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Abstract

Neural networks are a popular choice of models for the purpose of text generation.
Variational autoencoders have been shown to be good at reconstructing text and gener-
ating novel text. However, controlling certain aspects of the generated text (e.g., length,
semantics, cadence) has proven a more difficult task. The objectives of disentanglement
and controlled text generation have thus become areas of interest, with various approaches
depending on the aspects we desire to control.

In this work we study controllable generation of lyric text based on semantic and pho-
netic criteria. The phonetic information takes the form of generalized phonetic patterns.
A Bag-of-Words Variational Autoencoder (VAE) extracts and models the semantic infor-
mation, while a phonetic pattern VAE handles the phonetic information. Each uses several
regularization techniques for its respective latent space and the information from each is fed
to a lyrics decoder to generate novel lyric lines that would satisfy both the Bag-of-Words
and phonetic constraints.

The experiments show that our model can learn to reconstruct phonetic patterns ex-
tracted from text and use them with the Bag-of-Words representations to reconstruct the
original lyric lines. Together, the learned representations of phonetic patterns and Bag-of-
Words constraints can be used to generate new lyrics.
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Chapter 1

Introduction

1.1 Background and Motivation

It has been a long-sought goal for many decades now to achieve Artificial Intelligence
(AI), computer models capable of emulating human thought and reasoning. The first steps
towards realizing this goal were taken as far back as 1943 [McCulloch and Pitts, 1943]
with the design of artificial neurons. Today, certain models have already surpassed human
ability in certain restricted domains, like game playing. A famous example is the AlphaGo
model [Silver et al., 2017] capable of beating world-class players at the game of Go.

With the use of Machine Learning (ML), algorithms designed to leverage large amounts
of data to learn optimal strategies, and Neural Networks, models that emulate the archi-
tecture of biological brain cells with code, these models’ abilities have improved by leaps
and bounds over the last several years. While greatly impressive on its own, there are still
many challenges to be overcome to achieve the general AI standards of simulating a human
mind.

One of the challenges that remains unsolved is that of getting AI models to understand
the intricacies of human languages and making them capable of using language to convey
information. This challenge as a whole is referred to as Natural Language Processing
(NLP). NLP has been been broken down into various sub-fields such as question answering,
text simplification, translation, text generation and more.

Text generation can be defined as the task of taking examples of text, extrapolating from
them and generating novel text that shares some characteristics with the examples. Thus
it becomes a balance between keeping some syntactic characteristics (i.e. the structure
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and grammar) and/or semantic characteristics (i.e. the meaning behind the words) and
generating sequences that have enough diversity in both syntax and semantics to constitute
new and novel texts.

Various text generation methods exist utilizing machine learning for a diverse set of
purposes. One of these purposes or sub-tasks is lyric generation. Many methods utilizing
language models, transformers and recurrent neural networks have been engineered for
tasks such as text simplification, dialogue generation and auto-completion. Most of these
tasks have clear goals and measurable results, often times with automatic metrics to mea-
sure performance. When generating lyrics, evaluating the quality can be a fraught task
since there are few metrics to differentiate good lyrics from bad lyrics. Measuring other
characteristics such as musicality, novelty and creativity can be both difficult and largely
dependant on opinion. There is still much research to do in this field and some things that
have been explored very little, if at all.

One of these is the effect of phonetic text structure on the quality of lyrics. Many
lyrical and poetic characteristics can be defined with relation to phonemes. Rhyme and
alliteration can both be defined as phonetic patterns within lyrics and prose. When singing,
certain types of phonemes are easier to sing than others and put less strain on the voice.
This may make it desirable to use certain phonemes at the end of lyric lines, when notes
are often left to ring out for a while. The accompanying music may put constraints on the
meter or rhythm of the lyrics, meaning we would want to use patterns that conform to the
cadence of the music or at least use patterns that do not conflict with the music. Certain
phonemes are harsher and others softer, meaning that an emphasis on some might serve
better or worse depending on aggression and energy in the genre being played. Phonetic
patterns may also contain information about meter and rhythm, both important in keeping
a certain pace when singing. These patterns may even have a distinct distribution between
artists and contain other lyrical information.

We believe that this makes it abundantly clear that phonemes and their structures
play a big role in how to write lyrics and thus paying special attention to these may lead
to text generation models with a better grasp on how to generate lyrics. Our hopes are
to present a novel way of incorporating this information into the text generation task to
produce better lyrics.

1.2 Problem Definition

In this work, we will explore the express use of phonetic information in the generation of
lyrics, as mentioned above. The evaluation of the "lyricality" of text can be very hard to
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estimate. Our hope is that by training a model to reconstruct a set of lyrics, it can pick up
on what makes a piece of text lyrical. We will also keep track of how well it reconstructs
phonetic structures, novelty and grammaticality of the lyrics generated. The end goal with
this model is that it can then be used as an aid in writing novel lyrics that allows for fine-
tuned control over semantics, cadence and other phonetic characteristics. When writing
lyrics, we may hit upon a theme we are fond of but not manage to fit it into the cadence of
a song. I.e. we have decided upon a melody or rhythm but can’t get the lyrics to fit said
melody and align it to the beats of the music. The other case is having a cadence, melody
or a line of lyrics that one would like to change the theme of. This could be changing the
mood, emotion or semantic aspects while retaining the rhythmic characteristics of the text,
i.e. generating new text while preserving the stresses and pauses present in the flow of the
accompanying music. In certain instances, we might only be able to sing a certain number
of syllables before a line ends or need lyrics to line up with the music in specific ways.
In the case of needing to fit a theme to a cadence, a user could supply a Bag-of-Words
(BoW) with semantics and the model would produce lyrics with that theme. In the case
of wanting to change the theme of the lyrics, one might have placeholder lyrics that can
be input to guide the meter and the model would produce new lyrics with different themes
and emotions. Another option would be to combine phonetic and semantic information
from existing lines to generate new lyrics.

Given a corpus X of l lyrical lines x, we would like to use this data to make recon-
structions x̂ of the original lyrics during training and produce new lyrics ŝ not found in the
corpus. For each of the lines x, we extract the semantic information and phonetic informa-
tion. The semantic information will take the form of Bag-of-Words information projected
into a latent space ZBoW with each line’s information being encoded into a latent vector
zBoW . Similarly, the line gets transformed into a sequence of phonemes and then those
phonemes are projected into a latent space Zphon and the line’s phonetic information is
encoded into a latent vector zphon.

Figure 1.1: Overview of system components used for lyric reconstruction
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These two latent variables are then fed into a decoder to produce the reconstructed
lyrics x̂, which should ideally be the same as the initial x. Using the Bag-of-Words and
Phonetic models, we can also generate lyrics from scratch without any input. The training
of the three models is more complicated and further details are provided in the Methodology
chapter.
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1.3 Contributions

Several contributions were made in the pursuit of implementing the system described above:

• A model that expressly extracts phonetic patterns from lyrics and is capable of gen-
erating new phonetic patterns to guide the lyric generation.

• A method for the controllable generation of lyrics based on both semantic and pho-
netic constraints provided, in that same model.

• Results from experimenting with different phonetic representations and vocabularies
to determine which ones best suit a generative and reconstructive model.

• A method for receiving semantics from a separate model and the phonetic informa-
tion, from the model mentioned above. It then uses the information from both to
generate lyrics.

• A comparison of different training methods, i.e. pre-training the first two models
versus training them alongside the final decoder, to see which methods produce the
best results.

• Suggestions and discussion on how to evaluate results of lyric generation in concrete
terms.

1.4 Chapter Outline

In chapter 2, we introduce the necessary background information to understand the work-
ings of the models presented. In chapter 3, we talk further about the implementation and
architecture of the models used. In chapter 4, we talk about the experiments performed and
the quantitative results gained from experimentation, as well as the different metrics used
to evaluate our models. Finally, chapter 5 talks about the conclusions we can draw from
the results and what work could be expanded upon to perform additional experiments.
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Chapter 2

Background and Related Work

2.1 Neural Network Models

Virtually all of the current ML models being used rely on variants of an architecture called a
Neural Network (NN). The idea behind a NN is to model the structure found in biological
neural cells, such as those found in brains, using aggregates of cells or neurons. The
simplest architecture for a neuron is the classic Perceptron [Rosenblatt, 1958]. At its core,
a Perceptron is a neuron that takes in a series of inputs xn, multiplies them with learned
weights wn, adds a learned bias b and then uses an activation function f to determine its
outputs yn.

Figure 2.1: Simplified Perceptron representation

The variable z is calculated using the method above and then the activation function
uses that variable to determine output. One of the simplest activation functions we can
use is a threshold function with a threshold of 0.5. We can define z and the threshold
activation function with the formulas:
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z =
n∑
i=1

x1w1 + bi

y =

{
1, if z > 0.5
0, otherwise (2.1)

The selection of f will determine various effects of how effective the neuron is and how
easy it is to use them in conjunction with other neurons to form a trainable model. A
threshold function is simple, but not ideal. One of the most common activation functions

is the sigmoid function σ given with the formula σ(x) =
1

1 + e−x
. Another popular acti-

vation function is tanh, given as tanh(x) =
ex − e−x

ex + e−x
. Generally speaking, a differentiable

activation function is preferable in order to be able to perform backpropagation (which we
will cover later) to adjust a model’s weights.

Figure 2.2: The sigmoid function Figure 2.3: The tanh function

Once we have multiple neurons at our disposal, we can start linking them together to
form Neural Networks. Different sets of of neurons can be grouped into layers, where there
are no connections between the neurons within a layer. A NN must have at least two
layers, an input and an output layer. In between these two layers, we can add additional
layers called hidden layers. If a NN has at least one hidden layer, it is considered a Deep
Neural Network.
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Figure 2.4: Example of Deep Neural Network with two hidden layers of the same size

Figure 2.4 shows an example of a fully connected NN, meaning that each of the neurons
in one layer is connected to every neuron in the next layer. The input sequence is fed into
the input layer. Then the output of each layer is fed to the next layer until it reaches the
final layer, the output layer. The output from the output layer is then used as the final
output of the entire model. When input is passed along like this all through the model, it
is called a forward pass. A NN capable of doing this is called a feed-forward network and
is capable of extracting knowledge from the inputs passed to it.

These outputs of the model are its prediction for a given input. For some input se-
quence of words, these outputs might correspond to a prediction of sentiment, relevancy,
translation or something else. Ideally, we would want to be able to instruct the model now
about how correct or incorrect it was in its predictions and the model could then update its
weights to make better predictions in the future. One way of achieving this is performing
backpropagation [David E. Rumelhart, 1986].
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Roughly speaking, backpropagation is the way in which we update the weights of a
model to reduce error in subsequent forward passes. The output of the model is from
the last layer and with it we can calculate how far off the model’s guess is, i.e. the error.
Updating the weights in the last layer that gives us the output is easy enough. But updating
the intermediate layers is harder since it is not immediately clear how much each neuron
in the intermediary layers contribute to the result and thus even harder to say how to
update their weights. A simple way of calculating the error E of a model’s predictions
with parameters or weights θ for a set X of n number of samples (each sample x having
some associated true prediction y and prediction made by the model ŷ) is using the mean
squared error:

E(X, θ) =
1

n

n∑
k=1

(ŷk − yk)2

For a given weight w in layer l to node j, from node i in the previous layer, we would
like to be able to calculate how much that given weight contributed towards the total error.
We can derive this amount by using partial derivatives and the chain rule. The error with
regard to a certain weight can be written as:

δE

δwlij
=

1

n

n∑
k=1

δEd
δwlij

This gives us the amount by which we need to adjust a certain weight. Given a hyper-
paramter called the learning rate, symbolized with η, that dictates how much we want to
adjust the weights with each backpropagation, we can then adjust the weights with:

∆wlij = η
δE

δwlij

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [Jordan, 1986] [Rumelhart and McClelland, 1987] are
different from NNs in the way that they process input. Not only do they use the input
sequence, they also use hidden variables to keep track of sequence information and mem-
orize dependencies of the sequences in the input and the generated output. There are
several different types of RNNs, such as Gated Recurrent Units [Chung et al., 2014] and
Bidirectional Recurrent Neural Networks [Schuster and Paliwal, 1997].
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2.2.1 Long Short-Term Memory

A popular architecture choice for RNNs are so-called Long Short-Term Memory networks
(LSTM) [Hochreiter and Schmidhuber, 1997]. Traditional NN models tend to have prob-
lems with either exploding or vanishing gradients. Gradient clipping can be used to some-
what mitigate gradients that have grown exponentially and keeping models smaller can
reduce vanishing gradients as we backpropagate further, but these problems still persist.
Thanks to the LSTM architecture, this problem is further reduced. It is also better than
many NN architectures at modelling long-range dependencies in sequences, i.e. focusing
on the entire sequence instead of just the current word.

RNNs are recurrent, meaning that their output gets passed back in for the next step,
along with the input for that step. The inner workings of the network mean that it
can decide to encode pertinent information into a hidden variable that will carry over to
subsequent passes through the network. Let’s start by looking at the equations that define
the model’s behavior [Sak et al., 2014].

ft = σ(Wfxt + bf +Whfht−1 + bhf ) (2.2)
it = σ(Wixt + bi +Whiht−1 + bhi) (2.3)
gt = tanh(Wgxt + bg +Whght−1 + bhg) (2.4)
ot = σ(Woxt + bo +Whoht−1 + bho) (2.5)
ct = ft � ct−1 + it � gt (2.6)
ht = ot � tanh(ct) (2.7)

Each of it, ft, gt and ot have Neural Network layers and trainable weights of their own
and � is point-wise matrix multiplication. The model takes input xt and the states ht−1

and ct−1 from the previous time step for every word x in the input sequence. The states
h and c are often referred to as the hidden state and cell state respectively. The hidden
state contains information pertinent for the next item in the sequence whereas the cell
state contains information about long-range dependencies. Let’s display the interaction of
these variables in the model before going into further detail.
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Figure 2.5: Inner workings of an LSTM model

For our very first step where t = 0, the states c0 and h0 are zero vectors. Our first
variable to be calculated is ft, often called the forget gate output, given by equation 2.2. Its
output can be thought of as a sort of mask that reduces or nullifies cell state information
from the previous steps. For instance, if we have a long, run-on sentence and the subject
of the sentence has now changed, the output of the forget gate would erase features of the
old subject in the cell state.

The two variables it and gt, given with equations 2.3 and 2.4 respectively, decide which
information from the new word xt should be encoded into our new states. Once we have
forgotten the unnecessary information from Ct−1 using ft (2.2), we can add in our new
information using it (2.3), gt (2.4) and then use equation 2.6 to calculate the next cell state
ct.

Now that we have gathered everything we need, we can calculate the next hidden state
ht using equation 2.7. We use our newly calculated ct (2.6) and the output ot (2.5) of one
of the sigmoid layers, thus infusing the information we got out of the current word input
with any relevant long-term information and outputting ht. For the next word xt+1 our
output states ct and ht get fed back into the model for the next time step t+ 1 as inputs.
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This is what makes the model recursive, the fact that it uses its previous output as input
for the next steps, and the reason why it is called a RNN.

Most other RNN architectures generally only have the hidden state h and no cell state
c. They are good at building sequences where each word depends entirely on the word
immediately preceding it. Once they need more information than just the previous word,
that’s when they start to falter. Adding the cell state c mitigates this and gives us a more
robust model capable of modelling long-term dependencies. Thus it has both long-term
and short-term memory, giving it the slightly confusing name Long Short-Term Memory.

2.3 Tokenization and Word Embeddings

We have spoken about inputting sequences and words into models, but not provided details
on how to make them understandable to models. In order to perform calculations with
words, they need to be translated into mathematical concepts that can be fed into a
statistical model. An ideal format that possesses enough information, but doesn’t take up
too much space, is a vector. One of the simplest ways of translating a word x into a vector
is using a one-hot vector. Given a vocabulary V of size v, each index represents a word.
Thus for a vocabulary of size v = 5, if the index for the word "computer" is 2 and 4 for
"sky" (starting from 0), the one-hot vector for "computer" would be [0, 0, 1, 0, 0] and for
"sky" it would be [0, 0, 0, 0, 1].

The obvious disadvantage here is that with larger vocabularies, one-hot vectors become
increasingly sparse and wasteful with regards to space. This also means that computation
would become increasingly complex, even though each vector would have very little infor-
mation. A method that makes good use of space while providing a high level of granularity
is Word2Vec [Mikolov et al., 2013a]. Another popular framework that similarly compresses
words into more efficient vector form is GloVe [Pennington et al., 2014], but we will focus
on Word2Vec here.

In this method, we have a corpus of sentences and a NN that uses another two NN
models in order to divine the meaning of words. A dimensionality (the standard being
300) is chosen for the word-vector representations. For each new word encountered in
the corpus, a 300-dimensional vector is uniformly randomly initialized and then passed to
the two models to be fine-tuned. The first model is the Continuous Bag-of-Words (BoW)
model. In this architecture, we iterate through each word in each sentence. The word is
masked so the model doesn’t know what it is and then uses the other words in the sentence
to make a prediction and classify the masked word. The model not only uses the previous
words, but also the future words to make its prediction.
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The second model is a Continuous Skip-gram model, which is almost the opposite of
the BoW model. The model is given one word from a sequence and then tries to predict
a set amount of words before and after that word, with less weight given to words further
away from our masked word. Thus it becomes a classification problem where a window
of possible words is selected around a selected word and the model guesses which words
occur there.

Figure 2.6: BoW and Skip-gram overview from [Mikolov et al., 2013a]

These two tasks of BoW and Skip-gram classification complement each other nicely
and give the model the ability not only to understand each word on its own, but to also
give it a better understanding of how words relate to each other. In fact, the words end
up being arranged in the multi-dimensional vector space in a way where similar words are
closer together.
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Figure 2.7: Stylized and simplified representation of Word2Vec word space from [Wor, 2019]

Not only that, but words that have similar types of relations will have similar relative
distances between them, with an example shown in ??. This shows that not only do the
co-ordinates within this space correlate with a specific meaning, trajectories within the
space also preserve relations between words. This means we can use measures such as L2
distances between word-vectors a and b to determine the similarity between words like:

similarity(a,b) = ||a− b||2

A slightly more reliable and traditional measure for word similarity, that uses the same
idea, is cosine similarity. The cosine similarity of the same two vectors is defined as:

cos(θ) =
a · b

||a||2||b||2

The higher the value of the cosine similarity, the more similar the two words are.
Conversely, the lower the cosine similarity, the less related the two are. this can be used to
determine how far off a model’s guess at a word is and perform backpropagation of error
to train it. Now that we have mathematical word representations, we can start using them
as inputs for models.
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2.4 Sequence-to-Sequence Models

For the purposes of generating lyrics, we would like to be able to feed a model example
lines of lyrics so that it can learn from them and then get it to output lyrics of its own. In
other words, we want to feed the model sequences of words and get it to output sequences
of words as well. This is a model that belongs to the class of models called Sequence-
to-Sequence models [Sutskever et al., 2014], sometimes abbreviated Seq2Seq. In our case
of reconstruction, the model should receive a line of lyrics as input and then output that
same line. With regards to generation, we will go into further detail in subsection 2.4.3
about Variational Autoencoders.

Figure 2.8: Example of an input sequence ABC and corresponding output sequence XYZ,
where each token could be a word. E.g. ABC could correspond to an input line "and your
love" and XYZ could be the model’s prediction "also thine affection". The parts in green
show the encoding steps and the parts in green show the decoding steps.

2.4.1 Language Models

Language Models (LMs) [Bengio et al., 2001] are somewhat similar to word embedding
models, but have a different end goal. While word embedding models like Word2Vec
produce vector representations of words and organize them in their vector space, LMs
produce a probability function that informs us how likely a sequence of words is to occur.
At its simplest, an LM can give the probability of a word being the next word in a sequence
or sentence. We can denote this as:

P (xn|x1, x2, ..., xn−1)

If we chain these predictions together for a sequence of words X = {x1, x2, ..., xn} that
form a sequence, we can get a measure of how likely a sequence of words is to occur. We
can denote this as:
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P (X) =
n∏
i=1

P (xi|x1, x2, ..., xi−1)

We can then use this type of prediction, along with some sort of smoothing function to
make up for the gap between what the model sees during training and possible novel words
it will encounter later on, to train an LM. Assuming that an LM is trained on a good set
of data and similar to the one we are working with, we now have a metric of how good
a fit a sequence of words is in our corpus. A higher probability means that the sequence
X shares characteristics with the sequences in our corpus, while a low probability signifies
that the sequence does not conform to the corpus and is likely a bad fit. We will talk more
about this relation in the chapter on Perplexity (subsection 4.3.2).

LMs have improved dramatically in the twenty years since they were conceptualized
and have a plethora of different architectures these days. Older models only use Markov
assumptions, the assumption that only a certain number of words in proximity to the
word being evaluated need to be taken into account, making the problem tractable and
yielding usable models. In effect, the model is trained on a corpus of sequences with a
fixed word-window to ascertain which words fit best and then goes through training. But
newer models like BERT [Devlin et al., 2019] and GPT-2 [Radford et al., 2019] make use
of masking, attention, massive datasets and more to yield extremely good pre-trained LMs.

When such models are overkill, other methods can be used. Using a counting method
with several n-grams instead of just a fixed word window, in conjunction with Kneser-
Ney smoothing will yield a smaller and faster Language Model [Heafield et al., 2013] that
should still work well enough for our purposes.

2.4.2 Autoencoders

Seq2Seq models usually consist of two different parts. The first is an encoder, which handles
the input sequence [x1, x2, ..., xn] and compresses the input into a latent variable z. The
second part is a decoder, which receives z as input and then generates an output sequence
[y1, y2, ..., ym]. A Seq2Seq model can be made to generate a different type of output from
the input, e.g. translate an input sequence language into an output sequence in another
language or take a question as input and generate an answer. A Seq2Seq model can also
be made to try and make its output the same as the input, in which case it becomes a
reconstructive model. When a Seq2Seq model becomes a reconstructive model like this, it
is called an Autoencoder [Ballard, 1987] [Baldi, 2012]. The benefits of an Autoencoder are
not immediately obvious, but it can be a powerful tool in text generation.
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Figure 2.9: Example of Autoencoder reconstructing an input sequence. Ideally, x and x̂
should be the same.

Autoencoders are RNNs that consist of an encoder linked to a decoder. Both the
encoder and the decoder are separate RNNs. The output of the encoder, sequences encoded
into hidden variables in a latent space, are fed into the decoder, whose responsibility is to
decode the hidden variable back into a sequence. Let’s say that the input is a sentence x
which consists of n number of tokens (e.g. words) x = x1, x2, ..., xn. The encoder translates
the sentence into a hidden variable z via the use of a learned encoding function e(x) = z.
The decoder then takes this variable z and decodes it back into a sentence with its learned
decoding function d(z) = x̂. Thus the goal is to create a reconstruction as close to the
original sequence as possible. If each token has an embedding, we can use an L2 Loss to
calculate the Reconstruction Loss for a sequence as:

LReconstruction =
n∑
k=1

||x̂k − xk||22

This Reconstruction Loss can then be used to backpropagate error in the model and
used to train the Autoencoder to reconstruct sequences. This will give us an encoder that
is capable of compressing a sequence into a smaller variable z. More importantly, it will
give us a decoder (which if given a variable z) can generate a sequence. If we give it a z
it has not encountered before, it might be able to generate a novel sequence. But there is
a problem with this design.

If we generate a random z and decode it, we should be able to generate a sequence
that is aligned with the sequences in the corpus we trained on. The problem is that the
randomly sampled z has no guarantee that it will correspond to any coherent sequence in
the latent space. We have not trained our Autoencoder to produce a continuous latent
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space, so there may be areas within it with no corresponding sequences. What we would
want is to have a continuous latent space so we can sample from anywhere inside it and
get a valid sequence.

Figure 2.10: A point corresponding to a sampled z in an unregularized latent space with
empty spaces in between and a regularized, smooth latent space with no empty spaces. The
blue areas symbolize parts of the latent space that contain encoded information, whereas
the blank areas contain no encoded information.

What we would like to do is introduce regularization to create a smooth latent space and
make sure our generated z corresponds to an actual sequence. So long as we stay within
the bounds of the regularized space, we can be certain that our sampled z is correlated to
a meaningful sequence.

2.4.3 Variational Autoencoders

The Autoencoders discussed previously were deterministic, meaning there is no variability
in the model. If you input a sequence x it will always return the same sequence x̂ and it
has the problem mentioned above of a latent space with possible holes in it. By introducing
variation, we can regularize the latent space and fix this issue [Kingma and Welling, 2014a].

For our task of constructing lyrics, we have a dataset of lyric lines x and would like to
construct a function which utilizes the dataset to construct new and novel samples z that
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share similarities with the examples given. In our case, the example lyrics and samples
should be liness with certain phonetic structures and semantics. A practical method of
constructing this ideal function is to use Variational Inference [Blei et al., 2017] that uses
Bayesian probability. We have a function p(z) which is the distribution of the latent space
and is called the prior. As mentioned previously, we would like the prior to take a shape
where there are no holes in the latent space. A simple function that fits this description well
is the Gaussian functionN (0, 1). If our data conforms to this function, we can easily sample
from the smooth latent space it provides. The prior is closely related to the distribution
p(x|z), that is the likelihood of the sequence x given a latent variable z. Modelling the
distribution of these two variables with Bayesian statistics, we get:

p(z ∩ x) = p(z) · p(x|z) (2.8)

What we would like to do is calculate the posterior distribution p(z|x), that is, the
density of the variable z given the sequence x. Re-writing the sequence above, we get:

p(z|x) =
p(x ∩ z)

p(x)
(2.9)

We would like to calculate the distribution p(x), sometimes referred to as the marginal
likelihood or evidence. The marginal likelihood can be re-written as:

p(x) =

∫
p(z)p(x|z)dz (2.10)

The problem with this calculation is that it is intractible in all but the most sim-
ple of cases. Instead, we must resort to an approximation of the posterior to solve this
problem. In order to do this, we can utilize Kullback-Liebler Divergence (KL-Divergence)
[Kullback and Leibler, 1951]. KL-Divergence can be described as a score that measures
the disparity between two distributions. The lower the score, the more similar the two
distributions are. We can now take our selected posterior approximation function and the
true posterior distribution and minimize the KL-Divergence between the two to get an
approximation. Given two probability distributions P and Q in a shared space X, we can
write KL-Divergence as:
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KL(P ||Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(2.11)

Or in the case of a continuous random variable:

KL(P ||Q) =

∫ ∞
−∞

log

(
P (x)

Q(x)

)
dx (2.12)

What we would like to do then is find a function Q(Z) that minimizes the KL-
Divergence of the true posterior P (Z|X). We can re-write the KL-Divergence term now
as:

KL(Q||P ) =
∑
Z

Q(Z)

[
log(

Q(Z)

P (Z|X)
)

]
(2.13)

KL(Q(Z)||P (Z|X)) = EQ(Z)[log(Q(Z))]−EQ(Z)[log(P (Z,X))]+EQ(Z)[log(P (X))] (2.14)

<=> EQ(Z)[log(P (Z,X))]−EQ(Z)[log(Q(Z))]+KL(Q(Z)||P (Z|X)) = log(P (X)) (2.15)

Rewriting the first two terms as the Evidence Lower Bound (ELBO) [ELB, 2020], or
ELBO(Q) = EQ(Z)[log(P (Z,X))]− EQ(Z)[log(Q(Z))], we get:

ELBO(Q) +KL(Q(Z)||P (Z|X)) = log(P (X)) (2.16)

<=> KL(Q(Z)||P (Z|X)) = log(P (X))− ELBO(Q) (2.17)

The gap between the evidence and the ELBO is thus the KL-Divergence between Q(Z)
and P (Z|X). Maximizing the ELBO is thus equivalent to minimizing the KL-Divergence.
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Figure 2.11: The relation between evidence, KL-Divergence and ELBO as shown in
[Kullback and Leibler, 1951]

We can rewrite ELBO into a more familiar format:

ELBO(Q) = EQ(Z)[log(P (X|Z))]−KL(Q(Z)||P (Z)) (2.18)

The two distributions can now be substituted with encoder qθ(z|x) and our decoder
pΘ(x|z) [Prokhorov et al., 2019] to acquire a loss function:

LV AE =
∑

Ez[log(pΘ(x|z))]−KL(qθ(z|x)||pθ(z)) (2.19)

The first term in the loss is effectively a Reconstruction Loss, where the model tries to
recreate the input sequence in its output. The second term is a KL Loss that makes our
approximate posterior closer to the prior. To control the balance of these two terms, we
can place a hyperparameter λ on the KL term.

LV AE =
∑

Ez[log(pΘ(x|z))]− λKL(qθ(z|x)||pθ(z)) (2.20)

We can then use an annealing strategy by modulating λ to avoid KL term collapse in
the training of our VAEs [Lucas et al., 2019].
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Reparameterization Trick

One problem with modelling the prior and the posterior as mentioned previously is that
we use sampling of a stochastic distribution to obtain a latent variable for our decoder.
In a Deterministic Autoencoder, there is no stochastic part of the model and thus there is
an unbroken pipeline through the model through which we can perform backpropagation,
back through the arrows in the other direction in Figure 2.9. In the case of a VAE, this
pipeline is broken, meaning that we cannot perform backpropagation from the decoder to
the encoder directly.

Figure 2.12: Representation of a VAE, also from [VAE, 2019]

The solution to this is to use the Reparameterization Trick [Kingma et al., 2015] to
provide us with an unbroken route through the model through which we can perform
backpropagation.
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Figure 2.13: Illustration of the reparameterization trick from [Kingma, 2017]

As seen in Figure 2.13, our goal is to create a deterministic node that substitutes for the
stochastic one, whose function is given as g in Figure 2.12. The original method directly
samples from Z, which we can denote as z ∼ N (µ, σ2). In stead of doing this directly,
we can sample ε from N (0, I), perform simple transformations on the encoder output to
receive both µ and σ and combine them into z with the formula:

z = µ+ σ ⊗ ε (2.21)

This satisfies all the conditions mentioned above, giving us a node through which our
gradient can pass all the way from the decoder to the encoder and we can properly back-
propagate to update the model.
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Chapter 3

Methodology

When generating lyrics, there is generally a desire to be able to control certain aspects of
the output during generation. With many text generation tasks, there is a desire to be
able to influence the semantics while adhering to syntax and grammaticality. In the case
of lyrics we would like to be able to make the text "musical" or "lyrical" while retaining
coherency. The proposed method for doing so uses the hidden state from a Bag-of-Words
VAE for controlling the semantic aspect of generated lyrics. A second VAE conditioned on
the phonetic structures of lyrics will hopefully provide a hidden state that can be used as
a guide to make more musical text, guided by phonetic patterns gleaned from the lyrics.
These two hidden states can then be used in tandem to produce the final lyrical structure.
We will start by describing the loss functions used to guide the models and help them
achieve their objective.

3.1 Loss functions

When developing ML models, there are many qualities we want a model to possess. In
our case, we have several goals or qualities that we want our model to embody. For
example, we want it to neither underfit nor overfit on the data presented. The model
should generalize and learn from the data rather than memorize the training examples
outright. It should also adhere to the semantic qualities given by one VAE while properly
following the phonetic pattern set out by the other VAE. All this while producing output
that is grammatical and coherent. The best way to achieve all these goals is to take each
requirement and produce a loss function that can guide the model towards its goals. We
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can then balance out how much weight each of these loss functions carries and thus make
it take into account our concerns.

3.1.1 Cross-Entropy Reconstruction Loss

One of the classic losses used in many ML models is Cross-Entropy Loss [Shannon, 1948]
[Zhang and Sabuncu, 2018]. A short summary of this loss is that it is a general classification
loss that can be used to guide any model performing classification. In the case where we
have an original sequence x and we are training a reconstructive model to produce x̂, we
can express the Cross-Entropy Loss of a model thusly:

Lrec = −
K∑
c=1

xc log(x̂c)

Where K is the number of classes, or the number of words in the vocabulary in our
case. The effect that this has is to generate a loss for classification, where more loss is
accrued when the prediction strays further from the class of the ground truth. Here, the
term ground truth refers to the sequence the model is attempting to reconstruct.

3.1.2 L2 Regularization Loss

When developing ML models, we usually want to make certain that it is not overfitting
for the dataset we are training on. There are many methods for addressing this concern
and one of the more straight-forward ones is L2 Loss [Ng, 2004]. If our model has a simple
Reconstruction Loss Lrec and weights W , we can simply add the L2 Loss:

Lmodel = Lrec + λW 2

Where λ is a hyperparameter controlling how much L2 Loss we wish to apply to the
model. As can be seen, the overall idea here is to penalize the model for selecting the
exact weights necessary to get a perfect score for the samples it trains on. In essence,
we are adding a little bit of noise to the scoring function so that it cannot hone in on the
perfect score and hopefully gains a better grasp on generalization instead. It will also make
the model use its weights more evenly, possibly preventing it from carving out a section
solely focused on memorization of certain samples rather than using all of its weights in a
generalizable fashion. However, we must take care to set λ appropriately. Too high and
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the model runs the risk of becoming unstable and underfitting. Too low and we will see
overfitting anyway. We will refer to this L2 Regularization Loss as LL2 henceforth.

3.1.3 Cycle-Reconstruction Loss

When training a model with multiple components, it can be hard to ensure that the loss
functions will adequately guide all components as needed. In our case, there is a concern
that our lyrical decoder may not adequately use the information provided by the VAEs
and generalize from that information. One way to further encourage the use of information
obtained through another part of a model is through Cycle-Reconstruction (CR) Loss
[Zhu et al., 2017].

In the case of classic Reconstruction Losses, we pass an input into a model and then
compare the output to the input. Given a phonetic sequence x and both the encoding and
decoding functions Ephon and Dphon, the Reconstruction Loss would be calculated from
the comparisons of x and Dphon(Ephon(x)) := x̂. In the case of CR Loss, we take this a
step further by comparing the latent variable of the encoding Ephon := z and the latent
variable of the encoding of the prediction Ephon(x̂) := ẑ. Using L2 distance on these two
will provide us the CR Loss:

LCR = ||z − ẑ||22

As is readily apparent from the formulation here, the CR Loss does act very similarly
to the pure Reconstruction Loss. It encourages the model to make more accurate recon-
structions and encode pertinent information better. One might assume that simply giving
the pure Reconstruction Loss more weight would achieve similar results, but it has been
demonstrated in other domains that utilizing both losses at the same time has proven more
effective than using either one on its own.

Figure 3.1: Cycle-reconstruction of an input sequence x, denoting the second pass through
the model with red arrows
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3.1.4 Combined Losses for Models

For both the BoW and Phoneme VAEs, a combined set of losses is used in order to train
the model. Namely:

LTotal = Lrec + LL2 + λLKL

The first two loss functions are the Cross-Entropy and L2 losses mentioned above.
The thirds is the KL-Divergence used to regularize the latent space. We control its effect
throughout the training of the model through adjusting the λ hyperparameter. By con-
trolling the value of this lambda, we can perform KL term annealing and avoid KL term
collapse [Lucas et al., 2019] during the training of these models, thus ensuring both good
reconstruction and a regularized latent space.

In the case of the Lyrics Decoder, a combination of the L2 and Reconstruction Loss
are used thusly:

LTotal = Lrec + LL2

Where it relies on the pre-trained BoW and Phonetic VAEs for input. The Decoder
is not variational on its own, so it does not need a KL-Divergence Loss. While it has not
been done here, a Cycle-Reconstruction Loss could be added here to make the decoder
focus further on utilizing the phonetic information.

3.2 Bag-of-Words VAE

The Bag-of-Words strategy here is similar to that mentioned in a previous chapter on
Word2Vec. What we would like this model to do is take a line of lyrics as input and then
encode the relevant semantic information in that sequence into a latent variable z. This
latent variable can then be used to convey the semantic information of a line to other
models.

First, we need a method of picking out semantically important words in a sequence.
A good method for doing so is Term Frequency-Inverse Document Frequency (TF-IDF)
[Qaiser and Ali, 2018]. As the name suggests, for each word we calculate both its term
frequency and its inverse document frequency and use that to calculate the likelihood of
the word being semantically important. Originally, TF-IDF was designed for a corpus of
separate documents.
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The Inverse Document Frequency (IDF) evaluates the inverse ratio of documents in a
set using a given word, intended to gauge how common a word is. Given a corpus of d
number of documents D and a word w, we can count the number of documents containing
the word and then use that to calculate IDF:

IDF =
d∑d

i=1 w ∈ Di

The more common the usage of the word, the lower the IDF. Next we calculate Term
Frequency (TF), how often a word w occurs in a given document D versus how many words
are in the document:

TF = log

(
count(w ∈ D)

length(D)

)
What we have now is a representation of how unique a word is to a given document

(the IDF) and how often that word appears as a proportion of said document (the TF).
We can then take the product of these two numbers to get the TF-IDF score:

TF-IDF score = TF · IDF

If either term is too low, i.e. the word occurs in all documents or does not get used
enough in the documents where it occurs, the score decreases for a word. The higher the
score, the likelier it is that it is a semantically important word. The two terms effectively
normalize each other and give us a score for the importance of a word within a document.
For this approach, excluding stop words is recommended, even though the IDF should
mitigate their effect. Instead of using documents here, we can use lines of lyrics and get a
score for how important a word is in a line, contained within a corpus of lyrics.

With these scores at our disposal, we can now use them in our BoW VAE. We take each
line, pick out the individual words, calculate the TF-IDF score for each and then create a
vector where each index corresponds to a word. The model then learns to reconstruct these
vectors. Extracting the most semantically important words is then as simple as taking the
top-k from the models prediction and translating the indices back into words. Now we can
use the hidden state zBoW from this model as previously discussed.
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Figure 3.2: Simplified overview of the BoW VAE model

3.3 Phonetic VAE

This VAE is similar to the one mentioned above. In this case, we are dealing with embed-
dings of phonetic tokens in stead of words and not weighting the tokens with anything like
TF-IDF. When dealing with standard word embeddings, we can obtain pre-trained word
embeddings like Word2Vec or GloVe as mentioned previously. With phonetic embeddings,
there are no widely available pre-trained embeddings and so we had to create our own.

We experimented with different phonetic representations. More details on each are
provided in section 4.1. The simplest has a vocabulary of 3 different phoneme categories, a
slightly more complex vocabulary of 8 different phonetic categorizations and then 2 closely
related phonetic vocabularies of actual phonemes rather than vocabularies themselves.

For each of the different vocabularies used, we had separate embeddings trained. Py-
Torch provides an embedding layer interface that creates a trainable embedding layer for
us. This was used during training and each value in the embedding vectors was initialized
as a sample from N (0, 1). From there, each line is translated into phonetic tokens. Once we
have a sequence of tokens, they are transformed into our embeddings and passed through
the VAE as normal. When training is over, we can obtain the latent value zphon from our
VAE and use in our decoder.

Figure 3.3: Simplified overview of the Phonetic VAE model
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3.4 Lyrics Decoder

The third model is a stand-alone LSTM decoder. At each time-step, the output from the
previous time-step is concatenated together with the 2 hidden states from the other VAEs
to create the input. As with most decoders, we start off by using start-of-sentence tokens
to begin the decoding process at time step 0. Here we use Word2Vec embeddings as both
part of the input and the output when generating the lyrics. Seeing as the output from
one time step is the input for another in these circumstances, we could symbolize the input
for time-step i as being:

yi = zBoW ⊕ zphon ⊕ yi−1

Where ⊕ is vector concatenation. It should be noted that the 2 latent variables are for
the entire sequence and remain the same through the decoding process for each sequence.
We want the model to focus on using the latent z variables, so before each decoding step,
a dropout layer is applied to yi−1 to mask some of the information of the previous output.
Since the model no longer has all the information from the previous time-step’s output, it
is forced to use and generalize from the z variables provided.

The standard method of using an Autoencoder entails having a single latent variable
z for the entirety of the sequence, which is then decoded auto-regressively. That single
variable will then contain both phonetic and semantic information. In our case of using
two latent variables, the hope is that the bag-of-words variable will contain enough se-
mantic information and the phonetic variable enough phonetic information to be able to
reconstruct the sequence.
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Figure 3.4: Simplified overview of the entire model’s pipeline

We also utilize Teacher Forcing [Goyal et al., 2016] to guide the model towards better
generation. This is a technique often employed in the training of auto-regressive models.
In Teacher Forcing, instead of passing the output of the model yi−1 in as the input for
the next step, we pass in the corresponding word from the ground truth xi−1 so the input
would become:

yi = zBoW ⊕ zphon ⊕ xi−1

As the name suggests, this forces the model to learn the original sequences and can
help guide the model towards better predictions. The best thing to do here is to perform
Teacher Forcing on a percentage of training examples so that the model gains experience
both using its own output and the best possible ground truth output.
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3.5 Model Training Methodologies

Since we are using multiple models when training our decoder, we can use different strate-
gies. One strategy would be that of pre-training our Phonetic VAE and BoW VAE. This
would entail training each VAE separately on the same dataset and then freezing the
weights of the models. Once frozen, we move on to getting the outputs of the VAEs
(without backpropagating the losses) and feeding those results into the Lyrics Decoder to
reconstruct the original lyrics. The loss acquired from this step is backpropagated only
through the Lyrics Decoder.

If a VAE needs further reinforcement and is not performing well enough at the stage
of training the Lyrics Decoder, we can utilize one of the loss functions discussed earlier,
namely a Cycle-Reconstruction Loss. In theory, this should lead to better reconstruction
of the lyrics. The risk here is that we might destabilize a previously fine-tuned VAE. A
Cycle-Reconstruction Loss should encourage better reconstruction, but does not provide
any reinforcement or regularization of the latent space, leading to a possible collapse.

Another strategy we tested involves training all three models in tandem in an end-to-
end fashion. In stead of pre-training the two VAEs, we start with fresh, untrained VAEs
and their loss is backpropagated at the same time as the loss from the Lyrics Decoder.
The main difference here is that along with receiving feedback from the BoW and phonetic
sequence reconstructions, the VAEs will also receive feedback from the process of decoding
information back into lyrics. To go into even more detail, the decoders in the VAEs receive
feedback from phonetic and BoW reconstruction, the Lyrics Decoder receives feedback only
from the reconstruction of the lyrics and the encoders in the VAEs receive feedback from
reconstructing the lyrics, BoW and phonemes.

This extra feedback has the possibility of improving the model’s overall performance,
but there is no guarantee this will be the case. Another concern is that the VAEs will
have to be KL-annealed during the training of the model as a whole. When the VAEs are
pretrained, we can focus on each one and fine-tune them without worrying about influences
from the outside. In the case of end-to-end training, there are multiple influences on the
VAEs and they might even be able to have an effect on each other through the Lyrics
Decoder. These side-effects might make the training process and balancing of the KL Loss
harder to manage.
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Chapter 4

Experiments and Results

4.1 Datasets

Two main datasets were used during the implementation of our model, one containing
lyrics and another containing phonetic transcriptions of various words. The lyrics dataset
we had at our disposal consisted of around 34,000 lines of lyrics, mainly from rock and its
adjacent genres. We performed a 90%/5%/5% split for train/validation/test, which gave
us 30907/1717/1718 samples respectively.

The other dataset was the CMU Pronouncing Dictionary [CMU, 2014], often abbrevi-
ated to CMUdict. This is a large dictionary containing phonetic spellings of various words
in English. E.g. the word "question" would be transcribed as "K W EH1 S CH AH0
N" and the word "figurehead" is "F IH1 G Y ER0 HH EH2 D", with the numbers on
the vowels being 0 for unstressed, 1 for primary stress and 2 for secondary stress within
a word. As noted by the dictionary authors, each of these tokens is a phone rather than
a phoneme [CMU, 2014], but we will use the term phoneme for the sake of simplification
here. Each phonetic token is thus a representation of the pronunciation of a part of a word
(or possibly the whole word for very short words).

In our case, several datasets were extrapolated here as well. We created datasets with
analogous transcriptions using simpler phoneme categorizations. One set has the phonemes
"consonant, monophthong, diphthong" as the only phonetic tokens used, meaning that
vowels are categorized into two different tokens depending on whether they are composite or
singular vowels and all consonants are grouped under the same token. Another set uses the
more complex categories "vowel, stop, affricate, fricative, aspirate, liquid, nasal, semivowel"
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that are based on where in the mouth a phoneme is formed and its sonic characteristics.
Both "monophthong" and "diphthong" from the previous set are now under the same
token "vowel", but the consonants now have much more granularity based on where they
are produced, rather than all falling under the same token for "consonant". The third set
uses the 39 phonemes given in the CMU dict without the numbers indicating stress. This
has even more detail than the other two sets combined, since we are now directly using
phonetic representations and not overarching categories over multiple tokens. We will go
into more detail on how these were used in the Phonetic VAE later in this chapter.

4.2 Hyperparameters

4.2.1 BoW VAE

For the BoW VAE, a hidden size of 256 and a latent size of 128 was used. A dropout
rate of 0.2 was used between each linear layer in the decoder and encoder. The sampling
temperature (a measure of the amount of noise added to a sample during encoding) during
training was 1.0 and a batch size of 200 was used. Annealing was performed up until
iteration 3500, for about 1000 iterations.

4.2.2 Phonetic VAE

The Phonetic VAE consisted of a single-layer, bidirectional LSTM encoder and a single-
layer, unidirectional LSTM decoder. The embeddings were all trained from scratch and
each one had a dimensionality of 60. Both the hidden size and the latent size were of size
100. The L2 regularization factor was 1e-5 and a gradient clipping threshold of 50 was
used. A maximum sequence length of 40 was used, note that these are 40 phonemes and
not words. The dropout rate was 0.6 and the sampling temperature during training 1.0. A
batch size of 200 and annealing was performed up until iteration 2500, with the annealing
happening over 1000 iterations.

4.2.3 Lyrics Decoder

The Lyrics Decoder consists of a single-layer, unidirectional GRU decoder using 300 di-
mensional Word2Vec embeddings and a hidden size of 200. The maximum sequence size is
of length 15. The L2 regularization factor used was 1e-9, with a gradient clipping threshold
of 50. A dropout rate of 0.2 was employed here.
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4.3 Evaluation and Metrics

4.3.1 BLEU Scores

All models used BLEU scores [Papineni et al., 2002] to measure how effective the models
are at the reconstruction of unseen examples from the corpus. BLEU scores use so called
n-gram overlaps to calculate how true a reconstructed sequence is to the original. The
metric has proved to be a good substitute in evaluating how good a given sequence is
with regards to coherence and grammar. Given an original sequence of tokens x and a
reconstructed sequence x̂, we split x̂ into single words or tokens, the set of all 2 adjacent
tokens, the set of all 3 adjacent tokens and all 4 adjacent tokens. A series of n number of
adjacent tokens or words like this is called an n-gram.

Figure 4.1: An example of different n-grams within a sentence

We then keep track of which of these n-grams occur in x. The more of these sequences
that occur in the ground truth, the higher the BLEU score. If we have a perfect recon-
struction where it is the same as the ground truth, the BLEU score is 1.0. In the case
of none of the words in the reconstruction being present in the ground truth, we get the
worst possible score of 0. Thus the BLEU score is the ratio of how many of these word
sequences or n-grams occur in the ground truth. The standard practice of using BLEU
scores can be thought of as a double summation, counting the n-grams in a ground truth
sequence x and the prediction of the model x̂:
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BLEU =

∑4
n=1

∑
n−gram∈x count(n− gram)∑4

n=1

∑
n−gram∈x̂ count(n− gram)

4.3.2 Perplexity

Given an LM as detailed in a previous chapter (subsection 2.4.1), we can use it to estimate
how well a sequence conforms to the rest of the corpus. Instead of feeding the sequence into
the LM directly, we can derive a metric called Perplexity [Clarkson and Robinson, 1999].
The Perplexity (PPL) of a sequence s of length n using our LM can be defined as:

PPL(s) = n

√
1

P (x1, x2, ..., xn)
= n

√√√√ n∏
i=1

1

P (xi|x1, x2, ..., xi−1)

A lower PPL score means that a sequence conforms to the corpus the LM was trained
on and is a better fit. A higher PPL score means that the sequence is not similar to
what we expect and thus likely not a good fit. Another thing that must be kept in mind
is that PPL scores are also related to the novelty of a sequence. When a sequence has a
higher PPL score, it is not necessarily because it is grammatically incorrect or semantically
incoherent, it is simply a sequence that the model does not expect. Thus if an extremely
low PPL score is achieved, we might want to make sure that the model is not overfitting
and that it does produce somewhat novel and unique sequences.

4.3.3 Levenshtein Distance

When comparing two sequences of tokens, it can sometime be useful to use Levenshtein
Distance [Levenshtein, 1965]. In essence, Levenshtein Distance measures the minimum
amount of tokens that need to be changed in one sequence to be identical to the second,
how many single-token edits need to be made on one sequence until the second sequence
is obtained. The lower the Levenshtein Distance, the more similar the two sequences are,
indicating a better prediction. Levenshtein Distance is a so-called edit distance measure
and belongs to a family of such methods. A simple, recursive way of computing the
Levenshtein Distance of two sequences is given by:
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Algorithm 1 Calculate Levenshtein Distance between two given sequences a and b
procedure LevenshteinDistance(a,b)

Require: |a| > 0 and |b| > 0
if a[0] == b[0] then

LevenshteinDistance(a[1:], b[1:])
else

return 1 + min(LevenshteinDistance(a[1:], b)
end if
LevenshteinDistance(a, b[1:])
LevenshteinDistance(a[1:], b[1:]))

end procedure

While BLEU scores have been proven to provide good feedback with word tokenization,
it may be prudent to have another similar (but not identical) measure to confirm that the
model is on the right track. This is especially true when the vocabulary is not as well
studied, such as in the case of the Phonetic VAE. A mismatch of a high BLEU score and a
high average Levenshtein Distance of the original and reconstructed sequences could thus
be an indicator that the model is not behaving as well as expected.

4.3.4 Precision and Recall

When using a classifier, one must pay attention to the rate of correct classifications and
incorrect classifications. We can glean even further insight into performance by paying
attention to the percentage of true and false positives and negatives. The idea is possibly
best understood via a simple graph.
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Figure 4.2: Model predictions and their relations to negatives and positives

Informally, Precision will tell us the percentage of predictions made are actually correct.
On the other hand, Recall tells us: Of all the possible correct predictions, how many did
the model actually get? These can also be expressed as ratios between false positives, true
positives and false negatives. Precision is thus defined as the ratio:

Precision =
True Positives

True Positives + False Positives

High precision means that when a model makes a prediction, it is usually correct. Recall
can be represented in a similar manner:

Recall =
True Positives

True Positives + False Negatives

High recall means that when a model makes predictions, it is very likely that it will
not leave out any correct predictions and mislabel them as false. These two metrics can
both be optimized, but usually end up being at odds with each other later during training.
Fully optimizing for one will usually lower the other.
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4.3.5 Distinct Scores

Ideally, we would also like to have a method of judging the diversity of sequences. One
way to do so is to use Distinct scoring as proposed in [Li et al., 2016]. For this method, we
require a set S which contains s number of sequences. Iterating through all s sequences,
we count the total number of n-grams and then count how many distinct n-grams occur.
Note that the n-grams do not need to be unique within S, only distinct. This means that
recurring n-grams will only be counted once, no matter how often they occur. Once the
counting is complete, we can calculate the scores as:

Distinct-1 =
Number of distinct unigrams
Number of total unigrams

Distinct-2 =
Number of distinct bigrams
Number of total bigrams

This is similar to using BLEU scores, but what these metrics are measuring is the
overlap of words within a corpus. The higher the Distinct scores, the higher the diversity
of the sequences within that corpus, meaning that we would like to aim for higher distinct
scores in our generated sequences.

4.3.6 Self-BLEU Scores

Finally we have Self-BLEU [Zhu et al., 2018], which is another metric to ascertain the
diversity within a set of sequences. We start with a set S of sequences and iterate over
them all. Each time, we take sequence Si and remove it from the set S. We then use Si as
the candidate and S \ {Si} as the reference. We then do this for all sequences i and take
the average of the BLEU scores. A lower Self-BLEU means there is less overlap between
sequences in the corpus, indicating higher diversity.
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4.4 Pre-Training Versus End-to-End Training

As mentioned before, we tried out pre-training the VAEs before training the Lyrics Decoder
and also tried training all the models end-to-end at the same time. In short, the challenges
mentioned in 3.5 about balancing the different losses in end-to-end training proved hard
to overcome. As such, pre-training the VAEs proved a more successful approach, as can
be seen in the respective BLEU scores.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
End-to-End 0.4752 0.3628 0.2924 0.2398
Pre-Trained 0.5802 0.4591 0.3822 0.3250

Table 4.1: Comparison validation scores of an end-to-end trained model and one utilizing
pre-training

In both methodologies, the VAEs did manage to stabilize and KL-annealing was suc-
cessful. However, ensuring proper KL-annealing proved harder in the case of end-to-end
training and balancing the losses yielded lower BLEU scores. The end-to-end trained
decoder was more prone to repetition of words than the pre-trained one and the VAEs
yielded lower BLEU scores as well. Since all the models performed worse in the end-to-
end scenario, we will focus on the models using the pre-training strategy in the following
chapters.

4.5 Phonetic VAE

4.5.1 Different phonetic vocabularies

As mentioned in section 4.1, we experimented with a few different types of phonetic repre-
sentations when training the Phonetic VAE. The simplest of the phonetic representations
used was a vocabulary of three tokens: monophthongs, diphthongs and consonants. Each
line of lyrics used in training was translated into a sequence of these three tokens and
then fed to the VAE in order to train it. Several different sets of hyperparameters were
experimented with that all yielded similar results. The models obtained using this vo-
cabulary tended to have fairly high BLEU scores and good reconstruction, but the latent
space was not very smooth and random sampling yielded poor results. Several methods of
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consolidating the latent space were tried, but with little success for this simple phonetic
vocabulary.

Model BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ Avg. Levenshtein distance ↓
Smaller vocab 0.7607 0.7180 0.6658 0.6035 5.43
Larger vocab 0.7006 0.6226 0.5268 0.4238 6.52

Table 4.2: Reconstruction metrics for smaller vocabulary and larger vocabulary

The scores are slightly better with the smaller vocabulary, but we must also consider
the fact that since the vocabulary is smaller, the likelihood of making a correct prediction
should be much higher. Thus we would like to see much better scores, which has obviously
not happened. With a VAE, not only would we like to ensure good reconstruction, but
also a smooth latent space. The latent space for the smaller vocabulary is not unusable,
but not as smooth as we had liked, as can be seen from some random sampling. Taking
pairs of random samples from the latent space and then linearly interpolating samples in
between the two gives us an idea how smooth the latent space is. By interpolation, we
mean taking a pair of samples from the latent space, traversing the distance between the
two and decoding the intermediary points or samples as we go from one to the other. We
effectively split the distance into equal parts and thus expect to see a gradual shift from
the first sample to the last, if the latent space has been properly smoothed and regularized.
Examples of this can be seen in the appendices in section A.1.

Another concern with this smaller vocabulary is the quality of the individual samples
from the latent space itself. Special tokens have been omitted from the samples above to
make them more readable, but the model frequently produces samples with tokens after
end-of-sentence tokens and uses padding tokens erratically.
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Random samples from simple vocabulary
cons di cons di cons mono cons cons di
mono cons mono cons cons mono cons cons cons mono cons cons mono cons
cons mono cons mono cons cons di cons mono cons mono cons di cons
cons di cons mono cons cons mono cons
cons mono cons
cons mono cons cons di cons mono cons
cons mono cons di cons di cons mono cons
cons mono cons mono cons cons di cons cons mono cons cons
cons di cons mono cons mono cons mono cons di cons mono cons cons mono cons di cons mono cons di
cons di cons
di mono

Table 4.3: Random samples from latent space of smaller vocabulary Phonetic VAE

Using the more complex vocabulary with the phonetic categorization proved a better
choice for phonetic representations. Here there were 8 different tokens used and the results
were better. BLEU scores were high, and thus reconstruction was good, as well as yielding
a more smooth latent space. The slightly larger vocabulary size seems to have given
the model more variance and given it more information from which to extract and learn
patterns. This can be seen in better BLEU scores and lower Levenshtein distance in our
latter model. Applying the same interpolation strategy from before, we can obtain several
samples to test the smoothness of the latent space. Examples of this can be found in the
appendices in section A.2

Taking random samples from the latent space also shows us that the samples themselves
tend to be less problematic. They are not completely free from interspersing tokens when
the line should have ended, but it happens less and the model is more consistent in using
only end-of-sentence tokens.
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Random samples from larger vocabulary
stop vowel vowel stop fricative vowel
stop vowel fricative vowel fricative vowel stop vowel fricative stop stop vowel stop vowel
vowel stop vowel stop vowel nasal stop vowel fricative stop
vowel fricative nasal vowel liquid stop nasal vowel nasal fricative stop vowel
fricative vowel liquid liquid vowel nasal vowel stop vowel liquid semivowel vowel liquid vowel nasal stop
vowel nasal vowel liquid
fricative vowel nasal vowel nasal vowel nasal
vowel nasal vowel fricative stop vowel nasal vowel fricative stop vowel nasal
vowel fricative vowel liquid vowel nasal fricative vowel vowel nasal vowel liquid vowel nasal vowel
vowel stop liquid vowel stop liquid vowel nasal vowel stop vowel nasal vowel semivowel vowel
stop vowel nasal stop vowel nasal stop vowel nasal stop vowel nasal vowel nasal stop nasal vowel nasal
vowel nasal stop

Table 4.4: Random samples from latent space of larger vocabulary Phonetic VAE

Reconstruction using this expanded vocabulary is also better. Several examples of lines,
their phonetic transcription and reconstructions have been provided below.
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Reconstructions using larger vocabulary
Original line: for my senses
Phonetic transcription: fricative vowel liquid nasal vowel fricative vowel nasal fricative vowel fricative
Reconstruction: fricative vowel liquid nasal vowel fricative vowel nasal fricative vowel fricative
Original line: no more free steps to heaven
Phonetic transcription: nasal vowel nasal vowel liquid fricative liquid vowel fricative stop vowel stop
fricative stop vowel aspirate vowel fricative vowel nasal
Reconstruction: nasal vowel nasal vowel liquid fricative vowel vowel fricative stop vowel stop fricative
vowel vowel fricative vowel fricative vowel nasal
Original line: that part of me isn’t here anymore
Phonetic transcription: fricative vowel stop stop vowel liquid stop vowel fricative nasal vowel <unk>
stop vowel aspirate vowel liquid vowel nasal vowel nasal vowel liquid
Reconstruction: fricative vowel stop stop vowel fricative stop fricative fricative liquid vowel liquid vowel
vowel liquid vowel liquid vowel nasal vowel nasal vowel
Original line: that s the shape i’m in
Phonetic transcription: fricative vowel stop vowel fricative fricative vowel fricative vowel stop vowel
vowel nasal vowel nasal
Reconstruction: fricative vowel stop vowel fricative vowel vowel vowel vowel stop vowel vowel nasal
fricative nasal
Original line: she made me feel alive
Phonetic transcription: fricative vowel nasal vowel stop nasal vowel fricative vowel liquid vowel liquid
vowel fricative
Reconstruction: fricative vowel nasal vowel stop nasal vowel fricative vowel liquid vowel fricative fricative
fricative

Table 4.5: Reconstructions of phonetic sequences using large vocabulary

The third dataset, using the CMU dictionary without the stresses, was not experi-
mented with extensively. The main problem with this dataset is that even though we are
utilizing phonetic representations, they are legible transcriptions of the words they are
supposed to represent. If we take an example from earlier, the word "question" would be
transliterated as "K W EH S CH AH N". It is readily apparent that this is the word
"question" and can only be the word "question". Using our previous vocabulary, the word
would be transliterated as "stop semivowel vowel fricative affricate vowel nasal". It is much
harder to figure out what the original word is and there may be multiple words that fit
that pattern. The former vocabulary does not obfuscate any of the semantic meanings of
words, while the second vocabulary does. Thus if we were to train a model using this mod-
ified CMU dictionary, it would be very similar to training a VAE using byte-pair encodings
[Gage, 1994] of words and reconstructing lines with word segments in stead of words. Since
our goal here is to train a model to extract phonetic patterns and ignore semantics, this is
not a desirable approach.
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4.5.2 Hyperparameter experimentation

Taking the above into account, we limited more extensive experimentation to the simple
representations and the phonetic category representations. Between each step of decoding,
a dropout layer was used to mask some of the embedding information, in the hopes of
making the model rely more on the latent sequence variable than the embeddings of the
phonetic information. A dropout rate of 0.2 has usually proved enough to encourage the
model to encode information in the latent space rather than the embeddings, but rates
from 0.2 to 0.9 were tested here. The rate did not have much effect on the reconstruction
ability of the model, but a significantly higher rate was needed to make the model to
properly utilize the latent space. In the end, a rate of 0.6 was settled on for the dropout
layer.

As is the case with many RNN-based models, it is much harder for the model to learn
from longer sequences. A maximum sequence length of 20 seems to yield models better at
reconstruction, but a maximum sequence length of 20 phonemes would yield exceedingly
short lyrics. A sequence size of 40 proved a more suitable balance between reconstruction
and length of actual lyrics.

Another aspect that required experimentation was the size of the latent variable and
the size of the trainable embeddings. The standard dimensionality for pre-trained word
embeddings is 300, but we had much smaller vocabularies than in those cases. Much smaller
vocabularies should mean that less information needs to be packed into each embedding,
so we experimented with smaller embedding sizes from 80 to 20, before finally deciding on
a dimensionality of 40. On the upper end of the scale, a size of 80 was excessive and made
the model more prone to memorizing sequences and ignoring the latent variable, even with
higher levels of dropout. When given a dimensionality of 20, the model did not manage to
generalize and performed worse in both reconstruction and smoothing out its latent space.
A size of 40 provided a good compromise with accurate reconstruction without issues of
memorization.

4.6 Bag-of-Words VAE

Our BoW VAE performed well in extracting semantically meaningful words from the given
lyrics. For each line, we extracted the most semantically important words using TF-IDF
scoring and used them as the ground truth. Our model then made a prediction of the
6 most important words in the line and we evaluated based off of that output. For the
BLEU score, we focused on BLEU-1 and omitted longer n-grams, since the order of words

45



does not matter in a BoW. We also evaluated the precision and recall with respect to the
ground truth. A high precision in this case would mean that there are fewer incorrect
predictions of the words found in the ground truth. In other words, the number of false
positives becomes lower as precision increases. While a higher precision is good, we are
more interested optimizing for higher recall in this instance. A higher recall would mean
that the model is managing to predict more of the relevant words, leaving fewer of the
important ones out. These metrics should give us a good idea as to how well the model is
performing at parsing meaning from each sequence.

BLEU-1 ↑ Precision ↑ Recall ↑
0.4426 0.4525 0.7941

Table 4.6: Scores from reconstruction in BoW VAE

From these scores we can tell that the model is not particularly accurate when predicting
important words, but it is quite good at making sure that most of the important words
are present in predictions.

Original line: that you could sink so low
Bag of words: [’could’, ’low’, ’sink’]
Reconstruction: ["n’t", ’could’, ’light’, ’low’, ’sink’, ’all-time’]
Original line: it s a drive in saturday
Bag of words: ["’s", ’saturday’, ’drive-in’]
Reconstruction [’yeah’, "’s", ’saturday’, ’judge’, ’thorns’, ’drive-in’]
Original line: and find a distant man a-waving his spoon ?
Bag of words: [’man’, ’find’, ’distant’, ’spoon’, ’a-waving’]
Reconstruction: [’pretend’, ’find’, ’distant’, ’absolution’, ’spoon’, ’a-waving’]
Original line: i don’t run around with no mob
Bag of words: ["n’t", ’around’, ’run’, ’mob’]
Reconstruction: ["n’t", ’wo’, ’around’, ’run’, ’ai’, ’mob’]
Original line: no more free steps to heaven
Bag of words: [’free’, ’heaven’, ’steps’]
Reconstruction: [’free’, ’heaven’, ’key’, ’mother’, ’beckons’, ’steps’]

Table 4.7: Reconstruction examples from BoW VAE
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Performing the same tests for the latent space in the BoW VAE as in the Phonetic
VAE, we can see that the interpolations between BoW samples have smooth transitions
from one to the next. Random samples from the latent space also show that the VAE
produces varied sets of words.

Interpolation 1 Interpolation 2
bad darlin end goodbye things done money sun door world around one
bad darlin end goodbye things done money sun door world around one
done end let fast darlin take world door money around sun one
right take done let n’t see world door around love money sun
see right take n’t sun oh world back door ’s around love
see sun right oh n’t take back world know ’s door love
sun see oh right town come back know world time ’s going
sun see town oh lost got back time know going ’s better
sun see town lost mindless shining back time know better going home
sun see town lost mindless shining back time know better going home
Interpolation 3 Interpolation 4
’s try set get waiting know right ’s picture got life till
’s try set get waiting know right ’s picture got life till
’s know get right try set right picture got life ’s ca
know get right ’s night see right got picture life ca want
know get right night see dance right want got life n’t ca
know night get right see got right want got see n’t ca
got night know get see baby want right see got moving broken
got getting old night things sky want fear see turns broken moving
got getting old things ears sky fear health turns kept race charade
got getting old things ears sky fear health turns kept race charade
Interpolation 5 Interpolation 6
confusion wear humanity go chain thorns every minute move night little love
confusion wear humanity go chain thorns every minute move night little love
go confusion wear dissident chain humanity every night know love ... little
go take dissident ca touch turn night every ... n’t know oh
take go oh n’t ca way night ... n’t oh want give
take oh n’t ca go see night ... got give ’s n’t
take oh n’t ’re see water night got ’s young give ...
take oh n’t ’re water time got young night ’s dark give
take oh time ’re girl water young got dark ’s night tower
take oh time ’re girl water young got dark ’s night tower
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Interpolation 7 Interpolation 8
n’t tenderly sorrow best hurricane faith world new free used blue endless
n’t tenderly sorrow best hurricane faith world new free used blue endless
n’t feel best sorrow tenderly leave world ’m free new used night
n’t feel get line right best world ’m free night see new
n’t love feel get line right world ’m never free night give
love feel n’t way line get ’m world never ... give oh
love way feel line life go ’m never world ... back oh
love way life line new everywhere never ’m back world ... walk
love way new everywhere cross life back never learning ’m walk huh
love way new everywhere cross life back never learning ’m walk huh
Interpolation 9 Interpolation 10
baby free way tell little ’ll better shoulder song time man singing
baby free way tell little ’ll better shoulder song time man singing
baby way tell free ’ll little man better time running world alone
baby way ’ll tell n’t girl man world time running got get
n’t baby ’ll girl take way man world got time know running
n’t girl take make ’ll said man got world see could know
girl n’t take make understand said got man world change see could
girl understand brain thought take n’t change got hope man see still
understand brain unknown thought girl fame change hope lose still got turning
understand brain unknown thought girl fame change hope lose still got turning

Table 4.8: Interpolations of latent space of BoW VAE
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Random samples
’ll love stumble let around footsteps ride highway demand little things might
never n’t head tried thing mean head ’ll n’t let please ignite
blues hold happening way broken reverse lonely day everything one alright dark
children please best ’87 mind cry ’s wish goodbye heaven lonely life
love want take ’s road say get rise woman keep could mess
like n’t guess sweet arrow see children buried blur bones roll begins
go skin slow ’s peel shoes good like tie last opened take
see baby way waiting loving means see ’s road walk unread ports
see life try ’s want something ’re like hard ... hit next
day ... ’ll hive need names find difference universe heartache focus path
heart get big dancing street ’ll say n’t something coming real harm
years n’t long forest wasted trouble hair beach fear ... hand dress
’s fun memory got back well tears ’m away cry hate friend
knew ’re know drums heard ’s gone spent somebody side see long
see wave gave ghost ride sure time away ... ca flame around
gray young port swallow tied bell n’t ’m care could one believe
little ’s five dark ragged believe help ’re people n’t away truth
yeah place oh right one insignificance ’s go kind man know get
comes sleep sun shine ’m get n’t higher ca close ’m read
tell surrender see quest n’t serve magic frightened white really money ching-a-ling
time found ’re let tv night long know years brings hill crawl
gloves tied love shining door silenced never hearts pierce way lovers man
girl got eye ta little pretty feel walls sin ... fell words
take ’s ’m na train gives get back look ’m ’ll wait
see ... ’re falling feel live n’t want ’re bag ca paper

Table 4.9: Random samples from latent space of BoW VAE

The model clearly has a strong affinity towards certain words, which is good in this
case. Songs often follow similar ideas and patterns, often leading to similar themes and
word choices. Emotions feature heavily in the samples and objects or conditions that are
idiomatic or evocative in their own right appear frequently. As can be seen, a majority
of the samples also have a notable sentiment, mood or theme. E.g. "’ll love stumble let
around footsteps" suggests someone stumbling around, hardly able to walk straight because
of love. Another could be "lonely day everything one alright dark" suggesting feeling like
everything has gone dark on a lonely day, a much more somber mood than the previous
set of words.
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4.7 Lyrics Decoder

As a baseline, the lyrics decoder was first set up as a Deterministic Autoencoder to see
how well it could reconstruct lyrics from a single latent variable z without any variational
components or disentanglement. Once that was complete, a variational encoder was added
to create a VAE that could reconstruct lyrics. In addition to being able to reconstruct,
this VAE can also directly generate lyrics by taking random samples from its latent space
and decoding them. These models can be used as a comparison to our Lyrics Decoder
with regards to how well it can reconstruct the original lyrics. Our Lyrics Decoder differs
from the DAE and the VAE in that it does not have a single variable z distilled from
the information within a sequence, but rather receives a concatenation of the two latent
variables from our Phonetic VAE and BoW VAE, zBoW and zphonetic.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 Avg. BLEU Avg. PPL ↓ Median PPL ↓
Ground Truth 1.0000 1.0000 1.0000 1.000 1.000 235.85 46.12

DAE 0.6272 0.5171 0.4385 0.3755 0.4896 424.64 100.87
VAE 0.5710 0.4344 0.3431 0.2732 0.4054 439.26 110.245

Decoder 0.5490 0.4103 0.3206 0.2549 0.3837 443.44 113.66

Table 4.10: Reconstruction scores from comparable decoder models

As can be seen from the scores in Table 4.10, adding a variational component lowers the
ability of the model to reconstruct somewhat compared to a DAE. This is to be expected,
since a DAE only focuses on reconstruction while a VAE has the added task of regularizing
its latent space [Bahuleyan et al., 2018]. The Lyrics Decoder that utilizes the BoW and
phoneme latent variables to reconstruct performs on par with a classic VAE. The VAE has
a latent size of 200 and the latent size of the Lyrics Decoder is comparable at 228, the
combined sizes from the BoW VAE and the Phonetic VAE. The VAE receives the entire
line as an input while our Lyrics Decoder only has the BoW and phonetic information,
suggesting that with this reduced amount of information, reconstruction is still feasible
in the case of lyrics. The averages of the PPL scores are higher than one might expect,
mainly due to a few outliers with very high scores. Since this is the case, the median
provides a more accurate idea as to how the model is faring. Examples of reconstructions
of lines from each model can be seen in Table 4.11. The DAE and VAE predictions use
latent variables of each line, while the Lyrics Decoder predictions only rely on the BoW
and phonetic representations of each line.
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Ground truth: for my senses
DAE prediction: for my home
VAE prediction: for my senses
Decoder prediction: for the senses
Ground truth: steals away in the night
DAE prediction: carried away every night
VAE prediction: away stopped in the night
Decoder prediction: that the last night
Ground truth: love will be the death of
DAE prediction: love will be the death of
VAE prediction: love is the flames of divide
Decoder prediction: love will be the death of
Ground truth: that part of me isn’t here anymore
DAE prediction: that this game isn’t free anymore here
VAE prediction: that’s something else here to stay here
Decoder prediction: that don’t part me anymore me anymore
Ground truth: show your love show your sweet sweet love
DAE prediction: love your show love your sweet love
VAE prediction: bring your love you dance with love sweet
Decoder prediction: so sweet your love you sweet love
Ground truth: she makes it real
DAE prediction: she makes it real
VAE prediction: he makes it real
Decoder prediction: so real makes the real

Table 4.11: Examples of reconstructions from comparative models

4.7.1 Information Retention in Mixing Phonetic and BoW Sam-
ples

One way to examine how much phonetic information is retained in the latent variable from
the Phoneme VAE is to try taking phonetic information from one line, BoW information
from another. We can concatenate the two, decode the resulting concatenation and then
observe how much the phonetic information changes between the line with the original
phonetic information and the one just produced. This change should be most apparent
when pairing together lines of differing length. We start off by taking lines with 8 words
and lines with 14 words from our test set and perform these types of combinations.
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Avg. Levenshtein Avg. line words BoW BLEU-1 BoW Recall
Shorter lines 6.67 6.86 0.3905 0.7103
Longer lines 11.62 11.81 0.5310 0.6064
Short BoW/long phonemes 15.57 10.90 0.3143 0.5714
Long BoW/short phonemes 10.05 7.71 0.2883 0.3239

Table 4.12: Metrics from combining lines with 8 words together with lines with 14 words
and respective reconstruction scores with 21 line pairs

First line: let the truth of love be lighted
Second line: a cop knelt and kissed the feet of a priest and a queer
First reconstruction: let love you’ve to love to be
Second reconstruction: it can be just the one that’s cop and
BoW from first, phonemes from second: i don’t let to the truth that that we love and we
love
Phonemes from first, BoW from second: it can be just the one that’s cop and
First line phonemes: liquid vowel stop fricative vowel stop liquid vowel fricative vowel
fricative liquid vowel fricative stop vowel liquid vowel stop vowel stop
Second line phonemes: vowel stop vowel stop nasal vowel liquid stop vowel nasal stop stop
vowel fricative stop fricative vowel fricative vowel stop vowel fricative vowel stop liquid
vowel fricative stop vowel nasal stop vowel stop semivowel vowel liquid
First combo phonemes: vowel stop vowel nasal stop liquid vowel stop stop vowel fricative
vowel stop liquid vowel fricative fricative vowel stop fricative vowel stop semivowel vowel
liquid vowel fricative vowel nasal stop semivowel vowel liquid vowel fricative
Second combo phonemes: vowel stop stop vowel nasal stop vowel affricate vowel fricative
stop fricative vowel vowel nasal vowel fricative vowel stop fricative stop vowel stop vowel
nasal stop
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First line: one is to love your neighbor till
Second line: i’d sure like to see her when the sun goes down
First reconstruction: one you’re already one light
Second reconstruction: i’ll see what you’re sure goes like the sun goes
BoW from first, phonemes from second: i love her already you already love you already
one
Phonemes from first, BoW from second: when i will see you like a little wonder
First line phonemes: semivowel vowel nasal vowel fricative stop vowel liquid vowel fricative
semivowel vowel liquid nasal vowel stop vowel liquid stop vowel liquid
Second line phonemes: vowel stop fricative semivowel vowel liquid liquid vowel stop stop
vowel fricative vowel aspirate vowel liquid semivowel vowel liquid fricative vowel fricative
vowel nasal stop vowel fricative stop vowel nasal
First combo phonemes: vowel liquid vowel fricative aspirate vowel liquid vowel liquid liquid
vowel stop vowel semivowel vowel vowel liquid liquid vowel stop vowel liquid vowel fricative
semivowel vowel vowel liquid liquid vowel stop vowel semivowel vowel nasal
Second combo phonemes: semivowel vowel nasal vowel semivowel vowel liquid fricative
vowel semivowel vowel liquid vowel stop vowel liquid vowel stop liquid semivowel vowel
nasal stop vowell liquid
First line: don’t want to wait for heaven
Second line: i look to the stars as they flicker and float in your eyes
First reconstruction: don’t want to wait with heaven
Second reconstruction: all the stars that the stars that the same for me
BoW from first, phonemes from second: i look i just for the heaven i want to this heaven
Phonemes from first, BoW from second: can’t you look into your eyes
First line phonemes: stop vowel nasal stop semivowel vowel nasal stop stop vowel semivowel
vowel stop fricative vowel liquid aspirate vowel fricative vowel nasal
Second line phonemes: vowel liquid vowel stop stop vowel fricative vowel fricative stop
vowel liquid fricative vowel fricative fricative vowel fricative liquid vowel stop vowel liq-
uid vowel nasal stop fricative liquid vowel stop vowel nasal semivowel vowel liquid vowel
semivowel fricative
First combo phonemes: vowel liquid vowel stop vowel affricate vowel fricative stop fricative
vowel liquid fricative vowel aspirate vowel fricative vowel nasal vowel semivowel vowel nasal
stop stop vowel fricative vowel fricative aspirate vowel fricative vowel nasal
Second combo phonemes: stop vowel nasal stop semivowel vowel liquid vowel stop vowel
nasal stop vowel semivowel vowel liquid vowel fricative
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First line: i’m the stain in your bed
Second line: i’m stuck in this dream it’s changing me i am becoming
First reconstruction: i’m the stain in your bed
Second reconstruction: i’m becoming the same i can not a same my only i am
BoW from first, phonemes from second: i’m the stain of bed and a stain in my bed
Phonemes from first, BoW from second: i’m the living i’m been i
First line phonemes: vowel nasal fricative vowel fricative stop vowel nasal vowel nasal
semivowel vowel liquid stop vowel stop
Second line phonemes: vowel nasal fricative stop vowel stop vowel nasal fricative vowel
fricative stop liquid vowel nasal vowel stop fricative affricate vowel aspirate vowel nasal
nasal vowel vowel vowel nasal stop stop vowel nasal vowel nasal
First combo phonemes: vowel nasal fricative vowel fricative stop vowel nasal vowel fricative
stop vowel stop vowel nasal stop vowel fricative stop vowel nasal vowel nasal nasal vowel
stop vowel stop vowel stop
Second combo phonemes: vowel nasal fricative vowel liquid vowel fricative vowel nasal
vowel nasal stop vowel nasal vowel
First line: standing by the wall by the wall
Second line: feeling like there’s something i never thought you’d be part of
First reconstruction: that’s blessed to have the wall
Second reconstruction: there are like a part of thought i never can never go
BoW from first, phonemes from second: the wall of the wall and the wall that’s standing
Phonemes from first, BoW from second: never can never be a part
First line phonemes: fricative stop vowel nasal stop vowel nasal stop vowel fricative vowel
semivowel vowel nasal stop vowel fricative vowel semivowel vowel liquid
Second line phonemes: fricative vowel liquid vowel nasal liquid vowel stop fricative vowel
liquid vowel fricative fricative vowel nasal fricative vowel nasal vowel nasal vowel fricative
liquid fricative vowel stop semivowel vowel stop stop vowel stop vowel liquid stop vowel
fricative
First combo phonemes: fricative vowel semivowel vowel fricative fricative vowel semivowel
vowel liquid vowel nasal stop fricative vowel semivowel vowel liquid semivowel vowel stop
fricative fricative stop vowel nasal stop vowel nasal
Second combo phonemes: vowel fricative liquid stop vowel nasal nasal vowel fricative liquid
stop vowel vowel stop vowel liquid stop

Table 4.13: Examples of combinations of 8 word lines and 14 word lines

We start of by reconstructing the shorter lines and the longer lines. The phonetic
patterns for the reconstructions had average Levenshtein distances of 6.67 and 11.62 re-
spectively while the reconstructed BoWs had BLEU-1 scores of 0.3903 and 0.5310. Then
the BoW from a short line and the phonetic information from a long line are concatenated
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and decoded to obtain a resulting line. With the resulting line, we can now compare the
resulting phonetic sequence with the phonetic sequence from the original longer line.

If the Levenshtein distance from the original reconstruction is similar to that of our new
line, that would indicate that the phonetic pattern is being retained. Another metric that
will provide us with some basic feedback is the length of the original longer line. Similarly,
we can compare the resulting BoW with the BoW from the shorter line and see how well
the semantic information was retained. The closer the BLEU-1 score of the original is to
the BLEU-1 of the generated line, the better the retention of the semantic information.
The inverse is true when a BoW from a long line has been added to the phonemes of a
short line. Then we would compare the BoW with that of the long line and the phonemes
from the short line to get an idea how well information was retained.

Judging by the comparison of the Levenshtein distances and the average number of
words in the generated lines as opposed to the reconstructions, we can see that the model
is guided somewhat by the phonetic structure provided. The average number of words
increases with longer phonetic sequences and decreases with shorter phonetic sequences.
While the Levenshtein distance of the phonetic sequences does increase, the loss in accuracy
is not too bad.

Avg. Levenshtein Avg. line words BoW BLEU-1 BoW Recall
Shorter lines 3.85 5.03 0.3485 0.7879
Longer lines 9.55 9.06 0.4740 0.6008
Short BoW/long phonemes 13.00 8.88 0.3061 0.7010
Long BoW/short phonemes 6.71 5.38 0.2592 0.3437

Table 4.14: Another set of metrics from combining lines with 6 words together with lines
with 11 words and respective reconstruction scores with 66 line pairs
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First line: oh i believe in miracles
Second line: i just pay while you’re breaking all the rules
First reconstruction: oh i believe in miracles
Second reconstruction: i’ll be just a well who will be where the rules
BoW from first, phonemes from second: oh what was all you believe for me believe
Phonemes from first, BoW from second: i’ll be a rules in here
First line phonemes: vowel vowel stop vowel liquid vowel fricative vowel nasal nasal vowel
liquid vowel stop liquid fricative
Second line phonemes: vowel affricate vowel fricative stop stop vowel semivowel vowel liquid
semivowel liquid stop liquid vowel stop vowel nasal vowel liquid fricative vowel liquid vowel
liquid fricative
First combo phonemes: vowel semivowel vowel stop semivowel vowel fricative vowel liquid
semivowel vowel stop vowel liquid vowel fricative fricative vowel nasal vowel stop vowel
liquid vowel fricative
Second combo phonemes: vowel liquid stop vowel vowel liquid vowel liquid fricative vowel
nasal aspirate vowel liquid
First line: i’m not looking back
Second line: no short haired yellow bellied son of georgy porgy is
First reconstruction: i’m looking back at
Second reconstruction: from the haired yellow bellied is son of georgy porgy is
BoW from first, phonemes from second: then you’re looking for you back for what i’m
looking for
Phonemes from first, BoW from second: i am son to yellow
First line phonemes: vowel nasal nasal vowel stop liquid vowel stop vowel nasal stop vowel
stop
Second line phonemes: nasal vowel fricative vowel liquid stop aspirate vowel liquid stop
semivowel vowel liquid vowel stop vowel liquid vowel stop fricative vowel nasal vowel frica-
tive affricate vowel liquid affricate vowel stop vowel liquid stop vowel vowel fricative
First combo phonemes: fricative vowel nasal semivowel vowel liquid liquid vowel stop vowel
nasal fricative vowel liquid semivowel vowel stop vowel stop fricative vowel liquid semivowel
vowel stop vowem liquid liquid vowel nasal fricative vowel liquid
Second combo phonemes: vowel vowel nasal fricative vowel nasal stop vowel semivowel
vowel liquid vowel

56



First line: and you the master dealer
Second line: ghosts crowd the young child’s fragile eggshell mind
First reconstruction: and we’re master master
Second reconstruction: ghosts crowd they fragile mind’s fragile eggshell mind
BoW from first, phonemes from second: but there’s just master for master’s master master
Phonemes from first, BoW from second: and fragile’s a fragile eggshell
First line phonemes: vowel nasal stop semivowel vowel fricative vowel nasal vowel fricative
stop vowel liquid stop vowel liquid vowel liquid
Second line phonemes: stop vowel fricative stop fricative stop liquid vowel stop fricative
vowel semivowel vowel nasal aspirate vowel liquid stop fricative fricative vowel affricate
vowel liquid vowel stop fricative vowel liquid nasal vowel nasal stop
First combo phonemes: stop vowel stop fricative vowel liquid fricative affricate vowel frica-
tive stop nasal vowel fricative stop vowel liquid fricative vowel liquid nasal vowel fricative
stop vowel liquid fricative nasal vowel fricative stop vowel liquid nasal vowel fricative stop
vowel liquid
Second combo phonemes: vowel nasal fricative liquid vowel affricate vowel liquid fricative
vowel fricative liquid vowel affricate vowel liquid vowel stop fricative vowel liquid
First line: don’t gimme no lip
Second line: i had a dream that you had a different face
First reconstruction: don’t gimme no lip
Second reconstruction: i had a dream of what i had a different face
BoW from first, phonemes from second: i have been how i had to gimme a lip
Phonemes from first, BoW from second: don’t dream
First line phonemes: stop vowel nasal stop stop vowel nasal vowel nasal vowel liquid vowel
stop
Second line phonemes: vowel aspirate vowel stop vowel stop liquid vowel nasal vowel
fricative semivowel vowel stop vowel aspirate vowel stop vowel stop vowel fricative vowel
liquid vowel nasal stop fricative vowel fricative
First combo phonemes: vowel aspirate vowel fricative stop vowel nasal aspirate vowel vowel
aspirate vowel stop stop vowel stop vowel nasal vowel vowel liquid stop
Second combo phonemes: stop vowel nasal stop stop liquid vowel nasal
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First line: someone set a bad example
Second line: the reaction i get now thinking about it looking back
First reconstruction: someone bad that sign you’re not bad
Second reconstruction: they are looking back on a back i get back down down
BoW from first, phonemes from second: the bad i bad about a bad set and i can not bad
Phonemes from first, BoW from second: then when the world won’t get back
First line phonemes: fricative vowel nasal semivowel vowel nasal fricative vowel stop vowel
stop vowel stop vowel stop fricative vowel nasal stop liquid
Second line phonemes: fricative vowel liquid vowel vowel stop fricative vowel nasal vowel
stop vowel stop nasal vowel fricative vowel nasal stop vowel nasal vowel stop vowel stop
vowel stop liquid vowel stop vowel nasal stop vowel stop
First combo phonemes: fricative vowel stop vowel stop vowel stop vowel stop vowel stop
vowel stop vowel stop vowel stop fricative vowel stop vowel nasal stop vowel stop vowel
nasal nasal vowel stop stop vowel stop
Second combo phonemes: fricative vowel nasal semivowel vowel nasal fricative vowel
semivowel vowel liquid liquid stop semivowel vowel nasal stop stop vowel stop stop vowel
stop

Table 4.15: Further examples of combinations, this time with 6 word and 11 word lines

4.7.2 Controlled Generation

What we have seen so far is that the Lyrics Decoder possesses good reconstruction and
it can extract some phonetic information from the latent variable for a given line while
retaining much of the semantic information from the provided BoW latent variable. Some
interesting use cases for this decoder would now include having fixed representations of a
BoW and replacing the phonemes or vice versa.

A musician may have written lyrics that have a cadence or meter that matches the
rhythm of music, but wishes to change the subject matter to take the song in a new
direction. In this case, we could feed the phonetic pattern of said lyrics to our decoder
with different sets of BoWs and we will hopefully receive lyrics that still adhere to the meter
while conveying different ideas and emotions. On the other hand, a musician may have
settled on a theme, but may be having trouble writing lyrics that conform to the cadence
of the song. Here we could extract a BoW from what is already written and match it with
phonemes from a different sequence to hopefully gain lyrics that still carry the initial idea
while conforming to the rhythm.

Mixing together random lines within the test set and comparing them to the original
lines gives us some indication how well the model can do these tasks. Taking a pair of
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lines, we can extract a BoW from one and the phonemes from another and then combine
the two as done in the previous chapter. Reconstructing the first line can give us a baseline
to compare to.

Avg. Levenshtein Avg. line words BoW BLEU-1 BoW Recall
Reconstructions 5.66 6.06 0.3409 0.6801
Combined lines 8.64 6.08 0.2506 0.5343

Table 4.16: Metrics from 849 randomly combined lines and reconstructions

Similar to what we have seen before, the model seems to retain BoW information fairly
well but struggle more with retaining the phonetic information. When we examine some of
the examples from the model, we can see that this is the case and that the model struggles
to create coherent lines with the mixed information.
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Source lines and constructed combinations:
First line: well no ones hurt and no ones cursed and no one needs to hide
Second line: if she says give it all i ll give everything to her .
First reconstruction: well well you can’t pretend that you can go and one
Second reconstruction: is there i give everything i’ll give everything to her
First combined line with BoW from first and phonemes from second: if the few i’ve got a
free who you need
Second combined line with phonemes from first and BoW from second: will you give me
and then you give me but then give you and
First line phonemes: semivowel vowel liquid nasal vowel semivowel vowel nasal fricative
aspirate vowel liquid stop vowel nasal stop nasal vowel semivowel vowel nasal nasal vowel
stop fricative stop vowel aspirate vowel stop
Second line phonemes: vowel fricative fricative vowel fricative vowel fricative stop vowel
fricative vowel stop vowel liquid vowel liquid stop vowel fricative vowel fricative liquid
vowel fricative vowel nasal stop vowel aspirate vowel liquid
First combo phonemes: vowel fricative fricative vowel fricative semivowel vowel vowel
fricative stop vowel stop vowel fricative liquid vowel aspirate vowel semivowel vowel nasal
vowel stop
Second combo phonemes: semivowel vowel liquid semivowel vowel stop vowel fricative nasal
vowel vowel nasal stop fricative vowel nasal semivowel vowel stop vowel fricative nasal vowel
stop vowel stop fricative vowel nasal stop vowel fricative semivowel vowel vowel nasal stop
First line: cut the paper to the bone
Second line: in the port of amsterdam
First reconstruction: to cut in the paper
Second reconstruction: in the port of amsterdam
First combined line with BoW from first and phonemes from second: in the paper and the
paper
Second combined line with phonemes from first and BoW from second: to the port to be
First line phonemes: stop vowel stop fricative vowel stop vowel stop vowel liquid stop vowel
fricative vowel stop vowel nasal
Second line phonemes: vowel nasal fricative vowel stop vowel liquid stop vowel fricative
vowel nasal fricative stop vowel liquid stop vowel nasal
First combo phonemes: vowel nasal fricative vowel stop vowel stop liquid vowel nasal stop
fricative vowel stop vowel stop liquid
Second combo phonemes: stop vowel fricative vowel stop vowel liquid stop stop vowel stop
vowel
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First line: shake it up shake it up
Second line: see me comin mama
First reconstruction: shake it up shake it up
Second reconstruction: see my mama comin
First combined line with BoW from first and phonemes from second: shake me on shake
me
Second combined line with phonemes from first and BoW from second: that’s comin comin
mama
First line phonemes: fricative vowel stop vowel stop vowel stop fricative vowel stop vowel
stop vowel stop
Second line phonemes: fricative vowel nasal vowel stop vowel nasal vowel nasal nasal vowel
nasal vowel
First combo phonemes: fricative vowel stop nasal vowel vowel nasal fricative vowel stop
nasal vowel
Second combo phonemes: fricative vowel stop fricative stop vowel nasal vowel nasal stop
vowel nasal vowel nasal nasal vowel nasal vowel
First line: awakens regrets
Second line: if you can see me i can see you
First reconstruction: oh your land
Second reconstruction: if you can see me i can see you
First combined line with BoW from first and phonemes from second: oh the land of the
regrets
Second combined line with phonemes from first and BoW from second: i can see myself to
see
First line phonemes: vowel semivowel vowel stop vowel nasal fricative liquid vowel stop
liquid vowel stop fricative
Second line phonemes: vowel fricative semivowel vowel stop vowel nasal fricative vowel
nasal vowel vowel stop vowel nasal fricative vowel semivowel vowel
First combo phonemes: vowel fricative vowel liquid vowel nasal stop vowel fricative fricative
vowel liquid vowel stop liquid vowel stop fricative
Second combo phonemes: vowel stop vowel nasal fricative vowel nasal vowel fricative vowel
liquid fricative stop vowel fricative vowel

61



First line: i walk along beside the garbagemen and i dig everything dig everything
Second line: state of integrity
First reconstruction: i do i’ve walk everything i’ve dig everything dig everything
Second reconstruction: state of integrity
First combined line with BoW from first and phonemes from second: before dig everything
dig
Second combined line with phonemes from first and BoW from second: i i can’t state that
state of integrity come on the state
First line phonemes: vowel semivowel vowel stop vowel liquid vowel nasal stop vowel frica-
tive vowel stop fricative vowel <unk> vowel nasal stop vowel stop vowel stop vowel fricative
liquid vowel fricative vowel nasal stop vowel stop vowel fricative liquid vowel fricative vowel
nasal
Second line phonemes: fricative stop vowel stop vowel fricative vowel nasal stop vowel stop
liquid vowel stop vowel
First combo phonemes: stop vowel fricative vowel liquid stop vowel stop vowel fricative
liquid vowel fricative vowel nasal stop vowel stop
Second combo phonemes: vowel vowel stop vowel nasal stop fricative stop vowel stop
fricative vowel stop fricative stop vowel stop vowel fricative vowel nasal stop vowel stop
liquid vowel stop vowel stop vowel nasal vowel nasal fricative vowel fricative stop vowel
stop
First line: tell me
Second line: don t need no good advice don t need no human rights
First reconstruction: tell me
Second reconstruction: need my need and the human need to need a human need to
First combined line with BoW from first and phonemes from second: don’t tell me and
tell me on the tell that i
Second combined line with phonemes from first and BoW from second: need
First line phonemes: stop vowel liquid nasal vowel
Second line phonemes: stop vowel nasal stop nasal vowel stop nasal vowel stop vowel stop
vowel stop fricative vowel fricative stop vowel nasal stop nasal vowel stop nasal vowel
aspirate semivowel vowel nasal vowel nasal liquid vowel stop fricative
First combo phonemes: stop vowel nasal stop stop vowel liquid nasal vowel vowel nasal
stop stop vowel liquid nasal vowel vowel nasal fricative vowel stop vowel liquid fricative
vowel stop vowel
Second combo phonemes: nasal vowel stop
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First line: a hundred thousand dreams
Second line: and the creatures all have fled
First reconstruction: a hundred thousand thousand
Second reconstruction: and the dead is creatures
First combined line with BoW from first and phonemes from second: in a thousand thou-
sand
Second combined line with phonemes from first and BoW from second: i’ll not the creatures
First line phonemes: vowel aspirate vowel nasal stop liquid vowel stop fricative vowel
fricative vowel nasal stop stop liquid vowel nasal fricative
Second line phonemes: vowel nasal fricative vowel stop liquid vowel affricate vowel liquid
fricative vowel liquid aspirate vowel fricative fricative liquid vowel stop
First combo phonemes: vowel nasal vowel fricative vowel fricative vowel nasal stop fricative
vowel fricative vowel nasal stop
Second combo phonemes: vowel liquid nasal vowel stop fricative vowel stop liquid vowel
affricate vowel liquid fricative

Table 4.17: Example combinations and reconstructions

We can employ a similar strategy by manually selecting lines and then selecting bags
of words and phonemes to swap out.
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Line with phonetic pattern: and i stare out at the deep blue ocean with fear
BoW to combine with: [’sky’, ’happy’, ’bright’, ’watch’, ’morning’, ’foe’]
Line from combining phonetic pattern with BoW: and the sky it dressed to watch the sky
sky
BoW to combine with: [’misty’, ’dark’, ’night’, ’mountains’, ’hill’, ’low’]
Line from combining phonetic pattern with BoW: in the night of the dark in the night
BoW to combine with: [’sky’, ’bright’, ’blue’, ’happy’, ’watch’, ’jeans’]
Line from combining phonetic pattern with BoW: and the happy and the sky sky
Line with phonetic pattern: i am confused why you had to go
BoW to combine with: [’go’, ’sorry’, ’problems’, ’sad’, ’one’, ’please’]
Line from combining phonetic pattern with BoW: i’m sorry to go with this go
BoW to combine with: [’joy’, ’stay’, ’dance’, ’magic’, ’charleston’, ’flashy’]
Line from combining phonetic pattern with BoW: i’m not you dance to you dance
BoW to combine with: [’confused’, ’leave’, ’footprint’, ’simpler’, ’start’, ’sure’]
Line from combining phonetic pattern with BoW: i’m just can you you can you
Line with phonetic pattern: tell me all the silent secrets you have kept
BoW to combine with: [’tell’, ’thinking’, ’infallible’, ’big’, ’stop’, ’class’]
Line from combining phonetic pattern with BoW: can for you that i can’t tell yourself that
he’s
BoW to combine with: [’hopes’, ’dreams’, ’tell’, ’fix’, ’couple’, ’washed’]
Line from combining phonetic pattern with BoW: can a hopes of the dreams of dreams
BoW to combine with: [’secrets’, ’tell’, ’dirty’, ’halls’, ’coins’, ’thoughts’]
Line from combining phonetic pattern with BoW: tell the secrets that’s just tell me

Table 4.18: Phonetic pattern matched with different BoWs

Here we have several examples where a phonetic pattern is extracted and then joined
with a BoW to produce a new line. We can also do the inverse where we select a line,
extract its BoW and then combine it with different phonetic examples.
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Line with extracted BoW: singing softly of paradise and better times
Extracted BoW: [’times’, ’better’, ’singing’, ’hundred’, ’paradise’, ’ways’]
Line with phonetic pattern: it has never been better
BoW from fixed line with phonemes from others: it has can it i can me
Line with phonetic pattern: this is good
BoW from fixed line with phonemes from others: she she’s she times
Line with phonetic pattern: what i would not give to hear that again
BoW from fixed line with phonemes from others: what it’s better than you can me?
Line with extracted BoW: i just want to dance with you until the night is over
Extracted BoW: [’dance’, ’want’, ’night’, ’magic’, ’taught’, ’dear’]
Line with phonetic pattern: and have a good time
BoW from fixed line with phonemes from others: and i want to be night
Line with phonetic pattern: come with me
BoW from fixed line with phonemes from others: dance with me
Line with phonetic pattern: happiness is spending this time together
BoW from fixed line with phonemes from others: how just want to the night and the night
to dance
Line with extracted BoW: these broken dreams
Extracted BoW: [’broken’, ’dreams’, ’another’, ’appears’, ’leave’, ’thoughts’]
Line with phonetic pattern: are mine
BoW from fixed line with phonemes from others: in my dreams
Line with phonetic pattern: tell me what you want
BoW from fixed line with phonemes from others: dreams you broken
Line with phonetic pattern: cast aside so very very long ago now
BoW from fixed line with phonemes from others: but the broken but i’ll be broken

Table 4.19: BoWs matched with different phoneme patterns

Similar to what we have seen before, the semantics are somewhat retained in the gener-
ated sequences and the phonetic patterns guide the generation, mainly in the length of the
line. However, the Lyrics Decoder does have some problems with maintaining coherency
when mixing information from different lines, especially when it comes to the phonetic
information. This suggests that a Cycle-Reconstruction Loss as mentioned earlier might
be able to strengthen the ability of the model to utilize phonetic information.
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4.7.3 Diversity in Generated Sequences

Another aspect worth considering when generating lines is the diversity and uniqueness
of said lines. We can gain an approximate idea of the diversity of lines by using Distinct
scoring and Self-BLEU as mentioned previously. A comparison can then be made to the
ground truth.

Distinct-1 ↑ Distinct-2 ↑ Self-BLEU ↓
Ground truth 0.2524 0.7415 0.3587
Reconstructions 0.1638 0.6191 0.8400
Combined lines 0.1417 0.6229 0.8352

Table 4.20: Comparison of diversity metrics for generated lines

Lower Distinct scores are to be expected in the case of the reconstructions and com-
bined lines, since the model has to generalize when constructing these lines. The fairly
high Distinct scores suggest that the model is managing to learn a majority of the vo-
cabulary being used. However, the Self-BLEU scores are much higher (indicating worse
performance). Self-BLEU also takes into account larger n-grams, suggesting that the model
tends to make more simplistic predictions. This in turn leads to repetitions of sequences,
leading to less coherent lines overall. As has been demonstrated with samples from the
decoder, this is the case, with good overall retention of semantic information but poorer
retention of the phonetic information. This further suggests that the model is in need of
reinforcement to utilize the phonetic information provided.
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Chapter 5

Conclusion and Future Work

The proposed model preserves semantic information well in its reconstructions and genera-
tion. The information is easily preserved in longer lines, but becomes harder to incorporate
in shorter lines, especially if the semantic information from a long line is being mixed with
phonetic information from a shorter line for the purpose of lyric generation.

The model is capable of generating lyrics and some of the phonetic information is
retained in the generated lyrics and reconstructions, but boosting the retention and usage
of this information is advisable. There are several strategies that could be explored in
order to improve upon the proposed model. These include:

• Pre-training phonetic embeddings: Word embeddings benefit from using a pre-
training method like Word2Vec to refine and improve the individual embeddings.
Phonetic embeddings may well be able to benefit from such a strategy as well and
become more accurate in a model’s use if pre-trained.

• Cycle-Reconstruction Loss: As mentioned in subsection 3.1.3, a Cycle-Reconstruction
Loss might be able to provide further feedback to the model and guide it towards
using phonetic information better. In theory, this could enable the model to become
better at recognizing phonetic structures without sacrificing semantic performance.

• Different phonetic vocabularies: As we have seen, the choice of vocabulary for
the Phonetic VAE can have an impact on its performance. There might be different
phonetic representations that can provide better information for our Lyrics Decoder
(e.g. including diphthong and monopthong information in our larger vocabulary)
and provide stable Phonetic VAEs.
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Appendix A

Interpolations of BoW VAE Latent
Space

A.1 Simple Vocabulary Interpolations

Interpolation 1
cons mono cons di cons di cons mono cons mono cons cons di cons di cons
cons mono cons di cons di cons mono cons mono cons cons di cons di cons
cons mono cons di cons mono cons di cons mono cons cons di cons cons di cons
cons mono cons di cons mono cons cons di cons mono cons cons di cons di cons
cons mono cons di cons mono cons cons mono cons cons di cons mono cons cons di cons
cons mono cons cons mono cons di cons mono cons cons di cons mono cons cons di cons
cons mono cons cons mono cons di cons mono cons cons mono cons cons di cons cons di
cons mono cons cons mono cons mono cons di cons cons mono cons cons di cons
cons mono cons cons mono cons mono cons cons di cons mono cons cons di cons cons
cons mono cons cons mono cons mono cons cons mono cons cons di cons cons di cons
cons mono cons cons mono cons cons mono cons cons mono cons cons di cons cons di cons
cons mono cons cons mono cons cons mono cons cons mono cons cons di cons cons di cons
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Interpolation 2
mono cons di di
mono cons di di
mono cons di di
mono cons di di di
cons mono di di di
cons mono di di di
cons mono cons di di di
cons mono cons di di di di cons mono cons di cons mono cons
cons mono cons di di cons mono cons di cons mono cons di cons mono cons
cons mono cons di di cons mono cons cons di di cons mono cons di cons mono cons
cons mono cons di cons di cons mono cons mono cons di cons mono cons di cons mono
cons mono cons di cons di cons mono cons mono cons di cons mono cons di cons mono

Interpolation 3
cons di cons mono cons di cons mono cons cons di cons cons di cons cons di cons cons di cons mono
cons cons di
cons di cons mono cons di cons mono cons cons di cons cons di cons cons di cons cons di cons mono
cons cons di
cons di cons mono cons mono cons di cons cons di cons cons di cons cons cons di cons cons cons di cons
cons
cons mono cons di cons di cons mono cons cons cons mono cons cons di cons cons cons di cons cons
cons di cons cons
cons mono cons di cons mono cons cons di cons cons di cons di cons mono cons cons di cons cons cons
di cons
cons mono cons di cons mono cons cons di cons cons mono cons cons di cons mono cons cons di cons
cons cons di
cons mono cons di cons mono cons cons di cons cons mono cons cons di cons mono cons cons di cons
mono cons
cons mono cons mono cons cons di cons di cons mono cons cons di cons mono cons cons di cons mono
cons cons
mono cons cons mono cons cons di cons mono cons di cons cons di cons mono cons cons di cons mono
cons cons
mono cons cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di cons mono
cons cons
mono cons cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di cons mono
cons cons di
mono cons cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di cons mono
cons cons di
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Interpolation 4
cons mono cons di mono cons cons mono cons mono cons mono cons mono cons cons di cons mono cons
di cons di di cons di cons
cons mono cons di mono cons cons mono cons mono cons mono cons mono cons cons di cons mono cons
di cons di di cons di cons
cons mono cons mono cons di cons mono cons mono cons mono cons cons di cons mono cons di cons di
cons di cons di cons
cons mono cons mono cons di cons mono cons cons mono cons di cons mono cons mono cons di cons di
di cons di cons
cons mono cons mono cons di cons mono cons cons di cons mono cons mono cons cons di cons mono
cons di cons cons
cons mono cons mono cons di cons cons mono cons di cons mono cons cons mono cons di di cons di
cons cons
cons mono cons cons di cons mono cons mono cons di cons mono cons cons di cons mono cons di cons
cons
cons mono cons cons di cons mono cons di cons mono cons cons mono cons di cons mono cons di cons
cons
cons mono cons cons di cons mono cons di cons mono cons cons di cons mono cons cons di di cons cons
cons mono cons cons di cons mono cons di cons cons mono cons cons di cons mono cons di cons cons
cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di cons di cons cons
cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di cons di cons cons

Interpolation 5
di cons cons mono cons di di cons cons di cons di cons cons di cons di cons cons di cons di cons
di cons cons mono cons di di cons cons di cons di cons cons di cons di cons cons di cons di cons
cons di cons mono cons cons di cons di cons cons di cons di cons mono cons di cons di cons cons di cons
cons di cons mono cons cons mono cons cons di cons mono cons cons di cons di cons mono cons cons di
cons
cons di cons mono cons cons mono cons cons cons di cons di cons mono cons cons di cons di cons
cons di cons mono cons cons mono cons cons cons mono cons cons cons di cons mono cons cons cons di
cons mono
cons mono cons cons di cons cons mono cons cons mono cons cons mono cons cons di cons mono cons
cons cons di
cons mono cons cons cons mono cons cons mono cons cons di cons mono cons cons cons cons di cons
mono cons cons cons
cons mono cons cons cons mono cons cons mono cons cons mono cons cons cons mono cons cons di cons
di cons mono cons cons cons
cons mono cons cons cons mono cons cons mono cons cons mono cons cons mono cons cons cons di cons
cons cons cons cons cons cons
cons mono cons cons cons mono cons cons mono cons cons mono cons cons mono cons cons cons mono
cons cons cons di cons cons cons cons
cons mono cons cons cons mono cons cons mono cons cons mono cons cons mono cons cons cons mono
cons cons cons di cons cons cons cons
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Interpolation 6
mono cons di cons di cons di cons mono cons di di cons di di cons di di
mono cons di cons di cons di cons mono cons di di cons di di cons di di
mono cons di cons di cons di cons mono cons di di cons di di cons di cons
mono cons di cons di cons di cons mono di di cons di cons di di cons
mono cons di cons di cons mono cons di di di cons di di cons di
mono cons di cons di cons mono cons di di di cons di cons di
cons mono cons di di cons mono cons di di cons cons di di cons
cons mono cons di di cons mono cons di cons di cons di cons
cons mono cons di cons di mono cons di cons mono cons di cons cons di
cons mono cons di cons mono cons di di cons mono cons
cons mono cons cons di mono cons cons di cons mono cons di cons
cons mono cons cons di mono cons cons di cons mono cons di cons

Interpolation 7
cons mono cons di mono cons
cons mono cons di mono cons
cons mono cons di mono cons cons
cons mono cons di mono cons cons di cons mono cons di cons mono cons
cons mono cons di cons mono cons mono cons di mono cons di cons mono cons cons
cons mono cons di cons mono cons mono cons di cons cons mono cons mono cons di cons
cons mono cons di cons mono cons di cons mono cons cons cons mono cons di cons mono cons
cons mono cons di cons mono cons cons di cons mono cons cons mono cons cons di cons
cons mono cons di cons mono cons cons di cons mono cons mono cons cons di cons mono cons
cons mono cons di cons mono cons cons mono cons cons di cons mono cons cons di cons mono cons
cons mono cons di cons mono cons cons mono cons cons di cons mono cons cons cons di cons mono cons
cons mono cons di cons mono cons cons mono cons cons di cons mono cons cons cons di cons mono cons

Interpolation 8
cons mono cons cons cons mono cons cons di cons cons cons cons cons cons cons
cons mono cons cons cons mono cons cons di cons cons cons cons cons cons cons
cons mono cons cons cons mono cons cons di cons cons cons
cons mono cons cons cons mono cons cons di cons cons mono cons cons di cons
cons mono cons cons di cons cons mono cons cons mono cons di cons
cons mono cons cons di cons cons mono cons cons mono cons di cons
cons mono cons di cons cons mono cons cons cons mono cons di cons
cons mono cons di cons cons mono cons cons cons mono cons di cons
di cons mono cons cons mono cons cons cons mono cons di cons
di cons mono cons cons mono cons cons di
di cons mono cons cons di cons mono cons
di cons mono cons cons di cons mono cons
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Interpolation 9
cons mono cons cons mono cons mono cons cons cons cons cons cons cons cons cons cons cons cons cons
cons
cons mono cons cons mono cons mono cons cons cons cons cons cons cons cons cons cons cons cons cons
cons
cons mono cons cons mono cons mono cons cons cons cons cons cons cons cons cons cons cons cons
cons mono cons cons mono cons mono cons cons cons cons cons cons cons cons cons
cons mono cons cons mono cons mono cons cons cons mono cons cons di cons
cons mono cons cons mono cons mono cons cons cons mono cons cons
cons mono cons cons mono cons mono cons cons mono cons cons
cons mono cons cons mono cons mono cons
cons mono cons cons mono cons mono cons
cons mono cons cons mono cons di cons cons mono cons cons di
cons mono cons cons mono cons di cons cons mono cons di cons
cons mono cons cons mono cons di cons cons mono cons di cons

Interpolation 10
cons mono cons di mono cons mono cons cons mono cons cons
cons mono cons di mono cons mono cons cons mono cons cons
cons mono cons di mono cons mono cons cons mono cons cons
cons mono cons di mono cons cons mono cons mono cons di cons
cons mono cons di cons mono cons mono cons di cons mono cons cons cons
cons mono cons di cons mono cons mono cons di cons mono cons cons cons di
cons mono cons di cons mono cons mono cons di cons mono cons mono cons cons cons di
cons mono cons di cons mono cons di mono cons cons mono cons cons mono cons cons di cons mono
cons
cons mono cons di cons mono cons di mono cons cons mono cons cons mono cons cons cons di cons
cons mono cons di cons mono cons di cons mono cons mono cons cons di cons mono cons cons di cons
mono cons
cons mono cons di cons mono cons di cons mono cons mono cons cons di cons mono cons cons di cons
mono cons
cons mono cons di cons mono cons di cons mono cons mono cons cons di cons mono cons cons di cons
mono cons

Table A.1: Interpolations of latent space of smaller vocabulary Phonetic VAE
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A.2 Larger Vocabulary Interpolations

Interpolation 1
vowel fricative stop vowel nasal stop stop liquid vowel nasal stop semivowel vowel nasal semivowel vowel
nasal stop
vowel fricative stop vowel nasal stop stop liquid vowel nasal stop semivowel vowel nasal semivowel vowel
nasal stop
vowel fricative stop stop vowel nasal stop liquid vowel stop semivowel vowel nasal semivowel vowel nasal
stop
vowel fricative stop stop vowel nasal stop stop semivowel vowel nasal stop semivowel vowel nasal
vowel fricative stop stop vowel nasal stop stop semivowel vowel nasal stop semivowel vowel nasal
fricative vowel stop stop vowel stop stop stop stop stop stop stop
fricative vowel stop stop vowel stop stop stop stop stop stop stop
fricative vowel stop stop vowel stop stop stop stop stop stop
fricative vowel stop stop vowel stop stop stop stop stop stop
fricative vowel stop stop stop stop stop stop stop stop
fricative vowel stop stop stop stop stop stop stop
fricative vowel stop stop stop stop stop stop stop

Interpolation 2
vowel nasal fricative vowel nasal stop vowel stop vowel nasal stop fricative stop vowel nasal
vowel nasal fricative vowel nasal stop vowel stop vowel nasal stop fricative stop vowel nasal
vowel nasal fricative vowel stop vowel nasal stop vowel nasal stop stop vowel stop nasal
vowel nasal fricative vowel stop vowel nasal stop fricative vowel stop stop vowel nasal nasal
vowel nasal fricative vowel stop vowel nasal stop fricative vowel stop stop vowel nasal
vowel nasal fricative vowel stop vowel nasal stop fricative vowel stop stop vowel stop nasal
vowel nasal stop vowel fricative vowel stop fricative vowel stop stop vowel stop nasal
vowel nasal stop vowel fricative vowel stop fricative vowel stop stop stop
vowel nasal stop vowel fricative vowel stop vowel stop fricative stop stop
vowel nasal stop vowel fricative vowel stop vowel stop fricative stop stop stop
vowel stop vowel fricative vowel stop stop vowel fricative stop stop stop stop stop
vowel stop vowel fricative vowel stop stop vowel fricative stop stop stop stop stop
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Interpolation 3
aspirate vowel liquid stop vowel stop vowel stop stop liquid vowel stop stop stop liquid vowel
aspirate vowel liquid stop vowel stop vowel stop stop liquid vowel stop stop stop liquid vowel
aspirate vowel liquid stop vowel stop vowel liquid stop stop liquid stop stop stop
aspirate vowel liquid stop vowel stop vowel liquid vowel stop stop stop stop stop
vowel liquid stop vowel nasal stop liquid vowel stop vowel stop stop stop
vowel liquid stop vowel nasal stop liquid vowel stop vowel vowel stop
vowel liquid stop vowel nasal stop liquid vowel stop vowel aspirate vowel
liquid vowel nasal stop vowel liquid vowel stop vowel stop vowel nasal stop vowel
liquid vowel nasal stop vowel liquid vowel stop vowel nasal stop vowel liquid vowel nasal stop
liquid vowel nasal stop vowel liquid vowel nasal stop vowel stop vowel liquid vowel nasal stop vowel
nasal
liquid vowel nasal stop vowel liquid semivowel vowel nasal stop vowel stop vowel liquid vowel nasal
vowel stop vowel nasal
liquid vowel nasal stop vowel liquid semivowel vowel nasal stop vowel stop vowel liquid vowel nasal
vowel stop vowel nasal

Interpolation 4
fricative vowel nasal vowel fricative vowel stop vowel vowel fricative vowel liquid vowel stop vowel stop
vowel liquid vowel stop vowel liquid vowel
fricative vowel nasal vowel fricative vowel stop vowel vowel fricative vowel liquid vowel stop vowel stop
vowel liquid vowel stop vowel liquid vowel
fricative vowel nasal vowel fricative vowel stop vowel vowel liquid vowel fricative vowel stop vowel liquid
vowel stop vowel liquid vowel stop vowel
fricative vowel nasal vowel fricative vowel stop vowel liquid vowel vowel fricative vowel nasal stop vowel
liquid vowel liquid vowel stop vowel liquid
fricative vowel nasal vowel fricative vowel stop vowel liquid vowel nasal vowel fricative vowel liquid vowel
liquid vowel stop vowel liquid vowel
fricative vowel stop vowel nasal fricative vowel vowel liquid vowel nasal vowel liquid vowel fricative vowel
liquid stop vowel liquid vowel
fricative vowel stop vowel nasal fricative vowel liquid vowel vowel nasal vowel liquid vowel fricative
liquid vowel nasal vowel liquid
fricative vowel stop vowel nasal fricative vowel liquid vowel liquid vowel nasal vowel fricative vowel
liquid vowel nasal
fricative vowel stop vowel nasal fricative vowel liquid vowel liquid vowel nasal vowel nasal liquid vowel
fricative
stop vowel fricative vowel nasal stop liquid vowel vowel nasal vowel liquid fricative vowel nasal vowel
nasal
stop vowel fricative vowel nasal stop liquid vowel liquid vowel nasal vowel nasal fricative vowel
stop vowel fricative vowel nasal stop liquid vowel liquid vowel nasal vowel nasal fricative vowel
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Interpolation 5
fricative vowel stop semivowel vowel liquid fricative liquid vowel stop vowel fricative liquid vowel fricative
vowel nasal semivowel vowel liquid vowel fricative vowel liquid
fricative vowel stop semivowel vowel liquid fricative liquid vowel stop vowel fricative liquid vowel fricative
vowel nasal semivowel vowel liquid vowel fricative vowel liquid
fricative vowel stop semivowel vowel liquid fricative vowel liquid fricative vowel stop semivowel vowel
liquid vowel fricative vowel nasal fricative vowel liquid
fricative vowel stop vowel liquid fricative semivowel vowel liquid semivowel vowel fricative vowel liquid
fricative vowel stop vowel nasal
fricative vowel stop vowel liquid fricative semivowel vowel nasal vowel liquid fricative vowel stop fricative
vowel liquid
fricative vowel stop vowel nasal fricative liquid vowel stop vowel fricative semivowel vowel liquid vowel
fricative
fricative vowel stop vowel nasal fricative vowel liquid semivowel vowel stop fricative vowel nasal
fricative vowel stop vowel nasal fricative vowel stop vowel liquid fricative
vowel fricative stop vowel nasal vowel fricative stop vowel liquid
vowel fricative vowel stop nasal vowel fricative semivowel vowel
vowel fricative vowel stop nasal vowel fricative stop
vowel fricative vowel stop nasal vowel fricative stop

Interpolation 6
liquid vowel stop vowel nasal fricative vowel liquid vowel nasal stop vowel nasal
liquid vowel stop vowel nasal fricative vowel liquid vowel nasal stop vowel nasal
liquid vowel fricative vowel nasal stop vowel liquid vowel nasal stop vowel nasal
liquid vowel fricative vowel nasal stop vowel liquid vowel nasal stop vowel nasal
liquid vowel fricative vowel stop liquid vowel nasal stop vowel nasal vowel stop
liquid vowel fricative vowel stop liquid vowel nasal stop vowel stop vowel nasal
fricative vowel liquid vowel liquid stop vowel nasal stop vowel liquid vowel nasal
fricative vowel liquid liquid vowel stop vowel stop vowel liquid stop vowel nasal
fricative vowel liquid fricative vowel stop vowel liquid stop vowel stop vowel nasal
fricative vowel liquid fricative vowel stop liquid vowel stop vowel stop vowel
fricative vowel fricative liquid vowel stop liquid vowel stop vowel stop
fricative vowel fricative liquid vowel stop liquid vowel stop vowel stop
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Interpolation 7
nasal vowel nasal fricative vowel nasal fricative vowel nasal fricative
nasal vowel nasal fricative vowel nasal fricative vowel nasal fricative
vowel nasal stop fricative vowel nasal fricative vowel nasal fricative nasal
vowel nasal stop fricative vowel nasal fricative vowel nasal fricative vowel nasal
vowel nasal stop fricative vowel nasal fricative vowel nasal fricative vowel
vowel nasal stop semivowel vowel fricative fricative vowel nasal vowel nasal
vowel nasal stop semivowel vowel fricative fricative vowel nasal vowel fricative
vowel nasal stop semivowel vowel fricative fricative vowel stop vowel nasal
vowel nasal stop semivowel vowel fricative vowel stop fricative vowel liquid
vowel semivowel vowel fricative stop stop vowel nasal semivowel vowel liquid fricative
vowel semivowel vowel fricative stop stop vowel liquid semivowel vowel fricative vowel
vowel semivowel vowel fricative stop stop vowel liquid semivowel vowel fricative vowel

Interpolation 8
liquid vowel liquid stop vowel liquid vowel vowel nasal vowel liquid vowel fricative
liquid vowel liquid stop vowel liquid vowel vowel nasal vowel liquid vowel fricative
liquid vowel liquid vowel nasal stop vowel liquid vowel vowel nasal vowel liquid
liquid vowel fricative vowel liquid vowel nasal vowel liquid vowel nasal vowel nasal
liquid vowel fricative vowel liquid vowel nasal vowel nasal vowel liquid vowel nasal
liquid vowel fricative vowel nasal vowel liquid vowel nasal vowel liquid vowel nasal
liquid vowel fricative vowel nasal vowel liquid vowel nasal vowel nasal vowel liquid
liquid vowel fricative vowel nasal vowel nasal vowel liquid vowel nasal vowel nasal
nasal vowel liquid vowel fricative vowel nasal vowel nasal vowel liquid vowel nasal vowel
nasal vowel liquid vowel fricative vowel nasal vowel nasal vowel nasal vowel liquid vowel
nasal vowel fricative vowel liquid vowel nasal vowel nasal vowel nasal vowel nasal vowel
nasal vowel fricative vowel liquid vowel nasal vowel nasal vowel nasal vowel nasal vowel
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Interpolation 9
semivowel vowel liquid fricative vowel nasal fricative vowel fricative vowel nasal
semivowel vowel liquid fricative vowel nasal fricative vowel fricative vowel nasal
semivowel vowel liquid fricative vowel stop fricative vowel nasal vowel fricative
semivowel vowel liquid fricative vowel stop fricative vowel nasal vowel fricative vowel
semivowel vowel liquid fricative vowel stop nasal vowel fricative vowel fricative liquid vowel
semivowel vowel liquid vowel fricative stop nasal vowel fricative vowel liquid nasal vowel
semivowel vowel liquid vowel fricative stop vowel nasal stop fricative vowel liquid vowel nasal
semivowel vowel liquid vowel nasal stop fricative vowel liquid fricative vowel stop semivowel vowel nasal
semivowel vowel liquid vowel nasal stop semivowel vowel liquid fricative vowel fricative stop liquid vowel
nasal stop
semivowel vowel liquid vowel nasal semivowel vowel liquid stop fricative vowel liquid fricative vowel
nasal stop
semivowel vowel liquid vowel nasal semivowel vowel liquid stop liquid vowel fricative fricative stop vowel
nasal stop
semivowel vowel liquid vowel nasal semivowel vowel liquid stop liquid vowel fricative fricative stop vowel
nasal stop

Interpolation 10
vowel nasal stop vowel nasal semivowel vowel liquid semivowel vowel nasal vowel nasal nasal vowel nasal
vowel fricative
vowel nasal stop vowel nasal semivowel vowel liquid semivowel vowel nasal vowel nasal nasal vowel nasal
vowel fricative
vowel nasal stop vowel nasal stop vowel semivowel vowel liquid nasal vowel nasal semivowel vowel nasal
vowel nasal stop vowel stop semivowel vowel liquid vowel nasal nasal vowel nasal vowel nasal
vowel stop nasal vowel stop liquid vowel semivowel vowel nasal vowel nasal semivowel vowel
vowel stop stop vowel liquid semivowel vowel nasal vowel nasal stop vowel liquid
vowel stop stop vowel liquid vowel nasal stop vowel liquid semivowel vowel nasal
vowel stop stop vowel liquid stop vowel liquid vowel nasal vowel nasal
vowel stop stop vowel liquid stop vowel liquid vowel nasal
vowel stop stop liquid vowel stop vowel liquid vowel liquid stop
vowel stop stop liquid vowel stop vowel liquid vowel stop stop stop stop
vowel stop stop liquid vowel stop vowel liquid vowel stop stop stop stop

Table A.2: Interpolations of latent space of larger vocabulary Phonetic VAE
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