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 16 
Abstract: A planetary health perspective views human health as a function of the interdependent 17 

relationship between human systems and the natural systems in which we live. The planetary health 18 

impacts of climate change induced ocean biodiversity loss are little understood. Based on a systematic 19 

literature review, we summarize how climate change-induced ocean warming, acidification, and 20 

deoxygenation affect ocean biodiversity and their resulting planetary health impacts. These impacts on 21 

the planets’ natural and human systems include biospheric and human consequences for ecosystem 22 

services, food and nutrition security, human livelihoods, biomedical and pharmaceutical research, 23 

disaster risk management, and for organisms pathogenic to humans. Understanding the causes and 24 

effects of climate change impacts on the ocean and its biodiversity and planetary health is crucial for 25 

taking preventive, restorative and sustainable actions to ensure ocean biodiversity and its services. 26 

Future courses of action to mitigate climate change-related ocean biodiversity loss to support sound 27 

planetary health are discussed.  28 

 29 
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1.0 Introduction 31 

Until recently, science and policy perspectives on the public health of human populations have not 32 

necessarily considered the surrounding natural ecosystems (Horton et al., 2014).  Ocean biodiversity is 33 

core to the Earth’s hydrosphere, and thus to the Earth’s natural ecosystems: changes and losses therein 34 

can have major health impacts on human civilizations. Under the conditions brought about by climate 35 

change, Earth systems (i.e., atmosphere, hydrosphere, biosphere, geosphere and anthroposphere) that 36 

regulate the stability and resilience of the planet have been rapidly altered by human activity in the 37 

modern era (Steffen et al., 2015). These systems are now under significant threat in the Anthropocene 38 

epoch (Lewis and Maslin, 2015), and in some cases are leading to accelerated species extinction 39 

(Thomas et al., 2004; WHO, 2015) and nature loss and degradation of natural systems. As described in 40 

for example, the Rockefeller Foundation-Lancet Commission’s report, “Safeguarding Human Health in 41 

the Anthropocene Epoch,” this poses serious threats to human health and wellbeing (Díaz et al., 2015; 42 

Whitmee et al., 2015). Indeed, climate change is a key driver of changing earth systems and has been 43 

declared the greatest threat to global human health in the twenty-first century (WHO, 2018). The 44 

Intergovernmental Panel on Climate Change (IPCC) warned that the world’s natural and human 45 

systems will face severe challenges if greenhouse gas emissions continue to rise (IPCC, 2018). The 46 

impact of climate change has already been significant enough to endanger human health (Watts et al., 47 

2015) both directly and indirectly through the alteration of the Earth’s interrelated systems.  48 

 49 

The link between human health and the planet’s natural systems is core to the concept of planetary 50 

health, which is now an emergent and powerful framework for redefining human public health in 51 

relation to earth’s natural systems (Myers et al., 2013; Lade et al., 2020).  First declared as a Manifesto 52 

in the Rockefeller Foundation–Lancet Commission on Planetary Health, planetary health is defined as 53 

“… the achievement of the highest attainable standard of (human) health, wellbeing, and equity 54 

worldwide through judicious attention to the human systems—political, economic, and social—that 55 

shape the future of humanity and the Earth’s natural systems that define the safe environmental limits 56 

within which humanity can flourish” (Whitmee et al, 2015:1978).  As described by the Lancet editor, 57 

“planetary health is a new science that is only beginning to draw the coordinates of its interests and 58 

concerns” (Horton and Lo, 2015:1922).  In this review paper, we focus on describing and 59 

understanding ocean biodiversity loss and its implications for planetary health.  60 

 61 

Oceans cover 70% of the Earth’s surface and are a major and essential part of the overall hydrosphere 62 

system, playing a crucial role in maintaining planetary health through complex adaptive systems and 63 

feedback loops (Santos et al., 2020). The world’s oceans influence weather at local to global scales and 64 

on medium to longer time scales, while changes in climate can fundamentally alter many properties of 65 

the oceans including their biodiversity. As well as these changes, anthropogenic drivers severely affect 66 

ocean biodiversity. The Global Assessment Report on Biodiversity and Ecosystem Services found that 67 

66% of the global ocean hydrosphere is impacted by multiple human pressures with “severe impacts” 68 

in declining richness and abundance of ocean biodiversity (IPBES, 2019).  69 

 70 

The erosion of ocean biodiversity is having multiple effects on ocean-related planetary health (Levin et 71 

al., 2015; IUCN, 2017a; IPBES, 2019; Pendleton et al., 2020). For example, the Ocean Living Planet 72 

Index, which measures trends in 10 380 populations of 3038 vertebrate species, declined 52% between 73 

1970 and 2010. The OLPI also indicates that the global ocean fish stocks were over-exploited by 29%, 74 

ocean species declined by 39% and the world coral reefs decreased by 50% (WWF-ZSL, 2015). 75 

Various anthropogenic as well as climate change drivers are responsible for ocean biodiversity erosion. 76 

According to Luypaert et al. (2020), among many stressors, climate change bears a 14% responsibility 77 

for ocean species threatened to extinction. In this context, the objectives of this paper are: (i) to 78 
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understand how climate change is decreasing ocean biodiversity and (ii) to identify the planetary health 79 

impacts accelerated by ocean biodiversity erosion. 80 

 81 
2.0 Methodology 82 

A systematic literature review following the strategy and steps described by Moher et al. (2009) was 83 

conducted to create a database and extract relevant information to fulfill the objectives of the paper. 84 

 85 

2.1 Database Creation 86 

 87 

An intensive literature search was carried out on the Web of Science search platform using a 88 

combination of keywords to create a database of articles on two nexuses: (Nexus 1) climate change and 89 

ocean biodiversity, and (Nexus 2) climate change, ocean biodiversity, and planetary health (see Table 90 

1). A Google Scholar search was also conducted to identify potential gray literature. Each nexus was 91 

searched separately using each of Web of Science, and Google Scholar. Table 1 describes the keywords 92 

and parameters for the Web of Science search. During this stage, no language or date restrictions were 93 

applied.  94 

 95 

Table 1. Search strategy in web of science by keywords 96 
Topics Keywords No. of studies 

Nexus 1: Climate change 

and ocean biodiversity 

TITLE: (ocean* OR “Atlantic Ocean” OR “Arctic Ocean” OR “Southern Ocean” OR 

“Antarctic Ocean” OR “Indian Ocean” OR “Pacific Ocean”) AND TOPIC: (“climate 

change” OR “global warming”) AND TOPIC: (biodiversity*) 

Refined by: DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER) 

294 

TITLE: (ocean* OR “Atlantic Ocean” OR “Arctic Ocean” OR “Southern Ocean” 

OR “Antarctic Ocean” OR “Indian Ocean” OR “Pacific Ocean”) AND TOPIC: (“climate 

change” OR “global warming”) AND TITLE: (biodiversity) 

Refined by: DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER) 

35 

TITLE: (ocean* OR “Atlantic Ocean” OR “Arctic Ocean” OR “Southern Ocean” 

OR “Antarctic Ocean” OR “Indian Ocean” OR “Pacific Ocean”) AND TITLE: (“climate 

change” OR “global warming”) AND TITLE: (biodiversity*) 

Refined by: DOCUMENT TYPES: (ARTICLE) 

3 

Nexus 2: Climate 

change, ocean 

biodiversity and 

Planetary Health 

TOPIC: (“climate change” OR “global warming” OR “greenhouse 

gases”) AND TITLE: (ocean* OR “Atlantic Ocean” OR “Arctic Ocean” OR “Indian 

ocean” OR “Pacific Ocean”) AND TOPIC: (health*) AND TOPIC: (biodiversity*) 

Refined by: DOCUMENT TYPES: (ARTICLE OR EARLY ACCESS) 

28 

Total articles identified 360 

 97 

A predefined research protocol which included the steps of identification, screening, eligibility, and 98 

included with clearly defined inclusion and exclusion criteria was developed with the guidance of the 99 

“Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)” statement (Moher 100 

et al., 2009). The first step in the screening phase was exporting the search results to Endnote Online 101 

and identifying and eliminating the duplicates. Next, the inclusion and exclusion criteria were applied, 102 

and studies were screened by their titles and abstracts.  103 

 104 

For Nexus 1 of climate change and ocean biodiversity, the inclusion criteria consisted of (i) empirical 105 

research using primary or secondary data and (ii) in-situ (in natural environment), in-vitro (in a 106 

controlled environment like a laboratory) and modelling research. All review articles and book chapters 107 

lacking these criteria were excluded. Articles that focused only on climate change and ocean health but 108 

lacked robustness in the biodiversity component or focused on only the biological attributes of a 109 

species without explicit linkage to climate change-induced stressors like acidification and warming 110 

were also excluded.  111 
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Identification Screening Included Eligibility 

Total articles identified (n = 360) 

Excluded articles after duplicates and screening by abstract and 

title (n = 264) 

Identified eligible articles (n = 96), [ Nexus: (i) Climate change & ocean biodiversity 

(n = 92); (ii) Climate change, ocean biodiversity & human health (n = 4)] 

Identified hand searched articles & reports (n= 47) 

 

Finally, articles included for review (n = 143) 

 

Step - 1 Step - 2 Step - 3 Step - 4 

For Nexus 2 of climate change, ocean biodiversity and planetary health, only those articles related to 112 

human health directly or indirectly were included. Studies related to ocean health, but lacking a human 113 

health component, were excluded. Ultimately, 92 and 4 articles were identified as eligible for the first 114 

and second nexus, respectively. No further screening was performed as all 96 articles were deemed 115 

significant and valuable to ensure robustness in the reporting and synthesis sections of the article. In 116 

addition, 47 hand searched articles and reports were also used to further establish the links between the 117 

two nexuses.  118 

 119 

 120 

 121 

  122 
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 125 
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 127 
 128 
 129 
 130 
 131 
 132 
 133 
 134 
 135 
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 137 
 138 
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 140 
 141 

 142 
 143 
 144 

 145 
Fig. 1. Four steps of PRISMA flow diagram (Moher et al., 2009) for creating a database by systematic literature review. 146 

 147 
2.2 Data Extraction 148 

 149 

Data extraction was done using Microsoft Excel. Key variables included (i) location of study, (ii) ocean 150 

of interest, (iii) in-situ (in natural environment) or in-vitro (in a controlled environment like a 151 

laboratory), (iv) climate change-induced stressor (limited to warming, acidification, and de-152 

oxygenation), (iv) impact on biota (plants and animals) and (v) impact on human health.  153 

 154 

Data extractions indicate that Nexus 1 has thus far been researched more extensively than Nexus 2 (94 155 

versus 4 eligible studies), marking the nexus of ocean biodiversity, climate change, and planetary 156 

health as an emerging domain requiring more research. As illustrated below in Figure 3[B], the 157 

distribution of studies across the five oceans show that most of the research was conducted on the 158 

Atlantic and the Pacific Oceans. Our review also shows that two of the three stressors of interest (i.e., 159 

ocean warming and ocean acidification) have captured most research interest to date, with de-160 

oxygenation being an emerging stressor of research interest (Fig. 2 [C]). The selected studies covered a 161 

wide range of marine life from various taxonomic Phylum [Fig. 2[D]) and marine habitats, including 162 

deep-sea (Sunday et al.,2017), sea floor (Ashford et al., 2019; Griffiths et al., 2017) intertidal (Asnaghi 163 
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et al, 2013) and sea ice fauna (Hop et al., 2020) and the sustained physiological impacts caused by 164 

ocean warming, ocean acidification and de-oxygenation.   165 
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   166 
Fig. 2. [A] Map of World Oceans (UN, 2017a), [B] Distribution of reviewed articles across the five oceans, [C] Reviewed article distribution by climate change-induced 167 
stressor and [D] Distribution of reviewed articles by Marine Taxonomy. Note: in [B]*** articles covering multiple oceans have been counted as “1” for each category, 168 
i.e., articles have been duplicated to maintain consistency in count. In [D]*** Examples of Marine Taxonomic Phylum are: Chordata (Fish), Ochrophyta (Algae, Kelp), 169 
Cnidaria (Corals), Mollusca (Sea-snails), Arthropoda (Copepods, crabs, krill), Echinodermata (Sea urchins, Sea star), Rhodophyta (Coralline algae), Tracheophyta (Sea 170 
grass), Porifera, Nematoda, Ciliophora (Sponges).  171 

[A] [B]*** 

[C] [D]*** 
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Individual and population level impacts of ocean warming, acidification and de-oxygenation. 176 
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The results and discussion are based on 147 articles in total. Of these, 96 were identified using the Web 177 

of Science and Google Scholar databases, and 51 were hand-searched articles selected by the authors 178 

for their content as core to the context of the study.  179 

 180 

3.0 Results  181 

3.1 Nexus 1: Climate Change Related Threats Causing an Erosion of Ocean Biodiversity 182 

 183 
While oceans have buffered humans from the worst impacts of climate change by absorbing more than 184 

90% of excess global temperature increase, and about 25% of CO2 emissions (MBARI, 2019), climate 185 

change is causing ocean (i) warming, (ii) acidification and (iii) deoxygenation (IPCC, 2019). As 186 

illustrated in Figure 4, The impacts pose major threats to biodiversity at both the individual and 187 

population level of marine organisms. 188 

 189 

3.1.1 Warming Ocean   190 

 191 

Rising greenhouse gases are preventing heat radiated from the Earth’s surface from escaping into space 192 

as freely as before the modern age. More than 90% of the excess atmospheric heat has passed back and 193 

been absorbed by ocean surface waters, (Cheng et al., 2017; IPCC, 2019). As a result, the upper ocean 194 

heat content has increased significantly in recent years (see Fig. 4).  195 

 196 

Fig. 4. Satellite observations of sea surface temperature anomalies during the last five years (2015-2019) with 

reference to the first five years of the data (1982-1986). Source: Adapted from Yang et al. (2020) and AWI and 

Lohmann (2020) with permission.   
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Due to the thermal expansion of warming ocean waters, and the melting of glaciers, sea levels are 197 

rising globally (Church et al., 2013). In the past decade, this rise has increased coastal flooding 198 

(Oppenheimer et al., 2019). If global average temperature increase rises to 1.5 °C, abnormal localized 199 

marine heatwaves are projected to become decadal to centennial events, and if the global average 200 

temperature increase rises to 3°C, these are projected to become annual to decadal events (Laufkötter et 201 

al., 2020).  202 

 203 

Ocean currents have two vital thermally-linked roles within Earth’s systems: (i) storage and seasonal 204 

release of heat and (ii) movement of heat via their circulation systems (Winton, 2003). These currents 205 

are affected by the warming ocean, and this will lead to alterations in climate patterns around the world 206 

as well as more extreme weather events such as flood, hurricanes, intense rainfall, and prolonged 207 

intervals between rains (Yang et al., 2016). 208 

Ocean warming is influencing and modifying species diversity (Ateweberhan et al., 2018), abundance 209 

patterns and community composition (Lloyd et al., 2011; Linklater et al., 2018), driving extinctions 210 

(McClanahan et al., 2021), and triggering poleward and regional-scale shifts (Maharaj et al., 2018) in 211 

species distribution causing biogeographical changes (Beaugrand et al., 2013; Gregory et al.,2009; 212 

Griffiths et al., 2017; Gupta et al., 2015; Martinez et al., 2018; Wernberg et al., 2011; Lopez et al., 213 

2020). The magnitude of changes in species distribution and of response rate to climate change-induced 214 

stressors (Stuart-Smith, 2018) vary by a series of factors, including: a species’ thermal threshold (Gupta 215 

et al., 2015); sessility (Isla and Gerdes, 2019); population size; habitat alteration and degradation 216 

(Martinez et al., 2018; Hill et al., 2013); resource availability; competition with invasive species 217 

(Newton et al., 2013; Sands et al., 2015); predator-prey dynamics (Selden et al., 2018); migration 218 

strategy, and light regimes and reproductive fitness (Busseni et al., 2020; Johnson et al., 2011; Madeira 219 

et al., 2016; Poloczanska, 2013; Villarino et al., 2020; Yeruham et al., 2020; Gupta et al., 2015). Shifts 220 

are likely to become more rapid and erratic instead of gradual and monotonic (Gupta et al., 2015) with 221 

resulting non-linear community responses (Stuart-Smith, 2009). 222 

Deep ocean water is no longer a safe haven from surface ocean warming effects, and deep-water 223 

biodiversity is at higher risk than surface ocean waters due to velocities in the deep ocean than at the 224 

surface, a situation which is further exacerbated by the lack of mitigation options (Brito-Morales et al., 225 

2020). For instance, deep water cetaceans like sperm whales (Physeter macrocephalus) and northern 226 

bottlenose whales (Hyperoodon ampullatus) may see a shift in biodiversity with an increase in ocean of 227 

higher latitudes (polar regions) from the tropics (Whitehead et al., 2008). 228 

 229 

Melting of sea ice is causing a negative impact on unicellular sea-ice associated eukaryotes (Hop et 230 

al.,2021) and altering the biodiversity of ciliate microzooplankton (Jiang et al., 2013), whereas drastic 231 

shifts in ice-scouring events (gouging or reworking of seabed in shallow coastal areas caused by 232 

drifting sea ice)can cause significant impact on benthic communities dependent on their sessile 233 

capabilities (Robinson et al., 2020). 234 

 235 

As described in Fig. 3, at an individual level, review results show rising ocean water temperatures 236 

impact the biological systems of marine species' in multiple ways, including: digestive and immune 237 

physiology in sea urchins (Lytechinus variegate) (Brothers et al., 2018), deteriorated respiration and 238 

gonado-somatic index (GSI) in the European purple sea urchin (Paracentrotus lividus) (Yeruham et al., 239 

2020), shoot mortality, leaf width and the presence of leaf epiphytes in seagrasses (Marba and Duarte, 240 

2010; Peirano et al., 2011), decline in larvae survival in a key fisheries species such as sea bream 241 

(Sparus aurata) (Madeira et al., 2016), loss of structural complexity in reef corals due to coral 242 
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bleaching (Graham et al., 2006), and decline in the aerobic scope in coral reef damselfish 243 

(Acanthochromis polyacanthus) (Rodgers et al., 2019). Warming and eutrophication have also been 244 

found to weaken the ability of ocean plants' such as Neptune Grass (Posidonia oceanica) to cope with 245 

multiple environmental stressors (Pazzaglia et al., 2020). 246 

 247 

3.1.2 Ocean Acidification 248 

 249 

Ocean absorption of excess CO2 causes ocean acidification in which concentrations of CO2 and 250 

bicarbonate (HCO3-) increase while the concentration of carbonate (CO3
-2

) ions and pH decrease 251 

(Barker and Ridgwell, 2012). Increased sedimentation in coastal waters has also been found to be an 252 

enhancer of ocean acidification (Smith et al., 2020).  253 

 254 

Ocean acidification impacts the calcium carbonate anatomic structures of calcareous species 255 

disproportionately more than non-calcareous species making the former less competitive (Asnaghi et 256 

al., 2013). In this way, it alters ecosystem functional diversity including coastal biogenic habitats 257 

(Sunday et al., 2017) resulting in homogenization and ecosystem simplification (Brustolini et al., 2019; 258 

Harvey et al., 2021; Kroeker, 2013; Porzio et al., 2011). A mesocosm experiment showed molluscs to 259 

be the most sensitive to lowered pH and elevated temperatures when compared to annelids and 260 

nematodes (Hale et al., 2011; Ricevuto et al., 2015). Several studies have found ocean acidification to 261 

affect reproduction and development across taxonomical groups through a range of physiological 262 

responses like reallocation of resources in copepods (Fitzer et al., 2012); fertilization rates; sperm 263 

motility and velocity in sea stars (Uthicke, 2013); altered metabolic activity and fatty acid composition 264 

in predatory snails (Valles-Regino, 2015); modified respiration rates in cold water corals (L.pertusa) 265 

(Henninge et al., 2014) and altered metabolic capacity and timing of reproduction in Antarctic fish 266 

(Todgham and Mandic, 2020). Tolerances to ocean acidification can differ between species from 267 

different trophic levels, which may alter species interaction, aid productivity and modify community 268 

stability directly or indirectly through changes in resource availability (Cornwall et al., 2012; 269 

Nagelkerken et al., 2016). For example, Campanati et al. (2018:66) found that a pH level of 7.4 posed 270 

no significant threat to the mortality, abnormality, or growth of the larvae of the rock oyster 271 

(Saccostrea cucullate), but “increased mortality (up to 30%), abnormalities (up to 60%) and 272 

approximately 3 times higher metabolic rates” in the larvae of its key predator, the whelk (Reishia 273 

clavigera). McCormick et al. (2013) found a reversal in the competitive outcome for space in two 274 

species of fish, (Pomacentrus moluccensis) and (P. amboinensis) in elevated CO2 conditions, while 275 

Range et al., (2010) found increased survival in juvenile clams (Ruditapes decussatus) as a response to 276 

ocean acidification.  277 

 278 

The combined effects of ocean warming and acidification can affect processes like calcification, 279 

necroses and dissolution, with often exacerbating effects when acting together as compared to alone. 280 

For instance, the mortality of coralline algae (Lithophyllum cabiochae), caused by tissue mortality and 281 

skeletal dissolution (Diaz-Pulido et al., 2012) increased 2 to 3 times under high pCO2 and temperature, 282 

with major consequences for the biogeochemistry and biodiversity of ecosystems dominated by these 283 

species like the Mediterranean coastal ecosystems (Martin and Gattuso, 2009). Ocean acidification and 284 

warming can impact ocean biodiversity by influencing species diversity, abundance, predator detection 285 

(Dixson et al., 2010), distribution, and competitive fitness (Caldwell, 2011; Rölfer et al, 2021; Santora 286 

et al., 2017). Acidification also appears to be reducing the amount of reduced sulfur species flowing out 287 

of the ocean into the atmosphere, where they are oxidized to form SO4
2-

. This reduces the reflection of 288 

solar radiation back into space, resulting in even more global warming with more severe consequences 289 

for ocean components including biodiversity (Barford, 2013).  290 
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 291 

The combined pressure of ocean acidification and ocean warming can limit the scope of polar 292 

acclimatization. For example, warmer temperatures have been associated with the modification of gene 293 

expression in an Antarctic pteropod by upregulating the transcripts responsible for increasing 294 

membrane fluidity (Johnson and Hofmann, 2020). Coral reefs are especially vulnerable to ocean 295 

warming and acidification through exaggeration of bioerosion rates by recycling calcium carbonate 296 

skeletal material (Wisshak et al., 2013); compromising coral growth and structural integrity by 297 

weakening reef bases and lowering their effectiveness as "load-bearers" (Hennige et al., 2015; 298 

Wilkinson, 2008); negatively impacting the health and survival of recruits (Bahr et al., 2020) and 299 

reducing the metabolic performances of these ecosystems (DeCarlo et al., 2017). Species that are 300 

accustomed to large environmental fluctuations like those in the natural rock pool communities 301 

(comprised of coralline algae, fleshy algae, and grazers) will have a physiological advantage for coping 302 

with multiple stressors like ocean acidification and warming (Legrand, 2018). 303 

 304 

3.1.3 Ocean Deoxygenation   305 

 306 

Warmer ocean water retains less oxygen and is more buoyant than cooler water. As a result, a warmer 307 

ocean loses its capacity to blend oxygenated water close to the surface with deeper waters that contain 308 

less oxygen. The oceanic O2 flux and exportation are highly dependent on particulate and organic 309 

matter produced by photosynthesis, which is directly regulated to a larger extent by the plankton 310 

communities that are threatened by ocean warming (Richardson and Bendtsen, 2017). Apart from this, 311 

ocean-dwelling organisms demand more oxygen in warmer waters as a consequence of increased 312 

metabolic rates (Boscolo-Galazzo et al., 2018; Deutsch et al., 2015). De-oxygenation has also been 313 

associated with increases in oceanic N2O production and this potent greenhouse gas adds its 314 

contribution to climate change (Babbin et al., 2015). Because of these dual effects, less oxygen is 315 

available for ocean life. Apart from warming, ocean deoxygenation is also taking place due to 316 

excessive growth of algae through eutrophication (IUCN, 2019). 317 

 318 

Respiratory responses to deoxygenation have been found to be complex and to vary across species and 319 

body sizes, the latter consistently indicating higher vulnerability among creatures that have large body 320 

sizes like the giant Antarctic marine invertebrates (Spicer and Morley, 2019). Deoxygenation has also 321 

been found to alter species interactions; for example, short-term exposure to low oxygen levels 322 

decreased grazing interaction by threefold over a short timescale in four common grazers of juvenile 323 

giant kelp (Macrocystis pyrifera) in an aquarium facility at the Hopkins Marine Station (HMS) (Ng and 324 

Micheli, 2020). 325 

 326 

The combined impact of warming and hypoxia negatively impact the survival and growth of catsharks 327 

(S. canicular) – the former stressor leading to a reduction in the length and body mass of a newly 328 

hatched shark and the latter, negatively impacting the survival rate of the embryos (Musa et al., 2020). 329 

 330 

3.2 Nexus 2: Climate Change, Ocean Biodiversity and Planetary Health 331 

 332 
The erosion of ocean biodiversity has multiple planetary health impacts. As shown in Fig. 5, these can 333 

be divided into six groups: (i) ecosystem services, (ii) food and nutrition security, (iii) livelihood, (iv) 334 

biomedical and pharmaceutical, (v) disaster risk and (vi) pathogenic organisms.  335 

 336 

 337 

 338 
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 339 

 340 

 341 

 342 

 343 
  344 
Fig. 5. Causes of ocean biodiversity erosion and their planetary health impacts. Note: “+” = increase; “-” = decrease.  345 
 346 
3.2.1 Ecosystem Services 347 

 348 

The elements of biodiversity - including all life forms, habitat environments, and all form of genes and 349 

species- are the basic properties of an ecosystem. Biodiversity plays a fundamental role in maintaining 350 

and defining a healthy ocean ecosystem (Cochrane et al., 2016). However, climate change-related 351 

impacts as described in Section 2.0 deteriorate ocean biodiversity and leads to the decay of provisional 352 

(refer to section 3.2.2) and regulatory ecosystem services (Sandifer and Sutton‐Grier, 2014; Levin and 353 

Le Bris, 2015).  354 

 355 

Coastal ecosystems such as mangroves, salt marshes and seagrass meadows which support storm and 356 

shoreline protection are weakening as a result of sea level rise (Oppenheimer et al., 2019), thereby 357 

accelerating coastal flooding and drowning of coastal wetland habitats (Sandifer and Sutton‐Grier, 358 

2014). Additionally, increased ocean temperature and altered precipitation impact, the ability of coastal 359 

water areas to sequester carbon (Ward et al., 2016).  360 

 361 
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Ocean acidification can also compromise the quality of air by the release of toxins, causing respiratory 362 

illnesses in coastal areas. A warm and more acidic ocean threatens the production pattern of 363 

phytoplankton, which during its growth emits much of the oxygen that permeates our atmosphere and 364 

transfers energy for higher trophic levels in the marine ecosystem (Falkowski, 2012; Winder and 365 

Sommer, 2012).   366 

3.2.2 Food and Nutritional Security 367 

Ocean ecosystems and biodiversity provide food and nutrition (Sandifer and Sutton‐Grier, 2014), but 368 

climate change-related threats hamper the ocean ecosystems and biodiversity necessary to supply food 369 

and nutrition (IUCN, 2017a). For example, as described below increased ocean acidification 370 

compromises the growth and structural integrity of coral reefs, which in turn damages the food supply 371 

and food-related health outcomes of 500 million people worldwide (Wilkinson, 2008). 372 

Loss of ocean biodiversity will heavily affect the food, animal protein and essential micronutrient 373 

consumption for billions of people around the world, especially in developing countries (UNEP, 2006; 374 

Branch et al., 2013; Hicks et al., 2019; Falkenberg et al., 2020). Since 1961, global fish consumption 375 

has increased by 3.1% per year. This is more than the increase in consumption of all other animal-376 

based protein sources such as meat, eggs, and milk, which is 2.1% per year. In particular, the world’s 377 

least developed countries have doubled their fish consumption since 1961 (FAO, 2020). Declines in 378 

ocean fish diversity will hamper global fish consumption and ultimately human health of the 379 

community depend on ocean fish. This can occur through three potential pathways (i) lack of fish 380 

availability due to collapsed food webs (ii) reduced affordability due to increase in fish price caused by 381 

lower fish availability and livelihood loss and (iii) lack of dietary diversity as fish species which differ 382 

in type of nutrients (for example: consuming smaller fish is associated with higher intake of 383 

micronutrients, especially iron, zinc, calcium and vitamin  A, primarily as they are consumed whole) 384 

(Kaimila et al., 2019). Seafood quality and its resulting impacts on the health and safety of human 385 

health is also a matter of concern as described by Barbosa et al.'s study on the impacts of temperature 386 

on the nutritional quality of a commercial seabass species (Dicentrarchus labrax) (Barbosa et al., 2017) 387 

3.2.3 Pathogenic Organisms 388 

Warmer ocean water, ocean deoxygenation as well as ocean acidification create favorable conditions 389 

for larger and more frequent blooms of toxic algae, leading to sickness and poor overall health for fish, 390 

birds, ocean mammals and humans (Backer et al., 2003; Berdalet et al., 2016; IPCC, 2019; Laufkötter 391 

et al., 2020; Riebesall et al., 2018). Seafood such as shellfish contaminated by harmful algae can cause 392 

sickness ranging from diarrheal illness to neurotoxic effects (CDC, 2017). Ciguatera (a type of human 393 

food poisoning affecting gastrointestinal, neurological and cardiovascular processes causing paralysis, 394 

coma and death in severe cases) caused by Ciguatoxins produced by G.toxicus attached to dead corals 395 

is expected to increase in marine food chains as a result of ocean warming induced coral bleaching and 396 

hurricanes (Lehane et al., 2000). In addition, harmful algal blooms can trigger mass fish mortality by 397 

disturbing trophic transfers of organic matter and reducing water quality (DiLeone and Ainsworth, 398 

2019; Riebesall et al., 2018).  399 

 400 

3.3.4 Livelihoods 401 

The ocean is essential for many aspects of human wellbeing and livelihoods, but the erosion of ocean 402 

biodiversity and ecosystems particularly threatens the livelihoods of local communities, especially 403 

those most dependent upon natural resources (UNEP, 2006; Bindoff et al., 2019). For example, 80% of 404 

all tourism is based near the sea (Honey and Krantz, 2007), but the destruction of coral reefs is 405 

affecting coral reef-based tourism and recreation (Pendleton, 2019). Coastal ecosystems dependent on 406 
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wind-based upwelling of deep seawater, like those in East & Southern Africa and Northwest coast of 407 

North America popular for tourism are highly vulnerable to future climate scenarios (Jones et al., 2018; 408 

McClanahan et al., 2007). Climate change related modifications to oceanic conditions are impacting the 409 

intensity of upwelling impacts with consequences on reef fish assemblages. This further impacts 410 

several sources of livelihood, such as, recreational fishing, tourism, and diving (Eisele et al., 2020). 411 

Climate change-driven ocean fish migration could lead to a resurgence or collapse of fisheries 412 

depending on latitude (Weatherdon et al., 2016; Tai et al., 2019), which could damage the livelihoods 413 

of about 3 billion people globally who depend on ocean and coastal biodiversity (UN, 2017b). In 414 

addition to direct effects on fish, rapid shifts in other ocean floral species, like temperate to tropical 415 

Sargassum species in western Japan have been found to have serious implications on regional fisheries 416 

(Yamasaki et al., 2014). Livelihood and health are inseparably connected, while sound livelihoods are 417 

important to maintain the conditions of good health such as food security, health facilities, and 418 

education, they are also important for mental health as lack of livelihoods in the form of loss of a job 419 

opportunity could cause depression and ecoanxiety, and solastalgia can occur communities that depend 420 

on ocean biodiversity.  421 

3.2.5 Biomedical and Pharmaceutical 422 

Ocean biodiversity is a source of food supplements, enzymes, and biomaterials such as artificial bone 423 

from corals and silica, chitin, and collagen from sponges (Ehrlich et al., 2007; Venugopal, 2008; Green 424 

et al., 2014; Jesionowski et al., 2018). Biodiversity of genes and molecules in ocean creatures and 425 

plants has value for various biomedical and pharmaceutical purposes such as cancer treatments as well 426 

as antibacterial, antifungal, antiviral and anti-inflammatory uses (EU, 2013), but ocean biodiversity 427 

erosion is causing the loss of these genes and molecules. Biodiversity loss in oceans will reduce the 428 

potential human benefits of ocean biodiversity and also hinder medical research. 429 

3.2.6 Disaster Risk Protection   430 

A warmer ocean also creates bigger and stronger storms generating waves that can reach up to 60 feet 431 

high and can affect ocean habitats 300 feet below the surface. Waves can topple rocks and coral 432 

damaging the structure of coral reef habitats and affecting ocean floor life (NCCOS, 2017). Shoreline 433 

erosion caused by accelerating sea-level rise, poses significant threat to coastal cities and communities 434 

(Cantin et al., 2010; Sandifer and Sutton‐Grier, 2014). Deteriorated coastal ecosystem services as a 435 

result of ocean biodiversity loss can no longer provide protection against damages from inundation or 436 

flooding or short bursts of precipitation due to storm activity (Wilkinson and Salvat, 2012). Further, 437 

there is less natural protection against encroaching salinity caused by sea-level rise (Smyth and Elliott, 438 

2016) Encroaching salinity caused by sea-level rise can impact human health through ground water 439 

contamination and food and livelihood insecurity caused by loss of agricultural productivity (Vineis et 440 

al., 2011). 441 

  442 

4.0 Discussion 443 

The ocean is the planet’s primary heat reservoir, oxygen supplier and carbon sink (Winton, 2003; 444 

Cherchi, 2019). Ocean biodiversity is central to maintaining these services, but due to climate change 445 

impacts, these services are deteriorating as ocean biodiversity is becoming critically endangered or 446 

vulnerable (Luypaert et al., 2020). The Global Assessment Report on Biodiversity and Ecosystem 447 

Services showed that 66% of the ocean is facing human pressures and the diversity and abundance of 448 

ocean ecosystems is weakening, which limits the ocean’s capacity to supply various ecosystem services 449 

including food security and protection against climate change (IPBES, 2019). In addition, ocean 450 

biodiversity erosion will accelerate the decline of the overall biodiversity, one of the nine planetary 451 

                  



15 
 

boundaries (Rockstrom et al., 2009), and this will have further wide-ranging and accelerated 452 

consequences for the planet.  453 

 454 

The United Nations’ Sustainability Development Goals (SDGs) make direct reference in SDG 14, ‘Life 455 

Below Water’, to the importance of protecting ocean biodiversity. Several targets in this goal are 456 

related to maintaining ocean health such as reducing ocean acidification, engaging in sustainable 457 

fishing practices, protecting coastal environments, and reducing ocean pollution. However, the 458 

literature indicates that these targets are unlikely to be met (Nash et al., 2020), as there are no targets 459 

for long-term sustainability for ocean biosphere dependent communities. For example: fishing may 460 

cause progress in reducing poverty by increasing food security (SDG 2), while being destructive to 461 

SDG 14 through overfishing and reductions in ocean biodiversity. Singh et al. (2018) provide a 462 

framework which illustrates the linkages between Goal 14 and the success of all other goals. Here, 463 

reducing overfishing is identified as a precondition necessary to achieving the largest number of targets 464 

among the full suite of SDGs (except SDG 17: Partnership for the Goals).  465 

 466 

The Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019) warned that 467 

one million species might disappear within the next few decades. The planet has already seen five large 468 

extinctions; the sixth may be happening now, this time driven by human activities and anthropogenic 469 

climate change. While higher biodiversity can reduce impacts of acidification on highly vulnerable key 470 

organisms by 50 to >90% (Rastelli et al., 2020), the reality of human-driven exploitation of ocean 471 

biodiversity, and loss of ocean biodiversity due to climate change will almost certainly accelerate this 472 

sixth mass extinction (Barnosky et al., 2011).  473 

 474 

Ramirez et al. (2017) analysis of ocean biodiversity loss hotspots illustrates the areas globally that are 475 

most vulnerable to climate change. Their study mapped the distribution of 2183 oceanic species (1729 476 

fish, 124 ocean mammals, 330 seabirds) in order to identify key focus areas for conservation. The 477 

results indicated that the areas of highest oceanic biodiversity are most affected by stressors from 478 

climate change and fishing pressure. These areas include the central-western Pacific (Indonesia, 479 

Malaysia, Philippines, Papa New Guinea) and the western Indian Ocean (S. Africa, Mozambique, 480 

Tanzania, Kenya and Madagascar) (Ramirez et al., 2017). While there is an ever-growing necessity of 481 

mariculture to feed the growing global population facing imminent risks from food insecurity and 482 

freshwater shortages, (Duarte et al., 2009) these biodiversity loss hotspots must be protected, and 483 

protection measures can be effective.  Sala et al. (2021) showed that ocean protection helps to protect 484 

biodiversity, increase fish yield, and ensure carbon sequestration. 485 

 486 

While ocean biodiversity loss hotspots have been identified and the role of life in our oceans is valued 487 

enough by humans to have SDG 14 dedicated to its preservation, ocean biodiversity is under at least as 488 

much threat as life on land. Climate change-related threats to the ocean will have to be addressed 489 

holistically through international coordination and collaboration. Healthier oceans will benefit 490 

planetary health by ensuring the integrity of the ecosystems and their services for humankind. The 491 

health of oceans can only be ensured through coordinated effort.  Sala et al. (2021) have claimed that at 492 

least 30% of oceans will have to be protected to effectively address planetary health issues. 493 

  494 

Natural solutions, transboundary management and species-centered studies (Hernández et al., 2020) 495 

should be further explored (Henriques et al., 2018). Examples of the former can be co-culturing species 496 

which can co-benefit each other like Pacific oyster (Crassostrea gigas) and eelgrass (Zostera marina) 497 

to combat the impacts of ocean acidification (Groner et al., 2018), and harnessing host resilience 498 

through microbial-host interactions (Cavalcanti et al., 2018). Tools such as Health Impact Assessments 499 

                  



16 
 

(HIA) can integrate ocean conservation with human public health by identifying and tackling specific 500 

indicators of human health through conservation (Jenkins et al., 2018). Human stakeholder-informed 501 

ecosystem modelling strategies have also shown promise in addressing multiple anthropogenic and 502 

environmental stressors on complex ocean systems (Koenigstein et al., 2016). The rising threat from 503 

global warming has prompted many potential solutions including deep sea CO2 sequestration. 504 

However, it is crucial that prior to implementation, wider consequences are appropriately vetted, which 505 

can include a significant mortality impact of sequestered CO2 on deep-sea infauna (Thistle et al., 2005). 506 

 507 

5.0 Conclusion 508 

 509 
Climate change is driving major changes and loss in ocean biodiversity, with major impacts for 510 

planetary health. As well as other anthropogenic factors, climate change is making oceans more 511 

vulnerable by increasing ocean temperatures and acidity and decreasing oxygen, causing the erosion of 512 

ocean biodiversity. Deteriorating ocean biodiversity due to climate change diminishes the ocean’s 513 

ability to support human health and wellbeing. Ocean biodiversity is vital to planetary health, and 514 

healthy ocean ecosystems are crucial for human life. Understanding the causes and effects of climate 515 

change impacts on the ocean and its biodiversity and planetary health is crucial for taking preventive, 516 

restorative and sustainable actions to ensure ocean biodiversity and its services. Advanced research and 517 

collective action will be vital to understanding the underlying causes of the loss of ocean biodiversity 518 

due to climate change and identifying appropriate measures to combat it. Lastly, understanding the 519 

connection between climate change-accelerated ocean biodiversity loss and the resulting planetary 520 

health impact will allow better decision making and planning related to the protection of ocean 521 

biodiversity and reduce the impact of climate change.   522 
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