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H I G H L I G H T S  

• Reviewed control-oriented PEMFC models with high computing speed and accuracy. 
• Compared 1D physical models by incorporating transport & electrochemical phenomena. 
• Examined 0D analytical & empirical models with low computing resource requirements. 
• Scrutinized data-driven models with AI algorithms for real-time control.  
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A B S T R A C T   

The real-time model-based control of polymer electrolyte membrane (PEM) fuel cells requires a computationally 
efficient and sufficiently accurate model to predict the transient and long-term performance under various 
operational conditions, involving the pressure, temperature, humidity, and stoichiometry ratio. In this article, 
recent progress on the development of PEM fuel cell models that can be used for real-time control is reviewed. 
The major operational principles of PEM fuel cells and the associated mathematical description of the transport 
and electrochemical phenomena are described. The reduced-dimensional physics-based models (pseudo-two- 
dimensional, one-dimensional numerical and zero dimensional analytical models) and the non-physics-based 
models (zero-dimensional empirical and data-driven models) have been systematically examined, and the 
comparison of these models has been performed. It is found that the current trends for the real-time control 
models are (i) to couple the single cell model with balance of plants to investigate the system performance, (ii) to 
incorporate aging effects to enable long-term performance prediction, (iii) to increase the computational speed 
(especially for one-dimensional numerical models), and (iv) to develop data-driven models with artificial in
telligence/machine learning algorithms. This review will be beneficial for the development of physics or non- 
physics based models with sufficient accuracy and computational speed to ensure the real-time control of 
PEM fuel cells.   

1. Introduction 

The polymer electrolyte membrane (PEM) fuel cell has reached its 
early stage of commercialization in vehicular, portable, and stationary 
applications due to its advantageous features such as low gas emission, 
quiet operation, fast load response, and high energy conversion effi
ciency [1–3]. Significant efforts have been devoted to developing PEM 
fuel cells with reduced cost, improved performance, and increased 
durability, which remain the three major technical challenges to its 
successful commercialization [4,5]. PEM fuel cells are extensively 

studied through experimental and modeling approaches. The experi
mental approach is costly, time-consuming, and skill-dependent. For 
instance, a target lifetime of 40,000 h [6] set by the U.S. Department of 
Energy (DOE) for stationary fuel cells by 2020 requires around 4.6 years 
of non-stop operations, while for vehicles, the target lifetime of 25,000 h 
for buses requires over 3.4 years of testing by running the fuel cell buses 
(275 kW) 20 h every day with the fuel cost of USD $800,000 at the 
hydrogen price of USD $4/kg [7]. 

Numerical modeling has been demonstrated to be a useful alterna
tive to experiments for the fuel cell studies in various ways, e.g., un
derstanding physical phenomena that are difficult or expensive to be 
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captured by experimental techniques [4,8] and providing the basis of 
the control and diagnosis strategies for PEM fuel cells [9,10]. The actual 
PEM fuel cell operation involves complex transport phenomena of 
neutral species (e.g., hydrogen, air, vapor and liquid water), charged 
species (e.g., electron and ion) and thermal energy within a multiscale 
region (e.g., flow channels with the dimensions from a few millimeters to 
tens of centimeters and porous media with length scales of nanometers 
and micrometers), which makes it challenging to accurately predict the 
output performance and precisely control the operation in a real-time 
environment. For a stable, efficient, and robust operation of PEM fuel 
cells, it is necessary to effectively control the reactant supply, water 
management, humidification, cooling and power electronic subsystems 
[9]. Many control strategies have been employed for PEM fuel cells, 

including proportional integral derivative (PID) control, adaptive con
trol, and model predictive control [9,11–13]. PID can be implemented 
by manipulating different operating conditions (e.g., stoichiometry 
ratio, pressure, and temperature) via classic feedback or feed forward 
control strategies. Although the implementation of PID is simple and 
cost effective, the slow, inaccurate, and offset issues as well as the 
non-linear and complicated fuel cell dynamics require more advanced 
control strategies to achieved optimal performance of fuel cells. Adap
tive control can be implemented in a PID controller, which allows the 
systems to modify its operating conditions and maintain optimal per
formance with sensor signals. In the model predictive control, fuel cell 
models can be implemented to update the control action of various 
operational variables by comparing the actual and predicted output 

Nomenclature 

a water activity 
A area [m2] 
c molar concentration [kmol•m− 3] 
C electric capacity [F•m− 2] 
cp specific heat [J•kg− 1•K] 
d pore diameter or characteristic length of water diffusion 

[m] 
D mass diffusivity [m2•s− 1] 
EW equivalent weight of membrane [kg•kmol− 1] 
f interfacial drag coefficient 
F Faraday’s constant [C•kmol− 1] 
g Gibbs function of formation [J•kmol− 1] 
h latent heat [J•kg− 1] 
i current density [A•cm− 2] 
j volumetric reaction rate [A•m− 3] 
j0 volumetric exchange current density [A•m− 3] 
J mass flux [kg•m− 2•s− 1] 
k thermal conductivity [W•m− 1•K− 1] 
K permeability [m2] 
ṁ mass flow rate [kg•s− 1] 
M molecular weight [kg•kmol− 1] 
nd electro-osmotic drag coefficient (H2O per H+) 
p pressure [Pa] 
R universal gas constant = 8314 [J•kmol− 1•K− 1] 
RH relative humidity 
s entropy [J•kmol− 1•K− 1] 
S source terms in governing equations 
Spc latent heat function for water phase change [W•m− 3] 
Sh dimensionless phase transfer rates of condensation and 

evaporation 
T temperature [K] 
T0 operation temperature [K] 
u superficial velocity [m•s− 1] 
V electrical potential [V] 
X mole fraction 
Y mass fraction 

Greek Letters 
α transfer coefficient 
β diffusibility (defined as the effective diffusivity over bulk 

diffusivity] 
δ thickness [m] 
ε porosity 
ζ water transfer rate [s− 1] 
η over potential [V] 
θ contact angle [o] 
κ electrical conductivity [S•m− 1] 

λ water content in ionomer 
μ dynamic viscosity [N•s•m− 2] 
ν kinetic viscosity [m2•s− 1] 
ρ density [kg•m− 3] 
σ surface tension [N•m− 1] 
τ tortuosity 
φ potential [V] 
Φ volume fraction 
ω volume fraction of ionomer in catalyst layer 

Subscripts 
a anode 
act activation 
ave average 
c cathode 
ca capillary 
cl catalyst layer 
cond condensation 
conv convection 
d dissolved water 
diff diffusion 
d-l dissolved water to liquid 
d-v dissolved water to vapor 
eff effective 
ele electronic 
eod electro-osmotic drag 
equil equilibrium 
evap evaporation 
fl fluid phase 
g gas phase 
gdl gas diffusion layer 
H2 hydrogen 
H2O water 
i, j the i th and j th components 
in inlet 
ion ionic 
l liquid water 
m mass (for source term) 
mem membrane 
O2 oxygen 
out outlet 
ref reference state 
rev reversible 
sat saturation 
sl solid phase 
T energy (for source term) 
u momentum (for source term) 
v water vapor 
v-l vapor to water liquid  
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variables. The model predictive control is suitable to achieve optimal 
performance and to avoid harmful operating conditions [9]. 

An accurate and computationally efficient control-oriented model is 
the core of the real-time model-based control of fuel cell systems. 
Various empirical models, analytical models, and non-physics-based 
models are extensively studied in literature [14–31]; however, due to 
various simplifications, these models are challenged to estimate the fuel 
cell performance over the entire range of operation. To achieve high 
prediction accuracy for the entire operational range, a large database is 
needed for model validation, modification, and calibration. However, 
the PEM fuel cell performance may vary significantly depending on the 
design and manufacturing processes, and different fuel cell developers 
would obtain different performance data for the seemingly similar fuel 
cells they make and test, which are often kept confidential. As a result, 
there are no benchmark experimental data for PEM fuel cells available in 
the open literature. Therefore, the models developed in literature are 
typically compared with a particular set of experimental data with 
limited information available on how the data were measured for what 
details of the particular cell [14–31]. This state of the art in the field 
forced the present review to be focused on the models that are poten
tially useful for the control purpose at the qualitative rather than 
quantitative anchoring to any type of data or evidence. 

The physical and electrochemical phenomena within the PEM fuel 
cell components are complicated with multi-facets. A typical PEM fuel 
cell consists of a membrane, two catalyst layers (CLs), two gas diffusion 
layers (GDLs, with each GDL composed of a microporous layer and a 
macro-porous substrate layer, e.g., carbon fibre paper or cloth), two flow 
channels, and two bipolar plates (a.k.a. flow field or distribution plates) 
[32], as presented in Fig. 1. The pressurized hydrogen fuel in manifolds 
is supplied to anode flow channels and arrived at the anode CLs through 

anode GDLs. In the anode CL, hydrogen gas is transported in void re
gions, diffused in ionomers, and finally adsorbed on the catalyst surface, 
where hydrogen is oxidized into protons and electrons. The protons pass 
through the membrane and arrive at the cathode CL. The electrons travel 
in the opposite direction through anode GDLs, anode distribution plates, 
external circuits, cathode distribution plates, and cathode GDLs, and 
finally arrive at the cathode CLs. In cathode CLs, the protons and elec
trons are combined with supplied oxygen gas (passing through void 
regions of flow channels and cathode electrodes as well as the ionomer 
film covered on the catalyst surface), simultaneously producing water 
and heat. The complex gas reactant transport, water and heat manage
ment, electrochemical reactions, as well as the transport of charged 
species are challenging for modeling over the entire fuel cell operational 
range. 

Significant efforts have been devoted to the development of physics- 
based and non-physics-based (or data-driven) models aiming to accu
rately predict the fuel cell performance. These models can be classified 
based on spatial dimensions into three-dimensional (3D), pseudo-3D, 
two-dimensional (2D), pseudo-2D, one-dimensional (1D), and zero- 
dimensional (0D) models. 3D and pseudo-3D models consider the fuel 
cells in all directions [8,33–35], which requires fewer assumptions with 
high fidelity. However, the 3D and pseudo-3D models are computa
tionally expensive depending on the meshes, accuracies and numbers of 
governing equations applied to the computational domain [8,36–38]. To 
minimize the computing cost but maintain the ability to analyze the 
physical and electrochemical phenomena, 2D models are often applied 
by ignoring the transport phenomena in the direction along or trans
verse to the channel [39–44]. However, 2D models are theoretically less 
accurate than 3D models and not fast enough for real-time control 
purposes. Many studies further decouple one spatial dimension from the 
other to accelerate the computing speed, which is known as the 
pseudo-2D model [45,46]. By considering only the 
through-the-membrane direction, 1D models can further reduce the 
computational time for real-time control but retain the majority of the 
physics-based phenomena [10,14,45–56]. 0D analytical or empirical 
correlation models can be used in model predictive control due to their 
fast computation speed. However, owing to the limited experimental 
data availability, these models are often validated under a narrow range 
of operational conditions; therefore, these models are questionable 
when utilized for the performance prediction over the entire operational 
range. To overcome this barrier, many advanced data-driven models 
including statistical and artificial-intelligent models [17,57,58] have 
been incorporated in the control-oriented model development. As a 
result, the simplified PEM fuel cell models, with reduced spatial 
dimensionality under various simplifications for real-time control pur
poses, have gained considerable research interest as the PEM fuel cell is 
being commercialized. It should be pointed out that the computational 
speed of a specific PEM fuel cell model can be further enhanced by many 
tools, such as reduced-order modeling, efficient numerical calculation, 
and code and algorithm optimization, which are excluded in this review 
due to limited information availability. 

Although 3D and 2D models have demonstrated excellent capabil
ities of performance prediction and comprehension of local transport 
and electrochemical phenomena, these models usually involve a long 
iteration with a large number of meshes to achieve acceptable simula
tion accuracy, which makes the computation usually very expensive and 
unsuitable for real-time control applications to meet actual computing 
resource limitations. Therefore, 3D and 2D fuel cell models are excluded 
from this review. In this article, recent progress on the modeling tech
niques for the real-time control of PEM fuel cells is reviewed. The 
physical and electrochemical phenomena in PEM fuel cells as well as 
their mathematical formulation and length and time scales are discussed 
in Section 2. Pseudo-2D numerical models that combine the flow 
channel and single-cell models are reviewed in Section 3. 1D numerical 
models that involve the transport phenomena and electrochemical re
actions are scrutinized in Section 4. 0D analytical models with simplified 

Fig. 1. Schematic of PEM fuel cell components and transport phenomena. 
Image not to scale. 
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conservation laws are reviewed in Section 5, followed by 0D empirical 
models in Section 6. 0D data-driven models with a focus on machine 
learning and artificial intelligence are examined in Section 7. A com
parison of various fuel cell models in terms of accuracy and computing 
speed is conducted in Section 8. The challenges and future prospects of 
control-oriented fuel cell models are discussed in Section 9. Finally, a 
summary of these control-oriented PEM fuel cell models is given in 
Section 10. 

2. Mathematical description of transport and electrochemical 
phenomena 

Recent research interests have been directed to the control of PEM 
fuel cell stacks and systems for further optimization of the fuel cell 
operation in terms of energy efficiency, reliability, and durability. This 
new focus has led to an urgent need for PEM fuel cell models with high 
computational speed and sufficient prediction accuracy. A high-fidelity 
PEM fuel cell model should take the balance equations for state variables 
based on conservation of mass, momentum, energy, and elements (or 
species), as well as the electrochemical reaction kinetics into account. 
Therefore, a comprehensive and critical review of the vital physico
chemical phenomena and the corresponding mathematical description 
is conducted in this section, including the conservation and transport of 
mass, momentum, energy, gas species, liquid water, dissolved water, 
and charged species, as well as the electrochemical reaction kinetics and 
cell potential. Finally, the length and time scales of the key transport 
phenomena are discussed in this section. 

2.1. Conservation and transport of mass 

The gas reactants and products in a PEM fuel cell system follow the 
law of mass conservation. In flow channels, the gas flow is dominated by 
convection along the channel direction driven by the pressure gradient 
[59,60]. In electrodes, the gas mixture is transported via convection and 
diffusion due to the gradients of pressure and species concentration [8]. 

The mass conservation in PEM fuel cells is governed by the conti
nuity equation with a source term representing the mass change due to 
reactions or phase changes [61–64], 

∂
∂t
[
ε(1 − Φl)ρg

]
+∇⋅

(

ρg u→g

)

= Sm (1)  

where ε is the porosity; Φl is the volumetric fraction of liquid in the void 
regions; ρ is the density in [kg•m− 3]; u means the superficial velocity in 
[m•s− 1]; the subscript g represents the gas mixture; and Sm is the source 
term in [kg•m− 3•s− 1]. The first term denotes the transient mass accu
mulation taking the porosity and liquid water into account based on the 
volume-average method, while the second term is the volumetric mass 
change rate of the gas mixture due to convection. The source terms 
represent the gas-phase mass change due to phase change or electro
chemical reaction. Detailed mathematical description of the source 
terms in different cell components is indicated in Table 1. 

In flow channels and electrodes, the mass of vapor varies due to 
condensation or evaporation [35,62]. The vapor-to-liquid phase change 
rate, Sv-l [kg•m− 3•s− 1], can be calculated as follows [36,61,65,66]. 

Sv− l= {
γcondε(1 − Φl)(ρv − ρsat), if ρv ≥ ρsat

γevapεΦl(ρv − ρsat), if ρv < ρsat
(2)  

where γcond and γevap denote the rates of condensation and evaporation 
(typically 1.0–104 s− 1 [61,65,66]), respectively; ε is the porosity; Φl is 
the volumetric fraction of liquid in the void regions; and ρv and ρsat are 
the actual and saturated vapor density in [kg•m− 3], respectively. If the 
actual vapor density is larger than the saturated value, the excess water 
vapor condenses, and the rate of condensation is affected by the effective 
pore volume (excluding liquid water volume); Otherwise, evaporation 
takes place when liquid water pre-exists, and the rate of evaporation is 
affected by the liquid volume in the pores. 

In CLs, when the dissolved water content in CLs is larger than the 
equilibrium value, dissolved water can be transferred to vapor, and vice 
versa [67,68]. The dissolved-water-to-vapor phase change in the void 
regions of CLs, Sd-v [kg•m− 3•s− 1], can be calculated from [8,61,67,69], 

Sd− v = ζd− v
ρmemMH2O

EW
(
λd − λeq

)
(3)  

where ζd-v is the rate of phase change between dissolved water and 
vapor in [s− 1]; ρmem is the membrane density in [kg•m− 3]; MH2O is the 
molecular weight of water in [kg•kmol− 1]; EW denotes the equivalent 
weight of membrane in [kg•kmol(SO3H)− 1], representing the weight of 
dry membrane per kmol of ionic group; and λd and λeq are the actual and 
equilibrium dissolved water content in ionomer in [kmol(H2O)•kmol 
(SO3H)− 1], respectively. λeq can be calculated by an empirical correla
tion derived by [70] based on the experimental data on the water uptake 
of various membranes, such as Nafion, Aciplex, and Flemion [71]. 

Table 1 
Source terms in the governing equations.  

Cell 
Component 

Source terms 
Sm  Su  ST  Si Sl  Sd  Sele  Sion  

(kg•m− 3•s− 1) (kg•m− 2•s− 2) (W•m− 3) (kg•m− 3•s− 1) (kg•m− 3•s− 1) (kg•m− 3•s− 1) (A•m− 3) (A•m− 3) 

Distribution 
plate 

0 0 ‖ ∇φele‖
2κeff

ele  0 0 0 0 0 

Channel − Sv− l  0 Spc  Sv = − Sv− l  0 0 0 0 
GDL − Sv− l  −

μg

Kg
u→g  

‖ ∇φele‖
2κeff

ele + Spc  Sv = − Sv− l  Sv− l  0 0 0 

Anode CL 
−

ja
2F

MH2 + Sd− v −

Sv− l  

−
μg

Kg
u→g  −

jaTΔs
2F

+ jaηact + ‖ ∇φele‖
2κeff

ele +

‖ ∇φion‖
2κeff

ion + Spc  

⎧
⎨

⎩

SH2 = −
ja
2F

MH2

Sv = Sd− v − Sv− l  

Sv− l + Sd− l  − Sd− v − Sd− l  − ja  ja  

Cathode CL 
−

jc
4F

MO2 + Sd− v −

Sv− l  

−
μg

Kg
u→g  −

jcTΔs
4F

+ jcηact + Spc +

‖ ∇φele‖
2κeff

ele + ‖ ∇φion‖
2κeff

ion  

⎧
⎨

⎩

SO2 = −
jc
4F

MO2

Sv = Sd− v − Sv− l  

Sv− l + Sd− l  jc
2F

MH2 O − Sd− v −

Sd− l  

jc  − jc  

Membrane 0 0 ‖ ∇φion‖
2κeff

ion  0 0 0 0 0 

Note: Sv-l, Sd-v and Sd-l are water vapor-to-liquid phase, dissolved-water-to-vapor, and dissolved-water-to-liquid phase change rates in [kg•m− 3•s− 1], respectively; ja 
and jc are the anodic and cathodic reaction rates per unit volume in [A•m− 3], respectively; M denotes the molecular weight in [kg•kmol− 1]; F represents the Faraday’s 
constant in [C•kmol− 1]; μg denotes the dynamic viscosity of gas mixture in [N•s•m− 2]; u→g is the superficial velocity in [m•s− 1]; Kg is the permeability of gas phase in 
[m2] in the electrodes; φele and φion are the electric potentials of the electron- and ion-conducting phases in [V]; κeff

ele and κeff
ion represent effective electrical conductivity 

of the corresponding phases taking the pore structure into account in [S•m− 1]; Spc is the latent heat function for phase changes of water in [W•m− 3]; ηact denotes the 
activation overpotential in [V]; T is the temperature in [K]; ∆s denotes the entropy change of reaction in [J•kmol− 1•K− 1]; and Sv, SH2 and SO2 denote the volumetric 
mass generation rates in [kg•m− 3•s− 1] of water vapor, hydrogen, and oxygen gases, respectively. 
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λeq = 0.3 + 6a[1 − tanh(a − 0.5)] + 3.9
̅̅̅
a

√
[

1+ tanh
(

a − 0.89
0.23

)]

(4)  

where a represents the water activity, which is defined as [44,72] 

a =
Xvpg

psat
(5)  

where Xv is the molar fraction of water vapor in the gas mixture, and pg 
and psat are the actual and saturated vapor partial pressure in [Pa], 
respectively. 

It should be noted that the vapor and liquid water can become ice 
under certain circumstances, especially during the cold start of PEM fuel 
cells [64,73,74]; however, the formation of ice is not taken into account 
in most reduced-dimension models, which are excluded in this article. In 
addition, the membrane is often assumed impermeable to gas due to 
neglected pore size and volume when the gas crossover is insignificant, 
which is the case under the operating conditions. 

2.2. Conservation and transport of momentum 

The conservation of momentum, a.k.a. the Navier-Stokes equation, is 
modified based on the volume-average approach with superficial ve
locity for flows in porous media in fuel cell modeling. The Navier-Stokes 
equation is established based on Newton’s second law of mechanics, 
describing the effect of body forces (such as gravitational, electric, or 
magnetic forces) and surface forces (such as pressure and viscous 
stresses) on the flow velocity [8,61]. The gas flow in the electrodes can 
be affected by the fluid-solid interaction in the complicated pore struc
ture. The fluid-solid interaction is macroscopically expressed by Darcy’s 
law, by which the relation of gas mixture velocity and the flow resistance 
across the porous media can be quantified [75–77]. 

The conservation of momentum is expressed by the following 
equation [61,64,78],  

where ρg is the density of gas mixture in [kg•m− 3]; pg is the pressure in 
[Pa]; μg is the dynamic viscosity of gas mixture in [N•s•m− 2]; u→g is the 
superficial velocity in [m•s− 1]; ε is the porosity; Φl is the volumetric 
fraction of liquid in the void regions; and Su represents the source term 
due to Darcy’s effect in [kg•m− 2•s− 2]. The transient term denotes the 
volumetric accumulation rate of momentum, while the second term 
represents the net momentum increase due to convection. The first term 
on the right-hand side means the gas-phase pressure gradient, and the 
second term is the viscous stresses. The last term, Su [kg•m− 2•s− 2], is the 
source term, denoting the increase of pressure gradient due to Darcy’s 
effect in the electrodes. In many reduced-dimensional models, the 
convective and viscous are omitted in porous media with the assumption 
that Darcy’s effect and diffusion dominate in the pore region. A detailed 
mathematical description of the source terms is shown in Table 1. 

2.3. Conservation and transport of energy 

The heat generation in PEM fuel cells originates from the entropic 
heat of reaction, the irreversibility of reaction, Joule heating (due to 
ohmic resistance), and phase change [44,64], and the heat can be 
transported via convection and conduction [8]. The most common form 
of energy equation utilized in fuel cell modeling is as shown below [61, 
64,78] 

∂
∂t

[(
ρcp
)eff

fl,slT
]
+∇⋅

[
(
ρcp
)eff

fl u→gT
]

= ∇⋅
(

keff
fl,sl∇T

)
+ ST (7)  

where ρ is the density in [kg•m− 3]; cp denotes the specific heat in 
[J•kg− 1•K]; T denotes the temperature in [K]; the subscripts fl and sl 
denote fluid and solid phase properties; k is the thermal conductivity in 
[W•m− 1•K− 1]; ST is the source term of the energy equation in [W•m− 3]; 
and the superscript eff is the effective properties. It should be pointed 
out that the effective properties of ρcp and k are assumed to be the 
average values of the solid and fluid phases taking into account all 
materials including gas mixture, water, ionomer, catalyst, and other 
substances in the computational domain, and mathematical equations 
can be found elsewhere [61,64,79]. The first term on the left-hand side is 
the transient volumetric energy accumulation rate, while the second 
term represents the energy accumulation rate due to convection when 
the gas flows through the void region of channels and porous media. The 
first term on the right-hand side is the heat conduction through fluid and 
solid phases, and the source term, ST, is the heat generation and con
sumption due to reaction, Joule heating, and phase changes. A detailed 
explanation of the source terms in the energy equation is summarized in 
Table 1. 

2.4. Conservation and transport of gas species 

The transport of gas species (e.g., oxygen, nitrogen, hydrogen, and 
vapor) in channels and porous electrodes, involves two major mecha
nisms – convection and diffusion [65,77,80,81]. The 
convection-diffusion process in a fuel cell is often expressed as follows 
[44,69], 

∂
∂t
[
ε(1 − Φl)ρgYi

]
+∇⋅

(

ρg u→gYi

)

= ∇⋅
(
ρgDeff

i ∇Yi
)
+ Si (8)  

where Y represents the mass fraction of the ith species in the gas mixture, 
and D is the diffusion coefficients in [m2•s− 1]. The first term on the left- 
hand side denotes the accumulation rate of specific gas species, while 
the second term refers to the net increase of gas species due to convec
tion. The first term on the right-hand side represents the net accumu
lation of gas species due to diffusion. The source term, Si [kg•m− 3•s− 1], 
represents the reactant gas species consumption due to reaction as well 
as the water vapor generation or consumption due to phase change 
among vapor, liquid, and dissolved water. Detailed mathematical 
description of the source terms in gas species transport equations is 
presented in Table 1. 

It should be noted that the catalyst surface may be covered by a thin 
layer of ionomer in actual CLs, and the concentration of the dissolved O2 
and H2 in ionomer can be determined by Henry’s Law [61,69]. 

ci =
pi

Hi
(9)  

where p is the partial pressure of species i (i.e., O2 or H2) on the gas side 
in [Pa], H is the Henry’s constant in [Pa•m3•kmol− 1], and c is the gas 
species concentration on the ionomer side in [kmol•m− 3]. The dissolved 
species is transported mainly via diffusion through the thin ionomer 
layer. 
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⎭
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J. Zhao et al.                                                                                                                                                                                                                                     



Energy and AI 6 (2021) 100114

6

2.5. Conservation and transport of liquid water 

The transport of liquid water is caused by the capillary pressure 
gradient in the porous media and the drag effect by the gas flow. The 
liquid water can originate from dissolved water in membrane and vapor 
in the gas mixture, as shown in Fig. 2. Dissolved water in membrane (or 
ionomer) can be generated by either reactions or absorption of liquid 
and vapor in pores [59,67,82]. When the content of dissolved water in 
membrane is greater than the equilibrium value, the excess membrane 
water is transferred to liquid or vapor [61,79]. When the vapor con
centration is larger than the saturated concentration, the excess water 
vapor will be transferred to liquid or membrane water via phase change, 
and vice versa [83]. It should be pointed out that phase change path
ways in fuel cell modeling can be inconsistent. For instance, the phase 
change between liquid and dissolved water is neglected with the 
assumption that the reaction product water is in the dissolved phase, 
excess dissolved water is transferred to vapor, and excess vapor is 
transferred to liquid in [8], while the phase change among dissolved, 
vapor and liquid water is assumed to occur simultaneously with 
different phase change rates in [79]. The impact of phase change 
pathways and rates on cell performance remains debated. In addition, 
although many fuel cell models assume the product water is dissolved in 
the membrane [8,34,59,64,67,79,82], the product water can also be in 
liquid and vapor phases. Wu et al. [84] compared the three water pro
duction mechanisms via 3D numerical models. The modeling results 
suggest that the water production mechanism has a significant impact 
on the non-equilibrium behaviors of fuel cells, while at equilibrium 
state, the water production mechanisms have a negligible effect on the 
final fuel cell performance [84]. For simplicity, only the dissolved water 
production mechanism is considered in this review. 

The transport of liquid water can be numerically determined by the 

following equation, derived by applying Darcy’s law to the transport of 
liquid in porous media [34,64]: 

∂
∂t
(εΦlρl) + ∇⋅

(

f ρl u→g

)

= ∇⋅(ρlDl∇Φl) + Sl (10)  

where the subscript l is the properties of liquid water, and f denotes the 
dimensionless interfacial drag coefficient, which is defined as [66,85] 

f =
Klμg

Kgμl
(11)  

where K is the permeability coefficient in [m2]. The capillary diffusion 
coefficients of the liquid phase, Dl [m2•s− 1], in GDLs and CLs can be 
derived from [8] 

Dl = −
Kl

μl

dpca

dΦl
(12)  

where pca is the capillary pressure in [Pa]. Many empirical models have 
been developed to estimate the capillary pressure in porous media [2,61, 
66,86,87], and the Leverett function is the most commonly employed in 
fuel cell studies taking the surface tension, σ [N•m− 1], intrinsic 
permeability, K0 [m2], porosity, ε, contact angle, θ [o], and volume 
fraction of liquid water, Φl, as variables [2,61]: 

pca= {

σcosθ
(

ε
K0

)0.5[
1.42(1 − Φl) − 2.12(1 − Φl)

2
+ 1.26(1 − Φl)

3]
, θ < 90o

σcosθ
(

ε
K0

)0.5[
1.42Φl − 2.12Φl

2 + 1.26Φl
3], θ > 90o

(13) 

The first term on the left-hand side of Eq. (10) is the accumulation 

Fig. 2. Schematic of phase changes of water in different cell components: (a) membrane, (b) flow channel and gas diffusion layer, and (c) catalyst layer.  
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rate of liquid water, while the second term is the water transported by 
gas-phase inertial drag. The first term on the right-hand side represents 
the capillary flow due to saturation gradient in the electrodes, and the 
source term, Sl, means the liquid water generation rate due to phase 
change (see Table 1 for detailed mathematical description). 

The source term of liquid water generation as a result of phase 
change from dissolved water, Sd-l in [kg•m− 3•s− 1], can be calculated 
based on the following equation [34,79]. 

Sd− l = ζd− l
ρmemMH2O

EW
(
λd − λeq

)
(14)  

where ζd-l is the phase change rate from the dissolved water to liquid in 
[s− 1]; ρ is the density in [kg•m− 3]; MH2O denotes the molecular weight 
of water in [kg•kmol− 1]; EW denotes the equivalent weight of mem
brane in [kg•kmol(SO3H)− 1]; λd and λeq are the actual and equilibrium 
dissolved water content in ionomer in [kmol(H2O)•kmol(SO3H)− 1]. 

2.6. Conservation and transport of water in the membrane 

The transport mechanisms of dissolved water in membranes are 
typically described by the Nernst-Planck equation [88] where the water 
transport arising from the electrostatic force acting on the hydronium 
ion [44,89], diffusion as a result of concentration gradients [90], and 
convection (or hydraulic permeation) owing to pressure gradients [44, 
85]. The transport of water due to electrostatic force is also referred to as 
the electro-osmotic drag (EOD) effect, which is the phenomenon that a 
certain amount of dissolved water will accompany protons transported 
from anode to cathode [53,68]. The diffusion of dissolved water is 
driven by concentration gradients across the membrane, while the 
convective transport is mainly driven by the liquid-phase pressure 
gradient. The transport of water dissolved in the membrane (and ion
omer) can be expressed as [8,36,65,67,85]: 

∂
∂t

(ρmem

EW
MH2Oωλd

)
+∇⋅

(
Jion

F
ndMH2O

)

= ∇⋅
(

Deff
d ∇

(ρmem

EW
MH2Oλd

))
+ Sd

(15)  

where ρ is the density in [kg•m− 3]; EW denotes the equivalent weight of 
membrane in [kg•kmol(SO3H)− 1]; MH2O denotes the molecular weight 
of water in [kg•kmol− 1]; ω denotes the volume fraction of the ionomer 
in the computational domain; λd is the actual dissolved water content in 
ionomer in [kmol(H2O)•kmol(SO3H)− 1]; nd is the number of water 
molecules accompanied with each proton (nd = 2.5/22λd); Jion is the 
proton current density in [A•m− 2]; F represents the Faraday’s constant 
in [C•kmol− 1]; and Deff

d is the effective diffusion coefficient of dissolved 
accounting for the ionomer fraction and distribution in [m2•s− 1]. A 
detailed explanation of the source terms, Sd [kg•m− 3•s− 1], of the dis
solved water transport equation can be found in Table 1. 

2.7. Conservation and transport of charged species 

The transport of charged species, including electrons and protons in 
PEM fuel cells, is dominated by conduction via Ohm’s law. In anode CLs, 
electrons and protons are generated by hydrogen oxidation reaction 
(HOR) on the catalyst surfaces. In cathode CLs, electrons and protons are 
diminished owing to the oxygen reduction reaction (ORR), where the 
charged species are combined with oxygen, generating water in the form 
of dissolved water in ionomer [34,91]. The transport of electrons in the 
conductive components of CLs, GDLs, bipolar plates, and external elec
tric devices is dominated by Ohm’s law of conduction, while the trans
port of protons only occurs in the ionomer phase of CLs and membrane 
[44,92,93]. Jiao and Li [61] performed a time constant analysis of 
various transient phenomena in PEM fuel cells, and the results indicate 
that the time constant for the migration of protons and electrons is only 
around 0.2 μs, which is much faster than gas transport (0.004 s), liquid 
water transport (0.04 s), membrane water transport (17 s), and heat 

transfer (0.004 s). This suggests that the electrons and protons can 
quickly achieve an equilibrium state, and thus the transient terms in the 
governing equations are often omitted [48,64,94,95]. 

Therefore, ionic and electronic charge transport can be formulated as 
follows [59,96], 

0 = ∇⋅
(
κeff

ion∇φion
)
+ Sion (16)  

0 = ∇⋅
(
κeff

ele∇φele
)
+ Sele (17)  

where κeff
ion and κeff

ele denote the ionic and electronic conductivity in 
[S•m− 1], and φion and φele are the electric potential of the electron- and 
ion-conducting phases, respectively. A detailed mathematical descrip
tion of the source terms is shown in Table 1. 

2.8. Electrochemical reaction rate 

The rate of oxygen and hydrogen consumption, water production, 
and heat generation is governed by the reaction rate [10,66,97,98]. The 
most commonly employed electrode kinetics in fuel cell modeling is the 
so-called Butler-Volmer equation as follows [99]: 

i = i0

[

exp
(

βFηact

RT

)

− exp
(

−
αFηact

RT

)]

(18)  

where i and i0 are the actual and exchange current density in [A•m− 2], 
respectively; α and β is the charge transfer coefficients; F is Faraday’s 
constant in [C•kmol− 1]; R is the universal gas constant in 
[J•kmol− 1•K− 1]; T is the temperature in [K]; and ηact is the activation 
over-potential in [V]. The definition of transfer coefficient significantly 
varies in different studies [100,101], and the present form is employed 
for simplicity as recommended by the IUPAC in 2014 [100]. The ex
change current density can be calculated as follows [102], 

i0 = iref
0 rf

(
cr

cref

)γ

exp
[

−
Eact

RT

(

1 −
T

Tref

)]

(19)  

where i0ref is the reference exchange current density at the reference 
temperature and pressure per unit catalyst surface area in [A•cmPt

− 2]; rf 
is the electrode roughness factor in [mPt

2•m− 2]; cr and cref are the actual 
and reference reactant molar concentration in [kmol•m− 3], respec
tively; γ is reaction order (ranging from 0.5 for HOR to 1.0 for ORR); and 
Eact is the activation energy in [J•kmol− 1]. The transfer coefficient and 
reaction order employed in fuel cell modeling significantly vary in 
different studies [99]. The electrode roughness factor for a dry CL is 
defined as the ratio of catalyst surface area to the geometric area. The 
electrode roughness factor can also be affected by liquid water coverage 
on the electrode surface, and a correction factor is often applied to ac
count for the liquid water saturation in CLs [45,61,102,103]. 

rf = (1 − Φl)
m APt

Ageo
= (1 − Φl)

maLPt (20)  

where Φl is the volumetric fraction of liquid water in the CL pores, m is 
the correction factor accounting for the liquid-occupied catalyst surface, 
APt is the active surface area of the Pt catalyst in [m2], Ageo is the geo
metric area of the overall electrode in [m2], a is the electrochemical 
surface area (ECSA) in [cm2•mgPt

− 1], and LPt is the Pt loading in 
[mgPt•cm− 2]. 

Springer et al.’s [14,99] model assumes zero anode overpotential 
and simplifies the cathode kinetics as the Tafel law, 

ic = i0,cexp
(

−
αcFηact

RT

)

(21) 

Um et al. [44] employs the Tafel law for cathode kinetics and a linear 
equation for cathode polarization as follows with the assumption that 
the anode overpotential is very small, 
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ia = i0,a
(βa + αa)Fηact

RT
(22) 

It should be noted that the Butler-Volmer equation and its variant 
forms are theoretically valid based on transition state theory for 
elementary reaction steps. However, the application of these equations 
on HOR and ORR reaction remains debated [1,99]. 

2.9. Potential 

There exists a maximum achievable voltage, a.k.a. reversible 
voltage, which can only be obtained as the operation of PEM fuel cells is 
thermodynamically reversible. The reversible voltage, Vrev [V], can be 
calculated via Nernst equation [16,34,79,104] below 

Vrev =
Δgref

2F
+

Δsref

2F
(
T0 − Tref

)
+

RT0

2F
ln

[(
pin

H2

pref

)(
pin

O2

pref

)1/2]

(23)  

where g is the Gibbs function of reaction formation in [J•kmol− 1], s is 
entropy in [J•kmol− 1•K− 1], and the subscript, ref, represents the pa
rameters taken at the reference state of given temperature and pressure. 

However, in a practical fuel cell, the actual operating voltage can be 
far below the reversible one, and the voltage losses rise as the operating 
current is increased due to four primary types of irreversible losses - the 
losses due to fuel crossover and internal currents as well as activation, 
ohmic, and concentration losses, as shown in Fig. 3. Fuel crossover and 
internal currents are caused by the unused fuels and electrons trans
ported through the membrane as the diffusion of a small amount of the 
fuel and electrons is inevitable [1]. This diffusion process has a signifi
cant impact on the open-circuit voltage (OCV), which is smaller than the 
reversible voltage. However, this impact will be substantially reduced as 
the current is increased. Activation loss is resulted from the sluggish 
electrochemical reaction rate occurring on the electrode surface, and a 
small portion of energy has to be consumed to accelerate the electro
chemical reactions. The activation loss can lead to a rapid voltage drop 
at the small current density region. Ohmic loss arises from electrical 
resistance in the fuel cells, including proton- and electron-conductive 
components [61]. The ohmic loss causes a linear drop of voltage at 
the intermediate current density region. The ohmic loss is affected by 
many factors, including membrane materials, hydration conditions, 
design of the electrodes, and interfacial conditions. Concentration loss is 
important in high current density region as a result of the mass transport 
resistance from external supply to reaction sites. The mass transport 
limitation results in the depletion of reactants on the electrode surface 
and can be further affected by the accumulated reaction water, which 
can either block the reactant transport pathways or occupy the reaction 
surface [8]. 

The cell output voltage is, therefore, calculated as a function of the 

thermodynamically reversible potential, activation over-potential, and 
ohmic over-potential, with the mass transport limitations implicitly 
incorporated into the three terms. 

Vcell = Vrev − ηact − ηohm (24)  

where Vcell is the cell output voltage in [V]; ηact is the activation over
potential in [V] in CLs; and ηohm represents the total ohmic overpotential 
in [V] resulted from the ohmic resistance in all electron- and proton- 
conductive components. The mass transport resistance can affect the 
reactant availability and water content in the ionomer of the catalyst 
layer and membrane. The reactant availability directly impacts the 
reversible voltage and activation losses, while the water content can 
significantly affect the ionic conductivity of the ionomers, which de
termines the ohmic resistance of the fuel cell. 

It should be noted that the accuracy of physics-based models depends 
on many transport and electrochemical coefficients, which are often 
determined by experiments [77,81,106–110] and theoretical analysis 
[80,107,111–117]. 

2.10. Length and time scale 

The operation of PEM fuel cells involves complex transport and 
electrochemical phenomena within multiple length and time scales. 
Table 2 summarizes the typical length and time scales of the key 
fundamental phenomena in PEM fuel cells, including gas transport, 
liquid water transport, dissolved water transport in ionomer, heat 
transport, electrochemical double layer charging and discharging, and 
aging effect. 

The thicknesses of the major components of membrane (25 μm), CLs 
(8.6~34 μm), GDLs (222 μm), and channels (1 mm) are taken from the 
experimental data from [8]. The time constants for the gas diffusion in 
channels and electrodes are in the range of 1.3 × 10− 4~3.4 × 10− 2 s, 
and the transport of liquid water in GDLs and CLs is about 0.7 ×
10− 4~4.9 × 10− 2 s [61,69]. It should be noted that liquid water accu
mulation is relatively slow, and the time scale is reported to be about 3 
min [118]. The dissolved water transport in ionomers is about 1 s, while 
it takes about 8.7 s for the membrane water content to change by Δλ =
10 at the current density of 1 A•cm− 2. The heat transport in electrodes 
and membranes are in the order of 10− 5 and 10− 3 s, respectively, while 
the heat accumulation with the temperature increase of 10 K takes about 
0.4–0.7 s. It can be seen that the migration of protons and electrons in 
CLs can be as small as 0.1 μs, which is why most fuel cell models ignore 
the transient transport of protons and electrons [119]. In contrast, the 
time scale of the aging effect due to various mechanisms, including 
mechanical, thermal, chemical, and electrochemical degradations 
[120–122] varies significantly from 100 to 20,000 h based on experi
mental studies [4]. 

3. Pseudo-two-dimensional numerical model 

Pseudo-2D models [45,46], a.k.a. 1+1 D models [27], are commonly 
employed in fuel cell studies due to their faster computing speed than 3D 
and 2D numerical models and higher fidelity than 1D and 0D models. 
Recent studies demonstrated that the calculation of pseudo-2D PEM fuel 
cell models can be twice faster than real time under various simplifi
cations [45]. Therefore, pseudo-2D numerical models would become a 
viable option for real-time control applications with first-principles 
physics in the model formulation, representing the important physical 
and electrochemical processes involved in the fuel cells. Instead of 
solving the coupled governing equations (depicted in Section 2) in a 2D 
domain, most pseudo-2D models account for the changes in reactant 
composition along the flow channel and the physical and electro
chemical phenomena in the through-the-membrane direction [39,40,44, 
62,91,123–125], which is the focus of this section. 

Fig. 3. A typical polarization curve of polymer electrolyte membrane (PEM) 
fuel cells (Eth denotes the thermo-neutral voltage, Er represents the reversible 
voltage, and OCV is the open-circuit voltage) (Reprinted from [105] with 
permission from Zhao). 
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3.1. Model development 

Fuller and Newman [39] developed a pseudo-2D model for the 
membrane and electrode assembly (MEA) with a co-current flow of air 
and reformed methanol streams (cathode mixture of water vapor, ni
trogen, and oxygen, and anode mixture of vapor, carbon dioxide, and 
hydrogen). The transport phenomena were solved in the direction of 
across the cell, and the mass balance was solved in the flow channels. 
Both isothermal and non-isothermal cases were examined, and the re
sults indicated that the water and thermal management are interrelated 

and heat removal strongly affects the cell operation. Nguyen and White 
[40] developed a steady-state pseudo-2D fuel cell model, accounting for 
the physics across the membrane and along the flow channels. The liquid 
water was assumed to present as tiny droplets with negligible volume. 
The voltage drop along the channels was neglected with the high elec
tronic conductivity of current collectors, and the pressure gradient was 
set zero along the channels. Various humidification strategies were 
examined, and the results suggested the air should be humidified when 
used as cathode streams and anode humidification can be employed to 
compromise the inadequate back diffusion of water in membrane. 

Table 2 
Length and time scale of various phenomena in PEM fuel cells.  

Phenomenon Length scale Typical values Time constant Equation 
source 

Time scale 

Gas diffusion in CL δCL=8.6~34 μm* Deff
O2 , CL≈4.4~5.5 × 10− 7 m2•s− 1 *  δ2

CL
Deff

O2 , CL  

N/A (0.13~2.6) ×
10− 3 s 

Gas diffusion in GDL δGDL=222 μm * Deff
O2 , GDL≈2.7 × 10− 6 m2•s− 1 *  δ2

GDL
Deff

O2 , GDL  

[61,69] 1.8 × 10− 2 s 

Gas diffusion in channel δchannel=1 mm * Deff
O2 , channel≈2.9 × 10− 5 m2•s− 1 *  δ2

channel
Deff

O2 , channel  

N/A 3.4 × 10− 2 s 

Liquid water transport in CL δCL=8.6~34 μm * Deff
lq, CL≈10− 6 m2•s− 1 **  δ2

CL
Deff

lq, CL  

N/A (0.07~1.2) ×
10− 3 s 

Liquid water transport in GDL δGDL=222 μm * Deff
lq, GDL ≈10− 6 m2•s− 1 **  δ2

GDL
Deff

lq, GDL  

[61] 4.9 × 10− 2 s 

Liquid water accumulation N/A N/A N/A [118] 3 min 
Water diffusion in membrane δmem≈25 μm * Deff

lq, mem≈6.3 × 10− 10 m2•s− 1 *  δ2
mem

Deff
lq, mem  

[118] 1 s 

Water accumulation in 
membrane 

δmem≈25 μm * ρmem=1980 kg•m3; Δλ=10; I=1 A•cm− 2; EW=1100 
kg•kmol− 1; F=9.6487 × 107 C•kmol− 1 *** 

2FδmemΔλρmem
I × EW  

[119] 8.7 s 

Heat transfer in electrode δelectrode=230.6~256 
μm * 

(ρCp)
eff
electrode≈1105 kJ•m− 3•K− 1 ***;keff

electrode≈1 
W•m− 1•K− 1  

δ2
electrode(ρCp)

eff
electrode

keff
electrode  

[119] (5.9~7.2) ×
10− 5 s 

Heat accumulation in electrode δelectrode=230.6~256 
μm * 

(ρCp)
eff
electrode≈1105 kJ•m− 3•K− 1 ***; V=0.4 V; I=1 

A•cm− 2; ΔT=10 K  
δelectrode(ρCp)

eff
electrodeΔT

VI  
[119] 0.6–0.7 s 

Heat transfer in membrane δmem≈25 μm * (ρCp)
eff
mem≈4840 kJ•m− 3•K− 1 ***; keff

mem≈1 
W•m− 1•K− 1 **  

δ2
mem(ρCp)

eff
mem

keff
mem  

[61,119] 3 × 10− 3 s 

Heat accumulation in membrane δmem=25 μm * (ρCp)
eff
mem≈4840 kJ•m− 3•K− 1 ***; V=0.4 V; I=1 

A•cm− 2; ΔT=10 K  
δmem(ρCp)

eff
memΔT

VI  
[119] 0.4 s 

Electrochemical double layer 
charging and discharging 

δCL=8.6~34 μm * Aspecific ≈ 105 m− 1; C≈0.2 F•m− 2; κeff
ele ≈50 S•cm− 1; 

κeff
ion ≈0.1 S•cm− 1 **  

δ2
CLAspecificC

(
1

κeff
ele

+

1
κeff

ion

)

[61,69,118] (0.1~2.3) ×
10− 6 s 

Aging effect N/A N/A N/A [4] 100–20,000 h 

Note: * denotes values calculated from [8]; ** denotes values taken from [61]; and *** denotes values taken from [119]; The meaning of symbols refers to the 
nomenclature table. 

Fig. 4. Schematic of the pseudo-2D PEM fuel cell model by Chupin et al.: (a) flow channel and (b) cooling channel. (Reprinted from [124] with permission 
of Elsevier). 
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Shamardina et al. [123] established a pseudo-2D fuel cell model 
taking into account the transport phenomena across the membrane and 
the oxygen depletion along the flow channels. A pseudo-crossover cur
rent density was employed to account for the permeation of oxygen and 
hydrogen through the membrane. However, in the membrane, the effect 
of water content on the conductivity was ignored, and this major 
assumption may bring significant errors when the model is applied to 
conditions beyond the validation range. The computing speed was re
ported to be a few seconds in response to changes in operational con
ditions based on a modern computer (specification of the computing 
resources was not specified). 

Chupin et al. [124] developed a pseudo-2D fuel cell model by inte
grating the two-phase flow with an agglomerate CL model. The transport 
and electrochemical phenomena between the anodic and cathodic 
channels were included in a 1D fuel cell model, while the mass balance 
was applied to the gas flow in channels (see Fig. 4a). The simulation 
results suggested that the effect of coolant flow direction (see Fig. 4b) on 
the global fuel cell performance is insignificant, although the current 
density distribution is changed substantially along the channel. Both co- 

and counter-flow of air and hydrogen were also examined, and the 
counter-flow mode is suggested to be preferable for a stable operation. 
The CLs were treated as interfaces for water transport to accelerate the 
computing speed; however, the computing speed is not reported. 

Goshtasbi et al. [45] developed a semi-empirical, transient, and 
pseudo-2D fuel cell model with the cell voltages as inputs and current 
densities as outputs under various operational conditions taking thermal 
energy and two-phase transport phenomena into account. A reduced 
model was applied to the membrane with the assumption that the water 
content in a thin membrane is almost linear, which reduces the partial 
differential equation (PDE) of membrane water transport to an ordinary 
differential equation (ODE) as shown below, 

dλd

dt
= −

EW
ρmemδmem

(
Nca

w,mem − Nan
w,mem

)
(25)  

where λd is the actual dissolved water content in ionomer in [kmol 
(H2O)•kmol(SO3H)− 1]; EW denotes the equivalent weight of membrane 
in [kg•kmol(SO3H)− 1]; ρmem is the membrane density in [kg•m− 3]; δmem 
is the thickness of membrane in [m]; and Nca

w,mem and Nan
w,mem are the 

Fig. 5. Pseudo-2D PEM fuel cell model developed by Goshtasbi et al.: (a) Pseudo-2D model and (b) numerical solution method. (Adapted from [45] with permission 
of Electrochemical Society). 
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water flow rates across the membrane on the cathode and anode sides, 
respectively. The numerical implementation can affect computational 
speed, and the pseudo-2D framework is presented in Fig. 5a. The 
framework consists of 25 nodes along the channel and 43 nodes in the 
through-the-membrane direction. A weak spatial connection was 
established through boundary conditions accounting for the reactant 
and water transport in the through-the-membrane direction and the bulk 
flow in the along-the-channel direction. This approach enabled different 
numerical schemes for different problems, e.g., the backward Euler 
method (fully implicit) for temperature PDE and the BEAM and 
Warming implicit method for liquid water PDE. The implicit methods 
enabled a larger time step in comparison with explicit methods to avoid 
numerical stability issues and to reduce the computational time in 
comparison with the real-time operation. The differential algebraic 
equation (DAE) system was solved by Newton’s method. More details 
about the numerical solution methods can be found in Fig. 5b. In 
addition, this approach enabled parallel computing, which can further 
improve computing speed. Besides, the gas dynamics which are on the 
order of 0.01 s were ignored, and 0.1 s is selected as the time step for a 
balanced accuracy and computing speed. Therefore, this model enabled 
the computational speed twice to four times faster than real-time cell 
operation. Further, a bi-domain approach was applied to their model to 
distinguish the transport phenomena under the land and the channel 
[46]. The pseudo-2D model has been demonstrated for the first time to 
be a powerful tool for real-time control applications that incorporate as 
many physical and electrochemical phenomena as possible [45,46,126]. 

Yang et al. [91] established a comprehensive system model by 
integrating a pseudo-2D dynamic two-phase stack model, a 1D dynamic 
humidifier model, a 1D hydrogen pump model, a radiator model, and an 
air compressor model. The system configuration is shown in Fig. 6. 
Explicit numerical schemes were applied to PDEs, and a time step of 
10− 6 s was selected for the numerical solution as a compromise of pre
diction accuracy and computing speed. This model has excellent capa
bilities of transient performance prediction and system optimization and 
control if the computational speed can be optimized. 

3.2. Comparison of pseudo-two-dimensional numerical models 

Many pseudo-2D numerical fuel cell models, which account for the 
composition changes along the flow channels and the physics in the 
through-the-membrane direction, have been developed in the past three 
decades. A summary and comparison of these models are presented in 
Table 3. 

Most of these models utilize the relative humidity (RH), temperature, 
and pressure of the reactants, as well as the cell temperature, 

stoichiometry ratio (or flow rates), and current density as the input 
variables, and the output variables are focused on the distribution of 
voltage, current density, temperature, reactant and water along the 
channels. It should be pointed out that the computational speed of the 
pseudo-2D model is dependent on the complexity of the transport and 
electrochemical phenomena being modeled, the numerical methods 
applied to solve the DAE systems, the required accuracy, and the se
lection of time steps [45,91,125,126]. The phenomena, including acti
vation loss, ohmic loss, concentration loss, multispecies transport, 
membrane water, two-phase flow, non-isothermal effect, convection, 
diffusion, steady-state behavior, and transient behavior, have been fully 
or partially integrated into the pseudo-2D models in various studies such 
that the models can predict the real-time cell performance accurately 
over the entire operational ranges. It should be noted that these models 
are useful for small-size single fuel cells; however, the applicability to 
large fuel cells, especially for low stoichiometry ratio and low RH con
ditions, may not be appropriate [44]. 

Although the pseudo-2D model has not been widely implemented for 
the real-time control of PEM fuel cells, it can be used to control PEM fuel 
cells due to its balanced model fidelity and computing speed. By 
ignoring the gas dynamics, Goshtasbi et al.’s transient pseudo-2D model 
demonstrated twice faster computing speed than the actual physical 
process [45,126]. This implies the pseudo-2D model can be used to 
control the fuel cell real-time behaviors with proper assumptions. 

4. One-dimensional numerical model 

In this section, the 1D numerical model is defined as the PEM fuel cell 
models that address the transport and electrochemical phenomena dis
cussed in Section 2 in the through-the-membrane direction in all 
essential components for all variables being solved. 

4.1. Model development 

Springer et al. [14] proposed a 1D mathematical model that is uti
lized to study the fuel cell performance accounting for the transport of 
gas species, water vapor, membrane water, and other effects. In their 
model, if the actual vapor partial pressure surpasses the saturated value, 
liquid water is considered in the continuity equation assuming the water 
exists in the form of uniformly dispersed droplets with zero volume in 
the computational domain such that it is deemed to have identical 
transport properties with water vapor. In addition, a classic correlation 
of the membrane water drag coefficient ndrag = 2.5λ/22 was derived 
based on their experimental results. Bernardi and Verbrugge [49] 
established a 1D model to calculate the voltage losses due to anodic and 

Fig. 6. Schematic of the pseudo-2D PEM fuel cell stack model by Yang et al. (Reprinted from [91] with permission of Elsevier).  
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cathodic chemical reactions and the transport of protons and electrons. 
In their models, the CL was assumed macro-homogeneous and the 
membrane was fully hydrated. The transport of various species in the 
complicated structure of gas, liquid, and solid was modeled. Weisbrod 
et al. [50] enabled a detailed membrane model, in which the impact of 
water content on the physical and chemical properties of the membranes 
were mathematically described based on the experimental work by 
Springer et al. [14]. Baschuk and Li [51] modeled liquid water in CLs 
and GDLs, which enabled the simulation of water flooding in porous 
media of PEM fuel cells and evaluation of its effect on cell performance. 
The numerical implementation followed a procedure to consecutively 
solve the Nernst equation, mass transport equations, the Butler-Volmer 
equation (discretized by a quasi-linear approximation), and activation 
and ohmic overpotential equations. Wöhr et al. [52] developed a 1D 
mathematical model taking water and heat transport into account such 
that the dynamic responses of the PEM fuel cells after changes in elec
trical loads, gas flow rates, and humidification levels can be simulated. 
Rowe and Li [54] developed a 1D model based on non-isothermal 
phenomena in PEM fuel cells, and the anodic and cathodic humidifica
tion was incorporated in their work. 

Falcão et al. [53] established a steady-state 1D fuel cell model taking 
thermal and water management into account. The heat transport is 
assumed to be conduction-dominated in GDLs, and the heat generation 
and consumption were modeled for CLs. The transport of water in 
membranes was treated as a combination of diffusion and 
electro-osmotic drag effects. Gao et al. [55] developed a multi-physics 

1D fuel cell model for real-time simulation. In their model, the elec
trical, fluidic, and thermal domains were taken into account for each 
component, including membranes, CLs, GDLs, flow channels, bipolar 
plates, and cooling plates. However, the activation overpotential of 
cathode was calculated based on empirical correlations, which requires 
a stack polarization curve to determine the corresponding empirical 
coefficients. The reduced spatial dimensionality enabled the a fast 
computation speed (33% faster than the real time) while maintaining 
reasonable prediction of cell performance in respect of current density, 
RH, and gas species concentrations including oxygen, hydrogen, and 
water vapor. Abdin et al. [56] built a 1D mathematical model that 
directly integrates physical parameters into their model under some 
assumptions to reduce the computational load. Their model was 
composed of four sub-models, i.e., anode, cathode, membrane, and 
voltage. In each sub-model, the simplified conservation laws were 
applied such that the model can reveal the physical response corre
sponding to changes in operational conditions. This model can be 
implemented in the Matlab-Simulink environment with simplifications 
and assumptions, such as uniform current distribution, uniform tem
perature, water in the vapor phase at the membrane-electrode interface, 
no pressure gradient, and diffusion dominant. The modeling results 
agreed with experimental data acceptably with fairly light computing 
demand. 

Bao et al. [10] developed an analytical control-oriented dynamic 
model for the fuel cell systems integrating air stream, and hydrogen flow 
recirculated by an injection pump. Their isothermal, steady-state model 

Table 3 
Comparison of pseudo-two-dimensional numerical models for PEM fuel cells.  

Model features Fuller and Newman Nguyen and White Shamardina et al. Chupin et al. Goshtasbi et al. Yang et al. 
Year 1993 1993 2010 2010 2016–2019 2019 

Type of Pseudo 2D model Channel Channel Channel Channel Channel Channel 
Domain       
Membrane √ √ √ √ √ √ 
CL √ √ √ ×**** × **** √ 
GDL √ √ √ √ √ √ 
Flow channel √ √ √ √ √ √ 
Bipolar plate × √ × √ √ √ 
Cooling channel × × × √ √ √ 
Key input variables       
Reactant RH √** √ - √ √ √ 
Reactant temperature √ √ - - √ √ 
Reactant pressure √ √ √ √ √ √ 
Cell temperature √ √ √ ×*** √ √ 
Stoichiometry ratio/flow rate √ √ √ √ √ √ 
Current density ×* √ ×* × * ×* √ 
Physics included       
Activation loss - √ √ √ √ √ 
Ohmic loss √ √ √ √ √ √ 
Multispecies transport √ √ √ √ √ √ 
Membrane water √ √ × √ √ √ 
Two-phase flow × √ × √ √ √ 
Ice formation × × × × × √ 
Non-isothermal √ √ × √ √ √ 
Convection × × × × × ×

Steady-state behavior - √ √ √ √ √ 
Transient behavior - × × × √ √ 
Reactant crossover × × √ × √ ×

Pressure drop × × × × √ √ 
Outputs reported       
Voltage distribution ×* √ × × ×* ×

Current density distribution √ √ × √ × ×

Pressure distribution × × × × × ×

Reactant distribution √ √ × × × ×

Water distribution √ √ × √ √ √ 
Temperature distribution √ √ × √ √ √ 
Validation × × √ × √ √ 
polarization curve × × √ × - √ 
Computation speed × × √ × √ ×

References [39] [40] [123] [124] [45,126] [91,125] 

Note: √, ×, and – denote the features are included, excluded, and not mentioned in the corresponding studies, respectively, * means the model utilizes voltage as input 
and current as output, ** means values are given indirectly, *** means coolant temperature is given, and **** means catalyst layer is treated as interface. 
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was established for the understanding of mass transport in GDLs and 
water transport in membranes, where the liquid water accumulation due 
to finite-rate phase change and water flooding in cathode GDLs were 
modeled. Further, the transient phenomena in fuel cell systems were 
predicted by modeling the mechanical inertia of compressor and reac
tant supply in manifolds and single cells. In Bao et al. [10] ’s model, the 
stoichiometric ratio (see Eq. (26)) is taken into account for the 1D model 
by introducing a logarithmic average of the molar fraction of oxygen 
between the inlets and outlets as the boundary condition of GDLs. 

xO2 =
xO2 ,in − xO2 ,out

ln
(
xO2 ,in

)
− ln

(
xO2 ,out

) (26) 

Recently, aging effects have gained attention for fuel cell models 
with reduced spatial dimensions. Li et al. [47] established a 1D catalyst 
degradation model for PEM fuel cells taking Pt degradation and ECSA 
into account. Two major catalyst degradation modes - Ostwald ripening 
and Pt dissolution-re-precipitation - were modeled in their work (see 
Fig. 7). Their model can effectively capture the effect of temperature, 
RH, and reactant gas on the ECSA and performance deterioration, and 
the modeling results suggested that the severe catalyst degradation may 
be a limitation in the reduction of the Pt loading. Li and Wang [48] 
further extended the 1D physics-based agglomerate model to quantify 
the effects of catalyst degradation, in term of the loss in ECSA and the 
oxygen mass transport loss through the wrapped ionomer on the Pt 
particle surface, on the cell performance for a low Pt-loading PEM fuel 
cell. This agglomerate CL model was coupled with the performance 
model using the mixture approach, and this model enabled the investi
gation of non-uniform Pt degradation. 

Jiang et al. [103] developed a 1D non-isothermal two-phase-flow 
fuel cell model taking into account the phase change phenomena, which 
was rarely included in previous studies. A switching function was con
structed to determine the transport mechanism of liquid or vapor water, 
which enabled the coupling of liquid and vapor water in the same 
domain in one governing equation. The sensitivity analysis suggested 
the uncertainty in the model parameters has a strong effect on the 
model’s reliability and stability. 

4.2. Comparison of one-dimensional numerical models 

The development of 1D numerical models has been promoted in the 
past three decades. A summary and comparison of these models are 

presented in Table 4. Most of these models utilize the RH, temperature, 
and pressure of the reactants, as well as the cell temperature, stoichi
ometry ratio (or flow rates), and current density as the input variables, 
and the output variables are focused on the cell voltage and other in
dicators such as outlet conditions and cell resistances. Li et al. [47,48] 
start to incorporate the aging effect into 1D models, by taking Pt 
degradation into account through modifying ECSA and the resistance to 
oxygen transport in the thin ionomer film covered on the catalyst sur
face. Further model development by incorporating the other aging ef
fects including mechanical, thermal, chemical, and electrochemical 
degradations into the control-oriented models would enable the 
long-term performance prediction and control strategy adjustment. It 
should be pointed out that the computational speed of the 
control-oriented 1D model is dependent on the complexity of the 
transport and electrochemical phenomena being modeled. In other 
words, the computational speed can be enhanced by applying reason
able assumptions to simplify the governing equations. However, suffi
cient prediction accuracy should be maintained. The phenomena, 
including activation loss, ohmic loss, concentration loss, multispecies 
transport, membrane water, two-phase flow, electron transport, proton 
transport, non-isothermal effect, convection, diffusion, steady-state 
behavior, transient behavior, and aging effects, have been integrated 
or partially integrated into the 1D models in various studies such that the 
models are able to predict the short- and long-term performance accu
rately within the entire operational ranges. Further studies should also 
focus on the validation and calibration of the models against more 
physical variables other than just current-voltage curves, such as outlet 
conditions (including pressure, gas species concentrations, composi
tions, and flow rates), ohmic resistance, and temperature variations. 

Although the implementation of 1D models in the actual fuel cell 
control is rarely reported, it can be potentially used to control PEM fuel 
cell operations due to its fast computing speed. Gao et al. [55] reported 
that the 1D models taking into account the electrical, fluidic, and ther
mal domains, including membranes, CLs, GDLs, flow channels, bipolar 
plates, and cooling plates, can be 33% faster than the real-time pro
cesses. This suggests the 1D model can be potentially used for the 
real-time control of PEM fuel cells. 

5. Zero-dimensional analytical model 

0D analytical models, in this review, is defined as the models based 
on simplified conservation laws that do not require spatial dimensions 
for every component and every variable and do not require curve fitting 
to determine model coefficients. Many of these models were used in 
model-predictive control studies, which involve complete or partial fuel 
cell components as well as accessories [127–131]. Depending on the 
control objectives (e.g., energy efficiency, temperature, or pressure), 
many control-oriented 0D analytical models do not include all physics as 
depicted in Section 2, which may not be able to accurately predict the 
actual fuel cell dynamics. Therefore, the 0D analytical models that can 
be used to develop control strategies for different fuel cell components 
and systems are reviewed in this section. 

5.1. Model development 

Many 0D analytical models have been utilized to develop control 
strategies; however, most of the models are over-simplified, and the 
validity requires further investigation [127–131]. Tirnovan and Giurgea 
[127] developed a control strategy to optimize the compressor speed 
and throttle opening of the air supply system to achieve the maximum 
energy efficiency of the fuel cell systems. The fuel cell model used to 
develop the control strategy consists of an empirical electrochemical 
model, a pressure drop model in pipes and channels based on flow rate 
and geometric parameters, and the energy balance of the fuel cell sys
tems. The semi-empirical nature of the fuel cell models may introduce 
errors to the overall system model, which can be further improved. 

Fig. 7. Schematic of 1D Pt degradation model taking Pt Ostwald ripening and 
re-precipitation into account (Reprinted from [47] with permission of Elec
trochemical Society). 
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Matraji et al. [130] developed a control strategy to prevent permanent 
damage of fuel cells by regulating the anode and cathode pressures 
based on a nonlinear dynamic fuel cell model. The dynamic model was 
established based on the assumption that temperature and humidity 
were strictly controlled, and the pressure of various species was calcu
lated based on mass conservation and ideal gas law. A MIMO controller 
based on second-order sliding mode and a ‘twisting algorithm’ is used to 
minimize the difference in anode and cathode pressures. However, the 
accuracy of the dynamic model was not evaluated, and its impact on the 
control performance remains unknown. Danzer et al. [131] developed a 
model predictive control strategy to avoid oxygen starvation, which is 
harmful to the fuel cell health, by controlling the pressure, current, and 
excess ratio of oxygen (i.e., stoichiometry ratio). A nonlinear fuel cell 
system model to estimate the dynamic responses of mass flow and 
pressure variation was established based on the flow resistance network. 
As the presented work was focused on testing the optimal control 
scheme, the fuel cell model was not validated, which may limit its 
practical application. Hong et al. [128] developed a multi-input mul
ti-objective (MIMO) nonlinear strategy for fuel supply to the PEM fuel 
cells with anode recirculation and exhaust bleeding (see Fig. 8). The 

pressure dynamics of hydrogen and nitrogen in the anode was modeled 
based on mass conservation and ideal gas law, and the crossover of ni
trogen and hydrogen was incorporated in the model. The emphasis of 
the presented work was placed on the controller performance, while the 
dynamic physical model was not validated. 

As can be seen, many fuel cell models used for model-predictive 

Table 4 
Comparison of one-dimensional numerical models for PEM fuel cells.  

Model features Springer 
et al. 

Bernardi & 
Verbrugge 

Wöhr 
et al. 

Baschuk & 
Li 

Rowe & 
Li 

Bao 
et al. 

Falcão 
et al. 

Gao 
et al. 

Li et al. Abdin 
et al. 

Jiang 
et al. 

Year 1991 1992 1998 2000 2001 2006 2009 2010 2015–2017 2016 2018 

Domain            
Membrane √ √ √ √ √ √ √ √ √ √ √ 
CL √ √ √ √ √ √ √ √ √ √ √ 
GDL √ √ √ √ √ √ √ √ √ √ √ 
Flow channel √ × √ √ √ × √ √ √ √ √ 
Bipolar plate × × × √ × × √ √ √ √ ×

Cooling channel × × × × × × × √ × × ×

Key input variables            
Reactant RH √ √ √ √ √ √ √ √ √ √ √ 
Reactant temperature √ √ √ √ √ √ √ √ √ √ √ 
Reactant pressure √ √ √ √ √ √ √ √ √ √ √ 
Cell temperature √ √ √ √ √ √ √ √ √ √ √ 
Stoichiometry ratio/ 

flow rate 
√ √ √ √ √ √ √ √ √ √ √ 

Current density √ √ √ √ √ √ √ √ √ √ √ 
Physics included            
Activation loss √ √ √ √ √ √ √ √ √ √ √ 
Ohmic loss √ √ √ √ √ √ √ √ √ √ √ 
Multispecies transport √ √ √ √ √ √ √ √ √ √ √ 
Membrane water √ √ √ √ √ √ √ √ √ √ √ 
Two-phase flow × √ √ √ × √ × × √ √ √ 
Electron transport √ √ √ √ √ × × × √ √ √ 
Proton transport √ √ √ √ √ √ √ √ √ √ √ 
Non-isothermal × × √ × √ × √ √ √ × √ 
Convection × × √ × × × × × × × ×

Steady-state behavior √ √ √ √ √ √ √ × √ √ √ 
Transient behavior × × √ × × × × √ √ × ×

Aging effects × × × × × × × × √ × ×

Outputs reported            
Voltage √ √ √ √ √ √ √ √ √ √ √ 
Outlet pressure × × × × × √ × × × × ×

Outlet species 
composition 

√ × × × × × × × × × ×

Outlet species flow 
rate 

√ × × × × × × × × × ×

Temperature × × × × × × × √ × × ×

Resistance √ × × × × × × × × × ×

ECSA × × × × × × × × √ × ×

Validation            
Steady-state I-V curve × × × √ √ √ √ × × √ √ 
Transient voltage 

variation 
× × × × × × × √ √ × ×

Other physical 
variables 

√ 
resistance 

× × × × × × √ 
temp. 

× × ×

Computation speed × × × × × × × √ × × ×

References [14] [49] [52] [51] [54] [10] [53] [55] [47,48] [56] [103] 

Note: √ and × denote the features are included and excluded in the corresponding studies, respectively. 

Fig. 8. Schematic of the fuel supply system for PEM fuel cell by Hong et al. 
(Reprinted from [128] with permission of Elsevier). 
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control are analytical, over-simplified, non-validated, and often focused 
on specific problems. Therefore, a comprehensive yet simple 0D 
analytical model, including energy analysis, is scrutinized. Cownden 
et al. [21] established a 0D analysis model by incorporating the second 
law of thermodynamics for the PEM fuel cell systems into a single cell 
model to investigate the performance of the fuel cell transportation 
system, which was composed of the stack, hydrogen supply, air 
compression, and coolant subsystems. It was found that the cell stack 
possesses the largest exergy destruction within the system, followed by 
the hydrogen ejector, air compressor, and radiator. Even though the 
details of the fuel cell model were not given, the thermodynamics 
analysis presented remains useful for the fuel cell system optimization 
using energy efficiency as the control objective. Kazim [22] also per
formed a 0D exergy analysis for a 10 kW PEM fuel cell at various 
operational conditions, including pressure, air stoichiometry, tempera
ture, and cell voltage. Exegetic efficiency, which is defined as the ratio of 
the output power to the overall exergy differences between the reactants 
and reaction products, of the PEM fuel cell system at various operational 
conditions was reported in their work; however, the exergy in individual 
cell components or auxiliaries were not considered. Hussain et al. [15] 
proposed a 0D thermodynamic model of PEM fuel cell systems, inte
grating a fuel cell stack, an air compressor, a heat exchanger, two hu
midifiers, and a cooling pump and loop, as shown in Fig. 9. A parametric 
study was conducted to investigate the impact of operational conditions, 
including pressure, temperature, and stoichiometry ratio, on the energy 
and exergy efficiencies of the fuel cell systems, and the largest irre
versibility was found to be from the stack which has drawn the greatest 
attention in research activities. Youssef et al. [23] established a lumped 
fuel cell model with linear algebra equations, which is employed to 

evaluate the effect of operational and design parameters on the overall 
cell performance. Their model considered the mass conservation and 
energy balance, which does not necessarily require spatial dimensions, 
while thicknesses of GDLs and membranes were only considered for the 
calculation of ionic and electrode resistances. Many assumptions, such 
as constant membrane ionic conductivity and absence of phase change 
mechanisms, made this model less accurate to predict the cell perfor
mance over the entire range of operating conditions in comparison with 
those taking the dynamic membrane resistance and phase change into 
account. 

Karimi et al. [26] developed a flow network model to investigate the 
distributions of pressure and flow rate for reactant streams. These dis
tributions were subsequently incorporated into the single cell, which 
enabled the evaluation of the fuel cell performance at the stack level. 
Miotti et al. [27] proposed a control-oriented model for the automotive 
PEM fuel cell system by integrating an isothermal fuel cell model and 
auxiliary models (including a humidification chamber and a 
compressor) based on the “filling emptying” method. Shan and Choe 
[132] established a PEM fuel cell model considering the effects of (i) 
temperature gradients within the whole fuel cell, (ii) water redistribu
tion in the membrane, (iii) proton redistribution in cathode CLs, and (iv) 
reactant redistribution in cathode GDLs. This allowed the model to es
timate the dynamic performance of PEM fuel cells with acceptable ac
curacy. Musio et al. [28] established a generalized steady-state single 
fuel cell model, which was further developed to be a dynamic stack 
model by incorporating the pressure drop for a Z-shape flow configu
ration and thermal management and cooling sub-models. This model 
was less computationally expensive; however, the transient behaviors of 
the reactant transport, heat management, phase changes, and migration 

Fig. 9. Exergy flow diagram of the fuel cell system investigated at the operational conditions of I = 0.938 A•cm− 2 and V = 0.466 V. Bold values denotes the 
irreversibility rate in each component in the unit of kW (Adapted from [15] with permission of Elsevier). 
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of liquid and dissolved water were not included. Jung et al. [133] 
established a 0D analytical model by applying simple conservation laws 
of energy to a voltage model. The dynamic performance (including 
voltage, current density, oxygen excess ratio, and temperature) and 
computational speed were evaluated in their work. However, the 
transport of liquid water and other species was ignored. 

Hosseinzadeh et al. [29] developed a 0D PEM fuel cell model to 
facilitate the water and thermal management for a forklift truck power 
system based on both theoretical and empirical equations. The balance 
of plant (BOP) was evaluated, including an air humidifier, a recircula
tion pump, a compressor, and a few heat exchangers, as shown in 
Fig. 10. For the fuel cell, an empirical model was employed taking ox
ygen partial pressure and membrane conductivity into account, while 
the concentration loss was not included since the high current density 
was not the research interest of their studies. The water transport 
mechanisms through the membranes via EOD effects and back-diffusion 
were modeled, and the mass conservation was applied. Hosseinzadeh 
and Rokni [30] further validated their 0D steady-state fuel cell model 
against stack data from Ballard Company, and parametric and sensitivity 
studies were performed for various operating parameters, including but 
not limited to anode inlet pressure, air and fuel stoichiometry ratios, and 
inlet coolant temperature. Long et al. [31] developed a 0D model for the 
hybrid system (see Fig. 11) consisting of a PEM fuel cell and a thermally 
regenerative electrochemical cycle to harvest the waste heat generated 
due to chemical reactions. The output power of the hybrid system was 
found to be 6–21% larger than the fuel cell system, thereby improving 
the performance by 3–8%. 

These 0D analytical models based on simplified conservation laws 
were often computationally inexpensive. Although many of these 
models were used for energy and exergy analysis of the fuel cells or fuel 
cell systems, these models can be modified for model predictive control 
with different control objectives, e.g., energy efficiency, pressure, and 
temperature. However, the accuracy and the dynamic behaviors of these 
models remain uncertain as many of the time-dependent transport and 
electrochemical phenomena are not taken into account in these models. 

5.2. Comparison of zero-dimensional analytical models 

The development of 0D analytical models has been reported in 
various studies. A summary and comparison of these models are pre
sented in Table 5. The majority of the 0D models are thermodynamic 
models to analyze the energy and exergy performance of the PEM fuel 
cell systems with various accessories. These models applied simple 
conservation laws to specific variables, and the system performance 
including energy conversion efficiency and exergy efficiency is evalu
ated, which is significant for fuel cell system design and optimization. 
Some studies also use 0D analytical models that do not necessarily 
require spatial dimensions but still need simple conservation laws to 
predict cell performance with fast computational speed. 

These 0D analytical models based on simplified conservation laws 
are computationally efficient. Therefore, these models have been widely 

reported in various model predictive control studies for PEM fuel cells. 
However, the accuracy and the dynamic behaviors remain the chal
lenges as the spatio-temporal phenomena are not taken into account in 
these models [127–131]. 

6. Zero-dimensional empirical model 

A 0D empirical model for PEM fuel cells in this review is classified by 
the involvement of curve fitting to determine the unknown coefficients 
of mathematical models based on experimental data. 

6.1. Model development 

Most of the empirical models attempt to establish a simple mathe
matical relation between the output voltage and operating current 
density, and most of the empirical models utilize the current density as 
the input and voltage as the output. 

Many empirical modes are developed based on the mechanistic Eq. 
(24) with a modification of the explicit expressions of thermodynamic 
potential as well as activation and ohmic over-potential, with the 
transport limitations incorporated into these three terms, to estimate the 
voltage at the low (or activation-dominated) and intermediate (or 
ohmic-loss-dominated) current density regions. Srinivasan et al. [24] 
developed the following correlation model of PEM fuel cells to predict 
the voltage, 

Vcell = V0 − b⋅log i − R⋅i (27)  

where V0 = Vr + b∙log i0, Vr is the reversible cell potential, i0 and b 
represent the Tafel parameters that can be obtained from an experi
mental current-voltage curve via curve fitting, and R denotes the resis
tance leading to a linear change of cell potential against current density. 
The primary contribution to the resistance is the ohmic resistance of the 
membranes, followed by the charge-transfer resistance of HOR, the 
electronic resistance of the single cell testing facility, and the mass 
transport resistance in the intermediate current density region [24]. 
However, this equation overestimates the cell voltage at high current 
density regions, which is dominated by the mass transport limitation, as 
presented in Fig. 12. Therefore, the combination of a constant, a loga
rithm, and a linear term is not able to capture the rapid voltage drop at 
high current density regions. 

Amphlett et al. [19] developed a mathematical correlation based on 
Ballard Mark IV fuel cell testing results, and the voltage losses were 
calculated based on the operational conditions, including current den
sity, temperature, pressure, and concentration of gas species density. 
This enabled the empirical model with mechanistic characteristics in an 
attempt to optimize the performance prediction. Similarly, the cell 
voltage, defined as a function dependent on the thermodynamic po
tential, activation overpotential, and ohmic loss in their models, also 
accounts for the mass transport limitations being incorporated in the 
three terms. The activation overvoltage was dependent on temperature 
as well as oxygen, hydrogen, water vapor, and proton concentration. 

Fig. 10. Schematic of PEM fuel cell system (Reprinted from [29] with permission of Elsevier).  
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With a few assumptions, the activation overvoltage was simplified as, 

ηact = ξ1 + ξ2T + ξ3T
[
ln
(

c∗O2

)]
+ ξ4T[ln(i)] (28) 

The ohmic overvoltage was defined as an Ohm’s law expression, 

ηohm = iRinternal (29)  

where the internal ohmic resistance, R, is defined as a function of current 
and temperature. It should be pointed out that their models assumed 
that the water flooding and membrane dehydration effects were negli
gible, which may not be realistic for the conditions of high current 
density and high RH. 

To further improve the performance prediction of the empirical 

Fig. 11. Schematic of the hybrid system composed of a PEM fuel cell subsystem and a thermally regenerative electrochemical subsystem (Reprinted from [31] with 
permission of Elsevier). 

Table 5 
Comparison of zero-dimensional analytical models for PEM fuel cells.  

Model features Cownden 
et al. 

Kazim Hussain 
et al. 

Karimi 
et al. 

Miotti 
et al. 

Elsayed Youssef 
et al. 

Musio 
et al. 

Hosseinzadeh 
et al. 

Long 
et al. 

Year 2001 2004 2005 2005 2005 2010 2011 2013 2015 

Domain          
Membrane - - √ - √ √ √ - √ 
CL - - √ - × √ √ - √ 
GDL - - √ - × √ √ - √ 
Flow channel - - √ - × √ √ - - 
Bipolar plate - - √ - × × √ - - 
Cooling channel - - √ - × × √ - √ 
Accessory √ √ √ √ √ × × √ √ 
Key Input variables          
Reactant RH - √ √ √ √ √ √ √ - 
Reactant temperature - √ √ √ × √ √ √ - 
Reactant pressure - √ √ √ √ √ √ √ - 
Cell temperature - √ √ √ √ √ √ √ √ 
Stoichiometry ratio - √ √ √ √ √ √ √ - 
Current density - √ √ √ √ √ √ √ √ 
Physics included          
Activation loss - - × - × √ √ - √ 
Ohmic loss - - × - × √ √ - √ 
Gas species - - × - × √ √ - √ 
Membrane water - - × - × × √ - - 
Liquid water - - × - × √ × - - 
Electron transport - - × - × √ × - - 
Proton transport - - × - × √ √ - √ 
Non-isothermal - - × √ × √ √ √ √ 
Convection - - × - × × × × ×

Steady-state behavior √ √ √ √ × √ √ √ √ 
Transient behavior × × × × × × × × ×

Aging effects × × × × × × × × ×

Outputs reported          
Voltage - √ √ √ √ √ √ - √ 
Pressure drop - - × × × × √ - - 
Energy/exergy efficiency √ √ √ √ × × × √ √ 
Validation          
Steady-state I-V curve × × × × × √ √ × ×

Transient voltage 
variation 

× × × × × × × × ×

Other physical variables × × × × × × × × ×

Computation speed × × × × × × × × ×

References [21] [22] [15] [26] [27] [23] [28] [29,30] [31] 

Note: √, ×, and – denote the features are included, excluded, and not mentioned in the corresponding studies, respectively. 
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models at high current density ranges by capturing the rapid voltage 
drop, many models introduced an artificial term to account for the 
impact of concentration polarization. The cell output voltage was thus 
modified as a function of the reversible cell potential as well as activa
tion, ohmic, and concentration losses. 

Vcell = Vrev − ηact − ηohm − ηconc (30) 

The total activation loss can be calculated using the Tafel equation 
[16], 

ηact = a + b ln(i) (31)  

where a and b denote the coefficients that can be obtained by the 
experiment through curve fitting. 

The ohmic loss is resulted from the resistance to the electron trans
port in electric conductors and proton migration through ionomers, and 
is expressed by Ohm’s law [16], 

ηohm = (Rele +Rion)i (32)  

where Rele and Rion are the electric and ionic resistances resulted from 
the charged species transport, and i is current density. 

The concentration loss is reflected by the limiting current density 
[16]: 

ηconc =
RT
2F

ln
(

1 −
i
iL

)

(33)  

where iL denotes the limiting current density, which can be determined 
from experimental results (see Fig. 3 for example). 

With the current industry trends to run the PEM fuel cells with the 
high current density as a result of material breakthrough and optimi
zation, the cell performance (voltage and power) has been steadily 
improved and the mass transport limitations are becoming more and 
more challenging. The limiting current density, as an important indi
cator for the overall cell performance, is limited by the capabilities of 
transporting the reactants in fuel cell components, and this parameter 
has been continuously enhanced over years as the fuel cell technology 
develops, as shown in Table 6. 

Kim et al. [18] introduced an exponential term, compensating for the 
mass transport over-potential, into the voltage calculation as follows. 

E = E0 − b⋅log i − R⋅i − m⋅exp(n⋅i) (34)  

where m and n represent the two new unknown coefficients that can be 
determined by curve fitting against the experimental data on cell voltage 
vs. current density. This model was demonstrated to show excellent 
correlation against the experimental data, after a careful determination 
of the unknown coefficients. Based on their correlation results, the 
values of m coefficient were in a wide range between 10− 19 and 100

, 
while the n coefficient remained in a narrow range. It was found that 
when concentration polarization is minimal, the m coefficients are be
tween 10− 19 and 10− 9. Therefore, high values of m and n clearly 
represent the over-potential dominated by mass-transport limitations. 

Chu et al. [20] further extended the correlation models to a PEM fuel 
stack (See Eq. (35)), in which the electrode processes (activation, ohmic, 
and mass transfer) of the PEM fuel cell stack within the entire current 
density range were calculated. Their models followed a form similar to 
Kim et al. [18]’s work. When the current is smaller than the lower limit, 
id, which causes the output cell voltage to deviate from linearity as 
shown in Fig. 13, the exponential term representing the mass transport 
overvoltage will not be calculated; when the current exceeds the critical 
value, id, the mass transport overvoltage will be included accounting for 
the rapid cell performance degradation due to transport losses. It can be 
seen from Fig. 13 that Chu et al.’s model can better predict the output 
voltage than Srinivasan et al.’s models at high density regions, where 
concentration loss with highly non-linear behaviors is dominated. 

Fig. 12. Comparison of current-voltage curve predicted by Eq. (27) against 
experimental data - the line is Eq. (27) and the symbols are experimental data 
(Adapted from [18] with permission of Electrochemical Society). 

Table 6 
Limiting current density in different studies.  

Reference Year Description iL, A•cm− 2 

[134] 1960 25 ◦C, 101 kPa, 100% RH ~0.001–0.02 
[135] 1983 50 ◦C, 0.35 mgPt•cm− 2 0.6 
[136] 2000s 80 ◦C, 0.2 mgPt•cm− 2 1.4 
[137] 2006 65 ◦C, 310 kPa, 80%RH, high stoichiometry 

ratio. 
3.4 

[138] 2009 80 ◦C, 201 kPa, 100% RH, 1.5/3.0 stoich. 
ratio, 0.46 mgPt•cm− 2 

1.085 

[139] 2013 Dynamic cycling 2.3 
[140] 2018 80 ◦C, 150 kPa,100% RH, 0.35(anode) +

0.035(cathode) mgPt•cm− 2 
5.4 

Note: iL denotes the limiting current density in A•cm− 2. 

Fig. 13. Comparison with Srinivasan et al. [24]’s and Chu et al. [20]’s corre
lation models against experimental stack performance data (Adapted from [20] 
with permission of Springer). 
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E = E0 − b⋅log 1000i − R⋅i − imm⋅exp(n⋅im){
im = i − id for i > id

im = 0 for i < id

(35) 

Squadrito et al. [25] further modified the empirical model by the 
following equation, in which the effect of gas pressure and membrane 
thickness on the cell resistance was validated. 

E = E0 − b⋅log i − R⋅i + α⋅ik⋅ln(1 − β⋅i) (36) 

Recently, to address the long-term performance degradation, a time- 
dependent term is introduced to Zhang et al.’s empirical model [16], in 
which the activation, ohmic, and concentration losses can be expressed 
in the following equations. 

ηact = a0 + δa(φ)t + b0 ln(i) (37)  

ηohm = (R0 + δR(φ)t)i (38)  

ηconc =
RT
nF

ln
(

1 −
i

iL0 + δL(φ)t

)

(39) 

This extended PEM fuel cell model enabled the empirical models to 
predict the long-term performance degradation due to voltage and 
current cycling, even though the mechanisms were not fully addressed. 

6.2. Comparison of zero-dimensional empirical models 

Traditional empirical-correlation-based models are difficult to 
accurately predict all performance states of the fuel cell system with a 
high degree of freedom, and empirical correlations are limited in their 
range of applicability and validity due to the limited experimental data 
availability and the specific fuel cells used in the testing. In addition, the 
PEM fuel cell performance is sensitive to various operating conditions 
including current density, temperature, pressure, and RH, while most of 
the empirical models failed to take these factors into account, making it 
less representative for all operating states. A summary and comparison 
of these 0D empirical models are shown in Table 7. Further development 
of 0D empirical fuel cell models to estimate the cell performance within 
the whole range of operational conditions may necessitate a large 
number of experimental or benchmark data. However, temporal 
behavior modeling is one of the biggest challenges for the 0D models due 
to the lack of transient response mechanisms. 

Although many forms of empirical correlation models have been 

developed to investigate the highly dynamic and non-linear behaviors of 
PEM fuel cells, these models are not capable to rigorously predict the 
impact of different operational conditions on the cell performance, 
including humidity levels, pressure, temperature, and stoichiometry 
ratio, as well as structural parameters, including the thicknesses of 
components, porosity of electrodes, materials of membrane and catalyst 
[25]. Although these 0D empirical models can be used for real-time 
control of PEM fuel cells, they are only valid in a narrow operation re
gion. In other words, these models may not be applicable to predict the 
cell performance over a wide operational range unless these models are 
rigorously validated within all operational ranges. 

7. Data-driven model 

As the experimental techniques are developed in the past several 
decades, a large amount of transient and steady-state experimental data 
have been accumulated, which allows the application of data-driven 
models to predict the fuel cell performances for control and diagnosis 
purposes [98]. The data-driven fuel cell models are classified as the 
models that directly learn from a large experimental data set without 
explicit knowledge of the physical PEM fuel cell systems. The 
data-driven (or non-physics-based) models can be generally classified 
into three categories for diagnosis purposes as shown in Fig. 14 - arti
ficial intelligence (AI) models, statistical models, and signal-processing 
models. In this section, the emphasis is placed on the various artificial 
intelligence algorithms that can be implemented for fuel cell control 
applications as the application of the other two types of models in fuel 
cells is limited. As an alternative method, AI models can establish the 
relation between input variables and output performance of fuel cells by 
learning from existing data without knowing the physical fuel cell 
structure and knowledge [141,142]. 

7.1. Artificial neural network (ANN) model 

The artificial neural network (ANN) model, inspired by the biological 
neural networks, is a powerful tool to capture the input and output 
relationship from a sufficiently large data set. This technology is 
demonstrated to be advantageous to predict the PEM fuel cell perfor
mance without knowledge of materials, structure, spatial dimensions, 
and complicated physical and electrochemical phenomena, and has 
been actively studied for the control and diagnosis of PEM fuel cells [58, 

Table 7 
Comparison of zero-dimensional empirical models for PEM fuel cells.  

Model features Srinivasan et al. Kim et al. Amphlett et al. Squadrito et al. Chu et al. Zhang et al. 

Year 1988 1995 1995 1999 2000 2017 
Curve-fitting determined coefficients       
# of unknowns 3 5 6 6 6 4 + 3 
Key input variables       
Current density √ √ √ √ √ √ 
Oxygen concentration × × √ × × ×

Individual terms representing physics       
Activation loss √ √ √ √ √ √ 
Ohmic loss √ √ √ √ √ √ 
Concentration loss × √ × √ √ √ 
Aging effect × × × × × √ 
Outputs       
Voltage √ √ √ √ √ √ 
Outlet pressure × × × × × ×

Outlet species composition × × × × × ×

Outlet species flow rate × × × × × ×

Outlet temperature × × × × × ×

Validation/Evaluation       
Steady-state I-V curve √ √ √ √ √ √ 
Ohmic resistance × × √ √ × ×

Computation speed × × × × × ×

References [24] [18] [19] [25] [20] [16] 

Note: √ and × denote the features are included and excluded in the corresponding studies, respectively. 
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143,144]. Various ANN models have been proposed for different energy 
applications. Based on the topology, the connections of neurons can be 
feedforward (see Fig. 15a) and feedback (or recurrent) (see Fig. 15b). 
Feedforward networks do not contain cycles in the connections of neu
rons, while feedback (or recurrent) connection includes cycles between 
neurons. The numbers of layers and neurons are dependent on the 
complexity of the problem being solved and determine the ANN pre
diction performance, which is often determined by trial and error during 
learning/training processes [143]. However, the trial and error method 
is time-consuming and skill-dependent. Recently, the method of neural 
architecture search (NAS) has been developed to automatically search 
for the most suitable neural network architecture [145]. The learning (or 
training) process of the ANNs can be supervised or unsupervised 
depending on if the learning requires a teacher. The supervised learning 
links the inputs with target outputs that supervise the learning process, 
while the unsupervised learning will recognize patterns in the input 
data, and a target output is not required. The input data are usually 
divided into two sets for the supervised learning – training dataset and 
testing/validation dataset. The training dataset is used for the ANN 
learning by adjusting the weights of links among different neurons, 
which are constantly updated as the learning proceeds. The tes
ting/validation dataset is utilized to evaluate the performance of ANN 
models [17,57,146]. 

Various ANN architectures have been investigated for PEM fuel cell 
modeling. Sisworahardjo et al. [17] proposed a multilayer feedforward 
ANN fuel cell model with the training algorithm of back-propagation 
based on a 100 W portable PEM fuel cell, as shown in Fig. 16. Their 
model was trained for 10 thousand epochs (each epoch means the model 

is trained with the entire dataset once) and compared with a dynamic 
physics-based model and experimental data. Three statistical indices 
were defined to evaluate the accuracy, precision, and variation for cell 
voltage, output power, and flow rate of hydrogen. Their modeling re
sults indicated that the ANN model is more advantageous in precision 
and accuracy but presents a bigger variation in the predicted variables in 
comparison with the dynamic model. 

Ma et al. [144] developed a fuel cell degradation model adopting a 

Fig. 14. Classification of non-physics-based data-driven fuel cell models for diagnosis purpose (Adapted from [58] with permission of Elsevier).  

Fig. 15. Example of (a) feedforward multilayer neural network (Adapted from [143] with permission of Elsevier) and (b) recurrent (or feedback) neural network 
(RNN) architecture with a single hidden layer (Adapted from [147] with permission of Elsevier). 

Fig. 16. Artificial neural network model based on a 100 W PEM fuel cell 
(Reprinted from [17] with permission of Elsevier). 
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Grid Long Short-Term Memory (G-LSTM) recurrent neural network 
(RNN) to avoid the problems of gradient exploding and vanishing in 
comparison with traditional RNN architecture, as shown in Fig. 17. This 
enabled the model to estimate the long-term cell performance, which 
was validated against three groups of fuel cell data from a Ballard Nexa 
fuel cell (1.2 kW) and two Proton Motor fuel cells (1 kW and 25 kW). 

Sari et al. [57] developed a multilayer feedforward back-propagation 
ANN model utilizing the Levenberg-Marquardt algorithm for training 
(similar to Newton’s method), which is efficient and easy for imple
mentation. The inputs of their models included fuel cell current (IFC), 
sampling delayed current, sampling delayed voltages (UFC), and the 
corresponding voltage and current differences, and the output was the 
cell voltage. 

Chávez-Ramírez et al. [146] developed an ANN model with seven 
input variables (including current, air flow rate, hydrogen flow rates, 
nitrogen flow rates, cathode water injection, anode inlet temperature, 
and bulk water temperature) and two output variables (including stack 
voltage and cathode outlet temperature) to evaluate a 5 kW PEM fuel 
cell stack (see Fig. 18). The maximum output prediction errors were 
found to be around 9 % in the stack potential and 6% in the operating 
temperature, respectively. 

Hatti et al. [148] developed an ANN model with four input variables 
(including temperature, current, hydrogen and oxygen pressures), a 
hidden layer of neurons, and an output variable (cell voltage) to study 

the static performance of PEM fuel cells. The comparison with the 
empirical models suggested a good agreement with the current-voltage 
curves at various pressures; however, no quantitative evaluation of the 
ANN model performance was reported. Hatti and Tioursi [149] devel
oped a dynamic neural network (DNN) by incorporating a delay line for 
the inputs, as shown in Fig. 19. This enabled the DNN model to predict 
the transient cell performance, even though the physical variables used 
for the inputs and outputs were not explicitly explained. 

Vichard et al. [150] developed an Echo State Neural Network (ESNN) 
model (see Fig. 20), which is a type of RNN, to predict the long-term 
performance of PEM fuel cells based on their 5000 h experimental 
data. In their model, three variables, including environment tempera
ture, operation time and stack voltage at previous state, were used as 
inputs. This enabled the prediction of stack voltage at the current state 
when the operation time was sufficiently long with a large dataset for 
training and testing. Their modeling results indicated that the learning 
rate (i.e., percentage of data used for training) had a significant impact 
on the modeling accuracy, as shown in Fig. 21. An obvious bias of 
voltage prediction was found after around 1600 h of operation when 
only 33% of the entire data were used for training (see Fig. 21a). When 
the training rate was increased to 60%, the predicted stack voltages 
agreed well with the experimental data after around 3200 h of operation 
(see Fig. 21b). It should be noted that the computation time for building 
their model was around 2 s in the environment of Windows 10 system 

Fig. 17. Architecture for long short-term memory (LSTM) cell (Reprinted from [144] with permission of Elsevier).  

Fig. 18. An optimized architecture of artificial neural network for PEM fuel cell modeling with seven input variables, two hidden layers, and two output variables 
(Reprinted from [146] with permission of Elsevier). 
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with a 3.4 GHz CPU, a NVIDIA GPU and 64 G memory, which is suitable 
for real-time control. 

7.2. Fuzzy logic (FL) model 

Data-driven fuzzy logic (FL) models can also be used for fuel cell 

control and diagnosis [58]. The key idea of an FL model is to allocate the 
data points into several clusters and the data points possessing the most 
similarities will be assigned into the identical cluster. Fig. 22 shows a 
schematic of three fuzzy clusters (c1, c2 and c3) on a 2D feature space (f1 
and f2). In the fuel cell applications, each cluster can represent one type 
of failure mode, and each data point can be a vector of a certain amount 
of features related to the failure mode. 

Tekin et al. [151] developed a new energy management approach for 
a 5 kW PEM fuel cell based on fuzzy logic algorithm. Two fuzzy logic 
controllers were investigated in their studies for efficient energy man
agement strategies. The first fuzzy logic controller was used for the 
airflow control loop, which allows an energy consumption reduction in 
comparison with conventional linear-control strategies. The second 
fuzzy logic supervisor was adopted to determine the airflow set point. 
Five input variables (including voltage and its time derivative, current 
and its time derivative, and time derivative of the requested power), a 
fuzzy logic controller, and an output variable (airflow reference output) 
were involved in their model, which was advantageous in fault man
agement and energy consumption of the fuel cell system. 

Hissel et al. [152] developed a fuzzy-clustering method based on a 
2D space of two variables extracted from the Nyquist plots of 

Fig. 19. The state diagram of dynamic neural network with two neurons, two inputs, and two outputs based on Matlab/Simulink (Reprinted from [149] with 
permission of Elsevier). 

Fig. 20. Schematic of Echo State Neural Network (ESNN) (Reprinted from 
[150] with permission of Elsevier). 

Fig. 21. Performance of Echo State Neural Network (ESNN) with various learning rates of (a) 33% and (b) 60% (Reprinted from [150] with permission of Elsevier).  
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electrochemical impedance spectroscopy (EIS) results obtained from a 
steady-state current operation and a current-cycling operation based on 
real transportation loads of the PEM fuel cells. These two variables 
included the difference between voltage loss and internal resistances 
and the maximum absolute phase value of the Nyquist plots for the fuel 
cell stack under study. The fuzzy-clustering method was adopted to 
recognize the clusters related to specific aging effects. Their model was 
able to distinguish normal fuel cell operation, abnormal operation, and 
the states in transition. Therefore, it is of potential to be applied to the 
real-time control of PEM fuel cell powertrain [152]. 

7.3. Support vector machine (SVM) model 

The support vector machine (SVM) model, as a supervised learning 
model, has been recently incorporated into fuel cell modeling for control 
purposes with designed inputs, including current, reactant flow rates, 
pressure, and temperature. 

Zou et al. [153] developed a least squares support vector machine 
(LS-SVM) algorithm (see Fig. 23) for the high-temperature PEM fuel cells 
to investigate temperature distribution under dynamic operations. Ten 
thermocouples were placed in a fuel cell stack (see Fig. 24a) to record 
the temperature variation against time with sampling intervals of 20 s. 
The datasets T1,T2,T4,T5,T7,T8 and T10 were used for model training, 

and datasets T3,T6 and T9 are used for testing the prediction. It can be 
seen that the LS-SVM was able to capture the temporal behavior of the 
temperature evolution with very good accuracy (errors are typically 
lower than 1.2%), as shown in Fig. 24b and c. 

Wu et al. [154,155] developed a self-adaptive approach of relevant 
vector machine (RVM) model which was trained against experimental 
data on cell voltage degradations based on a 1.2 kW and a 8 kW PEM fuel 
cell stack. In comparison with the classic SVM, the RVM method presents 
better predictive performance. For most cases, the prediction errors of 
RVM were reported 30%–40% lower than that of classic SVM. The 
improved performance of RVM in comparison with SVM was attributed 
to its probabilistic prediction, no limitation on kernel function selection, 
and efficient computation during regression or classification, making 
RVM particularly suitable for real-time control and prognosis [155]. 

7.4. Physics-informed data-driven model 

The physics-informed data-driven model incorporates available and 
often incomplete physics knowledge into data-driven models to avoid 
unreliable results caused by improperly or insufficiently trained data- 
driven models and to accelerate the computing speed of physics-based 
models [156–159]. 

Raissi et al. [156] developed a physics-informed ANN model that is 
suitable for multi-physics multi-scale physical phenomenon modeling 
and model predictive control. Their results indicated that a 
physics-informed neural network is capable of encoding a physical 
phenomenon that is governed by partial differential equations, e.g., the 
Navier-Stokes equation in computational fluid dynamics. The method 
can be potentially used to investigate fuel cell performance by incor
porating one or more governing equations, such as momentum equation, 
energy equations, reactant and water transport, and the Butler-Volmer 
equation, into the neural networks. The details of the major physical 
phenomena in PEM fuel cells that can be implemented by 
physics-informed models are summarized in [157]. Although these 
models have not been applied for PEM fuel cell performance simulation, 
they may be beneficial not only for fuel cell control but also for 
component design and optimization [157]. 

7.5. Data-driven reduced-order model 

Data-driven reduced-order models can be composed of a computa
tionally intensive offline phase and an efficient online phase that can be 
used for fast predictions of system characteristics [160]. Many model 
reduction techniques, including proper orthogonal decomposition 
(POD) [161,162], principal component analysis (PCA) [163], and the 
Karhunen-Loéve method [164,165], have been developed in various 
applications [162,166]. These methods have a promising potential to 
accelerate the computing speed of original high-fidelity PEM fuel cell 
models. 

Lei et al. [164] developed a reduced-order coarsening model by 
applying a Gaussian process stochastic function to address the Ostwald 
ripening mechanism of the catalyst particle growth. This model is used 
to estimate the microstructure evolution of the electrodes in solid oxide 
fuel cell (SOFC) with enhanced computing speed and excellent agree
ment with the experimental datasets. Li et al. [163] performed a 
comparative study on the data-driven diagnosis methods for PEM fuel 
cells. Four automatic feature extraction methods, including PCA, Fisher 
Discrimination Analysis (FDA), Kernel PCA, and Kernel FDA, combined 
with three classification methods, including Gaussian Mixture Model 
(GMM), k-Nearest Neighbor (kNN), and SVM are incorporated in the 
framework of the diagnosis approach (see Fig. 25) and compared in their 
studies. Based on the computing cost of online diagnosis performance 
(time for offline training was not considered), the models using FDA 
combined with SVM classifier are recommended for the best 
performance. 

Although reduced-order models have not been widely applied to the 

Fig. 22. Fuzzy clustering diagram (Reprinted from [58] with permission 
of Elsevier). 

Fig. 23. Framework of spatiotemporal least square support vector machine (LS- 
SVM) method (Reprinted from [153] with permission of Elsevier). 
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real-time control of PEM fuel cells, they have become a viable option to 
minimize the required computing resources while predicting high- 
fidelity dynamic PEM fuel cell behaviors. 

7.6. Comparison of data-driven models 

Data-driven models, with an emphasis on artificial intelligence al
gorithms, are advantageous to build the input-output relationships of a 
given big dataset [167–169], which makes the real-time performance 

prediction of PEM fuel cells possible. There exist various data-driven 
models developed for fuel cell control, and a summary and compari
son of these models are presented in Table 8. It can be seen that 
data-driven models are advantageous in computational speed and pre
diction accuracy without the requirement of physical knowledge. Ou 
and Achenie [143] claim that the training time required for an ANN 
model is comparable to that needed to set up a physical model, but once 
trained, the ANN model will be much faster for computing. However, 
little information about the computational resources and time needed 

Fig. 24. Validation of spatiotemporal least square support vector machine (LS-SVM) method based on a PEM fuel cell stack with dynamic temperature distribution: 
(a) Thermocouple placement in the fuel cell stack, (b) Model output, and (c) Relative error (Training datasets: T1–T10; testing datasets: T3,T6,T9) (Reprinted from 
[153] with permission of Elsevier). 

Fig. 25. The framework of the diagnosis approach proposed by Li et al. (Reprinted from [163] with permission of Elsevier).  
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for training is reported in the literature [17,143,148,151,152]. Further 
studies should take into account as many controllable operating vari
ables and design parameters as possible for the data-driven model 
development. Models with capabilities to predict more output variables, 
including voltage, temperature, and outlet conditions, will be advanta
geous for the fuel cell stack and system control. Online learning algo
rithms will be of particular interest in industry such that the long-term 
performance can be estimated. However, the data-driven model devel
opment requires a large amount of experimental data, and the effect of 

data quality on the date-driven model performance will be of particular 
research interest. 

8. Model accuracy and computing speed 

The prediction accuracy and computing speed are evaluated with 
different reported metrics in various fuel cell models, including physics- 
based and data-driven models. A detailed comparison of model accuracy 
and computing speed reported in literature is presented in Table 9. 

Table 8 
Comparison of zero-dimensional data-driven models for the control of PEM fuel cells.  

Model Features Ou and 
Achenie 

Hatti 
et al. 

Tekin 
et al. 

Hissel et al. Sisworahardjo 
et al. 

Chávez- 
Ramírez 
et al. 

Sari 
et al. 

Silva 
et al. 

Wu 
et al. 

Ma 
et al. 

Zou 
et al. 

Vichard 
et al. 

Year 2005 2006 2007 2007 2010 2010 2013 2014 2016 2018 2019 2020 

Algorithm Neural- 
physical 

ANN Fuzzy 
logic 

Fuzzy- 
clustering 

ANN ANN ANN Fuzzy 
Neural 

RVM RNN SVM ESNN 

Inputs 6 4   2 7 8 4    3 
Current density √ √ - - √ √ √ - - - - ×

Cell temperature √ √ - - √ × × - - - - ×

Concentration of 
methanol 

√ × - - × × × - - - - ×

Methanol flow 
rate 

√ × - - × × × - - - - ×

Pt loading √ × - - × × × - - - - ×

Pt/C ratio √ × - - × × × - - - - ×

Hydrogen pressure × √ - - × × × - - - - ×

Oxygen pressure × √ - - × × × - - - - ×

Air mass flow rate × × - - × √ × - - - - ×

Hydrogen mass 
flow rate 

× × - - × √ × - - - - ×

Nitrogen mass 
flow 

× × - - × √ × - - - - ×

Cathode water 
injection rate 

× × - - × √ × - - - - ×

Anode 
temperature 

× × - - × √ × - - - - ×

Bulk water 
temperature 

× × - - × √ × - - - - ×

Ambient 
temperature 

× × × × × × × × × × - √ 

Voltage × × × × × × × × × × - √ 
Time × × × × × × × × × × - √ 
Outputs 1 1   3 2 1 1    1 
Cell voltage √ √ - - √ √ √ - - - - √ 
Power × × - - √ × × - - - - ×

Hydrogen flow 
rate 

× × - - √ × × - - - - ×

Cathode 
temperature 

× × - - × √ × - - - - ×

Temperature × × - - × × × - - - √ ×

Architecture             
Number of hidden 

layers 
1 1 - - 2 2 2 3 - - - - 

Number of neurons - 30 - - 6 + 6 6 + 10 18 +
18 

- - - - - 

Training and testing             
Training data 

percentage 
75% - - - - 50% 70% - - - 70% 60% 

Testing data 
percentage 

25% - - - - 25 + 25% 30% - - - 30% 40% 

Physics included             
Steady-state 

behavior 
√ √ - - × × × - - - - ×

Transient behavior × × - - √ √ √ - - - √ √ 
Aging effects/online 

learning 
× × - - × × × - - √ √ ×

Validation             
Voltage √ √ - - √ √ √ - - - √ √ 
Other variables × × - - √ √ × - - - - ×

Computation speed × × × × × × × × × × × √ 
References [143] [148] [151] [152] [17] [146] [57] [170] [154, 

155] 
[144] [153] [150] 

Note: √, ×, and – denote the features are included, excluded, and not mentioned in the corresponding studies, respectively.Model Accuracy and Computing Speed 
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Most of the physics-based models evaluate the accuracy by 
comparing the I-V curve (polarization curve), which is known as the 
validation of models. For instance, Shamardina et al. [123] validated 
their pseudo-2D model by an experimentally measured polarization 
curve, while Yang et al. [91,125] validated their pseudo-2D transient 
model against two steady-state polarization curves under different 
stoichiometry ratios from published experimental data. The steady-state 
I-V curves are also commonly used for the validation of 1D models [10, 
51,53,54,56,103] and 0D analytical models [23,28]. Some other vari
ables are also used for model validation, including transient voltage [47, 
48,91], coolant temperature [91], and resistance [14]. Although most 
physical models claimed that their modeling results agree well with 
experimental data, their models are only validated against one or a few 
polarization curves, which is often valid in a narrow range of fuel cell 
operational conditions. Moreover, most studies only present a compar
ison of modeling results with experimental data, while statistical in
dicators were rarely reported in the literature to quantify the errors in 
modeling work. The computing speed of a steady-state model can be 
evaluated by the computing time required to calculate a single case, 
while for a transient model, the computing speed can be quantified in 
comparison with the real operation time. For instance, Shamardina et al. 
[123]’s steady-state model requires a few seconds of computing time for 
a single case based on a personal computer, while Goshtasbi et al. [45, 
126]’s transient pseudo-2D model takes 611 s to calculate a physical 
operation of fuel cell for 1200 s, which means the computing speed is 
two times faster than real-world applications. The computational time 
also depends on the fuel cell controller used for the control, while the 
actual physical time for a particular fuel cell set depends on the fuel cell 
design, structure and operation condition. However, the details of 
electronic control units and fuel cells are often kept confidential by the 
fuel cell developer. 

0D empirical models rely on a relatively larger experimental dataset 
to determine empirical coefficients in various models, and the prediction 
performance is usually good within the narrow range of data used for 

curve fitting [16,18–20,24,25]. Although most studies on 0D empirical 
models did not report the calculation speed, the computing speed is 
generally believed to be much faster than pseudo-2D numerical, 1D 
numerical, and 0D analytical models as most 0D empirical models only 
involve one or a few algebraic equations and do not resolve spatially 
dependent variables [45]. However, the simplistic nature of 0D empir
ical models makes them less trustworthy to predict the performance 
beyond the data range used for coefficient determination, and it is 
almost impossible to calculate other performance indicators other than 
voltage by 0D empirical models. 

Data-driven models require the largest dataset for model training and 
testing among all the fuel cell models. Wang et al. [157] developed a 
data-driven surrogate SVM model trained with simulation data gener
ated by a 3D fuel cell model taking CL agglomerate into account. 50 data 
points were used for training, and 15 data points were used for testing. 
The predicted current density, Ii [A•cm− 2], is evaluated by four pa
rameters, including root mean squared error, RMSE [A•cm− 2], squared 
correlation coefficient (R2), mean percentage error, δmean, and 
maximum percentage error, δmax, as shown below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Ii − I ′

i

)2

√

(40)  

R2 = 1 −

∑n
i=1

(
Ii − I ′

i

)2

∑n
i=1

(
Ii − Ii

)2 (41)  

δmean =
1
n
∑n

i=1

⃒
⃒Ii − I ′

i

⃒
⃒

Ii
× 100% (42)  

δmax = max
{⃒⃒Ii − I ′

i

⃒
⃒

Ii

}

× 100% (43)  

where the subscript i means the ith data point, n is the total number of 

Table 9 
Comparison of reported accuracy and computing speed of various PEM fuel cell models.  

Ref. Model Computing resources Computing speed Accuracy evaluation Remarks 

[171] 3D CPU: Intel (R) Xeon (R) E5–2650 v4 
2.20 GHz 24 threads, Four-process 
parallel computing 

8–12 h per scenario N/A 331,800 structured volume grid cells; 
4200 surface grid cells in the activation 
plane. 

[67] 3D Beowulf cluster system with 8 CPUs 1143–1317 min (assuming 1000 
iterations) 

N/A Fluent; 25 parallel channels; 2.2 million 
nodes. 

[172] 1D+3D Intel Core i7–2600 K @ 3.40 GHz 
CPU (all 8 processes used) and 8 GB 
RAM 

> 2 months Polarization curve Unsteady state; Volume of fluid (VOF) 
method for air-water two-phase flow in 
cathode channel. 

[67] 2D N/A 733–808 s/case N/A Comsol 
[45] Pseudo- 

2D 
2.4 GHz CPU ~611 s (equivalent to 1200 

seconds operating time) 
Qualitative agreement with 
published experimental data 

Transient model 

[173] Pseudo- 
2D 

Linux PC cluster built by 10 P-4 
CPUs with 20GB of main memory 

~30 min N/A 51 cells; U and Z stack configuration. 

[55] 1D Pentium-D Processor 2.2 GHz, 
memory 1 GB 

33% faster than the real time (e. 
g., 344 s simulation time vs. 421 
s real time) 

Compared with experimental data on 
temperature and voltage variation 

Dynamic model 

[150] RNN CPU Intel core I7–6800k 3.40 GHz, 
GPU NVIDIA TITAN X, 64 GB of 
memory. 

~2 s (equivalent to 2000 h 
operating time) 

N/A Degradation of fuel cell system 

[174] SVM N/A < 1 s for each polarization curve 
10,000 times faster than 
physical model 

root mean squared error, RMSE 
(0.99) 
squared correlation coefficient (0.06) 
mean percentage error (3.3%) 
maximum percentage error (7.7%) 

compared with single cell 3D physical 
model 

[171] ANN and 
SVM 

Lenovo X1 Yoga, CPU: Intel(R) Core 
i7–6600 U 2.60 GHz 

< 1 s per scenario root mean squared error, RMSE 
relative root mean square errors, 
rRMSE (3.88%- 24.80%) 

5250 data points in the training set 
1750 data points in the test set 
compared with 3D physical model 

[175] SVM PIII 800 MHz computer training time ~ 30 ms (1583 
iterations) prediction time ~ 10 
ms 

No quantitative evaluation is 
reported. 

~ 130 data points of voltage-current 
relation 

[176] N/A 80–300 MHz CPU speed 
1.5–8 Mb flash memory 

N/A N/A Bosch fuel cell controller  
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data points, I′i is the current density predicted by the 3D model, and Ii is 
the average current density in the dataset. The prediction performance is 
shown in Fig. 26. The R2 value in the training and testing datasets is 
0.9996 and 0.9908, respectively, which are sufficiently high for most 
applications. The maximum percentage error is reported to be 7.7% in 
the test dataset and 3.6% in the training set. Therefore, the data-driven 
model demonstrates comparable accuracy with the physical model. 
Wang et al. [171] further built a two-hidden-layer ANN model and an 
SVM model to test a larger dataset generated by 3D models (5250 data 
points for training and 1750 data points for testing). The prediction 
results are evaluated by RMES and relative RMES, and both ANN and 
SVM demonstrate similar accuracy in comparison with 3D physical 
models. The computing time for data-driven models is within 1 s, while 
the 3D physical model requires 8–12 h per scenario by four-processor 
parallel computing (See Table 9 for more details). The computing 
speed of the data-driven models depends on not only the algorithm, but 
also the number of input and output variables, the size of the dataset, 
and the complexity of data structure. However, most of the data-driven 
models for fuel cells did not report the computing time for model 
training, and the computing speed is often reported when the model is 
used for performance prediction. 

9. Challenges and future prospects 

A typical PEM fuel cell stack, as a promising alternative power 
source, consists of hundreds of single cells, and the performance of a 
particular fuel cell system is determined by many operating variables, 
including but not limited to reactant composition, temperature, pres
sure, relative humidity, flow rate, and cooling conditions. Therefore, it is 
challenging to predict all states of this high degree of freedom system 
with sufficient accuracy and computing speed over the entire opera
tional range, which requires significant improvement of the reduced- 
dimensional physics-based or data-driven models in the following as
pects (see Fig. 27 and Table 10):  

a Model accuracy 

For physics-based models, the accuracy depends on the details of 
multi-dimensional transport and electrochemical phenomena included 
in the model, such as two-phase flow, temperature variation, ice for
mation, and aging effect. Due to the limitation of computing resources 

for the currently available electronic control unit (ECU) (see Table 9), 
significant simplifications have to be made to reduce the dimension of 
the physical problems and the complexity of the corresponding gov
erning equations based on reasonable assumptions. It is expected that 
3D and 2D models are generally able to predict with higher fidelity than 
1D and 0D models since they are more realistic and can capture more 
details of the transport and electrochemical phenomena in the fuel cells. 
Model accuracy is also affected by various transport coefficients and 
properties in different fuel cell components, including membrane, 
catalyst layers, gas diffusion layers, flow channels, and distribution 
plates. These coefficients and properties significantly vary in different 
numerical studies, and further experimental efforts are required to 
eliminate this discrepancy. Furthermore, model accuracy can be 
improved by incorporating multiple aging effects, including mechanical, 
thermal, and electrochemical degradations, to predict performance 
degradation in a long-term manner. 

For data-driven models, the accuracy depends on not only the 
training algorithm and model architecture but also the volume and 
quality of the training data. Once the model is well-trained, the pre
diction of cell performance is expected to be accurate within the range of 
training data. However, uncertainty remains when the fuel cell is 
operated under extreme conditions, such as cold start, degraded com
ponents, or unexpected scenarios that are not covered in the training 
data. Further efforts can be made to optimize data selection and pre- 
processing to avoid over-training or abnormal prediction.  

b Computing speed 

Fig. 26. Comparison of the current density predicted by data-driven model and physical model for (a) training set and (b) testing set by Wang et al. (Reprinted from 
[157] with permission of Elsevier). 

Fig. 27. Comparison of multi-dimensional physics-based and data-driven fuel 
cell models. 
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For physics-based models, computing speed depends on the number 
of physical phenomena included and the accuracy required, which is 
inadequately investigated in literature. More incorporated phenomena 
and higher required accuracy mean longer computing time. Based on the 
available ECU, 3D and 2D models are computationally expensive for 
implementation, while 1D and 0D models have demonstrated the 
capability of direct implementation for control purposes. As can be seen 
in Table 9, the computing time required for 3D and 2D models varies 
from tens of minutes to a few months, while the pseudo-2D and 1D 
models are reported to be 33–50% faster than the real-time fuel cell 
dynamics. Technical pathways to enhance computational speed include 
reducing dimensionality, simplifying model formulation, ignoring non- 
dominant phenomena, and improving computing algorithms and re
sources. Further efforts can be made to evaluate the effect of these 
pathways on the computing speed of physics-based models. 

For data-driven models, the computing speed can be enhanced by a 
few orders of magnitudes in comparison with physics-based models once 
the model is trained against sufficient experimental data, although the 
training time may be comparable to that of physical models. As shown in 
Table 9, the data-driven models only need a few seconds to estimate fuel 
cell behaviors after the models are well trained (the training time is 
rarely reported). Further studies to develop models with capabilities to 
predict more output variables, including voltage, temperature, and 
outlet reactant and product conditions, will benefit advanced system 

control with limited ECU resources.  

c Balance between model accuracy and computing speed 

The implementation of physics-based fuel cell models on the ECU 
requires significant simplification of various transport and electro
chemical phenomena. This simplification will inevitably sacrifice the 
modeling accuracy to some extent. Therefore, the computing speed and 
modeling accuracy of a fuel cell model are often in a trade-off relation. 
Further efforts can be made to explore the balance between modeling 
accuracy and computing speed for the real-time control of PEM fuel 
cells.  

d d Aging mechanisms 

In an actual PEM fuel cell, the long-term performance can be aged 
due to various mechanisms, including mechanical, thermal, chemical, 
and electrochemical degradations [4,120–122] for all cell components, 
including membrane, CLs, GDLs, and bipolar plates. The major me
chanical and thermal degradation of cell components arises from the 
structural deformation (both plastic and elastic) corresponding to the 
cell and stack assembly force, and the stress cycling arises from the 
volumetric and dimensional changes accompanying the changes in 
operational conditions, e.g., current density, humidity, and temperature 

Table 10 
Comparison of multi-dimensional PEM fuel cell performance models.  

Model Schematic Advantages Challenges 

3D & Pseudo- 
3D 

• Best accuracy  
• Detailed 3D physical and electrochemical 

phenomena  
• Assistance to component design  
• Reduced experimental efforts  

• Computationally expensive (from hours to months)  
• Accuracy relies on many transport and electrochemical properties 

and geometry of cell components  
• Not suitable for implementation on the available electronic control 

unit (ECU) 

2D • Faster calculation than 3D models (~ mins 
per steady-state case)  

• Reasonable accuracy under certain 
conditions  

• Slow computational speed for ECU implementation  
• Transport phenomena in channels are simplified  
• More assumptions than 3D  
• Careful validation needed 

Pseudo-2D • Can be faster than the real time (reported to 
be 50% faster)  

• Reasonable accuracy under specific 
conditions  

• Potential direct implementation on ECU  

• Requires strict validation against experimental data  
• Weak connection in the along-the-channel direction 

1D • Can be faster than the real time (reported to 
be 33% faster)  

• Reasonable accuracy under specific 
conditions  

• Potential direct implementation on ECU  

• More assumptions required  
• Requires strict validation against experimental data  
• May not be able to predict the performance within the entire 

operational range with sufficient accuracy  
• Trade-off relation between accuracy and computing speed 

0D 
(analytical) 

• Theoretically faster than 1D models  
• System analysis and design  
• Thermodynamic analysis  
• Used for model predictive control studies  

• Requires strict validation against experimental data  
• Accuracy over the entire range of operation may not be reliable 

0D (empirical) • Theoretically faster than 1D models  
• Good accuracy with proper curve fitting  
• Used for model predictive control studies  
• Direct implementation on ECU  

• Requires well-structured experimental data for curve fitting to 
determine the unknown coefficient  

• Only valid for validated cases  
• Accuracy over the entire range of operation may not be reliable 

Data-driven • Fast calculation after training (< a few 
seconds)  

• Excellent accuracy once properly trained  
• No requirement on the knowledge of the fuel 

cell design  
• No requirement on transport or 

electrochemical coefficients  

• Algorithm and model architecture should be properly selected  
• A high volume of experimental data is required  
• Experimental data should be representative of typical operations  
• Uncertain accuracy when operating fuel cell in extreme conditions 

that are not trained  
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[177–179]. This type of degradation can be modeled through the 
changes in dimensions (e.g., thickness) and structure-determined pa
rameters (e.g., porosity, effective ohmic resistance, effective diffusion 
coefficient, and capillary pressure) of the cell components [180], which 
can significantly affect the activation, ohmic, and concentration losses 
after a long-term operation [181]. Shen [180] developed a predictive 3D 
model incorporating the above aging mechanisms to evaluate the 
long-term performance degradation due to the cycling of assembly force, 
thermal, and humidity changes. The major chemical and electro
chemical degradations occur because of the component corrosion 
caused by chemical and electrochemical reactions. The corrosion of 
ionomer and catalyst can be resulted from the attack of radical species 
(e.g., peroxide (HO*) and hydro peroxide (HOO*)) resulted from anodic 
and cathodic chemical reactions [182,183]. The membrane thinning, 
which can cause a significant performance drop, can be caused by the 
contamination of trace metal ions (e.g., Cu2+ and Fe2+) due to the 
corrosion of metal distribution plates or endplates [120,184]. The 
catalyst can lose activities due to the poisoning by the impurities in 
reactant gas [185,186] and the reduced electrochemical surface area 
(ECSA) resulted from the catalyst sintering, agglomeration, dissolution, 
detachment, and other degradation modes [187–190]. This type of 
degradation can be modeled via the changes in ohmic resistance and 
ECSA [38,47,191]. There exist quite a few review articles addressing the 
degradation mechanisms of various PEM fuel cell components [4,120, 
192,193]; however, incorporating these aging effects into the 
control-oriented models remains challenging.  

e e Open-source database of PEM fuel cells 

The role of experimental data on PEM fuel cells is mainly to validate 
the physics-based numerical models (including pseudo-2D, 1D numeri
cal, 0D analytical models) [8,33,46,34,39–45], to calibrate 0D empirical 
models [16,18–20,24,25], or to train and test data-driven models [17, 
143,148,151,152]. The experimental data on the short- and long-term 
performance of PEM fuel cells may vary significantly depending on 
the design and manufacturing processes, and the performance data are 
often kept confidential with limited information available on how the 
data were measured for what details of the particular cell. Therefore, the 
availability of benchmark experimental data on PEM fuel cell perfor
mance is lacking in the open literature. Although many open-source 
databases have been developed for the structure and properties of 
molecules and solids in chemistry and material filed [157,194], such an 
open-source database for the fuel cells has not been available, which will 
be of particular interest in fuel cell modeling. 

10. Summary and concluding remarks 

The control-oriented polymer electrolyte membrane (PEM) fuel cell 
modeling of high computational speed and sufficient accuracy is ur
gently needed for the prediction of the transient and long-term perfor
mance over the entire range of operational conditions. These models can 
be physics-based and non-physics-based depending on whether trans
port and electrochemical phenomena within individual cell components 
are explicitly taken into account. In this review, recent progress on the 
development of control-oriented PEM fuel cell models, including 
physics-based models with reduced spatial dimensionalities (one- 
dimensional numerical and zero-dimensional analytical models) and 
non-physics-based models (zero-dimensional empirical and data-driven 
models), have been comprehensively scrutinized. 

First, the transport and electrochemical phenomena in cell compo
nents as well as their corresponding mathematical description has been 
reviewed, including the conservation and transport of mass, momentum, 
energy, gas species, liquid and dissolved water, and charged species, as 
well as electrochemical kinetics, and cell potential. Based on these 
phenomena, numerical models with reduced spatial dimensions, which 
are of potential to be used for real-time control, have been reviewed and 

compared. It is found that many efforts have been devoted into (i) 
integrating the single cell model with accessories to study the system 
performance, (ii) incorporating aging effects to enable the long-term 
performance prediction, and (iii) evaluating the computational speed. 
Zero-dimensional analytical and empirical models are also widely 
investigated in the literature in an attempt to be used for real-time 
control of PEM fuel cells due to their ease of implementation and fast 
computing speed. However, it remains challenging for these models to 
be used to control the PEM fuel cells over the entire range of operations. 

Data-driven models, with an emphasis on artificial intelligence al
gorithms (including artificial neural network, fuzzy logic, support vector 
machine, and hybrid algorithms) have been reviewed. These models 
have demonstrated excellent accuracy and computational speed when 
the model is properly trained with a sufficiently large dataset. However, 
the factors affecting data-driven models rely on the amount and struc
ture of the experimental data, which have not been thoroughly inves
tigated so far, and further development of data-driven models with on- 
line learning features would be advantageous for the long-term perfor
mance prediction. 

Future control-oriented modeling studies should balance between 
the model accuracy and computing speed based on the current limita
tion of computing resources. For the physics-based model, the accuracy 
can be improved by using experimentally determined transport co
efficients or properties, validating against more indicators under more 
representative scenarios, and including as many physical phenomena as 
possible, while the computing speed can be enhanced by simplifying 
formulation, reducing dimensionality, simplified modeling of non- 
dominant phenomena (such as taking a sub-grid type of modeling 
approach, or even total neglect), and improving the numerical algo
rithm. For the data-driven models, efforts can be made to improve the 
training algorithm and model architecture as well as the data selection 
and pre-processing. These further research directions will help achieve 
the goals of the real-time control of PEM fuel cells with high modeling 
accuracy and low computing cost over the entire operational range. 
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