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Abstract 

Baseflow with origins from groundwater is a critical component of streamflow 

sustaining it throughout the year especially during dry periods. To better understand the 

role of baseflow in streamflow, accurate estimates are needed. This study calculates 

baseflow through existing graphical and digital filter methods, using actual streamflow data 

from a gauging station at the Alder Creek Watershed (ACW) and synthetic streamflow data 

at ten study points within the same watershed simulated with HydroGeoSphere (HGS) 

(Aquanty Inc., 2018). There are four widely used graphical (Sloto and Crouse, 1996; Aksoy 

et al., 2008) and six digital filter (Lyne and Hollick, 1979; Chapman and Maxwell, 1996; 

Furey and Gupta, 2001; Eckhardt, 2005; Tularam and Ilahee, 2008; Aksoy et al., 2009) 

approaches for baseflow estimation being used and compared. To determine the most 

optimal estimation approach, baseflow estimates from real data are assessed based on the 

concept of hydrologic plausibility (Nathan and McMahon, 1990), while baseflow estimates 

obtained from the HGS streamflow record with graphical and digital filter methods are 

compared to those computed directly by HGS. Overall, results from this study indicate that 

baseflow hydrographs reveal a seasonal pattern. During wintertime, streamflow is 

composed almost entirely of baseflow, whereas during summertime, baseflow only 

consists approximately 20% to 60% of streamflow. After comparing the baseflow estimates 

with those computed by HGS, the most optimal approaches at ten points are assessed. 

Results show that the best approach for six points is the FUKIH (Aksoy et al., 2009) 

approach; for three points is the Chapman and Maxwell (1996) approach; and for one point 

is the Eckhardt (2005) approach. In conclusion, it is inferred that the most optimal approach 

within the ACW varies spatially. 
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Chapter 1 

 Introduction 

Baseflow is an essential component of streamflow, which originates primarily from 

groundwater discharging into streams (e.g., Hall, 1968; Freeze, 1972; Eckhardt, 2005; 

Brodie et al., 2007). As an important component of streamflow, baseflow plays an essential 

role in sustaining riparian and aquatic ecosystems as well as having impacts on stream 

water chemistry. In many streams, streamflow is primarily composed of baseflow during 

dry periods, and during wet seasons, the ratio of baseflow to streamflow could decrease 

significantly depending on site conditions. For example, in a dry climate, baseflow has 

been estimated to be approximately 80 percent within the Upper Colorado River Basin 

(Miller et al., 2016). In the baseflow and water use assessment report by Toronto and 

Region Conservation (2008), baseflow has been estimated to be approximately 40 percent 

from the Don River Watershed in a humid climate during summertime. 

In contrast to baseflow, surface runoff is the quick response to rainfall events 

containing precipitation falling directly onto streams, overland flow, and interflow or 

throughflow. It constitutes a larger portion of the streamflow during wet seasons. Predicting 

the contribution of baseflow relative to streamflow is essential for watershed management 

that could help determine the potential discharge that may occur during a rainy season or a 

flooding period (Indarto et al., 2016). 

Research on baseflow characteristics is vital for comprehending runoff generation 

processes and understanding interactions among streamflow, groundwater, and other 

components of the water cycle. Moreover, investigations on spatial and temporal variability 
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of baseflow could lead to a better quantification of the significance of groundwater in 

streamflow processes. Furthermore, a detailed understanding of these water cycle 

components and how these components vary with space and time could lead to better 

solutions to water quantity and quality issues within a watershed. Due to this importance, 

studies on estimating baseflow through various approaches have been widely conducted 

(e.g., Winter et al., 1998; Cey et al., 1998; Kalbus et al., 2006; Rosenberry and LaBaugh, 

2008). However, it is difficult to obtain accurate baseflow hydrographs directly and 

continuously in the field. Therefore, many different approaches have been developed to 

estimate baseflow based on different kinds of data that are available within a watershed. 

Baseflow estimation methods can be roughly divided into three groups: direct 

measurements, tracer-based estimation, and non-tracer-based estimation methods. Direct 

measurements rely on different instruments to measure baseflow values at discrete points. 

Tracer-based estimation methods mainly rely on chemical tracers to explore the generation 

processes of each water cycle component (Yu and Schwartz, 1999). Non-tracer-based 

estimation methods could be subdivided into several groups, including graphical and 

digital filter methods. In graphical methods, different criteria are used to separate 

streamflow into baseflow and surface runoff through the analysis of a streamflow 

hydrograph. In digital filter methods, numerical approaches are utilized to filter streamflow 

into different portions of the hydrograph. 

In previous research on baseflow estimation, various approaches have been utilized 

and then compared to evaluate the results (e.g., Nathan and McMahon, 1990; Cey et al., 

1998; Chapman, 1999; Arnold et al., 2000; Smakhtin, 2001; Conant, 2004; Schwartz, 2007; 

Gonzales et al., 2009; Indarto et al., 2016; Lott and Stewart, 2016; Xie et al., 2020; Kissel 
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and Schmalz, 2020). For example, Cey et al. (1998) compared four field approaches to 

measure baseflow values at a small watershed in southern Ontario, Canada. Approaches 

compared include the use of the velocity-area technique, mini piezometers measurements, 

seepage meter measurements, and analyses of electrical conductivity as well as isotope data. 

Among the first three techniques, the velocity-area technique resulted in the best baseflow 

estimates. From the analyses of isotope and electrical conductivity data, it was shown that 

during storm events, pre-event water contributed approximately 64% to 80% of total 

discharge, and antecedent moisture conditions of the catchment were found to largely affect 

the percentage of event- and pre-event water in streamflow. 

Conant (2004) developed a method that related fluxes from minipiezometers to 

streambed temperatures. Then, a generalized conceptual model of groundwater discharge 

was developed based on groundwater flux data determined through geochemical data from 

a stream in Angus, Ontario, Canada. This conceptual model could be used to evaluate 

groundwater discharge and subdivided discharge behaviors into five categories, which 

were short-circuit discharge, high discharge, low to moderate discharge, no discharge, and 

recharge. 

Gonzales et al. (2009) compared various baseflow estimation methods, including 

both tracer- and non-tracer-based methods in a lowland area of the Netherlands. The 

hydrological tracer approach revealed that groundwater responded quickly to rainfall 

events in this area, and surface water contributed most of the measured discharge during 

flood events. Moreover, the estimated results were compared with baseflow values 

determined through the tracer-based method. In their study, Gonzales et al. (2009) 
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concluded that the rating curve method and the recursive filtering method proposed by 

Eckhardt (2005) resulted in reliable baseflow values. 

Indarto et al. (2016) reviewed earlier work on baseflow estimation and used seven 

recursive digital and two graphical methods in East Java, Indonesia to determine the 

optimal parameters values, baseflow index, and to find the appropriate method for the 

investigated watershed. Results revealed that the exponentially weighted moving average 

(EWMA) approach (Tularam and Ilahee, 2008), the Lyne and Hollick approach (1979), 

and the local-minimum method (Sloto and Crouse, 1996) performed better in this area. 

Lott and Stewart (2016) analyzed six baseflow estimation methods for 35 

representative stream gages located across the United States including two graphical 

approaches—HYSEP fixed- and sliding-interval approaches (Sloto and Crouse, 1996), two 

baseflow index approaches (Wahl and Wahl, 1995), power function (Lott and Stewart, 

2013), and WHAT technique (Lim et al., 2005), which is a software that incorporates the 

Lyne and Hollick (1979) as well as Eckhardt (2005) approaches. The results were 

compared with baseflow derived from the conductivity mass balance (CMB) method. The 

correlation coefficients of these analytical methods showed that HYSEP methods had the 

lowest correlation with the CMB method. Once these analytical methods were calibrated 

to CMB data, the correlation coefficients of these methods all increased significantly from 

0.35 to 1.00, which suggests a better correspondence of estimated baseflow between 

analytical and CMB approaches. 

Xie et al. (2020) estimated baseflow values with four graphical and five digital filter 

methods for 1,815 catchments in the United States. An evaluation criterion was established 

to determine the true baseflow, and this evaluation criterion was used together with some 
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performance metrics to analyze the accuracy of each estimation method. In this evaluation 

criterion, they selected streamflow values during low flow conditions and treated these 

streamflow values strictly as baseflow values. Low flow conditions were defined as the 

condition when quick flow, which includes interflow and overland flow, has ceased in a 

catchment. Through this evaluation criterion, Xie et al. (2020) concluded that the Eckhardt 

(2005) method had the best performance across the contiguous United States based on the 

evaluation results for 1,815 catchments.  

In these previous studies, several baseflow estimation methods were utilized and 

evaluated. However, as mentioned previously, baseflow values are notoriously hard to 

quantify over long-time scales especially within a large study area. Actual baseflow values 

from a watershed are always absent to help determine the best estimation technique. Most 

studies have determined the optimal baseflow estimation technique simply based on the 

concept of hydrologic plausibility (Nathan and McMahon, 1990) such as the delayed 

response behavior of baseflow (Xie et al., 2020), considered to be highly subjective and 

may lead to biased results. Some studies have used the chemical tracer approach to estimate 

baseflow values, such as in the study conducted by Gonzales et al. (2009). However, the 

requirement of large quantities of chemical tracer data over an entire catchment can be 

costly, thus may not always be feasible. 

Some researchers have used fully integrated three-dimensional surface 

water/groundwater physical models under different hydrological conditions to simulate 

baseflow values, and the synthetic baseflow were assumed to be the true baseflow to test 

various baseflow estimation techniques (e.g., Partington et al., 2012; Li et al., 2014; Su et 

al., 2016). In particular, Partington et al. (2012) used four approaches to estimate baseflow 
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values including the HYSEP approach (Sloto and Crouse, 1996), the PART program 

(Rutledge, 1998) that is constructed based on a graphical approach, the BFLOW program 

(Arnold and Allen, 1999) constructed based on the Lyne and Hollick (1979) approach, and 

the Eckhardt approach (2005). To test the performance of each approach, HydroGeoSphere 

(HGS) (Aquanty Inc. 2018) in conjunction with a hydraulic mixing-cell (HMC) approach 

were used to obtain the synthetic, true baseflow values for a simple, monotonically sloping 

V-shaped catchment. Partington et al. (2012) found that the performance of different 

baseflow estimation approaches varied under eight different scenarios with different 

hydrological conditions, and the estimated baseflow ranged from 28% above to 64% 

percent lower compared to synthetic baseflow. Overall, HYSEP sliding-interval approach 

showed the best results in most scenarios in this study. 

Similar to the work of Partington et al. (2012), Li et al. (2014) used the synthetic 

results from HGS of a simple V-shaped catchment to test the accuracies of three recursive 

digital filters and obtained the optimal parameters for these filters. The recursive filters 

tested in this study were the Lyne and Hollick approach (1979), Chapman and Maxwell 

(1996), Boughton two-parameter filter (Boughton, 1993; Chapman, 1999), and Eckhardt 

(2005) approaches. Results showed that the baseflow estimates obtained through the Lyne 

and Hollick filter could better match the HGS synthetic baseflow under a larger range of 

catchment hydrological characteristics, and the optimal parameters varied based on 

hydrological conditions.  

Su et al. (2016) investigated the utility of hydrological signatures to calibrate the 

Eckhardt filter method and tested seven possible hydrological signatures of baseflow, 

comparing against the synthetic baseflow values simulated with HGS by Li et al. (2014) 
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for a tilted V-shaped catchment. Results showed that the Eckhardt filter had better 

performance after a hydrological signature-based calibration. 

In these previous studies (Partington et al., 2012; Li et al., 2014; and Su et al., 2016), 

HGS was used to simulate baseflow with the HMC approach to help evaluate the 

performances of baseflow estimation approaches. Although the use of synthetic baseflow 

from a model solved the problem of lacking true baseflow estimates from an actual site, 

synthetic baseflow used in these studies was not simulated for a real watershed. Instead, 

the analysis was conducted based on a monotonically sloping V-shaped catchment, that 

simplifies the intricate environmental conditions in actual watersheds subjected to seasonal 

hydrologic variations. 

In this study, the primary purpose is to estimate baseflow values from streamflow 

data at the Alder Creek Watershed (ACW) in southern Ontario, Canada. Baseflow 

estimation is conducted through ten different approaches including four graphical and six 

digital filter approaches. Graphical methods include: the 1) United Kingdom Institute of 

Hydrology (UKIH) method (Aksoy et al., 2008); 2) three hydrograph-separation (HYSEP) 

methods, which are fixed-interval (HYSEP1), sliding-interval (HYSEP2), and local-

minimum (HYSEP3) methods (Sloto and Crouse, 1996). Digital filter approaches include 

those developed by: 1) Lyne and Hollick (1979); 2) Filtered United Kingdom Institute of 

Hydrology (FUKIH) approach (Aksoy et al., 2009); 3) Chapman and Maxwell (1996); 4) 

Eckhardt (2005); 5) Furey and Gupta (2001); and the 6) EWMA approach (Tularam and 

Ilahee, 2008). Baseflow estimates obtained through the ten approaches using actual 

streamflow data from a real streamflow gauge are first compared and assessed utilizing the 

concept of hydrologic plausibility (Nathan and McMahon, 1990). 
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As true baseflow estimates from the ACW are not available to properly evaluate the 

performance of various baseflow separation techniques, synthetic streamflow and baseflow 

data obtained from HGS are utilized for a more rigorous comparison of various techniques. 

Unlike the simple V-shape catchment models used by Partington et al. (2012) and Li et al. 

(2014), actual hydrological and geological conditions of the ACW are simulated with HGS 

that rigorously considers the coupling of surface water, groundwater flow, and other 

hydrological conditions for the ACW (Tong et al. 2022). Although numerical models may 

not be able to provide actual baseflow values for a given site, the use of a fully 3D 

integrated hydrological model could still generate good independent conceptualization of 

watershed flow dynamics under different conditions until better baseflow estimation tools 

or observation techniques are developed (Partington et al., 2012). Through the HGS model 

used for this study, synthetic baseflow at ten different points in the ACW are obtained and 

assumed to be the true baseflow. These results are then compared against baseflow 

estimates obtained through the ten different baseflow estimation methods to determine the 

most optimal approach for the ACW. 

 

Chapter 2 

Site description and data used for analysis 

2.1 Site description 

The study area is the Alder Creek Watershed (ACW), which is situated at the 

southwestern portion of the Grand River Watershed located in southern Ontario, Canada 

(Figure 1), covering an area of approximately 79 km2 (GRCA, 2009). In the central portion 
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of the Grand River Watershed, where the ACW is located, surficial material is 

predominantly comprised of glacial sediments. 

Figure 2 shows that the ACW is covered by a large variety of surficial materials 

including clay, gravel, sand, and silt. More specifically, the middle and the southeastern 

portion of the ACW is predominately covered by poorly to well sorted fine sand and gravel 

to coarse sand; the southwestern part is mainly covered by poorly to well sorted fine gravel 

and sand to coarse gravel; and clay till is mostly distributed at the northern edge. These 

surficial sediments are mainly formed during the most recent episode of Pleistocene 

glaciation, which is the Wisconsinan glacial event, that commenced 25,000 years ago and 

approximately ended 10,000 years ago. The Wisconsinan glaciation is subdivided into 

different phases, thus the sediments deposited during different episodes are present within 

the ACW. Specifically, the bulk of glacial sediments found in this area contain pre-

Michigan sub-episode tills, non-glacial sediments, Michigan sub-episode tills, as well as 

stratified sediments deposited by a regionally thick ice and oscillating lobate ice formed 

due to the advance and retreat of the Wisconsinan Ice Sheet (GRCA, 2018). 
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Figure 1. Location of the Alder Creek Watershed (ACW) and the distribution of ten study points. The 
small inset figure shows the location of the ACW in relation to the Grand River Watershed. 
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Figure 2. Map of surficial materials at the ACW showing the location of ten monitoring points in the HGS 

model. Data on surficial material are obtained from the Government of Ontario, Ministry of Northern 
Development, Mines, Natural Resources and Forestry (Government of Canada, 2019). 

Beneath the surficial sediments, the bedrock beneath the watershed constitutes a 

portion of the Michigan and Appalachian Basins, which were deposited on the ocean floor 

by Devonian, Silurian, and Ordovician aged marine sediments that inundated this area 



  

12 

between 345 to 370 million years ago (GRCA, 2009). Moreover, the sedimentary bedrock 

around this area is mainly interbedded limestone, dolomite carbonate material, and the 

shale of the oldest Ordovician to the youngest Devonian (GRCA, 2009). 

As for land use, a total of seven categories have been classified. Figure 3 shows that 

the ACW is predominately used for agriculture, with fully 70 percent of which is used as 

agricultural land. Other than agricultural land, land use within the watershed area consists 

also of urban built-up, forest, open water, grassland areas, golf course area, as well as 

aggregate extraction and roads. 

In terms of site hydrology, the ACW has a humid continental climate with an annual 

precipitation ranging from 800 to 1,000 mm/year, and an average daily temperature ranging 

from -12.2 ℃ to 21.0 ℃ (Chow et al., 2016). During spring and fall, the weather is wet 

with an average daily temperature of ~5.0 ℃ and the precipitation is in the range of 100 

mm/month, whereas the weather is dry during the summer with an average daily 

temperature of ~18.0 ℃ and the precipitation ranges from 30 to 40 mm/month. During 

winter, the average daily temperature is extremely low which is ~ -11.2 ℃ , and the 

precipitation is mainly in the form of snowfall (Government of Canada, 2020). The annual 

snowfall in this watershed is ~150 - 200 cm, and the average annual evapotranspiration is 

estimated to be 500 - 600 mm/year (GRCA, 2009). 



  

13 

 

Figure 3. Land use map of the ACW showing the location of ten monitoring points in the HGS model. 
Land use data are obtained from the Grand River Conservation Authority (GRCA, 2019). 
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2.2 Research data 

This study investigates the performances of non-tracer-based baseflow estimation 

approaches, which mainly rely on streamflow data to estimate baseflow values. In this 

study, the streamflow data used includes actual streamflow and synthetic streamflow data 

sets. Actual streamflow data is a three-year daily streamflow record from May 1st, 2013 to 

December 31st, 2016 at the New Dundee gauging station maintained by Environment and 

Natural Resources of Canada. 

 

Figure 4. Components of the HydroGeoSphere (HGS) model constructed for the ACW by Tong et al. 
(2022) and utilized to generate synthetic streamflow and baseflow hydrographs. This HGS model is 

comprised of four components: land cover, 3D mesh, soil layer, and geological model. In the geological 
model, there are eight layers each with homogeneous hydraulic parameters. 

As true baseflow estimates are not available at any location throughout the ACW, 

synthetic streamflow and baseflow hydrographs over a three-year period are also generated 
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with HydroGeoSphere (HGS) (Aquanty, 2018), a 3D fully integrated hydrological model 

that rigorously considers the coupling of surface water and groundwater flow processes 

(Tong et al., 2022).  

The HGS model is composed of a surficial land use layer, 30 meter-resolution DEM 

data from Ontario Ministry of Natural Resources and Forestry, soil layer, and geological 

models through previously developed groundwater flow models (Figure 4) (Tong et al., 

2022). In surficial land use layer, 25 meter-resolution land use data is utilized to describe 

plant functional types and surface roughness, and the data is obtained from the Grand River 

Conservation Authority (GRCA, 2009). Within the land use layer, there are seven land use 

types defined: forest, agricultural land, built-up, roads, golf courses, water, and wetland. 

Beneath the surficial layer, there is a 1-m deep soil layer defined with soil data from Soil 

Landscapes of Canada (SLC) compiled by Agricultural and Agri-Food Canada. In this soil 

layer, there are four soil types identified based on the soil texture. 

The stratigraphic units below originate from the geological model of the FEFLOW 

model utilized for the Regional Municipality of Waterloo Tier Three Assessment (Matrix 

and SSPA, 2014a, b). Figure 4 shows that this geological model contains the layers of 

Aquifer A (AFA), Aquifer B (AFB), Aquifer C (AFC), Aquitard A (ATA), Aquifer B 

(ATB), Aquifer C (ATC), and these layers consist of different geological materials—ATA1: 

Whittlesey clay; AFA1: Whittlesey sand; ATA2: Wentworth Till; ATB1: Upper Maryhill 

Till, Port Stanley, Tavistock, Mornington and/or Stratford Tills; AFB1: Upper Waterloo 

Moraine Stratified Sediments and equivalents; ATB2: Middle Maryhill Till and 

equivalents; AFB2: Middle Waterloo Moraine Stratified Sediments and equivalents; ATB3: 

Lower Maryhill and stratified equivalents; AFB3: Lower Waterloo Moraine Stratified 
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Sediments or Catfish Creek Till Outwash; ATC1: Upper/Main Catfish Creek Till; AFC1: 

Middle Catfish Creek Stratified Deposits; and ATC2: Lower Catfish Creek Till (Matrix 

and SSPA, 2014a, b). When synthetic baseflow and streamflow are generated through the 

HGS model, winter processes are also considered. The snow, precipitation, and 

temperature data are utilized and applied to the model to conduct the transient simulations. 

The winter (November 1st to April 30th) simulation is considered after the completion of 

the simulation from spring to fall (May 1st to October 31st), and during the winter simulation, 

winter processes and winter parameters are added into the HGS model, including: 1) the 

freezing and thawing of porewater with lower hydraulic conductivity than summer that 

controls the flow of water (Schilling et al., 2019); and 2) the surface water flow with 

snowmelt and winter process (Tong et al., 2022). 

Precipitation data from May 1st, 2013 to December 31st, 2016 utilized in the study 

are from the Roseville Environment Canada weather station, which is located just over 2 

km outside the watershed. These precipitation events during this period are applied to the 

model. The exchange flux between the surface water and groundwater in the model is 

positive when the water flows from the soil surface down through the shallow subsurface 

and into the underlying aquifers as groundwater recharge, while the flow rate is negative 

when water moves out of the aquifers to the surface as groundwater discharge.  

Ten monitoring points along the tributaries and the main stem of Alder Creek are 

selected where synthetic streamflow and baseflow hydrographs are recorded during the 

three-year simulation period. The ten monitoring points were selected by considering 

various factors such as the relative position within the watershed (i.e., tributary or main 

stem), surficial geology, exchange flux values, land use, and proximity to pumping wells. 
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The estimated baseflow from the HGS model at one point is simulated by summing the 

groundwater recharge and discharge values along the river upstream of the point during 

each timestep. Further details to the HGS model for the ACW and the computed synthetic 

baseflow are provided in Tong et al. (2022). 

 

Chapter 3 

Baseflow estimation methods 

Baseflow estimation methods could be roughly divided into three groups: physically-

based baseflow estimation methods, tracer-based methods, and non-tracer-based methods. 

In physically-based measurements, baseflow is directly measured through different 

instruments. In tracer-based estimation methods, chemical tracers are tracked to explore 

the generation processes of each water cycle component (Yu and Schwartz, 1999). 

Non-tracer-based estimation methods could be subdivided into several groups, 

including graphical and digital filter methods. Graphical methods rely heavily on 

streamflow hydrographs to separate the surface runoff and baseflow. Digital filter methods 

are numerical approaches that are widely used for baseflow estimation. In digital filter 

methods, streamflow is defined to be composed of low-frequency and high-frequency 

components. Baseflow is assumed to be the low-frequency part of the streamflow that 

responds slowly to precipitation, and quick flow, including direct precipitation, interflow, 

and surface runoff, is the high-frequency part that responds quickly to precipitation. 

3.1 Physically-based baseflow estimation methods 
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In physically-based baseflow estimation approaches, different instruments are used 

to measure the baseflow values directly in the field, such as seepage meter, mini-

piezometer, heat pulse meter, and ultrasonic meter. These instruments are installed to 

measure the water fluxes across the groundwater – surface water interface. While direct 

measurements are very desirable, they typically only provide point estimates. In addition, 

direct measurements are always time-consuming and are not viable in making 

measurements at a large number of points within a watershed and over a long-time scale. 

Such point measurements are also logistically difficult to conduct in larger rivers, where 

access to measurement sites can be limited. 

3.2 Tracer-based methods 

In tracer-based methods, conservative tracers, including stable isotopes and other 

environmental tracers are utilized to separate streamflow into surface runoff and baseflow. 

When estimating baseflow using the chemical mass balance approach, it is assumed that 

streamflow components have differentiable isotopic or hydrochemical concentrations 

(Sklash and Farvolden, 1979). The following two equations are established based on mass 

balance considerations (Stewart et al., 2007): 

𝑐!,#𝑞# + 𝑐!,$𝑞$ +⋯+ 𝑐!,%𝑞% +⋯𝑐!,&𝑞& = 𝑐!,'𝑞'                    (1) 

𝑞# + 𝑞$ +⋯+ 𝑞% +⋯+ 𝑞& = 𝑞'                                (2) 

where 𝑞% (m3/s) is the contribution of the flow component j to the total discharge, 𝑐!,% (ppm) 

is the concentration of chemical tracer i in the flow component j, 𝑞' (m3/s) is the total 

discharge, and	𝑐!,' (ppm) is the concentration of chemical solute i in the total discharge. 

In Equations 1 and 2, (n−1) tracers are required to separate n different flow 

components in the total discharge. In most baseflow estimation cases, streamflow is simply 
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divided into baseflow and surface runoff, hence only one isotopic or hydrochemical 

component is required. There are several assumptions embedded in this approach. It is 

assumed that: 1) the isotopic or hydrochemical concentration is distinguishable for each 

component, 2) each component, such as precipitation, overland flow, and groundwater, is 

assumed to maintain a constant tracer concentration, and 3) the total amount of tracer is 

constant (Hooper and Shoemaker, 1986). 

In previous studies, tracer-based estimation approaches have been widely used to 

determine baseflow values. However, tracer-based methods are always laborious and 

require time and effort. In addition, compared with non-tracer-based methods, tracer-based 

methods have high data and sampling requirements. These methods are also costly due to 

the expensive analysis of samples and could not be applied to past discharge time series 

due to a lack of required chemical data (Gonzales et al., 2009). Moreover, under field 

conditions, the assumptions for this approach may not be satisfied. These tracer-based 

methods may contain relatively large uncertainties from chemical reactions during the 

mixing of components, tracer measurements, and elevation effects on the isotopic 

composition of precipitation (Gonzales et al., 2009). Also, in tracer-based methods, only 

the advective movements of solute could be shown through chemical tracers, and the 

movements that are not advective might be ignored, and biased results might be caused. 

These uncertainties in chemical reactions could result in tracer concentration changes 

during water movement through the watershed, thus leading to less reliable baseflow 

estimation results. Therefore, alternative non-tracer-based methods to determine baseflow 

are needed and described next. 

3.2 Non-tracer-based methods 
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3.2.1 Graphical methods 

Graphical methods are commonly utilized to estimate baseflow through a streamflow 

hydrograph. In graphical methods, the relative minimum value of streamflow within a time 

interval is defined to be the baseflow value in that interval. How the relative minimum 

values and time interval are defined varies for different graphical methods. Then, the 

baseflow hydrograph is formed by connecting these relative minimum points. The 

following briefly summarizes each of these graphical approaches. 

3.2.1.1 UKIH (2008) method 

The UKIH method is a smoothed minima baseflow estimation method developed by 

the United Kingdom Institute of Hydrology (1980) and then adopted by Aksoy (2008). This 

approach could be applied to both ephemeral and perennial streams. In the UKIH approach, 

the time interval and the relative minimum values used for the target watershed are 

determined by the following functions: 

 𝑁 = 1.6𝐴(.$ (3) 

where 𝑁 is the block size in days and 𝐴 is the watershed area in square miles. 

The following steps are taken to find the relative minimum points: 

a) Divide the daily streamflow into several non-overlapping intervals of N days. 

b) Mark the minima of each interval, and define them as Q1, Q2, …, Qt. 

c) Divide the minima into groups (Q1, Q2, Q3), (Q2, Q3, Q4), (Qt-1, Qt, Qt+1). 

For perennial streams, if 0.9Qt < min(Qt-1, Qt+1); for ephemeral streams, if 0.9Qt ≤ 

min(Qt-1, Qt+1), then the central value is defined to be a relative minimum point. 
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d) Connect these relative minimum points by straight lines to form the baseflow 

hydrograph. If baseflow estimated by this line exceeds streamflow, baseflow is set 

to be equal to total flow. 

For the ACW, A is equal to 79 km2, hence, a four-day interval is considered in this 

study. 

The principle and the procedure of the UKIH method are systematic. Consequently, 

this method can be used to build a user-friendly baseflow separating computer program 

(Aksoy et al., 2008). Despite this, results obtained through the UKIH method are less 

realistic. Streamflow and baseflow always change gradually under natural conditions. Due 

to linear interpolation, the baseflow hydrograph obtained from the UKIH methods contains 

numerous sharp peaks, sharp turns, and troughs contrary to actual conditions (Aksoy, 2008). 

Moreover, this method is not sensitive to watershed characteristics (Nathan and McMahon, 

1990). 

3.2.1.2 HYSEP (1996) method 

In a hydrograph-separation (HYSEP) method, the time gap used for a target 

watershed is determined by the following equation: 

 𝑁 = 𝐴(.$ (4) 

where 𝑁 is the number of days after which surface runoff ceases, and 𝐴 is the watershed 

area in square miles. The interval used for hydrograph separation is specified to be an odd 

integer between 3 and 11 nearest to 2N. To improve the accuracy at the beginning and end 

of separation, hydrograph separation begins one interval prior to the start of the separation 

date and ends one interval after the end of the selected date. Using the ACW area of 79 

km2, the time interval is calculated to be five days. 
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HYSEP approaches are divided into three groups: a) fixed-interval, b) sliding-

interval, and c) local-minimum method, which use different criteria to define the relative 

minimum points. 

a. Fixed-interval method 

The fixed-interval method assigns the lowest discharge in each interval (𝐼) to all 

days in that interval, and the assigned values are connected to form the baseflow 

hydrograph. 

b. Sliding-interval method 

The sliding-interval method finds the lowest discharge in one half the interval 

minus 1 day [0.5(𝐼-1) days] before and after the day being considered and assigns 

it to that day. The assigned values are then connected to define the baseflow 

hydrograph. 

c. Local-minimum method 

The local-minimum method inspects the streamflow value of each day to determine 

if it is the lowest discharge in one half the interval minus 1 day [0.5(𝐼-1) days] 

before and after the day being considered. The local-minimum points are connected 

to form the baseflow hydrograph. 

Similar to the UKIH method, the HYSEP methods are standardized and systematic, 

making them suitable for automation in a computer program which is more convenient 

(Gonzales et al., 2009). Generally, the estimation results might become biased when 

streamflow data are recorded during extreme weather conditions (Sloto and Crouse, 1996). 

Moreover, linear interpolation will lead to the occurrences of stiff turns in the estimated 

baseflow hydrograph, which is not consistent with actual conditions (Aksoy, 2009). 
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3.2.2 Digital filter methods 

In digital filter methods, the principle is to use the signal frequency analysis to 

separate baseflow and surface runoff (Indarto et al., 2016). Among runoff generation 

processes, baseflow always responds slowly to precipitation events, whereas surface runoff 

responds more quickly. Therefore, baseflow is assumed to be the low-frequency part of the 

streamflow compared to surface runoff treated as the high-frequency component (Indarto 

et al., 2016). Based on this assumption, various numerical filters have been developed 

(Lyne and Hollick, 1979; Chapman, 1991; Chapman and Maxwell, 1996; Eckhardt, 2005; 

Tularam and Ilahee, 2008) to separate streamflow into low-frequency baseflow and high-

frequency surface runoff processes. Each of these methods are briefly described below. 

3.2.2.1 Lyne and Hollick (1979) method 

Lyne and Hollick (1979) developed a systematic method for understanding the 

dynamic relationships between streamflow and rainfall events. Baseflow is estimated 

through the application of the digital filter consisting of the following equations: 

 𝑓* = 𝛼 × 𝑓*+# +
#,-
$
× (𝑦* − 𝑦*+#);	𝑓* ≥ 0 (5) 

 𝑏* = 𝑦* − 𝑓* (6) 

where fk is surface runoff at time k, bk is baseflow at time t, yk is the original streamflow at 

time k, and α is the filter parameter with a value between 0 and 1. 

The estimation results of the filter are confined to be lower than streamflow to avoid 

the slow response baseflow to exceed the original streamflow (Equation 6). Nathan and 

McMahon (1990) applied the Lyne and Hollick (1979) method to 186 catchments in New 

South Wales with a mean streamflow data record of 17 years. They set the filter parameter 
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as 0.9, 0.925, and 0.95 and concluded that the optimal value of the filter parameter is 0.925. 

In this study, the recommended filter parameter value of 0.925 is used. 

The Lyne and Hollick (1979) method is a fast, automated, and objective estimation 

method. Compared with the UKIH method, the Lyne and Hollick (1979) approach is more 

suitable for low baseflow conditions due to the less variable and relatively low and smooth 

baseflow results according to Nathan and McMahon (1990). 

3.2.2.2 Chapman and Maxwell (1996) method 

Chapman (1991) modified the method developed by Lyne and Hollick (1979). He 

combined Equations 5 and 6 and eliminated yk (Equations 7~10), to obtain Equation 11: 

 𝑦* = 𝑏* + 𝑓*; 	𝑦*+# = 𝑏*+# + 𝑓*+# (7) 

 𝑓* = 𝛼 × 𝑓*+# +
#,-
$
× [(𝑏* + 𝑓*) − (𝑏*+# + 𝑓*+#)] (8) 

 #,-
$
𝑏* =

#,-
$
𝑏*+# + <1 −

#,-
$
= 𝑓* + <

#,-
$
− 𝛼=𝑓* (9) 

 𝑏* = 𝑏*+# + (𝑓* + 𝑓*+#)(1 − 𝛼)/(1 + 𝛼) (10) 

 𝑏* = 𝑏*+# (11) 

Equations 10 and 11 show that when there is no surface runoff, 𝑓* is equal to zero 

and the value of baseflow would become a constant between precipitation events when 

there is no surface runoff, which does not correspond with observations. Hence, Chapman 

(1991) concluded that the Lyne and Hollick (1979) method did not always yield 

hydrologically plausible results, and Chapman and Maxwell (1996) improved the 

following equation by converting the equation of the 1991 version to the weighted average 

of one day’s quick flow and the previous day’s baseflow: 

 𝑏* =
.-+#
.+-

× 𝑏*+# +
#+-
.+-

× (𝑦* + 𝑦*+#) (12) 
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where bk is baseflow at time t, yk is the original streamflow at time k, and α is the filter 

parameter. 

After applying Equation 12 to the Salmon catchment in Western Australia, Chapman 

and Maxwell (1996) found that the optimal value of the filter parameter 𝛼 is 0.95. The 

precipitation around this area ranges from 600 ~ 1,000 mm/year with ~150 mm/month in 

spring and autumn, ~50 mm/month in summer, and ~320 mm/month in winter. The Salmon 

catchment is a perennial catchment with porous material underlying the river, thus it is 

similar to the ACW, and a parameter 𝛼 of 0.95 is used in this study.  

One significant disadvantage of this method is that the 𝛼  may change from one 

precipitation event to another (Chapman and Maxwell, 1996). From the case studies 

conducted in nine different catchments including the Alloux catchment in Switzerland, the 

Marcaidh catchment in Scotland, and an unspecified catchment in Toronto, Canada, it has 

been confirmed that the fitted value of α decreases as the peak runoff rate increases 

(Chapman and Maxwell, 1996). Therefore, a constant 𝛼 value for all precipitation events 

may not describe the actual baseflow changes. 

3.2.2.3 FUKIH (2009) method  

The Filtered UKIH method is the combination of the UKIH and digital filter methods 

(Aksoy et al., 2009). The baseflow obtained by the UKIH method is filtered again using 

the digital filter developed by Lyne and Hollick (1979) (Equations 5, 6) to obtain the final 

baseflow estimates.  

In the UKIH method, the approach merely connects the consecutive turning points 

through linear interpolation generating numerous sharp peaks and stiff turns, which is not 

in accordance with actual baseflow changes. That is, it is not hydrologically plausible. In 
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the filtered UKIH method, these sharp peaks are removed to obtain a smoothed baseflow 

hydrograph (Aksoy et al., 2009).  

Compared to the baseflow hydrograph estimated through the UKIH method, the 

FUKIH method eliminates sharp peaks and troughs, thus leading to more realistic 

estimation results, which take the delayed response of baseflow into consideration (Aksoy 

et al., 2009). However, the performance of the FUKIH method relies heavily on the 

accuracy of the result of the UKIH method. If the estimated baseflow obtained from the 

UKIH method is low in accuracy, the performance of the FUKIH method is also affected. 

3.2.2.4 Eckhardt (2005) method  

Prior to the development of the Eckhardt (2005) method, most recursive filtering 

methods used for baseflow estimation relied on a single parameter filter. In the Eckhardt 

(2005) method, two parameters, the filter parameter and the maximum value of baseflow 

index are used to describe the flow behaviour. 

 𝑏* =
(#+012!"#)45$%&,(#+4)012!"#6$

#+4012!"#
 (13) 

where yk represents streamflow at time k, bk represents baseflow at time k, a represents a 

filter parameter, and BFImax represents the maximum value of the baseflow index (BFI), 

which is the long-term ratio of baseflow to total streamflow. 

Eckhardt (2005) discussed that these previous one-parameter filters that described 

the recession of the baseflow (Chapman and Maxwell, 1996) were special cases of the two-

parameter filter. For example, if the BFImax is set to be 0.5, Equation 13 can be simplified 

into the equation developed by Chapman and Maxwell (1996). If the value of BFImax is set 

to other values, the estimated baseflow will be different. Therefore, Eckhardt (2005) 

proposed that a two-parameter filter was necessary to better describe baseflow variations. 
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For different catchments with different characteristics, each catchment has its own 

geological and hydrological settings, which lead to different BFImax values. To minimize 

the subjective effects of the BFImax, setting appropriate values for BFImax and filter 

parameter based on the type of the watershed is necessary. In the following equations for 

each kind of catchment, the filter parameter a is the recession constant, which is determined 

through the construction of a master recession curve using the matching strip method 

(Nathan and McMahon, 1990). BFImax is defined from previous baseflow estimation studies, 

which are conducted in watersheds with representative features. Eckhardt (2005) examined 

several case studies of three kinds of catchments, including perennial streams with porous 

aquifers, ephemeral streams with porous aquifers, and perennial streams with hard rock 

aquifers. The formula is simplified into different forms for catchments with diverse 

geological environments as follows: 

§ Perennial streams, porous aquifer catchment 

There are two North American catchments being studied using the data from US 

Geological Survey for assessing this two-parameter filter— the Brandywine Creek 

catchment in Pennsylvania, and the Beaverdam Creek catchment in Maryland (Eckhardt, 

2005). The BFImax is determined from the study of Arnold and Allen (1999) and has a value 

of 0.8. When BFImax is set to be 0.8 in perennial streams, porous aquifer catchment, 

Equation 13 is simplified as below: 

 𝑏* =
45$%&,7(#+4)6$

8+74
 (14) 

§ Ephemeral streams, porous aquifer catchment 

The Goose Creek and Hadley Creek catchments in Illinois, USA are considered for 

catchments with ephemeral streams and porous aquifers (Eckhardt, 2005). The BFImax 



  

28 

determined based on the research by Chapman and Maxwell (1996) is 0.5. When BFImax is 

set to be 0.5 in ephemeral streams, porous aquifer catchment, Equation 13 is revised as 

below: 

 𝑏* =
45$%&,(#+4)6$

$+4
 (15) 

§ Perennial streams, hard rock aquifer catchment 

Three mesoscale catchments located around the low mountain range at the southwest 

of the Rhenish Massif in Germany are examples for catchments with hard rock aquifers. 

The BFImax is 0.25 through the study of Kaviany (1978). When BFImax is set to be 0.25 in 

perennial streams, hard rock aquifer catchment, Equation 13 is revised as below: 

 𝑏* =
.45$%&,(#+4)6$

7+4
 (16) 

Considering the hydrological condition and the surficial material at the ACW, the 

ACW is a catchment with a perennial stream. Therefore, the BFImax value used in this study 

is selected to be 0.8, respectively. 

According to Xie et al. (2020), reliable baseflow estimation results could be obtained 

by the Eckhardt (2005) method after the performances of several estimation approaches are 

assessed through the comparison of estimated baseflow and the true baseflow determined 

through the approach developed by Xie et al. (2020). In the Eckhardt (2005) method, two 

parameters are used which may better describe the baseflow changes in different 

hydrologic and geologic environments. 

3.2.2.5 Furey and Gupta (2001) method 

Furey and Gupta (2001) considered that previous baseflow estimation methods were 

simply built based on the assumption that surface runoff and baseflow were treated as high- 

and low-frequency signals, respectively. However, Furey and Gupta (2001) mentioned the 
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work conducted by Spongberg (2000) who used a Fourier frequency analysis to show that 

there were still low-frequency variations embedded in overland flow which would be 

mistakenly confused with baseflow, thus baseflow might be overestimated leading to 

inaccurate baseflow estimates. Therefore, Furey and Gupta (2001) developed an approach 

based on mass balance equation. However, a disadvantage of this approach is that there are 

no constraints on values of baseflow estimates allowing for baseflow to be larger than 

streamflow. 

 𝑄@0,9 = (1 − 𝛾)𝑄@0,9+# + 𝛾 <
:'
:&
= B𝑌@0,9+;+# − 𝑄@0,9+;+#D (17) 

 𝑐. + 𝑐$ + 𝑐# = 1 (18) 

 𝛾 ≡ 𝛽𝑠 (19) 

 𝛽 = H.<5=
>(4)

I (20) 

where 𝑄@0,9 is the baseflow for a basin at time J, 𝑌@0,9 is streamflow at time J, 𝑐# is overland 

flow coefficient, 𝑐$  is evapotranspiration coefficient, 𝑐.  is groundwater recharge 

coefficient, d is delay time (i.e., precipitation at time j produces overland flow at time j and 

groundwater recharge at time j+d), Sy is specific yield, K is saturated hydraulic conductivity, 

b is mean saturated aquifer thickness, A is hillside area, a is hillside width, and s is the time 

interval. 

The equations are simplified as following: 

 𝑄@0,9 = (1 − 𝛾)𝑄@0,9+# + 𝛾 <
:'
:&
= B𝑌@0,9 − 𝑄@0,9D (21) 

 𝛾 = 1 − ?@*,,
?@*,,%&

, 	𝑃@0,9 = 𝑃@0,9+# = 𝑃@0,9+;+# = 0 (22) 

 𝑐# =
?@*,,+(#+A)?@*,,%&

B@*,,
, 	𝑃@0,9 > 0, 	𝑃@0,9+# = 𝑃@0,9+;+# = 0 (23) 
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 𝑐$ = 1 −
∑ ?@*,,
,-./
,0,-

∑ B@*,,
,-./
,0,-

 (24) 

where 𝑄@0,9 is the baseflow for a basin at time J, 𝑌@0,9 is the streamflow at time J, 𝑐# is 

overland flow coefficient, 𝑐$  is evapotranspiration coefficient, and 𝑐.  is groundwater 

recharge coefficient. 𝑐. is determined based on Equation 18. 

To calculate the value of 𝑐#and 𝛾, all 2-day periods in a streamflow record during 

which there is no measured rainfall (𝑃@0,9 = 𝑃@0,9+# = 𝑃@0,9+;+# = 0 ) and periods impacted 

by rainfall (𝑃@0,9 > 0, 	𝑃@0,9+# = 𝑃@0,9+;+# = 0) are identified, and the number of days since 

the last rainfall event is also identified for each remaining 2-day period. In order to 

eliminate the effect of rainfall, when the number of days is larger than 10, the data from 

these 2-day periods would be used for calculation. 

The main advantage of the Furey and Gupta (2001) method is the consideration for 

low-frequency variations in overland flow that are not lumped with baseflow. However, in 

this method, if the precipitation data is not accurate enough, the estimates of 𝑐#, 𝑐$, 𝑐. may 

also have low accuracy. Moreover, this filter is applied without any calibration and 

constraints so that baseflow can be overestimated after rainfall events (Furey and Gupta, 

2001).  

3.2.2.5 EWMA (2008) method 

In the Exponentially Weighted Moving Average (EWMA) method, one assumes that 

the rate of increase of baseflow depends on the fraction of surface runoff (Tularam and 

Ilahee, 2008). The approach estimates surface runoff at every rise in the hydrograph. 

 𝐵! = 𝐵!+# + 𝛼𝐴! (25) 

 𝐵! = 𝛼𝑌! + (1 − 𝛼)𝐵!+# (26) 



  

31 

where 𝐵! is baseflow at time i, 𝐴! is surface runoff at time i, 𝛼 is the fraction of surface 

runoff, 𝑌! 	is stream flow at time i. 

In this method, Tularam and Ilahee (2008) considered four case studies conducted at 

the Bremer River and Tenhill Creek catchments in Queensland, Australia. In these 

catchments, the geological material underlying beneath the river is a highly permeable 

basalt. The annual precipitation is ~1,000 mm/year with ~100 mm/month in spring, ~40 

mm/month in summer, and ~150 mm/month in winter, which is similar to the ACW. 

Moreover, the optimal baseflow estimation coefficient is selected for each catchment 

through several trial-and-error analysis without incurring much computational cost. 

Consequently, the optimal estimation coefficient 𝛼 of 0.013 is used in this study. 

The potential disadvantage is that in the EWMA (2008) method, a single 𝛼 value 

may not yield acceptable baseflow estimation results for all precipitation events (Tularam 

and Ilahee, 2008). That is, the optimal parameter value may vary from event to event. 

However, it is found that the estimated baseflow does not show extreme sensitivity to a 

change in 𝛼. Tularam and Ilahee (2008) mentioned that it has been found that a 50% change 

in 𝛼  would lead to less than 10% variation in the estimation results, which is within 

acceptable limits. Therefore, when using this method, a single	𝛼 value is still used for the 

calculation of baseflow. 
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Chapter 4 

Evaluation of baseflow estimation methods with actual data 

Figure 5 shows the baseflow estimated using actual streamflow data at the New 

Dundee gauging station through four graphical estimation methods and six digital filter 

methods, while Table 1 summarizes the arithmetic mean, maximum, and minimum values 

of the baseflow estimated from each estimation approach. Table 1 shows that the arithmetic 

mean values range from 0.082 to 0.186 m3/s, and the mean values from the UKIH and 

FUKIH approaches are relatively lower than other approaches. The maximum baseflow 

values range from 0.262 to 1.840 m3/s, and the FUKIH approach generates the lowest 

maximum values. As for the minimum values, all baseflow estimation approaches generate 

a same minimum value of 0.003 m3/s except for the Furey and Gupta approach. The 

arithmetic mean, maximum, and minimum values from the Furey and Gupta approach are 

all largest throughout the ten estimation approaches. Generally, baseflow estimates 

generated from the FUKIH approach are lower, whereas baseflow estimates from the Furey 

and Gupta approach are higher. 

Due to the lack of actual baseflow data, the estimated baseflow results can only be 

analyzed based on hydrologic plausibility (Nathan and McMahon, 1990), which means to 

evaluate the rationality of the estimated values and to investigate whether the features of 

the resulted baseflow correspond with those that result in natural environment or not, such 

as whether the observed baseflow shows delayed response to precipitation and whether 

baseflow shows an unusual increased amount and increasing/decreasing rate during rainfall. 
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Figure 5. Streamflow records over the period of May 2013 – Dec 2016 at the New Dundee gauging station 
and corresponding baseflow estimated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding 

interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) 
Eckhardt; i) Furey and Gupta; and j) EWMA approaches. Precipitation records are from the Roseville 

station. 
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Table 1. Mean, maximum, and minimum values of baseflow estimated using actual streamflow data 
through ten different estimation approaches at the New Dundee gauging station. 

 

From Figure 5, it is shown that the baseflow hydrograph from the UKIH approach 

(Figure 5a) is flat and does not show an obvious change during precipitation events. In the 

HYSEP fixed-interval method (Figure 5b), the change of baseflow is more distinct than 

that in the UKIH approach. During precipitation, baseflow increases significantly over a 

short duration. In particular, it reveals a staircase pattern, which does not correspond with 

natural conditions. 

Comparing between these three HYSEP approaches (Figure 5b-d), all these three 

approaches generate a large increase in baseflow during rainfall events, and the changing 

trend of estimated baseflow in the HYSEP sliding-interval approach is similar to that in the 

fixed-interval approach. In the HYSEP approaches, large increases of baseflow and the 

staircase pattern could be observed during rainfall events, which does not correspond with 

the delayed increase of baseflow expected under actual conditions. Furthermore, due to the 

linear interpolation used in graphical approaches, the hydrograph of the HYSEP local-

minimum approach (Figure 5d) contains numerous shark peaks and stiff turns, which 

appears to be abnormal. 
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For the digital filter approaches, the overall changes of baseflow are much smoother 

than those from the graphical approaches. For example, in the Lyne and Hollick approach 

(Figure 5e), although the increased amount of baseflow is not as large as that in the HYSEP 

sliding-interval approach (Figure 5c), it still shows a significant increase during some 

precipitation events, which is similar to results from the HYSEP local-minimum approach 

(Figure 5d). In the Chapman and Maxwell approach (Figure 5f), the change of the baseflow 

is smoother than that in Lyne and Hollick approach (Figure 5e), and the increase during 

precipitation is also lower. In the FUKIH approach (Figure 5g), as mentioned before, 

baseflow is first calculated by the UKIH graphical approach, and then filtered and 

smoothed by a digital filter, thus leading to an extremely flat baseflow hydrograph without 

obvious changes throughout the year. As for the Eckhardt approach (Figure 5h), large 

increases during precipitation are also observed, and the amount of increase is similar to 

that in the Lyne and Hollick approach (Figure 5e). For the Furey and Gupta approach 

(Figure 5i), as introduced in the methods part, there is no constraint set for baseflow, hence 

the baseflow values sometimes become larger than streamflow. Except for this anomaly, 

the response of baseflow to precipitation is extraordinarily quick together with large 

baseflow increase values, which is inconsistent with the anticipated slow response 

characteristic of baseflow. 
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Figure 6. Time derivative of flow rate with respect to time (dQ/dt) of streamflow and baseflow at the New 
Dundee gauging station. Baseflow results are calculated through the: a) UKIH; b) HYSEP-Fixed interval; 

c) HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 
FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. 
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In order to better quantify the change of baseflow with time and to examine the 

hydrologic plausibility of various baseflow estimation techniques, the discharge derivative 

with respect to time (dQ/dt) is obtained by calculating the change of discharge within each 

day based on the baseflow and streamflow data obtained through ten different techniques. 

According to Nathan and McMahon (1990), the use of dQ/dt in conjunction with 

streamflow and baseflow hydrographs may be able to better identify rates of increase or 

decrease and assess the hydrologic plausibility of each baseflow estimation technique, and 

then help select the most optimal technique. 

Figure 6 shows the resulting dQ/dt estimates for these ten approaches to visualize the 

change in discharge of both streamflow and baseflow with time. Examination of results 

reveals that for the HYSEP fixed-interval approach (Figure 6b), the dQ/dt of baseflow is 

very large during precipitation and is almost the same as the dQ/dt of streamflow during 

some precipitation events. This abnormally large dQ/dt of baseflow is not only observed in 

the HYSEP fixed-interval approach (Figure 6b), but also shown in the HYSEP sliding-

interval (Figure 6c) and Furey and Gupta (Figure 6i) approaches. 

Combining the baseflow derivative analyses with previous baseflow hydrograph 

analyses, baseflow values estimated through all these four graphical approaches (Figures 

6a-d) show relatively large increases during precipitation events, and the baseflow 

hydrographs are not smooth, especially for the staircase patterns shown in the hydrographs 

of the HYSEP fixed (Figure 6b) and sliding-interval (Figure 6c) approaches. Also, the 

baseflow estimates from these approaches increase dramatically during precipitation events. 

A large increase of baseflow during precipitation is observed, not only in graphical 

approaches, but also in the Furey and Gupta approach (Figure 6i). For the results obtained 



  

38 

from the Lyne and Hollick (Figure 6e) and Eckhardt approaches (Figure 6h), the increase 

during precipitation is also very obvious. Based on the derivative analysis, baseflow 

estimation results obtained from these approaches may not be treated as hydrologically 

plausible results. 

However, although some of the baseflow estimation approaches generate baseflow 

estimates that are not hydrologically plausible, it is still difficult to determine the most 

optimal approach based on the analyses of hydrographs or its derivatives alone. This is 

because data on true baseflow from the ACW is lacking, and the criteria utilized to 

determine whether the given baseflow estimation approach is hydrologically plausible or 

not is subjective. Therefore, further assessment of baseflow estimation techniques through 

simulated results from a 3D integrated hydrologic model is necessary. In particular, 

baseflow values estimated through these ten baseflow estimation techniques are compared 

with the synthetic baseflow obtained from the HGS model to evaluate the performances of 

different approaches in the next section. 

 

Chapter 5 

Evaluation of baseflow estimation methods with synthetic data 

5.1 Synthetic baseflow simulated from the HGS model 

In this study, synthetic streamflow and baseflow at ten different study points from 

May 1st, 2013 to April 30th, 2016 are obtained from the HGS model of the ACW constructed 

by Tong et al (2022). As introduced in the introduction part, although this HGS model 

could not generate the streamflow and baseflow estimates that are thoroughly same as true 
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streamflow and baseflow values, the model is still of good performance, thus leading to 

simulation results that are reliable enough to be used to describe the flow conditions at the 

ACW and investigate the performance of baseflow estimation techniques. Figure 7 shows 

the comparison between synthetic streamflow and actual streamflow from May 1st, 2013 

to April 30th, 2016. From this figure, it could be observed that although actual streamflow 

and synthetic streamflow are not perfectly the same, these two kinds of streamflow are 

close to each other during most of the time, and the amount of increase during precipitation 

is also similar. Therefore, synthetic streamflow is utilized to estimate the baseflow through 

the ten baseflow estimation approaches utilized earlier, and synthetic baseflow obtained 

from the model could be treated as true baseflow to help determine the performance of 

different estimation approaches. 

Figure 8 shows the comparison between synthetic streamflow and baseflow obtained 

from the HGS model, as well as estimated baseflow calculated based on synthetic 

streamflow at the New Dundee gauging station (Point 7). The synthetic baseflow obtained 

from the HGS model is relatively low throughout the year and does not show an obvious 

increase during precipitation. In general, the synthetic baseflow hydrograph from HGS is 

smoother and there are no sharp peaks observed. 
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Figure 7. Comparison between actual streamflow and synthetic streamflow from May 1st, 2013 to April 
30th, 2016. 

Compared with synthetic baseflow, estimated baseflow calculated through the Furey 

and Gupta approach shows abnormally high values (Figure 8i). Baseflow estimated 

through the Eckhardt (Figure 8h) and Lyne and Hollick (Figure 8e) approaches are also 

obviously higher than synthetic baseflow. Compared with the estimated baseflow obtained 

through these three estimation techniques, the baseflow from the remaining seven 

approaches (Figure 8a-d; 8f-g; 8j) is lower and closer to synthetic baseflow.  
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Figure 8. Comparison between synthetic baseflow obtained from the HGS model and estimated baseflow 
at Point 7 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; d) 

HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) Furey 
and Gupta; and j) EWMA approaches. 
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However, baseflow hydrographs estimated through three HYSEP approaches 

(Figure 8b-d), the Chapman and Maxwell approach (Figure 8f), and the EWMA approach 

(Figure 8j) are not flat and show obvious increases during precipitation, which does not 

correspond to the synthetic baseflow hydrographs from HGS. Overall, the estimated 

baseflow hydrographs obtained through the UKIH (Figure 8a) and FUKIH (Figure 8g) 

approaches are far lower and flatter than the baseflow hydrographs from the other 

baseflow estimation approaches. In order to quantitatively determine which estimation 

approach results in baseflow hydrographs most similar to the synthetic baseflow 

hydrograph, model performance statistics are computed and discussed in the next section. 

5.2 Performance assessment of baseflow estimation techniques 

Figure 9 shows the scatterplots between synthetic and estimated baseflow for ten 

different baseflow estimation techniques at the New Dundee gauging station (Point 7). 

Scatterplots for the other points are provided in the Appendix as Figures A10 – A18. The 

red dashed regression lines and the corresponding equations show the relationship between 

the synthetic and estimated baseflow. The solid black lines 1:1 lines indicate a perfect fit. 

The coefficient of determination (R2) shown in each graph represents how well the 

regression line approximates the original baseflow data. The L1 norm is the mean absolute 

error, which measures the absolute difference between synthetic and estimated baseflow, 

while the L2 norm is the mean squared error, which measures the average squared 

difference between baseflow estimates and synthetic baseflow. The smaller the L1 and L2 

norms, the higher the correspondence of the synthetic and estimated baseflow, and the 

better the performance of the estimation approach. 

The R2 value as well as L1 and L2 norms are calculated as: 
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where RSS is sum of squares of residuals, TSS is total sum of squares. 𝑄EF  is the estimated 

baseflow at time t, 𝑄(F  is synthetic baseflow at time t, and N is the total number of baseflow 

values.	𝑄EFQ 	is the corresponding predicted value of 𝑄EF  located on the line of best fit, 𝑄E@@@@ is 

the average value of estimated baseflow.  

As mentioned previously, the synthetic baseflow obtained from the HGS model is 

relatively low throughout the year, and the estimated baseflow is normally higher than 

synthetic baseflow resulting in a significant bias on Figure 8. During dry seasons, both 

estimated baseflow and synthetic baseflow are close to streamflow, but during precipitation 

events, estimated baseflow is obviously higher than synthetic baseflow. The scatterplots 

also reveal this feature (Figure 9), especially for the Furey and Gupta approach where the 

estimated baseflow is significantly higher than synthetic baseflow (Figure 9i). From the 

regression lines in Figure 9, the regression line slopes of the UKIH (Figure 9a) and the 

FUKIH (Figure 9g) are closer to the 1:1 line than the other approaches, which indicates 

that the similarity of estimated and synthetic baseflow is higher when using the UKIH 

(Figure 9a) and FUKIH (Figure 9g) approaches. 
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Figure 9. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS model 
and estimated baseflow at Point 7 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-

Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) 
Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the regression lines, 

while the solid black lines are the 1:1 lines describing a perfect fit. 
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Table 2. Slope, intercept, and R2 of baseflow regression line at the ten study points. The maximum slope, 
minimum intercept, and maximum R2 are assigned a color of dark green, the minimum slope, maximum 

intercept, and minimum R2 is assigned a color of dark red. Bold numbers indicate the best result among all 
the approaches. 
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Table 3. L1 and L2 norms of estimated vs. simulated baseflow at the ten study points. The minimum L1 and 
L2 norms are assigned a color of dark green, the maximum L1 and L2 norms are assigned a color of dark red. 

Bold numbers indicate the best result among all the approaches. 

 

Table 3 shows that the L1 and L2 norms of the UKIH and the FUKIH approaches are 

also lower than the other approaches. Furthermore, from the scatterplots of other study 

points provided in the Appendix and the slope values provided in Table 2, the estimated 

baseflow is still larger than synthetic baseflow for most cases, and the Furey and Gupta 

approach always reveal lowest similarity as well as largest L1 and L2 norms (Table 2-3), 

whereas the estimation technique that gives the best approximation of baseflow estimates 

to synthetic baseflow is different from Point 7 at some points. Figures A1-A9 show the 

comparison between synthetic baseflow obtained from the HGS model and estimated 

baseflow at the other nine points, and Figures A10-A18 show the relationship between 

synthetic baseflow obtained from the HGS model and estimated baseflow at the other nine 
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points. Overall, the estimated baseflow is consistently larger than the simulated baseflow 

obtained from HGS although at certain points the correspondence is better, such as the high 

correspondence at Point 1 and the low correspondence at Point 2. These scatterplots reveal 

that the most optimal approaches vary at different points. For example, Figure A10 shows 

that the regression line of the Chapman and Maxwell approach (Figure A10f) is closest to 

the 1:1 best fit line consistently throughout the ten approaches at Point 1, and the L1 and L2 

norms are also smallest (Table 3). 

To further determine whether an estimation approach is the most optimal one, in the 

following analysis, the correlation between synthetic and estimated baseflow is assessed 

through the Nash-Sutcliffe (NSE) number. The NSE number is calculated as following to 

quantify the goodness of fit between the synthetic and estimated baseflow: 

 𝑁𝑆𝐸 = 1 − ∑ (H!1 +H-1))2
1
∑ (H-1+H-@@@@))2
1

 (33) 

where 𝑄EF  is the baseflow estimate at time t, 𝑄(F  is the value of the synthetic baseflow at 

time t, and 𝑄(@@@ is the mean value of synthetic baseflow. 

The NSE number ranges from negative infinity to 1.0. The closer the NSE number is 

to 1.0, the closer the estimated baseflow is to synthetic baseflow, and the better the 

performance of the estimation approach. When the NSE number is equal to 1.0, there is a 

perfect match of synthetic to estimated baseflow; when the NSE number is equal to 0.0, the 

estimation error variance of that estimation approach is equal to the variance of the 

synthetic baseflow, which means that the predictions of the estimation approach are 

accurate as the mean value of synthetic baseflow; when the NSE number is negative, the 

synthetic baseflow is a better predictor than the estimation approach. The lower the NSE 

number, the worse the performance of the baseflow estimation approach. 
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Table 4. NSE numbers for ten baseflow estimation approaches at the ten study points. The maximum NSE 
number is assigned a color of dark green, the minimum NSE number is assigned a color of dark red. Bold 

numbers indicate the best result among all the approaches. 

 

Table 4 summarizes the NSE numbers for all the baseflow estimation approaches at 

these ten study points, which measures the similarity of baseflow and dQ/dt between 

estimated baseflow and synthetic baseflow. As mentioned before, the closer the NSE 

number is to 1.0, the closer the estimated baseflow is to synthetic baseflow, and the better 

the performance of the estimation approach. Therefore, higher NSE number means better 

results. The good results are marked with dark green and shown in bold, and the poor results 

are highlighted with red. Table 4 shows that the NSE values between synthetic and 

estimated baseflow obtained through most of estimation approaches are negative, and some 

of them are significantly small, which represents an unsatisfactory fit with synthetic 
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baseflow. This is likely due to the differences in the physical and mathematical 

representation of baseflow by the HGS model and the various graphical estimation 

approaches. In particular, for the HGS model, detailed information about the catchment 

environment, including the problem geometry, soil type, land use, as well as surface water 

and groundwater flow parameters are utilized to build the model and to simulate baseflow 

values, thus physical processes are more explicitly considered in HGS. In contrast, in 

graphical and filter approaches, only the streamflow record is utilized to estimate the 

baseflow values, and some estimation approaches may not be suitable at a given point 

within the watershed, leading to large differences between synthetic and estimated 

baseflow, ultimately resulting in negative NSE numbers, some of which are unacceptably 

large. From the results, it is obviously determined that the most optimal approach for Points 

2, 3, 4, 5, 7, 8 is the FUKIH approach, the most optimal approach for Points 1, 9, 10 is the 

Chapman and Maxwell approach, and the most optimal approach for Point 6 is Eckhardt 

approach. 
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Figure 10. Comparison between synthetic and estimated baseflow calculated through the most optimal 
approach at: a) point 1; b) point 2; c) point 3; d) point 4; e) point 5; f) point 6; g) point 7; h) point 8; i) point 

9; and j) point 10. 
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Figure 11. Ratio of estimated baseflow obtained through the FUKIH approach to streamflow and synthetic baseflow to 
streamflow at point 8 from May 2013 to April 2016. Orange line is the average value of synthetic baseflow; green line 

is the average value of estimated baseflow. 

Figure 11 shows the ratio of estimated baseflow through the FUKIH approach and 

synthetic baseflow to streamflow at Point 8, as well as its yearly and monthly averages 

from May 1st, 2013 to April 30th, 2014. It is shown that the ratio of estimated baseflow to 

streamflow is approximately 0.80 ~ 1.00 when there is almost no precipitation during dry 

seasons, whereas during precipitation events, baseflow only constitutes a small portion of 

streamflow. During the time with low precipitation, the monthly average ratio of baseflow 

to streamflow always become higher. For example, the monthly average ratios for August 

2013 and November 2013 are 0.82 and 0.96, higher than the monthly average ratios for the 

next few months with higher precipitation. As precipitation events begins, the ratio of 

estimated baseflow to streamflow begins to decrease. During rainfall periods, the ratio of 

estimated baseflow to streamflow decreases from 0.90 ~ 1.00 to 0.20 ~ 0.60, and the 

monthly average ratio also becomes lower when precipitation is high during that month, 

such as the monthly average ratio of 0.55 in October. The yearly average ratio of estimated 

baseflow to streamflow is 0.78 from 2013 to 2014. Moreover, the ratio of estimated 



  

52 

baseflow to streamflow also changes in different seasons. During the winter season, which 

is from November to April, the monthly average ratios of estimated baseflow to streamflow 

are approximately from 0.70 ~ 0.90, whereas in other seasons, from May to October, the 

monthly average ratios are approximately from 0.60 ~ 0.80 (Figure 11). The ratios of 

estimated baseflow to streamflow in winter are generally higher than the ratio during other 

seasons.  

In terms of synthetic baseflow, the values of baseflow obtained from HGS is 

generally lower than baseflow obtained from the various estimation approaches, thus the 

ratio of synthetic baseflow to streamflow is always lower than the ratio of estimated 

baseflow to streamflow. The daily ratio of synthetic baseflow to streamflow, the monthly 

average ratio, and the yearly average ratio are all lower than equivalent ratios computed 

with estimated baseflow. Moreover, the overall change of the ratio computed with synthetic 

baseflow shows similar features when compared to the ratio based on estimated baseflow. 

During dry seasons, the ratio of synthetic baseflow to streamflow is approximately 0.70 ~ 

1.00, higher than that of the rainy season, ranging approximately between 0.30 ~ 0.60. For 

example, the monthly average ratio for August 2013 is 0.74, which is higher than the 

monthly average 0.46 in June and the monthly average ratio of 0.42 for October 2013 with 

higher precipitation. In different seasons, the ratio of synthetic baseflow to streamflow is 

also generally higher in winter and lower in other seasons, as is the case with estimated 

ratio. During the winter season, which is from November to April, monthly average ratios 

of estimated baseflow to streamflow are approximately from 0.60 ~ 0.70, whereas in other 

seasons, from May to October, the monthly average ratios are approximately from 0.40 ~ 

0.60 (Figure 11). 
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Chapter 6 

Discussion 

6.1 Comparison of baseflow estimation techniques with real data 

From the estimated baseflow calculated based on real streamflow data (Figure 5), it 

is observed that the baseflow hydrographs estimated through different approaches show 

different features. For the graphical approaches (Figures 5a-d), as mentioned previously, 

linear interpolation is utilized, leading to dramatically large increases of baseflow during 

precipitation events. In addition, the use of relative minimum streamflow values 

representing baseflow over certain time intervals results in staircase patterns, which are 

abnormal features that are not observed under natural conditions.  

For the digital filter approaches (Figures 5e-j), different filters and their 

determination of the most optimal parameters are dependent on environmental conditions 

of the watershed of interest. Figure 5 shows that the baseflow hydrographs obtained 

through filter approaches are generally smoother than their graphical counterparts. 

As for the Lyne and Hollick (Figure 5e), Eckhardt (Figure 5h), as well as Furey and 

Gupta (Figure 5i) approaches, baseflow significantly increases during precipitation events, 

especially for the Furey and Gupta approach. For the Lyne and Hollick approach, the 

portion of baseflow relative to total streamflow is smaller than that in the Furey and Gupta 

approach, which could be as high as 35%. The baseflow percent of the Eckhardt approach 

is also around 35%, whereas the baseflow hydrograph of the Eckhardt approach is smoother. 

Figure 5i shows that baseflow could even take up to 50% of streamflow during rainfall 
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periods when using the Furey and Gupta approach, and the response of baseflow to 

precipitation events is rapid, which is not consistent with the slow-response features of 

baseflow. For the Chapman and Maxwell (Figure 5f) as well as the EWMA (Figure 5j) 

approaches, there is no large increase during precipitation, and baseflow accounts for 

approximately 15% of streamflow. The baseflow hydrograph obtained through the 

Chapman and Maxwell approach is smoother than the EWMA approach.  

In general, the baseflow hydrograph obtained with the FUKIH approach (Figure 5g) 

is the flattest and smoothest. This is due to the fact that the FUKIH approach initially 

involves the UKIH approach, while a filter is then applied during the second stage, resulting 

in a baseflow hydrograph that does not show any sudden increases during precipitation 

events and is relatively flat over the three-year time period over which the analysis is 

conducted. 

However, although some abnormal features could be observed from the analysis of 

these hydrographs obtained through different baseflow estimation techniques, it is hard to 

directly determine which one is the most optimal estimation technique based on hydrologic 

plausibility. In order to assess the performance of each technique and to determine the 

optimal one, true baseflow values are needed. Due to the lack of true baseflow 

measurements at the ACW, synthetic data generated with HGS were utilized to in this study 

to further assess the different baseflow estimation techniques. 

6.2 Comparison of baseflow estimation techniques with synthetic data 

In this study, HGS is utilized to generate synthetic streamflow and baseflow 

hydrographs at ten different monitoring points within the ACW. The synthetic baseflow 

hydrograph outputted from HGS is considered to be the true baseflow hydrograph and 
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compared with estimated baseflow hydrographs computed using the ten baseflow 

estimation techniques from the synthetic streamflow hydrograph. While the HGS-

generated baseflow hydrograph is considered as true baseflow, one needs to acknowledge 

that sophisticated numerical models could still produce errors during simulations. This is 

so even if all known salient hydrological processes and large amounts of data are 

incorporated into the model to accurately simulate the conditions of the ACW. For example, 

in this model, baseflow at one point is simulated by adding up the exchange fluxes at all 

the nodes from upstream to that point, thus the resolution of the model grid could 

potentially impact simulation results. Therefore, even if high-resolution models are utilized, 

one cannot ensure that simulated streamflow and baseflow hydrographs are free of 

numerical errors. Also, the soil and underlying layers as well as land use in this model are 

divided into several categories, but the distribution and division of different types of soil, 

geological units, as well as land use, are far more intricate in the actual watershed. All of 

these abovementioned factors could impact simulation results, leading to potential errors 

in synthetic streamflow and baseflow that are computed with HGS. 

Figure 8 shows that synthetic baseflow is flat and smooth throughout the entire three-

year period. The values of synthetic baseflow are relatively low and do not dramatically 

increase during rainfall. Compared with the synthetic baseflow hydrograph, the estimated 

baseflow hydrograph calculated through the Furey and Gupta approach (Figure 8i) shows 

large values that are several times larger than synthetic baseflow. The baseflow 

hydrographs estimated through the Eckhardt (Figure 8h) as well as Lyne and Hollick 

(Figure 8e) approaches are also considerably higher than the synthetic baseflow 

hydrograph. As for the three graphical approaches, when compared to the smooth synthetic 
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baseflow hydrograph, the estimated baseflow contains numerous shark peaks and staircase 

patterns that are not hydrologically plausible. Among all ten baseflow estimation 

approaches, the FUKIH approach (Figure 8g) generates baseflow that is most similar to 

synthetic baseflow, both in terms of their magnitude and features of the baseflow 

hydrographs. 

In order to quantitatively assess which baseflow estimation technique yields values 

that are closest to synthetic baseflow estimated with HGS, model performance metrics such 

as the NSE number, as well as L1 and L2 norms are utilized. Results reveal that the most 

optimal baseflow estimation approach varies from point to point for the ACW. 

According to previous research on baseflow estimation techniques (Partington et al., 

2012), baseflow behavior at different locations might be different due to variations in 

environmental factors such as land use, topography, geology, slope, and hydraulic 

parameters to name a few, and different baseflow estimation approaches result in baseflow 

hydrographs with different behavior and features. For example, the baseflow hydrograph 

estimated through the FUKIH approach is always relatively lower than other approaches 

and baseflow values do not significantly increase during precipitation events due to the 

second filtration by the digital approach, thus this approach may be most suitable for 

catchments where the baseflow values are low and do not have dramatic variations. Other 

baseflow separation techniques examined in this study may be more suitable under 

different environmental conditions. In order to better understand the influence of various 

environmental factors on baseflow, additional research is needed. The improved 

understanding of baseflow genesis mechanisms should lead to improved management of 

watersheds. 
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Chapter 7 

Summary and conclusions 

Baseflow is a vital water cycle component to understand watershed hydrology and 

surface water/groundwater interaction. In this study, baseflow is studied and estimated at 

the ACW from May 2013 to December 2016 through several baseflow estimation 

techniques, including four graphical and six digital filter approaches, to analyze features of 

baseflow and to evaluate the performances of each approach. 

After estimating baseflow at a gauging station obtained through all these approaches 

and analyzing the results, it has been concluded that it is hard to determine the most optimal 

baseflow estimation approach based on the concept of hydrologic plausibility (Nathan and 

McMahon, 1990) alone. This is because the concept of hydrologic plausibility is always 

subjective. Therefore, reliable baseflow estimates along river reaches and their variations 

with seasons are needed to assess the performance of each baseflow estimation technique, 

although such records are not readily available. 

In previous studies, some researchers used fully integrated three-dimensional models 

to simulate baseflow values (e.g., Partington et al., 2012; Li et al., 2014; Su et al., 2016). 

However, the 3D integrated hydrologic model used in previous studies to conduct the 

analysis was based on monotonically sloping V-shaped catchments, which simplifies the 

actual intricate conditions in a natural environment. In this study, a high resolution HGS 

model of the ACW is constructed and run by Tong et al. (2022) to simulate both surface 

water and baseflow hydrographs from 2013 to 2016. The simulated baseflow hydrograph 

from HGS is treated as the actual baseflow and utilized to investigate the performances of 

ten baseflow estimation approaches. 
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Our study resulted in the following conclusions: 

1. From the baseflow hydrograph estimated with actual streamflow data at a gauging 

station, it could be inferred that the baseflow hydrographs obtained through graphical 

approaches always show abnormal patterns caused by the linear interpolation used in 

graphical approaches, such as staircase patterns and shark peaks. These features reflect 

sudden changes to estimated baseflow, which is not in accordance with natural 

conditions. Also, in graphical approaches, baseflow hydrographs always show a large 

increase during significant precipitation events of longer durations. This phenomenon 

has also been observed in the Furey and Gupta approach, which is not hydrologically 

plausible. 

2. From the values of time derivations (dQ/dt) computed from baseflow hydrograph, it is 

observed that in graphical approaches, the dQ/dt of baseflow is dramatically large 

during rainfall for the HYSEP fixed- and sliding-interval approaches, and the dQ/dt of 

baseflow is even nearly the same as streamflow during the beginning of some 

precipitation events. This is not consistent with the anticipated delayed response of 

baseflow, and this high increasing rate of baseflow is also not hydrologically plausible. 

These large dQ/dt values are also observed when the Furey and Gupta approach is 

applied to the hydrographs. Based on the abnormal dQ/dt values, these three baseflow 

estimation approaches are not considered to be good estimation approaches. Together 

with the examination of baseflow hydrograph, the use of dQ/dt has been found to be 

very useful in assessing the hydrologic plausibility of baseflow estimation techniques.   

3. As true baseflow hydrographs are not available at the ACW, synthetic baseflow 

hydrographs generated with the HGS model at ten study points situated at various 



  

59 

locations within the watershed are utilized as true baseflow to help assess the 

performances of baseflow estimation techniques. Examination of synthetic baseflow at 

ten study points revealed that they are, in general, flat and smooth throughout the year. 

It does not show any significant increases between or during precipitation events, and 

generally the baseflow values are low, which is only around 5% to 10% of streamflow 

during the precipitation. Compared with synthetic results, the estimated baseflow 

hydrographs obtained through the Eckhardt, Lyne and Hollick, as well as Furey and 

Gupta approaches are several times higher than synthetic baseflow during rainy seasons, 

and this was especially the case for the Furey and Gupta approach. The estimated 

baseflow hydrographs using the FUKIH approach is most similar to results from HGS, 

and they both exhibit low baseflow values and flat baseflow hydrographs for the ACW. 

4. To quantitatively evaluate the goodness of fit of baseflow values computed from each 

baseflow estimation approach with synthetic baseflow from HGS, model performance 

metrics are utilized. From the scatterplots and regression lines, it is inferred that 

synthetic baseflow is relatively low, thus it is generally smaller than estimated baseflow 

in most cases. In particular, the NSE number, as well as L1 and L2 norms, are also 

calculated for ten baseflow estimation approaches at ten different monitoring locations 

within the ACW, and the results show that the most optimal approaches at different 

locations are not constant from point to point. Of the ten monitoring points, the FUKIH 

approach ranked the best at six points. The Chapman and Maxwell approach ranked to 

have the best performance at three points and the Eckhardt approach yielded the best 

results at one point.  
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5. From the baseflow hydrographs at ten study points, the seasonal patterns of the change 

of baseflow could be obviously observed. During summertime, baseflow becomes 

slightly higher corresponding to higher precipitation, whereas during wintertime, 

baseflow always decreases. After comparing baseflow and streamflow hydrographs, 

the increasing amount and rate of baseflow are much smaller than the streamflow when 

there is a precipitation event, corresponding with the feature of baseflow—it always 

shows a delayed response to precipitation events. During rainy days, the ratio of 

baseflow to streamflow varies from 0.2 to 0.6, whereas during dry seasons, virtually all 

of streamflow constitutes baseflow underscoring the importance of groundwater to 

watershed fluxes. The ratio of baseflow to streamflow also varies in different seasons. 

During winter season, from November to April, the ratio of baseflow to streamflow is 

generally higher than the ratio during other seasons from May to October. 

6. At different study locations within the ACW, the most optimal baseflow estimation 

technique is not the same. In particular, baseflow hydrographs at different location 

might be different caused through spatiotemporal variations in hydrological and 

geologic conditions. Therefore, the baseflow estimation technique that generates 

reasonable baseflow estimates may vary with environmental factors such as land use, 

topography, geology, slope, and hydraulic parameters to name a few. Further studies 

on how spatiotemporal variability in hydrological and geological conditions affect 

baseflow need to be investigated to better understand the factors that influence the 

genesis of baseflow and to also help the investigation of the selection of baseflow 

estimation technique in a more rigorous fashion.  
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Appendix 

 

Figure A1. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 1 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A2. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 2 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A3. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 3 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A4. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 4 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A5. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 5 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A6. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 6 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A7. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 8 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A8. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 9 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) 
Furey and Gupta; and j) EWMA approaches. 
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Figure A9. The comparison between synthetic baseflow obtained from the HGS model and estimated 
baseflow at Point 10 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding 
interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) 

Eckhardt; i) Furey and Gupta; and j) EWMA approaches. 
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Figure A10. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 1 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A11. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 2 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A12. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 3 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A13. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS model and 
estimated baseflow at Point 4 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) HYSEP-Sliding interval; 

d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) FUKIH; h) Eckhardt; i) Furey and 
Gupta; and j) EWMA approaches. The dashed red lines are the regression lines, while the solid black lines are the 1:1 

lines describing a perfect fit. 
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Figure A14. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 5 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A15. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 6 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A16. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 8 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A17. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 9 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 
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Figure A18. Scatter plots showing the relationship between synthetic baseflow obtained from the HGS 
model and estimated baseflow at Point 10 calculated through the: a) UKIH; b) HYSEP-Fixed interval; c) 
HYSEP-Sliding interval; d) HYSEP-Local minimum; e) Lyne and Hollick; f) Chapman and Maxwell; g) 

FUKIH; h) Eckhardt; i) Furey and Gupta; and j) EWMA approaches. The dashed red lines are the 
regression lines, while the solid black lines are the 1:1 lines describing a perfect fit. 


