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Abstract 

Small inland waters (SIWs) – waterbodies smaller than 100 km2 – are the predominant form of lakes 

globally, yet they are highly subject to water quality degradation, especially due to harmful algae 

blooms (HABs). Space-borne remote sensing has proven its capability to detect and map HABs in 

coastal waters as well as large waterbodies mostly through estimating chlorophyll-a (Chla). However, 

remote retrieval of near-surface Chla concentration in SIWs is challenging due to adjacency effects in 

remotely sensed signals and substantial in situ optical interferences of various water constituents. 

Although various algorithms have been developed or adapted to estimate Chla from moderate-

resolution terrestrial missions (~ 10 – 60 m), there remains a need for robust algorithms to retrieve Chla 

in SIWs. Here, we introduce and evaluate new approaches to retrieve Chla in small lakes in a large lake 

catchment using Sentinel-2 and Landsat-8 imagery. 

In situ Chla data used in this study originate from various sources with contrasting 

measurement methods, ranging from field fluorometry to high-performance liquid chromatography 

(HPLC). Our analysis revealed that in vivo Chla measurements are not consistent with in vitro 

measurements, especially in high Chla amounts, and should be calibrated before being fed into retrieval 

models. Calibrated models based on phycocyanin (PC) fluorescence and environmental factors, such 

as turbidity, significantly decreased Chla retrieval error and increased the range of reconstructed Chla 

values. The proposed calibration models were then employed to build a consistent dataset of in situ 

Chla for Buffalo Pound Lake (BPL) – 30 km length and 1 km width – in the Qu’Appelle River drainage 

basin, Saskatchewan, Canada. Using this dataset for training and test, support vector regression (SVR) 

models were developed and reliably retrieved Chla in BPL. SVR models outperformed well-known 

commonly used retrieval models, namely ocean color (OC3), 2band, 3band, normalized difference 

chlorophyll index (NDCI), and mixture density networks (MDN) when applied on ~200 matchups 

extracted from atmospherically-corrected Sentinel-2 data. SVR models also performed well when 

applied to Landsat-8 data and data processed through various atmospheric correction (AC) processors. 

The proposed models also suggested good transferability over two optical water types (OWTs) found 

in BPL. 

Based on prior evaluations of the models’ transferability over OWTs in BPL, locally trained 

machine-learning (ML) models were extrapolated for regional retrieval of Chla in the Qu’Appelle River 

drainage basin. The regional approach was trained on in situ Chla data from BPL and retrieved Chla in 
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other six lakes in the drainage basin. The proposed regional approach outperformed a recently 

developed global approach (MDN) in terms of accuracy, and showed more applicability than local 

models given the scarcity of in situ data in most lakes. In addition, ML models, e.g., SVR, performed 

consistently better than other models when employed in the regional approach.  

A rare phenomenon of marked blue discoloration of ice and water in winter 2021 in Pasqua 

Lake, a small lake in Qu’Appelle Watershed, provided an opportunity to assess the regional approaches 

in estimating chlorophyll-a for waterbodies where enough training data is not available. Therefore, 

using a developed model based on data from BPL, we produced Chla maps and could successfully 

relate the discoloration event to a late fall bloom in Pasqua Lake. We included the details of that study 

in Appendix A. 

Altogether, the models and approaches introduced in this thesis can serve as first steps toward 

developing a remote-sensing-based early warning system for monitoring HABs in small inland waters. 

Results showed that the development of an early warning system for SIWs based on Chla monitoring 

is currently possible, thanks to advancements in medium-resolution satellite sensors, in situ data 

collection methods, and machine learning algorithms. However, further steps need to be taken to 

improve the accuracy and reliability of systems: (a) in situ data need to be consistent for being fed into 

remote sensing models, (b) retrieval models and AC processors should be improved to provide better 

estimations of Chla, and (c) regional approaches might be developed as alternatives for local and global 

approaches in the absence of accurate AC processors and scarcity of in situ Chla data. 
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Introduction 

 Motivation 

Lakes, reservoirs, and rivers contain less than 1% of water on the earth (Wetzel 2001; Likens 2009), 

yet they are of major importance for their critical role in the maintenance of terrestrial life. According 

to estimations, 90% of the world’s population reside within 10 km of a freshwater body (Kummu et al. 

2011). They are the main source of drinking water as well as having recreational, transportation, 

agricultural and industrial usages. Hence, sustainable water management measures are crucial for 

ensuring overall environmental stewardship, human health and well-being, as well as continued 

economic growth. 

Small inland waters (SIWs), the matter of this research, are the predominant form of lakes, with 

64% of basins < 100 km2 (Downing et al. 2006). They are highly subject to water quality degradation 

due to urbanization and changes in land use (Carpenter et al. 1998; Cheng and Basu 2017). However, 

previous studies have mostly focused on large, deep lakes (e.g. Laurentian Great Lakes of North 

America) (Gons et al. 2008; Wynne et al. 2008; Binding et al. 2012; Binding et al. 2021). This may be 

related to their greater importance in regional-global interactions, and that they are a critical source of 

water for many of the large cities surrounding them. Another reason might be limitations in using 

technologies such as satellite data, which, until recently, did not provide the combined spatial and 

spectral resolutions needed to retrieve water quality parameters with reasonable accuracies for small 

lakes (Pahlevan et al. 2020; Smith et al. 2021).  

Harmful algal blooms (HABs) are the most pervasive problems in SIWs (Walker 2019); there 

is evidence that the frequency, magnitude, and persistence of HABs, especially cyanobacteria-HABs, 

have increased globally (Greb et al. 2018; Huisman et al. 2018; Ho et al. 2019). This increase might be 

considered as the result of climate warming (Visser et al. 2016), and the excess of nutrients originating 

from fertilizers (Burkholder et al. 2006; Czerny et al. 2009). Prevention of harmful algal blooms is very 

difficult due to the broad spectrum of its causes. As a result, early warning systems (EWSs) based on 

monitoring technologies are being developed and employed to decrease the negative impacts of HABs 

(Anderson 1994; Stumpf et al. 2009; Jochens et al. 2010; Wynne et al. 2010).  

Many EWSs have been developed, but problems remain. For example, although it is known 

that environmental parameters, such as increasing nutrients (Heisler et al. 2008) and water temperature 
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(Jaworska and Zdanowski, 2011), effectively contribute in phytoplankton blooms, the accurate spatial 

and temporal trends of blooms cannot be determined so far due to their dynamic nature and the 

limitations in monitoring resources and datasets (Ehrlich, 2010). Consequently, although many efforts 

(Jaworska and Zdanowski, 2011; Anderson et al. 2013; Cyr, 2017; Cameron, 2021), there is lack of 

information about how blooms form, how they spread over time and space, and how they finally die-

off (Huisman et al. 2018). Additionally, although many of the monitoring networks and shipboard 

sampling systems are suitable for small-scale studies, they are insufficient for operational applications 

that occur in large scales and change rapidly in time and space (Springer et al. 2005). Instead, satellite 

or airborne observations are capable of providing huge amounts of data from a large area in a short time 

(Franz et al. 2005; McCain et al. 2006). 

Near-surface concentration of chlorophyll-a (Chla) is one of the most important proxies of 

HABs as Chla is ubiquitous in all phytoplankton types including cyanobacteria (Roesler et al. 2017) 

and has unique absorption features that can be detected through satellite imaging (Gordon et al. 1980; 

Gordon et al. 1983; Kutser 2009). Therefore, it can be considered as a key parameter in most EWSs 

based on remote sensing technologies. To date, remotely-sensed Chla estimates have been applied 

successfully to large waterbodies, including the open ocean (Gordon et al. 1980; Morel 1980; O'Reilly 

et al. 1998; Bryan et al. 2005; O'Reilly and Werdell 2019), coastal waters (Werdell et al. 2009; Moses 

et al. 2012), and large lakes (Gons et al. 2008; Binding et al. 2011b; Schaeffer et al. 2018; Binding et 

al. 2021), using ocean-color sensors such as the Medium Resolution Imaging Spectrometer (MERIS) 

and  the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). In contrast, Chla retrieval for SIWs has 

been challenging because the optical properties of inland waters are modulated by particulate organic 

and inorganic particles, as well as colored dissolved organic matter (CDOM) (Mobley 1994), and there 

are many sources of uncertainty, such as adjacency effects, in satellite-derived radiometric quantities. 

In addition, ocean-color sensors with daily revisit temporal resolution lack sufficient high spatial 

resolution (<100m) to sample SIWs (Philipson et al. 2014; Ansper and Alikas 2019). Given the fact 

that a significant number of optical satellite observations can be obscured by cloud cover over 

waterbodies (Li and Roy 2017), the low temporal resolution of terrestrial missions (e.g., Landsat-8 and 

Sentinel-2) might limit their application in water quality monitoring. 
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 Objectives and Contributions 

The overall goal of this thesis is to investigate the possibility of developing early warning systems for 

harmful algal blooms in small inland waters using remote sensing technologies. Given Chla as an 

ubiquitous HAB indicator retrievable by remote sensing observations, this study specifically seeks new 

ideas and approaches to map and monitor Chla in SIWs using medium-resolution space-borne missions 

(~ 10 – 60 m). 

This thesis introduces new models and approaches to retrieve Chla using medium-resolution terrestrial 

missions, i.e., Landsat-8 and Sentinel-2, in small inland waters. The proposed models are compared 

with traditional well-known ones to examine their strengths and weaknesses. Model development and 

assessment are based on extensive in situ data collected in several small lakes in Qu’Appelle River 

drainage basin, Saskatchewan; one of the largest watersheds in Canada. The thesis contains three 

journal articles that represent a framework for developing EWSs based on Chla monitoring in SIWs.  

The first article demonstrates that field fluorometry measurements should be calibrated before being 

fed into remote sensing models. A calibration model using phycocyanin (PC) fluorescence significantly 

improved in vivo Chla measurements, thereby decrement of errors in remote Chla retrieval by 30% and 

increment in the range of reconstructed Chla values. The results of the first article were then employed 

to build a consistent dataset of in situ Chla in Buffalo Pound Lake (BPL), which was used as a training 

site for developing machine learning models for Chla retrieval. 

In the second article, we developed a retrieval model based on support vector regressions 

(SVRs), which outperformed state-of-the-art models when applied to BPL. The robustness and 

superiority of the proposed models were analyzed in various experiments and their reasonable 

transferability over two different OWTs was shown.  

In the third article, SVR models were employed in regional approaches to retrieve Chla in the 

remaining lakes in the watershed. The accuracy of Chla retrieval in these lakes suggests that regional 

approaches based on machine-learning (ML) models are suitable for developing EWSs based on Chla 

monitoring in SIWs. 
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1.2.1 Structure 

This manuscript-based thesis consists of six chapters. The current chapter presents the rationale and 

objectives of the thesis, outlining the need for monitoring Chla concentration in small waterbodies, and 

coupling the satellite-based observations of Chla in early warning systems for harmful algal blooms. 

Chapter 2 provides a theoretical background of biological/physical aspects of harmful algal blooms, 

phytoplankton, and Chla. It then moves to explain principles of theory of remote sensing of water color, 

followed by a literature review of remote sensing of HABs and Chla. Chapter 3 addresses a solution 

for a common issue of in situ data, i.e., inconsistencies between in vivo and in vitro measurements. This 

solution was then used in Chapter 4, where machine-learning models were developed to retrieve Chla 

in a small lake. Chapter 5 introduces a regional approach for extrapolation of locally trained ML models 

to regional retrieval of Chla in a large lake catchment. Finally, Chapter 6 provides a summary of key 

findings of the research as well as future research directions. Appendix A also demonstrates an 

application of the methods presented in Chapters 4-5 in mapping and monitoring of marked blue 

discolouration of late winter ice and water due to autumn blooms of cyanobacteria. 
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Background 

 Introduction 

This chapter includes two sections, each section covering the pertinent background to the research in 

this study. Section 2.2 defines some biological/limnological terms and describes important physical, 

chemical, and biological aspects of algal blooms. Section 2.3 begins with principles of remote sensing 

of water color and continues with a literature review on remote sensing of HABs and Chla estimation 

in waterbodies. 

 Algal blooms; physical, chemical, and biological (PCB) aspects 

2.2.1 Phytoplankton, blooms, and HAB definitions 

Phytoplankton, the planktonic organisms that float in the water column or on the surface of water, 

compromise a group of diverse organisms ranging from unicellular to multicellular and from bacterial 

to eukaryotic kingdoms (Reynolds, 2006). Although so diverse, they share the same characteristics, 

giving them the same ecosystem functionality. Most phytoplankton are primary producers; they absorb 

sunlight, carbon dioxide, water, and nutrients as their food and produce organic compounds and oxygen 

through photosynthesis (Guschina and Harwood, 2006). Therefore, they are the foundation of marine 

food chains, making the lives of all marine animals and habitats dependent on them (Reynolds, 2006). 

In addition, they are a major source of oxygen in the atmosphere (Falkowski, 2012), especially the 

cyanobacteria, also called blue-green algae, which are considered to be responsible for the creation of 

the earth’s aerobic atmosphere around 2 billion years ago (Demoulin et al. 2019). However, 

phytoplankton can be harmful when they block the light from reaching other organisms in water, and 

later when they die-off and deplete water column oxygen (Paerl and Otten, 2013). These harmful 

blooms, which can be associated with releasing toxins into water (Paerl and Otten, 2013), pose a serious 

threat to freshwaters and cause public health concerns.  

Although no completely acceptable definition of a bloom exists (Smayda 1997a; Smayda 

1997b; Ho and Michalak 2015), it is usually defined as an increase of phytoplankton biomass in a 

waterbody over a relatively short time (between a few days and one or two weeks) in which only one 
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or a few species have a dominancy of more than 80% (Meriluoto et al. 2017). However, in this definition 

the increase rate has not been determined, and is a variable based on phytoplankton taxonomy, water 

type, water usage, and so on. For example, whereas a biomass from 30-50 µg L-1 in a mesotrophic or 

less-eutrophic waterbody can be counted as a large bloom, a biomass in the range of 300-400 µg L-1 in 

eutrophic or hypereutrophic lakes can be considered a bloom (Meriluoto et al. 2017). Furthermore, in 

many studies, especially those focused on the remote sensing of algal blooms, the concept of “rapid 

growth” is replaced by the concept of “intense accumulation of a singular species of phytoplankton” as 

this definition makes it easier to identify what a bloom actually is (Wynne et al. 2013). Additionally, 

for brevity, in this manuscript, the term “algal bloom” is used to refer to phytoplankton blooms.  

Among various phytoplankton types, those that release toxins, and in particular microcystin, 

are considered as harmful algal blooms (WHO 2003; EPA 2015; Health Canada 2020). The 

mechanisms by which phytoplankton harm ecosystems differ, and Smayda (1997a) counted at least 

eight mechanisms for doing so. However, according to some studies (Paerl et al. 2001; Ho and Michalak 

2015), these mechanisms can be categorized in three distinct categories, based on how they harm 

ecosystems; (a) a high intensity of any type of phytoplankton in the water column that decreases other 

organisms’ access to light and oxygen, (b) a high or moderate intensity of specific types of 

phytoplankton with certain toxicities and functionalities that can harm other organisms, and (c) an 

expanse of phytoplankton on the water surface, called a scum, is harmful as it blocks sunlight 

penetration. 

2.2.2 The relation of algal blooms to PCB parameters 

Even though no unique cause has been identified for algal blooms, scientists have identified two 

categories: anthropogenic and natural (Iiames et al. 2021). Both cause blooms through making 

favorable environmental conditions for phytoplankton growth. Among all, light, temperature, nutrients, 

organic matters, stratification, and buoyancy regulation, as well as ecological competition as the most 

important environmental parameters that influence phytoplankton growth (Wetzel 2001; Paerl and 

Otten 2013). Here, we examine the effects of these factors on phytoplankton growth and algal blooms. 

A more-comprehensive discussion of these factors and their influences can be found elsewhere (Paerl 

et al. 2001; Wetzel 2001; Reynolds 2006; Paerl and Otten 2013). 
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2.2.2.1 Light and Heat 

Although light and heat are two different parameters influencing phytoplankton, their effects are 

inseparable because sunlight is the main source of heat in waterbodies, and also temperature affects the 

relationship between phytoplankton metabolisms and light saturation (Reynolds, 2006). Light and heat 

affect both productivity (photosynthesis rates) and algal growth rate (Gutierrez‐Wing et al. 2014; Yang 

et al. 2017), and are examined in the form of three parameters: light intensity (irradiance), day length, 

and temperature.   

The vertical distribution of phytoplankton in water columns strongly relates to light availability 

(Mellard et al. 2011). Light intensity in a water column exponentially decreases, as a function of 

wavelength, with increasing depth. Equation 2.1 computes available irradiance (𝐼𝑍) at the depth z, 

where 𝐼0 is downwelling irradiance just below the surface of water, and 𝑘𝑑 is the diffuse attenuation of 

downwelling irradiance, directly (in the visible range) depending on wavelength. The formula shows 

that most sunlight is absorbed in the first centimeters of water columns, and as a result, most heat is 

dedicated to this part. The depth at which the intensity of light (photosynthetically active radiation in 

400-700 nm) is enough for photosynthesis is called the euphotic depth or photic zone, where most 

phytoplankton float.   

𝐼𝑍 = 𝐼0𝑒−𝑘𝑑𝑧 (2.1) 

Light intensity affects both algal-growth and productivity rates (Gutierrez‐Wing et al. 2014; 

Krzemińska et al. 2014). Although phytoplankton’s response to light intensity is species-specific, and 

also after a while many types of adaptations are applied by phytoplankton in high and low light 

intensities (Carey et al. 2012), the general trends of light-intensity reaction are alike for all 

phytoplankton types. One can say that productivity and algal growth increase with increasing light 

intensity until they reach a maximum, above which productivity and growth rates are saturated (Singh 

and Singh, 2015). Then, productivity and growth rates remain constant for a range of irradiance, only 

decreasing if light intensity passes a threshold, due to the phenomenon called photo-inhibition in which 

light intensity denatures the enzymes in phytoplankton (Singh and Singh, 2015). This explains why 

surface phytoplankton sometimes deteriorate due to UV (ultraviolet) exposure. Figure 2.1 (a) illustrates 

the trend of algal growth in relation to light intensity.  
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Figure 2.1. (a) The relationship between irradiance and phytoplankton growth rate computed 

as biomass change per day (Gutierrez‐Wing et al. 2014). (b) The relationship between 

irradiance and phytoplankton productivity (produced carbon per unit Chla per hour) at 

different temperatures (Wetzel 2001).  

In addition, as Figure 2.1.b shows, irradiance effect on growth rate and productivity depends 

on temperature. Figure 2.1.b also proves that as long as the minimum temperature for phytoplankton 

bioactivity is supplied, and temperature and light intensity remain below the rate of saturation, algal 

growth and productivity are independent of temperature. The minimum temperature for starting the 

chemical reactions leading to photosynthesis is about 5°C for most phytoplankton, whereas the 

temperature for enzymes denaturation and in turn productivity reduction is often about 35°C. The 

optimum temperature for most phytoplankton types is 20°C to 30°C (Robarts and Zohary 1987; Béchet 

et al. 2013). However, the reaction to temperature varies greatly between different kinds of 

phytoplankton (Singh and Singh 2015), and it also changes with adaption abilities. For example, 

diatoms have productivity in temperatures even below 5°C (Butterwick et al. 2005), and cyanobacteria 

can tolerate high temperatures, sometimes more than 45°C (Wetzel 2001). Some types of algae can 

adapt to even 40°C after a short time (~ 5 day) (Béchet et al. 2013), or even manage higher temperatures 

in hot springs (Nikulina and Kociolek, 2011). Additionally, different types of algae show great diversity 

in growth (0.3-1.7 divisions day-1) at their optimum temperatures (Butterwick et al. 2005). In addition, 

temperature changes the intensity of light in which phytoplankton productivity and growth rate saturate. 

Most algae show higher productivity and growth rates with a temperature increase above their 

saturation point and before their inhibition point (Singh and Singh 2015). It is worth mentioning that 

indirect temperature effects, such as water mixing or stratification, might have a more significant 

influence on phytoplankton than direct ones (Robarts and Zohary 1987).  
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The other important factor for algal growth rate is day length, meaning the time that 

phytoplankton receive sunlight. Although growth rate has a direct relationship with day length 

(Bouterfas et al. 2006), studies have proved that continuous irradiance does not necessarily increase 

growth rate and productivity because of a phenomenon called “flashing-light effect”, meaning that 

phytoplankton need a minimum time (~100 millisecond) to react to an absorbed photon, and during 

that time they absorb no other photons (Béchet et al. 2013). 

2.2.2.2 Nutrient availability 

Basically, phytoplankton absorb nutrients (mostly nitrates and phosphorous), light, and CO2 to release 

oxygen and organic components (Reynolds, 2006). All phytoplankton have the capability of carbon 

fixation by which they absorb carbon directly from atmospheric CO2 or CO2 dissolved in the water 

column (Irion et al. 2021). Thus, carbon is not generally a limiting factor for phytoplankton growth. In 

contrast, nitrates and phosphorous do limit phytoplankton growth (Bristow et al. 2017). Despite some 

exceptions, nitrates are limiting factors in marine environments, and phosphorous is one in inland 

waters (Maberly et al. 2020). Although the absolute amounts of nutrients are important for algal growth, 

the ratios between different nutrition types in general, and N/P (nitrogen/ phosphorous) specifically, 

play a more important role in the competition and succession of phytoplankton types (Rhee 1978).    

Nitrogen is available in the atmosphere, water and soil. Unlike some types of cyanobacteria 

that can fix atmospheric nitrogen, most phytoplankton cannot. As a result, most phytoplankton supply 

their needs for nitrates from soil and water (Paerl and Otten, 2013). In water ecosystems, thanks to 

bacteria, most nitrates are supplied through decomposed organic matters (Wetzel, 2001). Nitrates are 

also transported and deposited to water from soil sources and fertilizers (Paerl and Otten, 2013). Unlike 

nitrates, phosphorous does not exist in the atmosphere and is mostly supplied by soil, rocks, and 

decomposed organic matter. It is the most limiting factor in inland water blooms (Maberly et al. 2020), 

especially for the cyanobacteria blooms that are the primary producers of toxins in freshwater (Backer 

2002). It has been proven that cyanobacteria tend to bloom in eutrophic waters (phosphorous 

concentration > 50 mg L-1) (Meriluoto et al. 2017). In blooms in which diatoms are the dominant 

species, silica, the other nutrient, can be a limiting factor. This situation usually happens in fall blooms 

in temperate lakes (Wetzel 2001). In fact, transition between the states of nitrates, phosphorus and silica 



 

10 

 

limitations, a very common seasonal phenomenon in lakes, is critical to the succession and dominance 

of phytoplankton types in an aquatic ecosystem (Andersson et al. 2015). 

2.2.2.3 Water turbulence and phytoplankton flotation 

Water turbulences and phytoplankton flotation are linked factors that must be examined together. Both 

impact the availability of light and nutrition for phytoplankton as well as predation by zooplankton, 

thereby impacting the population, growth rate, and productivity of phytoplankton (Smayda, 2002). 

Flotation is crucial for phytoplankton because sinking out of the photic zone is fatal for most types 

(Meriluoto et al. 2017). Moreover, movement through a water column, either sinking or floating, can 

benefit phytoplankton by increasing their exposure to nutrients (Liu et al. 2019). Parameters such as 

density, particle size, shape, mucilage production, gas vacuoles, accumulation of hydrocarbons, and 

swimming ability regulate phytoplankton flotation. Most freshwater phytoplankton have a density 

slightly more than water, leading them to sink in undisturbed water (Wetzel 2001). Nonetheless, gas 

vesicles give some types of cyanobacteria a density less than water, causing them to float and form 

scum on water surfaces (Liu et al. 2019). Furthermore, since phytoplankton sinking rates follow Stoke’s 

law, in which larger particles sink faster, small phytoplankton, such as single-cell cyanobacteria, have 

a lower sinking rate. Shape also affects phytoplankton sinking rates; the greater the surface-to-volume 

ratio, the slower the sinking velocity (Meriluoto et al. 2017).   

Apart from flotation, water turbulence has many impacts on phytoplankton. Since most algae 

lack gas vacuoles, they depend only on water turbulences to remain in the photic zone (Wetzel 2001). 

Moreover, water movement due to wind, solar heating, tides, earth’s rotation, and water inputs, 

transport nutrients from depth to surface and concentrate or disperse phytoplankton patches (Reynolds, 

2006). In most cases, wind is the most significant contributor to turbulence (Ren et al. 2018). The 

formed phytoplankton paths move in the direction of wind. Wind concentrates more-buoyant 

phytoplankton such as Microsytis on downwind shores, whereas the return currents from shores 

accumulate less-buoyant phytoplankton on upwind shores (Smayda, 2002).  

As long as no wind is interrupting the water column and no cold air above water is receiving 

heat from the water, warmer water remains above colder water and prevent any turbulence because of 

its lower density. This phenomenon, which mostly occurs in small temperate lakes in summer and 

winter (frozen lakes), is called stratification and provides favorable conditions in which cyanobacteria 
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proliferate and outperform algae, thanks to the former’s vertical motility in the water column, and the 

latter’s tendency to sink (Paerl and Otten, 2013). Furthermore, cyanobacteria can tolerate high 

temperatures and irradiance, which normally are the results of stratification. They can also bloom under 

nitrogen-limited conditions, a result of stratification, thanks to their N2-fixing capability (Reynolds, 

2006). Further, thermal stratification leads sediments to release phosphorus (Meriluoto et al. 2017), the 

limiting factor for cyano-blooms in most freshwaters, thereby indirectly making conditions favorable 

for cyanobacterial, which can move through entire water column in shallow waterbodies.   

Due to the many influential environmental parameters and the variety of phytoplankton types, 

one cannot say that turbulence or stratification processes are totally favorable for phytoplankton or not 

(Paerl and Otten, 2013). In fact, the results of turbulence-stratification processes totally depends on 

other environmental factors as well as phytoplankton types (Smayda 2002). For example, if limited 

light-conditions exist in a temperate lake in mid-winter, stratification might help phytoplankton to fix 

their positions in a stable environment and make some adaptions for this low light and temperature 

environment. In contrast, for a tropical lake in summer, vertical turbulence reduces the duration of 

phytoplankton’s sun exposure, thereby leading to less photo-inhibition (Wetzel, 2001). As another 

example, unlike in deep lakes in which vertical turbulence sink algae to below to photic zone, in shallow 

lakes, turbulence can cause more proliferation as the entire column is in the photic zone.  

Moreover, algae types vary in their tolerance of the shear stress resulting from turbulence 

(Thomas and Gibson 1990; Hondzo and Lyn 1999). Both low and high turbulence rates have been 

proved to decrease cell division and algal growth rates for some types of phytoplankton. In general, a 

sufficient turbulence depth and rate is needed to provide phytoplankton with new sources of nutrients, 

more flotation, and resultant light/dark cycles of medium frequency (Talling 1966; Grobbelaar 1994). 

Meanwhile, it should be not so much that phytoplankton sinks below the photic zone, preventing them 

from obtaining sufficient light, and damaging their structures.  

 Remote sensing of algal blooms 

2.3.1 Principles of HAB remote sensing 

The color of water, or normalized water-leaving radiance (𝑛𝐿𝑤), which is the radiance that would exit 

the water with the sun at the zenith and with mean earth-sun distance, is determined by the properties 
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of various colored constituents of water, namely water molecules, phytoplankton, colored dissolved 

organic matter (CDOM), detritus, suspended sediments, and bottom reflectance (if the water is optically 

shallow) (Gordon and Clark, 1981; Werdell et al. 2018). The ultimate aim of ocean (water) color remote 

sensing is solving an inverse problem: retrieving these water constituents, which are among the water 

quality parameters, from sensed radiance. A list of water quality parameters that can be directly or 

indirectly retrieved from remote sensing has been provided in Platt et al. (2008). HABs should be 

quantified with criteria that are good indicators of phytoplankton and can be accurately retrieved from 

𝐿𝑤. Table 2.1 lists the criteria that have been employed as indicators of HABs in different studies on 

Lake Erie.   

Type  Criterion  References  

Abundance  

Cell counts  (Wynne et al. 2010) 

Biomass  (Conroy et al. 2005) 

Biovolume  (Bridgeman et al. 2013) 

Chlorophyll-a concentration  (Davis et al. 2012) 

Species-specific  
PCR DNA presence  (Dyble et al. 2008) 

Percent cyanobacteria or Microcystis  (Vincent et al. 2004) 

Toxicity  
Microcystin concentration  (Rinta-Kanto et al. 2009) 

Toxigenic Microcystis presence  (Rinta-Kanto et al. 2009) 

Qualitative  Surface scum presence  (Vincent et al. 2004) 

Table 2.1. Criteria that have been employed as indicators of HABs in different studies on Lake 

Erie, modified from Ho and Michalak (2015).  

In visible wavelengths, assuming phytoplankton as the only constituents in water and ignoring 

the effects of pure water’s inherent optical properties (IOPs) and illumination conditions, 𝐿𝑤  is 

determined by phytoplankton absorption (𝑎𝜑) and phytoplankton backscattering (𝑏𝑏𝜑). The former is 

mostly determined by light absorption by phytoplankton pigments, while the latter is mostly 

characterized by the abundance, size, and shape of phytoplankton. Thus, under ideal conditions, 
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pigment concentration, cell abundance, and even phytoplankton type can be retrieved in an inversion 

process; however, this is not the case under real conditions.  

Water color sensors measure the spectral radiance emerging from the top of the 

atmosphere, 𝐿𝑇𝑂𝐴 at discrete wavelengths. Overall, there are many approaches to retrieve IOPs from 

satellite measurements. Most of these approaches use atmospheric processors to remove the effect of 

the atmosphere from 𝐿𝑇𝑂𝐴  and retrieve remote sensing reflectances (𝑅𝑟𝑠). 𝑅𝑟𝑠 is calculated as the ratio 

of water-leaving radiance (𝐿𝑤 ) to downwelling irradiance (Es), just above the air-water interface. 

Satellite-derived 𝑅𝑟𝑠values can also be corrected for dependency to solar zenith angle and viewing 

direction to obtain exact reflectance just above the water surface (𝑤
𝑁 ) (Mobley, 1994). Algorithms are 

then applied to reflectance values to produce estimates of water constituents. 

Top-of-atmosphere radiometric quantities should be corrected for atmospheric effects before 

being used in retrieval models. When a sensor views waterbodies from space, it measures upwelling 

radiances that can include the water surface, the atmosphere, and the water column contributions. The 

atmospheric contribution, which can be up to 90% of total radiance (Werdell et al. 2018), is the result 

of solar radiance, scattered by atmospheric gases and aerosols. Radiance at the sensor contains 

information about the atmosphere; however, only the water-leaving radiance carries information about 

the water column (Mobley et al. 2016). A sensor cannot separate the various contributions, so 

atmospheric correction (AC) process is the process of removing the contributions by atmospheric 

scattering from the measured top-of-atmosphere radiance to obtain the water-leaving radiance. Robust 

Atmospheric correction is essential for the accurate retrieval of aquatic reflectance and water 

constituents from remote sensing observations. Models for atmospheric correction over the open ocean 

is have been developed for decades, but over inland and coastal waters inaccurate AC still leads to large 

uncertainties in satellite data products and limits the accuracy of water constituents retrieval.   

Since early works in the 1980s (Morel and Prieur 1977; Gordon et al. 1980; Morel 1980; 

Gordon et al. 1983), it has been demonstrated that pigment concentration, especially Chla, which exists 

in all phytoplankton types, has a good correlation with 𝐿𝑤, so it is easier to remotely retrieve than other 

criteria. Furthermore, field and laboratory measurements of Chla concentration are less time- and cost-

consuming in comparison to other criteria such as cell abundance and toxin concentration. As a result, 

there is a historical tendency to use Chla in algal bloom detection and monitoring, and many efforts 
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have been carried out to develop algorithms to retrieve this parameter from remote sensing images 

(Gordon et al. 1983; O'Reilly et al. 1998; Kutser 2009; Matthews 2011; Odermatt et al. 2012).  

Based on the above-mentioned criteria, some remote sensing algorithms have been developed 

and employed to detect, identify, and map blooms around the world (Ruddick et al. 2003; Shen et al. 

2012; Blondeau-Patissier et al. 2014). Whereas some algorithms have been implemented in operational 

EWSs (Stumpf et al. 2003; Wynne et al. 2013), most are in preliminary development stages and need 

to be further investigated. In addition, some algorithms are only used to detect phytoplankton blooms, 

whereas some are employed in identification of bloom species, as well. Furthermore, most of these 

algorithms are usable only in ecosystems where phytoplankton are the primary water constituent (Morel 

and Prieur 1977; Morel 1980), while some are suitable for more turbid waters, discussed in section 4.1. 

2.3.2 HAB retrieval algorithms 

2.3.2.1 Reflectance-classification algorithms 

These algorithms use supervised and unsupervised classification approaches to assign the reflectance 

spectra of pixels to a specific spectral categories, either HAB or non-HAB. They usually detect and 

identify HABs simultaneously. Previous studies demonstrated that different species-specific pigments 

might lead to distinguishable spectra for four major phytoplankton types, namely 

haptophytes, Prochlorococcus, Synechococcus-like cyanobacteria and diatoms (Alvain et al. 2005; 

Alvain et al. 2008). Their method, called PHYSAT, detected and distinguished these major types in 

SeaWiFS images at the global scale. Adding spectral reflectance for coccolithophore blooms in North 

Atlantic to a previously-developed spectral library, included eight spectra from different non-bloom 

types of waters around the world (Moore et al. 2009), led to a probability map for coccolithophore 

blooms using a fuzzy c-means algorithm (Moore et al. 2012). The method was tested on 

SeaWiFS, MODIS-Aqua, the Coastal Zone Color Scanner (CZCS), as well as MERIS, and showed 

reasonable results. In addition, a classification approach based on linear discriminant analysis (LDA) 

was applied on SeaWiFS data of the Baltic Sea and southwest coast of the UK and distinguished 

Karenia mikimotoi, Chattonella verruculosa, and cyanobacteria from non-bloom and harmless-bloom 

classes (Miller et al. 2006). They also used a Chla-median subtraction technique (i.e. subtracting the 
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median of Chla from estimated Chla) to reduce the false positives of the classifier caused by non-

harmful blooms and by high level of sediment in water.  

Due to their weak physical basis, if any, reflectance-classification algorithms are totally region-

based and should be tuned for each new study site. Although the tuning might be justifiable in big 

waterbodies, this is not the case in small lakes, due to their abundance. However, these algorithms are 

promising for water-type classification and also for detecting scum. In addition, their results are often 

qualitative; however, some methods have been developed to assign intensities to detected blooms. For 

instance, a classification approach in which imported features are normalized water-leaving radiances 

in six bands of MODIS and MERIS, as well as some ratios applied on water-leaving radiances and 

absorption and backscattering coefficients resulted in an identification accuracy of 89% for Phaeocystis 

globosa in the southern North Sea and 88% for Karenia mikimotoi in the Western English Channel 

(Kurekin et al. 2014). They also proposed a formula to compute a HAB density based on feature vectors. 

Their HAB density criterion showed a better correlation with algal cell counts than Chla derived from 

MODIS standard algorithms. Even though they argued that their proposed method outperforms Chla-

based methods (discussed later) in terms of bloom intensity estimation, and also is robust to different 

sensor bands and calibration errors, it needs more investigation. 

2.3.2.2 Band-ratio algorithms 

Band ratios have been the most-used remote sensing algorithms to estimate Chla as a proxy for 

phytoplankton (Kutser 2009; Matthews 2011; Odermatt et al. 2012). Almost all standard Chla retrieval 

algorithms for EWSs are based on the reflectance or radiance of blue to green bands, based on Chla 

absorption in ~430 nm. The most well-documented EWS, developed for monitoring harmful Karenia 

brevis blooms in the Gulf of Mexico, is based on a modified blue-green band-ratio algorithm for 

SeaWiFS (Tomlinson et al. 2004). Subtracting estimated Chla from a mean Chla over previous two 

months obtained a Chla anomaly map (Stumpf et al. 2003). Then, applying a 1 μg L-1 threshold equal 

to 100000 cells L-1, they detected phytoplankton blooms and then recognized the late spring and early 

summer ones as harmful Karenia brevis blooms, which was the dominant species at the region  in late 

spring and early summer. Further evaluation showed an accuracy of > 83% for this approach 

(Tomlinson et al. 2004). In later studies, they attempted to reduce the false positive rate of the approach 

by introducing certain environmental factors (Stumpf et al. 2009), using an ensemble strategy 
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(Tomlinson et al. 2009), and applying an algorithm to reduce the effects of sediment interference 

(Wynne et al. 2005).   

Although they are widely applicable, blue-green algorithms have some problems. They usually 

overestimate Chla < 0.2 μg L-1 (Volpe et al. 2007), a range that is not the case in inland and coastal 

waters. The most important problem is that CDOM significantly absorb light in the blue region and 

consequently have a too-great impact on water-leaving radiance, causing these algorithms fail in case 

2 waters. Another blue-green band ratio, called RI, reasonably detected red-tide blooms and estimated 

Chla in the optically complex waters of Korean and Chinese coasts (Ahn and Shanmugam 2006); 

however, results might be regional and not generable.   

Other band-ratio algorithms rely on red and NIR bands, where CDOM and total suspended 

matter (TSM) make much less contribution to light absorption in another Chla absorption band at ~665 

nm (Bernard et al. 2005). Studies show that these band ratios can estimate Chla up to 100 μg L-1 

(Blondeau-Patissier et al. 2014). Red-NIR band ratios can also use the scattering characteristics of 

phytoplankton, and by doing so identify phytoplankton types based on their size and shape. However, 

TSM backscattering and pure water absorption still interfere with phytoplankton backscattering in the 

red-NIR region. There is also the phycocyanin (PC) absorption peak (~620 nm) in this region, which 

can be used to estimate cyanobacterial biomass. However some research has shown that current 

multispectral technologies cannot accurately retrieve PC (Kutser 2009; Matthews 2011) probably due 

to lack of a specific band at PC absorption wavelength (~620 nm). It should be noted that every band-

ratio algorithm, no matter what bands it uses, is very sensitive to incomplete atmospheric correction 

(AC) (Philpot 1991), which is a critical and challenging issue in water-color remote sensing (Mobley 

et al. 2016). The problem becomes worse in blue-green band ratios because of the greater sensitivity of 

blue and green bands to imperfect AC. Another disadvantage of these empirical methods is that they 

are region-based and should be tuned for other regions, due to their weak physical basis. 

2.3.2.3 Band-difference algorithms 

The second-order derivative of a spectral reflectance can be less sensitive to an inaccurate AC (Philpot 

1991). In a discrete spectral reflectance, acquired from satellite images, the second-order derivative can 

be simplified to a band difference algorithm based on three bands. Therefore, many studies have 

proposed various difference algorithms mostly place in the red-NIR region to capture the different 
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characteristics of water–leaving radiance. For example, fluorescence line height (FLH) (Letelier and 

Abbott 1996) was designed to capture Chla fluorescence peak height in 681 nm, with forming a 

baseline using two bands, one shorter and one longer than the fluorescence band. FLH is less sensitive 

to interference by other absorbing suspended matters and does not saturate at high chlorophyll-a 

compared to the algorithms that rely on radiance measurements at 443 nm (Letelier and Abbott 1996). 

Superior results of FLH in relative and absolute Chla estimation as well as detecting 

dinoflagellate Karenia brevis in coastal waters of SW Florida were shown (Hu et al. 2005). It was also 

indicated that coupling bloom detection algorithms with an FLH criterion can improve their 

performance (Soto et al. 2015). However, in Lake of the Woods, FLH could not provide a reasonable 

Chla estimation during an intense cyanobacterial bloom (Binding et al. 2011a), which was expectable 

due to the different fluorescence mechanisms of cyanobacteria compared to algae (Simis et al. 2012; 

Tomlinson et al. 2016). 

In addition, maximum chlorophyll index (MCI) (Gower et al. 2003) was mainly developed to 

capture the high concentration of phytoplankton via their strong backscattering after 700 nm and before 

the high absorption of water (~709 nm). Thus, this index has a potential to have a stronger correlation 

with phytoplankton cell counts, disregarding Chla. Although MCI has been used to monitor algal 

blooms around the globe (Gower et al. 2008; Alikas et al. 2010; Binding et al. 2013; Matsushita et al. 

2015), it did not show good results for Chla of less than 30 μg L-1 (Gower et al. 2005) or with sensors 

that lack a spectral band in 709 nm. MCI reasonably retrieved Chla during an intense cyanobacterial 

bloom in Lake of the Woods (Binding et al. 2011a). However, their study only included bloom 

detection, and did not discriminate between bloom types. FAI (Hu 2009), another band-difference 

algorithm, has been developed to detect floating phytoplankton and plants on water surfaces. Hence, it 

can be applied to detect cyanobacterial scum. For instance, it was used to detect and identify surface 

mats of Trichodesmium (an ocean cyanobacteria) in MODIS imagery (Hu et al. 2010).  

Cyanobacteria Index (CI) (Wynne et al. 2008) is based on the theory that, unlike algae, 

cyanobacteria have much less florescence in 681 nm. In addition, cyanobacteria backscattering is more 

than that of algae in >700 nm because of their smaller size (Ahn et al. 1992; Matthews et al. 2012). As 

a result, the 𝑅𝑟𝑠(681) (remote sensing reflectance) of water that contains cyanobacteria is expected to 

fall below the baseline that is defined as a straight line drawn between 𝑅𝑟𝑠  (665) and 𝑅𝑟𝑠  (709). A 
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strong relationship between CI and cell counts of cyanobacteria in Lake Erie was also reported 

elsewhere (Wynne et al. 2010). The relationship was later approved for the estimation of 

cyanobacterium Microcystis aeruginosa concentrations over a large number of disparate lakes in the 

eastern US (Lunetta et al. 2015). Their results suggest that MERIS provides robust estimates (~90% 

and ~83%) for low (10,000–109,000 cells/mL) and very high (> 1,000,000 cells/mL) cyanobacteria 

concentrations, respectively. Furthermore, good agreement between CI and Chla for a wide range of 

Chla (16 to 115 µg L−1) in six cyanobacteria-rich, stratified lakes in Florida was reported elsewhere 

(Tomlinson et al. 2016). Similar results have been seen in other lakes around the world (Moradi 2014; 

Palmer et al. 2015). CI was also employed in an operational EWS to detect, identify, and map 

cyanobacterial blooms in Lake Erie (Wynne et al. 2013). It can distinguish harmful cyanobacteria 

Microystis blooms from non-bloom and non-harmful blooms. It should be mentioned here that before 

launching Sentinel-3A (S3A) and Sentinel-3B (S3B) in 2016 and 2018, respectively, MERIS was the 

only sensor that had a spectral band centered at 681 nm, used in the CI. Employing S3A and CI index, 

(Clark et al. 2017; Schaeffer et al. 2018) took steps towards developing EWSs for small inland waters 

based on satellite monitoring.  

Another algorithm, called maximum peak height (MPH) (Matthews et al. 2012), has been 

designed to estimate Chla in eutrophic lakes and to detect cyanobacteria blooms as well as surface 

scum. To apply the index, a sensor needs to have five well-located spectral bands in the red edge-NIR 

region. The advantage of the algorithm is that atmospheric aerosol correction is unnecessary, as it is 

very challenging over turbid inland waters. The algorithm was also applied to MERIS dataset to provide 

10-year time series of cyanobacterial blooms for the 50 largest standing waterbodies in South Africa, 

most of which were hypertrophic (Chla  > 30 mg m− 3) (Matthews 2014). Further analysis and 

improvements indicated the superiority of MPH over MCI and FLH and also its capability to be 

employed for monitoring cyanobacteria over a great range of inland waters at the global scale 

(Matthews and Odermatt 2015). 

2.3.2.4 Machine-learning models 

Among statistical algorithms, machine-learning (ML) algorithms, such as neural networks 

(NN), are commonly used in Chla retrieval. For example, the European Space Agency (ESA) estimates 

Chla from MERIS benefiting NN models (Doerffer and Schiller 2007; Schroeder et al. 2007). Likewise, 



 

19 

 

Multilayer Perceptron (MLP) was applied on MERIS data to retrieve Chla in coastal waters with root 

mean square errors (RMSE) of ~0.8 mg m-3 for a Chla range of 0.03-8  mg m-3 (Vilas et al. 2011). 

Support Vector Machines/Regressions (SVM/SVR) (Vapnik 2013) have been also applied to oceanic 

waters (Haigang et al. 2003; Kwiatkowska and Fargion 2003; Camps-Valls et al. 2006; Martinez et al. 

2020; Hu et al. 2021) with various reported performance. SVR uses an -insensitive (a threshold) cost 

function in which errors (𝑒𝑖) up to  are not penalized, whereas further deviations are penalized using 

a linear function, i.e., 𝐿(𝑒𝑖) = max (|𝑒𝑖| − 𝜀, 0). Thus, SVR is more robust to small errors and inherent 

uncertainties of training data (Zhan et al. 2003), compared to traditional linear regressions or neural 

networks. 

In addition, applying Mixture Density neural Networks (MDN) to a large dataset of in situ 

radiometry and Chla measurements allowed development of a model which outperformed other state-

of-the-art algorithms for a wide range of Chla concentration (0.1-100 mg m-3) using MSI and OLCI 

data (Pahlevan et al. 2020), as well as OLI data (Smith et al. 2021). Additionally, Cao et al. (2020) 

developed BST, a model based on the Gradient Boosting Tree algorithm (XGBoost) (Chen and Guestrin 

2016), and successfully tested it on OLI data taken from lakes in eastern China; the model, however, 

was outperformed by MDN when applied to a global dataset (Smith et al. 2021). Machine learning 

models (e.g., MDN) can leverage the full visible and near-infrared spectrum (VNIR) and may handle 

non-linear and ill-posed problems. However, they can be susceptible to uncertainties in AC that could 

reduce their suitability under sub-optimal atmospheric or aquatic conditions (Pahlevan et al. 2020; 

Smith et al. 2021). 

Machine learning models have also been used in estimating other water parameters, including 

apparent optical parameters (AOPs) (Jamet et al. 2012) and water constituents (Balasubramanian et al. 

2020; Pahlevan et al. 2022), or even performing atmospheric corrections (Doerffer and Schiller, 2007). 

In addition, applying deep learning models has been very promising in quantifying water quality 

parameters (Niu et al. 2021; Ye et al. 2021). However, those models usually need thousands of samples 

for training, which are not currently available for inland waters. Overall, machine learning models are 

region-based and should be trained by data from target waterbodies. This can substantially limit their 

usage for small waterbodies (Kutser, 2009).     
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2.3.2.5 Semi-analytical models 

Semi-analytical models attempt to model the relationship between 𝐿𝑤 and inherent optical parameters 

(IOPs) of water. Because water IOPs (absorption and scattering) are the total of water constituents 

(phytoplankton, CDOM, detritus, suspended sediments, and pure water) IOPs, an inversion equation 

that relates 𝐿𝑤  to constituents IOPs and concentrations, can lead to an estimate of phytoplankton 

concentration. Here, for brevity, we ignore mentioning the radiative transfer equation (RTE) and its 

solutions and refer a reader to (Morel 1980; Gordon et al. 1988; Morel and Gentili 1991; Mobley 1994; 

Miller et al. 2005; Mishra et al. 2017; Werdell et al. 2018) for more information.  

Among parameters in a Semi-analytical model, certain ones can lead to bloom detection and 

identification. Some studies attempt to detect and distinguish blooms based on retrieving abundance 

factors such as Chla and [PC] (abundance-based models). For example, differences in phytoplankton 

absorption was utilized to distinguish diatom blooms from other bloom types in the North West Atlantic 

zone (Sathyendranath et al. 2004). The results indicated good agreement with in situ data; however, the 

region was case 1 water. The method was also employed in the first step of an approach to identify 

harmful Alexandrium fundyense blooms in the Bay of Fundy, Canada (Devred et al. 2018). Their 

approach also uses sea surface temperature (SST) as another discrimination criterion. In another study, 

a relationship between Chla and phytoplankton cell size (micro-, nano- and, picoplankton) was 

established in the near surface of oceans (Uitz et al. 2006). The same approach but with additional 

parameters, such as water-leaving radiance as well as absorption and backscattering coefficients in 

specific bands, was applied elsewhere (Aiken et al. 2007; Hirata et al. 2008).  

On the other hand, some other methods attempt to detect and distinguish blooms based on the 

phytoplankton-related part of total absorption and backscattering spectra (spectrum-based models). In 

one of the first attempts, only 0.5% of the variability in the total particulate absorption (𝑎𝑝) spectrum 

can be attributed to the absorption features of accessory pigments (Bricaud et al. 1995; Garver et al. 

1994), and as a result, this parameter cannot be used for distinguishing between particular 

phytoplankton groups. Additionally, chlorophyll-specific absorption spectrum of dinoflagellate (𝑎𝜑
∗ ) is 

not sufficiently different from that of other blooms to allow identification by remote sensing (Millie et 

al. 1997). Conversely, other studies (Ciotti et al. 2002) attributed more than 80% of 𝑎𝜑 to the size of 

dominant species, because of strong co-variation between phytoplankton size and the factors that 



 

21 

 

control 𝑎𝜑, such as pigment packaging and the concentration of accessory pigments, such as Chlb, 

Chlc, and carotenoids. Similar analyses were applied on 𝑎𝜑
∗  to retrieve phytoplankton size elsewhere 

(Goela et al. 2013). It was demonstrated that the greatest decrease in water-leaving radiance for waters 

that contains large amounts of Karenia brevis occurs not because of the absorption due to cellular 

pigmentation, but because of the small amount of particular backscattering (Cannizzaro et al. 2008). 

They suggested that adding this information, acquired by gliders or UAVs, to the traditional EWS 

operated in the Gulf of Mexico might significantly decrease false positives caused by diatom blooms 

(Cannizzaro et al. 2009).   

Comparing various Semi-analytical models based on their abilities to detect dominant 

phytoplankton size, it was concluded that micro- and picoplankton are more accurately detected than 

nanoplankton (Brewin et al. 2011). The ability to retrieve phytoplankton size can be used to distinguish 

between phytoplankton types with different sizes such as dinoflagellates vs. cyanobacteria. The 

spectrum-based models also showed an advantage in retrieving phytoplankton size, independently from 

Chla. However, these types of models show problems when species have a similar spectral absorption 

or backscattering. Also, it has been shown that absorption and backscattering spectra vary with 

phytoplankton growth stages, nutrient availability, and light regimes (Nair et al. 2008). In general, it 

has been proved that Semi-analytical models have more generality than statistics- and empirical-based 

models, thanks to their strong physics basis. However, Semi-analytical models need more spectral 

information (sometimes from hyperspectral sensors) to be employed in inversion models, and also a 

more-accurate AC, which is very hard to achieve in aquatic environments. Many studies have attempted 

to compare the above-mentioned algorithms, and most have conducted their comparisons in 

oligotrophic/mesotrophic waters (Hu et al. 2005; Hu et al. 2008; Tomlinson et al. 2009; Carvalho et al. 

2011; Soto et al. 2015). Hybrid approaches of above-mentioned models also showed better results than 

single algorithms (de Araujo Carvalho 2008; Hu et al. 2008; Carvalho et al. 2010). There are also 

indices that are region-based and have not yet been evaluated over other regions. For example, coupling 

certain ratios and difference indices, discriminated the harmful blooms of dinoflagellate Prorocentrum 

donghaiense from non-blooms and diatoms in MODIS images of the coastal waters of China (Tao et 

al. 2015). 
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 Summary 

According to above-mentioned studies, most algorithms and methods have been developed for 

oceans and large waterbodies and often are not applicable to small waterbodies due to differences in 

optical water type and employing technologies (sensors). As a result, it is essential to adapt or develop 

algorithms to use for monitoring of Chla an HABs in small waterbodies. This seems more promising 

given the new improvements in available technologies (in situ and space-borne sensors) and machine-

learning models. In the next chapters, we elaborate new approaches to monitor Chla in small 

waterbodies using remote sensing technologies. 
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Improvement of field fluorometry estimates of chlorophyll-a 

concentration in a cyanobacteria-rich eutrophic lake 

 Introduction 

Chlorophyll-a concentration (Chla) is a key indicator of harmful algal blooms (HABs), especially in 

studies using floating instrument arrays (buoys) or remote-sensing technologies (Bittig et al. 2019; 

Pahlevan et al. 2020). A broad spectrum of methods exists to measure Chla, including accurate 

laboratory methods (in vitro, 𝑐ℎ𝑙𝑀  hereafter) such as High-Performance Liquid Chromatography 

(HPLC), spectrophotometry, and fluorometry (Pinckney et al. 1994), to very fast field methods, such 

as in vivo fluorometry (Bittig et al. 2019), in vivo spectrophotometry (Davis et al. 1997; Roesler and 

Barnard 2013), and remote sensing (Pahlevan et al. 2020). Although accurate, laboratory methods are 

less suitable for real-time monitoring or long-term observations due to logistic and economic 

constraints (Gregor and Maršálek 2004).  Given this, as well as the current absence of daily high-spatial-

resolution satellite observations for small inland waters (Cao et al. 2019), in vivo fluorometry and 

spectrophotometry have been promoted as important options for real-time monitoring of algal blooms 

in small water bodies (Richardson et al. 2010; Poxleitner et al. 2016; Silva et al. 2016; Wang et al. 

2016; Karpowicz and Ejsmont-Karabin 2017). Here, in vivo fluorometry is usually preferred over in 

vivo spectrophotometry due to its ease of use (Roesler and Barnard 2013). However, to date, few studies 

have critically evaluated the capabilities or limitations of buoy-based instrument platforms in estimating 

changes in freshwater Chla concentrations (Bertone et al. 2018; Boss et al. 2018; Chaffin et al. 2018) 

In vivo fluorometric Chla measurements are obtained by sensors that are usually mounted on 

buoys and illuminate a known volume of water with an excitation irradiance, usually blue wavelengths. 

This light stimulates the Chla within phytoplankton to fluoresce at red wavelengths, which is quantified 

as a relative fluorescence unit (RFU) before being converted to Chla concentration as;  

𝐶ℎ𝑙 = (𝐹 − 𝐹0)/ 𝛷𝐹 ∫ 𝐸(𝜆)  𝑎𝐶ℎ𝑙
∗ (𝜆) 𝑑𝜆

750

400
. (3.1) 

Here 𝐹  is the intensity of measured fluorescence (in vivo fluorescence hereafter),  𝐹0 is 

background fluorescence due to humic and other non-chlorophyllous constituents that fluoresce 400-
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750 nm, 𝐸 is available spectral scalar irradiance [mol photons 𝑚−2𝑠−1𝑛𝑚−1], 𝑎𝐶ℎ𝑙
∗  is spectral Chla-

specific absorption coefficient [𝑚2𝑚𝑔−1], and 𝛷𝐹 is fluorescence quantum yield (photons fluoresced 

/ photons absorbed). Assuming all fluoresced light is detected and 𝐸 is known, only 𝑎𝐶ℎ𝑙
∗   and 𝛷𝐹 need 

to be known to estimate Chla levels (Roesler et al. 2017). While 𝑎𝐶ℎ𝑙
∗   and 𝛷𝐹 are known and constant 

for extracted Chla, values may vary for different phytoplankton, depending on factors such as cell 

packaging, pigment quota, accessory pigment composition, light history, growth phase, and 

phytoplankton species composition (Morel and Bricaud 1981; Falkowski and Kolber 1995). Assuming 

𝑎𝐶ℎ𝑙
∗  and 𝛷𝐹  are constant and that the relationship between 𝐹  and Chla is linear, fluorometer 

manufacturers calibrate 𝐹 with solutions with known pigment content to estimate Chla levels. We refer 

to this in vivo Chla concentration as factory-calibrated Chla (𝑐ℎ𝑙𝐹𝐶), hereafter.  

Estimates of 𝑐ℎ𝑙𝐹𝐶  are most likely to be accurate when used in spatially- and temporally-

limited applications (Ferreira et al. 2012; Chaffin et al. 2018) where 𝑎𝐶ℎ𝑙
∗  and 𝛷𝐹  can be assumed 

constant and similar to pre-defined manufacturer gains (Roesler et al. 2017). In addition, 𝑐ℎ𝑙𝐹𝐶  is 

potentially useful for time series of relative Chla content, assuming that the deviation from true values 

of 𝑎𝐶ℎ𝑙
∗  and 𝛷𝐹 are similar for all Chla predictions (Richardson et al. 2010). For example, a study using 

a five-band fluorescence probe report a high correlation (r = 0.97, p < 0.05) between 𝑐ℎ𝑙𝐹𝐶 and 

spectrophotometric estimates (𝑐ℎ𝑙𝑀) when compared in six productive rivers and reservoirs (Gregor 

and Maršálek 2004). However, in this case, analyses spanned small regions, and phytoplankton were 

composed mainly of low-diversity assemblages of cyanobacteria and chlorophytes. Despite strong 

linear relations between Chla estimators, 𝑐ℎ𝑙𝐹𝐶 underestimated 𝑐ℎ𝑙𝑀 by up to 50 µg L-1 (slope = 0.83) 

and could not retrieve Chla values above 50 µg L-1, especially when colonial cyanobacteria were 

present.  Similarly, a high relative accuracy (r = 0.97) and a significant underestimation of Chla (slope 

= 0.55) were reported in a study comparing 𝑐ℎ𝑙𝐹𝐶 and spectrophotometric 𝑐ℎ𝑙𝑀 in 50 lakes in France 

(Catherine et al. 2012). Research employing different fluorometers (Kaylor et al. 2018), analytical 

methods (e.g., HPLC vs. fluorometry), and phytoplankton assemblages have produced evidence of 

similar biases (Ostrowska et al. 2015; Wang et al. 2016). 

Variations in phytoplankton type and growth phase, community composition, and water 

characteristics can also cause substantial deviation of factory 𝑎𝐶ℎ𝑙
∗  and 𝛷𝐹  values from those 

independently measured, resulting in poor Chla retrieval (Choo et al. 2018; Bertone et al. 2019; Garrido 
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et al. 2019). For instance, although in vivo fluorometry accurately assessed relative taxonomic 

composition in marine assemblages, phytoplankton biomass was overestimated by ∼1.2– to 3.4-fold 

(Richardson et al. 2010). Such overestimation becomes crucial when Chla data are used to train and 

test models using remotely-sensed reflectance to estimate bloom abundance and cyanobacterial 

prevalence. As a result, many studies calibrate fluorescence measurements with coeval 

spectrophotometric or chromatographic measures of in situ Chla, instead of using factory-calibrated 

Chla (Mueller et al. 2003; Escoffier et al. 2014; Roesler et al. 2017; Bertone et al. 2018). 

Chla estimates based on in vivo fluorometry are often less accurate than those derived from in 

vitro methods. Apart from biofouling, which can be reduced by regular sensor maintenance (Davis et 

al. 1997; Manov et al. 2004), in vivo fluorescence can be reduced by non-photochemical quenching 

(NPQ) at high irradiance (Huot and Babin 2010). Although various approaches have been proposed to 

compensate this signal contamination (Xing et al. 2018; Carberry et al. 2019; Scott et al. 2020), none 

of them completely remove the NPQ effect (Bittig et al. 2019) even when additional coeval water 

parameters are measured (Boss and Haëntjens 2016; Wojtasiewicz et al. 2018). Additionally, the 

fluorescence of colored dissolved organic matter (CDOM) may interfere with that of Chla, resulting in 

the overestimation of Chla (Gregor and Maršálek 2004; Xing et al. 2017). Finally, water-column 

turbidity due to abundant phytoplankton and inorganic particles can interfere with in vivo fluorometry 

(Choo et al. 2019). In contrast, fluorometric estimates of phytoplankton abundance may be improved 

through the use of in vivo phycocyanin (PC) fluorometers that use an orange excitation wavelength 

instead of blue light to quantify pigment concentrations. For example, Seppälä et al. (2007) found that 

PC fluorescence has correlated well with spectrophotometrically-derived Chla concentration when 

cyanobacteria were common in the Baltic Sea, and in the Charles River, USA, when used in conjunction 

with Chla fluorescence and turbidity observations (R2 = 0.87) (Rome et al. 2021). Despite its promise, 

most studies of field fluorometry are limited to laboratory-cultured populations (Escoffier et al. 2014) 

or oligotrophic/mesotrophic waters with relatively low Chla content, such as open oceans and coastal 

marine areas (Roesler 2016; Roesler et al. 2017; Wojtasiewicz et al. 2018).  

Continued environmental degradation by eutrophication (Ho et al. 2019), combined with the 

formation of international research consortia using instrumented buoys (Hamilton et al. 2015; Boss et 

al. 2018), has increased demand for real-time monitoring systems, especially for use in eutrophic 
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waters. However, to fully exploit the in vivo fluorescence technology, research is needed to evaluate 

and improve the reliability and accuracy of such measurements, especially under severely eutrophic 

conditions. In addition, the lack of standardization and protocols in performing automated quality 

control, data formatting, and rapid delivery of validated observations is a major challenge in developing 

reliable water quality databases (Boss et al. 2018). Further, to the best of our knowledge, no study has 

evaluated the performance of both Chla- and PC-based fluorometers for Chla retrieval at annual time 

scales and with high resolution in vitro measurements.  

In this chapter, estimate of in vivo Chla are compared to in vitro pigment measures in a shallow 

eutrophic polymictic lake subject to long-term monitoring by limnological sampling and remote-

sensing technologies. Here we take advantage of the rich dataset of lake parameters to apply machine-

learning (ML) protocols that use environmental conditions to improve Chla estimates. By assessing 

field measurements of Chla, we seek to improve estimates of planktonic Chla concentration needed to 

train and test remote-sensing algorithms. This study aims to: (i) identify potential flaws and issues 

associated with the use of factory-calibrated Chla (𝑐ℎ𝑙𝐹𝐶); (ii) develop and assess three locally tuned 

models, namely 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙, 𝑐ℎ𝑙𝑃

𝑃𝐶, and 𝑐ℎ𝑙𝑃
𝑀𝐿, based on Chla fluorescence (𝐹𝑐ℎ𝑙), PC fluorescence (𝐹𝑃𝐶), 

and multiple linear regression (MLR) of environmental algae-derived factors, to approximate Chla 

concentration, and; (iii) evaluate the performance of newly proposed models in recovering accurate 

Chla estimates in two real-world applications; monitoring Chla time series and mapping Chla by 

remote sensing. We show that, at least for a cyanobacteria-dominated eutrophic lake, Chla was most 

accurately estimated when based on models using PC fluorescence or environmental predictors.  

 Materials and Procedures  

3.2.1 Study site 

Buffalo Pound Lake (BPL) is a long (~30 km), narrow (< 1 km), shallow (< 6 m) lake located in the 

Qu'Appelle River watershed, Saskatchewan, Canada (Figure 3.1, Table 3.1). Currently, the basin 

exhibits highly eutrophic waters, with summer blooms during June-September and peak surface 

populations of phytoplankton during July-August (Kehoe et al. 2019). Continuous monitoring for over 

25 years shows that cyanobacteria are the predominant taxon during summer; however, other 
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phytoplankton species may be abundant at the same time (Hammer 1983) (Vogt et al. 2018; Hayes et 

al. 2019; Swarbrick et al. 2019).  

Table 3.1. Buffalo Pound Lake characteristics and water quality parameters in station 1, 

averaged on late May to early September in 2014-2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characteristics values 

Altitude (m) 501 

Mean depth (m) 3.8 

Maximal depth (m) 5.8 

Length (km) 35 

Average Width (km) 0.9 

Surface (km2) 30 

Volume (m3) 92 × 106 

Water Quality Mean values 

Water temperature (°C) 19 

conductivity (μs/cm) 730 

DO (μg L−1) 9.5 

pH 8.5 

Turbidity (NTU) 9.1 

Total P (μg L−1) 86 

Chla (μg L−1) 31 
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Figure 3.1. The map and location of the Buffalo Pound Lake (BPL), Saskatchewan, Canada. (a) 

Position of the Qu'Appelle River watershed within Canada. (b) Location of BPL within 

Qu'Appelle River watershed. (c) A Landsat-8 image of BPL, overlaid by a bathymetric map. 

The extent indicator represents the sampling area in the lake (d) A zoom view of the sampling 

area in BPL overlaid by sampling stations. 

Several attributes make BPL suitable for the comparison of fluorometric, optical, and remotely-

sensed estimates of Chla. First, the lake is an important freshwater resource, as it serves as drinking 

water reservoir for one-quarter of the provincial population, including nearby cities of Regina and 
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Moose Jaw. Second, the lake has multi-decadal records of monitoring, including Chla measurement 

and estimates of HAB abundance (Kehoe et al. 2015). Third, lake size, elongate shape, and landscape 

orientation parallel to the direction of prevailing winds mean the water column is polymictic, 

experiencing frequent mixing periods and limited vertical stratification (Dröscher et al. 2008). Finally, 

the lake has had an instrumented buoy present at a standard location annually from May-September 

(starting in 2014) that is equipped with in vivo sensors for both Chla and PC. 

3.2.2 Data 

Pigment data originated from different sources collected concomitantly during 2014-2019. 𝐹𝑐ℎ𝑙, 𝐹𝑃𝐶, 

and 𝑐ℎ𝑙𝐹𝐶 were collected from an instrument platform buoyed in the center of BPL (Station 1 in Figure 

3.1). In contrast, in vitro Chla concentration was measured from samples at four stations obtained at 

regular intervals. Moreover, environmental parameters were recorded by buoy sensors and were 

supplemented by sampling the water column adjacent to the buoy (see below). Table 3.2 lists the details 

of in-situ measurements. 

Table 3.2. Details of data used in this study. Env. stands for environmental. 

Parameter Name Station Measurement method 
Available 

years 

Sampling 

cycle 
Depth (m) 

Chla fluorescence 𝐹𝑐ℎ𝑙 1 field fluorometry 2014-2019 10 min 0.8 

PC fluorescence 𝐹𝑃𝐶 1 field fluorometry 2014-2019 10 min 0.8 

PC fluorescence 𝐹𝑑𝑒𝑒𝑝
𝑃𝐶  1 field fluorometry 2014-2018 10 min 2.8 

Chla concentration 𝑐ℎ𝑙𝐹𝐶 1 field fluorometry 2014-2019 10 min 0.8 

Chla concentration 𝑐ℎ𝑙𝑀 1 lab spectrophotometry 2017-2019 Once/week 0.8 

Env. parameters - 1 field sensors 2014-2019 10 min 0.8, 2.8 

RGB photos - 1 deployed camera 2014-2019 30 min 0 

Phytoplankton 

biomass 
- 1 Visual microscopy 2017-2018 ~Once/week 0.1 
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Chla concentration 𝑐ℎ𝑙𝑀 2 lab spectrophotometry 2014-2018 Once/week 3 

Phytoplankton 

taxonomy 
- 2 Visual microscopy 2014-2018 ~Once/week 3 

Chla concentration 𝑐ℎ𝑙𝑀 3 lab HPLC 2014-2019 twice/month 0-1 

Chla concentration 𝑐ℎ𝑙𝑀 4 lab spectrophotometry 2015-2019 once/month 1 

 

Two YSI-6600 multi-probes (YSI, Yellow Springs, Ohio, USA) were deployed on the buoy at 

0.8 and 2.8 m depth to measure fluorescence at station 1. The shallow multi-probe recorded 𝐹𝑐ℎ𝑙 and 

𝐹𝑃𝐶  via YSI 6025 and YSI 6131 sensors, respectively, while the deep probe gauged only PC 

fluorescence (𝐹𝑑𝑒𝑒𝑝
𝑃𝐶 ). At both depths, the PC fluorometers used an excitation wavelength of 590±20 nm 

and measured fluorescence at 640±40 nm, whereas the Chla fluorometer used excitation and emission 

wavelength ranges of 470±20 nm and 640±40 nm, respectively. To eliminate fluorometer drift and 

convert relative fluorescence outputs to units of Chla concentration (µg L-1), a two-point calibration 

process was used at regular intervals (the beginning and middle of observation seasons) for the Chla 

fluorometer using a standard solution of rhodamine provided by the sensor manufacturer. As a result, 

buoy multi-probes provide in vivo estimates of Chla (𝑐ℎ𝑙𝐹𝐶), in addition to Chla fluorescence (𝐹𝑐ℎ𝑙). 

Samples for estimation of in vitro Chla were collected from four locations; at the exact location 

of the buoy (station 1), at ~100 m adjacent to the buoy (Stations 2 and 4) and the site of a 28-yr 

monitoring program (Haig et al. 2020) ~ 2 km distant (Station 3). Samples from station 1 and 4 were 

collected with a Niskin bottle from 0.8 – 1 m depth on Whatman GF/F frozen, and later extracted 

following Wintermans and DeMots (1965) in cold 95% ethanol for 24h, and analyzed using a UV-

visible spectrophotometer (Shimadzu UV-1601-PC). Station 2 samples are from the water treatment 

plant intake which is at approximately 3m depth (but pulls water from the water column as a whole). 

Samples from the intake were filtered onto a 0.45um filter, extracted in 90% acetone and analyzed via 

spectrophotometry (Eaton et al. 2017). At station 3, phytoplankton were collected on GF/C glass-fibre 

filters (nominal pore size 1.2 µm) following Swarbrick et al. (2019). Briefly, surface water (~0.5-m 

depth) and depth-integrated samples were filtered through GF/C filters and frozen (-10°C) until analysis 

for Chla (µg L-1) by standard trichromatic assays (Jeffrey and Humphrey 1975) and biomarker pigments 
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(nmoles pigment L-1) by HPLC (Leavitt and Hodgson 2001). Carotenoids, chlorophylls, and their 

derivatives were isolated and quantified using a Hewlett Packard model 1100 HPLC system calibrated 

with authentic standards. The samples in different stations were treated differently as they were 

collected by different researchers, not necessarily for this study. 

Environmental data included estimates of phytoplankton species density (cells or colonies mL-

1) and biomass (µg ml-1) collected in stations 1 and 2 and enumerated following (Findlay and Kasian 

1987). In addition, turbidity, temperature profiles, wind speed and direction, flux of photosynthetically 

active radiation (PAR) in the surface layer and water column, and dissolved CO2 and O2 concentrations 

were recorded by the buoy sensors at Station 1. Further, two cameras, one mounted on the buoy and 

the other on the shore facing toward the buoy, regularly took RGB photographs of the water surface to 

detect surface-bloom events.  

3.2.3 Data Processing Procedure 

Coeval estimates of in vivo and in vitro Chla were processed separately (Figure 3.2). Samples from all 

stations were paired by collection date. We then developed and validated Chla retrieval models based 

on paired measurements.   

 

Figure 3.2. A thematic graph of the workflow in this study. 

3.2.3.1 Data inspection and correction of fluorescence data 

Raw fluorescence data were adjusted for effects of biofouling, sensor input noise (high impulse values), 

and non-photochemical quenching (NPQ) before fluorescence measurements were converted to Chla 
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concentrations (Figure 3.3). Potential biofouling was identified by comparing surface- and deep-sensor 

values with estimates of phytoplankton density and photographic evidence of surface blooms. Affected 

values were removed from further analysis, but accounted for only ~1% of 𝐹𝑐ℎ𝑙 and 𝐹𝑃𝐶 observations, 

usually towards the end of the sampling season. As seen elsewhere (Sackmann et al. 2008; 

Wojtasiewicz et al. 2018), fluorescence of both PC and Chla declined ~10% during most days as PAR 

increased (Figure 3.3). However, as such a pattern may also reflect diel vertical movements of 

phytoplankton, no correction was made for the decline. Instead, NPQ effects were reduced by averaging 

fluorescence data over 24 h (Carberry et al. 2019). This procedure produced similar values to a second 

protocol, in which daytime extremes were replaced by nighttime values (Sackmann et al. 2008; Roesler 

2016), while also preserving daily variation in water-column Chla. Finally, high impulse values were 

defined by fluorescence observations that surpass 3  of daily-averaged fluorescence (observations fall 

3 away from mean) and were removed from the data set.   

 

Figure 3.3. Examples of (a) potential biofouling, (b) high impulse values, and (c) NPQ effect on 

Chla and PC fluorescence time-series. (a) Very high end-season values of the shallow PC 

fluorometer that are inconsistent with coincident observations of the same sensor in deep water 

could be the result of biofouling error. (b) Very high relative values that are occurred in very 

short periods and are inconsistent with other sensors could be the result of sensor impulse noise. 

(c) Periodic changes in fluorescence values with an inverse relationship to available PAR could 

be the result of NPQ. 
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3.2.3.2 Model development 

For data training, we paired 𝐹𝑐ℎ𝑙  and 𝐹𝑃𝐶  observations with concomitant 𝑐ℎ𝑙𝑀  measurements from 

Stations 1-4. The comparison of coeval 𝑐ℎ𝑙𝑀 measurements at the four sites revealed few significant 

differences. Consequently, Chla values from all stations were used for model development, with the 

exception of periods in which surface scum were recorded by the buoy. For these periods, we only used 

the samples in station 1 (the exact location of the fluorometers). To compensate for differences in 

sampling depth, location, and methods between 𝑐ℎ𝑙𝑀 measurements, all in vitro values were averaged 

by day to produce 155 pairs of coeval 𝐹𝑐ℎ𝑙/𝐹𝑃𝐶and 𝑐ℎ𝑙𝑀 measurements over six years of observations. 

We also extracted and tested pairs of 𝐹𝑐ℎ𝑙/𝐹𝑃𝐶  and 𝑐ℎ𝑙𝑀  sampled using other strategies (only one 

location; only adjacent; unaveraged); however, those protocols reduced the number of paired samples 

to one-half to two-thirds (to 56 - 77) and did not improve the accuracy of models, so were discontinued. 

Model calibration and validation were carried out using a five-fold cross-validation approach 

(Hawkins et al. 2003), using 80% of pairs (n = 124) as training set and the remaining 20% (n = 31) as 

a test set. Moreover, because 𝐹𝑐ℎ𝑙, 𝐹𝑃𝐶, and 𝑐ℎ𝑙𝑀 measurements exhibited log-normal distributions, all 

data were subject to a log10-transformation to achieve normal distribution of residuals. Finally, linear 

regression models were developed to predict 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙and 𝑐ℎ𝑙𝑃

𝑃𝐶 from 𝐹𝑐ℎ𝑙and 𝐹𝑃𝐶, respectively. 

Multiple linear regression models were developed to retrieve Chla from environmental 

parameters independent of those inferred from fluorometric measurements. Predictors included 

turbidity, dissolved CO2 concentration, and normalized PAR at 0.8-m depth, parameters which  were 

all correlated individually with Chla (Figure 3.4). We defined normalized PAR (𝑛𝑃𝐴𝑅𝑤𝑎𝑡𝑒𝑟) (Equation 

3.2), as the fraction of incident PAR at the lake surface that was not absorbed or scattered when 

transmitted through the water column. For CO2, we used raw signal data, assuming it to have a good 

correlation with actual CO2 concentration due to negligible atmosphere variation. We also input the 

month of observation to account for seasonality and excluded other environmental parameters that did 

not have a significant individual correlations with Chla. 

𝑛𝑃𝐴𝑅𝑤𝑎𝑡𝑒𝑟 =  𝑃𝐴𝑅𝑤𝑎𝑡𝑒𝑟/ 𝑃𝐴𝑅𝑎𝑖𝑟 (3.2) 



 

34 

 

 

Figure 3.4. A heatmap showing the Pearson correlation of the selected environmental factors 

and 𝒄𝒉𝒍𝑴. 

3.2.3.3 Model assessment 

Predicted Chla (𝑐ℎ𝑙𝑃) was assessed on the basis on accuracy and reliability. Accuracy was defined as 

agreement between 𝑐ℎ𝑙𝑃 and 𝑐ℎ𝑙𝑀  (closeness of fit), while reliability measured the probability that 

𝑐ℎ𝑙𝑃 fell into a confidence interval around 𝑐ℎ𝑙𝑀. Reliability also took into account variation in in vitro 

estimates of Chla concentration arising from differences in laboratory protocols. 

For estimation of prediction accuracy, we examine both linear and log10-transformed metrics 

following Seegers et al. (2018). Performance metrics included root mean square error (RMSE), root 

mean square logarithmic error (RMSLE), median percentage error (MAPE), bias (as log10-transformed 

residuals), and mean absolute error in log10-space (MALE):  

𝑅𝑀𝑆𝐸 = [
∑ (𝑃𝑖 − 𝑀𝑖)2𝑁

𝑖=1

𝑛
]1/2 

(3) 

𝑅𝑀𝑆𝐿𝐸 = [
∑ (𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖))2𝑁

𝑖=1

𝑛
]1/2 

(4) 

𝑀𝐴𝑃𝐸 = 100 × 𝑚𝑒𝑑𝑖𝑎𝑛([|𝑃𝑖 − 𝑀𝑖| 𝑀𝑖⁄ ]) (5) 

𝐵𝑖𝑎𝑠 = 10𝑧 , 𝑧 =  [∑ (𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖))𝑛
𝑖=1 𝑛⁄ ] and, (6) 



 

35 

 

𝑀𝐴𝐿𝐸 =  10𝑦 , 𝑦 =  [∑ |𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖)|𝑛
𝑖=1 𝑛⁄ ] (7) 

where 𝑃𝑖  and 𝑀𝑖  stand for predicted and in vitro measured Chla, respectively. Using these 

metrics, a Bias of 1.5 implies that predicted Chla are, on average, 50% larger than those measured (Bias 

= 1 is ideal), whereas a MALE of 1.5 indicates a relative measurement error of 50% (Seegers et al. 

2018). 

Reliability was computed as the percentage of predicted Chla that fit into a confidence interval 

derived from in vitro measurements. Given considerable variability in coeval Chla values from different 

laboratories, and that the true value of Chla was unknown, we assumed that log10-transformed Chla 

was a random variable with a normal distribution whose mean and variance are estimated by coeval in 

vitro Chla measurements. Given these assumptions, the reliability of predicted Chla was measured as 

the probability that predicted values fell into the range of c = μ ± kσ, where μ and σ are mean and 

standard deviation, respectively; k = 1, 2, 3 and c is a confidence interval. Again, all calculations for 

reliability were conducted using log10-transformed Chla data. 

Finally, to assess the effect of model selection on the ability of remote-sensing techniques to 

estimate Chla, we downloaded and processed Sentinel-2 images of BPL corresponding to sampling 

dates during 2017-2019, the years following Sentinel-2 insertion into orbit. We then paired coeval, co-

located Chla and reflectance observations for training and testing a Support Vector Regression (SVR) 

model to estimate Chla. Details of remote sensing data and processing are provided by Chegoonian et 

al., (submitted). 

 Assessment 

3.3.1 Models accuracy 

Comparison of factory-calibrated Chla ( 𝑐ℎ𝑙𝐹𝐶 ) with in vitro 𝑐ℎ𝑙𝑀  measurements showed that 

fluorometric estimates of Chla from the buoy substantially underestimated values derived from 

laboratory analyses in all years (Figure 3.5). The degree of underestimation was not affected by 

correction for biofouling or NPQ effects, even though both are distinguishable from effects of inherent 

model inaccuracy due to their unique temporal patterns (Figure 3.3). In general, agreement between 
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𝑐ℎ𝑙𝐹𝐶 and in vitro measurements was best early in each year and became markedly worse after June in 

each year through the period of high summer biomass, often improving again in early fall. 

 

Figure 3.5. Factory-calibrated Chla concentration from YSI Chla fluorometer (𝒄𝒉𝒍𝑭𝑪, green 

line), and in vitro Chla concentration (𝒄𝒉𝒍𝑴, circles), shows that 𝒄𝒉𝒍𝑭𝑪 significantly 

underestimates Chla concentration in BPL. Stations are color-coded 1-4. 

Although both 𝐹𝑐ℎ𝑙 and 𝐹𝑃𝐶  measurements were correlated (p < 0.01) to in vitro Chla, 

predictions based on PC fluorescence explained a much greater proportion of variation in 𝑐ℎ𝑙𝑀 than 

did those based in 𝐹𝑐ℎ𝑙 (Figure 3.6). Specifically, 𝐹𝑃𝐶models were highly correlated with variability in 

𝑐ℎ𝑙𝑀 (R2 = 0.87), whereas models with sensor-derived Chla fluorescence values explained only ~34% 

of variance in 𝑐ℎ𝑙𝑀 over a nearly 200 µg L-1 range. In contrast, MLR models using forward selection 

explained 82% of variance in measured 𝑐ℎ𝑙𝑀  values. Significant predictors included turbidity, 

normalized PAR, dissolved CO2, and sampling month (Table 3.3), with about half of sums of squares 

related to turbidity alone. 
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Figure 3.6. Scatter plots of the fluorescence of (a) Chla and (b) PC, versus in vitro Chla 

concentration (𝒄𝒉𝒍𝑴). F stands for fluorescence. 

 

Table 3.3. Multiple linear regression (MLR) model to predict 𝒄𝒉𝒍𝑴, from measured 

environmental parameters using forward selection. 

Parameters Coefficient Sum of squares F-test P-value 

turbidity 0.36 12.08 262.14 910-35 

nPARwater -0.38 2.99 64.94 210-13 

CO2 -0.26 1.18 25.65 10-6 

month 1.74 1.82 39.44 310-9 

Residual - 3.9 - - 

 

Comparison of modeled (𝑐ℎ𝑙𝐹𝐶, 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙, 𝑐ℎ𝑙𝑃

𝑃𝐶, 𝑐ℎ𝑙𝑃
𝑀𝐿) and measured 𝑐ℎ𝑙𝑀 showed predictions 

using 𝑐ℎ𝑙𝐹𝐶 were more biased than were values derived from other fluorometric models (Figure 3.7). 

On average, 𝑐ℎ𝑙𝐹𝐶  was ~2.5-fold lower than 𝑐ℎ𝑙𝑀  resulting in a biased estimator (Bias = 0.42), 

particularly at Chla < 20 µg L-1
 (Bias = 0.74). Further, the relationship between variables was non-

linear above 20 µg L-1
  (Bias = 0.33), similar to patterns previously reported for a FluoroProbe 

fluorometer for Chla values > 60 µg L-1
 (Gregor and Maršálek 2004).  Moreover, only a weak positive 
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correlation (r = 0.55, n = 155) was found between log10-transformed 𝑐ℎ𝑙𝐹𝐶and 𝑐ℎ𝑙𝑀, suggesting that 

𝑐ℎ𝑙𝐹𝐶values should be treated with caution even in analysis of relative proportions. The remaining 

models were unbiased (Bias ~ 1), although they differed in terms of prediction accuracy.   

 

Figure 3.7. The results of five-fold cross-validation of the proposed models; (b) 𝒄𝒉𝒍𝑷
𝒄𝒉𝒍, (c) 

𝒄𝒉𝒍𝑷
𝑷𝑪, and (d) 𝒄𝒉𝒍𝑷

𝑴𝑳 versus 𝒄𝒉𝒍𝑴 measurements at stations 1-4. The validation results for 

𝒄𝒉𝒍𝑭𝑪, obtained from YSI Chla fluorometer with a correction for biofouling and NPQ, is also 

displayed in (a) to compare with the proposed models. The dashed lines correspond to the 1:1 

relationship. 
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Although 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 improved Chla retrieval compared to the 𝑐ℎ𝑙𝐹𝐶 model, it still predicted in situ 

Chla with only an average relative error of ~90% of true values (MALE = 1.9). Instead, errors declined 

~55% when models employed the PC fluorometer to estimate water-column Chla (Figure 3.7). For 

example, all error metrics were reduced by ~50% for the 𝑐ℎ𝑙𝑃
𝑃𝐶 model compared to that based on 𝑐ℎ𝑙𝑃

𝑐ℎ𝑙, 

with improvement evident throughout the range of observed values even though 𝑐ℎ𝑙𝑃
𝑃𝐶 underestimated 

Chla when concentrations exceeded 120 µg L-1 (Figures 3.7.b, 3.7.c). Similarly, the 𝑐ℎ𝑙𝑃
𝑀𝐿  model 

(Figure 3.7.d) significantly (p < 0.01) outperformed both Chla-based fluorescence models (𝑐ℎ𝑙𝐹𝐶 , 

𝑐ℎ𝑙𝑃
𝑐ℎ𝑙) in all metrics. In fact, a model with turbidity as the sole predictor (not shown) still outperformed 

𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 (MALE = 1.66 vs. MALE = 1.9). In general, 𝑐ℎ𝑙𝑃

𝑀𝐿 exhibited similar performance relative to 

that of 𝑐ℎ𝑙𝑃
𝑃𝐶 (MALE = 1.46 vs. MALE = 1.35) and did not underestimate extremely high Chla values. 

Instead, the 𝑐ℎ𝑙𝑃
𝑀𝐿 model tended to overestimate Chla when 𝑐ℎ𝑙𝑀 was < 10 µg L-1. 

3.3.2 Models reliability 

Analysis of model reliability revealed that predictions from the 𝑐ℎ𝑙𝑃
𝑀𝐿  model fell within 2 distance 

(95% confidence interval) of mean 𝑐ℎ𝑙𝑀 on 66% (23 out of 35) of observations with ~46% and ~89% 

falling within  and 3, respectively (Table 3.4). Overall, reliability of 𝑐ℎ𝑙𝑃
𝑃𝐶  and 𝑐ℎ𝑙𝑃

𝑀𝐿  models 

outperformed those based on Chla fluorescence (𝑐ℎ𝑙𝐹𝐶, 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙) irrespective of the confidence interval 

selected (Table 3.4). Compared to other models, 𝑐ℎ𝑙𝑃
𝑃𝐶 exhibited the highest accuracy (Figure 3.7), 

whereas 𝑐ℎ𝑙𝑃
𝑀𝐿  outperforms it in terms of reliability with 89% of observations within 3. For 

demonstration purposes, a visual presentation of reliability for 𝑐ℎ𝑙𝑃
𝑀𝐿  with associated 𝑐ℎ𝑙𝑀 

measurements is depicted in Figure 3.8. Figure 3.8 also can serve as an estimation of consistency among 

all measurements methods used in this study (fluorometry, spectrophotometry, and HPLC). For 

example, an individual can see that HPLC observations of Chla (measurements at station 3) are usually 

lower compared to coincident measurements by the other methods, probably due to differentiate 

between Chla, Chlb, and Chlc. However, a comprehensive comparison between the methods needs 

more data collected at the same location and time. 

Table 3.4. Reliability, estimated as the proportion of retrieved Chla values that within three 

confidence intervals ( ,  2, and  3) of the mean of in vitro Chla concentration, for each of 

four fluorescence models. 
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 𝒄𝒉𝒍𝑷
𝑭𝑪 𝒄𝒉𝒍𝑷

𝒄𝒉𝒍 𝒄𝒉𝒍𝑷
𝑷𝑪 𝒄𝒉𝒍𝑷

𝑴𝑳 

 0.11 0.2 0.54 0.46 

2 0.11 0.49 0.68 0.66 

3 0.14 0.6 0.77 0.89 

 

 

Figure 3.8. Visualization of the reliability of 𝒄𝒉𝒍𝑷
𝑴𝑳, measured as the number of predicted Chla 

that fall into the confidence zone, computed by the standard deviation of coincident 𝒄𝒉𝒍𝑴. 

Values are log-transformed, and the numbers in the legend represent the station from which 

𝒄𝒉𝒍𝑴 is acquired. 
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3.3.3 Models performance in retrieving Chla time-series 

Estimation of in situ Chla using continuous buoy measurements at Station 1 and the proposed models 

revealed common seasonal patterns of Chla concentration, but high variability in absolute 

concentrations among years during 2016-2019 (Figure 3.9). Overall, phytoplankton phenology was 

marked by the onset of elevated concentrations around mid-July, with more intense blooms (100 µg 

Chla L-1) in mid-August, and a slow decline in Chla during September and October. For most models, 

peak water-column Chla occurred earlier and was lower in 2018, whereas other summers were similar 

to each other. Visual inspection suggested that peak in vitro Chla values were more poorly 

approximated by models during 2017 than in other years. 

 

Figure 3.9. Time-series of 𝒄𝒉𝒍𝑭𝑪, 𝒄𝒉𝒍𝑷
𝑴𝑳, and 𝒄𝒉𝒍𝑷

𝑷𝑪to retrieve continuous long-term Chla for 

2016-2019 in station 1 in BPL. Coincident in vitro Chla in stations 1-4 (𝒄𝒉𝒍𝑴) is used to assess 

the validity of retrieval. 

Agreement with in vitro Chla concentrations was much better for models based on PC 

fluorescence (𝑐ℎ𝑙𝑃
𝑃𝐶) and MLR (𝑐ℎ𝑙𝑃

𝑀𝐿) than for those based on Chla fluorescence (𝑐ℎ𝑙𝑃
𝐶ℎ𝑙) (Figure 3.9). 

For example, 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 did not accurately capture values above ~70 µg Chla L-1, whereas 𝑐ℎ𝑙𝑃

𝑃𝐶 estimated 
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Chla well to about 120 µg L-1 and 𝑐ℎ𝑙𝑃
𝑀𝐿 retrieved values up to 150 µg L-1. Although 𝑐ℎ𝑙𝑃

𝑃𝐶 and 𝑐ℎ𝑙𝑃
𝑀𝐿 

often performed equally well in long-term monitoring of Chla, in vivo Chla tended to underestimate in 

vitro values in some late-summer instances (e.g., mid-August of 2016 and 2017). Visual analysis of 

photographs from those dates showed that fluorometric models underestimated Chla when severe 

surface blooms were evident (Figure 3.10).  

 

Figure 3.10. Photographs of surface blooms of cyanobacteria on dates when models significantly 

underestimated in vitro estimates of Chla. (a) image from buoy camera on 15 August 2016, (b) 

image from shore on 10 August 2017. 

3.3.4 Models importance in retrieving remote Chla 

To examine the effect of the proposed models on estimation of remote sensing Chla concentration, we 

populated a recently-developed remote sensing Chla algorithm, SVR (Chegoonian et al., 2021), with 

137 reflectance-Chla matchups derived from chlorophyll values estimated from 𝑐ℎ𝑙𝐹𝐶 , 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙, 𝑐ℎ𝑙𝑃

𝑃𝐶 ,  

and 𝑐ℎ𝑙𝑃
𝑀𝐿 models. These trained SVR models were then validated using unseen in vitro Chla. When 

SVR models were applied to a common Sentinel-2 image of BPL, substantial differences were noted 

in the ability of remote sensing to capture spatial variation in Chla concentrations (Figure 3.11). In 

particular, the model trained by 𝑐ℎ𝑙𝐹𝐶 values showed poor relative and absolute performance (Slope = 

0.1, MALE = 2.01), whereas use of 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 increases model strength (Slope = 0.83) but not accuracy 

(MALE = 2.12). In contrast, both 𝑐ℎ𝑙𝑃
𝑃𝐶and 𝑐ℎ𝑙𝑃

𝑀𝐿 significantly improved estimates of remotely-sensed 

Chla by increasing accuracy 30% (lowering MALE) compared to 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙. Furthermore, compared to 
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𝑐ℎ𝑙𝐹𝐶 , heatmaps of Chla based on other models detected consistent spatial patterns, although they 

differed in the maximum Chla returned (Figure 3.11).  

 

Figure 3.11. Different models to retrieve in vivo Chla (𝒄𝒉𝒍𝑭𝑪, 𝒄𝒉𝒍𝑷
𝒄𝒉𝒍, 𝒄𝒉𝒍𝑷

𝑷𝑪, and 𝒄𝒉𝒍𝑷
𝑴𝑳), 

employed as training data for an SVR algorithm, result in substantial changes in the 

performance of remote-sensing Chla retrieval. (a-d) Heatmaps of Chla, when an SVR algorithm 

feed by 𝒄𝒉𝒍𝑭𝑪, 𝒄𝒉𝒍𝑷
𝒄𝒉𝒍, 𝒄𝒉𝒍𝑷

𝑷𝑪, and 𝒄𝒉𝒍𝑷
𝑴𝑳, respectively, and is applied on Sentinel-2 image of BPL 
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acquired on 22 July 2019. The insets indicate the validation results for remotely-retrieved Chla, 

estimated on unseen in vitro Chla. 

 Discussion 

Fluorescence estimates of Chla concentrations from instrumented buoys have been used widely 

to study the characteristics of surface blooms (Seppälä et al. 2007; Groetsch et al. 2014), changes in 

temporal variability in water productivity (Serôdio et al. 2001; Frankenbach et al. 2020), importance of 

cyanobacteria to phytoplankton assemblages (Catherine et al. 2012; Zamyadi et al. 2016), and develop 

networks of limnological buoys to investigate landscape patterns of water quality change (Hamilton et 

al. 2015; Boss et al. 2018). Often it is assumed that factory-presets of buoy fluorometers allow accurate 

estimation of absolute Chla concentrations or relative changes over a wide range of lake production. 

Here we find that on-board fluorometry lacks both accuracy and reliability to estimate in situ Chla 

relative to predictions based on models calibrated with six years of in vitro monitoring (Figure 3.7 and 

Table 3.4), similar to patterns seen elsewhere (Gregor and Maršálek 2004; Catherine et al. 2012; 

Escoffier et al. 2014; Roesler et al. 2017). Unexpectedly, models based on fluorescence of PC were 

more accurate than those derived from Chla fluorescence, or MLR models based on non-pigmented 

parameters (turbidity, CO2 concentration, transparency, and month). Although all models improved the 

capability of buoys to recover peak Chla values, PC and MLR models were more reliable than those 

based on Chla fluorescence. When applied to remotely-sensed reflectance, PC and MLR models also 

captured a wider range of spatial variability than did other approaches (Figure 3.11), suggesting that 

these models were more suitable to map transient blooms of cyanobacteria in highly-eutrophic lakes.    

3.4.1 Considerations to employ field fluorometers to retrieve Chla 

Weak correspondence between factory-calibrated fluorometric Chla (𝑐ℎ𝑙𝐹𝐶) and ground-truthed in situ 

values (𝑐ℎ𝑙𝑀 ) have been reported in other studies and by instrument manufacturers (Gregor and 

Maršálek 2004; Catherine et al. 2012; Escoffier et al. 2014; Roesler et al. 2017). While in vivo 

fluorometric methods are not expected to replace in vitro methods in terms of absolute accuracy, they 

should maintain a reasonable relative accuracy to be useful in ecosystem monitoring applications. 

Instead, our analyses in a eutrophic lake demonstrated that 𝑐ℎ𝑙𝐹𝐶does not even capture the relative 

changes in laboratory-determined Chla time series (Figures 3.5, 3.7.a), in contrast to investigators who 
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report a high correlation between 𝑐ℎ𝑙𝐹𝐶and 𝑐ℎ𝑙𝑀 (Catherine et al. 2012; Escoffier et al. 2014). This 

difference may relate to the type of fluorometer employed (Roesler et al. 2017), their excitation and 

emission characteristics (Catherine et al. 2012), or the composition of phytoplankton in the lake 

(Escoffier et al. 2015). Regardless of the source of disagreement, the low relative accuracy of 

𝑐ℎ𝑙𝐹𝐶suggests that this metric cannot be used routinely to evaluate spatial or temporal variation in 

phytoplankton abundance of ultra-eutrophic lakes. 

Our findings suggest that the single-excitation-wavelength field fluorometers common to many 

aquatic instrument platforms (Zamyadi et al. 2016; Piermattei et al. 2018) are neither accurate nor 

reliable and cannot be used to estimate in situ Chla without further correction and site-specific 

calibration. In particular, accuracy of 𝑐ℎ𝑙𝐹𝐶  estimations declined at higher Chla values, making this 

parameter particularly unsuitable for early warning detection of cyanobacterial blooms without 

correction and calibration (Roesler et al. 2017). We suggest that 𝑐ℎ𝑙𝐹𝐶 values must be increased by at 

least 150% to achieve comparable means to those derived from modeled and in vitro determinations of 

Chla. Similar conclusions were reached by Roesler et al. (2017) who proposed a two-fold modification 

for all fluorometric Chla observations for different sensors (excitation 470 nm, emission 695 nm) in 

the ocean.  

Unlike models using 𝑐ℎ𝑙𝐹𝐶 and 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙, those based on fluorescence of PC (𝑐ℎ𝑙𝑃

𝑃𝐶) were capable 

of accurately estimating in situ Chla concentrations, both in terms of absolute amount and relative 

variation during series trends or spatial patterns. Although the superior performance of the PC sensor 

is partly dependent on both the instrument type and lake parameters, we expect that this conclusion 

may be generalized to other mesotrophic or eutrophic lakes with abundant colonial cyanobacteria, given 

the wide range of Chla values observed in BPL (2 - 200 µg L-1). However, these results should be 

treated by caution in systems dominated by CDOM or non-algal particles as CDOM fluorescence may 

largely interfere with that of Chl-a and PC, thereby leading to overestimation of phytoplankton 

(Stedmon and Markager 2005; Goldman et al. 2013; Xiaoling et al. 2019), while non-algal particles 

can cause underestimation of phytoplankton by absorbing both excitation and emission lights (Brient 

et al. 2008). The importance of phytoplankton composition to the performance of the PC-based analysis 

has also been recognized in other cyanobacteria-rich waterbodies (Bowling et al. 2016), including the 

Baltic Sea (Seppälä et al. 2007) where differences between the accuracy of Chl- and PC-based 
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fluorometric sensors (R2 = 39% and 76%, respectively) were similar to those recorded in the present 

study (R2 = 34% and 87%).  

Improved information on the mechanisms regulating site-specific variation in the relation 

between in vivo and in vitro Chla concentrations is essential for the upscaling of lake analyses to broader 

geographic landscapes using satellite imagery. Presently, Chla retrieval using remote sensing 

technologies relies mostly on ML algorithms that are trained and tested using in situ Chla 

measurements. The competency of these algorithms is highly dependent on the quality of in situ Chla 

estimates and is often limited by the low data availability or temporal coherence of observations. We 

note herein that in vivo Chla measures were usually improved after our correction and calibration 

process; however, there remained some circumstances in which corrected Chla still underestimated in 

situ concentrations (Figure 3.9). Specifically, corrected Chla values underestimated in vitro Chla when 

concentrations were > 100 µg L-1 and positively-buoyant colonial cyanobacteria (e.g., Microcystis, 

Anabaena, Aphanizomenon spp.) are abundant in the surface waters (Hayes et al. 2019; Swarbrick et 

al. 2019). Such extreme surface blooms tend to occur in hypereutrophic waters, particularly during 

calm intervals which follow prolonged periods of strong winds and turbulent mixing (Paerl 2009). 

Under these conditions, transmission of photons is reduced by high densities of cyanobacteria, leading 

to underestimates of fluorescence by in vivo methods, while in vitro estimates of pigment concentration 

based on chemical extraction do not change. When possible, training of remote sensing algorithms 

should not use in vivo Chla estimates from buoys collected during these surface bloom intervals to 

avoid bias in analysis of temporal and spatial variability.  

3.4.2 Effectiveness of PC versus Chla fluorometers in retrieving Chla  

Phycocyanin-based fluorescence models were more accurate and more reliable than those developed 

using Chla fluorometry with both extended range (up to 120 µg Chla L-1) and more linear relationships 

with in vitro Chla at lower concentrations (Figure 3.7). These findings were unexpected because Chla 

fluorometers are designed to be sensitive to the total biomass of Chla from phytoplankton, including 

both algae and cyanobacteria, whereas PC-based fluorometers are expected to be sensitive mainly to 

cyanobacteria and secondarily cryptophytes. Several characteristics of our study may have predisposed 

PC models to outperform those based on Chla. 
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First, cyanobacteria are the predominant taxon in BPL after June through the end of summer in 

all years (Vogt et al. 2018; Hayes et al. 2019; Swarbrick et al. 2019). As seen in Seppälä et al. (2007), 

a strong linear relationship between PC fluorescence and Chla concentration (Figure 3.6.b) is expected 

in instances where cyanobacteria compose over 50% of community biomass. In BPL, cyanobacteria 

usually comprise 40-100% of total phytoplankton biomass after late June based on both direct 

taxonomic counts 2015-2018 (Figure 3.12) and 25 yr of HPLC analysis of in situ biomarker carotenoid 

pigments (Vogt et al. 2018; Swarbrick et al. 2019). Given that phytoplankton biomass is generally low 

during June due to invertebrate grazing (Dröscher et al. 2009), and that cyanobacteria are rare at this 

time relative to cryptophytes and green algae (McGowan et al. 2005), we anticipate that correspondence 

between modeled Chla (based on PC fluorescence) and in situ Chla may be weaker in spring and early 

summer.   

 

Figure 3.12. The ratio of cyanobacteria biomass to total phytoplankton biomass in BPL, 

averaged on three depths (0.8, 2.8, and 3.5 m) in station 1 for 2015-2018. Cyanobacteria tend to 

be dominant taxa in BPL from day 175 (late June) to day 300 (late October) of a year. 

Second, cyanobacteria fluorescence originates in both Chla and PC due to the role of the latter 

as an accessory pigment in these prokaryotes. Phycocyanin plays a major role in harvesting light, but 

transfers most of energy to Chla and fluoresces residual energy at ~650 nm (Simis et al. 2012). The 

transferred light stimulates Chla to fluoresce in around 680 nm in direct proportion to Chla 

concentration (Johnsen and Sakshaug 2007). Therefore, the PC fluorometer, whose emission filter is 
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wide enough to pass both Chla and PC fluorescence (640  40 nm), senses both PC and Chla 

fluorescence of cyanobacteria. 

Third, in vivo Chla fluorometer commonly used in freshwater instrument buoys can be 

insensitive to the presence of cyanobacteria if the prokaryotes do not possess short-wavelength forms 

of phycoerythrin (Raateoja et al. 2004; Suggett et al. 2004; Johnsen and Sakshaug 2007).  As 

cyanobacteria predominate at very high Chla levels (Vogt et al. 2018; Hayes et al. 2019), such 

insensitivity may disproportionately underestimate high Chla values (Figure 3.7.b). In support of this 

hypothesis, we note that Dolichospermum and Chlorella vulgaris were the most abundant 

cyanobacteria and algae, respectively, based on cell enumerations at station 2 during 2014-2018, and 

that the excitation-emission matrices (EEMs) of these taxa show that only Chla from eukaryotes 

contributes strongly to Chla fluorescence in the range of detection (region 1 in Figure 3.13). These 

sensors are often insensitive to the fluorescence of the cyanobacteria (Figure 3.13..b) relative to that 

from other phytoplankton (Figure 3.13..a).    

 

Figure 3.13. The normalized fluorescence excitation-emission matrices (EEMs) of the most 

dominant algae and cyanobacteria species in BPL. (a) green algae (Chlorella vulgaris) and (b) 

cyanobacteria (Dolichospermum), modified from (Shin et al. 2018). Regions 1 and 2 are the 

spectral range of the employed Chla and PC fluorometers, respectively. 

Fourth, the PC fluorometer stimulates fluorescence from algae which lack PC, possibly by 

initiating energy transfer from accessory pigments to Chla (e.g., Chlb, carotenoids). Region 2 in Figure 
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3.13 confirms that there is fluorescence from Chlorella vulgaris in the spectral range of the PC 

fluorometer. It has been shown that fluorometers with an emission band above 660 nm are affected by 

overlapping fluorescence signals of Chla fluorescence (Simis et al. 2012). Given this sensitivity of the 

PC fluorometer to detect Chla fluorescence, this system appears also capable of estimating lower Chla 

values during intervals when cyanobacteria are normally rare (May to early June) (McGowan et al. 

2005; Hayes et al. 2019; Swarbrick et al. 2019). 

Fifth, wide variation in the Chla content and fluorescence characteristics among different algal 

taxa or growth phases may have contributed to the poor performance of the Chla fluorometer even 

during intervals when eukaryotes are abundant. According to Equation 3.1, different algal taxa yield 

different 𝑎𝐶ℎ𝑙
∗   and 𝛷𝐹 values, causing non-linearity in the relationship of fluorescence and Chla. While 

a calibration slope varies as a function of growth irradiance or growth phase, the largest source of slope 

variability is due to variations in accessory pigmentation (Proctor and Roesler 2010). In the case of 

BPL, there are at least eight common accessory pigments present in the water column at any given time, 

with substantial seasonal variation in the predominant compound (McGowan et al. 2005; Swarbrick et 

al. 2019). 

3.4.3 Performance of environmental MLR models 

Here, we showed the reasonable performance of MLR based on environmental factors to retrieve in 

vitro Chla. Although turbidity occasionally enters predictive models elsewhere (Rome et al. 2021), to 

the best of our knowledge, ours is the first model with turbidity as the main parameter that exhibits 

performance comparable to that of fluorescence-based models. As turbidity probes are inexpensive, 

robust, and easy to calibrate, relative to fluorometric sensors (Rome et al. 2021), the strong performance 

should be compared to other locations to evaluate the suitability in monitoring phytoplankton blooms. 

If validated, this approach for the calibration of previous long records of turbidity measurements may 

be useful in expanding the spatial extent of Chla retrieval for time series development in similar 

eutrophic lakes where turbidity is dominated by phytoplankton. This might be negated in case of 

sediment resuspension under strong wind mixing events. 

Our MLR model includes several in situ factors as in vitro Chla predictors. Apart from 

statistical justifications for these parameters (strong correlation and significant improvement of the 

model performance; Figure 3.4 and Table 3.3), inclusion of the predictors was consistent with 
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relationships with Chla known from previous studies.  For example, turbidity may have been included 

because it is mainly biological in nature in BPL and is known to increase with cyanobacterial density. 

Similarly, the negative correlation between light transmission (normalized PAR) and Chla is consistent 

with the effects of light attenuation by Chla, as well as physical shading by phytoplankton biomass. 

Inclusion of sampling month as a predictor is consistent with the strong seasonal succession of 

phytoplankton seen in these lakes (McGowan et al. 2005; Dröscher et al. 2008; Baulch et al. 2009; Vogt 

et al. 2018; Swarbrick et al. 2019). Finally, a negative relationship between Chla and CO2 concentration 

is expected as the diel cycles of CO2 concentration are controlled in part by changes in pH and 

photosynthesis, both of which are strongly affected by the abundance of cyanobacteria (Wiik et al. 

2018). We also tested incorporating fluorescence measurements into the MLR model; however, an 

ANOVA test showed that, for such a model, almost all chlorophyll variance can be explained with 

fluorescence parameter, making other environmental factors insignificant.   

 Conclusions and recommendations 

Analysis of long-term, coeval in vivo and in vitro Chla measurements in a eutrophic lake demonstrated 

that factory-calibrated in vivo Chla (𝑐ℎ𝑙𝐹𝐶) of a single-excitation-band fluorometer should be corrected 

and tuned in a site-specific manner to provide more accurate and reliable estimates of phytoplankton 

abundance. Here we introduced three different models to predict Chla from in vivo measurements in an 

eutrophic lake dominated by cyanobacteria; two single-linear models based on raw fluorescence from 

Chla and phycocyanin (PC) fluorometers (called 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙and 𝑐ℎ𝑙𝑃

𝑃𝐶, respectively) and one MLR model 

(called 𝑐ℎ𝑙𝑃
𝑀𝐿 ), trained by environmental factors, such as turbidity and CO2 concentration. These 

models were assessed and compared based on both individual metrics and their performance in real 

applications.  

In terms of the ability to recover in vitro Chla concentrations (‘accuracy’), the model based on 

PC-fluorescence (𝑐ℎ𝑙𝑃
𝑃𝐶) compensated the high bias in factory-calibrated Chla (𝑐ℎ𝑙𝐹𝐶) and reduced 

average relative error from ~150% to ~35% when gauged by mean absolute logarithmic error (MALE) 

among other metrics. In terms of reliability of recovered values (ability to capture range of variation), 

𝑐ℎ𝑙𝑃
𝑀𝐿model maintained ~90% reliability to return Chla values within ± 3σ of mean in vitro Chla 

(𝑐ℎ𝑙𝑀), whereas 𝑐ℎ𝑙𝑃
𝑃𝐶and 𝑐ℎ𝑙𝑃

𝑐ℎ𝑙 returned ~77% and ~60%. 
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Application of in vivo estimates of Chla concentration to train algorithms used in remote 

sensing showed that only fluorescence-corrected models were capable of delineating the spatial 

variation in Chla within BPL. Specifically, models based on PC fluorescence and environmental factors 

significantly improved lake monitoring by increasing the range of Chla retrieval to up to 150 µg L-1, 

whereas 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 could not retrieve values > 70 Chla µg L-1. Further use of 𝑐ℎ𝑙𝑃

𝑃𝐶 instead of 𝑐ℎ𝑙𝑃
𝑐ℎ𝑙 also 

decreased the error of Chla retrieval using Sentinel-2 images by ~35%.  For a system that is designed 

to monitor HABs in a highly eutrophic lake, system saturation at only moderate Chla levels is 

problematic.  

We conclude that several features of the PC fluorometer make it more suitable to develop 

remote sensing protocols for lakes subject to intense surface blooms of cyanobacteria. Given that a 

source of inaccuracy in remote retrieval of Chla is uncertainties in Chla training data, especially when 

different in vivo and in vitro approaches are involved in collecting in situ data, the models proposed 

here may be considered as a preprocess step to improve consistency between in vivo and in vitro 

measurements of Chla before feeding into a remote-sensing model. 
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Quantification of chlorophyll-a in small eutrophic lakes using 

Sentinel-2 and Landsat-8 imagery and locally tuned machine 

learning models 

 Introduction  

Small inland waters (SIWs) are the predominant form of lakes globally (Downing et al. 2006), yet they 

are highly subject to water quality degradation due to urbanization and changes in land use (Carpenter 

et al. 1998). Despite recognition of the problem for decades, water quality of SIWs continues to degrade 

rapidly, resulting in harmful algal blooms (HABs) (Walker 2019) whose frequency, magnitude, and 

persistence have increased globally due to climate warming (Ho et al. 2019). Changes in near-surface 

concentration of chlorophyll-a (Chla) is one of the most reliable proxies retrievable of HAB 

intensification, as Chla is present in all phytoplankton, including cyanobacteria (Roesler et al. 2017), 

and has unique absorption features that can be detected through space-borne imaging (Kutser 2009). 

Accurate Chla retrieval from optical radiometry is affected by the interplay between solar 

photons in water-leaving radiance (𝐿𝑤) and the inherent optical properties (absorption, scattering) of 

pure water and its dissolved or suspended constituents. In particular, reflectance is affected strongly by 

phytoplankton density, colored dissolved organic matter (CDOM), and non-algal particles (NAP) 

(Babin et al. 2003), while 𝐿𝑤 is further attenuated by atmospheric characteristics within the path to 

satellite sensors. To retrieve Chla, atmospheric correction (AC) processors are used to convert top-of-

atmosphere reflectance (𝜌𝑇𝑂𝐴 ) to satellite-derived remote sensing reflectance (𝑅𝑟𝑠
𝛿 ). 𝑅𝑟𝑠

𝛿  includes 

uncertainties in the AC and sensor radiometric measurements and approximates remote sensing 

reflectance (𝑅𝑟𝑠), defined as the ratio of water-leaving radiance to the total downwelling irradiance just 

above water. Afterwards, a wide range of algorithms, including semi-analytical, empirical, and 

machine-learning (ML) models, can be applied to retrieve Chla from reflectance measurements (Morel 

1980; Carder et al. 1999; Odermatt et al. 2012). 

Empirical models based on blue-green wavelengths (e.g., NASA’s OCx models) tend to 

perform well when phytoplankton governs 𝑅𝑟𝑠  (Morel 1988; O'Reilly et al. 1998; Morel and 
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Maritorena 2001; O'Reilly and Werdell 2019), but can be inaccurate when CDOM or NAP control 

optical properties (Novoa et al. 2012; Le et al. 2013; Freitas and Dierssen 2019). In such cases and 

when Chla concentration is high (mostly in freshwaters with severe blooms), studies suggest using red 

and near-infrared (NIR) wavelengths, where Chla absorption (~667 nm) and fluorescence (683 nm) 

peaks are located, while CDOM and NAP absorption, as well as NAP backscattering may be negligible 

or spectrally-invariant (Gitelson 1992; Gitelson et al. 2007). 

Various red-NIR indices have been developed and validated for ocean color sensors, including 

the 2band, 3band, and Normalized Difference Chlorophyll Index (NDCI) (Dall’Olmo and Gitelson 

2005; Moses et al. 2009; Mishra and Mishra 2012) for use with data from the Medium Resolution 

Imaging Spectrometer (MERIS). Similarly, the Maximum Chlorophyll Index (MCI) (Gower et al. 

2005), the Fluorescence Line Height (FLH) (Letelier and Abbott 1996), and the Maximum Peak Height 

(MPH) (Matthews et al. 2012) are based on absorption and fluorescence features of Chla. Models based 

upon red or NIR bands may be less sensitive to uncertainties in AC, especially when closely spaced 

(Moses et al. 2009); nonetheless, models performance depends on the range of Chla variation, the 

amount of interference from other constituents (e.g., NAP backscattering), and the band configuration 

of sensors.  

Machine-learning (ML) algorithms, especially neural networks (NN), are widely used to 

retrieve Chla over geographically-extensive regions using extensive synthetic or in situ radiometric 

measurements from diverse optical water types (OWTs). For example, the European Space Agency 

(ESA) provides a Chla product from MERIS using a processing scheme based on NN (Doerffer and 

Schiller 2007; Schroeder et al. 2007). Similarly, Vilas et al. (2011) applied Multilayer Perceptron 

(MLP) on MERIS data to retrieve Chla in coastal waters with root mean square errors (RMSE) of ~0.8 

mg m-3 for a Chla range of 0.03-8  mg m-3, while Support Vector Machines/Regressions (SVM/SVR) 

(Vapnik 2013) have been applied to oceanic waters (Haigang et al. 2003; Kwiatkowska and Fargion 

2003; Camps-Valls et al. 2006; Martinez et al. 2020; Hu et al. 2021). 

To date, remotely-sensed Chla estimates have been applied successfully to large waterbodies, 

including the open ocean (Bryan et al. 2005; O'Reilly and Werdell 2019), coastal waters (Werdell et al. 

2009; Moses et al. 2012), and large lakes (Gons et al. 2008; Binding et al. 2011b; Schaeffer et al. 2018; 

Binding et al. 2021), using ocean-color sensors such as MERIS, MODIS, and  the Sea-viewing Wide 
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Field-of-view Sensor (SeaWiFS). In contrast, Chla retrieval for SIWs has been challenging because of 

uncertainties in atmospheric correction, especially adjacency effects (Pahlevan et al. 2020), and that 

optics of inland waters is further modulated by particulate organic and inorganic particles, as well as 

CDOM (Mobley 1994). Generally, ocean-color sensors lack sufficient high spatial resolution (<100m) 

to sample SIWs (Philipson et al. 2014; Ansper and Alikas 2019). Thus, while the Ocean Color and 

Land Imager (OLCI) onboard Sentinel-3 provides a 300-m spatial resolution and diverse spectral bands 

that can capture water Chla content in large lakes (Smith et al. 2018; Pahlevan et al. 2020), there have 

been few applications to freshwaters  with width or length less than a few km (Philipson et al. 2014). 

Hence, for small inland waters, recent research focuses on the Multi-Spectral Instrument (MSI) 

and Operational Land Imager (OLI) sensors onboard Sentinel-2 (S2) and Landsat-8 (L8) satellites, 

platforms providing excellent global coverage and spatial resolutions of 10 to 60 m. Although designed 

for land observations, these sensors are also applicable to small aquatic ecosystems (Pahlevan et al. 

2014; Cao et al. 2019; Xu et al. 2020) because images are available at sub-weekly temporal resolution 

at higher latitudes (Li and Roy 2017), proven to be consistent (Wulder et al. 2015; Claverie et al. 2018; 

Helder et al. 2018; Pahlevan et al. 2019), and readily accessible (Zhu et al. 2019), while radiometric 

quality (absolute and relative calibration, signal-to-noise ratio) is sufficient for remote sensing of 

aquatic environments (Helder et al. 2018; Pahlevan et al. 2019). 

Diverse computational models have been used with MSI and OLI sensors, including 2band, 

3band, and NDCI (Ansper and Alikas 2019). While MSI has been utilized for detecting cyanobacterial 

blooms and retrieval of Chla concentration in subalpine lakes (Bresciani et al. 2018), studies suggest 

that current approaches have limitations at the extremes of the observed Chla range (Dörnhöfer et al. 

2016; Toming et al. 2016). Furthermore, the accuracy of these approaches has usually been assessed 

using only the coefficient of determination (R2), a parameter with limited degrees of freedom (Kvålseth 

1985). Instead, application of Mixture Density neural Networks (MDN) to a large dataset of in situ 

radiometry and Chla measurements allowed development of a model which outperformed other state-

of-the-art algorithms for a wide range of Chla concentration (0.1-100 mg m-3) using MSI and OLCI 

data (Pahlevan et al. 2020), as well as OLI data (Smith et al. 2021). Additionally, Cao et al. (2020) 

developed boosting tree (BST), a model based on the Gradient Boosting Tree algorithm (XGBoost) 
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(Chen and Guestrin 2016), and successfully tested it on OLI data taken from lakes in eastern China; the 

model, however, was outperformed by MDN when applied to a global dataset (Smith et al. 2021). 

Despite recent developments, retrieving reliable Chla in SIWs using moderate-resolution 

satellite data remains challenging. Empirical models (differential/ratio-based indices) leverage only a 

limited range of the spectrum and may not optimally solve ill-posed conditions (O'Sullivan 1986) that 

are common in inverse problems such as Chla retrieval (Sydor et al. 2004; Defoin‐Platel and Chami 

2007; Werdell et al. 2018; Pahlevan et al. 2020). Similarly, while globally trained ML (GML) models 

(e.g., MDN) can leverage the full visible and near-infrared spectrum (VNIR) and may handle non-linear 

and ill-posed problems, they can be susceptible to uncertainties in AC that could reduce their suitability 

under sub-optimal atmospheric or aquatic conditions (Pahlevan et al. 2020; Smith et al. 2021). Taken 

together, these observations suggest that development of locally trained ML (LML) models using 𝑅𝑟𝑠
𝛿  

measurements might be a suitable option for local monitoring of Chla in SIWs.  

Here, we introduce a machine learning approach based on SVR to retrieve robust and reliable 

Chla time series and spatial maps in Buffalo Pound Lake, Saskatchewan, Canada, using MSI and OLI 

imagery. Our SVR model was trained and validated with ~ 200 co-located in situ Chla measurements 

with corresponding 𝑅𝑟𝑠
𝛿  observations. We compared model performance against several state-of-the-art 

algorithms, including OC3, MDN, 2band, BST, and LMDN – a locally trained MDN – in terms of its 

quantitative (general and stratified) performance as well as its spatial and temporal consistency. Then, 

we assessed the robustness of the model in the presence of uncertainties from two AC processors (i.e., 

iCOR and ACOLITE) and different two broadly-defined OWTs, to assess its potential utility for other 

small eutrophic lakes.  

 Materials and Methods 

4.2.1 Study site 

Buffalo Pound Lake (BPL) is a long (~ 30 km), narrow (< 1 km), and shallow (< 6 m) lake 

located in the Qu'Appelle River watershed, Saskatchewan, Canada (Figure 4.1, Table 4.1). Currently, 

the basin exhibits eutrophic waters, with summer blooms occurring during June-September and peak 

surface populations of phytoplankton often during July-August which might be accompanied by scum 

on the water surface (Kehoe et al. 2019). Continuous monitoring for over 25 years shows that 
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cyanobacteria are the predominant phytoplankton phylum during July-September (Vogt et al. 2018; 

Swarbrick et al. 2019). The lake landscape orientation parallel to the direction of prevailing winds 

means that the water column is polymictic, experiencing frequent mixing periods with intermittent 

vertical stratification (Dröscher et al. 2008). 

Several attributes make BPL suitable for the development of remote sensing models of Chla. 

First, the lake is an important freshwater resource as it supplies drinking water to one-quarter of the 

provincial population, including the nearby cities of Regina and Moose Jaw (Hosseini et al. 2018). 

Second, multi-decadal records of field data exist for the lake, including Chla measurements, and the 

waterbody experiences severe HAB events (Kehoe et al. 2015). Third, the lake size and its elongated 

shape allow use of sensors with relatively high spatial resolution, such as MSI and OLI. 

 

Figure 4.1. Map and location of Buffalo Pound Lake (BPL), Saskatchewan, Canada. (a) 

Location of the Qu'Appelle River watershed within Canada. (b) Location of BPL within 

Qu'Appelle River watershed. (c) A Landsat-8 RGB image of BPL overlaid on a bathymetric 

map on which sampling stations are also shown (solid black triangles numbered 1 to 11). 
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Table 4.1. Buffalo Pound Lake characteristics and water quality parameters at station 1 

(averaged from late May to early September  2014-2020). P stands for phosphorus, TSS for total 

suspended solids, and DOC for dissolved organic carbon. 𝒂𝑪𝑫𝑶𝑴(440) is CDOM absorption 

measured at 440 nm. 

Physical Characteristic Value Water Quality Parameter Mean Value 

Altitude (m) 501 Water temperature (°C) 19 

Mean depth (m) 3.8 Total P (mg m−3) 88 

Maximum depth (m) 5.8 Chla (mg m−3) 31 

Length (km) 30 TSS (g m−3) 11.8 

Average width (km) 0.9 𝑎𝐶𝐷𝑂𝑀(440) (m−1) 0.28 

Surface (km2) 30 DOC (g m−3) 6.7 

Volume (m3) 92 × 106 Turbidity (NTU) 9.2 

 

Chla in BPL is higher than the average for freshwaters (Filazzola et al. 2020), as opposed to 

Dissolved Organic Carbon (DOC) which is in a low/medium amount for freshwaters (Toming et al. 

2020). It can be claimed that particles, especially algal particles, mostly control the optical 

characteristics of water in BPL. This hypothesis can be confirmed by Figure 4.2 (upper diagonal) where 

the optical characteristics of water samples e.g., turbidity and Secchi Disk Depth (SDD) are highly 

correlated with Total Suspended Solids (TSS) and Chla. However, Figure 4.2 (lower diagonal) also 

reveals that the relationship depends on the station location as southern stations (1-8) show a stronger 

relationship between Chla and optical characteristics. This can be justified based on the distribution of 

water constituents, plotted in Figure 4.2 (diagonal), where northern stations (9-11) contain more 

sediments, as opposed to the southern stations which are more dominated by Chla. 
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Figure 4.2. Pair plots of some optically-derived/driven parameters in BPL (averaged on stations 4-

11 from late May to early September  of 2014-2020). Diagonal elements are the distribution of each 

parameter, color-coded according to station numbers. Upper-diagonal elements are the scatter plot 

of paired parameters. Lower-diagonal charts are the contour plots showing the relationship 

between the parameters in northern and southern stations. N and  are the number of samples and 

correlation coefficients, respectively. Units are mg m-3, g m-3, NTU, and m for Chla, TSS, turbidity, 

and SDD, respectively. 
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We categorized BPL into two distinct OWTs based on the concentration of optical water 

constituents (Table 4.2) and their relationship with water optical parameters (Figure 4.2). OWT1 

characterizes the southern basin (stations 1-8), where Chla concentrations are elevated and optical 

characteristics are similar to those recorded in plankton-rich systems elsewhere (OWT4 in Pahlevan et 

al. (2021) or OWT8 in Spyrakos et al. (2018)). In contrast, the northern basin (stations 9-11) exhibits a 

considerable concentration of suspended sediments and lower Chla values (Table 4.2), similar to 

OWT5 in Pahlevan et al. (2021) or OWT4 in Spyrakos et al. (2018). 

Table 4.2. Statistics used to distinguish two distinct OWTs in BPL (averaged from late May to 

early September  2017-2020). Units are mg m−3 and g m−3 for Chla and TSS, respectively. 

OWT1 (stations 1-8) OWT2 (stations 9-11) 

Chla TSS Chla TSS 

Median 17.1 6.5 11.4 11 

Mean 25.9 7.2 14.9 14.8 

Standard deviation 24.7 4.1 12.2 13.1 

N 159 104 201 125 

4.2.2 Data 

Although there is a long history of recorded in situ data in BPL (Swarbrick et al. 2019), we selected 

the period of 2014-2020 to match Landsat-8 and Sentinel-2 mission lifetimes. 

4.2.2.1 In situ Chla data   

In situ Chla data originated from multiple datasets (Table 4.3). At station 1, autonomous, on-site 

fluorescence probes were available through deployment on a buoy. These fluorometric measurements 

were then calibrated using a method described in Chapter 3. In addition, discrete water samples were 

collected from the lake surface and 0.8 m depth, with Chla collected on Whatman GF/F frozen and 

later extracted following Wintermans and DeMots (1965) and analyzed using a UV-visible 

spectrophotometer (Shimadzu UV-1601-PC). Samples from station 2 were obtained from the water 

treatment plant intake at a depth of approximately 3 m in this polymictic lake. Samples from the intake 

were filtered onto a 0.45 µm filter, extracted in 90% acetone and analyzed via spectrophotometry 

following standard methods (Eaton et al. 2017). 
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Phytoplankton from station 3 were collected on GF/C glass-fibre filters (nominal pore size 1.2 

µm) following Swarbrick et al. (2019). Briefly, surface water (~0.5-m depth) and depth-integrated 

samples were filtered through GF/C filters and frozen (-10°C) until analysis for Chla (mg m-3) through 

standard trichromatic assays (Jeffrey and Humphrey 1975) and biomarker pigments (nmoles pigment 

L-1) by HPLC (Leavitt and Hodgson 2001). Carotenoids, chlorophylls, and their derivatives were 

isolated and quantified using a Hewlett Packard model 1100 HPLC system calibrated with authentic 

standards. 

Finally, samples from stations 4-11 were collected during monthly field visits at a 1-m depth 

using a Niskin bottle. Samples for Chla analysis were subsampled from the Niskin into laboratory 

bottles, stored in dark coolers with blue ice, and analyzed using method 10200H from Standard 

Methods (Eaton et al. 2017). Briefly, samples were filtered at low vacuum through 0.45 µm 

nitrocellulose filters. Pigments were extracted from filters using a 90% acetone solution followed by 

vortexing. The resulting samples were steeped for between 2 and 24 hours and then absorbance was 

read at 630, 647, 664, and 750 nm using a Hack DR/4000 UV-VIS spectrophotometer. Chla values 

were calculated using Jeffrey and Humphrey’s trichromatic equation (Jeffrey and Humphrey 1975). 

Different methods of Chla measurements result in discrepancy in estimations. Section 3.3.2 provides 

an estimation of such discrepancy in our case. However, more analyses are needed using co-location 

coincident observations. 

Table 4.3. Details of in situ Chla measurements employed in this study. The unit for depth 

values is meter. 

Station  Measurement method  Available 

years  

Sampling 

interval  

Sampling 

time 

Depth Number of 

matchups 

1  field fluorometry            

(Bittig et al. 2019) 

2014-2020 10 min  all-day 0.8 37 

1  lab spectrophotometry 

(Eaton et al. 2017)  

2017-2020  ~once/week  daytime 0, 0.8  20 

2  lab spectrophotometry   

(Eaton et al. 2017) 

2014-2020  once/week  ~ 5 a.m. 2.8  25 
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3  lab HPLC (Leavitt 

and Hodgson 2001)                       

2014-2019  twice/month  ~ 11 a.m. 0-1* 11 

4-11 
lab spectrophotometry 

(Eaton et al. 2017)  
2015-2020  once/month  daytime 1  100 

* depth-integrated sampling 

4.2.2.2 Satellite images 

Cloud-free level-1C MSI images acquired by the Sentinel-2A/B satellites during the open water season 

were downloaded for the period 2017-2020 with a 2-3 days revisit time. The MSI sensor collects data  

in 13 spectral bands from 443 to 2190 nm at spatial resolutions of 10, 20, and 60 m, and with a 12-bit 

radiometric resolution (Li et al. 2017). In addition, cloud-free OLI level-1 images from NASA’s 

Landsat-8 satellite (launched 2013) were downloaded for the period 2014-2020. The spatial resolution 

of the optical channels of OLI is 30 m, and the satellite overpasses the study site every ~8 days. In the 

case of eutrophic waters, the MSI band configuration is more suitable for Chla retrievals than that of 

OLI (Ansper and Alikas 2019) due to the availability of a red-edge band at 709 nm. Figure 4.3 compares 

the configuration of sensors with Chla spectral reflectance, including reflectance spectra for samples 

with different Chla concentration measured in BPL using an ASD spectrometer (Analytical Spectral 

Devices, ASD Inc., Boulder, CO, USA), measured using a white reference Spectralon and averaged 

over 10 observations.  

 

Figure 4.3. Comparison of MSI bands (red boxes) and OLI bands (blue boxes) in wavelengths < 

800 nm. The spectra are from three different samples measured at BPL using an ASD 

spectrometer and display how water spectra change with changes in Chla content. 
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4.2.3 Methodology 

The data analysis workflow developed in this study was similar for all analyses (Figure 4.4) although 

algorithms (e.g., AC processors and Chla retrieval models) and train-test split approaches differed 

between experiments (Table 4.4). 

 

Figure 4.4. Overview of workflow developed in this study. 

4.2.3.1 Data preprocessing 

All images were corrected for atmospheric effects to produce two different reflectance quantities, 

namely 𝑅𝑟𝑠
𝛿  (satellite-derived remote sensing reflectance) and 𝑟𝑐  (Rayleigh-corrected reflectance). 

We selected ACOLITE (v20210114.0) (Vanhellemont and Ruddick 2014; Vanhellemont 2019) and 

iCOR (version 3) (De Keukelaere et al. 2018) as AC processors since they outperform other processors 

in inland waters with OWTs similar to BPL (Pahlevan et al. 2021), especially when red-NIR 

wavelengths are used (Ilori et al. 2019). Visual inspection of images showed no significant sunglint 

effect in BPL. iCOR applies the SIMilarity Environment Correction (SIMEC) algorithm (Sterckx et al. 

2015) to reduce the adjacency effect that may be an issue for BPL due to its narrow width. Regardless 

of AC processors, all MSI spectral bands were then resampled to a 60-m grid to be consistent for further 

steps. 

Optically-deep waters are the focus of this study; hence, Chla samples for which Secchi Disk 

Depth (SDD) measurements equal to bottom depth were excluded. This way we ensure that no signal 

comes from lake bottom reflection. In situ samples (1394 station-day samples) were then collated with 

the closest matching satellite-derived 𝑅𝑟𝑠  products to create co-located 𝑅𝑟𝑠
𝛿  Chla matchups. The 
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maximum time span between field sampling and image acquisition was set to ±3 days. Although this 

time span is much longer than ±3 hours, which has been suggested for oceanic waters (Werdell and 

Bailey 2005), many studies extend the time window even up to ±7 days for inland waters without any 

significant decrease in accuracy (Tang et al. 2003; Lunetta et al. 2015; Dörnhöfer et al. 2018; Ansper 

and Alikas 2019). To correct for potential mismatches, we used continuous Chla measurements from 

the buoy to exclude matchups for which Chla at the time of satellite overpass differed from in situ 

values by > 20%. Representative 𝑅𝑟𝑠
𝛿  spectra for matchups were chosen to be the median of 33-

element windows centered around the matchup locations. 

Both AC processors mask land and clouds automatically; however, we manually deleted 

matchups that were contaminated by thin clouds/haze and cloud shadow through a visual assessment 

of images. Both processors also sometimes overcorrect for atmospheric effects, resulting in negative 

reflectance, especially in the 443 and 490 nm bands. In our case, there were few instances of negative 

reflectance values (~ 5%) and these were excluded after inspection. Finally, we implemented an outlier 

detection algorithm to remove samples whose 𝑅𝑟𝑠
𝛿  deviated from mean values by more than 3. 

Approximately 200 matchups (depending on sensor type and AC processor) were selected for algorithm 

development and evaluation. The 𝑅𝑟𝑠
𝛿  plots and the distribution of 𝑅𝑟𝑠

𝛿  derived from ACOLITE and 

iCOR (𝑅𝑟𝑠
𝛿,𝐴𝐶𝐿

 and 𝑅𝑟𝑠
𝛿,𝑖𝐶𝑂𝑅

, respectively) are shown in Figure 4.5. 
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Figure 4.5. Normalized frequency distributions of MSI-derived 𝑹𝒓𝒔
𝜹  spectra for the matchups 

processed via ACOLITE and iCOR processors (top). 𝑹𝒓𝒔
𝜹  spectra for the matchups processed 

via ACOLITE and iCOR processors (bottom). Colors in the bottom plot is only for a better 

visualization. 

4.2.3.2 Model development 

Assuming  to be a threshold, SVR uses an -insensitive cost function in which errors (𝑒𝑖) up to  are 

not penalized, whereas further deviations are penalized using a linear function, i.e., 𝐿(𝑒𝑖) = max (|𝑒𝑖| −

𝜀, 0). Thus, compared to traditional linear regressions or neural networks, SVR is more robust to small 

errors and inherent uncertainties of training data (Zhan et al. 2003). Weights () are estimated in the 

linear regression problem (Equation 4.1), where 𝑖 is the number of training data, 𝑗 is the number of 

predictors (spectral bands), and 𝜙 is a kernel (a non-linear mapping function). SVR minimizes Equation 

4.2, where 𝜉𝑖  (Figure 4.6.a) are |𝑒𝑖| > 𝜀  and C is the regularization parameter, balancing the 

minimization of errors and generalization capabilities (Smola and Schölkopf 2004; Camps-Valls et al. 

2006). Figure 4.6 depicts a schematic view of the regression between Chla and reflectance 

measurements using SVR. 

𝐶ℎ𝑙𝑎𝑖 = ∑ 𝜔𝑇𝜙(𝑅𝑟𝑠𝑖
)

𝑀

𝑗=1

 

(4.1) 

𝐶𝑜𝑠𝑡 =  
1

2
‖𝜔‖2 + 𝐶 ∑ 𝐿(𝑒𝑖)

𝑖

  (4.2) 
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Figure 4.6. Graphical depiction of principles of support vector regression (SVR). (a) Schematic 

view of regression between Chla and reflectance measurements using SVR. (b) Loss function 

defined for SVR; while errors less than 𝜺 are not penalized, larger errors are penalized by a 

linear function. 

Input and output Chla values were log10-transformed in the model. We allowed some outliers 

(larger residuals than ) using a C = 2.5 parameter (regularization term) to decrease the chance of 

overfitting. We also employed a Radial Basis Function kernel (RBF), rather than other tested kernels, 

with  = 0.14 and 0.25 for MSI and OLI data, respectively, to handle non-linearity in the feature space. 

 determines the radius of influence of samples selected as support vectors. These hyperparameters (C, 

, and kernel type) were tuned using a grid-search cross-validation process that minimizes model errors 

on a validation set. Here, the validation set was one-fifth of the training data that was periodically set 

apart for hyperparameter tuning. After identifying optimized hyperparameters, the validation set was 

merged with the whole training data and fed into the model for a final training process. 

Using 𝑅𝑟𝑠
𝛿  Chla matchups, we re-trained several state-of-the-art empirical Chla retrieval 

algorithms for use with MSI and OLI spectral bands, namely OC3 (O'Reilly et al. 1998; O'Reilly and 

Werdell 2019), 2band (Moses et al. 2009), 3band (Dall’Olmo and Gitelson 2005), and NDCI (Mishra 

and Mishra 2012) for MSI, and OC3 as well as FLH-blue (Beck et al. 2016), for OLI. After logarithmic 

transformation, these differential/ratio-based indices implied a linear relationship with logarithmic-

a

. 

b

. 
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transformed Chla. The exceptions were 2band and 3band for which we added a power-of-two term to 

better fit the data. The tuned formula and coefficients for empirical models are presented in Table 4.4. 

 Table 4.4. Formulas and coefficients of empirical models employed in this study. b#  and 𝝀 # 

are the reflectance and wavelength at specified bands, respectively. y (output of the equations) 

is Chla on a logarithmic scale. 

Sensor Algorithm Formula 

M
S

I 

OC3 (O'Reilly et al. 

1998) 
𝑦 = 2.198 − 2.404𝑥, 𝑥 = 𝑙𝑜𝑔[max(𝑏1, 𝑏2)/𝑏3] 

2band (Moses et al. 

2009) 
𝑦 = −1.165 + 4.146𝑥 − 1.337𝑥2, 𝑥 = 𝑙𝑜𝑔[b5/𝑏4] 

3band (Dall’Olmo and 

Gitelson 2005) 
𝑦 = 1.094 + 1.631𝑥 − 0.65𝑥2, 𝑥 = 𝑙𝑜𝑔[(𝑏4−1 − 𝑏5−1) ∗ b6] 

NDCI (Mishra and 

Mishra 2012) 
𝑦 = 1.082 + 2.283𝑥, 𝑥 = 𝑙𝑜𝑔[(b5 − b4)/(𝑏5 + 𝑏4)] 

O
L

I 

OC3 (O'Reilly et al. 

1998) 
𝑦 = 0.807 − 1.886𝑥, 𝑥 = 𝑙𝑜𝑔[max(𝑏1, 𝑏2)/𝑏3] 

FLH-blue (Beck et al. 

2016) 
𝑦 = 0.799 + 98.256𝑥, 𝑥 = 𝑏3 − (𝑏2 + (𝑏4 − 𝑏2) ∗ (

𝜆3−𝜆2

𝜆4−𝜆2
)) 

 

We also applied MDN and BST models as representatives of state-of-the-art ML models 

developed for MSI and OLI. MDN was implemented using the STREAM package 

(https://github.com/STREAM-RS/STREAM-RS) (Pahlevan et al. 2020; Smith et al. 2021). In addition, 

we implemented a locally trained MDN (LMDN) using local 𝑅𝑟𝑠
𝛿   Chla matchups. A similar process 

was conducted for the BST model (Cao et al. 2020) using the BST-OLI package 

(https://github.com/zgcao/bst_oli) and a locally trained XGBoost model, LBST. The reflectance spectra 

imported into these LML models (LMDN and LBST) were identical to our SVR model; i.e., 𝑅𝑟𝑠
𝛿  

derived from the first seven and four spectral bands (400-800 nm) for MSI and OLI, respectively.  

https://github.com/STREAM-RS/STREAM-RS
https://github.com/zgcao/bst_oli
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4.2.3.3 Model assessment 

MSI was selected as the main sensor for quantitative assessments, due to its greater potential 

for quantifying Chla compared to OLI (Cao et al. 2019; Smith et al. 2021). For the following 

experiments, select matchups were split into training and test datasets; however, the approach to do so 

was different among the experiments to assure a complete assessment of our model. Table 4.5 

summarizes the evaluation approaches (training-test splitting) as well as the number of training/test 

matchups available for each experiment. 

Table 4.5. Assessment approaches (training-test split) as well as the number of training/test 

matchups available for each experiment in this study. 

Experiment Evaluation approach 𝑵𝑻𝒐𝒕𝒂𝒍 𝑵𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑵𝑻𝒆𝒔𝒕 

General performance Cross-validation on yearly-grouped 

matchups 

193 ~150 ~50 

Stratified performance Five-fold cross-validation 137* 

56** 

110* 

45** 

27* 

11** 

Model sensitivity to AC 

processors 

Five-fold cross-validation 193† 

208‡ 

154† 

166‡ 

39† 

42‡ 

Model transferability over 

water type 

Cross-validation on OWT-grouped 

matchups 

193 137* 

56** 

56** 

137* 

Model robustness for each 

sensor  

Five-fold cross-validation 178 142 36 

Spatial integrity Matchups for a specific date are set 

apart as test data 

193 184 9 

Temporal validity Station 1 matchups collected in 2020 

are set apart as test data 

193 173 20 

* matchups for OWT1  - ** matchups for OWT2 - † matchups for ACOLITE - ‡ matchups for iCOR 

Assessment of general performance (section 4.3.1.1) and model transferability (section 4.3.3) 

was based on a cross-validation approach in which the matchups were categorized either annually 

(Table 4.6) or geographically (southern/northern basins). In each run, 𝑅𝑟𝑠
𝛿   Chla matchups related to 
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a single year (or basin) were put aside as test data before the model was trained with the remaining data 

and used to predict the validation test data. Model performance was computed using all matchups, 

which were predicted once as test data. 

 Table 4.6. Annual frequency and statistics of 𝑹𝒓𝒔
𝜹 - Chla matchups derived from MSI sensor. 

Chla concentration unit is mg m-3. 

 2017 2018 2019 2020 

N 33 51 48 61 

Mean Chla 17.3 19.6 18.4 20 

Median Chla 15.4 26 18.8 19.3 

Standard deviation Chla 2.8 2.6 4.3 2.3 

 

To gain insight into the model performance in two eutrophic conditions (OWTs; stratified 

performance hereafter; section 4.3.1.2), model sensitivity to the two AC processors (section 4.3.2), and 

its robustness for each sensor (section 4.3.4), we used a five-fold cross-validation approach to randomly 

select among 𝑅𝑟𝑠
𝛿   Chla matchups. This approach ensures sufficient, equal training/test data for each 

run. 

Assessment of model capability in generating Chla maps (section 4.3.5) using both MSI and 

OLI images were based on images from a single date (16 July 2020) when we had both cloud-free 

images from both sensors (~10 minutes apart) and the maximum number of coincident (within 2 h) in 

situ Chla samples (9 total), spanning a broad range of Chla (~10-100 mg m-3). The corresponding 

matchups were considered equivalent to unseen test data, and the models were trained with the 

remaining matchups (184 matchups for MSI and 169 for OLI) (Table 4.5). In addition, to assess the 

stability of Chla retrieval over time (section 4.3.6), MSI-derived 𝑅𝑟𝑠
𝛿   Chla matchups corresponding 

to the continuous measurements of the buoy in 2020 were considered as unseen test data, and the 

remaining matchups were used to train the models. 

4.2.3.4 Accuracy metrics 

Both linear and log10-transformed metrics are examined for accuracy assessment of the 

models. In general, metrics calculated in log-transformed space (i.e. RMSLE, SSPB, and MdSA) are 
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believed to provide a better assessment due to the log-normal distribution of Chla (Seegers et al. 2018; 

O'Reilly and Werdell 2019). The performance metrics for accuracy assessment were estimated as 

follows: 

𝑅𝑀𝑆𝐸 = [∑ (𝑃𝑖 − 𝑀𝑖)2𝑁
𝑖=1 𝑛⁄ ]1/2  (mg m-3) (4.3) 

𝑅𝑀𝑆𝐿𝐸 = [∑ (𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖))2
𝑁

𝑖=1
𝑛⁄ ]1/2 (4.4) 

𝑀𝐴𝑃𝐸 = 100 × 𝑚𝑒𝑑𝑖𝑎𝑛([|𝑃𝑖 − 𝑀𝑖| 𝑀𝑖⁄ ]) (4.5) 

𝑆𝑆𝑃𝐵 = 100  sign(z)(10|𝑧| − 1), 𝑧 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑙𝑜𝑔10(𝑃𝑖 𝑀𝑖⁄ ))  (%) (4.6) 

𝑀𝑑𝑆𝐴 = 100  (10𝑦 − 1), 𝑦 =  𝑚𝑒𝑑𝑖𝑎𝑛|𝑙𝑜𝑔10(𝑃𝑖 𝑀𝑖⁄ )|  (%) (4.7) 

where 𝑃𝑖 and 𝑀𝑖 stand for predicted and measured Chla, respectively. RMSLE is the root mean 

squared log-error, MAPE is the median absolute percentage error, SSPB represents symmetric signed 

percentage bias, and MdSA is the median symmetric accuracy, computed in log-space (Morley et al. 

2018).  

SSPB and MdSA were expressed as percent (%), expected to be resistant to outliers, zero-

centered, and easily interpretable (Pahlevan et al. 2020). While SSPB measures the bias of a model, 

MdSA is believed to be an indicator for its precision. Because SSPB and MdSA are relatively new 

indices, we also estimated RMSE, RMSLE, and MAPE to facilitate the comparison with earlier studies. 

Finally, models were evaluated using Slope and Model Win Rate (MWR) criteria, wherein Slope is 

used to compare the results with earlier studies, while MWR, expressed in %, is used to determine 

which model performs better in pair-wise comparison of the residuals (Seegers et al. 2018). 

 Results 

Chla retrieval was assessed from three different aspects: quantitative performance, spatial integrity, and 

temporal validity. This approach allows us to assess whether models show superiority in a quantitative 

assessment while performing poorly in retrieving Chla time series, a common problem during periods 

of intense cyanobacterial blooms. We also examined the robustness of the proposed model under 

various scenarios, including changes in water type, AC processors and radiometric products, and remote 

sensing data types. 
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4.3.1 Quantitative assessment of the model on MSI data 

Quantitative assessments were conducted using both general and stratified performance. Here, general 

performance analysis employed all matchups, whereas stratified analysis was conducted separately on 

two OWTs common in BPL and provides insights into the use of SVR models in eutrophic conditions. 

We present 𝑅𝑟𝑠
𝛿,𝐴𝐶𝐿

 for performance analysis, although no significant difference in results was observed 

when using 𝑅𝑟𝑠
𝛿,𝑖𝐶𝑂𝑅

 (data not shown).  

4.3.1.1 General performance 

Overall accuracy of models in retrieving Chla was computed over all stations and the whole Chla range 

(~ 1-125 mg m-3; Table 4.7, Figure 4.7). Results show that LML models significantly outperform all 

other models for most metrics, with an error decrement of > 15% when considering MdSA. In 

particular, SVR outperformed all empirical models as reported via MWR, representing > 60% of 

retrievals. Compared to LMDN, SVR performed marginally better (~3% improvement relative to 

MdSA) but returned equal estimates of bias (as SSPB). The slope for SVR (0.78) demonstrates 

reasonable performance through the whole range of Chla in BPL. Among other models, OC3 

performance was poor, as expected because of its dependency on blue-green band ratios, while other 

empirical models for eutrophic waters (2band, 3band, and NDCI) performed better and similarly in 

BPL, with the 2band algorithm generally outperforming other empirical models. 

Table 4.7. Evaluation metrics (general performance) for Chla retrieval models on MSI and in 

situ Chla matchups (N = 193). The Model Win Rate (MWR) is computed relative to SVR as the 

reference model; i.e., OC3 = 74% implies that SVR leads to smaller residuals 74% of the times. 

Highlighted cells indicate the best score for the corresponding metrics. 

 
MdSA 

(%) 

SSPB 

(%) 
RMSLE 

MAPE 

(%) 

RMSE 

(mg m-3) 
Slope 

MWR 

(%) 

OC3 99.1 -6.2 0.43 55.71 29.53 0.11 73.6 

2band 50.3 -12.9 0.31 36.39 18.95 0.7 60.1 

3band 54.2 -10.2 0.36 38.33 355.5 1.06 61.1 

NDCI 52.3 -14.3 0.32 37.63 27.13 0.66 61.1 

MDN 55.9 28.2 0.35 48.32 36.81 1.23 62.2 
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LMDN 38.9 3 0.29 33.22 17.51 0.83 52.9 

SVR 35.6 3.4 0.27 31.5 13.96 0.78 N/A 

 

Furthermore, the MDN model trained on global 𝑅𝑟𝑠 data exhibited comparable precision to 

empirical models (~56% error), albeit with a high bias (SSPB = 28%) and a tendency to overestimate 

Chla (Slope = 1.23) characteristic of its sensitivity to 𝑅𝑟𝑠
𝛿 . Surprisingly, LMDN showed high 

performance, implying the ability of MDN to be trained even with only ~200 matchups (~10% of the 

number of matchups in Pahlevan et al. (2020)).  

   

   

Figure 4.7. Matchup analysis of Chla derived from different algorithms applied on MSI-A/B 

data and near-coincident, co-located in situ Chla samples in BPL. The results are from a cross-

validation approach in which matchups related to a single year are put aside as unseen test 

data, and a model is trained with the remaining data. Model performance is finally computed 

OC3 2band 3band 

NDCI LMDN SVR 
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on all matchups (all are predicted once as test data). Year of data acquisition indicated by 

colored solid circles. 

Visual inspection of scatter plots reveals that SVR (and LMDN) predictions are less biased 

according to the annual sampling, as opposed to the empirical models. Scatter plots of Chla retrievals 

also illustrate a reasonable overall performance of all models (except OC3) for Chla > 10 mg m-3 (𝑀𝑑𝑆𝐴 

= 39.910.32%). However, retrieving Chla < 10 mg m-3 was challenging (𝑀𝑑𝑆𝐴 = 57.86.95%), with 

most models overestimating Chla in this range (𝑆𝑆𝑃𝐵 = 46.812.1%). Nonetheless, SVR and LMDN 

models exhibited a substantially better performance (𝑆𝑙𝑜𝑝𝑒 = 0.470.04) compared to the other models 

(𝑆𝑙𝑜𝑝𝑒 = -0.190.09). While all models failed to retrieve Chla less than 2 mg m-3, the absence of data 

in this range (2 matchups) prevents detailed evaluation of performance. We infer from Figure 4.7 that 

empirical models underestimated Chla > 30 mg m-3 (𝑆𝑆𝑃𝐵 = -43.47.1%) especially values > 100 mg 

m-3, while ML models (SVR and LMDN) did not (𝑆𝑆𝑃𝐵 = -7.25.2%), possibly because the latter uses 

at least four additional MSI spectral bands.  

4.3.1.2 Stratified performance 

Analysis of stratified performance (OWT1 vs. OWT2) suggests that SVR significantly outperforms all 

other algorithms in the southern basin, which is almost 80% of the lake area (Table 4.8). SVR also 

excelled relative to other algorithms in the northern basin, when considering most performance metrics 

including MdSA and MWR. However, LMDN performance was comparable to that of SVR in the 

northern basin and even surpassed it in terms of SSPB and Slope. The reasonable performance of 

LMDN with few data (e.g., in the northern basin with only 45 samples for training) was unexpected; 

however, results should be treated with caution due to the availability of test data (11 samples in each 

run; Table 4.6). Scatter plots in Figure 4.8 further demonstrate that empirical models failed to estimate 

Chla in the northern basin (Slope < 0.1), while LML models provide better estimates of Chla in turbid 

water (Slope = 0.3). 

Table 4.8. Evaluation metrics for Chla retrieval models on MSI and in situ Chla matchups 

based on water type. See Table 4.2 for more details of each water type. The Model Win Rate 

(MWR) is computed relative to SVR as the reference model. 𝑪𝒉𝒍𝒂 ̅̅ ̅̅ ̅̅ ̅̅  and 𝑻𝑺𝑺̅̅ ̅̅ ̅ are the median of 
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Chla and TSS in associated stations. Units are mg m-3 and g m-3 for Chla and TSS, respectively. 

Highlighted cells mark the best score for the corresponding metrics in each OWT. 

  
MdSA 

% 

SSPB 

% 
RMSLE 

MAPE 

% 

RMSE 

mg m-3 
Slope 

MWR 

% 

OWT1 

N=137 

𝑪𝒉𝒍𝒂̅̅ ̅̅ ̅̅ ̅=26 

𝑻𝑺𝑺̅̅ ̅̅ ̅=7 

OC3 108.7 -14.4 0.46 64.55 34.99 0.04 80.3 

2band 36.84 -4.27 0.25 29.55 16.49 0.72 54.7 

3band 46.93 -5.84 0.31 33.28 30.19 0.64 56.9 

NDCI 37.7 -5.6 0.26 30.69 22.19 0.76 56.2 

MDN 50.4 29.9 0.28 39.6 29.04 1.19 59.1 

LMDN 38.8 6.4 0.25 29.91 15.34 0.81 52.1 

SVR 32.7 4.2 0.24 29.57 15.43 0.82 N/A 

OWT2 

N=56 

𝑪𝒉𝒍𝒂̅̅ ̅̅ ̅̅ ̅=15 

𝑻𝑺𝑺̅̅ ̅̅ ̅=15 

OC3 59.3 -10.5 0.39 39.86 10.75 0.01 60.7 

2band 84.3 -22.4 0.81 48.02 12.33 -0.16 66.1 

3band 69.2 -20.3 1.95 46.16 12.27 -0.15 66.1 

NDCI 74.6 -16.6 0.4 47.45 10.51 0.04 60.7 

MDN 87.8 10.9 0.48 55.02 51.04 2.6 66.1 

LMDN 53.1 3.2 0.34 39.9 8.94 0.34 51.6 

SVR 51.4 -6.9 0.33 38.04 8.85 0.29 N/A 

 

Most metrics suggest that Chla retrieval was more accurate in the southern basin compared to 

the northern one. For instance, MdSA indicated a 15% - 50% decrement for all models, except OC3. 

The higher concentration of suspended sediments and NAP in the northern basin, which leads to a 

higher Chla interference by NAP backscattering particularly at longer wavelengths (red-NIR), might 

justify the higher accuracy of Chla retrieval in the southern basin. This pattern may also explain the 

higher accuracy of OC3 in the northern basin; given that it was the only model that did not use red-NIR 

bands.  
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Figure 4.8. Matchup analysis of measured and predicted Chla from in situ Chla and MSI-A/B 

images for two different regions in BPL, categorized based on optical water type. For each 

optical water type, a model is trained and tested using a five-fold cross-validation approach.  

 

4.3.2 Model sensitivity to AC processors 

Model performance was assessed over two different AC processors (ACOLITE, iCOR) and three 

radiometric products (𝑅𝑟𝑠
𝛿 , 𝑟𝑐, and 𝑇𝑂𝐴) applied to MSI data (Figure 4.9). While ACOLITE provided 

all three products, iCOR only returns 𝑅𝑟𝑠
𝛿 . Overall, SVR and LMDN manifested robust outputs for both 

AC processors and all the radiometric products (𝑀𝑑𝑆𝐴 = 43.7  3.7%). In contrast, the mean of 

variability for empirical models is almost two fold greater (7.8%), with a maximum for OC3 (14.8%) 

and a minimum for 2band (3.5%). SVR-𝑅𝑟𝑠
𝛿,𝐴𝐶𝐿

 exhibited the best performance among different 

combinations of retrieval models and AC processors. SVR’s superiority was also evident when 

OC3 2band 3band 

NDCI LMDN SVR 
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employing 𝑅𝑟𝑠
𝛿,𝑖𝐶𝑂𝑅

 or 𝑟𝑐, with only 𝜌𝑇𝑂𝐴 showing comparable results to those obtained with LMDN 

(< 2% difference).  

No single AC processor or radiometric product performed best in all Chla retrieval models. For 

example, OC3 and 3band worked better with iCOR as the AC processor, while the others (2band, 

NDCI, LMDN, SVR) all presented better results with ACOLITE. For these latter models, 𝑅𝑟𝑠
𝛿  displays 

the highest accuracy compared to the other products ( 𝑟𝑐 , 𝑇𝑂𝐴 ), suggesting that ACOLITE 

outperformed iCOR whenever it successfully carried out aerosol correction (𝑟𝑐   𝑅𝑟𝑠
𝛿 ). Our results 

also show that Rayleigh correction (𝑇𝑂𝐴  𝑟𝑐) as implemented in ACOLITE reduced Chla retrieval 

accuracy except for OC3, confirming that this correction over-corrects reflectance in red-NIR 

wavelengths while remaining beneficial for use with blue-green bands. On the other hand, declining 

accuracy after aerosol correction in OC3 applications indicates that the AC processors failed to 

accurately remove aerosol effects in blue-green bands, a task that has proven to be challenging 

elsewhere (Pahlevan et al. 2021). 

 

Figure 4.9. Median Symmetric Accuracy (MdSA) for Chla retrieval algorithms when applied to 

MSI-A/B data processed to produce different radiometric products (𝑹𝒓𝒔
𝜹 , 𝒓𝒄, and 𝑻𝑶𝑨) with 

different AC processors (ACOLITE and iCOR). Note that 𝒓𝒄 is generated with ACOLITE and 
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theoretically is not different when using iCOR. N is the total number of matchups. See Table 4.5 

for the detailed training/test split process. 

4.3.3 Model transferability over water types 

Model transferability over two OWTs in BPL was assessed using 𝑅𝑟𝑠
𝛿,𝐴𝐶𝐿

- Chla matchups derived from 

MSI images (see section 4.2.3.3) (Figure 4.10). All empirical algorithms (OC3, NDCI, 2band, and 

3band) failed to retrieve Chla when they were trained by matchups from a different, but similar, OWT 

(MdSA > 100%, Slope < 0.2). Additionally, LMDN showed poor transferability over both water types 

(MdSA > 200%, Slope < 0.2). In contrast, SVR maintained a reasonable transferability over two OWTs 

(MdSA = 61%, Slope = 0.35) compared to rivals. Although the error and bias increased ~two to four 

times compared to instances where both OWTs were used to train the SVR model (MdSA = 61% vs. 

36% and SSPB = 15.8% vs. 3.4%) (see section 4.3.1.1), they remained within an acceptable range for 

many applications. SVR’s high transferability might be related to its proven resistance to overfitting, 

thanks to the regularization parameter C. 

   

OC3 2band 3band 
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Figure 4.10. Scatter plot of in situ Chla versus predicted Chla from MSI-A/B images. Chla 

values in the northern basin (OWT2, red solid circles) are predicted using a model trained with 

southern basin matchups (OWT1, blue solid circles) and vice versa. 

4.3.4 Model sensitivity to sensor type 

𝑅𝑟𝑠
𝛿,𝐴𝐶𝐿

- Chla matchups derived from OLI images were employed to retrieve Chla in BPL. LMDN 

outperformed SVR in most metrics when using OLI data, by ~5% in MdSA and with a two-fold greater 

Slope (Table 4.9). MDN displayed an overall error of 95% and a bias of ~50% reflecting the training 

of this global model with in situ 𝑅𝑟𝑠 rather than 𝑅𝑟𝑠
𝛿 . Additionally, even though OLI lacks spectral 

bands at red-edge wavelengths, a red-NIR empirical model (FLH-blue) outperformed the blue-green-

based index of OC3 by ~10%. A global BST model (Cao et al. 2020) failed to estimate Chla in BPL 

(results not provided here), similar to what has been observed elsewhere (Smith et al. 2021), likely due 

to much lower CDOM absorption in BPL compared to the waterbodies that were used to train BST 

(𝑎𝐶𝐷𝑂𝑀
(440)

 = 0.28 m-1 vs. 𝑎𝐶𝐷𝑂𝑀
(440)

 = 0.8-1 m-1). Finally, the LBST model exhibited poor performance 

(MdSA = 77%), possibly because the boosting algorithms degrade in the presence of outliers and errors 

in training data (Li and Bradic 2018). 

Table 4.9. Evaluation metrics for Chla retrieval models on OLI and in situ Chla matchups (N = 

178). Each model was trained and tested using a five-fold cross-validation approach. The MWR 

was computed relative to SVR as the reference model. Highlighted cells mark the highest score 

for the corresponding metrics. 

NDCI LMDN SVR 
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MdSA 

(%) 

SSPB 

(%) 
RMSLE 

MAPE 

(%) 

RMSE 

(mg m-3) 
Slope 

MWR 

(%) 

OC3 75.7 3 0.35 56.41 31.65 0.08 0.57 

FLH-b 64.7 -6.6 0.33 45.94 29.05 0.2 0.6 

LBST 77.2 2.2 0.35 53.08 30.06 0.19 0.59 

MDN 94.98 48.9 0.42 64.7 38.4 0.14 0.65 

LMDN 55.02 8.1 0.32 40.23 27.43 0.45 0.47 

SVR 60.27 2.8 0.32 43.78 27.83 0.23 N/A 

 

Overall, Chla retrieval using OLI data (Table 4.9) appeared less accurate than that based on 

MSI summarized in Table 4.7 ( 𝑀𝑑𝑆𝐴  = 71.313.2% vs. 𝑀𝑑𝑆𝐴  = 55.219.3%). OLI’s poor 

performance was also inferred from low Slope (< 0.5), likely due to the absence of a red-edge band. 

Similar to MSI, LML models (LMDN and SVR) corroborated a better performance than empirical and 

GML models when applied to OLI data. The analysis of scatter plots (Figure 4.11) also revealed that 

all models failed to estimate Chla values <10 mg m-3 and concentrations > 100 mg m-3. Although the 

former limitation was also observed when using MSI data (see section 4.3.1.1), the latter might be 

intensified because OLI does not possess a spectral band in the domain of Chla fluorescence (680-710 

nm). 

  

FLH-blue LBST 
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Figure 4.11. Matchup analysis of Chla derived from different algorithms applied on OLI data 

and near-coincident, co-located in situ Chla samples in BPL. The results are from a five-fold 

cross-validation approach. 

 

4.3.5 Spatial integrity 

Chla maps for BPL were generated from an MSI image taken on 16 July 2020 (Figure 4.12). All model-

processor combinations suggested Chla as low as ~10 mg m-3 in the north basin, whereas some 

models/processors (e.g., SVR-iCOR) predicted Chla values up to ~100 mg m-3 in the south basin. 

Regardless of the AC processor used, ML models (SVR and LMDN) seem to deliver overall smoother 

maps (less noise) compared to the 2band output, probably due to leveraging all spectral bands. 

LMDN SVR 
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Figure 4.12. Chla maps for BPL derived from different retrieval algorithms/AC processors 

couples applied on MSI-A image acquired on 16 July 2020. The markers in the insets represent 

examples of the location of in situ data, collected on the same date, and employed as unseen test 

data. The associated numbers beside the markers are Chla concentration in mg m-3. 2band was 

used as the best representative of empirical models. 

 

2band-Acolite LMDN-Acolite 

SVR-ACOLITE SVR-iCOR 
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Visual comparison of Chla maps based on near-coincident in situ measurements revealed that 

the SVR model, coupled with iCOR processor, had the highest consistency with in situ measurements 

(Figure 4.12). Although all models/processors showed a reasonable and similar performance in 

mapping moderate Chla concentrations (Figure 4.12, upper insets), they differed more substantially in 

estimating high Chla values at the south of the lake. SVR tended to estimate higher Chla concentrations 

than did LMDN and 2band models, regardless of AC processors, (lower insets in Figure 4.12). SVR-

iCOR also seemed to be more capable of detecting high spatial gradients in Chla, as it is the only 

combination to capture large gradients of Chla at two nearby stations (Chla = 66.2 to Chla = 102.8; 

lower insets Figure 4.12). Such high-frequency changes in Chla may be related to the surface patchiness 

of cyanobacteria.  

SVR results appeared prone to adjacency effects compared to LMDN and 2band models. This 

issue should be treated with caution especially when producing maps of nearshore Chla. Similarly, the 

elevated Chla estimates produced for the shore and northern basin by models probably arise from very 

shallow depths (< 2 m) and high density of rooted aquatic macrophytes. While maps were produced 

using MDN and empirical models, none outperformed the above-mentioned models. For instance, 

MDN returned some unrealistically high Chla values, and OC3 routinely and significantly 

underestimated Chla.  

As it is sometimes more important to reconstruct spatial patterns of Chla than accurately 

estimate absolute concentrations, we normalized the predicted Chla vector of unseen matchups for 

stations 4-11 (a profile along the lake), by dividing by the vector norm to better evaluate which 

algorithms recorded spatial patterns of Chla in BPL (Figure 4.13). Overall, normalization did not reveal 

a single superior model/processor in terms of retrieving spatial gradients of Chla. While SVR-iCOR 

provided the most similar pattern to measured Chla gradients in the northern basin (#station > 8), SVR-

ACOLITE demonstrated good performance in retrieving Chla changes in the southern stations 5-8. In 

contrast, the 2band model performed well at stations 4-5 whereas LMDN performed poorly at stations 

4-6 and 10-11. Together, these patterns suggest that SVR showed the highest overall capability in 

retrieving the Chla gradient along the lake. 
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Figure 4.13. Spatial profile of normalized Chla along the lake (south to north) for 16 July 2020, 

derived from in situ measurement Chla (solid line) as well as predicted Chla from algorithms 

applied on MSI image (dashed lines). X-axis denotes station number (see Figure 4.1). 

 

We also mapped Chla over the lake using OLI data for the same date (16 July 2020) using 

FLH-Blue, LBST, LMDN, and SVR models (Figure 4.14). Maps from LBST and LMDN were 

markedly noisy, whereas LMDN showed reasonable quantitative performance for OLI data  (Table 

4.9), and FLH-Blue and SVR generated smooth maps. The SVR model exhibited more consistency 

with in situ data (marked points in Figure 4.14), while LMDN retrieved Chla values higher (120 mg m-

3) than observed in situ, and the other algorithms underestimated Chla. In terms of reconstructing the 

spatial pattern of Chla, LMDN seems to provide the best performance, consistent with its higher Slope 

(Slope = 0.45) (Table 4.9). 
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Figure 4.14. Chla map for BPL derived from different algorithms applied on OLI image 

acquired on 16 July 2020. The markers in the insets represent examples of in situ data, collected 

on the same date, and employed as unseen test data. The associated numbers beside the 

markers are Chla in mg m-3.  

4.3.6 Temporal validity 

Robust retrieval of Chla over time is a daunting task in a eutrophic waterbody due to high variations in 

surface bloom densities and resultant freshwater optics and temporal variation in atmospheric 

conditions. Comparison of SVR-iCOR, SVR-ACOLITE, LMDN-ACOLITE, and 2band-ACOLITE 

processing couples at station 1 in BPL revealed that SVR-iCOR tracked in situ Chla measurements 

FLH-Blue LBST 

LMDN SVR 
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better than the other model/processor combinations (Figure 4.15), with particularly good capture of 

intense summer blooms in mid-July and early September. In both cases, SVR-iCOR followed the shape 

and magnitude of the measured time series, despite a ~15% underestimation of peak Chla values. In 

contrast, ACOLITE failed to mask cloud shadow contaminated pixels on 7th August 2020, led to 

significantly underestimation of Chla and inconsistencies in time series retrieval. For more moderate 

Chla concentrations (20-60 mg m-3), SVR-ACOLITE displayed better performance than SVR-iCOR. 

Overall, a correlation analysis between the time series of measured and predicted Chla showed that 

SVR-iCOR outperformed other models in retrieving Chla time series by ~ 10% (Table 4.10). 

 

Figure 4.15. Time series of Chla in station 1 in BPL for summer 2020, derived from in situ 

measurement Chla (solid line) as well as predicted Chla from algorithms applied to MSI 

images. 

 

Table 4.10. Time series correlation of measured and predicted Chla, derived from algorithms 

applied to MSI images, at station 1 in BPL for summer 2020. Number of matchups was 21 for 

ACOLITE processor and 20 for iCOR. 
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 2band-ACOLITE 
LMDN-

ACOLITE 

SVR-

ACOLITE 
SVR-iCOR 

Correlation () 0.728 0.684 0.705 0.798 

 Discussion 

Locally trained machine-learning models, particularly those based on SVR, provided the best retrieval 

of Chla for a small eutrophic lake using MSI and OLI images. These models also generated realistic 

time series and spatial gradients of Chla. Overall, these models were robust to variations in AC 

processors (ACOLITE vs. iCOR) and sensor types (MSI vs. OLI). Together, our analysis suggests that 

pre-trained SVR models may be useful for Chla estimation on regional waterbodies, provided that 

optical water types and atmospheric conditions are similar (see Chapter 5). 

4.4.1 Uncertainties in in situ data 

Although we attempted to reduce the uncertainties associated with in situ Chla data, any comparison 

of remotely sensed images and spatially-limited lake measurements can be complicated due to high 

variations in in situ data (Clay et al. 2019; Qiu et al. 2021). Here, we tried to reduce noise in Chla 

measurements by conducting each measurement several times and averaging values. However, our in 

situ data originated from different laboratories using contrasting measurement techniques (field 

fluorometry, laboratory spectrophotometry, and HPLC), instrumentation, calibration, and field 

sampling (surface 1 m vs. depth-integrated) (see Section 3.3.2 for an intercomparison between these 

methods). While these factors may affect model performance, they also suggest that our algorithms 

exhibit minimal overfitting and systematic errors in performance assessment, and may be generalizable 

to other lakes in the region of study. It also should be acknowledged that even with in situ measurements 

at same depths, it is still likely that different laboratory methods (HPLC and spectrophotometry) lead 

to different Chla values as it has been shown that HPLC tends to estimate lower Chla values because 

of its ability to separate Chlb and Chlc (Meyns et al. 1994). However, we could not measure the 

potential uncertainty due to these differences due to lack of co-located measurements by different 

methods. 

Several lines of evidence suggest that uncertainties in Chla measurements did not alter results 

of comparative assessment of retrieval models. First, we used the median symmetric accuracy (MdSA) 
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as the main metric to compare the models, as it is highly robust to potential outliers in in situ Chla 

measurements. Second, we conducted various experiments with different numbers and combinations 

of matchups, and in all cases, SVR showed robust and similar results, meaning that uncertainties in lake 

production do not substantially alter results. Moreover, given that BPL is well mixed vertically 

(Dröscher et al. 2008), we expect that differences in sampling protocols may not greatly affect our 

findings. Finally, earlier studies suggest that SVMs can handle diverse, highly uncertain datasets, 

because they use only a part of data (support vectors) for learning (Foody and Mathur 2006; Chegoonian 

et al. 2017). Handling uncertainties of in situ data becomes crucial when input data to observatory 

systems often originate from various field and laboratory sources. 

4.4.2 Merits of locally trained ML models 

When compared with traditional empirical models (e.g., OC3, 2band), LML models exhibit 

several clear advantages, particularly with regards to SVR models. First, their ability to leverage all 

spectral bands and the capability to learn and model diverse uncertainties (in situ data, non-linearity, 

non-Chla constituents) is an advantage over traditional empirical/physical models and led to 15% - 

65% error reduction. Such performance might be improved further when using models such as LMDN 

that can deal with ill-posed problems (Pahlevan et al. 2020). 

Currently, the uncertainties in AC processors are the major hurdle for employing GML models 

in inland waterbodies (Pahlevan et al. 2020). These models are often trained with in situ radiometric 

measurements and can be degraded when fed by satellite-derived measurements. LML models that can 

learn AC uncertainties (𝑅𝑟𝑠
𝛿 ) specific to a lake of interest may be an important solution for application 

to local and regional resource management issues, such as blooms of toxic cyanobacteria near 

recreational areas or drinking water inlets. Meanwhile, development of global models based on 

satellite-derived reflectance or including ancillary data may provide an opportunity to expand the 

geographic range of applications of ML models (Smith et al. 2021). 

Presently, the need for substantial training data is a major obstacle to development of local ML 

models. Fortunately, here we demonstrate that LML models (SVR and LMDN) were trainable with 

~200 matchups (section 4.3.1.1), while stability of the results even with only ~50 matchups was 

encouraging (section 4.3.1.2), as many regional agencies in Europe and North America conduct routine 

monitoring (e.g., Soranno et al. 2017). Ideally, such locally trained models should possess reasonable 
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generalization to retrieve reliable Chla in nearby lakes where optical conditions, water type, and 

atmospheric conditions differ only slightly. Our results suggest that SVR models exhibit adequate 

transferability when trained and tested with two different (but similar) water types in BPL (section 

4.3.3). Although this capability is in agreement with SVR resistance to overfitting (Kwiatkowska and 

Fargion 2003; Zhan et al. 2003; Mountrakis et al. 2011), it is still essential to further validate our results 

using a more consistent and systematically collected/calibrated in situ Chla dataset. 

This study was also the first independent assessment of the global MDN model in a small 

eutrophic lake. Although MDN is not expected to outperform locally trained models, it showed 

reasonable precision in estimating Chla (error within ~60% of in situ measurements). Nonetheless, it 

tended to significantly overestimate Chla (high bias) relative to locally trained, 𝑅𝑟𝑠
𝛿 -fed models. 

Substantial uncertainties in AC process, especially adjacency effects, which can be seen in drastically 

different 𝑅𝑟𝑠
𝛿  distributions from ACOLITE and iCOR (Figure 4.4), may explain MDN overestimation. 

4.4.3 Atmospheric correction 

Algorithms developed to retrieve downstream products such as Chla, always should exhibit consistent 

performance with different intermediate processors, specifically AC processors. Here, we demonstrate 

the robustness of the SVR model when data is processed using ACOLITE and iCOR, and three different 

radiometric products, that is 𝑅𝑟𝑠
𝛿 , 𝑟𝑐 , and 𝑇𝑂𝐴. The fact that 𝑟𝑐 , and 𝑇𝑂𝐴 exhibit reasonable results 

 especially when using red-NIR bands  is in agreement with findings from previous studies (Wynne 

et al. 2010; Matthews et al. 2012; Matthews and Odermatt 2015). Furthermore, our results show that 

the accuracy of estimates increased when using 𝑅𝑟𝑠
𝛿  for retrieval models, other than those based on OC3 

and 3band for which 𝑟𝑐 generated more accurate products. We also note that empirical algorithms 

using blue-green bands (e.g., OC3) significantly benefited from Rayleigh correction for blue light 

scattering. While Rayleigh correction did not appear to increase the accuracy of the models based on 

red-NIR bands, further evaluations are needed to evaluate this finding. 

Modeling results were consistent with those of Pahlevan et al. (2021), who recently conducted 

a comprehensive comparison between AC processors in retrieving 𝑅𝑟𝑠  using an extensive global 

dataset. For example, we observed that 2band and NDCI  two algorithms that use only 665 and 704 

nm bands  performed better when they are coupled with ACOLITE than with iCOR. Similarly, OC3 
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and 3band models that use blue (443 or 492 nm) and 740 nm bands showed better performance with 

iCOR when compared to ACOLITE (Pahlevan et al. 2021). We interpret the high consistency between 

the assessments of downstream products (Chla concentration) and satellite-derived reflectance as an 

indicator of the effectiveness of AC process on the accuracy of downstream products. However, we 

also recognize that further examination of the effectiveness of AC will require a separate estimate of 

retrieval uncertainty from the AC process; an assessment that needs field radiometric measurements 

which were not sufficiently available in our study.  

Comparisons among experiments in this study, as well as drastically different 𝑅𝑟𝑠
𝛿  distributions 

derived from ACOLITE and iCOR (Figure 4.5), suggest that different AC processors may lead to 

significant differences in retrieval performance. Thus, the algorithms for retrieval of downstream 

products should be examined as retrieval models/AC processors. For instance, the SVR model shows 

greater accuracy when used in conjunction with ACOLITE (Figure 4.9), and more temporal stability 

when using iCOR as the AC processor (Figure 4.15). However, the comparison between ACOLITE 

and iCOR is not entirely equivalent due to differences in the number of matchups (15 more for iCOR 

when masked by ACOLITE); thus, other studies (Ilori et al. 2019; Warren et al. 2019; Xu et al. 2020; 

Pahlevan et al. 2021) could serve better for a more comprehensive comparison of AC processors.  

 Conclusion 

This paper presents a machine-learning model based on support vector regression (SVR) to retrieve 

Chla concentration from satellite-derived reflectance measurements (𝑅𝑟𝑠
𝛿 ) of Sentinel-2 (MSI) and 

Landsat-8 (OLI). The proposed model was trained and evaluated using a dataset of near-coincident, co-

located in situ Chla and 𝑅𝑟𝑠
𝛿  observations (N ~ 200), collected in a mid-latitude eutrophic lake from 

2014-2020. Comparison of the SVR model against state-of-the-art, commonly used alternates revealed 

that SVR outperformed all other algorithms when using MSI data. This superiority is seen in both 

general (entire samples, Chla = 1-125 mg m-3) and stratified levels (two distinct optical water types).  

The proposed model also showed superiority in retrieving time series of Chla and producing 

Chla maps, two important applications of remote sensing in monitoring and mapping of harmful algal 

blooms. The superiority of SVR was also demonstrated by return of robust and similar results following 

alteration of AC processors (ACOLITE vs. iCOR). The model was also stable when fed with different 
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radiometric products (𝑅𝑟𝑠
𝛿 , 𝜌𝑟𝑐, and 𝜌𝑇𝑂𝐴). Quantitative evaluation of SVR also showed a promising 

transferability among two optical water types common to this study region, particularly in comparison 

to standard models. 

Together, these findings reveal the high potential of SVR models to retrieve Chla in small 

waterbodies, even using data from multi-spectral terrestrial missions such as MSI and OLI. Although 

results presented herein are for only one small lake, we believe that they can be generalized to other 

eutrophic mid-latitude waterbodies of similar optical water types. Development of such models for 

consistent retrievals from long-term observational records of satellite missions such as Landsat and 

Sentinel increases the potential for monitoring and mapping the extent and intensity of harmful algal 

blooms in an era of global warming.  
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Regional upscaling of chlorophyll-a retrieval from small eutrophic 

lakes via Sentinel-2: A case study of the Qu’Appelle River drainage 

basin, Canada 

 Introduction 

Small inland waters (SIWs) are biogeochemical and ecological hotspots that respond quickly to changes 

in the landscape (Cheng and Basu 2017). The water quality of SIWs continues to degrade rapidly, 

mostly due to harmful algal blooms (HABs) (Walker 2014), and near-surface concentration of 

chlorophyll-a (Chla) is one of the most reliable indicators of HAB outbreaks as it has unique absorption 

features that can be detected through satellite imaging (Kutser 2009). Although satellite-based retrieval 

of Chla is a common task in oceans and large waterbodies where Chla primarily governs water optical 

characteristics (O'Reilly and Werdell 2019), it remains challenging in SIWs due to substantial optical 

interferences from various water constituents and uncertainties in the atmospheric correction (AC) 

process (Pahlevan et al. 2020; Pahlevan et al. 2021).     

Various models, ranging from semi-analytical and empirical to machine-learning (ML), have 

been developed to retrieve Chla in SIWs from moderate-resolution terrestrial missions (~ 10 – 60 m) 

(Ansper and Alikas 2019; Cao et al. 2020; Pahlevan et al. 2020; Smith et al. 2021). Overall, these 

models can be categorized into two broad groups; local and global approaches. Depending on lake data 

availability, analysts either employ globally trained models without local training using Chla data or 

train local models using in situ Chla when enough lake-satellite sampling matchups are available. 

Global models are developed mostly using globally distributed, extensive datasets of synthetic or in 

situ remote-sensing reflectance (𝑅𝑟𝑠) (Doerffer and Schiller 2007; Schroeder et al. 2007; Pahlevan et 

al. 2020) and often outperformed by local models that are fed by satellite-derived remote-sensing 

reflectance (𝑅𝑟𝑠
𝛿 ) (Chapter 4) due to AC uncertainties (Smith et al. 2021). Developing global models 

using satellite-derived measurements (e.g., Rayleigh-corrected reflectance (𝜌𝑟𝑐)) may increase Chla 
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retrieval accuracy (Smith et al. 2021), but such models are often not available for specific sensors, such 

as the Multi-Spectral Instrument (MSI), nor are they used for local applications due to a high diversity 

of regional atmospheric conditions. 

Local approaches to retrieve Chla from SIWs are also limited by the abundance and diversity 

of lakes as well as the limited availability of in situ data. In principle, a model trained on one (or few) 

SIWs with available in situ Chla can be applied to waterbodies with no in situ data provided that the 

model is generalizable and SIWs share similar optical water types (OWTs) and atmospheric conditions. 

In case of SIWs, these conditions might be extended to sharing similar size/shape as well as similarity 

in adjacent land cover, due to substantial adjacency effects. Such models were not available until 

recently when new ML models were introduced to retrieve Chla in SIWs. These models outperform 

traditional empirical models thanks to leveraging all visible and near-infrared (VNIR) spectral bands. 

Potential advantages of ML models include mixture density network’s (MDN) ability to mitigate the 

ill-posed issue (Pahlevan et al. 2020) and include ancillary data (Smith et al. 2021), reasonable Support 

Vector Regression (SVR) generalizability over water types and AC processors (Chapter 4), and BST 

stability to overfitting (Cao et al. 2020). For example, recent studies (Chapter 4) show that SVR 

performs reasonably well (error ≈ 60%) when it is trained by matchups of one OWT and retrieves Chla 

for a slightly different OWT within a single lake; however, this approach has not been tested by 

comparison of model output to other regional SIWs.  

Here we take advantage of a four-year dataset of bi-weekly Chla measurements in seven inter-

connected lakes in Saskatchewan, Canada, to: (i) introduce the concept of regional approaches as a 

means to mitigate current limitations of global and local approaches in SIWs, and; (ii) assess and 

contrast the performance of various ML and empirical models in application to regional extrapolations. 

Based on prior in situ evaluations within an optically-diverse lake (Chapter 4), we hypothesized that 

ML models would provide the most reliable means of estimating Chla in regional lakes.        

 Materials and Methods 

5.2.1 Study area 

The Qu'Appelle River Watershed (50°00′ N-51°30′N, 101°30′W-107°10′W) covers an area of  ~52,000 

km2 of sub-humid agricultural cropland and grasslands and provides water to ~30% of the population 
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of Saskatchewan, Canada. This study examined seven lakes in the watershed; five of the lakes 

(Diefenbaker (D), Buffalo Pound Lake (BPL), Pasqua (P), Katepwa (K), Crooked (C)) form a central 

chain along the river course, while two lakes (Last Mountain (L) and Wascana (W)) drain into mid-

reaches of the Qu’Appelle River (Figure 5.1, Table 5.1). Morphometric parameters vary between the 

lakes by up to 100-fold including surface area (2–371 × 106 m2), volume (3–7487 × 106 m3 ), and max 

depth (5.5–62.0 m). However, they are all elongated with almost similar width and adjacent land cover, 

making the assumption of simialr adjacency effects valid. Agricultural cropland (75%), grasslands 

(12%), surface waters (5%), and the urban centers of Moose Jaw and Regina compose most of the land 

cover in the Qu’Appelle catchment (Vogt et al. 2011; Haig et al. 2020). 

Source waters for the Qu'Appelle River originate from both local inputs (groundwater, 

precipitation) and meltwaters from the Canadian Rocky Mountains. Most lakes are eutrophic to 

hypereutrophic, except for mesotrophic Lake Diefenbaker and meso-eutrophic Last Mountain Lake 

(Finlay et al. 2015). Additionally, lakes are all polymictic, although Katepwa Lake occasionally 

experiences thermal stratification in late summer (Hayes et al. 2020). All lakes experience HAB events 

(Swarbrick et al. 2019) with Chla and total suspended solids (TSS) (Table 5.1) suggesting that most 

lakes, except relatively transparent Lake Diefenbaker, can be categorized in optical water types (OWTs) 

4-6 (Pahlevan et al. 2021) based on the concentration of optical water constituents. 
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Figure 5.1. Map, modified from Haig et al. (2020), showing locations of Qu’Appelle River 

drainage basin and seven study lakes (Buffalo Pound Lake (BPL), Lake Diefenbaker, Last 

Mountain Lake, Wascana Lake, Pasqua Lake, Crooked Lake, Katepwa Lake) overlaid by 

sampling stations (triangles) and major hydrologic boundaries (tan line). Dominant flow 

direction is noted by arrows along streams. Shading in the top-right inset indicates the 

Qu’Appelle Valley gross drainage area within the broader context of central Canada. Upper 

left inset magnifies BPL and its sampling stations. 

 

Table 5.1. Study site locations as well as hydrological, chemical, and biological characteristics 

from 1993 to 2020. For each variable, values are represented by the mean of 28 years of 

measurements during May-September. Total dissolved phosphorus (TDP) and dissolved 

organic carbon (DOC) are measured from depth-integrated samples. Chla and cyanobacterial 

toxin microcystin are measured from surface samples (~0.5-m depth).   

 BPL Crooked  Diefenbaker  Katepwa Last Mountain Pasqua Wascana 

Latitude 50.60 50.60 51.02 50.70 50.99 50.78 50.44 
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Longitude −105.41 −102.68 −106.50 −103.64 −105.18 −103.95 −104.61 

Surface Area (m2 x106) 30 14 371 16 186 19 2 

Volume (m3 x106) 93 114 7487 232 1863 117 3 

Length (km) 30 10 225 10 93 16 2 

Width (km) 1 1.6 6 1.7 3 1.5 1 

Mean depth (m) 3 7.9 21.6 14.3 7.9 6 1.5 

TDP (μg P L−1) 32.2 157.4 - 173.8 54.3 165 374 

DOC (mg L−1) 7.7 14.9 6.2 16.1 14 14.3 17.3 

Secchi depth (m) 1.1 1.6 3.5 1.4 1.9 1.4 0.7 

Chla (μg L−1) 47.9 62.4 4.9 49.4 46 67.9 62.1 

Microcystin (μg L−1) 1.5 0.5 - 1.1 0.7 1.7 0.4 

TSS (mg L-1) 11.8 6.7 5 11.1 - 7.7 - 

5.2.2 Data 

In situ data were collected using standard techniques of a 28-year long-term monitoring program in all 

lakes (Haig and Leavitt 2019); however, we selected the period of 2017-2020 to match the Sentinel-2 

mission lifetime, as the input for our model development are derived from atmospherically corrected 

imagery (i.e., 𝑅𝑟𝑠
𝛿 ). 

5.2.2.1 In situ Chla data 

In BPL, Chla data originates from multiple datasets, as elaborated in (Chapter 4). Briefly, fluorometers 

deployed on a buoy regularly measured near-surface Chla in one station. Fluorometric Chla were then 

calibrated using the method described in (Chapter 3). Additionally, samples collected weekly by a water 

treatment plant and monthly by field visits across the lake were analyzed via spectrophotometry. 

Moreover, bi-weekly near-surface Chla samples from one station were analyzed by HPLC (Leavitt and 

Hodgson 2001).  

In the other six lakes (test lakes), phytoplankton were collected on GF/C glass-fibre filters 

(nominal pore size 1.2 µm) following Swarbrick et al. (2019). Surface water (~0.5-m depth) and depth-

integrated samples were filtered through GF/C filters and frozen (-10°C) until analysis for Chla (mg m-

3) by standard trichromatic assays (Jeffrey and Humphrey 1975) and biomarker pigments (nmoles 
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pigment L-1) by HPLC (Leavitt and Hodgson 2001). Carotenoids, chlorophylls, and their derivatives 

were isolated and quantified using a Hewlett Packard model 1100 HPLC system calibrated with 

authentic standards. 

5.2.2.2 Satellite imagery 

Cloud-free level-1C Multi-Spectral Instrument (MSI) images acquired by the Sentinel-2A/B satellites 

during the open water season over the lakes (~May - October) were downloaded for the period 2017-

2020. The Sentinel-2 constellation provides image acquisitions every ~ 2-3 days over the area of 

interest. The MSI sensor samples in 13 spectral bands from 443 to 2190 nm with spatial resolutions of 

10, 20, 60 m and with a 12-bit radiometric resolution (Li et al. 2017), making it suitable for aquatic 

applications (Pahlevan et al. 2019). 

5.2.3 Methodology 

The methodology adopted in this study is illustrated in Figure 5.2 and is further explained in the sub-

sections below. 

 

 

Figure 5.2. Overview of workflow developed in this study. 
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5.2.3.1 Data preparation 

MSI images were fully corrected for atmospheric effects to produce 𝑅𝑟𝑠
𝛿 . We used ACOLITE 

(v20210114.0) (Vanhellemont 2019) as the AC processor due to its good performance in inland waters 

with OWT 4-6 (Pahlevan et al. 2021). Visual inspection of images showed no significant sunglint effect 

in the study lakes. All MSI spectral bands were then resampled to 60-m grid to be consistent for further 

steps. 

Chla samples of the test lakes (C, D, K, L, P, W) followed a process similar to that of BPL 

(Chapter 3). Briefly, the process ensures that samples are from optically-deep waters. The remaining in 

situ samples (1594 samples) were then collated with closest matching 𝑅𝑟𝑠
𝛿  to create co-located 𝑅𝑟𝑠

𝛿  

Chla matchups. Maximum time span between field sampling and image acquisition was set to ±3 days 

for training data in BPL and ±1 days for test data in the other lakes. Representative 𝑅𝑟𝑠
𝛿  spectra for 

matchups were chosen to be the median of 33-element windows centered around the matchup 

locations. 

ACOLITE masks land and clouds automatically. In addition, we manually deleted matchups 

that were contaminated by thin clouds/haze and cloud shadow through a visual assessment. Moreover, 

matchups with negative reflectance (~ 5% of total) were excluded from further processes. We also 

excluded 6 matchups with Chla > 100 mg/m3 as they were suspected of scum presence. Eventually, 

243 matchups (193 in BPL and 50 in the test lakes) were selected for algorithm development and 

evaluation.  

5.2.3.2 Model development and assessment 

Three types of retrieval models were adopted; locally trained empirical models (LE), globally trained 

ML models (GML), and locally trained ML (LML) models. Locally trained models, namely OC3 

(O'Reilly et al. 1998), 2band (Moses et al. 2009), LMDN (Pahlevan et al. 2020), and SVR (Chapter 4) 

were trained using 193 𝑅𝑟𝑠
𝛿  Chla matchups in BPL, as described in (Chapter 4). OC3 represents blue-

green indices which often perform well in ecosystems where water color is governed by Chla (O'Reilly 

and Werdell 2019). 2band was selected as it showed the best performance among other red-NIR indices 

in retrieving Chla in BPL (Chapter 4). Similarly, LMDN and SVR outperformed other algorithms in 
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BPL (Chapter 4). Furthermore, a GML model  MDN (Smith et al. 2021), which has been trained with 

𝑅𝑟𝑠, was assessed in this study. 

 All models were tested using 𝑅𝑟𝑠
𝛿  Chla matchups from the test lakes (N = 50). Both linear 

and log10-transformed metrics were examined for accuracy assessment of the models; however, the 

metrics calculated in log-transformed space, e.g. MdSA (Morley et al. 2018) and Bias (Seegers et al. 

2018) are believed to provide a better assessment due to the log-normal distribution of Chla (Seegers 

et al. 2018). The accuracy metrics are as follows; 

𝑅𝑀𝑆𝐸 = [∑ (𝑃𝑖 − 𝑀𝑖)2𝑁
𝑖=1 𝑛⁄ ]1/2  (mg m-3) (5.1) 

𝑅𝑀𝑆𝐿𝐸 = [∑ (𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖))2
𝑁

𝑖=1
𝑛⁄ ]1/2 (5.2) 

𝑀𝐴𝑃𝐸 = 100 × 𝑚𝑒𝑑𝑖𝑎𝑛([|𝑃𝑖 − 𝑀𝑖| 𝑀𝑖⁄ ]) (5.3) 

𝐵𝑖𝑎𝑠 = 10𝑧 , 𝑧 =  [∑ (𝑙𝑜𝑔10(𝑃𝑖) − 𝑙𝑜𝑔10(𝑀𝑖))𝑛
𝑖=1 𝑛⁄ ] (5.4) 

𝑀𝑑𝑆𝐴 = 100  (10𝑦 − 1), 𝑦 =  𝑚𝑒𝑑𝑖𝑎𝑛|𝑙𝑜𝑔10(𝑃𝑖 𝑀𝑖⁄ )|  (%) (5.5) 

where 𝑃𝑖 and 𝑀𝑖 stand for predicted and measured Chla, respectively. RMSLE is the root mean 

squared log-error, MAPE is the median absolute percentage error, and MdSA is the median symmetric 

accuracy, computed in log-space. Bias of 1.5 implies that predicted Chla values are, on average, 50% 

larger than those measured (Bias = 1 is ideal) (Seegers et al. 2018). MdSA (Morley et al. 2018), is 

expressed in % and expected to be resistant to outliers to a great extent, zero centered, and interpretable 

(Pahlevan et al. 2020). As opposed to Bias, MdSA is believed to be an indicator for precision. 

 Results 

SVR and LMDN showed similar performance in retrieving Chla in the test lakes (𝑀𝑑𝑆𝐴 ≈ 61%, 𝐵𝑖𝑎𝑠 

≈ 1) (Figure 5.3). 2band estimations also displayed a high correlation with in situ Chla through the 

whole range of Chla (Slope = 0.72). MDN showed an overestimation of Chla in almost all lakes (𝐵𝑖𝑎𝑠 

= 2.15), likely due to uncertainties in 𝑅𝑟𝑠
𝛿 . OC3 exhibited poor performance (𝑀𝑑𝑆𝐴 = 73%) as it is 

more suitable for oligotrophic waters (O'Reilly and Werdell 2019). LML models (SVR, LMDN) 

significantly outperformed both LE (OC3, 2band) and the GML model (MDN) (𝑀𝑑𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  621% vs. 

8321%; 𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅  1.020.02 vs. 1.510.57). Overall, LML models maintained a reasonable performance 
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given the wide range of Chla (1-100 mg/m3). However, they substantially overestimated Chla < 3 

mg/m3, which is a well-known challenge for retrieving Chla in inland waters. 

P
re

d
ic

te
d

 C
h

la
 

   

P
re

d
ic

te
d

 C
h

la
 

  

                      Measured Chla               Measured Chla 

Figure 5.3. Scatter plots of in situ Chla versus predicted Chla from MSI-A/B images. OC3, 

2band, LMDN, and SVR were trained with 𝑹𝒓𝒔
𝜹 - Chla matchups from BPL. MDN was trained 

with global remote-sensing reflectance (𝑹𝒓𝒔). The points are color coded based on the lakes (C = 

Crooked, D = Diefenbaker, K = Katepwa, L = Last Mountain, P = Pasqua, W = Wascana). 

An inter-comparison of accuracy between lakes (Table 5.2) reveals that SVR shows the least 

variability in accuracy among lakes (MdSA = 21.4%), followed by LMDN and 2band (23.1% and 

23.5%, respectively). On average, the models performed best on Katepwa, Last Mountain, and Pasqua 

lakes (𝑀𝑑𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  ≈ 70%), moderately for Crooked and Wascana lakes (𝑀𝑑𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  ≈ 120%), and poorest for 

Lake Diefenbaker (𝑀𝑑𝑆𝐴̅̅ ̅̅ ̅̅ ̅̅  ≈ 200%), the least eutrophic of the basins. Overall, Crooked and Wascana 

are the most eutrophic sites, while Last Mountain and Katepwa share a similar range of Chla values to 

those in Buffalo Pound Lake (Table 5.1). 2band outperformed other models in Lake Diefenbaker. For 

Crooked and Last Mountain lakes, SVR maintained the best results, whereas LMDN exhibited the best 

OC3 2band MDN 

LMDN 

 

SVR 
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performance for estimates in Katepwa and Pasqua lakes. In general, OC3 and MDNs were inferior in 

most of the lakes, although OC3 performed reasonably in Crooked, Last Mountain, and Pasqua sites. 

Table 5.2. Median symmetric accuracy (%) of the models in retrieving Chla in each individual 

test lake. N is the number of lake-satellite data matchups. 

 OC3 2band  LMDN  SVR MDN 

C (N = 9, Chla = 24.123.9) 62.9 113.8 105.5 42.04 286 

D (N = 9, Chla = 64.9) 478 67.1 92.3 88.8 248.2 

K (N = 10, Chla = 36.819.3) 101.6 57.8 50.6 52.6 81.1 

L (N = 10, Chla = 20.419.1) 50.3 60.5 64 50.2 123.9 

P (N = 9, Chla = 37.221.6) 60.4 67.3 59.6 89.3 90.9 

W (N = 3, Chla = 43.123.8) 237.9 45.5 50.4 47.6 193.6 

 

Analysis of observed model bias in each lake (Table 5.3) suggests that MDN overestimated 

Chla in all lakes, by up to a factor of 3-4 fold for Diefenbaker and Crooked lakes. 2band also 

overestimated Chla except in Last Mountain. SVR and LMDN overestimated Chla in Crooked, 

Diefenbaker, and Wascana, while underestimating Chla in Katepwa, Last Mountain, and Pasqua. SVR 

showed a low bias in all lakes (< 10.4), except for Diefenbaker lake (𝐵𝑖𝑎𝑠 = 1.85). Overall, all models 

overestimated Chla in Crooked and Diefenbaker lakes, while they mostly underestimated Chla in 

Katepwa, Last Mountain, and Pasqua lakes. Estimates of Chla in Pasqua lake showed the least Bias 

(𝐵𝑖𝑎𝑠 = 10.15) (just in case of locally trained models), which is 120% less than that for D lake (𝐵𝑖𝑎𝑠 

= 11.35). 

Table 5.3. Bias (unitless) of the models in retrieving Chla for each test lake, separately. N is the 

number of matchups. Ideal bias equals one as it is computed in log space. 

 OC3 2band  LMDN  SVR MDN 

C (N = 9, Chla = 24.123.9) 1.44 1.8 1.71 1.38 3.91 

D (N = 9, Chla = 64.9) 4 1.77 1.8 1.85 2.81 

K (N = 10, Chla = 36.819.3) 0.55 1.09 0.67 0.67 1.81 

L (N = 10, Chla = 20.419.1) 0.94 0.88 0.66 0.67 1.13 
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P (N = 9, Chla = 37.221.6) 0.69 1.19 0.96 0.91 2.02 

W (N = 3, Chla = 43.123.8) 0.53 1.45 1.15 1.09 2.81 

 Discussion 

In this study, we introduced a regional approach in which models were trained with in situ data from 

one waterbody (BPL) and applied to retrieve Chla in other lakes within a 52,000 km2 drainage area. 

This regional approach significantly outperformed a recently-developed global approach, MDN 

(Pahlevan et al. 2020), in terms of both precision and bias, probably due to uncertainties in AC 

processors (Pahlevan et al. 2021). We suggest that the regional approach proposed here appears to have 

value as an alternative to global models until a more accurate AC processor emerges. 

  When employed in regional approaches, ML models (LMDN, SVR) showed better 

performance relative to traditional empirical models, likely because ML models leverage all VNIR 

spectral bands of MSI and use a regularization parameter, leading to less overfitting (Chegoonian et al. 

2017). This finding is consistent with earlier (Chapter 4) where SVR was found to have good 

generalizability over two distinct OWTs in BPL. In the present study, the 2band algorithm showed 

reasonable generalizability as red-NIR indices have strong physical basis and are believed to have good 

generalizability as long as ecosystems remain similar. 

 Comparison of the proposed regional approach in test lakes (MdSASVR ≈ 60%) with the 

locally-trained analyses in BPL (MdSASVR ≈ 35%) (Chapter 4) demonstrated that regional approaches 

can provide Chla estimations in lakes with no in situ data, but only at the cost of reduced retrieval 

accuracy (e.g., ~ 70% in Qu’Appelle drainage basin). Regardless, we suggest that regional approaches 

are still suitable for remote sensing of water quality in small inland waters given the scarcity of in situ 

data in most lakes, the widespread nature of HAB outbreaks (Finlay et al. 2015; Ho et al. 2019), and 

the > 5-10-fold changes in ecosystem production in many eutrophied lakes (Ho et al. 2019).  

Global models trained with satellite-derived radiometric products (e.g., MDNB  trained by 𝜌𝑟𝑐) 

have been suggested to be suitable for retrieve Chla in waterbodies without in situ data (Smith et al. 

2021). However, we infer that such models still show substantial bias because of variable atmospheric 

conditions and uncertainties in AC processing due to aerosol scattering/absorption which is not 
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corrected by 𝜌𝑟𝑐. While we are not aware of such models for MSI data, future studies might evaluate 

their performance in comparison with the regional approach outlined here. 

Several sources of uncertainties may have impacted the accuracy of regional Chla retrieval. 

Use of Chla from multiple sources with different sampling and measurement methods can affect model 

performance despite decreasing the probability of overfitting (Chapter 4). In addition, satellite 

radiometric observations of lake pixels might include signals from nearby land pixels (adjacency effect) 

as the lakes were small and this might affect our results, thereby showing better performance of the 

regional models in lakes with land cover more similar to BPL. Future studies should be applied in other 

lake districts, particularly those with more variable lake production. Finally, a more comprehensive 

study is needed to quantify the effect of variability in water/atmosphere conditions on the performance 

of regional approaches. 

 Conclusions 

The extrapolation of locally trained ML models to regional retrieval of Chla in a large lake catchment 

suggested that the approach is promising especially for small inland waters with similar productivity 

and optical characteristics, particularly where in situ data may not be available. For instance, Appendix 

A in this thesis presents an application of a regional model developed based on SVR with BPL data for 

Pasqua Lake in the Qu’Appelle Watershed. Application of global models resulted in high bias in Chla 

estimations, a problem which is likely to continue until more accurate AC processors are developed. In 

the interim, we suggest that regional approaches, coupled with ML models (SVR, LMDN) of known 

capability in retrieving Chla, can be employed in early warning systems for HABs in small inland 

waters. More sophisticated ML models, based on more in situ data, and next generation medium-

resolution space-borne missions with better spectral/radiometric configuration (e.g., PACE), may 

further improve performance of regional models. 
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Conclusion and Future work 

 Summary of Contributions and Results 

This thesis examined new approaches and methods to retrieve chlorophyll-a (Chla) in small inland 

waters (SIWs) using medium-resolution terrestrial missions such as Landsat-8 and Sentinel-2. We 

assessed the applicability of current methods, introduced new approaches, and compared them with 

current methods to evaluate the accuracy of Chla retrieval in SIWs. The results of this research can be 

used in developing early warning systems for SIWs based on remote sensing technologies. 

We demonstrated that a substantial part of errors in remotely retrieved Chla may originate in 

inconsistencies between in situ measurements (Chapter 3). Analysis revealed that fluorometric and in 

vitro estimates of Chla differed both in terms of absolute concentration and patterns of relative change 

through time. Therefore, three models were developed to improve agreement between metrics of Chla 

concentration, including two based on Chla and phycocyanin (PC) fluorescence and one based on 

multiple linear regressions with measured environmental conditions. The model that is based on PC 

fluorescence was most accurate (error = 35%), whereas that using environmental factors was most 

reliable (89% within 3σ of mean). Models were also evaluated on their ability to produce spatial maps 

of Chla using remotely-sensed imagery. Here newly-developed models significantly improved system 

performance with a 30% decrease in Chla errors and a two-fold increase in the range of reconstructed 

Chla values. Superiority of the PC model likely reflected high cyanobacterial abundance, as well as the 

excitation-emission wavelength configuration of fluorometers. Our findings suggest that a PC 

fluorometer, used alone or in combination with environmental measurements, performs better than a 

single-excitation-band Chla fluorometer in estimating Chla content in highly eutrophic waters. 

Using a consistent dataset of in situ Chla, we trained and tested a support vector regression 

(SVR) model, which takes in satellite-derived remote-sensing reflectance spectra (𝑅𝑟𝑠
𝛿 ) as input for 

Chla retrieval in a small eutrophic lake, Buffalo Pound Lake (BPL) in Qu’Appelle Watershed. The 

proposed model leverages the visible and near-infrared bands of Sentinel-2 and Landsat-8 images (400 

– 800 nm) and relies on a multi-year dataset of in situ Chla (N < 200) for training. Following validation 

against in situ Chla measurements over seven ice-free seasons (2014-2020), the SVR model retrieved 
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Chla with a 35% error, outperforming both locally tuned, 𝑅𝑟𝑠
𝛿 -fed empirical models (Normalized 

Difference Chlorophyll Index, 2- and 3-band models, and OC3) and a recently-developed Mixture 

Density Network (MDN) by 15% – 65%, while exhibiting comparable performance to a locally trained 

MDN (LMDN). Moreover, a stratified analysis revealed the superiority of SVR in two distinct optical 

water types (OWTs) across BPL. SVR also showed robust performance relative to different 

atmospheric correction (AC) processors (iCOR and ACOLITE) and radiometric products (Rayleigh-

corrected reflectance, and top-of-atmosphere reflectance). Chla maps for BPL using different 

combinations of Chla retrieval models and AC processors showed minimal noise and best 

reconstructions of Chla profile for a coupled SVR-iCOR processing. However, we observed the highest 

overall accuracy for SVR-ACOLITE. In addition, this coupled-processing method satisfactorily 

retrieved time series of Chla measurements, particularly for Chla values > 100 mg m-3, unlike other 

approaches. Superior transferability of SVR models among the two different OWTs in BPL suggests 

that these models may perform well in other prairie eutrophic lakes. In the absence of accurate 

atmospheric corrections, such locally trained machine-learning models (SVR, LMDN) may provide 

more reliable Chla estimations in small waterbodies, particularly when used to monitor harmful algal 

bloom events. 

Currently, remote retrieval of near-surface Chla concentration from small inland waters adopts 

two different approaches; development of local models using in situ Chla measurements in target 

waterbodies or application of globally trained models with no need of local in situ measurements. While 

the abundance and diversity of small lakes undermine the former approach, application of global 

models often biases estimations due to uncertainties in atmospheric correction processors. Here, we 

introduce a regional approach wherein local in situ data from select waterbodies is used to retrieve Chla 

in nearby lakes. We trained state-of-the-art empirical and machine-learning (ML) algorithms, namely 

OC3, 2band, LMDN, and SVR, over four ice-free seasons (2017-2020) using 193 pairs of near-surface 

Chla in Buffalo Pound Lake, Canada, and near-coincident satellite reflectance from Sentinel-2. Ability 

of locally trained models and a globally trained mixture density network (MDN) to retrieve Chla for 

unseen data (N = 50) was evaluated for six other catchment lakes. Regional approaches based on locally 

trained ML models (SVR, LMDN) unbiasedly estimated Chla in test sites (overall error ≈ 60%) and 

outperformed locally trained empirical models and globally trained ML models (reduced error by 20%, 
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bias by 50%). These findings suggest that ML-based regional models are capable of expanding regional 

Chla retrieval from optically-similar waterbodies. 

Altogether, results of this study show that current space-borne remote sensing technologies, 

especially medium-resolution sensors onboard of terrestrial missions, such as Sentinel-2 and Landsat-

8 may provide essential information needed for developing early warning systems for harmful algal 

blooms in small waterbodies. Such an application might be of interest to many stakeholders and 

organizations, considering the fact that harmful algal blooms continues to degrade water quality in 

many lakes around the globe, mostly due to climate warming and excess of nutrients. The procedure to 

develop the methods and assess our results might be considered as simple essential steps to take for 

developing early warning systems in small inland waters. For example, we showed that a successful 

employment of remote sensing technologies need consistent in situ data to be used as training data. 

Besides, we introduced a machine learning model to deal with highly uncertain datasets in retrieving 

Chla. The application of regional approaches developed here might be extended to many small 

waterbodies with no enough training data, where application of remote sensing technologies is currently 

very limited. 

 Limitations and uncertainties 

This study has certain limitations and uncertainties. First, our results and conclusions are based on a 

limited dataset collected in one watershed. Although both in situ and radiometric observations span a 

relatively long period (~ 7 years) and many satellite imagery, previous studies have shown that the 

performance of Chla retrieval models highly depends on optical properties of waterbodies. In other 

words, the performance of models presented here may be local and cannot generalize to other regions 

without further research. The lakes selected for this study were eutrophic, but their optical features are 

mostly governed by phytoplankton. As a result, our results should be treated with caution in 

waterbodies where colored dissolved organic matter (CDOM) or non-algal particles (NAP) are 

dominant. 

Moreover, in situ data in this study contain uncertainty and they originated from different datasets 

measured by various methods and protocols. Although this variation decreases the chance of overfitting 

in model development, this may introduce uncertainties in our assessments. In addition, our results 

regarding atmospheric correction processors may need further investigations as no in situ radiometric 
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observations were available in this study. Thus, we were not able to separate uncertainties in the AC 

process from those of retrieval models. Adjacency effects might be a major source of error in the 

performance of models, which we could not quantify in this thesis.  

 Future research directions 

Technological and theoretical advancements provide further opportunities to expand the work 

presented here. The recently launched Landsat-9, with similar spatial/spectral characteristics to 

Landsat-8, halves the revisit time of the Landsat constellation from 16 to 8 days. This can even decrease 

to 4 days in high latitudes and provide a suitable time frequency for remote observations when 

combined with Sentinel-2 data. However, further studies are still needed to develop reliable methods 

to fuse Landsat and Sentinel data to generate aquatic products. 

Although offering a daily revisit time and suitable spectral configuration, the Ocean and Land 

Colour Instrument (OLCI) sensor aboard the Sentinel-3 constellation (300-m spatial resolution) was 

not assessed in this study. Further studies are needed to assess the performance of OLCI data in small 

lakes. Moreover, the Ocean Color Imager (OCI) onboard of the PACE satellite mission, planned for 

launch in 2022, can bring many opportunities to remotes sensing of water quality with a 2-day global 

coverage of continuous spectral measurements in visible and near-infrared wavelengths. However, OCI 

still cannot be applied to small waterbodies similar to the ones we studied here. 

Global models showed biased estimations of Chla in this study, probably due to uncertainties 

in atmospheric correction processors. Developing global models based on satellite-derived radiometric 

products, especially for medium-resolution sensors, may improve the performance of global models in 

small waterbodies. Developing more accurate retrieval models need larger datasets of Chla, which will 

be available in the near future, given the recent advancements in field and buoy sensors. However, our 

results showed that uncertainties in in situ measurements can substantially degrade Chla retrieval 

performance; then, further research is needed to establish standard protocols to measure Chla 

consistently. Furthermore, theoretical developments in machine-learning models can improve Chla 

retrieval performance. Deep learning models can be used if sufficient training Chla data is provided. In 

addition, combining environmental factors (e.g., temperature, wind) as well as radiometric observations 

of various sensors and AC processors into ML models may increase the accuracy of retrievals.  
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Appendix A 

Marked blue discolouration of late winter ice and water due to 

autumn blooms of cyanobacteria  

A.1 Abstract 

Continued eutrophication of inland waters by nutrient pollution can combine with ongoing 

unprecedented atmospheric and lake warming to create emergent environmental surprises.  Here we 

report the first known occurrence of marked blue discolouration of ice and water in highly eutrophic 

prairie lakes during late winter 2021.  Intense blue staining was reported first to governmental agencies 

by ice fishers in early March 2021, then communicated widely through social media, resulting in First 

Nations and public concern over potential septic field release, toxic spills, urban pollution, and 

agricultural mismanagement.  Analysis of water from stained and reference sites using UV-visible 

spectrophotometry and high-performance liquid chromatography demonstrated that the blue colour 

arose from high concentrations (~ 14 mg L-1) of the cyanobacterial pigment C-phycocyanin that was 

released after an unexpected bloom of Aphanizomenon flos-aquae in late October 2020 was frozen in 

littoral ice.  Remote sensing using the Sentinel 3A/B OLCI and Sentinel 2A/B MSI platforms suggested 

that blue staining compassed 0.68 + 0.24 km2 (4.25 + 1.5% of lake surface area), persisted over 4 

weeks, and was located within 50 m of the lakeshore in regions where fall blooms of cyanobacteria had 

been particularly dense.  Although toxin levels were low (~0.2 μg microcystin L-1), high concentrations 

of C-phycocyanin raised public concern over eutrophication, pollution, and climate change and 

mobilized rapid governmental and academic response.  Given that global climate change and nutrient 

pollution are increasing the magnitude and duration of cyanobacterial blooms, blue staining may 

become widespread in eutrophic lakes subject to substantial ice cover.   
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A.2 Introduction 

Despite recognition of causes and effects of nutrient pollution, water quality continues to decline in 

many lakes within inhabited catchments (European Environmental Agency 2018, Le Moal et al. 2019) 

leading to unanticipated effects (Carpenter 2003).  During the 20th century, this degradation was often 

associated with phosphorus pollution from point sources, such as cities, wastewater treatment plants 

and intensive livestock operations (Schindler 1977, Jeppesen et al. 2005). However, since that time, 

long-term monitoring and nutrient budgets demonstrate that diffuse or non-point sources of nutrients 

are responsible for continued water quality loss in both river and lake ecosystems (Carpenter et al. 1998, 

Le Moal et al. 2019, Birks et al. 2020).  Human augmentation of both nitrogen (N) and phosphorus (P) 

fluxes favours nutrient accumulation in standing waters, leading to outbreaks of harmful algal blooms 

(HABs), deoxygenation of both surface and deepwater habitats, biodiversity declines, diminished 

ecosystem services, and substantial economic hardship (Schindler and Vallentyne 2008, Downing et 

al. 2021, Jane et al. 2021).  In particular, continuing influx of P is creating non-linear changes in 

freshwater ecosystems, including shifts to other forms of regulation (N, light, microelements) (Bogard 

et al. 2020), outbreaks of toxic cyanobacteria on continental scales (Taranu et al. 2015), and sudden 

ecosystem state changes (Scheffer et al. 2001, Carpenter 2003).  Given that global human population 

growth remains rapid (UNDESA 2019), fluxes of nutrients are currently at historical maxima (Lu and 

Tian 2017), and both factors are likely to increase by 30-50% during the next 50 years (Millennium 

Ecosystem Assessment 2005), unexpected changes in freshwater production, structure, and function 

should become more prevalent.    

Climate warming is also pushing freshwater ecosystems into unprecedented states.  For 

example, as surface waters warm, they can favour the disproportionate growth of cyanobacteria in both 

unproductive (Carey et al. 2012, Ewing et al. 2019) and highly eutrophic ecosystems (Huisman et al. 

2018).  The high specific heat of water allows lakes in particular to accumulate energy, leading to more 

pronounced aquatic ‘heat waves’, reduced ice cover, and extended duration of growing seasons 

(Sharma et al. 2019, Woolway et al. 2021).  These conditions increase the magnitude and duration of 

toxic cyanobacterial blooms (Hayes et al. 2019), and may contribute to unexpected blooms of 

phytoplankton during formerly cooler and less productive seasons (Wejnerowski et al. 2018, Shcherbak 

et al. 2019).  Temperature increases are also depleting oxygen from lakes at unequalled rates (Jane et 
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al. 2021), leading to habitat loss in lakes worldwide (Kraemer et al. 2021).  These conditions can favour 

invasive species, further reducing the biodiversity of stressed freshwaters (Dickey et al. 2021).  Given 

the ineffective control of global greenhouse gas emissions (Olivier and Peters 2020), atmospheric and 

lake temperatures will continue to rise resulting in regional ecosystem stresses that have no historical 

precedent (Woolway et al. 2021).   

Ecological surprises are likely to occur more frequently as the magnitude of lake fertilization 

and warming increase into uncharted waters (Christensen et al. 2006, Fibee-Dexter et al. 2017).  

Historically, such deviations from experiential expectations or mechanistic forecasts often arose 

because of an incomplete understanding of the natural range of ecosystem conditions, a form of 

temporal myopia known as the “invisible present” to neo-ecologists (Magnuson et al. 1990) but which 

is familiar to paleolimnologists (Smol 2008).  However, unabated human population growth and 

resource utilization has the potential to push some freshwater ecosystems into trajectories that cannot 

be forecast easily from current process-oriented studies.  On-going examples of such ecological 

surprises include hysteretic state change in shallow lakes (Scheffer et al. 2001, Carpenter 2003), sudden 

collapse of freshwater and marine fish stocks (Myers et al. 1997), under-ice blooms of diazotrophic 

cyanobacteria (Wejnerowski et al. 2018, Shcherbak et al. 2019), and sudden establishment of invasive 

species outside their apparent biological limits (Dickey et al. 2021), as well as smaller-scale examples 

that are likely under-reported (Sechidis et al. 2017).   

Here we file the first known report of one such lake-scale ecological surprise – a marked blue 

discolouration of ice and water in a series of highly eutrophic prairie lakes during spring 2021.  First 

reported to governmental agencies by ice fishers in early March 2021, communication of the blue water 

phenomenon spread within days to social media (Facebook, Twitter), traditional news coverage (print, 

radio, television), and public outreach to government agencies (Ministry of Environment, Water 

Security Agency).  Analysis of water and lipid-solute biomarker pigments demonstrated that the blue 

colour resulted from high concentrations of the cyanobacterial pigment C-phycocyanin derived from a 

late-fall bloom of Aphanizomenon flos-aquae that had frozen into nearshore ice late in 2020.  Such 

events may become more frequent, as temperate waters continue to warm, eutrophy, and interact with 

other novel environmental changes (Birks et al. 2020). 
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A.3 Methods and Materials 

A.3.1 Study region 

Intense blue staining of ice and water was reported first to the Saskatchewan Water Security Agency 

(WSA) on 11 March 2021 for Pasqua Lake, with subsequent social media reports for downstream Echo 

Lake (Figure A.1).  These two sites are part of the 58,775 km2 Qu'Appelle River drainage basin located 

in the prairie grassland ecoregion of southern Saskatchewan, Canada (Vogt et al. 2011, Haig and Leavitt 

2019).  The Qu’Appelle River arises naturally west of Buffalo Pound Lake and flows eastward through 

a series of seven productive lakes (Buffalo Pound, Pasqua, Echo, Mission, Katepwa, Crooked, Round) 

to its confluence with the Assiniboine River in Manitoba (Figure A.1.a).  River flow is augmented by 

discharge from the mesotrophic Lake Diefenbaker reservoir to the west, whereas hypereutrophic 

Wascana Lake and eutrophic Last Mountain Lake drain into the Qu'Appelle River mid-reach, north of 

the City of Regina (Figure A.1.a).   

Regional climate (Köppen Dfb classification) exhibits short summers (mean 19°C in July), cold 

winters (mean -16°C in January), high evaporation (~60 cm yr-1) relative to precipitation (~30 cm yr-

1), and ~75% of annual runoff during a short snowmelt period after mid-March (Leavitt et al. 2006, 

Haig et al. 2020).  Land use within the Qu'Appelle watershed is comprised mainly of agriculture (75%; 

wheat, canola), along with natural grasslands (12%), the urban centres (5%) of Moose Jaw and Regina, 

and surface waters (8%) (Hall et al. 1999, Leavitt et al. 2006).  Nutrient-rich urban effluent from 

upstream Regina (tertiary and biologically treated) and Moose Jaw (modified tertiary) first enters 

Pasqua Lake via the Qu’Appelle River before being conveyed downstream to eastern basins (Davies 

2006, Bergbusch et al. 2021).   
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b. Pasqua Lake discolouration site B
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Figure A.1. Pasqua Lake, Saskatchewan, Canada. (a) Lake morphology and drainage basin 

(inset).  Regional Qu’Appelle lakes (inset, blue) include Diefenbaker (D), Buffalo Pound (BPL), 

Last Mountain (L), Wascana (W), Pasqua (P), Echo (E), Mission (M), Katepwa (K) and 

Crooked (C). Cities (inset, red) include Regina (R) and Moose Jaw (MJ). Reference site (A), and 

three blue-water sampling sites (B, C, D) indicated on main morphometric map. (b) Blue 

staining of ice and water along north shore of Pasqua Lake (Site B). Photo courtesy of Larry 

Bedel. (c) Discoloration of water in ice-fishing hole at Site B on the south shore of Pasqua Lake 

(left; photo courtesy of Tracey Kleim) and comparison of a 15-cm deep sample of 0.45 µm pore 

filtered lake water from Site B and deionized water (right). 

Pasqua Lake is composed of a series of four progressively deeper basins (Figure A.1.a), each 

with alkaline and eutrophic waters that together exhibit a relatively short water residence time (~0.65 

year) (Table A.1).  Dissolved inorganic (DIC) and organic carbon (DOC) content is elevated, resulting 

in late summer pH > 9 (Finlay et al. 2010a).  Like other Qu’Appelle lakes, Pasqua Lake is polymictic, 

although pronounced deepwater anoxia occurs in the eastern basin during late summer when Chl a > 

100 μg L-1, as well as under ice during winter (Hall et al. 1999, Vogt et al. 2011).  Phytoplankton 

communities are diverse and include surface blooms of N2-fixing and non-N2-fixing cyanobacteria 

(Aphanizomenon, Dolichosphermum, Microcystis, Planktothrix, Limnothrix) during July-September 

when irradiance (~ 300 cloudless days year-1) and dissolved P concentrations are elevated (> 50 μg P 

L-1), and mass ratios of dissolved N:P can be < 5:1 (Vogt et al. 2011, Hayes et al. 2019) (Table A.1). 

Table A.1 Physical and chemical features of Pasqua Lake, Saskatchewan, Canada, 2014–2020. 

Samples were taken either biweekly (n = 62) or monthly (n = 33) during the ice-free season 

(May–Sep) from 1-m depth, except dissolved organic and inorganic carbon which were from 

depth-integrated samples, and microcystin which was from 0.25-m depth. ND = no detect at 

detection limit of 0.016 µg/L for microcystin and 0.009 mg N/L for nitrate. 

Variable n Mean SD Range (min, max) 

Total Phosphorus, TP  (mg P/L) 33 0.17 0.08 0.06, 0.41 

Ortho Phosphorus, SRP (mg P/L) 33 0.12 0.08 0.02, 0.37 

Total Nitrogen, TN calculated (mg N/L) 33 1.95 0.43 1.31, 3.41 

Ammonia (mg N/L) 33 0.28 0.23 0.02, 0.81 



 

134 

 

Nitrate (mg N/L) 33 0.030 0.047 ND, 0.18 

TN : TP (by mass) 33 13.5 6.3 4.7, 31.6 

Specific Conductance (µS/cm) 33 1574 142 1200, 1770 

Dissolved Inorganic Carbon, DIC (mg/L) 62 54.94 3.13 45.46, 62.86 

Dissolved Organic Carbon, DOC (mg/L) 62 13.57 1.80 10.18, 17.90 

Chlorophyll a, Chl-a (μg/L) 33 44.64 31.3 0.1, 110 

Microcystin LR equivalents (µg/L) 62 1.28 3.63 ND, 20.06 

Secchi disk transparency (m) 62 1.37 0.94 0.17, 3.40 

A.3.2 Limnological monitoring 

Pasqua Lake was sampled biweekly between early May and late September 2020 by the University of 

Regina following standard protocols of the 28-year Qu’Appelle Long Term Ecological Research 

Program (Vogt et al. 2011, Haig and Leavitt 2020).  Additional monthly samples were collected and 

analyzed by the WSA using similar protocols (Davies 2006). The lake was also sampled by the WSA 

through ~30 cm of ice at two near-shore locations and a central reference site on 12 March 2021, as 

well as two additional locations three days later (Figure A.1.a).  At all stations, water and air 

temperature (°C), dissolved oxygen (mg O2 L-1), specific conductance (µS cm-1), salinity (g total 

dissolved solids [TDS] L-1), and pH were measured using either a YSI model 85 or model EXOI meter.  

Depth-integrated water samples were collected by pooling samples from a 2.2-L Van Dorn water bottle 

deployed at 1.0-m intervals, while surface samples were collected at ~0.5-m depth (Vogt et al. 2011).  

Depth-integrated water (surface to Zmax – 1 m) was screened through a 243-µm mesh net to remove 

zooplankton and stored at 4oC in a dark bottle until processed.   

Samples for analysis of Chl a, particulate organic matter (POM), phytoplankton pigments, and 

stable isotopes of C and N were filtered onto Whatman GF/C glass fiber filters (nominal pore size 1.2-

µm) and stored frozen in the dark.  Surface and depth-integrated water samples were filtered through 

0.45-μm pore membrane filter and the filtrate was stored until nutrient analysis (Vogt et al. 2011).  As 

well, unfiltered surface samples were preserved with Lugol's IKI solution for microscopic analysis of 

phytoplankton community composition (Findlay and Kasian 1987, Donald et al. 2013). 
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A.3.3 Laboratory analyses 

Nutrient concentrations were estimated using standard QU-LTER protocols at the Biogeochemical 

Analytical Service Laboratory, University of Alberta, Edmonton, Alberta, Canada (Vogt et al. 2011), 

while governmental samples were analyzed using similar protocols at either the Saskatchewan Research 

Council or the Romanow Provincial Laboratory (Davies 2006).  Depth-integrated water was screened 

(243-μm mesh) then filtered through an 0.45-μm pore membrane filter within three hours of collection 

before analysis for total dissolved phosphorus (TDP) and orthophosphate (SRP), both as μg P L-1, as 

well as NO3
-, NH4

+, dissolved Kjeldahl N, and total dissolved nitrogen (TDN) (all mg N L-1) using 

standard analytical procedures (Stainton et al. 1977).  WSA samples included total N and P derived 

from unfiltered water.   

Chl a samples were analyzed using standard trichromatic methods (Jeffrey and Humphrey 

1975), while high performance liquid chromatography (HPLC) was used to quantify changes in 

phytoplankton community composition (Leavitt and Hodgson 2001, Donald et al. 2013).  Briefly, 

chlorophyll, carotenoid and derivative pigments were extracted from POM on GF/C filters, dried under 

inert N2 gas, and re-dissolved into an injection solution before introduction into a fully-calibrated 

Agilent Model 1100 HPLC fitted with photodiode array and fluorescence detectors.  Lipid-soluble 

biomarker pigments (nmoles pigment L-1) were quantified for total phytoplankton abundance (Chl a, 

pheophytin a, β-carotene), siliceous algae (fucoxanthin), mainly diatoms (diatoxanthin, 

diadinoxanthin), cryptophytes (alloxanthin), dinoflagellates (peridinin), chlorophytes and 

cyanobacteria (lutein-zeaxanthin), chlorophytes alone (Chl b), total cyanobacteria (echinenone), 

colonial cyanobacteria (myxoxanthophyll), Nostocales cyanobacteria (canthaxanthin), and potentially 

N2-fixing cyanobacteria (aphanizophyll) following Leavitt and Hodgson (2001).  Ratios of 

concentrations of undegraded Chl a to pheophytin a (Chl a: Pheo a) were used to estimate phytoplankton 

vitality, as the latter compound is a Chl degradation product that is normally rare in live cells (Leavitt 

and Hodgson 2001).  

Concentrations of C-phycocyanin were estimated for winter samples collected in March 2021.  

This pigment is used by cyanobacteria to regulate cellular N content (Wang et al. 2021).  Briefly, water 

was filtered through 0.45-μm pore filters and absorbance measured 400-900 nm using an Agilent model 

8453 UV-Visible spectrophotometer fitted with a 10-cm quartz cuvette.   Absolute pigment 
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concentrations in situ were estimated from the difference in absorbance of filtered water from blue ice 

and reference sites and by applying a 15-point calibration curve relating absorbance to known 

concentrations of authentic C-phycocyanin from Spirulina (Sigma-Aldrich, Oakville).  We assumed all 

in situ absorbance at 620 nm was due to C-phycocyanin, but recognize this procedure might 

overestimate concentrations if phycoerythrin (from cyanobacteria and cryptophytes) is also present 

(Sobiechoowska-Sasim et al. 2014).    

Phytoplankton communities in the uppermost 1 m of the water column were enumerated to 

species and quantified using standard Utermöhl (1958) techniques by David Findlay of Plankton-R-Us 

Inc. (Winnipeg, Manitoba).  Briefly, whole samples of ~ 25 mL were deposited onto depression slides 

using a sedimentation chamber and cells or colonies were identified at 100-1000 x magnification using 

a light microscope with reference to relevant taxonomic keys (Findlay and Kasian 1987).  Densities of 

taxa were estimated as cells mL-1 and were converted to biovolume using estimates of greatest axial 

linear dimensions and application of species-specific formula for cell shape. 

A.3.4 Remote sensing 

Temporal changes in the estimated abundance of Chl a and C-phycocyanin were derived from remote 

sensing of Pasqua Lake during August – November 2020 (Chl a) and March – April 2021 (C-

phycocyanin).  Briefly, we employed the MultiSpectral Instrument (MSI) and Ocean and Land Colour 

Instrument (OLCI) sensors on-board of Sentinel-2 A/B and Sentinel-3 A/B satellites to estimate Chl a 

and C-phycocyanin, respectively.  Images from MSI have finer spatial resolution (10 - 60 m) and a Chl 

a-suitable spectral band configuration (664 nm, 709 nm), but only 2-3 day temporal resolution at this 

latitude (European Space Agency 2021a), whereas OLCI has a daily revisit time and 16 spectral bands 

within 400-800 nm, but only 300-m resolution (European Space Agency 2021b). The MSI sensor can 

estimate lake-surface Chl a concentrations in small inland waters (Pahlevan et al. 2020) and its high 

spatial resolution provides us with detailed maps of seasonal changes in Chl distribution during ice-

free conditions.  Similarly, the Sentinel 3 OLCI sensor has been used to estimate phycocyanin and infer 

cyanobacterial blooms in lakes (Mishra et al. 2019, Ogashawara 2019), as it has a spectral band centred 

on 620 nm, as well as additional wavelengths that allow correction for scattering by particles (e.g., 709 

nm).  Here we used the OLCI for the first time to approximate levels of phycocyanin captured in lake 
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ice.  For both sensors, we downloaded all clear-sky images of Top-of-Atmosphere-radiance (TOA) 

(level 1 data) provided by the European Space Agency (ESA).  

All images were corrected for atmospheric effect that may interfere with estimates of surface 

reflectance.  As up to ~90% of signal that a sensor receives is from atmosphere, not the waterbody, we 

corrected TOA data from both sensors using two atmospheric models,  iCOR (De Keukelaere et al. 

2018) and Acolite (Valhellemont 2019), both suitable for water quality applications (Pahlevan et al. 

2021).  All high-resolution MSI images were corrected using Acolite model, whereas OLCI images 

were processed using the iCOR model because the latter also includes the SIMEC algorithm to reduce 

the adjacency effect on nearshore pixels (Sterckx et al. 2015).  This correction was required because of 

the relatively coarse spatial-resolution of OLCI images (300 m), the peripheral location of the reported 

blue-ice phenomenon, and the relatively narrow width of Pasqua Lake (~2 km). Resultant processed 

images approximate remote sensing reflectance (Rrs) at the lake surface.   

Chl a concentrations were estimated using a support vector regression (SVR) that used all MSI 

bands (Chegoonian et al. 2021) and that had been trained previously with seven years of biweekly 

measurements of Chl a during May – September from upstream Buffalo Pound Lake (Finlay et al. 

2019).  Because of proximity and similarity of the two lakes (Vogt et al. 2011, Hayes et al. 2020), 

inferred Chl a concentrations were expected agreed to within ~35% of in situ measured values.  Because 

C-phycocyanin absorbs strongly at 620 nm, but not at the nearby OLCI band centred on 709 nm (Figure 

A.2.b), we used the index ratio Rrs620 nm /Rrs709 nm to map potential phycocyanin distribution, while also 

correcting for absorbance of longer wavelengths by water and other substances (Simis et al. 2005, Yan 

et al. 2018).  This way, a lower ratio of reflectance should be related to high concentrations of C-

phycocyanin.  However, because there were too few in situ measurements to calibrate the OLCI sensor 

in the present study, the computed ratio is presented as an index of relative reflectance and used to map 

potential phycocyanin distribution (Woźniak et al. 2016).  Further, all maps were overlaid by original 

satellite true colour (RGB) images for pixels that had been masked; we masked land pixels using a 

waterbody layer in Sentinel-3 products, while a mask for OLCI pixels with thick snow on lake ice was 

applied following (Su et al. 2019).  Finally, OLCI images were compared visually with those from the 

less productive Last Mountain Lake, where the blue-ice phenomenon had not yet been reported. 
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A.4 Results and Discussion 

The presence of blue ice and underlying blue water was reported for multiple sites in Pasqua Lake 

during the second week of March 2021 (sites B-D; Figure A.1.a).  Subsequently, blue ice and water 

were reported on social media for the western end of Echo Lake.  In these instances, intense staining 

was observed within 100 m of lakeshore, often where snow cover was limited, or had been compressed 

due to vehicular traffic of ice fishers and other recreational users (Figure A.1.b).  Sampling holes 

revealed interbedded layers of blue and white ice.  Visual inspection of water samples by WSA 

personnel suggested that the darkest discolouration occurred in the uppermost waters rather than in 

samples 1 - 2 m below the ice sheet.  Ice-fishing holes were filled with blue water whose colour was 

stable for several weeks in the laboratory at 10oC in the dark after filtration through GF/C filters (Figure 

A.1.c).  Neither blue ice nor water was reported by the public or WSA for central stations on Pasqua 

Lake (e.g., site A), although it is unknown whether that reflected the absence of discolouration or lower 

human traffic and reporting.  Subsequent interviews with individual scientists and members of the 

public suggested that the blue ice phenomenon had not been recorded during at least the past 25 years 

(Haig and Leavitt 2019) nor in living memory of members of Pasqua First Nations, whose reserve is 

located on the southern shore of Pasqua Lake (Figure A.1.a). 

Spectrophotometric analysis revealed strong absorbance by GF/C-filtered water between 500 

and 650 nm at blue-water nearshore locations but not at the central reference station (Figure A.2.a).  

For example, the absorbance maximum at site C occurred 608-620 nm, with a slight shoulder 545-575 

nm. This aqueous spectrum was similar to that of technical-grade C-phycocyanin purified from 

Spirulina in deionized water (Figure A.2.b).  Application of the calibration curve relating absorbance 

to dissolved mass of C-phycocyanin (Figure A.2.c) to the blue-water samples (Figures A.1.a, A.2.a) 

suggested that nearshore concentrations of pigment were up to 14 mg C-phycocyanin L-1. 
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Figure A.2.  Pigment properties of water from Pasqua Lake and reference samples.  (a) 

Absorbance spectrum of filtered water (0.45-μm pore) from nearshore site C (light blue) and 

mid-lake reference site A (dark line) between 400 and 900 nm. (b) Absorbance spectrum of 

laboratory grade C-phycocyanin from Spirulina, 400-900 nm.  (c) Calibration curve relating 
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absorbance at 620 nm to the mass of C-phycocyanin from Spirulina; Absorbance = 0.010 x (mg 

C-phycocyanin L-1) – 0.001.  (d) Biomarker pigment composition of particulate organic matter 

(POM) collected from blue water site C (light blue) and mid-lake reference site A (dark blue), 

as well as ratio of undegraded Chl a to its main degradation product pheophytin a (Chl a: Pheo 

a).  Changes in carotenoid composition (nmoles pigment L-1) in Pasqua Lake May-Sept 2020 for 

(e) 1 m depth surface samples, and (f) depth-integrated water samples.  In both cases, 

concentrations (nmoles pigment L-1) include pigments from total cyanobacteria (echinenone), 

colonial cyanobacteria (myxoxanthophyll), Nostocales cyanobacteria (canthaxanthin), 

dinoflagellates (peridinin), chlorophytes (Chl b), cryptophytes (alloxanthin) and diatoms 

(diatoxanthin). 

Analysis of POM on the GF/C filters using HPLC (Figure A.2.d) revealed that late-winter blue-

water samples from nearshore sites had elevated concentrations of biomarker pigments from colonial 

cyanobacteria, including echinenone (all cyanobacteria), myxoxanthophyll (colonial cyanobacteria) 

and canthaxanthin (Nostocales cyanobacteria) but not those from other phytoplankton, including 

diatoms (fucoxanthin), cryptophytes (alloxanthin), chlorophytes (Chl b) or dinoflagellates (peridinin).  

At site C, concentrations of cyanobacterial pigments in March 2021 were up to 10-fold greater than 

values observed at any point in the preceding 2020 ice-free season, either in samples collected from the 

surface 1 m (Figure A.2.e) or in depth-integrated waters (Figure A.2.f), despite surface blooms of 

cyanobacteria being abundant in Pasqua Lake after mid-July.  Based on carotenoid concentrations, Chl 

a in blue water samples should have exceeded 500 μg L-1 had live cyanobacteria been present.  In 

contrast, HPLC pigment concentrations were several orders of magnitude lower at the central reference 

location (site A) than either winter nearshore or previous summer stations, although winter samples at 

site A also included mainly biomarkers from colonial cyanobacteria (echinenone, myxoxanthophyll, 

canthaxanthin) and chlorophytes (Chl b) (Figure A.2.d).  Analysis of Chl a: Pheo a ratios suggested 

that particulate matter was largely detrital, particularly in the blue-water region where ratios (0.19 + 

0.4) were 10-fold lower than mid-lake values (1.51 + 0.03), and 100-fold less than expected ratio in 

regional live phytoplankton assemblages (~15; Bergbusch et al. 2021). Together, these observations 

suggest that blue staining of ice and water arose because exceptionally high densities of colonial 

cyanobacteria were trapped in nearshore ice and released their water-soluble pigment C-phycocyanin, 
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possibly due to repeated freezing and thawing, a process known to extract that pigment (Horváth et al. 

2013).  
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Figure A.3. Satellite maps of cyanobacterial bloom occurrence on Pasqua Lake (central, eastern 

basins) and Echo Lake (western basin) in Saskatchewan, Canada.  (a) Heat map of reflectance 

ratio Rrs620 nm/Rrs709 nm on 05 April 2021 as detected by Sentinel-3A/B OLCI sensor, corrected 

for cloud cover and adjacency effect.  Hot (red) colours indicate maximal relative absorbance at 

620 cm and potentially high concentrations of C-phycocyanin (e.g., Sites B, C, D), whereas cool 

(blue-green) colours show minimal absorbance at 620 nm and infer limited blue discolouration 

(Site A). The inset shows the spectral response of sampling points (A, B, C, and D), acquired 

from OLCI image on 05 April 2021. (b) Heat map of surface water Chl concentrations in 

Pasqua Lake 19 Sept 2020 as detected by Sentinel-2A/2B sensor.  Hot (red) colours indicate 

elevated concentrations of Chl a, whereas cool (blue, green) colours indicated low chlorophyll 

content (as μg L-1).  (c) Nearshore accumulation of decaying Aphanizomenon flos-aquae at outlet 

of Pasqua and Echo Lake, 19 October 2020.  Photo courtesy of Aura Lee MacPherson. (d) 

Relative (%) total biomass of cells in surface 1-m sample from outlet of Pasqua and Echo Lake, 

19 October 2020.  DOY = calendar day of year. 

Maps of Rrs620 nm /Rrs709 nm ratios suggested that C-phycocyanin-like signals were strongly 

concentrated at the margins of Pasqua Lake from the date of initial detection during the first week of 

March until at least early April 2021 (Figure A.3.a; Figure A.4).  On all dates of satellite reconnaissance, 

reflectance ratios were usually much lower at blue-water sites than at the central reference site (Figure 

A.4), consistent with observed patterns of discolouration within the lake.  Analysis of spatial and 

temporal patterns in Rrs620 nm /Rrs709 nm ratios showed no obvious trend in nearshore pixels, but provided 

evidence that overall reflectance ratios declined during March, likely due to a loss of fresh snow cover 

from the lake surface (Figures A.4, A.5).  Given that all blue-water sites (B-D) exhibited Rrs620 nm /Rrs709 

nm ratios of ~0.9 (Figure A.3.a), we used that threshold to estimate that 0.68 + 0.24 km2 (4.25 + 1.5%) 

of Pasqua Lake area (16.02 km2) could have exhibited marked blue discolouration (Figure A.5).  Using 

these data, we further estimated that staining occurred mainly within 50 m of lakeshore by assuming 

the area of blue water was evenly distributed around the lake margin (see Figure A.5).  Finally, 

comparison of OLCI maps from nearby eutrophic Last Mountain Lake (Figure A.4) suggested that 

intense episodes of blue ice were more common in Pasqua Lake than at Last Mountain Lake, consistent 

with regional reports from the public. 
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Figure A.4.  Heat maps of reflectance ratio Ref620 nm/Ref709 nm for late winter 2021 (07 March – 

05 April) as detected by Sentinel-3A/B OLCI sensor, corrected for cloud cover and adjacency 

effect. See Methods for details. Hot (red) colors indicate maximal relative absorbance at 620 cm 

and potentially high concentrations of C-phycocyanin, whereas cool (blue) colors show minimal 
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absorbance at 620 nm and limited blue discoloration. Left column images of hypereutrophic 

Pasqua Lake, right column images of the south end of eutrophic Last Mountain Lake (except 

panel g). Scale bar represents 2 km. Color bar on each figure represents Ref620 nm/Ref709 nm. 

Surface blooms of Aphanizomenon flos-aquae during late October 2020 may have concentrated 

cyanobacteria to the margins of Pasqua Lake and favoured their entrapment in rapidly-forming 

nearshore ice sheets (Figure A.3.c).  In particular, rafts of senescent cyanobacteria were observed on 

the shorelines of Pasqua, Echo, and downstream Crooked lakes during late October 2020.  Microscopic 

analysis of one such bloom at the outflow of Pasqua and Echo lakes (Figure A.3.d) revealed high 

concentrations of cells, heterocytes, and akinetes from A. flos-aquae, as well as other cyanobacteria and 

eutrophic diatoms (Stephanodiscus niagarae) typical of these lakes (Hall et al 1999, Dixit et al. 2000, 

Donald et al. 2013).  The presence of surface blooms of diazotrophic cyanobacteria in October has not 

been recorded previously for regional lakes, as non-N2-fixing taxa such as Planktothrix and Limnothrix 

spp. typically predominate by mid-September due to rapidly-diminishing irradiance and water 

temperature (Leavitt et al. 2006, Donald et al. 2013, Hayes et al. 2019).  However, under-ice blooms of 

Aphanizomenon have been reported recently from eutrophic lakes in agricultural areas of Poland and 

the Ukraine (Wejnerowski et al. 2018, Shcherbak et al. 2019), possibly reflecting increased lake heating 

during late fall in the northern hemisphere (Woolway et al. 2021), and are known in winter from some 

ice-free maritime lakes (Davies et al. 2004). 
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Figure A.5.  Fraction of the surface area of Pasqua Lake (central and eastern basins only) with 

refectance ratio (Ref620 nm/Ref709 nm) less than critical value on X axis. Effects of fresh snow 

identified from RGB images are seen as sharp declines in the proportion of lake area with a 

high reflectance ratio as day of year (DOY) increases (see also Figure A.4). Values for Ref620 

nm/Ref709 nm = 0.9 were stable at 4.25 + 1.5% of Pasqua Lake area and were used to map 

potential locations of blue ice and water. Maximum potential extent of blue ice (0.68 + 0.24 

km2) was subtracted from total area analyzed (16.02 km2) and both entire and blue-free values 

were used to estimate the radius of the lake, if it were round. Differences between the two 

radius estimates was 48.5 m, suggesting that blue ice was located mainly close to the shore (see 

Figure A.4). 

Analysis of Chl a maps derived from Sentinel 2 MSI images also suggested that the blue-ice 

phenomenon may have arisen because late fall blooms of cyanobacteria were located mainly in 

nearshore regions (Figures A.3.b, Figure A.6).  Time series of satellite images showed that intense 

blooms of phytoplankton (up to 100 μg Chl a L-1) arose in the shallower central basin before moving 

into the deep eastern basin along either the north or south shore (Figure A.6).  As in other years, spring 

blooms of diatoms and cryptophytes (McGowan et al. 2005) declined during the June clearwater phase 

(Dröscher et al. 2009) before leading to late summer cyanobacteria maxima (Hayes et al. 2019) that 

were sustained into September (Figure A.2.e, f).  In general, mean satellite-inferred Chl levels in the 

eastern basin (~40 - 60 μg Chl a L-1) during August and September were similar to those recorded by 

coeval sampling by WSA (~50 μg Chl a L-1) (Figure A.6.l).  However, satellite images also revealed 

that blooms continued during October after in situ monitoring had concluded and that, just prior to ice 

formation in early November, elevated concentrations of chlorophyll (~20 μg Chl a L-1) were recorded 

throughout the littoral zone of Pasqua Lake (Figure A.6.i-k). 
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Figure A.6. Heat map of surface water Chl-a concentrations (μg/L) in Pasqua Lake as detected 

by Sentinel-2A/2B MSI sensors deployed 19 August to 12 November 2020. Hot (red) colors 

indicate elevated concentrations of Chl-a, whereas cool (blue) colors indicated low chlorophyll 

content. Note change in color scale after 10 November 2020. Panel l represents the mean Chl-a 

concentration recorded by satellite for central (blue) and eastern (black) basins, as well as by in 

situ measures from the eastern basin (red) measured by the Saskatchewan Water Security 

Agency. 

A.5 Conclusions 

Interactions between unprecedented rates of atmospheric warming and excessive nutrient influx have 

created conditions in which surface waters may experience novel conditions that cannot be anticipated 

from extrapolation of antecedent environments, a phenomenon known as ‘ecological surprises’ 

(Christensen et al. 2006, Filbee-Dexter et al. 2017).  Here we used analysis of in situ pigmentation from 

phytoplankton and remote sensing to document the first widespread and marked blue discolouration of 

nearshore ice and lake water in late winter and early spring. Analyses suggest that this new phenomenon 

arose when exceptional late-fall blooms of Aphanizomenon flos-aquae were trapped in rapidly forming 

littoral ice, frozen and released water-soluble C-phycocyanin.  Such late blooms of Aphanizomenon 

spp. are becoming more common in highly eutrophic lakes (e.g., Wejnerowski et al. 2018, Shcherbak 

et al. 2019), possibly reflecting changes in fall heatwaves in lakes (Woolway et al. 2021) which favour 

continued growth of warm-water taxa (Hayes et al. 2019).  Further, as late fall littoral blooms had high 

levels of Aphanizomenon akinetes (Figure A.3.d), and this species colonizes the water column from 

littoral deposits of akinetes, this warming may initiate a feedback loop to favour earlier and more 

profound cyanobacterial outbreaks, as has been documented recently for these lakes (Hayes et al 2019).  

Given that toxic blooms are common in the Canadian Prairies (Orihel et al. 2012, Hayes et al. 2019) 

and regional climate is forecast to warm by ~5 oC by 2050, particularly during the colder seasons 

(Sauchyn et al. 2020), autumnal blooms and late winter blue discolouration may become much more 

common.   

Fortunately blue-ice events did not coincide with greatly increased levels of common 

cyanobacterial toxins.  Concentrations of cyanobacterial pigments in blue-ice fields (Figure A.2.e, f) 

were up to 10-fold greater than those observed during previous summer blooms when Chl was ~50 μg 
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L-1 (Figure A.3.b).  Long-term monitoring of Pasqua Lake demonstrates that concentrations of the 

hepatotoxin microcystin can exceed 20 μg L-1 during summer bloom events (Table A.1), values nearly 

twice the Health Canada proposed recreational contact advisory (Hayes et al. 2019).  Together, these 

observations suggest that toxin content of blue waters could have been as high as 200 μg microcystin 

L-1, levels higher than seen elsewhere in Canada and well above acute health advisory thresholds 

(Orhiel et al. 2012).  Instead, observed concentrations of microcystin (~0.2 μg L-1) were well below 

drinking-water advisories for the USA (1.0 μg L-1) and Canada (1.5 μg L-1).  Low microcystin content 

in blue-ice samples may arise because Aphanizomenon species can have lower microcystin content than 

other cyanobacteria (Hayes et al. 2019), cellular quotas of toxin are normally highest in actively-

growing populations and decline with bloom senescence (Finlay et al. 2010b), and C-phycocyanin is 

known to catalyze photodegradation of microcystins (Song et al. 2007).  Although further research is 

required, it appears initially as if there is no acute health threat associated with lake discolouration.  

Further research is also needed to determine the extent of lake discolouration by C-

phycocyanin.  Although Sentinel 3A/B with OLCI sensors provide approximations of C-phycocyanin 

and cyanobacterial abundance during summer (Mishra et al. 2019, Ogashawara 2019), ours was the 

first attempt to use remote-sensed images to document the presence of the pigment under late-winter 

conditions.  Here we found that intense blue discolouration at three field sites corresponded well to 

Rrs620 nm /Rrs709 nm ratios < 0.9, but also noted that the presence of fresh snow introduced bias and over-

estimated of the extent of blue discolouration (Figure A.4).  Employing a simple band ratio to 

qualitatively capture PC concentration can be justified in this study given the low contribution of other 

optically-active constituents. However, it should be treated cautiously in turbid waters where suspended 

minerals or phytoplankton biomass may interfere with PC absorption (Matthews 2011, Stumpf et al. 

2016). Thus, Much more extensive ground validation will be required to refine the use of satellite 

imagery to detect the blue-ice phenomenon, as seasonal changes in snow cover, adjacency effect, 

spectral characteristics of lake water, and the distribution, composition and cause of blooms all need to 

be further constrained.  Nonetheless, this promising first report suggests that some future ecological 

surprises may be detectable in near real time using the next generation of orbital platforms. 

Ecological surprises, such as marked blue discolouration of lake ice and water, may be 

particularly challenging for lake managers.  Although research on early-warming indicators is on-going 
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(Carpenter 2003), forecasts are usually not available for novel events, even when there exist extensive 

real-time monitoring programs (e.g., Meyers et al. 1997).  This issue is likely to become more 

pronounced in the coming decades, as human population, resource use, atmospheric temperatures, and 

nutrient fluxes move beyond their historical ranges and appear to change without precedent (Magnuson 

et al. 1990).  In our experience, rapid governmental and academic response to public concerns (< 1 

week from first report to identified cause), including use of traditional and social media platforms, 

reduced public anxiety over potential proximate causes of the discolouration (septic leaks, anti-freeze 

spills, cryptic urban pollution, waste dumping, etc.) and improved institutional trust by the public.  In 

particular, we note that coordinated collaboration between governmental and academic agencies may 

provide a valuable model for addressing future sudden environmental challenges. 


