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Abstract

We formulate a general method to find bounds on the statistics of states passing through
an unknown channel from the statistics of another set of states. We pay special attention to
the application of this method to decoy-state quantum key distribution (QKD) where the
states that can be practically prepared are not always the most secure states. In contrast
to standard decoy-state analysis, we do not assume that our states are phase-randomised
and can consider a fairly general laser source. We also develop a method to accommodate
phase correlations with minimal characterisation of the source. Thus, we develop general
techniques to deal with phase imperfections in a large class of QKD protocols. We apply
these methods to a simple implementation of the three-state protocol and discuss the effects
of partial phase-randomisation on the key rate of the protocol.
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Chapter 1

Introduction

The power of QKD lies in its information theoretic security in contrast to classical cryp-
tography that rely on computational assumptions. However, implementations of QKD also
must make practical assumptions leading to a gap between theory and practice. One such
assumption is made when theoretically modelling the devices used. Often inaccurate mod-
els of the devices are used either due to difficulties in the accurate characterisation of the
devices, or because the existing theory is unable to accommodate more accurate models.

In an effort to mitigate the effect of the security loopholes caused by inaccurate models,
one approach is to develop methods to perform QKD without trusting the devices used.
To this end, there has been much work on measurement-device-independent QKD (MDI-
QKD) [3, 4, 5, 6, 7] which is able to share secret keys without trusting the measurement
devices.

There is comparatively less work done on the source side. The recent work on the
source side takes into account general imperfections [8], correlations [9], and side-channels
[10]. Parallelly, there has been work to increase the key rate of optical protocols that do
not use a qubit space through decoy-state analysis [11]. This increase in key rate arises
as a result of the use of additional (decoy) states that constrain the action of the insecure
quantum channel on the signal states. However, there is no known way to combine the
methods involving general source imperfections with standard decoy-state analysis which
severely limits their tolerance to loss. Thus, there is some need to provide analysis that is
compatible with decoy-state QKD that can be applied to partially characterised sources.
Regarding this, there has been recent work that takes into account intensity correlations
and fluctuations and applies it to decoy-state QKD [12] which assumes that all the states
are fully phase-randomised.
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Our work similarly focuses on expanding the source models that can be used for decoy-
state analysis to achieve practical loss tolerances for QKD protocols. In specific, we deal
with the issues that arise as a result of imperfectly phase-randomised states with correla-
tions. This thesis is structured as follows. In Chapter 2 we give a brief review of the basic
concepts for quantum information, QKD, and quantum optics required for this thesis.

In Chapter 3, we formulate a general method to bound the statistics of a state passing
through an unknown channel given the statistics of another set of states that pass through
the same unknown channel. We show how this can be applied to perform decoy-state QKD
with no assumption on the kind of states we can use, aside from the fact that they must
be independent and identically distributed (iid).

In Chapter 4, we discuss a wide class of phase imperfections including phase correla-
tions. We give a physical example of phase correlations in lasers and develop a general
method to relate an arbitrary, possibly correlated phase mixture of coherent states to an
iid model laser state with minimal characterisation of the state. We show how in most
QKD protocols, this model laser state would lower bound the key rate of a protocol using
the more realistic general laser state.

In Chapter 5, we apply the methods we developed to the three state protocol where
high clock rates cause phase correlations. We discuss the issues in characterising the laser
source and show the effect of imperfect phase-randomisation for the protocol through a
key rate plot. We also discuss some looseness in our bounds that could lead to the gap in
key rates between the partially and fully phase-randomised cases seen in the plot. Further
research is needed to tighten these bounds.

In Chapter 6, we conclude the thesis by summarising our work and suggesting future
avenues of research.
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Chapter 2

Preliminaries

Quantum mechanics is a theory developed to model the behaviour of systems where classical
or Newtonian mechanics gives incorrect predictions. In this chapter, we will first review
the basic quantum information theory required to understand this thesis in Section 2.1.
A lot of what we do here does not require the nuances introduced by considering infinite
dimensions, and so we shall give some intuition for the inifinite dimensional cases, while
only fully explaining finite dimensional cases. For a more rigorous introduction to infinite
dimensional quantum information, the reader can refer to [13]. We then briefly define
semidefinite programs (SDPs) in Section 2.2 We then review the basics of QKD that is
essential for the thesis in Section 2.3. Finally, we review the quantum optics needed to
understand some simple optical implementations of QKD protocols in Section 2.4.

2.1 Quantum information theory

Our review in this section is based largely on [14] and [13]. We shall view quantum
mechanics as a set of physical procedures that can be performed in the lab. We can
appeal to classical probability distributions as a motivational example for this viewpoint.
Consider a deck of cards. The probability that the top card is the ace of spades is 1/52 for
a well-shuffled deck of cards. However, you could initially prepare and shuffle the deck in
a way to bias towards drawing the ace of spades from the top of the deck. The probability
distribution assigned to the card draw has nothing to do with the cards themselves, or the
actual outcome. They are instead a description of the operations that you performed on
the deck of initially preparing it and shuffling it in a deliberate manner.
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Similarly, any physical quantum process can be thought of as successive applications
of three operations:

1. Preparation: A process that outputs a fixed quantum system.

2. Transformation: A process that takes as input a quantum system and outputs a
(possibly different) quantum system.

3. Measurement: A process that takes as input a quantum system and outputs a classical
data.

Each of these operations can take as input a classical system that can partially or fully
specify the operation being performed. The classical system can be deterministic or proba-
bilistic. The mathematical framework describing these operations is of operators on Hilbert
spaces.

2.1.1 Hilbert spaces

Before we can talk about these processes we need to explain some of the underlying math-
ematical framework. We shall first define the intuitive notion of an inner product.

Definition 1 (Inner Product Space). An inner product space is a vector space V over
the field F ∈ {R,C} together with a map

〈·, ·〉 : V × V −→ F

called an inner product that satisfies the following conditions for all vectors x, y, z ∈ V
and all scalars c ∈ F:

1. Linearity in the second argument:

〈x, cy〉 = c〈x, y〉,

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

2. Conjugate symmetry:
〈x, y〉 = 〈y, x〉∗
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3. Positive Definiteness:
||x||2 := 〈x, x〉 ≥ 0

where equality holds iff x = 0. The quantity ||x|| is called the induced norm of x or
just norm for short.

In quantum mechanics, the field we deal with is the complex numbers C.

As stated above, the underlying mathematical structure starts with Hilbert spaces.

Definition 2 (Hilbert space). A complex Hilbert space H is an inner product space over
the complex numbers C which is also complete in the norm.

Intuitively, completeness is the condition that any sequence that converges in norm
should have a limit in the space. This is only a non-trivial condition in infinite dimensions.
All finite-dimensional complex Hilbert spaces are isomorphic to complex Euclidean spaces
Cd, and even in infinite dimensions much of the intuition carries forward.

Definition 3 (Dual Hilbert space). The dual space H∗ is defined as the space of all
continuous linear functions from H to C.

Theorem 1 (Riesz representation theorem). Let H be a Hilbert space. For every contin-
uous functional ϕ ∈ H∗ there exists a unique fϕ ∈ H such that

ϕ(x) = 〈fϕ, x〉 for all x ∈ H.

This gives us a way to identify every dual vector with a vector from the Hilbert space.
In physics, we typically denote vectors x ∈ H as |x〉 ∈ H which we call kets, dual vectors
ϕ ∈ H∗ via the corresponding vector 〈fϕ| ∈ H∗ which we call bras, and the inner product
between two vectors 〈x, y〉 as 〈x|y〉. Intuitively, we can think of a Hilbert space vector |v〉
as a column vector, and its dual vectors as the conjugate transpose which will denote with
† as 〈v| = |v〉†. So, the inner product of two vectors is equivalent to taking the dual of
one, and performing matrix multiplication. This isn’t quite so straightforward in infinite
dimensions, but thanks to Theorem 1, most of this intuition carries forward.

2.1.2 Operators on Hilbert spaces

Most operations in quantum mechanics can be described by bounded linear functions, or
bounded operators acting on Hilbert spaces. We denote L(H1,H2) to be the set of all
linear operators from H1 to H2 and L(H) as shorthand for L(H,H).
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Definition 4 (Bounded operators). Let H and K be Hilbert spaces and let T ∈ L(H,K)
be a linear operator. T is bounded if there exists a constant M such that ||T (h)|| ≤M ||x||
for all h ∈ H. We define

||T ||∞ := sup{||T (h)|| | ||h|| ≤ 1} ≤ ∞ (2.1)

as the operator norm or the infinity norm.

We denote B(H,K) to be the set of all bounded operators from H to K, and B(H) as
shorthand for B(H,H).

Boundedness captures the intuition that the action of an operator on any unit vector
should produce a vector with finite norm.

Definition 5 (Orthonormal Basis). Given an inner product space a set of vectors S is
called orthonormal if |v〉 ∈ S implies ||v|| = 1 and whenever |v〉, |w〉 ∈ S and |v〉 6= |w〉
then 〈v|w〉 = 0.

We say that an orthonormal set {|ea〉} in a Hilbert space H is an orthonormal basis if
there does not exist an orthonormal set that contains it as a proper subset.

All Hilbert spaces that we encounter in quantum mechanics have a countable orthonor-
mal basis i.e. they are separable. Any Hilbert space vector |v〉 can be written as a linear
combination of basis vectors |v〉 =

∑
a〈ea|v〉|ea〉. Although this is trivial in finite dimen-

sions, it requires some proving in infinite dimensions (see Theorem 2.94 from [13]). We
shall take this fact for granted throughout this thesis.

Since we only deal with linear operators, an orthonormal basis is useful as we only need
to describe the action of the operator on the basis. This uniquely defines the action of the
operator on the entire Hilbert space. So, we can write an operator T ∈ B(H,K) as

T =
∑

ea∈H,fb∈K

〈fb, T (ea)〉fbe∗a,

where {ea} and {fb} are bases for H and K respectively. In finite dimensions, this means
that T can be written as a matrix where the matrix elements would be 〈fb, T (ea)〉. Much
of the relevant intuition for bounded operators in infinite dimensions can similarly be
obtained by simply imagining it to be a matrix with (countably) infinitely many rows and
columns. The action of the operator in bra ket notation can be written as T (h) = T |h〉
which corresponds exactly to matrix multiplication in finite dimensions. We shall now
introduce a few important classes of operators that are useful for quantum information.
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Definition 6 (Self-adjoint operators). Let H and K be Hilbert spaces. Given a bounded
operator T : H −→ K, the Hilbert space adjoint is the unique bounded linear map T † :
K −→ H such that

〈k|T (h)〉 = 〈T †(k)|h〉 (2.2)

for all h ∈ H and k ∈ K. An operator T is self-adjoint or Hermitian1 if it is the same as
its adjoint T = T †. The set of all Hermitian operators acting on H is denoted by Herm(H).

In finite dimensions, the adjoint is exactly the conjugate transpose of the operator, and
hence our use of † is consistent.

Definition 7 (Positive semidefinite operators). An operator P ∈ B(H) is called positive
(semi)definite, denoted P > 0 (≥ 0) if 〈h|P |h〉 > 0 (≥ 0) for every |h〉 ∈ H.

Equivalently, P is a positive semidefinite operator if there exists B ∈ B(H) such that
P = B†B. From this equivalent definition, it is easy to see that every positive semidefinite
operator is also self-adjoint. We will sometimes use the notation P ≥ Q to mean that
the operator P −Q is positive semidefinite. We denote the set of all positive semidefinite
operators acting on Hilbert space H as Pos(H).

A special set of positive semidefinite operators are sets of orthogonal projection
operators or projectors for short. A set of projectors {Πk} satisfy ΠkΠl = δlkΠl and Πl

= Π†l . Lastly, we need to define trace and density operators before talking about quantum
processes.

Definition 8 (Trace). Let T ∈ B(H) and let {|ea〉} be any orthonormal basis for H. The
trace of T denoted by Tr [T ] is

∑
a〈ea|T |ea〉 and its value is independent of the basis

chosen.

An additional caveat for infinite dimensional operators is that the trace is only defined
when the sum converges. The class of such operators where the sum converges is called
trace class operators denoted by TC(H). For finite dimensions, the trace is always
defined and is the sum of the diagonal elements of the matrix representation of the operator
in any basis. The trace is linear and cyclic i.e. Tr [ABC] = Tr [CAB].

Definition 9 (Density Operator). An operator ρ ∈ B(H) is called a density operator
or density matrix2 if it is positive semidefinite and has trace 1.

1Hermitian and self-adjoint are the same for bounded operators, but not in general. The interested
reader might wish to refer to Section 3.12 of [13].

2Although the operator is not strictly speaking a matrix in infinite dimensions, so much of the intuition
from finite dimensions carries forward that we use the terms interchangably.
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We denote the set of all density matrices on a Hilbert space H as D(H).

2.1.3 Preparations

We can now go back to our processes from the start of the Section 2.1. This section will
talk about the first process, that of preparing quantum systems.

Postulate 1 (Quantum State).

Ideal
An ideal preparation procedure is described by a Hilbert space vector and is called
a pure quantum state.

General
A general preparation procedure or quantum state is described by a density oper-
ator acting on a Hilbert space.

As stated above, we view the quantum state as a description of the preparation proce-
dure and not a physical object itself. If our preparation procedure produces a set of pure
states {|ψi〉} according to some probability distribution p(i), we can describe this prepa-
ration procedure by the density operator ρ =

∑
i p(i)|ψi〉〈ψi|. Thus, the trace condition is

analogous to the probabilities of all events summing to 1. Note that sometimes subnor-
malised states might be used i.e. states with trace less than 1 for e.g. when discarding
some events. We shall explicitly state when we use subnormalised states.

In the density matrix formalism we often refer to the operator |ψ〉〈ψ| and the vector
|ψ〉 interchangeably as a pure state. This is entirely consistent as there is a bijective
correspondence between the set of rank 1 projectors and the vectors on a Hilbert space.
If a density operator is not a pure state, then we call it a mixed state. Note that we can
represent classical probability distributions as diagonal density matrices. Given a basis,
these are called classical states.

2.1.4 Measurements

This section will deal with the third process, that of measuring a quantum system to output
classical data.

8



Postulate 2 (Measurements).

Ideal
An ideal measurement procedure is described by a projector-valued measure

(PVM) {Πl} which is a set of projectors that sum to the identity and

(a) each {l} is an elementary event in probability theory, where the probability of
observing outcome l, given some preparation |ψ〉, is prescribed by the probability
Pr(al) = Tr [Πl|ψ〉〈ψ|].

(b) the state after measurement result l is observed is |ψmeas〉 = 1
Pr(al)

Πl|ψ〉.

General
A general discrete-outcome measurement3 is described by a positive operator-
valued measure or POVM {Eν} which is a set of positive operators that sum to
the identity

∑
ν Eν = I.

(a) The probability of observing outcome ν given preparation procedure ρ is

Pr(ν) = Tr [Eνρ] .

(b) Given Fν,i such that the positive operators Eν =
∑

i F
†
ν,iFν,i, the state after

oberving measurement outcome ν is ρmeas = 1
Pr(ν)

∑
i Fν,iρF

†
ν,i.

The expectation value of a self-adjoint operator A given a preparation ρ defined
as Tr [ρA] is denoted by 〈A〉ρ or 〈A〉 when the state being used is clear from context.
Postulate 2(a), known as the Born rule connects the predictions in quantum mechanics
to events in probability theory. A physical example of this would be measuring the spin
of an electron. The physically observable outcomes would be the value of the spin, ±1/2.
The two projections would correspond to clicks in two detectors, one corresponding to
spin +1/2, and the other corresponding to spin −1/2. The orthogonality of the projectors
implies that you can always prepare the state such that one detector always clicks, and the
other never clicks.

The general measurement procedure can be obtained from the ideal analogously to how
the general quantum state arose from the pure state. As an intuitive example, consider
a measurement procedure that performs the PVM {Πl} with probability p, and the PVM

3Continuous-outcome measurements are a bit more mathematically involved that justifies naming these
objects as POVMs. The interested reader can refer to chapter 12 of [14].
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{Π̃j} with probability (1−p). Assume for simplicity that each of these sets haveD elements.
So, the probability of an outcome i is given by

Pr(i) =

{
pTr [ρΠi] i ∈ {1, . . . , D}
(1− p)Tr

[
ρΠ̃i

]
i ∈ {D + 1, . . . , 2D}.

We could instead more compactly define

Eν =

{
pΠν ν ∈ {1, . . . , D}
(1− p)Π̃ν ν ∈ {D + 1, . . . , 2D}.

The resulting set {Eν} is a POVM. Thus, we see that we get the probabilities Pr(ν) =
Tr [Eνρ] analogous to the Born rule.

2.1.5 Composite systems

Before we talk about transformations, we will introduce composite systems. We have so
far gone over the preliminaries to model the preparation and measurement of a single
quantum system. The question we now seek to answer is how do we merge our description
of multiple systems? In other words, given two systems described by Hilbert spaces HA

and HB, how does the Hilbert space of both the systems together HAB relate to the the
individual Hilbert spaces?

We would expect that if we prepare our individual systems independently, the joint
system should be able to accommodate every combination of states from each system
individually. So, given a basis {|ai〉} and {|bj〉} for HA and HB respectively, HAB should
contain all possible pairs {|ai〉, |bj〉}. Additionally, since HAB is a vector space, it must
also contain the span of these pairs. The mathematical object that does this, is the tensor
product denoted as ⊗.

The tensor product HAB = HA⊗HB is the unique vector space spanned by the vectors
|ai〉⊗ |bj〉 for all i, j. This forms a basis for HAB. Note that the tensor product is bilinear.
The tensor product of operators is defined by its action on the basis and extends to the
rest of the space via linearity. Given operators T ∈ B(HA,KA) and S ∈ B(HB,KB), the
tensor product T ⊗S is defined by its action (T ⊗S) (|ai〉⊗ |bj〉) = (T |ai〉)⊗ (S|bj〉). Note
that by choosing the operators to be dual vectors of HA and HB, we can also define the
inner product on the tensor product space as (〈ak| ⊗ 〈bl|)(|ai〉 ⊗ |bj〉) = (〈ak|ai〉)(〈bl|bj〉).
We denote a system composed of two subsystems as bipartite, three systems as tripartite,
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and so on. We sometimes write |a〉 ⊗ |b〉 as |a, b〉 for brevity.

This is entirely analogous to joint probability distributions, where the space in which
the joint probability vector of two systems lies is described by the tensor product of the
individual spaces. Just as the trace is analogous to summing over the entire probabil-
ity distribution

∑
i,j p(i, j), the partial trace is analogous to summing over a marginal∑

j p(i, j) = p(i).

Definition 10 (Partial trace). Given a trace class operator T ∈ TC(HA ⊗ HB) and let
{bj} be an orthonormal basis for HB. The partial trace of T over system B denoted by
TrB [T ] is

∑
j(IA ⊗ 〈bj|)T (IA ⊗ |bj〉) and its value is independent of the basis chosen.

The partial trace is a way to obtain the marginal states that make up the joint state.
However, any correlations will be lost on taking the partial trace as we might expect i.e.
in general T 6= TrB [T ]⊗ TrA [T ].

The tensor product of density matrices can exhibit non-classical correlations called en-
tanglement. Entanglement is an important property that for some information processing
tasks is a measure of the ”quantumness” of the state as it has no classical analogue and
allows us to perform tasks such as superdense coding [15] that are impossible to do just
via classical probabilities.

Definition 11 (Separable states and entanglement). A bipartite state ρAB is said to be
separable if it can be written as

ρAB =
∑
i

Xi ⊗ Yi Xi, Yi ≥ 0∀i.

If there is just one term in the sum above, ρAB is said to be a product state.
A bipartite state is said to be entangled if it is not separable.

Definition 12 (Purification). Let ρ ∈ D(HA) be a density operator. Its purification |ρ〉
in a larger Hilbert space HA ⊗HB where HA = HB is defined as

ρ = TrB [|ρ〉〈ρ|] . (2.3)

This purification is unique upto a unitary U4 on the second system. This is another
way to obtain the general preparation procedure from an ideal preparation procedure; the

4These are maps such that Tr
[
UXU†] = Tr [X]. We shall talk about these maps in greater detail in

the next section.
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general preparation procedure is what we get as a result of only having access to part of
a pure quantum state. As a general procedure to obtain a purification given a density
operator ρ, consider the diagonal representation of the operator ρ =

∑
i λi|i〉〈i| where λi

and |i〉 are the eigenvalues and eigenvectors of ρ. A purification of ρ can be given as

|ρ〉 =
∑
i

√
λi|i〉 ⊗ |i〉. (2.4)

We can take the partial trace to verify that this is a purification

TrB [|ρ〉〈ρ|] =
∑
i,j,k

(IA ⊗ 〈k|)
(√

λiλj|i〉〈j| ⊗ |i〉〈j|
)

(IA ⊗ |k〉) (2.5)

=
∑
i,j,k

√
λiλj (|i〉〈j|)⊗ (〈k|i〉〈j|k〉) (2.6)

=
∑
i,j,k

√
λiλjδi,kδj,k|i〉〈j| (2.7)

=
∑
i

λi|i〉〈i| = ρ. (2.8)

2.1.6 Channels

We will first define another important class of bounded operators.

Definition 13 (Isometry). Let H and K be Hilbert spaces. A map V ∈ B(H,K) is called
an isometry iff ||V h||K = ||h||H where ||·||X denotes the norm in the Hilbert space X . An
isometry U ∈ B(H) is called a unitary if it is onto. We denote the set of all isometries
from H to K as U(H,K) and the set of all unitaries acting on H to be U(H).

Equivalently, one can define an isometry to have the property V †V = I. The adjoint of
a unitary is its inverse U †U = UU † = I. Unitaries are the generalisation of rotations for a
complex field and carry much of the same intuition.

Before we can discuss transformations on density operators, we also need to talk about
superoperators, linear maps taking linear operators to linear operators. We denote the
set of all superoperators from L(H) to L(K) as T(H,K).

Definition 14 (Trace preserving). A superoperator Φ ∈ T(H,K) is said to be trace
preserving if Tr [Φ(X)] = Tr [X] for all X ∈ TC(H).
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The tensor product of two superoperators can be defined in a similar way to our def-
inition of the tensor product of operators. Given superoperators Φ ∈ T(HA,KA) and
Ψ ∈ T(HB,KB) the tensor product of the operators Φ ⊗ Ψ ∈ T(HA ⊗ HB,KA ⊗ KB) is
defined as

(Φ⊗Ψ) (X ⊗ Y ) = Φ(X)⊗Ψ(Y ),

for all X ∈ L(HA), Y ∈ L(HB) and extended linearly to the rest of the space.

Definition 15 (Completely Positive). A superoperator Φ ∈ T(H,K) is said to be positive
if Φ(P ) ≥ 0 for all P ∈ Pos(H). We say that Φ ≥ 0.

Φ is completely positive if Φ ⊗ IL(Hn) ≥ 0 for all n, where IL(Hn) is the identity super-
operator on linear operators acting on an n-dimensional Hilbert space L(Hn).

Intuitively, we would like to mathematically describe the class of all physical transfor-
mations that would take us from quantum states to quantum states. This would take the
form of a linear operator in the ideal case and a superoperator in the general case. Keeping
this in mind, we state the postulate for quantum transformations.

Postulate 3 (Quantum transformations).

Ideal
An ideal quantum transformation can be represented by a unitary operator U as

|ψf〉 = U |ψi〉

where |ψi〉, |ψf〉 ∈ H are the initial and final pure states respectively. This is some-
times referred to as unitary evolution.

General
A quantum channel or channel for short is a completely positive trace preserving
(CPTP) superoperator. A general quantum transformation can be represented by a
quantum channel Φ as

ρf = Φ(ρi)

where ρi ∈ D(H) and ρf ∈ D(K) are the initial and final states respectively.

For the ideal case, the operator must preserve the norm as all states have unit norm.
Thus, the transformation must be characterised by a unitary operator. For the general
case, we need to preserve trace and the positivity of our operators. This might seem to
indicate that we only need positive trace preserving maps. However, the stronger constraint
of complete positivity comes from observing that we can apply a transformation Φ only
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to a subsystem of a composite system while not doing anything to the other subsytem
represented by the identity map IL(Hn). This is a physical transformation and so the
output must be a physical state i.e. a density operator. Complete positivity is needed to
guarantee this. We denote the set of all channels from TC(H) to TC(K) as C(H,K).

An example of a channel we have already seen is the trace Tr ∈ C(H,C). Thus, the
partial trace TrB ∈ C(HA ⊗ HB,HA) can be written as a tensor product of the identity
map with the Trace Tr ∈ C(HB,C) as

TrB = IL(HA) ⊗ Tr. (2.9)

The adjoint of a channel is defined similarly to the adjoint of an operator. Given a
channel Φ ∈ C(H,K), its adjoint is the unique superoperator Φ† : B(K) −→ B(H) such that

〈Γ,Φ(ρ)〉 = 〈Φ†(Γ), ρ〉, (2.10)

for all ρ ∈ TC(H) and Γ ∈ B(K) and the inner product is defined as 〈A,B〉 = Tr
[
A†B

]
.

There are a few different equivalent representations of channels. The Kraus repre-
sentation of a channel Φ ∈ C(H,K) is

Φ(X) =
∑
i

KiXK
†
i , (2.11)

where X ∈ B(H). The Ki ∈ B(H,K) are Kraus operators and
∑

iK
†
iKi = I5. Given

a basis {|ea〉} of the Hilbert space H, the Choi–Jamio lkowski isomorphism or Choi
representation of a channel Φ ∈ C(H,K) is6

J =
∑
a,b

|ea〉〈eb| ⊗ Φ(|ea〉〈eb|), (2.12)

where J ∈ Pos(H⊗K) and TrK [J ] = IH7. A useful result for the Choi representation that

5In infinite dimensions, the notion of equality used is convergence in the strong topology. However,
these nuances are not important for this thesis and we shall not mention it outside this footnote.

6There are some nuances in infinite dimensions that are not entirely relevant to us. The interested
reader can refer to [16] for a more precise infinite dimensional generalisation.

7Note that this is an example of an unbounded operator. However, when we use the Choi representation
in this thesis we shall use no more than the few defining properties mentioned here before taking finite
projections.
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we will use often is

Tr [ΓΦ(ρ)] = Tr
[ (
ρT ⊗ Γ

)
J
]

(2.13)

for all ρ ∈ TC(H) and Γ ∈ B(K).

2.1.7 Entropic and distance measures

We will briefly motivate and define several entropic quantities and matrix norms which
form a crucial part of most information processing tasks.

Entropy

Classical, or Shannon entropy [17] is a measure of the uncertainty or information content
of classical probability distributions. It must be positive and additive for independent
probability distributions. The function that satisfies these properties (see Appendix A of
[18] for a short proof) is

H(p) = −
∑
i

p(i) log(p(i)). (2.14)

The quantum analog, which attempts to measure the uncertainty in a quantum state is
called the von Neumann entropy and is given by the Shannon entropy of its eigenvalues

H(ρ) = H(λ(ρ)) = −Tr [ρ log(ρ)] , (2.15)

where λ(ρ) is the vector of the eigenvalues of ρ. We often denote the entropy by the system
that the state describes or register, H(ρAB) = H(AB)ρAB where we omit mention of the
state if it is clear from context what it is. Similarly, we denote the entropy of the marginals
as H(A) = H(TrB [ρAB]) and H(B) = H(TrA [ρAB]).

The conditional entropy defined as

H(A|B)ρAB = H(AB)ρAB − H(B)ρB (2.16)

is the amount of information needed to describe A given knowledge of B. The mutual
information measures the inherent dependence expressed in the joint state of X and Y
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relative to the marginal states of X and Y and is defined as

I(X : Y ) = H(X) + H(Y )− H(XY ). (2.17)

If the states can be represented as a product of their marginals8, then the mutual informa-
tion would be zero and the conditional entropy would be given by H(X|Y ) = H(X), since
knowledge of Y tells us nothing about X.

The quantum relative entropy, much like its classical counterpart, is a measure of
distance between two quantum states and is given by

D(ρ||σ) =

{
Tr [ρ log(ρ)− ρ log(σ)] if supp(ρ) ⊆ supp(σ)

∞ otherwise
(2.18)

where supp(ρ) is the support of ρ. Note that it is not a formal metric as it is not symmetric.

Distance measures

We use distance measures as a quantitative estimate of how similar or different two states
are. Given two density matrices ρ and σ, the maximum probability with which one can
correctly distinguish [19, 20] between them is 1

2
+ 1

2
||ρ− σ||1. Here the one-norm of an

operator ||X||1 is defined as

||X||1 = Tr
[√

X†X
]
. (2.19)

When X is positive and trace-class, ||X||1 =
∑

i λi(X).

Although the one-norm is physically motivated in terms of distinguishing two density
matrices, it lacks a number of convenient mathematical properties that make it hard to
compute and use sometimes, for e.g. ||X ⊗ Y ||1 6= ||X||1 ||Y ||1. We often use the fidelity for
its convenient mathematical properties. The fidelity of two positive semidefinite operators
P,Q ≥ 0 is

F(P,Q) = Tr

[√√
PQ
√
P

]
. (2.20)

8Recall from Section 2.1.5 that this is analogous to X and Y being described by independent probability
distributions.

16



The fidelity of two density matrices is related to the one-norm via the Fuchs-van de
Graaf inequalities (FvdG) [21]

1− F(ρ, σ) ≤ 1

2
||ρ− σ||1 ≤

√
1− F(ρ, σ)2. (2.21)

This can be tighter in the case where σ = ΠρΠ is a projection of the state ρ (Lemma 5 of
[22])

1

2
||ρ− ΠρΠ||1 ≤

√
1− Tr [Πρ]. (2.22)

2.2 Semidefinite programming

Semidefinite programs (SDPs) are widely applicable in quantum cryptographic tasks [23].
These are a class of optimisation problems that are generally numerically efficient to com-
pute when finite-dimensional. Let H and K be finite-dimensional9 Hilbert spaces. Let
A ∈ Herm(H) and B ∈ Herm(K) be a Hermitian operators, and Φ ∈ T(H,K) be a lin-
ear Hermitian-preserving map. An SDP is a triple (Φ, A,B) with which the following
optimisation problem is associated:

max〈A,X〉
such thatΦ(X) = B

X ≥ 0,

(2.23)

where 〈A,X〉 = Tr
[
A†X

]
. The function that we optimise 〈A,X〉 is called the objective

function. We define the feasible set S as

S = {X ∈ Pos(H) | Φ(X) = B}.

Note that the SDP can be equivalently be made into a minimisation problem by replacing
A with −A.

9We only define finite-dimensional SDPs. This is because although we do formulate infinite-dimensional
SDPs in this thesis, we do not use any of the usual properties like duality for SDPs, and we only numerically
compute finite-dimensional SDPs. Thus, the infinite-dimensional details are not very important for this
thesis and it is sufficient to just understand what a finite-dimensional SDP is as it is easy to numerically
compute.
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2.3 Quantum key distribution

QKD is a quantum information processing task where a sender (Alice) attempts to share a
random bit string (key) with a receiver (Bob) in the presence of a malicious eavesdropper
(Eve). Alice and Bob attempt to ensure that Eve has no information about their shared
key without them detecting it. If Eve does obtain information about parts of the key,
Alice and Bob can always discard it (abort the protocol) ensuring that if they do share
a key, it is secret. In order to accomplish this task, Alice and Bob have access to two
channels. A classical channel which Eve also receives, but cannot change (authenticated
classical channel10), and a quantum channel which Eve can interact with in any way she
likes (insecure).

Unsurprisingly, this task is impossible11 to accomplish if we replace the insecure quan-
tum channel with an insecure classical channel as Eve could simply copy any data that
Alice sends Bob, and then imitate Bob to obtain the same key that Bob has; all without
Alice or Bob’s knowledge. However, this task is indeed possible by sending quantum states
in a set of conjugate bases that are not orthogonal to each other [26]. The first QKD
protocol [27], named BB84 after the two authors along with the year the protocol was
developed, is often used as a blue-print for a large class of other QKD protocols. We shall
look at one such variant, the 3-state protocol in some detail in a later chapter.

In this section we will review the basic steps involved in a basic prepare and measure
(PM) protocol and explain how it connects to an entanglement-based (EB) protocol via
a general technique called the source-replacement scheme. We then briefly review the
security framework that allows us to calculate reliable lower bounds of key rates.

2.3.1 Prepare and measure protocols

Here we outline the steps in a generic PM protocol.

1. Signal Preparation: Alice randomly prepares one of a set of quantum states
{ρ1 . . . ρn} with an apriori probability distribution {pi} where i denotes which state

10An authenticated classical channel can be implemented over an insecure classical channel by sharing a
short secret key [24]. Thus, QKD is often referred to as growing secret keys rather than generating secret
keys.

11Classical key distribution relies on making computational assumptions like in [25] and imposing restric-
tions on what Eve can do. This is called computationally secure as opposed to the information theoretically
secure key distribution that QKD hopes to accomplish.
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she chose. These states are called signal states. Without loss of generality we can
always model Alice’s signal preparation procedure as isometries acting on some fixed
state ρi = ViρV

†
i . We denote the quantum system associated with each of these signal

states A′m for the mth round of the protocol.

2. Signal Transmission: Alice sends her prepared states to Bob via the insecure
quantum channel Φm where m denotes the round of the protocol. We denote the
quantum system associated with each of the states Bob recieves as Bm.

3. Measurement: Bob measures the states that he receives by a k-outcome POVM
{Γj}kj=1 and records the outcome from each round.

After repeating the above steps multiple times, we proceed to the next part of the protocol.

4. Parameter estimation: Alice and Bob randomly choose a subset of the rounds
for testing or parameter estimation. They both reveal the recorded values of state
chosen i and measurement outcome j to form a probability12 distribution p(i, j) =
piTr [ΓjΦm(ρi)]. This probability distribution effectively constrains Φm, and thus
Eve’s actions on the states that Alice sent Bob. Based on these constraints, if the
probability distribution belongs to an agreed upon set they proceed with the protocol
after discarding the test results. Otherwise, they abort.

5. Announcements and sifting: Alice and Bob make announcements over the au-
thenticated classical channel. They sift the data based on the announcements made
i.e. they choose a subset of signal and measurement data to keep and discard the
rest based on the announcements. This is also referred to as post-selection.

6. Key Map: Alice13 uses her signal state data i as well as the announcements to map
it into a key string x. This is called the raw key. We assume here that the key is a
bit string for simplicity, but all the steps can be applied more generally.

12This would actually be a frequency distribution instead of a probability distribution for a finite test
set. However, we only consider the asymptotic limit in this thesis. For more of a discussion on finite size
effects within the numerical framework we discuss in later sections, the interested reader can refer to [28].
Additionally, there are difficulties finding enough statistics to actually construct a probability distribution
when the channel used in each round is different. We will address these difficulties in Section 2.3.3

13Bob could also perform the key map. This is called reverse reconciliation. In that case Alice and Bob’s
roles in the next steps are reversed.
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7. Error Correction: Bob maps his measurement data into a key string y similarly to
how Alice formed x. Alice and Bob then perform error correction over the authenti-
cated classical channel to make y match with x. We denote the data leaked per key
bit to Eve in this process as δleak.

8. Privacy Amplification: Alice and Bob produce their final secret key by applying
a two-universal hash function on the raw key (Theorem 5.5.1 of [29]).

PM protocols are typically implemented in experiments. However, it is easier to analyse
the security of another class of protocols, EB protocols where Alice and Bob share an
entangled bipartite state instead of step 1 of the PM protocol. However, as we shall detail
in the next section, for any PM protocol we can construct an EB protocol with the same
key rate14 via a source-replacement scheme.

2.3.2 Source-replacement schemes

A source-replacement scheme is a general tool that we can use in analysing QKD protocols
in order to simplify the analysis. The general idea is to replace the real source15 with
another virtual source that is easier to analyse. We need to ensure that the virtual source
either does not affect the security of the protocol or it makes the protocol less secure. So, if
we use the virtual source in our security proof, this would always imply that the real source
is also secure. As a more concrete example, we shall demonstrate how a PM protocol can
be replaced by an EB protocol [30, 31].

PM protocol replaced by EB protocol

We shall use the notation used for the PM protocol above where Alice prepares the state
ρi with probability pi to send to Bob. We can instead replace the real source with a virtual
source for Alice that instead prepares the entangled state

|ψ〉AASA′ =
n∑
i=1

√
pi|i〉A ⊗ |ρi〉ASA′ . (2.24)

Recall the notation used in section 2.1.5, |ρi〉ASA′ is the purification of the density matrix
ρi ∈ D(HA′) where TrAS [|ρi〉〈ρi|] = ρi. The states |i〉 form an orthonormal basis for the

14We shall explain precisely what we mean by key rate in the following sections.
15Or more accurately, our model of the physical source.
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space HA. The system corresponding to the Hilbert space HAS is termed the shield system
[32] and is only needed if the signal states Alice sends Bob are mixed. Neither Alice nor
Bob interact with the shield system at any point. She then sends the portion of the state
corresponding to the Hilbert space HA′ to Bob through the insecure quantum channel. For
notational simplicity, we define |ψi〉 = |i〉A ⊗ |ρi〉ASA′ .

Now, Alice can measure her system A with the PVM {|i〉〈i|A}. A measurement result
i for Alice that occurs with probability pi as

Tr [(|i〉〈i|A ⊗ IASA′) |ψ〉〈ψ|] = piTr [|ψi〉〈ψi|AASA′ ] = pi

ensures that the state that was sent to Bob is ρi as

1

pi
TrAAS [(|i〉〈i|A ⊗ IASA′) |ψ〉〈ψ|] =

pi
pi

TrAAS [|ψi〉〈ψi|] (2.25)

= TrAS [|ρi〉〈ρi|] (2.26)

= ρi. (2.27)

Thus, the probabilities obtained by parameter estimation in step 4 of the protocol is given

by p(i, j) = Tr [(|i〉〈i|A ⊗ IAS ⊗ Γj) ρAASB] where ρAASB =
(
IL(HAAS ) ⊗ Φ

)
(|ψ〉〈ψ|). In

addition to this, while deciding whether or not to abort we must keep in mind that the
systems A and AS do not leave Alice’s laboratory and so Eve has no access to these systems.
So we have the additional constraint

ρAAS = TrB [ρAASB] = TrA′ [|ψ〉〈ψ|] (2.28)

with which to constrain Eve’s actions. We have shown that this EB source is able to
send the states ρi to Bob with the apriori probability distribution pi exactly like the PM
source. So this EB protocol is equivalent to the corresponding PM protocol described in
the previous section.

Source maps

We will now describe a class of source-replacement schemes that give Eve more power than
she has in reality. This is useful because it greatly simplifies the security analysis in some
cases while still giving good bounds on the key rates. This is a technique commonly used
in QKD security proofs with ideas similar to squashing maps [33].

Let {ρi} ∈ D(HA′⊗N ) and {τi} ∈ D(KA′⊗N ) be a set of states such that ρi = Ψ(τi) for all
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i and for some channel Ψ ∈ C(KA′⊗N ,HA′⊗N ) called a source map. If any QKD protocol
that uses {τi} as signal states is secure, the corresponding QKD protocol that uses {ρi} is
secure. Given the states {τi} ({ρi}), let Eve’s optimal eavesdropping strategy for N rounds
cause the signal states to change as per the channel Φvirtual ∈ C(KA′⊗N ,HB⊗N ) (Φreal ∈
C(HA′⊗N ,HB⊗N)). Suppose that the protocol using {τi} is secure and Eve’s eavesdropping
strategy corresponding to the channel Φvirtual does not give her enough information to
prevent secret key generation16. Then, Eve’s eavesdropping strategy corresponding to the
channel Ψ◦Φreal certainly gives Eve no more information than Φvirtual, since the application
of the map Ψ is an additional restriction on Eve’s more general attacks whose optimal is
Φvirtual. Thus, the protocol using {ρi} = {Ψ(τi)} is secure17.

We can use this with a source-replacement as follows. Let Alice’s real source produce
the states {ρi}. We can equivalently represent the action of this source as producing the
states {τi}, followed by an application of the source map Ψ since ρi = Ψ(τi) for all i..
We then replace this source with our virtual source simply producing the states {τi} by
giving Eve access to the part of our source that applied the channel Ψ. Eve can choose to
honestly implement the channel and reproduce the real source, or Eve could choose not to
implement it and do something else that might benefit her more. Thus, proving that the
virtual source gives us a secret key is sufficient to prove that the real source can gives us
a secret key. This method is generally useful when we suspect that Eve’s optimal attack
involves the application of Ψ, or if we expect Eve’s optimal replacement to Ψ to not give
her too much information. This conceptual process is depicted in Fig. 2.1. We shall use
some concrete examples of this rather general proof technique in this thesis to simplify our
analysis.

2.3.3 Security framework

The central problem we attempt to solve in QKD is to find the number of secret key bits for
each signal sent that we can extract from a family of QKD protocols that send a different
number of signals. This is called the key rate of the family of protocols. In this thesis
we consider only the asymptotic limit of this family where we send an infinite number of
signals. This is a simple limit that helps us compare different protocols and provides us
with intuition on what helps us increase the key rate and so has pedagogical value even if

16We shall formalise this in later sections when we discuss the key rate by specifying quantitatively what
we mean by Eve gaining partial information about the key.

17A more formal proof of this would be very similar to the proof of the security for squashing models
found in Theorem 3.3.1 of [34]. However, the technical details are not very important for this thesis and
so we omit giving an explicit proof of the fact.
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(a) We can model the real source as a virtual source followed by a source map since they both
have the exact same output.

Virtual
Source

Eve's
Replacement

EveAlice
Real Source

?

(b) Once we give Eve control of the source map, she can perform any physical operation on the
output of the virtual source, including the source map Ψ if reproducing the real state is beneficial
to her.

Figure 2.1: The real source can always be replaced by the virtual source in security proofs
if they are related via a source map since the virtual source gives Eve more power.

the end goal is to find the finite-size key rates. Additionally, the finite-size key rates [35]
can often be obtained by modifying the asymptotic key rate formula.

Restricting Eve’s attacks

Another simplification that we make is restricting Eve to collective attacks. This means
that Eve interacts with each signal in the same way, i.e. the insecure quantum channel
Φm = Φ is the same for all rounds of the protocol. She stores the results of her interactions
in a quantum memory in her system E and at the end of the protocol, she uses the
classical information she gained via Alice and Bob’s announcements to dictate her collective
measurement on her system. If Alice’s state preparation are taken from an iid probability
distribution, then this leaves their joint state involving all rounds of the protocol in a tensor
product of the joint state from each protocol round ρ⊗NAB . This makes things significantly
simpler as we can deal with the state ρAB which is significantly smaller than ρ⊗NAB especially
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in the asymptotic limit when N −→∞.

This is in contrast to coherent attacks where Eve interacts with all the signals in pos-
sibly different ways. Here the joint state ρA⊗NB⊗N need not be a product of the individual
rounds ρAB. If in addition to Alice’s state preparation being iid, Bob’s measurements are
also independent of the round security proofs against collective attacks can be lifted to secu-
rity proofs against coherent attacks by various techniques such as the entropic uncertainty
principle approach [36], post-selection technique [37] or quantum de Finetti theorem [35].
These techniques all effect the finite-size contributions, but largely leave the asymptotic
key rates unchanged.

Asymptotic key rate

Under this iid assumption, we can consider each round of the QKD protocol separately to
get the asymptotic key rate18 from the Devetak-Winter formula [38]

R∞ = H(Z|E)− H(Z|B) (2.29)

where E is the system containing Eve’s information of the key register Z including the
classical announcements made in step 5 of the protocol, and B is Bob’s19 register. Intu-
itively, the first term is the amount of information that Eve needs about the key register
to completely determine the key H(Z|E). The second term is the amount of information
that would need to be communicated over the authenticated classical channel in order to
perform error correction so that Alice and Bob have the same keys. As this information is
available to Eve, we subtract this from the key rate20. In practice, error correction proto-
cols used typically do not achieve this Shannon limit. We denote the information leaked
due to error correction δleak ≥ H(Z|B). Thus, a more realistic bound on the key rate can
be given by

R∞ = H(Z|E)− δleak. (2.30)

We can rewrite the first term H(Z|E) only as a function of the state Alice and Bob

18This is only the key rate if we know Eve’s state exactly. If we do not know Eve’s exact state then
we would need to consider all possible states that Eve could have and assume that she holds the one that
minimises this formula, since we need to guarantee that any key we produce is secret.

19Alice’s if Bob performs the key map.
20This might not be tight as some of this information might already be known to Eve from Alice and

Bob’s announcements in step 5 of the protocol and already considered in the first term. However, tightening
this bound is an open problem and we do not consider these intricacies in this thesis.
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share ρAASB [39, 40] as

f(ρAASB) = D(G(ρAASB)||Z(G(ρAASB))) (2.31)

where G is a completely positive trace non-increasing map that represents the measurement,
announcements, sifting, and key map steps of the protocol. Z is a completely dephasing
map that acts on the key register Z by deleting all off-diagonal elements represented by
Kraus operators Ki = |i〉〈i|Z ⊗ I. Although we do not know the exact state ρAASB as
Alice’s signals were acted on by the unknown channel before reaching Bob, we have Alice
and Bob’s measurements results which constrain the set S of all possible ρAASB compatible
with the constraints described in section 2.3.2. So, we consider the smallest key rate that
is compatible with these constraints. This leads us to the optimisation problem

R∞ = minf(ρAASB)− δleak

such that Tr [(|i〉〈i|A ⊗ IAS ⊗ Γj) ρAASB] = p(i, j)

TrB [ρAASB] = ρAAS
ρAASB ∈ D(HAASB).

(2.32)

Since δleak is a constant that depends only on the statistics and not the actual quantum
state, it does not affect the minimisation. Thus, for the purpose of this thesis it shall be
sufficient to consider the case when δleak = 0. When the spaces HA, HAS and HB are finite,
this can be lower bounded by an SDP [39] and the minimum can be numerically computed.
However, when they are infinite we need to use different techniques that involve taking finite
projections [1] or squashing models [33] to first make this into a finite-dimensional SDP
that can be numerically solved.

More specifically, the finite projection technique enables us to take projections in these
infinite dimensional spaces and loosen the constraints to form an SDP whose minimum
will lower bound the minimum of the infinite dimensional SDP. In this thesis we will
project onto Bob’s space with a projection ΠN that commutes21 with the POVM elements

21This is not needed for our methods to work although it does give better bounds. This assumption
is not too restrictive as the commonly used measurement device, threshold detectors do commute with
projections in the Fock basis. More on threshold detectors in the next section.
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[ΠN ,Γj] = 0. In this case we can use Eq. (49) from [1] to get the SDP

RN = minf(ρNAASB)

such that p(i, j)−W ≤ Tr
[(
|i〉〈i|A ⊗ IAS ⊗ ΓNj

)
ρAASB

]
≤ p(i, j)

TrB
[
ρNAASB

]
≤ ρAAS

1−W ≤ Tr
[
ρNAASB

]
≤ 1

ρNAASB ∈ Pos(HAASB).

(2.33)

where we have defined ρNAASB = (IAAS ⊗ ΠN) ρAASB (IAAS ⊗ ΠN) and ΓNj = ΠNΓjΠN . We
have also used the fact that Tr [ΠAΠB] = Tr [ΠAΠ ΠBΠ] for any projection Π to get ΓNj in
the trace constraints. W is a parameter that needs to be estimated that signifies the weight
of ρAASB that lies outside the subspace we are projecting on i.e. W ≥ 1− Tr

[
ρNAASB

]
.

If in addition, each of the signal states can be written as a direct sum ρi =
⊕∞

ñ=1 pñρ
ñ
i

where the direct sum structure is the same for all the states, then we can write the state
ρAASB =

∑∞
ñ=0 pñρ

ñ
AB (See Eq. (D.6) from [34]). It then follows (Eq. (D.9) from [34]) that

we can break up the objective function f(ρAASB) =
∑∞

ñ=0 pñf(ρñAB) as a sum of positive
numbers. Thus, taking finitely many of these terms is sufficient to lower bound the key
rate. In practice, just one of these terms is usually enough to give a good bound on the
key rate for most protocols. Now, if we could find the statistics to constrain each of these
terms as Y L

ñ (i, j) ≤ Tr
[
ρñABΓNj

]
≤ Y U

ñ (i, j), we could obtain the set of SDPs

RN
ñ = min pñf(ρñNAB)

such that Y L
ñ (i, j) ≤ Tr

[(
|i〉〈i|A ⊗ ΓNj

)
ρñNAB

]
≤ Y U

ñ (i, j)

TrB
[
ρñNAB

]
≤ ρñA

1−W ≤ Tr
[
ρñNAB

]
≤ 1

ρñNAB ∈ Pos(HAB).

(2.34)

Note that solving each of these SDPs independently could introduce some looseness since we
do not take into account the fact that the constraints of different blocks could be correlated.
This is because the minimum of each of these SDPs might independently be achieved at
points that together violate the constraints in Eq. (2.33). Thus, RN ≥

∑∞
ñ=0R

N
ñ where

each term in the sum is positive. So we can take any finite cut-off for this sum to solve
finitely many of these optimisations to get a reliable lower bound on the key rate. Thus,
the central problems we try to solve in this thesis are obtaining the direct sum structure
for the signal states, and finding these bounds Y L

ñ (i, j)
(
Y U
ñ (i, j)

)
.
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2.4 Quantum optics

The most common practical implementations of QKD protocols use states produced by
lasers, and optical devices to manipulate the states and encode the key information in
them. So in order to understand practical QKD, we first need to understand quantum
optics. We give a very brief introduction to lasers and the optical components we use in
this thesis. Another great reference for a brief overview of the quantum optics needed for
this thesis is [41].

2.4.1 Fock states

The energy of an electromagnetic (EM) field can be shown to be quantized22. Each quanta
or excitation of energy is called a photon. We call the Hilbert space vector describing
the preparation procedure for n photons a Fock state or a number state |n〉. The set of
all Fock states {|n〉}∞n=0 form an orthonormal basis of the Hilbert space for the EM field.
Note that |0〉 is a unit vector representing an EM field with no photons and is not the zero
vector. We call this the vacuum state. We sometimes implicitly write the tensor product
of vacuum states |0, 0〉 as |0〉.

A pair of useful operators connecting the number states are the ladder operators a
and a†. The creation a† and annihilation operator a can be thought of as operators that
create and destroy photons respectively as

a†|n〉 =
√
n+ 1|n+ 1〉 (2.35)

a|n〉 =
√
n|n− 1〉. (2.36)

Note that the action of the annihilation operator on the vacuum state gives the zero
vector, a|0〉 = 0. These operators are not Hermitian, and so do not correspond to physical
observables. However, we can often write measurements and observables in terms of the
ladder operators whose action on Fock states is easy to compute and intuitive.

The commutator of two operators A and B defined as [A,B] = AB−BA is an impor-
tant quantity throughout quantum mechanics. The ladder operators obey the commutation
relation [a, a†] = 1 where 1 is the identity on the Hilbert space.

22For a more complete formulation of the quantization of the EM field see chapter 2 of [42].
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2.4.2 Coherent states

Coherent states {α}α∈C are an important class of states in quantum optics as they can be
easily and cheaply produced by lasers. These are eigenstates of the annihilation operator

|α〉 = α|α〉 (2.37)

where the eigenvalue α is called the amplitude of the coherent state. Note that the coherent
state |0〉 corresponds exactly to the Fock state |0〉. Coherent states span the Hilbert space,
but are not orthogonal. We can write the coherent state in the Fock basis as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (2.38)

giving us the overlap between two coherent states 〈α|β〉 = eiIm(α∗β)e−
|β−α|2

2 .

Given a coherent state |α〉, its phase is the phase θ of the complex number α =
√
µeiθ

and its intensity µ = |α|2. The probability of measuring n-photons in a coherent state with
intensity µ is given by a Poissonian distribution

pµ(n) = Tr [|n〉〈n|α〉〈α|] (2.39)

= 〈n|α〉〈α|n〉 (2.40)

= e−µ
µn

n!
(2.41)

We call a mixture of coherent states with a fixed intensity but uniformly random phase, a
completely phase-randomised or fully phase-randomised state given by

ρµPR =
1

2π

∫ 2π

0

dθ|√µeiθ〉〈√µeiθ| (2.42)

=
∑
n

pµ(n)|n〉〈n|. (2.43)

When it might be ambiguous, we refer to the pure coherent states as phase-coherent states
in contrast to the fully phase-randomised coherent states. Coherent states are known as
”classical states” as they interact with beam splitters and other optical components exactly
as we might expect from classical electrodynamics as we will see in the following sections.
Note that despite calling them ”classical states”, these are not the same as the classical
states defined at the end of section 2.1.3.

28



2.4.3 Linear optics

Two lasers or laser pulses ρ1, ρ2 that are spatially or temporally separated are described
by the composite system ρ1 ⊗ ρ2. We denote the Fock basis and ladder operators for each
individual pulse with a subscript {|n〉j} and aj for the jth pulse. We call these different op-
tical modes23. When describing the action of optical componenets on arbitrary quantum
states, we instead describe how the ladder operators would transform. This then describes

how the Fock basis transforms as |n〉 = (a†)n√
n!
|0〉.

Beam splitters

Classically, a beam splitter is a device that splits the intensity of an incoming beam in
two. Quantum mechanically, a beam splitter is a quantum transformation that takes two
input systems and produces two output systems. More precisely, a beam splitter can be
represented by a quantum channel Φ ∈ C(H ⊗ H,H ⊗ H) where each Hilbert space H
describes the space spanned by the Fock basis of a particular optical mode as depicted in
Fig. 2.2. As mentioned above, it is sufficient to describe the action of this channel on the
Fock basis and thus, a description of the transformation of the ladder operators would give
us a description of the channel. The beam splitter transforms the input modes a1, a2 to

Figure 2.2: Schematic of a generic beam splitter. The input modes are labelled 1 and 2,
while the output modes are labelled 3 and 4.

the output modes a3, a4 as a3 =
√
ta1 + eiφ

√
ra2 and a4 =

√
ta2 − e−iφ

√
ra1 where r and t

are the reflectivity and transmittivity of the beam splitter respectively with r+ t = 1, and
φ is the phase shift caused by the reflection. In this thesis we will only consider the cases
when φ = π. More concisely, we can write this transformation as(

a3

a4

)
=

(√
t −

√
r√

r
√
t

)(
a1

a2

)
. (2.44)

23These can be obtained as solutions to Maxwell’s equations as detailed in Chapter 2 of [43].
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We can also write the input modes in terms of the output modes by inverting the above
matrix. This channel is a unitary transformation since we have assumed that the beam
splitter is lossless (when we assumed that r+ t = 1). So, it takes pure states to pure states.

Consider the action of a beam splitter given two coherent states |α〉 and |β〉 as inputs
into mode 1 and mode 2 respectively. By using the relation in Eq. (2.44) and the expansion
of coherent states in the Fock basis as given in Eq. (2.38), we can show that the output of
the beam splitter from mode 3 and 4 would be |

√
tα−

√
rβ〉 and |

√
rα+

√
tβ〉 respectively

which corresponds to interference between classical electromagnetic waves.

Phase shifter

A phase shifter is a simple optical device that adds an optical phase φ to the input mode.
This is represented as

aout = eiφain (2.45)

where the phase φ is the phase shift. A schematic of the phase shifter is shown in Fig.
2.3. This acts on coherent states by changing the phase of the state where the input

Figure 2.3: Schematic of a phase shifter that shifts the phase of the input mode ain by φ.

coherent state |α〉 is transformed to the output state |αeiφ〉. From this, we can show that
the application of the phase shifter to a fully phase-randomised state leaves it unchanged
as

ρµPR

phase−−−→
shifter

1

2π

∫ 2π

0

dθ|√µei(θ+φ)〉〈√µei(θ+φ)| (2.46)

=
1

2π

∫ 2π

0

dθ|√µeiθ〉〈√µeiθ| = ρµPR (2.47)
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Threshold detectors

Ideal24 threshold detectors are the most basic measurement devices we use. These detectors
depicted in Fig. 2.4 detect photons coming in a particular mode, and do not distinguish
between the number of photons that arrive at the detector. So, the detector either does

Figure 2.4: Schematic of a threshold detector with annihilation operator ad.

not click if there are no photons in that mode, or it clicks if there are one or more photons.
Given the annihilation operator ad of the detector mode, the POVM element for a click
event is given by

Fclick =
∑
n

|n〉〈n| (2.48)

=
∑
n

1

n!
(a†d)

n|0〉〈0|and (2.49)

and the POVM element for a no-click event is given by

Fno-click = |0〉〈0| (2.50)

The probability of getting a no-click event for a coherent state with intensity µ is the
same as the probability of the coherent state being in the vacuum state pµ(0), and the
probability of getting a click is

pclick = 1− pµ(0). (2.51)

Note that these probabilities do not depend on the phase of the coherent state so it would
be the same for any mixture of coherent states having the same intensity but different
phases.

24By ideal we mean that we do not consider lossy detectors or detectors with dark counts in this thesis for
simplicity. However, all the methods and results can be easily extended to these more realistic detectors.
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Mach-Zehnder interferometer

The Mach-Zehnder interferometer is a collection of beam splitters and threshold detectors
as shown in Fig. 2.5. Both the beam splitters used are 50-50 beam splitters i.e. r = t = 1/2.

Figure 2.5: Schematic of a Mach-Zehnder interferometer. The black pulses are vacuum
pulses.

The input of the first beam splitter has vacuum states coming in at one port, and has
two states at different times coming in the other. We denote the annihilation operators
corresponding to the non-vacuum input modes to be a1 and a2. The two arms of the
interferometer are of different lengths so that the middle time-bin of each arm can interfere
at the second beam splitter. For the first and third time-bins, one input of the beam splitter
would be a vacuum state. Finally, the 6 outputs of the second beam splitter (two from
each time-bin) are fed into threshold detectors. We denote the annihilation operators of the
modes going into the detectors as d1, d2 and d3 for the arm with destructive interference
(which we call the ’-’ detector), and c1, c2 and c3 for the arm with constructive interference
(which we call the ’+’ detector).

We can show that the output modes di and ci are related to the input modes a1 and a2
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as follows

d1 =
1

2
a1

d2 = −1

2
a1 +

1

2
a2

d3 = −1

2
a2

c1 =
1

2
a1

c2 =
1

2
a1 +

1

2
a2

c3 =
1

2
a2

(2.52)

For a complete derivation of this, see Appendix A of [44]. Note that we consider the
effective annihilation operators since we know that some of the beam splitter inputs are
always vacuum corresponding to Eq. (A.6) in [44]. For the full equations with all the input
modes, refer to Eq. (A.5) in [44].

Now we analyse the case where the input modes are in the state |α〉1⊗|β〉2. As shown in
Fig. 2.6 we can use the beam splitter relations above to get the coherent states going into
the detectors. The coherent states going into the ’-’ detector would be |α

2
〉⊗ |−α+β

2
〉⊗ |−β

2
〉

and the states going into the ’+’ detector would be |α
2
〉 ⊗ |α+β

2
〉 ⊗ |β

2
〉. As a special case,

consider when α = β. Here, the states would be |α
2
, 0, −α

2
〉 and |α

2
, α, α

2
〉. So, in this case the

middle time-bin for the ’-’ detector would never click. Note that the probabilities of clicks
of the detectors would not depend on the phase of the input states for the first and third
time-bins, but would depend on the relative phase of α and β for the second time-bin.
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Figure 2.6: The result of coherent states passing through a Mach-Zehnder interferometer.
We have not depicted the vacuum states that enter the first beam splitter for simplicity.
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Chapter 3

Generalised decoy-state method

In this section we describe a general method that was inspired by the decoy-state method
[45, 11] which improves the key rates for optical QKD protocols with high loss. It does this
by constraining Eve’s actions through the use of additional prepared states called decoy
states. However, it is more generally applicable for any quantum information processing
task that sends some known states {ρi} through an unknown channel which are then
measured, where we wish to know the statistics of another set of states {σj} that is not
actually sent. It can be thought of as a limited version of channel tomography. This could
be useful since very often the theoretically optimal states for the task might be hard to
prepare experimentally.

As an example, the first implementations of QKD [27] used single-photon states. How-
ever, realistically we use low intensity coherent states. Any multi-photon states can be
shown to be insecure in BB84 type protocols with basis announcements due to the photon-
number splitting attack [46, 47] where Eve can use the fact that Bob’s threshold detectors
do not distinguish between single and multiple photons to gain full information about
multi-photon states. So, instead Alice can send decoy states, coherent states with dif-
ferent intensities to constrain the number of single-photon signals that Bob would receive.
This is a special case of the problem of finding the constraints pLñ(i, j)

(
pUñ (i, j)

)
in Eq.

(2.34) as we shall explain in this section.

Another example where techniques like this might find some use is in twin-field type
protocols like in [48]. Here, completely phase-randomised states with different intensities
are used to estimate the statistics that would arise from sending superpositions of coherent
states called cat states. These are then used with analytical methods to find the key rates
for the protocol.
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In this section we first precisely state the problem as an infinite-dimensional SDP in
Section 3.1, we then explain how our general method reduces to the standard decoy-state
analysis in Section 3.2. We then detail how to make the SDPs finite-dimensional in Section
3.3, and finally explain how it can be applied to QKD problems in Section 3.4.

3.1 General framework

We will first more precisely describe the general problem. Let Φ ∈ C(H,K) be the unknown
channel1 that we are trying to constrain. Let {ρµk}2∈ D(H) and {Γl} ∈ B(K) be the states
and POVMs whose statistics we know Tr [ΓlΦ(ρµk)] = γµkl. Let {FN

j } ∈ B(K) be the
POVM elements that live in a finite3 dimensional subspace such that ΠNF

N
j ΠN = FN

j .
Let {σi} ∈ D(H) be the set of states whose statistics, when measured with FN after going
through the channel Φ, we wish to bound. These statistics can be written as Tr

[
FNΦ(σi)

]
.

We shall refer to {ρµk} ({σi}) and {Γl}
(
{FN

j }
)

as the constraining (objective) states and
POVMs respectively.

We assume here that [Γl,ΠN ] = 0 for all l. Although this is not needed, it makes the
bounds tighter and as mentioned in the previous section it is indeed often the case, for
example when we use threshold detectors and project in the photon number basis.

The problem of trying to bound the statistics Tr
[
FNΦ(σi)

]
, given that we know

Tr [ΓlΦ(ρµk)] = γµkl, can be phrased as a set4 of optimisation problems as follows:

Y L(i, j) = min
Φ

Tr
[
Φ(σi)F

N
j

]
s.t.Tr [Φ(ρµk)Γl] = γµkl ∀k, l, µ

Φ is CPTP.

Y U(i, j) = max
Φ

Tr
[
Φ(σi)F

N
j

]
s.t.Tr [Φ(ρµk)Γl] = γµkl ∀k, l, µ

Φ is CPTP.

(3.1)

1In QKD this would correspond to Eve’s action.
2Our notation of using two indices to label elements of this set might seem redundant, but it originates

from standard decoy-state analysis where µ denotes the intensity of the decoy state sent, and k denotes
Alice’s encoding of the state. We retain the notation here to make the link to decoy state analysis more
apparent.

3If the POVM elements of interest are infinite, we can get FNj by taking their finite projections.
However, we would then need additional methods to relate the results of the finite POVMs to the infinite
POVMs like in Eq. 2.33.

4One for each signal state σi and POVM element FNj . Note that since we have different independent
SDPs for each j, this might introduce some looseness to the bounds we get as we do not take into account
constraints like

∑
j F

N
j = ΠN across all j’s. Thus, different choices of POVMs to use in the objective

function might not all be equivalent and coarse-grained POVMs might actually do better. However, this
looseness also exists in standard-decoy state analysis.
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Optimisation problems are hard to solve in general. However, all the constraints are
linear. So this can be made into an SDP if we can represent the channel as a positive
semidefinite operator. The Choi-Jamiolkowski isomorphism of the channel does just that.
Let J ∈ L(H ⊗ K) be the Choi-Jamiolkowski isomorphism of the channel Φ. Using Eq.
(2.13) to obtain the equivalent trace constraints, we can rewrite the optimisation problem
as an SDP as follows:

opt.
J

Tr
[
(σTi ⊗ FN

j )J
]

s.t.Tr
[
(ρµk

T ⊗ Γl)J
]

= γµkl ∀k, l, µ

J ≥ 0

TrK [J ] = IH

(3.2)

where opt. indicates that we have to optimise the objective function to find both the
maximum and the minimum as separate SDPs. We denote the constraints of the form

Tr
[
(ρµk

T ⊗ Γl)J
]

= γµkl as expectation value constraints, the constraint J ≥ 0 as the

positivity constraint, and the constraint TrK [J ] = IH as the partial trace constraint. The
main difficulty in this generalised decoy-state SDP is that it is infinite dimensional. So we
need to use methods similar to [1] in order to formulate a finite dimensional SDP whose
results can bound this infinite SDP.

3.2 Reduction to standard decoy-state analysis

Before moving to the dimension reduction, we show the connection between our general
framework and standard decoy-state analysis. In standard decoy, we wish to bound the
single-photon statistics while sending only fully-phase randomised coherent states of dif-
ferent intensities. Thus, given Alice’s encoding isometries Vi from step 1 of the protocol,
and fitting this into the general framework, the objective states are σi = Vi|1〉〈1|V †i where
|1〉 is a single-photon state, and the constraining states are ρµi = Viρ

µ
PRV

†
i where the fully

phase-randomised state ρµPR with intensity µ is as defined in Eq. (2.42). The constrain-
ing POVMs are given by Bob’s measurements Γl and the objective POVMs are the finite
projections of these in the photon-number basis FN

j = ΠNΓjΠN . Note that by choosing to
project in the photon number basis, we ensure that [Γl,ΠN ] = 0 for all l.

The critical assumption required to perform standard decoy-state analysis is that the
base states that the encoding isometries act on are diagonal in the same basis independent
of the intensity µ, with the probability distribution of the different basis states changing
with different µ. That holds true when the base states are fully phase-randomised as can
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be seen from Eq. (2.42) since we can write

ρµk =
∑
n

pµ(n)Vk|n〉〈n|V †k

where the photon-number states |n〉 are independent of µ and all intensity dependence is
in the probability distribution pµ(n). The constraints in this case become

Tr
[
(ρµk

T ⊗ Γl)J
]

= Tr [Φ (ρµk) Γl] (3.3)

= Tr

[
Φ

(∑
n

pµ(n)Vk|n〉〈n|V †k

)
Γl

]
(3.4)

=
∑
n

pµ(n)Tr
[
Φ
(
Vk|n〉〈n|V †k

)
Γl

]
(3.5)

=
∑
n

pµ(n)p(l|k, n) = γµkl (3.6)

where p(l|k, n) is the probability of a detection corresponding to the POVM Γl given that
Alice sent n photons encoded with the isometry Vk.

In standard decoy-state analysis this can now be written as a set of linear program-
ming problems where we need to find bounds on p(l|k, 1) and we have linear constraints∑

n pµ(n)p(l|k, n) = γµkl. Note that this objective function corresponds to Tr
[
(σTa ⊗ Γj)J

]
and to find the bounds on the finite projection Tr

[
(σTa ⊗ ΓNj )J

]
we would need to further

loosen the results of the linear programs using methods from [1] as in Eq. (2.33), whereas
in the generalised decoy-state analysis we have the tools to more directly estimate bounds
on the projected statistics. Thus, we have shown how our general framework encompasses
the standard decoy case, but does not make the same assumptions. Importantly, the states
need not be encoded in fully-phase randomised states.

3.3 Finite projections

We will now formulate a finite-dimensional SDP whose optimal value will give us bounds
on the optimal value of the SDP in Eq. (3.2). Following [1], this is done by taking
projections on the optimisation variable J to get a finite dimensional optimisation variable
JMN = (ΠM ⊗ ΠN) J (ΠM ⊗ ΠN). In order to ensure that we can reliably bound the
infinite-dimensional SDP, we then do the following:

38



1. We appropriately modify the constraints from the infinite-dimensional SDP:

• Relax expectation value constraints by first projecting on the state space, and
then projecting on the measurement space.

• Showing that the positivity constraint is not affected on projecting.

• Showing how the partial trace constraint is changed on projecting.

This results in taking the projections to obtain the feasible set for the finite-dimensional
SDP SMN while ensuring that this contains the projection of the feasible set for the
infinite-dimensional SDP S∞ i.e. (ΠM ⊗ ΠN) S∞ (ΠM ⊗ ΠN) ⊆ SMN . This is to
ensure that given the optimal point in S∞ its projection lies in the finite-dimensional
feasible set SMN which we would optimise over.

2. We relate the objective functions of the finite and infinite-dimensional SDPs to ensure
that the optimal value of the finite-dimensional SDP along with the appropriate
correction term would bound the optimal value of the infinite-dimensional SDP.

3.3.1 Expectation value constraints

We shall first loosen the expectation value constraints

Tr
[
(ρµk

T ⊗ Γl)J
]

= γµkl ∀k, l, µ. (3.7)

Throughout this section we shall make repeated use of Eq. (2.13) to rewrite the constraints
as

Tr [ΓlΦ(ρµk)] = γµkl ∀k, l, µ (3.8)

along with the definition of the adjoint map as

Tr
[
Φ†(Γl)ρ

µ
k

]
= γµkl ∀k, l, µ. (3.9)

Projection on the state space

We know the different states ρµk . Thus, given a projection ΠM , following the procedure in

Appendix A.1 we can find bounds
∣∣∣∣∣∣ρµk − ρµMk ∣∣∣∣∣∣

1
≤ εµMk where ρµMk = ΠM ρµk ΠM . We often
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suppress the size of the projection M in our notation where it is clear from context and
simply write the bound on the one-norm as εµk . Now using the statistics we know, we get

γµkj − ε
µ
k ≤Tr

[
ρµMk Φ†(Γj)

]
≤ γµkj + εµk (3.10)

=⇒ γµkj − ε
µ
k ≤Tr

[(
ρµMk

T ⊗ Γj

)
J
]
≤ γµkj + εµk (3.11)

as shown in Appendix A.2. If we know that [ρµk ,ΠM ] = 0, we can tighten the upper bound
as shown in Appendix A.2,

γµkj − ε
µ
k ≤Tr

[
ρµMk Φ†(Γj)

]
≤ γµkj (3.12)

=⇒ γµkj − ε
µ
k ≤Tr

[(
ρµMk

T ⊗ Γj

)
J
]
≤ γµkj (3.13)

We can more concisely write this by defining

C
(
ρµMk ,ΠM

)
=

{
0 [ρµk ,ΠM ] = 0

1 [ρµk ,ΠM ] 6= 0
(3.14)

so that we get

γµkj − ε
µ
k ≤Tr

[
ρµMk Φ†(Γj)

]
≤ γµkj + εµk C

(
ρµMk ,ΠM

)
(3.15)

=⇒ γµkj − ε
µ
k ≤Tr

[(
ρµMk

T ⊗ Γj

)
J
]
≤ γµkj + εµk C

(
ρµMk ,ΠM

)
. (3.16)

Here we note that the introduction of this discontinuous piecewise function C is a possible
source of looseness in our methods.

Consider the following example to illustrate the possible source of looseness. Let

ρ =

(
1−W −∆
−∆ W

)
, ΠM =

(
1 0
0 0

)
, and Γ =

(
1/2 1/2
1/2 1/2

)
with |∆| ≤

√
W (1−W ) to ensure that ρ ≥ 0. We can compute ε = 2

√
W from Appendix

A.1 for ρ. We can compute the traces

Tr [ρΓ] = 1/2−∆, and Tr
[
ρMΓ

]
=

1−W
2

.
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Now, the trace bounds give us

Tr
[
ρMΓ

]
≤ Tr [ρΓ] + ε C(ρ,ΠM) (3.17)

1−W
2

≤ 1/2−∆ + 2
√
Wδ∆,0 (3.18)

where the function C(ρ,ΠM) simplifies to the Kronecker delta function

δ∆,0 =

{
0 ∆ = 0

1 ∆ 6= 0

since the limit ∆ = 0 corresponds to ρ1 which commutes with the projection ΠM . Rear-
ranging and simplifying, we get

∆− W

2
≤ 2
√
Wδ∆,0. (3.19)

Now we can see that whenever ∆ is arbitrarily small but non-zero this bound would be
loose since δ∆,0 = 1.

So we would expect that C(ρ,ΠM) is a continuous function that depends on the mag-
nitude of the off block-diagonal components that interpolates between the two extremes 0
when these components are 0, and 1 when their magnitude is large. Some work on finding
such a function for a similar case was shown in Lemma 4 of [49]. However, it is not easy
to directly apply this lemma to our case and further work is needed to tighten the bounds
we get.

Projection on the measurement space

We have the loosening of the statistics when we project onto the states ρµk from Eq. (3.15),
but we still need to project onto the POVMs Γj to get ΓNj = ΠNΓjΠN . To find this,
we need to first find bounds on the weight of the transmitted state Φ(ρµk) outside the
ΠN projected subspace W µ

k defined as Tr [ΠNΦ(ρµk)ΠN ] ≥ 1−W µ
k . Finding these weights

W µ
k , are protocol specific as a general method to find tight bounds on these weights is not

known. [1] frames this as an SDP and uses analytical techniques to find tight bounds on the
weights. Another method is to use clicks in multiple detectors at once, called cross-clicks
as done in [31]. We shall also use this method when we discuss the three-state protocol.

Since we have already projected onto the state space, we would need to combine both
εµk with W µ

k to get the bound on the weight of the transmitted projected state Φ(ΠMρ
µ
kΠM)
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outside the ΠN projected subspace as follows:

Tr [ΠNΦ(ΠMρ
µ
k ΠM)ΠN ] = Tr

[
ΠMρ

µ
k ΠMΦ†(ΠN)

]
(3.20)

≥ Tr
[
ρµk Φ†(ΠN)

]
− εµk (3.21)

= Tr [Φ(ρµk)ΠN ]− εµk (3.22)

≥ 1−W µ
k − ε

µ
k . (3.23)

The proof of the first inequality is given in Appendix A.2, and we have used the fact that∣∣∣∣Φ†(Γ)
∣∣∣∣
∞ ≤ 1 for any POVM Γ and channel Φ.

Consider now the probability of event l occuring given that the projected state ΠMρ
µ
kΠM

is transmitted through the channel, Tr [ΓlΦ(ΠMρ
µ
kΠM)]. The decrease in the expectation

value that occurs as a result of considering the projected POVM ΓNl instead can be found
as

Tr
[(
ρµMk

T ⊗ Γl

)
J
]
− Tr

[(
ρµMk

T ⊗ ΓNl

)
J
]

(3.24)

=Tr [ΓlΦ(ΠMρ
µ
k ΠM)]− Tr

[
ΓNl Φ(ΠMρ

µ
k ΠM)

]
(3.25)

=Tr
[
ΠNΓlΠNΦ(ΠMρ

µ
k ΠM)

]
(3.26)

≤Tr
[
ΠN I ΠNΦ(ΠMρ

µ
kΠM)

]
(3.27)

=Tr
[
Φ(ρµMk )

]
− Tr

[
ΠNΦ(ρµMk )

]
(3.28)

≤1− (1−W µ
k − ε

µ
k) (3.29)

=W µ
k + εµk (3.30)

where the first inequality follows from the fact that Γj ≤ I, and ΠN := I−ΠN and we have
used the result in Eq. (3.23) to get Eq. (3.29).

To summarise, in the previous subsection we found bounds on the statistics after pro-
jecting on the state space as shown in Eq. (3.16). We then made use of the bound on
the weight of the transmitted projected space outside the ΠN projected subspace that we
found in Eq. (3.23) to obtain a lower bound on the difference between the statistics on
projecting on just the state space, and on projecting on both the state and measurement
space in Eq. (3.30). We can combine these results to obtain a lower bound on the statistics
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after projecting on both the state and the measurement state

Tr
[(
ρµMk

T ⊗ ΓNj

)
J
]

= Tr
[
ΓNj Φ(ΠMρ

µ
k ΠM)

]
(3.31)

≥ Tr [ΓlΦ(ΠMρ
µ
k ΠM)]−W µ

k − ε
µ
k (3.32)

≥ γµkj −W
µ
k − 2εµk . (3.33)

We can also find the upper bound on Tr
[(
ρµMk

T ⊗ ΓNj

)
J
]

as

Tr
[(
ρµMk

T ⊗ ΓNj

)
J
]

= Tr
[
ΓNj Φ(ΠMρ

µ
k ΠM)

]
(3.34)

≤ Tr [ΓjΦ(ΠMρ
µ
k ΠM)] (3.35)

≤ γµkj + εµk C
(
ρµMk ,ΠM

)
(3.36)

where the first inequality is proved in Appendix A.2 and uses the fact that [ΠN ,Γj] = 0.
The second inequality follows directly from Eq. (3.15).

So we have found the loosened expectation value constraints after projection

γµkj −W
µ
k − 2εµk ≤ Tr

[
(ρµMk

T ⊗ ΓNl )J
]
≤ γµkj + εµk C

(
ρµMk ,ΠM

)
(3.37)

=⇒ γµkj −W
µ
k − 2εµk ≤ Tr

[
(ρµMk

T ⊗ ΓNl )JMN
]
≤ γµkj + εµk C

(
ρµMk ,ΠM

)
(3.38)

where the implication that allows us to consider a finite JMN follows from the cyclic
property of trace along with the idempotency of projections i.e. Π2 = Π for all projections
Π.

3.3.2 Positivity constraint

Projecting does not affect the positivity of an operator as shown in Appendix A.1. Thus,
the finite-dimensional constraint JMN ≥ 0 follows from J ≥ 0.

3.3.3 Partial trace constraint

We shall now describe how the partial trace constraint for the infinite-dimensional SDP

TrK [J ] = IH
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is modified on projecting. We first show that TrK [J ] − TrK [(I⊗ ΠN) J (I⊗ ΠN)] ≥ 0 as
follows:

TrK [J ]− TrK [(I⊗ ΠN) J (I⊗ ΠN)] =TrK
[
(I⊗ ΠN + I⊗ ΠN) J (I⊗ ΠN + I⊗ ΠN)

]
− TrK [(I⊗ ΠN) J (I⊗ ΠN)] (3.39)

=TrK
[
(I⊗ ΠN) J (I⊗ ΠN)

]
+ TrK

[
(I⊗ ΠN) J (I⊗ ΠN)

]
+ TrK

[
(I⊗ ΠN) J (I⊗ ΠN)

]
(3.40)

=TrK
[
(I⊗ ΠN) J (I⊗ ΠN)

]
+ TrK

[
(I⊗ ΠN) (I⊗ ΠN) J

]
+ TrK

[
(I⊗ ΠN) (I⊗ ΠN) J

]
(3.41)

=TrK
[
(I⊗ ΠN) J (I⊗ ΠN)

]
≥ 0. (3.42)

where we have used the cyclic property of the trace to get the third equality.

We can thus find the modified partial trace constraint

TrK
[
JMN

]
= TrK [(ΠM ⊗ ΠN) J (ΠM ⊗ ΠN)] (3.43)

= ΠMTrK [(I⊗ ΠN) J (I⊗ ΠN)] ΠM (3.44)

≤ ΠMTrK [J ] ΠM (3.45)

= ΠM (3.46)

where we have used the fact that TrK [J ]− TrK [(I⊗ ΠN) J (I⊗ ΠN)] ≥ 0 from Eq. (3.42)
to obtain the first inequality.

3.3.4 Objective function

Having relaxed all the constraints to obtain the feasible set SMN such that it contains the
projection of the infinite-dimensional feasible set (ΠM ⊗ΠN) S∞ (ΠM ⊗ΠN), we now turn
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our attention to the objective function5

Tr
[(
σi
T ⊗ FN

j

)
J
]
.

The measurement FN
j is already finite in the required space, in fact that is how we

chose the projection ΠN . Thus, we need only concern ourselves with the projection on the
state space. Similar to Section 3.3.1, we know the states σi and so can follow the procedure
in Appendix A.1 to find bounds

∣∣∣∣σi − σMi ∣∣∣∣1 ≤ εi where σi = ΠMσiΠM . We can further
use the results proved in Appendix A.2 to get

Tr
[(
σi
T ⊗ Γj

)
J
]
− εi ≤Tr

[(
σMi

T ⊗ Γj

)
J
]
≤ Tr

[(
σi
T ⊗ Γj

)
J
]

+ εi C (σi,ΠM) (3.47)

just like in Eq. (3.15). Rearranging the terms to find bounds on the infinite-dimensional
objective function we get

Tr
[(
σMi

T ⊗ Γj

)
J
]
− εi C (σi,ΠM) ≤Tr

[(
σi
T ⊗ Γj

)
J
]
≤ Tr

[(
σMi

T ⊗ Γj

)
J
]

+ εi (3.48)

The upper (lower) bound gives us the correction term that we would need to include to get a
reliable upper (lower) bound to the maximisation (minimisation) of the infinite-dimensional
SDP.

5We note that finding the correction term for a general convex function that must be added to the
optimal value of the finite-dimensional SDP in order to bound the infinite-dimensional SDP is not simple.
This correction term for the lower bound for a large class of functions was found in Theorem 1 of [1].
However, since our objective function is linear, our task is significantly simpler and follows similar to the
bounds in Section 3.3.1.
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We have our finite-dimensional SDPs

Y L
M(i, j) = min

JMN
Tr
[(
σMi ⊗ ΓNj

)
JMN

]
s.t.γµkj −W

µ
k − 2εµk ≤ Tr

[
(ρµMk

T ⊗ ΓNl )JMN
]

∀k, l, µ

Tr
[
(ρµMk

T ⊗ ΓNl )JMN
]
≤ γµkj + εµk C (ρµk ,ΠM) ∀k, l, µ

JMN ≥ 0

TrK
[
JMN

]
≤ ΠM

Y U
M (i, j) = max

JMN
Tr
[(
σMi ⊗ ΓNj

)
JMN

]
s.t.γµkj −W

µ
k − 2εµk ≤ Tr

[
(ρµMk

T ⊗ ΓNl )JMN
]

∀k, l, µ

Tr
[
(ρµMk

T ⊗ ΓNl )JMN
]
≤ γµkj + εµk C (ρµk ,ΠM) ∀k, l, µ

JMN ≥ 0

TrK
[
JMN

]
≤ ΠM

(3.49)

where we have once again used the cyclic property of trace along with the idempotency of
projections to make all the operators finite. We can use the optimal value of this SDP to
bound the optimal value of the infinite-dimensional SDP of interest by using the correction
term from Eq. (3.48) to get Y U(i, j) ≤ Y U

M (i, j)+εi and Y L(i, j) ≥ Y L
M(i, j)−εi C (σi,ΠM) .

We can now use these bounds for the quantum information processing task of interest.

3.4 Application to QKD

We will now specifically talk about the generalised decoy-state method when applied to
QKD. Borrowing notation and terminology from standard decoy, we will assume that we
have a set of decoy states ρµk , where µ is a label that denotes the different decoys which we

use to constrain Eve’s attacks, and k denotes Alice’s encoding as ρµk = Vkρ
µV †k for some

base state ρµ ∈ D(W). We will denote ρµ←→ν
k as the signal states from which we extract the

key. Note that in the case of standard decoy, ρµ needed to be the fully-phase randomised
state. We make no such assumption.

Let ρν =
∑
pñ|ñ〉〈ñ| be the decomposition of ρν in terms of its eigenvectors and eigen-

values6. In the case of standard decoy |ñ〉 were simply the Fock states. However, they could

6This decomposition might not be easy to find as diagonalising arbitrary infinite-dimensional density
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in general be different. We label them in decreasing order of the eigenvalues so that pñ is
the nth largest eigenvalue. Thus, we can write the signal states as ρνk =

∑∞
ñ=0 Vk|ñ〉〈ñ|V

†
k .

Note that we do not require that ρµ have the same eigenvectors, so it might be more apt
to label them as |ñν〉 although we omit the label ν for notational simplicity. Having es-
tablished the notation that we will use in this section, we now explain the framework in
which we can apply the methods we have developed in QKD.

3.4.1 Tagging

Recall from our discussion in Section 2.3.3 that we need the signal states to all have the
same block-diagonal structure in order to decompose the key rate into separate SDPs for
each block as in Eq. (2.34) which helped us eliminate the shield system. This is only the
case when the encoding isometries and eigenvectors are such that 〈ñ|V †k Vl|m̃〉 = δñm̃δkl for
all k, l and m̃, ñ, i.e. {Vk|ñ〉}k,ñ form a set of orthogonal vectors.

This is quite restrictive and does not hold in general, for e.g. if we use coherent states
instead of fully-phase randomised states in decoy-state QKD. So to create this block-
diagonal structure, we implement a source map as described in Section 2.3.2. The virtual
source we use to replace the real source produces the tagged states

τ νk =
∑
ñ

pñVk|ñ〉〈ñ|V †k ⊗ |ñ〉〈ñ| (3.50)

where we call the second system the tagged system. The source map we use is simply the
partial trace on the tagged system. Thus, the virtual source together with the source map
can reproduce the real source as

ρνk = Tr2 [τ νk ] .

So if we use τk as Alice’s signal states in the key rate calculations, we obtain a lower
bound on the key rate that has ρk as the signal states as Eve could always choose to trace
out the second system to obtain the ρk from the τk. This could potentially give Eve more
power, and can cause us to underestimate the key rate of the real protocol. We note that
in the ideal case where the ρνk are all block-diagonal in the same basis, tagging simply adds
a redundant register. Thus, for ρνk that are almost block-diagonal, we would intuitively
expect the key rate results to be close to the real key rate.

The τ νk all have the same block diagonal structure due to the tagged system. This lets
us formulate the key rate optimisation after taking finite projections described in [1] as in

operators is a hard problem. However, we will later explain how to find vectors that are close to these.
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Eq. (2.34)
RN
ñ = min pñf(ρñNAB)

such that Y L
ñ (i, j) ≤ Tr

[(
|i〉〈i|A ⊗ ΓNj

)
ρñNAB

]
≤ Y U

ñ (i, j)

TrB
[
ρñNAB

]
≤ ρñA

1−W ≤ Tr
[
ρñNAB

]
≤ 1

ρñNAB ∈ Pos(HAB),

(3.51)

where ρñNAB is the state that Alice and Bob would share after taking finite projections if the
signal states were Vi|ñ〉〈ñ|V †i . Recall that this means that ρñAB =

(
IL(HA) ⊗ Φ

)
(|ψ〉〈ψ|AA′)

where |ψ〉AA′ =
∑

i

√
p(i)|i〉A ⊗ Vi|ñ〉A′ and p(i) is Alice’s probability of choosing state i.

Thus, we can compute the reduced state ρñA =
∑

i,j

√
p(i)p(j)〈ñ|V †j Vi|ñ〉 |i〉〈j|.

3.4.2 Reduction in dimensions

All that we need to numerically solve the key rate SDPs is to find bounds on the expectation
value constraints in Eq. (3.51) for which we use the generalised decoy-state methods
developed in this chapter. Namely, we wish to bound Tr

[(
|i〉〈i|A ⊗ ΓNj

)
ρñNAB

]
. By using

the cylicity of trace and idempotency of the projection ΠN , we can show that

Tr
[(
|i〉〈i|A ⊗ ΓNj

)
ρñNAB

]
= Tr

[(
|i〉〈i|A ⊗ ΓNj

)
ρñAB

]
.

Using Eq. (2.27), we can write this as

Tr
[(
|i〉〈i|A ⊗ ΓNj

)
ρñAB

]
= p(i)Tr

[
ΓNj Φ(Vi|ñ〉〈ñ|V †i )

]
. (3.52)

Since, p(i) is fixed, we seek to find bounds on Tr
[
ΓNj Φ(Vi|ñ〉〈ñ|V †i )

]
.

Thus, within our generalised decoy-state framework the objective states σi = Vi|ñ〉〈ñ|V †i ,
and the objective POVMs FN

j = ΓNj . For the lower bound on the trace constraint Tr
[
ρñAB

]
,

we can simply add another constraint FN
k = ΠN to get it within the same framework. We

make note here of the fact that it is not necessary to set the objective POVMs to be Bob’s
projected POVMs. We could take some linear combination of them and use these coarse-
grained POVMs in the key rate computation instead. Using coarse-grained POVMs might
decrease the key rate, as we use less statistics to constrain Eve’s actions. However, it might
counteract some of the looseness in using a separate SDP for each POVM element as we
do not take into account correlations between the optimal values of the different SDPs for
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each POVM element. So, we might have two competing factors and the choice that gives
the tightest key rates would be protocol dependent.

The constraining POVMs and states are simply given by Bob’s full measurements Γj
and the states that Alice actually sends ρµk = Vkρ

µV †k . This gives us the infinite-dimensional
SDPs that we need to solve

opt.
J

Tr

[((
Vi|ñ〉〈ñ|V †i

)T
⊗ FN

j

)
J

]
s.t.Tr

[((
Vkρ

µV †k

)T
⊗ Γl

)
J

]
= γµkl ∀k, l, µ

J ≥ 0

TrK [J ] = IH

(3.53)

We already have all we need to use our method. However, note that the encoding
isometries Vi often expand the space7. This is not an issue in theory, but it would often
make the numerics significantly slower. So we suggest a relaxation of the problem where
the bounds are not always tight, but the reduction in dimensions might make it worth it for
some protocols. Of course, where large dimensions are not a concern, or if the isometries
do not actually significantly expand the space it is better to solve the full problem without
this relaxation.

Our relaxation involves ignoring all constraints where the isometry for the constraint
is different from that acting on the objective state i.e. k 6= i. The resultant SDP would
optimise over a larger set so that the max (min) of the relaxed SDP would be an upper
(lower) bound of the original SDP. Further rearranging the isometries and using the cyclic
property of the trace, we get

opt.
J

Tr
[(
|ñ〉〈ñ|T ⊗ FN

j

) (
V T
i ⊗ I

)
J
(
V †i

T ⊗ I
)]

s.t.Tr
[(
ρµT ⊗ Γl

) (
V T
i ⊗ I

)
J
(
V †i

T ⊗ I
)]

= γµil ∀l, µ

J ≥ 0

TrK [J ] = IH

(3.54)

We can absorb the isometries into the Choi isomorphism of the channel. This absorbtion is
not a relaxation and was only made possible by our earlier relaxation when we ignored the

7The maximum size of the expanded space that we need to consider is the span of all the states ρµk and

Vi|ñ〉〈ñ|V †
i .
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constraints where k 6= i. The resulting operator is also a Choi isomorphism of a different
channel as it can be thought of the Choi isomorphism of the composition of the channel Φ
with the channel described by the action of the isometry Vi. The proof is straightforward
and we show it here for completeness as follows:

1. Positivity:

J ≥ 0 (3.55)

=⇒ ∃A s.t. J = AA† (3.56)

=⇒
(
V T
i ⊗ I

)
J
(
V †i

T ⊗ I
)

=
(
V T
i ⊗ I

)
AA†

(
V †i

T ⊗ I
)

= BB† (3.57)

=⇒
(
V T
i ⊗ I

)
J
(
V †i

T ⊗ I
)
≥ 0 (3.58)

2. Partial trace:

TrK

[(
V T
i ⊗ I

)
J
(
V †i

T ⊗ I
)]

= V T
i TrK [J ]V †i

T
(3.59)

= V T
i IHV †i

T
(3.60)

= V T
i V

†
i

T
(3.61)

=
(
V †i Vi

)T
(3.62)

= IW (3.63)

Thus, J ′ :=
(
V †i

T ⊗ I
)
J
(
V T
i ⊗ I

)
is the Choi isomporphism of a channel acting on the

smaller space W .

We replace J with the new optimisation varaible J ′ which reduces the dimensions of our
SDPs before applying the finite projections to obtain the appropriate finite dimensional
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SDPs with the objective state σñ = |ñ〉〈ñ| and constraining states ρµ as follows:

Y U
ñM(k, j) = max

J ′MN
Tr
[(
σMñ ⊗ FN

j

)
J ′
MN
]

s.t. γµkj −W
µ
k − 2εµ ≤ Tr

[(
ρµM

T ⊗ ΓNl

)
J ′
MN
]

∀l, µ

Tr
[(
ρµM

T ⊗ ΓNl

)
J ′
MN
]
≤ γµkj + εµ C (ρµ,ΠM) ∀l, µ

J ′
MN ≥ 0

TrK

[
J ′
MN
]
≤ ΠM

Y L
ñM(k, j) = min

J ′MN
Tr
[(
σMñ ⊗ FN

j

)
J ′
MN
]

s.t. γµkj −W
µ
k − 2εµ ≤ Tr

[(
ρµM

T ⊗ ΓNl

)
J ′
MN
]

∀l, µ

Tr
[(
ρµM

T ⊗ ΓNl

)
J ′
MN
]
≤ γµkj + εµ C (ρµ,ΠM) ∀l, µ

J ′
MN ≥ 0

TrK

[
J ′
MN
]
≤ ΠM

(3.64)

where ΠM acts on W and we have a different SDP for each k and j.

3.5 Approximate diagonalisation

There is one more general tool that we might find useful to link our generalised decoy-state
method to QKD. At the start of Section 3.4, we assumed that we had the eigenvectors and
eigenvalues of the density operator ρν . The eigenvectors were important when using the
generalised decoy-state method where they formed the objective states. The eigenvalues
were important when breaking up the key rate function into blocks as in Eq. (3.51). These
might not always be easy to analytically find. However, any finite-dimensional matrix
can be numerically diagonalised. So, we instead numerically diagonalise a suitable finite
projection ρ := ΠρΠ

Tr[ΠρΠ]
for a finite projection Π. We denote the eigenvalues and eigenvectors

of the operator to be λñ(ρ) and |vñ〉. For this section, we also denote the eigenvalues of ρν

by λñ (ρν) to make the notation easier to read.

We can bound the one-norm as shown in Appendix A.1 ||ρ− ρν ||1 ≤ εproj. This can be
used to quantify the maximum deviation in eigenvectors and eigenvalues of the projected

51



operator as shown in Appendix A.3. The bound on eigenvalues follows from Theorem 2

|λñ (ρν)− λñ (ρ)| ≤ εproj. (3.65)

The bound on the one-norm of the difference between the eigenvectors of the two operators
εvec is given by

|||vñ〉〈vñ| − |ñ〉〈ñ|||1 ≤ 2εproj/δñ (3.66)

where δñ := min{λñ(ρ)− λñ(ρ)− εproj, λñ(ρ)− λñ(ρ)− εproj}. We have proved this bound
in Appendix A.3. We note here that this bound makes no use of the structure of the
state ρν , and it might be possible to obtain a better bound by using more information
about the state for e.g. the magnitude of off-diagonal elements. As an example of a case
where this bound would be loose is when ρν is already diagonal and we project in its
eigenbasis. In this case, the eigenvectors of ρ is a subset of the eigenvectors of ρν and we
would get |||vñ〉〈vñ| − |ñ〉〈ñ|||1 = 0. Finding tighter bounds by using the structure of ρν is
an interesting avenue for future research.

We can now use the bounds relating the eigenvectors and eigenvalues of the full state
ρν and projected state ρ when trying to use the generalised decoy-state method for QKD
as follows. What we need for our problem is a bound YñM(i, j) on the statistics of |ñ〉〈ñ|
when measured with a POVM element FN

j as shown in Eq. (3.64). However, in order
to make use of the generalised decoy-state method we need to know the objective state
exactly. So keeping in mind that |vñ〉〈vñ| lies in an εvec ball around |ñ〉〈ñ|, we can instead
use the generalised decoy-state method with |vñ〉〈vñ| as the objective state in the SDPs
shown in Eq. (3.64) and get the corresponding optimal values Y ′ñM(i, j). This optimal
value is related to the optimal value we want YñM(i, j) as

|Y ′ñM(i, j)− YñM(i, j)| ≤ εvec. (3.67)

Note that when solving these SDPs, we would need to project |vñ〉, which lives in the
space spanned by the projection Π we use to approximately diagonalise ρ, into another
finite space spanned by ΠM as described in Section 3.3.4. So, it might be a good idea to
simply choose Π ≥ ΠM so that we have no additional correction term εi. Finally, when
using these bounds in the key rate SDPs as in Eq. (3.51), we would need to use λñ(ρ)−εproj

in lieu of pñ to ensure that we obtain a reliable lower bound on the key rate.

A flowchart depicting the entire process of applying the generalised decoy-state method
to QKD along with the appropriate modifications needed when we use the approximate
diagonalisation method is shown in Fig. 3.1. To summarise, we can apply the generalised
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|

|λ
ñ
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ñ

ye
s

n
o

ye
s

n
o

F
ig

u
re

3.
1:

F
lo

w
ch

ar
t

d
ep

ic
ti

n
g

th
e

ap
p
li
ca

ti
on

of
th

e
ge

n
er

al
is

ed
d
ec

oy
-s

ta
te

m
et

h
o
d

to
Q

K
D

.
T

h
e

ye
ll
ow

p
ar

ts
d
en

ot
e

th
e

m
o
d
ifi

ca
ti

on
s

to
b

e
m

ad
e

if
w

e
n
ee

d
to

ap
p
ro

x
im

at
el

y
d
ia

go
n
al

is
e

th
e

d
en

si
ty

op
er

at
or

.

53



decoy-state method to QKD through the following steps:

1. We must first diagonalise the operator ρ that Alice applies her encoding isometries
Vi on. If we cannot exactly diagonalise it, we can use the methods oulined in Section
3.5 to approximately diagonalise it.

2. We implement a source-replacement scheme called tagging to ensure that the signal
states are all block-diagonal in the same basis as described in Section 3.4.1. This
allows us to decompose the key rate function into multiple smaller SDPs given in Eq.
(3.51) that we can individually solve, given the expectation value constraints. We
would need to subtract a factor from the eigenvalue pñ if we used the approximate
diagonalisation procedure.

3. If the generalised decoy SDPs take too long to solve numerically, and if Vi increase
the dimension of the space we can loosen the problem and reduce the dimensions as
outlined in Section 3.4.2 to get Eq.(3.64).

4. We can obtain the expectation value constraints by using the generalised decoy-state
method either fully or with the reduction in dimension. If we used the approximate
eigenvectors, we need to loosen the bounds obtained from the generalised decoy SDPs.

3.6 Concluding remarks

In this chapter, we have developed a general tool to bound the statistics of states measured
after passing through an unknown channel Tr

[
FN
j Φ(σi)

]
, given the statistics of another

set of states measured by another set of measurements passing through the same unknown
channel Tr [ΓlΦ(ρµk)]. In order to apply this to QKD, we developed another general tool
to approximately diagonalise (possibly infinite-dimensional) density matrices. These tools
are particularly interesting in the context of QKD as they generalise the existing method of
decoy-state analysis which assumes that the states are fully phase-randomised. The stan-
dard decoy-state analysis results as a special case of our methods where the base states ρµ

of the constraining states ρµk = Viρ
µV †i are all diagonal in the same basis independent of the

intensity µ, and the base state σ of the objective states σi = ViσV
†
i is an eigenvector of the

base signal state ρµ. Thus, this generalisation is an important step toward accommodating
imperfections in decoy-state analysis.
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Chapter 4

Phase imperfections in QKD

The application of the generalised decoy-state method to QKD required the protocol to be
iid. This allowed us to apply the quantum de Finetti method and analyse the security of
the protocol in the collective attack regime where the channel Φ is the same in all rounds
of the protocol as explained in Section 2.3.3. In addition, the implicit assumption we make
while using the generalised decoy-state method is that we know exactly what our signal and
decoy states are i.e. our source is perfectly characterised. However, using an inaccurate
model for the source often leads to security loopholes in QKD that can be exploited by
Eve [50].

There has already been some work attempting to find key rates for general correlated
sources [9], and uncharacterised sources [10]. However, these methods are not directly
applicable to decoy-state QKD which is crucial to achieve distances over 100 km. More
recently, there have been advances in using fully phase-randomised sources with intensity
correlations for decoy-state QKD [12]. In this chapter, we address the effect of phase
correlations in partially characterised laser pulses on the key rate. In conjunction with the
generalised decoy-state methods we developed, this can ensure that we no longer need to
assume that Alice’s laser pulses are fully phase-randomised, or uncorrelated.

For the remainder of this thesis we shall focus on optical protocols where Alice’s signal
states are encoded in laser pulses. We first motivate the problem by giving some intuition
regarding the generation of laser pulses in Section 4.1. We then provide a general model
for these laser pulses and provide a reduction of the general source with phase correlations
to a simplified source model that is iid in Section 4.2.
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4.1 Laser pulses

Laser emission is typically produced by atoms in an optical cavity [51]. Each atom in the
cavity is a quantum system which has energy levels. We call higher energy states excited
states, and the lowest energy state the ground state. Whenever the atom goes from an
excited state to the ground state, it loses the energy in the form of photons.

There are two mechanisms for this to occur. The first, spontaneous emission is
what starts the laser. Most of the atoms in the optical cavity are initially excited by
pumping energy for e.g. in the form of electric currents for laser diodes. These excited
atoms transition to the ground state and randomly emit photons. The second, stimulated
emission occurs when the existing photons stimulate further emissions to be in the same
optical mode. Both types of emissions from the laser are considered to be coherent states
[52]. The phases of the coherent states emitted as a result of different spontaneous emissions
are entirely uncorrelated from each other. The phases of the coherent states emitted from
stimulated emission generated from the same initial seed photons are completely correlated.

So if sufficient power is continuously supplied to the laser, stimulated emission would
be the dominant mechanism for laser emission. Thus, the output would be close to a
phase-coherent state. However, fully phase-randomised states give better key rates than
phase-coherent states for a large class of optical QKD protocols. Intuitively, this might be
because the phase information of the coherent states produced by the laser is not used by
Bob but can still be used by Eve in most QKD protocols1. Thus, such optical protocols
ideally try to use fully phase-randomised states in every round.

The simplest way to achieve phase-randomisation is to turn the laser off between pulses.
This results in the atoms eventually reverting to the ground state between each pulse.
The coherent state generated from each pulse is seeded from spontaneous emission each
time since the photons from the previous lasing have vanished from the cavity by the
time the laser is turned on again. Thus, the phase of each coherent state is uniformly
random resulting in the quantum state of the laser pulse being represented by a fully
phase-randomised state.

However, for higher repetition rates [53], the photons from the previous pulse might not
all disappear from the laser cavity. These photons might seed the phase of the next laser

1This intuition would seem to suggest that the fully phase-randomised states has the highest key rate
when compared to any other mixture of coherent states with a fixed intensity. To the best of our knowledge,
this has not been rigorously shown to be the case although fully phase-randomised states certainly give
better key rates than phase-coherent states and most protocols try to use fully phase-randomised states
due to this intuition.
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pulse resulting in imperfect phase randomisation and phase correlations across pulses.
This makes it hard to accurately model the phase distribution of the source accurately
and using the model of completely phase-randomised iid coherent states might result in
underestimating Eve’s information about the key [54]. Using this as a motivating example,
we introduce generic probabilistic phase mixtures of coherent states keeping in mind that
they might be correlated and not fully characterised.

4.2 Partially characterised correlated lasers

We consider the space of N laser pulses described by the tensor product of Hilbert spaces
for each pulse H⊗N since each pulse is temporally separated. Recall that the completely
phase-randomised state with intensity µ is given by

ρµPR =
1

2π

∫ 2π

0

dθ|√µeiθ〉〈√µeiθ|

as given in Eq. (2.42) where |√µeiθ〉 is a coherent state with amplitude
√
µ and phase θ.

Thus, the ideal N pulse train would be written as ρµ ⊗NPR . We first model the laser pulses
before providing a reduction to an iid state.

4.2.1 General laser model

We model a train of N laser pulses as a generic probabilistic mixture of coherent states all
having the same intensity µ. This can be given by

ρµlaser =

∫
dφ1. . .dφN p(φ1 . . . φN)|√µeiφ1〉〈√µeiφ1| ⊗ . . .⊗ |√µeiφN〉〈√µeiφN| (4.1)

where φi ∈ [0, 2π) is the phase of the ith pulse and p(φ1 . . . φN) is the joint probability
distribution of the phases of all N pulses. Note that the generic laser state reduces to the

ideal state ρµ ⊗NPR when the probability distribution is uniform i.e. p(φ1 . . . φN) =
(

1
2π

)N
and

the phase-coherent state |√µeiφ〉〈√µeiφ|⊗N when the probability distribution is a product
of Dirac delta functions p(φ1 . . . φN) = δ(φ1 − φ)δ(φ2 − φ) . . . δ(φN − φ).

This description is in general not iid. It captures most realistic correlations and other
phase imperfections. The only assumptions that we have made are assuming that we have
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a probabilistic mixture, and assuming that all the coherent states in our mixture have the
same intensity.

4.2.2 Reduction to characterised uncorrelated lasers

Our strategy for bounding the key rates for protocols that have sources that emit such
generic laser pulses is to use a source map as discussed in Section 2.3.2. This source map
would help us replace this source with a simpler iid source. We shall first define a precursor
to this source map for a single pulse and describe the virtual states we use to replace the
laser. We then extend the map to a general pulse train before taking into account the
encoding isometries to fully construct the source map.

Single pulse

The state of a single laser pulse is

ρµlaser =

∫ 2π

0

dφ1 p(φ1)|√µeiφ1〉〈√µeiφ1 |. (4.2)

Consider the state of a phase-coherent laser pulse ρµPC = |√µ〉〈√µ|. As described in Section
2.4.3, by using a phase shifter Θ, we can change the phase of the phase-coherent state as
Θ(ρµPC) = |√µeiθ〉〈√µeiθ|. So, by shifting the phase of ρµPC by φ1 with probability p(φ1),
we can get our laser state ρµlaser, i.e.∫ 2π

0

dθ1p(θ1)Θ1(ρµPC) =

∫ 2π

0

dθ1 p(θ1)|√µeiθ1〉〈√µeiθ1| (4.3)

= ρµlaser (4.4)

Since this transformation was enacted by using optical components, it is certainly a channel
- we could, in principle, do this in the lab.

So, we can certainly replace the general laser pulse with a phase-coherent laser pulse
followed by a channel. However, we can actually do better than this. First note that the
phase shifter does not affect the fully phase-randomised state as stated in Section 2.4.3.
We only need to characterise the minimum of the phase distribution

q := 2π min
φ1

p(φ1) (4.5)
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in order to construct our virtual laser. Note that since the minimum of p(φ1) cannot be
greater than 1

2Π
, q lies between 0 and 1. Thus, q can be thought of as a probability.

We can think of the laser state as a mixture of a fully phase-randomised state (with
probability q), and a generic probability distribution (with probability 1− q)

ρµlaser = q ρµPR + (1− q)
∫ 2π

0

dφ1

p(φ1)− q
2π

1− q
|√µeiφ1〉〈√µeiφ1|. (4.6)

Intuitively, this is like taking the probability distribution of the phase and subtracting the
flat distribution from it till the minimum is 0. Since the completely phase-randomised
state has a flat probability distribution, this subtraction exactly corresponds to ρµPR.

Now, as described above we can probabilistically use a phase shifter to take us from
the phase-coherent state to any generic probabilistic phase mixture of coherent states. In
particular, we can probabilistically use the phase shifter to take us from a phase-coherent
state to a state with the shifted probability distribution. Thus, the state outputted by the
virtual laser for a single pulse is give by

ρµmodel = q ρµPR + (1− q)|√µ〉〈√µ| (4.7)

and we call it a model laser state.

The channel Ψ1 such that ρµlaser = Ψ1(ρµmodel) can be described by applying a phase-

shifter that shifts the phase by φ1 with probability
p(φ1)− q

2π

1−q . Note that to construct this

model laser state, we do not need to characterise the entire probability distribution p(φ1),
we just need to characterise its minimum.

Pulse train

The general N laser pulse case is very similar to the single pulse case and carries the same
intuition. Starting from the state of N laser pulses given in Eq. (4.1), we can rewrite the
probability distribution in terms of conditional probabilities

p(φ1 . . . φN) = p(φ1)p(φ2|φ1) . . . p(φN |φ1 . . . φN−1). (4.8)

The quantity that we need to characterise is the minimum of all the conditional probability
distributions

q := 2πmin
i

min
φi

p(φi|φ1 . . . φi−1). (4.9)
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The iid state that our virtual laser will prepare is simply the tensor product of the model
laser state ρµ⊗Nmodel. The map ΨN can be constructed from applying N phase shifters that

shift the phase of the ith laser pulse by φi with probability
p(φi|φ1...φi−1)− q

2π

1−q . Note that we
have obtained a correlated state from an iid state by applying a map that is correlated;
the action of the ith phase-shifter depends on the action of all the (i − 1) phase-shifters

before it. Thus, we have ρµlaser = ΨN

(
ρµ⊗Nmodel

)
.

Encoding

Before we can use this to construct a source map, we need to know the encoding isometries
Vi. Since this is protocol dependent, we do not claim that this would work for all protocols.
However, most optical protocols have encoding unitaries Vi ∈ U(H,H⊗H) that takes the
laser pulse and encodes it into one of two modes for e.g.- polarisation or time-bin encoding2.

So for any such protocol that does not use any phase correlations across rounds3, we
can construct the source map by applying the same phase shift to both modes. For the
ith pair of pulses, the source map Ψ is described by applying phase shifters that shift the

phase of both modes by the same φi with probability
p(φi|φ1...φi−1)− q

2π

1−q . This would ensure

that V ⊗Ni ρµlaserV
†⊗N
i = Ψ

(
V ⊗Ni ρµ⊗NmodelV

†⊗N
i

)
. Thus, we can replace the source that uses

the general laser state to encode Alice’s states with the virtual source that uses the model
laser state to encode Alice’s states to get a lower bound on the secret key rate as depicted
in Fig. 2.1.

To summarise, in this chapter we have prescribed a general method to reduce signal
states with a correlated and partially characterised phase distribution to iid signal states
in terms of only the characterised parameter which works for most optical QKD proto-
cols. Even though characterising this single parameter would be significantly easier than
characterising the entire phase distribution, we remark that this might still pose signifi-
cant challenges. For e.g. if we take the most general case with infinite correlation length
limN →∞, no finite block of laser pulses are iid. We cannot use the measurement results
to construct any meaningful probability distribution as each measurement is effectively on
a different density operator. Thus, it might be hard for us to get the statistics to char-
acterise the phase distribution, even partially to find q. So in practice, in order to collect

2We will see an example of a protocol that uses time-bin encoding in the next chapter.
3Some protocols like the COW [55] and DPS [56] protocols do use phase coherences across protocol

rounds. However, such protocols would not attempt to phase-randomise their pulses and so these methods
do not apply in such cases.
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enough data to interpret the measurement results as probabilities, we might need to make
some assumptions about the range of correlations even though the theoretical methods
work even in the most general case.

4.3 Concluding remarks

In general, dealing with non-iid protocols is a challenge. However, the methods described
in this chapter give a handle on dealing with a large class of protocols that are ideally
iid, but have non-iid structure due to phase imperfections. This is achieved by using a
non-iid source map with an iid virtual state, resulting in an iid virtual protocol whose
key rate lower bounds the key rate for the non-iid real protocol. Combined with the tools
developed in Chapter 3, this extends the known proof techniques to correlated lasers used
for decoy-state QKD to achieve a high loss-tolerance.
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Chapter 5

Three-state protocol

The three-state protocol is a variant of the BB84 protocol where Alice has three signal
states instead of four by omitting one of the four signals. A recent optical implementation
[2] was able to share secret keys over 421 km of optical fiber. This protocol is of particular
interest since it has very few active components making it cheap and easy to implement.
The security proof of the protocol used standard decoy-state analysis and so assumed that
the states that Alice sent were completely phase-randomised. However, the laser emits
pulses at a rate of 2.5 GHz. Thus, there was incomplete phase-randomisation [53]. We use
the methods outlined in this thesis to analyse the security of the protocol and estimate the
effect of the partial phase-randomisation on the key rate.

5.1 Protocol description

We shall first describe the protocol depicted in Fig. 5.1. This would include Alice’s state
preparation, Bob’s measurements and the parameters that we have used for our security
analysis of the protocol.

5.1.1 State preparation

Alice has a laser that emits a mixture of coherent states with the same intensity1 as
described in Eq. (4.1). Alice’s encoding isometries that act on the laser pulses can be

1For the experiment in [2], this assumption does not entirely hold [53]. However, we only take into
account the phase imperfections in this thesis.
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Figure 5.1: Schematic of the experimental setup taken from [2].

described by the following steps:

1. Pass the laser pulse through an unbalanced Michelson interferometer which trans-
forms coherent states from |α〉 −→ |α/2〉 ⊗ |α/2〉 ∈ H ⊗H, where each Hilbert space
H in the tensor product represents a different time-bin.

2. Alice chooses one of 0, 1 and + from her a priori probability distribution p(i) and
encodes the state based on the choice:

0: Alice uses an intensity modulator to suppress the first pulse.

1: Alice uses an intensity modulator to suppress the second pulse.

+: Alice uses a variable attenuator to halve the intensity of each pulse so that the
total mean photon number of both pulses in all 3 states are the same. We note here
that this is an arbitrary choice that we have made. This is not necessary and we
could just easily find the key rate without halving the intensity of each pulse.

3. Alice uses the variable attenuator to change the intensity of the pulse and send decoy
states as well as signal states.

So given an intensity setting of µ, the three states that she prepares are a phase mixture
of the following:

0: |0〉 ⊗ |√µ〉,
1: |√µ〉 ⊗ |0〉, and

+: |
√
µ/2〉 ⊗ |

√
µ/2〉.
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Note that the three states are not orthogonal to each other in general, whereas if single
photons are used, 0 and 1 states are orthogonal to each other and form a basis, called the
Z basis, that spans the qubit space. We use the Z basis for key generation. The + state is
an equal superposition of the 0 and 1 states in the qubit space and corresponds to the X
basis. This + state is used only for parameter estimation to detect Eve’s attacks.

5.1.2 Measurements

Bob’s measurement setup has a t:1-t beam splitter that passively ”chooses” the basis in
which he measures. The Z basis measurement is performed by a threshold detector that
records the time of arrival. A click in the first time-bin corresponds to state 1, while a
click in the second time-bin corresponds to state 0.

For the X basis measurement, Bob uses a Mach-Zehnder interferometer which measures
the phase coherence between the pulses as described in Section 2.4.3. Here only the detector
corresponding to destructive interference is used for experimental simplicity. Note that the
phase coherences that are measured here are between pulses that have been generated from
the same laser pulse due to Alice’s Michelson interferometer and so are guaranteed to be
in phase if Alice sends a + state and Eve has not manipulated the states in any way.

5.1.3 Simulation parameters

We assume that the quantum channel is a loss-only channel with a loss of 0.16 dB/km based
on the experimental implementation in [2]. We also assume Bob’s threshold detectors to be
ideal with no dark counts for simplicity. We apply a coarse-graining on all click patterns
that Bob observes to only consider no-click events, single-click events, and grouping all
multi-click events together. This is done to decrease the computation time of the key rate
calculation. We denote the coarse-grained POVM {Γj}.

Ideally, we would want to optimise over all free parameters. However, this is not
computationally feasible so we make some arbitrary choice for each of them. We choose
the decoy intensities to be 0 and 0.25 while optimising the signal intensity for different
distances. We consider Alice’s state preparation choice to be based on an equal a priori
distribution, p(i) = 1/3 for all i ∈ {0, 1,+}. We set Bob’s beam splitter to be a 0.9/0.1
beam splitter with the 0.9 transmission side facing the upper detector shown in Fig. 5.1
which corresponds to the Z basis measurement.
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Characterisation of the laser

To characterise the quantity of interest as defined in Eq. (4.9), we assume that the phase
of each pulse can only be correlated to the phase of the pulse nearest to it. Two consecu-
tive laser pulses are passed through an interferometer with a phase shifter in one arm as
described in Section II. A. of [54]. The phase shifter can be modulated and adds a phase
shift of φ. The intensity of the light arriving at the detector is measured for different values
of φ.

The state of the two consecutive laser pulses ρµlaser is given by Eq. (4.1) with the joint
phase distribution p(θ1, θ2) = p(θ1)p(θ2|θ1). Assuming that the intensity of both pulses is
the same, from Eq. (3) of [54] we get the intensity I(φ) ∝ 2µ (1 + 〈cos (θ + φ)〉) where
θ := θ2 − θ1 is the phase difference between the two pulses and 〈cos (θ + φ)〉 is the average
of cos (θ + φ) over the phase distribution p(θ1, θ2). So we have

〈cos (θ + φ)〉 =

∫ 2π

0

dθ1 p(θ1)

∫ 2π

0

dθ2 p(θ2|θ1) cos (θ2 − θ1 + φ). (5.1)

The experimental quantity that is eventually calculated is termed the visibility V . This
is given by

V =
Imax − Imin

Imax + Imin

(5.2)

=
〈cos (θ + φ)〉max − 〈cos (θ + φ)〉min

2 + 〈cos (θ + φ)〉max + 〈cos (θ + φ)〉min

(5.3)

where the maximum and minimum is over all φ.

Using a 5GHz laser, the authors of [53] measured the visibility of two adjacent laser
pulses to be 0.0019 (See Eq. (5) from [53]). They assumed that the laser pulses had no
correlation with probability 1− p∗c , and were entirely correlated with probability p∗c . This
corresponds to a conditional probability distribution p(θ2|θ1) = 1−p∗c

2π
+ p∗cδ(θ2 − θ1). Note

that the minimum of this probability distribution is 1−p∗c
2π

, and so from Eq. (4.9) we get
q = 1− p∗c . Calculating the two terms separately, we can see that if p(θ2|θ1) = 1

2π
,

〈cos (θ + φ)〉 =

∫ 2π

0

dθ1 p(θ1)

∫ 2π

0

dθ2
1

2π
cos (θ2 − θ1 + φ) = 0. (5.4)

Thus, the visibility for the completely phase-randomised state is 0, as we might expect.
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For the second term, if p(θ2|θ1) = δ(θ2 − θ1),

〈cos (θ + φ)〉 =

∫ 2π

0

dθ1 p(θ1)

∫ 2π

0

dθ2 δ(θ2 − θ1) cos (θ2 − θ1 + φ) (5.5)

=

∫ 2π

0

dθ1 p(θ1) cos (φ) (5.6)

= cos (φ). (5.7)

The minimum and maximum of cos (φ) is 1 and −1 respectively. Thus, the visibility of the
phase-coherent state is V = 1.

So, we can add these together to get 〈cos (θ + φ)〉 = p∗c cos (φ) giving us the visibility
V = p∗c . Thus, we can characterise the source as having 1 − q = 0.0019, or q = 0.9981.
Recall that q represented the degree of phase-randomisation in the laser pulse as described
in Eq. (4.6) and Eq. (4.7). We reiterate here that this parameter value was got under
a somewhat restrictive assumption made on the source. For instance, if instead we had
assumed that the source phase distribution was a Gaussian centered about the phase of
the previous pulse with standard deviation σ as in Eq. (5) from [54], we would get the
visibility to be V = exp[−σ2

2
]. Using the value for visibility V = 0.0019 measured in the

experiment, we can get the variance σ2 ≈ 12.53. We can finally use this to completely
characterise the wrapped normal2 distribution and numerically find the minimum. The
value we get for this is q ≈ 0.8782.

We see that this is far smaller than the value assuming the more simplistic model. It
is not entirely clear which model accurately describes our source and so it is not clear
precisely how to characterise this parameter. Developing better techniques to characterise
this parameter is an avenue for further research.

5.2 Application of generalised decoy-state analysis

We can represent Alice’s prepared states by the action of Alice’s isometries on the model
laser state from Eq. (4.7) ρµi = Viρ

µ
modelV

†
i . Since we have a fully characterised iid source,

we can follow the flowchart in Fig. 3.1 to apply the generalised decoy-state method to the
three-state protocol.

2A wrapped normal distribution g(θ) is a normal distribution where every point θ = θ+ 2π is taken to
be the same. Thus, the probability of these points are all added. It is the circular analogue of the normal
distribution which is exactly what we deal with.
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Let η be the signal intensity and the eigenvalues and eigenvectors of the model laser state
ρνlaser be pñ and |ñ〉 respectively. Since it is hard to diagonalise this state, we take a finite

projection ΠM on the≤M photon space to get ρ =
ΠMρ

ν
modelΠM

Tr[ΠMρνmodelΠM ]
. We chooseM to be large

enough so that the elements of the ρνmodel outside the subspace become smaller than machine
precision. We emphasise that we do not ignore the elements smaller than machine precision,
but use machine precision to choose the cutoff for the projection. Thus, the difference in
one norm between the projected state ρ and the full state ρνmodel given by ενproj is intimately
linked with the machine precision. We can numerically diagonalise ρ to get its eigenvalues
λñ(ρ) and eigenvectors |vñ〉 and can relate these to the eigenvalues and eigenvectors of
ρνmodel as shown in Section 3.5; |pñ − λñ (ρ)| ≤ ενproj, and |||vñ〉〈vñ| − |ñ〉〈ñ|||1 ≤ εvec.

We implement tagging as describe in Section 3.4.1 to break the key rates into compo-
nents that correspond to the different ñ as in Eq. (3.51). The state we diagonalise is close
to (or is exactly) the fully phase-randomised state. Thus, the different |ñ〉 are close to the
n-photon states. So we expect most of the key rate contribution to come from just the |1̃〉
state. For small distances (0-10 km), the partially phase-randomised case with q = 0.8782
does show small contributions to the key rate from the 0̃ state. Besides this, we observe
no other contributions to the key rate from other values of ñ.

So we need to use the generalised decoy-state method to obtain the statistics for the
key rate component corresponding to the |1̃〉 and |0̃〉 states. The isometries add another
identical space when described in the Fock basis, effectively doubling the dimension of
the signal states as described in Step 1 of Alice’s state preparation. Thus, we reduce the
dimensions as described in Section 3.4.2 before applying our methods.

In order to solve the SDPs in Eq. (3.64) that we obtain after applying our methods, we
can find εµproj by projecting into the ≤M photon subspace just as we did for diagonalisation.
We find Bob’s observed statistics γµjk for different distances by simulating the loss-only
channel as described in Appendix B.1. The weight of the state Bob receives outside the
projected subspacec W µ

k is estimated from the cross-clicks as shown in Appendix B.2. Since
the only time our states commute with the photon-number projections is when q = 1, we
get C (ρµ,ΠM) = 1− δq,1. Recall that C (ρµ,Π) is a function that checks whether or not ρµ

commutes with Π. Using this data, we get the finite-dimensional SDPs in Eq. (3.64) with
ñ = 1̃ and 0̃ that we can solve. Since the projection we used to diagonalise the signal state
is the same as the projection we used to make the state space finite for the generalised
decoy method, the correction term to the objective function in Eq. (3.48) is simply εi = 0.
Thus, after loosening the optimal values for the SDPs by εvec as shown in Eq. (3.67), we
get the bound on the statistics we need. This has been summarised in Table 5.1.
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Decoy SDP Eq. (3.64)

|ñ〉 |1̃〉 and |0̃〉

εµproj Appendix A.1

γµjk Appendix B.2

W µ
k Appendix B.2

C (ρµ,ΠM) 1− δq,1
Objective function correction Eq. (3.48) and (3.67)

εi 0

εvec Appendix A.3

Table 5.1: Table listing the quantities that are important to use the generalised decoy-state
method along with their value or the Appendix describing how they can be computed.

5.3 Results

Using these bounds on the |1̃〉 and |0̃〉 statistics, we solve the key rate SDP and plot
our results in Fig. 5.2. The source code for our numerics is given in Appendix C. We
compared the key rates for the different values of q = 0.8782 and q = 0.9981 that we get
considering different models for the characterisation of the laser as described in Section
5.1.3 using the measurements made in [53]. We also compared these key rates with the
fully-phase randomised state q = 1. We found that the key rate for the incomplete phase-
randomisation with q = 0.9981 starts to diverge from the fully phase-randomised key
rate from about 150 km. In contrast, the key rate for q = 0.8782 starts to diverge from
the fully phase-randomised key rate from 0 km illustrating the importance of accurately
characterising the laser.

We believe that at least part of the gap between the fully phase-randomised and par-
tially phase-randomised key rates is due to various sources of looseness introduced in our
proof techniques and the numerics. One such source is the value of εvec that we get from
approximately diagonalising the states. This is a significant factor that only affects the
key rate when q 6= 1. This can be tightened in two ways. The first way would be to simply
increase machine precision that would enable us to take projections onto larger dimensional
spaces and accurately diagonalise the corresponding states. This need not increase the size
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Figure 5.2: Comparison of the key rate of the 3 state protocol with partial (q = 0.8782 and
q = 0.9981) and complete (q = 1) phase-randomisation. The partially phase-randomised
key rate with q = 0.9981 starts to diverge from the fully phase-randomised key rate at 150
km. The key rate for the partially phase-randomised states with q = 0.8782 diverges from
0 km.

of the decoy-state SDPs as we could always project once again into a subspace of ΠM , so
keeping the dimensions of the SDPs low.

The second way would be to develop analytical methods to obtain better bounds when
we approximately diagonalise operators that have small off-diagonal components. Cur-
rently we do not use any information about the off-diagonal elements. So if we naively
use the same approximate diagonalisation method to diagonalise even the fully phase-
randomised state, we would not get εvec = 0 even though the state is already diagonal.
We intuitively expect there to be some way to use the fact that the off-diagonal elements
are small in magnitude to get better bounds on the norm of the difference in eigenvectors.
However, we do not currently know of any such proof.

69



Yet another source of looseness comes from C (ρµmodel,ΠM) as discussed in Section
3.3.1 where when we go from the fully phase-randomised state to an almost fully phase-
randomised state, C (ρµmodel,ΠM) goes directly from 0 to 1. We believe that this is too
loose and that there should be a way to have a tighter bound with intermediate values of
C (ρµmodel,ΠM) that depend on the magnitude of the off-diagonal components. Finally, our
current bound on εµproj is once again limited by machine precision which affects the loosen-
ing of the constraints in Eq. (3.49), as well as the loosening of the eigenvalue prefactor for
the block key rate in Eq. (3.51).

5.4 Concluding remarks

To summarise, in this chapter we have shown how our methods can be used to find the key
rate of a practical QKD experiment with phase correlations that arise due to high clock
rates. We see that the further the correlated state is from the completely phase-randomised
state, less is the loss-tolerance of the protocol. Finally, we discuss the limitations of our
methods, and conjecture that the loss in key rate that we get in the presence of phase
imperfections might be in part due to our imperfect proof techniques. Thus, an interesting
avenue of future research would be to tighten these bounds to make it easier to achieve
practical QKD with high clock rates.
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Chapter 6

Conclusion

In summary, we formulated a general framework that we call the generalised decoy-state
method. This method needs the statistics of some set of states passing through an unknown
channel before being measured. It uses these statistics to then bound the statistics of a
state outside this set passing through the same unknown channel. We show how to loosen
the problem to find reliable bounds if the states and measurements we use act on infinite-
dimensional Hilbert spaces.

We also apply this to decoy-state QKD and show how our general framework reduces
to standard decoy-state QKD when we use fully phase-randomised states. The application
to QKD involved using a process called tagging which allows us to break up the key rate
optimisation into smaller blocks at the cost of some looseness to our results, although we
believe that this looseness is not significant in most cases as it gives Eve information that
is irrelevant to the key bits. We also show a general method to reduce the dimensions
of the decoy-state SDPs at the cost of some further looseness that might help speed up
computation times in a wide range of protocols.

In order to accommodate infinite-dimensional states that might be hard to diagonalise,
we found bounds on the distance between the eigenvalues and eigenvectors of such states
with their finite projections, which can be numerically diagonalised. We believe that our
methods here are suboptimal and can be significantly improved upon by considering the
magnitude of the off-diagonal elements in the state.

We then discuss phase imperfections in the form of correlations and imperfect phase-
randomisation. We considered a general probabilistic phase mixture of coherent states of
the same intensity with arbitrary correlations and developed a general method to reduce
this to a characterised iid model laser state that required some minimal characterisation of

71



the original state. We showed that this simpler model laser state would lower bound the
key rate of a wide range of protocols that in reality use the general uncharacterised laser
state.

As a concrete example, we applied our methods to the three-state protocol. This is an
interesting example since it uses very few active components and is easy to implement. We
discuss the problem of partially characterising the laser source, and state clearly the as-
sumptions made for this partial characterisation. We then describe the effect of implement-
ing this protocol at high clock rates on the key rates due to imperfect phase-randomisation.
We finally present our results where we found a gap in the fully phase-randomised and par-
tially phase-randomised key rates after 10 km or 150 km depending on our characterisation
of the laser. We state that we expect at least some of this gap to be due to our proof tech-
niques and point out specific sources of looseness that we believe can be improved upon
with further research.

Our work adds to the existing research on source imperfections and correlations [9,
10]. These works are more general in their consideration of source imperfections and
correlations, but were unable to calculate key rates with the decoy-state analysis. In this
limit with only signal states, it turns out that the results of the generalised decoy-state
SDPs that we obtain are too loose to give us any key rate. So while considering protocols
that do not use any decoy states, their methods are better than ours in both generality
and key rates. However, for protocols that use decoy states, although our method only
considers phase imperfections and correlations, their methods cannot be used at all. There
has been recent work in accommodating intensity correlations in decoy-state analysis with
fully-phase randomised states [12]. We hope to see our methods combined with theirs to
perform decoy-state analysis with a wider range of source imperfections leading us closer
to a secure realistic implementation of QKD.
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Appendix A

Bounds on projected operators

In this appendix we give the derivations for various results on projected operators that we
use in Chapter 3 of the main thesis.

A.1 Bounds on one-norm

Let ρ be a density matrix, Π be a projection and ρΠ = ΠρΠ.

F(ρ, ρΠ) = Tr

[√√
ρρΠ
√
ρ

]
(A.1)

= Tr

[√√
ρΠρΠ

√
ρ

]
(A.2)

= Tr

[√√
ρΠ
√
ρ
√
ρΠ
√
ρ

]
(A.3)

= Tr [
√
ρΠ
√
ρ] (A.4)

= Tr [ΠρΠ] (A.5)

= Tr
[
ρΠ
]

(A.6)

Using Lemma 5 from [22], we can relate this to the one-norm of the difference:
∣∣∣∣ρ− ρΠ

∣∣∣∣
1
≤

2
√

1− Tr [ρΠ].

When [Π, ρ] = 0, this can tightened as follows. First, we show that ΠAΠ ≥ 0 for any
A ≥ 0 and projection Π. Equivalently, we show that 〈v|ΠAΠ|v〉 ≥ 0 ∀v. Let |w〉 = Π|v〉.
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Thus, we need to show that 〈w|A|w〉 ≥ 0. This follows from the positive semidefiniteness
of A, thus showing that

ΠAΠ ≥ 0. (A.7)

We use this fact to show that (A − ΠAΠ) ≥ 0 when [A,Π] = 0. Let Π = I − Π be the
complementary projection, then

(A− ΠAΠ) = (Π + Π)A(Π + Π)− ΠAΠ (A.8)

= ΠAΠ + ΠAΠ + ΠAΠ (A.9)

= ΠAΠ + AΠΠ + ΠΠA (A.10)

= ΠAΠ (A.11)

≥ 0. (A.12)

As a special case, we see that ρ− ρΠ ≥ 0. Finally, we get that∣∣∣∣ρ− ρΠ
∣∣∣∣

1
= Tr

[
ρ− ρΠ

]
(A.13)

= 1− Tr
[
ρΠ
]
. (A.14)

A.2 Bounds on expectation value

Let A and B be positive semidefinite operators, Π be a projection, ||A− ΠAΠ||1 ≤ ε, and
||B||∞ ≤ 1. Then by matrix Hölder’s inequality we have that

|Tr [(A− ΠAΠ)B]| ≤ ||A− ΠAΠ||1 ||B||∞ ≤ ε (A.15)

Rearranging the terms in the trace we get

|Tr [(A− ΠAΠ)B]| = |Tr [AB]− Tr [ΠAΠB]| ≤ ε. (A.16)

Using the fact that |c| = |−c| ≤ k implies that −k ≤ −c ≤ k,

− ε ≤ Tr [ΠAΠB]− Tr [AB] ≤ ε (A.17)

=⇒ Tr [AB]− ε ≤ Tr [ΠAΠB] ≤ Tr [AB] + ε (A.18)

If we know that [A,Π] = 0, we can tighten the upper bounds as shown on pages 56-57
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of [49]. Let C = A− ΠAΠ. We know that C ≥ 0 from Eq. (A.12) so

Tr [(A− ΠAΠ)B] = Tr [CB] ≥ 0 (A.19)

=⇒ Tr [ΠAΠB] ≤ Tr [AB] (A.20)

when [A,Π] = 0.

A.3 Closeness of eigenvectors

As in this thesis, one might run into a situation where one might want to find the eigen-
vectors of a density matrix ρ and the eigenvectors of another density matrix σ = ρ+H is
known where ||H||1 ≤ ε. In this appendix we explain how and when one can approximate
the eigenvectors of ρ with the eigenvectors of σ.

Let λi(S) be the ith largest eigenvalue of a compact, self-adjoint operator S. From
Theorem 4.10 of [57], we can write the eigenvalues as

λn(S) = min
|ψ1〉...|ψn−1〉

max
|ψ〉∈P⊥(|ψ1〉...|ψn−1〉)

〈ψ|S|ψ〉

where P⊥(|ψ1〉 . . . |ψn−1〉) := {|ψ〉| ||ψ|| = 1, ψ ∈ span{|ψ1〉 . . . |ψn−1〉}⊥} is the space per-
pendicular to the vectors |ψ1〉 . . . |ψn−1〉. From this we can bound the change in eigenvalues
due to the perturbation.

Theorem 2. Let H be a Hilbert space. Given ρ ∈ D(H), σ ∈ D(H and H = σ − ρ with
||H||1 ≤ ε as defined above,

|λi(ρ)− λi(σ)| ≤ ε

for all eigenvalues indexed by i.

Proof. The proof follows similarly to the proof of Weyl’s inequality which is for finite
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dimensions.

λi(σ) = min
|ψ1〉...|ψi−1〉

max
|ψ〉∈P⊥(|ψ1〉...|ψi−1〉)

〈ψ|σ|ψ〉 (A.21)

= min
|ψ1〉...|ψi−1〉

max
|ψ〉∈P⊥(|ψ1〉...|ψi−1〉)

(〈ψ|ρ|ψ〉+ 〈ψ|H|ψ〉) (A.22)

≤ min
|ψ1〉...|ψi−1〉

(
max

|ψ〉∈P⊥(|ψ1〉...|ψi−1〉)
〈ψ|ρ|ψ〉+ ||H||∞

)
(A.23)

= λi(ρ) + ||H||∞ (A.24)

≤ λi(ρ) + ||H||1 (A.25)

= λi(ρ) + ε (A.26)

Starting with ρ instead of σ in the first line and following the same steps while replacing H
with −H gives us λi(ρ) ≤ λi(ρ) + ε. Combining both together, we get |λi(ρ)− λi(σ)| ≤ ε
as stated.

Before talking about the individual eigenvectors, we shall introduce the Davis-Kahan
sin(θ) theorem [58] about the closeness of the eigenspaces after perturbation. Although the
proof in [58] is for finite dimensions, the proof for infinite dimensional density operators is
exactly the same.

Theorem 3 (Davis-Kahan sin(θ) theorem). Let ρ = UρDU
†+U ′ρ′DU

′† and σ = V σDV
†+

V ′σ′DV
′† be density operators as defined above where the block matrices [U U ′] and

[V V ′] are orthogonal. Let their difference be H = σ − ρ. If the eigenvalues of ρD are
contained in an interval (a, b), and the eigenvalues of σ′D are excluded from the interval
(a− δ, b+ δ) for some δ > 0, then

∣∣∣∣V ′†U ∣∣∣∣ ≤ ∣∣∣∣V ′†HU ∣∣∣∣
δ

(A.27)

for any unitarily invariant norm ||·||.

Intuitively, the δ represents how separated the eigenspaces of σ are relative to the
perturbation ε. If this δ is too small, the corresponding eigenspaces could be quite different.
As an extreme example, consider

ρ =

(
1/2− ε/2 0

0 1/2 + ε/2

)
, H =

(
ε/2 0
0 −ε/2

)
, σ =

(
1/2 0
0 1/2

)
. (A.28)
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||H||1 ≤ ε as required. Since δ = ε, the perturbation might be arbitrarily small compared to
the eigenvalues, but is not small compared to the separation of the eigenvalues. Now, the
eigenvectors of ρ are

(
1
0

)
and

(
0
1

)
. However, since σ has degenerate eigenvalues, any vectors

lying in the degenerate space are eigenvectors. So if we chose the ”wrong” eignvectors of σ
to start with, we might get very far from the eigenvectors of ρ even though the perturbation

is small, for e.g.
( 1/
√

2

1/
√

2

)
has a fidelity of 1/

√
2 with both the eigenvectors. We encourage

the interested reader to refer to [58] for instructive examples and further intuition about
this theorem.

We shall now use these theorems repeatedly to talk about individual eigenvectors. Let
Ui(Vi) be the ith eigenvector of ρ(σ), and U ′i(V

′
i ) be the matrix of eigenvectors of ρ(σ)

spanning the space perpendicular to Ui(Vi). Further, define ρi(σi) be the diagonal matrix
containing all the eigenvalues of ρ(σ) except the ith eigenvector ordered so that we can
write

ρ = Uiλi(ρ)U †i + U ′iρiU
′†
i .

From Theorem 2 we know that λi(ρ) lies in the interval (ai, bi) with ai = λi(σ) − ε and
bi = λi(σ) + ε. For i = 1, define δ1 = λ2(σ) − λ1(σ) − ε. For i ≥ 2, define δi =
min{λi(σ)− λi−1(σ)− ε, λi+1(σ)− λi(σ)− ε}. So we know that all the eigenvalues of σi lie
outside (ai − δi, bi + δi).

We can now use Theorem 3 to get

∣∣∣∣∣∣V ′†i Ui∣∣∣∣∣∣∞ ≤
∣∣∣∣∣∣V ′†i HUi∣∣∣∣∣∣∞

δi
(A.29)

≤

∣∣∣∣∣∣V ′†i ∣∣∣∣∣∣∞ ||H||∞ ||Ui||∞
δi

(A.30)

=
||H||∞
δi

(A.31)

≤ ||H||1
δi

(A.32)

≤ ε

δi
(A.33)

where the second inequality follows from the fact that the ∞-norm is submultiplicative
||AB||∞ ≤ ||A||∞ ||B||∞, and the succeeding equality follows since all U ′i and V ′i have maxi-
mum singular value 1.
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Consider the block matrices

Ri =
(
Ui U ′i

)
, and Si =

(
Vi V ′i

)
.

These are unitaries as they are the collection of all the orthonormal eigenvectors of ρ and
σ respectively. Note that U †i Ui(V

†
i Vi) are 1-dimensional as Ui(Vi) are the ith eigenvectors

of ρ(σ). Thus,

Wi := R†iSi =

(
U †i Vi U †i V

′
i

U ′†i Vi U ′†i V
′
i

)
must also be unitary. So WiW

†
i = I. Looking at the first block which is 1-dimensional,

U †i ViV
†
i Ui + U †i V

′
i V
′†
i Ui = 1. (A.34)

From Eq. (A.33) we know that
∣∣∣∣∣∣V ′†i Ui∣∣∣∣∣∣∞ =

∣∣∣∣∣∣U †i V ′i ∣∣∣∣∣∣∞ ≤ ε
δi

. Thus,

∣∣∣∣∣∣U †i V ′i V ′†i Ui∣∣∣∣∣∣∞ ≤ ∣∣∣∣∣∣U †i V ′i ∣∣∣∣∣∣∞ ∣∣∣∣∣∣V ′†i Ui∣∣∣∣∣∣∞ ≤ ε2

δ2
i

Finally, we can use this in Eq. (A.34) to get

U †i V
′
i V
′†
i Ui = 1− U †i ViV

†
i Ui (A.35)∣∣∣∣∣∣U †i V ′i V ′†i Ui∣∣∣∣∣∣∞ =

∣∣∣∣∣∣1− U †i ViV †i Ui∣∣∣∣∣∣∞ (A.36)∣∣∣1− U †i ViV †i Ui∣∣∣ ≤ ε2

δ2
i

(A.37)

Observing that the fidelity between these eigenvectors is
∣∣∣U †i Vi∣∣∣, Eq. (A.37) directly gives

us a bound on the fidelity,

F (Ui, Vi)
2 ≤ 1− ε2

δ2
i

. (A.38)

Finally, we can use Fuchs-van de Graaf inequality [59] to get∣∣∣∣∣∣UiU †i − ViV †i ∣∣∣∣∣∣
1
≤ 2

ε

δi
. (A.39)

So we have found a bound on how close the eigenvectors of ρ are to σ.
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Appendix B

Three-state protocol statistics

In this appendix we first simulate a loss-only channel and explain how to find all the
statistics from Bob’s measurements for the three-state protocol described in Chapter 5.
We then detail a method to bound the weight outside the ≤ N photon subspace. Bob’s
measurement apparatus is depicted in Fig. B.1 and we shall refer to it throughout this
appendix.

Figure B.1: Schematic of Bob’s measurement setup where we have labelled the annihilation
operators of each mode. The detector corresponding to constructive interference is not used
for experimental simplicity.
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B.1 Channel simulation statistics

We consider a loss-only quantum channel in our analysis of the protocol. This can be
modelled as a beam splitter whose transmittance η depends on the distance l as η = 10−

αl
10 .

As mentioned in Section 5.1.3, we consider the channel attenuation α = 0.16 dB/km.

Alice randomises the phase of her laser states before encoding the state she sends
them to Bob. However, note that Bob does not record measurements that measure the
phase coherences across different protocol rounds. Thus, his measurement results will be
independent of phase. For simplicity, we assume that Alice sends phase-coherent states
while simulating the detection statistics that Bob would record. Under this special case
where Bob receives coherent states, we can use Eq. (2.44) and Fig. 2.6 to compute the
states that would arrive at Bob’s detectors as depicted in Fig. B.2.

Figure B.2: The action of Bob’s measurement setup on coherent states.

We first consider Alice encoding the 0 state |0〉 ⊗ |√µ〉. After passing through the
loss-only channel, Bob would receive the state |0〉 ⊗ |√ηµ〉. Thus, we have the case with
α = 0 and β =

√
ηµ. Thus, we can calculate the probability of a detector clicking in a
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particular time-slot from Eq. (2.51) as

pa4 = 1− e−rηµ

pa3 = 0

pd3 = 1− e−
t
4
ηµ

pd2 = 1− e−
t
4
ηµ

pd1 = 0.

(B.1)

When Alice encodes the 1 state, Bob would receive the state |√ηµ〉 ⊗ |0〉 leading to very
similar detector click probabilities

pa4 = 0

pa3 = 1− e−rηµ

pd3 = 0

pd2 = 1− e−
t
4
ηµ

pd1 = 1− e−
t
4
ηµ.

(B.2)

When Alice encodes the + state, Bob would receive the state |
√
ηµ/2〉 ⊗ |

√
ηµ/2〉 giving

us the detector click probabilities

pa4 = 1− e−
r
2
ηµ

pa3 = 1− e−
r
2
ηµ

pd3 = 1− e−
t
8
ηµ

pd2 = 0

pd1 = 1− e−
t
8
ηµ.

(B.3)

We further assume that the detector clicks in each time bin are all independent of
each other. Thus, we can get any click pattern by simply multiplying the corresponding
probabilities. For e.g., the probability of getting a single-click in mode a4 given that Alice
encoded the 0 state is

p0(a4 = click; a3, d1, d2, d3 = no click) = pa4(1− pa3)(1− pd1)(1− pd2)(1− pd3) (B.4)

= (1− e−rηµ)e−
t
4
ηµe−

t
4
ηµ. (B.5)

We can repeat this process for all possible click patterns to obtain the full statistics. For

88



the decoy-state SDPs and the key rate optimisation, we use coarse-grained statistics where
we combine all click patterns that have more than one time-slot clicking in the same round.

B.2 Bound on weight outside projected subspace

The general method of using cross-clicks to bound the weight outside the projected subspace
is taken from Chapter 2 of [44]. As stated in Appendix B.1, the probability of getting any
click pattern does not depend on the absolute phase of the two pulses, just on the relative
phase between them. Thus, phase-randomised states would give the same statistics as
phase-coherent states. So we can conclude that Bob’s measurements are block-diagonal
in the total photon number of the two pulses. Given the probability that Bob received a
state with n photons p(n), the probability of getting a cross-click can then be written as

p(cc) =
∞∑
n=0

p(n)p(cc|n) (B.6)

=
N∑
n=0

p(n)p(cc|n) +
∞∑

n=N+1

p(n)p(cc|n) (B.7)

≥ p(≤ N)pmin(cc| ≤ N) + p(> N)pmin(cc| > N) (B.8)

where pmin(cc| ≤ N) denotes the minimum probability of a cross-click given the state has
≤ N photons. Using the fact that p(≤ N) + p(> N) = 1 and rearranging we get

p(> N) ≤ p(cc)− pmin(cc| ≤ N)

pmin(cc| > N)− pmin(cc| ≤ N)
. (B.9)

So in order to bound the weight outside the ≤ N subspace, we need to find the p(cc|n).

We have some choice when defining what to call cross-clicks. Here, we define a cross-
click to be any click pattern that records a click in both the detectors while ignoring all
clicks in mode d2. We make this choice because it makes the calculations simpler as shall
become apparent. Before we calculate the cross-click probability given that Bob received
an n-photon state p(cc|n), we shall work out a simple example that will be useful later.

B.2.1 Statistics of a fock state through a beam splitter

Consider the setup shown in Fig. B.3. We send an n-photon state |n〉 at one of its input
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Figure B.3: Schematic of setup with detectors at the end of both the output ports of a
beam splitter.

ports and the vacuum state at the other, and wish to find the detection probabilities. We
can first transform the state using the beam splitter relations

|n, 0〉i =
1√
n!
ani
†|0〉 (B.10)

beam−−−−→
splitter

1√
n!

(
√
ra†d +

√
tb†d)

n|0〉 (B.11)

=
n∑
i=0

√
n!ritn−i

i!(n− i)!
aid
†
bn−id

†|0〉 (B.12)

=
n∑
i=0

√
n!ritn−i

i!(n− i)!
|i, n− i〉d. (B.13)

The probability of each of the detectors not clicking is given by the overlap of this state
with the vacuum state in the corresponding space

p(ad = click, bd = no-click) = rn (B.14)

p(bd = click, ad = no-click) = tn (B.15)

Since the probability of neither detector clicking is 0, the probability of both detectors
clicking together is given by 1−rn−tn. Intuitively, we can think of the probability that only
one detector clicks as the probability that all n photons get reflected (transmitted) where
the probability of each photon getting reflected (transmitted) is given by the reflectance
(transmittance) r (t) of the beam splitter. This intuition does not work in general when
there is any kind of interference and so must be used with caution. However, due to our
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definition of cross-clicks we just have a single pulse going through multiple beam splitters
before being measured.

B.2.2 Cross-click probabilities

We observe from the statistics calculated in Appendix B.1 that if we ignore the clicks in
mode d2, the statistics do not depends on either the phase or the relative phase of the
two pulses. Thus, without loss of generality, we can always phase-randomise each pulse
individually without changing the statistics. In other words, we can assume that our input
state is a probabilistic mixture of |m,n−m〉〈m,n−m| where the total photon number is
n.

m n-m ab

m-b n-m-a

c

a-cd

b-d

Figure B.4: Bob receives m and n −m photons in the two pulses. Of that a + b photons
go into the X basis measurement line, and n − a − b go to the Z basis detector. c and d
photons go into the outside time-bins of the interferometer with the rest going into the
middle time-bin.

As depicted in Fig. B.4, we start with m and n − m photons in the 2 pulses. a + b
photons go into the X basis part of the beam splitter, b from the first pulse and a from
the second. Thus, n − a − b photons go to the Z basis measurement. The probability of
this is

(
m
b

)(
n−m
a

)
ta+b(1− t)n−a−b. Of the b photons in the first pulse, d go to the long arm

of the interferometer, and b − d go to the short arm. From the second pulse, c go to the
short arm and a − c go to the long arm of the interferometer. The probability for this is
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(
a
c

)(
b
d

) (
1
2

)a+b
. Finally, the probability that all c + d photons go to the top detector of the

Mach-Zehnder interferometer, denoted by a cross in Fig. (B.4), is
(

1
2

)c+d
.

Taking all of this into account, the probability of a cross-click given an input state
containing m and n−m photons in the two pulses is

p(cc|m,n−m) =
∑
a+b6=0
a+b6=n

(
m

b

)(
n−m
a

)
ta+b(1− t)n−a−b

(
1

2

)a+b ∑
c+d 6=0

(
a

c

)(
b

d

)(
1−

(
1

2

)c+d)

(B.16)

where the last
(

1−
(

1
2

)c+d)
factor is to subtract the case when all c + d photons go into

the line with the detector we do not use.

We first calculate the second summation,

S(a, b) =
∑
c+d6=0

(
a

c

)(
b

d

)(
1−

(
1

2

)c+d)
(B.17)

=
a∑
c=0

b∑
d=0

(
a

c

)(
b

d

)(
1−

(
1

2

)c+d)
− 0 (B.18)

= 2a+b −
(

3

2

)a+b

. (B.19)

Thus, the cross-click probability can be simplified as

p(cc|m,n−m) =
∑
a+b6=0
a+b6=n

(
m

b

)(
n−m
a

)
ta+b(1− t)n−a−b

(
1

2

)a+b

S(a, b) (B.20)

=
∑
a+b6=0
a+b6=n

(
m

b

)(
t

2

)b
(1− t)m−b

(
n−m
a

)(
t

2

)a
(1− t)n−m−a S(a, b).

(B.21)
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In order to simplify this, we compute

f(x,m) =
m∑
b=0

(
m

b

)(
t

2

)b
(1− t)m−bxb (B.22)

=

(
1− t+

xt

2

)m
. (B.23)

So using Eq. (B.23) in Eq. (B.21) we get

p(cc|m,n−m) = f(2,m)f(2, n−m)− f
(

3

2
,m

)
f

(
3

2
, n−m

)
−
(

2t

2

)n
+

(
3t

4

)n
(B.24)

=

(
1− t+

2t

2

)n
−
(

1− t+
3t

4

)n
− tn +

(
3t

4

)n
(B.25)

= 1− tn −
(

1− t

4

)n
+

(
3t

4

)n
. (B.26)

We observe that the cross-click probability does not depend on m which intuitively follows
from the symmetry of our definition of cross-clicks.

Viewing the cross-click probability as a function of n

f(n) = 1− tn −
(

1− t

4

)n
+

(
3t

4

)n
, (B.27)

we look to show that the function is monotonically increasing. This would make it easy to
find pmin(cc| ≤ N). We do this by considering

f(n+ 1)− f(n) = tn(1− t) +

(
1− t

4

)n(
t

4

)
−
(

3t

4

)n(
1− 3t

4

)
(B.28)

and showing that this is positive for all positive integers n. We first note that 0 ≤ t ≤ 1
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which gives us

t ≤ 1 (B.29)

1− t ≥ 0 (B.30)

1− t

4
− 3t

4
≥ 0 (B.31)

1− t

4
≥ 3t

4
. (B.32)

Raising both sides to the nth power and multiplying both sides of the inequality by t
4
,(

1− t

4

)n
t

4
≥
(

3t

4

)n
t

4
(B.33)(

1− t

4

)n
t

4
−
(

3t

4

)n(
1− 3t

4

)
≥
(

3t

4

)n
(t− 1). (B.34)

Finally, adding tn(1− t) to both sides of the equation,

tn(1− t) +

(
1− t

4

)n
t

4
−
(

3t

4

)n(
1− 3t

4

)
≥ tn(1− t) +

(
3t

4

)n
(t− 1) (B.35)

f(n+ 1)− f(n) ≥
(
tn −

(
3t

4

)n)
(1− t) ≥ 0 (B.36)

where the last inequality follows from the fact that t ≥ 3t
4

. Thus, pmin(cc| ≤ N) = p(cc|0) =
0, and pmin(cc| > N) = p(cc|N + 1). Using this in Eq. (B.9),

p(> N) ≤ p(cc)

1− tN+1 −
(
1− t

4

)N+1
+
(

3t
4

)N+1
(B.37)

where we can simulate the cross-click probability p(cc) as shown in Appendix B.1.
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Appendix C

Source code for numerics

This appendix contains the source code used to generate the plots for the three-state
protocol seen in Fig. 5.2. The primary function that bounds Eve’s information about the
key register is given below.

1 %% FUNCTION NAME: ThreeSta t e Eves in fo
2 % This func t i on a l l ows you to bound Eve ’ s in fo rmat ion about the

key r e g i s t e r f o r the 3− s t a t e p ro to co l us ing the g e n e r a l i s e d
decoy−s t a t e method .

3 %
4 % Input :
5 %
6 % ∗ N : Prese rv ing up to N−photon subspace on Bob ’ s s i d e
7 %
8 % ∗ n t i l d e : The value o f ñ that i n d i c a t e s the key ra t e block
9 % that we opt imise .

10 %
11 % ∗ q : The p r o b a b i l i t y o f Al ice ’ s sending a complete ly phase

randomised s t a t e .
12 %
13 % ∗ alpha : The vec to r conta in ing the l i s t o f ampl itudes

√
µ o f

the s i g n a l and decoy s t a t e s produced by the l a s e r with the
f i r s t element being the s i g n a l i n t e n s i t y .

14 %
15 % ∗ eta : Channel l o s s
16 %
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17 % ∗ t : The f r a c t i o n o f photons going in to the X b a s i s .
18 %
19 % ∗ i t e r : The maximum number o f i t e r a t i o n s in pr ima lSo lve r .
20 %
21 % ∗ rho0 : I n i t i a l guess f o r op t im i sa t i on in pr ima lSo lve r .
22 %
23 % Output :
24 %
25 % ∗ Eves in f o : Lowerbound on the optimal key ra t e term H(Z|E)

cond i t i oned on Al i c e sending out the |ñ〉 s i g n a l .
26 %
27 f unc t i on Eve s in f o = ThreeSta te Eves in fo (N, n t i l d e , q , alpha ,

eta , t , i t e r , rho0 )
28

29

30 %% Primal CVX S e t t i n g s
31

32 i f narg in == 8 % i f no input rho0
33 rho0 = eye (dim) /dim ;
34 opt ions . in itmethod = 2 ;
35

36 e l s e i f narg in == 9 % s p e c i f i e d i n i t i a l guess f o r rho0
37 opt ions . in itmethod = 1 ;
38 end
39

40 opt ions . verbose = 1 ;
41 opt ions . l i n e a r c o n s t r a i n t t o l e r a n c e = 1e−10;
42

43 opt ions . maxgap = 1e−7;
44 opt ions . maxiter = i t e r ;
45

46 %% POVMs, Krauss operators , and Key map
47 dimA = 3 ; % dimension o f Al ice ’ s system in the PM scheme (3

s t a t e s )
48 dimB = (N+1)∗(N+2) /2 ; % Bob ’ s <=N−photon subspace dimension
49 dim = dimA ∗ dimB ; % Total dimension o f ρNAB
50

51 vecZero = zket (2 , 1 ) ; %|0>
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52 vecOne = zket (2 , 2 ) ; %|1>
53

54 % Using the code that gene ra t e s POVM f o r the COW pro to co l
55 BPOVMs = COWPOVM(N, 1 , t ) ;
56 % Coarse−g ra in ing the POVM elements to i gno re a l l c l i c k s in

the ”+” de t e c t o r
57 BPOVM = CoarseGrainedPOVMs (BPOVMs) ;
58 % Coarse−g ra in ing the POVM elements to group a l l the multi−

c l i c k events in to one POVM element to save computat ional
time

59 BobPOVM = MultiCoarseGrainedPOVMs (BPOVM) ;
60

61 KraussBob = MultiBobKrauss (BobPOVM) ;
62 KraussAl ice = kron ( vecZero∗ zket (3 , 1 ) ’ ) + . . .
63 kron ( vecOne∗ zket (3 , 2 ) ’ ) ;
64 krausOp = {kron ( KraussAl ice , KraussBob ) } ;
65

66 keyProj1 = kron ( vecZero∗vecZero ’ , eye (dimB) ) ;
67 keyProj2 = kron ( vecOne∗vecOne ’ , eye (dimB) ) ;
68 keyMap = {keyProj1 , keyProj2 } ;
69

70 AlicePOVM = {diag ( zket (3 , 1 ) , . . .
71 diag ( zket (3 , 2 ) ) , . . .
72 diag ( zket (3 , 3 ) ) } ;
73 pA = [ 1 / 3 ; 1/3 ; 1 / 3 ] ; % Proba b i l i t y o f A l i c e sending each

s i g n a l s t a t e
74 c o a r s e s t a t s = [ ] ;
75

76 % Finding the cut−o f f M on the s i g n a l s t a t e s that A l i c e sends
77 M = 17 ;
78 f o r s i g n a l s t a t e i n d e x = 0 : 1 : 1 0
79 i f ( p o i s s p d f ( s i g n a l s t a t e i n d e x , alpha (1 ) ˆ2) <= eps )
80 M = s i g n a l s t a t e i n d e x −1;
81 break ;
82 end
83 end
84
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85 %% Simulat ing the l o s s−only channel and f i n d i n g the d i f f e r e n t
γij f o r the d i f f e r e n t s i g n a l and decoy s t a t e s .

86

87 f o r ampindex = 1 : 1 : l ength ( alpha )
88

89 % Fine−gra ined s t a t i s t i c s f o r the p ro to co l
90 [ f i n e s t a t s {3∗ampindex−2} , f i n e s t a t s {3∗ampindex−1} , f i n e s t a t s

{3∗ampindex } ] = Channe lS imu la t i onS ta t i s t i c s ( s q r t ( eta )∗
alpha ( ampindex ) , t ) ;

91 %Coarse−gra ined s t a t i s t i c s with a l l multi−c l i c k s added up
92 c o a r s e s t a t s = [ c o a r s e s t a t s ; Mu l t iChanne lS imu la t i onSta t i s t i c s (

f i n e s t a t s {3∗ampindex−2} , f i n e s t a t s {3∗ampindex−1} ,
f i n e s t a t s {3∗ampindex }) ] ;

93

94 mu = alpha ( ampindex ) ˆ2 ;
95 % Projec ted s t a t e
96 rho{ampindex} = ze ro s (M+1) ;
97 f o r s i g n a l s t a t e i n d e x = 0 : 1 :M
98 f o r j = 0 : 1 :M
99 i f p o i s s p d f ( s i g n a l s t a t e i n d e x ,mu) > eps

100 i f s i g n a l s t a t e i n d e x == j
101 rho{ampindex }( s i g n a l s t a t e i n d e x +1, j +1) =

p o i s s p d f ( s i g n a l s t a t e i n d e x ,mu) ;
102 e l s e
103 rho{ampindex }( s i g n a l s t a t e i n d e x +1, j +1) = (1−q )

∗ s q r t ( p o i s s p d f ( s i g n a l s t a t e i n d e x ,mu)∗
p o i s s p d f ( j ,mu) ) ;

104 end
105 end
106 end
107 end
108 end
109 Fproj = t ra c e ( rho {1}) ; % F i d e l i t y between approx . rho and

i n f i n i t e rho
110 i f Fproj>1
111 Fproj = 1 ;
112 end
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113 e p s i l o n p r o j = 2∗ s q r t (1−Fproj ) + 2∗ s q r t ( eps ) ; % Accounting f o r
machine e r r o r

114 i f q==1
115 e p s i l o n p r o j = 1−Fproj+eps ; % Tighter bound i f rho

commutes with p r o j e c t o r
116 end
117

118 % Eigenvector / value o f the p ro j e c t ed s i g n a l s t a t e with the
maximum d i s t anc e between t h i s e i g e n v e c t o r and the i n f i n i t e

d imens iona l s t a t e s e i g e n v e c t o r
119 [ ps i , lambda , e p s i l o n v e c ] = c l o s e s t E i g e n v e c t o r s ( rho {1} , . . .
120 e p s i l o n p r o j , n t i l d e +1) ;
121 i f q == 1
122 e p s i l o n v e c = opt ions . l i n e a r c o n s t r a i n t t o l e r a n c e ; % Already

d iagona l case
123 end
124

125 f o r s i g n a l s t a t e i n d e x = 1 : 1 : 3
126 expect = [ ] ;
127 f o r ampindex = 1 : 1 : l ength ( alpha )
128 % Upper bound on g r e a t e r than equal to N subspace
129 PgeqNx = (1−ThreeStateleqN (N, t , f i n e s t a t s {3∗

ampindex−3+s i g n a l s t a t e i n d e x }) ) ;
130 Wb( ampindex ) = PgeqNx ;
131 %Constra in ing s t a t i s t i c s and POVMs f o r decoy−s t a t e
132 consStat = c o a r s e s t a t s (3∗ ampindex − 3 + . . .
133 s i g n a l s t a t e i n d e x , : ) ;
134 consPOVM = BobPOVM;
135 expect = [ expect , consStat ’ ] ;
136 end
137 % We take the same o b j e c t i v e and c o n s t r a i n i n g POVMs
138 [YL{ s i g n a l s t a t e i n d e x } , YU{ s i g n a l s t a t e i n d e x } ] =

decoyBoundsSDP (consPOVM, consPOVM, rho , { p s i ∗ps i ’} ,
expect , Wb, q ) ;

139 end
140

141 % POVM and s t a t i s t i c bounds that w i l l go in to the pr imal
s o l v e r
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142 Gamma = {} ;
143 gammaL = [ ] ;
144 gammaU = [ ] ;
145

146 f o r s i g n a l s t a t e i n d e x = 1 : 1 : 3
147 f o r j = 1 : l ength (consPOVM)
148 Gamma = [Gamma; kron (AlicePOVM{ s i g n a l s t a t e i n d e x } ,

consPOVM{ j }) ] ;
149 gammaL = [gammaL; max(pA( s i g n a l s t a t e i n d e x )∗YL{

s i g n a l s t a t e i n d e x }( j )−eps i l onvec , 0 ) ] ;
150 gammaU = [gammaU; min (pA( s i g n a l s t a t e i n d e x )∗YU{

s i g n a l s t a t e i n d e x }( j )+eps i l onvec ,pA(
s i g n a l s t a t e i n d e x ) ) ] ;

151 end
152 end
153

154 % Encoding i s o m e t r i e s to obta in the p a r t i a l t r a c e c o n s t r a i n t
155 V{1} = kron ( zket (M+1 ,1) , eye (M+1) ) ;
156 V{2} = kron ( eye (M+1) , zket (M+1 ,1) ) ;
157 V{3} = 0 ;
158 f o r s i g n a l s t a t e i n d e x = 0 : 1 :M
159 f o r j = 0 : 1 : s i g n a l s t a t e i n d e x
160 V{3} = V{3} + s q r t ( nchoosek ( s i g n a l s t a t e i n d e x , j ) /2ˆ

s i g n a l s t a t e i n d e x )∗kron ( zket (M+1, j +1) , zket (M+1,
s i g n a l s t a t e i n d e x−j +1) )∗ zket (M+1, s i g n a l s t a t e i n d e x
+1) ’ ;

161 end
162 end
163 knownStates = {} ;
164 f o r ampindex = 1 : 1 : l ength ( alpha )
165 knownStates {3∗ampindex−2} = V{1}∗ rho{ampindex}∗V{1} ’ ;
166 knownStates {3∗ampindex−1} = V{2}∗ rho{ampindex}∗V{2} ’ ;
167 knownStates {3∗ampindex} = V{3}∗ rho{ampindex}∗V{3} ’ ;
168 end
169 W=0;
170 rhoA = ze ro s (3 ) ;
171 f o r s i g n a l s t a t e i n d e x = 1 : 1 : 3
172 f o r j = 1 : 1 : 3
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173 rhoA ( s i g n a l s t a t e i n d e x , j ) = s q r t (pA( s i g n a l s t a t e i n d e x )∗
pA( j ) )∗ps i ’∗V{ s i g n a l s t a t e i n d e x } ’∗V{ j }∗ p s i ;

174 end
175 end
176

177 %% Primal CVX
178 [ f va lvec , rho , p r ima l f va l s , gaps , f l a g p r i m a l ] = primalSolverAB (

rho0 , keyMap , rhoA , . . .
179 eps i l onvec , Gamma, gammaL, gammaU, W,

krausOp ) ;
180

181 % Perturb the suboptimal rho i f i t s e i g e n v a l u e s are not a l l
p o s i t i v e to avoid the ’ zetaEp ’ in ’ s t ep2So lve r .m’ being
too big

182 eigMin = lambda min ( rho ) ;
183 i f eigMin < 0
184 e p s i l o n = −eigMin∗dim ;
185 i f e p s i l o n < 1
186 rho = (1− e p s i l o n )∗ rho + e p s i l o n ∗ eye (dim) /dim ;
187 di sp ( ’ lambda min (Rho) with lambda min be f o r e

pe r tu rbat i on = ’+s t r i n g ( eigMin ) ) ;
188 di sp ( ’ lambda min (Rho) with lambda min = ’+s t r i n g (

lambda min ( rho ) ) ) ;
189 e l s e
190 di sp ( ’ Warning : e p s i l o n >= 1 ’ ) ;
191 end
192 end
193 Rho = rho ;
194

195 %% Dual CVX
196 di sp ( ’ running dual cvx . . . ’ ) ;
197 t i c
198 cons = ze ro s (1 , numel (Gamma) ) ;
199

200

201

202

203
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204 f o r iBasisElm = 1 : numel (Gamma)
205 i f r e a l ( t r a c e ( rho ∗ Gamma{ iBasisElm }) ) > gammaU(

iBasisElm )
206 cons ( iBasisElm ) = abs ( r e a l ( t r a c e ( rho ∗ Gamma{

iBasisElm }) − gammaU( iBasisElm ) ) ) ;
207 end
208 end
209 opt ion2 = {} ;
210 opt ion2 . eps i l onpr ime = max( cons ) ; % maximum c o n s t r a i n t

v i o l a t i o n
211 di sp ( ’max cons = ’+s t r i n g (max( cons ) ) ) ;
212 opt ion2 . eps i lonpr imepr ime = 1e−10;
213

214 [ dua l f va l s , debugging , f l a g d u a l ] = step2SolverAB (Rho , keyMap ,
rhoA , eps i l onvec , Gamma, gammaL, gammaU, sum(W) , krausOp ,
opt ion2 ) ;

215

216 % Mult ip ly ing the optimal va lue by the e i g enva lue to get the
key ra t e c on t r i bu t i o n

217 i f d u a l f v a l s <= 0 | | ( lambda−e p s i l o n p r o j ) <= 0
218 keyrate = 0 ;
219 e l s e
220 keyrate = d u a l f v a l s ∗( lambda−e p s i l o n p r o j ) ;
221 end
222 end

The primal and dual solvers can be found in [60]. The rest of the functions used to generate
these key rate contributions have been given below.

C.1 Protocol description

Code to generate the POVMs

1 %% Bob ’ s Flag−State Squashed POVM f o r COW pro to co l in <=N
subspace

2 %
3 % Input :
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4 %
5 % ∗ N : photon number cut−o f f cor re spond ing to <=N−photon

subspace
6 %
7 % ∗ n : number o f b i t s in a block . For 3−State Protocol , t h i s

can be s e t to 1 .
8 %
9 % ∗ t : f r a c t i o n o f photons going in to the X b a s i s . For DPS

protoco l , t h i s can be s e t to 1 .
10 %
11 % Output :
12 %
13 % ∗ POVM : a c e l l o f the POVM elements
14 %
15 f unc t i on POVM = COWPOVM(N, n , t )
16

17 dim = (N+1) ∗ nchoosek (2∗n+N, 2∗n−1)/(2∗n) ; % D i s t r i b u t i n g <=

N photons in 2n modes
∑N

i=0

(
(2n+i−1)

(2n−1)

)
18

19 % The next l i n e s g ive the p r o j e c t o r onto the <= N photon
subspace with block d iagona l s t r u c t u r e cor re spond ing to
t o t a l photon number in the n−b i t b lock .

20 p r o j e c t o r = ze ro s (dim , (N+1)ˆ(2∗n) ) ;
21 p r o j e c t o r (1 , 1 ) = 1 ;
22

23 f o r photonnumber = 1 : 1 :N
24 % Forming vec to r o f a l l the ways that

x1 + ....+ x2n = photonnumber
25 temp = sym2ce l l ( f e v a l ( symengine , ’ combinat : : compos i t ions ’

, photonnumber , s t r c a t ( ’ Length = ’ , i n t 2 s t r (2∗n) ) , ’
MinPart = 0 ’ ) ) ;

26

27 l = s i z e ( temp , 2 ) ; % Count number o f such combinat ions
that are the re .

28 f o r i = 1 : 1 : l % Loop over a l l combinat ions
29 combtemp = sym2ce l l ( temp{ i }) ;
30 index = 1 ; % Column that w i l l be non−zero in our
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p r o j e c t i o n matrix
31 f o r j = 1 : 1 : 2∗ n % Loop over a l l the e lements in

the combination
32 index = index + combtemp{ j }∗(N+1)ˆ( j−1) ; %

| . . . . , i , j , k> has only the 1+(N+1)∗k+(N+1)
ˆ2∗ j +(N+1)ˆ3∗ i + . . . e lement non−zero . Thus ,

t h i s i s the column o f the p r o j e c t o r that
w i l l be non−zero

33 end
34 p r o j e c t o r ( ( photonnumber ) ∗ nchoosek (2∗n+

photonnumber−1, 2∗n−1)/(2∗n)+i , index ) = 1 ;
35 end
36 end
37 % Generic a n n i h i l a t i o n operator r e s t r i c t e d to <=N−photon

subspace
38 a = ze ro s (N+1) ;
39

40 f o r k = 1 : 1 :N
41 a (k , k+1) = s q r t ( k ) ;
42 end
43

44 % Input a n n i h i l a t i o n ope ra to r s ui where the d i f f e r e n t spaces
in the t enso r product r e p r e s en t d i f f e r e n t time−bins

45

46 u = c e l l (2∗n , 1 ) ;
47 f o r i = 1 : 1 : 2∗ n
48 u{ i } = a ;
49 f o r j =1:1 : i−1

50 u{ i}=kron (u{ i } , eye (N+1) ) ; % ui = a⊗ I⊗(i−1)

51 end
52 f o r j =1:1 : (2∗n−i )

53 u{ i}=kron ( eye (N+1) ,u{ i }) ; % ui = I⊗(2n−i) ⊗ a⊗ I⊗(i−1)

54 end
55 end
56 % Pro j ec t the se ope ra to r s i n to the <= N photon subspace
57 f o r i = 1 : 1 : 2∗ n
58 u{ i } = p r o j e c t o r ∗ u{ i } ∗ pro j e c to r ’ ;
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59 end
60

61 % Vacuum vecto r | 0 , 0 , 0 , . . 0 2n times> in the <= N photon
subspace

62 vac = p r o j e c t o r ∗ zket ( (N+1)ˆ(2∗n) ,1 ) ;
63

64 % Annih i l a t i on ope ra to r s that r e p r e s e n t the d e s t r u c t i v e
i n t e r f e r e n c e o f the adjacent time−bins .

65 d = c e l l (2∗n+1 ,1) ;
66 % Annih i l a t i on ope ra to r s that r e p r e s e n t the c o n s t r u c t i v e

i n t e r f e r e n c e o f the adjacent time−bins .
67 p = c e l l (2∗n+1 ,1) ;
68

69 % Note that whi l e wr i t i ng these a n n i h i l a t i o n ope ra to r s we
have ignored the terms that would come from the vacuum
components o f the beam s p l i t t e r as when wr i t i ng the POVMs
and imposing the cond i t i on that sa id s t a t e was the vacuum
state , the se a n n i h i l a t i o n ope ra to r s would not play a r o l e .

See Varun Narasimhachar ’ s masters t h e s i s , equat ions A. 5
and A. 6 f o r a more d e t a i l e d exp lanat ion .

70

71

72 % Annih i l a t i on ope ra to r s f o r the f i r s t time s l o t
73 d{1} = −0.5∗ s q r t ( t )∗u{1} ;
74 c{1} = 0.5∗ s q r t ( t )∗u{1} ;
75

76 % Annih i l a t i on ope ra to r s f o r the l a s t time s l o t
77 d{2∗n+1} = 0.5∗ s q r t ( t )∗u{2∗n } ;
78 c{2∗n+1} = 0.5∗ s q r t ( t )∗u{2∗n } ;
79

80 % Annih i l a t i on ope ra to r s f o r middle−s l o t s
81 f o r i = 2 : 1 : 2∗ n
82 d{ i } = 0.5∗ s q r t ( t ) ∗(u{ i−1}−u{ i }) ;
83 c{ i } = 0.5∗ s q r t ( t ) ∗(u{ i−1}+u{ i }) ;
84 end
85

86 % Creat ing a c e l l that conta in s a l l the a n n i h i l a t i o n
ope ra to r s i n c l u d i n g the b a s i s cho i c e beam s p l i t t e r
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87 w = c e l l (6∗n+2 ,1) ;
88 f o r i = 1 : 1 : 2∗ n
89 w{ i } = d{ i } ; % d e s t r u c t i v e i n t e r f e r e n c e ope ra to r s in the

X−b a s i s
90 w{2∗n+1+i } = c{ i } ; % c o n s t r u c t i v e i n t e r f e r e n c e ope ra to r s

in X−b a s i s
91 w{4∗n+2+i } = s q r t (1− t )∗u{ i } ; % ope ra to r s f o r the Z−b a s i s
92 end
93 w{2∗n+1} = d{2∗n+1};
94 w{4∗n+2} = c{2∗n+1};
95

96 % Number o f d e t e c t o r s in the p ro to co l . Here we think o f
c l i c k s in d i f f e r e n t time s l o t s as d i f f e r e n t d e t e c t o r s .

97 numberofdetectors = 6∗n+2;
98

99 POVM{1 ,1} = vac∗vac ’ ; % no−c l i c k event ( index2−1 = 0)
100

101 % The second index r e f e r s to the number o f d e t e c t o r s that
c l i c k + 1

102 % Within each block o f c l i c k pat t e rn s ( the f i r s t index ) , the
POVMs are arranged as per how nchoosek o rde r s them . To
know which POVM corresponds to which d e t e c t i o n event , look

at how the func t i on nchoosek o rde r s them .
103

104 f o r d e t e c t i o n e v e n t s = 1 : 1 : numberofdetectors
105

106 annOp = nchoosek (w, d e t e c t i o n e v e n t s ) ; % Creates an array
o f a l l p o s s i b l e combinat ions o f i a n n i h i l a t i o n
ope ra to r s f o r the i c l i c k event .

107 l = s i z e (annOp , 1) ; % Find number o f combinat ions o f i
a n n i h i l a t i o n ope ra to r s that e x i s t .

108

109 % Taking a l l p o s s i b l e combinat ions o f multi−c l i c k s and
adding them to the s e t o f POVMs.

110 f o r j = 1 : 1 : l
111 temp = annOp( j , : ) ;
112 tempPOVM = ze ro s (dim) ;
113 f o r photonnumber = 1 : 1 :N
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114 % Forms the POVM f o r the combination s to r ed in
temp f o r photonnumber and sums over these
POVMs t i l l cut−o f f

115 tempPOVM = tempPOVM + Sum({0} , temp , photonnumber
, vac ) ;

116 end
117 POVM{ j , d e t e c t i o n e v e n t s +1} = tempPOVM; % The second

index i s the number o f d e t e c t o r s that c l i c k +
1

118 end
119 end
120

121 end

This code forms the annihilation operators for the different click events and uses the func-
tion ’Sum’ given below to use those to get the final POVMs.

1 %% Forming the POVM from a s p e c i f i e d s e t o f a n n i h i l a t i o n
ope ra to r s assuming N photons

2 %
3 % We have to sum over a l l photon numbers f o r the d i f f e r e n t

d e t e c t o r s and time−s l o t s with the c o n s t r a i n t that the sum of
a l l the photon numbers in the de t e c t o r i s N. Thus , we have
mu l t ip l e summations that are dependent on each other through
the c o n s t r a i n t .

4 %
5 % This code can be used to f i n d f i n e−gra ined POVM elements f o r

any pro to co l i f you know the a n n i h i l a t i o n ope ra to r s f o r each
de t e c t o r .

6 %
7 % Input :
8 %
9 % ∗ i n d i c e s : Vector o f numbers that s i g n i f y the i n d i c e s f o r

the prev ious summations . When c a l l i n g the func t i on f o r the
f i r s t time , t h i s should be i n i t i a l i s e d to 0 .

10 %
11 % ∗ annOp : Ce l l conta in ing a l l the a n n i h i l a t i o n ope ra to r s f o r

the d i f f e r e n t d e t e c t o r s and time s l o t s .
12 %
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13 % ∗ N : Total number o f photons that are detec ted .
14 %
15 % ∗ vac : The vacuum s t a t e |0> which t e l l s us the dimension o f

the space .
16 %
17 % Output :
18 %
19 % ∗ P : a (2n , 1 ) c e l l which w i l l be the POVMs a f t e r adding the

co n t r i b u t i on due to the de t e c t o r and time−s l o t r ep r e s en t ed by
the a n n i h i l a t i o n operator m

20

21 f unc t i on tempstorage = Sum( ind i c e s , annOp , N, vac )
22

23 i f N >= length (annOp) % Need to have more photons than c l i c k
events

24 remainingphotons = N−sum ( [ i n d i c e s { : } ] )−l ength (annOp) +1; %
The t o t a l number o f photons l e f t f o r the r e s t o f the

summations
25

26 i f ( l ength (annOp) > 1)
27 tempstorage = 0 ; % i n i t i a l i s i n g sum as 0
28 f o r i = 1 : 1 : remainingphotons
29 v = annOp ;
30 v (1 ) = [ ] ; % De le t ing the a n n i h i l a t i o n operator

j u s t used
31 tempindices = i n d i c e s ;
32 tempindices {end + 1} = i ; % Adding the number o f

photons detec ted in t h i s operator to the
i n d i c e s vec to r

33 tempstorage = tempstorage + annOp{1} ’ˆ i ∗ . . .
34 Sum( tempindices , v , N, vac ) ∗ annOp{1}ˆ i /

f a c t o r i a l ( i ) ;
35 end
36 e l s e % Base case when we have j u s t one a n n i h i l a t i o n

operator
37 tempstorage = annOp{1} ’ˆ remainingphotons ∗ vac ∗ vac ’

∗ . . .
38 annOp{1}ˆ remainingphotons / f a c t o r i a l (
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remainingphotons ) ;
39 end
40 e l s e % Zero matrix o f whatever dimension space we have
41 tempstorage = vac∗vac ’−vac∗vac ’ ;
42 end
43 end

These POVMs include the ’+’ detector which we do not have in the experimental setup
we consider. So we need to coarse-grain these to get the POVMs for the experimental
setup. This is done by the function ’CoarseGrainedPOVMs’ shown below.

1 %% Bob ’ s coarse−gra ined POVM opera to r s f o r the 3−State p ro to co l
2 % We do not a c t u a l l y have the ” p lus ” de t e c t o r in the exper imenta l

implementation o f the p ro to co l . So any d e t e c t i o n events with
c l i c k s in the ” p lus ” de t e c t o r and c l i c k s in any other de t e c t o r
would be coarse−gra ined to c l i c k s in j u s t the other de t e c t o r

and a l l c l i c k s in j u s t the ” p lus ” de t e c t o r would be coa r s e
gra ined to the no−c l i c k event .

3 %
4 % Input :
5 %
6 % ∗ POVM : POVMs as outputted by the COWPOVM func t i on with n=1
7 %
8 % Output :
9 %

10 % ∗ CPOVM : Coarse gra ined POVMs
11

12

13 f unc t i on CPOVM = CoarseGrainedPOVMs (POVM)
14

15 CPOVM = c e l l (10 , 6) ; % The second index i i s f o r the number o f
d e t e c t o r s that c l i c k and the f i r s t w i l l t e l l us exac t l y

what ( i −1)−c l i c k event has occured .
16

17 %% The coar s e gra ined no−c l i c k event
18

19 CPOVM{1 ,1} = POVM{1 ,1} + . . . %
Vacuum event

20 POVM{4 ,2} + POVM{5 ,2} + POVM{6 ,2} + . . . %
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Sing le−c l i c k event
21 POVM{19 ,3} + POVM{20 ,3} + POVM{23 ,3} + . . .%

Double−c l i c k event
22 POVM{47 ,4} ; %

Trip le−c l i c k event
23

24

25

26 %% Coarse gra ined s i n g l e−c l i c k events
27

28 % The ”−” de t e c t o r in the f i r s t time s l o t (1 )
29 CPOVM{1 ,2} = POVM{1 ,2} + . . . %

Sing le−c l i c k event
30 POVM{3 ,3} + POVM{4 ,3} + POVM{5 ,3} + . . . %

Double−c l i c k event
31 POVM{12 ,4} + POVM{13 ,4} + POVM{16 ,4} + . . .%

Trip le−c l i c k event
32 POVM{26 ,5} ; %

Quadruple−c l i c k event
33

34 % The ”−” de t e c t o r in the middle time s l o t (2 )
35 CPOVM{2 ,2} = POVM{2 ,2} + . . . %

Sing le−c l i c k event
36 POVM{9 ,3} + POVM{10 ,3} + POVM{11 ,3} + . . . %

Double−c l i c k event
37 POVM{27 ,4} + POVM{28 ,4} + POVM{31 ,4} + . . .%

Trip le−c l i c k event
38 POVM{46 ,5} ; %

Quadruple−c l i c k event
39

40 % The ”−” de t e c t o r in the l a s t time s l o t (3 )
41 CPOVM{3 ,2} = POVM{3 ,2} + . . . %

Sing le−c l i c k event
42 POVM{14 ,3} + POVM{15 ,3} + POVM{16 ,3} + . . .%

Double−c l i c k event
43 POVM{37 ,4} + POVM{38 ,4} + POVM{41 ,4} + . . .%

Trip le−c l i c k event
44 POVM{56 ,5} ; %
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Quadruple−c l i c k event
45

46 % The ”0/1” de t e c t o r in the f i r s t time s l o t (7 )
47 CPOVM{4 ,2} = POVM{7 ,2} + . . . %

Sing le−c l i c k event
48 POVM{21 ,3} + POVM{24 ,3} + POVM{26 ,3} + . . .%

Double−c l i c k event
49 POVM{48 ,4} + POVM{50 ,4} + POVM{53 ,4} + . . .%

Trip le−c l i c k event
50 POVM{66 ,5} ; %

Quadruple−c l i c k event
51

52 % The ”0/1” de t e c t o r in the l a s t time s l o t (8 )
53 CPOVM{5 ,2} = POVM{8 ,2} + . . . %

Sing le−c l i c k event
54 POVM{22 ,3} + POVM{25 ,3} + POVM{27 ,3} + . . .%

Double−c l i c k event
55 POVM{49 ,4} + POVM{51 ,4} + POVM{54 ,4} + . . .%

Trip le−c l i c k event
56 POVM{67 ,5} ; %

Quadruple−c l i c k event
57

58 %% Coarse−gra ined double−c l i c k events
59

60 % Double−c l i c k in 1 and 2
61 CPOVM{1 ,3} = POVM{1 ,3} + . . . %

Double−c l i c k event
62 POVM{2 ,4} + POVM{3 ,4} + POVM{4 ,4} + . . . %

Trip le−c l i c k event
63 POVM{6 ,5} + POVM{7 ,5} + POVM{10 ,5} + . . . %

Quadruple−c l i c k event
64 POVM{11 ,6} ; %

Quintuple−c l i c k event
65

66 % Double−c l i c k in 1 and 3
67 CPOVM{2 ,3} = POVM{2 ,3} + . . . %

Double−c l i c k event
68 POVM{7 ,4} + POVM{8 ,4} + POVM{9 ,4} + . . . %
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Trip le−c l i c k events
69 POVM{16 ,5} + POVM{17 ,5} + POVM{20 ,5} + . . .%

Quadruple−c l i c k events
70 POVM{21 ,6} ; %

Quintuple−c l i c k event
71

72 % Double−c l i c k in 1 and 7
73 CPOVM{3 ,3} = POVM{6 ,3} + . . . %

Double−c l i c k event
74 POVM{14 ,4} + POVM{17 ,4} + POVM{19 ,4} + . . .%

Trip le−c l i c k event
75 POVM{27 ,5} + POVM{29 ,5} + POVM{32 ,5} + . . .%

Quadruple−c l i c k event
76 POVM{31 ,6} ; %

Quintuple−c l i c k event
77

78 % Double−c l i c k in 1 and 8
79 CPOVM{4 ,3} = POVM{7 ,3} + . . . %

Double−c l i c k event
80 POVM{15 ,4} + POVM{18 ,4} + POVM{20 ,4} + . . .%

Trip le−c l i c k event
81 POVM{28 ,5} + POVM{30 ,5} + POVM{33 ,5} + . . .%

Quadruple−c l i c k event
82 POVM{32 ,6} ; %

Quintuple−c l i c k event
83

84 % Double−c l i c k in 2 and 3
85 CPOVM{5 ,3} = POVM{8 ,3} + . . . %

Double−c l i c k event
86 POVM{22 ,4} + POVM{23 ,4} + POVM{24 ,4} + . . .%

Trip le−c l i c k event
87 POVM{36 ,5} + POVM{37 ,5} + POVM{40 ,5} + . . .%

Quadruple−c l i c k event
88 POVM{36 ,6} ; %

Quintuple−c l i c k event
89

90 % Double−c l i c k in 2 and 7
91 CPOVM{6 ,3} = POVM{12 ,3} + . . . %
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Double−c l i c k event
92 POVM{29 ,4} + POVM{32 ,4} + POVM{34 ,4} + . . .%

Trip le−c l i c k event
93 POVM{47 ,5} + POVM{49 ,5} + POVM{52 ,5} + . . .%

Quadruple−c l i c k event
94 POVM{46 ,6} ; %

Quintuple−c l i c k event
95

96 % Double−c l i c k in 2 and 8
97 CPOVM{7 ,3} = POVM{13 ,3} + . . . %

Double−c l i c k event
98 POVM{30 ,4} + POVM{33 ,4} + POVM{35 ,4} + . . .%

Trip le−c l i c k event
99 POVM{48 ,5} + POVM{50 ,5} + POVM{53 ,5} + . . .%

Quadruple−c l i c k event
100 POVM{47 ,6} ; %

Quintuple−c l i c k event
101

102 % Double−c l i c k in 3 and 7
103 CPOVM{8 ,3} = POVM{17 ,3} + . . . %

Double−c l i c k event
104 POVM{39 ,4} + POVM{42 ,4} + POVM{44 ,4} + . . .%

Trip le−c l i c k event
105 POVM{57 ,5} + POVM{59 ,5} + POVM{62 ,5} + . . .%

Quadruple−c l i c k event
106 POVM{51 ,6} ; %

Quintuple−c l i c k event
107

108 % Double−c l i c k in 3 and 8
109 CPOVM{9 ,3} = POVM{18 ,3} + . . . %

Double−c l i c k event
110 POVM{40 ,4} + POVM{43 ,4} + POVM{45 ,4} + . . .%

Trip le−c l i c k event
111 POVM{58 ,5} + POVM{60 ,5} + POVM{63 ,5} + . . .%

Quadruple−c l i c k event
112 POVM{52 ,6} ; %

Quintuple−c l i c k event
113
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114 % Double−c l i c k in 7 and 8
115 CPOVM{10 ,3} = POVM{28 ,3} + . . . %

Double−c l i c k event
116 POVM{52 ,4} + POVM{55 ,4} + POVM{56 ,4} + . . .%

Trip le−c l i c k event
117 POVM{68 ,5} + POVM{69 ,5} + POVM{70 ,5} + . . .%

Quadruple−c l i c k event
118 POVM{56 ,6} ; %

Quintuple−c l i c k event
119

120 %% Coarse−gra ined t r i p l e−c l i c k events
121

122 % Trip le−c l i c k in 1 ,2 and 3
123 CPOVM{1 ,4} = POVM{1 ,4} + . . . %

Trip le−c l i c k event
124 POVM{1 ,5} + POVM{2 ,5} + POVM{3 ,5} + . . . %

Quadruple−c l i c k event
125 POVM{1 ,6} + POVM{2 ,6} + POVM{5 ,6} + . . . %

Quintuple−c l i c k event
126 POVM{1 ,7} ; %

Sextuple−c l i c k event
127

128 % Trip le−c l i c k in 1 ,2 and 7
129 CPOVM{2 ,4} = POVM{5 ,4} + . . . %

Trip le−c l i c k event
130 POVM{8 ,5} + POVM{11 ,5} + POVM{13 ,5} + . . . %

Quadruple−c l i c k event
131 POVM{12 ,6} + POVM{14 ,6} + POVM{17 ,6} + . . .%

Quintuple−c l i c k event
132 POVM{11 ,7} ; %

Sextuple−c l i c k event
133

134 % Trip le−c l i c k in 1 ,2 and 8
135 CPOVM{3 ,4} = POVM{6 ,4} + . . . %

Trip le−c l i c k event
136 POVM{9 ,5} + POVM{12 ,5} + POVM{14 ,5} + . . . %

Quadruple−c l i c k event
137 POVM{13 ,6} + POVM{15 ,6} + POVM{18 ,6} + . . .%
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Quintuple−c l i c k event
138 POVM{12 ,7} ; %

Sextuple−c l i c k event
139

140 % Trip le−c l i c k in 1 ,3 and 7
141 CPOVM{4 ,4} = POVM{10 ,4} + . . . %

Trip le−c l i c k event
142 POVM{18 ,5} + POVM{21 ,5} + POVM{23 ,5} + . . .%

Quadruple−c l i c k event
143 POVM{22 ,6} + POVM{24 ,6} + POVM{27 ,6} + . . .%

Quintuple−c l i c k event
144 POVM{16 ,7} ; %

Sextuple−c l i c k event
145

146 % Trip le−c l i c k in 1 ,3 and 8
147 CPOVM{5 ,4} = POVM{11 ,4} + . . . %

Trip le−c l i c k event
148 POVM{19 ,5} + POVM{22 ,5} + POVM{24 ,5} + . . .%

Quadruple−c l i c k event
149 POVM{23 ,6} + POVM{25 ,6} + POVM{28 ,6} + . . .%

Quintuple−c l i c k event
150 POVM{17 ,7} ; %

Sextuple−c l i c k event
151

152 % Trip le−c l i c k in 1 ,7 and 8
153 CPOVM{6 ,4} = POVM{21 ,4} + . . . %

Trip le−c l i c k event
154 POVM{31 ,5} + POVM{34 ,5} + POVM{35 ,5} + . . .%

Quadruple−c l i c k event
155 POVM{33 ,6} + POVM{34 ,6} + POVM{35 ,6} + . . .%

Quintuple−c l i c k event
156 POVM{21 ,7} ; %

Sextuple−c l i c k event
157

158 % Trip le−c l i c k in 2 ,3 and 7
159 CPOVM{7 ,4} = POVM{25 ,4} + . . . %

Trip le−c l i c k event
160 POVM{38 ,5} + POVM{41 ,5} + POVM{43 ,5} + . . .%
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Quadruple−c l i c k event
161 POVM{37 ,6} + POVM{39 ,6} + POVM{41 ,6} + . . .%

Quintuple−c l i c k event
162 POVM{22 ,7} ; %

Sextuple−c l i c k event
163

164 % Trip le−c l i c k in 2 ,3 and 8
165 CPOVM{8 ,4} = POVM{26 ,4} + . . . %

Trip le−c l i c k event
166 POVM{39 ,5} + POVM{42 ,5} + POVM{44 ,5} + . . .%

Quadruple−c l i c k event
167 POVM{38 ,6} + POVM{40 ,6} + POVM{42 ,6} + . . .%

Quintuple−c l i c k event
168 POVM{23 ,7} ; %

Sextuple−c l i c k event
169

170 % Trip le−c l i c k in 2 ,7 and 8
171 CPOVM{9 ,4} = POVM{36 ,4} + . . . %

Trip le−c l i c k event
172 POVM{51 ,5} + POVM{54 ,5} + POVM{55 ,5} + . . .%

Quadruple−c l i c k event
173 POVM{48 ,6} + POVM{49 ,6} + POVM{50 ,6} + . . .%

Quintuple−c l i c k event
174 POVM{27 ,7} ; %

Sextuple−c l i c k event
175

176 % Trip le−c l i c k in 3 ,7 and 8
177 CPOVM{10 ,4} = POVM{46 ,4} + . . . %

Trip le−c l i c k event
178 POVM{61 ,5} + POVM{64 ,5} + POVM{65 ,5} + . . .%

Quadruple−c l i c k event
179 POVM{53 ,6} + POVM{54 ,6} + POVM{56 ,6} + . . .%

Quintuple−c l i c k event
180 POVM{28 ,7} ; %

Sextuple−c l i c k event
181

182 %% Coarse−gra ined quadruple−c l i c k events
183
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184 % Quadraple−c l i c k in 1 ,2 ,3 and 7
185 CPOVM{1 ,5} = POVM{4 ,5} + . . . %

Quadruple−c l i c k event
186 POVM{3 ,6} + POVM{6 ,6} + POVM{8 ,6} + . . . %

Quintuple−c l i c k event
187 POVM{2 ,7} + POVM{4 ,7} + POVM{7 ,6} + . . . %

Sextuple−c l i c k event
188 POVM{1 ,8} ; %

Septuple−c l i c k event
189

190 % Quadraple−c l i c k in 1 ,2 ,3 and 8
191 CPOVM{2 ,5} = POVM{5 ,5} + . . . %

Quadruple−c l i c k event
192 POVM{4 ,6} + POVM{7 ,6} + POVM{9 ,6} + . . . %

Quintuple−c l i c k event
193 POVM{3 ,7} + POVM{5 ,7} + POVM{8 ,6} + . . . %

Sextuple−c l i c k event
194 POVM{2 ,8} ; %

Septuple−c l i c k event
195

196 % Quadraple−c l i c k in 1 ,2 ,7 and 8
197 CPOVM{3 ,5} = POVM{15 ,5} + . . . %

Quadruple−c l i c k event
198 POVM{16 ,6} + POVM{19 ,6} + POVM{20 ,6} + . . .%

Quintuple−c l i c k event
199 POVM{13 ,7} + POVM{14 ,7} + POVM{15 ,6} + . . .%

Sextuple−c l i c k event
200 POVM{6 ,8} ; %

Septuple−c l i c k event
201

202 % Quadraple−c l i c k in 1 ,3 ,7 and 8
203 CPOVM{4 ,5} = POVM{25 ,5} + . . . %

Quadruple−c l i c k event
204 POVM{26 ,6} + POVM{29 ,6} + POVM{30 ,6} + . . .%

Quintuple−c l i c k event
205 POVM{18 ,7} + POVM{19 ,7} + POVM{20 ,6} + . . .%

Sextuple−c l i c k event
206 POVM{7 ,8} ; %
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Septuple−c l i c k event
207

208 % Quadraple−c l i c k in 2 ,3 ,7 and 8
209 CPOVM{5 ,5} = POVM{45 ,5} + . . . %

Quadruple−c l i c k event
210 POVM{41 ,6} + POVM{44 ,6} + POVM{45 ,6} + . . .%

Quintuple−c l i c k event
211 POVM{24 ,7} + POVM{25 ,7} + POVM{26 ,6} + . . .%

Sextuple−c l i c k event
212 POVM{8 ,8} ; %

Septuple−c l i c k event
213

214 %% Coarse−gra ined a l l c l i c k event
215

216 CPOVM{1 ,6} = POVM{10 ,6} + . . . %
Quintuple−c l i c k event

217 POVM{6 ,7} + POVM{9 ,7} + POVM{10 ,6} + . . . %
Sextuple−c l i c k event

218 POVM{3 ,8} + POVM{4 ,8} + POVM{5 ,8} + . . . %
Septuple−c l i c k event

219 POVM{1 ,9} ; % All−
c l i c k event

220 end

We further coarse grain the POVMs to save computational power to group all multi-clicks
into one POVM element.

1 %% Bob ’ s coarse−gra ined POVM opera to r s f o r the 3−State p ro to co l
with multi−c l i c k coa r s e g ra in ing

2 % We coar s e g ra in the POVMs to save space such that a l l multi−
c l i c k POVMs are coa r s e gra ined in to one POVM

3 %
4 % Input :
5 % ∗ POVM : POVMs as outputted by the CoarseGrainedPOVMs

func t i on
6 %
7 % Output :
8 % ∗ CPOVM : Coarse gra ined POVMs
9
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10 f unc t i on CPOVM = MultiCoarseGrainedPOVMs (POVM)
11

12 CPOVM = c e l l (1 , 7) ; % The f i r s t 6 are the vacuum and s i n g l e−
c l i c k events whi l e the l a s t one i s the multi−c l i c k POVM
event

13

14 CPOVM{1 ,1} = POVM{1 ,1} ; % No−c l i c k event
15 n = length (POVM{1 ,1}) ;
16 tempsum = POVM{1 ,1} ;
17 f o r i = 1 : 1 : 5
18 CPOVM{1 , i +1} = POVM{ i , 2 } ; % Sing le−c l i c k events
19 tempsum = tempsum + POVM{ i , 2 } ;
20 end
21 CPOVM{1 ,7} = eye (n) − tempsum ; % Multi−c l i c k event
22

23 end

Bob’s Krauss operator

1 %% Bob ’ s Krauss ope ra to r s f o r the 3−State p ro to co l
2 % The announcements correspond to the b a s i s in which Bob got an

outcome , or i f the d e t e c t i o n event should be d i s ca rded . The
chosen post−p r o c e s s i n g here i s as f o l l o w s :

3 % 1) The 0/1 b a s i s cor re sponds to a l l c l i c k s in the Z−b a s i s and
outer c l i c k s in the ”minus” de t e c t o r .

4 % 2) The +/− b a s i s cor responds to a l l c l i c k s in the middle time
s l o t o f the ”minus” de t e c t o r which do not map to the key and
so are d i s ca rded .

5 % 3) Al l multi−c l i c k s are d i s ca rded .
6 %
7 % Input :
8 %
9 % ∗ POVM : POVMs as outputted by the MultiCoarseGrainedPOVM

func t i on
10 %
11 % Output :
12 %
13 % ∗ BKrauss : a c e l l o f the Krauss ope ra to r s
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14

15 f unc t i on BKrauss = MultiBobKrauss (CPOVM)
16

17 dim = s i z e (CPOVM{1 ,1} , 1 ) ; % Dimension o f the POVMs
18

19 % Coarse gra ined POVM opera to r s
20 PZero = ze ro s (dim) ; % Measurement r e s u l t 0 .
21 POne = ze ro s (dim) ; % Measurement r e s u l t 1 .
22

23 PZero = CPOVM{1 ,5} + . . .% Sing le−c l i c k in j u s t the 0/1
de t e c t o r . ( 7 )

24 CPOVM{1 ,2} ;% Sing le−c l i c k in ”−” de t e c t o r in the
f i r s t time bin (1 )

25 POne = CPOVM{1 ,6} + . . .% Sing le−c l i c k in j u s t the 0/1
de t e c t o r . ( 8 )

26 CPOVM{1 ,4} ;% Sing le−c l i c k in ”−” de t e c t o r in the l a s t
time bin (3 )

27

28 % Krauss operator f o r the 0/1 b a s i s
29 BKrauss = s q r t ( PZero+POne) ;
30 end

C.2 Channel simulation

We assume a loss-only channel and simulate it to obtain both the fine-grained and the
coarse-grained statistics where all the multi-clicks are taken to be one event.

Fine-grained statistics

1 %% Bob ’ s observed d e t e c t i o n s t a t i s t i c s f o r the 3− s t a t e p ro to co l
with a l o s s−only channel

2 %
3 % We assume that we have a l o s s−only channel and so whenever

A l i c e sends coherent s t a t e s , Bob r e c e i v e s coherent s t a t e s with
a reduced amplitude .

4 % Al i c e sends the s t a t e s |√µ, 0〉 , |0,√µ〉 and |
√

µ
2
,
√

µ
2
〉 with

p r o b a b i l i t y 1/3 each . In the f a i t h f u l implementation a f t e r
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channel l o s s , the s t a t e s going in to Bob ’ s apparatus w i l l be
e s s e n t i a l l y the same as what A l i c e sends except with

√
µ

r ep laced with α =
√
ηµ , the amplitude o f the coherent s t a t e

a f t e r l o s s .
5 %
6 % Input :
7 %
8 % ∗ alpha : Amplitude o f the coherent s t a t e s en t e r i ng Bob ’ s

apparatus .
9 %

10 % ∗ t : Fract ion o f photons going in to the X−b a s i s .
11 %
12 % Output :
13 %
14 % ∗ pzeroa lpha : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the zeroa lpha s t a t e .

15 %
16 % ∗ palphazero : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the zeroa lpha s t a t e .

17 %
18 % ∗ palphaalpha : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the alphaalpha s t a t e .

19

20

21 f unc t i on [ pzeroalpha , palphazero , palphaalpha ] =
Channe lS imu la t i onS ta t i s t i c s ( alpha , t )

22

23 alpha = abs ( alpha ) ;
24

25 cze roa lpha = c e l l ( 5 , 1 ) ;
26 cze roa lpha {1} = exp ( t∗alpha ˆ2/4)−1;
27 cze roa lpha {2} = exp ( t∗alpha ˆ2/4)−1;
28 cze roa lpha {3} = 0 ;
29 cze roa lpha {4} = exp((1− t )∗alpha ˆ2)−1;
30 cze roa lpha {5} = 0 ;
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31

32 ca lphazero = c e l l ( 5 , 1 ) ;
33 ca lphazero {1} = 0 ;
34 ca lphazero {2} = exp ( t∗alpha ˆ2/4)−1;
35 ca lphazero {3} = exp ( t∗alpha ˆ2/4)−1;
36 ca lphazero {4} = 0 ;
37 ca lphazero {5} = exp((1− t )∗alpha ˆ2)−1;
38

39 ca lphaalpha = c e l l ( 5 , 1 ) ;
40 ca lphaalpha {1} = exp ( t∗alpha ˆ2/8)−1;
41 ca lphaalpha {2} = 0 ;
42 ca lphaalpha {3} = exp ( t∗alpha ˆ2/8)−1;
43 ca lphaalpha {4} = exp((1− t )∗alpha ˆ2/2)−1;
44 ca lphaalpha {5} = exp((1− t )∗alpha ˆ2/2)−1;
45

46 a = exp(−alpha ˆ2) ; % |<0 | alpha >|ˆ2
47 pzeroa lpha {1 ,1} = a∗exp ( t∗alpha ˆ2/2) ;
48 palphazero {1 ,1} = a∗exp ( t∗alpha ˆ2/2) ;
49 palphaalpha {1 ,1} = a∗exp (3∗ t∗alpha ˆ2/4) ;
50

51 f o r i = 1 : 1 : 5
52 comboalphazero = nchoosek ( ca lphazero , i ) ;
53 combozeroalpha = nchoosek ( czeroa lpha , i ) ;
54 comboalphaalpha = nchoosek ( calphaalpha , i ) ;
55 l = s i z e ( comboalphazero , 1) ;
56 f o r j = 1 : 1 : l % Loop over a l l combinat ions
57 tempalphazero = comboalphazero ( j , : ) ;
58 tempzeroalpha = combozeroalpha ( j , : ) ;
59 tempalphaalpha = comboalphaalpha ( j , : ) ;
60 pzeroa lpha { j , i +1} = pzeroa lpha {1 ,1} ;
61 palphazero { j , i +1} = palphazero {1 ,1} ;
62 palphaalpha{ j , i +1} = palphaalpha {1 ,1} ;
63 f o r k = 1 : 1 : i
64 pzeroa lpha { j , i +1} = pzeroa lpha { j , i +1}∗

tempzeroalpha{k } ;
65 palphazero { j , i +1} = palphazero { j , i +1}∗

tempalphazero{k } ;
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66 palphaalpha{ j , i +1} = palphaalpha{ j , i +1}∗
tempalphaalpha{k } ;

67 end
68 end
69 end
70 end

Coarse-grained statistics

1 %% Coarse−g ra in ing o f the f i n e−gra ined s t a t i s t i c s to get the
s t a t i s t i c s with a l l the multi−c l i c k events toge the r .

2 %
3 % Input :
4 %
5 % ∗ pzeroa lpha : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the zeroa lpha s t a t e as outputted by
Channe lS imu la t i onS ta t i s t i c s .

6 %
7 % ∗ palphazero : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the zeroa lpha s t a t e as outputted by
Channe lS imu la t i onS ta t i s t i c s .

8 %
9 % ∗ palphaalpha : Ce l l conta in ing the p r o b a b i l i t i e s cor re spond ing

to the d i f f e r e n t POVM elements cond i t i oned on Al i c e having
sent the alphaalpha s t a t e as outputted by
Channe lS imu la t i onS ta t i s t i c s .

10 %
11 % Output :
12 %
13 % ∗ c o u r s e s t a t s : An array o f the coarse−gra ined s t a t i s t i c s with

c o u r s e s t a t s ( j , : ) be ing the s t a t i s t i c s f o r the jth s t a t e .
14

15 f unc t i on c o u r s e s t a t s = Mul t iChanne lS imu la t i onSta t i s t i c s (
pzeroalpha , palphazero , palphaalpha )

16

17
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18 c o u r s e s t a t s = ze ro s (3 , 7) ;
19 f i n e s t a t s = c e l l ( 3 , 1 ) ;
20 f i n e s t a t s {1} = pzeroa lpha ;
21 f i n e s t a t s {2} = palphazero ;
22 f i n e s t a t s {3} = palphaalpha ;
23

24 f o r j = 1 : 1 : 3
25 c o u r s e s t a t s ( j , 1 ) = f i n e s t a t s { j }{1 ,1} ; % No−

c l i c k event
26 probsum = f i n e s t a t s { j }{1 ,1} ;
27 f o r i = 1 : 1 : 5
28 c o u r s e s t a t s ( j , i +1) = f i n e s t a t s { j }{ i , 2 } ; %

Sing le−c l i c k events
29 probsum = probsum + c o u r s e s t a t s ( j , i +1) ;
30 end
31 c o u r s e s t a t s ( j , 7 ) = 1 − probsum ; % Multi−c l i c k

event
32 end
33 end

C.3 Bound on the weight inside projected subspace

The code to find the weight inside the projected subspace for the three-state protocol as
described in Appendix B.2 is given below.

1 %% Calcu la te the minimum weight o f the <=N−photon subspace o f the
s i g n a l s t a t e o f three−s t a t e p ro to co l

2 %
3 % Input :
4 %
5 % ∗ N : number o f photons
6 %
7 % ∗ t : f r a c t i o n o f photons going in to the X−b a s i s
8 %
9 % ∗ pbx : Bob ’ s outcome p r o b a b i l i t y c e l l cond i t i oned on Al i c e

cho i c e o f s t a t e where x = 2 i n d i c a t e s her sending the ”+”
s t a t e

10 %
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11 % Output :
12 %
13 % ∗ PleqN : p r o b a b i l i t y o f s i g n a l s t a t e in <=N−photon subspace
14

15 f unc t i on PleqN = ThreeStateleqN (N, t , pbx )
16

17 % Refer to CoarseGrainedPOVMS .m f o r the numbers f o r pbx
18

19 data = 0 ; % prob o f c l i c k in Z−b a s i s or in middle time bin o f
minus de t e c t o r

20 minus = 0 ; % minus detector−only c l i c k prob
21

22 data = pbx{4 ,2} + pbx{5 ,2} + pbx{2 ,2} + . . . % s i n g l e c l i c k s
23 pbx{6 ,3} + pbx{7 ,3} + pbx{10 ,3} + . . . % double c l i c k s
24 pbx {9 ,4} ; % t r i p l e c l i c k s
25

26 minus = pbx{1 ,2} + pbx{2 ,2} + pbx{3 ,2} + . . . % s i n g l e c l i c k s
27 pbx{1 ,3} + pbx{2 ,3} + pbx{5 ,3} + . . . % double c l i c k s
28 pbx {1 ,4} ; % t r i p l e c l i c k s
29

30 % Cross−c l i c k prob
31 cc = 1 − data − minus − pbx{1 ,1} + . . .
32 pbx {2 ,2} ; % to avoid double−

count ing
33 i f cc < 0 % cc maybe s l i g h t l y negat ive e . g . −1e−16 due to

numerica l p r e c i s i o n
34 cc = 0 ;
35 end
36

37 cc min 0 = 0 ;
38 cc min Nplus1 = 1 − t ˆ(N+1)−(1−t /4) ˆ(N+1) + (3∗ t /4) ˆ(N+1) ;
39

40 PleqN = 1 − ( cc − cc min 0 ) /( cc min Nplus1 − cc min 0 ) ;
41

42 i f PleqN > 1
43 PleqN = 1 ;
44 e l s e i f PleqN < 0
45 PleqN = 0 ;
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46 end
47 end

C.4 Approximate diagonalisation

The code that gives the approximate eigenvalue and eigenvector along with the maximum
deviation of the eigenvector as discussed in Section 3.5.

1

2 %% This func t i on computes the maximum d i s t anc e between the
e i g e n v e c t o r s o f two matr i ce s that are c l o s e in 1−norm .

3 %
4 % Input :
5 %
6 % ∗ rho − The known f i n i t e d imens iona l s t a t e .
7 %
8 % ∗ ep − The maximum d i s t ance between the known and unknown s t a t e

in 1−norm .
9 %

10 % ∗ n − Ordering the e i g e n v a l u e s from l a r g e s t to sma l l e s t , the
e i g e n v e c t o r cor re spond ing to the nth e i g enva lue i s the one
whose d i s t ance we wish to f i n d . For eg .− n=1 means to f i n d the
max d i s t between the f i r s t e i g e n v e c t o r o f rho to the

cor re spond ing e i g e n v e c t o r in the matrix at most ep away from
rho ( in 1−norm) .

11 %
12 % Output :
13 %
14 % ∗ vec − The e i g e n v e c t o r cor re spond ing to the nth e i g enva lue o f

rho .
15 %
16 % ∗ e i g v a l u e − The nth e i g enva lue o f rho .
17 %
18 % ∗ d i s t − The maxumum 1−norm of the d i f f e r e n c e o f the two

e i g e n v e c t o r s .
19 %
20
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21 f unc t i on [ vec , e i gva lue , d i s t ] = c l o s e s t E i g e n v e c t o r s ( rho , ep , n)
22

23 [V,D] = e i g ( rho ) ;
24 [ ˜ , ind ] = s o r t ( diag (D) , ’ descend ’ ) ;
25 D = D( ind , ind ) ;
26 V = V( : , ind ) ;
27 e = diag (D) ;
28 vec = V( : , n ) ;
29 e i g v a l u e = e (n) ;
30 i f n == 1
31 de l t a = e (1 )−e (2 )−ep ;
32 e l s e i f n == length ( rho )
33 de l t a = e (n−1)−e (n)−ep ;
34 e l s e
35 de l t a = min ( e (n−1)−e (n)−ep , e (n)−e (n+1)−ep ) ;
36 end
37

38 i f de l ta<0 | | ep>de l t a
39 d i s t = 2 ;
40 e l s e
41 Fsquare = 1−ep ˆ2/ de l t a ˆ2 ;
42 d i s t = 2∗ s q r t (1− s q r t ( Fsquare ) ) ;
43 end
44

45

46 end

C.5 Generalised decoy-state method

The code that implements the generalised decoy-state method is given here.

1 %% FUNCTION NAME: decoyBoundsSDP
2 % This f i l e conta in s the func t i on to compute decoy bounds without

assuming that a l l the s t a t e s are d iagona l by s o l v i n g an SDP.
3 %
4 % Input :
5 %
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6 % ∗ ConstraintPOVM − Ce l l conta in ing the c o n s t r a i n i n g POVM
7 %
8 % ∗ ObjPOVM − Ce l l conta in ing the o b j e c t i v e POVM
9 %

10 % ∗ rho − Ce l l which conta in s the p ro j e c t ed s t a t e s . So rho{ i } =
ΠMρiΠM the ith s t a t e .

11 %
12 % ∗ sigma − Ce l l which conta in s the o b j e c t i v e s t a t e s . Note that

these are assumed to l i e with in the p ro j e c t ed space .
13 %
14 % ∗ decoy expec ta t i on s − Matrix with a l l measurement outcomes f o r

d i f f e r e n t i n t e n s i t i e s . d e coy expec ta t i on s ( i , j ) i s the
d e t e c t i o n s t a t i s t i c s o f the ith measurement f o r ρj .

15 %
16 % ∗ Wb − The weight ou t s id e the p ro j e c t ed subspace where the

p r o j e c t i o n i s made on the s t a t e Bob r e c e i v e s ( dimension
reduct i on on the POVMs)

17 %
18 % ∗ C − S i g n i f i e s whether or not the s t a t e s commute with the

p r o j e c t i o n . C = 1 i n d i c a t e s that they do , o the rwi se they do
not .

19 %
20 % Output :
21 %
22 % ∗ YL − Lower bounds on s t a t i s t i c s
23 %
24 % ∗ YU − Upper bounds on s t a t i s t i c s
25

26 f unc t i on [YL, YU] = decoyBoundsSDP ( ConstraintPOVM , ObjPOVM, rho ,
sigma , decoy expectat ions , Wb, C)

27

28 l i n e a r c o n s t r a i n t t o l e r a n c e = 1e−10;
29

30 dimM = length ( ConstraintPOVM{1}) ;
31 dimS = length ( rho {1}) ;
32 dim = dimM∗dimS ;
33 f o r ob jState Index = 1 : numel ( sigma )
34 f o r objMeasurementIndex = 1 : 1 : numel (ObjPOVM)
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35 cvx beg in sdp qu i e t
36 c v x p r e c i s i o n d e f a u l t
37 c v x s o l v e r Mosek
38 v a r i a b l e J (dim , dim) hermit ian s e m i d e f i n i t e
39 minimize r e a l ( t r a c e ( kron (ObjPOVM{ i } , sigma{k})∗J ) )
40 f o r consStateIndex = 1 : numel ( rho )
41 W = 1−t r a c e ( rho{ consStateIndex }) ;
42 i f W<= eps
43 W = 0 ;
44 end
45 e p s i l o n = 2∗ s q r t (W) ;
46 i f C == 1 % Commuting case
47 e p s i l o n = W;
48 end
49 f o r consMeasurementIndex = 1 : numel (

ConstraintPOVM )
50 i f C ==1
51 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{

consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) . . .

52 <= min( decoy expec ta t i on s (
consMeasurementIndex ,
consStateIndex )+
l i n e a r c o n s t r a i n t t o l e r a n c e , 1 ) ;

53 e l s e
54 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{

consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) . . .

55 <= min( decoy expec ta t i on s (
consMeasurementIndex ,
consStateIndex )+e p s i l o n+
l i n e a r c o n s t r a i n t t o l e r a n c e , 1 ) ;

56 end
57 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{

consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) . . .

58 >= max( decoy expec ta t i on s (
consMeasurementIndex ,
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consStateIndex )−2∗eps i l on−Wb(
consStateIndex )−
l i n e a r c o n s t r a i n t t o l e r a n c e , 0 ) ;

59 end
60 end
61 1−W−Wb( consStateIndex )−e p s i l o n <= r e a l ( t r a c e ( kron

( eye (dimM) , rho{ consStateIndex })∗J ) ) <= 1 ;
62 i f Wb == 0
63 norm( Par t i a lTrace (J , 1 , [ dimM, dimS ] )−eye ( dimS ) )

<= 0 ;
64 e l s e
65 Part i a lTrace (J , 1 , [ dimM, dimS ] ) <= eye ( dimS ) ;
66 end
67 cvx end
68 YL( objMeasurementIndex , ob jState Index ) = r e a l ( t r a c e (

kron (ObjPOVM{objMeasurementIndex } , sigma{
objState Index })∗J ) ) ;

69

70 cvx beg in sdp qu i e t
71 c v x p r e c i s i o n d e f a u l t
72 c v x s o l v e r Mosek
73 v a r i a b l e J (dim , dim) hermit ian s e m i d e f i n i t e
74 maximize r e a l ( t r a c e ( kron ( (ObjPOVM{ i }) , sigma{k})∗J

) )
75 f o r consStateIndex = 1 : numel ( rho )
76 W = 1−t r a c e ( rho{ consStateIndex }) ;
77 i f W<= eps
78 W = 0 ;
79 end
80 % e p s i l o n = 2∗ s q r t (2∗W−Wˆ2) ;
81 e p s i l o n = 2∗ s q r t (W) ;
82 i f C == 1
83 e p s i l o n = W;
84 end
85 f o r consMeasurementIndex = 1 : numel (

ConstraintPOVM )
86 i f C ==1
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87 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{
consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) <= min(
decoy expec ta t i on s (
consMeasurementIndex ,
consStateIndex )+
l i n e a r c o n s t r a i n t t o l e r a n c e , 1 ) ;

88 e l s e
89 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{

consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) <= min(
decoy expec ta t i on s (
consMeasurementIndex ,
consStateIndex )+e p s i l o n+
l i n e a r c o n s t r a i n t t o l e r a n c e , 1 ) ;

90 end
91 r e a l ( t r a c e ( ( kron ( ConstraintPOVM{

consMeasurementIndex } , rho{
consStateIndex })∗J ) ) ) >= max(
decoy expec ta t i on s (
consMeasurementIndex , consStateIndex )
−2∗eps i l on−Wb( consStateIndex )−
l i n e a r c o n s t r a i n t t o l e r a n c e , 0 ) ;

92 end
93 end
94 1−W−Wb( consStateIndex )−e p s i l o n <= r e a l ( t r a c e ( kron

( eye (dimM) , rho{ consStateIndex })∗J ) ) <= 1 ;
95 i f Wb == 0
96 norm( Par t i a lTrace (J , 1 , [ dimM, dimS ] )−eye ( dimS ) )

<= 0 ;
97 e l s e
98 Part i a lTrace (J , 1 , [ dimM, dimS ] ) <= eye ( dimS )
99 end

100 cvx end
101 YU( objMeasurementIndex , ob jState Index ) = r e a l ( t r a c e (

kron ( (ObjPOVM{objMeasurementIndex }) , sigma{
objState Index })∗J ) ) ;

102 end
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103

104 end
105

106 end
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