the weightiness of the node to 

reduce a mistake to the smallest possible value. 

4. Weight update: weights are altered to the best values based on the outcomes of the 

backpropagation procedure. 

The paradigm is set to create estimates for anonymous input information. New data can 

be entered into the paradigm, a forward pass is done, and the paradigm produces its 

guess. 

4.4.3 Support Vector Machine  

The linear SVM algorithm attempts to discover between all hyperplanes that reduce the 

learning fault in the distinguishable information. This line splits the learning information 

https://missinglink.ai/guides/neural-network-concepts/backpropagation-neural-networks-process-examples-code-minus-math/
https://missinglink.ai/guides/deep-learning-frameworks/tensorflow-distributed-training-introduction-tutorials/
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with outer space from their nearby points (the max distance plane). SVM classifier is a 

well-known non-probabilistic algorithm designed to seek linear separability of the 

classes. The most excellent significant training points are the support vectors that state a 

hyperplane. The central concept underlying SVM classifiers, which were developed 

principally for two-class classification tasks, is using a hyperplane technique for 

determining the decision limits for the classification of the data points of various groups. 

The records are linearly divisible in such a situation, and the separating hyperplane can 

be determined for various directions Figure 4.18. The kernel SVM algorithm is 

considered for non–linear divisible information. The elementary idea includes two 

sequential phases: plan the input attribute space into a greater size attribute space, by a 

non-direct conversion kernel. The mapping is executed to catch a attribute domain, 

wherever the information can be lined separate [101]. In that attribute domain, the system 

builds the maximal boundary hyperplane as defined earlier. However, SVMs work to 

maximize the boundary, and the goal is to build a hyperplane with a maximal length 

separating both classes. The formulations for an SVM classifier are as follows: 

Data:  <xi,yi>, i = 1,..,I 

xi  R
d  ,   

yi  {-1,+1} 

planes in R
d
 are parameterized by a vector (w) and a constant b, which This may be able 

to be represented as xi.w + b = 0. 

The hyperplane h can be stated as: 

𝑤𝑇𝜑(𝑥𝑖 + 𝑏 ≤ −1 𝑓𝑜𝑟 𝑦𝑖 = −1                                                                                   (4.8)                    

𝑤𝑇𝜑(𝑥𝑖 + 𝑏 ≥ +1 𝑓𝑜𝑟 𝑦𝑖 = +1                                                                                   (4.9) 
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Figure 4.18: SVM representation  for linearly separable dataset 

Equivalent to: 

𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏)  ≥   1, 𝑖 = 1, … . , 𝑁,                                                                         (4.10) 

In addition, the algorithm is represented as : 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝜑(𝑥) + 𝑏)                                                                                         (4.11) 

But the data of classes are overlapping in the most real life application, which causes a 

good linear sorting out of question. Consequently, a limited feature of the wrong 

classification would be permitted about the border. The resulting optimization issue, 

where the infringement of the restricted is punished, for SVMs is formed as 

𝑚𝑖𝑛𝑤,𝜉,𝑏ℐ1(𝑤, 𝜉) =  
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖,

𝑁
𝑖=1                                                                       (4.12) 

such that  

𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,     𝑖 = 1, … . , 𝑁,                                                                (4.13) 

𝜉𝑖  ≥ 𝑜,    𝑖 = 1, … . , 𝑁,                                                                                                 (4.14)       

C is soft margin cost function parameter that regulates the effect of individually separate 

support point; this procedure includes trade-off fault punishment for stabilization. SVMs 

are established on the standard of basic hazard minimization that matches paradigm 

complication and experimental error. The primary group of limitations agrees Eq.4.10, 



 

65 

 

while another group requires slack variables  𝜉𝑖 , afford the wrong classification. The 

amount of  𝜉𝑖  specifies the space of xi corresponding  to the decision border: 

𝜉𝑖  ≥ 1 ;  𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) < 0      indicate a different sign  between the decision purpose 

and the goal, showing t xi is wrongly classified. 

1. 0 < 𝜉𝑖 < 1 ∶  𝑥𝑖   is appropriately categorized, nevertheless, falls interior of the 

boundary. 

2. 𝜉𝑖 = 0 ∶ 𝑥𝑖   is properly categorized and falls exterior of the boundary. Normally, 

the problematic statement in Eq.4.9 and 4.11 is mentioned as original 

optimization problematic. Consistently, the optimization problem for this 

algorithm could be formed in the double dimension  by the intermediary of the 

Lagrangian with Lagrange multipliers 𝛼𝑖  ≥ 0 for the primary set of limitations, 

Eq.(4.10).  

A quadratic programming problem applied to obtain the resolution for the Lagrange 

multipliers. Lastly, the SVM algorithm can represent in this form: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏)                                                                       (4.15) 

anywhere the kernel function K(·,·) it is symmetric and all its values are positive. It fulfils 

Mercer’s condition formerly, significance that K(x, xi) equals 𝜑 (x)
T
  𝜑 (xi). It is 

frequently named the kernel trick as no obvious building of the mapping 𝜑 (·) is required. 

This allows support vector machine  to effort in a high-dimensional attribute space,  short 

of really execution. Several categories of kernel purposes: 

1. Linear SVM: K(x,y) = x
T
z. 

2. Polynomial SVM of degree𝑑: 𝐾(𝑥, 𝑦) = (𝜏 +  𝑥𝜏𝑧)𝑑, 𝜏 ≥ 0. 

3. Radial basis function RBF: 𝐾(𝑥, 𝑦) = exp (−
‖𝑥−𝑧‖2

2

𝜎2
). 
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where, 

1. ‘σ’ is the variance and hyper parameter 

2. ||X₁ - X₂|| is the Euclidean (L₂-norm) distance among two points X₁ and X₂. 

Equation (4.12),  𝛼𝑖  should be above all nonzero values, support points, in it is place of 

exclusively data points. The identical trajectories  xi  are mentioned the as support points. 

These support vectors are positioned near the resolution border and share in the building 

of the splitting hyperplane [102]. 

4.5  Multi-Classifier Architecture  

In image processing, classification is crucial since it influences the quality of image 

interpretation. Many existing approaches produce acceptable results but are limited to a 

certain image type or need previous knowledge that is frequently unavailable. If the 

classification outcomes of many algorithms can be efficiently combined, such algorithm 

fusion can be preferred to the results of all individual algorithms. The main principle 

underlying algorithm fusion is that while obtaining a choice, one should not depend just 

on one classifier's perspective; instead, algorithms should collaborate in decision 

production by merging their outputs. As a result, the most difficult challenge to solve 

when fusing various algorithms is solving disagreements among them. The challenge is 

figuring out how to integrate the findings of various algorithms to achieve a superior 

outcome. 

Multiple classifier systems can belong to one of the following configurations: cascaded 

serial, sequential), parallel, or hierarchical, as illustrated in Figures 4.19, 4.20, and 4.21 

[96]. In a cascading architecture, as shown in Figure 4.19, the yield of one classifier is 

utilized as entered to the following classifier. The latest algorithm in the chain produces 
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the final prediction. The disadvantage of this configuration is that the final classifier is 

unable to correct a previous one. In a parallel configuration, all classifiers independently 

generate results combined in a unified output, as indicated in Figure 4.20. The selection 

of a suitable combination method contributes to the performance of this topology. 

 

 
Figure 4.19: Sequential classifier combination. 

 

This feature becomes significant if the base algorithms have varied performance so that 

low-performance classifiers can disturb the total performance of the multi-algorithm. In 

this research, this configuration is applied when multi-classifier are used. 

 

 

Figure 4.20 : Parallel classifier combination. 

 

In a hierarchical technique, to achieve ideal performance, together cascading and parallel 

formations are employed to fuse the algorithms, as depicted in Figure 4.21. This method 

has the advantage of overcoming the drawbacks associated with cascading and parallel 

configurations. 
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                                         Figure 4.21: Hybrid classifier combination. 

4.6   Levels of Fusion 

One of the most critical considerations in the combination process is the type of data that 

should be merged. Data combination can generally occur at two levels: before the 

classification step, feature levels, and after the classification step, at the decision level. 

The several popular information fusion and combination approaches are listed in table 

4.1. 

4.6.1  Feature Fusion 
 

The combination of data from different references might happen at the data level or the 

attribute level. Data level fusion combines information from several sources before 

subjecting it to attribute removal or selection. This assumes that the similarity and 

connection between raw data points are either known in advance or can be accurately 

inferred. This is known as pixel level fusion in the image processing literature. 

Combining distinct feature sets taken from various sources is related to feature layer 

combinations. In reality, raw data, such as hyperspectral data, contains the most 

knowledge content. Additional processing, in particular attribute removal and choice, 

lowers the quantity of data accessible to the combination procedure.  
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                                      Table 4.1 : Common data fusion and integration techniques. 

 

A unique resultant pattern vector can be computed as a weighted mean of the particular 

pattern vectors where the attribute sets are homogenous, features of the same kind of 

data. When feature sets are heterogeneous, such as attributes derived from various types, 

connecting them to produce a singular pattern vector is possible. Attribute removal and 

choice techniques are utilized to decrease the capacity of the resultant attribute vector. If 

the feature sets are inconsistent, the connecting is not available. A feature-level 

representation offers several benefits over a data layer representation. Fusion procedures 

that integrate information early in the processing are more successful than combination 

processes that later integrate information.  It is important to remember that feature-level 

fusion might combine the same raw data sets or multiple data sources reflecting the same 

photographed scene. Furthermore, feature level fusion should be simple if the attribute 

sets are developed from the equal attribute removal or choice technique used to the 

identical information. Nevertheless, attribute layer combination is challenging if the 

Combination technique Application 

Dempster-Shafer theory of evidence Decision making, beliefs intervals 

Bayesian theory Decision making between multiple hypotheses 

Neyman-Pearson criteria Decision making 

Pixel level fusion Image processing, image segmentation 

Neural Network Signal interpretation 

Fuzzy logic Handle vagueness 

Markov random field Image processing 

Knowledge based system Pattern recognition 
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attribute sets are obtained from various methods and data sources. The following factors 

contribute to the difficulty. For starters, the connection between attribute scopes produced 

from various procedures may be unknown. Attribute groups from various origins may be 

inconsistent. Supplementing them to produce a new feature group is viable if the attribute 

groups are feature vectors of constant length. However, this series procedure may end in 

the curse of dimensionality, in which growing the number of attributes degrades system 

performance, mainly when the quantity of training examples is insufficient. Also,  a 

dimensionality reduction technique can be used with a feature concatenation scheme. 

Before initiating the classification/matcher process, the feature extraction or selection 

method guarantees that increased or associated feature amounts are discovered and 

discarded. This is most likely one of the most significant advantages of doing fusion at 

the feature level. The substantial variations in the range and the shape (distribution) of the 

different feature vectors are another issue produced by the concatenation process. This 

challenge might be handled by using the feature normalization process that moves feature 

values into a common domain. The mean and variance of feature data are modified using 

a transformation function. A proper normalization scheme can also be used to handle 

outliers in feature values, essentially the min-max and median normalization methods. On 

the other hand, feature normalization may not be essential if the feature values from 

many origins are by now similar. 

4.6.2 Classification Fusion 

The fusion after classification can be divided into four categories: dynamic classifier 

selection, fusion at the decision level, fusion at the rank level and fusion at the match 

score level. The following section will discuss some of these strategies of combination.  
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4.7   Decision Fusion 

Any decision support system (DSS) aims to develop a model to make proper judgments 

with a small quantity of input data/information. Quite frequently, especially in medical-

sensitive systems, the accuracy of the judgments made is essential. In such 

circumstances, the minimal information restriction is less relevant as long as the final 

judgement can be reached in an acceptable amount of time. According to one viewpoint, 

DSS advancement should be built on the continual development of current techniques 

and the discovery of new ones. Another viewpoint indicates that when the limitations of 

current individual techniques are reached and it becomes difficult to produce a better one, 

the answer to the problem may be as simple as combining existing high-performing 

methods in the hopes of achieving more significant outcomes. In terms of reducing 

uncertainty, such information fusion appears to be worthwhile. Each technique generates 

its own set of mistakes, not to mention the possibility that the input data is incorrect or 

incomplete. However, different techniques working on different data should create 

different mistakes. Given that all individual methods function well, a combination of 

many such experts should minimize total classification error and, as a result, emphasize 

correct conclusions. In recent years, information fusion approaches have been extensively 

researched, and their application in the classification area has been extensively explored. 

Fusion Algorithm approaches can be clustered into two groups: dynamic classifier 

selection and classifier fusion grounded on combination by the rank level and 

combination grounded on combination by the resulting level. In this research, the 

combination approaches that are grounded on fusion at the decision level were 
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implemented. A hierarchy of approaches used in combining classifiers is shown in Figure 

4.21.  

In addition, there are many techniques for classifier fusion. Two significant approaches 

can obtain the concluding decision: 

1. Integration (or combination): totally, algorithms participate to the concluding 

result, supposing competitive algorithms.  This approach used in our decision 

fusion stage. 

2. Selection: in this category only one algorithm, produce the result for every feature 

set. It considers that algorithms are complementary. 

Besides, the form of information created by the members of classifiers can be assorted 

into three stages [103]: 

1. Abstract: every classifier outputs the class tag for every input outline. Every 

algorithm Di yields a class tag rj 𝜖Ω ,j =1,...,M. Therefore, for any object x ∈ ℝ𝑛 

to be grouped, the M algorithm outcomes describe a trajectory 

𝑟 = [ 𝑟1, … . . , 𝑟𝑀]𝑇 ∈ Ω
𝐿
 ;    Ω = {𝑤1,𝑤2, … , 𝑤𝑐} is a collection of target class. 

2. Rank: every algorithm yields a ranking list of likely labels for every input vector. 

The output of individually Dj is a subgroup of Ω, with the option  in ascending 

order of plausibility of being the exact tag 

3. Measurement: individually algorithm outcomes a score, likelihood or sureness 

level for every input form. Every classifier D produces a c-dimensional.  
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Figure 4.22: A hierarchy of methods used in combining classifiers. 

The objective of all decision fusion systems is to create a model, which given a minimum 

amount of input data/information, is capable of producing proper decisions. Figure 4.22 

illustrates the applied techniques utilized to combine the multi-classifier based on the 

classifier output type.  For instance, if the algorithms’ outcome of rank or abstract kind 

applies, specific fusion techniques may be applied, similarity majority vote, weighted 

majority vote, and Bayesian fusion. However, the probability schemes such as Min, Max, 

product, and the average probability and the scale of decision fusion organizations have 

been classified as shown in Figure 4.23. There are two kinds of classifier fusion planning: 

classifier fusion and classifier selection [104]. In classifier combination, each algorithm is 

given all data on the attribute domain, and the outcomes from various algorithms are 

fused. Each algorithm participates in making the last result. In contrast, in algorithm 

selection, each algorithm is specialized in an exact domain of the attribute domain, and 

the local professional only chooses the outcome of the ensemble. Dempster-Shafer theory 

could be applied if the classifier output from the measurement type applies. 

In algorithms combination models, classifier outputs are fused to obtain a set conclusion. 

The majority vote, likelihood schemes, weighted averaging, and Bayes method are used 

for classifiers fusion. The DST  is employed to define the calculated trust of algorithms, 
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SVM, K nearest neighbour, and ANN. The classifiers output is used as the source of 

proof for calculating the beliefs. 

 

Figure 4.23: Fusion techniques category. 

4.7.1   Elementary Combiners 

In this research work, the combination rules such as Min, Max, average, and product 

probability with the majority vote rule are applied to fuse the multi-classifier as a first 

technique [105,106,107]. The decision on the majority vote applies when all of the 

classifiers vote for one class or more than 50%, plus one of the classifiers vote for the 

same class. Therefore, in order to formulate the concluding classification, decision 

outputs from every classifier were combined. Following this, there is a majority vote 

regulation that fulfills:     

𝑅𝑟(𝐴) =  ∑ 𝑑𝑐,𝑗
𝑘
𝑗=1 (𝐴)                                                                                             (4.16)                     

Where c is the label, A is the testing pattern vector, j = 1, . . . , K,  k  amount of 

algorithms and the selection of an odd number to avoid a tie in the majority vote method; 

dc,j is the paired resolution value [0, 1], 0 matches the incorrect classification and 1 the 

true classification.  

Ponti Jr [108] shows that a combination of classifiers on the measurement level of all 

these rules can be applied: 
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1. Min: from among the classifiers, computes the minimum score of each class and 

sets the unknown testing attributes to the class, which has the maximum grade.  

            𝑅𝑐
𝑚𝑖𝑛(𝐴) = min 𝑝 (

𝑐

𝐴
) .                                                                                      (4.17) 

2. Max: from among the classifiers discoveries the maximum result of every class and 

classifies the unknown sample to the class, which has the maximum grade between 

the maximum score. 

     s
 
𝑅𝑐

𝑚𝑎𝑥
(𝐴) = max 𝑝 (

𝑐

𝐴
) .                                                                                   (4.18) 

3. Product: multiply the scores created from every classifier and set the class label of 

the maximum score to the unknown input attribute. 

           𝑅𝑐
𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐴) =  ∏ 𝑝 (

𝑐

𝐴
) .𝑘

𝑖−1                                                                                (4.19) 

4. Sum: adds the grade created by every single classifier and sets the class label of the   

maximum result to the unknown input attribute. 

      𝑅𝑐
𝑠𝑢𝑚(𝐴) − ∑ 𝑝 (

𝑐

𝐴
) .𝑘

𝑖=1                                                                                                                    (4.20) 

4.7.2   Majority Voting 

The majority vote is one of simplest combinations rules, which works upon the abstract 

level. Kitler [109] have verified that in majority voting, the decision indicates a class 

whichever of the subsequent declarations is measured:  

1. All of the classifiers vote for one class. 

2. Half the number of classifiers plus one vote for one class (simple majority).   

This collects most of the classifiers, which vote for one class even the total number of 

votes did not exceed half. Majority voting is an ideal fusion technique under the small 
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hypotheses that the total of classifiers, R is odd in order to avoid a tie situation and 

independent of the classifier outputs.  

4.8  Dempster-Shafer Theory of Evidence 
 

The DST was implemented to manage ambiguity management and incomplete reasoning. 

Dissimilar to the Bayes method, the DST can model unknown information [110,111]. 

The accumulation of proofs is utilized to diminish a set of hypotheses. The DST method 

permits the demonstration of uncertainty due to the ambiguity of the proof. If ambiguity 

becomes zero, the DST model is identical to a typical Bayes paradigm [112]. X is 

represented by basic belief m(X) delivered by the source of evidence under consideration 

and has the next features: 

 

Figure 4.24: Different Measurements over a unit Interval. 

1. The green area over the unit interval represents the belief.  

2. The red area represents the disbelief. 

3. The grey area represents the ignorance, which indicates that neither the belief 

nor the disbelief range is selected. 

4. Plausibility, Pls (B) is the addition of uncertainty and belief measures. This 

indicates that most stretches of belief are in ignorance, and do not demonstrate 

trust nor disprove it. 

5. The doubt is entire uncertainty and disbelief.   

∑ 𝑚(𝑋) = 1                     𝑎𝑛𝑑𝑥 ⊆ Θ   𝑚(∅) = 0                                                       (4.21) 
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When 𝜙 is empty, it shows the certainty that an empty set is always equal to zero and that 

Θ characterises the entire frame of discernment. The trust function for the occurrence of 

D is specified by: 

Bel (D) = ∑ 𝑚(𝑋) ,   𝑋 ⊆ 𝐷 𝑎𝑛𝑑 𝐷 ⊆  Θ 

DST manages the opinions’ rating from a total number of proofs or evidence and their 

fusion. In this research, three experts provide the evidence: the group of classifiers, which 

we call:  E1, E2, and E3. These three classifiers represent the evidence, which offers 

measures for the event space.  Let the event space be Θ = {B, M}. In our case, benign or 

malignant represents the event space. 

Furthermore, there are belief and uncertainty measures for each event. These measures 

contain a belief for each occurrence and ambiguity. Therefore, BelE1 (M), BelE1 (B), 

and BelE1 (uncertainty) are measures produced from evidence E1 where: 

BelE1 (M) + BelE1 (B) + BelE1 (uncertainty) = 1; similarly for E2, and E3 measures.   

This explains how the DST is applied to this work, assuming that a person has a brain 

tumor and that there are two possible diagnoses, the patient has either a malignant or a 

benign tumor. In this case, the total outcome of the event space is four opportunities 

which are Θ = {M, B,[M, B], ϕ}. This indicates that the patient is either M (malignant), 

or B (benign), whereas {M, B} is one of two classes, either malignant or benign that is a 

symptom of ambiguity, or ∅  is neither malignant nor benign which demonstrates an 

unusual case. The sources of evidence are an ANN, KNN, and SVM classifier. The  

framework of event space is defined as Θ, and every classifier, Di, would participate in its 

result by determining its opinions along Θ.                                
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 The classifier output provides the evidence in this work, and the Dempster-Shafer 

combination rule can process this evidence. The source of proof is not dependent; neither 

does the intersection set presuppose the empty rule. Dempster's fusion rule may be used 

to fuse any two beliefs such as Bel1 and Bel2 to produce a unique confidence function. 

Dempster's rule of fusion is a technique, which fuses proof from several independent 

sources. Furthermore, the probability mass functions are fused employing the Dempster 

decree, on the assumption that  Bel A and Bel B are two belief assignments over the 

event space Θ, with probability masses mA and mB, respectively. Therefore, the total 

possibility mass proposes that c is: 

𝑚(𝑐) = 𝐾 ∑ 𝑚𝐴(𝑎𝑖𝑎𝑖∩𝑏𝑗
) ∗ 𝑚𝐵(𝑏𝑗)                                                                            (4.22) 

where, K is the normalizing factor. This function is called the orthogonal sum of 

BelA and BelB, indicated as BelA ⨁ BelB. This sum can also be denoted as mA ⨁ mB 

which is 

𝑚(𝑐) = 𝐾[𝑚𝐴(𝑎𝑖) ∗ 𝑚𝐵(𝑏𝑗)]                                                                                      (4.23) 

The normalising factor, K assists as a amount of the contradiction among the two 

certainty functions which is specified by[113] : 

𝐾 =  
1

1−𝑘
=

1

1−∑ [𝑚𝐴(𝑎𝑖∗𝑚𝐵(𝑏𝑗)𝑎𝑖∩𝑏𝑗

                                                                                (4.24) 

Furthermore, k is the so-called amount of conflict between the two belief functions. If 

BelA and BelB do not conflict, then k = 0.  If K = 1 then the functions totally contradict 

and BelA ⨁ BelB does not exist [114,115].  

This conflict factor will be monitored during the evidence combination, and if it exceeds 

the preset levels, it will contradict the judgement, indicating that more testing is 

necessary. In most cases, a proposition has more than two sources of proof. Dempster's 
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Rule is used to pairs of functions repeatedly in order to fuse multiple certainty functions. 

There are three belief functions in this work: 

BelANN, BelSVM, and BelKNN.. The final sum is BelANN ⨁ BelSVM ⨁ BelKNN. 

 Nevertheless, the order of fusion is of no consequence give the calculated mathematics 

of the rule[116,117]: 

𝐵𝑒𝑙(𝐶) =
∑ 𝐵𝑒𝑙(𝐴𝑖)×𝐵𝑒𝑙(𝐵𝑖)𝐴𝑖∩𝐵𝑖=𝐶;𝐶≠∅

1−∑ 𝐵𝑒𝑙(𝐴𝑗)×𝐵𝑒𝑙(𝐵𝑗)𝐴𝑖∩𝐵𝑖=∅
                                                                             (4.25) 

The approach of pairwise fusion is used. It combines, for example, the views of KNN 

classifiers (K) and supports the vector machine(S) method in the first step. The output of 

the final combination of the SVM and KNN classifiers is fused in the following stage, 

with the evidence provided by the ANN classifier (A). Let 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) and 𝑏𝑒𝑙𝐾𝑁𝑁(𝑀), 

represent the beliefs from the KNN classifier for both classes as benign (B) and 

malignant (M). Likewise, for the SVM classifier, evidence is given as 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) 

and𝑏𝑒𝑙𝑆𝑉𝑀(𝑀), where 𝑈𝑆𝑉𝑀 and 𝑈𝐾𝑁𝑁 are the unbelief or uncertainty of the two 

classifiers. Bel (M) is a trusted mass specified to classify a malignancy. This is calculated 

by a product of benign trust of SVM and KNN, considering the independence of the 

pieces of evidence sources. The multiplication of the benign belief of KNN and the 

uncertainty of SVM and the uncertainty of KNN and the benign belief of SVM is added, 

and all these essential opinions are summed. Therefore, 

 𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝐵) = 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) × 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) + 𝑈𝑆𝑉𝑀 × 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) + 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) × 𝑈𝐾𝑁𝑁     (4.26) 

4.8.1   Steps of Combination 
 

Dempster's combination includes an estimation of belief and unbelief or uncertainty 

resulting from each classifier. Figure 5.25 illustrates the inputs and outputs of each 
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classifier. Output ‘K’ indicates the belief values obtained from the k-Nearest Neighbour, 

while, ‘S’ indicates the belief values from the support vector machine, and ’A’ indicates 

the belief values from the artificial neural network. The first phase combines evidence 

from the KNN classifier and supports the vector machine classifier outcomes. The 

uncertainty and beliefs are applied to Dempster’s rule as input. S and K are the evidence, 

which provide beliefs from the support vector machine and the KNN classifier 

respectively. The beliefs  𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) and𝑏𝑒𝑙𝐾𝑁𝑁(𝑀), where 𝑏𝑒𝑙𝐾𝑁𝑁 indicate the belief 

provided by the KNN and two classes, benign (B) and malignant (M) under study. 

Likewise, the support vector machine classifier beliefs are given as  𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) 

and  𝑏𝑒𝑙𝑆𝑉𝑀(𝑀). The uncertainties for two classifiers are  𝑈𝐾𝑁𝑁 and  𝑈𝑆𝑉𝑀; benign and 

malign classes are achieved from SVM and k-nearest neighbour classifiers respectively. 

Figure 4.26 shows combinations of SVM and KNN Classifiers. 

 

                               Figure 4.25: Block diagram of individual classifiers. 
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                         Figure 4.26: Combinations of SVM and KNN classifier. 

 

Bel (B) indicates a trust, which belongs to the benign group. Firstly, in order to calculate 

the benign belief, multiply benign trust masses of KNN and SVM, multiply the 

uncertainty for KNN and benign trust of SVM, and finally multiply benign belief of KNN 

and ambiguity or uncertainty of SVM. Secondly, in order to complete the benign belief 

all of the fundamental beliefs are summed. Consequently, KNN and SVM combined 

beliefs are shown in Table 4.2: 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝐵) = 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) × 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) + 𝑈𝑆𝑉𝑀 × 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) + 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) × 𝑈𝐾𝑁𝑁      (5.27) 

The factor 1 - Σ A ∩ B is used to normalize this combined belief, as A ∩ B= Φ. 

Therefore, we can calculate the final combined belief as follows: 

 

 

 

KNN classifier beliefs 

Bel B Bel M 𝑈𝐾𝑁𝑁 

 

 

   SVM 

Classifier 

  beliefs 

Bel B 
Bel B Bel ∅ 𝑈𝐾𝑁𝑁 × 𝑏𝑒𝑙𝑆𝑉𝑀(𝐵) 

Bel M 
Bel ∅ Bel M 𝑈𝐾𝑁𝑁 × 𝑏𝑒𝑙𝑆𝑉𝑀(𝑀) 

𝑈𝑆𝑉𝑀 𝑏𝑒𝑙𝐾𝑁𝑁(𝐵) × 𝑈𝑆𝑉𝑀 𝑏𝑒𝑙𝐾𝑁𝑁(𝑀) × 𝑈𝑆𝑉𝑀 
Bel U 

 

                                             Table 4.2: Fusion of KNN and SVM classifiers outputs 

 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝐵) =
𝑏𝑒𝑙𝑠𝑣𝑚(𝐵)×𝑏𝑒𝑙𝑘𝑁𝑁(𝐵)+𝑈𝑠𝑣𝑚×𝑏𝑒𝑙𝑘𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝑠𝑣𝑚(𝐵)×𝑈𝑘𝑁𝑁

1−𝑏𝑒𝑙𝑠𝑣𝑚(𝑀)×𝑏𝑒𝑙𝑘𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝑠𝑣𝑚(𝐵)×𝑏𝑒𝑙𝑘𝑁𝑁(𝑀)
                              (4.28) 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝑀) = 
𝑏𝑒𝑙𝑠𝑣𝑚(𝑀)×𝑏𝑒𝑙𝑘𝑁𝑁(𝑀)+𝑈𝑠𝑣𝑚×𝑏𝑒𝑙𝑘𝑁𝑁(𝑀)+𝑏𝑒𝑙_𝑠𝑣𝑚(𝑀)×𝑈𝑘𝑁𝑁

1−𝑏𝑒𝑙𝑠𝑣𝑚(𝑀)×𝑏𝑒𝑙𝑘𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝑠𝑣𝑚(𝐵)×𝑏𝑒𝑙𝑘𝑁𝑁(𝑀)
                             (4.29) 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝑈)= 
𝑏𝑒𝑙(𝑈)

1−𝑏𝑒𝑙𝑠𝑣𝑚(𝑀)×𝑏𝑒𝑙𝑘𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝑠𝑣𝑚(𝐵)×𝑏𝑒𝑙𝑘𝑁𝑁(𝑀))
                                              (4.30) 
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The highest fusing belief value determines the final assigned class; similarly, the result of 

combination of KNN and SVM is combined with the ANN classifier Figure 4.27. 

 

Figure 4.27: Combination of KS( KNN and SVM fusion) and ANN classifier. 

 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝐵) = 
𝑏𝑒𝑙𝐾𝑆(𝐵)×𝑏𝑒𝑙𝐴𝑁𝑁(𝐵)+𝑈𝐾𝑆×𝑏𝑒𝑙𝐴𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝐾𝑆(𝐵)×𝑈_𝐴𝑁𝑁

1−𝑏𝑒𝑙𝐾𝑆(𝑀)×𝑏𝑒𝑙𝐴𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝐾𝑆(𝐵)×𝑏𝑒𝑙_𝐴𝑁𝑁(𝑀)
                                                  (4.31) 

 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝑀)= 
𝑏𝑒𝑙𝐾𝑆(𝑀)×𝑏𝑒𝑙𝐴𝑁𝑁(𝑀)+𝑈𝐾𝑆×𝑏𝑒𝑙𝐴𝑁𝑁(𝑀)+𝑏𝑒𝑙_𝐾𝑆(𝑀)×𝑈_𝐴𝑁𝑁

1−𝑏𝑒𝑙𝐾𝑆(𝑀)×𝑏𝑒𝑙𝐴𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝐾𝑆(𝐵)×𝑏𝑒𝑙_𝐴𝑁𝑁(𝑀)
                                 (4.32) 

𝑏𝑒𝑙𝑐𝑜𝑚𝑏(𝑈) =  
𝑏𝑒𝑙(𝑈)

1−𝑏𝑒𝑙𝐾𝑆(𝑀)×𝑏𝑒𝑙𝐴𝑁𝑁(𝐵)+𝑏𝑒𝑙_𝐾𝑆(𝐵)×𝑏𝑒𝑙_𝐴𝑁𝑁(𝑀)
                                              (4.33) 
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Chapter 5 
 

Deep Learning Based Feature Extraction for Tumor  

                  Characterization and Detection 

 

Deep Learning is a rapidly expanding subject of artificial intelligence that has become a hot issue 

in a variety of fields. Deep Learning's concrete accomplishments in numerous areas, such as 

education, manufacturing, transportation, healthcare, military, and automotive, are now visible in 

our daily lives. Deep Learning is a branch of machine learning that evolved from Artificial Neural 

Networks, in which a cascade of layers is used to extract higher-level characteristics from raw 

data and generate predictions about incoming data. The impact of attribute extraction, which is 

deeply embedded in training techniques such as Convolutional Neural Networks, will be 

discussed in this study (CNN). In addition, the article offers to do research on recent advances in 

deep learning techniques and attribute extraction approaches. As demand grows, extensive 

attribute extraction assignment research has become increasingly more important. The 

characterization and detection of brain tumors will be utilized as a case study to illustrate Deep 

Learning CNN's capacity to accomplish successful tumor characterization and representational 

learning. 

5.1  Introduction 

For many centuries, wise people have dreamt of constructing a machine with the power 

to imitate the human brain. Rina Dechter introduced the expression deep learning, and its 

origin dates from 1986. The term “neocogitron,” which was introduced in 1980, inspired 
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the convolutional neural network [125]; however, recurrent neural networks (RNNs) 

were suggested in 1986 [126]. Following this, in the 1990s, LeNet enabled deep neural 

networks (DNNs) to apply in practice, although this was not generally accepted [127]. 

The hardware restriction causes the LeNet structure to be simplistic; therefore, it cannot 

be used with large datasets. Deep belief networks (DBNs) and a layer-wise pre-training 

structure were introduced in about 2006 [128]. Their principal objectives were to learn a 

basic two-layer non-learning paradigm, such as limited Boltzmann machines (RBMs), 

freeze every parameter, place a new layer at the highest level, and train only these 

variables for the new layer. This method enabled researchers to train more profound 

neural networks than was previously possible, thereby motivating a rebranding of neural 

networks to deep learning. After several decades of advancement, deep learning 

originating from artificial ANNs became one of the most effective instruments compared 

with other well-performing machine-learning algorithms. It has been observed that some 

deep-learning techniques developed from the first ANNs, which included RNNs, RBMs, 

DBNs, and convolutional neural networks (CNNs) [129]. Although graphics processing 

units (GPUs) are famous for their action in the computation of large-scale frameworks in 

organizing structures on one mechanism, numerous distributed deep-learning networks 

have been developed to accelerate the training of deep-learning paradigms [130]. Large 

volumes of data have labels or even noisy labels; therefore, specific research attaches 

greater importance to enhancing training modules’ noise strength by applying 

unmonitored or semi-supervised deep-training methods. The max of the existing deep-

learning paradigms concentrates exclusively on one modality, resulting in a restricted 

representation of real world data. At present, researchers are giving a greater 
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concentration to a cross-modality framework, which can be a massive advancement in 

deep learning.  

Feature extraction defined as the translation of some input data into a set of features. This 

commences with an opening series of reliable data in machine learning, subsequently 

developing the adopted standards (aspects)[118,119]. It is anticipated that such features 

are non-redundant and descriptive. It simplifies the experimental stages and meaningful 

learning in a situation where the data input into an algorithm is too significant to be 

managed and thought to be redundant (a significant volume of data, but little 

information). The features will be converted into a smaller representation group of 

factors, known as the features vector.  Consequently, the extraction of discriminatory 

features in the signal improves the reduction of the data vector length by disregarding 

redundancy in the data and by concentrating the appropriate information into a feature 

vector of a considerably smaller dimension. It is anticipated that the preferred features 

will define feature extraction as the translation of some input data into acquiring the 

relevant information from the provided dataset. The resulting task is well executed by 

recognizing the reduced volume of data rather than being supplied with big data. Feature 

extraction corresponds to decreasing the number of advantages necessary to describe a 

massive sequence of detail. In conducting an analysis inquiry of complex data, the 

convoluted variable's sum is the principal difficulty. It is usual that analysis with several 

variables requires considerable computational power and a large volume of memory and 

access to the categorization algorithm to surfeit the training method to compute the new 

one. The expression feature extraction is a frequently applied expression for a type of 

planning set of parameters that emerges from these difficulties while still defining the 
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data with sufficient accuracy[120,121]. Performing an organic image is a reduced 

paradigm for advocating decision-making, for example, recognition, classification, and 

detection of the pattern. A technique that reduces the provided data volume by removing 

the comprehensive characteristics presupposes various features from the previously 

supplied features. This aims to decrease the feature analysis cost, allow greater 

categorization efficiency, and develop classifier precision. Another particular facet is 

achieved from such obtainable input data through this procedure. Classification is 

performed by applying another set of aspects used to attain categorization, such tasks 

being utilized to achieve unique properties [122]. Such a mechanism is to extract reliable 

information from the image. This dimensionality contraction method recognizes a 

reduced group of features, being the series of the primary ones and the procedure of 

acquiring suitable characteristics that are enclosed inside the supplied input data. 

Eventually, the magnitude of such data will be reduced to retain only the principal 

information. The main stage in numerous PC vision and item classification assignments 

is the extraction of useful features; consequently, several scientists have concentrated on 

designing robust features for multiple image grouping jobs. Considerable attention is now 

paid to convolutional neural networks (CNN) and feature-learning algorithms. Every 

photo is entered straight into the CNN algorithm. Subsequently, the procedure abstracts 

its most significant features [123,124]. In one of the following sections, more details for 

CNN. This chapter’s layout is divided into deep-learning history, Deep Learning 

background, a Literature review, feature extraction, deep learning analysis, a convolution 

neural network, followed by the methodology and experiment result, and finally, the 

conclusion. 
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5.2   Methodology 

The datasets contain T2-weighted 256 x 256 in-plane resolution. The first benchmark 

dataset comprises 66 (18 benign and 48 malign) brain MRI images. The second dataset is 

160 brain MRI pictures, where 20 are Benign and 140 malign. The third dataset 

download contains 47 brains, benign MR images. The total dataset is  85 and 188 brain 

MRIs, benign and malign images, respectively. Since this is a small dataset, There were 

not enough MRI images to learn the convolutional neural network. Therefore, data 

augmentation was proper to overcome the information imbalance matter in the dataset. 

Besides artificially expand the size of a real dataset, data augmentation techniques 

produce various copies of it. Machine learning models can benefit from data 

augmentation methods. An experiment found that a deep learning model with picture 

augmentation performs better in terms of training loss. However, data augmentation may 

be utilized in a wide range of fields. The following are some of the applied in this work 

prevalent image data augmentation techniques: Position augmentation, such as scaling, 

translation, cropping, flipping, and padding. Afterward data augmentation, the dataset 

now contains 850 benign and 1128 malign MRI images, 1978 MRI images in total. The 

Alex net builder was applied to recognize and categorize the images. The data was split 

in the following way: 70% of the data for training, 15% for validation, and 15% for 

testing.  The Alex Net CNN was constructed to be applied to distinguish the MRI brain 

images as benign or cancerous (malign), which involved five convolutional layers and 

three layers of pooling layers, and wholly linked layers followed by the classification 

layer. The 3.6 Python programming language under Anaconda platform software was 

used to implement the CNN algorithm.    
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There are two classes labelled as 0 and 1, representing the benign and malign brain 

image. The Python programming software is used to implement the CNN algorithm. 

Besides, comparing the CNN algorithm results with the results obtained in chapter four. 

The classifiers K-NN, SVM, and ANN, were applied to distinguish the cerebrum tumor. 

The classic classifiers' features were 13 features after applying discrete wavelet transform 

and principal component analyses for each MRI image, respectively. The 3.8 Weka 

platform is used to apply these classifiers.   

5.3   Some Insight 

Machine learning is being used to evaluate a growing amount of data that has gotten significantly 

more sophisticated over time. Indeed, the rise of deep learning over the last decade has aided in 

the development of more effective learning paradigms. Several machine-learning tasks aim to 

categorize problems, with systems similar to the one shown in Figure 5.1. For starters, a 

characteristic retrieved from the supplied input data might result in a fresh exemplification of the 

data that is unique to the present task. Following that, a classification technique is learned, as well 

as the above-mentioned features, to accomplish the assignment. When the training is complete, 

this approach should be used to data that was not observed during the training stage and should 

accurately anticipate the response, as well as the class label in this situation. The extracted 

characteristics of the input were commonly handmade, especially until recently, implying that 

such features are intentionally intended for the input data and the present job. These are usually 

related to a specific subset of the data type, such as photos of handwritten English words in ink, 

rather than the data type itself, such as images of handwritten English words in ink. Most such 

features struggle to cope with change; nevertheless, machine learning is a technique for extracting 

features from data to develop a feature extractor. Nonetheless, rather than creating a technique to 

categorize individual photos, a learning system is built to extract qualities from the input. This 
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indicates that the network is learning directly from the input pixels, which is a more relevant 

characteristic when it comes to pictures. 

 

 

                                           Figure 5.1: Hierarchical structure of learning. 

 

As a result,  this is a preferable approach of leveraging handmade features for a variety of 

reasons. By performing such training to each dataset, the trained paradigm may be adjusted to 

multiple input types; however, each dataset may need to be hand-tuned. Furthermore, this 

technique should not need a professional grasp of the pictures being analyzed. 

5.4   Feature Extraction  

Machine learning is applied to analyze a growing volume of information, which is becoming 

increasingly complicated. The emergence of deep learning during the past decade has 

undoubtedly helped generate learning paradigms that are becoming more effective. Numerous 

machine-learning jobs seek to categorize difficulties. Since features are extracted from the input 

data, we can consider this a novel representation of the data, particularly for this task. 

Subsequently, in addition to these features, which complete the job, a categorization method is 

learned.  We should apply this method to unobserved data in the training stage period upon 

completion of the training. We ought to precisely forecast its response precisely, and in this 

situation, also the class label. Frequently, and particularly until recent times, the features 

extracted from the input were handcrafted, implying that they are specially designed for the input 
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data and the present task. It is standard practice for these not to be exclusively tied to the data 

type, for instance, handwritten images of words' pictures, but rather to a specific subset, such as 

English words handwritten in ink on parchment. Usually, most such features cannot manage 

change well; nevertheless, ML is a different procedure of removing attributes from the 

information to learn a feature extractor. The learning system is built to extract attributes from the 

input instead of planning a classifying image. This shows that the network is learning, from the 

input pixels directly, a greater level of features concerning ideas. Consequently, for many 

reasons, we regard this as an improved method of utilizing handcrafted features. We can adjust 

the trained paradigm to several input types by applying this training to each dataset; nevertheless, 

we may need to hand-tune each dataset for handcrafted features. However, a specialist 

understanding of the images being analyzed is not necessary for this approach. Concerning 

information retrieval and image analysis, feature extraction is a significant and fundamental issue. 

Although a considerable amount of time is needed to hand-design a useful feature, deep-learning 

allows the acquisition of such attributes whose objective is new applications. Deep learning has 

attained much as a new feature extraction technique. Traditional systems and deep learning 

principally differ in that deep learning automatically acquires aspects from huge information 

rather than handcrafted attributes. This is generally dependent on the previous knowledge of 

designers, and it is certainly not possible to obtain an advantage from big data. It is possible for 

deep learning to automatically get attribute representation from big data, including millions of 

variables. Deep learning's principal benefit is that it is unnecessary to abstract attributes from the 

photo manually. During training, the system learns to pull elements by feeding the image to the 

system (pixel values) [130].  

Convolution neural network construction is typically a series of feedforward layers that apply and 

pooling layers and convolutional filters. After the final pooling layer, CNN employs numerous 

completely associated layers that convert the previous layers' 2D feature maps of 1D vector for 

categorization. Although one advantage of CNN architecture is that it does not need a feature 
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extraction procedure before training, a CNN from first principles occupies much time. Moreover, 

it isn't easy because it requires a significantly sizeable categorized dataset for training and 

constructing earlier the paradigm being prepared for grouping, which is not possible in every 

instance. Furthermore, the hardware needed to process numerous filters for greater-sized images 

is 256×256. This is a standard feedforward network where the information moves from input to 

the output layers through numerous invisible layers, being a minimum of two [132]. 

5.5  Deep Learning Analysis 

Deep structured learning is another name for deep learning, and it's a group from machine 

learning. Deep learning requires two substantial factors; one is a massive amount of classified 

data and powerful computing. It appoints the group of ML methods, which define several layers 

of performance in deep- designs. Next, a detailed examination of developed deep learning 

designs: Deep-Belief Networks (DBNs), Multi-Layer Perceptron (MLPs), and Convolutional 

Neural Networks. The central design block is a bipartite undirected photographic representation 

named the Restricted Boltzmann Machine (RBM). The (RBM) was original proposed by Hinton 

[133]. More technically, RBM is a stochastic neural model. Neural network purpose: We have 

neuron-like units with zero or one activation function based on the neighbours they're linked to; 

stochastic, meaning these activations have a like hood element.  Graphical demonstration of the 

Restricted-Boltzmann Machine is displayed in Figure 5.2. 

 

                               Figure 5.2: Graphical description of restricted-Boltzmann machine. 

 

The network is restricted because the no-hidden unit is connected to any other visible unit, and no 

invisible unit is connected to any other invisible unit. DBNs can be observed as a structure of 
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single, unsupervised systems, i.e., RBMs + Sigmoid Belief Networks. DBNs' most significant 

success is their ability of learning attributes, which is obtained by a 'layer-by-layer training 

procedure where the higher-level attributes are learned from the preceding layers. Figure 5.3 

displays a stack of RBM, and single or multiple layers are summed for discrimination jobs. 

 

                                  Figure 5.3: A typical stack of restricted-Boltzmann machine. 

 

1. DBNs can be formed by stacking RBMs. 

2. Each layer is trained as a Restricted Boltzmann Machine. 

3. Train layers sequentially starting from the bottom (observed data) layer. (Greedy layer-wise). 

4. Each layer learns a higher-level representation of the layer below. 

5. The training criterion does not depend on the labels. (Unsupervised)[134]. 

It contains visual units, any 0 or 1 or real-number, and a collection of binary invisible junction. A 

structure through visual path v and unseen path h is given with energy specified : 

𝐸(𝑠, ℎ) =  − ∑ 𝜎𝑖𝑖∈𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑠𝑖-∑ 𝑏𝑗𝑗∈ℎ𝑖𝑑𝑑𝑒𝑛 ℎ𝑗 − ∑ 𝑠𝑖𝑖𝑗 ℎ𝑖𝑤𝑖𝑗                                                       (5.1)                                                          

where αi, bj, wij are the system factors. Assumed this energy, the system assumes to each couple s, 

h likelihood: 

   𝑃(𝑠, ℎ) =  
1

𝑌
 𝑒−𝐸(𝑠,ℎ)                                                                                                                  (5.2)                                                              

All likely pairs of visual and invisible paths are summed to produce Y as separation function. 

It’s fast way to achieve unbiased pair as no direct link between visible and invisible units 

  𝑃(ℎ𝑗 =  
1

𝑠
=  𝜎(𝑏𝑗 + ∑ 𝑠𝑖𝑤𝑖𝑗𝑖 )                                                                                                 (5.3)                                                                                         

the logistic sigmoid function is σ(·). Likewise, assumed an invisible path h the likelihood of a 

visual junction si to be consigned to one is specified: 



 

91 

 

𝑃(𝑠𝑖 =  
1

ℎ
=  𝜎(𝑏𝑗 +  ∑ ℎ𝑗𝑤𝑖𝑗𝑗 )                                                                                                 (5.4)                                                                     

Obtain as large as the probability of the visual and invisible vectors team {s, h}. The network 

parameters are tuned using the training data. RBMs are limited in the complication of the 

information they can appear as it is single two layers deep system. To mitigate this problem, 

several more profound paradigms constructed on Restricted Boltzmann Machine are proposed. 

The deep belief network (DBN) is the most ordinary model derived from RBMs and the DBM 

[135,136,137]. These algorithms are several layers of likelihood systems that implement a non-

linear conversion to the data. The greedy wise manner is used to train DBNs somewhere every 

layer learned as its RBM. Except for the top two that remain undirected, the last paradigm holds 

single the top-down connections of the layers. In all layers, DBMs have undirected weights, 

unlike DBNs. Similar to DBNs, the weights are learned in a greedy mode. To assessment and 

maximize the probability straightway is hugely computationally costly. 

In summary, Deep Belief Networks employs an eager and active layer-by-layer method to train 

the latent variables in each invisible layer and a backpropagation technique for adjustment. This 

practical learning approach increases the generative achievement and the discriminative power of 

this network. 

The MLP is a deep, artificial neural network. It contains more than one perceptron. The input 

layer to collect the signal, the decision produced by the outcome layer, and the Qualitative 

amount of invisible between input and output layers represent the computing tools of MLP. MLP 

is regularly useful for supervised learning difficulties. They practice collecting input-output sets 

and training to parade the correspondence (or dependencies) among the inputs and outputs. The 

practice comprises tuning the weights and biases of the model to decrease deviation. Tuning both 

the weight and bias relative to the fault is done by the backpropagation technique, and the error is 

calculated in different methods. Several artificial neurons constructed the Neural networks. Each 

input into the neuron has its weight related where weight is the real number required to tuning 



 

92 

 

once we finally reach to learn algorithms. No limit input number to a neuron, from one to i; the 

total input number denoted by i. Figure 5.4 demonstrates a mathematical model of a discrete 

perceptron or neuron. 

 

 

                                 Figure 5.4: A mathematical model of a discrete perceptron or neuron. 

 

The inputs may be denoted : x1, x2, … xi. And the matching weights for the inputs denoted w1, w2, 

.. wn , and the output a = x1w1 + x2w2... +xnwi . In feedforward network: The neurons in every 

layer feed their output forward to the following layer till we get the last output from the neural 

network. There can be any number of invisible layers inside a feedforward network, and the 

number of neurons can be random. Another MLP properties of architecture : 

       1. There is no direct connection from the input to the output layers. 

       2. Completely connection among the layers. 

       3. Often more than three layers. 

       4.  It is not required output and input units be equal.  

       5.  No connections within a layer. 

       6. No limit to the  invisible units in each layer, and could be greater or less than input or 

output   units. 

The data flow starts at the input to the output layer after passing through the invisible layer. The 

output layer produced the output and compared it with the actual output value. Using the 

backpropagation method and the series basis of calculus, fractional by products of the error 
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function w.r.t. the different scales and biases are back-propagated out of the Multi-layer 

perceptron. This differential action offers a gradient of error, over which the parameters could be 

tuned and proceed with the MLP one stair nearer to the lowest error. Any gradient-based 

optimization algorithm can be applied to perform this task, such as stochastic gradient descent. 

The model keeps doing this optimization until the error reaches the lowest. This case is famous as 

convergence. MLPs are connected, each junction with a single layer join by the special 

weight wij to each junction in the following layer. The two activation functions are both sigma 

functions, and are described by x(si ) - tanh(si) and x(vi ) – tanh(si) . The primary piece is a 

hyperbolic tan function that dimensions from minus one to one. Simultaneously, the other is the 

log function, which is alike in configuration but dimensions from zero to one. Here si is the result 

of the jth junction and vi the weighted sum of the given network. 

5.5.1 Convolutional Neural Network 

Convolutional neural networks are constituents of appropriate neural network technique 

classification. As well as having the capacity to learn image feature representations automatically, 

CNN has exceeded several traditional hand-crafted feature methods [138]. A convolutional neural 

network (CNN) depends on following one another locally-connected convolutional layers, each 

of which has an equal number of filters, down-sampling layers, and the fully connected layers 

that serve as classifiers [139]. Figure 5 depicts CNN's comprehensive architecture. Local 

receptive fields, weight sharing, and down-sampling procedures are three aspects of 

convolutional neural network architecture that make it efficient. With a convolution filter of the 

same magnitude, every neuron recognizes input from a minor piece of the preceding layer, as 

shown by the local receptive field. Local receptive fields are also employed in the convolutional 

and down sampling layers. The convolutional layer uses weight sharing to control the capacity of 

the paradigm and reduce its difficulty. Finally, non-linear down-sampling is used to lower the 

spatial dimensions of the image and the free factors of the paradigm. These notions enable CNN 
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to perform well in recognition tasks. The Convolutional Neural Networks layers, on the other 

hand, are: 

1. The Convolutional Layer: A convolutional layer comprises a large number of 

channels, each of which has its own set of parameters that must be learnt. The 

channels have a smaller height and weight than the information volume. To 

process an actuation map comprised of neurons, each channel is convolved with 

the info volume. The speck items between the info and channel are logged at each 

spatial place, and channel is slid over the width and stature of the information. Six 

feature maps were created by the first convolutional layer, which had six filters. 

Every feature map represents distinct aspects of a picture, such as represented 

points or specified vertical edges. The complication operation is described:  

                       𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖∈𝑀𝑗

∗ 𝑘𝑖
𝑙 + 𝑏𝑗

𝑙)                                                              (5.5) 

Here, j is a particular convolution feature map, Mj denotes a set of input maps, kj
l
 

denotes the filter, bj denotes feature map bias, l denotes the CNN layer, and f 

denotes the activation function. The ReLU is a commonly used activation 

function for adding non-linearity to a system [140]. 

2. The Pooling Layer performs a down sampling operation on the convolutional 

layers to decrease their locative aspect. The size of the pooling mask and the type 

of pooling operation must be specified first, and then applied to the pooling layer 

[141]. The pooling process multiplies the pixel values recorded by the pooling 

mask by a trainable coefficient, then adds the result to a trainable bias. The 

following is a description of the pooling procedure: 

                𝑥𝑗
𝑙 = 𝑓(𝐵𝑗

𝑙𝑝𝑜𝑜𝑙(𝑥𝑗
𝑙)) +  𝑏𝑗

𝑙                                                                                            (5.6)      
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Where xj
l-1

 is the j
jt
 area of interest caught by the pooling mask in the previous layer, pool 

is the specific operation done on the region (max or average), Bi is a trainable coefficient, 

bj
l
 is a trainable bias, and f is a trigger function[142]. 

3. Fully linked layers: which performed categorization using the extraction attributes 

from preceding layers. As in an original neural network, the result of the last 

convolutional or pooling layer is used to produce fully linked layers. 

Figure 5.5 shows primary CNN architecture. 

 

                                              Figure 5.5: Figure 5.5: Brain tumor detection CNN algorithm. 

 

5.6   Experiment Results and Discussion 

The classification conclusions are arranged for the following algorithms: KNN, SVM, and ANN. 

Table 5.1 demonstrates a confusion matrix of every classifier.  Class 0 represents the normal 

(benign); class 1 represents abnormal (malignant), The KNN algorithm offers the highest 

accuracy in categorizing classes related to class 0 (benign), where 75 images are correctly 

classified as benign, and 13 are misclassified as malignant. The artificial neuron network 

achieved the highest performance in the categorization related to class 1 as 170 images were 

correctly categorized as malignant, while 18 images were misclassified as benign. Figure 6.6 and 

6.7 shows  
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                                   Table 5.1: Algorithms confusion matrixes. 

 

                                          Figure 5.6:  Training and validation loss. 

 

 

                                        Figure 5.7: Training and validation accuracy. 
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The convolution neural network achieved high accuracy in the MRI brain tumor taxonomy as 

benign or malicious scans at a precision of 91%. The sigmoid fully Connected layer classifier in 

the CNN building has been applied to assess the suggested method's effectiveness. The classifier's 

performance is validated by multi measuring factors similarly accuracy and F1 score. The F1 

score combines the model's precision and recall, and is required when you want to investigate a 

balance between Precision and Recall. Also, it is applied to assess binary classification systems. 

The  CNN accuracy and F1 score  obtained is 90% and 91%, respectively. However, the CNN 

algorithm has a great calculation cost and required the right quantity of data for the learning 

phase.  Table 5.2 illustrates the accuracy and F1 score of each algorithm. 

 

Classifier ANN SVM KNN CNN 

Accuracy % 87 89 88 90 

F1 Score 90 91 90 
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                                   Table 5.2: Algorithms comparison using F1 score and the accuracy. 

 

5.7   Conclusion  

Feature extraction involves converting training data and authenticating it with additional aspects 

to produce adequate machine learning. The CNN  algorithm was applied for the brain tumor  

detection task. Besides, three classical classifiers, KNN, SVM, and the ANN classifier, were used 

to classify the same datasets to compare the CNN algorithm's performance among these 

classifiers.  The CNN is precisely suitable for choosing an auto-feature in medical images such as 

magnetic resonance imaging. The datasets contain two classes, normal and abnormal. Physicians 

classified these scans. Besides, this study has presented a survey of locating the effect of 

automatic feature extraction and dissemination, which is applied in deep learning; for example, a 

CNN. The objective of this is to demonstrate the emanating study of existing configuration on 
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attribute extraction techniques during recent years. As the demand for the application grew, 

significant analysis and research of the feature extraction platform changed into being particularly 

active. It would help conduct more experiments to validate the multi-modal architecture's possible 

advantages against applying a specific convolution neural network. 
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Chapter 6  

Result and Analysis 

 

6.1 Model Performance Evaluation 

One of the significant parts of constructing classifiers is assessing their performance 

[143]. Apart from the measure that is used to quantify the classification performance, 

careful planning is desired to obtain this estimate. In addition, one is often interested in 

comparing. The ratio of the state that is appropriately classified represents by the 

accuracy [144]. In contrast, the relation of states that are not correctly categorized 

indicates the classification error rate. For multi-class problems, accuracies can be 

summarized in a confusion matrix [145]. This matrix structure relates the true 

classification (on its horizontal axis) and the predicted classification (on its vertical axis) 

for a data point. Accuracies can be calculated such that the whole sum for each actual 

class result becomes 100%. These factors are not perfect as they can be misguiding if the 

data is unbalanced. For example, in a situation, If one class label represents 90% of the 

data, an algorithm that at all times expects this class already achieves an accuracy of 0.90 

(the majority rule). The mean error ratio for every independent set, unbalance in the data 

can be considered. True positive rate and true negative rate: are other statistical 
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procedures used to assess classifiers predication. The sensitivity and specificity formula 

are presented in section 6.3.1. 

6.2   Evaluation Strategies 

In this thesis, the three algorithms are supervised approaches, meaning that a training data 

set is required to construct the classifier. However, the classifier or algorithm's 

performance is evaluated on a set of new, unseen examples during the testing phase. If 

the algorithm on the training data achieves high performance, the algorithm capability on 

invisible data may be low. This behavior is named overfitting [146]. Thus, the 

generalization capability of the algorithm is specified through this testing stage. 

Generalization is a significant feature and overwhelmingly the final aim of the algorithm 

since it gives information about the quality of the developed classifier or algorithm. 

Suppose one aims to evaluate a classifier's performance and rely on the number of 

existing data points. In that case, it could be essential to divide the primary data between 

learning and testing sets. This strategy can, for instance, be applied to determine 

hyperparameter, i.e., C,  for SVM-based classifiers. [147,148]. In this work, the data set 

is split into 5 folds. In the first iteration, the first fold is used to test the model and the rest 

are used to train the model. In the second iteration, 2nd fold is used as the testing set 

while the rest serve as the training set. This process is repeated until each fold of the 5 

folds have been used as the testing set. 

6.3   Experimental Work 

Several experiments were carried out to assess the success of the developed framework in 

brain tumor diagnostic assistance systems. The datasets are two-weighted 256 x 256 in-

plane resolution. One dataset was obtained from the Harvard Medical College, and the 
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second was downloaded from the OASIS website (http://oasis-brains.org /). These are 

benchmark datasets utilized in brain MRI image analysis tasks and contain benign and 

malignant MRI brain images. The first benchmark dataset includes 66 brain MRI images 

(18 benign and 48 malignant). The second dataset consists of 160 MRI brain pictures, of 

which 20 are benign and 140 malignant. The third dataset contains 47 benign MRI 

images, as shown in table 6.1. Experts have labelled these images. The experiment was 

conducted, and every algorithm was evaluated individually by the same datasets and the 

number of features required to achieve maximum accuracy. The combination of the 

multi-classifier is undertaken by different methods such as minimum and maximum 

probabilities, majority vote, and average likelihood. The Dempster-Shafer is the primary 

method to combine the classifiers' outputs. The two-class confusion matrix is shown in 

Figure 6.2. A confusion matrix was obtained to define the execution of the classifiers 

both in individual and combination classifiers' tasks. The benign and malignant images 

are correctly classified as true negative and true positive, respectively. 

Datasets Benign Maliganat 

DS-160 20 140 

DS-66 18 48 

DS-37 47 - 

Total         226                         85              188 
 

Table 6.1: MRI Datasets. 

A False Positive represents the classification of all incorrect results as being malignant 

where they are benign. False Positive is the false signal in the recognition task. A False 

negative represents the classification of all incorrect results as benign where they are 

malignant.   
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                              Table 6.2: Two class confusion matrix. 

6.3.1 Sensitivity versus Specificity 
 

The sensitivity, specificity, and precision are metric measure, which can be utilized to 

measure the performance of the taxonomy paradigm. These measurement are grounded 

on the regard that a predication point continuously drops into one of the next 4 classes 

[149]: 

1. Sensitivity: the possibility is that detection examination is positive when the 

patient has a tumor. 

                    Sensitivity = 
𝑇𝑃

 𝑇𝑃+𝐹𝑁
                                                                                (6.1)  

1  Specificity: the possibility is that a detection examination is negative when the 

patient does not have a tumor. 

                       Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                 (6.2) 

2 Accuracy: The possibility that all a detection examination is correctly classified. 

                      Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                                         (6.3)    
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3 Precision: the fraction of abnormal images with correct results. 

                     Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                       (6.4) 

where: 

TP= Amount of malignant images accurately classified.  

TN= Amount of benign images accurately classified.  

FP= Amount of benign images classified as malignant.  

FN= Amount of malignant images classified as benign. 

There is another  statistical measure called F-score or F-measure (weighted harmonic 

mean) used when determining the trade-off between recall (sensitivity) and precision and 

calculated by this formula [150]: 

𝐹1 = 2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                                                                                 (6.5) 

Numerous diverse experimentations were executed to assess the achievement of the 

construct system in light of attribute decrease effectiveness, classification precision, 

contrasts with other systems and calculation difficulty examination. The size of the 

feature after three level of DWT  is 32 × 32. principal components  analysis is used to 

decrease the attribute path size to only 13, which is the first 13 principal components, 

preserving 94.5% of whole variance of the decomposed attributes. Table 6.3 shows 

confusion matrix with extra class 2 represents the uncertainty. 
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                                        Table 6.3: Confusion matrix include class 2 represents the uncertainty. 

 

6.4  Comparison with State-of-the-Art Classifiers  

There are several reasons for preferring a multi classifier system over a single classifier. 

It is mainly done to improve the accuracy and efficiency of the classification system. The 

success of classifier fusion depends on two factors: a pool of diverse individual  

classifiers to be fused, and  the proper combining method. 

 As a result, a baseline model may be utilized to determine the foundation of brain tumor 

detection performance against which all other models can be compared. Given the 

stochastic nature of data and algorithms, all prediction models incorporate mistakes, and 

achieving a perfect score is impossible in practice. Besides, the actual purpose of applied 

machine learning is to investigate the space of potential models and determine what a 

good model score looks like compared to the baseline on a given dataset. Because 

machine learning model performance is relative, establishing a solid baseline is essential. 

Also, a baseline is a straightforward and well-understood technique for forecasting your 

predictive modelling challenge. This model's skill serves as the foundation for 

determining the minimum acceptable performance of a machine learning model on a 



 

105 

 

given dataset. The baseline model's outcomes serve as a. benchmark against which all 

other data-driven models may be measured  In addition, A baseline serves as a 

benchmark against which other machine learning algorithms can be measured.  

The Zero Rule algorithm in the Weka machine learning platform predicts the class value 

with the most observations in the training dataset for a classification predictive modelling 

issue where a categorical value is anticipated. The dataset brain tumor detection is 

applied to the Zero Rule algorithm and achieves an accuracy of 67%. Therefore, any 

machine learning method must obtain an accuracy higher than this Figure to show that it 

can solve this issue. Several machine learning algorithms were examined, such as RJ48, 

Naive Bayes, and Random Forest. However, the chosen algorithms in this research are 

support vector machine, k-nearest neighbours, and artificial neural network, which 

achieved the highest accuracy between the others by 89%, 88%, and 87%, respectively. 

6.5 Algorithms Tuning 

Machine learning procedures can be adjusted to extract various conduct. The objective of 

classifier fine-tuning is to catch the most significant point or points in that hypercube for 

a given task. This is regularly called classifier tuning or classifier hyper-parameter 

development. It is a kind of trial and error experimental operation. An additional solid 

process is planning a controlled empirical to adjust various predefined classifier 

arrangements and prepare tools to check and contrast the outcomes [151].  

The WEKA 3.8 platform is used for the classification task, and WEKA offers four 

different options for implementing the data mining process. The WEKA knowledge 

explorer  is easy to use a framework with a graphical user interface that offers all the 

WEKA package facilities. Another framework is Weka experiment environment that 
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permits to creation, runs, and modifies an experiment. The experiment can be described 

in a text file and tested with the WEKA framework. WEKA knowledge flow environment 

permits the description of the experiment as a flow of steps with some visual connections 

between them. The WEKA Workbench contains much states-of-the-art data pre-

processing and machine learning algorithms. In this framework, Weka experiments 

interface applied to tune each classifier for the best operational parameters. 

6.5.1  Cross-Validation 
 

The statistical approach of cross-validation is used to assess the performance of machine 

learning models. It is frequently used in applied machine learning to compare and choose 

a model for a particular predictive modelling issue. It is simple to comprehend, 

implement, and produce skill estimates with lower bias than other approaches. In 

addition, cross-validation is a strategy for determining how well the model worked. It is 

always necessary to evaluate the precision of the model to ensure that it has been 

adequately trained with data and is free of overfitting and under fitting. The data is 

separated into k subsets in K-fold cross-validation, and train the model on k-1 subsets 

while keeping the last one for testing. This procedure is done k times, with one of the k 

subsets serving as the test set/validation set each time and the remaining k-1 subsets as 

the training set. The model is then averaged against each of the folds before being 

finalized.  

 

 

 

 



 

107 

 

 

 
                                                               

Figure 6.1: 5 K cross-validation. 

 

 

A common choice for K-fold cross-validation is K = 5. After trying different values of k 

empirically, the result end with k = 5 is the best choice.  If choosing a large number for 

the k-fold, then model slight bias, significant variance, and computation time increased; 

however, choosing k as a small number causes slight variance, considerable bias, and 

reduced computation time. Accuracy versus the 5 folds for each classifier is shown in 

Figure 6.2. The total dataset is 273 images containing two classes, benign or malignant 

tumor. The dataset is divided into five folds. Each fold contains 55 images after adding 

two images in order to have equal folds. Each sub-fold contains 11 images. After testing 

each algorithm five times, average accuracy was calculated for each classifier. Besides, 

this process is repeated to each algorithm during the parameters tuning task. 
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                             Figure 6.2: Accuracy versus folds of cross-validation for applied classifiers. 

 

 6.5.2   k-Nearest Neighbour Tuning 

In Machine learning, KNN is a significant classification algorithm. It is based on similar 

cases with same class labels are near each other. The output can be set as the class with 

the maximum frequency from the K-most like instances; if KNN is applied for the 

classification, each instance, a vote for their class, and the class with the most choices is 

taken as the prediction. This is will investigate the significance of k, which is the number 

of neighbors to query to make a prediction. To select the K that is right for given data. 

The KNN classifier runs several times with different K values and selects the K that 

decreases the number of errors encountered while continuing the algorithm’s ability to 

make predictions when given previously unseen data. The Weka 3.8 platform provided 

experiment graphical user interface GUI where the user can run the algorithm with 

different choices  numbers of K parameters and distance measure: 

IBk, k=1,3,5 distance Function=Euclidean. 

 IBk, k=3, distance Function=Euclidean, Manhattan. 
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In addition, the experiment uses the default 5-fold cross-validation as described in 

pervious section. The K value equal to five with Euclidean distance measure gives the 

highest accuracy for a given dataset. 

6.5.3   MLP Tuning  

The tuning parameters that configure this component are listed, where each one shows 

the optimal value applied to obtain high performance. 

1. Seed: applied to begin the random numbering generator. Random numbers are 

utilized for tuning the primary weights of the connections through nodes, and for 

shuffling the learning data. Seed(default) = 0. 

2.    Momentum: is the value that is implemented to the weights throughout 

updating. Momentum = 0.2. 

3. Hidden Layers: This describes the number unseen layers of the neural network as 

well as the numbers of cell from every layer.  

4.  Validation Threshold: used to dismiss the learning process. The value set how 

many times in a row the validation set error can get worsen before learning is 

ended. Validation Threshold = 20. 

5.  Batch Size: The preferred number of vector instances kept in cache once if the 

batch prediction is being complete. Extra or fewer features may be provided, 

however, this gives implementations a way to assign a choose batch size. Batch 

size = 100. 

6.   Learning rate: The amount the weights are updated. Learning rate( default) = 0.3. 
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6.5.4  SVM Tuning 

Support vectors machine goes to catch the top hyperplane to detached the dissimilar 

labels. This is achieved by maximizing the distance amongst instance points and the 

hyperplane. The algorithm looks at each twosome of data points until it finds the nearby 

pair in an individual class and draws out a straight line (or plane) in the middle. When the 

input data is linearly divided, finding the hyperplane is straightforward. However, 

categorization areas frequently overlay, and no particular conventional line can function 

such as a border. The SVM with RBF kernel is applied and definite by dual factors: C, or 

the misclassification cost, and γ, which is relational to the inverse of a support vector’s 

radius of influence. The adjusted C and γ are by a search through among 0.0001 and 

100000.   

6.6  Result and discussion 

First, evaluates the number of features that produce the classification process high 

accuracy performance and feature reduction effectiveness. The introduced system is 

based on the DWT decomposition for feature extraction. After three levels of 

decomposition configuration, the size of the LL is 32 × 32. PCA is employed to decrease 

the attribute vector size from 65536 to 1024; however, these attributes are still extensive. 

Thus, principal components are used to reduce these features. The variances against the 

principal components are from one to twenty, showing at the latest nineteen principal 

components, which are simply 1.85% of the principal attributes. Determine the correct 

principal components, which provide the most excellent outcome; the multi-classifier's 

performance was investigated with altered principal components up to 13 components.  
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The offered scheme achieved the highest accuracy, with only 13 principal components 

for input images. Figure 8.1 displays the achievement of the algorithms in terms of 

accuracy versus the number of principal components. 

This section also offers the results of each classifier and the classifier fusion by the 

elementary combiner and DST. The outcomes of each algorithm and the classifier fusion 

are presents by the DS theory. The classes are normal (benign) and abnormal (malignant), 

which are indicated as zero (benign) and one (malignant), respectively. 

The class indicated by two identifies uncertainty and, consequently, more testing 

required. This classification is invaluable when the case of false negatives is 

exceptionally high. Moreover, it may be the best option to warn an expert of uncertainty 

rather than of an unconvinced and possibly incorrect decision. 

 

                   Figure 6.3: KNN, SVM, and ANN performance vs No. of principle components. 

 

The outcomes are given in the configuration of a confusion matrix. The classification 

outcomes are prepared for three algorithms: KNN, ANN, SVM, and the Dempster-Shafer 
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Theory. Class zero represents the normal (benign), class one represents the abnormal 

(malignant), and class two corresponds to the uncertainty classification. 

                         
                        Table 6.4:  SVM, ANN, and KNN confusion matrix. 

 

The confusion matrix is shown in table 6.4 for three classifiers SVM, KNN, and ANN. 

The KNN algorithm offers the highest accuracy in categorizing classes related to class 0 

(benign), where 75 images are correctly classified as benign, and 13 images are 

misclassified as malignant. The SVM algorithm achieves the highest performance in the 

categorization related to class 1( malignant). There were 170 and 18 images correctly 

classified by SVM as malignant and benign, respectively.  The DST confusion matrix is 

shown in table 6.5, where  77 benign and 175 malignant images are correctly classified as 

benign and malignant, respectively; however, eight false-positive and 13 false-positive 

images are misclassified. The uncertainty (more test required) is represented in class 2 ( 

DST scenario one), where no monitoring for conflicting beliefs during the combination 

process. The DST achieve a better result in both classes  77 and 175 in benign  and 

malignant  classes correctly classified, respectively. Figure 6.2 displays the performance 

of each classifier and DST. Combining the algorithms through DST improves the 

classification result regarding the accuracy, sensitivity, specificity, and precision. 

 

 

 

                       Table 6.5: DST confusion matrix with no  conflicting factor setup. 

ANN SVM KNN 

 0 1 2  0 1 2  0 1 2  

0 70 15 0 0 74 11 0 0 75 13 0 

1 19 169 0 1 18 170 0 1 21 167 0 

DST Fusion 

 0 1 2 Uncertainty (More Test Required) 

0 77 8 0 

1 13 175 0 
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The false-negative rate is when a classified image is shown as benign where it is, in fact, 

malignant, and the false positive rate is when an image is classified as malignant when it 

is benign. A false positive can result in unnecessary therapy, and a false negative can 

result in an inaccurate diagnosis, which is particularly dangerous since an illness has been 

neglected. These results' impact means an improvement is necessary for the tool applied 

to combine the decisions; this helps decrease the records of false-positive and false-

negative effects. Introducing DST allows extra class when there is no certainty about the 

last decision to be rendered, as more tests are needed. DS's planned system gives us the 

capacity to decrease false negative and false positive when there is no trust decision ( 

DST scenario two). This will be done by monitoring  the evidence's conflict factor while 

fusion the evidence and defining a threshold for this factor. If the conflict factor is the 

same or greater than the threshold, the decision will be more tested classified as class 2, 

which shows that more tests are required to arrive at a trusted decision. 

 

 

                                    Figure 6.4: Comparison of several multi-classifier, and DST results. 
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The elementary combination rules include average, product, minimum, maximum 

probability, and the majority vote applied to combine classifiers outputs. These 

combining results show in Figure 6.4. As seen, the average likelihood gives a better 

outcome than the other rules regarding accuracy, sensitivity, specificity, and precision. 

The DST represents the ambiguity or uncertainty of contradiction within the evidence to 

be combined. In addition, if the conflict is equal to the threshold, the scans or images 

classified as class 2 represent uncertainty in the decision. 

Applying the DST  helps to minimize both the false positive and negative cases to 

increase sensitivity and specificity measures. Table 6.6 illustrates the decision matrix for 

DST with determined thresholds. It contains only four images and three images as false 

negative and false positive, respectively. 

 

                               Figure 6.5: Comparison of several multi-classifier fusion procedure. 

 

Moreover, class 2 includes four images from class 0 (benign) and three images from class 

1 (Malignant). The Dempster-Shafer Theory recorded fewer classification errors in both 

classes, as shown in Table 6.6. This indicates that four images from class 0 (benign) and 

three images from class 1(Malignant) require further tests (uncertainty), meaning that the 
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contradiction between the evidence attains the predetermined threshold and cannot 

produce a confident decision. 

 

 

 

 

Table 6.6: DST confusion matrices with set up  k conflicting factor. 

This is possibly a helpful mechanism for evaluating uncertainty and reliability in brain 

tumor detection when it is undesirable to achieve a correct measurement from 

experiments. A significant feature of this theory is the fusion of proof achieved from 

various algorithms and opposition modeling. The achieved result demonstrates that the 

Dempster-Shafer Theory enhances the classification process and that the overall accuracy 

reached 96%. Moreover, the sensitivity and specificity obtained are 97% and 96%, 

respectively, as shown in Table 6.7. It is essential to resolve the false negative and 

positive rates by more test required or uncertainty class It also shows that the DST 

technique has the best accuracy, specificity, sensitivity, and precision.  

 

Classifier  Accuracy  Specificity Sensitivity Precision 

KNN 88 88 89 92 

SVM 89 87 90 93 

ANN 87 82 89 92 

Average Probability 91 89 90 91 

DSET 96 96 97 98 
                                        

Table 6.7: Comparison of multi-classifier, majority vote and DST. 

   DST Fusion 

 0 1 2 Uncertainty (More Test Required) 

0 78 3 4 

1 5 180 3 
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                           Figure 6.6: Comparison of elementary combination methods and DST fusion. 

 

Table 6.4 and Figure 6.4 illustrated that DST produces high accuracy, sensitivity, 

specificity, and precision. Figure 6.5 shows the significant increase in these statistical 

measures when monitoring conflicting factor while combining the algorithm's output. 

 

                             Figure 6.7: Chart of comparison the two scenarios of DST. 

 

The method presented in this thesis utilizes these specific algorithms. It combines the 

outcomes and attempts to expand upon the outcomes of the particular methods. Several 

algorithms perform well for a specific dataset but showing weak outcomes for some other 

datasets. In this situation, trusting only one algorithm could lead to wrong classifications 

as the datasets are different. Dempster Shafer's approach enhances this shortage of an 

algorithm to act on different datasets. The algorithms, which can perform their 
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classification outcomes related to the beliefs to several labels, can be used as specific 

algorithms and combined with the other classifiers providing improved precision. The 

advantage of the Dempster Shafer fusion method is that it also takes into attention 

uncertainty. The combination classifier classifies records as uncertain if there is a conflict 

in individual classifier results. The uncertain classification does not qualify as 

misclassification but demands for more detailed medical investigation. The above results 

conclude that DST formalism has the distinct advantage of modelling uncertainty in 

conflicting information. 

 

Classifier ANN SVM KNN CNN DST 

Accuracy % 87 89 88 91 96 

F1 Score 90 91 90 

 

92 

 

97 

 

Table 6.8: Algorithms comparison in terms of F1 score and the accuracy. 

6.6.1 Time Analysis 

Another essential element to consider while evaluating the brain tumor support  system is 

the computation time. The experiments were carried out using a Dell Desktop computer 

with a 3 GHz processor and 8 GB of RAM, running under the Windows 10 operating 

system. All 273 images were applied to the support system. The corresponding 

computation time was recorded and the average value was computed. The spent time of 

the different phases is represented in Figure 6.8. For each 256 × 256 image, the averaged 

computation time for segmentation, feature extraction, feature reduction, multi classifiers, 

and DST fusion was 0.02 s, 0.04 s,  0.025 s, 0.015 s, and 0.08 s, respectively.  
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Figure 4.9: Computation times at different stages. 

The multi classifier stage was the most time-consuming at 0.088 s. The averaged 

calculation time on each 256 x 256 image was 0.23 seconds, which is rapid enough for a 

real time diagnosis. 

6.6.2 Performance of Classifiers Fusion  by DST Versus CNN 

 

The CNN model is utilized in various applications and domains, but it is most common in 

image and video processing tasks. The convolutional layer is the main building 

component of the CNN in terms of architecture. A CNN employs 2D convolutional layers 

to combine learned features with incoming data, making it ideally suited to processing 2D 

data, such as images. Because CNN’s do not require human feature extraction, there is no 

requirement to pick the necessary features to categorize the images. However, the 

classical classifiers require a separate feature extraction stage. In addition, straight feature 

engineering interested in classical machine learning, these classifiers are easy to infer and 

understand. As well, regulation hyperparameters and altered paradigm designs are extra 

means to directly comprehend the information and the implied classifiers better. 
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Compared to the performance of classic classifiers versus the Alex Net CNN algorithm 

introduced in Chapter Five, deep networks need enormously significant datasets in the 

training phase to achieve a high performance. In addition, deep networks need a fast 

graphics processing unit to become skilled in a realistic period with important 

information. Large memory and a high speed central processing unit (CPU) are 

prerequisites to using graphics processing units (GPUs) successfully. However, classical 

classifiers can learn relatively quickly with a decent CPU, and the most potent hardware 

is unnecessary. Since these classifiers do not require a high calculation time, they could 

try out multiple methods in a reasonably short period of time. A comparison among the 

algorithms in terms of accuracy and F1 score is shown in Figure 6.9. The classical 

classifiers' computation time is minimal compared with the considerable amount of 

computation time required by the CNN. 

 

 

                                 Figure 6.9: Algorithms assessment using accuracy & F1 score. 

 

The introduced system, with the classical classifiers SVM, KNN, and ANN combined 

with a decision fusion using DST, obtained a high accuracy of 96%  and an F1 score of 

97%, as shown Figure 6.8. 
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6.7  System Performance and Trust 

It is critical to pick the right metrics to assess the machine learning model. The measures 

used to evaluate and compare the performance of the machine learning algorithms have 

an impact on how they are measured and compared. The confusion matrix is one of the 

most intuitive classification problems, in which the output can be of two or more types of 

classes. The confusion matrix given and the terms associated with it were explained in 

Section 6.3.2. In brain tumor detection, which intends to capture all cancer cases, it might 

classify a person who does not have cancer as cancerous. This might be less dangerous 

than not identifying/capturing a cancerous patient since doctors will send the cancer cases 

for further examination and reports. However, missing a cancer patient would be a vast 

error as no further examination would be done.  In a perfect scenario, the model would 

produce no false positives and no false negatives. Nevertheless, that is not the case in real 

life situations, as no model will be 100% accurate.  

In this research work, three machine learning algorithms were used: k-nearest neighbors, 

support vector machine, and artificial neural network.  These algorithms were applied to 

detect two classes of brain tumor, and they produced their predication for each input 

feature vector. Therefore, choosing robust classification algorithms is the first step to 

building a successful brain tumor detection system. The three applied classifiers were 

selected empirically based on several experiments. Their prediction results were then 

compared with state of the art machine learning algorithms, such as decision tree, ZeroR, 

random forest, Naive Bayes, and PART in the multi-classifier group.  
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Figure 6.10: Various algorithms performance in terms of accuracy. Figure 6.10 shows the 

accuracy performance of each algorithm for the same dataset. The detection trust score 

for the chosen brain tumor algorithms was higher than the others in terms of sensitivity, 

specificity, and precision. However, the final prediction in this work came from the 

fusion of these classifiers by DST to achieve a final trusted decision. The trust spectrum 

zooms out and measures the model's trustworthiness across different features when tested 

on a finite set of inputs. When presented visually, the trust spectrum provides an excellent 

overview of when one can and cannot trust the brain tumor detection support model. 

Figure 6.11 shows the spectrum of the first 50 samples’ beliefs produced by the DST 
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fusion technique from the output of the multi classifier. 

 

                                               Figure 6.1 The trust spectrum of DST fusion. 

 

The threshold to accept these beliefs as the trusted result is equal to 0.74 or greater. 

Therefore, the system will reject any decision with a lower threshold trust level. In 

addition, the evidence from the classifiers' outputs, conflicting factor k, is monitored 

during the fusion process. The factor k in the DST combination rule indicates the amount 

of evidential conflict. If k = 0, this shows complete compatibility; if k =1, it shows 

complete contradiction; and if 0 < k < 1, it shows partial compatibility.  

The system will classify any testing image as being in class 2  if the conflict value 

reaches the preset value. This procedure will reduce the total of the false positive and 

negative rates, and increase the sensitivity, specificity, and overall classification 

accuracy. The DST combination rule was explained in Section 4.8.1. 
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Chapter 7  

Conclusion and Future Work 

 

7.1    Conclusion 

The thesis aimed to design an automatic system to classify brain tumors from MRI 

images by fusing decisions of multi-classifier. This has been successfully achieved. In 

addition, this thesis introduces a systematic procedure to MRI brain image pre-

processing, segmentation, feature extraction, feature selection, classification, and 

decision combination. Based on the combination of median filter, threshold technique, 

discrete wavelet transform, multi-classifier, and Dempster-Shafer theory of evidence. 

Initially, the MRI brain images were smoothened and enhanced by a nonlinear median 

filter to exclude any existing artifacts surrounding the image, such as name and date. In 

brain MRI segmentation, the thresholding technique implemented to extract attention is 

the brain tumor in this task. This segmentation is usually straightforward for brain MRI 

studies. In the MRI image, features are extracted through implementing the DWT. In 

addition, as the decomposition level increased, a compactor but coarse approximation 

complex was attained. Therefore, wavelets afford an easy ranked frame for the photo 

information translates. In this work, up to three breakdown levels through Harr wavelet 

were used to extract features. In attribute selection or decrease, principal component 
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analyses algorithm PCA applied to reduce the feature from 1024 to 13 components, 

which could preserve 95.4% of the overall variance. The compact attributes are used as 

input to three algorithms.  The multi-classifier stage consists of three algorithms:  ANN, 

SVM, and KNN. All of which are used supervised techniques. They differ in their 

approach to classifying and predicting the classes. Two algorithms are non-parametric, 

and one is a parametric classifier. The results from the classifier were analyzed using a 

confusion matrix.  The multi-classifier combination was designed and implemented using 

different decision fusion basics such as maximum, minimum, product, average 

probability, and majority vote, where the primary multi-fusion technique is the Dempster-

Shafer theory. The DST outperforms the other techniques in combining the multi-

decision with sensitivity (97%), specificity (96%), and overall accuracy up to 96%. The 

combination technique has displayed optimal classification precision. 

Moreover, the combination method stills powerful in the existence of very various 

algorithm performances. The capability to manage such conditions powerfully and 

classify samples as ambiguous in algorithm uncertainty makes this procedure bright for 

medical image processing. This is a high speed, rather good recall or sensitivity, and 

specificity. The system can execute great brain image databases and afford fast results in 

medical settings. The overall performance and the outcomes display that the DST 

algorithm in the fusion task achieves better than the other present approaches. 

7.2   Research Contributions 

This study's main contribution is to expand the classification performance of detecting 

brain abnormality grounded on multi-classified MRI brain scans and decision fusion 

accuracy. In this research, multi-classifier were applied to the classification task, three 
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algorithms, two non-parametric, and one parametric classifier. They are different in their 

theory of classification to improve the final decision after combining their outputs. The 

Dempster-Shafer theory DST was applied in the fusion task increases the discriminative 

accuracy and represents any uncertainty in the final determination. The DST theory of 

evidence provides the ability to model various partial ignorance types, limited or 

conflicting evidence. Initially, there are two classes representing the output classes 0 as 

benign and 1 as benign and malign. Besides, class 2 was added to represent the 

uncertainty in the combining process when there is undoubtedly conflict between the two 

beliefs, i.e., classifiers output. These three classes representing accept, reject, or more 

tests required by applying this approach. The other methods have only two types, as there 

is a tumor or not. Introducing DST offers us another class with no confidence about the 

final decision to be represented, as more tests are required. DS's proposed system allows 

us to reduce false negatives and false positives when there is no firm decision for the 

correct class. This will be done by controlling the conflict factor between the evidence 

while combining the decisions and specifying two thresholds. First, suppose the 

conflicting factor reaches the first threshold and is less than the next threshold. In that 

case, the final decision will be considered by the classifier, which has a high confidence 

rate of fault acceptance in this category. If the conflicting equal or greater than the second 

threshold, the decision will be more test. This procedure gives us to decrease fault 

acceptance and fault rejection. The two-threshold factors are tuned until obtaining the 

optimal values. The contribution of this research is listed in following: 
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1. A speedy and clinically oriented technique has been advanced to detect brain 

tumors and normal tissues from multi-modal images. 

2.   Capabilities of improving a robust system have been explored to distinguish 

brain tumors grounded on MRI brain photos and determine the tumor absence or 

presence. In addition, it will represent any uncertainty that could exist while 

combining tumor classifiers. 

3.   The proposed and filtering algorithms are employed to eliminate high-frequency 

components (noise) and undesirable MRI areas. 

4.   Dempster-Shafer's theory DST is applied in the fusion task to increase the 

discriminative accuracy and represent any uncertainty in the final determination. 

The DS theory of evidence provides the ability to model partial ignorance, limited 

or conflicting evidence.  

5.   Powerful algorithms were applied in the classification and decision-fusion 

stages, which can be used for other diseases with small or no modification. 

 7.3   Future Works 

Identification of brain tumors is reliant on the detection of abnormal brain tissues. 

However, several aspects of brain tumors' successful treatment are determined by 

the tumor category, location, and dimensions. Identifying a tumor is a sensitive 

and challenging assignment; consequently, precision and consistency are 

permanently consigned considerable significance. For future work, this thesis 

research can be extended to increase detection and segmentation precision. Here 

is a list of recommendations for possible extensions of the works of this thesis 

research: 
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1. The detection accuracy can be increased further by using Magnetic Resonance 

Spectroscopic Imaging (MRSI), which provides the brain regions' chemical 

composition. The tumor region's chemical composition is different from the non –

tumors regions. 

2.  The segmentation and feature extraction stages can be developed by different 

techniques to enhance the classification stage and obtain higher efficiency. 

3.  The system can be further used to classify images with dissimilar diseased cases, 

categories, and disease statuses using other types of image modalities (e.g., CTS 

canner, PET, MRS, and mammogram) for cancer classification. 
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