
Adaptive Dual-Mode Arbitration for

High-Performance Real-Time

Embedded Systems

by

Reza Mirosanlou

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

© Reza Mirosanlou 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Alessandro Biondi

Assistant Professor, Scuola Superiore Sant’Anna

Supervisor: Rodolfo Pellizzoni

Associate Professor, University of Waterloo

Internal Member: Hiren Patel

Professor, University of Waterloo

Internal Member: Catherine Gebotys

Professor, University of Waterloo

Internal-External Member: Kenneth Salem

Professor, University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement

of Contributions included in the thesis. This is a true copy of the thesis, including any

required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contribution

In what follows is a list of publications which I have co-authored and used their content in

this dissertation. The use of the content, from the listed publications, in this dissertation

has been approved by all co-authors.

• Mirosanlou, R., Hassan, M., Pellizzoni, R.. (2021). Duetto: Latency Guarantees

at Minimal Performance Cost. in 24th IEEE/ACM Design Automation and Test in

Europe (DATE’21). Grenoble, France, 2021 [75].

• Mirosanlou, R., Guo, D., Hassan, M., Pellizzoni, R.. MCsim: An Extensible

DRAM Memory Controller Simulator. in IEEE Computer Architecture Letters

(CAL), pp. 105–109 2020 [73].

• Mirosanlou, R., Hassan, M., Pellizzoni, R.. DuoMC: Tight DRAM Latency Bounds

with Shared Banks and Near-COTS Performance. in ACM International Symposium

on Memory Systems (MEMSYS’21). Washington D.C., USA, 2021 [76].

• Mirosanlou, R., Hassan, M., Pellizzoni, R.. Near-COTS Performance Under Pre-

dictable Cache Coherence. Under Review.

iv

Abstract

Multi-core platforms can deliver substantial computational power together with minimum

costs, compact size, weight, and power usage. However, multi-core architectures are shak-

ing the very foundation of modern real-time systems, i.e. deriving the Worst-Case Ex-

ecution Time (WCET) of the tasks. Modern embedded systems such as those deployed

in the automotive and avionic fields face two difficult-to-resolve conflicting requirements

due to the interference problem on the shared hardware components amongst cores: de-

livering high average-case performance and providing tight WCET. This challenge exists

in different shared hardware resources including on-chip shared cache, hardware prefetch-

ers, buses, and memory controller. The problem is mainly because various cores in the

system interfere with each other while competing to access the aforementioned hardware

components. While dedicated real-time controllers provide timing guarantees, they do so

at the cost of significantly degrading system performance. This dissertation overcomes this

trade-off by introducing Duetto, a general hardware resource management paradigm that

pairs a real-time arbiter with a high-performance arbiter and a latency estimator module.

Based on the observation that the resource is rarely overloaded, Duetto executes the high-

performance arbiter most of the time, switching to the real-time arbiter only in the rare

cases when the latency estimator deems that timing guarantees risk being violated. In this

thesis, the Duetto paradigm is realized for different shared hardware resources. In the first

part, I demonstrate Duetto on the case study of a multi-bank on-chip memory and discuss

the foundation of the methodology. The methodology is concerned about designing the

real-time arbiter in such a way that it is compatible with Duetto, deriving latency analy-

sis, and designing the latency estimator module. In the second part, this thesis addresses

the trade-off between maintaining cache coherence in multi-core real-time systems and im-

proving average-case performance by proposing a novel coherency arbiter infrastructure

and employing it in the context of Duetto. This is achieved by precisely engineering the

multi-core hardware architecture and its underlying interconnect infrastructure such that

data sharing is feasible for real-time systems in a manner amenable for timing analysis.

The proposed solution provides near-to Commercial-Off-The-Shelf (COTS) performance

and does not impose any coherency protocol modifications. The third part of this disser-

tation proposes DuoMC by applying Duetto to off-chip Memory Controller (MC) which is

crucial since Dynamic Random-Access Memory (DRAM) main memory is one of the most

complex shared resources in multi-core architectures and it is one of the critical bottlenecks

both from latency as well as performance perspectives. As part of the MC evaluation, we

release MCsim, an open-source, cycle-accurate simulator for memory controllers.

v

Acknowledgements

It is my absolute pleasure to thank all the people that made this dissertation possible.

First, I would like to thank my advisor Professor Rodolfo Pellizzoni. He has been patient,

accessible, and willing to help me on various issues. I am extremely grateful to my thesis

committee members: Professor Hiren Patel, Professor Catherine Gebotys, Professor Ken-

neth Salem, and Professor Alessandro Biondi, for their guidance and feedback in developing

my research. Each of them, in a peculiar way, helped me in my endeavor, supported my

work, and significantly contributed to making it valuable. I am also very thankful to my

collaborators who contributed to the presented work and my research in many ways. I

thank Professor Mohamed Hassan, Professor Renato Mancuso, Professor Giovani Gracioli,

Professor Marco Caccamo, and Dr. Rohan Tabish and Michael Guo; working with them on

scientific papers was one of the most memorable in my Ph.D. A big shout-out to Professor

Andrew Morton, who went above and beyond in supporting me during past years in many

ways, and it was my honor to meet and work with such an amazing soul.

To my friends that shared with me days and nights, weekdays and weekends during my

time at Waterloo, thank you for your camaraderie and for making the past four and a half

years so memorable.

Finally, of course, is my rock, my inspiration, my world, my reason: without my wife,

Homa Aghilinasab, none of this would ever have been possible. It is extremely difficult to

properly thank you. I am indebted to you for dedication and sacrifices. At the dark times,

Homa was always there, and always supported me unconditionally. To have a woman of

such infinite talent and dynamism put her own professional career on hold to support the

dreams of the man she’s married is a powerful thing, and I have striven every day to live

up to that.

Above all, I thank my family for their love and support. Words cannot express how

grateful and happy I am to have such wonderful and kind people in my life. To my lovely

parents, Goli and Hossein, you are my idols and the role models of my life. A thank also

goes to my brother, Hani, who has always inspired me to see beyond academic life.

vi

Dedication

To my family, for their support

with love and gratitude.

vii

Table of Contents

List of Figures xii

List of Tables xv

List of Acronyms xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Methodology . 3

1.3 Structure of Thesis . 6

2 Background and Related Work 7

2.1 Background: Arbitration in Real-Time Systems 7

2.2 Background: Hardware Cache Coherence 9

2.2.1 Cache Controllers . 10

2.2.2 Coherence Protocols . 11

2.2.3 Snoopy Protocols and Directory-based Protocols 13

2.3 Related Work: Predictable Cache Coherence 13

2.4 Background: Main Memory . 15

2.4.1 DRAM Organization . 15

viii

2.4.2 Memory Controller Operations . 16

2.4.3 DRAM Timings . 17

2.5 Related Work: Predictable Memory Controllers 18

3 Duetto Reference Model 25

3.1 Case Study . 26

3.2 Reference Model . 27

3.2.1 Requestors and Requests . 27

3.2.2 Request Latency and DTracker . 28

3.2.3 Commands and Resource Interface 30

3.2.4 High-Performance and Real-Time Arbiter 31

3.2.5 Execution Model and Latency Guarantees 32

3.3 Architecture Design . 34

3.3.1 Step A: RTA Design . 35

3.3.2 Step B: Dynamic RTA Latency Analysis 36

3.3.3 Step C: Static WCL Bound . 37

3.3.4 Step D: WCLator Design . 38

3.4 Evaluation . 39

3.5 Summary . 42

4 DUEPCO: Applying Duetto to Cache Coherency with Added Parallelism 43

4.1 System Model . 45

4.1.1 Architecture and Coherency . 46

4.1.2 Request Processing and Order of Arbitration 47

4.1.3 Latency Model . 50

4.1.4 Task Analysis . 51

4.2 Proposed Arbiter . 51

ix

4.2.1 Rule 1: Global Round-Robin Ordering 52

4.2.2 Rule 2: Bus Arbitration . 52

4.2.3 Rule 3: Priority Inheritance . 52

4.2.4 Rule 4: Request Blocking . 53

4.3 Latency Analysis . 53

4.3.1 Dynamic Latency Analysis . 54

4.3.2 Static Analysis . 57

4.4 DUEPCO: Duetto Application for Coherency 58

4.4.1 WCLator Design . 60

4.5 Evaluation Results . 61

4.5.1 Per-Request Worst-Case Latency 63

4.5.2 Sensitivity Test . 64

4.5.3 Observed Request Latency . 65

4.5.4 Average Performance: Throughput 66

4.6 Summary . 67

5 DuoMC: Applying Duetto to DRAM with Shared Banks 68

5.1 DuoMC: The Proposed Solution . 69

5.1.1 Task WCET Estimation . 69

5.1.2 DuoMC Model . 70

5.2 Real-time Scheduler (RTSch) . 73

5.2.1 Rule 1: Round Robin Arbitration 74

5.2.2 Rule 2: Bus Conflict Handling . 74

5.2.3 Rule 3: Shared Bank Blocking . 74

5.2.4 Rule 4: PRE and ACT Arbiters Operation 75

5.2.5 Rule 5: CAS Self-Blocking . 75

5.2.6 Rule 6: CAS Round Starting and Ending 75

x

5.2.7 Rule 7: CAS Arbiter Operation Inside a Round 76

5.2.8 Rule 8: Always Starting with a Read Round 76

5.3 Illustrative Example for RTSch Rules . 76

5.4 Latency Analysis . 79

5.4.1 Static WCL Analysis: Private Banks 80

5.4.2 Static WCL Analysis: Shared Banks 88

5.4.3 On-line WCLator Latency Estimation 91

5.5 Implementation . 98

5.6 MCsim: An Extensible DRAM MC Simulator 101

5.6.1 Architectural Design . 101

5.6.2 Configuration and Simulation Engine 102

5.6.3 Detailed System Design . 104

5.6.4 MCsim Evaluation and Validation 107

5.7 Evaluation . 109

5.7.1 Analytical Worst-Case Memory Access Latency 110

5.7.2 Measured Request Latency . 111

5.7.3 Average-Case Performance . 111

5.8 Summary . 114

6 Conclusion and Future Work 115

References 119

xi

List of Figures

1.1 Simplex state space. 4

2.1 State transition diagram of a VI protocol. 11

2.2 State transition diagram of an MSI protocol. 12

2.3 Internal organization of a DRAM module. 15

2.4 DRAM operation state machine diagram. 19

3.1 An example schedule for 4 requests accessing different banks with tbus = 4

and tr = tw = 3. 27

3.2 Duetto reference model. 28

3.3 Queuing and processing latency example. Assume that all previous requests

ri,k with k < j finish before tai,j. We use ↑ for the arrival time tai,j of each re-

quest, ↓ for its finish time tfi,j, and ↑ for the start of processing: max(tfi,precj , t
a
i,j). 29

3.4 Unbounded latency. A read request to b1 is never ready, since the read bus

is occupied whenever b1 becomes idle. 32

3.5 Request latency of HPA, RTA, and Duetto. 40

3.6 IPC evaluation of two different configurations under Duetto. 41

4.1 Architecture model. 45

4.2 The sequence of arbitration based on the request type. 48

4.3 The lower priority request from P1 depends on the higher priority request

of P0 to the same cache line A. 50

xii

4.4 Per-request worst-case latency. 62

4.5 Sensitivity test for RTA against PISCOT-C2C. 64

4.6 Observed latencies under different arbitration schemes. 65

4.7 Total throughput of the system. 67

5.1 Conceptual architecture of DuoMC including four main components. 71

5.2 Processing latency shown in blue. Red bar represents the request being

oldest. Assume that all previous requests ri,k with k < j finish before tai,j. . 72

5.3 Illustrative example describing Rules 1-4 for ACT/PRE arbitration. Curly

down arrows represent the time commands of a miss request become intra-

ready. 77

5.4 Illustrative example describing Rules 1, 5-7. Curly down arrows represent

the time commands of a miss request become intra-ready. 78

5.5 Request latency decomposition for read requests. 80

5.6 Case a, b, and c for the residual calculations for private bank access. 82

5.7 LPRE example. 83

5.8 LACT example considering tRRD and tFAW 84

5.9 LRD
WR example for M = 4 requestors, where Pi = P1 and kCAS = 3; in this

example, two of the three interfering CAS commands are RD and one is WR. 85

5.10 Worst-case scenario for a self-blocking read miss with M = 4. 89

5.11 tOthers
Residual: computation of residual term for tRAS constraint. 91

5.12 Overall IPC as a function of the relative deadline. 99

5.13 Analytical worst-case latency of read request (private and shared banks)

across different speeds of DDR3 device. 100

5.14 Generalized MC architecture and major blocks. 102

5.15 Request and command queue structures per-resource level. 104

5.16 MCsim class diagram representing the main functional blocks in the simula-

tor. 105

xiii

5.17 Request latency comparison amongst DuoMC, FR-FCFS, and RTSch. Only

latencies greater than 80 cycles are shown. Note that Y-axis represents the

latency in log10 scale. 112

5.18 IPC for EEMBC benchmarks using DDR3-1600K. 113

5.19 IPC for EEMBC benchmarks using DDR4-2400U. 113

xiv

List of Tables

2.1 JEDEC DDR3/DDR4 timing constraints. 18

3.1 Symbols used in latency analysis. 35

5.1 Symbols used in latency analysis. 79

5.2 Simulation time (sec) of MCs for different simulators. ✓represents the abil-

ity to distinguish among different requestors in each MC. 108

xv

List of Acronyms

WCET Worst-Case Execution Time

WCL Worst-Case Latency

PEs Processing Elements

QoS Quality of Service

FBW Fly-by-Wire

LLC Last-Level Cache

HRT Hard Real-Time

SRT Soft Real-Time

MC Memory Controller

MSHR Miss Status Holding Registers

DMA Direct Memory Access

DRAM Dynamic Random-Access Memory

DDR Double Data Rate

SoC System-on-Chip

RR Round-Robin

GRR Global Round-Robin

xvi

TDM Time Division Multiplex

FCFS First-Come-First-Serve

FIFO First-In-First-Out

LOC Lines-of-Code

FR-FCFS First-Ready First-Come-First-Serve

COTS Commercial-Off-The-Shelf

WCLator Worst-Case Latency Estimator

DSM Distributed Shared Memory

IPC Instructions Per Cycle

OoO Out-of-Order

C2C Cache-to-Cache

xvii

Chapter 1

Introduction

1.1 Motivation

Real-time embedded systems, in different areas such as robotics, automotive, avionics,

medical devices, and industrial environments [72] are increasingly deployed to provide

timing guarantees. In such context, the correctness of the system is both a function of value

as well as the time at which the results are produced [70]. Hence, timing constraints such as

deadline should be provided for a real-time task in order to detect unacceptable results or

maintain the Quality of Service (QoS). Timing analysis helps us to measure the WCET of

the task. This is critical for real-time systems as it can be used in schedulability analysis

to guarantee that tasks satisfy their timing constraints. To estimate the WCET, static

or measurement-based analysis can be used [113]. The criticality of adhering to these

timing constraints is determined based on the type of application. Hard Real-Time (HRT)

applications such as Fly-by-Wire (FBW) in aircraft must satisfy the deadline, as the failure

to satisfy timing constraints can result in severe consequences.

In the last two decades, there has been a constant augmentation in the popularity

of embedded multi-core platforms due to real-time embedded applications claiming more

processing power. This signifies a shaking point in the analysis and implementation of

real-time systems. Multi-core platforms present benefits in terms of system cost and per-

formance. However, such platforms introduce new challenges regarding accessing shared

resources when multiple cores demand them simultaneously and create interference. This

interference is a hurdle for real-time systems since the behavior of one core affects the

temporal operation of other cores, which complicates the timing analysis of the system

1

and makes it difficult to precisely derive the WCET of tasks. For instance, in [110], it was

demonstrated that for the non-blocking cache structure used in modern multi-core systems,

letting unlimited requests to enter the Miss Status Holding Registers (MSHR) of the cache

leads to contention in MSHR. The result is blocking further accesses in the system and,

hence, the WCET of the task could increase up to 27×. Experiments in [89] show that

memory interference can contribute up to 300% to the WCET of a task, and memory bus

interference can solely increase the WCET up to 44% [87]. In [39], it was demonstrated that

the load/store on Last-Level Cache (LLC) could trigger coherency messages and increase

the latency of such requests significantly or even make them unbounded.

Because of the existing shared resources in the multi-core platforms, there has been

a large body of research efforts in the community investigating how to perform WCET

estimation in such systems [112, 12, 58, 119, 83, 88, 19, 82, 9]. Normally, to tackle

this problem, previous works [24, 34, 45] are proposing to estimate the WCET by di-

viding the execution time of the task into what the task does on the Processing El-

ements (PEs) (computation) plus the access latency of the shared resources such as,

shared bus, memory controller, etc. Therefore, to determine the WCET of the task,

it is crucial to bound the Worst-Case Latency (WCL) of requests accessing a shared

resource. Obviously, tighter WCL for the resource accesses results in lower WCET of

tasks. For the concern of this dissertation, the task analysis and evaluation of the request

numbers can be done through either static program analysis or measurement-based ap-

proaches. A significant amount of interest exists in analyzing the WCL bound of resource

accesses [33, 22, 32, 24, 42, 112, 39, 77, 56, 118, 37, 45, 84, 116].

Existing COTS arbiters managing access to these resources are designed with several

complex optimizations aiming to achieve high average performance such as out-of-order

execution, complex cache architectures, or branch prediction mechanisms. Unfortunately,

these optimizations result in extremely high latency spikes in the WCL of accesses. This is

because these COTS optimizations typically induce pathological scenarios that lead to ex-

tremely high latency in the worst case [121, 44], and thus, must be disabled to provide tight

latency bounds. To address this challenge, several recent proposals introduced solutions re-

designing these arbiters [18, 40, 46, 58, 83, 119] and controllers [1, 22, 23, 33, 74, 96, 84, 94]

to honor predictability by design. In contrast to COTS arbiters, the goal of the real-time

arbiter proposals is to provide strict timing bounds for WCL incurred when accessing

the shared resource by disabling most of the aforementioned performance optimizations.

However, predictably managing these resources to bound the resulting interference upon

accessing them is not an easy task. In general, real-time arbiters expose bad average

2

performance yet with tight latency bounds while COTS-based arbiters provide improved

performance with large WCL spikes.

In summary, there exists a complex trade-off between the average-case performance and

providing predictability for the shared resources in multicore platforms. Our key research

question is: can we engineer a system that provides predictability while having minimal

impact on average-case performance? To address this problem, this dissertation proposes a

general reference model together with an informal methodology that enables the designers

to address the predictability-performance trade-off in the multi-core platforms which I

elaborate on in Section 1.2. Broadly, I aim to adhere to the generic platform in terms

of average-case performance while also maintaining timing constraints by proposing using

two arbiters for the same shared resource and switching between them based on the status

and load of the system. It is important to point out that we are addressing this problem by

proposing the reference model through architectural simulations and leaving the problem

of having a full hardware implementation to future work.

1.2 Methodology

We introduce Duetto reference model in which we define two modes of execution: real-time

mode and high-performance mode. In real-time mode, Duetto tries to optimize WCL of

accesses by employing an arbiter that provides a tight bound for each request. In contrast,

in high-performance mode, the execution model attempts to maximize the average-case

performance and resource utilization of the system by using conventional architectural

techniques that increase the overall performance of the system. Preferably, I propose

a dual-mode arbitration model where most of the time, while the system is not at risk

to violate timing constraints, the Duetto employs a mode optimized for the average-case

performance.

More in detail, Duetto assigns WCL bounds to the requests, if the system is at risk to

miss these WCL bounds in high-performance mode, the system switches to real-time mode

to guarantee meeting these bounds. As mentioned before, the WCET of each task depends

on the WCL of its resource accesses. We assume that there is a deadline associated with

each request. The request deadline represents the maximum time that can elapse between a

request arriving at the arbiter, and being serviced. If a requestor sends multiple requests, a

deadline counter starts when the latest request arrives at the head of the transaction queue.

This assumption is crucial, since otherwise, we may include queuing delay from the requests

3

Safex1

x2

Unstable

Unsafe

Figure 1.1: Simplex state space.

made by the same requestor. The deadline is configurable and we assume that the system

designer first determines a request deadline for each particular request. Such an assignment

should be performed based on the type of application (critical or non-critical tasks), and

characteristics of the processing element (latency or bandwidth-bound). These deadlines

might remain fixed or might be varied at run-time either on a partition or on a task basis

by re-configuring the hardware. For instance, the designer might decide to perform a

schedulability analysis on a core that runs a real-time task and based on the computation

time and the number of requests in the task determines the maximum deadline value so the

system remains schedulable. Note that, the approach that we consider in Duetto reference

model to bound the WCET of the task is a request-driven approach. In details, the WCET

of task is obtained by summing its execution time with the cumulative processing latency

of memory requests. If the task performs at most M memory requests and its slack (how

much its execution can be increased while still meeting timing constraints based on task-

level schedulability analysis) is S, we can set the per-request deadline to S/M. The same

idea has been presented in previous related work [40, 42].

Duetto has been inspired by other work in the area of safety for real-time systems, in

particular, the simplex reference architecture [20] for control systems. The simplex architec-

ture defines a methodology that allows the coexistence of an unverified, high-performance

controller with a lower-performance but trusted safe controller. The simplex incorporates

a checker component that monitors the stability of the system and switches the control

output between the two controllers. Under normal operation, the system is far from the

instability region, and it uses the output of the high-performance controller. However,

4

if the checker component determines that an incorrect control command might cause the

system to reach an unstable state at the next control step, it switches to the safe con-

troller, which is guaranteed to maintain the system in the stable region. Once the system

is again guaranteed to remain stable at the next step no matter the actuation command,

the checker component switches back to the high-performance controller.

As Figure 1.1 shows, simplex defines three zones of operation for the system, and at

any point in time, it can fall into one of these zones. The unsafe zone denotes when

there is a possibility in which a wrong decision at the next step leads to violating the safety

requirements. Likewise, with the right choice, it remains in an unsafe zone, or it can return

to the safe zone. Note that the unsafe zone does not mean that the safety requirement is

not met; instead, it simply means that there is a risk of going to an unstable zone. An

unstable zone signifies that there is no guarantee for satisfying the safety requirement. The

safe zone denotes the region in which regardless of any control action (whether switch or

not), the system remains in the current zone or it moves to the unsafe zone as shown in

Figure 1.1. It is important to note that while the system is running in the safe zone, there

is no chance for the system to fall into an unstable zone. In the safe zone, we attempt to

leverage high-performance mode since we will not become unstable in the next step. The

real-time mode will be used in the unsafe zone since it can guarantee that there is no way

the system goes to an unstable zone with any possible control action. Note that being in

either the safe zone or unsafe zone means that the system still runs in stable conditions.

The important challenge here is that the semantics of Duetto and simplex are not

equivalent. In detail, simplex is performed at the software level and it is capable of making

the decision by looking at the system output/states on a large time scale. However, in

Duetto, the instability of the system is defined based on a latency analysis. In other

words, the state of the system will be unstable if it is not possible to guarantee its request

deadline. Since the state in Duetto is too large, instead of defining safe/unsafe regions

offline, Duetto has to operate on-line by applying the latency analysis to determine if the

system goes to an unstable state. On top of that, the goal of Duetto is to control the

output of high-speed hardware arbiters at the granularity of a clock cycle, requiring a high

level of parallelism in the execution model that cannot be easily supported in the Simplex

logic framework since the states in Duetto cannot be stored offline. Hence, the important

challenge remains on how Duetto should operate at every clock cycle to guarantee that the

latency of each request is not greater than the request deadlines. Most of the complexities

that I will discuss in the coming chapters of this thesis are focused on keeping track of the

resource’s state and implementing the estimation such a way that it is fast enough and can

5

be properly parallelized in hardware.

Since different shared hardware resources in a multicore system have their own specific

constraints, the framework will have to be applied in different manners. In this thesis, I

show that the proposed reference model could be successfully adopted on variety of shared

resources, including shared buses (Chapter 3), on-chip memory (LLC) (Chapter 4), and

off-chip memory (DRAM) (Chapter 5).

1.3 Structure of Thesis

Chapter 2 provides background on arbitration in multi-core platforms, main memory struc-

ture, and hardware cache coherence mechanisms. In addition, this chapter presents an

overview of previous works related to each shared resource covered in the thesis. Chap-

ters 3, 4, 5 are the main research contributions of this thesis. Chapter 3 introduces a novel

hardware resource management paradigm called Duetto reference model. Based on the

observation that the resource is rarely overloaded, Duetto executes the high-performance

arbiter most of the time, switching to the real-time arbiter only in the rare cases when

the latency estimator deems that timing guarantees risk being violated. In Chapter 3,

I demonstrate Duetto on the case study of a simplified multi-bank memory. Chapter 4

proposes an arbiter for the shared memory in multi-core platforms aiming at providing

predictable, coherent shared cache hierarchy solution, yet with a negligible performance,

degradation compared to COTS solutions. Finally, Chapter 5 applies the Duetto reference

model to one of the most complex shared resources, which is the main memory controller.

On top of that, in Chapter 5, I introduce an off-chip memory device simulator, MCsim,

an extensible and cycle-accurate MC simulator. Designed as an integrable environment,

MCsim is able to run as a trace-based simulator as well as provide an interface to connect

with external CPU and memory device simulators. I conclude this thesis in Chapter 6

that discusses future works based on the research contributions performed in the thesis

and their limitations.

6

Chapter 2

Background and Related Work

This chapter presents the essential background required to continue with the other chapters

of the thesis. In Section 2.1, we introduce the common arbitration schemes deployed in

real-time systems and the related work. Next in Section 2.2 and Section 2.3, we cover the

required background on the hardware coherency in shared caches along with the predictable

coherency approaches. Finally, in Section 2.4, we study the organization of the memory

controller as a shared resource among master entities, and for this reason, we provide the

required background for DRAM main memory systems. In Section 2.5, we delve into the

real-time memory controller design and discuss the most recent related work.

2.1 Background: Arbitration in Real-Time Systems

A contemporary multi-processor System-on-Chip (SoC) consists of a large number of com-

ponents including streaming hardware accelerators and processors with caches that run

several applications. As a result, shared resources, such as main memory and interconnect

are introduced to reduce the cost. However, sharing the resources imposes interference

among applications and makes it difficult to achieve satisfaction of the real-time require-

ments. Every shared resource can be used by any requestor in the system. Example of

requestors includes CPUs and Direct Memory Access (DMA) engine. Arbiters are em-

ployed to decide which of the requestor should have the access (grant) to the resource at

any point in time.

There has been a considerable number of arbitration mechanisms proposed by real-time

7

research groups for shared resources. Traditional arbitration schemes such as Round-Robin

(RR), fixed priority, and a hybrid of them are still used popularly. We review commonly

used arbitration policies in traditional real-time systems to investigate their properties and

performance. Particularly, we discuss fixed priority arbitration, simple First-Come-First-

Serve (FCFS), RR arbitration including bare RR, Prioritized RR (PRR) [83], Weighted RR

(WRR) [54], Harmonic RR (HRR) [119], and Harmonic Weighted RR (HWRR) [40] in

addition to TDM-based arbiters [95, 28].

Fixed priority arbitration policy cannot provide a fair arbitration among the requestors

since particular requestors are always prioritized over other masters. FCFS arbiters give

the grants to the requestor that made a request earlier in time [122]. In other words, FCFS

does not provide a fair arbitration among the requestors. First-Ready First-Come-First-

Serve (FR-FCFS) is another conventional scheme that arbitrates between the entities who

are ready and also at the same time arrived before every other requestor.

There have been several research efforts that investigate the criticality-aware arbitration

on single-core platforms and multi-core platforms [42, 44]. Criticality is a designation of

the level of assurance against failure needed for a system component. A mixed-criticality

system has two or more distinct levels such as safety-critical, mission-critical, and low-

critical [13]. There exist two approaches for incorporating the criticality in a system. [13]

proposed comprehensive review on the mixed-criticality, which is mostly concerned about

Vestal model [7]. The Vestal model assumes that there exist tasks or partitions with

different criticality levels that are mapped to the same requestor and then tries to pro-

pose scheduling for them. On the other hand, the authors of [42] assigned the criticality

requirements to the requestors instead of tasks.

Authors in [40] proposed a mixed critical platform for accessing the shared memory bus

where they do not suspend low critical tasks when running in high mode. A software-based

throttling is another scheme proposed in [86] to manage accesses to the shared main mem-

ory by assigning a budget to each core. Once the budget is exceeded for the non-critical

cores, it throttles it to the guaranteed requirements of critical cores The technique in [111]

arbitrates amongst memory requests from all tasks using conventional RR and FCFS poli-

cies.

Bare RR is dynamic and straightforward to implement. In addition, it is efficient and

shares the resources equally among the requestors no matter what are their characteristics.

The WCL of a request from any task can be bounded by the number of requestors in the

system. However, in mixed critical systems where there are tasks with different criticality

levels, RR cannot differentiate among the tasks. Researchers in [83] tried to cope with the

8

deficiencies of RR by proposing prioritized RR. In such arbiter, RR is employed only for

the critical tasks, and non-critical tasks can obtain access in slack slots. Slack slots are

defined as the time that there is no request from the critical tasks in the system. The

target of their solution is systems with the dual-criticality operation. Since they share

these slots with non-critical tasks, there is no timing guarantee for non-critical tasks. [119]

also proposed HRR to mitigate this problem by considering different slots to different tasks

which maximize the system utilization.

Another research line concentrates on different arbitration policies for shared resources

in order to eliminate interference. One example of this kind of arbitration policy is Time

Division Multiplex (TDM), where the shared resource is assigned to a task or processing

element for a predetermined time slot. In other words, it partitions access to the resource

over time, and only a single requestor can acquire it at a time. When using TDM, the

behavior of the requestors is entirely independent of the function of other requestors in the

system.

WRR is able to allocate different amounts of service to processing elements based

on their requirements [54]. Similar characteristics exist for TDM. The key difference

between TDM and WRR is that TDM arbiters are non-work conserving. An assigned slot

to a task will remain idle if there are no ready requests from this particular task even if

there are ready requests from other tasks. Instead, WRR is work-conserving meaning that

it assigns idle slots to the first task with a ready request.

Notice that the discussion in this section reviewed the arbitration mechanisms for a

single resource such as a shared bus. However, in practice, there are sub-systems such as

split-transaction bus or DRAM (covered in Chapters 4 and 5) which incorporate multi-

ple parallel resources whose operation is interrelated. For such systems, a more complex

arbitration scheme is required.

2.2 Background: Hardware Cache Coherence

Enabling data sharing is imperative in modern embedded systems. In these systems,

massive amounts of data have to be collected (sensor fusion, cameras, etc), communicated

through interconnect(s), and processed by various processing elements. As a result, recent

efforts have been proposed to shift away from the independent task model, where tasks do

not share data to a more-practical model that embraces data sharing and enables inter-core

communication [17, 8, 63, 39, 105, 100, 101, 56].

9

Shared memory multi-core systems present a global address space in which processing

cores can trade information and synchronize. When shared variables are cached in various

caches concurrently, a memory store operation conducted by one processor can make data

copies of the same variable in other caches invalid. The fundamental objective of a cache

coherence protocol is to provide a coherent memory representation for the system so that

each processor can observe the semantic impact of memory access operations performed by

other processors in time. Various approaches can be employed in shared memory system

implementation. Common hardware implementations extend traditional caching methods

and use custom communication interfaces and specific hardware support.

2.2.1 Cache Controllers

Coherency in the system is maintained through coherence controllers, implemented as fi-

nite state machines placed inside each storage hierarchy, including private caches and LLC.

Coherence amongst private caches is maintained through a cache controller. The cache

controller is informed by any action from the core in the form of loads and stores and

maintains the coherency by issuing coherence messages through the interconnection net-

work. The receiving controller then performs corresponding coherence state transitions and

issues a response back to the sender through the interconnection network. The types of

requests and responses, as well as the state transitions, are dependent on the implementa-

tion specifics of each coherence protocol. Similarly, the LLC is also co-located with a state

machine to implement coherence. The LLC controller typically does not issue coherence

requests; instead, it receives and forwards requests or issues coherence responses through

the interconnect.

Even though loads and stores instructions from the cores can read and write to specific

bytes of data, the controllers operate in cache block granularity, meaning that coherency is

maintained on a cache block instead of each byte. Hence, it is impossible to write to a cache

block while another core processes a read/write request simultaneously. Therefore, updates

to the values in a cache block must be propagated to all other cores in the system to preserve

coherence. Efforts have been proposed for finer-grained hardware coherence [78, 99] or

coarser-grained hardware coherence [14, 15].

10

Figure 2.1: State transition diagram of a VI protocol.

2.2.2 Coherence Protocols

Coherence protocols determine the interactions between cache controllers and maintain all

cache blocks up to date at any given time. A basic Valid-Invalid (VI) cache coherence

protocol is shown in Figure 2.1. The VI protocol consists of two primary (stable) states,

Valid (V), Invalid (I), and a transient state IV D. Transient states are essential intermediate

states between stable states to stall for either data or transaction acknowledgments to be

received before entering the next stable state; however, they are not explicitly stated when

describing a coherence protocol and for simplicity, we do not show the transient states in

the figures. We assume the interconnect is a shared bus such that all coherence controllers

broadcast (snoop) coherence requests.

At the beginning of execution, all cache blocks are in I state for all private controllers.

Loads and stores from the core to the blocks in I state will cause the controller to issue a

Get coherence request on the interconnect and transition to the transient state IV D to stall

for a response with data. Then, the shared memory controller observes the Get message

and responds with data on the shared bus. Afterward, the requestor snooping on the bus

copies the block to its own private cache and completes the load/store instruction. If other

cores broadcast Get requests to the interconnect, the cache controller that has the block in

V state will respond with its up-to-date data and invalidate itself transitioning back to I

assuming that core-to-core transfer is possible; otherwise, any request should be directed to

the shared memory. In VI protocol, only a single core is able to maintain the block in the V

state at any given time. Any other loads/stores from other cores must first get the block in

V state (up-to-date data) before they can perform their own requests. Despite VI protocol

simplicity, the valid state only allows a single core to maintain a cache block with read

permission at any point in time. This is true even if the block is unmodified by the core.

11

Figure 2.2: State transition diagram of an MSI protocol.

If multiple cores request to load one after another, each core sends Get requests on the

interconnect and invalidate each other’s cache blocks which incur unnecessary coherence

transactions. In order to avoid this issue, numerous optimizations have been proposed.

One example is dividing the V state into two distinctive states which are Modified (M)

state and Shared (S) state to make MSI protocol. State M corresponds to blocks that

have been modified (dirty) by a write request and state S corresponds to the blocks that

are unmodified (clean) and is maintained by one or more cores. Figure 2.2 presents these

states and the transitions amongst them which are implemented by the cache controller.

Reading a cache line A requires the core to issue GetS(A) message on the interconnect and

writing to A requires GetM(A). Upon replacement due to eviction or write-back to shared

memory, a core needs to issue a PutM(A) message. If the core has cache line A in S state

and tries to modify it, it issues an Upg(A) message. Every message on the bus will be

observed by all cores’ private caches as well as a shared cache controller. A core observing

its own message is referred as Own, and any message initiated by other cores is referred

to as Other. In Figure 2.2 a core that has a cache line in M state and observes other cores

asking for the same line by OtherGetS message will move to S state since the cache line

will be up to date in more than one cache controller. In spite of its simplicity, MSI is the

12

foundation of most coherence protocols deployed in most existing COTS systems such as

the MESIF protocol employed in Intel’s i7 and the MOESI protocol employed in AMD’s

Opteron [48]. However, we detailed MSI coherence protocol in this section since MSI is

covered in Chapter 4 and is used by related work on predictable coherence in real-time

systems [49, 39],

2.2.3 Snoopy Protocols and Directory-based Protocols

There are two varieties of cache coherence protocols: snoopy protocols for bus-based sys-

tems and directory-based protocols for Distributed Shared Memory (DSM) systems. In

bus-based multiprocessor systems, since all the processors can observe an ongoing bus

transaction, appropriate coherence actions can be taken when an operation endangering

coherence is detected. Protocols that fall into this category are called snoopy protocols

since each cache snoops bus transactions to watch memory transactions of the other pro-

cessors. Unlike snoopy protocols, directory-based protocols do not rely on the broadcast

mechanism to invalidate/update stale copies. Instead, they maintain a directory entry

for each memory block to register the cache sites in which the memory block is currently

cached. The directory entry is usually maintained at the site in which the corresponding

physical memory resides. Since the locations of shared copies are known, the protocol

engine at each site can maintain coherence by operating point-to-point protocol messages.

Thus, the removal of broadcast defeats a significant limitation on scaling cache coherent

mechanisms to large-scale multiprocessor systems but incurs larger latency. For this rea-

son, it makes little sense to employ a directory-based protocol for a small multicore. In this

thesis, we focus on snooping bus cache coherence as it is commonly deployed in multi-core

real-time systems with a small number of cores such as ARM chips [3].

2.3 Related Work: Predictable Cache Coherence

In general, predictability on the shared hardware resources in multicore real-time systems

can be achieved by two approaches: 1) employing predictable bus arbitration (discussed

in Section 2.1); 2) employing predictable cache coherence. The second category of works

mainly focuses on enabling the predictable sharing of data among real-time core through

hardware cache coherence [39, 30, 105, 57, 100, 56, 118, 6, 8, 37]. We find these approaches

to be promising due to their performance benefits as well as transparency to the software

13

stack. In addition, cache coherence is already the standard de facto in COTS multi-core

platforms. These types of works normally require detailed formal modeling along with

verification in order to verify their predictability. Moreover, these approaches are not ex-

tensible to other high-performance bus architectures such as those deployed in the COTS

platforms including split-transaction interconnects. Using a split-transaction architecture

allows the system to issue the requests (through coherence messages) and responses (i.e.

data transfers) through different buses and manage them using different arbitration mech-

anisms.

Various approaches have been explored for shared cache to improve the predictability

of the system such as preventing cores to access the data of the other cores in the system

through isolation and partitioning [112], locking schemes [108], cache coloring [29, 31] or

even splitting the data cache [98]. Notice that assuming private memory bank per core

is not an optimized approach [39] as it suffers from multiple drawbacks: 1) They prevent

sharing of data between tasks; hence, disabling any communication across applications or

threads of parallel tasks running on various cores; 2) It might result in poor memory/cache

utilization. For instance, it could increase the number of cache line eviction due to the

partition space reaching its maximum capacity while other partitions might be underuti-

lized; 3) It does not scale with increasing number of cores. While these approaches simplify

the latency analysis of the task; they do not propose a solution to the problem of data

correctness resulting from sharing memory space.

To exemplify, PMSI [39] was the first effort that introduced a set of novel transient

coherency states to alleviate the unpredictable behavior of the conventional coherence pro-

tocol. However, it was achieved by significantly increasing the WCL bound of the requests.

Recently, [56] proposed PMSI* and PMESI* which present a systematic approach towards

designing predictable cache coherence mechanisms that achieve similar WCL bound com-

pared to bypassing the shared cache and provide tighter WCL bound compared to orig-

inal PMSI. They do so by capturing the key reasons behind the high WCL in existing

predictable cache coherence and then apply micro-architectural extensions and protocol

modifications in order to achieve tight WCL and high performance.

By decoupling the request and response bus and employing a split-transaction bus, [49]

was able to achieve significantly tighter worst-case request latency bounds compared to

PMSI [39]. PISCOT uses a predictable arbitration policy (TDM) on the request bus while

employing conventional FCFS arbitration on the response bus. This caused PISCOT to

exhibit a linear WCL similar to cache bypassing while improving average-case performance.

Notice that our proposed approach in Chapter 4 (similar to PISCOT) does not require any

14

D
R

A
M

 M
o

d
u

le
DRAM
 Chip 0

DRAM
 Chip 1

DRAM
 Chip N-1

DRAM Rank

DRAM Chip

Bank
b-1

Bank
0

. . .

. . .

Row BufferR
o

w
 D

e
co

d
er . . .

. . .

. . .

. . .

. . .

I/O Circuits

Bank
1

. . .

. . .

Figure 2.3: Internal organization of a DRAM module.

change or modifications on the underlying coherence protocol employed in the system since

the predictability is achieved through re-designing the arbiter along with split-transaction

interconnect.

2.4 Background: Main Memory

In this section, we describe the higher level of the DRAM design in terms of the hierarchy

and modules, which leads to data transfers from/to the memory subsystem. These transfers

impose latency on the PEs. To better understand the origin of memory latency, we first

provide the fundamental background on DRAM organization and operations.

2.4.1 DRAM Organization

Figure 2.3 shows the internal organization of an off-chip DRAM. A DRAM device con-

sists of one or more ranks, which share the address and data bus. Each rank contains

multiple DRAM chips that share command signals among each other. DRAM chips are

15

comprised of banks. A DRAM bank is a two-dimensional array of DRAM cells consisting

of rows and columns. In addition, each bank contains sense amplifiers, which also work as

a small cache, holding the most recently accessed row in that bank and are usually referred

to as row buffer. Accesses to the off-chip DRAM are managed through an on-chip memory

controller. A Double Data Rate (DDR) memory device is following a naming convention

including generation, data rate, version. One example can be found in DDR3-2133L where

three stands for the generation, 2133 accounts for data rate, and ”L” represents the version

of the device. The data rate is interpreted as mega-transfers per second. There are three

basic DRAM commands. 1) Activation (ACT): upon accessing or receiving a request

to a row that is not currently in the row buffer, the memory controller issues an ACT

command to fetch the requested row from DRAM cells into the row buffer. 2) Read-

/Write (RD/WR): once the requested row exists in the row buffer, the memory controller

issues a RD/WR to conduct the read/write operation on the requested column(s) from

the row buffer. This is usually referred to as a CAS command. 3) Precharge (PRE): If

another row than the requested one resides in the row buffer, it has to be written back

to the DRAM cells before activating the requested row. This operation is referred to as

precharging and is conducted using a PRE command. In addition to these three opera-

tions, the memory controller has to periodically refresh DRAM cells to avoid data leakage

using a REF command.

2.4.2 Memory Controller Operations

Accesses to the off-chip DRAM are managed through an on-chip memory controller. The

MC buffers incoming requests from various processing elements in the system as well as

other requestors such as DMA into the queues. Those queues are usually either per-

requestor or per-bank. Note that a requestor can be any master entity in the system,

including a CPU core, DMA engine, GPU, etc. The MC performs three main operations

as follows:

1. Address Mapping: The MC translates the request address into DRAM physical

address (e.g., which bank, row, and column to access). Memory controllers might

allow for both assigning certain bank(s) to be private to a certain requestor as well

as declaring certain banks to be shared among all requestors. This can be done

either by the mapping function itself in the controller through configurable registers

or through the virtual memory support in the OS [29, 31, 120].

16

2. Access Scheduling: Once requests arrive at the controller, they are queued in

a request queue, which might depend on the issuing requestor in addition to the

target address. For instance, many memory controllers assume per-bank request

queues [33, 22]. Memory controllers deploy arbitration both at the request level

(using a request scheduler) and the command level (using a command scheduler).

The request scheduler arbitrates among requests from different processing elements

(requestors) to pick a request and translate it to its corresponding commands (com-

mand generation) and send it to the corresponding command queue. Finally, the

command scheduler arbitrates among ready commands to elect a command to issue

to the DRAM.

3. Command Generation: Command generator generates the command sequence for

each request and places the generated commands in the corresponding command

queue. The generated commands depend on the deployed policy by the controller

to manage the row-buffer, which is known as row-buffer policy or page policy. Two

common page policies are open-page and close-page. Under the open-page policy, the

memory controller leaves the data in the row buffer available for future accesses that

might hit in the row buffer and hence encounter a lower access latency. On the other

hand, the close-page policy writes back the data in the row buffer to the DRAM cells

immediately after each access. Since consecutive memory accesses usually exhibit

locality, the open-page policy generally improves average-case performance over close-

page policy. However, if a request’s row is different from the row in the row buffer,

a bank conflict occurs and this request has to wait first for the PRE operation.

Therefore, aside from the idle bank case (where the row buffer does not have any

data), a request under the open-page policy has two scenarios. 1) A close request,

whose row is different from the one in the row buffer; thus, the command generator

has to generate three commands for this request: PRE, ACT, and RD/WR. 2) An

open request, which hits in the row buffer, and thus, consists only of a RD (or WR)

command.

2.4.3 DRAM Timings

All these commands (PRE, ACT , RD, and WR) have associated timing constraints that

are mandated by the DRAM JEDEC standard [106] to ensure correct operation. Table 2.1

lists the constraints most related to this work along with their description (note that all

times in this chapter are measured as multiples of the MC clock period, whose frequency is

17

Table 2.1: JEDEC DDR3/DDR4 timing constraints.

Constraints 1066E 1333G 1600H 1600K 1866K 2133L 2400U

Inter-bank Constraints (Cycle)

tRRD: Row to row activation delay 4 4 5 5 5 5 l=6,s=4

tFAW : Activation window 20 20 24 24 26 27 26

tRTW : Read to write switching time 6 7 7 7 8 8 12

tWTR: Write data to read time 4 5 6 6 7 8 3

tWtoR: Write to read switching time 14 16 17 17 20 22 19

tCCD: Column to column time 4 4 4 4 4 4 l=6,s=4

tBus: Bus transfer 4 4 4 4 4 4 4

Intra-bank Constraints (cycle)

tRL: RD latency 6 8 9 9 11 12 18

tWL: WR Latency 6 7 8 8 9 10 12

tWR: WR data to PRE 8 10 12 12 14 16 12

tRCD: Row to column delay 6 8 9 9 11 12 18

tRP : Row precharge time 6 8 9 9 11 12 18

tRTP : Column to precharge time 4 5 6 6 7 8 9

tRC : Activation to activation 26 32 37 37 43 48 57

tRAS: Row access strobe 20 24 28 28 32 36 39

half the data rate of the device, i.e., for a 2400 device, the MC runs at 1.2GHz). As the table

shows, some of these constraints apply to commands to the same bank (intra-bank), while

others dictate the timings among commands to different banks (inter-bank). We say that

a command becomes intra-ready (inter-ready) when it satisfies its intra-bank (inter-bank)

constraints; a command is ready if it is both inter- and intra-ready. Figure 2.4 depicts a

simplified DRAM state diagram that shows the relationship and timing constraints between

device states and commands. DRAM cells should be refreshed periodically to prevent data

leakage by issuing refresh (REF) commands. The effect of refresh delays is usually not

accounted for at the request-level analysis since it can be added as an additional delay

term to the execution time of a task using existing methods [10, 117].

2.5 Related Work: Predictable Memory Controllers

Most COTS platforms deploy memory controllers with multiple architecture optimizations

as an effort to overcome the effects of the interference on performance. These optimiza-

18

Idle Activate

Read

Write

Read
auto PRE

Write
auto PRE

Prechar-
ge

ACT(tRCD)

Write (tCCD)

Read(tCCD)

ReadP (tCCD)

WriteP (tCCD)

PRE (tRAS)

Figure 2.4: DRAM operation state machine diagram.

tions include exploiting locality through caching the most recently accessed DRAM page

(known as open-page policy), reordering to prioritize requests to these cached pages (known

as FR-FCFS scheduling), and read/write prioritization through write batching [121]. In

particular, FR-FCFS arbitrates based on readiness and age of the requests. In FR-FCFS

policy, assuming that there is no limitation on how many requests are re-ordered in the

buffer, there can not be a bound on WCL of a request. FR-FCFS prioritizes memory re-

quests that hit in the row-buffers of DRAM banks over other requests, including older ones.

Row-buffer holds the most recently accessed row in that bank. If there is no request in

the row buffer, then FR-FCFS prioritizes older requests similar to FCFS approach. This

arbitration mechanism does not differentiate among requestors. Despite being beneficial

for average performance, such optimizations were found to hurt analyzability and increase

the WCL of DRAMs [44].

To overcome this challenge, real-time system researchers proposed to entirely redesign

the memory controller to provide tight WCLs. Towards doing so, they disabled most afore-

mentioned architectural optimizations. For instance, they prohibited the caching of DRAM

pages by deploying a close-page policy, they replaced FR-FCFS with predictable schedul-

19

ing such as RR or TDM, and they disabled write batching by equally scheduling reads

and writes [2, 95, 22, 23, 24, 27, 59, 43]. As anticipated, these solutions successfully led to

achieving better predictability for DRAMs; nonetheless, at the expense of significantly de-

grading average-case performance. This is ill-suited for modern embedded systems hosting

mixed-criticality tasks with both latency-sensitive (critical) tasks and bandwidth-oriented

(non-critical) tasks.

Accordingly, recent solutions targeted those mixed-criticality systems and offered com-

promise designs between the two extremes by adopting some of the architectural features

existing in COTS platforms to enhance average-case performance, while deploying novel

policies to still provide WCL bounds. We believe that this is a promising direction towards

building high-performance yet predictable off-chip memory systems for mixed-criticality

systems. Nonetheless, we believe the existing state-of-the-art works are still falling short

to achieve this target. This is because when studying such works, we find them to suf-

fer from one or more of the following drawbacks. 1) Some controllers favor performance

at the expense of larger WCLs. For instance, controllers that deploy open-page policy

(e.g. [116, 22, 23]) have different WCL scenarios based on the request type (whether page

hit or miss, read or write), where a page miss suffers a significantly larger WCL (as large as

the double based on our analysis). Although we believe the open-page policy is crucial for

performance, such huge variability in the WCL based on the access behavior of the applica-

tion hinders predictability; 2) On the other hand, other controllers aim at providing tighter

bounds but suffer a substantial performance degradation [33, 84]. To exemplify, some so-

lutions disable page caching by deploying close-page policy [33, 84], use static scheduling,

or disable write batching, which results in large overhead delays of bus turnaround time

upon switching the DRAM data bus direction between reads and writes [44]; 3) We find

most of the existing proposals require drastic changes to the currently available COTS

designs, which limits their applicability for the emerging markets of embedded systems

such as automotive and avionics.

We can categorize the DRAM memory controller designs proposed in recent years

into two categories; high-performance controllers and real-time controllers. Most high-

performance controllers employ FR-FCFS arbitration to maximize bus utilization. In such

controllers, the goal is to prioritize the row hit requests to increase the memory through-

put. Although these approaches are in favor of the average-case performance, they lead

to unfairness across different applications. For example, applications with a high hit ratio

will be prioritized over other applications and impose considerable delay or even lead to

starvation. There is much work explored to solve the problem mentioned above by mod-

20

ifying the memory controller architecture. Examples include [64, 79, 65, 107]. The key

point in all of these works is to introduce application-aware scheduling. Controllers which

employ FR-FCFS tend to re-order the requests. This behavior leads to unbounded latency,

and the only possible approach to prevent it is limiting the number of re-ordering [62, 121]

amongst requests. However, the WCL of such controllers can be very high or even un-

bounded, hence leading to poor predictability in the system. In terms of the average

performance, generally, two reasons increase the WCL of a request when running alone.

First, the delay from opening and closing rows, and second, switching the data bus direc-

tion. Data bus is bi-directional and requires a certain number of clock cycles to change

the direction of CAS commands. Therefore, they reduce the bandwidth of the system. In

a multi-core platform in which cores are sharing the banks, accessing different rows in the

same bank reduces locality and this can happen frequently, thus, it increases the memory

access latency and reduces the total bandwidth of the system. Note that periodic refreshes

also take a significant amount of time, which leads to higher WCET [93, 21, 16].

There is a large body of research that focuses on real-time predictable memory con-

trollers [84, 69, 42, 53, 59, 109, 116, 66, 22, 23, 24, 33, 85]. AMC [85, 84] employs static

command scheduling with close-page policy to take benefits from constructing off-line com-

mand bundles for read/write requests. It also supports bank parallelism by interleaving

operations of the same request over multiple banks. The command scheduler of AMC

arbitrates between pending commands in FCFS manner. At the request scheduling level,

AMC employs RR to provide fair arbitration among critical requestors and a lower pri-

ority assigned to non-critical requestors. PMC [43] employs a static command scheduling

approach and introduces four static command bundles depending on the minimum request

size in the system. Therefore, the page policy can be changed depending on the request

size. The authors also proposed an optimization framework to generate an optimal work-

conserving TDM schedule that supports mixed-criticality systems with different criticality

requirements. Such requirements can be determined by maximum latency or minimum

bandwidth for individual requestors.

RTMem [69] proposes a dynamic command scheduling with interleaved-banking and a

hybrid page policy (which can be open or close). Dynamic command scheduling is used

to improve average-case performance and allow for greater bank parallelism. Since RT-

Mem is a back-end architecture, it can leverage any front-end request scheduler. RTMem

considers variable request size by decoding each size into interleaved banks, and a number

of read/write operations per bank. These parameters are selected offline to minimize the

request latency. Similar to PMC, at run-time, RTMem issues open-row READ/WRITE

21

commands until it reaches the last burst count, where auto PRE commands are issued to

close the open rows. ORP [116] is the first approach in real-time memory controller litera-

ture that used open-page policy with dynamic command scheduling. In order to minimize

the interference amongst the banks, private banking was used to avoid row interference.

The memory controller uses RR arbitration for critical requests to provide the guarantee

and also a complex FCFS arbitration among commands to take the benefit from the bank

parallelism. ROC [66] improves over ORP by extending the DRAM module to multi-rank

devices and mitigating the tWtoR and tRTW timing constraints since they do not apply

between ranks. Hence, ROC provides two-level arbitration; the first level performs a RR

among ranks, and the second level performs a RR among requestors assigned to banks in

the same rank.

DCmc [53] also uses a dynamic command scheduler with an open-page policy and pro-

vides support for mixed-criticality and bank sharing among requestors. Critical requestors

are scheduled based on RR in the same bank, while non-critical requestors are rescheduled

according to FR-FCFS in the Soft Real-Time (SRT) banks to provide improved average-

case performance. It also supports private banks per requestor and interleaved over shared

banks. However, private banks are in favor of HRT tasks since they provide lower request

latency bound. A more flexible bank assignment was proposed by MAG [114]. It assumes

that SRT requestor can share the same bank with the HRT requestor but has lower prior-

ity during command scheduling and allows the preemption between SRT and HRT tasks.

Since the write accesses are not on the critical execution path, MEDUSA [109] considers

read access has higher priority than the write access. It assumes a write buffer with a fixed

size and write accesses are only served if there is no read request or the write buffer reaches

high watermark.

Mixed Critical Memory Controller (MCMC) [24] uses a similar rank-switching mecha-

nism as in ROC but applies it to a simpler static command scheduling with a close-page

policy. MCMC allows a predetermined number of critical and non-critical applications to

coexist, while mitigation the memory interference for the critical applications. TDM arbi-

tration is used to divide the timeline into a sequence of slots alternating between ranks.

Each slot is assigned to a virtual device, and the HRT memory request has priority over

the SRT requests. SRT requestors share the virtual device using round-robin arbitration.

The SRT requestors receive non-predictable memory bandwidth since the slot can always

be utilized by HRTs. As with TDM arbitration, the main drawback of this approach is

that bandwidth will be wasted at run-time if no requestor is ready during a slot.

ReOrder [22] is also an open-page memory controller which improves over ORP by

22

employing CAS reordering techniques and bundling read/write requests to reduce the

access type switching delay. It uses a dynamic command scheduler among the three DRAM

commands: RR for ACT and PRE commands, and read/write command reorder for the

CAS command. Commands are issued in rounds where in each round only one turnaround

in direction (read/write) is permitted. This eliminates repetitive CAS switching timing for

read and write commands since as shown in [22], the switching delay between the different

direction of CAS commands is the major timing constraint in the request latency. If a

multi-rank module is in use, the controller schedules the same type of CAS in one rank,

and then switches to another in order to minimize the rank switching as proposed in [23].

[33] proposed a new DRAM controller design named REQBundle that bundles memory

requests of HRT applications in consecutive rounds according to their direction. This

bundling based on the direction reduces the number of read-to-write and write-to-read

switching delay. Open-page is applied for SRT requestors to increase bandwidth by allowing

open requests to be serviced from row buffer and a close-page scheme is applied for HRT

requestors to uphold predictability. In order to avoid process SRT and HRT applications

at the same time, the controller works on the idea of a snapshot. When the snapshot is

taken, the controller scans through the HRT bank command queues and accepts requests

that are intra-ready. Any request that becomes intra-ready after this time will not be

serviced in the current round. The request scheduler executes different arbitration policies

for SRT and HRT banks. Employing request bundling with pipelining can improve the

tightness of WCL because of increasing the number of commands that can be issued in a

certain amount of time.

As it is clear in all the previous predictable memory controllers, there is a trade-off

between average-case performance and predictable worst-case bounds, as techniques tar-

geted at improving the former can harm the latter and vice-versa. We find that taking

advantage of pipelining between different commands can improve both, but incorporating

pipelining effects in worst-case analysis is challenging. To achieve this goal, we introduced

a novel DRAM controller called DRAMbulism that successfully balances performance and

predictability by employing a dynamic pipelining scheme [74]. In particular, our work show

that the schedule of DRAM commands is akin to a two-stage two-mode pipeline. There-

fore, we proposed an easily-implementable admission rule that allows the system to dy-

namically add requests to the pipeline without hurting worst-case bounds. Our evaluation

shows that DRAMbulism provides comparable bounds to the most predictable real-time

controller which is REQBundle [33] while delivering average performance similar to the

highest-performance real-time controller that is ReOrder [22].

23

Another direction investigates the replacement of the commodity DDR DRAMs that

have inherent big latency variations with different emerging memory types that are more

predictable, such as the reduced latency DRAM (RLDRAM) [36]. Although such direction

is achieving promising results, FCFS DRAMs are still the de facto standard for main

memory, and hence, achieving predictability in systems adopting them remains an urgent

challenge.

24

Chapter 3

Duetto Reference Model

In this chapter, we address the fundamental trade-off between average performance and

predictability by introducing the Duetto reference model. Specifically, we focus on intro-

ducing Duetto general model on a simplified shared resource to exemplify how the approach

works. In detail, we make the following contributions in this chapter.

1. We provide a conceptual description and formalization of the Duetto reference model

in Section 3.2.

2. We exemplify the usage of Duetto to design a controller architecture in Section 3.3

for the case study of a system where cores share an interconnect to a shared multi-

bank memory. The interconnect deploys a separate read and write bus connecting all

cores to all memory banks and memory bus, which resembles the commodity buses

existing in modern Systems-on-Chip (such as the ARM’s AXI [4]).

3. Section 3.4 provides a detailed evaluation of the architecture in the case study by

implementing the aforementioned resource and controller architecture in MacSim [60],

a multi-core full-system, cycle-accurate simulator. Our results show that the derived

architecture can achieve very close performance to a conventional high-performance

arbiter while providing tight latency guarantees.

25

3.1 Case Study

We begin by describing the multi-bank memory used in our case study, so that we can use

it as a running example throughout the chapter. We selected such resource since it allows

us to highlight the key steps in the proposed design methodology, especially concerning

parallelism in the hardware; at the same time, its behavior is not so complex as to prevent

us from fully detailing the latency analysis in the available space. However, we have also

validated the reference model on more complex memory models (specifically, DRAM in

Chapter 5 and LLC in Chapter 4).

We consider a memory comprising N independent banks b1, ..., bN . All banks share

one Read Bus (RB) and one Write Bus (WB). Each bank can only process either one

read operation or one write operation at a time. A read operation requires tr clock cycles

to access the data in the bank, followed by tbus cycles to transfer the data on the read

bus. A write operation requires tbus cycles on the write bus, followed by tw clock cycles

to store the data in the bank. A memory controller receives memory requests from cores,

arbitrates among such requests, and sends read/write commands to the banks to trigger

memory operations. The controller cannot issue a command to a bank bj if the bank is busy

processing a previous operation, or if doing so would create a bus conflict with the operation

of a different bank. This implies that the controller can send at most one read and one write

command to two different banks at the same time. Sending such commands takes one clock

cycle. Note that split read/write buses are common in modern SoCs [103, 25, 102, 123] to

reduce contention for access to memories and high-speed I/O; an example is the ARM AXI

interconnect [4]. Compared to AXI, our model is slightly simplified, particularly in that we

do not consider the time required for the cores to issue requests to the controller; however,

this could be included by modeling the request bus and its associated arbiter as another

resource, and then summing the two latencies over the request bus and the memory/data

bus.

An example schedule is shown in Figure 3.1. We assume that the system is initially

idle, then the following requests arrive at the controller: two read requests for bank b1;

one write request for b2; and one read request for b3. At time 0, the controller can send

both a read command to b1 and a write command to b2. The controller must then wait

until t = 4 to send the read command to b3, since sending it earlier would cause a read bus

conflict. Finally, to issue the second read command to b1, the controller must wait until

the latest of two events: the bank to become idle and for the absence of read bus conflict,

which means the command is issued at t = 8.

26

tbus

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

tr + tbus

2

tbus + tw
tr + tbus

Read operation Write operation Cmd issued

R
W

1

2

tbus

R3

tbus tbus

R1

b1

b2

b3

RB
WB

tr + tbus

Figure 3.1: An example schedule for 4 requests accessing different banks with tbus = 4 and

tr = tw = 3.

3.2 Reference Model

We introduce the Duetto reference model. Concretely, we first decompose the system into

a set of communicating conceptual components as shown in Figure 5.1. Then, we detail

the execution model and discuss the provided latency guarantees.

3.2.1 Requestors and Requests

We assume that the system comprises M distinct requestors : P1, ..., PM , which issue re-

quests for service to a shared resource. Depending on the resource, requestors could be

cores, bus masters/DMA devices, or in general, any active hardware component. We as-

sume that the requestors can have multiple outstanding requests. Upon being issued, a

request is first stored in a request buffer ; we call this the arrival time of the request. An

arbiter then mediates access to the resource based on the stored requests. Finally, a re-

quest is removed from the request buffer once it completes service at the resource; we call

this the finish time of the request. We assume that the requests of each requestor Pi can

be totally ordered based on their arrival time, so that we can index them as ri,1, ..., ri,j,

Each request has a type; function T (ri,j) returns the type of ri,j. We use R to denote the

set of outstanding requests (requests that arrived and have not yet finished) at any one

point in time; conceptually, this represents the state of the buffer. We do not impose any

specific implementation of the buffer, albeit typically some form of hardware queue(s) is

27

DTracker

WCLator

RT Arbiter

HP Arbiter

.

.

.

HP cmd

RT cmd

State R

State S

State S

Req.finished

State A

Absolute
deadline

Is
su

ed
 c

m
d

R
es

o
u

rc
e

Req.finished

R
eq

u
e

st
 b

u
ff

er

State S

Figure 3.2: Duetto reference model.

employed. However, we assume that it is possible to construct a total order of the requests

issued by each requestor based on the time at which they are issued.

Example: in our case study, requestors are Out-of-Order (OoO) cores. The type of a

request is either read or write. Each core can issue multiple concurrent requests to any

subset of banks. The considered arbiter resembles those in COTS by increasing parallelism

through allowing to service requests OoO [97, 62]. For simplicity, we assume that a request

finishes after the arbiter sends its read/write command.

3.2.2 Request Latency and DTracker

In real-time systems, timing guarantees depend on the WCET of tasks (schedulable en-

tities). Following related work [34, 40], the WCET of a task running on core Pi can be

represented as: ei = ci + Di, where ci is the WCET of the task in isolation, i.e., with no

interference from other tasks, while Di is the bound on the total cumulative worst-case

28

ri,j
ri,j+1
ri,j+2

Processingi,j

Queueingi,j+1

Processingi,j+2
time

tai,j

tai,j+1

tai,j+2

t fi,j

t
f
i,precj+1

t
f
i,precj+2

t fi,j+1

Queueingi,j+2 t fi,j+2

Figure 3.3: Queuing and processing latency example. Assume that all previous requests

ri,k with k < j finish before tai,j. We use ↑ for the arrival time tai,j of each request, ↓ for its

finish time tfi,j, and ↑ for the start of processing: max(tfi,precj , t
a
i,j).

delay suffered by the task’s requests to the shared resource under interference. Di is cal-

culated as the bound on the worst-case number of requests multiplied by the worst-case

processing latency of each request [45]. In a multitasking system, the same approach can

be applied [45, 62]: real-time scheduling theory can be used to determine the set of tasks

that execute in a given busy interval (a scheduling window); ei and Di are then taken as

the cumulative WCET in isolation and worst-case resource delay over all tasks in the win-

dow. For example, response time analysis can be used to determine which tasks execute

in a given busy interval, what is their pure computation time and how many requests they

generate per-core [45, 62]. The length of the busy interval is then obtained by summing

the computation time of the tasks plus the overall request delay.

The goal of Duetto is to provide worst-case guarantees on the latency of each request.

Since a requestor might have multiple outstanding requests (for instance OoO cores, su-

perscalar, GPU, etc.), requests might not be serviced in order. Therefore, it is necessary to

precisely define the concept of latency. Following related work [62, 71], we use the following

definition:

Definition 1 (Queuing and Processing Latency). Let tai,j be the arrival time of request

ri,j, let tfi,j be its finish time, and let precj be the index of the request ri,precj of Pi with

latest finish time among those that arrived before ri,j (i.e., such that precj < j). Then

the queuing latency of ri,j is max
(
0,min(tfi,j, t

f
i,precj

) − tai,j
)
, while the processing latency

is max
(
0, tfi,j −max(tfi,precj , t

a
i,j)

)
.

Figure 3.3 shows an example with three requests. In this figure, since tfi,precj < tai,j, the

queuing latency of ri,j is zero meaning that while ri,j is being serviced, there is no other

29

request processing in the resource. As in all related work, our reference model bounds

the processing latency only. The key reason is that whenever a requestor issues multiple

requests and stalls until they complete, the stall time is upper bounded by the sum of the

processing delay of the requests. In particular, as discussed in [115], this means that the

delay suffered by a real-time task executed on a core accessing a shared resource can be

bounded by the sum of the processing delay of the requests issued by the task. For this

reason in Figure 3.3, the processing latency of ri,j+1, which is covered by the processing

time of ri,j, is set to zero. Furthermore, the processing time of ri,j+2 only starts when the

processing of previous request to the resource is completed (ri,j) and while ri,j+2 is waiting

to start the processing, it is suffering a queuing delay as shown in the figure.

Based on the above discussion, latency requirements in our reference model are ex-

pressed by associating each requestor Pi and each type of request with a relative deadline

Di

(
T (ri,j)

)
, which represents the maximum allowable processing latency for each request

of that requestor and type. Consequently, the finishing time of every request ri,j must be no

later than its absolute deadline di,j = max(tfi,precj , t
a
i,j)+Di

(
T (ri,j)

)
. The Deadline Tracker

(DTracker in Figure 3.2) component is responsible for maintaining such information using

a slack counter, which counts the number of clock cycles until the absolute deadline (i.e.,

at clock cycle t, the value of the slack counter is max(tfi,precj , t
a
i,j) +Di

(
T (ri,j)

)
− t). Note

that it suffices to maintain a single absolute deadline for each requestor Pi, associated with

its oldest outstanding request ri,j: this is because subsequent requests of Pi cannot have

an absolute deadline earlier than the finish time of ri,j. To simplify exposition, in the rest

of the chapter we will thus use the term “oldest request” to denote any request that is the

oldest for its requestor (rather than the oldest among all requestors).

Definition 2 (Oldest Request). At any time t, the oldest request of a requestor (if any) is

the earliest arrived request of that requestor that is still outstanding at t.

3.2.3 Commands and Resource Interface

An arbiter controls the resource to service requests by issuing one command every clock

cycle. Such commands alter the internal state s of the resource. We use S to denote the

set of all possible resource states. Like requests, every command is characterized by a type.

A “no-operation” NOP command is used whenever the resource is idle.

Example: based on the discussion in Section 3.1, the resource accepts four types of com-

mands: NOP , RD, WR, and RD/WR. Note that while in this case a request is serviced

30

by a single command, depending on the resource, additional commands might be required.

For example, a DRAM request might require a PRE, ACT , and CAS commands [106].

We assume that the command semantic is defined by an automata, which we call the

resource interface. Essentially, the interface defines the “contract” between the resource

and the arbiter; in this sense, it does not need to model the low-level internal state of the

resource, but rather only those details that are relevant in terms of the behavior of the

commands. For many resource types, the interface is defined by a standard, e.g. JEDEC

for DRAM [106]. Let S to denote the current state of the resource interface; we say that

a command is valid in S if the resource can accept that command. We further say that a

command is legal if it is valid and satisfies an outstanding request in R, and use L(S,R) to

denote the set of legal commands. Note that a command might be valid but not legal: for

example, a requestor might issue a read request to a memory resource, and an erroneous

arbiter might then generate a valid but incorrect write command for that request.

The number of command types (other than NOP), as well as the number of commands

that must be issued to satisfy a given request, depend on the resource. For example, in the

case of a simple bus, the only operational command might be grant(i, t), granting access

to the bus to Pi for t clock cycles. For a read request in data cache resulting in a miss,

operations might include reading the tag memory, sending a fetch request to main memory,

evicting a cache line, and more if coherency is supported.

Example: the behavior of the resource interface can be defined using N +2 timers: cr, cw

for the read and write bus, and cbj for each bank bj. c
r (cw) is set to tbus every time a RD

(WR) command or RD/WR command is issued. Whenever a command is sent to bank

bj, c
b
j is set to either tr + tbus (for a read operation) or tbus + tw (for a write). A command

is valid only if all relevant bank and bus timers are zero. We say that a request is ready if

it can be serviced by issuing a legal command in the current clock cycle.

3.2.4 High-Performance and Real-Time Arbiter

The reference model comprises two arbiters: a HPA, which we assume to be optimized for

maximum average performance, and a RTA, optimized for tight latency bounds. Since this

chapter focuses on timing requirements, and not functional verification, for simplicity, we

will assume that the HPA is correct, in the sense that it always issues legal commands. If

the correctness of the HPA cannot be verified, the methodology can be extended with an

additional checker module that checks the legality of the commands based on the states

31

2

Read operation Write operation Cmd issued

W1

tbus
R2 R 2

b1

b2
RB
WB

R2

tbus tbus

W1 W1

2

tbus + tw tbus + tw tbus + tw
tr+tbus tr+tbus tr+tbus

tbus tbus tbus

Figure 3.4: Unbounded latency. A read request to b1 is never ready, since the read bus is

occupied whenever b1 becomes idle.

S,R of the resource interface and request buffer. We do not make any further assumptions

on the way that requests and their corresponding commands are scheduled by the HPA. In

other words, we do not need to analyze the behavior of the HPA, and its behavior can be

modified without impacting real-time guarantees. This ensures that the latency guarantees

provided by our methodology are completely independent of the HPA. On the other hand,

the behavior and internal state of the RTA, which we denote as A, must be explicitly

modeled.

Example: for our evaluation in Section 3.4, we employ a FR-FCFS arbiter as the HPA. At

each clock cycle, this arbiter selects among ready requests, and gives priority to requests

based on their arrival time. We choose this arbiter because, as shown in literature [97],

it tends to maximize performance in terms of the overall Instructions Per Cycle (IPC)

of the system by favoring applications with high IPC that can issue multiple concurrent

memory requests. However, note that this arbiter does not provide any latency guarantee.

In particular, as shown in Figure 3.4, we can construct a pattern of memory accesses where

a read request to bank b1 can be stalled for any amount of time by a sequence of write

requests to b1 and read requests to other banks. We discuss the design of the RTA in

Section 3.3.

3.2.5 Execution Model and Latency Guarantees

Finally, we discuss the execution model and how latency requirements are guaranteed

by the Worst-Case Latency Estimator (WCLator) component, which is the core of our

32

reference model. As Figure 3.2 illustrates, the two arbiters operate independently and in

parallel. Every clock cycle, each arbiter selects one command (possibly NOP) based on

its internal state, as well as the states S,R of the resource interface and request buffer. In

parallel, the COTS selects between the two arbiters; the command of the selected arbiter

is then issued to the resource through the multiplexer in the figure. Since the command

issued in a clock cycle might be different from the one selected by an arbiter, we require

that each arbiter updates its internal state based on the actual issued command, rather

than the one it selects. It is essential to note that because we are targeting high-speed

hardware implementation, we assume that the WCLator must make its decision

without knowing which commands are selected by the two arbiters: otherwise,

the WCLator logic would have to be placed in series with the arbiters, which could greatly

slow down the clock speed.

To decide between the arbiters, at each clock cycle and for each requestor Pi with one

or more outstanding requests, the WCLator computes an upper bound to the finish time

tfi,j of its oldest request ri,j, under the assumption that any legal command can be sent

in the current cycle, while the RTA is selected in all future cycles. If for each

such requestor, the computed finish time is less than or equal to the deadline di,j, then

the WCLator selects the HPA. Otherwise, it selects the RTA. The intuition for this decision

is that if the computed finish time is no larger than the deadline, then it is safe to continue

with the (legal) command that is selected by the HPA given that the WCLator can switch

to the RTA from the following cycle. Note that the WCLator’s estimation can be based on

the current states S,R and A of the resource interface, request buffer and RTA. We next

formally prove that the system meets all deadlines, as long as the latency requirements are

not set to a smaller value than the latency guarantees provided by the RTA.

Definition 3 (Static Worst-Case Latency (WCL) Bound). For every requestor Pi and

request type, let ∆i

(
T (ri,j)

)
to be an upper bound to the processing latency of ri,j assum-

ing any possible state of the resource interface S, request buffer R and RTA A at time

max(tfi,precj , t
a
i,j), and that the WCLator always selects the RTA from max(tfi,precj , t

a
i,j) on-

ward.

Theorem 4. No request misses its deadline if for all requestors and request types it holds:

Di

(
T (ri,j)

)
≥ ∆i

(
T (ri,j)

)
.

Proof. By contradiction, assume there exists a request ri,j that misses its deadline at di,j.

Since di,j = max(tfi,precj , t
a
i,j)+Di

(
T (ri,j)

)
and no older request of Pi can finish after tfi,precj ,

33

it follows that ri,j is the oldest request of Pi in the interval [max(tfi,precj , t
a
i,j), di,j). We con-

sider two cases: (1) the WCLator always sends commands of RTA in [max(tfi,precj , t
a
i,j), di,j);

(2) or the WCLator sends at least one command of HPA during such interval; in which

case let t be the latest time at which an HPA command is sent.

Case (1): by Definition 3 and since the RTA is always selected, ri,j must finish by

max(tfi,precj , t
a
i,j) + ∆i

(
T (ri,j)

)
≤ max(tfi,precj , t

a
i,j) +Di

(
T (ri,j)

)
= di,j; a contradiction.

Case (2): since the WCLator selects the HPA at time t, while the RTA is selected for

all following cycles until di,j, and because by assumption the HPA is correct, it follows that

tfi,j ≤ di,j, again a contradiction.

The key intuition behind Duetto is that using run-time information on the state of

the system typically allows the WCLator estimation to be much tighter than any possible

static WCL bound. Hence, unless the system becomes fully loaded, the WCLator can keep

selecting the HPA and avoid loss of average performance. It is important to point out that

S consists of any possible states and not just the states that are reachable by the RTA. In

detail, at any point in time, the HPA can be selected and potentially bring the system to

different states than the one that is reachable by RTA. For this reason, the analysis cannot

be done assuming that the RTA always running from the beginning of the execution. This

might be slightly pessimistic compared to assuming that RTA runs forever. However, in

terms of deriving the analysis bound, the operation of HPA does not matter since the

bound is computed assuming that the RTA always runs.

3.3 Architecture Design

We next show how to employ the reference model to design a concrete architecture. We

consider a use-case where the resource, HPA and request buffer have already been de-

signed/implemented, and the designer wishes to add support for latency requirements

using Duetto. The detailed DTracker design depends on the request buffer, but we ar-

gue that it is generally straightforward 1. Therefore, we focus on the design of the RTA

and WCLator. We do not claim that an automated process is possible; however, we be-

lieve that the design can proceed through a sequence of four conceptual steps, which we

illustrate based on our case study.

1To simplify implementation, it is preferable to store the number of cycles remaining until the absolute

deadline, rather than the absolute deadline itself.

34

Table 3.1: Symbols used in latency analysis.

Symbols Description

Pi Core i

bk Bank k

hpi Set of higher priority requestors than Pi

tbus Clock cycles to transfer the data on read/write bus

tr Clock cycles to access the data in the bank

tw Clock cycles to store the data in the bank

cr Counter for read bus

cw Counter for write bus

cbj Counter for bank j

kbank,r Number of read oldest requests of requestors in hpi that target bk
kbank,w Number of write oldest requests of requestors in hpi that target bk
kbus,r Number of oldest read requests of requestors in hpi that target another bank

kbus,w Number of oldest write requests of requestors in hpi that target another bank

3.3.1 Step A: RTA Design

We design a dynamic RR arbiter, which provides the same latency guarantees to every

requestor without unduly limiting bank parallelism. A requestor is removed from the RR

queue when its oldest request finishes, and enqueued at the back of the RR queue if it

has any outstanding request. For a requestor Pi, we use hpi to denote the set of higher

priority requestors, i.e. the requestors that are ahead of Pi in the RR queue. We say that

a request of Pi to bank bk is blocked if there is a non-ready oldest request of a requestor

in hpi that also targets bk. The RTA arbitrates between non-blocked ready requests based

on a two-level arbitration scheme:

1. In the first level, it gives priority to oldest requests over non-oldest requests.

2. In the second level, it uses the RR order of requestors.

This means that if, for example, the oldest request of the highest priority requestor is

non-ready because its bank is busy, the controller can still service a lower priority request

to another bank. However, if the highest priority request is non-ready because its data bus

is busy, the controller cannot service a lower priority request of the opposite type (read to

write or vice-versa) to the same bank, since this could result in the pattern in Figure 3.4.

35

3.3.2 Step B: Dynamic RTA Latency Analysis

We compute an upper bound to the remaining latency (i.e., the time to finish) of the oldest

request ri,j of Pi assuming that the RTA is always selected. We encode the states S,R and

A into a small set of analysis parameters used to derive latency equations. In this chapter,

we only consider the case of a read request, but the write case is similar. Let bk be the

bank targeted by ri,j. We use kbank,r, kbank,w to denote the number of read/write oldest

requests of requestors in hpi that target bk, and kbus,r, kbus,w to denote the number of oldest

requests of requestors in hpi that target another bank; note that such parameters can be

easily derived at run-time based on the state of the request buffer R and RR queue in the

RTA (A). Table 3.1 summarizes the symbols used in the latency analysis.

Theorem 5. If the oldest request of Pi at time t is read request ri,j targeting bk, and the

RTA is always selected from t onward, its remaining latency tfi,j − t is bounded by:

if kbank,w = 0 : cinit,r + kbank,r · (tr + 2 · tbus − 1) + kbus,r · tbus + 1, (3.1)

if kbank,w > 0 : cinit,rw + kbank,r · (tr + 2 · tbus − 1) +

kbank,w · (tw + 2 · tbus − 1) +

(kbus,r + kbus,w) · tbus + 1, (3.2)

where:

if cr ≥ cbk : cinit,r = cr, (3.3)

if cr < cbk : cinit,r = cbk + tbus − 1, (3.4)

if cr ≥ cbk ∧ cw ≥ cbk : cinit,rw = max(cr, cw), (3.5)

if cr < cbk ∨ cw < cbk : cinit,rw = cbk + tbus − 1. (3.6)

Proof. Since oldest ready requests are arbitrated in RR order, and requests to bk are

blocked if there is a higher priority non-ready request, it follows that the RTA will service

a sequence of exactly kbank,r+kbank,w requests to bk followed by ri,j itself. Furthermore, after

36

a request in the sequence becomes ready and non-blocked, it can still be delayed by higher

priority requests targeting the same bus but a different bank; if kbank,w > 0, then conflicts

can happen over both the read and write bus; hence we consider kbus,r + kbus,w conflicting

requests, otherwise (kbank,w = 0), we only consider the kbus,r read requests. Then, the

remaining latency of ri,j can be obtained by summing: (1) the time until the first request

in the sequence to bk first becomes ready; we call this either cinit,r (if kbank,w = 0) or cinit,rw

(if kbank,w > 0). (2) The latency between issuing the command for one request in the

sequence, and the time the next request in the sequence becomes ready. Each request in

the sequence occupies bk for either tr + tbus (read) or tbus + tw (write) cycles; furthermore,

a lower priority request could be serviced the cycle before the bank becomes idle, adding

an extra tbus − 1 cycles of delay. Hence, the overall latency over the sequence is equal to:

kbank,r · (tr + 2 · tbus − 1) + kbank,w · (tw + 2 · tbus − 1). (3) The delay of higher priority

requests targeting a different bank; as argued, this is (kbus,r + kbus,w) · tbus if kbank,w > 0,

and kbus,r · tbus otherwise. (4) One clock cycle to issue a RD or RD/WR command to

service ri,j. Summing the four terms yields Equations 3.1, 3.2.

Finally, we consider cinit,r, cinit,rw. As shown in Equations 3.3-3.6, the two cases differ

only in which bus timers we need to consider, based on the type of requests in the sequence

to bk. If at time t, the relevant bus timer(s) is larger or equal than the bank timer cbk, then

the first request in the sequence will become ready when the bus timer(s) expire. Otherwise,

it is again possible for a lower priority request to be serviced one cycle before bk becomes

idle, resulting in an initial delay of cbk + tbus − 1. This concludes the proof.

3.3.3 Step C: Static WCL Bound

The static WCL bound ∆i

(
T (ri,j)

)
is obtained by maximizing the remaining latency in

Equations 3.1-3.6 over all possible values of the parameters. Specifically, we set cbk to its

maximum value max(tr, tw) + tbus − 1 (a request was issued to bk the previous cycle), and

set kbank,r + kbank,w = M − 1, kbus,r = kbus,w = 0 (requests to bank bk generate larger delay,

and there can only be one oldest request for each of the M − 1 other requestors), yielding:

∆i(read) = M ·
(
max(tr, tw) + 2 · tbus − 1

)
. (3.7)

Repeating the analysis for a write request yields the same bound. Hence, in our exam-

ple, all request types have the same static WCL bound; and since we treat all requestors

37

equally, the bound does not depend on the requestor either. However, more complex ar-

bitration schemes could differentiate between request types [121, 44] or requestors [46, 40]

based on criticalities. The obtained bound is predictable, in the sense that it is linear in the

number of requestors; each requestor contributes a latency term max(tr, tw) + tbus, which

represents the worst-case intra-bank time, plus a blocking term tbus − 1, which represents

the price for allowing inter-bank parallelism.

3.3.4 Step D: WCLator Design

Consider again the oldest request ri,j of Pi targeting bank bk at time t. To estimate its

finish time tfi,j, we enumerate a set of cases based on which request(s) (at most one read

and one write) could be serviced by a legal command issued at time t. For each case, we

compute a bound to the remaining latency of ri,j, so that we can obtain tfi,j by summing

the remaining latency with t.

• (1) If ri,j is serviced, then its remaining latency is 1 cycle.

• (2) Otherwise, the remaining latency is computed by using Equations 3.1-3.6 but

with a modified value of some parameters, as detailed in the sub-cases below, to

account for the command sent at t; this is possible because by definition the COTS

computes tfi,j assuming that the RTA is selected from t+ 1 onward.

• (2.1) If a request to bk is serviced, set cbk = tr + tbus or c
b
k = tbus + tw, depending on

the type of request; and subtract one from kbank,r or kbank,w if it is the oldest request

of a requestor in hpi.

• (2.2) If a request to another bank is serviced, set either cr = tbus or cw = tbus,

depending on the type of request; and subtract one from kbus,r or kbus,w if it is the

oldest request of a requestor in hpi.

• (2.3) If neither sub-case (2.1) or (2.2) apply, then a NOP is issued. In this case,

no change is needed if the value of cinit,r in Equation 3.1, or the value of cinit,rw in

Equation 3.2, is greater than zero; otherwise, add one to the latency computed by

the equation to account for the cycle wasted by issuing the NOP .

At run-time and for each requestor Pi, the COTS then uses the set of legal commands

L(S,R) to determine which cases can apply; and takes tfi,j as the maximum over all such

38

cases. Here, sub-case (2.1) can be excluded if cbk > 0, or there is no request targeting bk
apart from ri,j in the request buffer; combining such information with the state of the RR

queue in the RTA allows the COTS to also determine whether kbank,r or kbank,w should be

decreased or not (note that if possible, the latter case must be considered since it leads

to higher latency). Similar considerations hold for sub-case (2.2). The presented design

is well-suited for hardware implementation, because each case for every requestor can be

computed in parallel 2, and the resulting tfi,j compared against di,j to determine if the

HPA can be selected. Hence, the complexity of the implementation depends on the latency

equations. As shown by Equations 3.1-3.2, we argue that most analysis for predictable

arbiters [119, 40, 62, 121, 44] yield equations that involve adding terms, where each term

depends on an analysis parameter. This can be computed efficiently in hardware by using

one look-up table for each term, and then cascading the results through a sequence of

adders.

Note that it is not important who the requestor is if a request is not the oldest of a

higher priority one, since in that case Pi will keep its position in the RR queue. Also note

that subcases 2.2 can be excluded if cbj > 0, or there is no other request to bank j apart

from r in the request buffer; while subcases 2.3 and 2.4 can be excluded if cr > 0, cw > 0, or

there is no read/write request apart from r in the request buffer (similarly, we can decide

whether to subtract or not from the k values based on which requests are in the global

request buffer).

3.4 Evaluation

We use MacSim [60], an x86 multi-processor architectural simulator, to model the re-

questors in our evaluation. We incorporate eight 8-wide superscalars (i.e. it can process

multiple instructions per cycle) cores clocked at 1GHz and implement the case study in

the open-source MCsim memory controller simulator [73]3. All cores share a bus connected

to the multi-banked memory, as explained in the case-study throughout the chapter. We

employ two types of synthetic benchmarks: latency-sensitive and bandwidth-oriented from

IsolBench [110]. We run the non memory-intensive benchmark on the foreground core and

memory-intensive benchmarks on the background cores. Memory requests are interleaved

among all banks at the granularity of a cache line (64 bytes).

2To reduce area, an optimized implementation can merge cases that have similar bounds and remove

those with provably smaller latency.
3We introduce MCsim thoroughly in Chapter 5

39

104

0 5 10R
e

q
u

e
s
t

L
a

te
n

c
y
 (

C
y
c
le

s
)

200

400

600

800

1000

HPA

104

0 5 10

200

400

600

800

1000

RTA

104

0 5 10

200

400

600

800

1000

Duetto

Figure 3.5: Request latency of HPA, RTA, and Duetto.

Figure 3.5 delineates the processing latency of each request under HPA, RTA and Duetto

when all requestors contend for access to N = 8 banks with a bus time tbus = 10 cycles

and processing time tr = tw = 30. For visualization reasons, the figure only incorporates

requests with latency longer than 150 cycles. The red line represents the static WCL bound.

For HPA, we observe large latency spikes throughout the execution (the maximum observed

latency is 1094 cycles), which shows 179% increase compared to the static bound. This is

because HPA prioritizes requests that target a ready bank, which can starve (theoretically)

or delay for a long time (practically) requests targeting busy banks. On the other hand,

RTA guarantees the latency bound for all requests as expected. However, none of the

requests come close to the static WCL bound (392 cycles): this is because the static

analysis must assume that all requestors access the same bank at the same time, which is

unlikely in practice.

Finally, for Duetto we used the minimum possible relative deadline Di

(
T (ri,j)

)
=

∆i

(
T (ri,j)

)
for each requestor. The deadline value for each requestor is configurable and

can be determined based on the requirements and characteristics of the application/re-

questor. Duetto stretches the latency of requests towards the relative deadline (red line),

allowing it to keep selecting the HPA as long as possible. which is due to the fact that

the COTS estimates the latencies at run-time, and has thus more information on the re-

questors and banks (e.g., RR priorities). This allows Duetto to keep selecting the HPA as

long as no request risks violating its deadline, thus significantly improving average per-

40

Deadline Increment Steps(%)
0 50 100 150 200

N
or

m
al

iz
ed

 IP
C

1

1.1

1.2

1.3

HPA
Duetto
RTA

(a) IPC (tr = tw = 0).

Deadline Increment Steps(%)
0 50 100 150 200

N
or

m
al

iz
ed

 IP
C

1

1.1

1.2

1.3

HPA
Duetto
RTA

(b) IPC (tr = tw = 30).

Figure 3.6: IPC evaluation of two different configurations under Duetto.

formance compared to RTA as we show next. Notice that Figure 3.5 does not reflect all

requests as they only represent oldest requests with latencies greater than 150 cycles. The

average request latency among all requests in HPA is lower than Duetto and consequently

both HPA and Duetto are lower than RTA.

We use the aggregate IPC of the workload over 8 cores as a measure of performance.

Figures 3.6a and 3.6b show the IPC of RTA, HPA and Duetto normalized by the IPC

of RTA, when setting either tr = tw = 0 or tr = tw = 30. Notice that, tr = tw = 0

implies the requestors only compete to access the read/write buses, i.e. there is no bank

parallelism. For Duetto we first set all deadlines to the minimum possible value, and

then progressively increase them up to 3 × ∆i (200% increase). From the figures, the

performance of Duetto is already close to HPA with the strictest latency requirements,

and relaxing such requirements further increases its performance until it matches the HPA.

Furthermore, bank parallelism improves the relative performance of Duetto, as it increases

the difference between the static WCL bound and the dynamic bound. We have also

experimented by changing the number of banks and the way that requests are interleaved,

but we omit such results as they show little variations in terms of the relative performance

between HPA, RTA, and Duetto.

41

3.5 Summary

We introduced the Duetto reference model, a novel paradigm for shared hardware resource

management in real-time embedded systems. By pairing a high-performance COTS arbiter

with a predictable real-time arbiter and dynamically switching between the two at run-time,

Duetto is able to overcome the traditional trade-off between average-case performance and

predictability. Notice that, in this chapter we decided to consider all the requestors with

same priority to give them same latency bounds. Without this consideration, and similar

to other proposals in the literature [40, 24], we could make some requestors strictly lower

priority and this would result in better static bound for the higher priority requestors. We

next demonstrate Duetto on a broad spectrum of resources, including bus/LLC and DRAM

in Chapter 4 and Chapter 5.

42

Chapter 4

DUEPCO: Applying Duetto to Cache

Coherency with Added Parallelism

In this chapter, we propose a solution aiming at providing predictable, coherent shared

cache hierarchy solution, yet with a negligible performance degradation compared to COTS

solutions. This goal is achieved by adopting a high-performance-driven architecture includ-

ing a split-transaction bus and proposing to bankize the shared caches to resemble a system

with multiple shared resources. In addition, all accesses are arbitrated through a global

ordering mechanism. Our proposed arbiter operates alongside conventional coherence pro-

tocols without requiring any protocol modifications. Furthermore, this chapter applies

Duetto reference model on the hardware cache coherency.

Originally designed with performance as the main goal, COTS cache coherent inter-

connects deploy several re-orderings and optimizations that hinder their predictability. It

has been shown that even deploying a simple COTS coherence protocol such as the MSI

protocol on top of a TDM-based interconnect revokes the system predictability [39, 55]. To

address this problem, most existing solutions aiming to provide predictable cache coher-

ence impose both coherence protocol as well as architectural modifications [39, 104, 57, 55]

or at the very least require specific hardware support [38]. These changes have led

in early works to a quadratic increase in the worst-case memory latency due to coher-

ence [39, 104, 57] (Problem 1). Moreover, mandating coherence protocol modifications

discourages a real adoption of these solutions from the industry since adoption and verifi-

cation of a new coherence protocol is known to be one of the most complex architectural

tasks [5, 103, 90] (Problem 2). PISCOT [49] addresses these problems by enabling the

43

deployment of COTS coherence protocols on split-transaction interconnects. PISCOT also

reduces the quadratic worst-case coherence latency to be linear in the number of cores.

Nonetheless, PISCOT achieves this tight WCL by deploying two techniques that limit the

overall memory performance compared to COTS solutions. The first is a TDM-based re-

quest bus, which is needed to enforce predictability, and the second is limiting the number

of requests that each core can issue to the interconnect to one, which is needed to achieve

the aforementioned tight latency (Problem 3). Additionally, similar to all existing work,

PISCOT models the data bus and the LLC as a single shared resource, and hence, no par-

allelism is possible in accessing the LLC (Problem 4). In COTS platforms, since bank

processing times are much longer than the data transfer on the bus, LLC is usually a

bankized memory, where different banks can process requests in parallel to improve the

system’s performance [50]. Motivated by these limitations in the state-of-the-art works,

this chapter makes the following contributions:

1. We propose a novel real-time arbitration scheme for managing memory accesses in

the cache hierarchy. This arbiter models cache hierarchy as independent and parallel

resources: the request (control) bus, the response (data) bus, while each LLC’s bank

is a resource of its own. This is key to leverage parallelism among these components to

improve average performance, while tightening memory latency bounds (addressing

Problems 1 and 4). More details about this arbiter are in Section 4.2.

2. To further address the performance-predictability trade-off in modern embedded sys-

tems, we propose DUEPCO that applies the Duetto reference model on the hardware

cache coherency. This is achieved by integrating two arbiters: a High-performance

Arbiter (HPA) that offers the system a COTS-level performance most of the time,

while the proposed Real-time Arbiter (RTA) runs in parallel and is only utilized when

necessary to meet timing guarantees (addressing Problem 3). Section 4.4 discusses

the operation of DUEPCO.

3. We provide a timing analysis that ensures predictability by statically bounding the

worst-case latency suffered by any memory request. Unlike the solutions in [39, 55,

57, 104], and similar to [49, 38, 56], this bound is linear in the number of cores

(addressing Problem 1). Furthermore, DUEPCO is also able to track the dynamic

latency behavior of memory requests at run-time, which enables us to further the

decision of which arbiter to be used (real-time or high-performance) based on the

current status of the resources and the pending requests from different cores. This is

discussed in detail in Section 4.3.

44

Figure 4.1: Architecture model.

4. DUEPCO operates alongside conventional coherence protocols without requiring any

protocol modifications (addressing Problem 2).

5. Finally, we evaluate the proposed arbiter as well as DUEPCO against the state-of-

the-art predictable coherency solution as well as a baseline COTS solution. Our

evaluation shows that DUEPCO outperforms state-of-the-art predictable solution in

terms of overall throughput by up to 6.4× and shows negligible slowdown compared

to COTS solutions as low as 2% while providing comparable latency bounds to the

best predictable mechanism.

4.1 System Model

In this section, we first detail the hardware architecture considered in this chapter along

with the coherency assumptions. Then, we explain how requests generated by the cores

are processed by the proposed hardware architecture and how the latency for each request

is constructed.

45

4.1.1 Architecture and Coherency

An overview of the proposed hardware architectural model is delineated in Figure 4.1.

We consider a multi-core system with M OoO requestors1 including processing cores,

P1, ..., Pi, ..., PM where each requestor has exclusive access to a private cache. We as-

sume that tasks running on the cores can share data among each other; hence, a coherency

protocol must be employed in the system to allow coherent actions among cores and LLC.

We assume data transfers amongst private caches could be either from the LLC banks or

via the Cache-to-Cache (C2C) transfers which exhibit improved average-case performance.

In this chapter, we adopt the MSI coherency protocol that includes three fundamental sta-

ble states as discussed in Chapter 2. Notice that, we do not modify the coherency protocol

by any means, which simplifies the verification efforts compared to the approaches that

alter protocols.

All cores have access to shared memory that we assume is an on-chip LLC. Instead

of a unified interconnect commonly deployed in real-time architectures, we consider a

split-transaction bus in which all communications between cores and LLC is done using

two separate buses: 1) request bus, which is responsible for broadcasting the coherency

messages; 2) response bus, which is dedicated interconnect to transfer the data responses

from/to cores. These two buses operate in parallel to improve the performance of the

system. The request bus and response bus take a certain amount of time to transfer

message packet and data response, which we represent with tREQ and tRESP , respectively.

In order to maximize the parallelism in the system, we propose to bankize the LLC in

which multiple requests could be processed simultaneously. Therefore, we assume that

the LLC consists of N independent banks, b1, ..., bi, ..., bN where each bank consumes a

certain amount of time tBANK to process writing data to (or retrieving data from) the

cache data array inside each bank. In addition, LLC banks could be shared among all

cores [42] or partially shared similar to [68]. In our model, we assume all banks are shared

among cores. Similar to related work [39, 57], in this work, we only focus on L1-LLC traffic

and do not model the extra delay in main memory due to LLC misses. The DRAM access

latency can be computed using other approaches such as [115, 42, 44, 32] and such latency

could be added to the WCL bounds derived in Section 4.3.

We assume that each cache entity (private and LLC) has its own set of interconnect

buffers: TxMsg, RxMsg, TxResp, and RxResp to register the incoming/outgoing mes-

sages and data responses. RxMsg contains the incoming message packets from the request

1We use cores and requestors interchangeably throughout the chapter.

46

bus. We assume that every message will be decoded immediately in the private cache and

each LLC bank even if the bank is busy writing/retrieving data from its data array. TxMsg
contains the outgoing message packets from any core/bank that must snoop on the request

bus. For instance, a core asking to modify a cache line and is not in possession of it must

inform other cores by coherency message (GetM) and push it in its own TxMsg buffer to

be propagated on the request bus. This allows other cores/LLC to be aware of this action.

RxResp contains the data responses coming from the response bus. RxResp at each core

includes data response that the bank provides or data response due to a C2C transfer.

RxResp at LLC bank include the data response supplied by the cores in case of write-

back. Notice that unlike RxResp buffers of each core, the data responses placed in LLC

RxResp must be processed in the bank which takes tBANK to process. Finally, TxResp
includes the responses that need to be transferred on the response bus. The request bus,

response bus, and LLC banks act as independent shared resources which conduct their

own independent arbitration policies. In detail, the request bus arbiter is responsible to

arbitrate the messages residing in TxMsg and the data responses inside TxResp buffers are

arbitrated through the response bus arbiter. Similarly, each arbiter at LLC bank arbitrates

the message/responses in RxMsg and RxResp buffers.

4.1.2 Request Processing and Order of Arbitration

From the perspective of the coherency architecture, a requestor issues requests to the

system based on the following activities in L1 cache: 1) load miss requests; 2) store miss

requests, including stores to a cache line in S state and load miss requests; 3) replacement

requests due to a write-back to shared memory or caused by an eviction. As mentioned

earlier in this section, the proposed architecture applies the arbitration schemes at all

different resources including request bus, response bus, and each bank in LLC. Requests

can experience different sequences of services on the arbitration resources. In detail, we

consider three different types − of requests, depending on the sequence of arbitration: 1)

REQ:RESP:BANK meaning that it first needs to broadcast on the request bus, then the

data response will be propagated on the response bus and finally, the data response should

be processed at LLC bank; 2) REQ:BANK:RESP representing a category of requests in

which they need to first broadcast on the request bus, then the shared bank must process

and fetch the data response and finally this data response must be propagated over response

bus; 3) REQ:RESP: the last category is related to the systems enabled with C2C transfers.

In such a scenario, after broadcasting the message on the request bus, the response will be

47

(a) P1 executes load to A owned by P0

(b) P1 executes store/load to A owned by LLC bank.

(c) P1 replace A to LLC bank.

(d) P1 executes store to A owned

by P0.

Figure 4.2: The sequence of arbitration based on the request type.

48

supplied by the owner core on the response bus.

Figure 4.2 depicts all possible cases in which a request from cores can be processed

based on its type and coherency status. Notice that, these cases are simplified and the

details were omitted for readability purposes. Figure 4.2a represents a scenario where core

P1 aims to load cache line A; therefore, it first needs to broadcast its action by sending the

required coherency message on the request bus. Since the owner of A is P0 and the cache

line A is in M coherency state; hence, according to MSI coherency protocol, P0 must send

A to both core P1 and the LLC bank by pushing the response data into RxResp buffer of

P1 and the bank. Then, P1 receives its data response; however, the data still needs to be

processed inside the bank which will be done after tBANK . Note that all of these actions

are eligible to execute after their corresponding arbitration issue them the grant to access

the resource. Hence, the sequence of arbitration for this request follows REQ:RESP:BANK.

In Figure 4.2b a load/store request from P1 targets cache line A which is owned by the

shared bank. Therefore, the bank is responsible to process the request, and then it can

be returned to the core through the response bus. Hence, the sequence of arbitration for

this request follows REQ:BANK:RESP. For the replacement request shown in Figure 4.2c,

after broadcasting the message, the core needs to transfer the data to the LLC bank by

pushing to the RxResp buffer of bank. Hence, the sequence of arbitration for this request

follows REQ:RESP:BANK. Finally, Figure 4.2d shows a scenario where P1 tries to store to

cache line A while the line is owned by P0. According to the MSI coherency protocol,

the LLC bank is not required to acknowledge this action; therefore, sending the response

from P0 to P1 suffices the store request and the sequence of arbitration for this request

follows REQ:RESP.

As mentioned before, resources are independent and each resource needs to be ar-

bitrated. However, to maintain the correctness of execution, the order of servicing the

requests to the same cache line must respect the order in which the requests are issued on

the request bus. We say that a request depends on the previous request to the same cache

line issued on the request bus. Such dependencies can form chains of multiple requests.

Due to dependencies, some requests might not move to the next resource even though their

process is finished at the current resource. Specifically, we say that a request is ready on a

resource if it can be considered for arbitration at that resource. If there is no dependency,

a request becomes ready immediately when it finishes processing at its previous resource.

On the other hand, if there exists a dependency, a request becomes ready at a resource

when the previous request which caused the dependency finishes on that resource. Fig-

ure 4.3 shows an example where two requests follow the different sequences of resource

49

Figure 4.3: The lower priority request from P1 depends on the higher priority request of

P0 to the same cache line A.

arbitrations such that request of P0 follows the case elaborated in Figure 4.2d and request

from P1 follows the scenario shown in Figure 4.2a. Since both requests are to the same

cache line A, request of P1 depends on the request of P0 and must only service after P0

finishes at its response bus to maintain the consistency. Therefore, P1 is not ready at

response resource until P0 finishes the response of its request.

4.1.3 Latency Model

Now, we are able to precisely define the request latency from the core perspective. As in

Chapter 3, we index the requests of each core Pi as ri,1, ..., ri,j, Each request has a type

T according to its sequence. Since OoO cores might have multiple pending requests and

the LLC contains many independent banks, they can serve multiple requests simultane-

ously. Since we are focusing on the interaction between L1 and LLC cache, we assume that

the arrival time of a request is after the request has been processed by L1 cache. Therefore,

the arrival time tai,j of a request ri,j corresponds to the time when it is queued in the TxMsg

buffer. For our cache system, the finish time tfi,j of ri,j is the clock cycle after which the

last action in its sequence is completed. This includes writing to the shared bank if the

type of sequence is REQ:RESP:BANK or receiving the response from the response bus if

the type of sequence is REQ:BANK:RESP and REQ:RESP.

The same definition of outstanding and oldest request as in Chapter 3 apply. We also

add the definition of pending for a request in this chapter to mean it is outstanding and

already issued on the request bus.

50

4.1.4 Task Analysis

In Section 4.3, we will derive a bound on the processing latency for each of the three

types of request defined in Section 4.1.2. The total access latency for a task can then be

determined by summing the product of the number of requests of each type issued by the

task by the WCL for that type [45].

We assume that a portion of accesses by the task targets data shared with other cores,

while some accesses are to non-shared data. For each case, we need to retrieve the number

of load miss requests, store miss requests, and the number of replacements from the task.

For non-shared data, approaches based on either profiling or static analysis can be used to

extract the number of requests. For shared data, to the best of our knowledge, no general

method exists to determine which cache lines exist in the cache of the other cores at any

point in time. A safe assumption can be adopted where every load request on shared

data is considered a load miss, and every store request on shared data is considered a

store miss [49]. However, if better assumptions can be made based on code analysis, our

framework can take advantage of them by deriving different latency bounds for each type

of request.

Note that based on Figure 4.2, for shared data, load misses can be from the type

REQ:RESP:BANK or REQ:BANK:RESP shown in Figures 4.2a and 4.2b and store misses

can be either REQ:BANK:RESP or REQ:RESP. For non-shared data, load and store misses

can be only from the type of REQ:BANK:RESP. The replacements could only follow

REQ:RESP:BANK as shown in Figure 4.2c. If we cannot determine the specific type of a

request based on task analysis, we simply consider the largest latency among the types to

which the request might belong.

4.2 Proposed Arbiter

This section describes the behavioral details of the proposed arbiter. The proposed ar-

biter considers the realistic hardware architecture introduced in Section 4.1 and maintains

predictability by design while maximizing average-case performance. Based on the hard-

ware architecture, there exist three distinct types of resources in the system. Formally, we

capture the behavior of the proposed arbiter by a set of rules.

51

4.2.1 Rule 1: Global Round-Robin Ordering

In order to predictably manage interference among different cores, the arbiter maintains a

unified Global Round-Robin (GRR) order of requestors across all resources. A requestor is

removed from the GRR queue after the oldest request of that requestor completes at last

resource, and it is inserted at the back of the queue either immediately when it has any

other request or when its next request arrives. At any point in time, the Global Request

Queue shown in Figure 4.1 contains all outstanding requests in the system as well as their

state in terms of their next resource that they need to get processed on. In addition, a

work-conserving approach is used at each resource to increase overall system performance.

Rule 1. The arbiter maintains a Global Round-Robin order of requestors across all

resources.

Note that based on Rule 1, we can conceptually assign a relative GRR priority to

each oldest request. Such priority is assigned when the request becomes oldest and never

changes.

4.2.2 Rule 2: Bus Arbitration

We next explain the arbitration policy at each resource. Request bus arbiter arbitrates

among the messages existing in the TxMsg of each core. The proposed arbiter deploys

a two-level arbitration mechanism: 1) oldest message over non-oldest per core; 2) GRR

order among the oldest messages. Obviously, if no oldest message exists, GRR over non-

oldest messages will be applied. The same arbitration approach is true for the response bus

and each LLC bank, but the arbitration will be applied to their corresponding interface

buffers. Note that the arbitration at each LLC bank is completely independent of other

banks in LLC.

Rule 2. The arbiter manages all the three resources, including request bus, response

bus, and LLC banks, according to a two-level arbitration scheme: first, oldest request over

non-oldest request, and second, following GRR from Rule 1.

4.2.3 Rule 3: Priority Inheritance

Rules 1 and 2 are sufficient in the absence of dependencies between requests. However, to

correctly arbitrate in the presence of dependant requests, we further introduce a priority

52

inheritance mechanism, whether a lower-priority request inherits the highest priority among

following requests in the dependency chain; we call this the dynamic priority of the request.

Rule 2 is then applied based on dynamic priorities.

Rule 3. A set of pending requests to the same cache line must be serviced in the same

order in which they are issued on the request bus. For this reason, if there are multiple

outstanding requests to the same cache line, a pending request is assigned a dynamic

priority equal to the highest among its own priority and the priorities of all following

requests to the same cache line. Ties in dynamic priorities are then broken based on

dependency order (i.e., an earlier request in the dependency chain is considered higher

priority than a following request).

4.2.4 Rule 4: Request Blocking

The proposed arbiter supports OoO execution, allowing processing cores to issue multiple

pending requests. Based on Rule 3, it is clear that if the arbiter allows many non-oldest

requests to the same cache line to be sent, then an oldest request could arrive and suffer

priority inversion on all those non-oldest requests. Therefore, to limit the amount of

priority inversion in the system, we set a parameter kceil ≥ 0, that controls the possibility

of sending non-oldest requests ahead of a possible oldest request to the same cache line.

Rule 4. The request bus arbiter blocks any non-oldest request ri,j once there are

already other kceil pending non-oldest requests to the same cache line.

4.3 Latency Analysis

In this section, we detail the latency analysis for the proposed arbiter. Specifically, we

first show how to compute an upper bound to the remaining latency (time to finish) for

an oldest request under analysis rua at time t, based on the current state of the resource -

following Chapter 3, we call this the dynamic bound. Then, we obtain the static worst-case

bound, i.e. an upper bound to the processing latency of any request, by maximizing the

dynamic bound over all possible states of the system.

53

4.3.1 Dynamic Latency Analysis

We will detail the analysis for a request under analysis targeting a generic bank bk. Consider

first a rua that does not depend on any other request. Depending on its type and its current

state at time t, the rua will need to be serviced on one or more resources; for affinity with

processor scheduling, we say that the rua must execute on those resources. Its remaining

latency at time t can then be obtained as the sum of the latencies for each resource that

rua executes upon; the latency for the first such resource is the interval between the current

time t and when rua finishes executing on the resource; while the latency for each successive

resource is the interval between rua becoming ready on that resource (which is the time

when rua finishes executing on the previous resource, given that there is no dependency)

and when rua finishes executing on that resource.

For a generic resource res with res ∈ {REQ,BANK,RESP}, where BANK denotes bank

bk, let Rres to denote the set of requests that have not yet started executing on res

and either have higher dynamic priority than rua or are rua itself. Recall by arbitration

Rule 2 that each resource arbiter follows a prioritized scheme; since a request cannot be

stopped once it starts executing, request scheduling is non-preemptive. Hence, when the

rua becomes ready on a resource res at some time t′ > t, the currently executing request

on that resource (if any) will first have to complete; in the worst case, such request is

lower-priority and takes tres − 1 clock cycles to complete, since it must have started before

t′. Then, all requests in Rres must be processed, yielding a latency of tres− 1+ |Rres| · tres.
For the resource where rua needs to execute at time t, which we denote as res, a tighter

bound can be obtained. Specifically, we use cres < tres to denote the timer for res, that

is, the number of clock cycles required to complete the currently executing request; if no

request is in progress on res at time t, we have cres = 0. Then, if the currently executing

request is rua, its latency is by definition cres; otherwise, its latency is cres + |Rres| · tres.
To obtain an expression for the overall remaining latency, let us use Sua to denote the set

of resources where rua has not yet started executing. Then by summing the latencies for

the first resource and subsequent resources we obtain:

cres +
∑

res∈Sua\res

(tres−1) +
∑

res∈Sua

|Rres| · tres (4.1)

We next discuss the case where rua depends on one or more previous requests to the

same cache line; note that all such requests must also target bank bk. As discussed

54

in Section 4.1, such chain of dependent requests creates precedence constraints: specif-

ically, a request in the chain cannot become ready on a resource before the previous

request in the chain (if any) has completed execution on that same resource. There-

fore, to bound the remaining latency for the rua, we now need to sum the latencies

over all resources accessed over the chain of precedence constraints. As an example,

assume that the rua is of type REQ:BANK:RESP, that it depends on a request r′ of

type REQ:RESP:BANK, and that both requests have not completed execution on REQ
yet. If the rua finishes execution on REQ before r′ finishes on BANK, then the chain of

precedence constraints is REQ(r′):RESP(r′):BANK(r′):BANK(rua):RESP(rua). Oth-

erwise, it is REQ(r′):REQ(rua):BANK(rua):RESP(rua). Since in general we do not know

which chain leads to the largest latency, we will overapproximate the chain of precedence

constraints as REQ(r′):REQ(rua):RESP(r′):BANK(r′):BANK(rua):RESP(rua). Sim-

ilarly, if r′ was of type REQ:BANK:RESP instead, the overapproximated chain would be

REQ(r′):REQ(rua):BANK(r′):BANK(rua):RESP(r′):RESP(rua).

Next, consider how to compute the latency for each resource in the chain of precedence

constraints. First, consider the case where a resource res is accessed sequentially by two

or more requests (e.g., BANK(r′):BANK(rua) in the first example where r′ and rua have

different types). Note that for a request to be delayed by a previous request in the sequence

on res, the request must become ready on res when the previous one finishes. Hence, no

lower-priority request can be executed on res in-between the execution of requests in the

sequence. Therefore, the latency bound is still equal to tres−1+|Rres|·tres. Second, consider
the case where a resource res is not accessed sequentially (e.g., RESP(r′) later followed by

RESP(rua)). Here, every high-priority request inRres still only executes once on res, hence

it can only delay one of the requests in the chain. However, every time one of the requests

in the chain becomes ready on res, it can suffer blocking by one lower-priority request.

Hence, for this example, the latency bound on RESP is 2 · (tRESP − 1) + |RRESP | · tRESP .

To generalize the latency expression over a chain of precedence constraints, let us

redefine Sua as the set of resources where at least one request in the chain has not yet started

executing; and let res be the first resource in the chain at time t (such that a request still

needs to finish execution on that resource). Furthermore, let us define KBANK (KRESP)

to be the number of times that the BANK (respectively, RESP) resource is encountered in

the chain of precedence constraints while being preceded by another resource. Then, the

remaining latency for rua at time t can be upper bounded as:

55

cres +
∑

res∈Sua

|Rres| · tres +KBANK · (tBANK − 1) +KRESP · (tRESP − 1). (4.2)

Note that in Equation 4.2, we do not need to consider a term KREQ because all requests

must first execute on REQ; hence, there can only be a single sequence of REQ accesses at

the beginning of the chain (unless all requests have already finished executing on REQ,
in which case we do not need to consider REQ latency). Furthermore, if rua has not yet

started executing on REQ, then the chain of dependencies must be created including all

oldest requests to the same cache line with priority greater than rua, even if those requests

have not been executed on REQ and are thus not pending yet; this is because following

the GRR order, such requests will execute on REQ before rua and thus rua will become

dependent on them.

Example: consider a chain of dependency with requests r′, r′′ and rua. r′ and r′′ are

of type REQ:RESP:BANK, while rua is of type REQ:BANK:RESP. Assume that at time t,

all three requests have finished executing on REQ, and that r′ is executing on RESP. Then,
the chain is RESP(r′):RESP(r′′):BANK(r′):BANK(r′′):BANK(rua)
:RESP(rua); we have Sua = {RESP,BANK}, res = RESP, KBANK = KRESP = 1 (specifi-

cally, for KBANK and KRESP we need to count BANK(r′) and RESP(rua) as they are the

only resources preceded by a different resource). Note that RBANK includes r′, r′′ and rua,

but RRESP only includes r′′ and rua. The latency bound is:

cRESP + |RRESP | · tRESP + |RBANK | · tBANK + tBANK − 1 + tRESP − 1, (4.3)

where cRESP is the remaining execution time for r′ on RESP.

The final note is related to the sets RREQ,RBANK ,RRESP . For the latency bound to

be applicable, the membership of these sets should be evaluated at time t. Hence, for the

bound to hold, we need to prove that the cardinality of each set cannot increase after t.

Lemma 6. Assume that rua is oldest at time t and consider any other request ri,j. If ri,j
has lower dynamic priority than rua at t, or has not arrived in the system yet, then its

dynamic priority cannot be higher than rua at any point after t.

Proof. We prove the lemma in two parts. First, we show that (1) the dynamic priority

of rua cannot decrease over time; this implies that a request ri,j with dynamic priority in

56

between the GRR and dynamic priority of rua at t cannot become higher priority than rua
simply because the dynamic priority of rua drops. Therefore, ri,j would have to acquire

a new dynamic priority higher than the one of rua at t; but we next show that this is

impossible. Note that because of the GRR ordering, a request rp,q that becomes oldest

after rua will have a lower GRR priority than rua. This also means that ri,j cannot acquire a

dynamic priority higher than rua by inheriting the priority of such rp,q. Finally, to conclude

the lemma we show that (2) no request ri,j can inherit after t the priority of a request rp,q,

where rp,q is either rua or a request with GRR priority higher than rua.

Part (1): since the GRR priority never changes, the dynamic priority could only de-

crease if rua is inheriting the priority of a following, higher priority request rp,q in the

dependency chain at t, and then such request finishes before rua. However, this is impos-

sible because dependencies force requests to finish according to the dependency order.

Part (2): since rp,q is either rua or has higher GRR priority, it follows that rp,q must

already be oldest at t. If rp,q has already started executing on REQ, then it cannot become

dependent on any new request after t. If rp,q has not started executing on REQ, then the

REQ arbiter will favor executing requests in priority order, hence no non-oldest request or

oldest request with GRR priority lower than rp,q can start executing on REQ before rp,q.

In both cases, it follows that if rp,q is not dependent on ri,j at t, then it cannot become

dependent on ri,j after t and thus ri,j cannot inherit the priority of rp,q.

4.3.2 Static Analysis

The static worst-case latency ∆ is the maximum remaining latency of any request at the

time t when it becomes oldest. We compute it by maximizing Equation 4.2 over all possible

values of the parameters. Note that the equation is maximized when the rua has not yet

started executing on REQ. Hence, we have res = REQ and in the worst-case cREQ =

tREQ− 1; if kceil = 0, then Sua = {REQ,RESP} for a request of type REQ:RESP and Sua =

{REQ,BANK,RESP} otherwise; while if kceil > 0, in the worst-case a previous request in the

dependency chain can use all three resources, hence we have Sua = {REQ,BANK,RESP}:

Sua(T , kceil) =

{
{REQ,RESP} if kceil = 0 ∧ T = REQ:RESP

{REQ,BANK,RESP} otherwise
(4.4)

57

We next consider KBANK and KRESP . The worst-case scenario is to alternate the type

of requests in the dependency chain between REQ:BANK:RESP and REQ:BANK:RESP.
Based on the type T of the request under analysis, this yields:

KRESP (REQ:BANK:RESP) = 1 + ⌈kceil/2⌉, (4.5)

KBANK(REQ:BANK:RESP) = 1 + ⌊kceil/2⌋, (4.6)

KRESP (REQ:RESP:BANK) = 1 + ⌊kceil/2⌋, (4.7)

KBANK(REQ:RESP:BANK) = 1 + ⌈kceil/2⌉, (4.8)

KRESP (REQ:RESP) = 1 + ⌊kceil/2⌋, (4.9)

KBANK(REQ:RESP) = ⌈kceil/2⌉. (4.10)

Finally, we consider the sets RREQ,RBANK ,RRESP . Since there are M requestors in

the system, the number of requests with GRR priority higher than or equal to the request

under analysis is at most M . Furthermore, because arbitration Rule 4 limits the number

of non-oldest requests to the same cache line to kceil, it follows that at most kceil non-oldest

requests can inherit the priority of each of the M oldest requests. Therefore, counting the

request under analysis itself, in the worst-case we have |RBANK | = |RRESP | = (kceil+1)·M .

The latency on REQ can be more accurately bounded. Based on Rule 3, only requests that

are pending, i.e. have already finished executing on the REQ bus, can inherit the priority

of another request. Hence, in the worst-case we have |RREQ| = M .

Substituting the computed parameters into Equation 4.2 yields:

∆(T , kceil) = tREQ − 1 +M · tREQ + (kceil + 1) ·M · tRESP

+ KBANK(T) · (tBANK − 1) +KRESP (T) · (tRESP − 1)

+

{
0 if kceil = 0 ∧ T = REQ:RESP

(kceil + 1) ·M · tBANK otherwise
(4.11)

4.4 DUEPCO: Duetto Application for Coherency

In this section, we discuss how the Duetto reference model is applied to our discussed

cache system to form the DUEPCO architecture. As in Chapter 3, the system designer

58

associates a relative deadline Di(T) to each requestor and type of request; as long as

Di(T) ≤ ∆(T , kceil), Duetto then guarantees that all request deadlines will be met.

Note that the simple resource considered in Chapter 3 only requires a single command

to satisfy/finish a request; in contrast, in our cache design, a request must be serviced on

either two or three resources depending on its type. Hence, a request requires multiple

commands to complete, and a more complex state machine is required to track the state of

each cache line through the coherency protocol. In addition, we extend the reference model

in two ways to introduce DUEPCO. First of all, it is important to notice that for the Duetto

deadline guarantee to hold, the static worst-case latency must be computed assuming any

valid state of the resource at the time t when the request under analysis becomes oldest; this

is because the HPA might be selected at any time before t. However, when we computed

the static latency in Section 4.3.2, we bounded the cardinality of sets RBANK and RRESP

assuming that arbitration Rule 4 always applies, as this ensures that no more than kceil
non-oldest requests can inherit the priority of an oldest request. Unfortunately, the HPA

does not need to satisfy such rule, and can instead execute any number of requests to the

same cache line on the REQ bus before an oldest request to that line arrives and its latency

is considered by the WCLator; at which point it is too late to switch to the RTA.

To address this issue, we make a conceptual change to the model of the resource.

Specifically, we declare that all states where there are more than kceil pending non-oldest

requests to the same cache line are invalid to avoid too many priority inversions. This

ensures that the derived static bound is correct, but does not solve the underline problem

as now the HPA might be issuing invalid commands; therefore, a logic must be incorporated

to block invalid commands to issue. Chapter 3 suggests that when the HPA cannot be

guaranteed to work correctly, a checker module can be added to check the validity of the

commands issued by the HPA. Therefore, DUEPCO adds an additional checker component

that works as follows: every clock cycle, the checker receives from the RTA information on

the number of pending requests per cache line, which the RTA maintains to enforce Rule 4.

If cREQ = 0 and the global request queue contains at least one non-oldest request that must

execute on the REQ bus and targets a cache line for which there are kceil pending non-oldest

requests, the HPA might issue such request on REQ and reach an invalid resource state.

Hence, in this case the checker overrides the WCLator to forcibly select the RTA. While

this approach solves the unbounded priority inversion problem, it has a downside: for low

values of kceil and/or heavy data sharing among requestors, the checker might be forced

to continuously select the RTA, resulting in performance loss. We explore this behavior in

more details in the evaluation Section 4.5.

59

The reference model in Chapter 3 assumes that the type of a request is known when the

request becomes oldest. However, in our system, the sequence of resources accessed by a

request, and thus its type, is only known after the request is executed on the REQ bus and

the owner of the corresponding cache line is determined. For this reason, before an oldest

request finishes executing on REQ, the WCLator must use the smallest among all deadlines

for the possible types for the request. Once the request type is known, the WCLator

switches to using the deadline for that type.

4.4.1 WCLator Design

We designed the WCLator following the methodology outlined in Chapter 3. For each old-

est request and given the state of the resource and global request queue, we first enumerate

all commands that the HPA could issue in this clock cycle. For each command, we then

use the dynamic analysis (possibly with modified value of the parameters) in Section 4.3 to

compute the remaining latency for the request. Since the WCLator is a hardware compo-

nent, all such cases can be estimated in parallel. The WCLator then compares the largest

computed latency against the deadline for the request to determine whether the HPA can

be selected.

Consider an oldest request rua at time t. To illustrate the behavior of the WCLator, we

enumerate the cases assuming that res = REQ (the cases for res = BANK and res = RESP
are similar but easier, since the dependency chain for rua cannot be affected):

1. If cREQ > 0, then no command can be issued on REQ in this clock cycle, and no

estimation is required. Note that if cBANK = 0 or cRESP = 0, the HPA could

start executing a request on BANK or RESP in this clock cycle; however, because

Equation 4.2 always assumes the worst case where the maximum blocking time is

suffered on successive resources, it follows that the bound is still safe no matter the

command issued by HPA on BANK and/or RESP. Therefore, for the remaining cases,

we assume cREQ = 0 and consider the command issued on REQ.

2. No command: the HPA might be non-work conserving and decide to issue no com-

mand in the current cycle. In this case, the bound is equal to Equation 4.2 plus one,

to account for the wasted clock cycle.

3. rua: since rua will start executing, we would need to apply Equation 4.2 after removing

it from RREQ, but setting cREQ = tREQ to account for the rua execution. In addition,

60

if there are higher-priority requests to the same cache line as rua which have not yet

executed on REQ, we would need to remove such requests from RBANK ,RRESP and

adjust KBANK , KRESP , since rua now executes before them. Note that the obtained

bound will always be lower than case 2); therefore, in practice the WCLator does not

need to consider this case.

4. A lower-priority request ri,j, which does not inherit a higher priority than rua after

becoming pending: we use Equation 4.2 with cREQ = tREQ.

5. A lower-priority request ri,j that inherits a higher priority than rua: in addition to

the previous case, we need to include the request in RBANK ,RRESP . Furthermore,

if ri,j targets the same cache line as rua, KBANK , KRESP must be adjusted.

6. A higher-priority request rp,q to a different cache line than rua: we use Equation 4.2

with no change to parameters. Since this bound is always lower than 2), again we

do not need to consider it.

7. A higher-priority request rp,q to the same cache line of rua: before applying Equa-

tion 4.2, parameters KBANK , KRESP need to be adjusted if rp,q is executed before

another higher-priority request to the same cache line.

4.5 Evaluation Results

We employed an open-source simulation framework provided by [49] to evaluate the perfor-

mance of the proposed mechanisms and compare them with other solutions. We emulate a

system with quad- and octa-core system clocked at 2.5GHz with out-of-order pipelines, 8

KB direct-mapped L1 per-core private cache, and a 4 MB 8-ways set-associative L2 shared

cache consisting of multiple separated banks. The cores are OoO and can issue up to 10

memory requests in parallel. Both L1 and LLC have a cache line size of 64 bytes. Each

core/LLC bank is equipped with a dedicated cache controller that implements the MSI

coherence state machine. Since we are considering multi-core systems with strict timing

guarantees, we name the proposed arbiter in Section 4.2, RTA and compared it against

state-of-the-art approaches including PMSI [39], PMSI* [56] and PISCOT [49] which also

provide analytical WCL bounds and present the best average-case performance. PMSI

employs unified bus architecture and provides relative high-performance gains compared

to other approaches such as shared data-aware scheduling and private cache bypassing

61

4 8 10 12 14 16

PISCOT 416 832 1040 1248 1456 1664

PISCOT-C2C 216 432 540 648 756 864

PMSI 2050 7250 1105 1565 2105 2725

PMSI* 250 450 550 650 750 850

RTA-kceil=0 267 483 591 699 807 915

RTA-kceil=1 506 922 1097 1338 1546 1754

RTA-kceil=2 715 1331 1639 1947 2255 2563

RTA-kceil=3 954 1770 2145 2586 2994 3402

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

W
C

L
[c

yc
le

]

Cores

PISCOT
PISCOT-C2C
PMSI
PMSI*
RTA-kceil=0
RTA-kceil=1
RTA-kceil=2
RTA-kceil=3

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 10 12 14 16

Cores

Figure 4.4: Per-request worst-case latency.

through deploying cache coherence modifications and accessing the shared data. However,

its WCL is quadratic in the number of cores in the system. PMSI* follows a systematic

approach that achieves the same static WCL as bypassing the shared cache and provides a

tighter WCL bound compared to PMSI. However, both of these techniques rely on many

coherency modifications and expose performance loss compared to other approaches. On

the other hand, PISCOT decouples the request and response bus and leverages the split-

transaction interconnect to achieve a tighter WCL compared to PMSI and considerable

performance gains.

Request bus latency is configured to 4 cycles (tREQ = 4). The response bus latency in

PISCOT is comparable to the TDM slot size in PMSI as well as PMSI* and we set them to

50 cycles in our evaluation similar to [49]. However, for RTA, the latency of all resources is

configurable. Throughout this section, unless otherwise specified, we configure RTA with

tRESP = 10, 8 banks that consume tBANK = 40 to process requests and parameter kceil = 1.

62

Similar to existing works [57, 39, 49], we assume that accesses that hit in the L1 cache

take a single clock cycle and LLC is a perfect cache to avoid extra delay from accessing

the off-chip memory subsystem.

We craft three sets of synthetic benchmarks (Synth 1, Synth 2, Synth 3) with

different characteristics. All contain mixed read and write requests to the LLC and we

engineered the requests’ addresses such that all requests miss in the L1 cache; hence, stress

on the bus and the shared cache banks will be maximized. There is no data-sharing among

the cores in Synth 1 while Synth 2 and Synth 3 exhibit 10% and 20% data-sharing

respectively. In all benchmarks, the foreground core represents a high load core that

bursts requests to bus/LLC, and the background cores are accessing the shared bus/LLC

less frequently. Interleaving across the banks is handled using address bits themselves such

that a core could access all banks as much as possible. In detail, we use bit 6th (bits zero

to 5th are for the cache line offset) towards the MSB in the address bits of the request to

determine which LLC bank it needs to be processed in.

4.5.1 Per-Request Worst-Case Latency

Figure 4.4 shows the static WCL bounds for requests generated by the cores and misses

in L1 caches (see Section 4.3) from REQ:RESP:BANK type which represents the largest

static WCL among three types. We compare PMSI, PMSI*, PISCOT and PISCOT-C2C

(with core to core transfers), and the proposed RTA mechanism with different values of

parameter kceil. From this experiment, we can make the following observations: 1) PMSI

shows a significantly higher latency bound compared to the other approaches, and the

latency bound increases quadratically with scaling the number of cores. The significant

added latency is due to the coherence interference on the shared data. PMSI* on the other

hand presents tight static WCL bound but at the cost of performance degradation [49, 56];

2) PISCOT shows looser bound compared to both PISCOT-C2C but similar to RTA since

core to core transfers enable the arbiters to bypass the LLC when an owner core must

respond to other cores; 3) RTA with kceil = 1 shows up to 1.18× looser bound compared to

PISCOT-C2C but significantly tighter bound compared to PMSI. Notice that this extra

amount in latency bound is due to the scheduling decisions that are made in RTA which

allow one non-oldest request to process in LLC banks. This gives the system a significant

advantage in terms of average performance as we will show in the next sections. It is

worthwhile to stress the existing trade-off between RTA with different values of kceil and

PISCOT-C2C. RTA with kceil = 0 represents a configuration in which no non-oldest request

63

0

2

4

6

8

Synth 1 Synth 2 Synth 3

E
x
e

cu
ti

o
n

 T
im

e
 [

M
il

 C
y

cl
e

s]

PISCOT-C2C τ1=10:40 τ2=20:30

τ3=30:20 τ4=40:10 τ5=50:0

Figure 4.5: Sensitivity test for RTA against PISCOT-C2C.

is allowed to process in the shared banks. This improves the WCL bound such that it

becomes tighter and very similar to PISCOT-C2C. However, DUEPCO does not work with

this configuration of RTA (kceil = 0) since the checker module is forced to select the RTA

if there is any non-oldest request needing to be serviced on the request bus.

4.5.2 Sensitivity Test

The underlying architecture proposed in Section 4.1 is fully configurable to resemble the

conventional high-performance bus/LLC designs. In this section, we conduct a sensitivity

test on the RTA to justify the most efficient (and the worst) design that is aligned with

commercial architectures and compare it against PISCOT-C2C. We configured a quad-core

system with tREQ = 4 and then gradually varied tBANK and tRESP latencies. In order to

run a fair comparison, the parameters are determined such that tRESP + tBANK = 50, the

response bus latency for PISCOT-C2C. Assuming τ = tRESP : tBANK represents a con-

figuration of RTA in which the latency of shared banks in LLC is tBANK and the latency

of response bus equals tRESP , Figure 4.5 shows the execution time of the foreground core

running each of the three synthetic benchmarks. As discussed, RTA increases the paral-

lelism through bankized LLC. Therefore, as we increase tBANK in LLC and coincidentally

decrease tRESP , we observe that the system performance improves by finishing the task

under analysis faster. In other words, by reducing the response bus latency, a significant

amount of arbitration stress will be transferred to the banks rather than the response

bus; hence, the system’s overall performance increases by allowing more transactions to be

64

(a) Observed request latency

under RTA

(b) Observed request latency un-

der HPA.

(c) Observed request latency

under DUEPCO

Figure 4.6: Observed latencies under different arbitration schemes.

serviced simultaneously. In detail, the core under analysis in RTA, τ1 running Synth 1
outperforms PISCOT-C2C by 4.58× in terms of overall throughput of the system. Note

that in τ5 where there is no parallelism in RTA, we observe a negligible performance loss

compared to PISCOT-C2c (maximum 1% in overall throughput) since response bus arbiter

in PISCOT-C2C is FCFS while RTA employs a fair round-robin mechanism through GRR.

Notice that τ5 conceptually represents a configuration similar to PISCOT-C2C with only

one bank but allowing multiple requests of the same requestor. Therefore, as it is clear

from the figure, relaxing PISCOT-C2C to issue multiple outstanding requests with one

bank (similar to tau5) does not deliver any performance gain.

Going forward, we chose τ1 as it resembles the configuration with a higher level of

parallelism resembling a more realistic architecture.

4.5.3 Observed Request Latency

Figures 4.6a, 4.6b, and 4.6c delineate the observed latency suffered by oldest miss re-

quests from REQ:BANK:RESP type generated by a quad-core system under RTA, HPA, and

DUEPCO. We show request latencies greater than 80 cycles for better visibility and run

the experiment with Synth 3 benchmark (other benchmarks/request types show similar

behavior). The RTA latency bound for this setup is 476 cycles based on the derived WCL

analysis in Section 4.3 which is shown as a red bar in the figures. In HPA, we observe large

latency spikes throughout the execution up to 3420 cycles since HPA favors requests from

the cores that generate the highest number of requests, are faster, and target the banks

65

that are idle which can starve (theoretically) or delay for a long time (practically) requests

targeting busy banks. Figure 4.6a shows that RTA respects the latency bound for all re-

quests from every core and the latencies are always below the WCL bound. However, there

is a gap between the latencies and the static WCL bound since static analysis conducted

in Section 4.3 must assume that the oldest requests of all cores access the same bank at

the same time in addition to the non-oldest requests, which is unlikely in practice. Finally,

in DUEPCO, we used the static WCL bound as the deadline for each oldest request. Fig-

ure 4.6c shows that DUEPCO stretches the latency of requests towards the latency bound

and allows the system to continue selecting the HPA as long as possible.

4.5.4 Average Performance: Throughput

To measure the average performance of DUEPCO, we use the total throughput of the

system. As before, we associate the static WCL bound as the deadline to the oldest

requests in DUEPCO. Figure 4.7a shows the geometric mean of throughput across all cores

for RTA HPA and DUEPCO normalized to the overall throughput of PISCOT-C2C. The

figure represents the results for four different setups: 1) a quad-core system running Synth
1; 2) a quad-core system running Synth 3; 3) an octa-core system running Synth 1; 4)
an octa-core system running Synth 1. We make the following observations: 1) RTA, HPA,

and DUEPCO outperform the single-bank architecture approach deployed in PISCOT-C2C

significantly, by up to 6.4×; 2) DUEPCO shows very small slowdown compared to HPA in

synth 1 and synth 3 - 4 core (at most 2%); 3) in an octa-core system and synth
3 benchmark, we observe a slowdown of 11%. Following the discussion in Section 4.4, since

DUEPCO employs RTA with kceil = 1, it has to exclude the invalid states from the HPA

by switching to RTAṘecall that Synth 3 benchmark expose 20% data-sharing among the

cores, and this leads to the case that multiple cores compete to access the same cache

line in a particular bank. Therefore, DUEPCO selects the RTA regardless of the WCLator

estimation according to the checker logic. However, by increasing the number of allowed

requests to the same cache line (kceil), we expect that DUEPCO selects the HPA more

often. As shown in Figure 4.7b, DUEPCO that employs RTA with kceil = 3 exhibits only

1% slowdown compared to HPA. Notice that relaxing the parameter kceil forces us to use a

higher value for the static WCL bound for each oldest request as shown in Figure 4.4. It is

also worth noting that RTA with kceil = 0 is a similar case to PISCOT-C2C with multiple

bank support but with only one request per requestor. As it is clear from the figure, the

performance gain is still lower that the RTA with kceil = 1 and DUEPCO.

66

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

G
eo

 M
ea

n
PISCOT-C2C RTA-kceil=0 RTA-kceil=1 DUEPCO HPA

(a)

4

4.5

5

5.5

6

6.5
DUEPCO HPA

(b)

Figure 4.7: Total throughput of the system.

4.6 Summary

Employing shared memory in multi-core platforms improves programmer productivity and

degrades the obstacle to using such platforms in real-time systems. Hardware cache coher-

ence can accommodate such shared memory and extend the advantages of on-chip caching

to all system memory. However, extending hardware cache coherence throughout tradi-

tional schemes such as coherency protocol modifications to provide predictability hurts the

performance of the system. In this work, we demonstrate that by employing the COTS

interconnect architecture along with proposing to bankize the on-chip cache, DUEPCO is

able to pair a clever global arbitration mechanism with Duetto to significantly improve the

performance of the system while providing predictability. Notice that while we propose

DUEPCO with simple buses, potentially the same arbitration scheme could be added to

other bus architectures such as AXI in ARM platforms. However, the fundamental con-

straint to consider is that the arbiter must have exclusive visibility into the queues of each

requestor.

67

Chapter 5

DuoMC: Applying Duetto to DRAM

with Shared Banks

In this chapter and inspired by the Duetto reference model introduced in Chapter 3, we

propose DuoMC: a MC to manage accesses to DRAM in multi-core real-time systems.

DRAM main memory is one of the most complex shared resources in multi-core architec-

tures [26, 47, 117, 74] and it is one of the critical bottlenecks both from latency as well

as performance [67, 80, 36] perspectives. Unlike most existing real-time MCs, DuoMC en-

ables the utilization of both private and shared DRAM banks among cores to facilitate

communication among tasks. In summary, we make the following contributions in this

chapter.

1. DuoMC adopts the Duetto reference model, such that it can be modularly integrated

into existing COTS MCs with minimal hardware modifications in the HPA and with-

out requiring detailed information on the internal behavior of the already imple-

mented HPA in the COTS platform. Unlike the simplified abstract SRAM resource

in Chapter 3, DRAM is significantly more complex where a request requires multiple

commands to be serviced, the data transmission for one request can happen concur-

rently with commands of other requests, and there are several timing constraints that

must be tracked by the controller [106]. As a result, DuoMC extends and general-

izes the conceptual model introduced in Chapter 3 to be applicable to more realistic

shared resources existing in modern COTS SoCs. This generalization is discussed in

detail in Section 5.1. Specifically, we show how to distinguish between completion

(end of service) and finish (end of latency) time of a request (Section 5.1).

68

2. We propose a novel real-time MC scheduler, RTA (Section 5.2) in which real-time

guarantees are achieved by monitoring the latencies incurred by DRAM requests in

the system and switching from a COTS HPA to RTA only in the rare cases when

these guarantees are at the risk of being violated.

3. Unlike most of the existing predictable MCs [22, 23, 33, 74, 84], DuoMC allows for

communication among running tasks by declaring certain banks as shared to all

requestors. Which banks are shared or private is configurable since it depends on

the running set of tasks (Section 5.4.2). This is one of the key contributions of this

chapter since most industrial embedded domains such as automotive and avionics [35]

require communication among different tasks/processing components through shared

data [17].

4. We conduct a detailed timing analysis of DuoMC, which provides guaranteed bounds

on the WCL suffered by any request to the DRAM (Section 5.4).

5. We provide a detailed evaluation of DuoMC by implementing it in MacSim [60], a

multi-core full-system, cycle-accurate simulator. Our results show that DuoMC suffers

only 8% performance degradation across EEMBC 1.1 auto benchmark suite [91]

and IsolBench [110] benchmarks compared to a high-performance memory controller

(Section 5.7) while providing comparable WCL to state-of-the-art predictable MCs.

5.1 DuoMC: The Proposed Solution

In this section, we discuss how to apply the Duetto reference model to the DRAM

resource to create DuoMC. Here we focus on adaptations and changes to the reference

model, while Section 5.5 discusses some of the lower-level details that are specific to the

implementation. As in Chapter 3, we consider a system with M requestors: P1, . . . , PM

and N DRAM banks b1, . . . , bN , while requests are ordered based on their arrival time:

ri,1, . . . , ri,j,

5.1.1 Task WCET Estimation

Since the task can have different request types to the resource (e.g., reads vs. writes and

misses vs. hits), a tighter bound on its cumulative DRAM access latency can be obtained by

69

employing different latency bounds for each type of request [116, 44]. Note that because we

are interested in the worst-case latency for the task and miss requests have higher latency

than hit requests, we have to classify as a miss every request that cannot be proven to

access an open row. Specifically, we distinguish among four types of requests, where we

use T (ri,j) to denote the type of a request ri,j:

• RMP : Read miss requests to a private bank.

• RHP : Read hit requests to a private bank. Note that a private read request can be

guaranteed to be a hit when analyzing a task only if under all possible program paths

and initial hardware conditions, such a read will be issued after another read request

to the same bank and row, and there is no possibility of closing the row before the

request is serviced [12].

• WMP : Write requests to a private bank. Note that we are mainly interested in

analyzing cores where memory requests are generated by last-level cache misses.

Therefore, we consider the worst-case where writes are row misses: each write is

generated by a cache replacement and write-back, and determining the precise order

of replacements as to prove that the access is a hit is typically too difficult.

• MSq: Request to a shared bank, where q is the number of requestors that can

access the bank targeted by the request. Since we cannot make any assumption on

the interleaving of requests by different requestors, in general, we cannot guarantee

that such request is a hit; hence, we must consider it a miss.

5.1.2 DuoMC Model

Figure 5.1 shows the conceptual architecture of DuoMC. Compared to Duetto we re-

name the RTA and HPA as the Real-Time command Scheduler (RTSch) and the High-

Performance command Scheduler (HPSch), respectively, as they are used to schedule DRAM

commands (discussed in Chapter 2). Following the Duetto reference model, DuoMC requires

minimal modifications and knowledge about this HPSch. The latency guarantees provided

by DuoMC, as well as the analysis detailed in Section 5.4, are completely independent of the

internal behavior of the HPSch. In our implementation, the HPSch employs a FR-FCFS

policy, as discussed in Chapter 2. It is crucial to point out that having two command

schedulers does not pose additional challenges from an electrical/implementation point of

70

HPSch

.
Request Queues

P1 P2 P3 P4 P5 PM..P6 P7

DRAM Device

R
e

ad
 D

a
ta

STracker

RTSch WCLator DTracker
Slack

Counter

Set

RT cmdHP cmd

MUX

Figure 5.1: Conceptual architecture of DuoMC including four main components.

view, since both schedulers share a single physical DRAM interface (PHY). COTS MCs

need to keep track of the DRAM state to satisfy the correct operation according to the

JEDEC standard. This includes the value of counters representing the remaining time

until each timing constraint elapses, the command that is issued, and the states of banks

(i.e., which row is open if any). This is maintained by the STracker in Figure 5.1.

To address added complexities in managing DRAM, DuoMC further modifies the Duetto

execution model. Specifically, in DRAM, the controller can issue a CAS command to a

bank before it finishes processing the previous request; something that was not possible in

the previous examples of Chapter 3 and 4. Because of this reason, we modify the execution

model such that the finish time and completion time are differentiated. Intuitively, the

completion time of a request marks the cycle at which the request has been fully processed

by the controller by issuing its relevant commands; while the finish time of the request, as

defined in Chapter 3, represents the time at which data is returned to the requestor (for a

read). Note that this is different compared to the simple resource discussed in Chapter 3

model, where completion and finish time coincide. Hence, every request ri,j completes at

the controller before it finishes at Pi; in details, following the timing constraints, we have

tfi,j = tci,j + tRL + tBUS − 1 for a read request, and tfi,j = tci,j + tWL + tBUS − 1 for a write.

Note that the order in which requests complete is the same as the order in which requests

finish. The queueing and processing latency of a request are still defined based on arrival

and finish times as in Chapter 3, because the stall time for a core depends on when the

data is returned. However, the definition of outstanding request, oldest request, and the

way the static WCL bound is computed must be updated to be based on the completion,

71

ri,j

ri,j+1

ri,j+2

ri,j+3

t
i,j
ct

i,j
a t

i,j
f

t
i,j+1
c t

i,j+1
ft i,j+1

a

t
i,j+2

a t
i,j+2
c t

i,j+2
f

t i,j+3
a

i,j+3
c

i,j+3
ftt

ZRequest arrival Request finish Request completion

Figure 5.2: Processing latency shown in blue. Red bar represents the request being oldest.

Assume that all previous requests ri,k with k < j finish before tai,j.

rather than finish time, because the controller has no control over the timing of the request

once it completes. For the same reason, we assume that a request is put into the request

queue once it arrives (tai,j) and removed from the queue once it completes (tci,j).

Definition 7 (Completion Time). The completion time tci,j of ri,j is the clock cycle after

the CAS for ri,j is issued.

Definition 8 (Outstanding and Oldest Request). We say that a request ri,j is outstanding

in the interval [tai,j, t
c
i,j) between its arrival and completion time. ri,j is oldest at time t if

it is outstanding, and there is no other outstanding request ri,k of Pi with k < j (i.e., with

earlier arrival time).

Definition 9 (Static WCL Bound [75]). For every requestor Pi and request type, we use

∆i(T (ri,j)) to denote an upper bound to the processing latency of ri,j, assuming any pos-

sible state of the RTSch, request queues and DRAM timing constraint counters at time

max(tci,precj , t
a
i,j), and that the RTSch is always selected from that cycle onward.

A clarifying example, similar to the one in Figure 3.3, is provided in Figure 5.2, where

precj+1 = j and precj+2 = precj+3 = j + 1. Note that since ri,j+2 finishes before ri,j+1,

its processing latency is zero. Given that ri,precj is the request that finishes/completes

last among those that arrive earlier than ri,j, it follows that if ri,j finishes/completes after

ri,precj , then it must become oldest at time max(tci,precj , t
a
i,j), and remain oldest until it

completes at tci,j; otherwise, ri,j never becomes oldest and has zero processing latency.

Note that in the example in Figure 3.3, request ri,j+2 with zero processing latency is never

oldest. Also note that since there is no outstanding request of Pi in [tci,j, t
a
i,j+1), no request

of Pi is oldest in that interval. Finally, the same Duetto guarantee on request deadlines as

72

in Theorem 4 applies; specifically, the same reasoning as in the proof of Theorem 4 holds,

except that we consider interval [max(tci,precj , t
a
i,j), t

f
i,j) when the request is oldest rather

than [max(tfi,precj , t
a
i,j), di,j).

A second change is relative to the behavior of the WCLator. In Chapter 3, we assumed

that the WCLator considers all legal commands that can be issued by the HPA in the

current cycle. In Figure 5.1, the WCLator receives as input every clock cycle a set of

possible commands V provided by the HPSch. The key idea is that if the WCLator can

access some information about the elected HPSch’s commands, then V can be constrained,

leading to better on-line estimation. Section 5.5 has an extended discussion about these

adaptations.

A final note is related to the refresh operations. As discussed in Chapter 2, refresh

delays are normally accounted for at the task level. Hence, our proposed design resets the

DTracker slack counter to the deadline once a refresh operation finishes. This guarantees

that the processing latency of any request unaffected by refresh (i.e., refresh has not hap-

pened in the lifespan of the request) is bounded by the per-request deadline Di(T (ri,j)) as

discussed above; while any request affected by a refresh (i.e., refresh has happened in the

lifespan of the request) suffers an additional latency equal to the refresh overhead plus the

deadline.

5.2 Real-time Scheduler (RTSch)

To support the described DuoMC framework, we present a novel RTSch design. Compared

to previous predictable MCs, we design the RTSch to provide tight bounds not only on

the static WCL, but also on the on-line estimation for accesses to private banks and also

shared banks. Specifically, we employ a dynamic command scheduler, where the three

types of commands required to satisfy requests: PRE, ACT , and CAS, are scheduled by

three distinct command arbiters. In order to improve the average-case performance, RTSch

employs an open-page policy for the command generation. Since our goal is to guarantee

the latency of oldest requests, each command arbiter favors commands of oldest requests

over non-oldest ones; however, to avoid limiting parallelism, the command arbiter can still

issue a command of a non-oldest request if there is no oldest request with an intra-ready

command of that type (commands that are not intra-ready cannot be issued and thus

are not considered by the corresponding arbiter). The priority among requestors follows

a predictable RR scheme in the MC, so that each oldest request of a requestor can be

73

delayed by no more than one oldest request for each other requestor. To limit the delay

incurred when switching the data bus direction, we employ a bundling scheme similar to

the one first proposed in [22]; the CAS arbiter groups RD and WR commands, and issues

them in rounds of the corresponding direction: read or write round (both referred as CAS

round). Formally, the following rules capture the behavior of the RTSch in order to achieve

the aforementioned goals (compared to the HPSch where there is no such rules; hence, no

guarantees). Note that for simplicity, we present the rules and prove the latency bounds in

Section 5.4 for a non-pipelined version of the controller. As we will discuss in Section 5.5,

if the controller uses multiple pipeline stages, the computed latency must be amended to

include an additional pipeline latency term equal to the number of stages - 1.

5.2.1 Rule 1: Round Robin Arbitration

The RTSch maintains a RR order of requestors. A requestor is removed from the RR

queue after the oldest request of that requestor completes (i.e., after the CAS of its oldest

request is issued), and it is inserted at the back of the queue either immediately, if it has

at least one other outstanding request, or when its next request arrives. At any time t, we

use hpi to denote the set of requestors that have higher priority than Pi at t, that is, are

ahead of Pi in the RR queue. Notice that the RR order among requestors is maintained

entirely inside the MC.

5.2.2 Rule 2: Bus Conflict Handling

When multiple commands of different types can be issued at the same time by the command

arbiters, a bus conflict occurs among these commands and the priority is as follows: CAS >

ACT > PRE. We pick this priority order since it matches the delay caused by each type

of command (i.e., CAS commands cause the largest delay and are thus most critical).

5.2.3 Rule 3: Shared Bank Blocking

All commands of oldest request ri,j of Pi targeting a shared bank br are blocked and

cannot be issued if there exists a requestor Pq ∈ hpi whose oldest request targets br; the

same applies if ri,j is non-oldest, except that in this case Pq can be any requestor (including

Pi itself). This rule is required to ensure that the highest priority oldest request targeting

74

br does not suffer intra-bank interference from other, lower priority requests targeting the

same bank. In essence, given that no parallelism is possible among requests targeting the

same bank, we force them to be serviced in strict RR order.

5.2.4 Rule 4: PRE and ACT Arbiters Operation

The PRE command arbiter arbitrates among non-blocked intra-ready PRE commands

based on a two-level scheme: at the first level, it favors PRE commands of oldest requests

over non-oldest requests. At second level, it employs the RR order of requestors. The ACT

command arbiter uses the same logic applied to ACT commands.

5.2.5 Rule 5: CAS Self-Blocking

To limit the length of each round, the CAS command arbiter keeps a service flag for each

requestor. The service flag is set if a CAS of the oldest request of that requestor is sent,

and reset when the round ends. If a service flag is set, CAS commands of requests of that

requestor are considered blocked for the round. This ensures that no more than one oldest

request per requestor can be issued in a round.

5.2.6 Rule 6: CAS Round Starting and Ending

A round ends tCCD clock cycles after issuing a CAS, if there is no oldest request of the

corresponding direction that is both intra-ready and unblocked. When a round ends, a new

round starts immediately if there is any oldest intra-ready request; if any such request has

the opposite direction of the old round, the new round has the opposite direction of the old

one (this ensures that if there are both read and write oldest requests, their CAS commands

are serviced in alternating rounds); otherwise, the new round has the same direction. If

instead there is no oldest intra-ready request, then the next round starts either when an

oldest request becomes intra-ready, or when the CAS of a non-oldest request is issued; the

round direction equals the direction of the request.

75

5.2.7 Rule 7: CAS Arbiter Operation Inside a Round

Within a round, the CAS command arbiter arbitrates in RR order among non-blocked

intra-ready CAS of the corresponding direction belonging to oldest requests; unless there is

no intra-ready CAS at all (either of the same or opposite direction) among oldest requests,

in which case the arbiter selects in RR order among intra-ready CAS belonging to non-

oldest requests. Note that based on Rules 6 and 7, if a CAS of a non-oldest request is sent,

then the previous round must have ended so it must be the beginning of a new round.

5.2.8 Rule 8: Always Starting with a Read Round

Finally, note that if WCLator selects a command different than the one selected by the

RTSch, it indicates that the WCLator is choosing HPSch in this cycle. In this case, we reset

the state of the RTSch’s CAS command arbiter to a read round with service flags cleared

in order to favor open reads (for the possible switch to RTSch in the future): note that

typically, the number of read requests generated by a task is significantly higher than the

number of writes [37], and the write requests to DRAMs in modern architectures are due to

last-level cache evictions, and hence, they do not stall the pipeline [44, 121]. The PRE and

ACT arbiters are not affected since they do not have any state other than the RR order,

which is not modified until the CAS of an oldest request is issued (request completes).

5.3 Illustrative Example for RTSch Rules

To illustrate the behavior of the RTSch, we next present two examples: Figure 5.3 focuses

on the PRE and ACT arbiters according to Rules 1-4, while Figure 5.4 focuses on the CAS

arbiter according to Rules 1, 5-7. The example in Figure 5.3 depicts 4 read miss requests:

r1,1,r3,1,r3,2 target private banks, r2,2 targets shared bank bs; and 2 read hit requests: r2,1
and r4,1 both targeting bs. Requests targeting the shared banks bs are highlighted in pink.

We assume that there was no request before t0. At t0, r2,1 arrives from requestor P2. Hence,

P2 is pushed to the RR queue (Rule 1, requestor inserted). Since r2,1 is a read hit and

is intra-ready, its CAS is issued at t0 and since it is oldest, P2 is removed from the RR

queue (Rule 1, requestor removed). At t1, r2,2 arrives from the same requestor P2 and P2

is again pushed to the RR queue. However, it is not intra-ready yet due to the CAS to

PRE timing constraint; hence, bank bs is busy and r2,2 must wait until its PRE becomes

76

P AtRP

P

P

2 3 - -

Round- Robin

t1 t3 t4 t5

t2

2 3 4 -t3

2 3 4 1t4

R

t0

2 - - -t0,t1

t6

RM(r3,2)

RM(r2,2)
RH(r2,1)

RM(r3,1)

RH(r4,1)

RM(r1,1)
t2

P

t7

Figure 5.3: Illustrative example describing Rules 1-4 for ACT/PRE arbitration. Curly

down arrows represent the time commands of a miss request become intra-ready.

intra-ready. Next, r3,1 arrives at t2, P3 is pushed to the back of the RR queue and will

remain there until its corresponding CAS is issued. The PRE of r3,1 is issued at t2. At t3
an oldest, intra-ready read hit request from P4 targeting bank bs arrives and P4 is pushed

to the back of the RR queue. However, it will not be issued since there exists an oldest

request that is not intra-ready (r2,2) of a higher-priority requestor targeting bs (Rule 3).

At t4 two requests arrive: r1,1 which is an oldest read miss from P1 (to its private bank)

and r3,2 which is a non-oldest read miss from P3 (also to its private bank). P3 already

exists in the RR queue, while P1 is pushed to the back of the queue at this point. At the

same time, PRE of r2,2 and ACT of r3,1 become intra-ready. Although both requests are

oldest and P2 has higher priority than P3, the ACT of r3,1 is issued (Rule 2) first, while

the PRE of r2,2 is issued at t5 since P2 has higher priority compared to P1 (Rule 4, second

level). PRE of r1,1 is issued at t6 and PRE of r3,2 is then issued at t7 since r1,1 is the

oldest request of P1 while r3,2 is a non-oldest request (Rule 4, first level). Notice that r4,1
will be serviced after higher priority r2,2 is finished. Also note that we do not show the

corresponding CAS commands of these requests, as we detail the CAS arbiter behavior

in the next example.

Figure 5.4 shows the example of 8 requests to private banks: r2,1 is a read miss, r1,1
and r3,1 are write hits, while the remaining requests are read hits. We assume that r2,1 has

already arrived, but its RD is not intra-ready yet. In the example, r1,1 arrives first; a write

77

WWH(r1,1)
RM(r2,1)
RH(r2,2)
WH(r3,1)
RH(r3,2)
RH(r4,1)
RH(r4,2)
RH(r5,1)

A
tCCD

tWtoR

R

R

R
tCCD

tCCD

tCCD

R tCCD

tRTW

WtCCD

tWtoR

R tCCD

R tCCD

WR round RD round WR round RD round

tRCD

Figure 5.4: Illustrative example describing Rules 1, 5-7. Curly down arrows represent the

time commands of a miss request become intra-ready.

round then starts and its WR is issued. The round ends tCCD cycles after, since there

are no intra-ready write oldest requests (Rule 6, round ends). Note that a new round

does not start immediately, since there are no intra-ready oldest requests (note that r2,2
is intra-ready, but it is not oldest). Once the tWtoR data bus switching constraint elapses,

RD requests become inter-ready; at this point, no oldest request is intra-ready yet, so the

arbiter issues the RD of non-oldest request r2,2 (Rule 7, non-oldest request) and a read

round starts (Rule 6, round starts with non-oldest request). Note that because r2,2 is

non-oldest, the service flag for P2 is not set, nor is P2 removed from the RR queue (Rules

1 and 5). Afterwards, hit requests r3,1, r4,1, r5,1, r3,2 and r4,2 arrive in this order, followed

by the RD of r2,1 becoming intra-ready; since the RR order depends on when requests

become oldest, after r5,1 arrives the order is P2 > P3 > P4 > P5. tCCD cycles after issuing

the RD of r2,2, another RD can be issued; since r2,1 is not intra-ready yet, r4,1 is serviced

instead, then r2,1, and finally r5,1 (Rule 7, RR order). Note that r3,1 cannot be serviced

in the read round since it is a write request, and r3,2 cannot be serviced because it is

not-oldest and there are intra-ready oldest requests (Rule 7, arbitration is between oldest

requests of the corresponding direction). Once r4,1 completes, P4 is enqueued at the back

of the RR queue, and its service flag is set (Rule 5); hence, r4,2 is self-blocked and cannot

be serviced in the first read round either, even if it is the oldest request of P4 after r4,1
completes (Rule 7, arbitration is between non-blocked requests). Once the read round

ends, a write round starts since there is an intra-ready oldest write request r3,1 (Rule 6,

round starts with oldest request), which is then serviced. This causes P3 to be enqueued

78

Table 5.1: Symbols used in latency analysis.

Symbols Description

Pi Core i

bk Bank k

hpi Set of higher priority requestors than Pi

S The set of requestors in hpi whose oldest request also targets br plus Pi

kPRE Number of PRE commands that can be issued ahead of ri,j
kACT number of ACT commands that can be issued ahead of ri,j
kCAS Number of interfering requests

LPRE Maximum latency of PRE from the time it becomes intra-ready until it is issued

LACT Maximum latency of ACT from the time it becomes intra-ready until it is issued

LRD Maximum latency of RD from the time it becomes intra-ready until it is issued

LRD
RD The latency bound of RD becomes intra-ready in read round

LRD
WR The latency bound of RD becomes intra-ready in write round

cinterRD The number of cycles until a RD can be issued

cintraRD The number of cycles until a RD becomes intra-ready

cintraWR The number of cycles until a WR becomes intra-ready

cintraPRE The number of cycles until a PRE becomes intra-ready

cintraACT The number of cycles until a ACT becomes intra-ready

∆i(RMP) The static latency bounds for a read miss request targeting a private bank

∆i(RHP) The static latency bounds for a read hit request targeting a private bank

∆i(MSq) The static latency bound for a miss request targeting a shared bank

tPrivate
Residual The worst-case latency from processing latency to PRE becoming intra-ready

at the back of the RR queue; hence, in the final read round, r4,2 is serviced before r3,2.

5.4 Latency Analysis

In this section, we detail the latency analysis. We first derive the static WCL bounds

for read requests to private banks in Section 5.4.1, and to shared banks in Section 5.4.2;

we focus on discussing key novel results. Then, we show how the static analysis can be

modified to obtain the on-line WCLator estimation for the remaining processing latency

in Section 5.4.3. Table 5.1 summarizes the symbols used in the latency analysis.

79

DATAP A R

tRP

PRE intra-ready ACT intra-ready

tRL tBUStRCD LACTLPRE

Δ RMP

RD intra-ready

LRDtPrivate
Residual

NSB

max(ti,precj,ti,j)
f a

Figure 5.5: Request latency decomposition for read requests.

5.4.1 Static WCL Analysis: Private Banks

We begin by computing the static latency bounds ∆i(RMP) for a read miss request ri,j
of Pi targeting private bank br, which in the worst-case requires issuing a PRE, ACT

and CAS commands; the read hit case ∆i(RHP), comprising a CAS command only, is

presented at the end of this subsection. We assume that ri,j finishes/completes after ri,precj ,

otherwise its processing time would be zero; and based on Definition 9, we recall that the

static bound is computed assuming that the RTSch is always selected starting at the time

max(tci,precj , t
a
i,j) at which ri,j becomes oldest.

To derive ∆i(RMP), we consider two cases, based on the status of the service flag for

Pi when the CAS command of ri,j becomes intra-ready: the self-blocking case, which we

denote with a SB subscript, corresponds to the service flag being set, while the non-self-

blocking case (NSB) corresponds to the service flag being reset. We thus obtain:

∆i(RMP) = max(∆RMP
SB ,∆RMP

NSB). (5.1)

Note that because of Rule 1, we can remove the requestor index i from ∆RMP
SB and

∆RMP
NSB since our RTSch design employs a fair RR arbitration and the latency bound is

the same for all requestors. Without Rule 1, every request would have different latency

bounds.

We first analyze the more complex non-self-blocking case. We decompose the latency

∆RMP
NSB into multiple terms, corresponding to its different commands and intra-bank con-

straints, as shown in Figure 5.5:

1. tPrivate
Residual is the worst-case latency from the start of the processing latency max(tfi,precj , t

a
i,j)

to PRE becoming intra-ready;

80

2. LPRE is the maximum latency of PRE from the time it becomes intra-ready until it

is issued; (3) tRP is the PRE-to-ACT timing constraint;

3. LACT is the maximum latency of ACT from the time it becomes intra-ready until it

is issued;

4. tRCD is the ACT -to-CAS timing constraint;

5. LRD is the maximum latency of RD from the time it becomes intra-ready until it is

issued;

6. finally tRL + tBUS is the time required to complete sending the data. We next show

how to bound the residual latencies, LPRE, LACT and the CAS latency LRD.

Residual Computation. The residual is computed based on the worst-case intra-

bank constraints that can affect the PRE of ri,j. Note that by definition of ri,precj , once

it completes at tci,precj , either ri,j becomes oldest (if tai,j ≤ tci,precj) or there must be no

outstanding request of Pi. Since br is private, in the latter case, neither the RTSch nor the

HPSch (given that it always issues legal commands) can issue any command to br between

tci,precj and tai,j; and starting at max(tci,precj , t
a
i,j) and until ri,j completes, the RTSch only

issues commands of ri,j to br.

Therefore, it suffices to consider intra-bank timing constraints generated by the CAS

of ri,precj itself, plus constraints generated by commands issued before such CAS. The

detailed residual computation tPrivate
Residual is based on the three cases in Figure 5.6. In details,

the three cases are: (a) If ri,precj does not target br, then in the worst case the HPSch

could have issued an ACT command to br at time tci,precj − 2. This triggers a tRAS timing

constraint; under the (worst-case) condition that tai,j ≤ tfi,precj , this results in a residual of

tRAS −min(tRL, tWL) − tBUS − 1. (b) If ri,precj targets br and is a write, then we need to

consider the tWR timing constraint between the end of data for a write CAS and PRE

to same bank; again under the condition tai,j ≤ tfi,precj , this results in a residual of tWR.

(c) If ri,precj targets br and is a read, then we need to consider the tRTP timing constraint

between a read CAS and PRE to same bank; this results in a residual of tRTP −tRL−tBUS.

Taking the maximum of the three cases yields Equation 5.2.

tPrivate
Residual = max(tWR, tRTP − tRL − tBUS, tRAS −min(tRL, tWL)− tBUS − 1). (5.2)

81

ri,prec

ri,j

W

P
tResidual

tWL DATAj

t i,prec
f

j

i,j
a
t

ri,prec

ri,j

A

P
tResidual

DATAj

t i,prec
f

j

i,j
at

C tRL/WL

tRAS

tBUStBUS

t i,prec
c

j

Case a Case b
tWR

ri,prec

ri,j

R

P
tResidual

tRL DATAj

t i,prec
f

j

a
tBUS

Case c
tRTPi,jt

Figure 5.6: Case a, b, and c for the residual calculations for private bank access.

To facilitate the derivation of the on-line bounds in Section 5.4.3, we obtain LPRE and

LACT based on parameters kPRE, kACT representing the state of the arbitration. Specifi-

cally, kPRE is the number of requestors in hpi whose oldest request still requires issuing

a PRE, while kACT is the number of such requestors whose oldest request still requires

issuing an ACT . We make the following key observation:

Observation 10. While ri,j is oldest, the values of kPRE and kACT cannot increase as

long as the RTSch is selected.

Observation 10 holds because the RTSch always favors oldest requests. Hence, if the

oldest request of a requestor in hpi already issued a PRE (ACT), it will not require another

PRE (respectively, ACT) until it completes; at which point the requestor will be enqueued

at the back of the RR order and thus will have lower priority than Pi. Note that without

Rule 4, this assumption was not true. Based on Observation 10, once the PRE of ri,j
becomes intra-ready, the number of PRE commands that can be issued ahead of ri,j is

bounded by kPRE; the same holds for the number kACT of ACT commands that can be

issued ahead of the ACT of ri,j.

Computation of LPRE. The worst-case latency pattern for PRE is depicted in Fig-

ure 5.7. Terms
⌈
LPRE+1
tRRD

⌉
and

⌈
LPRE+1
tCCD

⌉
in Equation 5.3 represent the command bus con-

tention due to ACT and CAS commands, respectively, which are given higher priority

compared to PRE command by the RTSch according to Rule 2. To bound such contention,

we note that successive ACT commands are separated by at least tRRD clock cycles, and

successive CAS commands are separated by at least tCCD cycles; while LPRE+1 represents

the maximum interference window where PRE commands (including the one of ri,j) can be

delayed by ACT and CAS. Adding the three terms yields the bound in the Equation 5.3.

LPRE(kPRE) = kPRE +

⌈
LPRE(kPRE) + 1

tRRD

⌉
+

⌈
LPRE(kPRE) + 1

tCCD

⌉
. (5.3)

82

P

A
C

LPRE +1

P
P

ri,jPi

Pi+K
k

P
R

E

P

PRE

A
C

Pi+1

Pi+2

. . .

Figure 5.7: LPRE example.

Computation of LACT . The computation of LACT is more complex than LPRE, since

there exists ACT -to-ACT timing constraints tRRD and tFAW . The worst-case interference

pattern is shown in Figure 5.8. Note that after the ACT of ri,j becomes intra-ready, only

ACT of oldest requests accounted for in kACT can be issued; however, before the ACT

becomes intra-ready, the RTSch could issue ACT of non-oldest requests. Specifically, in

the worst case shown in the figure, four ACT commands of non-oldest requests are issued

as late as possible before the ACT of ri,j becomes intra-ready, triggering an initial delay of

tFAW − 3 · tRRD − 1. Once the ACT of ri,j becomes intra-ready, no more than kACT other

ACT commands can be issued before it; such commands cause a delay of either tRRD each,

or tFAW every 4 commands. Finally, given that CAS commands are higher priority than

ACT , but they cannot be issued in consecutive cycles, we incorporate the command bus

contention by adding one unit of delay to each triggered timing constraint (including the

initial delay). This yields the bound in Equation 5.4.

LACT (kACT) = tFAW − 3 · tRRD + kACT · (tRRD + 1) +⌊
kACT

4

⌋
· (tFAW + 1− 4 · tRRD − 4) (5.4)

Note that in the worst case, the values of kPRE and kACT are bounded by the total

number of other requestors M − 1; hence, when computing the static bound ∆RMP
NSB , we

must consider a latency LPRE(M − 1) and LACT (M − 1).

83

A
A

ri,jPi

Pi+1

..

.

Pi+k

k

ACT
tRRD

tRRD

tRRD

tFAW

A
A

A

A

Pi+2

C C C

tRRD

LACT

A
C

T

A

tRRD

A tRRD

C

tFAW

A

C
. . .

Figure 5.8: LACT example considering tRRD and tFAW .

Computation of CAS Latency LRD. Let Round 1 to denote the round in which the

RD of ri,j becomes intra-ready. We need to consider two possibilities, corresponding to

Round 1 being a (1) read round, or a (2) write round; we use LRD
RD to denote the latency

bound in the first case, and LRD
WR for the second case.

Case (1): since in the non-blocking-case the service flag for Pi is not set, it follows that

the RD of ri,j must be issued in Round 1. As for the PRE and ACT computation, we

use kRD to denote the number of requestors in hpi whose oldest request requires issuing a

RD. We also use cinterRD to denote the inter-ready RD counter, that is, the number of cycles

until a RD can be issued. Since the inter-bank constraint between CAS commands of the

same direction is tCCD, this yields the bound:

LRD
RD(k

RD, cinterRD) = cinterRD + kRD · tCCD. (5.5)

Once again, for the static WCL computation we need to consider the worst case scenario

and due to Rule 5, in each round maximum of M CAS commands can be issued (one from

each requestor); hence, kRD = M − 1 which is the number of constraints between M CAS

commands. There are two possible worst-case scenarios for cinterRD : (a) the RD command

of an non-oldest request is issued immediately before the RD of ri,j becomes intra-ready,

yielding cinterRD = tCCD − 1; (b) the RD of ri,j becomes intra-ready as soon as possible at

the beginning of the RD round, which is tCCD cycles after the last WR is issued in a

preceding write round; this yields cinterRD = tWtoR − tCCD. Hence, in the worst-case we have

cinterRD = max(tWtoR − tCCD, tCCD − 1).

84

tRTW

R

ri,j
W

R
WR round

tCCD

tWtoR

tCCD

RD round

tCCD

R
R

tCCD

P1

P4

P2

P3

Case b

P1

P4

P2

P3

tWtoR

W

ri,j

R
R

R

tCCD

tCCD

RD roundWR round

tCCD

W
tCCD

Case a

Figure 5.9: LRD
WR example for M = 4 requestors, where Pi = P1 and kCAS = 3; in this

example, two of the three interfering CAS commands are RD and one is WR.

Case (2): since Round 1 has write direction, the RD of ri,j will be issued in the

following Round 2. In this case, once it becomes intra-ready, the RD of ri,j can only suffer

interference from CAS commands of oldest requests: WR commands of oldest requests in

Round 1, belonging to both higher and lower priority requestors, as well as RD commands

of oldest requests in Round 2, belonging to requestors in hpi; however, each requestor

can only interfere once, since after sending the CAS of an oldest request, it is enqueued

at the back of the RR queue according to Rule 1 and Rule 5. Therefore, let kCAS to

denote the number of interfering requests, where kCAS = M − 1 in the worst case (again

according to Rule 5). We again need to consider two possible worst-case scenarios, depicted

in Figure 5.9: (a) the WR command of a non-oldest request is issued immediately before

the RD of ri,j becomes intra-ready, resulting in the following bound:

kCAS · tCCD + tWtoR − 1. (5.6)

(b) The RD of ri,j becomes intra-ready as soon as possible at the beginning of the

WR round, which is tCCD + 1 cycles after the last RD is issued in a preceding read round

85

according to Rule 6 (note that if the RD became intra-ready one cycle before, the RD

would be issued in the preceding read round); this yields:

tRTW − tCCD + (kCAS − 1) · tCCD + tWtoR − 1 =

(kCAS − 2) · tCCD + tRTW + tWtoR − 1. (5.7)

Taking the maximum of the two sub-cases we obtain:

LRD
WR(k

CAS) = (kCAS − 2) · tCCD +max(tRTW , 2 · tCCD) + tWtoR − 1. (5.8)

Finally, we compare LRD
RD and LRD

WR. Note that by definition kRD ≤ kCAS, and fur-

thermore for all devices it holds tWtoR − 1 > max(tWtoR − tCCD, tCCD − 1). This yields

LRD
RD(k

RD, cinterRD) < LRD
WR(k

CAS). Hence, unless we can guarantee that the RD of ri,j be-

comes intra-ready in a read round, we have to consider LRD
WR in the worst case.

Non-self-blocking Latency. Combining all obtained bounds based on the latency

decomposition in Figure 5.5 yields:

∆RMP
NSB = tPrivate

Residual + LPRE(M − 1) + tRP + LACT (M − 1) +

tRCD + LRD
WR(M − 1) + tRL + tBUS. (5.9)

Self-blocking Latency. Finally, we consider the self-blocking case. Again, let the

RD of ri,j become intra-ready in Round 1; since the service flag is reset whenever the

round is switched or reset, it follows that Round 1 must be a read round, and that the

RD of the previous request ri,precj must have been issued in the round. Then, ri,j waits

for the following write round (Round 2), and then its RD is issued in the next read round

(Round 3) according to Rule 7. The corresponding worst-case scenario is depicted in

Figure 5.10: the RD of ri,precj is issued at the beginning of Round 1; then M − 1 RD and

WR commands of the other requestors are issued in Round 1 and 2; and finally by RR

order, the RD of ri,j is issued first in Round 3 (notice that the PRE and ACT commands of

ri,j, which must be issued in Round 1, are not shown). Note that ri,precj finishes tRL+ tBUS

after the beginning of Round 1; this is also the earliest time that the processing time of

ri,j can start. Therefore, the latency of ri,j can be obtained by summing the length of the

three rounds and subtracting tRL + tBUS, yielding:

86

∆RMP
SB = (M − 1) · tCCD + tRTW + (M − 2) · tCCD + tWtoR +

tRL + tBUS − (tRL + tBUS)

= (2M − 3) · tCCD + tRTW + tWtoR. (5.10)

Note that the self-blocking case does not include any delay of PRE or ACT , but the

number of CAS-to-CAS constraints tCCD scales with twice the number of requestors M

in the system. Since the ACT -to-ACT constraint tRRD is never smaller than tCCD, the

non-self-blocking case leads to higher latency for miss requests.

Read Hit Latency. We again need to consider both the self-blocking and non-self-

blocking case, yielding:

∆i(RHP) = max(∆RHP
SB ,∆RHP

NSB). (5.11)

Since the worst-case scenario for the self-blocking case in Figure 5.10 does not include

the time for PRE and ACT commands, it also applies to a hit request, meaning that

∆RHP
SB = ∆RMP

SB . For the non-self-blocking case, we again decompose ∆RHP
NSB into latency

terms, similarly to Equation 5.9. Since ri,j is a hit, its RD command cannot suffer from

intra-bank constraints, thus the residual is zero. This leaves the RD and data latencies

only:

∆RHP
NSB = LRD

WR(M − 1) + tRL + tBUS. (5.12)

Note that in this case, the self-blocking case has higher latency.

Write Latency. The derivation for the static latency bound ∆i(WMP) of a write

miss to private bank is similar to the one for the latency ∆i(RMP) of read miss, ex-

cept that read-related timing constraints are swapped for write-related timing constraints.

Considering both the self-blocking and non-self-blocking cases, we have:

∆i(WMP) = max(∆WMP
SB ,∆WMP

NSB). (5.13)

The latency decomposition for ∆WMP
NSB is equivalent to the one in Figure 5.5, except that we

consider a CAS latency term LWR instead of LRD, and a data sending time of tWL+ tBUS.

87

Given that the worst-case CAS latency for WR can be found when the WR becomes

intra-ready in a read round (LWR
RD), this yields:

∆WMP
NSB = tPrivate

Residual+LPRE(kPRE)+ tRP +LACT (M −1)+ tRCD+LWR
RD (M −1)+ tWL+ tBUS.

(5.14)

Since the case for LWR
RD is symmetric to LRD

WR, the same computation can be applied after

switching read for write timing constraints in Equation 5.8:

LWR
RD (kCAS) = (kCAS − 2) · tCCD +max(tWtoR, 2 · tCCD) + tRTW − 1. (5.15)

Similarly, computing the latency over Figure 5.10 after switching reads for writes and

vice-versa yields the following bound for the self-blocking case ∆WMP
SB :

∆WMP
SB = (M − 1) · tCCD + tWtoR + (M − 2) · tCCD + tRTW + tWL + tBUS − (tWL + tBUS)

= (2M − 3) · tCCD + tWtoR + tRTW , (5.16)

which is the same as the bound for ∆RMP
SB . As in the case of read requests, this means that

the non-self-blocking case has higher latency.

5.4.2 Static WCL Analysis: Shared Banks

We next compute the static WCL bound ∆i(MSq) for a miss request ri,j of Pi targeting a

bank br shared by q requestors. As in Section 5.4.1, we derive the bound based on a set of

analysis parameters that capture the number of requests/commands that can interfere with

ri,j. Specifically, we use S to denote the set of requestors in hpi whose oldest request also

targets br, plus Pi itself; by assumption, for the number of requestors in S we have: |S| ≤ q.

We also use kPRE
/∈S , kACT

/∈S , kRD
/∈S with the same meaning as kPRE, kACT , kRD, except that they

only consider requestors that are not in S. Note by definition we have: kPRE
/∈S ≤ M − |S|

(the same holds for kACT
/∈S , kRD

/∈S).

We obtain ∆i(MSq) by decomposing it into two latency terms: (1) the latency of the

highest priority request in S, served first by the RTSch, which we denote as ∆MSq
First; (2) the

latency of the remaining |S|−1 requests (including ri,j itself), which we denote as ∆MSq
Others.

To derive the latency terms, we make two key observations. First, the total number of

PRE commands that can interfere with any of the requests in S is kPRE
/∈S ; the same holds

for ACT based on kACT
/∈S . This is because by Rule 3, each requestor in S is blocked until

every higher priority request in S completes; and once any requestor issues an interfering

88

P1

P4

R tRL+tBUS

P2

P3

R

R

R

W
tCCD

tCCD

tCCD

tRTW

W

W

tCCD

tCCD

tCCDtCCD

R Data
tRL+tBUS

tWtoR

Round 1 Round 2 Round 3

LRDM
SB

ri,j

Figure 5.10: Worst-case scenario for a self-blocking read miss with M = 4.

PRE or ACT , it cannot issue another one until its oldest request completes, at which

point it ceases to be higher priority. Without Rule 3, the number of interfering requestors

cannot be bounded. It remains to determine which request in S suffers interference. To

this end, we use the following observation:

Observation 11. For any non-negative values of k1, k2, it holds:

LACT (k1) + LACT (k2) ≤ LACT (k1 + k2) + LACT (0) (5.17)

LPRE(k1) + LPRE(k2) ≤ LPRE(k1 + k2) + LPRE(0) + 2 (5.18)

Based on Observation 11, we can bound the PRE and ACT interference by simply

assuming that the kPRE
/∈S , kACT

/∈S commands all interfere on the highest priority requestor in

S; except that we have to add 2 extra cycles to the PRE latency of each successive request

in S.

The second key observation is related to the value of kCAS used in Equations 5.8. Once

again, requestors in S are blocked until higher priority requests in S complete. Hence,

when evaluating the CAS latency for the highest priority (first serviced) requestor in S,
we can use a value kCAS = M − |S|, rather than kCAS = M − 1. However, as requests in S
complete, the number of remaining requests targeting br decreases: for the second serviced

request we need to consider a value kCAS = M − |S| + 1, and so on until kCAS = M − 1

for ri,j.

Based on both observations, and since the non-self-blocking case has higher latency for

miss requests, we obtain:

89

∆MSq
First = tFirst

Residual + LPRE(kPRE
/∈S) + tRP + LACT (kACT

/∈S) +

tRCD +max
(
LRD
WR(M − |S|) + tRL,

LWR
RD (M − |S|) + tWL

)
+ tBUS, (5.19)

∆MSq
Others =

|S|−1∑
l=1

(
tOthers
Residual + LPRE(0) + 2 + tRP + LACT (0) +

tRCD +max
(
LRD
WR(M − |S|+ l) + tRL,

LWR
RD (M − |S|+ l) + tWL

)
+ tBUS

)
. (5.20)

Note that LWR
RD represents the worst-case bound for the WR where the write becomes

intra-ready during a read round and can be computed similar to LRD
WR except that read-

related timing constraints are swapped for write-related timing constraints. Both equations

use the same latency decomposition as for a miss request to a private bank (Equations 5.9),

but we maximize over the read and write latencies for CAS and data since we do not know

the direction of individual requests. It remains to determine the residual terms tFirst
Residual

for the highest priority request, and tOthers
Residual for the remaining |S| − 1 ones. tFirst

Residual

is the worst-case latency from the start of processing latency max(tfi,precj , t
a
i,j) of ri,j to

the PRE of the highest priority requestor in S becoming intra-ready and tOthers
Residual is the

worst-case latency between the finish time of a request in S and the PRE of the next

request in S. The same three intra-bank timing constraints (tRAS, tWR, tRTP) used in

the derivation of the private bank residual tPrivate
Residual must be considered. Given that br is

shared, we cannot make any assumption on the commands that are issued to br before ri,j
becomes oldest at max(tci,precj , t

a
i,j); while we know that only commands of requests in S

can be issued afterwards. Hence, for the case of tFirst
Residual, the worst-case scenario is that

tai,j ≥ tfi,precj > tci,precj and either a CAS or ACT command is issued at cycle tai,j−1, resulting

in Equation 5.21. On the other hand, in the case of tOthers
Residual, the timing constraint can only

be generated by a command of the previous request in S; hence, similarly to cases b and c

in Figure 5.6, for the WR and RTP constraints we need to consider the time tWL + tBUS

or tRL + tBUS required for the previous request to finish after issuing its CAS, resulting

in the same residual terms tWR and tRTP − tRL − tBUS. Figure 5.11 shows the worst-case

90

tResidualDATAA
tBUS

C
tRCD tRL/WL P

tRAS

Figure 5.11: tOthers
Residual: computation of residual term for tRAS constraint.

scenario for tRAS, resulting in a term tRAS − tRCD − min(tRL, tWL) − tBUS. Taking the

maximum of the three terms results in Equation 5.22.

tFirst
Residual = max(tWL + tBUS + tWR − 1, tRTP − 1, tRAS − 1); (5.21)

tOthers
Residual = max(tWR, tRTP − tRL − tBUS, tRAS − tRCD −min(tRL, tWL)− tBUS). (5.22)

Finally, we have to determine the value of |S| under which ∆i(MSq) = ∆MSq
First+∆MSq

others

is maximized. This is non-trivial, since increasing |S| adds more terms in Equation 5.20,

but it decreases the maximum value of kPRE
/∈S , kACT

/∈S and the CAS latency. Hence, we

simply numerically confirmed that for all devices, the bound is maximized by assuming

the maximum number of contending requestors |S| = q.

5.4.3 On-line WCLator Latency Estimation

We next discuss how the WCLator performs on-line estimation. Recall that the WCLator

must compute the remaining processing latency (remaining time until the request finishes)

for the oldest request ri,j of each requestor, assuming that the HPSch is selected at the

current clock cycle t, while the RTSch is always selected afterward. Since the round state,

and hence the service flags, is reset whenever the WCLator issues a command that does

not belong to the RTSch, on-line analysis only considers the non-self-blocking case.

We begin by considering a read miss request ri,j of Pi, targeting row rw in private

bank br. We consider three cases, depending on which command ri,j needs to send next:

PRE, ACT or RD. For each case, we use either cintraPRE, c
intra
ACT , or c

intra
RD to denote the time

91

from t until the next command becomes intra-ready (or 0 if it is already intra-ready). We

also consider the value of the inter-bank counter cinterRD at time t, as well as the values of

kPRE, kACT and kRD at time t, as defined in Section 5.4.1. However, note that we do

not use on-line information to bound the value of kCAS (i.e., we consider the worst-case

kCAS = M − 1) because kCAS includes requestors with both higher and lower priority, and

we cannot predict when and which requests of another requestor might arrive in the future,

causing it to be added to the RR queue with the lowest priority. For each case, we list

all possible commands that the HPSch can issue based on the state of bank br; for each

command, we analyze the interference it causes on the next command of ri,j, and derive a

bound on the remaining latency of ri,j based on the latency components from Section 5.4.1.

On-line, the WCLator computes all such bounds in parallel; it then discards the ones that

do not apply based on the set V of possible commands of the HPSch; and finally takes

the maximum of all remaining bounds to determine whether ri,j is guaranteed to complete

by its deadline. Since the full command enumeration is rather pedantic and due to space

limitations, here we only detail Case (1) (PRE) as an example. The remaining cases can

be derived based on similar logic to the analysis for the other commands; we summarize

it after covering Case (1). Similarly, we summarize how to derive the cases for read hits,

write misses and shared bank requests after covering Case (1) for read misses.

Case (1): br is open on a row different than rw, then the RTSch needs to issue a PRE

for ri,j. The HPSch can issue either a PRE or a CAS for bank br (but not an ACT , since

br is already open), but the CAS cannot target row rw, and thus cannot service ri,j. It

can also issue a PRE, ACT or CAS to some other bank, or a NOP .

• (1.1) NOP : (1.1a) if cintraPRE > 0, then a NOP cannot cause interference on the PRE

of ri,j, nor it changes the state of any bank; hence, the PRE delay for ri,j is bounded

by LPRE(kPRE). Given that the PRE becomes intra-ready after cintraPRE cycles, and

following the latency decomposition for a non-self-blocking request in Figure 5.5, we

can then bound the remaining latency as:

LRD,1
online = cintraPRE + LPRE(kPRE) + tRP +

LACT (kACT) + tRCD + LRD
WR(M − 1) + tRL + tBUS. (5.23)

Equation 5.23 represents the base latency computation for Case (1); all other sub-

cases use either the same or a modified computation of LRD,1
online. (1.1b) If cintraPRE = 0,

issuing a NOP can waste a clock cycle and increase the PRE delay by 1; hence the

latency is LRD,1
online + 1.

92

• (1.2) PRE targeting bank bl ̸= br: the PRE-to-PRE interference is 1 cycle (com-

mand bus conflict only). Therefore, (1.2a) if cintraPRE = 0, we need to add 1 to Equa-

tion 5.23 to represent the extra cycle of delay. In addition, (1.2b) if at time t there

exists a requestor Pq ∈ hpi whose oldest request targets bl and requires a PRE, then

we decrease the value of kPRE by one, since the issued PRE satisfies such higher-

priority, oldest request. However, (1.2c) if such oldest request requires only a CAS,

then we need to increase the value of both kPRE and kACT by one as the RTSch will

need to now issue a PRE, ACT and CAS for such request.

• (1.3) ACT targeting bank bl ̸= br: since Equation 5.3 already accounts for com-

mand bus interference from ACT and CAS, the command cannot cause additional

command bus interference. We thus compute the remaining latency bound accord-

ing to Equation 5.23, except that we might need to change the value of either kPRE

or kACT , based on the following logic. (1.3a) If at time t there exists a requestor

Pq ∈ hpi whose oldest request targets bl, and the ACT issued by the HPSch opens a

row different than the one targeted by such request, then it follows that the RTSch

will need to again close bl with a PRE to service Pq. Hence, the value of k
PRE must

be increased by one. (1.3b) If instead the HPSch opens the row targeted by such

request, then kACT must be decreased by one.

• (1.4) CAS targeting bank bl ̸= br: again there is no extra command bus interference,

nor the bank state changes, so the latency is LRD,1
online.

• (1.5) PRE targeting bank br: this is the PRE command required by ri,j; then follow-

ing the latency decomposition for ri,j, the remaining latency is tRP + LACT (kACT) +

tRCD + LRD
WR(M − 1) + tRL + tBUS.

• (1.6) CAS for bank br: if the CAS is a RD, then the latency is LRD,1
online as in

Case (1.4). However, if it is a WR, we need to account for the tWR intra-bank timing

constraint between the data of such WR and the PRE of read request ri,j. Hence,

in this case the value of the cintraPRE counter in Equation 5.23 must be substituted with

max(cintraPRE, tWL + tBUS + tWR).

Case (2): br.row = −1, then the RTSch needs to issue an ACT to row rw for ri,j.

The HPSch can only issue an ACT for bank br (to either row rw or another row), plus

commands for other banks and NOP .

93

• (2.1) NOP : recall that in the worst case scenario used to compute LACT (kACT), the

initial ACT is delayed by ACT commands sent before time t; hence, sending a NOP

at time t does not change the bound, nor it changes the state of any bank, and the

latency can be computed as:

LRD,2
online = cintraACT + LACT (kACT) + tRCD + LRD

WR(M − 1) + tRL + tBUS. (5.24)

• (2.2) PRE targeting bank bl ̸= br: this case is the same as NOP , so we use Equa-

tion 5.24. In addition, (2.2a) just like Case (1.2c), if at time t there exists requestor

Pq ∈ hpi whose oldest request targets bl and requires a CAS, then we increase kACT

by one as the RTSch will need to now issue a PRE, ACT and CAS for that request.

• (2.3) ACT targeting bank bl ̸= br: (2.3a) if c
intra
ACT > 0, then issuing an ACT does not

change the worst-case initial pattern leading to a delay of tFAW − 3 · tRRD − 1; hence,

we compute the latency as LRD,2
online. (2.3b) If instead cintraACT = 0, we use LRD,2

online + 1 as

the last ACT starting the tFAW constraint is now issued in the current clock cycle,

rather the the clock cycle before as in Figure 5.8. (2.3c) In addition to the two

previous cases, if at time t there is a requestor Pq ∈ hpi whose oldest request targets

bl and the issued ACT opens the row targeted by such request, then we consider a

value of kACT decreased by one when evaluating Equation 5.24.

• (2.4) CAS targeting bank bl ̸= br: as in Case (1.4) there is no extra command bus

interference, nor the bank state changes, so the latency is LRD,2
online.

• (2.5) ACT targeting bank br and row rw: as in Case (1.5), this is the ACT command

required by ri,j; then following the latency decomposition for ri,j, the remaining

latency is tRCD + LRD
WR(M − 1) + tRL + tBUS.

• (2.6) ACT targeting bank br but a different row than rw: then the RTSch must first

close bank br with a PRE before issuing an ACT and RD. Following the latency

decomposition, and since the ACT -to-PRE intra-bank constraint is tRAS, we obtain

a latency of tRAS+LPRE(kPRE)+tRP+LACT (kACT)+tRCD+LRD
WR(M−1)+tRL+tBUS.

Case (3): br.row = rw, then the RTSch needs to issue a RD to row rw for ri,j. The

HPSch can select PRE and CAS for bank br, including the RD for ri,j, plus commands

for other banks and NOP .

94

• (3.1) NOP : the NOP could waste a cycle and delay the issuing of a RD command

if cinterRD = 0. Hence, we can compute the latency bound as in the following equation,

except that if cinterRD = 0, we set cinterRD = 1 to represent the NOP delay:

LRD,3
online =

{
LRD
RD(k

RD, cinterRD) if cintraRD ≤ 1

cintraRD + LRD
WR(M − 1) if cintraRD > 1

+ tRL + tBUS. (5.25)

Recall that the RTSch resets the round to read direction at time t + 1, and it is

always selected afterwards. Therefore, if cintraRD ≤ 1, then the RD of ri,j is intra-ready

at the beginning of the read round, and we can thus use the better RD latency

bound LRD
RD. Note we do not have to add cintraRD in this case even if cintraRD = 1 because

cinterRD is at least 1, meaning the RD of ri,j could not be sent in this cycle anyway. If

instead cintraRD > 1, then one or more WR commands could be issued before the RD

of ri,j becomes intra-ready. Therefore, we cannot exclude the case where it becomes

intra-ready during a write round, and we have to consider the worst-case RD latency

bound LRD
WR.

• (3.2) PRE targeting bank bl ̸= br: the same computation as for NOP applies.

• (3.3) ACT targeting bank bl ̸= br: again, the same computation as for NOP applies.

• (3.4) CAS targeting any bank, which does not serve ri,j: we again use Equation 5.25,

but in this case we need to set cinterRD = tCCD if a RD is issued, or cinterRD = tWtoR if a

WR is issued. In addition, (3.4a) if a RD is issued which satisfies the oldest request

of a requestor Pq ∈ hpi, we subtract one from kRD as that requestor will be removed

from the RR queue.

• (3.5) PRE targeting bank br: similar to Case (2.6), the RTSch must reopen br to

row rw with an ACT and then issue the CAS. Following the latency decomposition,

we obtain a latency of tRP + LACT (kACT) + tRCD + LRD
WR(M − 1) + tRL + tBUS.

• (3.6) CAS targeting bank br and serving ri,j: this is the RD command required by

ri,j, hence the remaining latency is exactly tRL + tBUS.

Next, we cover Case (3) for a write request. The command cases are the same as for

the read case, but as discussed in Section 5.4.3, the base latency must be computed as:

LWR,3
online = max(cintraWR , tCCD) + LWR

RD (M − 1) + tWL + tBUS. (5.26)

95

The max(cintraWR , tCCD) +LWR
RD (M − 1) term is required because in the worst static case, we

assume that the round switches from write to read the clock cycle before the write of ri,j
becomes intra-ready, meaning that the WR was issued tCCD + 1 clock cycles in the past;

however, in this case a WR could be issued the clock cycle before, triggering a tCCD timing

constraint.

Finally, we detail the case of a request to shared bank. As discussed in Section 5.4.3,

the WCLator applies Cases (1)-(2)-(3) to the highest priority request in S. A few modifi-

cations to the rules are required to account for the behavior of shared banks, as discussed

below.

• Instead of parameters kPRE, kACT and kRD, both the latency equations and the rules

that modify the value of such parameters before computing the equations use pa-

rameters kPRE
/∈S , kACT

/∈S and kRD
/∈S ; this is safe since lower priority requests in S cannot

interfere with the highest priority one.

• When considering Cases (2) and (3), if ri,j is not the highest priority request in S,
an additional latency term LPRE(kPRE

/∈S) − LPRE(0) must be added; this is because

PRE commands counted in kPRE
/∈S can still interfere with other requests in S, even if

the highest priority one does not need to issue a PRE. For the same reason, when

considering Case (3), a term LACT (kPRE
o)− LACT (0) must be added.

• Following the CAS latency computation used in Equation 5.19, we consider worst-

case latencies of LRD
WR(M − |S|) and LWR

RD (M − |S|) instead of LRD
WR(M − 1) and

LWR
RD (M − 1).

• The rules that involve issuing a command to the shared bank br need careful consid-

eration, since the command could belong to either the highest priority requestor, or

another requestor in S, possibly ri,j; we list and analyze all of them below.

• (1.5): no change since a PRE command does not target any specific row in br.

• (1.6): the part of the rule involving cintraPRE remains; in addition, if the CAS belongs

to ri,j, the latency is simply tRL + tBUS; while if it belongs to another requestor in S
(which cannot be the highest priority for Case (1) to apply), we subtract one from

|S|.

• (2.5): no change since this is the ACT required by the highest priority requestor in S
(recall that we are estimating the remaining latency of the highest priority requestor,

hence row rw is the row targeted by such requestor and not ri,j).

96

• (2.6): no change, since the RTSch will then give priority to the highest priority

requestor in S and be forced to reopen its row.

• (3.4): in addition to what is included in the rule, we have to cover the case in which

the CAS targets br. If the CAS belongs to ri,j, the latency is simply tRL + tBUS;

while if it belongs to another requestor in S (which cannot be the highest priority

one, otherwise Case (3.6) would apply here instead of (3.4)), we subtract one from

|S|.

• (3.5): no change, since again a PRE command is not row-specific.

• (3.6): no change since this is the CAS required by the highest priority requestor in

S.

For a hit request only Case (3) applies, and furthermore, it must hold cintraCAS = 0 since a

hit request does not suffer intra-bank constraints. Therefore, the on-line estimation for a

read hit can always use the better bound LRD
RD, rather than considering LRD

WR - this is indeed

the reason why the RTSch resets the round state to read when the HPSch is selected. The

on-line analysis for a write request to a private bank is similar; however, since the round is

reset to read, we must always consider the worst-case bound LWR
RD where the write becomes

intra-ready during a read round. Finally, we discuss how to estimate the remaining latency

of a request ri,j to a shared bank br. Following the discussion in Section 5.4.2, the on-line

bound is still computed by summing the latency for the highest priority request in S,
and the latency for the other |S| − 1 requests. For the latter, the WCLator uses the

static bound ∆MSq
Others; note that such bound depends only on the value of |S|. For the

former, instead of using ∆MSq
First, the WCLator applies a logic similar to Cases (1)-(2)-(3) to

the highest priority request in S to obtain a better on-line bound (with some parameter

changes, e.g., kPRE
/∈S , kACT

/∈S , kRD
/∈S must be considered instead of kPRE, kACT , kRD, as discussed

in Section 5.4.2).

Note that while the estimation includes several cases, in practice an efficient hardware

implementation of the WCLator can be extremely fast. Notably, the WCLator can compute

the bound for each case in parallel, compare each case against the slack counter for Pi,

and then and the results together to determine if the HPSch can be selected. Furthermore,

each case can be calculated quickly by pre-computing the various analysis terms and storing

them in a look-up table indexed based on the value of the various analysis parameters. We

provide a more detailed implementation discussion in Section 5.5.

97

5.5 Implementation

To avoid slowing down the clock speed, it is imperative that DuoMC does not add significant

extra logic to the critical path of the HPSch. Therefore, the WCLator cannot use the output

of the last stage of the HPSch (the command that is arbitrated by HPSch); otherwise,

the WCLator logic would need to be placed in series after the HPSch. For this reason,

the set of commands V (shown in Figure 5.1 and used in Section 5.4) cannot be practically

restricted to the unique command issued by the HPSch. Fortunately, WCLator can still

operate in parallel with HPSch and still have some knowledge about V by leveraging the

fact that most COTS MCs are pipelined. Since there are at least two sets of buffers (request

buffers at an earlier stage and then command buffers), there are at least two pipeline stages

to enable the buffering of requests, generating specific commands, and then buffering them

into corresponding command buffers.

Typically, to optimize for performance, more stages are deployed. Early stages are used

to generate one command either for each requestor, or each bank of the resource that can

be operated in parallel; then, the last stage picks one of the generated commands. Hence,

the set V can be restricted without requiring any modification to the HPSch. However, in

this case, the analysis in Section 5.4 needs to add a fixed term to account for the extra

delay suffered in the pipeline. In particular, each request suffers an additional pipeline

latency equal to the number of stages - 1.

DuoMC supports different implementations based on the underlying COTS controller

details. We consider three possible alternatives, based on the command set V : (A) the

same conservative design as in Chapter 3, where WCLator makes the decision based on the

sets of commands that are legal in the current cycle without any further knowledge; (B)

an improved design where V comprises one command per requestor per bank; (C) an ideal

(but not practically implementable) design where V comprises a single command which is

the one that HPSch selects. Our on-line latency analysis in Section 5.4.3 holds in all three

cases, since it evaluates all commands in V . However, for simplicity the WCL analysis

assumes that a command of request ri,j can be issued immediately once the request arrives

in the request queue at tai,j.

Figure 5.12 shows results in terms of overall Instruction Per Cycle (IPC) for the three

alternative designs listed above. We use a similar setup as in the evaluation Section 5.7:

we consider M = 8 requestors contending for DDR3 1600K DRAM access; each requestor

is assigned a private bank, and the foreground core executes the latency benchmark. For

DuoMC, we first set all deadlines to the minimum possible value Di(T (ri,j)) = ∆i(T (ri,j))

98

Deadline Increment Steps(%)
0 100 200 300

IP
C

1.5

2

2.5

3

3.5

4

FR-FCFS
DuoMC A
DuoMC B
DuoMC C
RTSch

Figure 5.12: Overall IPC as a function of the relative deadline.

from the static analysis, and then progressively increase them up to 4×∆ (300% increase).

Note that here, design (B) behaves significantly better than (A). The reason is that looking

at selected commands can allow us to exclude most of the worst analysis cases outlined in

Section 5.4.3. On the other hand, (B) and (C) performs similarly, meaning that knowing

the last stage of HPSch does not significantly improve the IPC compared to (B). Therefore,

Section 5.7 follows (B).

We next discuss how the three modules added by DuoMC to an existing COTS ar-

chitecture (DTracker, RTSch and WCLator) can be implemented. The DTracker module

can be simply implemented by employing one counter per requestor, which counts down

from the relative deadline Di(T (ri,j)). For RTSch, in addition to utilizing the timing con-

straint counters, it needs to track the following information: 1) the RR order; 2) whether

a requestor is blocked during the current round. All of these are simple to implement

with a set of universal shift registers and flag registers [22]. For HPSch, note that once

the WCLator selects the command from RTSch, the state of the HPSch can become invalid

(for instance, if the RTSch closes a bank). Updating the internal state of the HPSch would

require internal knowledge of its operation and possibly complex re-engineering. To avoid

such complexity, we leverage the fact that a request remains in the request queue until it

completes. Accordingly, once the WCLator selects a command from RTSch, we flush the

command registers of the HPSch. In the next cycle, the HPSch will operate normally by

99

0

50

100

150

200

250

300

350

400

450

500

Hit Miss Hit Miss Hit Miss Hit Miss Hit Miss

W
o

rs
t-

C
as

e
La

te
n

cy
 (

n
s)

AMC Zheng CMDBundle DuoMC REQBundle DRAMbulism

0

500

1000

1500

2000

2500

3000

8
0

0
D

1
0

6
6

E
1

3
3

3
G

1
6

0
0

K
2

1
3

3
L

DuoMC Shared
Zheng Shared

1333G 1600K 2133L1066E800D

Figure 5.13: Analytical worst-case latency of read request (private and shared banks) across

different speeds of DDR3 device.

reading requests from the request buffer and translate them into new commands taking

into account the updated DRAM state. Such flushing does not usually require any mod-

ifications to the HPSch since most COTS controllers provide special operation registers

(including flushing/reset capabilities) to recover from faults or unstable states [51, 92]. It

also does not affect correctness, since the latency estimation depends only on the RTSch

and the set of commands V that can be issued by the HPSch. If flushing the queues

of RTSch is needed, the outdated commands of RTSch must be regenerated. Note that

this operation is safe since as discussed earlier, we can take into account the time that

RTSch requires to regenerate the commands and send them by increasing the bound by

the number of stages - 1.

It remains to discuss the implementation of the WCLator. As shown in Section 5.4.3,

the remaining latency estimation for each requestor Pi depends on various cases. However,

the calculation in each of them comprises at most six terms: 1) the intra-ready counter

for the next command of the request under analysis, which is known from the timing

constraint counters; 2) LPRE which depends on either kPRE or kPRE
/∈S ; 3) LACT which

depends on either kACT or kACT
/∈S ; 4) the CAS latency, which depending on the case is

either constant or depends on kRD and cinterRD or |S|; 5) ∆MSq
Others, which depends on |S|; 6)

and a constant which can be computed off-line based on the value of timing constraints. To

avoid computing each term on-line based on the corresponding equation, we pre-calculate

it for every possible value of the parameters and store it in a look-up table. Note that the

hardware required to calculate the estimation is fast and simple and can be implemented

with a small area footprint as it just needs to add six terms together, each of which can

be stored in at most 11 bits. Instead of computing the maximum over all possible cases,

100

the WCLator can then simply compare each case against the slack counter of Pi, which

requires a 13-bit comparator in our implementation, and then and the results together

to determine if the HPSch should be selected. The key advantage of this method is that

each case can be evaluated in parallel, making the WCLator extremely fast. Finally,

while the number of cases for each requestor Pi is significant, as noted in Section 5.4.3,

only a subset needs to be considered in each clock cycle. Furthermore, several cases have

the same or similar remaining latency, and their computation can thus be merged with

simple combinational logic. Therefore, we believe that an optimized implementation can

significantly reduce the number of latency terms that must be computed in hardware, albeit

at the possible trade-off of adding extra combinational logic to the critical path.

5.6 MCsim: An Extensible DRAM MC Simulator

In order to evaluate our proposed method DuoMC, we develop and release an open-source,

extensible, memory controller simulator called MCsim [73]. In this section, we provide a

detailed architectural overview of MCsim along with its configuration details.

5.6.1 Architectural Design

MCsim employs a modular, expansible, configurable, and integrable design; Figure 5.14

illustrates the major hardware blocks implemented in the framework. MCsim consists

of an address translator (address mapping), which maps requests to physical memory

cells, a command generator that converts requests into access commands, and request and

command schedulers that determine the order of request/command execution.

Modularity: each block is constructed independently, and the encapsulated data is

accessed through a simple interface. In this manner, changes to the behavior of a particular

block do not impact the other blocks in the system. The specific algorithms implemented

by these blocks must be customized based on the MC design. Expansibility: MCsim

exploits the benefits of inheritance and polymorphism by providing virtual function in-

terfaces, which minimize the amount of code required to extend the functionality of each

block. Configurability: an MC simulator must include queues to connect the hardware

blocks and temporarily store requests and commands. Rather than fixing the structure

of the queues as in most other MC simulators, MCsim provides an easy to configure and

modular queue structure. Since DRAM devices are organized in hierarchy levels (e.g.,

101

Requestor
0

Requestor
1

Requestor
N-1

Si
m

u
la

ti
o

n
 E

n
gi

n
e

A
d

d
re

ss
 M

ap
p

in
g

Request
Queue 0

Request
Queue 1

Request
Queue RQ-1

Command
Queue 0

Command
Queue 1

Command
Queue CQ-1

R
eq

u
es

t
Sc

h
e

d
u

le
r

C
o

m
m

an
d

 G
en

e
ra

to
r

C
o

m
m

an
d

 S
ch

e
d

u
le

r

D
R

A
M

 D
ev

ic
e

Data
Bus

DRAM Memory Controller Simulator
System

Simulator

MCsim

DRAM
Simulator

Cmd
Bus

Figure 5.14: Generalized MC architecture and major blocks.

channels, ranks, bank groups, banks), the configurable queue structure allows the designer

to construct them according to any DRAM level. Integrability: as shown in Figure 5.14,

MCsim employs a generalized interface that can be accessed by any external system sim-

ulator to send memory requests and employs an abstract DRAM interface for the DRAM

device model, so that the framework is not tied to any specific memory device type. For

the device interface, we currently connect MCsim to Ramulator as the preferred device

simulator since it supports a wide variety of DRAM standards. Note that a researcher can

even implement his own device model and interface it directly to MCsim as far as it adheres

to the MCsim interface. For the CPU system interface, MCsim can run as a trace-based

simulator. It also provides an interface to connect two of the commonly used simulators,

namely gem5 [11] and MacSim [61].

5.6.2 Configuration and Simulation Engine

A specific MC is built by a configuration file (.ini) to define the structure of the queues

as well as the operation of each hardware block. As an example in Pseudo Code 5.1,

we show the configuration for the ORP controller [32], which requires per-requestor

buffers and applies DIRECT request arbitration, OPEN command generation, and a specific

ORP command scheduling policy.

102

MCsim also enables to configure the address mapping based on all possible different

permutations of the DRAM device hierarchy, which allows the user to assign the mapping

schemes flexibly. Each digit represents the corresponding hierarchy level, and the permu-

tation determines the order of decoding. The permutation of the address bits can change

the performance of a task based on how the data is allocated.

The request and command queues are constructed based on the selected DRAM hier-

archy level. The bits value for each DRAM level is shown in lines 12 and 13 of Pseudo

Code 5.1. These schemes are used to build the configured number of queues and also pro-

vide a flexible hardware structure to support most predictable DRAM scheduling policies.

1 // Rank [0] , BankGroup [1] , Bank [2] , SubArray [3] ,Row [4] , Col [5]
2 AddressMapping=012345 // order o f address t r a n s l a t i o n
3 RequestBuf fer=0000 // reque s t queue per l e v e l
4 ReqPerREQ=1 // reque s t queue per r eque s to r
5 WriteBuf fer=0 // ded icated queue f o r wr i t e r eque s t s
6 CommandBuffer=0000 // command queue per l e v e l
7 CmdPerREQ=1 // command queue per r eque s to r
8 // schedu l e r Based on Keys
9 RequestScheduler=’DIRECT ’ // employ ”DIRECT” reque s t s chedu l e r

10 CommandGenerator=’OPEN’ // employ ”OPEN” command genera to r
11 CommandScheduler=’ORP’ // employ ”ORP” command schedu l e r
12 // queue s t r u c tu r e scheme : 0000 −−> Channel , 1000 −−> Rank
13 // 0100 −−> BankGroup , 0010 −−> Bank , 0001 −−> SubArray

Pseudo Code 5.1: Configuration parameters for ORP

The structure of request and command queues is depicted in Figure 5.15. There are

three separate buffers for request queues: first, a general buffer is used to store any incoming

request; second, a set of buffers can be configured using the ReqPerREQ parameter to

separate requests by individual requestors; and last, a write buffer can be enabled via the

WriteBuffer parameter to separate write requests of any requestor from read requests.

By providing these configurations, MCsim can support request schedulers that arbitrate

among DRAM hierarchies, requestor IDs, type of requests, or all of the above. For example,

some MCs schedulers arbitrate among requestors (cores) regardless of the DRAM location

of a request [32]. Therefore, an individual buffer is created for each requestor. Other MCs

arbitrate among DRAM banks rather than requestors and require a per-bank queue [52, 32].

The request arbitration can also be performed on two levels. For instance, DCmc requires

a request queue per bank and performs RR among requestors in each bank. Typical high-

performance arbiters employ First-Ready First-Come-First-Serve (FR-FCFS) arbitration

in addition to a separate arbitration between read and write requests. The command queue

shown in Figure 5.15 is similar to the request queue and can be configured based on two

103

WriteBuffer

Requestor N
Buffer

Requestor M

Buffer

General Buffer

Write Buffer

ReqPerREQ

Request Queue

Request

Criticality

Requestor N
Buffer

Requestor M

Buffer

General Buffer

Low-Priority Buffer

CmdPerREQ

Command Queue

Command

Figure 5.15: Request and command queue structures per-resource level.

parameters.

CmdPerREQ is used to separate commands for different requestors. Rather than hav-

ing separate buffers for read and write requests, the command queue has separate com-

mand buffers for commands with different criticalities. Criticality reflects the priority

of requests. Assigning different priorities for requests is a common theme both in pre-

dictable systems as well as COTS platforms. In a case of an MC with two priorities

(for instance critical vs. non-critical requests), General Buffer is only employed for

high requestors, while the Low-Priority Buffer stores lower-priority commands. The

sub-classes of RequestScheduler, CommandGenerator, and CommandScheduler
are selected based on their names. The string name of a subclass must be defined in

schedulerRegister.h to notify which subclass will be used according to the names.

5.6.3 Detailed System Design

Throughout this section, we explain the detailed functionality and implementation of hard-

ware blocks as well as their interactions according to the MCsim class diagram in Fig-

ure 5.16.

Top-Level Memory Controller: The top-level MemoryController is responsible

for controlling the interaction between each internal hardware block and managing the

requests and data flow between external memory requests and memory devices. In order

to differentiate the requirements of each requestor in a system, we consider a requestor to

104

MemoryController

-requestorCriticalTable

-requestQueue

-commandQueue

+setRequestor()

+addRequest()

-enqueueCommand()

-sendData()

-receiveData()

-callback()

+update()

AddressMapping

+addressMapping()

RequestQueue

-requestorBuffer

-generalBuffer

-writeBuffer

CommandQueue

-requestorBuffer

-hrtBuffer

-srtBuffer

CommandScheduler

+requestorCriticalTable

<<virtual>>+commandSchedule()

#isReady()

#isIssueable()

#sendCommand()

#getTiming()

+step()

RefreshMAchine

+refreshing()

RequestScheduler

#bankTable

<<virtual>>+requestSchedule()

<<virtual>>#isSheduleable()

#isRowHit()

#updateRowTable()

+step()

CommandGenerator

<<virtual>>+commandGenerate()

+removeCommand()

Open CloseHybrid

RTmem

ORP

MAG

ROC

MAG

CMD
Bundle

REQ
Bundle

FCFS

DIRECT

RR

TDM

MemoryDevice

<<virtual>>+receiveFromBus()

<<virtual>>+get_constraints()

<<virtual>>+command_check()

+update()

FR-FCFS

BLISS

FCFS

PARBS

DCmc

MCMC

MCMC

MEDUSA

PMC

Rank
ReOrder

D
if

fe
re

n
t

M
C

 r
eq

u
es

t
sc

h
ed

u
le

r
m

ec
h

an
is

m
s

D
if

fe
re

n
t

M
C

 c
o

m
m

an
d

 s
ch

ed
u

le
r

im
p

le
m

en
ta

ti
o

n

#commandBuffer

Figure 5.16: MCsim class diagram representing the main functional blocks in the simulator.

be either a critical (high priority) or non-critical (low priority).

Thus, a requestorCriticalTable can be configured by the user to indicate the criticality

of each requestor. Then, the table can be used by any hardware block to make scheduling

decisions among requests or commands based on the criticality of the requestors.

MemoryController receives new memory requests from requestors through addRequest(ID,
Address, Type, Size, Data) and sends complete requests back to the requestors

through callback(Request) provided by the simulation engine. MemoryController is

also responsible for inserting requests and commands into their corresponding queues.

Once there are available data that can be transmitted through the data bus, Memo-

ryController communicates with the DRAM device through receiveData(Data) and

sendData(Data) functions.

The step() function triggers the proceeding of each of the internal hardware blocks.

According to Figure 5.16, the requestSchedule() function of RequestScheduler is

first called to select requests that can be converted into commands. All commands gener-

ated by the CommandGenerator are en-queued into back-end command queues. Finally,

the commandSchedule() function of CommandScheduler is called to issue an available

command to the DRAM device. Since the data bus and the command bus are separated,

available data can be sent or received in parallel with the command.

AddressMapping : The interface addressMapping(request) takes an incoming

request and assigns a physical memory location to the request. The location of a request

is determined by shifting the memory level bits in the order of the mapping scheme used

105

in the configuration file.

RequestScheduler : The request scheduler is connected with both request and com-

mand queues because the arbitration may not only depend on the available requests in a

request queue, but also on the status of corresponding command queues. For example,

RTMem only allows a new request to be scheduled if there is no activate command in any

of the command queues.

A bankTable is used to track the currently active row in the row buffer of each bank. It

determines if a selected request is targeting an open or close row. The bankTable is accessed

by isRowHit(Request) before a request is sent to command generator and updated by

updateRowTable(Rank,Bank,Row) once the request is converted into commands.

CommandGenerator : The abstract class CommandGenerator has a virtual interface

commandGenerate(Request, isOpen) which is called by requestScheduler to decode

a request into a set of DRAM commands. This procedure is done based on the status of the

row and generation pattern, including open, close, or hybrid page policies. All generated

commands in one cycle are temporally stored in a command buffer, which is later accessed

by the top-level memory controller. We separate requestScheduler and commandGenerator

to allow development of each of those components separately.

CommandScheduler : The command scheduler is connected to the command queues

and the DRAM device interface. It contains a requestorCriticalTable for each

command queue to record the criticality of each requestor. cmdQueueTimer tracks the

minimum number of clock cycles that any commands must wait before being issued. The

table is updated once a command is issued to DRAM devices, and the counter for each

command decremented every clock cycle. As an example, we show ORP scheduling mecha-

nism in Pseudo Code 5.2. Ready commands from each requestor command buffer are first

pushed to a First-In-First-Out (FIFO) buffer according to their criticality. When there

is a CAS command in the critical FIFO that cannot be issued to the device, the CAS

command will block all the other CAS commands (by CASBlock) in the FIFO, but not the

commands of other types. If there is no command issuable from the high-priority FIFO,

the scheduler tries to schedule a command from the low-priority FIFO.

MemorySystem : To support a broad range of DRAM standards, MCsim has a general

interface to access DRAM information provided by the user through three virtual func-

tions: 1) GET CONSTRAINT(name): the MC retrieves the timing constraint values for a

selected DRAM device from the device simulator. 2) CHECK COMMAND(Cmd): once a com-

mand is selected from the command scheduler, this function is used to determine whether

106

the command can be issued in the current clock; 3) RECEIVE COMMAND(Cmd): behaves as
an interface to the command bus; it is called by sendCommand(Cmd) in commandSched-

uler to issue a command through the command bus. Notice that, if the implementation of

a certain MC design requires changes in the device itself, some modifications also need to

be done in MCsim which would be straightforward due to the modularity of the simulator.

1 Function scheduleCommand ORP ()
2 f o r (’ each r eque s t o rBu f f e r in a channel commandQueue ’)
3 i f (’ r e que s t o rBu f f e r i s not empty ’)
4 get f r on t Cmd from the r eque s t o rBu f f e r ;
5 i f (’ isReady (Cmd) ’)
6 i f (’HRT reque s to r ’)
7 push Cmd in to FIFO ;
8 e l s e
9 push Cmd in to SRT−FIFO ;

10 CASblock = f a l s e ;
11 f o r (’ every Cmd in FIFO from the f r on t o f the queue ’)
12 i f (’ CASblock i s t rue and Cmd i s CAS ’)
13 cont inue ;
14 i f (’ i s s I s s u e a b l e (Cmd) ’)
15 sendCommand (Cmd) ;
16 r e turn Cmd;
17 e l s e i f (’Cmd i s CAS ’)
18 CASblock = true ;
19 f o r (’ every Cmd in the SRT−FIFO from f r on t o f the queue ’)
20 i f (’ i s I s s u e a b l e (Cmd) ’)
21 sendCommand(Cmd) ;
22 r e turn Cmd;
23 r e turn NULL;

Pseudo Code 5.2: ORP command scheduler

5.6.4 MCsim Evaluation and Validation

1) Lines-of-Code (LOC): To show the effectiveness of MCsim we implement 10 differ-

ent MC scheduling techniques at the request-level and 11 ones at the command-level as

Figure 5.16 illustrates. We observe that the maximum amount of controller-specific code

in MCsim is less than 11%, and the largest amount of code required to implement any

controller is 432. In Table 5.2, we report the LOC required to implement each MC. In

addition, we also implemented a device-based refresh mechanism (per-bank refresh [16])

that only adds 65 LOC to MCsim.

2) Simulation Time (RunTime): We compare MCsim with existing DRAM and MC

simulators, which are open-sourced and can run as a standalone package with inputs trace,

107

Table 5.2: Simulation time (sec) of MCs for different simulators. ✓represents the ability

to distinguish among different requestors in each MC.

Controller REQ Simulator LOC RunTimeseq RunTimerand

FR-FCFS

✗ MCsim 32 3.91 8.7

✗ Ramulator# 309 18.97 31.01

✗ Ramulator 243 6.04 9.12

✗ DRAMsim2 356 3.28 8.28

BLISS
✓ MCsim 78 32.01 75.71

✓ Ramulator# 335 293.32 422.52

PARBS
✓ MCsim 138 46.95 115.66

✓ Ramulator# 424 172.62 372.21

ORP
✓ MCsim 93 44.80 74.83

✓ Standalone 542 103.76 726.31

RTMem
✓ MCsim 96 86.69 98.16

✓ Standalone 1910 50.12 51.24

MEDUSA ✓ MCsim 123 33.78 98.30

CMDBundle ✓ MCsim 169 37.95 73.27

REQBundle ✓ MCsim 432 52.27 57.49

MAG ✓ MCsim 94 40.31 71.16

MCMC ✓ MCsim 182 63.61 66.95

DCmc ✓ MCsim 85 42.81 71.35

AMC ✓ MCsim 98 81.90 92.38

PMC ✓ MCsim 65 93.97 105.52

ROC ✓ MCsim 175 40.38 72.54

making it viable to provide a fair and reproducible comparison. We employ two synthetic

memory traces containing one million requests each, including 90% read and 10% write

requests since reads are more critical in general. The seq trace is constructed such that it

accesses rows consecutively, which tends to access open rows in the device. The rand trace

is created with completely randomized address locations in order to stress the controllers

with close requests. Since DDR3 device is supported in all the simulators, we run each

simulator on our host (Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 16GB RAM, and

the Linux kernel is 4.15) with DDR3 1600H device with the same DRAM structures and

timing constraints and make sure each simulator has the same system parameters. We

108

configured all device simulators to employ FR-FCFS scheduling. The simulation time

are shown in Table 5.2. Regarding FR-FCFS, the run time is presented, such that each

simulator finishes all the requests in the trace. For the rest of the controllers that are

concerned about fairness, we duplicate the trace into eight such that each requestor accesses

its own trace, which consists of 1 million requests as used previously. We conclude that

MCsim provides comparable simulation time to the device simulators, as well as the greatest

extensibility that enables us to develop new controllers. Notice that the extra lines of code

for implementing a new controller is small; however, on the downside, the generalization

feature of MCsim might slow down the simulation speed (specifically, this is the case for

RTMem).

3) Behavioral Validation: We validate MCsim using the regression test suite provided by

the DRAM subsystem validation tool, MCXplore [41]. This regression suite covers a wide

range of controller parameters such as hit ratio, read/write ratio, and interleaving. We

validate the correctness of MCsim by comparing the issuing times of commands with the

JEDEC standard’s dictated constraints. We also compare each policy with its counterpart

in a publicly available simulator as Table 5.2 shows. Results confirm that MCsim con-

forms to the standard and the behavior of each policy matches that of the corresponding

simulator.

5.7 Evaluation

Experimental Setup. We use MacSim [60], a multi-processor architectural simulator to

model the requestors in our experiments. We incorporate superscalar x86 cores clocked

at 1GHz. We run the experiments with multiple cache configurations; however, similar

to [74], we show the results with bypassed caches in order to maximize the stress on the

MC and DRAM device. For the memory subsystem, MacSim is integrated with the MCsim

memory controller simulator, employing a single-channel single-rank DRAM device. We

use the virtual-to-physical address mapping capability in MacSim’s front-end to implement

bank partitioning/sharing among cores which can be achieved without running a complete

OS manipulation. Since DuoMC is capable of handling shared banks, we also conduct ex-

periments on DDR4-2400U to incorporate more banks in the experiments (DDR4 supports

up to 16 banks compared to 8 banks in DDR3). The baseline HPSch deploys the FR-FCFS

policy [97, 81], where requests to open rows are prioritized over requests targeting close

rows in the same bank. This arbiter favors applications that can issue multiple concurrent

109

memory requests. We assume that the HPSch provides to the WCLator a set V comprising

one command per requestor per bank.

Considered MCs. We implement the proposed DuoMC inside MCsim. Since we are

considering systems with strict guarantees, we compare against the following state-of-the-

art real-time MCs, which also provide analytical WCL bounds and are implemented in

MCsim: 1) Analyzable Memory Controller (AMC) [84], 2) CMDBundle [22], 3) DRAM-

bulism [74], 4) REQBundle [33], and 5) Zheng [117]. For ease of comparison, we do not

model refresh operations.

Workloads. We use EEMBC 1.1 auto benchmark suite [91] and also use two synthetic

benchmarks: latency and bandwidth from IsolBench [110]. In all experiments, on the

foreground core, we run one of the EEMBC or latency benchmarks and execute a bandwidth

benchmark on the background cores to heavily stress the DRAM.

5.7.1 Analytical Worst-Case Memory Access Latency

Figure 5.13 represents the WCL bound on the read request latency of multiple state-of-

the-art predictable MCs when there exist M = 7 requestors in the system and DDR3

devices with different speed bins are used (we employ DDR3 as some of the controllers we

compare against cannot support DDR4). We use 7 requestors since DDR3 has 8 banks; in

this way, we can use the extra bank as shared for MCs supporting shared banks, including

Zheng [117] and RTSch. The remaining MCs only use 7 banks with one private bank per

requestor. Note that we only show the latency bounds for read requests since they are

larger compared to write requests. Based on the figure, we make three observations: (1)

Zheng and AMC [84] perform worse than all other controllers; both are ones of the early

designs which do not include recent optimizations to tighten the latency bound, such as

bundling the commands/requests. (2) DuoMC and CMDBundle [22] have similar perfor-

mance since both schedule individual commands and bundle CAS commands in specific

rounds. The read hit bound for DuoMC is lower (15% for read hit and 7% for read miss

in average) as it uses a more efficient round switching mechanism. (3) DRAMbulism [74]

and REQBundle [33] also have similar performance since both controllers are optimized

to execute requests in a pipeline, such that each miss request can only suffer interference

on either PRE, ACT or CAS command, rather than all three of them. Consequently,

both controllers perform better than DuoMC for miss requests, but worse on hit requests.

Furthermore, note that the gap for miss requests tends to close for faster devices. Since

DuoMC and Zheng support shared DRAM banks, we consider the eighth bank as shared

110

among all the 7 requestors. As shown in the small figure, DuoMC performs better than

Zheng because the latter considers each requestor with a request to the shared bank to be a

virtual requestor such that a RR must be conducted among them in addition to the private

banks’RR. This worsens the bound on the shared request by 141% for DDR3 1600K.

5.7.2 Measured Request Latency

Figure 5.17 delineates the latency suffered by read miss requests (in log10 scale) un-

der FR-FCFS, RTSch and DuoMC. We consider M = 8 requestors contending for DDR3

1600K DRAM access; each requestor is assigned a private bank, and the foreground core

executes the latency benchmark. For readability, Figure 5.17 only incorporates requests

with latency longer than 80 cycles. The black dashed line represents the static WCL

bound for DuoMC. For the FR-FCFS controller, we observe noticeable latency spikes all

around the execution with a maximum latency of 2104 cycles. This is because FR-FCFS

prioritizes requests that target an open row in DRAM, which can starve (theoretically)

or delay for a significant amount of time (practically) requests that target close rows. On

the flip side, RTSch guarantees the latency bound for all requests as expected. However,

none of the requests come close to the static WCL bound since the analysis must make

pessimistic assumptions on the state of the resource and RR order. Finally, we configure

DuoMC with the minimum possible deadline Di(T (ri,j)) = ∆i(T (ri,j)) for each requestor.

DuoMC stretches the latency of requests towards the relative deadline (dashed black line),

because the WCLator estimates the latencies at run-time, and has more information on the

system state. This allows DuoMC to select FR-FCFS as long as no request risks violating

its deadline, thus significantly improving average performance compared to RTSch as we

show next.

5.7.3 Average-Case Performance

Figure 5.18a shows the overall IPC of the system for each controller when the foreground

core is running one of the EEMBC benchmarks, and a DDR3 1600K device is used. For

DuoMC, we first set all deadlines to the minimum possible value Di(T (ri,j)) = ∆i(T (ri,j)),

and then gradually increase them up to 2× of the minimum deadline (100% increase). No-

tice that, the deadline setting for each requestor is fully configurable and can be determined

based on the requirements/characteristics of the application/requestor (i.e. existing slacks,

111

Request Index #104
0 1 2 3 4 5 6 7 8 9 10

R
eq

ue
st

 L
at

en
cy

 (
C

yc
le

s)

102

103

FR-FCFS DuoMC RTSch

Figure 5.17: Request latency comparison amongst DuoMC, FR-FCFS, and RTSch. Only

latencies greater than 80 cycles are shown. Note that Y-axis represents the latency in log10
scale.

criticality of the requestor, or criticality of different partitions of the task). By increas-

ing the relative deadline in DuoMC, the framework will have more opportunity to select

the HPSch. Under DuoMC with a minimum relative deadline (DuoMC-0), even though no

request violates its deadline, the overall IPC of the system is very close to the FR-FCFS

controller. In particular, DuoMC-0 exhibits only 8% loss of performance over FR-FCFS on

average while DuoMC-100 shows only 1% performance degradation. If Di is large enough,

the framework will almost always select the HPSch; hence, the performance of the sys-

tem will be equivalent to the FR-FCFS controller. To compare, RTSch, which shows the

best IPC over all other real-time MCs, causes 44% slowdown across the benchmarks com-

pared to FR-FCFS. In order to allow the cores to communicate with each other, we use a

DDR4-2400U device as it provides more banks compared to its DDR3 predecessors; specifi-

cally, it consists of 4 bank groups, each containing four banks resulting in 16 banks in total.

We configure a system with M = 7 cores, each of them has exclusive access to 2 separate

private banks, and two remaining banks are shared among all requestors. Since access time

to the same bank group in DDR4 is longer than access to a different one, we assign the

private banks for each requestor to reside in different bank groups to reduce access time. In

Figure 5.19, DuoMC shows an even better relative performance with DuoMC-0 compared

to the Figure 5.18, resulting in only 7% slowdown compared to HPSch. For comparison,

112

0

1

2

3

4

a2time cache basefp aifftr idctrn matrix puwmod iirflt bitmnp average

IP
C

AMC REQBundle DRAMbulism CMDBundle RTSch

DuoMC-0 DuoMC-50 DuoMC-100 FR-FCFS

Figure 5.18: IPC for EEMBC benchmarks using DDR3-1600K.

0
0.5
1

1.5
2

2.5
3

a2time cache basefp aifftr idctrn matrix puwmod iirflt bitmnp average

IP
C

RTSch DuoMC-0 DuoMC-50 DuoMC-100 FR-FCFS

Figure 5.19: IPC for EEMBC benchmarks using DDR4-2400U.

the figure also shows performance for the other controllers supporting DDR4.

We make the following observations: 1) the overall IPC of the system reduces compared

to DDR3 and 8 requestors even though the number of banks is increased. This shows that

DDR4 device does not perform better for the real world benchmarks since the additional

bandwidth of DDR4 are not utilized as also discussed in [26]; 2) DDR4 devices are not

suitable for memory sensitive applications as the access time is increased (11% increase in

row hit and 14% increase in row miss compared to DDR3 devices) due to the bank groups

in DDR4; 3) introducing shared banks reduces the parallelism in the DRAM device when

requestors generate request to the shared banks (serviced sequentially). Therefore, the

average performance of the system is degraded for both RTSch as well as HPSch; however,

DuoMC-0 only shows 7% slowdown compared to HPSch.

113

5.8 Summary

In this chapter, we introduced DuoMC, a novel MC to manage DRAM memories in high-

performance real-time embedded systems. DuoMC embodies two main contributions: 1) It

applies Duetto reference model to COTS DRAM controllers as one of the most complex

shared resources. As a result, DuoMC achieves worst-case latency bounds that are compa-

rable or better to that of existing real-time controllers at a very close performance to that

of the COTS controllers; 2) It provides a mechanism to support both private and shared

bank(s) combinations to enable shared-data communication among real-time tasks in the

system.

114

Chapter 6

Conclusion and Future Work

Real-time embedded systems are experiencing a transformation towards incrementally more

integrated architectures. Multi-core platforms, heterogeneous co-processors, DMA engines,

multi-level caches, and superscalar execution are employed to appease accrescent perfor-

mance demands through increasing the complexity of the system. These complexities

expose a significant amount of challenges in terms of interference amongst requestors that

compete to access shared resources. This challenge creates a fundamental trade-off between

average-case performance and predictability of the system.

Based on the observation that the system is not overloaded most of the time, this

thesis presents Duetto reference model that successfully addresses the trade-off mentioned

above. This can be achieved by introducing a dual-mode arbitration scheme and run-time

monitoring the request latencies such that predictability is achieved by design while the

impact on the system performance is negligible.

This dissertation’s research contributions elucidate generalized steps for the real-time

system designers to address the performance-predictability trade-off for the shared re-

sources in multi-core platforms. The key contributions of this thesis include:

1. A generalized reference model for hardware resource management is introduced that

tackles the predictability-performance trade-off by pairing a real-time arbiter with

a high-performance arbiter. Duetto tends to execute the high-performance arbiter

most of the time but is able to switch to the real-time arbiter only in the rare cases

when timing guarantees risk being violated.

115

2. A high-performance yet predictable hardware cache coherency arbiter is introduced

that beats the state-of-the-art predictable coherency work in terms of average per-

formance.

3. The proposed cache coherency arbitration mechanism is further improved by integra-

tion with Duetto reference model. It is shown that by leveraging Duetto and using

run-time information of the system, it is possible to achieve a performance similar

to COTS-based mechanisms.

4. A highly optimized DRAM memory controller design is proposed that provides tight

latency bounds. Moreover, a near-COTS performance is achieved by employing

Duetto. The proposed scheme supports shared banks which was not possible in

previous works or was doable with significantly pessimistic bounds.

5. An open-source, extensible, memory controller simulator called MCsimis developed

and released to simulate DRAM memory controller. MCsim is able to evaluate the

performance of the memory controllers. Moreover, MCsim can run in both standalone

mode as well as full system simulation mode through integration with MACsim [61].

6. This thesis clarifies that different resources bring different complexities. In the case

of DRAM, the complexity is sending commands before the previous request is fin-

ished. In addition, the resource states are not kept in the resource itself and there

needs to be some sort of estimator. In the case of cache, there are more cases in terms

of the sequence of operation each request could follow in the system which depends

on the state of a cache line and the coherency state machine.

The techniques proposed in this thesis enable multiple future extensions based on the

existing limitations. This includes:

1. In reality, the resources described in Chapter 4 and Chapter 5 interact with each

other. There exists a real-time arbiter for each of them but the latency analysis is

performed separately. Since in practice there is a pipeline of requests over these two

resources, doing a combined latency analysis that considers the interaction between

the resources might lead to a tighter bound rather than summing the latency of

each of these two resources. In detail, Chapter 4 assumed that the LLC is a perfect

cache such that the delay imposed by accessing the off-chip memory is not modeled.

However, in a more realistic model, a particular request could miss in the last on-chip

memory hierarchy. This miss request then will be directed to the memory controller.

116

2. Incorporate Duetto in all memory hierarchy levels including memory controller and LLC

together and considering their interaction. This requires a more complex/detailed

latency analysis as well as synchronization. In detail, specific challenge is how to

properly design Duetto to interact across multiple resources. For example, we expect

that there might be trade-off in whether a unique arbiter is running over two resources

which might lead to better bound but more complex implementation or whether dif-

ferent Duetto(s) should be implemented but keeping track of the deadlines and RR

order might lead to a more pessimistic bound.

3. One of the complexities of Duetto is deriving the on-line WCL analysis. While in

this thesis, we do so manually, we believe that a significant portion of the process

could be (partially) automated through either model-checking or computer-assisted

proofs; note that the set of analysis cases can be trivially enumerated by a tool based

on the resource state machine.

4. The mechanisms introduced in this thesis assumed all cores in the system are homo-

geneous meaning that their requirements are similar. However, in a real world SoC,

some IPs have different requirements (e.g. display engine which needs to meet the

bandwidth to fill the display frame buffer and has latency requirements to not miss

pixels in a frame). Or in a more specific way, GPUs consume a significant amount of

data while processing cores might not act similarly. Duetto is configurable such that

different requestors in the system could have different latency bounds (deadlines).

It would be interesting to conduct further simulation using integrated heterogeneous

simulators and investigate the impact of varying deadlines on the performance of

processing components.

5. The evaluation in this thesis is performed through architectural simulators. While

we tried our best to engineer the design such that it runs fast enough (specifi-

cally WCLator design), there still needs to be a concrete implementation to prove the

design satisfies the performance requirements. I envision that the reference model

proposed in this thesis works better as an “add-on” to an already existing hardware

component compared to re-designing a new architecture.

6. As discussed in Chapter 5, most of these designs are pipelined but the architectural

simulators do not support pipeline behavior. Hence, it would be interesting to explore

what would happen by fully pipelining the design and implementing it on the actual

RTL for example starting a proof of concept on FPGA.

117

7. In Duetto reference model, we incorporate a request-driven approach meaning that

we compute the interference on the shared resource by considering the worst-case

scenario that could happen to each and every request. However, incorporating more

knowledge about the other requestors in the system could result in a better bound (i.e.

a job-driven approach). For example, the system could track the latencies based on

multiple requests through set of counters that count the number of interfering requests

of other cores. However, this would add extra complexity and require additional

information on the operation of the other requestors in the system.

118

References

[1] Benny Akesson and Kees Goossens. Memory controllers for real-time embedded sys-

tems. Springer, 2011.

[2] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable

SDRAM memory controller. In IEEE/ACM international conference on Hardware/-

software codesign and system synthesis, pages 251–256, 2007.

[3] ARM Cortex-A9 - technical reference manual.

[4] ARM. Amba axi protocol specification v2. 0. ARM Holdings, 2010.

[5] Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and

Marco Caccamo. Cache where you want! reconciling predictability and coherent

caching. arXiv preprint arXiv:1909.05349, 2019.

[6] Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and

Marco Caccamo. Reconciling predictability and coherent caching. In 2020 9th

Mediterranean Conference on Embedded Computing (MECO), pages 1–6. IEEE, 2020.

[7] Sanjoy Baruah and Steve Vestal. Schedulability analysis of sporadic tasks with mul-

tiple criticality specifications. In 2008 Euromicro Conference on Real-Time Systems,

pages 147–155. IEEE, 2008.

[8] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis,

and Thomas Nolte. Contention-free execution of automotive applications on a clus-

tered many-core platform. In 2016 28th Euromicro Conference on Real-Time Systems

(ECRTS), pages 14–24. IEEE, 2016.

119

[9] Guillem Bernat, Antoine Colin, and Stefan M Petters. Wcet analysis of probabilistic

hard real-time systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS

2002., pages 279–288. IEEE, 2002.

[10] Balasubramanya Bhat and Frank Mueller. Making dram refresh predictable. Real-

Time Systems, 47(5):430–453, 2011.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,

Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,

et al. The gem5 simulator. ACM SIGARCH computer architecture news, 39(2):1–7,

2011.

[12] Roman Bourgade, Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pas-

cal Sainrat. Accurate analysis of memory latencies for wcet estimation. In 16th

International Conference on Real-Time and Network Systems (RTNS 2008), 2008.

[13] Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of

Computer Science, University of York, Tech. Rep, pages 1–69, 2013.

[14] Jason F Cantin, Mikko H Lipasti, and James E Smith. Improving multiprocessor

performance with coarse-grain coherence tracking. In 32nd International Symposium

on Computer Architecture (ISCA’05), pages 246–257. IEEE, 2005.

[15] Jason F Cantin, James E Smith, Mikko H Lipasti, Andreas Moshovos, and Babak

Falsafi. Coarse-grain coherence tracking: Regionscout and region coherence arrays.

IEEE Micro, 26(1):70–79, 2006.

[16] Kevin Kai-Wei Chang, Donghyuk Lee, Zeshan Chishti, Alaa R Alameldeen, Chris

Wilkerson, Yoongu Kim, and Onur Mutlu. Improving dram performance by paral-

lelizing refreshes with accesses. In 2014 IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), pages 356–367. IEEE, 2014.

[17] Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness, James H An-

derson, and F Donelson Smith. Reconciling the tension between hardware isolation

and data sharing in mixed-criticality, multicore systems. In 2016 IEEE Real-Time

Systems Symposium (RTSS), pages 57–68. IEEE, 2016.

[18] Bekim Cilku, Bernhard Frömel, and Peter Puschner. A dual-layer bus arbiter for

mixed-criticality systems with hypervisors. In 2014 12th IEEE International Con-

ference on Industrial Informatics (INDIN), pages 147–151. IEEE, 2014.

120

[19] Antoine Colin and Stefan M Petters. Experimental evaluation of code properties

for wcet analysis. In RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003,

pages 190–199. IEEE, 2003.

[20] Tanya L Crenshaw, Elsa Gunter, Craig L Robinson, Lui Sha, and PR Kumar. The

simplex reference model: Limiting fault-propagation due to unreliable components

in cyber-physical system architectures. In IEEE International Real-Time Systems

Symposium (RTSS), 2007.

[21] Anup Das, Hasan Hassan, and Onur Mutlu. Vrl-dram: improving dram performance

via variable refresh latency. In DAC, volume 3, page 2, 2018.

[22] Leonardo Ecco and Rolf Ernst. Improved DRAM Timing Bounds for Real-Time

DRAM Controllers with Read/Write Bundling. In Real-Time Systems Symposium

(RTSS), pages 53–64, 2015.

[23] Leonardo Ecco, Adam Kostrzewa, and Rolf Ernst. Minimizing DRAM Rank Switch-

ing Overhead for Improved Timing Bounds and Performance. In Euromicro Confer-

ence on Real-Time Systems (ECRTS), 2016.

[24] Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A mixed crit-

ical memory controller using bank privatization and fixed priority scheduling. In

2014 IEEE 20th International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pages 1–10. IEEE, 2014.

[25] Michael A Fischer. Fair arbitration technique for a split transaction bus in a multi-

processor computer system, November 15 1988. US Patent 4,785,394.

[26] Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu.

Demystifying complex workload-dram interactions: An experimental study. ACM on

Measurement and Analysis of Computing Systems, 2019.

[27] Sven Goossens, Benny Akesson, and Kees Goossens. Conservative Open-page Policy

for Mixed Time-Criticality Memory Controllers. In Proceedings of the Conference on

Design, Automation and Test in Europe, pages 525–530. EDA Consortium, 2013.

[28] Sven Goossens, Jasper Kuijsten, Benny Akesson, and Kees Goossens. A reconfig-

urable real-time sdram controller for mixed time-criticality systems. In Proceed-

ings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis, page 2. IEEE Press, 2013.

121

[29] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich,

and Rodolfo Pellizzoni. A survey on cache management mechanisms for real-time

embedded systems. ACM Computing Surveys (CSUR), 48(2):1–36, 2015.

[30] Giovani Gracioli and Antônio Augusto Fröhlich. On the design and evaluation of a

real-time operating system for cache-coherent multicore architectures. ACM SIGOPS

Operating Systems Review, 49(2):2–16, 2016.

[31] Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pel-

lizzoni, and Marco Caccamo. Designing mixed criticality applications on modern

heterogeneous mpsoc platforms. In 31st Euromicro Conference on Real-Time Sys-

tems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[32] Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative

study of predictable dram controllers. ACM Transactions on Embedded Computing

Systems (TECS), 17(2):1–23, 2018.

[33] Danlu Guo and Rodolfo Pellizzoni. A requests bundling dram controller for mixed-

criticality systems. In Real-Time and Embedded Technology and Applications Sym-

posium (RTAS), 2017 IEEE, pages 247–258. IEEE, 2017.

[34] Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for

multicore timing analysis. In International conference on real-time networks and

systems (RTNS), 2016.

[35] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst.

Communication centric design in complex automotive embedded systems. In 29th Eu-

romicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2017.

[36] Mohamed Hassan. On the off-chip memory latency of real-time systems: Is ddr dram

really the best option? In IEEE Real-Time Systems Symposium (RTSS), 2018.

[37] Mohamed Hassan. Discriminative coherence: Balancing performance and latency

bounds in data-sharing multi-core real-time systems. In 32nd Euromicro Confer-

ence on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2020.

122

[38] Mohamed Hassan. Discriminative coherence: Balancing performance and latency

bounds in data-sharing multi-core real-time systems. In 32nd Euromicro Confer-

ence on Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2020.

[39] Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable cache coherence

for multi-core real-time systems. In 2017 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 235–246. IEEE, 2017.

[40] Mohamed Hassan and Hiren Patel. Criticality-and requirement-aware bus arbitra-

tion for multi-core mixed criticality systems. In IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2016.

[41] Mohamed Hassan and Hiren Patel. Mcxplore: Automating the validation process of

dram memory controller designs. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(5):1050–1063, 2017.

[42] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A framework for scheduling

dram memory accesses for multi-core mixed-time critical systems. In 21st IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages

307–316. IEEE, 2015.

[43] Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. PMC: A requirement-aware

DRAM controller for multi-core mixed criticality systems. In ACM Transactions on

Embedded Computing Systems (TECS), 2016.

[44] Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference in cots hetero-

geneous mpsocs for mixed criticality systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2018.

[45] Mohamed Hassan and Rodolfo Pellizzoni. Analysis of memory-contention in hetero-

geneous cots mpsocs. In Euromicro Conference on Real-Time Systems, 2020.

[46] Farouk Hebbache, Mathieu Jan, Florian Brandner, and Laurent Pautet. Shedding

the shackles of time-division multiplexing. In IEEE Real-Time Systems Symposium

(RTSS), 2018.

[47] Sven Heithecker and Rolf Ernst. Traffic shaping for an fpga based sdram controller

with complex qos requirements. In Proceedings. 42nd Design Automation Conference,

2005., pages 575–578. IEEE, 2005.

123

[48] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[49] Salah Hessien and Mohamed Hassan. The Best of All Worlds: Improving Predictabil-

ity at the Performance of Conventional Coherence with No Protocol Modifications.

In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, October 2020.

[50] Intel® 64 and ia-32 architectures optimization reference manual. https:
//www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf. Ac-

cessed: 2021-07-20.

[51] Intel. External memory interface handbook volume 2: Design guidelines, 2017.

[52] Bruce Jacob, David Wang, and Spencer Ng. Memory systems: cache, DRAM, disk.

Morgan Kaufmann, 2010.

[53] Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and

Francisco J Cazorla. A dual-criticality memory controller (dcmc): Proposal and

evaluation of a space case study. In 2014 IEEE Real-Time Systems Symposium,

pages 207–217. IEEE, 2014.

[54] Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcoubetis. Weighted round-

robin cell multiplexing in a general-purpose atm switch chip. IEEE Journal on

selected Areas in Communications, 9(8):1265–1279, 1991.

[55] Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Designing predictable

cache coherence protocols for multi-core real-time systems. IEEE Transactions on

Computers, 2020.

[56] Anirudh Mohan Kaushik and Hiren Patel. A systematic approach to achieving

tight worst-case latency and high-performance under predictable cache coherence.

In 2021 IEEE 27th Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), pages 105–117. IEEE, 2021.

[57] Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp:

A data communication mechanism for multi-core mixed-criticality systems. In 2019

IEEE Real-Time Systems Symposium (RTSS), pages 419–432. IEEE, 2019.

124

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[58] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roy-

choudhury. Bus-aware multicore wcet analysis through tdma offset bounds. In 2011

23rd Euromicro Conference on Real-Time Systems (ECRTS), pages 3–12. IEEE,

2011.

[59] Hokeun Kim, David Broman, Edward A Lee, Michael Zimmer, Aviral Shrivastava,

and Junkwang Oh. A predictable and command-level priority-based dram controller

for mixed-criticality systems. In 21st IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 317–326. IEEE, 2015.

[60] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun Lim,

and Tri Pho. Macsim: A cpu-gpu heterogeneous simulation framework user guide.

Georgia Institute of Technology, 2012.

[61] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun Lim,

and Tri Pho. Macsim: A cpu-gpu heterogeneous simulation framework user guide.

Georgia Institute of Technology, 2012.

[62] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ra-

gunathan Rajkumar. Bounding memory interference delay in cots-based multi-core

systems. In IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2014.

[63] Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H Anderson, and

F Donelson Smith. Allowing shared libraries while supporting hardware isolation

in multicore real-time systems. In 2017 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 223–234. IEEE, 2017.

[64] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. Atlas: A scal-

able and high-performance scheduling algorithm for multiple memory controllers. In

HPCA-16 2010 The Sixteenth International Symposium on High-Performance Com-

puter Architecture, pages 1–12. IEEE, 2010.

[65] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter. Thread

cluster memory scheduling: Exploiting differences in memory access behavior. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 65–76. IEEE Computer Society, 2010.

125

[66] Yogen Krishnapillai, Zheng Pei Wu, and Rodolfo Pellizzoni. A rank-switching, open-

row dram controller for time-predictable systems. In 2014 26th Euromicro Conference

on Real-Time Systems, pages 27–38. IEEE, 2014.

[67] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and

Onur Mutlu. Tiered-latency dram: A low latency and low cost dram architecture.

In 2013 IEEE 19th International Symposium on High Performance Computer Archi-

tecture (HPCA), pages 615–626. IEEE, 2013.

[68] Benjamin Lesage, Isabelle Puaut, and André Seznec. Preti: Partitioned real-time

shared cache for mixed-criticality real-time systems. In Proceedings of the 20th In-

ternational Conference on Real-Time and Network Systems, pages 171–180, 2012.

[69] Yonghui Li, Benny Akesson, and Kees Goossens. Dynamic command scheduling for

real-time memory controllers. In 2014 26th Euromicro Conference on Real-Time

Systems, pages 3–14. IEEE, 2014.

[70] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogram-

ming in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,

1973.

[71] Renato Mancuso, Rodolfo Pellizzoni, Neriman Tokcan, and Marco Caccamo. Wcet

derivation under single core equivalence with explicit memory budget assignment. In

29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik, 2017.

[72] Peter Marwedel. Embedded system design: Embedded systems foundations of cyber-

physical systems. Springer Science & Business Media, 2010.

[73] Reza Mirosanlou, Danlu Guo, Mohamed Hassan, and Rodolfo Pellizzoni. Mcsim: An

extensible dram memory controller simulator. IEEE Computer Architecture Letters

(CAL), 2020.

[74] Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Drambulism: Balancing

performance and predictability through dynamic pipelining. In 2020 IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2020.

[75] Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Duetto: Latency guar-

antees at minimal performance cost. In 2021 Design, Automation Test in Europe

Conference Exhibition (DATE), pages 1136–1141, 2021.

126

[76] Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Duomc: Tight dram

latency boundswith shared banks and near-cots performance. In 2021 ACM Inter-

national Symposium on Memory Systems (MEMSYS), 2021.

[77] Anastasio Molano, Kanaka Juvva, and Ragunathan Rajkumar. Real-time filesystems.

guaranteeing timing constraints for disk accesses in rt-mach. In Proceedings Real-

Time Systems Symposium, pages 155–165. IEEE, 1997.

[78] Shubhendu S Mukherjee, Babak Falsafi, Mark D Hill, and David A Wood. Coherent

network interfaces for fine-grain communication. ACM SIGARCH Computer Archi-

tecture News, 24(2):247–258, 1996.

[79] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhanc-

ing both performance and fairness of shared dram systems. In 2008 International

Symposium on Computer Architecture, pages 63–74. IEEE, 2008.

[80] Onur Mutlu and Lavanya Subramanian. Research problems and opportunities in

memory systems. Supercomputing frontiers and innovations, 1(3), 2015.

[81] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith. Fair queu-

ing memory systems. In Proceedings of the 39th Annual IEEE/ACM international

Symposium on Microarchitecture (MICRO), pages 208–222. IEEE Computer Society,

2006.

[82] Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener,

and Michael Schmidt. Multi-core interference-sensitive wcet analysis leveraging run-

time resource capacity enforcement. In 2014 26th Euromicro Conference on Real-

Time Systems, pages 109–118. IEEE, 2014.

[83] Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo

Valero. Hardware support for wcet analysis of hard real-time multicore systems.

ACM SIGARCH Computer Architecture News, 2009.

[84] Marco Paolieri, Eduardo Quinones, Francisco J Cazorla, and Mateo Valero. An

analyzable memory controller for hard real-time cmps. IEEE Embedded Systems

Letters, 1(4):86–90, 2009.

[85] Marco Paolieri, Eduardo Quiñones, and Fransisco J. Cazorla. Timing effects of

DDR memory systems in hard real-time multicore architectures: Issues and solutions.

Transactions on Embedded Computing Systems (TECS), 2013.

127

[86] Risat Mahmud Pathan. Schedulability analysis of mixed-criticality systems on mul-

tiprocessors. In 2012 24th Euromicro Conference on Real-Time Systems, pages 309–

320. IEEE, 2012.

[87] Rodolfo Pellizzoni, Bach D Bui, Marco Caccamo, and Lui Sha. Coscheduling of cpu

and i/o transactions in cots-based embedded systems. In 2008 Real-Time Systems

Symposium, pages 221–231. IEEE, 2008.

[88] Rodolfo Pellizzoni and Marco Caccamo. Impact of peripheral-processor interference

on wcet analysis of real-time embedded systems. IEEE Transactions on Computers,

59(3):400–415, 2010.

[89] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and

Lothar Thiele. Worst case delay analysis for memory interference in multicore sys-

tems. In 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE

2010), pages 741–746. IEEE, 2010.

[90] Fong Pong and Michel Dubois. A new approach for the verification of cache coherence

protocols. IEEE Transactions on Parallel and Distributed Systems, 6(8):773–787,

1995.

[91] Jason Poovey. Characterization of the EEMBC benchmark suite. North Carolina

State University, 2007.

[92] Qualcomm. Qualcomm snapdragon 600e processor apq8064e recommended memory

controller and device settings application note, 2016.

[93] Moinuddin K Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J Nair, and Onur

Mutlu. Avatar: A variable-retention-time (vrt) aware refresh for dram systems. In

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, pages 427–437. IEEE, 2015.

[94] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee. PRET

DRAM controller: bank privatization for predictability and temporal isolation. In

Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/-

software codesign and system synthesis, CODES+ISSS ’11, pages 99–108, New York,

NY, USA, 2011. ACM.

128

[95] Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. PRET

DRAM controller: Bank privatization for predictability and temporal isolation. In

IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-

tem synthesis (CODES+ ISSS), 2011.

[96] Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Appendix to dram-

bulism: Balancing performance and predictability through dynamic pipelining.

http://hdl.handle.net/10012/15678, 2020.

[97] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.

Memory access scheduling. ACM SIGARCH Computer Architecture News, 2000.

[98] Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. Towards time-

predictable data caches for chip-multiprocessors. In IFIP International Workshop on

Software Technolgies for Embedded and Ubiquitous Systems, pages 180–191. Springer,

2009.

[99] Ioannis Schoinas, Babak Falsafi, Alvin R Lebeck, Steven K Reinhardt, James R

Larus, and David A Wood. Fine-grain access control for distributed shared mem-

ory. In Proceedings of the sixth international conference on Architectural support for

programming languages and operating systems, pages 297–306, 1994.

[100] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling cache coherence to

expose interference (artifact). In 31st Euromicro Conference on Real-Time Systems

(ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[101] Nathanal Sensfelder, Julien Brunel, and Claire Pagetti. On how to identify cache

coherence: Case of the nxp qoriq t4240. In 32nd Euromicro Conference on Real-Time

Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.

[102] Ashok Singhal, Bjorn Liencres, Jeff Price, Frederick M Cerauskis, David Broniarczyk,

Gerald Cheung, Erik Hagersten, and Nalini Agarwal. Implementing snooping on a

split-transaction computer system bus, November 2 1999. US Patent 5,978,874.

[103] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency

and cache coherence. Synthesis lectures on computer architecture, 6(3):1–212, 2011.

[104] Nivedita Sritharan, Anirudh Kaushik, Mohamed Hassan, and Hiren Patel. Enabling

predictable, simultaneous and coherent data sharing in mixed criticality systems. In

2019 IEEE Real-Time Systems Symposium (RTSS), pages 433–445. IEEE, 2019.

129

http://hdl.handle.net/10012/15678

[105] Nivedita Sritharan, Anirudh M Kaushik, Mohamed Hassan, and Hiren Patel. Hour-

glass: Predictable time-based cache coherence protocol for dual-critical multi-core

systems. arXiv preprint arXiv:1706.07568, 2017.

[106] DDR3 SDRAM Standard. Jedec jesd79-3, 2007.

[107] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur

Mutlu. Bliss: Balancing performance, fairness and complexity in memory access

scheduling. IEEE Transactions on Parallel and Distributed Systems, 27(10):3071–

3087, 2016.

[108] Vivy Suhendra and Tulika Mitra. Exploring locking & partitioning for predictable

shared caches on multi-cores. In Proceedings of the 45th annual Design Automation

Conference, pages 300–303, 2008.

[109] P K Valsan and Heechul Yun. MEDUSA: a predictable and high-performance DRAM

controller for multicore based embedded systems. In Cyber-Physical Systems, Net-

works, and Applications (CPSNA), pages 86–93, 2015.

[110] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking

caches to improve isolation in multicore real-time systems. In IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2016.

[111] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying de-

grees of execution time assurance. In 28th IEEE International Real-Time Systems

Symposium (RTSS 2007), pages 239–243. IEEE, 2007.

[112] Bryan C Ward, Jonathan L Herman, Christopher J Kenna, and James H Ander-

son. Omaking shared caches more predictable on multicore platforms. In 2013 25th

Euromicro Conference on Real-Time Systems, pages 157–167. IEEE, 2013.

[113] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,

Tulika Mitra, et al. The worst-case execution-time problem—overview of methods

and survey of tools. ACM Transactions on Embedded Computing Systems (TECS),

7(3):1–53, 2008.

130

[114] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister,

and Christian Ferdinand. Memory hierarchies, pipelines, and buses for future archi-

tectures in time-critical embedded systems. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 28(7):966–978, 2009.

[115] Zheng Pei Wu, Yo Krish, and Rodolfo Pellizzoni. Worst case analysis of dram latency

in multi-requestor systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages

372–383. IEEE, 2013.

[116] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of dram la-

tency in multi-requestor systems. In 2013 IEEE 34th Real-Time Systems Symposium,

pages 372–383. IEEE, 2013.

[117] Zheng Pei Wu, Rodolfo Pellizzoni, and Danlu Guo. A composable worst case latency

analysis for multi-rank dram devices under open row policy. Real-Time Systems,

52(6):761–807, 2016.

[118] Zhuanhao Wu, Anirudh Mohan Kaushik, Paulos Tegegn, and Hiren Patel. A hard-

ware platform for exploring predictable cache coherence protocols for real-time mul-

ticores. In 2021 IEEE 27th Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 92–104. IEEE, 2021.

[119] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. Optimizing tunable wcet with shared

resource allocation and arbitration in hard real-time multicore systems. In IEEE

Real-Time Systems Symposium (RTSS), 2011.

[120] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. Palloc: Dram

bank-aware memory allocator for performance isolation on multicore platforms. In

2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 155–166. IEEE, 2014.

[121] Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware mem-

ory interference delay analysis for cots multicore systems. In Euromicro Conference

on Real-Time Systems (ECRTS), 2015.

[122] Wei Zhao and John A Stankovic. Performance analysis of fcfs and improved fcfs

scheduling algorithms for dynamic real-time computer systems. In [1989] Proceedings.

Real-Time Systems Symposium, pages 156–165. IEEE, 1989.

131

[123] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. Intel®
quickpath interconnect architectural features supporting scalable system architec-

tures. In 2010 18th IEEE Symposium on High Performance Interconnects, pages

1–6. IEEE, 2010.

132

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Methodology
	Structure of Thesis

	Background and Related Work
	Background: Arbitration in Real-Time Systems
	Background: Hardware Cache Coherence
	Cache Controllers
	Coherence Protocols
	Snoopy Protocols and Directory-based Protocols

	Related Work: Predictable Cache Coherence
	Background: Main Memory
	DRAM Organization
	Memory Controller Operations
	DRAM Timings

	Related Work: Predictable Memory Controllers

	Duetto Reference Model
	Case Study
	Reference Model
	Requestors and Requests
	Request Latency and DTracker
	Commands and Resource Interface
	High-Performance and Real-Time Arbiter
	Execution Model and Latency Guarantees

	Architecture Design
	Step A: RTA Design
	Step B: Dynamic RTA Latency Analysis
	Step C: Static WCL Bound
	Step D: WCLator Design

	Evaluation
	Summary

	DUEPCO: Applying Duetto to Cache Coherency with Added Parallelism
	System Model
	Architecture and Coherency
	Request Processing and Order of Arbitration
	Latency Model
	Task Analysis

	Proposed Arbiter
	Rule 1: Global Round-Robin Ordering
	Rule 2: Bus Arbitration
	Rule 3: Priority Inheritance
	Rule 4: Request Blocking

	Latency Analysis
	Dynamic Latency Analysis
	Static Analysis

	DUEPCO: Duetto Application for Coherency
	WCLator Design

	Evaluation Results
	Per-Request Worst-Case Latency
	Sensitivity Test
	Observed Request Latency
	Average Performance: Throughput

	Summary

	DuoMC: Applying Duetto to DRAM with Shared Banks
	DuoMC: The Proposed Solution
	Task WCET Estimation
	DuoMC Model

	Real-time Scheduler (RTSch)
	Rule 1: Round Robin Arbitration
	Rule 2: Bus Conflict Handling
	Rule 3: Shared Bank Blocking
	Rule 4: PRE and ACT Arbiters Operation
	Rule 5: CAS Self-Blocking
	Rule 6: CAS Round Starting and Ending
	Rule 7: CAS Arbiter Operation Inside a Round
	Rule 8: Always Starting with a Read Round

	Illustrative Example for RTSch Rules
	Latency Analysis
	Static WCL Analysis: Private Banks
	Static WCL Analysis: Shared Banks
	On-line WCLator Latency Estimation

	Implementation
	MCsim: An Extensible DRAM MC Simulator
	Architectural Design
	Configuration and Simulation Engine
	Detailed System Design
	MCsim Evaluation and Validation

	Evaluation
	Analytical Worst-Case Memory Access Latency
	Measured Request Latency
	Average-Case Performance

	Summary

	Conclusion and Future Work
	References

