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In this paper, we have developed a theory of magnetoconductance ~magnetoresistance! due to variable-range
hopping for quasi-two-dimensional systems. We have included the effect of electric fields on the calculation of
the magnetoconductance. The effects of scattering and electron-electron interactions have also been included in
our theory. We found analytical expressions for the conductivity for both the scattering and nonscattering
cases, and obtained electric- and magnetic-field-dependent power laws in certain approximations. We found
that the electric and magnetic-field dependences of the magnetoconductance had different power laws for the
scattering and nonscattering cases. We tried to explain the van Ancum et al. magnetoconductance experiments
of PrBa2Cu3O72d ~PBCO! thin films by using our theory. A good agreement between theory and experiment
was found if we included the effect of scattering. In the above PBCO films, it was found that the approximate
value of the concentration of localized states lies between 1011 and 1012 cm22. @S0163-1829~98!00602-X#
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I. INTRODUCTION

There has been a considerable interest in the study of
hopping conduction in low-dimensional systems such as ox-
ide superconductors and related materials.1,2 A material that
figures highly in much of this research is PrBa2Cu3O72d

~PBCO! because of its current and potential uses in the tech-
nology of high-temperature superconducting junctions.
PBCO has been shown to conduct via a variable-range hop-
ping ~VRH! mechanism along its CuO2 planes1,3 and so
quasi-two-dimensional ~QTD! theories are required to ex-
plain its properties. Recently, we have developed a theory for
variable-range-hopping conductivity in the presence of elec-
tric fields for QTD and quasi-one-dimensional systems.3,4

We have also included the effect of electron-electron inter-
actions in our theoretical calculations. We applied our theory
to explain the electric-field-dependent conductivity data of
Kabasawa et al.1 for PBCO-based S/N/S junctions and found
a good agreement between theory and experiment.

Recently van Ancum et al.5 have measured the magnetic-
field-dependent conductivity in PBCO thin films and sug-
gested that the magnetoconductance in these films is due to
variable-range hopping. They modified three-dimensional
expressions of the magnetoconductance6 for the two-
dimensional case and tried to fit their data by using these
expressions. They did not include in their expressions how
the hopping exponents depended on the material parameters,
which allowed them great latitude in fitting the experimental
data. The effect of a magnetic field on VRH conduction in
three-dimensional systems has been examined using the per-
colation method6 for strong ~i.e., l!a0) magnetic fields and
weak ~i.e., l@a0) magnetic fields, where l5A\/qH , a0 is
the localization length in the absence of a magnetic field, q is
the charge of a carrier, and H is the magnetic field.

In this paper, we have derived the expressions for the
magnetoconductance for QTD systems for weak and strong
magnetic fields by using the method developed by us.3,4 This
method allows for the inclusion of all pre-exponential fac-
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tors, and the inclusion of all relevant material parameters in
the exponents. This approach differs significantly from the
percolation method in the calculation of mobility and con-
ductivity, and is better suited for obtaining analytical results
for cases where the electric field is to be included. We have
derived formulas for the magnetoconductance both with and
without the inclusion of an electric field. In the former case,
the magnetic-field dependency has been calculated to a
higher order than in any previous work. In the latter case,
unified formulas for the conductivity including all tempera-
ture, electric field, and magnetic-field dependences have
been presented. The effects of scattering and electron-
electron interactions have also been included in our theory.
The effect of scattering was investigated by Shklovskii in
QTD systems by using the percolation method.6 Our expres-
sion of magnetoconductance in the presence of scattering can
easily be reduced to that of Shklovskii by making appropri-
ate approximations.

We found that the logarithm of our expression of the mag-
netoconductance for the constant DOS in certain approxima-
tions is proportional to H1/2 for strong magnetic fields with-
out scattering. This is in general agreement with the
expressions given in Refs. 5 and 7. For electron-electron in-
teractions, the result is H1/3. For weak magnetic fields with-
out scattering we found that the logarithm of the constant
density of states ~DOS! magnetoconductivity expression
gave an H2 magnetic-field dependence, consistent with the
expression of van Ancum.5 For electron-electron interactions
the result is also an H2 dependence.

We used our theory to explain the PBCO thin-film mag-
netoconductance experiments of van Ancum et al. It is found
that these experiments cannot be explained by using the ex-
pressions of magnetoconductance in the absence of scatter-
ing. When the effect of scattering is included in the calcula-
tions, a good agreement between theory and experiments is
found. One fitting parameter is used to get a good agreement
between theory and experiments. From our theoretical calcu-
lations, we found that the concentration of localized states
1284 © 1998 The American Physical Society
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lies between 1011(1/cm2) and 1012(1/cm2). Experimentally,
the effect of scattering has also been observed in three-
dimensional systems.8 If we include the effects of magnetic
fields and scattering, we find for the PBCO thin films of van
Ancum that the logarithm of the conductivity varies as
b21/2H4/3. Here, b is proportional to the electric field E , b
5qE/2akBT with a51/a0. This shows that the effects of
scattering on a QTD system can be observed through the
electric and magnetic-field behavior of the conductivity.

II. HOPPING MAGNETOCONDUCTANCE

In this section, we will calculate analytical expressions of
conductivity in the presence of weak and strong magnetic
fields.

A. Weak magnetic fields

Following our previous work,4 we assume the localized
states are randomly distributed in energy and two-
dimensional space coordinates ~hopping space! and form a
discrete array of sites. We assume the spread in energies of
the states is fairly small and near the Fermi level. This allows
us to ignore the effects of correlations.9 A magnetic field is
applied transverse to the two-dimensional space coordinates.
For QTD systems, the probability of a charge carrier hopping
from an initial state, Ei to a final state, E j in the hopping
space for weak magnetic fields (l@a0 while a0<r i j
<l2/a0) is given by

W~R !5W0exp~2R !,

R5x1gx31v2« , v.« , ~2.1!

R5x1gx3, v,« ,

where W0 is a constant and R is the distance between two
states in the energy-space coordinates, called the range. We
obtained the expression of R by considering the asymptotic
magnetic field wave functions of Shklovskii.6 Here, g
5a0

4q2H2/96\2, x52r i j /a0, v5E j /kBT , and «5Ei /kBT .
Also, a0 is the localization length, and r i j is the distance
between two sites i and j in the two-dimensional space co-
ordinates. Note that the first term in R is the dominant term
compared to the subsequent terms. To evaluate the analytical
results in the weak magnetic-field case, we considered this
condition. The effect of a magnetic field is entirely contained
in g .

In the evaluation of the magnetoconductance, we have
considered the energy-independent and energy-dependent
densities of states ~DOS! for the localized electrons. Mott
and others10,11 assumed that the DOS of localized electrons is
constant and does not depend on energy. Later, Efros and
Shklovskii6 showed that if one includes the effect of
electron-electron interactions, the DOS is not constant but
depends on the energies of the localized electrons. They
found that

D~v!5D0 v.Dcg /kBT ,

D~v!5D1kBTv~d21 ! v,Dcg /kBT , ~2.2!
where Dcg is called the Coulomb gap, d is the dimensionality
of the system, and D0 and D1 are constants. Here, energy is
measured with respect to the Fermi energy. In the rest of the
paper, we will attach subscripts c and e to the physical quan-
tities related to the constant DOS and DOS with electron-
electron interactions, respectively.

The following analytical expressions for the critical hop-
ping distance Rnn are obtained by using Eqs. ~2.1!, ~2.2!, and
the method of Singh and Thompson3,4 to first order in « and
second order in g:

Rnn
c 5RcS 12

«

Rc
1

56«g2~Rc!3

25 1
2g~Rc!2

5 2
9g2~Rc!4

25 D ,

Rnn
e 5ReS 12

«

Re
1

9«g2~Re!3

10 1
g~Re!2

5 2
39g2~Re!4

200 D ,

~2.3!

where Rc5(T/Tc)21/3, Re5(T/Te)21/2, Tc512a2/kBD0p ,
and Te5A48a2/kBD1p .

Similarly, using Eq. ~2.3! and the method of Singh and
Thompson,3,4 the following analytical expressions for the
magnetoconductivity are obtained.

sc~H !5
q2npD0

8a2 F2
3S TcT D 1/3

2
7
5 gS TcT D Gexp~2R0

c !

R1
c ,

se~H !5
q2npD1kBT

8a2 F1
2S TeT D 1/2

2
3
4 gS TeT D 3/2Gexp~2R0

e !

~R1
e !2 .

~2.4!

R0 and R1 are given as

R0
c5S TcT D 1/3

1
2
5 gS TcT D2

9
25 g2S TcT D 5/3

,

R1
c512

56
25 g2S TcT D 4/3

R0
e5S TeT D 1/2

1
g

5 S TeT D 3/2

2
39

200 g2S TeT D 5/2

,

R1
e512

9
10 g2S TeT D 2

~2.5!

to second order in g . Note that if we consider only the
magnetic-field dependence, then to first order in g we get
that the logarithm of the conductivity is proportional to H2

for the constant density of states, in agreement with the van
Ancum percolation result.5 For electron-electron interactions,
we get the new result that the logarithm of the magnetocon-
ductance is proportional to H2 also. When the magnetic field
becomes zero, we see that we regain from Eq. ~2.4! the well-
known Mott and Efros-Shklovskii hopping expressions for
two-dimensional systems.6,10
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B. Strong magnetic fields

In the presence of strong magnetic fields (l!a0 while
r i j@l2/a0), we obtain the following expression of the range
using the asymptotic wave function of Shklovskii:6

R5gx21v2« , v.«

R5gx2, v,« ~2.6!

for QTD systems, where g5(a0
2/8l2). Using Eq. ~2.6! and

the method of Singh and Thompson,3,4 we get the expres-
sions for Rnn to first order in « as

Rnn
c 5RcS 12

«

RcD ,

Rnn
e 5ReS 12

«

ReD , ~2.7!

where Rc5(T/Tc)21/2(2g/3)1/2 and Re5(T/Te)22/3(g/2)1/3.
Following the method of Singh and Thompson,3,4 we get
expressions of the magnetoconductivities for the constant
and energy-dependent DOS, respectively, as

sc~H !5
q2npD0

16a2g
expF2S TTcD

21/2S 2g

3 D 1/2G ,

se~H !5
q2npkBTD1

16a2g
expF2S TTeD

22/3S g

2 D 1/3G . ~2.8!

Note that the logarithm of the conductivity is proportional to
H1/2 for the case of the constant DOS, in agreement with
Refs. 5 and 7 for strong magnetic fields. For electron-
electron interactions, the logarithm is proportional to H1/3.

III. THE EFFECT OF ELECTRIC FIELDS
ON MAGNETOCONDUCTANCE

In this section, we will study the effect of electric fields
on the magnetoconductance.

A. Weak magnetic fields

In the presence of an electric field, the expression of the
range given in Eq. ~2.1! for a weak magnetic field (l@a0
while a0<r i j<l2/a0) becomes

R5x~11bcosu!1gx31v2« , v1xbcosu.«

R5x1gx3, v1xbcosu,« . ~3.1!

where b is proportional to the electric field E , defined as b
5qE/2akBT , and q is the charge of one charge carrier. Us-
ing Eq. ~3.1! and the method of Singh and Thompson,3,4 we
get the values of Rnn as

Rnn
c 5RcS 12

c2
c

c1
c

«

Rc
1

2
5
c3
c

c1
c gRc212

c4
c

c1
c g«Rc

2
2
3
c2
cc3
c

~c1
c !2 g«RcD ,
Rnn
e 5ReS 12

c2
e

c1
e

«

Re
1

g

5
c3
e

c1
e R

e21
6
5
c4
e

c1
e g«Re

2
6
5
c2
ec3
e

~c1
e !2 g«ReD , ~3.2!

where Rc5(T/Tc)21/3(c1
c)21/3, Re5(T/Te)21/2(c1

e)21/4. Fol-
lowing the method of Singh and Thompson3,4 we get the
conductivity expressions for the constant and energy-
dependent DOS, respectively, as

sc5
qnpD0kBT

4aE F c5
cc9
c

c7
c 1gS c5

cc10
c

c7
c 2

2c6
c~c9

c !3

c7
c

1
c8
cc5
c~c9

c !3

~c7
c !2 D Gexp~2R0

c !

R1
c ,

se5
qnpD1~kBT !2

4aE F c5
ec9
e

c7
e 1gS c5

ec10
e

c7
e 2

2c6
e~c9

e !3

c7
e

1
c8
ec5
e~c9

e !3

~c7
e !2 D Gexp~2R0

e !

R1
e2 ~3.3!

with

R0
c5c9

c1gc10
c , R1

c5S c2
c

c1
c 2

2c4
c

c1
c g~c9

c !212
c2
cc3
c

c1
c2 g~c9

c !2D ,

R0
e5c9

e1gc10
e , R1

e5S c2
e

c1
e 2

6c4
e

5c1
e g~c9

e !21
6c2

ec3
e

5c1
e2 g~c9

e !2D .

The parameters ci
c and ci

e appearing in the above expressions
are presented in the Appendix. For b!1 we get a b2 depen-
dence for the logarithm of the conductivity for both the con-
stant DOS and the energy-dependent DOS. These results
agree with the previous work.4 If we consider the magnetic-
and electric-field dependence simultaneously, then for b@1
we find that the logarithm of the conductivity is proportional
to b21/31a1H2/b for the constant DOS and b21/2

1a2H2/b3/2 for electron-electron interactions. This shows
that the nature of the b dependency of the conductivities will
change upon increasing the magnetic field. For weak mag-
netic and electric fields (b!1) we get b21a3H2

1a4H2b2 for both cases. The factors ai are numerical con-
stants. For zero electric field, Eqs. ~3.3! reduce to Eqs. ~2.4!.
For zero magnetic field, we recover the expressions of our
previous paper.4

B. Strong magnetic fields

In the presence of an electric field, the expression of the
range given in Eq. ~2.6! for strong magnetic fields becomes
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R5gx21xbcosu1v2« , v1xbcosu.«

R5gx2, v1xbcosu,« . ~3.4!

Using Eq. ~3.4! and the method of Singh and Thompson3,4

we get

Rnn
c 5RcS 12

«

Rc
2

b2

8gRc
1

«b

pg1/2Rc3/2D , ~3.5!

Rnn
e 5ReS 12

«

Re
2

b2

4gRe
1

«b2

4gRe2D ,

where Rc5(Tc /T)1/2(2g/3)1/2, Re5(Te /T)2/3(g/2)1/3, and
g5a0

2/8l2. Using the method of Singh and Thompson3,4 we
obtain the expressions for the conductivities for strong mag-
netic fields (l!a0, while r i j@l2/a0) and weak electric
fields (b,1),

sc5
qnpD0kBT

8aE Fb

g
2

b2

pg3/2S TTcD
1/4S 3

2g D 1/4Gexp~2R0
c !

R1
c ,

se5
qnpD1~kBT !2

8aE
b

g

exp~2R0
e !

~R1
e !2 , ~3.6!

to second order in b , where

R0
c5S TcT D 1/2S 2g

3 D 1/2

2
b2

8g
, R1

c512
b

pg1/2S TTcD
1/4S 3

2g D 1/4

,

R0
e5S TeT D 2/3S g

2 D 1/3

2
b2

4g
, R1

e512
b2

4gS TTeD
2/3S 2

g D 1/3

.

~3.7!

Note that the logarithm of the conductivity is proportional to
H1/2 and b2 for the case of the constant density of states, and
is proportional to H1/3 and b2 in the presence of electron-
electron interactions. Considering the magnetic and electric
fields together, the logarithms of the conductivities give
H1/22a5b2H21 for the constant DOS and H1/32a6b2H21

for electron-electron interactions, where a5 and a6 are nu-
merical constants. We see again that increasing magnetic
fields will affect the electric-field behavior. For zero electric
fields, Eq. ~3.6! reduces to Eq. ~2.8!. We found that it was
difficult to get an analytical expression for the conductivity
for general electric fields.

IV. SCATTERING

In this section we will include the effect of scattering on
the conductivity in the presence of magnetic and electric
fields. As the impurity concentrations in a sample increase,
the average hopping length exceeds the mean distance be-
tween impurities. Thus a hopping electron meets many other
impurities and scattering between the electron and impurities
occur. It is evident from three-dimensional experiments that
scattering plays an important role in the understanding of
VRH magnetoconductance.8 In the presence of scattering,
the wave function, F(r) is written as6

F~r!5expS 2
r

b D , ~4.1!

where the parameter b is called the scattering length and is
written as follows for two-dimensional systems:6

b5
1
aF12S 1

al D 4/3

LG , l@N21/2, ~4.2!

b5
1
aF12q8S 1

N1/2al2D 4/3G , ~aN1/2!21/2!l!N21/2,

~4.3!

b5s~l2N1/2!, l!~aN1/2!21/2, ~4.4!

where N is the two-dimensional concentration of donor sites,
s and q8 are numerical constants, and L is a logarithmic
factor. This logarithmic factor is related to the size of a scat-
tering region and its physical interpretation is explained in
detail in Ref. 12. Using Eq. ~4.1!, we obtained the following
expression of R:

R5x~11bcosu!1v2« , «,v1xbcosu ,

R5x , «.v1xbcosu , ~4.5!

where now x[2r i j /b . Note that Eq. ~4.5! includes the ef-
fects of scattering, magnetic, and electric fields. The calcu-
lated expressions of the conductivities in our previous
article4 would still be valid if we replace the localization
length a0 with the scattering length b . Therefore the expres-
sions of the magnetoconductivities for the constant DOS and
for electron-electron interactions can be written as

sc5
c0TGc~b!b

E S Rc011

Rc
1 D expF2S TTcD

21/3

3S 1
2 1

2b

p
1h1D 21/3G ,

se5
c1T2Ge~b!b

E S Re012

~Re
1!2 D expF2S TTeD

21/2

3S 1
2 1

2b

p
1h11

3b2

4 D 21/4G , ~4.6!

respectively, where Rc
0 , Rc

1 , Re
0 , Re

1 , Gc(b), and Ge(b) can
be found from our previous work.4 The parameters c0 and c1
are changed from before4 and are now c05qkBD0np/4 and
c15q(kB)2D1np/4. Likewise, Tc and Te are changed, and
now depend on the scattering length b . They will be given as
Tc512@G(4/3)#3/pD0kBb and Te5$48@G(5/4)#2/
pD1kB

2b2%1/2. Notice that Rc
0 and Re

0 now depend on the
magnetic field through their dependence on Tc and Te . The
logarithms of the conductivities will behave as b21/3 for the
constant DOS and b21/2 for electron-electron interactions,
with respect to the scattering length. The exact form of the
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FIG. 1. Magnetoresistance at 4.2 K from van Ancum et al. ~Ref. 5! with theoretical fit.
magnetic-field behavior depends on the form of the scatter-
ing length given in Eqs. ~4.2!, ~4.3!, and ~4.4!. For example,
for l!(aN1/2)21/2 we find an H1/3 dependency for the con-
stant DOS and H1/2 for electron-electron interactions. For
zero electric fields the expression for se reduces to

se5s0expF2S TTeD
21/2G ~4.7!

with Te}H . The above expression is in agreement with
Shklovskii’s two-dimensional percolation magnetoconduc-
tance result.6

It is interesting to note that the temperature dependences
of the conductivities in the presence and absence of scatter-
ing given by Eqs. ~4.6! and ~3.6! respectively, are quite dif-
ferent. Therefore, one can observe the effect of scattering in
QTD materials by measuring the temperature dependence of
the magnetoconductivity. Similar conclusions were drawn
for three-dimensional materials.6 The electric-field depen-
dences of the QTD magnetoconductance in the presence @Eq.
~4.6!# and absence @Eqs. ~3.6!, ~3.3!# of scattering are also
different. Hence, one can also observe the effect of scattering
through the electric-field dependence of the magnetoconduc-
tivity of a QTD material.

V. DISCUSSION OF RESULTS

Recently, van Ancum et al.5 have measured the magne-
toresistance of PBCO thin films and found an exponential
positive magnetoresistance. To explain their experiments,
they modified three-dimensional percolation expressions of
the magnetoconductance6 for the two-dimensional case.
They found that the logarithm of the conductivity is propor-
tional to H1/2 for strong ~i.e., l!a0) magnetic fields, and H2

for weak ~i.e., l@a0) magnetic fields. Their expressions
were incomplete in the exponents as they included no mate-
rial parameter dependences. This allowed them great latitude
in fitting the experimental data by using these expressions.

We tried to explain the above experimental results by us-
ing our theoretical expressions. Their experiments were per-
formed at very low electric fields, therefore we have ne-
glected the effect of electric fields in our calculations. The
experiments were also performed at very low temperatures
where electron-electron interactions have been shown to be
important in PBCO.3 We used the magnetoconductance ex-
pressions derived for electron-electron interactions to explain
their data. Note that our magnetoconductivity expressions
include complete exponential and pre-exponential parts. In
the absence of scattering, we did not find a good agreement
between theory and experiment. This contradicts the finding
of van Ancum et al.5 When we included the effect of scat-
tering in our calculation @Eq. ~4.6! for electron-electron in-
teractions# a good agreement between theory and experiment
was obtained. The best fit was found when we used Eq. ~4.3!
for the scattering length. Equation ~4.3! can be rewritten as

b5
1
a

@12kH4/3# , ~aN1/2!21/2!l!N21/2, ~5.1!

where k5q8(e/N1/2a\)4/3. To fit the above experiments we
used k as the only fitting parameter. A good agreement was
found for k5731024 T24/3. The values of the other param-
eters were taken from Ref. 4 as D157.4310561/J2m2 and
1/a5831029 m. The theoretical results along with the ex-
periment data are presented in Fig. 1. One can see that there
are slight discrepancies between theory and experiment be-
low lnH;0.3 and above lnH;2.3. The disagreement may be
due to the simplicity of the wave function @Eq. ~4.1!# and the
approximations made to derive the analytical result of the
magnetoconductivity. Using the value of b given by Eq.
~5.1!, we found that the logarithm of the conductivity is pro-
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FIG. 2. Predictions for weak magnetoconductance in PBCO at various electric fields for nonscattering case.

FIG. 3. Predictions for weak magnetoconductance in PBCO at various electric fields for scattering case.
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portional to @1/a(12kH4/3)#21/2. Since k is small, we can
expand the given expression in a Taylor series. Finally, we
get that the logarithm of the conductivity varies as H4/3 for
the PBCO thin film.

From the condition (aN1/2)21/2!l!N21/2 given in Eq.
~5.1!, we can put bounds on the value of the two-dimensional
concentration N . From this condition, we have estimated that
the value of N lies between 1011 and 1012 cm22. This in turn
allows us to estimate the maximum value of the unknown
parameter q8;1022 which appears in the expression of k .
Kabasawa et al.1 proposed a condition for metal-to-insulator
transition in PBCO which is expressed as N1/2/a;0.85. This
equation gives an N of about 1012 cm22. Hence, one can
conclude that the PBCO samples of van Ancum et al. are
near the criterion of metal-insulator transition.

Using the parameters obtained from Fig. 1, we have also
calculated the conductivity in the presence and absence of
scattering as a function of electric and magnetic fields for the
PBCO thin films. The electron-electron interaction magneto-
conductance formulas are used to calculate Figs. 2 and 3 for
the nonscattering @Eq. ~3.3!# and scattering @Eq. ~4.6!# cases,
respectively. We chose a range of magnetic field strength
which falls within the range of the van Ancum experiment.
By comparing these two figures, one can see clearly the ef-
fect of scattering on the electric and magnetic-field depen-
dence of the magnetoconductance.
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APPENDIX

The parameters appearing in Eq. ~3.3! are given below.

c1
c5

1
2 1

2b

p
1h1 , c2

c5
1
2 1h1 , c3

c5
1
2 1

5b

p
1h4 ,

c4
c5

1
2 1h4 , c1

e5
1
2 1

2b

p
1

3b2

4 1h1 ,

c2
e5c1

c , c3
e5

1
2 1

5b

p
1

15b2

4 1h4 , c4
e5c3

c .

c5
c5

ph3

3 2
pb

6 2
1
3 , c6

c5
ph6

5 2
pb

4 2
1
5 ,

c7
c5

ph2

2 1
p

4 1
b

2 , c8
c5

ph5

4 1
p

8 1b , ~A1!

c9
c5S TcT D 1/3

~c1
c !21/3, c10

c 5
2
5S TcT D c3

c

~c1
c !2 ,

c5
e5

ph3

2 2
1
2 2

pb

4 2b2, c6
e5

ph6

5 2
1
5 2

pb

4 22b2,
c7
e5ph21

p

2 1b1
pb2

4 ,

c8
e5

3ph5

10 1
3p

20 1
6b

5 1
3pb2

4 , c9
e5S TeT D 1/2

~c1
e !21/4,

c10
e 5

1
5S TeT D 3/2 c3

e

~c1
e !7/4 .

The factors h1 through h6 are functions of b . h1, h2, and h3
can be found in our previous work,4 and h4, h5, and h6 are
given as

h45
83

315p
b51,

h45
b~6b6223b418b2296!

24p~12b2!4 1
~8124b213b4!

4p~12b2!9/2

3tan21S 12b

A12b2D b,1, ~A2!

h45
b~6b6223b418b2296!

24p~b221 !4 1
~8124b213b4!

8p~b221 !9/2

3cosh21~b! b.1.

h55
12

35p
b51,

h55
b~5b222b4218!

6p~12b2!3 1
~213b2!

p~12b2!7/2

3tan21S 12b

A12b2D b,1, ~A3!

h55
2b~5b222b4218!

6p~b221 !3 2
~213b2!

2p~b221 !7/2

3cosh21~b! b.1

h65
5

63p
b51,

h65
~2b625b4184b2124!

24p~12b2!4 2
5b~413b2!

4p~12b2!9/2

3tan21S 12b

A12b2D b,1, ~A4!

h65
~2b625b4184b2124!

24p~b221 !4 2
5b~413b2!

8p~b221 !9/2

3cosh21~b! b.1.



57 1291MAGNETOCONDUCTANCE DUE TO VARIABLE-RANGE . . .
1 U. Kabasawa et al., Phys. Rev. Lett. 70, 1700 ~1993!; U. Ka-
basawa et al., Physica C 194, 261 ~1992!.

2 D. Seong et al., Solid State Commun. 76, 1341 ~1990!; Yu. M.
Boguslavskij et al., Physica B 194, 1115 ~1994!; M. Koyanagi
et al., ibid. 194, 2155 ~1994!.

3 M. Singh et al., Phys. Rev. B 50, 7007 ~1994!; 53, 6806 ~1996!;
Phys. Status Solidi B 197, 65 ~1996!.

4 R. B. Thompson and M. Singh, Philos. Mag. B 75, 293 ~1997!.
5 G. K. van Ancum et al., Phys. Rev. B 52, 15 644 ~1995!.
6 B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped
Semiconductors ~Springer-Verlag, New York, 1984!; B. I. Shk-
lovskii, JETP Lett. 36, 51 ~1982!; Sov. Phys. Semicond. 17,
1311 ~1983!.
7 A. Hartstein, A. B. Fowler, and K. C. Woo, Physica B 117-118,
Part II 655 ~1983!.

8 H. Tokumoto et al., Solid State Commun. 35, 961 ~1980!; Philos.
Mag. 46, 93 ~1982!.

9 M. Pollak, The Metal Non-Metal Transition in Disordered Sys-
tems, edited by L. R. Friedman and D. P. Tunstall ~SUSSP Pub-
lications, Edinburgh, 1978!.

10 N. F. Mott and E. A. Davis, Electron Processes in Non-
Crystalline Materials ~Oxford, London, 1971!.

11 N. Apsley and H. P. Hughes, Philos. Mag. 30, 963 ~1974!; 31,
1327 ~1975!.

12 B. I. Shklovskii and A. L. Efros, Sov. Phys. JETP 57, 470 ~1983!.


